
IMS
15.3.0

Application Programming APIs
(2024-08-30 edition)

IBM

Note

Before you use this information and the product it supports, read the information in “Notices” on page
779.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.03.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.03.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this information.. ix
Prerequisite knowledge...ix
How new and changed information is identified.. ix
How to read syntax diagrams...x
Accessibility features for IMS 15.3...xi
How to send your comments... xii

Chapter 1. DL/I calls reference.. 1
Database management..1

DL/I calls for database management...1
DL/I calls for IMS DB system services...30

Transaction management..74
DL/I calls for transaction management... 74
DL/I calls for IMS TM system services.. 113

EXEC DLI commands... 153
Summary of EXEC DLI commands...154
ACCEPT command... 155
CHKP command... 156
DEQ command..157
DLET command.. 158
GN command..159
GNP command... 164
GU command..169
ISRT command...174
LOAD command..179
LOG command..180
POS command..181
QUERY command... 182
REFRESH command... 182
REPL command.. 183
RETRIEVE command..187
ROLB command..188
ROLL command.. 189
ROLS command..190
SCHD command... 191
SETS command.. 192
SETU command..193
STAT command...194
SYMCHKP command.. 195
TERM command... 196
XRST command.. 197

Command code reference... 198
A command code..200
C command code..200
D command code... 201
F command code..203
G command code... 204
L command code.. 204
N command code... 205
O command code... 205

 iii

P command code..206
Q command code... 206
U command code... 208
V command code..210
NULL command code... 210
DEDB command codes for DL/I... 210

Relationship between calls, AIBs, and PCBs..216
DL/I test program (DFSDDLT0) reference...217

Control statements.. 217
ABEND statement.. 218
CALL statement.. 219
COMMENT statement...241
COMPARE statement..242
IGNORE statement...248
OPTION statement...249
PUNCH CTL statement... 250
STATUS statement..252
WTO statement.. 256
WTOR statement.. 256
JCL requirements for the DL/I test program (DFSDDLT0) ... 257
Execution of DFSDDLT0 in IMS regions... 260
Explanation of DFSDDLT0 return codes.. 260
DFSDDLT0 operations.. 261

Chapter 2. DRDA DDM command architecture reference..................................... 263
Overview of the syntax for DDM terms supported by IMS... 263

DSSHDR syntax.. 264
DDM commit and rollback processing.. 264
DDM commands and command objects... 265

ACCRDB command (X'2001').. 265
ACCSEC command (X'106D')...267
CLSQRY command (X'2005')... 268
CNTQRY command (X'2006')...269
DEALLOCDB command (X'C801').. 271
DLIFUNC command object (X'CC05').. 273
DLIFUNCFLG command object (X'CC09')..274
EXCSAT command (X'1041')..275
EXCSQLIMM command (X'200A')..276
EXCSQLSET command (X'2014')... 280
FLDENTRY command object (X'CC03')..282
FLDENTRYREL command object (X'CC0C')... 283
IMSCALL command (X'C803')..283
INAIB command object (X'CC01')... 284
MONITORRD command (X'1C00')... 286
OPNQRY command (X'200C').. 286
PRPSQLSTT command (X'200D')...291
RLSE command (X'C802').. 293
RTRVFLD command object (X'CC04').. 294
RTRVFLDREL command object (X'CC0B')..295
SECCHK command (X'106E')...295
SEGMLIST command object (X'CC0A').. 297
SQLATTR command (X'2450')... 298
SQLCARD command (X'2408')...298
SQLDARD command (X'2411').. 300
SQLDTA command (X'2412')... 304
SQLSTT command (X'2414')..306
SSALIST command object (X'CC06')... 307

iv

DDM reply messages and reply objects.. 308
ABNUOWRM reply message (X'220D')..308
ACCRDBRM reply message (X'2201')..309
ACCSECRD reply object (X'14AC')... 311
AGNPRMRM reply message (X'1232')...312
CMDVLTRM reply message (X'221D').. 313
DEALLOCDBRM reply message (X'CA01')... 314
ENDQRYRM reply message (X'220B')... 315
ENDUOWRM reply message (X'220C').. 316
EXCSATRD reply object (X'1443')..317
IMSCALLRM reply message (X'CA04')...318
OPNQFLRM reply message (X'2212')..320
OPNQRYRM reply message (X'2205')... 321
QRYDSC reply object (X'241A')..323
QRYDTA reply object (X'241B')..323
QRYPOPRM reply message (X'220F')..324
RDBAFLRM reply message (X'221A').. 326
RDBATHRM reply message (X'2203')..327
RDBNACRM reply message (X'2204')... 328
RDBNFNRM reply message (X'2211')... 329
RDBUPDRM reply message (X'2218')... 330
RLSERM reply message (X'CA03')... 332
RSCLMTRM reply message (X'1233').. 333
SECCHKRM reply message (X'1219').. 334
SQLERRRM reply message (X'2213').. 335

DDM parameters used by IMS...336
AIBOALEN parameter (X'C904').. 336
AIBRSNM1 parameter (X'C901')... 337
AIBRSNM2 parameter (X'C902')... 337
AIBSFUNC parameter (X'C903')..338
aibStream data structure... 338
dbpcbStream data structure..339
iopcbStream data structure...340
OUTAIBDBPCB parameter (X'CC02')...342
OUTAIBIOPCB parameter (X'CC08')..343
RDBNAM parameter (X'2110')...344
SSA parameter (X'C906')... 344
SSACOUNT parameter (X'C905')... 345
UPDCNT parameter (X'C90A')..345

Chapter 3. IMS Adapter for REXX reference..347
IMS Adapter for REXX overview.. 348
Sample exit routine (DFSREXXU).. 348
Addressing other environments..349
REXX transaction programs.. 349
REXXTDLI commands..350
REXXTDLI calls.. 351
REXXIMS extended commands...356

DLIINFO..357
IMSRXTRC.. 358
MAPDEF..359
MAPGET..361
MAPPUT..362
SET..363
SRRBACK and SRRCMIT.. 364
STORAGE.. 364
WTO, WTP, and WTL...365

 v

WTOR..366
IMSQUERY extended functions... 366

Sample execs using REXXTDLI... 368
SAY exec: for expression evaluation..368
PCBINFO exec: display available PCBs in current PSB...369
PART execs: database access examples... 371
DOCMD: IMS commands front end..373
IVPREXX sample application... 377

Chapter 4. Java programming reference... 379
IMS Universal drivers support for JDBC... 379

javax.sql.Clob methods supported..379
java.sql.Connection methods supported...379
java.sql.DatabaseMetaData methods supported..381
javax.sql.DataSource methods supported...385
java.sql.Driver methods supported..385
java.sql.ParameterMetaData methods supported... 386
java.sql.PreparedStatement methods supported... 386
java.sql.Statement methods supported... 387
java.sql.ResultSet methods supported... 388
java.sql.ResultSetMetaData methods supported... 393

IMS Universal drivers support for the Common Client Interface...394
javax.resource.cci.Connection methods supported...394
javax.resource.cci.ConnectionFactory methods supported... 394
javax.resource.cci.ConnectionMetaData methods supported... 395
javax.resource.cci.Interaction methods supported...395
javax.resource.cci.LocalTransaction methods supported..396
javax.resource.cci.ResultSetInfo methods supported.. 396
javax.resource.cci.ResourceAdapterMetaData methods supported.............................. 397
javax.resource.cci.RecordFactory methods supported.. 397

Java API documentation (Javadoc).. 397

Chapter 5. Message Format Service (MFS) reference... 401
MFS application program design...401

Relationships between MFS control blocks.. 401
Format library member selection.. 408
3270 or SLU 2 screen formatting...411
Device compatibility with previous versions of MFS... 414
Enhancing system performance of MFS message and device formats.. 419
MFS definitions for intersystem communication.. 424

MFS message formats... 425
Input message formats..425
Output message formats... 428
MFS message formatting functions... 460

Chapter 6. OTMA Callable Interface API reference..523
OTMA Callable Interface API calls.. 523

OTMA C/I hints and tips... 523
otma_create API.. 524
otma_open API...526
otma_openx API...527
otma_alloc API...529
otma_send_receive API...530
otma_send_receivex API...532
otma_send_receivey API...533
otma_send_async API... 534
otma_send_asyncx API... 537

vi

otma_receive_async API... 538
otma_free API.. 539
otma_close API.. 540

OTMA C/I sample programs.. 541
Warranty and distribution for OTMA C/I sample programs.. 541
OTMA C/I sample program for synchronous processing.. 541
OTMA C/I sample program for asynchronous processing.. 550

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development......... 563
Include file DFSPWSH... 563
DFSQGETS... 570
DFSQSETS..573
DFSXGETS..575
DFSXSETS.. 577
Return codes from the DFSPWSIO APIs...580

Chapter 8. SQL programming reference.. 583
SQL concepts for IMS.. 583

Structured query language.. 583
IMS data structures for SQL...584

Language elements..585
Characters.. 585
Tokens.. 585
Identifiers... 586
Naming conventions...586
Data types...586
Assignment and comparison... 590
Constants... 591
Field names.. 592
References to variables..593
Host structures in COBOL.. 594
Predicates...595
Search conditions...598

SQL statements... 599
How SQL statements are invoked..600
ALTER DATABASE...603
ALTER TABLE.. 617
ALTER TABLESPACE... 645
CLOSE... 651
COMMENT ON.. 652
CREATE DATABASE.. 654
CREATE PROGRAMVIEW..667
CREATE TABLE... 684
CREATE TABLESPACE...727
DECLARE CURSOR... 741
DECLARE STATEMENT... 742
DELETE... 742
DESCRIBE OUTPUT..743
DROP DATABASE..744
DROP PROGRAMVIEW... 745
DROP TABLE... 745
DROP TABLESPACE.. 746
EXECUTE...747
FETCH... 748
INCLUDE...750
INSERT... 750
OPEN...753

 vii

PREPARE.. 755
SELECT... 757
UPDATE...767
WHENEVER...770

SQL communication area (SQLIMSCA)... 771
Description of SQLIMSCA fields...771
The included SQLIMSCA.. 773

SQL descriptor area (SQLIMSDA)..773
Description of SQLIMSDA fields.. 773
The included SQLIMSDA.. 776

Notices..779
Programming interface information..780
Trademarks.. 780
Terms and conditions for product documentation... 781
IBM Online Privacy Statement.. 781

Bibliography.. 783

Index.. 785

viii

About this information

These topics provide reference information for the IMS application programming interfaces (APIs). The
topics also provide reference information for SQL programming for IMS, the IMS Adapter for REXX, the
DL/I test program (DFSDDLT0), and the IMS Message Format Service (MFS). Guidance information for
writing IMS application programs is in IMS Version 15.3 Application Programming.

This information is available in IBM® Documentation.

Prerequisite knowledge
This book is an API (application programming interface) reference for IMS application programming in any
of the following environments:

• IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)
• IMS Transaction Manager (IMS TM)
• CICS® EXEC DLI
• WebSphere® Application Server for z/OS®

• WebSphere Application Server for distributed platforms
• Java™ dependent regions (JMP and JBP)
• Any environment for stand-alone Java application development

This book provides reference information for the IMS application programming interfaces (APIs),
including DL/I, EXEC DLI, the IMS Universal drivers, and the Java class libraries for IMS. It also provides
reference information for the IMS Adapter for REXX, the DL/I test program (DFSDDLT0), and the IMS
Message Format Service (MFS). Guidance information for writing IMS application programs is in IMS
Version 15.3 Application Programming.

Before using this book, you should understand the concepts of application design described in IMS
Version 15.3 Application Programming, which assumes that you understand basic z/OS and IMS concepts
and the IMS environments. You should also know how to use assembler language, C language, COBOL,
Pascal, or PL/I. CICS programs can be written in assembler language, C language, COBOL, PL/I, and C++.

To write Java applications, you must thoroughly understand the Java language and JDBC. This book
assumes that you know Java and JDBC. It does not explain any Java or JDBC concepts.

To create the Java database metadata class, which is a required step in writing Java applications for
IMS using the IMS Universal drivers or the Java class libraries, you must understand IMS databases. IMS
database concepts are described in IMS Version 15.3 Database Administration.

To write applications that store or retrieve XML, you must understand XML and its related technologies,
such as XML schemas.

To learn about z/OS, see z/OS Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified
For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

• Only technical changes are marked; style and grammatical changes are not marked.

© Copyright IBM Corp. 1974, 2022 ix

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

• If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

• If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next line.
– The >--- symbol indicates that a syntax diagram is continued from the previous line.
– The --->< symbol indicates the end of a syntax diagram.

• Required items appear on the horizontal line (the main path).
required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

x About this information

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_item

• In IMS, a b symbol indicates one blank position.
• Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled

exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

• Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

• Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

• Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.3
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including IMS 15.3. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.3 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.3 ISPF panels using TSO/E or ISPF, refer to the z/OS TSO/E
Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

About this information xi

Related accessibility information
Online documentation for IMS 15.3 is available in IBM Documentation.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

• Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

• Send an email to imspubs@us.ibm.com. Be sure to include the book title.
• Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xii IMS: Application Programming APIs

http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

Chapter 1. DL/I calls reference
These topics contain reference information for IMS DL/I calls.

Database management
Use the following DL/I calls to access and administer IMS databases.

DL/I calls for database management
Use these DL/I calls with IMS DB to perform database management functions in your application
program.

Each call description contains:

• A syntax diagram
• Definitions for parameters that are available to the call
• Details on how to use the call in your application program
• Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input” refers to input to IMS
from the application program. "Output" refers to output from IMS to the application program.

Database management calls must use either db pcb or aib parameters. The syntax diagrams for these
calls begin with the function parameter. The call, call interface (xxxTDLI), and parmcount (if it is required)
are not included in the syntax diagrams.

Related reading: For specific information about coding your program in assembler language, C language,
COBOL, Pascal, and PL/I, see the topic "Defining Application Program Elements" in IMS Version 15.3
Application Programming.

Related reference
“DL/I calls for IMS TM system services” on page 113
Use these DL/I calls with IMS Transaction Manager system services.
“DL/I calls for transaction management” on page 74
Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.
“EXEC DLI commands” on page 153
The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

Database management call summary
The following table shows the parameters that are valid for each database management call.

Optional parameters are enclosed in brackets ([]).

Restriction: Language-dependent parameters are not shown here. The variable parmcount is required for
all PLITDLI calls. Either parmcount or VL is required for assembler language calls. Parmcount is optional
in COBOL, C, and Pascal programs.

Related reading: For more information on language-dependent application elements, see the topic
"Defining Application Program Elements" in IMS Version 15.3 Application Programming.

© Copyright IBM Corp. 1974, 2022 1

Table 1. Summary of DB calls

Function Code Meaning and Use Options Parameters Valid for

CIMS Initializes and
terminates the
ODBA interface in
a z/OS application
region.

aib DB/DC, DBCTL,
ODBA

CLSE Close Closes a GSAM
database explicitly

function, gsam pcb
or aib

DB/DC, DBCTL, DB
batch, ODBA

DEQ␢ Dequeue Releases segments
reserved by Q
command code

function, i/o pcb (full
function only), or aib,
i/o area (full function
only)

DB batch, BMP, MPP,
IFP, DBCTL, ODBA

DLET Delete Removes a segment
and its dependents
from the database

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

FLD␢ Field Accesses a field
within a segment

function, db pcb or
aib, i/o area, rootssa

DB/DC, ODBA

GHN␢ Get Hold Next Retrieves
subsequent
message segments

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GHNP Get Hold Next in
Parent

Retrieves
dependents
sequentially

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GHU␢ Get Hold Unique Retrieves segments
and establishes a
starting position in
the database

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GN␢␢ Get Next Retrieves
subsequent
message segments

function, db pcb or
aib, i/o area, [ssa or
rsa]

DB/DC, DBCTL, DB
batch, ODBA

GNP␢ Get Next in Parent Retrieves
dependents
sequentially

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GU␢␢ Get Unique Retrieves segments
and establishes a
starting position in
the database

function, db pcb or
aib, i/o area, [ssa or
rsa]

DB/DC, DBCTL, DB
batch, ODBA

GUR Get Unique Record Retrieves a complete
record from the
IMS catalog in XML
format

function, aib, i/o
area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

ISRT Insert Loads and adds one
or more segments to
the database

function, db pcb or
aib, i/o area, [ssa or
rsa]

DB/DC, DCCTL, DB
batch, ODBA

OPEN Open Opens a GSAM
database explicitly

function, gsam pcb
or aib, [i/o area]

DB/DC, DBCTL, DB
batch, ODBA

2 IMS: Application Programming APIs

Table 1. Summary of DB calls (continued)

Function Code Meaning and Use Options Parameters Valid for

POS␢ Position Retrieves the
location of a specific
dependent or last-
inserted sequential
dependent segment

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

REPL Replace Changes values of
one or more fields in
a segment

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

RLSE Release Locks Releases all locks
held for unmodified
data

function, db pcb DB/DC, DBCTL, DB
batch, ODBA

CIMS call
The CIMS call is used to initialize and terminate the ODBA interface in a z/OS application region.

Format

CIMS aib

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

CIMS X X

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

These fields must be initialized in the AIB:

AIBID
Eye-catcher. This 8-byte field must contain DFSAIB␢␢.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Character value.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:
INIT

AIBRSNM2. A 4-character ID of the ODBA startup table.
CONNECT

AIBRSA1. Address of the CONNECT parameter list.

The following table shows the CIMS CONNECT parameter list format.

Chapter 1. DL/I calls reference 3

Table 2. CIMS CONNECT parameter list format

Offset Length Field Usage description

X'00' X'04' Input Count of connect
request table entries.

X'04' X'04' Input Address of the
connect request
table.

TERM
AIBRSNM2. A 4-character ID of the ODBA startup table that represents the IMS connection
that is to be terminated.

TALL
Terminate all IMS connections.

Usage
The CIMS call is used by an application program that is running in an application address space to
establish or terminate the ODBA environment.

INITbbbb
The CIMS subfunction INIT must be issued by the application to establish the ODBA environment in
the z/OS application address space.

Optionally, AIBRSNM2 can specify the 4-character ID of the ODBA Startup table member. This
member is named DFSxxxx0 where xxxx is equal to the 4-character ID. If AIBRSNM2 is specified,
ODBA tries to establish a connection to the IMS specified in the DFSxxxx0 member after the ODBA
environment is initialized in the z/OS application address space.

CONNECTb
Use the CIMS CONNECT call to establish multiple ODBA connections to IMS systems from the CSL
Open Database Manager (ODBM).

A CIMS CONNECT call can be issued instead of, or in addition to, a CIMS INIT call. A CIMS CONNECT
call will initialize ODBA if ODBA has not already been initialized. To complete initialization only, issue a
CIMS CONNECT call with AIBRSA1 set to -1 (X'FFFFFFFF').

The connect request table contains one or more connect request entries in contiguous storage. Each
entry contains the following fields:

• A 1- to 4-character alias name, left justified and padded on the right with blanks. The alias name is
the value (cccc) taken from the startup properties table DFScccc0. This parameter is required.

• A 4-byte address of the connection properties table (DFSPRP) or 0.

A value of 0 indicates that ODBA must load DFScccc0 to obtain the IMS connection properties. This
member is constructed by specifying the DFSPRP macro in DFScccc0, and then assembling and
linking the member. This member must be in the STEPLIB or JOBLIB of the ODBA application job.

A nonzero value indicates that the caller is passing the address of the connection properties
parameter table. The connection properties parameters are mapped by the DFSPRP macro.

• A 4-byte field to contain the connection request return code. The return code is one of the
AIBRETRN codes.

• A 4-byte field to contain the connection request reason code. The reason code is one of the
AIBREASN codes.

• A 4-byte field to contain the connection request error extension information code. The error
extension contains additional diagnostic information specific to the return and reason codes.

The following table summarizes the CIMS CONNECT table entry format.

4 IMS: Application Programming APIs

Table 3. CIMS CONNECT table entry format

Offset Length Field Usage description

X'00' X'04' Input 1- to 4-character IMS
alias name (cccc) from
the startup properties
table DFScccc0, where
cccc is the alias name.

X'04' X'04 Input 0 or the address
of an ODBA startup
properties table.

A value of 0 indicates
that ODBA must load
a startup properties
table named DFScccc0,
where cccc is the
supplied alias name.

An address indicates
that the caller is
supplying the startup
properties table. The
table is mapped by the
DFSPRP macro.

X'08' X'04' Output Connect request return
code for this entry.

X'0C' X'04' Output Connect request reason
code for this entry.

X'10' X'04' Output Connect request error
extension code for this
entry.

TERMbbbb
The CIMS subfunction TERM can be issued to terminate one IMS connection. AIBRSNM2 specifies the
4-character ID of the startup table member that represents the IMS connection to be terminated. On
completion of the TERM subfunction, the ODBA environment remains intact in the z/OS application
address space.

Note: If the application that issued CIMS INIT chooses to return to the operating system following
completion of the CIMS TERM, the address space will terminate with a system abend A03. This can be
avoided by issuing the CIMS TALL prior to returning to the operating system

TALLbbbb
The CIMS subfunction TALL must be issued to terminate all IMS connections and terminate the ODBA
environment in the application address space.

CLSE call
The close (CLSE) call is used to explicitly close a GSAM database.

For more information on GSAM, see the topic "Processing GSAM Databases" in IMS Version 15.3
Application Programming.

Chapter 1. DL/I calls reference 5

Format
CLSE gsam pcb

aib

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: CLSE X X X X X

Parameters
gsam pcb

Specifies the GSAM PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB length. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a GSAM PCB.

Usage
For information on using CLSE, see the topic "Explicit Open and Close Calls to GSAM" in IMS Version 15.3
Application Programming.

DEQ call
The Dequeue (DEQ) call is used to release a segment that is retrieved using the Q command code.

Format (full function)
DEQ i/o pcb

aib

i/o area

Format (Fast Path DEDB)
DEQ DEDB pcb

aib

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function and DEDB: DEQ X X X

Parameters
DEDB pcb (Fast Path only)

Specifies any DEDB PCB for the call.
i/o pcb (full function only)

Specifies the I/O PCB for the DEQ call. This is an input and output parameter.

6 IMS: Application Programming APIs

aib
Specifies the AIB for the call. This is an input and output parameter. These fields must be initialized in
the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area (full function only)
Specifies the 1-byte area containing a letter (A-J), which represents the lock class of the locks to be
released. This is a mandatory input parameter.

Usage
The DEQ call releases all segments that are retrieved using the Q command code, except:

• Segments modified by your program, until your program reaches a commit point
• Segments required to keep your position in the hierarchy, until your program moves to another database

record
• A class of segments that has been locked using a different lock class

If your program only reads segments, it can release them by issuing a DEQ call. If your program does
not issue a DEQ call, IMS releases the reserved segments when your program reaches a commit point.
By releasing the segments with a DEQ call before your program reaches a commit point, you make them
available to other programs more quickly.

For more information on the relationship between the DEQ call and the Q command code, see the
topic "Reserving Segments for the Exclusive Use of Your Program" in IMS Version 15.3 Application
Programming.

Restrictions
In a CICS DL/I environment, calls made from one CICS (DBCTL) system are supported in a remote CICS
DL/I environment, if the remote environment is also CICS (DBCTL).

DLET call
The Delete (DLET) call is used to remove a segment and its dependents from the database.

Format
DLET db pcb

aib

i/o area

ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: DLET X X X

For DEDB: DLET X X

For MSDB: DLET X

Chapter 1. DL/I calls reference 7

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area in your program that communicates with IMS. This parameter is an input
parameter. Before deleting a segment, you must first issue a Get Hold call to place the segment in the
I/O area. You can then issue the DLET call to delete the segment and its dependents in the database.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA that you
supply in the call point to data areas in your program where the SSAs have been defined for the call.
You can use only one SSA in the parameter. This parameter is optional for the DLET call.

Usage
The DLET call must be preceded by one of the three Get Hold calls. When you issue the DLET call, IMS
deletes the held segment, along with all its physical dependents from the database, regardless of whether
your program is sensitive to all of these segments. IMS rejects the DLET call if the preceding call for
the PCB was not a Get Hold, REPL, or DLET call. If the DLET call is successful, the previously retrieved
segment and all of its dependents are removed from the database and cannot be retrieved again.

If the Get Hold call that precedes the DLET call is a path call, and you do not want to delete all the
retrieved segments, you must indicate to IMS which of the retrieved segments (and its dependents, if any)
you want deleted; to do this, specify an unqualified SSA for that segment. Deleting a segment this way
automatically deletes all dependents of the segment. Only one SSA is allowed in the DLET call, and this is
the only time a SSA is applicable in a DLET call.

No command codes apply to the DLET call. If you use a command code in a DLET call, IMS disregards the
command code.

FLD call
The Field (FLD) call is used to access a field within a segment for MSDBs or DEDBs.

Format
FLD db pcb

aib

i/o area

ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For MSDB: FLD X

8 IMS: Application Programming APIs

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For DEDB: FLD X X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies your program's I/O area, which contains the field search argument (FSA) for this call. This
parameter is an input parameter.

ssa
Specifies the SSA, if any, that you want to use in this call. You can use up to 15 SSAs in this input
parameter. The SSA that you supply will point to those data areas that you have defined for the call.
This parameter is optional for the FLD call.

Usage
Use the FLD call to access and change the contents of a field within a segment.

The FLD call does two things for you: it compares the value of a field to the value you supply (FLD/
VERIFY), and it changes the value of the field in the way that you specify (FLD/CHANGE).

All DL/I command codes are available to DEDBs, using the FLD call. The FLD call formats for DEDBs are
the same as for other DL/I calls. So, if your MSDBs have been converted to DEDBs, you do not need to
change application programs that use the FLD call.

You can also use the FLD call in application programs for DEDBs, instead of the combination of GHU, REPL,
and DL/I calls.

FSAs
The field search argument (FSA) is equivalent to the I/O area that is used by other DL/I database calls. For
a FLD call, data is not moved into the I/O area; rather, the FSAs are moved into the I/O area.

Multiple FSAs are allowed on one FLD call. This is specified in the FSA's connector field. Each FSA can
operate on either the same or different fields within the target segment.

The FSA that you reference in a FLD call contains five fields. The rules for coding these fields are as
follows:
Field name

This field must be 8 bytes long. If the field name you are using is less than 8 bytes, the name must be
left-justified and padded on the right with blanks.

FSA status code
This field is 1 byte. After a FLD call, IMS returns one of these status codes to this area:

Chapter 1. DL/I calls reference 9

␢
Successful

A
Invalid operation

B
Operand length invalid

C
Invalid call—program tried to change key field

D
Verify check was unsuccessful

E
Packed decimal or hexadecimal field is invalid

F
Program tried to change an unowned segment

G
Arithmetic overflow

H
Field not found in segment

Op code
This 1-byte field contains one of these operators for a change operation:
+

To add the operand to the field value
-

To subtract the operand from the field value
=

To set the field value to the value of the operand
For a verify operation, this field must contain one of the following:
E

Verify that the field value and the operand are equal.
G

Verify that the field value is greater than the operand.
H

Verify that the field value is greater than or equal to the operand.
L

Verify that the field value is less than the operand.
M

Verify that the field value is less than or equal to the operand.
N

Verify that the field value is not equal to the operand.
Operand

This variable length field contains the value that you want to test the field value against. The data
in this field must be the same type as the data in the segment field. (You define this in the DBD.) If
the data is hexadecimal, the value in the operand is twice as long as the field in the database. If the
data is packed decimal, the operand does not contain leading zeros, so the operand length might be
shorter than the actual field. For other types of data, the lengths must be equal.

Connector
This 1-byte field must contain a blank if this is the last or only FSA, or an asterisk (*) if another FSA
follows this one.

The format of SSA in FLD calls is the same as the format of SSA in DL/I calls. If no SSA exists, the first
segment in the MSDB or DEDB is retrieved.

10 IMS: Application Programming APIs

Related concepts
Commit-point processing in MSDBs and DEDBs (Application Programming)
Updating segments: REPL, DLET, ISRT, and FLD (Application Programming)

GN/GHN call
The Get Next (GN) call is used to retrieve segments sequentially from the database. The Get Hold Next
(GHN) is the hold form for a GN call.

Format

GN db pcb

aib

i/o area

ssa

rsa

GHN db pcb

aib

i/o area

ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GN/GHN X X X

For GSAM: GN X X X X X

For DEDB: GN X X X

For MSDB: GN X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area. This parameter is an output parameter. When you issue one of the Get calls
successfully, IMS returns the requested segment to this area. If your program issues any path calls,
the I/O area must be long enough to hold the longest path of concatenated segments following a path
call. This area always contains left-justified segment data. The I/O area points to the first byte of this
area.

When you use the GN call with GSAM, the area named by the i/o area parameter contains the record
you are retrieving.

Chapter 1. DL/I calls reference 11

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_commitprocessingmsdbanddedb.htm#ims_commitprocessingmsdbanddedb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_updatesegments.htm#ims_updatesegments

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA that you
supply in the call point to data areas in your program where the SSA have been defined for the call.
You can use up to 15 SSAs in the parameter. This parameter is optional for the GN call.

rsa
Specifies the area in your program where the RSA for the record should be returned. This output
parameter is used for GSAM only and is optional. See the topic "GSAM Data Areas" in IMS Version 15.3
Application Programming for more information on RSAs.

Usage: Get Next (GN)
A Get Next (GN) call is a request for a segment, as described by the SSA you supply, that is linked to the
call that was issued prior to the GN call. IMS starts its search at the current position.

When you use the GN call:

• Processing moves forward from current position (unless the call includes the F command code).
• IMS uses the current position (that was set by the previous call) as the search starting point.
• The segment retrieved is determined by a combination of the next sequential position in the hierarchy

and the SSA included in the call.
• Be careful when you use GN, because it is possible to use SSAs that force IMS to search to the end of

the database without retrieving a segment. This is particularly true with the "not equal" or "greater than"
relational operators.

A GN call retrieves the next segment in the hierarchy that satisfies the SSA that you supplied. Because
the segment retrieved by a GN call depends on the current position in the hierarchy, GN is often issued
after a GU call. If no position has been established in the hierarchy, GN retrieves the first segment in the
database. A GN call retrieves a segment or path of segments by moving forward from the current position
in the database. As processing continues, IMS looks for segments at each level to satisfy the call.

For example, sequential retrieval in a hierarchy is always top to bottom and left to right. For example,
if you repeatedly issue unqualified GN calls against the hierarchy in the following figure, IMS returns the
segment occurrences in the database record in this order:

1. A1 (the root segment)
2. B1 and its dependents (C1,D1,F1,D2,D3,E1,E2, and G1)
3. H1 and its dependents (I1,I2,J1, and K1).

If you issue an unqualified GN again after IMS has returned K1, IMS returns the root segment occurrence
whose key follows segment A1 in the database.

A GN call that is qualified with the segment type can retrieve all the occurrences of a particular segment
type in the database.

For example, if you issue a GN call with qualified SSAs for segments A1 and B1, and an unqualified SSA
for segment type D, IMS returns segment D1 the first time you issue the call, segment D2 the second time
you issue the call, and segment D3 the third time you issue the call. If you issue the call a fourth time, IMS
returns a status code of GE, which means that IMS could not find the segment you requested.

You can use unqualified GN calls to retrieve all of the occurrences of a segment in a hierarchy, in their
hierarchic sequence, starting at the current position. Each unqualified GN call retrieves the next sequential
segment forward from the current position. For example, to answer the processing request:

Print out the entire medical database.

You would issue an unqualified GN call repeatedly until IMS returned a GB status code, indicating that it
had reached the end of the database without being able to satisfy your call. If you issued the GN again
after the GB status code, IMS would return the first segment occurrence in the database.

Like GU, a GN call can have as many SSAs as the hierarchy has levels. Using fully qualified SSAs with
GN calls clearly identifies the hierarchic path and the segment you want, thus making it useful in
documenting the call.

12 IMS: Application Programming APIs

A GN call with an unqualified SSA retrieves the next occurrence of that segment type by going forward
from the current position.

GN with a qualified SSA retrieves the next occurrence of the specified segment type that satisfies the
SSAs.

When you specify a GN that has multiple SSAs, the presence or absence of unqualified SSAs in the call has
no effect on the operation unless you use command codes on the unqualified SSA. IMS uses only qualified
SSAs plus the last SSA to determine the path and retrieve the segment. Unspecified or unqualified SSAs
for higher-level segments in the hierarchy mean that any high-level segment that is the parent of the
correct lower-level, specified or qualified segment will satisfy the call.

A GN call with a SSA that is qualified on the key of the root can produce different results from a GU with
the same SSA, depending on the position in the database and the sequence of keys in the database. If
the current position in the database is beyond a segment that would satisfy the SSA, the segment is not
retrieved by the GN. GN returns the GE status code if both of these conditions are met:

• The value of the key in the SSA has an upper limit that is set, for example, to less-than-or-equal-to the
value.

• A segment with a key greater than the value in the SSA is found in a sequential search before the
specified segment is found.

GN returns the GE status code, even though the specified segment exists and would be retrieved by a GU
call.

Usage: Get Hold Next (GHN)
Before your program can delete or replace a segment, it must retrieve the segment and indicate to IMS
that it is going to change the segment in some way. The program does this by issuing a Get call with
a "hold" before deleting or replacing the segment. When the program has successfully retrieved the
segment with a Get Hold call, it can delete the segment or change one or more fields (except the key field)
in the segment.

The only difference between Get calls with a hold and Get calls without a hold is that the hold calls can be
followed by REPL or DLET.

The hold status on the retrieved segment is canceled and must be reestablished before you reissue the
DLET or REPL call. After issuing a Get Hold call, you can issue more than one REPL or DLET call to the
segment if you do not issue intervening calls to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you can continue with
other processing without releasing the segment. The segment is freed as soon as the current position
changes—when you issue another call to the same PCB that you used for the Get Hold call. In other
words, a Get Hold call must precede a REPL or DLET call. However, issuing a Get Hold call does not
require you to replace or delete the segment.

Usage: HDAM, PHDAM, or DEDB database with GN
For database organizations other than HDAM, PHDAM, and DEDB, processing the database sequentially
using GN calls returns the root segments in ascending key sequence. However, the order of the root
segments for a HDAM, PHDAM, or DEDB database depends on the randomizing routine that is specified
for that database. Unless a sequential randomizing routine was specified, the order of the root segments
in the database is not in ascending key sequence.

For a hierarchic direct access method (HDAM, PHDAM) or a DEDB database, a series of unqualified GN
calls or GN calls that are qualified only on the root segment:

1. Returns all the roots from one anchor point
2. Moves to the next anchor point
3. Returns the roots from the anchor point

Chapter 1. DL/I calls reference 13

Unless a sequential randomizing routine was specified, the roots on successive anchor points are not
in ascending key sequence. One situation to consider for HDAM, PHDAM, and DEDB organizations is
when a GN call is qualified on the key field of the root segment with an equal-to operator or an equal-to-
or-greater-than operator. If IMS has an existing position in the database, it checks to ensure that the
requested key is equal to or greater than the key of the current root. If it is not, a GE status code is
returned. If it is equal to or greater than the current key and is not satisfied using the current position,
IMS calls the randomizing routine to determine the anchor point for that key. IMS tries to satisfy the call
starting with the first root of the selected anchor.

Restrictions
You can use GN to retrieve the next record of a GSAM database, but GHN is not valid for GSAM.

Related reference
“GNP/GHNP call” on page 14
The Get Next in Parent (GNP) call is used to retrieve dependents sequentially. The Get Hold Next in Parent
(GHNP) call is the hold form for the GNP call.

GNP/GHNP call
The Get Next in Parent (GNP) call is used to retrieve dependents sequentially. The Get Hold Next in Parent
(GHNP) call is the hold form for the GNP call.

Format
GNP

GHNP

db pcb

aib

i/o area

ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GNP/GHNP X X X

For DEDB: GNP/GHNP X X X

For MSDB: GNP/GHNP X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area. This parameter is an output parameter. When you issue the Get call
successfully, IMS returns the requested segment to this area. If your program issues any path calls,

14 IMS: Application Programming APIs

the I/O area must be long enough to hold the longest path of concatenated segments following a path
call. The segment data that this area contains is always left-justified. The I/O area points to the first
byte of this area.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA you
supply in the call point to data areas in your program in which you have defined the SSAs for the call.
You can use up to 15 SSAs for this parameter. This parameter is optional for the GNP call.

Usage: Get Next in Parent (GNP)
A GNP call retrieves segments sequentially. The difference between a GN and a GNP is that GNP limits the
segments that can satisfy the call to the dependent segments of the established parent.

An unqualified GNP retrieves the first dependent segment occurrence under the current parent. If your
current position is already on a dependent of the current parent, an unqualified GNP retrieves the next
segment occurrence.

If you are moving forward in the database, even if you are not retrieving every segment in the database,
you can use GNP to restrict the returned segments to only those children of a specific segment.

Linking with previous DL/I calls

A GNP call is linked to the previous DL/I calls that were issued by your program in two ways:

• Current position: The search for the requested segment starts at the current position established by the
preceding GU, GN, or GNP call.

• Parentage: The search for the requested segment is limited to the dependents of the lowest-level
segment most recently accessed by a GU or GN call. Parentage determines the end of the search and is
in effect only following a successful GU or GN call.

Processing with parentage

You can set parentage in two ways:

• By issuing a successful GU or GN call. When you issue a successful GU or GN call, IMS sets parentage at
the lowest-level segment returned by the call. Issuing another GU or GN call (but against a different PCB)
does not affect the parentage that you set using the first PCB in the previous call. An unsuccessful GU or
GN call cancels parentage.

• By using the P command code with a GU, GN, or GNP call, you can set parentage at any level.

How DL/I calls affect parentage

A GNP call does not affect parentage unless it includes the P command code.

Unless you are using a secondary index, REPL does not affect parentage. If you are using a secondary
index, and you replace the indexed segment, parentage is lost.

A DLET call does not affect parentage unless you delete the established parent. If you do delete the
established parent, you must reset parentage before issuing a GNP call.

ISRT affects parentage only when you insert a segment that is not a dependent of the established parent.
In this case, ISRT cancels parentage. If the segment you are inserting is a dependent at some level of the
established parent, parentage is unaffected. For example, in the topic "Position after ISRT" in IMS Version
15.3 Application Programming, assume segment B11 is the established parent. Neither of these two ISRT
calls would affect parentage:

ISRT Abbbbbbb(AKEYbbbb=A1)
 Bbbbbbbb(BKEYbbbb=bB11)
 Cbbbbbbbb

ISRT Abbbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbbb(BKEYbbbb=bB11)
 Cbbbbbbb(CKEYbbbb=bC111)
 Dbbbbbbbb

Chapter 1. DL/I calls reference 15

The following ISRT call would cancel parentage, because the F segment is not a direct dependent of B,
the established parent:

ISRT Abbbbbbbb(AKEYbbb=bA1)
 Fbbbbbbbb

You can include one or more SSAs in a GNP call. The SSA can be qualified or unqualified. Without SSAs, a
GNP call retrieves the next sequential dependent of the established parent. The advantage of using SSAs
with GNP is that they allow you to point IMS to a specific dependent or dependent type of the established
parent.

A GNP with an unqualified SSA sequentially retrieves the dependent segment occurrences of the segment
type you have specified under the established parent.

A GNP with a qualified SSA describes to IMS the segment you want retrieved or the segment that is to
become part of the hierarchic path to the segment you want retrieved. A qualified GNP describes a unique
segment only if it is qualified on a unique key field and not a data field or a non-unique key field.

A GNP with multiple SSAs defines the hierarchic path to the segment you want. If you specify SSAs
for segments at levels above the established parent level, those SSAs must be satisfied by the current
position at that level. If they cannot be satisfied using the current position, a GE status code is returned
and the existing position remains unchanged. The last SSA must be for a segment that is below the
established parent level. If it is not, a GP status code is returned. Multiple unqualified SSAs establish the
first occurrence of the specified segment type as part of the path you want. If some SSAs between the
parent and the requested segment in a GNP call are missing, they are generated internally as unqualified
SSAs. This means that IMS includes the first occurrence of the segment from the missing SSAs as part of
the hierarchic path to the segment you have requested.

Usage: Get Hold Next in Parent (GHNP)
Retrieval for the GHNP call is the same as for the GHN call.

Related concepts
How secondary indexing affects your program (Application Programming)
Related reference
“GN/GHN call” on page 11
The Get Next (GN) call is used to retrieve segments sequentially from the database. The Get Hold Next
(GHN) is the hold form for a GN call.

GU/GHU call
The Get Unique (GU) call is used to directly retrieve segments and to establish a starting position in the
database for sequential processing. The Get Hold Unique (GHU) is the hold form for a GU call.

Format
GU db pcb

aib

i/o area

ssa

rsa

GHU db pcb

aib

i/o area

ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GU/GHU X X X

16 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_secondaryindexaffect.htm#ims_secondaryindexaffect

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: GU X X X X X

For DEDB: GU X X

For MSDB: GU X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area. This parameter is an output parameter. When you issue one of the Get calls
successfully, IMS returns the requested segment to this area. If your program issues any path calls,
the I/O area must be long enough to hold the longest path of concatenated segments following a path
call. The segment data that this area contains is always left-justified. The I/O area points to the first
byte of this area.

When you use the GU call with GSAM, the area named by the i/o area parameter contains the record
you are retrieving.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA you
supply in the call point to data areas in your program where you have defined the SSAs for the call.
You can use up to 15 SSAs for the parameter. This parameter is optional for the GU call.

rsa
Specifies the area in your program that contains the record search argument. This required input
parameter is only used for GSAM. See the topic "GSAM Data Areas" in IMS Version 15.3 Application
Programming for more information on RSAs.

Usage: Get Unique (GU)
GU is a request for a segment, as described by the SSAs you supply. You use it when you want a specific
segment. You can also use it to establish your position in the database.

The GU call is the only call that can establish position backward in the database. (The GN and GNP calls,
when used with the F command code, can back up in the database, but with limitations. Unlike GN and
GNP, a GU call does not move forward in the database automatically.

If you issue the same GU call repeatedly, IMS retrieves the same segment each time you issue the call. If
you want to retrieve only particular segments, use fully qualified GUs for these segments instead of GNs.
If you want to retrieve a specific segment occurrence or obtain a specific position within the database, use
GU.

Chapter 1. DL/I calls reference 17

If you want to retrieve a specific segment or to set your position in the database to a specific place, you
generally use qualified GU calls. A GU call can have the same number of SSAs as the hierarchy has levels,
as defined by the DB PCB. If the segment you want is on the fourth level of the hierarchy, you can use four
SSAs to retrieve the segment. (No reason would ever exist to use more SSAs than levels in the hierarchy.
If your hierarchy has only three levels, you would never need to locate a segment lower than the third
level.) The following is additional information for using the GU call with SSAs:

• A GU call with an unqualified SSA at the root level attempts to satisfy the call by starting at the beginning
of the database. If the SSA at the root level is the only SSA, IMS retrieves the first segment in the
database.

• A GU call with a qualified SSA can retrieve the segment described in the SSA, regardless of that
segment's location relative to current position.

• When you issue a GU that mixes qualified and unqualified SSAs at each level, IMS retrieves the first
occurrence of the segment type that satisfies the call.

• If you leave out an SSA for one of the levels in a GU call that has multiple SSAs, IMS assumes an SSA for
that level. The SSA that IMS assumes depends on current position:

– If IMS has a position established at the missing level, the SSA that IMS uses is derived from that
position, as reflected in the DB PCB.

– If IMS does not have a position established at the missing level, IMS assumes an unqualified SSA for
that level.

– If IMS moves forward from a position established at a higher level, IMS assumes an unqualified SSA
for that level.

– If the SSA for the root level is missing, and IMS has position established on a root, IMS does not move
from that root when trying to satisfy the call.

Usage: Get Hold Unique (GHU)
Before your program can delete or replace a segment, it must retrieve the segment and indicate to
IMS that it is going to change the segment in some way. The program does this by issuing a Get call
with a "hold" before deleting or replacing the segment. Once the program has successfully retrieved the
segment with a Get Hold call, it can delete the segment or change one or more fields (except the key field)
in the segment.

The only difference between Get calls with a hold and without a hold is that the hold calls can be followed
by a REPL or DLET call.

The hold status on the retrieved segment is canceled and must be reestablished before you reissue the
DLET or REPL call. After issuing a Get Hold call, you can issue more than one REPL or DLET call to the
segment if you do not issue intervening calls to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you can continue with
other processing without releasing the segment. The segment is freed as soon as the current position
changes—when you issue another call to the same PCB you used for the Get Hold call. In other words, a
Get Hold call must precede a REPL or DLET call. However, issuing a Get Hold call does not require you to
replace or delete the segment.

Restrictions
You can use GU to retrieve the record with the RSA you provide with a GSAM database, but GHU is not valid
for GSAM.

Related concepts
“F command code” on page 203

18 IMS: Application Programming APIs

You can use the F command code to start the search with the first occurrence of a certain segment type or
to insert a new segment as the first occurrence in a chain of segments.

GUR call
The Get Unique Record (GUR) call is used to retrieve entire records from the IMS catalog database. The
records are returned as XML instance documents.

Format
GUR aib i/o area header ssa

resource ssa

Parameters
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
four-byte input parameter specifies the size of the I/O area in bytes that will hold the records
retrieved from the IMS catalog database.

AIBRTKN
AIB return token. This 8-byte field contains a token value when a GUR call returns more data than
can fit in the I/O area. You can retrieve the rest of the data by setting this field to the returned
value and providing the same resource name and type in the SSA when you issue a subsequent
GUR call. IMS returns the next block of data, and you can continue to issue sequential calls by
continuing to set the AIBRTKN field until all of the data is retrieved.

A GUR call for a new resource is done if the resource name and type in the SSA do not match the
resource name and type for the AIBRTKN.

If an invalid or unrecognized token value is specified, the call fails.

AIBOAUSE
Specifies the total length of the XML instance document returned by the GUR call. This value is set
by IMS after a successful GUR call. The value is given in bytes.

When the value of the AIBOAUSE field is less than the value of the AIBOALEN field, the application
program can retrieve the entire XML document from the I/O area.

When the value of the AIBOAUSE field is greater than the value of the AIBOALEN field, the
application program must make additional GUR calls with the AIBRTKN value set to the returned
token value of the first call to retrieve the entire XML instance document.

The size of the last GUR call in a linked series might not match the size of the remaining data. For
example, a GUR call that returns 9000 bytes of data for a request with AIBOALEN=4096 requires
three linked GUR calls to retrieve all of the data. The third call returns only 808 bytes of data in the
I/O area.

The AIBOAUSE value is returned for all GUR calls in a linked series, and always reflects the total
size of the XML instance document.

Chapter 1. DL/I calls reference 19

AIBRETRN
Return code.

AIBREASN
Reason code.

i/o area
Specifies the I/O area where IMS places the XML instance document returned by the call. This
parameter is an output parameter. When you issue the calls successfully, IMS returns the requested
record to this area. The XML instance document that this area contains is always left-aligned. The I/O
area parameter points to the first byte of this area.

header ssa

Specifies the name of the HEADER segment to search for. This parameter is required.

resource ssa

Specifies the ACB generation timestamp of the DBD or PSB segment to search for. This parameter is
optional and is valid only if a HEADER SSA is specified.

If the user ACB generation timestamp is not specified,IMS uses the time stamp for the active
resource, either a DBD or PSB, in the ACBLIB to find the corresponding resource in the catalog.

Usage
The Get Unique Record (GUR) call is a request for a complete record from the IMS catalog.

Catalog records are returned as XML instance documents, and can be larger than the available I/O area.
IMS stores a complete XML instance document for a successful GUR call in an internal retrieval cache and
can return it to an application program in pieces that are each the size of the available I/O area. Each
subsequent GUR call to retrieve another piece of the XML instance document must use the token value
set by IMS in the AIBRTKN field after the original call.

The XML schemas for the documents returned as responses to this call are included in the
IMS.ADFSSMPL data set:

• DFS3XDBD.xsd (for DBD records)
• DFS3XPSB.xsd (for PSB records)

You can use z/OS XML System Services to parse the response document. The z/OS XML parser is started
as a callable service. The services stubs are shipped in CSSLIB.

A GUR call SSA must start with the HEADER segment.

A GUR call that is issued with an unqualified SSA attempts to satisfy the request by starting at the
beginning of the target database. If the SSA at the root level is the only SSA, IMS retrieves the first
segment in the database. A GUR call with a qualified SSA can retrieve the segment described in the SSA,
regardless of the location of the segment relative to the current position of the cursor. The two levels of
SSA qualification that can be used with a GUR call correspond to the levels of the DBD or PSB stored in
the catalog.

The IMS catalog has a structure that uses a header segment as the root for each record. Each header
segment instance has either a PSB or DBD child segment instance. This structure is important to
understand because an unqualified GUR call (such as the following example) might not return the
expected record.

GUR HEADER
 PSB

This call locates the first record, which is always a DBD record because DBD precedes PSB in
alphanumeric order. Because the first record does not contain a PSB segment instance, the call does

20 IMS: Application Programming APIs

not return the first PSB record as expected. You must qualify the wanted record type at the level of the
segment header:

GUR HEADER (TYPE = PSB)
 PSB

A GUR call that is issued without a qualification at the PSB or DBD level retrieves the record for the
member that is currently active in the ACB library. If no catalog record is found that corresponds to the
active member, the call fails with return code X’108’ and reason code X’338’ This error occurs even if
there are one or more catalog records for inactive members of the ACB library or records for members
that do not currently exist in the ACB library. To retrieve those catalog records, you must determine the
ACB generation timestamp for the member corresponding to the wanted catalog record and include it as a
PSB or DBD-level qualification.

For example, the following GUR call fails if there is no active ACB library member for BMP255:

GUR HEADER (RHDRSEQ ==PSB BMP255)

To retrieve the record for an inactive or removed ACB library member, add an SSA qualification for the
correct ACB generation timestamp:

GUR HEADER (RHDRSEQ ==PSB BMP255)
 PSB (TSVERS ==xxxxxxxxxxxxx)

Restriction: A GUR call that is not qualified with a timestamp always fails in environments without an
active ACB library, such as batch regions.

IMS returns the active or last instance of the record in catalog or a return code if the following conditions
are met:

• You specify the resource ssa with no ACB generation timestamp of the record of your choice.
• IMS is unable to find the timestamp for the active record in the ACBLIB or in the catalog header.
• Depending on whether the pending timestamp in the catalog header is zero or not:

– If the pending timestamp is zero, which indicates that the record is activated and copied from the
catalog staging data to the directory data sets, IMS returns the last instance of the record.

– If the pending timestamp is non-zero, which indicates that the record is still in the catalog staging
data set and is yet to be activated by the IMPORT DEFN SOURCE(CATALOG) command so that it is
placed in the directory data sets, IMS returns the AIB return code X’108’ and reason code X’338’,
which means that the active record was not found in the catalog.

Special AIB return and reason codes
The following combinations of AIB return and reason codes have specific meanings for the GUR call:

AIBRETRN = X’000’ (CALLCOMP)
AIBREASN = X’000’ (CALLOK)

The GUR call completed successfully.
AIBRETRN = X’100’ (CALLOKWE)
AIBREASN = X’00C’ (PARTDATA)

The XML response document did not fit in the I/O area. A GUR continuation token is set in the
AIBRTKN field.

AIBRETRN = X’004’ (CALLOKWI)
AIBREASN = X’004’ (LASTSEG)

This GUR call contains the last portion of response data for a continued GUR call that was previously
issued. The GUR continuation token for the call is now invalid.

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’224’ (INVAOITK)

The GUR continuation token passed with the call is invalid.

Chapter 1. DL/I calls reference 21

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’248’ (INVPCBN)

The correct PCB name specified to access the IMS™ catalog was not found.
AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’404’ (INVFUNC)

The function code specified on the DL/I call was unknown or invalid.
AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’338’ (NOCATACB)

The requested catalog member is not in the catalog. IMS searched for a member with the timestamp
of the active ACBLIB member, but no member with a matching timestamp was found.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’340’ (NOGURDLI)

The GUR call did not find the specified IMS catalog resource in the batch region.
AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’342’ (NOGURXML)

The GUR call was unable to build a valid XML response document.
AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’344’ (NOGURNFD)

The requested catalog member is not in the catalog.

Example
The following GUR example retrieves the catalog record for the DBD named DX41SK01

GUR HEADER (RHDRSEQ==DBD DX41SK01)

Restrictions
The GUR call is valid only for retrieving records from the IMS catalog database. If a user PSB is used, the
IMS catalog database must be available, and CATPSBATTACH in the CATALOG section of DFSDFxxx must
be set to YES.

The GUR call is only supported by the AIB interface.

SSA command codes are not allowed.

Related concepts
Application programming with the IMS catalog (Application Programming)
Overview of the IMS catalog (Database Administration)
Related reference
AIB return and reason codes (Messages and Codes)

ISRT call
The Insert (ISRT) call is used to load a database and to add one or more segments to the database. You
can use ISRT to add a record to the end of a GSAM database or for an alternate PCB that is set up for
IAFP processing.

Format

ISRT db pcb

aib

i/o area ssa
rsa

22 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_catalog_prog.htm#ims_catalog_prog
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_overview.htm#ims_cat_db_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_aibretandreasoncodes_ims.htm#ims_aibretandreasoncodes_ims

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: ISRT X X X

For GSAM: ISRT X X X X X

For DEDB: ISRT X X X

For MSDB: ISRT X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area. This parameter is an input parameter. When you want to add a new segment
to the database, you place the new segment in this area before issuing the ISRT call. This area must
be long enough to hold the longest segment that IMS returns to this area. For example, if none of
the segments your program retrieves or updates is longer than 48 bytes, your I/O area should be 48
bytes.

If your program issues any path calls, the I/O area must be long enough to hold the longest
concatenated segment following a path call. The segment data that this area contains is always
left-justified. The I/O area points to the first byte of this area.

When you use the ISRT call with GSAM, the area named by the i/o area parameter contains the record
you want to add. The area must be long enough to hold these records.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA you
supply in the call point to data areas in your program where you have defined the SSAs for the call.
You can use up to 15 SSAs on the call. This parameter is required.

rsa
Specifies the area in your program where the RSA should be returned by DL/I. This output parameter
is used for GSAM only and is optional. See the topic "GSAM Data Areas" in IMS Version 15.3
Application Programming for more information on RSAs.

Usage
Your program uses the ISRT call to initially load a database and to add information to an existing one. The
call looks the same in either case. However, the way it is used is determined by the processing option in
the PCB.

ISRT can add new occurrences of an existing segment type to a HIDAM, PHIDAM, HISAM, HDAM,
PHDAM, DEDB, or MSDB database.

Chapter 1. DL/I calls reference 23

Restriction: New segments cannot be added to a HSAM database unless you reprocess the whole
database or add the new segments to the end of the database.

Before you issue the ISRT call, build the new segment in the I/O area. The new segment fields must be in
the same order and of the same length as defined for the segment. (If field sensitivity is used, they must
be in the order defined for the application program's view of the segment.) The DBD defines the fields
that a segment contains and the order in which they appear in the segment.

Root segment occurrence

If you are adding a root segment occurrence, IMS places it in the correct sequence in the database by
using the key you supply in the I/O area. If the segment you are inserting is not a root, but you have just
inserted its parent, you can insert the child segment by issuing an ISRT call with an unqualified SSA. You
must build the new segment in your I/O area before you issue the ISRT call. Also, you use an unqualified
SSA when you insert a root. When you are adding new segment occurrences to an existing database, the
segment type must have been defined in the DBD. You can add new segment occurrences directly or
sequentially after you have built them in the program's I/O area. At least one SSA is required in an ISRT
call; the last (or only) SSA specifies the segment being inserted. To insert a path of segments, you can set
the D command code for the highest-level segment in the path.

Insert rules

If the segment type you are inserting has a unique key field, the place where IMS adds the new segment
occurrence depends on the value of its key field. If the segment does not have a key field, or if the key is
not unique, you can control where the new segment occurrence is added by specifying either the FIRST,
LAST, or HERE insert rule. Specify the rules on the RULES parameter of the SEGM statement of DBDGEN
for this database.

The rules on the RULES parameter are as follows:
FIRST

IMS inserts the new segment occurrence before the first existing occurrence of this segment type. If
this segment has a nonunique key, IMS inserts the new occurrence before all existing occurrences of
that segment that have the same key field.

LAST
IMS inserts the new occurrence after the last existing occurrence of the segment type. If the segment
occurrence has a nonunique key, IMS inserts the new occurrence after all existing occurrences of that
segment type that have the same key.

HERE
IMS assumes you have a position on the segment type from a previous IMS call. IMS places the new
occurrence before the segment occurrence that was retrieved or deleted by the last call, which is
immediately before current position. If current position is not within the occurrences of the segment
type being inserted, IMS adds the new occurrence before all existing occurrences of that segment
type. If the segment has a nonunique key and the current position is not within the occurrences of the
segment type with equal key value, IMS adds the new occurrence before all existing occurrences that
have equal key fields.

You can override the insert rule of FIRST with the L command code. You can override the insert rule of
HERE with either the F or L command code. This is true for HDAM and PHDAM root segments and for
dependent segments in any type of database that have either nonunique keys or no keys at all.

An ISRT call must have at least one unqualified SSA for each segment that is added to the database.
Unless the ISRT is a path call, the lowest-level SSA specifies the segment being inserted. This SSA must
be unqualified. If you use the D command code, all the SSAs below and including the SSA containing the D
command code must be unqualified.

Provide qualified SSAs for higher levels to establish the position of the segment being inserted. Qualified
and unqualified SSAs can be used to specify the path to the segment, but the last SSA must be
unqualified. This final SSA names the segment type to be inserted.

If you supply only one unqualified SSA for the new segment occurrence, you must be sure that current
position is at the correct place in the database to insert that segment.

24 IMS: Application Programming APIs

Mix qualified and unqualified SSA

You can mix qualified and unqualified SSAs, but the last SSA must be unqualified. If the SSAs are
unqualified, IMS satisfies each unqualified SSA with the first occurrence of the segment type, assuming
that the path is correct. If you leave out a SSA for one of the levels in an ISRT with multiple SSAs, IMS
assumes an SSA for that level. The SSA that IMS assumes depends on current position:

• If IMS has a position established at the missing level, the SSA that IMS uses is derived from that
position, as reflected in the DB PCB.

• If IMS does not have a position established at the missing level, IMS assumes an unqualified SSA for
that level.

• If IMS moves forward from a position established at a higher level, IMS assumes an unqualified SSA for
that level.

• If the SSA for the root level is missing, and IMS has position established on a root, IMS does not move
from that root when trying to satisfy the call.

Using SSA with the ISRT call

Using SSA with ISRT is a good way to check for the parent segments of the segment you want to insert.
You cannot add a segment unless its parent segments exist in the database. Instead of issuing Get calls
for the parents, you can define a fully qualified set of SSAs for all the parents and issue the ISRT call for
the new segment. If IMS returns a GE status code, at least one of the parents does not exist. You can then
check the segment level number in the DB PCB to find out which parent is missing. If the level number in
the DB PCB is 00, IMS did not find any of the segments you specified. A 01 means that IMS found only the
root segment; a 02 means that the lowest-level segment that IMS found was at the second level; and so
on.

OPEN call
The OPEN call is used to explicitly open a GSAM database.

Format
OPEN gsam pcb

aib i/o area

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: OPEN X X X X X

Parameters
gsam pcb

Specifies the GSAM PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name of a GSAM PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

Chapter 1. DL/I calls reference 25

i/o area
Specifies the kind of data set you are opening. This parameter is an input parameter.

Usage
For more information, see the topic "Explicit Open and Close Calls to GSAM" in IMS Version 15.3
Application Programming.

POS call
A qualified Position (POS) call is used to retrieve the location of a specific sequential dependent segment.
In addition to location, a qualified POS call using an SSA for a committed segment will return the
sequential dependent segment (SDEP) time stamp and the ID of the IMS owner that inserted it.

For more information about the qualified POS call, refer to the topic "Processing Fast Path Databases" in
IMS Version 15.3 Application Programming.

An unqualified POS points to the logical end of the sequential dependent segment (SDEP) data. By
default, an unqualified POS call returns the DMACNXTS value, which is the next SDEP CI to be allocated.
Because this CI has not been allocated, its specification without the EXCLUDE keyword will often result in
a DFS2664A message from the SDEP utilities.

Format
POS db pcb

aib

i/o area
ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For DEDB: POS X X

Parameters
db pcb

Specifies the DB PCB for the DEDB that you are using for this call. This parameter is an input and
output parameter.

aib
Specifies the AIB for the DEDB that you are using for this call. This parameter is an input and output
parameter. These fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

keyword
Specifies the Keyword for the DEDB that you are using for this call. It goes in the first part of the i/o
area. Returns six words containing field codes to I/O area. The following table lists the five keywords
and the corresponding output.

i/o area
Specifies the I/O area in your program that you want to contain the positioning information that is
returned by a successful POS call. This parameter is both an input and an output parameter. The I/O

26 IMS: Application Programming APIs

area must be long enough to contain all the returned entries. IMS returns an entry for each area in the
DEDB.

The I/O area returned on POS call contained six words with nine potential fields of data for each
return output. Each field is four or eight bytes. When the successful POS is an unqualified call, the
I/O area consists of a 2 byte field that contains the length of the data area (LL), followed by 24 bytes
of positioning information. The I/O data area will have 24 bytes of positioning information for every
area in the DEDB. By placing one of the five keywords in position zero of the input I/O area, the user
specifies the kind of data in the return I/O area. The following table lists the five keywords and the
data that an unqualified POS call returns based on the keyword you choose for position zero of the
input I/O area. Any keyword should be specified at the beginning of the I/O area.

Table 4. Unqualified POS call: keywords and map of the I/O area return output

Keyword byte 2 word 0 word 1 word 2 word 3 word 4 word 5

<null> LL Field 1 Field 2 Field 4 Field 5

V5SEGRBA LL Field 1 Field 3 <null>

PCSEGRTS LL Field 1 Field 3 Field 6

PCSEGHWM LL Field 1 Field 3 Field 7

PCHSEGTS LL Field 1 Field 8 Field 6

PCLBSGTS LL Field 1 Field 9 Field 6

Field 1
Area name

This 8-byte field contains the ddname from the AREA statement.
Field 2

Sequential dependent next to allocate CI
This field is the default if no keyword is specified in position zero of the I/O area. The data
returned is the 8-byte cycle count and RBA (CC+RBA) acquired from the global DMACNXTS
field. This data represents the next pre-allocated CI as a CI boundary.

Field 3
Local sequential dependent next segment

The data returned is the 8-byte CC+RBA segment boundary of the most recently committed
SDEP segment. This data is specific to only the IMS that executes the POS call. Its scope is for
local IMS use only.

Field 4
Unused CIs in sequential dependent part

This 4-byte field contains the number of unused control intervals in the sequential dependent
part.

Field 5
Unused CIs in independent overflow part

This 4-byte field contains the number of unused control intervals in the independent overflow
part.

Field 6
Sequential dependent segment time stamp

The data returned is the 8-byte time stamp of the most recently committed SDEP segment
across all IMS partners, or for a local SDEP, the time stamp of the first pre-allocated SDEP CI
dummy segment of the local IMS. If the area (either local or shared) has not been opened,
or a /DBR was performed without any subsequent SDEP segment inserts, the current time is
returned.

Chapter 1. DL/I calls reference 27

Field 7
Sequential dependent High Water Mark (HWM)

This 8-byte field contains the cycle count plus RBA (CC+RBA) of the last pre-allocated SDEP CI
which is the High Water Mark (HWM) CI.

Field 8
Highest committed SDEP segment

The data returned is the 8-byte cycle count plus RBA (CC+RBA) for the most recently
committed SDEP segment across all IMS partners, or for a local SDEP, the CC+RBA of the most
recently committed SDEP segment of the local IMS. If the area (either local or shared) has not
been opened, or a /DBR was performed without any subsequent SDEP segment inserts, the
HWM CI is returned.

Field 9
Logical begin time stamp

This 8-byte field contains the logical begin time stamp from the
DMACSDEP_LOGICALBEGIN_TS field.

ssa
Specifies the SSA that you want to use in this call. This parameter is an input parameter. The format
of SSA in POS calls is the same as the format of SSA in DL/I calls. You can use only one SSA in this
parameter. This parameter is optional for the POS call.

Usage
The POS call:

• Retrieves the location of a specific sequential dependent segment.
• Retrieves the location of last-inserted sequential dependent segment, its time stamp, and the IMS ID.
• Retrieves the time stamp of a sequential dependent segment or Logical Begin.
• Tells you the amount of unused space within each DEDB area. For example, you can use the information

that IMS returns for a POS call to scan or delete the sequential dependent segments for a particular
time period.

If the area which the POS call specifies is unavailable, the I/O area is unchanged, and the status code FH
is returned.

Restrictions
You can only use the POS call with a DEDB.

REPL call
Use the Replace (REPL) call to change the values of one or more fields in a segment.

Format
REPL db pcb

aib

i/o area

ssa

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: REPL X X X

For DEDB: REPL X X

For MSDB: REPL X

28 IMS: Application Programming APIs

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the application interface block (AIB) for the call. This parameter is an input and output
parameter. The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area in your program that communicates with IMS. This parameter is an input
parameter.

ssa
Specifies any segment search arguments (SSAs) to be used in the call. This parameter is an input
parameter and is optional for the REPL call. Use only unqualified SSAs. The SSAs that you specify
point to data areas in your program in which you have defined the SSAs for the call. You can use up to
15 SSAs in this parameter.

Usage
Before using a REPL call, be aware of the following conditions:

• Segments that can be replaced must be defined as replace-sensitive by setting PROCOPT=A or
PROCOPT=R on the SENSEG statement in the PCB. To learn more about PROCOPT, see SENSEG
statement (System Utilities).

• A REPL call must be preceded by one of the three Get Hold calls: GHN, GHNP, or GHU.
• If your program tries to replace a segment that is not replace-sensitive and command code N is not
specified, the segment data in the I/O area must match the segment data that gets returned by the Get
Hold call. Any variance results in an AM status code, and no data gets replaced by the REPL call. To
learn more, see AM (Messages and Codes).

• After you retrieve a segment, do not change the field lengths in the I/O area before you issue the REPL
call.

• Use only unqualified SSAs on a REPL call. Using a qualified SSA is invalid and results in an AJ status
code. To learn more see AJ (Messages and Codes).

To change field values in a segment, issue a Get Hold call to retrieve the segment and place it in the I/O
area. Make your desired changes. Then issue a REPL call to replace the segment in the database with the
modified segment from the I/O area.

You can use command codes with the REPL call.

• Specify an unqualified SSA with an N command code if you do not change one or more segments that
are returned on a Get Hold call, or if you do not want modifications in the I/O area to be reflected in
the database. The N command code is available for use whether or not a D command code (Application
Programming APIs) is used to return multiple segments on the preceding Get Hold call. To learn more,
see N command code (Application Programming APIs).

• Use the Q command code to preserve a segment for use with your program. Normally, if no fields in
a segment are changed by the REPL call, the lock is released when the application moves to another

Chapter 1. DL/I calls reference 29

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgensensegstmt.htm#ims_psbgensensegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgensensegstmt.htm#ims_psbgensensegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gnghncall.htm#ims_gnghncall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gnpghnpcall.htm#ims_gnpghnpcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gughucall.htm#ims_gughucall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/msgs/am.htm#am
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/msgs/aj.htm#aj
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dcmdcode.htm#ims_dcmdcode
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dcmdcode.htm#ims_dcmdcode
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_ncmdcode.htm#ims_ncmdcode

database record. The Q command prevents another program from updating the segment until your
program reaches a commit point. To learn more, see Q command code (Application Programming APIs).

RLSE call
The Release Locks (RLSE) call is used to release all locks held for unmodified data.

Format
RLSE db pcb

aib

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: RLSE X X X

For DEDB: RLSE X X X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

Usage
For Fast Path databases, use the RLSE call to release all locks held for unmodified data that are owned by
an application. For full-function databases, use the RLSE call to release the locks held by the DB PCB that
is referenced in the call. If the lock is protecting a resource that has been updated, the lock will not be
released. After the RLSE call, all database position information is lost.

Restrictions
The RLSE call has to be issued using a DB PCB. The PCB cannot be an I/O PCB or an MSDB PCB.

DL/I calls for IMS DB system services
Use these DL/I calls to obtain IMS DB system services.

Each call description contains:

• A syntax diagram
• Definitions for parameters that are available to the call
• Details on how to use the call in your application program
• Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input” refers to input to IMS
from the application program. “Output” refers to output from IMS to the application program.

30 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_qcmdcode.htm#ims_qcmdcode

Syntax diagrams for these calls begin with the function parameter. The call interface (xxxTDLI) and
parmcount (if it is required) are not included in the syntax diagrams.

Related reading: For specific information about coding your program in assembler language, C language,
COBOL, Pascal, and PL/I, see the topic "Defining Application Program Elements" inIMS Version 15.3
Application Programming for the complete structure.

Related reference
“DL/I calls for IMS TM system services” on page 113
Use these DL/I calls with IMS Transaction Manager system services.
“DL/I calls for transaction management” on page 74
Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.
“EXEC DLI commands” on page 153
The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.
“IMSCALL command (X'C803')” on page 283
Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.

System service call summary
The following table summarizes which system service calls you can use in each type of IMS DB
application program and the parameters for each call. Optional parameters are enclosed in brackets
([]).

Exception: Language-dependent parameters are not shown here.

For more information on language-dependent application elements, see the topic "Defining Application
Program Elements" in IMS Version 15.3 Application Programming.

Table 5. Summary of system service calls

Function Code Meaning Use/Options Parameters Valid for

APSB Allocate PSB Allocates a PSB
for an ODBA
application

aib DB/DC, IMS DB

DPSB Deallocate PSB Deallocates a PSB
for an ODBA
application

aib DB/DC, IMS DB

CHKP (Basic) Basic checkpoint Prepares for
recovery

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP

CHKP (Symbolic) Symbolic checkpoint Prepares for
recovery. Specifies
up to seven
program areas to
be saved

function, i/o pcb or
aib, i/o area len, i/o
area[, area len, area]

DB batch, TM batch,
BMP

GMSG Get Message Retrieves a
message from the
AO exit routine.
Waits for an AOI
message when
none is available

function, aib, i/o area DB/DC and DCCTL
(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

Chapter 1. DL/I calls reference 31

Table 5. Summary of system service calls (continued)

Function Code Meaning Use/Options Parameters Valid for

GSCD1 Get System Contents
Directory

Gets address of
system contents
directory

function, db pcb, i/o
pcb or aib, i/o area

DB Batch, TM Batch

ICMD Issue Command Issues an IMS
command and
retrieves the first
command response
segment

function, aib, i/o area DB/DC and DCCTL
(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

INIT Initialize application Receives data
availability
and deadlock
occurrence status
codes and checks
each PCB database
for data availability

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

INQY Inquiry Returns
information and
status codes about
I/O or alternate
PCB destination
type, location, and
session status

function, aib, i/o
area, AIBFUNC=FIND|
DBQUERY| ENVIRON|
ENVIRON2

DB batch, TM batch,
BMP, MPP, IFP, ODBA

LOG␢ Log Writes a message
to the system log

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

PCB␢ Program
Communication
Block

Specifies and
schedules another
PSB

function, psb name,
uibptr, [,sysserve]

CICS (DBCTL or
DB/DC)

RCMD Retrieve Command Retrieves the
second and
subsequent
command response
segments resulting
from an ICMD call

function, aib, i/o area DB/DC and DCCTL
(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

ROLB Roll back Eliminates
database updates
and returns last
message to i/o area

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP

ROLL Roll Eliminates
database updates

function DB batch, TM batch,
BMP, MPP, IFP

ROLS Roll back to SETS Issues call using
name of DB PCB
or i/o PCB and
backs out database
changes to SETS
points

function, db pcb, i/o
pcb or aib, i/o area,
token

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

32 IMS: Application Programming APIs

Table 5. Summary of system service calls (continued)

Function Code Meaning Use/Options Parameters Valid for

SETS/SETU Set a backout point Cancels all existing
backout points
and establishes
as many as
nine intermediate
backout points

function, i/o pcb or
aib, i/o area, token

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

SNAP2 Collects diagnostic
information;
choose SNAP
options

function, db pcb or
aib, i/o area

DB batch, BMP, MPP,
IFP, CICS (DBCTL or
DB/DC), ODBA

STAT3 Statistics Retrieves IMS
system statistics;
choose type and
format

function, db pcb or
aib, i/o area, stat
function

DB batch, BMP, MPP,
IFP, DBCTL, ODBA

SYNC Synchronization Releases locked
resources and
requests commit-
point processing

function, i/o pcb or
aib

BMP

TERM Terminate Releases a PSB
so another can
be scheduled to
commit database
changes

function CICS (DBCTL or
DB/DC)

XRST Extended restart Specifies up to
seven areas to
be saved. Works
with symbolic
checkpoint to
restart application
program

function, i/o pcb or
aib, i/o area len, i/o
area[, area len, area]

DB batch, TM batch,
BMP

Note:

1. GSCD is a Product-sensitive Programming Interface.
2. SNAP is a Product-sensitive Programming Interface.
3. STAT is a Product-sensitive Programming Interface.

APSB call
The Allocate PSB (APSB) calls are used to allocate a PSB for an ODBA application.

Format

APSB aib

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

APSB X X

Chapter 1. DL/I calls reference 33

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB␢␢.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBRSNM2
This is the 4-character ID of ODBA startup table representing the target IMS of the APSB.

Usage
The ODBA application must load or be link edited with the ODBA application interface AERTDLI.

The APSB call must be issued prior to any DLI calls.

The APSB call uses the AIB to allocate a PSB for ODBA application programs.

z/OS Resource Recovery Services (RRS) must be active at the time of the APSB call. If RRS is not active,
the APSB call will fail and the application will receive:

AIBRETRN = X'00000108'
AIBREASN = X'00000548'

CHKP (basic) call
A basic Checkpoint (CHKP) call is used for recovery purposes.

The ODBA interface does not support this call.

Format
CHKP i/o pcb

aib

i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. A basic CHKP call must refer to the I/O PCB. This parameter is an
input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.

34 IMS: Application Programming APIs

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies your program's I/O area that contains the 8-byte checkpoint ID. This parameter is an input
parameter. If the program is an MPP or a message-driven BMP, the CHKP call implicitly returns the
next input message to this I/O area. Therefore, the area must be large enough to hold the longest
returned message.

Usage
Basic CHKP commits the changes your program has made to the database and establishes places in your
program from which you can restart your program, if it terminates abnormally.

CHKP (symbolic) call
A symbolic Checkpoint (CHKP) call is used for recovery purposes. If you use the symbolic Checkpoint call
in your program, you also must use the XRST call.

The ODBA interface does not support this call.

Format
CHKP i/o pcb

aib

i/o area length i/o area

area length area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output parameter. A symbolic CHKP
call must refer to the I/O PCB.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

Chapter 1. DL/I calls reference 35

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this parameter must be included
in the call, and it must contain a valid address. You can get a valid address by specifying the name of
any area in your program.

i/o area
Specifies the I/O area in your program that contains the 8-byte ID for this checkpoint. This parameter
is an input parameter. If the program is a message-driven BMP, the CHKP call implicitly returns the
next input message into this I/O area. Therefore, the area must be large enough to hold the longest
returned message.

area length
Specifies a 4-byte field in your program that contains the length (in binary) of the area to checkpoint.
This parameter is an input parameter. You can specify up to seven area lengths. For each area length,
you must also specify the area parameter. All seven area parameters (and corresponding length
parameters) are optional. When you restart the program, IMS restores only the areas you specified in
the CHKP call.

area
Specifies the area in your program that you want IMS to checkpoint. This parameter is an input
parameter. You can specify up to seven areas. Each area specified must be preceded by an area length
parameter.

Usage
The symbolic CHKP call commits the changes your program has made to the database and establishes
places in your program from which you can restart your program, if it terminates abnormally. In addition,
the CHKP call:

• Works with the Extended Restart (XRST) call to restart your program if it terminates abnormally
• Enables you to save as many as seven data areas in your program, which are restored when your

program is restarted

An XRST call is required before a CHKP call to indicate to IMS that symbolic check points are being taken.

Restrictions
The Symbolic CHKP call is allowed only from batch and BMP applications.

DPSB call
The DPSB call is used to deallocate IMS DB resources.

Format

DPSB aib

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

DPSB X X

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB␢␢.

36 IMS: Application Programming APIs

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

bbbbbbbb (Null)
PREPbbbb

Usage
The DPSB call is used by an application running in a z/OS application region to deallocate a PSB. If the
PREP subfunction is not used, the application must activate sync-point processing prior to issuing the
DPSB. Use the z/OS Resource Recovery Services (RRS) SRRCMIT/ATRCMIT calls to activate the sync-point
process. Refer to z/OS MVS Programming: Resource Recovery for more information on these calls.

If the DPSB is issued before changes are committed, and, or locks released, the application will receive:

AIBRETRN = X'00000104'
AIBREASN = X'00000490'

The thread will not be terminated. The application should issue a SRRCMIT or SRRBACK call, and retry the
DPSB.

The PREP sub-function allows the application to issue the DPSB prior to activating the sync-point process.
The sync-point activation can occur at a later time, but still must be issued.

GMSG call
A Get Message (GMSG) call is used in an automated operator (AO) application program to retrieve a
message from an AO exit routine (DFSAOE00 or another AOIE type exit routine).

Format
GMSG aib i/o area

Parameters
aib

Specifies the application interface block (AIB) to be used for this call. This parameter is an input and
output parameter.

You must initialize the following fields in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the length of the AIB the application actually obtained.
AIBSFUNC

Subfunction code. This field must contain one of these 8-byte subfunction codes:
8-blanks (null)

When coded with an AOI token in the AIBRSNM1 field, indicates IMS is to return when no AOI
message is available for the application program.

WAITAOI
When coded with an AOI token in the AIBRSNM1 field, WAITAOI indicates IMS is to wait for an
AOI message when none is currently available for the application program. This subfunction

Chapter 1. DL/I calls reference 37

value is invalid if an AOI token is not coded in AIBRSNM1. In this case, error return and reason
codes are returned in the AIB.

The value WAITAOI must be left justified and padded on the right with a blank character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI token identifies the
message the AO application is to retrieve. The token is supplied for the first segment of a
message. If the message is a multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric left-justified field that is padded
on the right with blanks.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area should
be large enough to hold the largest segment that is passed from IMS to the AO application program. If
the I/O area is not large enough to contain all the data, IMS returns partial data.

Usage
GMSG is used in an AO application program to retrieve a message associated with an AOI token. The
AO application program must pass an 8-byte AOI token to IMS in order to retrieve the first segment
of the message. IMS uses the AOI token to associate messages from an AO exit routine of type AOIE,
with the GMSG call from an AO application program. IMS returns to the application program only those
messages associated with the AOI token. By using different AOI tokens, the AOIE type exit routine can
direct messages to different AO application programs. Note that your installation defines the AOI token.

To retrieve the second through the last segments of a multisegment message, issue GMSG calls with
no token specified (set the token to blanks). If you want to retrieve all segments of a message, you
must issue GMSG calls until all segments are retrieved. IMS discards all nonretrieved segments of a
multisegment message when a new GMSG call that specifies an AOI token is issued.

Your AO application program can specify a wait on the GMSG call. If no messages are currently available
for the associated AOI token, your AO application program waits until a message is available. The decision
to wait is specified by the AO application program, unlike a WFI transaction where the wait is specified
in the transaction definition. The wait is done on a call basis; that is, within a single application program
some GMSG calls can specify waits, while others do not. The following table shows, by IMS environment,
the types of AO application programs that can issue GMSG. GMSG is also supported from a CPI-C driven
program.

Table 6. GMSG support by application region type

Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

38 IMS: Application Programming APIs

Restrictions
A CPI-C driven program must issue an allocate PSB (APSB) call before issuing GMSG.

GSCD call
A Get System Contents Directory (GSCD) call retrieves the address of the IMS system contents directory
for batch programs.

This topic contains Product-sensitive Programming Interface information.

The ODBA interface does not support this call.

Format
GSCD db pcb

i/o pcb

aib

i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. The these fields must
be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb (if the I/O
PCB is used), or the name of a DB PCB (if a DB PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area, which must be 8 bytes long. IMS places the address of the system contents
directory (SCD) in the first 4 bytes and the address of the program specification table (PST) in the
second 4 bytes. This parameter is an output parameter.

Usage
IMS does not return a status code to a program after it issues a successful GSCD call. The status code
from the previous call that used the same PCB remains unchanged in the PCB.

Restrictions
The GSCD call can be issued only from batch application programs.

Chapter 1. DL/I calls reference 39

ICMD call
An Issue Command (ICMD) call enables an automated operator (AO) application program to issue an IMS
command and retrieve the first command response segment.

Format
ICMD aib i/o area

Parameters
aib

Specifies the application interface block (AIB) for this call. This parameter is an input and output
parameter.

These fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

Your program must check this field to determine whether the ICMD call returned data to the I/O
area. When the only response to the command is a DFS058 message indicating that the command
is either in progress or complete, the response is not returned.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and output parameter. The I/O
area should be large enough to hold the largest command that is passed from the AO application
program to IMS, or the largest command response segment that is passed from IMS to the AO
application program. If the I/O area is not large enough to contain all the data, IMS returns partial
data.

Usage
ICMD enables an AO application to issue an IMS command and retrieve the first command response
segment.

When using ICMD, put the IMS command that is to be issued in your application program's I/O area.
After IMS has processed the command, it returns the first segment of the response message to your AO
application program's I/O area. To retrieve subsequent segments (one segment at a time) use the RCMD
call.

Some IMS commands that complete successfully result in a DFS058 message indicating that the
command is complete. Some IMS commands that are processed asynchronously result in a DFS058
message indicating that the command is in progress. For a command entered on an ICMD call, neither
DFS058 message is returned to the AO application program. In this case, the AIBOAUSE field is set to 0 to
indicate that no segment was returned. So, your AO application program must check the AIBOAUSE field
along with the return and reason codes to determine if a response was returned.

Related reading: For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

40 IMS: Application Programming APIs

The following table shows, by IMS environment, the types of AO application programs that can issue
ICMD. ICMD is also supported from a CPI-C driven program.

Table 7. ICMD support by application region type

 Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

See IMS Version 15.3 Operations and Automation for a list of commands that can be issued using the
ICMD call.

Restrictions
Before issuing ICMD, a CPI-C driven program must issue an allocate PSB (APSB) call.

INIT call
The Initialize (INIT) call allows an application to receive status codes regarding deadlock occurrences and
data availability (by checking each DB PCB).

For GSAM databases, you can use the Initialize (INIT) call to tell IMS that the program can accept a
12-byte record search argument (RSA) when retrieving a record for a large format data set.

Format
INIT i/o pcb

aib

i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INIT X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. INIT must refer to the I/O PCB. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

Chapter 1. DL/I calls reference 41

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area in your program that contains the character string or strings indicating which
INIT functions are requested. This parameter is an input parameter.

The functions that you can specify include:

• DBQUERY
• RSA12
• STATUS GROUPA
• STATUS GROUPB
• VERSION

Usage
You can use the call in any application program, including IMS batch in a sharing environment.

Specify the function in your application program with a character string in the I/O area.

For example, use the format LLZZ Character-String, where LL is the length of the character string including
the length of the LLZZ portion; ZZ must be binary 0. For PL/I, you must define the LL field as a fullword;
the value is the length of the character string including the length of the LLZZ portion, minus 2. If the
I/O area is invalid, an AJ status code is returned. The following tables contain sample I/O areas for INIT
when it is used with assembler language, COBOL, C language, Pascal, and PL/I.

Determining database availability: INIT DBQUERY

When the INIT call is issued with the DBQUERY character string in the I/O area, the application program
can obtain information regarding the availability of data for each PCB.

Application programs that use the language-independent AIB interface or the language-specific
interfaces for the assembler, COBOL, C, or Pascal programming languages use a 2-byte LL field to specify
the length of the I/O area. The following table shows an example of the INIT call I/O area with the LLZZ
length field and DBQUERY specified.

Table 8. INIT DBQUERY example for the AIB, ASMTDLI, CBLTDLI, CTDLI, and PASTDLI interfaces

L L Z Z Character String

00 0B 00 00 DBQUERY

Note: The LL value of X'0B' is a hexadecimal representation of decimal 11. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call with DBQUERY for PL/I. The PLITDLI
interface uses a 4-byte LLLL field for the length of the I/O area.

Table 9. INIT DBQUERY: I/O area example for PLITDLI

L L L L Z Z Character String

00 00 00 0B 00 00 DBQUERY

Note: The LL value of X'0B' is a hexadecimal representation of decimal 11. ZZ fields are binary.

LL or LLLL
A 2-byte field that contains the length of the character string, plus two bytes for LL. For the PLITDLI
interface, use the 4-byte field LLLL. When you use the AIB interface (AIBTDLI), PL/I programs require
only a 2-byte field.

ZZ
A 2-byte field of binary zeros.

42 IMS: Application Programming APIs

One of the following status codes is returned for each database PCB:
NA

At least one of the databases that can be accessed using this PCB is not available. A call made using
this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has been
issued, or in a DFS3303I message and 3303 pseudoabend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a call results in an AI (unable
to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, or in a DFS3303I message and 3303 pseudoabend if it has not. The database that
caused the NU status code might be required only for delete processing. In that case, DLET calls fail,
but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions that the PCB allows. DEDBs
and MSDBs always have the bb status code.

In addition to data availability status, the name of the database organization of the root segment is
returned in the segment name field of the PCB. The segment name field contains one of the following
database organizations: DEDB, MSDB, GSAM, HDAM, PHDAM, HIDAM, PHIDAM, HISAM, HSAM, INDEX,
SHSAM, or SHISAM.

For a DCCTL environment, the database organization is UNKNOWN.

Important: If you are working with a High Availability Large Database (HALDB), you need to be aware that
the feedback on data availability at PSB schedule time only shows the availability of the HALDB master,
not of the HALDB partitions. However, the error settings for data unavailability of a HALDB partition are
the same as those of a non-HALDB database, namely status code 'BA' or pseudo abend U3303.

Automatic INIT DBQUERY

When the program is initially scheduled, the status code in the database PCBs is initialized as if the INIT
DBQUERY call were issued. The application program can therefore determine database availability without
issuing the INIT call.

Performance considerations for the INIT call (IMS online only)

For a DCCTL environment, the status code is NA.

For performance reasons, the INIT call should not be issued before the first GU call to the I/O PCB. If the
INIT call is issued first, the GU call is not processed as efficiently.

Determining data availability status without abends

To avoid abendu3303, first use INIT STATUS GROUPx (x=A or B). IMS will give you a status code for
unavailable databases (or HALDB partitions). Then, use INIT DBQUERY, which will set a status code in
each DB PCB. Before attempting any DB call, you can test all PCBs for non-blank status.

Enabling data availability status codes: INIT STATUS GROUPA

The following table contains a sample I/O area for the INIT call for assembler language, COBOL, C
language, and Pascal.

Table 10. INIT I/O area examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 11 00 00 STATUS GROUPA

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call for PL/I.

Chapter 1. DL/I calls reference 43

Table 11. INIT I/O area examples for PLITDLI

L L L L Z Z Character String

00 00 00 11 00 00 STATUS GROUPA

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

LL or LLLL
LL is a halfword-length field. For non-PLITDLI calls, LLLL is a fullword-length field for PLITDLI.

ZZ
A 2-byte field of binary zeros.

The value for LLZZ data or LLLLZZ data is always 4 bytes (for LLZZ or LLLLZZ), plus data length.

Recommendation: You should be familiar with data availability.

When the INIT call is issued with the character string STATUS GROUPA in the I/O area, the application
program informs IMS that it is prepared to accept status codes regarding data unavailability. IMS then
returns a status code rather than a resultant pseudoabend if a subsequent call requires access to
unavailable data. The status codes that are returned when IMS encounters unavailable data are BA and
BB. Status codes BA and BB both indicate that the call could not be completed because it required access
to data that was not available. DEDBs can receive the BA or BB status code.

In response to status code BA, the system backs out only the updates that were done for the current call
before it encountered the unavailable data. If changes have been made by a previous call, the application
must decide to commit or not commit to these changes. The state of the database is left as it was before
the failing call was issued. If the call was a REPL or DLET call, the PCB position is unchanged. If the call is
a Get type or ISRT call, the PCB position is unpredictable.

In response to status code BB, the system backs out all database updates that the program made since
the last commit point and cancels all nonexpress messages that were sent since the last commit point.
The PCB position for all PCBs is at the start of the database.

Enabling deadlock occurrence status codes: INIT STATUS GROUPB

The following table contains a sample I/O area for the INIT call for assembler language, COBOL, C
language, and Pascal.

Table 12. INIT I/O area examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 11 00 00 STATUS GROUPB

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call for PL/I.

Table 13. INIT I/O area examples for PLITDLI

L L L L Z Z Character String

00 00 00 11 00 00 STATUS GROUPB

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

LL or LLLL
LL is a halfword-length field. For non-PLITDLI calls, LLLL is a fullword-length field for PLITDLI.

ZZ
A 2-byte field of binary zeros.

The value for LLZZ data or LLLLZZ data is always four bytes (for LLZZ or LLLLZZ), plus data length.

44 IMS: Application Programming APIs

When the INIT call is issued with the character string STATUS GROUPB in the I/O area, the application
program informs IMS that it is prepared to accept status codes regarding data unavailability and deadlock
occurrences. The status codes for data unavailability are BA and BB, as described under "Enabling data
availability status codes: INIT STATUS GROUPA".

When a deadlock occurs in batch and the INITSTATUS GROUPB call has been issued, the following
occurs:

• If no changes were made to the database, the BC status code is returned.
• If updates were made to the database, and if a datalog exists and BKO=YES is specified, the BC status

code is returned.
• If changes were made to the database, and a disklog does not exist or BKO=YES is not specified, a 777

pseudoabend occurs.

When the application program encounters a deadlock occurrence, IMS:

• Backs out all database resources (with the exception of GSAM and DB2®) to the last commit point.
Although GSAM PCBs can be defined for pure batch or BMP environments, GSAM changes are not
backed out. Database resources are backed out for DB2 only when IMS is the sync-point coordinator.

When you use INIT STATUS GROUPB in a pure batch environment, you must specify the DISKLOG and
BACKOUT options.

• Backs out all output messages to the last commit point.
• Requeues all input messages as follows:

Environment
Action

MPP and BMP
All input messages are returned to the message queue. The application program no longer controls
its input messages.

IFP
All input messages are returned to IMS Fast Path (IFP) balancing group queues (BALGRP), making
them available to any other IFP region on the BALGRP. The IFP that is involved in the deadlock
receives the next transaction or message that is available on the BALGRP.

DBCTL
Action is limited to resources that are managed by DBCTL, for example, database updates.

• Returns a BC status code to the program in the database PCB.

Determining GSAM databases for large format data sets: INIT RSA12

When you issue the INIT call with the character string "RSA12" set in the I/O area, the GSAM application
program tells IMS that the program can accept a 12-byte RSA when retrieving a record for a large format
data set. The following table contains a sample I/O area for the INIT call with RSA12 for assembler
language, COBOL, C language, and Pascal.

Table 14. INIT RAS12: Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character string

00 09 00 00 RSA12

Note: The LL value of X'09' is a hexadecimal representation of decimal 9. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call with RSA12 for PL/I.

Table 15. INIT RSA12: Example for PLITDLI

L L L L Z Z Character string

00 00 00 09 00 00 RSA12

Chapter 1. DL/I calls reference 45

Table 15. INIT RSA12: Example for PLITDLI (continued)

L L L L Z Z Character string

Note: The LL value of X'09' is a hexadecimal representation of decimal 9. ZZ fields are binary.

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For PL/I, the length of the LLLL
field is considered 2 bytes even though it is a 4-byte field. When you use the AIBTDLI interface, the
length of the record is equal to the total length of LL + ZZ + character string. For the PLITDLI interface,
the length of the record is equal to the total length of LLLL + ZZ + character string, where LLLL is
considered 2 bytes.

ZZ
A 2-byte field of binary zeros.

Specify a database version number: INIT VERSION(dbname=version)

When database versioning is enabled, an application program can use the "VERSION" function to request
a version of a database that is different from the version number that is specified for the application
program on the PCB or from the default version that is returned by IMS. A version number specified on the
INIT VERSION call takes precedence over all other version specifications and defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database, the version of the
database that is returned to the application program is determined by the DBVER keyword of the PCB
statement. If the DBVER keyword is not specified, IMS returns either the version of the database that is
active in the ACB library or version 0 of the database, as determined by the DBLEVEL keyword in either the
PSBGEN statement or the database section of the DFSDFxxx PROCLIB member.

In the I/O area, the VERSION function is specified by using the following format:

VERSION(

,

 dbname = version)

Each database name is specified by using alphabetic characters and can be specified only once. Specify
only names of physical databases. The names of logical databases are not supported.

Each version is specified as a numeric value from 0 to 2147483647. The number that is specified must
match a version number that is defined on a DBD for the named database and stored in the IMS catalog.

Calculate the size that is required for the I/O area by multiplying the number of databases that are
specified in the input I/O area by 20.

For example, the following table contains a sample I/O area for the INIT VERSION call for assembler
language, COBOL, C language, and Pascal. In the table, the LL value of X'3C' is the hexadecimal
representation of decimal 60, the length in bytes that is required to hold the output in the I/O area
when three database names are specified on input. The ZZ fields are binary.

Table 16. INIT VERSION: Example format for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character string

00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

The following table contains a sample I/O area for the INIT call with VERSION for PL/I. In the table, the LL
value of X'3C' is the hexadecimal representation of decimal 60. The ZZ fields are binary.

Table 17. INIT VERSION: Example format for PLITDLI

L L L L Z Z Character string

00 00 00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

46 IMS: Application Programming APIs

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For PL/I, the length of the LLLL
field is considered 2 bytes even though it is a 4-byte field. When you use the AIBTDLI interface, the
length of the record is equal to the total length of LL + ZZ + character string. For the PLITDLI interface,
the length of the record is equal to the total length of LLLL + ZZ + required length for output, where
LLLL is considered 2 bytes.

ZZ
A 2-byte field of binary zeros.

Character string
The function specification on input. The length that is specified in the LL or LLLL is the length that is
required for the output: 20 bytes for each database that is specified in the input character string.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

You should be familiar with deadlock occurrences as described in IMS Version 15.3 System
Administration.

Related concepts
Retrieving and inserting GSAM records (Application Programming)
Converting HDAM and HIDAM databases to HALDB (Database Administration)
Data availability considerations (Application Programming)

INQY call
The Inquiry (INQY) call is used to request information about the current execution environment,
destination type and status, and session status. INQY is valid only for application interfaces that use
the AIB structure.

Format
INQY aib i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INQY X X X X X

Parameters
aib

Specifies the address of the application interface block (DFSAIB) for the call. This parameter is an
input and output parameter. These fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

• bbbbbbbb (Null)
• DBQUERYb
• ENVIRONb
• ENVIRON2
• FINDbbbb

Chapter 1. DL/I calls reference 47

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_retrieveinsertgsamdb.htm#ims_retrieveinsertgsamdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_convhdam2phdam.htm#ims_conv_2_haldb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dataavailconsid.htm#ims_dataavailconsid

• LERUNOPT
• MSGINFOb
• PROGRAMb (Not supported with the ODBA interface)

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of any named PCB in the
PSB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

i/o area
Specifies the data output area to use with the call. This parameter is an output parameter. An I/O
area is required for INQY subfunctions ENVIRONb, ENVIRON2, MSGINFOb and PROGRAMb. It is not
required for subfunctions DBQUERYb, FINDbbbb, and LERUNOPT.

Restrictions
The INQY call is valid only when using the AIB. An INQY call that is issued through the PCB interface is
rejected with an AD status code.

Usage
The INQY call operates in both batch and online IMS environments. IMS application programs can use the
INQY call to request information about the output destination, the session status, the current execution
environment, the availability of databases, and the PCB address, which is based on the PCB name. You
must use the AIB when issuing an INQY call. Before you can issue an INQY call, initialize the fields of the
AIB.

When you use the INQY call, specify an 8-byte subfunction code, which is passed in the AIB. The INQY
subfunction determines the information that the application program receives.

The INQY call returns information to the caller's I/O area. The length of the data that is returned from the
INQY call is passed back to the application program in the AIB field, AIBOAUSE.

Specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call returns only as much data as
the area can hold in one call. If the area is not large enough for all the information, an AG status code is
returned, and partial data is returned in the I/O area. In this case, the AIB field AIBOALEN contains the
actual length of the data that is returned to the I/O area, and the AIBOAUSE field contains the output area
length that would be required to receive all the data.

Querying data availability: INQY DBQUERY
When the INQY call is issued with the DBQUERY subfunction, the application program obtains information
about the data for each PCB. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb.
The INQY DBQUERY call is similar to the INITDBQUERY call. The INQY DBQUERY call does not return
information in the I/O area, but like the INIT DBQUERY call, it updates status codes in the database PCBs.

The application program is not made aware of the status of each PCB until an INQY FIND call is issued. To
retrieve the status for a database, you must pass the DB PCB for that database in the INQY FIND call.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns these status codes in the
I/O PCB:

bb
The call is successful and all databases are available.

BJ
None of the databases in the PSB are available, or no PCBs exist in the PSB. All database PCBs
(excluding GSAM) contain an NA status code as the result of processing the INQY DBQUERY call.

48 IMS: Application Programming APIs

BK
At least one of the databases in the PSB is not available, or availability is limited. At least one
database PCB contains an NA or NU status code as the result of processing the INQY DBQUERY call.
When CATALOG PCBs show NA, the status code is bb.

The INQY call returns the following status codes in each DB PCB:

NA
At least one of the databases that can be accessed by using this PCB is not available. A call that is
made using this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has
been issued, or in a DFS3303I message and 3303 pseudoabend if the call has not been issued. An
exception is when the database is not available because dynamic allocation failed. In this case, a call
results in an AI (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, or in a DFS3303I message and 3303 pseudoabend if it has not been issued. The
database that caused the NU status code might be required only for delete processing. In that case,
DLET calls fail, but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions the PCB allows. DEDBs and
MSDBs always have the bb.

Querying the environment: INQY ENVIRON or ENVIRON2
When the INQY call is issued with the ENVIRON or ENVIRON2 subfunctions, the application program
obtains information about the current execution environment. Both subfunctions cannot be used with the
same INQY call, so use either ENVIRON or ENVIRON2. The ENVIRON subfunction provides compatibility
for existing programs that require its specific use, whereas ENVIRON2 is newer and provides more
information. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb. This includes the
IMS identifier, release, region, and region type.

The INQY ENVIRON and ENVIRON2 calls return character-string data. The output is left-aligned and
padded with blanks on the right.

Recommendations: To account for expansion in the length of the reply data, specify an I/O area length of
512 bytes.

To reference the field that contains the recovery token or the application parameter string, code your
application programs to locate the field by using the address of the field that is returned in the data
output of the INQY ENVIRON or INQY ENVIRON2 calls. This is the only valid programming technique
to reference the recovery token field and the application parameter string field. No other programming
technique should be used to reference these fields.

The recovery token or the application parameter string are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

For more information about the recovery token and application parameter fields, see note 2 after the
following table.

The following table describes the INQY ENVIRON output.

Table 18. INQY ENVIRON data output

Information returned

Length
in
bytes

Actual
value Explanation

IMS Identifier 8 Provides the identifier from the execution parameters.

Chapter 1. DL/I calls reference 49

Table 18. INQY ENVIRON data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

IMS Release Level 4 Provides the release level for IMS. For example, X'00000410'.

IMS Control Region Type 8 BATCH Indicates that an IMS batch region is active.

DB Indicates that only the IMS Database Manager is active. (DBCTL
system)

TM Indicates that only the IMS Transaction Manager is active.
(DCCTL system)

DB/DC Indicates that both the IMS Database and Transaction managers
are active. (DB/DC system)

IMS Application Region
Type

8 BATCH Indicates that the IMS Batch region is active.

BMP Indicates that the Batch Message Processing region is active.

DRA Indicates that the Database Resource Adapter Thread region is
active.

IFP Indicates that the IMS Fast Path region is active.

JBP Indicates that the Java batch processing region is active.

JMP Indicates that the Java message processing region is active.

MPP Indicates that the Message Processing region is active.

Region Identifier 4 Provides the region identifier. For example, X'00000001'.

Application Program
Name

8 Provides the name of the application program being run.

PSB Name (currently
allocated)

8 Provides the name of the PSB currently allocated.

Transaction Name 8 Provides the name of the transaction.

b Indicates that no associated transaction exists.

User Identifier1 8 Provides the user ID.

b Indicates that the user ID is unavailable.

Group Name 8 Provides the group name.

b Indicates that the group name is unavailable.

Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.

B Indicates an INIT STATUS GROUPB call is issued.

b Indicates that a status group is not initialized.

Address of Recovery
Token“2” on page 52

4 Provides the address of the LL field, followed by the recovery
token.

0 Indicates that the recovery token is not available.

50 IMS: Application Programming APIs

Table 18. INQY ENVIRON data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

Address of the
Application Parameter
String“2” on page 52

4 Provides the address of the LL field, followed by the application
program parameter string.

0 Indicates that the APARM= parameter is not coded in the
execution parameters of the dependent region JCL.

Shared Queues
Indicator

4 Indicates that IMS is not using Shared Queues.

SHRQ Indicates IMS is using Shared Queues.

User ID of Address
Space

8 User ID of dependent address space.

User ID Indicator 1 Contains one of the following possible values to indicate the
contents of the userid field:
U

Indicates the user’s identification from the source terminal
during sign-on.

L
Indicates the LTERM name of the source terminal in sign-on
is not active.

P
Indicates the PSBNAME of the source BMP or transaction.

O
Indicates some other name.

z/OS Resource Recovery
Services (RRS) Indicator

3 b Indicates that IMS has not expressed interest in the UR with
RRS. Therefore, the application should refrain from performing
any work that causes RRS to become the syncpoint manager for
the UR because IMS will not be involved in the commit scope.
For example, the application should not issue any outbound
protected conversations.

RRS Indicates that IMS has expressed interest in the UR with RRS.
Therefore, IMS is involved in the commit scope if RRS is the
syncpoint manager for the UR.

IMS catalog enablement
indicator

8 b Indicates that the IMS catalog is not enabled in the DFSDFxxx
PROCLIB member.

For information about setting up and enabling an IMS catalog,
see IMS catalog definition and tailoring (System Definition).

For information about enabling the IMS catalog in the DFSDFxxx
PROCLIB member, see DFSDFxxx member of the IMS PROCLIB
data set (System Definition).

CATALOG
plus one
byte of
reserved
space
initialized
as a
blank.

Indicates that the IMS catalog is enabled. Database and
application metadata are available in IMS. Data mask definitions
that use this value must include all eight bytes.

Chapter 1. DL/I calls reference 51

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Table 18. INQY ENVIRON data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY
ENVIRON call. The PSTUSID field is one of the following:

• For message-driven BMP regions that have not completed successful GU calls to the IMS message queue
and for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is
currently scheduled into the BMP region.

• For message-driven BMP regions that have completed a successful GU call and for any MPP region, the
PSTUSID field is derived which is usually the input terminal's RACF® ID. If the terminal has not signed on
to RACF, the ID is the input terminal's LTERM.

2. The pointer is an address that identifies a length field (LL) which contains the length of the recovery token
or application program parameter string in binary, including the two bytes required for LL. Use this pointer to
set up addressability of the AIB between releases in a batch program.

• The length byte is two more than the length of the string passed as APARM. This is because it includes the
length of the halfword length. Thus, to turn the length byte into a machine length for an executed move,
you need to subtract three. This is unlike z/OS parm strings, where length does not additionally include
the length of the length byte, and you only subtract one before your executed move.

The INQY ENVIRON2 subfunction returns all the information provided by the ENVIRON subfunction, plus
the output described in the following table.

Table 19. INQY ENVIRON2 data output

Information returned

Length
in
bytes

Actual
value Explanation

INQY ENVIRON2 output
version

4 Indicates the version number of this INQY ENVIRON2 output.

IMS installed version

(Entries in this row's
Actual value column
show actual values for
IMS versions 15.1, 15.2,
and 15.3. A similar
output pattern applies
for newer versions of
IMS.)

4 X'000015
10'

Indicates IMS version 15.1.0

X'000015
20'

Indicates IMS version 15.2.0

X'000015
30'

Indicates IMS version 15.3.0

IMS function level 4 Indicates the currently installed function level of IMS.

Functions enabled
bitmap

32 Is the value of the IMS functions enabled bitmap.

Primary Language
Environment enclave
addressing mode

2 31 Indicates that the primary Language Environment enclave
addressing mode is 31-bit.

64 Indicates that the primary Language Environment enclave
addressing mode is 64-bit.

0 Indicates that no JVM was requested.

52 IMS: Application Programming APIs

Table 19. INQY ENVIRON2 data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

Language Environment
enclave addressing
mode for JVM

2 31 Indicates that the Language Environment enclave addressing
mode of the requested JVM is 31-bit.

64 Indicates that the Language Environment enclave addressing
mode of the requested JVM is 64-bit.

0 Indicates that no JVM was requested.

IMS MACB enablement
indicator

4 No value Indicates that managed ACBs is disabled.

MACB Indicates that managed ACBs is enabled.

Notes:

1. To learn more about the functions enabled bitmap, see IMS function levels overview (System
Administration).

2. ENVIRON2 reports primary and active addressing modes as decimal values. Some programs, such as
DFSDDLT0, displays these values in hexadecimal. In such cases, 31-bit displays as 1F and 64-bit displays
as 40.

Querying the input message information: INQY MSGINFO
To obtain information regarding the current input message, use the INQY call with the MSGINFO
subfunction. The only valid PCB name that can be passed in the AIBRSNM1 field is IOPCBbbb. The output
returns the version number and the output fields for the message information. The INQY MSGINFO call
returns the response in the I/O area.

The following table lists the output that is returned from the INQY MSGINFO call. Included with the
information returned is the byte length, the actual value, and an explanation of the output.

The distributed network user ID, if used, has a variable length from 1 to 246 bytes and the distributed
network session ID, if used, has a variable length from 1 to 254 bytes. Because the size of the distributed
network security credentials can vary, the information is appended to the end of the response in the I/O
area. If network security credentials are included in the message, define the I/O area, in the AIB field
AIBOALEN, with the appropriate 2-byte length to account for the variable length of the network user ID
and the network session ID.

To reference the field that contains the distributed network user ID or distributed network session ID,
code your application programs to locate the field by using the address of the field that is returned in
the data output of the INQY MSGINFO call. The address identifies a length field (LL) that contains the
length of the ID followed by the distributed network user ID or network session ID. This is the only valid
programming technique to reference the network user ID and network session ID.

The distributed network user ID or network session ID are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

Chapter 1. DL/I calls reference 53

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions

Table 20. INQY MSGINFO data output

Information returned Length in bytes Actual value Explanation

Version number 4 1 or 2 Output response version
1 contains the origin IMS
ID.

Output response version
2 contains both the
origin IMS ID and
the distributed network
security credentials.

Origin IMSID 8 The IMS identifier from
which the input message
originated.

Address of distributed
network user ID

4 If this field is zero,
network user ID is not
available. If this field is
nonzero, it provides the
address of the LL field
followed by the network
user ID for the input
message.

Address of distributed
network session ID

4 If this field is zero,
network session ID is
not available. If this field
is non-zero, it provides
the address of the LL
field followed by the
network session ID for
the input message.

Reserved for IMS 60 This field is reserved for
future output expansion.

Querying the PCB: INQY FIND
When the INQY call is issued with the FIND subfunction, the application program is returned with the
PCB address of the requested PCB name. The only valid PCB names that can be passed in AIBRSNM1 are
IOPCBbbb or the name of an alternate PCB or DB PCB, as defined in the PSB. The PCB address is returned
in the AIBRSA1 field of the AIB mask. When the INQY call is completed, the AIBRSA1 field contains
call-specific information.

To retrieve the status for a database, you must pass the DB PCB for that database in the INQY FIND call.
You must issue one call for each PCB required.

On a FIND subfunction, the requested PCB remains unmodified, and no information is returned in an I/O
area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY call. This process allows
the application program to analyze the PCB status code to determine whether either an NA or NU status
code is set in the PCB.

The following PL/I code sample shows how to retrieve the database status values.

II00_INITSTAT: PROC;
 DCL DUMMY_LENGTH CHAR(4) INIT(' '); /* TO PLEASE IMS */
 AIB.PCBNAME = 'IOPCB';
 CALL AIBTDLI($3,INIT,AIB,STATUS_CALL2);

54 IMS: Application Programming APIs

 IF AIB.RETURN = 0 THEN
 PUT SKIP LIST('INIT ISSUED');
 ELSE
 DO;
 PUT SKIP LIST ('AIB RETURN CODE ',AIB.RETURN);
 PUT SKIP LIST ('AIB REASON CODE ',AIB.REASON);
 PUT SKIP LIST ('IOPCB STATUS CODE ',IO_PCB.STATUS_CODE);
 PUT SKIP LIST ('INIT UNSUCCESSFULL');
 END;
 SELECT (IO_PCB.STATUS_CODE);
 WHEN (' ')
 GROUPA_STATUS = ' ';
 WHEN ('NA')
 GROUPA_STATUS = 'NA';
 WHEN ('NU')
 GROUPA_STATUS = 'NU';
 OTHERWISE
 DO;
 PUT SKIP LIST
 ('INIT STATUS GROUPA FAILED ',IO_PCB.STATUS_CODE);
 END;
 END;
 PUT SKIP LIST
 ('INIT STATUS GROUPA = ',IO_PCB.STATUS_CODE);
 END II00_INITSTAT;
 JJ00_INQY: PROC;
 DCL DUMMY_LENGTH CHAR(4) INIT(' '); /* TO PLEASE IMS */
 AIB.PCBNAME = 'IOPCB';
 AIB.SUB_FUNC = 'DBQUERY ';
 AIB.OUT_LEN_TOT = 2000;
 CALL AIBTDLI($3,INQY,AIB,IO_AREA);
 PUT SKIP LIST('INQY ISSUED ON IOPCB BEFORE CHECK OF AIB RETURN');
 IF AIB.RETURN = 0 THEN
 PUT SKIP LIST('INQY ISSUED - 0 RC ON AIB.RETURN');
 ELSE
 DO;
 PUT SKIP LIST ('AIB RETURN CODE ',AIB.RETURN);
 PUT SKIP LIST ('AIB REASON CODE ',AIB.REASON);
 PUT SKIP LIST ('IOPCB STATUS CODE ',IO_PCB.STATUS_CODE);
 PUT SKIP LIST ('INQY IOPCB DBQUERY UNSUCCESSFULL');
 END;
 SELECT (IO_PCB.STATUS_CODE);
 WHEN (' ')
 DO;
 PUT SKIP DATA (IO_AREA);
 PUT SKIP DATA (IO_PCB.STATUS_CODE);
 END;
 WHEN ('NA')
 PUT SKIP LIST ('NA STATUS ON IO_PCB.STATUS_CODE');
 WHEN ('NU')
 PUT SKIP LIST ('NU STATUS ON IO_PCB.STATUS_CODE');
 OTHERWISE
 DO;
 PUT SKIP LIST
 ('INQY FAILED ',IO_PCB.STATUS_CODE);
 END;
 END;
 PUT SKIP LIST ('START B1CSTP FIND CALL');
 AIB.PCBNAME = 'B1CSTP';
 AIB.SUB_FUNC = 'FIND ';
 AIB.OUT_LEN_TOT = 2000;
 CALL AIBTDLI($3,INQY,AIB,IO_AREA);
 PUT SKIP LIST('INQY B1CSTP FIND READY TO BE CALLED');
 IF AIB.RETURN = 0 THEN
 PUT SKIP LIST('INQY B1CSTP FIND CALLED - 0 RC');
 ELSE
 DO;
 PUT SKIP LIST ('AIB RETURN CODE ',AIB.RETURN);
 PUT SKIP LIST ('AIB REASON CODE ',AIB.REASON);
 PUT SKIP LIST ('CSTP_PCB STATUS CODE ',CSTP_PCB.STATUS_CODE);
 PUT SKIP LIST ('INQY B1CSTP FIND UNSUCCESSFULL');
 END;
 PUT SKIP LIST ('CSTP STATUS ' ,CSTP_PCB.STATUS_CODE);
 PUT SKIP LIST ('IO PCB ', IO_PCB.STATUS_CODE);
 SELECT (CSTP_PCB.STATUS_CODE);
 WHEN (' ')
 DO;
 PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
 PUT SKIP DATA (IO_AREA);
 END;
 WHEN ('NA')
 PUT SKIP LIST ('NA STATUS ON B1CSTP CSTPPCB.STATUS_CODE');

Chapter 1. DL/I calls reference 55

 WHEN ('NU')
 PUT SKIP LIST ('NU STATUS ON B1CSTP CSTPPCB.STATUS_CODE');
 OTHERWISE
 DO;
 PUT SKIP LIST
 ('INQY FAILED ',IO_PCB.STATUS_CODE);
 END;
 END;
 PUT SKIP LIST ('START D1CSTP FIND CALL');
 AIB.PCBNAME = 'D1CSTP';
 AIB.SUB_FUNC = 'FIND ';
 AIB.OUT_LEN_TOT = 2000;
 CALL AIBTDLI($3,INQY,AIB,IO_AREA);
 PUT SKIP LIST('INQY D1CSTP FIND READY TO BE CALLED');
 IF AIB.RETURN = 0 THEN
 PUT SKIP LIST('INQY D1CSTP FIND CALLED - 0 RC');
 ELSE
 DO;
 PUT SKIP LIST ('AIB RETURN CODE ',AIB.RETURN);
 PUT SKIP LIST ('AIB REASON CODE ',AIB.REASON);
 PUT SKIP LIST ('CSTP_PCB STATUS CODE ',CSTP_PCB.STATUS_CODE);
 PUT SKIP LIST ('INQY D1CSTP FIND UNSUCCESSFULL');
 END;
 PUT SKIP LIST ('CSTP STATUS ' ,CSTP_PCB.STATUS_CODE);
 PUT SKIP LIST ('IO PCB ', IO_PCB.STATUS_CODE);
 SELECT (CSTP_PCB.STATUS_CODE);
 WHEN (' ')
 DO;
 PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
 PUT SKIP DATA (IO_AREA);
 END;
 WHEN ('NA')
 PUT SKIP LIST ('NA STATUS ON D1CSTP CSTPPCB.STATUS_CODE');
 WHEN ('NU')
 PUT SKIP LIST ('NU STATUS ON D1CSTP CSTPPCB.STATUS_CODE');
 OTHERWISE
 DO;
 PUT SKIP LIST
 ('INQY FAILED ',IO_PCB.STATUS_CODE);
 END;
 END;
 PUT SKIP LIST ('START S1CSTP FIND CALL');
 AIB.PCBNAME = 'XXCSTP';
 AIB.SUB_FUNC = 'FIND ';
 AIB.OUT_LEN_TOT = 2000;
 CALL AIBTDLI($3,INQY,AIB,IO_AREA);
 PUT SKIP LIST('INQY S1CSTP FIND READY TO BE CALLED');
 IF AIB.RETURN = 0 THEN
 PUT SKIP LIST('INQY S1CSTP FIND CALLED - 0 RC');
 ELSE
 DO;
 PUT SKIP LIST ('AIB RETURN CODE ',AIB.RETURN);
 PUT SKIP LIST ('AIB REASON CODE ',AIB.REASON);
 PUT SKIP LIST ('CSTP_PCB STATUS CODE ',CSTP_PCB.STATUS_CODE);
 PUT SKIP LIST ('INQY S1CSTP FIND UNSUCCESSFULL');
 END;
 PUT SKIP LIST ('CSTP STATUS ' ,CSTP_PCB.STATUS_CODE);
 PUT SKIP LIST ('IO PCB ', IO_PCB.STATUS_CODE);
 SELECT (CSTP_PCB.STATUS_CODE);
 WHEN (' ')
 DO;
 PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
 PUT SKIP DATA (IO_AREA);
 END;
 WHEN ('NA')
 PUT SKIP LIST ('NA STATUS ON S1CSTP CSTPPCB.STATUS_CODE');
 WHEN ('NU')
 PUT SKIP LIST ('NU STATUS ON S1CSTP CSTPPCB.STATUS_CODE');
 OTHERWISE
 DO;
 PUT SKIP LIST
 ('INQY FAILED ',IO_PCB.STATUS_CODE);
 END;
 END;

Querying for LE overrides: INQY LERUNOPT
When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS determines whether LE overrides
are allowed based on the LEOPT system parameter. The LE override parameters are defined to IMS

56 IMS: Application Programming APIs

through the UPDATE LE command. IMS checks to see whether there are any overrides applicable to
the caller based on the specific combinations of transaction name, lterm name, userid, or program name
in the callers environment. IMS returns the address of the string to the caller if an override parameter
is found. The LE overrides are used by the IMS supplied CEEBXITA exit, DFSBXITA, to allow dynamic
overrides for LE runtime parameters.

The call string must contain the function code and the AIB address. The I/O area is not a required
parameter and is ignored if specified. The only valid PCB name that can be passed in AIBRSNM1 is IOPCB.
The AIBOALEN and AIBOAUSE fields are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY LERUNOPT call are:

• An MPP or JMP region uses transaction name, lterm, userid, and program to match with each entry.
• An IFB, JBP, or non-message-driven BMP uses program name to match with each entry. If an entry has

a defined filter for transaction name, lterm, or userid, it does not match. Message driven BMPs also use
transaction name.

• The entries are scanned to find the entry with the most filter matches. The first entry in the list with the
most exact filter matches is selected. The scan stops with an entry found with all of the filters matching
the entry.

Note: Searching table entries may cause user confusion because of the way entries are built and
searched. For example, assume that there are two entries in the table that match on the filters specified
on the DL/I INQY call. The first transaction matches on transaction name and lterm name. The second
entry matches on transaction name and program name. IMS chooses the first entry because it was the
first entry encountered with highest number of filter matches. If the second entry is now updated with
a longer parameter string, which causes a new entry to be built, it is added to the head of the queue.
The next search would result in the entry with transaction name and program name being selected. This
could result in a set of runtime options being selected that were not expected by the user.

Querying the program name: INQY PROGRAM
When you issue the INQY call with the PROGRAM subfunction, the application program name is returned
in the first 8 bytes of the I/O area. The only valid PCB name that can be passed in AIBRSNM1 is
IOPCBbbb.

INQY return codes and reason codes
When you issue the INQY call, return and reason codes are returned to the AIB. Status codes can be
returned to the PCB. If return and reason codes other than those that apply to INQY are returned, your
application should examine the PCB to see what status codes are found.

Map of INQY subfunction to PCB type
Table 21. Subfunction, PCB, and I/O area combinations for the INQY call

 Subfunction I/O PCB Alternate PCB DB PCB
I/O Area
Required

FIND OK OK OK NO

ENVIRON or ENVIRON2 OK NO NO YES

DBQUERY OK NO NO NO

LERUNOPT OK NO NO NO

PROGRAM OK NO NO YES

MSGINFO OK NO NO YES

Chapter 1. DL/I calls reference 57

LOG call
The Log (LOG) call is used to send and write information to the IMS system log.

Format
LOG io pcb

aib

i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

LOG X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to write to the system log.
This is an input parameter. This record must follow the format shown in the following tables.

Table 22. Log record formats for COBOL, C, assembler, Pascal, and PL/I programs for the AIBTDLI,
ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

LL ZZ C Text

2 2 1 Variable

Table 23. Log record formats for COBOL, C, assembler, Pascal, and PL/I programs for the PLITDLI
interface

LLLL ZZ C Text

4 2 1 Variable

The fields must be:

LL or LLLL
Specifies a 2-byte field (or, for PL/I, a 4-byte-long field) to contain the length of the record. The
length of the record is equal to LL + ZZ + C + text of the record. When you calculate the length of
the log record, you must account for all fields. The total length you specify includes:

• 2 bytes for LL or LLLL. (For PL/I, include the length as 2, even though LLLL is a 4-byte field.)
• 2 bytes for the ZZ field.
• 1 byte for the C field.

58 IMS: Application Programming APIs

• n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must define the length field as a binary
fullword.

ZZ
Specifies a 2-byte field of binary zeros.

C
Specifies a 1-byte field containing a log code, which must be equal to or greater than X'A0'.

Text
Specifies any data to be logged.

Usage
An application program can write a record to the system log by issuing the LOG call. When you issue the
LOG call, specify the I/O area that contains the record you want written to the system log. You can write
any information to the log, and you can use different log codes to distinguish between different types of
information.

You can issue the LOG call:

• In a batch program, and the record is written to the IMS log
• In an online program in the DBCTL environment, and the record is written to the DBCTL log
• In the IMS DB/DC environment, and the record is written to the IMS log

Restrictions
The length of the I/O area (including all fields) cannot be larger than the logical record length (LRECL)
for the system log data set, minus four bytes, or the I/O area specified in the IOASIZE keyword of the
PSBGEN statement of the PSB.

For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

PCB call (CICS online programs only)
The PCB call is used to schedule a PSB call.

The ODBA interface does not support this call.

Format
PCB psb name uibptr

sysserve

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

PCB X X

Parameters
The AIB is not valid for PCB calls.
psb name

Specifies the PSB. An asterisk can be used for the parameter to indicate the default. This parameter is
an input parameter.

uibptr
Specifies a pointer, which is set to the address of the UIB after the call. This parameter is an output
parameter.

Chapter 1. DL/I calls reference 59

sysserve
Specifies an optional 8-byte field that contains either IOPCB or NOIOPCB. This parameter is an input
parameter.

Usage
Before a CICS online program can issue any DL/I calls, it must indicate to DL/I its intent to use a particular
PSB. A PCB call accomplishes this and also obtains the address of the PCB list in the PSB. When you issue
a PCB call, specify:

• The call function: PCB␢
• The PSB you want to use, or an asterisk to indicate that you want to use the default name. The default

PSB name is not necessarily the name of the program issuing the PCB call, because that program could
have been called by another program.

• A pointer, which is set to the address of the UIB after the call.

For more information on defining and establishing addressability to the UIB, see the topic "Specifying
the UIB (CICS Online Programs Only)" in IMS Version 15.3 Application Programming.

• The system service call parameter that names an optional 8-byte field that contains either IOPCB or
NOIOPCB.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

RCMD call
A Retrieve Command (RCMD) call enables an automated operator (AO) application program retrieve the
second and subsequent command response segments after an ICMD call.

Format
RCMD aib i/o area

Parameters
aib

Specifies the application interface block (AIB) used for this call. This parameter is an input and output
parameter.

These fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

60 IMS: Application Programming APIs

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area should
be large enough to hold the largest command response segment that is passed from IMS to the AO
application program. If the I/O area is not large enough for all of the information, partial data is
returned in the I/O area.

Usage
RCMD lets an AO application program retrieve the second and subsequent command response segments
resulting from an ICMD call.

Related reading For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

The following table shows, by IMS environment, the types of AO application programs that can issue
RCMD. RCMD is also supported from a CPI-C driven program.

Table 24. RCMD support by application region type

 Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional response segments, you
must issue RCMD one time for each response segment that is issued by IMS.

Restrictions
An ICMD call must be issued before an RCMD call.

ROLB call
The Roll Back (ROLB) call is used to dynamically back out database changes and return control to your
program.

For more information on the ROLB call, see the topic "Maintaining Database Integrity" in IMS Version 15.3
Application Programming.

The ODBA interface does not support this call.

Format
ROLB i/o pcb

aib i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLB X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output parameter.

Chapter 1. DL/I calls reference 61

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program where IMS returns the first message segment. This parameter is an
output parameter.

Restrictions
The AIB must specify the I/O PCB for this call.

ROLL call
The Roll (ROLL) call is used to abnormally terminate your program and to dynamically back out database
changes.

For more information on the ROLL call, see the topic "Maintaining Database Integrity" in IMS Version 15.3
Application Programming.

The ODBA interface does not support this call.

Format
ROLL

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLL X X X X X

Parameters
The only parameter required for the ROLL call is the call function.

Usage
When you issue a ROLL call, IMS terminates the application program with a U0778 abend.

Restrictions
Unlike the ROLB call, the ROLL call does not return control to the program.

ROLS call
The Roll Back to SETS (ROLS) call is used to back out to a processing point set by a prior SETS or SETU
call.

For more information on the ROLS call, see the topic "Maintaining Database Integrity" in IMS Version 15.3
Application Programming.

62 IMS: Application Programming APIs

Format
ROLS i/o pcb

aib

db pcb

i/o area token

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLS X X X X X

Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.
i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb, or the
name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area has the same format as the I/O area supplied on the SETS call. This parameter
is an output parameter.

token
Specifies the area in your program that contains a 4-byte identifier. This parameter is an input
parameter.

Usage
When you use the Roll Back to SETS (ROLS) call to back out to a processing point set by a prior SETS or
SETU, the ROLS enables you to continue processing or to back out to the prior commit point and place the
input message on the suspend queue for later processing.

Issuing a ROLS call for a DB PCB can result in the user abend code 3303.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database.

Chapter 1. DL/I calls reference 63

SETS/SETU call
The Set a Backout Point (SETS) call is used to set an intermediate backout point or to cancel all existing
backout points.

The SET Unconditional (SETU) call operates like the SETS call, except that the SETU call is accepted even
if unsupported PCBs exist or an external subsystem is used. For more information on the SETS and SETU
calls, see the topic "Maintaining Database Integrity" in IMS Version 15.3 Application Programming.

Format
SETS

SETU

i/o pcb

aib i/o area token

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETS/SETU X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. SETS and SETU must refer to the I/O PCB. This parameter is an
input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program that contains the data to be returned on the corresponding ROLS
call. This parameter is an input parameter.

token
Specifies the area in your program that contains a 4-byte identifier. This parameter is an input
parameter.

Usage
The SETS and SETU format and parameters are the same, except for the call functions, SETS and SETU.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call. The ROLS call
operates with the SETS and SETU call backout points.

The meaning of the SC status code for SETS and SETU is as follows:
SETS

The SETS call is rejected. The SC status code in the I/O PCB indicates that either the PSB contains
unsupported options or the application program made calls to an external subsystem.

SETU
The SETU call is not rejected. The SC status code indicates either that unsupported PCBs exist in the
PSB or the application program made calls to an external subsystem.

64 IMS: Application Programming APIs

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database. The SETU call is valid, but not functional, if unsupported PCBs exist in the PSB or if the program
uses an external subsystem.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same token and still back
out to the correct message level. After 255 SETS calls, the messages continue to back out, but only to
the same message level as at 255th SETS call. The SETS token count resets to zero during sync point
processing.

SNAP call
The SNAP call is used to collect diagnostic information.

This topic contains Product-sensitive Programming Interface information.

Format
SNAP db pcb

aib

i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SNAP X X X

Parameters
db pcb

Specifies the address that refers to a full-function PCB that is defined in a calling program PSB. This
parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a full-function DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program that contains SNAP operation parameters. This parameter is an
input parameter. The following figure shows the SNAP operation parameters you specify, including:

• Length for bytes 1 through 2
• Destination for bytes 3 through 10
• Identification for bytes 11 through 18
• SNAP options for bytes 19 through 22

Chapter 1. DL/I calls reference 65

Figure 1. I/O area for SNAP operation parameters

The following table explains the values that you can specify.

Table 25. SNAP operation parameters

Byte Value Meaning

1-2 xx This 2-byte binary field specifies the length of the SNAP operation
parameters. The length must include this 2-byte length field.

When you do not specify operation parameters, IMS uses default values. This
chart lists the lengths that result from your parameter specifications.

If you supply values
for:

And IMS supplies
default values for:

Then the length (in
hexadecimal) is:

Destination,
Identification, SNAP
options

 16

Destination,
Identification

SNAP options 12

Destination Identification, SNAP
options

10

 Destination,
Identification, SNAP
options

2

If you specify another length, IMS uses default values for the destination,
identification, and SNAP operation parameters.

66 IMS: Application Programming APIs

Table 25. SNAP operation parameters (continued)

Byte Value Meaning

3-10 This 8-byte field tells IMS where to send SNAP output. You can direct output
to the IMS log by specifying LOG or ␢␢␢␢␢
Directs the output to the IMS log. This is the default destination.

dcbaddr Directs the output to the data set defined by this DCB address.

The application program must open the data set before the SNAP call refers
to it. This option is valid only in a batch environment. The output data set
must conform to the rules for a z/OS SNAP data set.

ddname Directs the output to the data set defined by the corresponding DD
statement. The DD statement must conform to the rules for a z/OS SNAP
data set. The data set specified by ddname is opened and closed for this
SNAP request.

In a DB/DC environment, you must supply the DD statement in the JCL for
the control region.

If the destination is invalid, IMS directs output to the IMS log.

11-18 cccccccc This is an eight-character name you can supply to identify the SNAP. If you do
not supply a name, IMS uses the default value, NOTGIVEN.

19-22 cccc This four-character field identifies which data elements you want the SNAP
output to include. YYYN is the default.

19 Buffer Pool:

Y Dump all buffer pools and sequential buffering control blocks with a SNAP
call.

N Do not dump buffer pools or sequential buffering control blocks with a SNAP
call.

20 Control Blocks:

Y Dump control blocks related to the current DB PCB with a SNAP call.

N Do not dump control blocks related to the current DB PCB with a SNAP call.

21 Y Dump all control blocks for this PSB with a SNAP call. Specifying Y in byte
21 produces a snap dump for the current DB PCB request in byte 20 to Y,
regardless of the current value.

N Do not dump all control blocks for this PSB with a SNAP call. In this case, the
current DB PCB SNAP request in position 20 is used as specified.

19-21 ALL This is equivalent to specifying YYY in positions 19-21.

22 Region:

Y Dump the entire region on the DCB address or data set ddname that you
supplied in bytes 3-10 with a SNAP call. IMS processes this request before it
acts on any SNAP requests made in bytes 19-21. If the destination is the IMS
log, IMS does not dump the entire region. Instead, it processes the request
as if you had specified ALL.

N Do not dump the entire region with a SNAP call.

S Dump subpools 0-127 with a SNAP call.

Chapter 1. DL/I calls reference 67

After the SNAP call, IMS can return the AB, AD, or ␢␢ (blank) status code. For a description of these codes
and the response required, see IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes.

Usage
Any application program can issue this call.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

STAT call
The Statistics (STAT) call is used in a CICS, IMS online, or batch program to obtain database statistics that
might be useful for performance monitoring.

This topic contains Product-sensitive Programming Interface information.

Format
STAT db pcb

aib

i/o area stat function

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STAT X X X

Parameters
db pcb

Specifies the DB PCB used to pass status information to the application program. The VSAM statistics
used by the data sets associated with this PCB are not related to the type of statistics that is returned
from the STAT call. This PCB must reference a full-function database. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a full-function DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies an area in the application program that is large enough to hold the requested statistics. This
parameter is an output parameter. In PL/I, this parameter should be specified as a pointer to a major
structure, array, or character string.

stat function
Specifies a 9-byte area whose content describes the type and format of the statistics required. The
first 4 bytes define the type of statistics requested and byte 5 defines the format to be provided.
The remaining 4 bytes contain EBCDIC blanks. If the stat function that is provided is not one of the
defined functions, an AC status code is returned. This parameter is an input parameter. The 9-byte
field contains:

68 IMS: Application Programming APIs

• 4 bytes that define the type of statistics you want:
DBAS

OSAM database buffer pool statistics
DBES

OSAM database buffer pool statistics, enhanced or extended
VBAS

VSAM database subpool statistics
VBES

VSAM database subpool statistics, enhanced or extended
• 1 byte that gives the format of the statistics:

F
Full statistics to be formatted. If you specify F, your I/O area must be at least 360 bytes for
DBAS or VBAS and 600 bytes for DBES or VBES.

O
Full OSAM database subpool statistics in a formatted form. If you specify O, your I/O area must
be at least 360 bytes.

S
Summary of the statistics to be formatted. If you specify S, your I/O area must be at least 120
bytes for DBAS or VBAS and 360 bytes for DBES or VBES.

U
Full statistics to be unformatted. If you specify U, your I/O area must be at least 72 bytes.

• 4 bytes of EBCDIC blanks for normal or enhanced STAT call, or ␢E1␢
Restriction: The extended format parameter is supported by the DBESO, DBESU, and DBESF
functions only.

Extended OSAM buffer pool statistics can be retrieved by including the parameter ␢E1␢ following
the enhanced call function. The extended STAT call returns all of the statistics returned with the
enhanced call, plus the statistics on the coupling facility buffer invalidates, OSAM caching, and
sequential buffering IMMED and SYNC read counts.

Usage
The STAT call can be helpful in debugging because it retrieves IMS database statistics. It is also helpful in
monitoring and tuning for performance. The STAT call retrieves OSAM database buffer pool statistics and
VSAM database buffer supports.

When you request VSAM statistics, each issued STAT call retrieves the statistics for a subpool. Statistics
are retrieved for all VSAM local shared resource pools in the order in which they are defined. For each
local shared resource pool, statistics are retrieved in ascending order based on buffer size. Statistics for
index subpools always follow those for data subpools if any index subpool exists in the shared resource
pool. The index subpools are also retrieved in ascending order based on buffer size.

For more information on the STAT call, see IMS Version 15.3 Application Programming.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

Related concepts
Retrieving database statistics: the STAT call (Application Programming)

SYNC call
The Synchronization Point (SYNC) call is used to release resources that IMS has locked for the application
program.

Chapter 1. DL/I calls reference 69

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_statcalldbstatistics.htm#ims_statcalldbstatistics

The ODBA interface does not support this call.

Format
SYNC i/o pcb

aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SYNC X X X

Parameters
i/o pcb

Specifies the IO PCB for the call. This parameter is an input and output parameter.
aib

Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

Usage
SYNC commits the changes your program has made to the database, and establishes places in your
program from which you can restart, if your program terminates abnormally.

Restrictions
The SYNC call is valid only in non-message driven BMPs; you cannot issue a SYNC call from an CPI-C
driven application program.

For important considerations about using the SYNC call, see IMS Version 15.3 Database Administration.

TERM call (CICS online programs only)
The Terminate (TERM) call is used to terminate a PSB in a CICS online program.

The ODBA interface does not support this call.

Format
TERM

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

TERM X X

Usage
If your program needs to use more than one PSB, you must issue a TERM call to release the first PSB it
uses and then issue a second PCB call to schedule the second PSB. The TERM call also commits database
changes.

70 IMS: Application Programming APIs

The only parameter in the TERM call is the call function: TERM or ␢␢␢ When your program issues the call,
CICS terminates the scheduled PSB, causes a CICS sync point, commits changes, and frees resources for
other tasks.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

XRST call
The Extended Restart (XRST) call is used to restart your program.

If you use the symbolic Checkpoint call in your program, you must precede it with an XRST call that
specifies checkpoint data of blanks.

The ODBA interface does not support this call.

Format
XRST i/o pcb

aib

i/o area length i/o area

area length area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

XRST X X X X X

Parameters
i/o pcb

Specifies the I/O PCB for the call. XRST must refer to the I/O PCB. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
parameter is not used during the XRST call. For compatibility reasons, this parameter must still be
coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this parameter must still be
included in the call, and it must contain a valid address. You can get a valid address by specifying the
name of any area in your program.

i/o area
Specifies a 14-byte area in your program. This area must be either set to blanks if you are starting
your program normally or, if performing an extended restart, have a checkpoint ID.

Chapter 1. DL/I calls reference 71

area length
Specifies a 4-byte field in your program that contains the length (in binary) of the area to restore.
This parameter is an input parameter. You can specify up to seven area lengths. For each area length,
you must specify the area parameter. All seven area parameters (and corresponding area length
parameters) are optional. When you restart the program, IMS restores only the areas specified on the
CHKP call.

The number of areas you specify on an XRST call must be less than or equal to the number of areas
you specify on a CHKP call.

area
Specifies the area in your program that you want IMS to restore. You can specify up to seven areas.
Each area specified must be preceded by an area length. This is an input parameter.

Usage
Programs that want to issue Symbolic Checkpoint calls (CHKP) must also issue the Extended Restart
call (XRST). The XRST call must be issued only once and should be issued early in the execution of the
program. It does not need to be the first call in the program. However, it must precede any CHKP call. Any
Database calls issued before the XRST call are not within the scope of a restart.

To determine whether to perform a normal start or a restart, IMS evaluates the I/O area provided by the
XRST call or CKPTID= value in the PARM field on the EXEC statement in your program's JCL.

Starting your program normally

When you are starting your program normally, the I/O area pointed to in the XRST call must contain
blanks and the CKPTID= value in the PARM field must be nulls. This indicates to IMS that subsequent
CHKP calls are symbolic checkpoints rather than basic checkpoints. Your program should test the I/O area
after issuing the XRST call. IMS does not change the area when you are starting the program normally.
However, an altered I/O area indicates that you are restarting your program. Consequently, your program
must handle the specified data areas that were previously saved and that are now restored.

Restarting your program

You can restart the program from a symbolic checkpoint taken during a previous execution of the
program. The checkpoint used to perform the restart can be identified by entering the checkpoint ID
either in the I/O area pointed to by the XRST call (left-most justified, with the rest of the area containing
blanks) or by specifying the ID in the CKPTID= field of the PARM= parameter on the EXEC statement in
your program's JCL. (If you supply both, IMS uses the CKPTID= value specified in the parameter field of
the EXEC statement.)

The ID specified can be:

• A 1- to 8-character extended checkpoint ID.
• A 14-character "time stamp" ID from message DFS0540I, where:

– IIII is the region ID.
– DDD is the day of the year.
– HHMMSST is the time in hours, minutes, seconds, and tenth of a second.

• The 4-character constant "LAST". (BMPs only: this indicates to IMS that the last completed checkpoint
issued by the BMP will be used for restarting the program.)

The system message DFS0540I supplies the checkpoint ID and the time stamp.

The system message DFS682I supplies the checkpoint ID of the last completed checkpoint which can
be used to restart a batch program or batch message processing program (BMP) that was abnormally
terminated.

At completion of the XRST call the I/O area always contains the 8-character checkpoint ID used for the
restart. An exception exists when the checkpoint ID is equal to 8 blank characters; the I/O area then
contains a 14-character time stamp (IIIIDDDHHMMSST).

72 IMS: Application Programming APIs

If the program being restarted is in a DL/I batch region, the IMSLOGR DD statement that defines the log
data set must be supplied in the JCL. IMS reads these data sets and searches for the checkpoint records
that have the ID that was specified.

However, if the program being restarted is in a BMP region and all of the following conditions are met, an
IMSLOGR DD statement is not required:

• The BMP program is restarted with CKPTID=LAST.
• The BMP program is restarted on the same IMS system with the same job name, same PSB, and same

program name that was used when it abended.
• IMS has not been cold-started since the BMP program abended.
• The checkpoint records that are needed to restart the program are on an OLDS data set that has not

been archived and reused since the time of the abend, or the SLDSREAD logger function is active in IMS.

If any of the preceding conditions are not met, you must supply an IMSLOGR DD statement that points to
the data set that contains the required checkpoint records.

If an IMSLOGR DD statement is supplied, it must contain the required checkpoint log records. IMS does
not automatically locate and retrieve checkpoint records for a BMP if an IMSLOGR DD statement is
present. Only the IMSLOGR DD data set is searched and, if the record is not found, the BMP program
terminates with abend U0102.

Note: A DD DUMMY statement is permissible for an IMSLOGR DD statement and is treated as if no
IMSLOGR DD statement was supplied.

At the completion of the XRST call, the I/O area always contains the 8-character checkpoint ID used for
the restart. An exception exists when the checkpoint ID is equal to 8 blank characters; the I/O area then
contains a 14-character time stamp (IIIIDDDHHMMSST).

Also check the status code in the I/O PCB. The only successful status code for an XRST call are blanks.

Position in the database after issuing XRST

The XRST call attempts to reposition all databases to the position that was held when the last checkpoint
was taken. This is done by including each PCB and PCB key feedback area in the checkpoint record.
Issuing XRST causes the key feedback area from the PCB in the checkpoint record to be moved to the
corresponding PCB in the PSB that is being restarted. Then IMS issues a GU call, qualified with the
concatenated key (using the C command code), for each PCB that held a position when the checkpoint
was taken.

After the XRST call, the PCB reflects the results of the GU repositioning call, not the value that was present
when the checkpoint was taken. The GU call is not made if the PCB did not hold a position on a root or
lower-level segment when the checkpoint was taken. A GE status code in the PCB means that the GU for
the concatenated key was not fully satisfied. The segment name, segment level, and key feedback length
in the PCB reflect the last level that was satisfied on the GU call. A GE status code can occur because IMS
is unable to find a segment that satisfies the segment search argument that is associated with a Get call
for one of the following reasons:

• The call preceding the checkpoint call was a DLET call issued against the same PCB. In this case, the
position is correct because the position after the Get call does not find its target is the same position
that would exist following the DLET call.

Restriction: Avoid taking a checkpoint immediately after a DLET call.
• The segment was deleted by another application program between the time your program terminated

abnormally and the time you restarted your program. A GN call issued after the restart returns the first
segment that follows the deleted segment or segments.

This explanation assumes that position at the time of checkpoint was on a segment with a unique key.
XRST cannot reposition to a segment if that segment or any of its parents have a non-unique key.

For a DEDB, the GC status code is received when position is not on a segment but at a unit-of-work (UOW)
boundary. Because the XRST call attempts to reestablish position on the segment where the PCB was

Chapter 1. DL/I calls reference 73

positioned when the symbolic checkpoint was taken, the XRST call does not reestablish position on a PCB
if the symbolic checkpoint is taken when the PCB contains a GC status code.

If your program accesses GSAM databases, the XRST call also repositions these databases.

During GSAM XRST processing, a check is made to determine if the GSAM output data set to be
repositioned is empty and if the abending job had previously inserted records in the data set.

Restrictions
If your program is being started normally, the first 5 bytes of the I/O area must be set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC statement is not used,
then the right-most bytes beyond the checkpoint ID being used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP application programs.

Transaction management
Use the following reference information to make DL/I calls for transaction management.

DL/I calls for transaction management
Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.

Transaction management calls must use either i/o pcb or aib parameters.

Each call description contains:

• A syntax diagram
• A definition for each parameter that can be used in the call
• Details on how to use the call in your application program
• Restrictions on the use of the call

Each parameter is described as an input or output parameter. "Input" refers to input to IMS from the
application program. "Output" refers to output from IMS to the application program.

The syntax diagrams for the transaction managment calls do not contain the complete call structure.
Instead, the calls begin with the function parameter. The call, the call interface (xxxTDLI), and parmcount
(if it is required) are not included in the syntax diagrams. See language-specific information (for COBOL,
C language, Pascal, PL/I, and assembler language) in the topic "Defining Application Program Elements"
inIMS Version 15.3 Application Programming for the complete structure.

Transaction Management Call Summary

The following table summarizes the parameters that are valid for each of the transaction management
message calls. The following table lists the function code, its meaning, use, parameters, and in which
regions it is valid. Optional parameters are enclosed in brackets, [].

Exception: Language-dependent parameters are not shown here. The variable parmcount is required
for all PLITDLI calls. Either parmcount or VL is required for assembler language calls. Parmcount
is optional in COBOL, C, and Pascal programs. See the topic "Formatting DL/I Calls for Language
Interfaces" in IMS Version 15.3 Application Programming for language-specific information.

Related reading: For information on writing calls with programming language interfaces, see the topic
"Defining Application Program Elements" in IMS Version 15.3 Application Programming.

74 IMS: Application Programming APIs

Table 26. Summary of TM message calls

Function Code Meaning Use Parameters Valid for

AUTH Authorization Verifies user's
security
authorization

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

CHNG Change Sets destination on
modifiable alternate
PCB

function, alt pcb
or aib, destination
name[, options list,
feedback area]

DB/DC, DCCTL

CMD Command Used by a program
to issue IMS
commands

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GCMD Get Command Retrieves second
and any subsequent
responses to a
command

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GN Get Next Retrieves second
and any subsequent
message segments

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GU Get Unique Retrieves the first
segment of a
message

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

ICAL IMS Call Sends a
synchronous request
for data or services
to a non-IMS
application program
or service that runs
in a distributed
environment

aib, request area,
response area

DB/DC, DCCTL

ISRT Insert Builds an output
message in a
program's I/O area

function, i/o or alt
pcb or aib, i/o area
[,mod name.]

DB/DC, DCCTL

PURG Purge Enqueues messages
from a PCB to
destinations

function, i/o or alt
pcb or aib[, i/o area,
mod name.]

DB/DC, DCCTL

SETO Sets processing
options for advanced
print functions and
APPC/IMS message
processing

Feedback area
returns information
about errors in the
options list

function, i/o pcb or
alternate pcb or aib,
i/o area, options list[,
feedback area]

BMP, MPP, IFP
DB/DC, DCCTL

Related reading: DCCTL users can issue calls using GSAM database PCBs, which are described in IMS
Version 15.3 Application Programming.

Related reference
“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.
“DL/I calls for database management” on page 1

Chapter 1. DL/I calls reference 75

Use these DL/I calls with IMS DB to perform database management functions in your application
program.
“EXEC DLI commands” on page 153
The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

AUTH call
An Authorization (AUTH) call verifies each user's security authorization. It determines whether a user is
authorized to access the resources specified on the AUTH call.

Format
AUTH i/o-pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

AUTH X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area used for the call. This parameter is an input and output parameter.

I/O Area
The following tables show the format of the parameter list in the I/O area before the AUTH call is issued.

I/O area before the AUTH call

Table 27. I/O area before the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

76 IMS: Application Programming APIs

Table 27. I/O area before the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces (continued)

Field Name Field Length

CLASSNAME 8

RESOURCE 8

USERDATA 8

Table 28. I/O area before the AUTH call is issued for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

CLASSNAME 8

RESOURCE 8

USERDATA 8

LL or LLLL
specifies a 2-byte field that contains the length of the parameter list, including two bytes for LL.
For the PLITDLI interface, use the 4-byte field LLLL. However, if you use the AIBTDLI interface, PL/I
programs require only a 2-byte field.

ZZ
specifies a 2-byte field that contains binary zeros.

CLASSNAME
specifies an 8-byte field that contains one of the following values:

TRAN␢␢␢␢
DATABASE
SEGMENT␢
FIELD␢␢␢
OTHER␢␢␢

All parameters are 8 bytes in length, left-justified, and must be padded to the right with blanks.

The use of a generic class name in the call parameter list eliminates the need for the application
to be sensitive to the actual Resource Access Control Facility (RACF) class names being used. Since
transaction authorization must be active, only the RACF class associated with the generic class name
identifier for the transaction class must be defined. The generic class name in the call parameter list
causes the authorization function to select the proper RACF class and request access checking for
that class.

RESOURCE
specifies the 8-byte field that contains the name of the resource to be checked. Except for the generic
class TRAN, the resource name can be whatever the application designates because the name has no
meaning for IMS TM.

IMS TM performs no validity checking of the resource name.

USERDATA
specifies the 8-byte keyword constant USERDATA is the only value supported. Its presence in the
parameter list means that the application program wants any RACF installation data that exists in the
RACF accessor environment element (ACEE).

The following tables show the I/O area after the AUTH call.

I/O area after the AUTH call

Chapter 1. DL/I calls reference 77

Table 29. I/O area after the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

FEEDBACK 2

EXITRC 2

STATUS 2

RESERVED 16

UL 2

USERDATA Variable

Table 30. I/O area after the AUTH call is issued for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

FEEDBACK 2

EXITRC 2

STATUS 2

RESERVED 16

UL 2

USERDATA Variable

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes for LL. For the PLITDLI
interface, use the 4-byte field LLLL. However, if you use the AIBTDLI interface, PL/I programs require
only a 2-byte field.

ZZ
specifies a 2-byte field that contains binary zeros.

FEEDBACK
specifies a 2-byte field that contains one of the following RACF return codes:
0000

User is authorized.
0004

Resource or class not defined.
0008

User is not authorized.
000C

RACF is not active.
0010

Invalid installation exit return code.

78 IMS: Application Programming APIs

EXITRC
specifies a 2-byte field that contains the return code from the user exits if they were used. The
EXITRC field contains the return code from the last user exit that was entered. If none of the user
exits are present or invoked, the field contains binary zeros. If installation data is returned from the
exit, the EXITRC field is set to zero to indicate an authorized return code from the exit.

STATUS
specifies a 2-byte field that contains the hexadecimal status code indicating installation data status:
0000

RACF installation data is present in the I/O area.
0004

Security exit installation data present in then I/O area.
0008

User is not currently signed on.
000C

User is not authorized, so installation data is not made available, or user is authorized, but no
installation data has been defined.

0010
User was authorized, but installation data was not requested.

0014
USERDATA exceeds PSBWORK area length.

0018
RACF not active and TRN=N defined.

RESERVED
Binary zeros (reserved)

UL
specifies a 2-byte field that specifies the length of the installation data, including the length of the UL
parameter.

USERDATA
specifies a variable-length field that contains installation data from ACEE or a user security exit. The
length of the installation data is limited to 1026 bytes, including the length (UL) field. If a security exit
returns a value greater than 1026, IMS truncates the installation data and adjusts the length field to
represent the amount of installation data actually returned to the application program. If security exit
installation data is returned, IMS passes it to the application program even if the parameter list did not
contain the USERDATA parameter.

Any available installation data is returned if the return code from RACF indicates that the user is
authorized to the resource named in the call parameter list. No installation data is returned if the user
who originated the transaction is no longer signed on to the terminal associated with the transaction.
Installation data might or might not be provided by the security exits when they are involved in the
security decision. However, when either of the exits returns installation data, IMS passes it on to the
application program.

If provided, installation data is returned from a security exit to the application even when the call
parameter list does not specify the USERDATA parameter. In that case, the STATUS field of the I/O
area contains the code X'0004' indicating the presence of the installation data.

Usage
The AUTH call determines whether a user is authorized to access the resources specified on the AUTH
call. AUTH is issued with an I/O PCB and its function depends on the application program. Authorization
checking depends on the dependent region type and whether a GU call has been issued. The call functions
are as follows:

• In BMPs, AUTH uses the user ID of the IMS control region or installation specific user exits to determine
the status of the call.

Chapter 1. DL/I calls reference 79

• For BMPs that have issued a successful GU call to the I/O PCB, AUTH functions as it does in an MPP.
• In MPPs, AUTH verifies user authorization with RACF for the specified resource classes of those

resources used by the application program.

Because the call can request RACF user data to be passed back in the I/O area as installation data, the
processing of the call always results in changes to the STATUS field in the I/O area. This STATUS field
notifies the application of the status of installation data in the I/O area: available or not available. It might
not be available because the installation data is not defined or the originating user is no longer signed on
to the IMS system.

Either of the supported security exits for transaction authorization (DFSCTRN0 or DFSCTSE0) can present
installation data upon return to IMS. If an exit returns installation data, the data is returned to the
application even if the parameter list did not contain the USERDATA parameter. The STATUS field is set
to indicate the origination of the installation data. The STATUS field indicates the presence of either RACF
installation data or security exit installation data.

The application program also receives notification of the actual RACF return code. This return code,
presented as FEEDBACK in the I/O area, can be used by the application program to detect inconsistent
operational modes and take alternate action. Examples of inconsistent operational modes are the proper
RACF classes not being defined or the requested resource not properly defined to RACF.

By checking the FEEDBACK, EXITRC, and STATUS in the I/O area, the application program can be
sensitive to issues such as the proper RACF definitions and resources not being defined. If RACF is
being used, and the AUTH call references any resources that are not defined, the PCB status code is set to
blanks and the FEEDBACK field of the I/O area is set to indicate that the resource is not protected.

Because the value for EXITRC is provided by a user security exit, use of this field must be made with an
understanding of exit operation and the knowledge that any changes to the exit can result in application
errors. If due to operational errors, the proper resources are not protected, the application can deal with
the error in any way. This feedback can make operational control simpler and give the application more
flexibility.

Related reading: RACF terms and concepts are discussed in more detail in other information units. For
additional information, see IMS Version 15.3 System Administration and IMS Version 15.3 Exit Routines.

Restrictions
The AUTH call must not be issued before a successful GU call to the I/O PCB.

CHNG call
The Change (CHNG) call sets the destination of a modifiable alternate PCB to the logical terminal, LU 6.2
descriptor, or transaction code that you specify. You can also use the CHNG call with the Spool Application
Program Interface (Spool API) to specify print data set characteristics.

Format
CHNG alternate_pcb

aib

destination_name

options_list

feedback_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHNG X X

80 IMS: Application Programming APIs

Parameters
alternate pcb

Specifies the modifiable alternate PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a modifiable alternate
PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

destination name
Specifies an 8-byte field containing the destination name (the logical terminal or transaction code) to
which you want messages sent. This parameter is an input parameter. The destination name can be
up to 8 bytes. When you specify LU 6.2 options, IMS TM sets the destination name in the alternate
PCB to DFSLU62b. If an LU 6.2 options list is specified the destination name parameter is ignored.

For more information on LU 6.2, see IMS Version 15.3 Communications and Connections.

The destination name may also be used to implement message switches from OTMA to non-OTMA
destinations. In this case, the destination name must match the name of the routing descriptor in the
DFSYDTx member of IMS.PROCLIB.

Restriction: Some destination names are invalid. For more information on resource naming rules, see
IMS Version 15.3 Communications and Connections.

options list
Specifies one of several option keywords. This parameter is an input parameter. The options in the
list are separated by commas and cannot contain embedded blanks. Processing for the options list
terminates when the first blank in the list is reached or when the specified options list length has been
processed. You can specify options for advanced print functions or for APPC.

For more information on APPC, see IMS Version 15.3 Communications and Connections.

The format for the options list is shown here:

LL or LLLL 1, 2, 3 ZZ keyword1=variable1

Halfword length of the options
string, including the 4-byte
length of LLZZ or LLLLZZ.

Halfword of zero. CHNG options separated by
commas.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the CHNG call as if
the options list parameter was not specified.

3. A keyword must be separated from the following variable by an equal sign (=). A keyword with no
variable must be delimited by a comma or blank.

Chapter 1. DL/I calls reference 81

feedback area
Specifies an optional parameter used to return error information about the options list to the
application program. This parameter is an output parameter. The amount of information that the
application program receives is based on the size of the feedback area. If no feedback area is
specified, the status code returned is the only indication of an options list error. If you specify a
feedback area 1½ to 2 times the size of the specified options list (a minimum of eight words), IMS TM
returns more specific information about errors in the options list.

The following table shows the format for the feedback area passed to IMS in the call list:

LL or LLLL 1, 2 ZZ

Halfword length of the feedback area, including
the 4-byte length of the LLZZ fields.

Halfword of zero.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the CHNG call as
if the feedback area parameter was not specified.

The output format returned to the application program from IMS for the feedback area is as follows:

LLZZ or LLLLZZ LL feedback data

The length field as specified
in the input format for the
feedback area.

Halfword length of the feedback
data returned by IMS TM,
including the 2-byte LL field.

Data returned by IMS TM.
The feedback data generally
includes the option keyword
found to be in error and a 4-byte
EBCDIC code in parentheses
that indicates the reason for
the error. Multiple errors are
separated by commas.

Usage
Use the CHNG call to send an output message to an alternate destination in your system or in another
system. When you issue the CHNG call, you supply the name of the destination to which you want to send
the message. The alternate PCB you name then remains set to that destination until you do one of the
following:

• Issue another CHNG call to reset the destination.
• Issue a Get Unique (GU) call to the message queue to start processing a new message. In this case, the

name of the PCB you specify with the CHNG call still appears in the alternate PCB, even though it is no
longer valid.

• Terminate the application program. When you terminate the application, IMS TM resets the destination
to blanks.

You can use the CHNG call to perform Spool API functions.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a separate JES spool
data set. (PURG calls have no effect when issued against a nonexpress, alternate PCB.) If the destination
of the PCB is the JES spool, it cannot be CHNGed to a non-JES spool destination until the data set(s) have
been released by a sync point. Keywords that can be specified on the CHNG call are discussed below.

In the OTMA environment

If an IMS application program issues a CHNG call to an alternate PCB and specifies an options list, then the
output destination cannot be an IMS Open Transaction Manager client.

82 IMS: Application Programming APIs

An IMS application program that issues a CHNG call to an alternate PCB (specifying an options list) does
not cause IMS to call the OTMA Prerouting and Destination Resolution exit routines to determine the
destination. But an IMS application program that issues a CHNG call to an alternate PCB (specifying
an APPC descriptor) does cause IMS to call the OTMA exit routines to determine the destination. For
information on these exit routines, see IMS Version 15.3 Exit Routines.

The application program can still issue ISRT calls to the I/O PCB to send data to an OTMA destination.

OTMA application programs can use CHNG and ISRT calls for APPC destinations. For more information,
see IMS Version 15.3 Communications and Connections.

Advanced print function options

The IAFP keyword identifies the CHNG call as a request for Spool API functions. The parameters of the
IAFP keyword are:
Keyword

Description
IAFP=abc

a — specifies carriage control options
b — specifies integrity options
c — specifies message processing options

These options specify advanced print functions for the CHNG call.

Carriage control options: The 1-character carriage control options indicate the type of carriage control that
is present in the message data when the ISRT or PURG call is issued. Your application program must
insert the proper carriage control characters in the data stream. You can specify one of the following
values for the IAFP keyword:
A

The data stream contains ASA carriage control characters.
M

The data stream contains machine carriage control characters.
N

The data stream does not contain carriage control characters.

Integrity options: The 1-character integrity options indicate the method IMS TM uses in allocating the IMS
Spool data set that contains the IAFP message. You can specify one of the following options for the IAFP
keyword:
0

IMS TM attempts no data set protection. Your application program must provide any disposition or
hold status by using the appropriate OUTPUT descriptor options. IMS TM does attempt to prevent a
partial message from printing and to deallocate data sets that contain messages that have already
reached a sync point. To control whether error messages about the IMS Spool data set are issued, use
the message processing options for the IAFP keyword.

1
The IMS Spool data set is placed on the SYSOUT HOLD queue when it is allocated. If IMS TM issues
message DFS00121 or DFS00141, the operator must query the SYSOUT HOLD queue to locate the
appropriate data sets. IMS TM releases the data set and deallocates it to be printed at sync point.

When you specify 1 for the integrity option, you must specify M for the message processing option of
the IAFP keyword.

2
A remote destination is specified in the destination name parameter on the CHNG call. The IMS Spool
data set, when allocated, is placed on a SYSOUT remote workstation, IMSTEMP. This destination must
be included in the definitions as nonselectable so that the data set is not automatically selected to
be printed. If IMS TM issues message DFS00121 or DFS00141, the operator must query IMSTEMP
to locate the appropriate data sets. At sync point, IMS TM releases the data set and deallocates it

Chapter 1. DL/I calls reference 83

to the remote workstation ID specified in the destination name parameter. The value 2 overrides any
destination specified in the IAFP OUTPUT options.

Message processing options: The 1-character message processing options indicate whether IMS TM
issues message DFS00141 during restart and message DFS00121 for dynamic allocation failures. You
can specify one of the following options:
0

DFS00121 and DFS00141 are not issued. Your application program controls IAFP message integrity.
M

DFS00121 and DFS00141 are issued if necessary. IMS TM controls IAFP message integrity.

The CHNG call can provide the data set characteristics by:

• Directly, using the PRTO= option
• Referencing prebuilt text units, using the TXTU= option
• Referencing an OUTPUT JCL statement in the dependent region's JCL, using the OUTN= option

When you use the IAFP keyword, you must also specify the PRTO, TXTU, or OUTN option. (The options
PRTO, TXTU, and OUTN are mutually exclusive.) If you do not specify one of these additional options, or if
you specify more than one of these options, or if you specify IAFP with an invalid value, IMS TM returns an
AR status code to your application program.
Keyword

Description
PRTO=outdes options

Describes the data set processing options as they are specified on the TSO OUTDES statement.

The format for the PRTO= keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer
options, including the 2-byte length of LL.

Any valid combination of OUTDES printer options.

Note: Some options depend on the release level of MVS™.

TXTU=address
specifies the address of a list of text-unit pointers. The list (with the associated text units) can be
created by a previous SETO call, or it can be created by your application program. The LLZZ or LLLLZZ
prefix must be included on the buffer that contains the list. TXTU allows your application program to
issue a SETO call to build the text units for the OUTDES options before the CHNG call is issued.

If your application program issues several CHNG calls with the same OUTDES printer options, the
TXTU option means you do not need to build OUTDES options for each CHNG call.

OUTN=name
specifies a character string up to eight characters long that contains the name of an OUTPUT JCL
statement that identifies the printer processing options to be used. If the specified OUTPUT DD
statement is not included in the JCL for the region in which the application program runs, a dynamic
allocation error occurs when the application attempts to insert data to the data set.

APPC options: The following APPC options are available for the CHNG call:
Keyword

Description
LU=logical unit name

Specifies the logical unit (LU) name of a partner for an LU 6.2 conversation with a partner application
program. It is used in conjunction with the MODE and TPN options to establish the conversation. The
LU name can be any alphanumeric string including national characters, but the first character cannot
be a number. If the LU name is a network-qualified name, it can be up to seventeen characters long

84 IMS: Application Programming APIs

and consist of the network ID of the originating system, followed by '.', then the LU name. (for example,
netwrkid.luname). The LU name and the network ID are both one to eight characters long. The default
for this option is DFSLU.

MODE=mode name
Specifies the mode of the partner for an LU 6.2 conversation with a partner application program. It
is used in conjunction with the LU and TPN options to establish the conversation. The mode name
can be any alphanumeric string up to eight characters long, including national characters, but the
first character cannot be a number. If both MODE and SIDE options are specified, the mode name
specified in the SIDE entry is ignored but is not changed. The default for this option is DFSMODE.

TPN=transaction program name
Specifies the transaction program (TP) name of the partner application program in an LU 6.2
conversation. The option is used in conjunction with the LU and MODE keywords to establish the
conversation.

TP names can be up to 64 characters long and can contain any character from the 00640 character
set except a blank. The 00640 character set includes the letters A-Z, the digits 0-9, and 20 special
characters. The default for this option is DFSASYNC. For more information on the 00640 character set,
see CPI Communications Reference. The format for the TPN option is as follows:

LL tpn

Halfword length of the TP name, including the
2-byte length of LL.

The TP name, which can be up to 64 characters
long.

TP names that are processed with the IMS command processor must contain characters that are valid
to IMS. For example, names that contain lower case letters cannot be processed and are rejected if
they are used as operands for IMS commands.

SIDE=side information entry name
Specifies the side information entry name that can be used to establish an LU 6.2 conversation with
a partner application program. The SIDE name can contain up to eight characters, including the
uppercase alphabet (A-Z), and the digits 0-9. If the LU, MODE, or TPN keywords are specified, they
override the SIDE keyword, but they do not change the side information entry name. This option has
no default.

SYNC=NC
Overrides the APPC/IMS conversation synchronization level. N sets the synchronization level to NONE.
C sets the synchronization level to CONFIRM. The default for this option is C.

TYPE=BM
Overrides the APPC/IMS conversation type. B sets the conversation type to BASIC. M sets the
conversation type to MAPPED. The default for this option is M.

Related reading: For more information on APPC and the default options, see IMS Version 15.3
Communications and Connections.

Options list feedback area:When errors are encountered in the options list, the options list feedback area
is used to return error information to the application.

IMS attempts to parse the entire options list and return information on as many errors as possible. If
the feedback area is not large enough to contain all the error information, only as much information is
returned as space permits. The status code is the only indication of an option list error if you do not
specify the area.

The feedback area must be initialized by the application with a length field indicating the length of the
area. A feedback area approximately 1.5 to 2 times the length of the options list or a minimum of 8 words
should be sufficient.

Error codes
This section contains information on error codes that your application can receive.

Chapter 1. DL/I calls reference 85

Error Code
Reason

(0002)
Unrecognized option keyword.

Possible reasons for this error are:

• The keyword is misspelled.
• The keyword is spelled correctly but is followed by an invalid delimiter.
• The length specified field representing the PRTO is shorter than the actual length of the options.
• A keyword is not valid for the indicated call.

(0004)
Either too few or too many characters were specified in the option variable. An option variable
following a keyword in the options list for the call is not within the length limits for the option.

(0006)
The length field (LL) in the option variable is too large to be contained in the options list. The options
list length field (LL) indicates that the options list ends before the end of the specified option variable.

(0008)
The option variable contains an invalid character or does not begin with an alphabetic character.

(000A)
A required option keyword was not specified.

Possible reasons for this error are:

• One or more additional keywords are required because one or more keywords were specified in the
options list.

• The specified length of the options list is more than zero but the list does not contain any options.

(000C)
The specified combination of option keywords is invalid. Possible causes for this error are:

• The keyword is not allowed because of other keywords specified in the options list.
• The option keyword is specified more than once.

(000E)
IMS found an error in one or more operands while it was parsing the print data set descriptors.
IMS usually uses z/OS services (SJF) to validate the print descriptors (PRTO= option variable). When
IMS calls SJF, it requests the same validation as for the TSO OUTDES command. Therefore, IMS
is insensitive to changes in output descriptors. Valid descriptors for your system are a function of
the MVS release level. For a list of valid descriptors and proper syntax, use the TSO HELP OUTDES
command.

IMS must first establish that the format of the PRTO options is in a format that allows the use of SJF
services. If it is not, IMS returns the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the error.

The range of some variables is controlled by the initialization parameters. Values for the maximum
number of copies, allowable remote destination, classes, and form names are examples of variables
influenced by the initialization parameters.

Restrictions
Before you can use the CHNG call to set or alter the destination of an alternate PCB, you must issue the
PURG call to indicate to IMS that the message that you have been building with that PCB is finished.

LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG call in an LU 6.2 conversation. The
LU 6.2 conversation can only be associated with the IOPCB. The application sends a message on the
existing LU 6.2 conversation (synchronous) or has IMS create a new conversation (asynchronous) using

86 IMS: Application Programming APIs

the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation, only the IOPCB represents
the original LU 6.2 conversation.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a separate JES spool
data set. (PURG calls have no effect when issued against a nonexpress, alternate PCB.) If the destination
of the PCB is the JES spool, it cannot be CHNGed to a non-JES spool destination until the data set(s) have
been released by a sync point.

Related reference
“ISRT call” on page 104
The Insert (ISRT) call sends one message segment to the destination that you specify in the call. The
destination is represented by the I/O PCB, alternate PCB, or AIB you specify in the call parameters.
“PURG call” on page 107
The Purge (PURG) call allows your application program to send one or more output message segments
(specified with the ISRT call) to the specified destination before the application program retrieves the
next input message or issues a commit point.

CMD call
The Command (CMD) call enables an application program to issue IMS commands.

Format
CMD i/o_pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CMD X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and output parameter. The I/O
area must be large enough to hold the largest segment passed between the program and IMS TM.

Chapter 1. DL/I calls reference 87

Usage
Use the CMD call with the GCMD call to send commands to and receive responses from IMS TM. After the
CMD call issues the command to IMS TM, IMS TM processes the command and returns the first segment
of the response message to the application program's I/O area, but only if a CC status code is returned
on the CMD call. Your application program must then issue GCMD calls to retrieve all subsequent message
segments one segment at a time. The CMD and GCMD command calls are typically used to perform
functions that are usually handled by someone at a terminal. These programs are called automated
operator (AO) applications.

Before you issue a CMD call, the IMS command that you want to execute must be in the I/O area that you
refer to in the call. When you issue a CMD call, IMS TM passes the command from the I/O area to the IMS
control region for processing. IMS TM places your application program in a wait state until the command
is processed. The application program remains in a wait state until IMS TM returns a response. (Response
means that IMS TM has received and processed the command.) For asynchronous commands, you receive
a response when the command is processing, but not when it is complete.

You can also issue DB2 commands from your IMS TM application program. Issue the command call and
use the /SSR command, followed by the DB2 command. IMS TM routes the command to DB2. DB2 issues
a response to the command, and IMS TM routes the DB2 response to the master terminal operator (MTO).

Restrictions
The AIB must specify the I/O PCB for this call.

Any application program that uses this call must be authorized by the security administrator.

You cannot issue a CMD call from a CPI-C driven application program.

This call is not supported in an IFP or non-message-driven BMP.

Related reference
“GCMD call” on page 88
The Get Command (GCMD) call retrieves the response segments from IMS TM when your application
program processes IMS commands using the CMD call.

GCMD call
The Get Command (GCMD) call retrieves the response segments from IMS TM when your application
program processes IMS commands using the CMD call.

Format

GCMD i/o_pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GCMD X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

88 IMS: Application Programming APIs

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

Usage

When you issue a CMD call, IMS TM returns the first command response segment to the application
program's I/O area. If you are processing commands that return more than one command response
segment, use the GCMD call to retrieve the second and subsequent command response segments. IMS
TM returns one command response segment to the I/O area of your application program each time the
application program issues a GCMD call. The I/O area must be large enough to hold the longest message
segment expected by your application program. IMS allows a maximum segment size of 132 bytes
(including the 4-byte LLZZ field).

The CMD and GCMD calls are typically used to perform functions that are usually performed by someone at
a terminal. These programs are called automated operator (AO) applications.

PCB status codes indicate the results of a GCMD call. The status codes are similar to those that result from
a message GN call. A QD status indicates that there are no more segments in the response. A QE status
indicates that a GCMD call was issued after a CMD call that did not produce response segments. A blank
status ('bb') indicates that a segment was retrieved successfully.

Restrictions

The AIB must specify the I/O PCB for this call.

Any AO application that uses this call must be authorized by the security administrator.

You cannot issue a GCMD call from a CPI-C driven application program.

This call is not supported in an IFP, or non-message driven BMP.

Related reference
“CMD call” on page 87
The Command (CMD) call enables an application program to issue IMS commands.

GN call
If an input message contains more than one segment, a Get Unique (GU) call retrieves the first segment of
the message and Get Next (GN) calls retrieve the remaining segments.

Format
GN i/o_pcb

aib

i/o_area

Chapter 1. DL/I calls reference 89

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GN X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

Usage
If you are processing messages that contain more than one segment, you use the GN call to retrieve the
second and subsequent segments of the message. IMS TM returns one message segment to the I/O area
of your application program each time the application program issues a GN call.

You can issue a GN call from a BMP program.

Restrictions
The AIB must specify the I/O PCB for this call.

You cannot issue a GN call from a CPI-C driven application program.

Related reference
“GU call” on page 90
The Get Unique (GU) call retrieves the first segment of a message.

GU call
The Get Unique (GU) call retrieves the first segment of a message.

Format
GU i/o_pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GU X X

90 IMS: Application Programming APIs

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

Usage
An MPP or message-driven BMP uses two calls to retrieve input message from the host: GN and GU. A GU
call retrieves the first segment of a message. The Get Next (GN) call retrieves subsequent segments.

When you issue a successful GU or GN, IMS TM returns the message segment to the I/O area that you
specify in the call. Message segments are not all the same length. Because the segment length varies,
your I/O area must be long enough to hold the longest segment that your program can receive. The first
two bytes of the segment contain the length of the segment.

Your application program must issue a GU call to the message queue before issuing other DL/I calls. When
IMS TM schedules an MPP, the Transaction Manager transfers the first segment of the first message to
the message processing region. When the MPP issues the GU for the first message, IMS TM already has
the message waiting. If the application program does not issue a GU message call as the first call of the
program, IMS TM has to transfer the message again, and the efficiency provided by message priming is
lost.

If an MPP responds to more than one transaction code, the MPP has to examine the text of the input
message to determine what processing the message requires.

After a successful GU call, IMS TM places the following information in the I/O PCB mask:

• The name of the logical terminal that sent the message.
• The status code for this call. (See the topic "I/O PCB mask" in IMS Version 15.3 Application

Programming)
• The input prefix, giving the date, time, and sequence number of the message at the time it was first

queued. IMS returns both an 8-byte local date containing a 2-digit year and a 12-byte time stamp (local
or UTC time) containing a 4-digit year.

• The MOD name (if you are using MFS).
• The user ID of the person at the terminal, or if user IDs are not used in the system, the logical terminal

name. If the message is from a BMP, IMS TM places the PSB name of the BMP in this field.
• Group name, used by DB2 to provide security for SQL calls.

Related reading: For more information on the format of the I/O PCB mask, see the topic "Specifying the
I/O PCB Mask" in IMS Version 15.3 Application Programming.

Chapter 1. DL/I calls reference 91

Restrictions
The AIB must specify the I/O PCB for this call.

You cannot issue a GU call from a CPI-C driven application program.

Related reference
“GN call” on page 89
If an input message contains more than one segment, a Get Unique (GU) call retrieves the first segment of
the message and Get Next (GN) calls retrieve the remaining segments.

ICAL call
The IMS Call (ICAL) call allows an application program that runs in the IMS TM environment to send a
synchronous request for data or services to a non-IMS application program or service that runs in a z/OS
or distributed environment, or to initiate a synchronous program switch to an IMS transaction.

Format for the SENDRECV subfunction
ICAL aib request_area response_area

control_data_area

Format for the RECEIVE subfunction
ICAL aib response_area

Call name DB/DC DBCTL DCCTL DB batch TM batch

ICAL X X

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

You must initialize the following fields in the AIB:

AIBERRXT
This 4-byte length field contains the additional error information that is returned by OTMA,
IMS Connect, IMS TM Resource Adapter, the IMS Enterprise Suite SOAP Gateway server, or
user-written IMS Connect client applications. The default is 0.

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
A 4-byte field that, when an ICAL call is issued, must contain the length of the request area.

When a response to an ICAL call is received, if the response data is too large to fit in the response
area, the AIBOALEN field contains the total length of the entire response data. When the response
area is too small to fit all of the response data, the AIB return code is X'100' and the AIB
reason code is X'00C'. For any other return codes that are received with a response, this field is
unchanged.

When partial data is returned, you can use the value of this field to determine how much space
is required in the response data buffer. Your application program can then expand the buffer and
issue an ICAL call with the RECEIVE subfunction code to retrieve the complete response message.

92 IMS: Application Programming APIs

AIBOAUSE
A 4-byte field that, when an ICAL is issued, contains the length of the output response area that is
specified in the call list.

When a response to an ICAL call is received, IMS updates the field to contain the length of the
response message that is returned in the response area. If only partial data is returned because
the response area is not large enough, AIBOAUSE contains the length of the data that is returned
in the response area, and AIBOALEN contains the total length of the response message.

AIBOPLEN
A 4-byte field that, when an ICAL call is issued, contains the total length of the control data area
that is specified in the call list. This parameter is ignored if control area is not specified on the
ICAL call. The control area can consist of 1 to many control data items. The total length of the
control data area cannot be larger than 8,160,000.

AIBREASN
AIB reason code.

AIBRETRN
AIB return code.

AIBRSFLD
The time to wait for the synchronous call process to complete. When the timeout value is reached,
the IMS application that issues the synchronous callout request receives a return code of X'0100'
and a reason code of X'0104'. The message is discarded.

This 4-byte parameter contains a time value in 100th of a second. The valid range is 0–999999.
The system default is 10 seconds.

• If the specified value is larger than the maximum value, the maximum value is used.
• If the value is set to 0, the timeout value that is specified in the SYNTIMER parameter of the

OTMA descriptor is used. If there is no timeout value in the OTMA descriptor, the system default
is used for the timeout.

Both this parameter and the SYNTIMER parameter in the OTMA destination description can be
used to specify the timeout value for a synchronous callout process. However, if the timeout value
specified by the SYNTIMER parameter differs from the timeout value specified by this parameter,
OTMA uses the smaller value.

For more information about the usage of the SYNTIMER parameter, see OTMA destination
descriptor syntax and parameters (System Definition)

.
AIBRSNM1

OTMA descriptor name. This 8-byte, alphanumeric, left-aligned field must contain the name of the
OTMA descriptor that defines the destination of the IMS call.

AIBRSNM2

This 8-byte, alphanumeric, left-aligned field contains the logical terminal name used to override
the LTERM name in the I/O PCB of the IMS application program for the target transaction of
an ICAL call for synchronous program switch. The name specified in the AIB is used instead
of any name specified in the OTMA destination descriptor. However, if no name is specified in
AIBRSNM2, the name from the OTMA descriptor is used. If no name is found in the descriptor or in
the AIB, the IMS application terminal symbolic (PSTSYMBO) is used as the default logical terminal
name for the target transaction.

AIBSFUNC
Subfunction code. This field must contain an 8-byte subfunction code. The valid subfunction codes
are:
SENDRECV

The IMS application program uses this subfunction to send a message and wait for the
response. This subfunction is used for synchronous program-to-program communication.

Chapter 1. DL/I calls reference 93

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsydtx_proclib_dest_dscrp.htm#ims_dfsydtx_proclib_dest_dscrp
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsydtx_proclib_dest_dscrp.htm#ims_dfsydtx_proclib_dest_dscrp

RECEIVE
The IMS application program uses this subfunction to retrieve the complete response data
from a previous incomplete ICAL call. If a SENDRECV subfunction call completes with AIB
return code X'0100' and reason code X'000C', the response data did not fit in the response
area. The application program can expand the response area and then retrieve the complete
response with the RECEIVE subfunction call.

AIBUTKN
Map name. If specified, this 1- to 8-byte alphanumeric, left-justified field contains the 1- to
8-character map name used for message formatting or service identification purpose. This map
name is included in the OTMA state data prefix sent to the destination for callout.

request_area
Specifies the request area to use for this call. This parameter is an input parameter.

This request area contains the request message data that is sent from the IMS application program
to the application that is specified in the OTMA descriptor. The AIBOALEN field specifies the length of
the request message data. Because the ICAL call bypasses the IMS TM message queue, the format of
the request area does not require the LLZZ fields.

If the OTMA descriptor specifies that the request message must be routed to another IMS application
program (TYPE=IMSTRAN), the LLZZ fields and transaction code must be specified in the first 8 bytes
of the data area that follows the LLZZ. For transactions specified with MULTSEG, the request data
must include the entire multi-segment message. The standard IMS LLZZ format is required for each
segment, but the transaction code is only required for the first segment.

LL
Specifies the length of the segment.

ZZ
Sets the segment to binary zeros.

response_area
Specifies the response area to use for this call. This parameter is an output parameter.

If the response area is not large enough to contain all of the returned data, IMS returns partial data.
When partial data is returned, the AIBOAUSE field contains the length of the returned data in the
response area, and AIBOALEN contains the actual length of the response message.

Because an ICAL call for synchronous callout bypasses the IMS TM message queue, the format of the
response area does not require the LLZZ fields. However, ICAL calls for synchronous program switch
to another IMS application do require the LLZZ fields. The LLZZ fields for a synchronous program
switch are populated by the output from the target IMS application. Synchronous program switch
requests do not bypass the message queue.

If the original request message was routed to another IMS application program, the response data
follows the standard LLZZ format for each segment in the response message.

control_data_area
Specifies the control area to use for this call. This parameter is an optional input parameter. This
control area is sent from the IMS application program to the target client application that is specified
in the OTMA descriptor. The AIBOPLEN field must specify the length of the control data. The ICAL
control data can consist of 1 to many control data items so that a number of services and operations
can be specified on the same ICAL call.

Each control data item starts with a 4-byte length field, which is followed by a tag, data, and the end
tag. Tags can be of any length. The beginning tag consists of a less than sign (<), a tag name, and a
greater than sign (>). The ending tag consists of a less than sign (<), a slash (/), and the tag name
that matches the beginning tag name, and a greater than sign (>). You must specify a less than sign
(<) and a greater than sign prefixed by a slash (/>) in EBCDIC. The tag name and data contents are
treated as binary and passed "as is" to the target client.

94 IMS: Application Programming APIs

The format of a control data item in the ICAL control data is as follows:

LLLL | <tag> | data ... | </tag>

There might be IBM-initiated control data items, which start with DFS in the tag. The DFS prefix is
restricted to IBM-specified control data items.

For SOAP Gateway messages, you can specify a converter name in the control data by using the
tags <DFSCNVTR>CONVERTER_NAME</DFSCNVTR>. The converter name and the tags must be in
uppercase EBCDIC. If a converter name is specified, it overrides the name of the converter that IMS
Connect would have used to process the message.

The following table contains the IBM-initiated control data tag names and their descriptions:

Table 31. IBM-initiated control data tags

Begin tag Data End tag Description

<DFSCNVTR> Converter name </DFSCNVTR> Specifies the name of the converter
that IMS Connect will use to process
the message.

Usage: SENDRECV subfunction
An ICAL call is used in an IMS application program for synchronous callout that does not use the IMS
message queue. Because the IMS message queue is not used, synchronous callout messages are not
constrained to the 32 KB message segment restriction.

However, An ICAL call that is used in an IMS application program for synchronous program switch
processing to an IMS transaction does use the IMS message queue. The 32 KB message limit applies to
synchronous program switch requests.

Before you run the IMS application that issues this call:

• The OTMA descriptor for the outbound destination routing information must be already defined.
• If the ICAL request is for synchronous callout, the external application or server that the IMS application

is calling out to must be configured to listen for callout messages with the IMS OTMA RESUME TPIPE
function. If the RESUME TPIPE is not set up before the ICAL call times out, a timeout error is returned to
the IMS application.

• If the ICAL request is for synchronous program switch, the target is an IMS transaction that is defined
with the TRANSACT macro or the equivalent type-2 commands CREATE TRAN and UPDATE TRAN. The
transaction must be started.

• For a synchronous program switch request in a shared queues environment, all of the IMS systems in
the same shared queues group must have a MINVERS value of 13.1.

When the synchronous callout timeout value is specified in both the OTMA destination descriptor and the
DL/I ICAL call, IMS uses the lower value of the two.

For a synchronous program switch, the target transaction can be in the same IMS system, in an IMS that
is accessible through shared queues, or in a remote IMS that is accessible with MSC. The synchronous
program switch request is queued as an OTMA transaction, but OTMA is not required.

The target application of a synchronous program switch can issue an additional synchronous program
switch request before returning to the original application program. You can chain together any number
of synchronous program switch requests. However, consider the timeout value for each ICAL call when
making nested synchronous program switch requests. Also, there must be an IMS dependent region
available for each of the target transactions to be scheduled. Lastly, consider that a multi-switch program
flow can hold database locks until the entire sequence of switches is resolved. Two or more applications
in the same synchronous program switch chain can encounter database locking contention with each
other.

Chapter 1. DL/I calls reference 95

If the ICAL call for a synchronous program switch request times out, or if more than one response is
returned after the first one, IMS treats further responses as late messages. The default response to a late
message is to dequeue it. If you want to retain late messages, you can configure a tpipe in the OTMA
destination descriptor for request to hold the late responses, or you can code a DFSMSCE0 exit routine to
reroute them.

Synchronous program switch requests made from Fast Path regions do not support late response
messages. Any late response message is discarded, including subsequent redundant responses.

If a late response message for a synchronous program switch request is routed to an OTMA client, but the
original request was not initiated from an OTMA client, you must use the DFSYIOE0 exit routine to re-build
the default 1 KB OTMA message user data prefix for the response message.

If the destination descriptor for a synchronous program switch request is configured to queue late
messages to a tpipe or reroute them with a DFSMSCE0 user exit routine, OTMA transaction expiration
checking at the application GU time is disabled for the message.

Depending on the transaction security specifications (TRN=Y), the IMS region that is running the
application that issues an ICAL request calls RACF and the DFSCTRN0 user exit to determine if the user
is authorized to issue the ICAL call. For APPC or OTMA transactions, additional security specifications are
checked. If the security level for APPC or OTMA is set to NONE, then RACF and the DFSCTRN0 user exit
are not called even if TRN=Y is specified.

For a synchronous program switch request, IMS schedules the transaction as an OTMA transaction. The
OTMA security configuration (NONE, CHECK, FULL, or PROFILE) is used even if OTMA is not active. The
default security setting is FULL, which is also used if OTMA is not enabled for the IMS system.

You can change the synchronous program switch security configuration with by issuing the following
command:

/SECURE OTMA TMEMBER DFSYICAL value

DFSYICAL is the dedicated synchronous program switch processing TMEMBER. It is not used for other
types of requests. Replace value with NONE, CHECK, FULL, or PROFILE as appropriate.

When OTMA security is set to FULL for DFSYICAL, IMS always creates an ACEE in the dependent region
when it is scheduled. IMS uses this ACEE if security checks are necessary.

When OTMA security is set to CHECK for DFSYICAL, IMS does not create an ACEE at scheduling time. IMS
creates an ACEE in the control region if security checks are necessary.

When OTMA security is to set to NONE for DFSYICAL, no security check is performed.

Usage: RECEIVE subfunction
When a SENDRECV subfunction call returns too much data to fit in the allocated response buffer (AIB
return code X'0100' and reason code X'000C'), the value of the AIBOLEN field is updated with the length
of the complete response message. Expand the size of the response area and then issue an ICAL call with
the RECEIVE subfunction code to retrieve the complete response message.

The complete response data for the original ICAL call is held in the IMS control region until one of the
following events occurs:

• The application issues a new ICAL call with the SENDRECV subfunction code is issued
• The IMS application reaches a sync point or terminates abnormally
• The IMS application issues a ROLB or CHECKPOINT call

Restrictions
ICAL calls for external callout have the following restrictions:

• Coordinated two-phase commit between the IMS application program and the external application
program is not supported.

96 IMS: Application Programming APIs

• An ICAL call cannot be issued from IMS in a shared-queues environment that is not connected to IMS
Connect.

Synchronous program switch requests have the following restrictions:

• The OTMA Input/Output Edit exit routine (DFSYIOE0) is not called for a synchronous program switch
request or response message.

• The TM and MSC Message Routing and Control exit routine (DFSMSCE0) is not called for a synchronous
program switch request.

• The target transaction is not part of the RRS commit scope of the initiating application program.
• BMP and JBP applications cannot make synchronous program switch requests in a DBCTL environment.
• The target transaction has read-only access to Fast Path MSDBs.
• The target transaction cannot be an IMS conversational transaction.
• All of the participating IMS systems in a shared queues environment must have a DBRC MINVERS value

of 13.1 or greater.

Return codes and reason codes
The following table lists the return codes and reason codes for the ICAL call.

Table 32. Return codes and reason codes for the ICAL call

Return code Reason code Extended reason code Description

X'0000' X'0000' X'0000' Call was completed successfully.
Proceed.

X'0100' X'000C' X'0000' Partial output response data was
returned.

Issue a new ICAL call with the
RECEIVE subfunction code and
an expanded response data area
to retrieve the complete response
message.

X'0100' X'000C' X'000D' An IMS informational or error
message was returned in
response to a synchronous
program switch request.

X'0100' X'0100' The default value is 0. If the
value is non-zero, it is set by the
external application.

Error message was returned in
the output response data.

X'0100' X'0100' X'000D' The synchronous program switch
request was returned with an IMS
message.

X'0100' X'0100' X'0004' An IMS informational or error
message was returned in
response to a synchronous
program switch request.

X'0100' X'0104' X'0004' The request timed out. The ICAL
was not sent to the external
application.

Chapter 1. DL/I calls reference 97

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0104' X'0008' The request timed out. The ICAL
was sent, but the ACK was not
received.

X'0100' X'0104' X'000C' The request timed out. The ICAL
was sent, but the response was
not received.

X'0100' X0104' X'0010' The request timed out. The ICAL
was sent, but IMS failed to
process the response.

X'0100' X'0104' X'0020' The request timed out. The ICAL
request for synchronous program
switch was sent, but no response
was received.

X'0100' X'0108' The default value is 0. If the
value is non-zero, it is set by the
external application.

Request message was rejected
by the external application.

X'0100' X'010C' X'0000' The synchronous call was cleared
by a command (such as a /STOP
or /PSTOP command).

X'0100' X'0110' X'0000' The request message was
rejected because the specified
transaction is not supported.
Either the trancode was not
found or the specified transaction
was an IMS conversational
transaction, a CPIC transaction,
or an IMS command transaction.

X'0100' X'0110' X'0004' The request message was
rejected because the user is
not authorized to issue a
synchronous program switch
request.

X'0100' X'0110' X'0005' The request message was
rejected because the tmember
that IMS uses to process
synchronous program switch
requests (DFSYICAL) is stopped.
Issue the command /START
TMEMBER DFSYICAL to resolve
the problem.

98 IMS: Application Programming APIs

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'0006' The request message was
rejected because the tpipe
that IMS uses to process
synchronous program switch
requests (DFSTPIPE of the
OTMA tmember DFSYICAL) is
stopped. Issue the command /
START TMEMBER DFSYICAL
TPIPE DFSTPIPE to resolve the
problem.

X'0100' X'0110' X'000D' The request message was
rejected because IMS failed to
get an internal storage YTIB to
process the message.

X'0100' X'0110' X'000E' The request message was
rejected because IMS failed to
activate DFSYTIB0 to process the
message.

X'0100' X'0110' X'0010' The TMEMBER or TPIPE name for
late response message routing is
invalid because it contains invalid
characters. Check the destination
descriptor.

X'0100' X'0110' X'0011' The TMEMBER or TPIPE name for
late response message routing
is missing from the destination
descriptor. If either value is
specified, both must be included.

X'0100' X'0110' X'0012' The TMEMBER or TPIPE name for
late response message routing is
incorrect. Check the destination
descriptor.

X'0100' X'0110' X'0013' The SMEM and SYNCTP
parameters are mutually
exclusive.

X'0100' X'0110' X'0014' The TPIPE name for late message
processing is either missing
or invalid in the destination
descriptor.

X'0100' X'0110' X'0015' The request message was
rejected because the request
was made in a shared queues
environment with different IMS
MINVERS values. The IMS
systems in the shared queues
group must have the MINVERS
value 13.1.

Chapter 1. DL/I calls reference 99

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'0016' The request is rejected due
to OTMA global message flood
condition. Too many OTMA
message blocks (TIB) were
allocated in the system.

X'0100' X'0110' X'0020' The request message was
rejected because the input data
length is incorrect. The length
of the segment must match
the LLZZ value specified on the
request. The total length of all
segments in the request must
match the AIBOALEN value in the
AIB.

X'0100' X'0110' X'0030' The request message was
rejected because the transaction
is currently unavailable.

X'0100' X'0110' X'0031' The request message was
rejected because the transaction
is stopped.

X'0100' X'0110' X'0033' The request message was
rejected because the destination
name for the program switch is
an RCNT.

X'0100' X'0110' X'0034' The request message was
rejected because the destination
name for the program switch is a
CNT.

X'0100' X'0110' X'0035' The request message was
rejected because the destination
transaction can only accept a
single input segment. Multiple
input segments were specified
for the request.

X'0100' X'0110' X'0036' The request message was
rejected because an IMS queue
manager encountered an insert
error.

X'0100' X'0110' X'0037' The request message was
rejected because an IMS queue
manager encountered an internal
error.

X'0100' X'0110' X'0038' The request message was
rejected because a queue
overflow was detected.

100 IMS: Application Programming APIs

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'0039' The request message was
rejected because IMS failed
to process the Fast Path
transaction.

X'0100' X'0110' X'003A' The request message was
rejected because IMS queue
manager failed to update the
message prefix.

X'0100' X'0110' X'003B' The request message was
rejected because IMS failed to
enqueue the transaction.

X'0100' X'0110' X'0060' The request message
was rejected because the
synchronous program switch was
canceled before a reply was
received.

X'0100' X'0110' X'0061' The request message was
rejected because the target
transaction does not reply to the
IOPCB and does not perform
a program-to-program switch.
The ICAL is rejected to avoid
a timeout. This rejection occurs
when the REPLYCHK descriptor
is set to YES for the destination
transaction. If there is an
asynchronous response for the
ICAL, you can set REPLYCHK to
NO and this ICAL is treated as
valid.

X'0100' X'0110' X'0070' IMS failed to process the
response message for the
synchronous program switch
ICAL call. The length of an output
message segment was greater
than the 32K limit.

X'0100' X'0110' X'0071' IMS failed to process the
response message for the
synchronous program switch
ICAL call. IMS is running out of
LUMP storage space to process
the response message.

X'0100' X'0110' X'0072' IMS failed to process the
response message for the
synchronous program switch
ICAL call. IMS failed to allocate
storage from subpool 231, which
is required to process the
response message.

Chapter 1. DL/I calls reference 101

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'0073' IMS failed to retrieve the
response message from the IMS
message queue.

X'0104' X'0210' X'0000' Input area length (AIBOALEN) is
set to zero.

X'0104' X'0214' X'0000' Output area length (AIBOAUSE) is
set to zero.

X'0104' X'0218' X'0000' Subfunction code is not known or
invalid.

X'0104' X'0610' X'0000' Request input area address
parameter is missing

X'0104' X'0614' X'0000' Response output area address
parameter is missing.

X'0104' X'1020' X'0000' Descriptor name is invalid.

X'0104' X'1024' X'0000' Timeout value is invalid.

X'0104' X'1028' X'0000' The ICAL RECEIVE call was
rejected because no additional
response data is available. Either
the additional response data
from a previous ICAL SENDRECV
call was already retrieved, or a
subsequent ICAL SENDRECV call
cleared the response buffer.

X'0104' X'102C' X'0000' Incorrect ICAL call with control
data. The AIBOPLEN value is
zero.

X'0104' X'102C' X'0004' Incorrect ICAL call with control
data. Additional data area is
found following control data area.

X'0104' X'102C' X'0008' Incorrect ICAL call with
control data. OTMA destination
descriptor is not TYPE=IMSCON.

X'0104' X'102C' X'000C' Incorrect ICAL call with
control data. Resume TPIPE
cannot receive control data
(TMAMCRHQ_MODE does not
have TMAMCRHQ_CTLDATA)

X'0104' X'102C' X'0010' Incorrect ICAL call with control
data. Control data length does
not match control data items.

X'0104' X'102C' X'0014' Incorrect ICAL call with control
data. Control data tag error.

102 IMS: Application Programming APIs

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0104' X'102C' X'0018' Incorrect ICAL call with control
data. The AIBOPLEN value is
larger than the maximum allowed
length, 8,160,000.

X'0108' X'0008' X'0000' IMS failed to release PSTICALO
(internal storage) for the ICAL
call.

X'0108' X'0010' X'0000' Unable to obtain private storage.
The size of the input request data
might be too large.

X'0108' X'0570' X'0000' The ICAL RECEIVE call was
rejected because the internal
buffer storage at PSTICALO is
invalid.

X'0108' X'0580' X'0004' Unable to send the request
message to the external
application. IMS is shutting down.

X'0108' X'0580' X'0008' Unable to send the request
message to the external
application. The IMS callout
function is disabled.

X'0108' X'0580' X'000C' Unable to send the request
message to the external
application. The OTMA member
was invalid or is inactive.

X'0108' X'0580' X'0010' Unable to send the request
message to the external
application. The OTMA TPIPE was
not found or is stopped.

X'0108' X'0580' X'0014' Unable to send the request
message to the external
application. IMS failed to obtain
storage to queue a request.

X'0108' X'0580' X'0018' Unable to send the request
message to the external
application. IMS failed to obtain
LUMP storage to process the
message.

X'0108' X'0580' X'001C' Unable to send the request
message to the external
application. IMS failed to contact
OTMA to process the ICAL call.

X'0108' X'0580' X'0024' Unable to send the request
message to the external
application. IMS detected that
there was no RESUME TPIPE
request from the client.

Chapter 1. DL/I calls reference 103

Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0108' X'0580' X'0100' IMS failed to obtain the required
LUMP storage space to process
the synchronous program switch
request.

X'0108' X'0580' X'0104' OTMA failed to process the
synchronous program switch.
See the associated X'67D0' log
record.

X'0108' X'0584' X'0004' Unable to process the response
output message from the
external application. No data in
the response message.

X'0108' X'0584' X'0008' Unable to process the response
output message from the
external application. The XCF
buffer length for the response
message is incorrect.

X'0108' X'0584' X'000C' Unable to process the response
message from the external
application. IMS failed to allocate
storage for the response message
processing.

X'0108' X'0584' X'0010' Unable to process the response
message from the external
application. A null segment
was found in a multi-segment
response message.

X'0108' X'0588' The default value is 0. If the
value is non-zero, it is set by IMS
Connect.

IMS Connect failed to process
the response. No response data
returned.

X'0108' X'058C' The default value is 0. If the
value is non-zero, it is set by IMS
Connect.

IMS Connect failed to process
the response. Complete or partial
raw data from the external client
application is returned.

Related concepts
OTMA descriptors (Communications and Connections)
Related reference
AIB return and reason codes set by IMS (Messages and Codes)

ISRT call
The Insert (ISRT) call sends one message segment to the destination that you specify in the call. The
destination is represented by the I/O PCB, alternate PCB, or AIB you specify in the call parameters.

For Spool API functions, the ISRT call is also used to write data to the JES Spool.

104 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_004.htm#ims_otma_admin_004
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_aibcodes_ims.htm#ims_aibcodes_ims

Format
ISRT i/o_pcb

alternate_pcb

aib

i/o_area

mod_name

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ISRT X X

Parameters
i/0 pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

alternate pcb
Specifies the PCB to use for this call. These parameters are input and output parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb (if the TP
PCB is used), or the name of an alternate PCB (if an alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an input parameter. The I/O area must
be large enough to hold the largest segment passed between the application program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is an input parameter.
The 8-byte MOD name must be left-justified and padded with blanks as necessary. If the terminal
receiving the output does not use MFS, this parameter is ignored. If you specify a valid MOD name,
IMS TM uses that MOD to format the screen for the output message you are sending.

Usage
To issue the ISRT call successfully, your application program must first build the message you want
to send in the application program's I/O area. The ISRT uses the destination name in the I/O PCB or
alternate PCB, and the I/O area that you specify in the call, to locate the message to be sent. The ISRT
call then sends the output message from your application program to another terminal. ISRT sends one
message segment per issue, so your application program must issue one ISRT call for each segment of
the message in the I/O area.

You can also specify a MOD name if you want to change the screen format. For example, if the application
program detects an error and must notify the person at the terminal, you can specify a MOD name that
formats the screen to receive the error message. ISRT and PURG are the only DL/I calls that allow you to
specify a MOD name on the first segment of an output message.

Chapter 1. DL/I calls reference 105

When your application program issues one or more ISRT calls, IMS TM groups the message segments
to be sent in the message queue. IMS TM sends the message segments to the destination when the
application program does one of the following:

• Issues a GU call to retrieve the first segment of the next message
• Reaches a commit point
• Issues a PURG call on an express alternate PCB

Your application must also use the ISRT call to issue replies to other terminals in conversational programs
and to pass a conversation between application programs.

In the shared queues environment

A STATUSQF can be received on an ISRT call in a shared queues environment if the MSGQ structure is full.
If the MSGQ structure is full, one of the following can happen:

• If the ISRT is for a multi-segment message, STATUSQF will be received.
• If the ISRT for a multi-segment message still completes correctly (enough space) but not enough space

is found to be available at PURG or CHKP time, the application will abend with ABENDU0370.
• If the ISRT is for a single segment message, STATUSQF can be received. If the program continues to

insert further messages that cause all available device relative record number (DRRN) to be exhausted,
IMS will fail with ABENDU0758. If the program issues a checkpoint before exhausting all available
DRRN, queue buffers will be freed and the messages will be written on the log as “unresolved UOWEs.”
Logs containing the original type01 and type03 log records are needed to later insert the messages in
the structure if space becomes available and must not be reused. IMS will issue message DFS1994I to
remind the user at every check point time.

Spool API functions

You can use the ISRT call to write data to the JES Spool. These writes are done using BSAM and, if
possible, each BSAM "write" is done directly from the application program's buffer area.

Restriction: BSAM does not support the I/O area for sysout data sets above the 16-MB line. If IMS finds
an I/O area above the 16-MB line, it moves the application data to a work area below the line before it
performs the BSAM write. If the I/O area is already below the line, the write is done directly from the I/O
area. Do not take unusual steps to place the I/O area below the line unless performance indicates a need
to do so.

When you issue the ISRT call for an alternate PCB set up for IAFP processing, prefix the I/O area with a
BSAM block descriptor word for variable length records.

LL or LLLL1,2 ZZ2 II3 zz3

Halfword length of the
I/O area or block,
including the 4-byte
length of the LLZZ fields.

Halfword of zero Halfword length of
the logical record or
segment, including the
4-byte length of the llzz
fields.

Halfword of zero

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL). However,
the length of the LLLLZZ field is still considered 4 bytes.

2. LLZZ is the equivalent of the BSAM Block Descriptor Word (BDW).
3. llzz is the equivalent of the BSAM Record Descriptor Word (RDW).

Restrictions
A CPI-C driven application program can only issue the ISRT call to an alternate PCB.

106 IMS: Application Programming APIs

If you want to send message segments before retrieving the next message or issuing a commit point, you
must use the PURG call.

MOD name can be specified only once per message, on the first ISRT or PURG call that begins the
message.

BSAM does not support the I/O area for sysout data above the 16 MB line.

Related reference
Output message format and contents (Application Programming)
“CHNG call” on page 80
The Change (CHNG) call sets the destination of a modifiable alternate PCB to the logical terminal, LU 6.2
descriptor, or transaction code that you specify. You can also use the CHNG call with the Spool Application
Program Interface (Spool API) to specify print data set characteristics.
“PURG call” on page 107
The Purge (PURG) call allows your application program to send one or more output message segments
(specified with the ISRT call) to the specified destination before the application program retrieves the
next input message or issues a commit point.

PURG call
The Purge (PURG) call allows your application program to send one or more output message segments
(specified with the ISRT call) to the specified destination before the application program retrieves the
next input message or issues a commit point.

For Spool API functions, the PURG call can also be used to release a print data set for immediate printing.

Format
PURG i/o_pcb

alternate_pcb

aib

i/o_area

mod_name

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

PURG X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

alternate pcb
Specifies the PCB to use for the call. These parameters are input and output parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb (if the TP
PCB is used), or the name of an alternate PCB (if an alternate PCB is used).

Chapter 1. DL/I calls reference 107

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_outputmessageformat.htm#ims_outputmessageformat

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an input parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is an input parameter. The
8-byte MOD name must be left justified and padded with blanks as necessary. PURG can specify the
MOD name for the first message segment for an output message. If the terminal receiving the output
does not use MFS, this parameter is ignored. If you specify a valid MOD name, IMS TM uses that MOD
to format the screen for the output message you are sending.

Usage
Use the PURG call to send output messages to several different terminals. A PURG call tells IMS TM that
the message built against the specified I/O PCB, or alternate PCB (with the ISRT call) is complete. IMS
TM collects the message segments that have been inserted into one PCB as one message and sends the
message to the destination specified by the destination name of the alternate PCB listed in the PURG call.

If you specify an I/O area in the PURG call parameters, PURG acts as an ISRT call to insert the first
segment of the next message. When you identify the I/O area, you can also specify a MOD name to
change the screen format.

In the OTMA environment

An IMS application program that issues a PURG call causes IMS to call the Open Transaction Manager
Access (OTMA) Prerouting and Destination Resolution exit routines to determine the destination. For
information on these exit routines, see IMS Version 15.3 Exit Routines.

In the shared queues environment

A STATUSQF can be received on a PURG call in a shared queues environment if the MSGQ structure is full.
If the MSGQ structure is full, one of the following can happen:

• If the PURG is for a multi-segment message, STATUSQF will be received.
• If the PURG for a multi-segment message still completes correctly (enough space) but not enough

space is found to be available at PURG or CHKP time, the application will abend with ABENDU0370.

Spool API functions

You can use the PURG call with an express alternate PCB to release a print data set for immediate printing.
When you issue the PURG call with an I/O area, IMS treats the call as two functions: the purge request,
and the insertion of data provided by the I/O area.

If you issue the PURG call:

• Against an express alternate PCB, the data set is closed, unallocated, and released for printing. The
destination is reset.

• With an I/O area against a non-express alternate PCB, the purge function is ignored and the data in the
insert portion of the call is put into the print data set. This means that the call behaves like an ISRT call.

• With no I/O area against an express alternate PCB, the data set is closed, unallocated, and released for
printing. IMS returns a status code of blanks.

• With no I/O area against a non-express alternate PCB, no action is taken.

Restrictions
CPI-C driven application programs can only issue the PURG call to alternate PCBs.

MOD name can be specified only once per message, in the first ISRT or PURG call that begins the
message. For conversational transactions, if the first ISRT is the SPA, the MOD name can either be
provided on the SPA ISRT or on the first ISRT of a message segment.

108 IMS: Application Programming APIs

This call is not supported in an IFP.

For synchronized APPC/OTMA conversations or OTMA commit-then-send (CM0) transactions with
TMAMIPRG indicator set in the OTMA prefix, PURG calls on the TP PCB are ignored. The next ISRT call is
processed for the next segment of the current message.

Related reference
“CHNG call” on page 80
The Change (CHNG) call sets the destination of a modifiable alternate PCB to the logical terminal, LU 6.2
descriptor, or transaction code that you specify. You can also use the CHNG call with the Spool Application
Program Interface (Spool API) to specify print data set characteristics.
“ISRT call” on page 104
The Insert (ISRT) call sends one message segment to the destination that you specify in the call. The
destination is represented by the I/O PCB, alternate PCB, or AIB you specify in the call parameters.

SETO call
The SET Options (SETO) call allows IMS application programs to set processing options. The SETO call can
also be used to set processing options for Spool API functions.

Format
SETO i/o_pcb

alternate_pcb

aib

i/o_area
1

options_list

feedback_area

Notes:
1 The I/O area parameter is not used for calls that specify APPC options.

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETO X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

alternate pcb
Specifies the TP or alternate PCB to be used for the call. These parameters are input and output
parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb (if the TP
PCB is used), or the name of an alternate PCB (if an alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

Chapter 1. DL/I calls reference 109

i/o area
Specifies the I/O area to be used for the call. This parameter is an output parameter. If you specify
an options list that contains advanced print functions, you must specify an I/O area. If you use APPC
options, the I/O area parameter is optional.

For advanced print function options the I/O area must be at least 4 KB. If the I/O area including the
LLZZ or LLLLZZ prefix is less than 4096 bytes in length, an AJ status code is returned. Once the text
units area built in the I/O area, the area must not be copied to a new area. The I/O area passed on the
SETO call must contain a LLZZ or, if PL/I, a LLLLZZ prefix.

LLLL applies only to DL/I call interface.

options list
Specifies several option keywords. This input parameter is required. The options in the list are
separated by commas and cannot contain embedded blanks. Processing for the options list
terminates when the first blank in the list is reached or when the specified options list length has
been processed. You can specify options for advanced print functions or for APPC. The options you
can specify are described in "Advanced print function options" and "APPC options".

The format for the options list is as follows:

LL or LLLL1,2 ZZ keyword=variable1

Halfword length of the options
string, including the 4-byte
length of LLZZ or LLLLZZ.

Halfword of zero. SETO options separated by
commas.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the SETO call as if
the options list parameter was not specified.

feedback area
Specifies an optional parameter used to return error information about the options list to the
application program. This parameter is an output parameter. The amount of information that the
application program receives is based on the size of the feedback area. If no feedback area is
specified, the status code returned is the only indication of an options list area. If you specify a
feedback area 1½ to 2 times the size of the specified options list (a minimum of eight words), IMS TM
returns more specific information about errors in the options list.

The format for the feedback area passed to IMS TM in the call list is as follows:

LL or LLLL1, 2 ZZ

Halfword length of the feedback area, including
the 4-byte length of the LLZZ fields.

Halfword of zero.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the SETO call as
if the feedback area parameter was not specified.

The output format returned to the application program from IMS TM for the feedback area is as
follows:

110 IMS: Application Programming APIs

LLZZ or LLLLZZ LL feedback area

The length field as specified
in the input format for the
feedback area.

Halfword length of the feedback
data returned by IMS TM,
including the 2-byte LL field.

Data returned by IMS TM.
The feedback data generally
includes the option keyword
found to be in error and a 4-byte
EBCDIC code in parentheses
that indicates the reason for
the error. Multiple errors are
separated by commas.

Usage
The SETO call allows you to set processing options.

You can use the SETO call to reduce the overhead necessary to perform parsing and text construction
of the OUTPUT descriptors for a data set. If your application program can use a set of descriptors
more than once during an installation, the application can use the SETO call to provide print data
set characteristics to the Spool API. When the SETO call is processed, it parses the OUTPUT options
and constructs the dynamic OUTPUT text units in the work area provided by the application. After the
application has received the prebuilt text units, you can use the CHNG call and TXTU= option to provide
the print characteristics for the data set without incurring the overhead of parsing and text unit build.

It is not necessary to use the SETO call to prebuild the text units if they can be prebuilt with another
programming technique.

Related reading: For more information about Spool API, see IMS Version 15.3 Application Programming.

In the OTMA environment

An IMS application program that issues a SETO call does not cause IMS to call the Open Transaction
Manager Access (OTMA) Prerouting and Destination Resolution exit routines to determine the destination.
For information on these exit routines, see IMS Version 15.3 Exit Routines.

Existing IMS application programs that issue SETO calls might not run as expected because a return code
is returned to the program if it is processing an OTMA-originated transaction. Also, APPC/IMS application
programs that issue SETO calls might not need modification if they require implicit OTMA support.

A solution to this problem is to use an INQY call before issuing the SETO call. The application program can
use the output from the INQY call to determine if a transaction is an OTMA-originated one, to bypass the
SETO call.

Advanced print function options

The PRTO= keyword identifies the SETO call as a Spool API request:
Keyword

Description
PRTO=outdes options

Describes the data set processing options as they are specified on the TSO OUTDES statement. The
format for the PRTO keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer
options, including the 2-byte length of LL.

Any valid combination of OUTDES printer options,
separated by commas.

Note: For information about TSO OUTDES options, see z/OS MVS Programming: Authorized Assembler
Services Reference. Some options depend on the release level of MVS.

If z/OS detects an error in the OUTDES printer options, an AS status code is returned to the application
program.

Chapter 1. DL/I calls reference 111

APPC options

The following options are available for the SETO call:
SEND_ERROR

causes the IMS LU Manager to issue SEND_ERROR on the conversation associated with the I/O or
alternate PCB when a message is sent. Messages for express PCBs are sent during the PURG call or
sync point processing, whichever comes first. Messages for nonexpress PCBs are sent during sync
point processing.

This option is only used by LU 6.2 devices, and it is ignored if specified for a non-LU 6.2 device.

The option is mutually exclusive with the DEALLOCATE_ABEND option. If both options are coded in
the options list, an AR status code is returned to the application.

DEALLOCATE_ABEND
deallocates a conversation by issuing a SEND_ERROR followed by a DEALLOCATE_ABEND at the time
the message is sent. Once a SETO call with the DEALLOCATE_ABEND option is issued, any subsequent
ISRT calls made to the PCB are rejected with a QH status code.

This option is applicable only to LU 6.2 devices. If specified for a non-LU 6.2 device, any subsequent
ISRT calls made to the PCB are rejected with a QH status code.

When the SETO call is issued on a TP PCB in an IFP region, the DEALLOCATE_ABEND option is not
valid. If you attempt to use the option under these conditions, an AD status code is returned to the
application.

The option is mutually exclusive with the SEND_ERROR option. If both options are coded in the
options list, an AR status code is returned to the application.

Related reading: For more information about APPC and LU 6.2, see IMS Version 15.3 Communications
and Connections.

Options list feedback area

When errors are encountered in the options list, the options list feedback area is used to return error
information to the application.

IMS attempts to parse the entire options list and return information on as many errors as possible. If
the feedback area is not large enough to contain all the error information, only as much information is
returned as space permits. The status code is the only indication of an option list error if you do not
specify the area.

The feedback area must be initialized by the application with a length field indicating the length of the
area. A feedback area approximately 1½ to 2 times the length of the options list or a minimum of 8 words
should be sufficient.

Error codes
This section contains information on error codes that your application can receive.
Error Code

Reason
(0002)

Unrecognized option keyword.

Possible reasons for this error are:

• The keyword is misspelled.
• The keyword is spelled correctly but is followed by an invalid delimiter.
• The length specified field representing the PRTO is shorter than the actual length of the options.
• A keyword is not valid for the indicated call.

112 IMS: Application Programming APIs

(0004)
Either too few or too many characters were specified in the option variable. An option variable
following a keyword in the options list for the call is not within the length limits for the option.

(0006)
The length field (LL) in the option variable is too large to be contained in the options list. The options
list length field (LL) indicates that the options list ends before the end of the specified option variable.

(0008)
The option variable contains an invalid character or does not begin with an alphabetic character.

(000A)
A required option keyword was not specified.

Possible reasons for this error are:

• One or more additional keywords are required because one or more keywords were specified in the
options list.

• The specified length of the options list is more than zero but the list does not contain any options.

(000C)
The specified combination of option keywords is invalid. Possible causes for this error are:

• The keyword is not allowed because of other keywords specified in the options list.
• The option keyword is specified more than once.

(000E)
IMS found an error in one or more operands while it was parsing the print data set descriptors.
IMS usually uses z/OS services (SJF) to validate the print descriptors (PRTO= option variable). When
IMS calls SJF, it requests the same validation as for the TSO OUTDES command. Therefore, IMS
is insensitive to changes in output descriptors. Valid descriptors for your system are a function of
the MVS release level. For a list of valid descriptors and proper syntax, use the TSO HELP OUTDES
command.

IMS must first establish that the format of the PRTO options is in a format that allows the use of SJF
services. If it is not, IMS returns the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the error.

The range of some variables is controlled by the initialization parameters. Values for the maximum
number of copies, allowable remote destination, classes, and form names are examples of variables
influenced by the initialization parameters.

Restrictions
A CPI-C driven application program can issue SETO calls only to an alternate PCB.

Related reference
“REXXTDLI calls” on page 351
The following information describes usage considerations for REXXTDLI calls.

DL/I calls for IMS TM system services
Use these DL/I calls with IMS Transaction Manager system services.

The calls are listed in alphabetical order. Each call description contains:

• A syntax diagram
• A definition for each parameter that can be used in the call
• Details on how to use the call in your application program
• Restrictions on the use of the call

Chapter 1. DL/I calls reference 113

Each parameter is described as an input or output parameter. "Input" refers to input to IMS from the
application program. "Output" refers to output from IMS to the application program.

System service calls must refer only to TP PCBs. The system service calls are described only as they
pertain to IMS TM functions.

Syntax diagrams for these calls begin with the function parameter. The call, the call interface, (xxxTDLI),
and parmcount (if it is required) are not included in the following syntax diagrams. See specific
information for assembler language, COBOL, Pascal, and PL/I in the topic "Defining Application Program
Elements" in IMS Version 15.3 Application Programming for the complete structure.

System Service Call Summary

The following table is a summary of which system service calls you can use in each type of IMS TM
application program, and the parameters for each call. The following table lists the function code, its
meaning, use, parameters, and in which regions it is valid. Optional parameters are shown in brackets
([]).

System service calls issued in a DCCTL environment must refer only to I/O PCBs or GSAM database
PCBs. Calls that cannot be used in a DCCTL environment are noted.

Language-dependent parameters are not shown here. For language-specific information, see the topic
"Formatting DL/I Calls for Language Interfaces" in IMS Version 15.3 Application Programming.

For information on writing calls with programming language interfaces see the topic "Defining
Application Program Elements" in IMS Version 15.3 Application Programming.

Table 33. Summary of system service calls

Function Code Meaning and Use Options Parameters Valid for

APSB Allocate PSB.
Allocates a PSB
for use in CPI-C
driven application
programs.

None function, aib MPP

CHKP (Basic) Basic checkpoint.
For recovery
purposes.

None function, i/o pcb or
aib, i/o area

batch, BMP, MPP

CHKP (Symbolic) Symbolic
checkpoint. For
recovery purposes.

Can specify seven
program areas to be
saved.

function, i/o pcb
or aib, i/o area
length, i/o area[,
area length, area]

batch, BMP

DPSB Deallocate PSB.
Frees a PSB in use
by a CPI-C driven
application program.

None function, aib MPP

GMSG Retrieve a message
from the AO exit
routine.

Can wait for an AOI
message when none
is available.

function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP non-
message driven)

GSCD 1 Get the address of
the system contents
directory.

None function, i/o pcb or
aib, i/o area

batch

114 IMS: Application Programming APIs

Table 33. Summary of system service calls (continued)

Function Code Meaning and Use Options Parameters Valid for

ICMD Issue an IMS
command and
retrieve the first
command response
segment.

None function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP non-
message driven)

INIT Application receives
data availability
status codes.

Checks each PCB for
data availability.

function, i/o pcb or
aib, i/o area

batch, BMP, MPP,
IFP

INQY Inquiry. Retrieves
information
about output
destinations, session
status, execution
environment, and
the PCB address.

None function, aib, i/o area batch, BMP, MPP,
IFP

LOGb Log. Write a
message to the
system log.

None function, i/o pcb or
aib, i/o area

batch, BMP, MPP,
IFP

RCMD Retrieve the second
and subsequent
command response
segments resulting
from an ICMD call.

None function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP non-
message driven)

ROLB Rollback. Backs
out messages sent
by the application
program.

Call returns last
message to i/o area.

function, i/o pcb or
aib[, i/o area]

batch, BMP, MPP,
IFP

ROLL Roll. Backs out
output messages
and terminates the
conversation.

None function batch, BMP, MPP

ROLS Returns message
queue positions to
sync points set by
the SETS or SETU
call.

Issues call with i/o
PCB or aib

function, i/o pcb or
aib i/o area, token

batch, BMP, MPP,
IFP

SETS Sets intermediate
sync (backout)
points.

Cancels all existing
backout points. Can
establish up to 9
backout points.

function, i/o pcb or
aib, i/o area, token

batch, BMP, MPP,
IFP

SETU Sets intermediate
sync (backout)
points.

Cancels all existing
backout points. Can
establish up to 9
backout points.

function, i/o pcb or
aib, i/o area, token

batch, BMP, MPP,
IFP

SYNC Synchronization Request commit
point processing.

function, i/o pcb or
aib

BMP

Chapter 1. DL/I calls reference 115

Table 33. Summary of system service calls (continued)

Function Code Meaning and Use Options Parameters Valid for

XRST Restart. Works with
symbolic CHKP to
restart application
program failure.

Can specify up to 7
areas to be saved.

function, i/o pcb
or aib, i/o area
length, i/o area[,
area length, area]

batch, BMP

Note:

1. GSCD is a Product-sensitive Programming Interface.

Related reading: DCCTL users can issue calls using GSAM database PCBs. GSAM databases are
described in IMS Version 15.3 Application Programming.

Related reference
“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.
“DL/I calls for database management” on page 1
Use these DL/I calls with IMS DB to perform database management functions in your application
program.
“EXEC DLI commands” on page 153
The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

APSB call
The Allocate PSB (APSB) call is used to allocate a PSB for a CPI Communications driven application
program. These types of application programs are used for conversations that include LU 6.2 devices.

Format
APSB aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

APSB X X

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

116 IMS: Application Programming APIs

Usage
CPI-C driven application programs must be link edited with the IMS language interface module and must
indicate the PSB to be used before the application program can issue DL/I calls. The APSB call uses the
AIB to allocate a PSB for these types of application programs.

When you issue the APSB call, IMS TM returns a list of PCB addresses contained in the specified PSB to
the application program. The PCB list is returned in the AIBRSA1 field in the AIB.

IMS TM allows the APSB call to complete even if the databases that the PSB points to are not available.
You can issue the INIT call to inform IMS TM of the application program's capabilities to accept
additional status codes regarding data availability.

Related reading: For more information on CPI Communications driven application programs, see IMS
Version 15.3 Communications and Connections.

Restrictions
An application program that uses APSB can allocate only one PSB at a time. If your application requires
more than one PSB, you must first release the PSB in use by issuing the deallocate PSB (DPSB) call.

CPI Communications driven application programs must issue the APSB call before issuing any other DL/I
calls. If your application program attempts to issue DL/I calls before a PSB has been allocated with the
APSB call, the application program receives error return and reason codes in the AIB.

CHKP (basic) call
A basic Checkpoint (CHKP) call is used for recovery purposes.

Format
CHKP i/o_pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program, to use for this call. It is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

Chapter 1. DL/I calls reference 117

i/o area
Specifies the I/O area to use for the call. This parameter is an input and output parameter. For the
CHKP call, the I/O area that contains the 8-character checkpoint ID. If the program is an MPP or
a message-driven BMP, the CHKP call implicitly returns the next input message into this I/O area.
Therefore, the area must be long enough to hold the longest message that can be returned.

Usage
In transaction management application programs, the basic CHKP call can be used to retrieve the
conversational SPA or the initial message segment that was queued before the application was
scheduled. The CHKP call commits all changes made by the program and, if your application program
abends, establishes the point at which the program can be restarted.

Restrictions
CPI Communications driven application programs cannot issue a basic CHKP call.

CHKP (symbolic) call
A symbolic Checkpoint (CHKP) call is used for recovery purposes.

Format
CHKP i/o_pcb

aib

i/o_area_length i/o_area

,

area_length , area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for the call, the first PCB address in the list passed to the program, to use
for this call. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

118 IMS: Application Programming APIs

i/o area length
Is no longer used by IMS. For compatibility reasons, this parameter must still be included in the call,
and it must contain a valid address. You can get a valid address by specifying the name of any area in
your program.

i/o area
Specifies the I/O area to be used for your call. This parameter is an input and output parameter.
For the CHKP call, the I/O area contains the 8-character checkpoint ID. If the program is a message-
driven BMP, the CHKP call implicitly returns the next input message into this I/O area. Therefore, the
area must be long enough to hold the longest message that can be returned.

area length
Specifies a 4-byte field in your program that contains the length in binary of the first area to
checkpoint. This parameter is an input parameter. Up to seven area lengths can be specified. For
each area length, you must also specify an area parameter.

area
Specifies the area in your program that you want IMS to checkpoint. This parameter is an input
parameter. You can specify up to seven areas in your program that you want IMS to checkpoint.
Always specify the area length parameter first, followed by the area parameter. The number of areas
you specify on a XRST call must be less than or equal to the number of areas you specify on the CHKP
calls the program issues. When you restart the program, IMS restores only the areas you specified in
the CHKP call.

Usage
In transaction management application programs, the symbolic CHKP call can be used to retrieve
the conversational SPA or the initial message segment that was queued before the application was
scheduled. The CHKP call commits all changes made by the program and, if your application program
abends, establishes the point at which the program can be restarted. In addition, the symbolic CHKP call
can:

• Work with the extended restart (XRST) call to restart your program if your program abends.
• Enables you to save as many as seven data areas in your program, which are restored when your

program is restarted.

Restrictions
A CPI Communications driven application program cannot issue the symbolic CHKP call. The symbolic
CHKP call is only allowed from batch and BMP applications.

You must issue an XRST call before the symbolic CHKP call.

Related reference
“XRST call” on page 150
The Extended Restart (XRST) call is used to restart your program.

DPSB call
The Deallocate PSB (DPSB) call frees a PSB that was allocated with the APSB call.

Format
DPSB aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DPSB X X

Chapter 1. DL/I calls reference 119

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

Usage
The DPSB call must be used in a CPI Communications driven application program to release a PSB
after a commit point occurs and before another PSB can be allocated. In a CPI Communications driven
application program, the commit point is achieved with the COMMIT verb. For more information on CPI
Communications driven application programs, see the topic "CPI-C Driven Application Programs" in IMS
Version 15.3 Communications and Connections.

Restrictions
You can issue the DPSB call only after a commit point occurs, and it is valid only after a successful APSB
call.

GMSG call
A Get Message (GMSG) call is used in an automated operator (AO) application program to retrieve a
message from an AO exit routine (DFSAOE00 or another AOIE type exit routine).

Format
GMSG aib i/o_area

Parameters
aib

Specifies the application interface block (AIB) to be used for this call. This parameter is an input and
output parameter.

You must initialize the following fields in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBSFUNC
Subfunction code. This field must contain one of the listed 8-byte subfunction codes:
8-blanks (null)

When coded with an AOI token in the AIBRSNM1 field, indicates IMS is to return when no AOI
message is available for the application.

120 IMS: Application Programming APIs

WAITAOI
When coded with an AOI token in the AIBRSNM1 field, indicates IMS is to wait for an AOI
message when none is currently available for the application. This subfunction value is invalid
if an AOI token is not coded in AIBRSNM1. In this case, error return and reason codes are
returned in the AIB.

The value WAITAOI must be left justified and padded with a blank character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI token identifies the
message the AO application is to retrieve. The token is supplied for the first segment of a
message. If the message is a multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric left-justified field padded with
blanks.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.
This field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area should
be large enough to hold the largest segment passed from IMS to the AO application. If the I/O area is
not large enough to contain all of the data, IMS returns partial data.

Usage
GMSG is used in an AO application to retrieve a message associated with an AOI token. The AO application
must pass an 8-byte AOI token to IMS to retrieve the first segment of the message. IMS uses the AOI
token to associate messages from the AO exit routine of type AOIE, with the GMSG call from an AO
application. IMS returns to the application only those messages associated with the AOI token. By using
different AOI tokens, the AOIE type exit routine can direct messages to different AO applications. Note
that your installation defines the AOI token.

To retrieve the second through the last segments of a multisegment message, issue GMSG calls with
no token specified (set the token to blanks). If you want to retrieve all segments of a message, you
must issue GMSG calls until all segments are retrieved. IMS discards all non-retrieved segments of a
multisegment message when a new GMSG call specifying an AOI token is issued.

Your AO application can specify a wait on the GMSG call. If no messages are currently available for the
associated AOI token, your AO application waits until a message is available. The decision to wait is
specified by the AO application, unlike a WFI transaction where the wait is specified in the transaction
definition. The wait is done on a call basis; that is, within a single AO application some GMSG calls might
specify waits while others do not.

The following table shows, by IMS environment, the types of application programs that can issue GMSG.
GMSG is also supported from a CPI-C driven application program.

Table 34. GMSG support by application region type

Application region type IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

Chapter 1. DL/I calls reference 121

Table 34. GMSG support by application region type (continued)

Application region type IMS environment

DBCTL DB/DC DCCTL

MPP N/A Yes Yes

IFP N/A Yes Yes

Restrictions
A CPI-C driven program must issue an APSB (allocate PSB) call before issuing GMSG.

GSCD call
The Get System Contents Directory (GSCD) call retrieves the address of the IMS system contents directory
(SCD) for batch programs.

This topic contains Product-sensitive Programming Interface information.

Format
GSCD i/o_pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters
i/o pcb

Specifies the PCB, the first PCB address in the list passed to the program, to use for this call. This
parameter is an input and output parameter.

aib
Specifies the address of the application interface block (AIB) that is used for the call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an output parameter. For the GCSD
call, the I/O area must be 8 bytes in length. IMS TM places the address of the SCD in the first 4 bytes
and the address of the program specification table (PST) in the second 4 bytes.

122 IMS: Application Programming APIs

Usage
IMS does not return a status code to a program after it issues a successful GSCD call. The status code
from the previous call that used the same PCB remains unchanged in the PCB.

Restrictions
The GSCD call can be issued only from DLI or DBB batch application programs.

ICMD call
An Issue Command (ICMD) call lets an automated operator (AO) application program issue an IMS
command and retrieve the first command response segment.

Format
ICMD aib i/o_area

Parameters
aib

Specifies the application interface block (AIB) used for this call. This parameter is an input and output
parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.
This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

Your program must check this field to determine whether the ICMD call returned data to the I/O
area. When the only response to the command is a DFS058 message indicating either COMMAND
IN PROGRESS or COMMAND COMPLETE, the response is not returned.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and output parameter. The I/O
area should be large enough to hold the largest command passed from the AO application to IMS,
or command response segment passed from IMS to the AO application. If the I/O area is not large
enough to contain all of the data, IMS returns partial data.

The general format of your I/O work area on an ICMD call is:

LLZZ/VERB KEYWORD1 P1 KEYWORD2 P2, P3.

LL
Two-byte field containing the length of the command text, including LLZZ.

ZZ
Two-byte field reserved for IMS.

Chapter 1. DL/I calls reference 123

/ or CRC
Indicates an IMS command follows. CRC (Command Recognition Character) rather than a slash (/)
is used in the DBCTL environment.

VERB
The IMS command you are issuing.

KEYWORDX
Keywords that apply to the command being issued.

PX
Parameters for the keywords you are specifying.

. (Period)
End of the command.

The length of a command is limited by the size of the I/O area; the size is specified in the IOASIZE
parameter in the PSBGEN macro during PCB generation. LL is the length of the command text. The
size of the I/O area is the length of the actual command text, plus 4 bytes for LLZZ. The minimum size
of the I/O work area is 132 bytes.

The fifth byte must be a "/" (or CRC for DBCTL), and the verb must follow immediately. The /
BROADCAST and /LOOPTEST commands must have a period between the command segment and
text segment, and must be preceded by an LLZZ field that includes the size of the text. Comments can
be added by placing a period (.) after the last parameter.

Restriction: When issuing the /SSR command, do not code an end-of-command indicator (period) as
shown in IMS Version 15.3 Operations and Automation. If a period is used, it is considered part of the
text.

Usage
ICMD enables an AO application to issue an IMS command and retrieve the first command response
segment.

When using ICMD, put the IMS command that is to be issued in your application's I/O area. After IMS has
processed the command, it returns the first segment of the response message to your AO application's
I/O area to retrieve subsequent segments (one segment at a time), using the RCMD call.

Some IMS commands that complete successfully result in a DFS058 COMMAND COMPLETE message.
Some IMS commands that are processed asynchronously result in a DFS058 COMMAND IN PROGRESS
message. For a command entered on an ICMD call, neither DFS058 message is returned to the AO
application. The AIBOAUSE field is set to zero to indicate no segment was returned. So, your AO
application must check the AIBOAUSE field along with the return and reason codes to determine if a
response was returned.

Related reading: For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

The following table shows, by IMS environment, the types of application programs that can issue ICMD.
ICMD is also supported from a CPI-C driven application.

Table 35. ICMD support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

124 IMS: Application Programming APIs

See IMS Version 15.3 Operations and Automation for a list of commands that can be issued using the
ICMD call.

Restrictions
A CPI-C driven program must issue an APSB (allocate PSB) call before issuing ICMD.

INIT call
An Initialize (INIT) call allows the application to receive data availability status codes by checking each
DB PCB for data availability.

Format
INIT i/o_pcb

aib

i/o_area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INIT X X X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the address of the application interface block (AIB) that is used for the call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an input parameter.
The I/O area of an INIT call can contain the character string "DBQUERY" or
"VERSION(dbname1=version,dbname2=version)".

Usage
The INIT call is valid for all IMS TM application programs.

Performance considerations for the INIT call (IMS online only)

For performance reasons, the INIT call should not be issued in online application programs before the
first GU call to the I/O PCB. If the INIT call is issued first, the GU call to the I/O PCB is not processed as
efficiently.

To specify the database query subfunction in your application program, specify the character string
"DBQUERY" in the I/O area.

Chapter 1. DL/I calls reference 125

Determining database availability: INIT DBQUERY

When the INIT call is issued with the DBQUERY character string in the I/O area, the application program
can obtain information regarding the availability of data for each PCB. The following tables contain sample
I/O areas for the INIT call with DBQUERY.

Table 36. INIT I/O area examples for all xxxTDLI interfaces except PLITDLI

L L Z Z Character String

00 0B 00 00 DBQUERY

Note: The LL and ZZ fields are binary. The LL value X'0B' is a hexadecimal representation of decimal 11.

Table 37. INIT I/O area examples for the PLITDLI interface

L L L L Z Z Character String

00 00 00 0B 00 00 DBQUERY

Note: The LLLL and ZZ fields are binary. The L value X'0B' is a hexadecimal representation of decimal 11.

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes for LL. For the PLITDLI
interface, use the 4-byte field LLLL. When you use the AIBTDLI interface, PL/I programs require only a
2-byte field.

ZZ
A 2-byte field of binary zeros.

One of the following status codes is returned for each database PCB:
NA

At least one of the databases that can be accessed using this PCB is not available. A call made using
this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has been
issued, or in a DFS3303I message and 3303 pseudo-abend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a call results in an AI (unable
to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, or in a DFS3303I message and 3303 pseudoabend if it has not. The database that
caused the NU status code might be required only for delete processing. In that case, DLET calls fail,
but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions the PCB allows. DEDBs and
MSDBs always have the bb.

In addition to data availability status, the name of the database organization of the root segment is
returned in the segment name field of the PCB. In DCCTL environments, the name of the database
organization is UNKNOWN.

Automatic INIT DBQUERY

When the application program is entered initially, the status code in the database PCBs is initialized
as if the INIT DBQUERY call was issued. This enables the application program to determine database
availability without issuing the INIT call.

In DCCTL environments, the status code is NA.

Specify a database version number: INIT VERSION(dbname=version)

126 IMS: Application Programming APIs

When database versioning is enabled, an application program can use the "VERSION" function to request
a version of a database that is different from the version number that is specified for the application
program on the PCB or from the default version that is returned by IMS. A version number specified on the
INIT VERSION call takes precedence over all other version specifications and defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database, the version of the
database that is returned to the application program is determined by the DBVER keyword of the PCB
statement. If the DBVER keyword is not specified, IMS returns either the version of the database that is
active in the ACB library or version 0 of the database, as determined by the DBLEVEL keyword in either the
PSBGEN statement or the database section of the DFSDFxxx PROCLIB member.

In the I/O area, the VERSION function is specified by using the following format:

VERSION(

,

 dbname = version)

Each database name is specified by using alphabetic characters and can be specified only once. Specify
only names of physical databases. The names of logical databases are not supported.

Each version is specified as a numeric value from 0 to 2147483647. The number that is specified must
match a version number that is defined on a DBD for the named database and stored in the IMS catalog.

Calculate the size that is required for the I/O area by multiplying the number of databases that are
specified in the input I/O area by 20.

For example, the following table contains a sample I/O area for the INIT VERSION call for assembler
language, COBOL, C language, and Pascal. In the table, the LL value of X'3C' is the hexadecimal
representation of decimal 60, the length in bytes that is required to hold the output in the I/O area
when three database names are specified on input. The ZZ fields are binary.

Table 38. INIT VERSION: Example format for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character string

00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

The following table contains a sample I/O area for the INIT call with VERSION for PL/I. In the table, the LL
value of X'3C' is the hexadecimal representation of decimal 60. The ZZ fields are binary.

Table 39. INIT VERSION: Example format for PLITDLI

L L L L Z Z Character string

00 00 00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For PL/I, the length of the LLLL
field is considered 2 bytes even though it is a 4-byte field. When you use the AIBTDLI interface, the
length of the record is equal to the total length of LL + ZZ + character string. For the PLITDLI interface,
the length of the record is equal to the total length of LLLL + ZZ + required length for output, where
LLLL is considered 2 bytes.

ZZ
A 2-byte field of binary zeros.

Character string
The function specification on input. The length that is specified in the LL or LLLL is the length that is
required for the output: 20 bytes for each database that is specified in the input character string.

Chapter 1. DL/I calls reference 127

INQY call
The Inquiry (INQY) call is used to request information regarding execution environment, destination type
and status, and session status. INQY is valid only for application interfaces that use the AIB structure.

Format
INQY aib i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INQY X X X X X

Parameters
aib

Specifies the address of the application interface block (DFSAIB) for the call. This parameter is an
input and output parameter. These fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

• bbbbbbbb (Null)
• DBQUERYb
• ENVIRONb
• ENVIRON2
• FINDbbbb
• LERUNOPT
• MSGINFOb
• PROGRAMb (Not supported with the ODBA interface)

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of any named PCB in the
PSB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

i/o area
Specifies the data output area to use with the call. This parameter is an output parameter. An I/O
area is required for INQY subfunctions ENVIRONb, ENVIRON2, MSGINFOb and PROGRAMb. It is not
required for subfunctions DBQUERYb, FINDbbbb, and LERUNOPT.

Restrictions
A CPI Communications driven application program cannot issue an INQY call with the null subfunction
against an I/O PCB.

A batch program cannot issue an INQY call with a null subfunction.

128 IMS: Application Programming APIs

Usage
The INQY call operates in both batch and online IMS environments. IMS application programs can use the
INQY call to request information about the output destination, the session status, the current execution
environment, the availability of databases, and the PCB address, which is based on the PCB name. You
must use the AIB when issuing an INQY call. Before you can issue an INQY call, initialize the fields of the
AIB.

When you use the INQY call, specify an 8-byte subfunction code, which is passed in the AIB. The INQY
subfunction determines the information that the application program receives.

The INQY call returns information to the caller's I/O area. The length of the data that is returned from the
INQY call is passed back to the application program in the AIB field, AIBOAUSE.

Specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call returns only as much data as
the area can hold in one call. If the area is not large enough for all the information, an AG status code is
returned, and partial data is returned in the I/O area. In this case, the AIB field AIBOALEN contains the
actual length of the data that is returned to the I/O area, and the AIBOAUSE field contains the output area
length that would be required to receive all the data.

Querying information from the PCB: INQY null
When the INQY call is issued with the null subfunction, the application program obtains information
related to the PCB, including output destination type and location, and session status. The INQY call
can use the I/O PCB or the alternate PCB. The information you receive regarding destination location
and session status is based on the destination type. The destination types are APPC, OTMA, TERMINAL,
TRANSACT, and UNKNOWN.

Related reading: For more information about APPC and LU 6.2, see IMS Version 15.3 Communications
and Connections.

The INQY null subfunction returns character string data in the I/O area. The output that is returned for the
destination types APPC, OTMA, TERMINAL, and TRANSACT is left justified and padded with blanks. The
UNKNOWN destination type does not return any information. The following tables list the output returned
from the INQY null call. Refer to the notes associated with the table for further information about some of
the entries.

Table 40. INQY null data output for terminal-type destinations

Information returned Length in
bytes

Actual value Explanation

Destination Type 8 Terminal The destination of the I/O PCB or alternate
PCB is a terminal.

Terminal Location 8 Local The terminal is defined as local.

Remote The terminal is defined as remote.

Queue Status 8 Started The queue is started and can accept work.

Stopped The queue is stopped and cannot accept
work.

Session Status 8 b The status is not available.

ACTIVE The session is active.

INACTIVE The session is inactive.

Chapter 1. DL/I calls reference 129

Table 41. INQY null data output for transaction-type destinations

Information returned Length in
bytes

Actual value Explanation

Destination Type 8 TRANSACT The destination of the alternate PCB is a
program.

Transaction Location 8 Local The transaction is defined as local.

Remote The transaction is defined as remote.

DYNAMIC The transaction is defined as dynamic.1

Transaction Status 8 STARTED The transaction can be scheduled.2

STOPPED The transaction cannot be scheduled.2

Destination PSB Name 8 This field gives the name of the destination
PSB.

b The Program Routing exit routine has
defined the destination as a transaction
not on this system or the transaction is
dynamic. The transaction destination is not
available.

Destination Program or
Session Status

8 b The status is not available.

ACTIVE The MSC link session is active (remote
transaction or a transaction that was
rerouted to a remote IMS by the TM and
Message Routing and Control user exit
routine (DFSMSCE0)).

INACTIVE The MSC link session is inactive (remote
transaction or a transaction that was
rerouted to a remote IMS by the TM and
Message Routing and Control user exit
routine (DFSMSCE0)).

STARTED The program can be scheduled (local
transaction).

STOPPED The program cannot be scheduled (local
transaction).

Notes:

1. A dynamic transaction is only possible in a shared-queues environment. A transaction is dynamic when it is
not defined to the IMS system that is sending the message, but rather to another IMS system that is sharing
the queues. The dynamic transaction is created when the Destination Creation exit routine (DFSINSX0)
indicates a transaction whose destination is unknown to IMS. The output fields for the destination PSB
name and destination program are set to blanks.

2. If the transaction was rerouted to a remote IMS by the TM and Message Routing and Control user exit
routine (DFSMSCE0, the status returned is the MSNAME status.

Table 42. INQY null data output for APPC-Type destinations

Information returned Length in
bytes

Actual value Explanation

Destination Type 8 APPC The destination is an LU 6.2 device.

130 IMS: Application Programming APIs

Table 42. INQY null data output for APPC-Type destinations (continued)

Information returned Length in
bytes

Actual value Explanation

APPC/MVS Side Information
Entry Name1

8 This field provides the Side Name.

b The Side Name is not available.

Partner Logical Unit Name2 8 This field provides the partner LU name for
the conversation.

b The partner LU name is not available.

Partner Mode Table Entry
Name3

8 This field provides the Mode Name for the
conversation.

b The Mode Name is not available.

User Identifier 8 This field provides the user ID.

b The user ID is not available.

Group Name 8 This field provides the Group Name.

b The Group Name is not available.

Synchronization Level4 1 C The synchronization level is defined as
CONFIRM.

N The synchronization level is defined as
NONE.

Conversation Type5 1 B The conversation is defined as BASIC.

M The conversation is defined as MAPPED.

Userid Indicator 1 The value of the Userid Indicator field
indicates the contents of the user ID field.
The Userid Indicator field has four possible
values.

U The U value indicates the user's
identification from the source terminal
during signon.

L The L value indicates the LTERM name of
the source terminal if signon is not active.

P The P value indicates the PSBNAME of the
source BMP or transaction.

O The O value indicates some other name.

Address of TPN6 4 This is the address of the LL field of the
Transaction Program Name. 7

0 The address of the Transaction Program
Name is not available.

Chapter 1. DL/I calls reference 131

Table 42. INQY null data output for APPC-Type destinations (continued)

Information returned Length in
bytes

Actual value Explanation

Notes:

1. If the call is issued against a TP PCB, the Side Name cannot be used and b is returned. If the call is issued
against an alternate modifiable PCB, the Side Name must be supplied in a CHNG call that is issued before
INQY.

2. If the call is issued against a TP PCB, the LU name must be coded. If the call is issued against a modifiable
alternate PCB, the LU name must be supplied in a CHNG call that is issued before INQY.

3. If the call is issued against a TP PCB, the Mode Name cannot be used and b is returned. If the call is issued
against an alternate modifiable PCB, the Mode Name must be supplied in a CHNG call that is issued before
INQY.

4. When the synchronization level is not available, IMS uses the default value of CONFIRM.
5. When the conversation type is not available, IMS uses the default value of MAPPED.
6. The pointer identifies a length field (LL), which contains the length of the TPN in binary, including the 2 bytes

required for LL.
7. The TPN can be up to 64 bytes long.

Table 43. INQY null data output for OTMA-Type destinations

Information Returned Length in
Bytes

Actual Value Explanation

Destination Type 8 OTMA The destination is an OTMA client.

tpipe Name 8 This field provides the OTMA transaction
pipe name.

b The tpipe Name is not available.

Member Name 16 This field provides the z/OS cross-system
coupling facility (XCF) member name of the
OTMA client.

b The Member Name is not available.

User Identifier 8 This field provides the User ID.

b The User ID is not available.

Group Name 8 This field provides the group name.

b The Group Name is not available.

Synchronization Level 1 S The OTMA transaction pipe is synchronized.

b The OTMA transaction pipe is not
synchronized.

Message Synchronization
Level1

1 C The synchronization level is defined as
CONFIRM.

N The synchronization level is defined as
NONE.

132 IMS: Application Programming APIs

Table 43. INQY null data output for OTMA-Type destinations (continued)

Information Returned Length in
Bytes

Actual Value Explanation

Userid Indicator 1 The value of the Userid Indicator field
indicates the contents of the user ID field.
The Userid Indicator field has four possible
values.

U The U value indicates the user's
identification from the source terminal
during signon.

L The L value indicates the LTERM name of
the source terminal if signon is not active.

P The P value indicates the PSBNAME of the
source BMP or transaction.

O The O value indicates some other name.

Reserved for IMS 1 This field is reserved.

Notes:

1. When the synchronization level is not available, IMS uses the default value of CONFIRM.

Table 44. INQY null data output for unknown-type destinations

Information returned Length in
bytes

Actual value Explanation

Destination Type 8 UNKNOWN Unable to find destination.

The contents of the output fields vary depending on the type of PCB used for the INQY call. The following
table shows how INQY output for APPC destinations varies depending on the PCB type. The PCB can be a
TP PCB or an alternate PCB.

Table 45. INQY output and PCB type

Output field TP PCB
Alternate PCB (Non-
modifiable) Alternate PCB (Modifiable)

Destination Type APPC APPC APPC

Side Name blanks Side Name if available or
blanks

Side Name if supplied on
previous CHNG call or blanks

LU Name Input LU Name LU Name if available or
blanks

LU Name if supplied on
previous CHNG call or blanks

Mode Name blanks Mode Name if available or
blanks

Mode Name if supplied on
previous CHNG call or blanks

User Identifier USERID if
available or
blanks

USERID if available or
blanks

USERID if available or blanks

Group Name Group Name if
available or
blanks

Group Name if available or
blanks

Group Name if available or
blanks

Sync Level C or N C or N C or N

Chapter 1. DL/I calls reference 133

Table 45. INQY output and PCB type (continued)

Output field TP PCB
Alternate PCB (Non-
modifiable) Alternate PCB (Modifiable)

Conversation Type B or M B or M B or M

Userid Indicator U or L or P or O U or L or P or O U or L or P or O

TPN Address Address of the
TPN character
string

Address of the TPN
character string or zero

Address of the TPN
character string or zero

TPN character string

Note: If your TPN name
is DFSASYNC, the destination
represents an asynchronous
conversation.

Inbound name of
IMS Transaction
that is executing.

Partner TPN, if available. If
not available, address field
is zero.

TP Name if it is supplied
on the previous CHNG call.
If not supplied, the address
field is zero.

Related reading: For more information on APPC and LU 6.2, see IMS Version 15.3 Communications and
Connections.

Querying data availability: INQY DBQUERY
When the INQY call is issued with the DBQUERY subfunction, the application program obtains information
about the data for each PCB. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb.
The INQY DBQUERY call is similar to the INITDBQUERY call. The INQY DBQUERY call does not return
information in the I/O area, but like the INIT DBQUERY call, it updates status codes in the database PCBs.

The application program is not made aware of the status of each PCB until an INQY FIND call is issued. To
retrieve the status for a database, you must pass the DB PCB for that database in the INQY FIND call.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns these status codes in the
I/O PCB:

bb
The call is successful and all databases are available.

BJ
None of the databases in the PSB are available, or no PCBs exist in the PSB. All database PCBs
(excluding GSAM) contain an NA status code as the result of processing the INQY DBQUERY call.

BK
At least one of the databases in the PSB is not available, or availability is limited. At least one
database PCB contains an NA or NU status code as the result of processing the INQY DBQUERY call.
When CATALOG PCBs show NA, the status code is bb.

The INQY call returns the following status codes in each DB PCB:

NA
At least one of the databases that can be accessed by using this PCB is not available. A call that is
made using this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has
been issued, or in a DFS3303I message and 3303 pseudoabend if the call has not been issued. An
exception is when the database is not available because dynamic allocation failed. In this case, a call
results in an AI (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, or in a DFS3303I message and 3303 pseudoabend if it has not been issued. The

134 IMS: Application Programming APIs

database that caused the NU status code might be required only for delete processing. In that case,
DLET calls fail, but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions the PCB allows. DEDBs and
MSDBs always have the bb.

Querying the environment: INQY ENVIRON or ENVIRON2
When the INQY call is issued with the ENVIRON or ENVIRON2 subfunctions, the application program
obtains information about the current execution environment. Both subfunctions cannot be used with the
same INQY call, so use either ENVIRON or ENVIRON2. The ENVIRON subfunction provides compatibility
for existing programs that require its specific use, whereas ENVIRON2 is newer and provides more
information. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb. This includes the
IMS identifier, release, region, and region type.

The INQY ENVIRON and ENVIRON2 calls return character-string data. The output is left-aligned and
padded with blanks on the right.

Recommendations: To account for expansion in the length of the reply data, specify an I/O area length of
512 bytes.

To reference the field that contains the recovery token or the application parameter string, code your
application programs to locate the field by using the address of the field that is returned in the data
output of the INQY ENVIRON or INQY ENVIRON2 calls. This is the only valid programming technique
to reference the recovery token field and the application parameter string field. No other programming
technique should be used to reference these fields.

The recovery token or the application parameter string are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

For more information about the recovery token and application parameter fields, see note 2 after the
following table.

The following table describes the INQY ENVIRON output.

Table 46. INQY ENVIRON data output

Information returned

Length
in
bytes

Actual
value Explanation

IMS Identifier 8 Provides the identifier from the execution parameters.

IMS Release Level 4 Provides the release level for IMS. For example, X'00000410'.

IMS Control Region Type 8 BATCH Indicates that an IMS batch region is active.

DB Indicates that only the IMS Database Manager is active. (DBCTL
system)

TM Indicates that only the IMS Transaction Manager is active.
(DCCTL system)

DB/DC Indicates that both the IMS Database and Transaction managers
are active. (DB/DC system)

Chapter 1. DL/I calls reference 135

Table 46. INQY ENVIRON data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

IMS Application Region
Type

8 BATCH Indicates that the IMS Batch region is active.

BMP Indicates that the Batch Message Processing region is active.

DRA Indicates that the Database Resource Adapter Thread region is
active.

IFP Indicates that the IMS Fast Path region is active.

JBP Indicates that the Java batch processing region is active.

JMP Indicates that the Java message processing region is active.

MPP Indicates that the Message Processing region is active.

Region Identifier 4 Provides the region identifier. For example, X'00000001'.

Application Program
Name

8 Provides the name of the application program being run.

PSB Name (currently
allocated)

8 Provides the name of the PSB currently allocated.

Transaction Name 8 Provides the name of the transaction.

b Indicates that no associated transaction exists.

User Identifier1 8 Provides the user ID.

b Indicates that the user ID is unavailable.

Group Name 8 Provides the group name.

b Indicates that the group name is unavailable.

Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.

B Indicates an INIT STATUS GROUPB call is issued.

b Indicates that a status group is not initialized.

Address of Recovery
Token“2” on page 138

4 Provides the address of the LL field, followed by the recovery
token.

0 Indicates that the recovery token is not available.

Address of the
Application Parameter
String“2” on page 138

4 Provides the address of the LL field, followed by the application
program parameter string.

0 Indicates that the APARM= parameter is not coded in the
execution parameters of the dependent region JCL.

Shared Queues
Indicator

4 Indicates that IMS is not using Shared Queues.

SHRQ Indicates IMS is using Shared Queues.

User ID of Address
Space

8 User ID of dependent address space.

136 IMS: Application Programming APIs

Table 46. INQY ENVIRON data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

User ID Indicator 1 Contains one of the following possible values to indicate the
contents of the userid field:
U

Indicates the user’s identification from the source terminal
during sign-on.

L
Indicates the LTERM name of the source terminal in sign-on
is not active.

P
Indicates the PSBNAME of the source BMP or transaction.

O
Indicates some other name.

z/OS Resource Recovery
Services (RRS) Indicator

3 b Indicates that IMS has not expressed interest in the UR with
RRS. Therefore, the application should refrain from performing
any work that causes RRS to become the syncpoint manager for
the UR because IMS will not be involved in the commit scope.
For example, the application should not issue any outbound
protected conversations.

RRS Indicates that IMS has expressed interest in the UR with RRS.
Therefore, IMS is involved in the commit scope if RRS is the
syncpoint manager for the UR.

IMS catalog enablement
indicator

8 b Indicates that the IMS catalog is not enabled in the DFSDFxxx
PROCLIB member.

For information about setting up and enabling an IMS catalog,
see IMS catalog definition and tailoring (System Definition).

For information about enabling the IMS catalog in the DFSDFxxx
PROCLIB member, see DFSDFxxx member of the IMS PROCLIB
data set (System Definition).

CATALOG
plus one
byte of
reserved
space
initialized
as a
blank.

Indicates that the IMS catalog is enabled. Database and
application metadata are available in IMS. Data mask definitions
that use this value must include all eight bytes.

Chapter 1. DL/I calls reference 137

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Table 46. INQY ENVIRON data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY
ENVIRON call. The PSTUSID field is one of the following:

• For message-driven BMP regions that have not completed successful GU calls to the IMS message queue
and for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is
currently scheduled into the BMP region.

• For message-driven BMP regions that have completed a successful GU call and for any MPP region, the
PSTUSID field is derived which is usually the input terminal's RACF ID. If the terminal has not signed on to
RACF, the ID is the input terminal's LTERM.

2. The pointer is an address that identifies a length field (LL) which contains the length of the recovery token
or application program parameter string in binary, including the two bytes required for LL. Use this pointer to
set up addressability of the AIB between releases in a batch program.

• The length byte is two more than the length of the string passed as APARM. This is because it includes the
length of the halfword length. Thus, to turn the length byte into a machine length for an executed move,
you need to subtract three. This is unlike z/OS parm strings, where length does not additionally include
the length of the length byte, and you only subtract one before your executed move.

The INQY ENVIRON2 subfunction returns all the information provided by the ENVIRON subfunction, plus
the output described in the following table.

Table 47. INQY ENVIRON2 data output

Information returned

Length
in
bytes

Actual
value Explanation

INQY ENVIRON2 output
version

4 Indicates the version number of this INQY ENVIRON2 output.

IMS installed version

(Entries in this row's
Actual value column
show actual values for
IMS versions 15.1, 15.2,
and 15.3. A similar
output pattern applies
for newer versions of
IMS.)

4 X'000015
10'

Indicates IMS version 15.1.0

X'000015
20'

Indicates IMS version 15.2.0

X'000015
30'

Indicates IMS version 15.3.0

IMS function level 4 Indicates the currently installed function level of IMS.

Functions enabled
bitmap

32 Is the value of the IMS functions enabled bitmap.

Primary Language
Environment enclave
addressing mode

2 31 Indicates that the primary Language Environment enclave
addressing mode is 31-bit.

64 Indicates that the primary Language Environment enclave
addressing mode is 64-bit.

0 Indicates that no JVM was requested.

138 IMS: Application Programming APIs

Table 47. INQY ENVIRON2 data output (continued)

Information returned

Length
in
bytes

Actual
value Explanation

Language Environment
enclave addressing
mode for JVM

2 31 Indicates that the Language Environment enclave addressing
mode of the requested JVM is 31-bit.

64 Indicates that the Language Environment enclave addressing
mode of the requested JVM is 64-bit.

0 Indicates that no JVM was requested.

IMS MACB enablement
indicator

4 No value Indicates that managed ACBs is disabled.

MACB Indicates that managed ACBs is enabled.

Notes:

1. To learn more about the functions enabled bitmap, see IMS function levels overview (System
Administration).

2. ENVIRON2 reports primary and active addressing modes as decimal values. Some programs, such as
DFSDDLT0, displays these values in hexadecimal. In such cases, 31-bit displays as 1F and 64-bit displays
as 40.

Querying the input message information: INQY MSGINFO
To obtain information regarding the current input message, use the INQY call with the MSGINFO
subfunction. The only valid PCB name that can be passed in the AIBRSNM1 field is IOPCBbbb. The output
returns the version number and the output fields for the message information. The INQY MSGINFO call
returns the response in the I/O area.

The following table lists the output that is returned from the INQY MSGINFO call. Included with the
information returned is the byte length, the actual value, and an explanation of the output.

The distributed network user ID, if used, has a variable length from 1 to 246 bytes and the distributed
network session ID, if used, has a variable length from 1 to 254 bytes. Because the size of the distributed
network security credentials can vary, the information is appended to the end of the response in the I/O
area. If network security credentials are included in the message, define the I/O area, in the AIB field
AIBOALEN, with the appropriate 2-byte length to account for the variable length of the network user ID
and the network session ID.

To reference the field that contains the distributed network user ID or distributed network session ID,
code your application programs to locate the field by using the address of the field that is returned in
the data output of the INQY MSGINFO call. The address identifies a length field (LL) that contains the
length of the ID followed by the distributed network user ID or network session ID. This is the only valid
programming technique to reference the network user ID and network session ID.

The distributed network user ID or network session ID are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

Chapter 1. DL/I calls reference 139

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions

Table 48. INQY MSGINFO data output

Information returned Length in bytes Actual value Explanation

Version number 4 1 or 2 Output response version
1 contains the origin IMS
ID.

Output response version
2 contains both the
origin IMS ID and
the distributed network
security credentials.

Origin IMSID 8 The IMS identifier from
which the input message
originated.

Address of distributed
network user ID

4 If this field is zero,
network user ID is not
available. If this field is
nonzero, it provides the
address of the LL field
followed by the network
user ID for the input
message.

Address of distributed
network session ID

4 If this field is zero,
network session ID is
not available. If this field
is non-zero, it provides
the address of the LL
field followed by the
network session ID for
the input message.

Reserved for IMS 60 This field is reserved for
future output expansion.

Querying the PCB address: INQY FIND
When the INQY call is issued with the FIND subfunction, the application program is returned with the
PCB address of the requested PCB name. The valid PCB names that can be passed in AIBRSNM1 are
IOPCBbbb or the name of the alternate PCB (TP PCB) or database PCB as it is defined in the PSB.

On a FIND subfunction, the requested PCB remains unmodified, and no information is returned in an I/O
area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY call. This process allows
the application to analyze the PCB status code to determine if an NA or NU status code is set in the PCB.

Querying for LE overrides: INQY LERUNOPT
When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS determines whether LE overrides
are allowed based on the LEOPT system parameter. The LE override parameters are defined to IMS
through the UPDATE LE command. IMS checks to see whether there are any overrides applicable to
the caller based on the specific combinations of transaction name, lterm name, userid, or program name
in the callers environment. IMS returns the address of the string to the caller if an override parameter
is found. The LE overrides are used by the IMS supplied CEEBXITA exit, DFSBXITA, to allow dynamic
overrides for LE runtime parameters.

140 IMS: Application Programming APIs

The call string must contain the function code and the AIB address. The I/O area is not a required
parameter and is ignored if specified. The only valid PCB name that can be passed in AIBRSNM1 is IOPCB.
The AIBOALEN and AIBOAUSE fields are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY LERUNOPT call are:

• An MPP or JMP region uses transaction name, lterm, userid, and program to match with each entry.
• An IFB, JBP, or non-message-driven BMP uses program name to match with each entry. If an entry has

a defined filter for transaction name, lterm, or userid, it does not match. Message driven BMPs also use
transaction name.

• The entries are scanned to find the entry with the most filter matches. The first entry in the list with the
most exact filter matches is selected. The scan stops with an entry found with all of the filters matching
the entry.

Note: Searching table entries may cause user confusion because of the way entries are built and
searched. For example, assume that there are two entries in the table that match on the filters specified
on the DL/I INQY call. The first transaction matches on transaction name and lterm name. The second
entry matches on transaction name and program name. IMS chooses the first entry because it was the
first entry encountered with highest number of filter matches. If the second entry is now updated with
a longer parameter string, which causes a new entry to be built, it is added to the head of the queue.
The next search would result in the entry with transaction name and program name being selected. This
could result in a set of runtime options being selected that were not expected by the user.

Environments: The LERUNOPT subfunction can be specified from DB/DC, DBCTL, and DCCTL
environments. Overrides are based on a combination of transaction name, lterm name, user ID, and
program name in MPP and JMP regions. IFP, BMP, and JBP regions will have overrides based on program
name. Message driven BMP regions can also use transaction name.

Return and reason codes: AIB return and reason codes must be checked to determine if the call has
been successfully completed. AIBRSA2 is used to return the address of the parameter string if override
parameters are available for the caller.

Querying the program name: INQY PROGRAM
When you issue the INQY call with the PROGRAM subfunction, the application program name is returned
in the first 8 bytes of the I/O area. The only valid PCB name that can be passed in AIBRSNM1 is
IOPCBbbb.

INQY return codes and reason codes
When you issue the INQY call, return and reason codes are returned to the AIB. Status codes can be
returned to the PCB. If return and reason codes other than those that apply to INQY are returned, your
application should examine the PCB to see what status codes are found.

Map of INQY subfunction to PCB type
Table 49. Subfunction, PCB, and I/O area combinations for the INQY call

 Subfunction I/O PCB Alternate PCB DB PCB
I/O Area
Required

FIND OK OK OK NO

ENVIRON or ENVIRON2 OK NO NO YES

DBQUERY OK NO NO NO

LERUNOPT OK NO NO NO

PROGRAM OK NO NO YES

MSGINFO OK NO NO YES

Chapter 1. DL/I calls reference 141

LOG call
The Log (LOG) call is used to send and write information to the IMS system log.

Format
LOG i/o pcb

aib

i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

LOG X X X X X

Parameters
i/o pcb

Specifies the address of the PCB, the first PCB address in the list passed to the program, to use for
this call. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCB␢␢␢.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to write to the system log.
This parameter is an input parameter. This record must be in the format shown in the following tables.

Table 50. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for AIBTDLI,
ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

C 1

Text Variable

Table 51. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for PLITDLI
interface

Field Name Field Length

LLLL 4

ZZ 2

C 1

142 IMS: Application Programming APIs

Table 51. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for PLITDLI
interface (continued)

Field Name Field Length

Text Variable

The fields must be as follows:
LL or LLLL

Specifies a 2-byte field that contains the length of the record. When you use the AIBTDLI
interface, the length of the record is equal to LL + ZZ + C + text of the record. For the PLITDLI
interface, the length of the record is equal to LLLL + ZZ + C + the text of the record. When you
calculate the length of the log record, you must account for all of the fields. The total length you
specify includes:

• 2 bytes for LL or LLLL. (For PL/I, include the length as 2, even though LLLL is a 4-byte field.)
• 2 bytes for the ZZ field.
• 1 byte for the C field.
• n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must define the length field as a binary
fullword.

ZZ
Specifies a 2-byte field of binary zeros.

C
Specifies a 1-byte field containing a log code, which must be equal to or greater than X'A0'.

Text
Specifies any data to be logged.

Usage
An application program can write a record to the system log by issuing the LOG call. When you issue
the LOG call, you specify the I/O area that contains the record you want written to the system log. You
can write any information to the log, and you can use log codes to distinguish among various types of
information. You can issue the LOG:

• In the IMS DB/DC environment, and the record is written to the IMS log.
• In the DCCTL environment, and the record is written to the DCCTL log.

Restrictions
The length of the I/O area (including all fields) cannot be larger than the logical record length (LRECL) for
the system log data set minus 4 bytes and the length of logrec prefix (which is x'4A' bytes in length), or
the I/O area specified in the IOASIZE keyword of the PSBGEN statement of the PSB.

RCMD call
A Retrieve Command (RCMD) call lets an automated operator (AO) application program retrieve the
second and subsequent command response segments after an ICMD call.

Format
RCMD aib i/o area

Chapter 1. DL/I calls reference 143

Parameters
aib

Specifies the application interface block (AIB) used for this call. This parameter is an input and output
parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIB␢␢.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.
This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output parameter. The I/O area
should be large enough to hold the largest command response segment passed from IMS to the AO
application. If the I/O area is not large enough for all of the information, partial data is returned in the
I/O area.

Usage
RCMD lets an AO application retrieve the second and subsequent command response segments resulting
from an ICMD call.

Related reading: For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

RCMD is also supported from a CPI-C driven application program.

Table 52. RCMD support by application region type

 Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional response segments, you
must issue RCMD once for each response segment issued by IMS.

Restrictions
An ICMD call must be issued before an RCMD call.

144 IMS: Application Programming APIs

ROLB call
The Rollback (ROLB) call backs out messages sent by the application program.

Format
ROLB i/o pcb

aib i/o area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLB X X X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
An output parameter that specifies the area in your program to which IMS TM returns the first
message segment. For conversational transactions the SPA will be the first item returned to the
application. Your next GN call will then return the first user segment of the message.

Usage
Issuing a ROLB in a conversational program causes IMS TM to back out the messages that the application
program has sent. If the program issues a ROLB call and then reaches a commit point without sending
the required response to the originating terminal, IMS TM terminates the conversation and sends the
message DFS2171I NO RESPONSE CONVERSATION TERMINATED to the originating terminal.

If your application program has allocated resources that IMS TM cannot roll back, the resources are
ignored. For example, if your application program issues CPI-C verbs to allocate resources (for modified
DL/I or CPI-C driven programs), ROLB only affects those resources allocated by IMS. Your application
must notify any CPI-C conversations that a ROLB call was issued.

For CPI-C driven application programs, all messages inserted to nonexpress alternate PCBs are
discarded. Messages inserted to express alternate PCBs are discarded if the PURG call was not issued
against the PCB before the ROLB call was issued.

Any application program that uses Spool API functions and creates print data sets can issue the ROLB
call. This backs out any print data sets that have not been released to JES.

Chapter 1. DL/I calls reference 145

The following processing considerations apply to modified message-driven IMS applications issuing the
IMS ROLB call that can receive protected input messages from OTMA or APPC/MVS and issue outbound
protected work to other z/OS Resource Recovery Services (RRS) resource managers:

• If a modified message-driven IMS application program with protected input issues a ROLB call, the
ROLB call is isolated to the IMS application without affecting the entire protected unit of work. After
the ROLB call is issued, the protected input message remains in process for the IMS application until a
commit point is reached.

• If a modified message-driven IMS application program issues an outbound protected conversation,
the outbound protected conversation is not included in the ROLB processing (that is, the outbound
protected conversation is not backed out as part of the ROLB call). The modified message-driven IMS
application program is responsible for explicitly cleaning up any outbound protected work to be backed
out.

Restrictions
The AIB must specify the I/O PCB for this call.

Related concepts
Backing out to a prior commit point: ROLL, ROLB, and ROLS calls (Application Programming)

ROLL call
The Roll (ROLL) call backs out output messages sent by a conversational application program and
terminates the conversation.

Format
ROLL

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLL X X X X X

Parameters
The only parameter required for the ROLL call is the call function.

Usage
IMS terminates the application with a U0778 abend.

If you issue a ROLL call during a conversation, IMS TM backs out the update and cancels output
messages. IMS TM also terminates the conversation with a U0778 abend code.

For applications that use the CPI Communications interface, the original transaction is discarded if it is
classified by IMS as a discardable transaction.

Any remote LU 6.2 conversation transactions generated by a modified DL/I or CPI-C driven application
program are deallocated with TYPE (ABEND_SVC).

Any application program that uses Spool API functions and creates print data sets can issue the ROLL
call. This backs out any print data sets that have not been released to JES.

Restrictions
The ROLL call cannot use the AIBTDLI interface.

Related concepts
Backing out to a prior commit point: ROLL, ROLB, and ROLS calls (Application Programming)

146 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit

Administering APPC/IMS and LU 6.2 devices (Communications and Connections)
Related reference
NDMX: Non-Discardable Messages user exit (DFSNDMX0 and other NDMX exits) (Exit Routines)

ROLS call
The Roll Back to SETS/SETU (ROLS) call returns message queue positions to sync points established by
the SETS/ SETU call.

For more information on the ROLS and SETS/SETU calls, see the topic "Backing out to a Prior Commit
Point: ROLL, ROLB, and ROLS Calls" in IMS Version 15.3 Application Programming.

Format
ROLS i/o pcb

aib i/o area token

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLS X X X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/O area. It has the same format as the I/O area supplied on the SETS/SETU call. This
parameter is an output parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier. This parameter is an
input parameter.

Usage
Issuing a ROLS in a conversational program causes IMS TM to back out the messages that the application
program has sent. For conversation transactions, this means that if the program issues a ROLS call and
then reaches a commit point without sending the required response to the originating terminal, IMS
TM terminates the conversation and sends the message DFS2171l NO RESPONSE, CONVERSATION
TERMINATED to the originating terminal.

Chapter 1. DL/I calls reference 147

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsndmx0.htm#ims_dfsndmx0

When you issue a ROLS call with a token and the messages to be rolled back include nonexpress
messages that are processed by IMS TM, message queue repositioning might occur. The repositioning can
include the initial message segment, and the original input transaction can be presented again to the IMS
TM application program.

Input and output positioning is determined by the SETS/SETU call in standard and modified DL/I
application programs. Input and output positioning does not apply to CPI-C driven application programs.

The application program must notify any remote transaction programs of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying the
transaction program instance (TPI). This causes all conversations associated with the application program
to be DEALLOCATED TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device and
IMS TM received the message from APPC/MVS, a discardable transaction is discarded. Nondiscardable
transactions are placed on the suspend queue.

Related reading: For more information on LU 6.2, see IMS Version 15.3 Communications and
Connections.

Restrictions
When ROLS is issued during a conversational application program that includes resources outside of IMS
TM (for example, a CPI-C driven application program), only the IMS TM resources are rolled back. The
application program notifies the remote transactions of the ROLS call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls because these calls can
be used by the application program outside the processing of print data sets. When these commands are
issued, the Spool API takes no action because these commands cannot be used for the partial backout
of print data sets. No special status codes are returned to the application program to indicate that the
SETS/SETU or ROLS call was issued by an application that is using Spool API.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database.

Related reference
“SETS/SETU call” on page 148
The Set Backout Point (SETS) call is used to set an intermediate backout point or to cancel all existing
backout points.

SETS/SETU call
The Set Backout Point (SETS) call is used to set an intermediate backout point or to cancel all existing
backout points.

The Set Unconditional (SETU) call operates like the SETS call except that the SETU call is not rejected if
unsupported PCBs are in the PSB or if the program uses an external subsystem.

Format
SETS i/o pcb

aib i/o area token

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETS/SETU X X X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

148 IMS: Application Programming APIs

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the area in your program that contains the data that is to be kept by IMS and returned on the
corresponding ROLS call. This parameter is an input parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier. This parameter is an
input parameter.

Usage
Except for the call names themselves, the SETS and SETU format and parameters are the same.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call. The ROLS call
operates consistent with the SETS and SETU call backout points.

The meaning of the SC status code for SETS or SETU is as follows:
SETS

The SETS call is rejected. The SC status code in the I/O PCB indicates that either the PSB contains
unsupported options or the application program made calls to an external subsystem.

SETU
The SETU call is not rejected. The SC status code indicates that unsupported PCBs exist in the PSB or
the application made calls to an external subsystem.

Restrictions
The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database.

CPI-C driven transaction programs cannot issue the SETS/SETU call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls. This is so, because
these calls can be used by the application outside the processing of print data sets. When these
commands are issued, the Spool API takes no action because these commands cannot be used for the
partial backout of print data sets.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same token and still back
out to the correct message level. After 255 SETS calls, the messages continue to back out, but only to
the same message level as at 255th SETS call. The SETS token count resets to zero during sync point
processing.

You may specify a maximum of 255 SETS calls with the same token before a ROLS call and still be able
to back out to the correct message level. After 255 SETS calls, the messages will continue to back out to
the same message level as at 255th SETS call. The SETS token count is reset to zero during sync point
processing.

Chapter 1. DL/I calls reference 149

Related reference
“ROLS call” on page 147
The Roll Back to SETS/SETU (ROLS) call returns message queue positions to sync points established by
the SETS/ SETU call.

SYNC call
The Synchronization Point (SYNC) call is used to request commit point processing.

Format
SYNC i/o pcb

aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SYNC X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

Usage
Issue the SYNC call to request that IMS TM process the application program with commit points for the
application program.

Restrictions
The SYNC call is valid only in batch-oriented BMPs.

You cannot issue a SYNC call from a CPI Communications driven application program.

XRST call
The Extended Restart (XRST) call is used to restart your program.

If you use the symbolic Checkpoint call in your program, you must use the XRST call.

150 IMS: Application Programming APIs

Format
XRST i/o pcb

aib

i/o area length i/o area

area length area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

XRST X X X X X

Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID

Eye catcher. This 8-byte field must contain DFSAIBbb.
AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.
This parameter is not used during the XRST call. For compatibility reasons, this parameter must
still be coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this parameter must still be
included in the call, and it must contain a valid address. You can get a valid address by specifying the
name of any area in your program.

i/o area
Specifies a 14-byte area in your program. This area must be either set to blanks if you are starting
your program normally or, if you are performing an extended restart, have a checkpoint ID.

area length
Specifies a 4-byte field in your program containing the length (in binary) of an area to restore. This
input parameter is optional. You can specify up to seven area lengths. For each area length, you must
also specify the area parameter. The number of areas you specify on a XRST call must be less than or
equal to the number of areas you specify on the CHKP calls the program issues. When you restart the
program, IMS TM restores only the areas you specified in the CHKP call.

area
Specifies the area in your program that you want IMS TM to restore. You can specify up to seven areas.
Each area specified must be preceded by an area length value. This parameter is an input parameter.

Usage
Programs that want to issue Symbolic Checkpoint calls (CHKP) must also issue the Extended Restart
call (XRST). The XRST call must be issued only once and should be issued early in the execution of the
program. It does not need to be the first call in the program. However, it must precede any CHKP call. Any
Database calls issued before the XRST call are not within the scope of a restart.

Chapter 1. DL/I calls reference 151

IMS determines whether to perform a normal start or a restart based on the I/O area provided by the
XRST call or CKPTID= value in the PARM field on the EXEC statement in your program's JCL.

Starting your program normally

When you are starting your program normally, the I/O area pointed to in the XRST call must contain blanks
and the CKPTID= value in the PARM field must be nulls. This indicates to IMS that subsequent CHKP
calls are symbolic checkpoints rather than basic checkpoints. Your program should test the I/O area after
issuing the XRST call. IMS does not change the area when you are starting the program normally.

Restarting your program

You can restart the program from a symbolic checkpoint taken during a previous execution of the
program. The checkpoint used to perform the restart can be identified by entering the checkpoint ID
either in the I/O area pointed to by the XRST call (leftmost justified, with the rest of the area containing
blanks) or by specifying the ID in the CKPTID= field of the PARM= parameter on the EXEC statement in
your program's JCL. (If you supply both, IMS uses the CKPTID= value specified in the parameter field of
the EXEC statement.)

The ID specified can be:

• A 1 to 8-character extended checkpoint ID.
• A 14-character "time stamp" ID from message DFS05401, where:

IIII is the region ID.
DDD is the day of the year.
HHMMSST is the time in hours, minutes, seconds, and tenth of a second.

• The 4-character constant "LAST". (BMPs only: this indicates to IMS that the last completed checkpoint
issued by the BMP will be used for restarting the program.)

The system message DFS05401 supplies the checkpoint ID and the time stamp.

The system message DFS6821 supplies the checkpoint ID of the last completed checkpoint which can
be used to restart a batch program or batch message processing program (BMP) that was abnormally
terminated.

If the program being restarted is in a DL/I batch region, the IMSLOGR DD statement that defines the log
data set must be supplied in the JCL. IMS reads these data sets and searches for the checkpoint records
that have the ID that was specified.

However, if the program being restarted is in a BMP region and all of the following conditions are met, an
IMSLOGR DD statement is not required:

• The BMP program is restarted with CKPTID=LAST.
• The BMP program is restarted on the same IMS system with the same job name, same PSB, and same

program name that was used when it abended.
• IMS has not been cold-started since the BMP program abended.
• The checkpoint records that are needed to restart the program are on an OLDS data set that has not

been archived and reused since the time of the abend, or the SLDSREAD logger function is active in IMS.

If any of the preceding conditions are not met, you must supply an IMSLOGR DD statement that points to
the data set that contains the required checkpoint records.

If an IMSLOGR DD statement is supplied, it must contain the required checkpoint log records. IMS does
not automatically locate and retrieve checkpoint records for a BMP if an IMSLOGR DD statement is
present. Only the IMSLOGR DD data set is searched and, if the record is not found, the BMP program
terminates with abend U0102.

Note: A DD DUMMY statement is permissible for an IMSLOGR DD statement and is treated as if no
IMSLOGR DD statement was supplied.

At the completion of the XRST call, the I/O area always contains the 8-character checkpoint ID used for
the restart. An exception exists when the checkpoint ID is equal to 8 blank characters; the I/O area then
contains a 14-character time stamp (IIIIDDDHHMMSST).

152 IMS: Application Programming APIs

Also check the status code in the I/O PCB. The only successful status code for an XRST call are blanks.

Restrictions
If your program is being started normally, the first 5 bytes of the I/O area must be set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC statement is not used,
then the rightmost bytes beyond the checkpoint ID being used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP applications.

Related reference
“CHKP (symbolic) call” on page 118
A symbolic Checkpoint (CHKP) call is used for recovery purposes.

EXEC DLI commands
The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

System service commands
The following system service commands require that you first issue the SCHD command with the
SYSSERVE keyword:

• ACCEPT command
• DEQ command
• LOG command
• QUERY command
• REFRESH command
• ROLS command
• SETS command
• SETU command
• STAT command

The following system service commands are valid in batch or BMP regions or programs without first
issuing the SCHD command with the SYSSERVE keyword:

• CHKP command
• ROLB command
• ROLL command
• SYMCHKP command
• XRST command

The following system service commands are valid in an online CICS program using DBCTL:

• ACCEPT
• DEQ
• LOG
• QUERY
• REFRESH
• ROLS
• SETS
• STAT

Chapter 1. DL/I calls reference 153

To issue system service commands, the input/output PCB (I/O PCB) is required.

The examples in the following topics use the PL/I delimiter. Code the commands in free form:
Where keywords, operands, and parameters are shown separated by commas, no blanks can appear
immediately before or after the comma. Where keywords, operands, and parameters are shown
separated by blanks, you can include as many blanks as you want. The format of the commands is the
same for users of COBOL, PL/I, or assembler language.

Related reference
“DL/I calls for IMS TM system services” on page 113
Use these DL/I calls with IMS Transaction Manager system services.
“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.
“DL/I calls for database management” on page 1
Use these DL/I calls with IMS DB to perform database management functions in your application
program.
“DL/I calls for transaction management” on page 74
Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.
PCBs and PSB (Application Programming)

Summary of EXEC DLI commands
A summary of all the EXEC DLI commands is provided in the following table.

The table lists the EXEC DLI commands and specifies if they are valid in the Batch, Batch-Oriented BMP,
or CICS with DBCTL environment.

Table 53. Summary of EXEC DLI commands

Request Type

Program Characteristics

Batch
Batch- Oriented

BMP
CICS with

DBCTL1

ACCEPT command4 Yes Yes Yes

CHKP command4 Yes Yes No

DEQ command4 Yes Yes Yes

DLET command 4 Yes Yes Yes

Get commands (GU, GHU, GN, GHN, GNP, GHNP)4 Yes Yes Yes

GMSG command5 No Yes Yes

ICMD command5 No Yes Yes

ISRT command5 Yes Yes Yes

LOAD command Yes No No

LOG command4 Yes Yes Yes

POS command4 No Yes Yes

QUERY command4 Yes Yes Yes

RCMD command5 No Yes Yes

REFRESH command4 Yes Yes Yes

REPL command4 Yes Yes Yes

154 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pcbandpsbs.htm#ims_pcbandpsbs

Table 53. Summary of EXEC DLI commands (continued)

Request Type

Program Characteristics

Batch
Batch- Oriented

BMP
CICS with

DBCTL1

RETRIEVE command Yes Yes No

ROLB command Yes Yes No

ROLL command Yes Yes No

ROLS command2,4 Yes Yes Yes

SCHD command No No Yes

SETS command2,4 Yes Yes Yes

SETU command Yes Yes No

STAT command2,4 Yes Yes Yes

SYMCHKP command Yes Yes No

TERM command No No Yes

XRST command Yes Yes No

Notes:

1. In a CICS remote DL/I environment, commands in the CICS with DBCTL column are supported if you are
shipping a function to a remote CICS that uses DBCTL.

2. ROLS and SETS commands are not valid when the PSB contains a DEDB.
3. STAT is a Product-sensitive Programming Interface.
4. These commands are supported in the AIB format.
5. These commands are described in the AOI documentation.

Related reference
IMS Automated Operator Interface (AOI) (Operations and Automation)

ACCEPT command
The Accept (ACCEPT) command is used to tell IMS to return a status code to your program, rather than
abend the transaction.

Format
EXEC DLI ACCEPT STATUSGROUP('A')

ACCEPT STATUSGROUP('B')

Options
STATUSGROUP('A')

Informs IMS that the application is prepared to accept status codes regarding unavailability. IMS then
returns a status code instead of pseudoabending if a call issued later requires access to unavailable
data.

This is a required option.

Chapter 1. DL/I calls reference 155

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.oag/ims_automate_aoi.htm#ims_automate_aoi

STATUSGROUP('B')
Informs IMS that the application is prepared to accept status codes regarding unavailability and
deadlock occurrence. IMS returns a status code instead of pseudoabending if a call issued later
requires access to unavailable data or deadlock occurrence.

Usage
Use the ACCEPT command to tell IMS to return a status code instead of abending the program. These
status codes result because PSB scheduling completed without all of the referenced databases being
available.

Example
EXEC DLI ACCEPT STATUSGROUP('A');

This example shows how to specify the ACCEPT command.

CHKP command
The Checkpoint (CHKP) command is used to issue a basic checkpoint and to end a logical unit of work. You
cannot use this command in a CICS program.

Format
EXEC DLI CHECKPOINT

CHKP

ID( area)

ID(' literal ')

Options
ID(area)

Contains the checkpoint ID. Specifies the name of an area in your program containing the checkpoint
ID. The area pointed to is eight bytes. If you are using PL/I, specify this option as a pointer to a major
structure, an array, or a character string.

ID('literal')
'literal' is an 8-byte checkpoint ID, enclosed in quotation marks. In CHKP commands the area pointed
to is 8 bytes long.

Usage
The two kinds of commands that allow you to make checkpoints are: the CHKP, or basic Checkpoint
command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the symbolic or the basic command.

Both checkpoint commands make it possible for you to commit your program's changes to the database
and to establish places from which the program can be restarted, should it terminate abnormally.

You must not use the CHKPT=EOV parameter on any DD statement to take an IMS checkpoint.

Both commands cause a loss of database position at the time the command is issued. Position must be
reestablished by a GU command or other method of establishing position.

It is not possible to re-establish position in the midst of nonunique keys or nonkeyed segments.

You can issue the basic CHKP command to commit your program's changes to the database and establish
places from which your program can be restarted. When you issue a basic CHKP command, you must
provide the code for restarting your program.

156 IMS: Application Programming APIs

When you issue a CHKP command, you specify the ID for the checkpoint. You can supply either the name
of a data area in your program that contains the ID, or you can supply the actual ID, enclosed in single
quotes.

Examples
EXEC DLI CHKP ID(chkpid);

EXEC DLI CHKP ID('CHKP0007');

Explanation

These examples show how to specify the CHKP command.

Restrictions
Restrictions for the CHKP command:

• You cannot use this command in a CICS program.
• You must first define an I/O PCB for your program before you can use the CHKP command.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

DEQ command
The Dequeue (DEQ) command is used to release a segment that is retrieved with the LOCKCLASS option.

Format
EXEC DLI DEQ LOCKCLASS( data_value)

Option
LOCKCLASS(data_value)

Specifies that you want to release the lock that is being held as the result of an earlier GU, GN, or
GNP command that had a LOCKCLASS option with the same data_value. Data_value must be a
1-byte alphabetic character in the range of B to J.

For full function, specify the LOCKCLASS option followed by the lock class of that segment (for
example, LOCKCLASS('B')). If the option is not followed by a letter (B-J), EXECDLI sets a status
code of GL and initiates an ABENDU1041.

DEQ commands are not supported for Fast Path.

Usage
Use the DEQ command to release locks on segments that were retrieved using the LOCKCLASS
option. Using LOCKCLASS on Get commands allows you to reserve segments for exclusive use by
your transaction. No other transaction is allowed to update these reserved segments until either your
transaction reaches a sync point or the DEQ command has been issued, thereby releasing the locks on
these reserved segments. The LOCKCLASS option lets your application program leave these segments
and retrieve them later without any changes having been added.

Example
Your program can use the LOCKCLASS option as follows:

EXEC DLI DEQ LOCKCLASS(data_value)
EXEC DLI GU SEGMENT(PARTX)
 SEGMENT(ITEM1) LOCKCLASS('B') INTO(PTAREA1);

Chapter 1. DL/I calls reference 157

EXEC DLI GU SEGMENT(PARTX)
 SEGMENT(ITEM2) LOCKCLASS('C') INTO(PTAREA2);
EXEC DLI DEQ LOCKCLASS('B');

Explanation

This example shows the format of the DEQ command, where data_value is a 1-byte alphabetic character
in the range B to J. The DEQ command releases the lock that was gotten and held with a LOCKCLASS of 'B'
for the PARTX segment as a result of the first GU. The lock that was gotten with a LOCKCLASS of 'C' on the
PARTX segment during the second GU remains held.

Restriction
Restrictions for the DEQ command:

• To use this command you must first define an I/O PCB for your program.

DLET command
The Delete (DLET) command is used to remove a segment and its dependents from the database.

Format
EXEC DLI DLET

USING PCB( expression) VARIABLE

SEGMENT( name)

SEGMENT(( area)) SEGLENGTH( expression)

FROM( area)

SETZERO( data_value)

Options
USING PCB(expression)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to retrieve, insert, delete,
or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment type. You can specify an
area instead of specifying the name of the segment in the command.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted. Use FROM to insert one or
more segments with one command.

158 IMS: Application Programming APIs

SETZERO(data_value)
Specifies setting a subset pointer to zero.

Usage
You use the DLET command to delete a segment and its dependents from the database. You must first
retrieve segments you want to delete, just as if you were replacing segments, The DLET command deletes
the retrieved segment and its dependents, if any, from the database.

Example
"Evelyn Parker has moved away from this area. Her patient number is 10450. Delete her record from the
database."

Explanation

You want to delete all the information about Evelyn Parker from the database. To do this, you must delete
the PATIENT segment. When you do this, DL/I deletes all the dependents of that segment. This is exactly
what you want DL/I to do—there is no reason to keep such segments as ILLNESS and TREATMNT for
Evelyn Parker if she is no longer one of the clinic's patients.

Before you can delete the patient segment, you have to retrieve it:

EXEC DLI GU
 SEGMENT(PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

To delete this patient's database record, you issue a DLET command and use the FROM option to give the
name of the I/O area that contains the segment you want deleted:

EXEC DLI DLET SEGMENT(PATIENT) FROM(PATAREA);

When you issue this command, the PATIENT segment, and its dependents—the ILLNESS, TREATMNT,
BILLING, PAYMENT, and HOUSHOLD segments—are deleted.

Restrictions
You cannot issue any commands using the same PCB between the retrieval command and the DLET
command, and you can issue only one DLET command for each GET command.

GN command
The Get Next (GN) command is used to retrieve segments sequentially.

Format
EXEC DLI GET NEXT

GN USING PCB( expression)

KEYFEEDBACK( area)

FEEDBACKLEN( expression)

INTO( area)
1

A B

A For each parent segment (optional)

Chapter 1. DL/I calls reference 159

VARIABLE FIRST

LAST

CURRENT

SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression) OFFSET( expression)
INTO( area)

2

LOCKED

LOCKCLASS( class)

MOVENEXT( data_value)

GETFIRST( data_value) SET( data_value) SETCOND( data_value)

SETZERO( data_value) SETPARENT

WHERE( qualification statement)

FIELDLENGTH( expression)
3

KEYS( area)

KEYLENGTH( expression)
4

B For the object segment (optional)

VARIABLE FIRST

LAST

SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression) OFFSET( expression) INTO( area)

LOCKED

LOCKCLASS( class)

MOVENEXT( data_value)

GETFIRST( data_value) SET( data_value) SETCOND( data_value)

SETZERO( data_value)

WHERE( qualification statement)

FIELDLENGTH( expression)
3

KEYS( area)

KEYLENGTH( expression)
4

160 IMS: Application Programming APIs

Notes:
1 If you leave out the SEGMENT option, specify the INTO option as shown.
2 Specify INTO on parent segments for a path command.
3 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)
4 You can use either the KEYS option or the WHERE option, but not both on one segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment type, or that you want to
insert a segment as the first occurrence.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence.

CURRENT
Qualifies the command, and specifies that you want to use the level of and levels above the current
position as qualifications for this segment.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area of your program
containing the name of the segment type that you want to retrieve.

You can have as many levels of qualification for a GN command as there are levels in the database's
hierarchy. Using fully qualified commands with the WHERE or KEYS option clearly identifies the
hierarchical path and the segment you want, and is useful in documenting the command. However,
you do not need to qualify a GN command, because you can specify a GN command without the
SEGMENT option.

Once you have established position in the database record, issuing a GN command without a
SEGMENT option retrieves the next segment occurrence in sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GN command, the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from the DIB the segment type
retrieved.)

Chapter 1. DL/I calls reference 161

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next segment
in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the segment occurrences that are
to be part of the path to the segment you want retrieved. Omitting the SEGMENT option for a level,
or including only the SEGMENT option without a WHERE option, indicates that any path to the option
satisfies the command. DL/I uses only the qualified parent segments and the lowest-level SEGMENT
option to satisfy the command. DL/I does not assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing
a number. Use OFFSET when you process concatenated segments in logical relationships. OFFSET is
required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your program, until a checkpoint
or sync point is reached. This option performs the same function as the Q command code, and
it applies to both Fast Path and full function. A 1-byte alphabetic character of 'A' is automatically
appended as the class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your program until a DEQ
command is issued or until a checkpoint or sync point is reached. (DEQ commands are not supported
for Fast Path.) Class is a 1-byte alphabetic character (B-J), representing the lock class of the
retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J) designates the class of the
lock for the segment. An example is LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in
the range B to J, then EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function and Fast Path,
you must specify LOCKCLASS('x')), where x is a letter in the range B to J. An example is
LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets a
status code of GL and initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

162 IMS: Application Programming APIs

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It can be any expression
in the host language that converts to the integer data type; if it is a variable, it must be declared as a
binary halfword value. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the IBM COBOL for z/OS &
VM (or the VS COBOL II) compiler, you must specify KEYLENGTH with the KEYS option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use either KEYS or WHERE for a
segment level, but not both.

"Area" specifies an area in your program containing the segment's concatenated key.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply. Each
qualification statement consists of:

• The name of a field in a segment
• The relational operator, which indicates how you want the two values compared
• The name of a data area in your program containing the value that is compared against the value of

the field

Usage
Use the GN command to sequentially retrieve segments from the database. Each time you issue a GN
command, IMS DB retrieves the next segment, as described by the options you include in the command.
Before issuing a GN command, you should establish position in the database record by issuing a GU
command.

You do not have to use a segment option with a GN command. However, you should qualify your GN
commands as much as possible with the KEYS or WHERE options after the SEGMENT option.

Examples
Example 1

"We need a list of all patients who have been to this clinic."

Explanation: To answer this request, your program would issue a command qualified with the segment
name PATIENT until DL/I returned a GB status code to the program. (GB means that DL/I reached the end
of the database before being able to satisfy your command). This command looks like this:

EXEC DLI GN
 SEGMENT(PATIENT) INTO(PATAREA);

Each time your program issued this command, the current position moves forward to the next database
record.

Example 2

"What are the names of the patients we have seen since the beginning of this month?"

Explanation: A GN command that includes one or more WHERE or KEYS options retrieves the next
occurrence of the specified segment type that satisfies the command. To answer this request, the
program issues the following GN command until DL/I returned a GB status code. The example shows
the command you use at the end of April, 1988 (assuming ILLDATE1 contains 198804010):

EXEC DLI GN
 SEGMENT(PATIENT) INTO(PATAREA)
 SEGMENT(ILLNESS) INTO(ILLAREA) WHERE(ILLDATE>=ILLDATE1);

Chapter 1. DL/I calls reference 163

Example 3

EXEC DLI GN INTO(PATAREA);

Explanation: If you just retrieved the PATIENT segment for patient 04124 and then issued this command,
you retrieve the first ILLNESS segment for patient 04124.

Restrictions
With an unqualified GN command, the retrieved segment type might not be the one expected. Therefore,
specify an I/O area large enough to contain the largest segment accessible to your program.

Use either the KEYS option or the WHERE option, but not both on one segment level.

GNP command
The Get Next in Parent (GNP) command is used to retrieve dependent segments sequentially.

Format
EXEC DLI GET NEXT IN PARENT

GNP USING PCB( expression)

KEYFEEDBACK( area)

FEEDBACKLEN( expression)

INTO( area)
1

A B

A For each parent segment (optional)

164 IMS: Application Programming APIs

VARIABLE FIRST

LAST

CURRENT

SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression) OFFSET( expression)
INTO( area)

2

LOCKED

LOCKCLASS( class)

MOVENEXT( data_value)

GETFIRST( data_value) SET( data_value) SETCOND( data_value)

SETZERO( data_value) SETPARENT

WHERE( qualification statement)

FIELDLENGTH( expression)
3

KEYS( area)

KEYLENGTH( expression)
4

B For the object segment (optional)

VARIABLE FIRST

LAST

SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression) OFFSET( expression) INTO( area)

LOCKED

LOCKCLASS( class)

MOVENEXT( data_value)

GETFIRST( data_value) SET( data_value) SETCOND( data_value)

SETZERO( data_value)

WHERE( qualification statement)

FIELDLENGTH( expression)
3

KEYS( area)

KEYLENGTH( expression)
4

Chapter 1. DL/I calls reference 165

Notes:
1 If you leave out the SEGMENT option, specify the INTO option as shown.
2 Specify INTO on parent segments for a path command.
3 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)
4 You can use either the KEYS option or the WHERE option, but not both on one segment level.

Options
You can qualify your GNP command by using SEGMENT and WHERE options.

If you do not qualify your command, IMS DB retrieves the next sequential segment under the established
parent. If you include a SEGMENT option, IMS DB retrieves the first occurrence of that segment type that
it finds by searching forward under the established parent.

You can have as many levels of qualification for a GNP command as there are levels in the database's
hierarchy. However, you should not qualify your command in a way that causes DL/I to move off of the
segment type you have established as a parent for the command.
USING PCB(expression)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated. Use this to retrieve a segment's concatenated key.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read. Use this to retrieve one or more segments with one
command.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment type, or that you want
to insert a segment as the first occurrence. Use this to retrieve the first segment occurrence of a
segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence. Use this to retrieve the last segment occurrence of a
segment type.

CURRENT
Qualifies the command, and specifies that you want to use the level of and levels above the current
position as qualifications for this segment. Use this to retrieve a segment based on your current
position.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

166 IMS: Application Programming APIs

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a halfword in your program
containing a number. Use OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your program, until a checkpoint
or sync point is reached. Use this to reserve a segment for the exclusive use of your program. This
option performs the same function as the Q command code, and it applies to both Fast Path and
full function. A 1-byte alphabetic character of 'A' is automatically appended as the class for the Q
command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your program until a DEQ
command is issued or until a checkpoint or sync point is reached. (DEQ commands are not supported
for Fast Path.) Class is a 1-byte alphabetic character (B-J), representing the lock class of the
retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J) designates the class of the
lock for the segment. An example is LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in
the range B to J, then EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function and Fast Path,
you must specify LOCKCLASS('x')), where x is a letter in the range B to J. An example is
LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets a
status code of GL and initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply. Each
qualification statement consists of:

• The name of a field in a segment
• The relational operator, which indicates how you want the two values compared
• The name of a data area in your program containing the value that is compared against the value of

the field

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use either KEYS or WHERE for a
segment level, but not both.

"Area" specifies an area in your program containing the segment's concatenated key.

Chapter 1. DL/I calls reference 167

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It can be any expression
in the host language that converts to the integer data type; if it is a variable, it must be declared as a
binary halfword value. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the IBM COBOL for z/OS &
VM (or VS COBOL II) compiler, you must specify KEYLENGTH with the KEYS option.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in your program
containing the name of the segment type that you want to retrieve, insert, delete, or replace.

You can have as many levels of qualification for a GNP command as there are levels in the database's
hierarchy. Using fully qualified commands with the WHERE or KEYS option clearly identifies the
hierarchic path and the segment you want, and is useful in documenting the command. However, you
do not need to qualify a GNP command at all, because you can specify a GNP command without the
SEGMENT option.

Once you have established position in the database record, issuing a GNP command without a
SEGMENT option retrieves the next segment occurrence in sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GNP command, the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB the segment type
retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next segment
in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the segment occurrences that are
to be part of the path to the segment you want retrieved. Omitting the SEGMENT option for a level,
or including only the SEGMENT option without a WHERE option, indicates that any path to the option
satisfies the command. DL/I uses only the qualified parent segments and the lowest-level SEGMENT
option to satisfy the command. DL/I does not assume a qualification for the missing level.

Usage
The Get Next in Parent (GNP) command makes it possible to limit the search for a segment; you can
retrieve only the dependents of a particular parent. You must have established parentage before issuing a
GNP command.

Examples
Example 1

"We need the complete record for Kate Bailey. Her patient number is 09080."

Explanation: To satisfy this request, you want only to retrieve the dependent segments of the patient
whose patient number is 09080; you do not want to retrieve all the dependents of each patient. To
do this, use the GU command to establish your position and parentage on the PATIENT segment for
Kate Bailey. Then continue to issue a GNP without SEGMENT or WHERE options until DL/I returns all
the dependents of that PATIENT segment. (A GE status code indicates that you have retrieved all the
dependent segments.) To answer this request, your program can issue these commands:

EXEC DLI GU
 SEGMENT(PATIENT) INTO(PATAREA)
 WHERE (PATNO=PATNO1);
EXEC DLI GNP
 INTO(ILLAREA);

A GNP command without SEGMENT or WHERE options retrieves the first dependent segment occurrence
under the current parent. If your current position is already on a dependent of the current parent, this
command retrieves the next segment occurrence under the parent.

168 IMS: Application Programming APIs

With an unqualified GNP command, the segment type you retrieve might not be the one you expected, so
you should specify an I/O area large enough to contain the largest segment your program has access to.
(After successfully issuing a GNP command, you can find out from the DIB the segment type retrieved.)

Example 2

"Which doctors have been prescribing acetaminophen for headaches?"

Explanation: A GNP command with only a SEGMENT option sequentially retrieves the dependent
segments of the segment type you have specified under the established parent. Suppose that for
this example, the key of ILLNESS is ILLNAME, and the key of TREATMNT is MEDICINE. You want to
retrieve each TREATMNT segment where the treatment was acetaminophen. The name of the doctor
who prescribed the treatment is part of the TREATMNT segment. (Assume that data area ILLNAME1
contains HEADACHE, and MEDIC1 contains ACETAMINOP). To answer this request, you can issue these
commands:

EXEC DLI GN
 SEGMENT(ILLNESS) WHERE (ILLNAME=ILLNAME1);
EXEC DLI GNP
 SEGMENT(TREATMNT) WHERE (MEDICINE=MEDIC1);

To process this, your program continues issuing the GNP command until DL/I returned a GE (not found)
status code, then your program retrieves the next headache segment and retrieves the TREATMNT
segments for it. Your program does this until there were no more ILLNESS segments where the ILLNAME
was headache.

Restrictions
Restrictions for GNP command:

• You must have established parentage before issuing this command.
• You cannot qualify your GNP command in a way that causes DL/I to move off of the segment type you

have established as the parent for the command.
• You can retrieve only the dependents of a particular parent.

GU command
The Get Unique (GU) command is used to directly retrieve specific segments, and to establish a starting
position in the database for sequential processing.

Format
EXEC DLI GET UNIQUE

GU USING PCB( expression)

KEYFEEDBACK( area)

FEEDBACKLEN( expression)

INTO( area)

A B

A

Chapter 1. DL/I calls reference 169

VARIABLE LAST SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression)

OFFSET( expression)
INTO( area)

1 LOCKED

LOCKCLASS( class)

MOVENEXT( data_value) GETFIRST( data_value) SET( data_value)

SETCOND( data_value) SETZERO( data_value) SETPARENT

WHERE( qualification statement)

FIELDLENGTH( expression)
2

KEYS( area)

KEYLENGTH( expression)
3

B

VARIABLE LAST SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression)

OFFSET( expression) INTO( area) LOCKED

LOCKCLASS( class)

MOVENEXT( data_value) GETFIRST( data_value) SET( data_value)

SETCOND( data_value) SETZERO( data_value)

WHERE( qualification statement)

FIELDLENGTH( expression)
2

KEYS( area)

KEYLENGTH( expression)
3

Notes:
1 Specify INTO on parent segments for a path command.
2 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)
3 You can use either the KEYS option or the WHERE option, but not both on one segment level.

170 IMS: Application Programming APIs

Options
USING PCB(expression)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in your program
containing the name of the segment type that you want to retrieve, insert, delete, or replace.

To retrieve the first occurrence of a segment type, you need only specify the SEGMENT option. You can
specify as many levels of qualification as there are hierarchic levels defined by the PCB you are using.

To establish position at the beginning of the database, issue a GU command with a SEGMENT option
that names the root segment type.

If you leave out SEGMENT options for one or more hierarchic levels, DL/I assumes a segment
qualification for that level. The qualification that DL/I assumes depends on your current position.

• If DL/I has a position established at the missing level, DL/I uses the segment on which position is
established.

• If DL/I does not have a position established at the missing level, DL/I uses the first occurrence at
that level.

• If DL/I moves forward from a position established at a higher level, DL/I uses the first occurrence at
the missing level that falls within the new path.

• If you leave out a SEGMENT option for the root level, and DL/I has position established on a root,
DL/I does not move from that root when trying to satisfy the command.

You can have as many levels of qualification for a GU command as there are levels in the database's
hierarchy. Using fully qualified commands with the WHERE or KEYS option clearly identifies the
hierarchic path and the segment you want, and is useful in documenting the command. However,
you do not need to qualify a GU command at all, because you can specify a GU command without the
SEGMENT option.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GU command, the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB the segment type
retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next
segment in sequential order, as described by the options.

Chapter 1. DL/I calls reference 171

Including the WHERE or KEYS options for parent segments defines the segment occurrences that
are to be part of the path to the segment you want retrieved. Omitting the SEGMENT option for a
level, or including only the SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/I uses only the qualified parent segments and the lowest-level
SEGMENT option to satisfy the command. DL/I does not assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a halfword in your program
containing a number. Use OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your program, until a checkpoint
or sync point is reached. This option performs the same function as the Q command code. It applies to
both Fast Path and full function. A 1-byte alphabetic character of 'A' is automatically appended as the
class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your program until a DEQ
command is issued or until a checkpoint or sync point is reached. (DEQ commands are not supported
for Fast Path.) Class is a 1-byte alphabetic character (B-J), representing the lock class of the
retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J) designates the class of the
lock for the segment. An example is LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in
the range B to J, then EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function and Fast Path,
you must specify LOCKCLASS('x')), where x is a letter in the range B to J. An example is
LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets a
status code of GL and initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. The argument can be any
expression in the host language that converts to the integer data type; a variable must be declared as
a binary halfword value. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,

172 IMS: Application Programming APIs

KEYLENGTH is optional. For COBOL programs that are not compiled with the IBM COBOL for z/OS &
VM (or VS COBOL II) compiler, you must specify KEYLENGTH with the KEYS option.

WHERE(qualification statement)
Use WHERE to further qualify your GU commands after using SEGMENT. If you fully qualify a GU
command, you can retrieve a segment regardless of your position in the database record.

KEYS(area)
Use KEYS to further qualify your GU commands and specify the segment occurrence by using its
concatenated key.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GU command, the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB the segment type
retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next segment
in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the segment occurrences that are
to be part of the path to the segment you want retrieved. Leaving the SEGMENT option out for a level,
or including only the SEGMENT option without a WHERE option, indicates that any path to the option
satisfies the command. DL/I uses only the qualified parent segments and the lowest level SEGMENT
option to satisfy the command. DL/I does not assume a qualification for the missing level.

Usage
Use the GU command to retrieve specific segments from the database, or to establish a position in the
database for sequential processing.

You must at least specify the SEGMENT option with a GU command to indicate the segment type you want
to retrieve. (IMS DB retrieves the first occurrence of the segment you named in the SEGMENT argument.)

When you need to retrieve a specific occurrence of a segment type, you can further qualify the command
by using the WHERE or KEYS option after the SEGMENT option.

You probably want to further qualify your GU commands with the WHERE or KEYS option, and specify a
specific occurrence of a segment type. If you fully qualify a GU command, you can retrieve a segment
regardless of your position in the database record.

Examples
Example 1

"What illness was Robert James here for most recently? Was he given any medication on that day for that
illness? His patient number is 05136."

Explanation: This example requests two pieces of information. To answer the first part of the request
and retrieve the most recent ILLNESS segment, issue this GU command (assuming that PATNO1 contains
05163):

EXEC DLI GU
 SEGMENT(PATIENT) WHERE(PATNO=PATNO1)
 SEGMENT(ILLNESS) INTO(AREA);

Once you had retrieved the ILLNESS segment with the date of the patient's most recent visit to the clinic,
you can issue another command to find out whether he was treated during that visit. If the date of his
most recent visit was January 5, 1988, you can issue the following command to find out whether or
not he was treated on that day for that illness (assuming PATNO1 contains 05163, and DATE1 contains
19880105):

EXEC DLI GU
 SEGMENT(PATIENT) WHERE(PATNO=PATNO1)

Chapter 1. DL/I calls reference 173

 SEGMENT(ILLNESS) WHERE(ILLDATE=DATE1)
 SEGMENT(TREATMNT) INTO(TRTAREA) WHERE(DATE=DATE1);

Example 2

"What is Joan Carter currently being treated for? Her patient number is 10320."

EXEC DLI GU
 SEGMENT(PATIENT) WHERE(PATNO=PATNO1)
 SEGMENT(ILLNESS) INTO(ILLAREA);

Explanation: In this example you want the ILLNESS segment for the patient whose patient number is
10320.

Example 3

EXEC DLI GU
 SEGMENT(PATIENT)
 SEGMENT(ILLNESS)
 SEGMENT(TREATMNT) INTO(AREA);

Explanation: This example retrieves the first TREATMNT segment and specifies the three levels of
qualification.

Restriction
You must at least specify the SEGMENT option to indicate the segment type you want to retrieve.

ISRT command
The Insert (ISRT) command is used to add one or more segments to the database.

Format
EXEC DLI INSERT

ISRT USING PCB( expression)

A B

A For each parent segment (optional)

174 IMS: Application Programming APIs

VARIABLE FIRST

LAST

CURRENT

SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression)
FROM( area)

1 MOVENEXT( data_value)

GETFIRST( data_value) SET( data_value) SETCOND( data_value)

SETZERO( data_value)

WHERE( qualification statement)

FIELDLENGTH( expression)
2

KEYS( area)

KEYLENGTH( expression)
3

B For the object segment (required)

VARIABLE FIRST

LAST

SEGLENGTH( expression)

OFFSET( expression) MOVENEXT( data_value)

GETFIRST( data_value) SET( data_value) SETCOND( data_value)

SETZERO( data_value) SEGMENT( name)

SEGMENT(( area))

FROM( area)

Notes:
1 Specify FROM on parent segments for a path command.
2 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)
3 You can use either the Keys option or the Where option, but not both on one segment level.

Options
USING PCB(expression)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

VARIABLE
Indicates that a segment is variable-length.

Chapter 1. DL/I calls reference 175

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment type, or that you want
to insert a segment as the first occurrence. Use FIRST to insert a segment as a first occurrence of a
segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence. Use LAST to insert a segment as the last occurrence
of a segment type.

CURRENT
Qualifies the command, and specifies that you want to use the level of and levels above the current
position as qualifications for this segment. Use CURRENT to insert a segment based on your current
position.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in the program
containing the name of the segment type that you want to retrieve, insert, delete, or replace.

You must include at least a SEGMENT option for each segment you want to add to the database.
Unless ISRT is a path command, the lowest level SEGMENT option specifies the segment being
inserted. You cannot use a WHERE or KEYS option for this level.

If a segment has a unique key, DL/I inserts the segment in its key sequence. (If the segment does
not have a key, or has a nonunique key, DL/I inserts it according to the value specified for the RULES
parameter during DBDGEN.

If you specify a SEGMENT option for only the lowest level segment, and do not qualify the parent
segments with SEGMENT, WHERE, or KEYS options, you must make sure that the current position is
at the correct place in the database to insert the segment. The SEGMENT option that DL/I assumes
depends on your current position in the database record:

• If DL/I has a position established at the missing level, DL/I uses the segment on which position is
established.

• If DL/I does not have a position established at the missing level, DL/I uses the first occurrence at
that level.

• If DL/I moves forward from a position established at a higher level, DL/I uses the first occurrence at
the missing level that falls within the new path.

• If you leave out a SEGMENT option for the root level, and DL/I has position established on a root,
DL/I does not move from that root when trying to satisfy the command.

It is good practice to always provide qualifications for higher levels to establish the position of the
segment being inserted.

If you are inserting a root segment, you need only specify a SEGMENT option. DL/I determines the
correct place for its insertion in the database by the key taken from the I/O area. If the segment you
are inserting is not a root segment, but you have just inserted its immediate parent, the segment can
be inserted as soon as it is built in the I/O area just by using a SEGMENT option for it in the ISRT
command. You need not code the parent level segments to establish your position.

When you specify multiple parent segments, you can mix segments with and without the WHERE
option. If you include only SEGMENT options on parent segments, DL/I uses the first occurrence of
each segment type to satisfy the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

176 IMS: Application Programming APIs

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted. Use FROM to insert one or
more segments with one command.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply. Each
qualification statement consists of:

• The name of a field in a segment
• The relational operator, which indicates how you want the two values compared
• The name of a data area in your program containing the value that is compared against the value of

the field

WHERE establishes position on the parents of a segment when you are inserting that segment. You
can do this by specifying a qualification of WHERE or KEYS for the higher level SEGMENT options.

When you specify multiple parent segments, you can mix segments with and without the WHERE
option. If you include only SEGMENT options on parent segments, DL/I uses the first occurrence of
each segment type to satisfy the command.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use either KEYS or WHERE for a
segment level, but not both.

KEYs can be used to qualify a parent segment. Instead of using WHERE, you can specify KEYS and
use the concatenated key of the segment as qualification. You can use the KEYS option once for each
command, immediately after the highest level SEGMENT option.

"Area" specifies an area in your program containing the segment's concatenated key.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It can be any expression
in the host language that converts to the integer data type; if it is a variable, it must be declared as a
binary halfword value. For IBM COBOL (or VS COBOL II), PL/I, or assembler language, KEYLENGTH is
optional. For COBOL programs that are not compiled with the IBM COBOL for MVS & VM (or VS COBOL
II) compiler, you must specify KEYLENGTH with the KEYS option.

Usage
To add new segments to an existing database, use the ISRT command. When you issue the ISRT
command, DL/I takes the data from the I/O area you have named in the FROM option and adds the
segment to the database. (The initial loading of a database requires using the LOAD command, instead of
the ISRT command.)

You can use ISRT to add new occurrences of an existing segment type to a HIDAM, HISAM, or HDAM
database. For an HSAM database, you can add new segments only by reprocessing the whole database or
by adding the new segments to the end of the database.

Chapter 1. DL/I calls reference 177

Before you can issue the ISRT command to add a segment to the database, your program must build the
segment to be inserted in an I/O area. If the segment has a key, you must place the correct key in the
correct location in the I/O area. If field sensitivity is used, the fields must be in the order defined by the
PSB for the application's view of the segment.

If you are adding a root segment occurrence, DL/I places it in the correct sequence in the database by
using the key you supply in the I/O area. If the segment you are inserting is not a root, but you have just
inserted its parent, you can insert the child segment by issuing an insert request qualified with only the
segment name. You must build the new segment in your I/O area before you issue the ISRT request.
You also qualify insert requests with the segment name when you add a new root segment occurrence.
When you are adding new segment occurrences to an existing database, the segment type must have
been defined in the DBD. You can add new segment occurrences directly or sequentially after you have
built them in the program's I/O area.

If the segment type you are inserting has a unique key field, the location where DL/I adds the new
segment occurrence depends on the value of its key field. If the segment does not have a key field, or if
the key is not unique, you can control where the new segment occurrence is added by specifying either
the FIRST, LAST, or HERE insert rule. Specify the rules on the RULES parameter of the SEGM statement for
the database.

Examples
Example 1

"Add information to the record for Chris Edwards about his visit to the clinic on February 1, 1993. His
patient number is 02345. He had a sore throat."

Explanation: First, build the ILLNESS segment in your program's I/O area. Your I/O area for the ILLNESS
segment looks like this:

19930201SORETHROAT

Use the command to add this new segment occurrence to the database is:

EXEC DLI ISRT
 SEGMENT(PATIENT) WHERE (PATNO=PATNO1)
 SEGMENT(ILLNESS) FROM(ILLAREA);

Example 2

"Add information about the treatment to the record for Chris Edwards, and add information about the
illness."

Explanation: You build the TREATMNT segment in a segment I/O area. The TREATMNT segment includes
the date, the medication, amount of medication, and the doctor's name:

19930201MYOCIN␢␢␢
0001TRIEB␢␢␢␢␢
&␢

The following command adds both the ILLNESS segment and the TREATMNT segment to the database:

EXEC DLI ISRT
 SEGMENT(PATIENT) WHERE (PATNO=PATNO1)
 SEGMENT(ILLNESS) FROM(ILLAREA)
 SEGMENT(TREATMNT) FROM(TRETAREA);

Example 3

EXEC DLI ISRT
 SEGMENT(ILLNESS) KEYS(CONKEY)
 SEGMENT(TREATMNT) FROM(TRETAREA);

Explanation: Using this command is the same as having a WHERE option qualified on the key field for the
ILLNESS and PATIENT segments.

178 IMS: Application Programming APIs

Restrictions
Restrictions the ISRT command:

• You cannot issue the ISRT command until you have built a new segment in the I/O area.
• You must specify at least one SEGMENT option for each segment being added to the database.
• When inserting a segment, you must have position established on the parents of the segment.
• If you specify a SEGMENT option for only the lowest level segment, and do not qualify the parent

segments with SEGMENT, WHERE, or KEYS options, be sure that current position is at the correct place
in the database to insert the segment.

• If you use a FROM option for a segment, you cannot qualify the segment by using the WHERE or KEYS
option; DL/I uses the key field value specified in the I/O area as qualification.

• You must use a separate I/O area for each segment type you want to add.
• You cannot mix SEGMENT options with and without the FROM option. When you use a FROM option for

a parent segment, you must use a FROM option for each dependent segment. (You can begin the path at
any level, but you must not leave out any levels.)

• You can only use the FIRST option with segments that have either no keys or have a nonunique key with
HERE specified on the RULES operand of the SEGM statement in the DBD.

• You can only use the LAST option when the segment has no key or a nonunique key, and the INSERT
rule for the segment is either FIRST or HERE.

LOAD command
The Load (LOAD) command is used to add a segment sequentially while loading the database.

Format
EXEC DLI LOAD

USING PCB( expression) VARIABLE

SEGMENT( name)

SEGMENT(( area)) SEGLENGTH( expression)

FROM( area)

Options
USING PCB(expression)

Specifies the DB PCB you want to use. Its argument can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing a
number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Specifies the name of the segment type you want to retrieve, insert, delete, or replace.

SEGMENT((area))
A reference to an area in your program containing the name of the segment type. You can specify an
area instead of the name of the segment in the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

Chapter 1. DL/I calls reference 179

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.

Usage
The LOAD command is used for database load programs, which are described in IMS Version 15.3
Database Administration.

Example
EXEC DLI LOAD
 SEGMENT(ILLNESS) FROM(ILLAREA);

LOG command
The Log (LOG) command is used to write information to the system log.

Format
EXEC DLI LOG FROM( area) LENGTH( expression)

Options
FROM(area)

Specifies an area containing the segment to be added, replaced, or deleted.
LENGTH(expression)

Specifies the length of an area.

Usage
You use the LOG command to write information to the system log.

Example
EXEC DLI LOG
 FROM(ILLAREA) LENGTH(18);

Restriction
Restrictions for the LOG command:

• To use this command you must first define an I/O PCB for your program.

180 IMS: Application Programming APIs

POS command
The Position (POS) command retrieves the location of either a dependent or the segment.

Format
EXEC DLI POSITION

POS

USING PCB( n) INTO( data _ area)

KEYFEEDBACK( area)

FEEDBACKLEN( expression)

SEGMENT( name)

SEGMENT(( area))

WHERE( qualification _ statement)

FIELDLENGTH( expression)

Options
USING PCB(n)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

INTO(data_area)
Specifies an area into which the segment is read.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (FEEDBACKLEN is required
in COBOL programs and optional in PL/I and assembler language programs.)

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to retrieve, insert, delete,
or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment type. You can specify an
area instead of specifying the name of the segment in the command.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

Usage
Use the POS command to:

• Retrieve the location of a specific sequential dependent segment, including the last one inserted
• Determine the amount of unused space within each DEDB area

If the area specified by the POS command is unavailable, the I/O area is unchanged and an FH status code
is returned.

Chapter 1. DL/I calls reference 181

Restriction
The POS command is for DEDBs only.

QUERY command
The Query (QUERY) command obtains status code and other information in the DL/I interface block (DIB),
which is a subset of the IMS PCB.

Format
EXEC DLI QUERY USING PCB( expression)

Options
USING PCB(expression) is required. No other options are allowed with the QUERY command.

Usage
For full-function databases, the DIB should contain NA, NU, TH or blanks. For an explanation of the codes,
see IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes.

Use the QUERY command after scheduling the PSB but before making the database call. If the program
has already issued a call using the DB PCB, you then use the REFRESH command to update the
information in the DIB.

Example
Example 1

EXEC DLI QUERY USING PCB(expression);

Explanation: This example shows how to specify the QUERY command. In this example, (n) specifies the
PCB.

Example 2

EXEC DLI REFRESH DBQUERY;

Explanation: If your program has already issued a call using the DB PCB name, use the REFRESH
command to update the information in the DIB. The REFRESH command updates all DB PCBs. You can
issue it only one time.

Restrictions
Restrictions for the QUERY command:

• To use this command you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

REFRESH command
The Refresh (REFRESH) command is used to obtain the most recent information from the DIB for the most
recently issued command.

Format
EXEC DLI REFRESH DBQUERY

182 IMS: Application Programming APIs

Options
DBQUERY is required. Other options are not allowed with the REFRESH command.

Usage
The REFRESH command is used with the QUERY command.

The QUERY command is used after scheduling the PSB but before making the first database call. If
the program has already issued a call using the DB PCB, use the REFRESH command to update the
information in the DIB.

The REFRESH command updates all DB PCBs. It can be issued only once.

Example
EXEC DLI REFRESH DBQUERY;

Explanation

This example shows how to specify the REFRESH command.

Restrictions
Restrictions for the REFRESH command:

• To use this command, you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• You can issue this command only one time.

REPL command
The Replace (REPL) command is used to replace a segment, usually to change the values of one or more
of its fields.

Format
EXEC DLI REPLACE

REPL USING PCB( expression)

A B

A For each parent segment (optional)

VARIABLE SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression)

OFFSET( expression)

FROM( area)

MOVENEXT( data_value)

SET( data_value) SETCOND( data_value) SETZERO( data_value)

B For the object segment (required)

Chapter 1. DL/I calls reference 183

VARIABLE SEGMENT( name)

SEGMENT(( area))

SEGLENGTH( expression)

OFFSET( expression)

FROM( area)

MOVENEXT( data_value)

SET( data_value) SETCOND( data_value) SETZERO( data_value)

Options
USING PCB(expression)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to retrieve, insert, delete,
or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment type. You can specify an
area instead of specifying the name of the segment in the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing
a number. You use OFFSET when you process concatenated segments in logical relationships. It is
required whenever the destination parent is a variable length segment.

FROM(area)
Specifies an I/O area containing the segment to be added, replaced or deleted. You can replace more
than the segment by including the FROM option after the corresponding SEGMENT option for each
segment you want to replace. Including FROM options for one or more parent segments is called a
path command.

The argument following FROM identifies an I/O area that you have defined in your program. You must
use a separate I/O area for each segment type you want to replace.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

184 IMS: Application Programming APIs

Usage
You must qualify the REPL command with at least one SEGMENT and FROM option, which together
indicate the retrieved segments you want replaced.

If the Get command that preceded the REPL command was a path command, and you do not want to
replace all of the retrieved segments or the PSB does not have replace sensitivity for all of the retrieved
segments, you can indicate which of the segments are not to be replaced by omitting the SEGMENT
option.

If your program attempts to do a path replace of a segment where it does not have replace sensitivity, the
data for the segment in the I/O area for the REPL command must be the same as the segment returned
on the preceding GET command. If the data changes in this situation, the transaction is abended and no
data is changed as a result of the Replace command.

Notice that the rules for a REPL path command differ from the rules for an ISRT path command. You
cannot skip segment levels to be inserted with an ISRT command, as you can with a REPL command.

To update information in a segment, you can use the REPL command. The REPL command replaces data
in a segment with data you supply in your application program. First, you must retrieve the segment
into an I/O area. You then modify the information in the I/O area and replace the segment with the
REPL command. For your program to successfully replace a segment, that segment must already have
been defined as replace-sensitive in the PCB by specifying PROCOPT=A or PROCOPT=R on the SENSEG
statement in the PCB.

You cannot issue any commands using the same PCB between a Get command and the REPL command,
and you can issue only one REPL command for each Get command.

Examples
Example 1

EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA);
EXEC DLI REPL SEGMENT(PATIENT) FROM(PATAREA);

Explanation: This example shows that you cannot issue any commands using the same PCB between
the Get command and the REPL command, and you can issue only one REPL command for each Get
command. If you issue this commands and wanted to modify information in the segment again, you must
first reissue the GU command, before reissuing the REPL command.

Example 2

"We have received a payment for $65.00 from a patient whose ID is 08642. Update the patient's billing
record and payment record with this information, and print a current bill for the patient."

Explanation: The four parts to satisfying this processing request are:

1. Retrieve the BILLING and PAYMENT segments for the patient.
2. Calculate the new values for these segments by subtracting $65.00 from the value in the BILLING

segment, and adding $65.00 to the value in the PAYMENT segment.
3. Replace the values in the BILLING and PAYMENT segments with the new values.
4. Print a bill for the patient, showing the patient's name, number, address, the current amount of the bill,

and the amount of the payments to date.

To retrieve the BILLING and PAYMENT segments, issue a GU command. Because you also need the
PATIENT segment when you print the bill, you can include INTO following the SEGMENT options for the
PATIENT segment and for the BILLING segment:

EXEC DLI GU
 SEGMENT(PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1)
 SEGMENT(BILLING) INTO(BILLAREA)
 SEGMENT(PAYMENT) INTO(PAYAREA);

Chapter 1. DL/I calls reference 185

After you have calculated the current bill and payment, you can print the bill, then replace the billing and
payment segments in the database. Before issuing the REPL command, you must change the segments in
the I/O area.

Because you have not changed the PATIENT segment, you do not need to replace it when you replace
the BILLING and PAYMENT segments. To indicate to DL/I that you do not want to replace the PATIENT
segment, you do not specify the SEGMENT option for the PATIENT segment in the REPL command.

EXEC DLI REPL
 SEGMENT(BILLING) FROM(BILLAREA)
 SEGMENT(PAYMENT) FROM(PAYAREA);

This command tells DL/I to replace the BILLING and PAYMENT segments, but not to replace the PATIENT
segment.

These two examples are called path commands. You use a path REPL command to replace more than one
segment with one command.

Example 3

"Steve Arons, patient number 10250, has moved to a new address in this town. His new address is 4638
Brooks Drive, Lakeside, California. Update the database with his new address."

Explanation: You need to retrieve the PATIENT segment for Steve Arons and replace the address portion
of the segment. To retrieve the PATIENT segment, you can use this GU command (assuming PATNO1
contains 10250):

EXEC DLI GU
 SEGMENT(PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

Since you are not replacing the first two fields of the PATIENT segment (PATNO and NAME), you do not
have to change them in the I/O area. Place the new address in the I/O area following the PATNO and
NAME fields. Then you issue the REPL command:

EXEC DLI REPL
 SEGMENT(PATIENT) FROM(PATAREA);

Example 4

EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA)
 WHERE (PATNO=PATNO1)
 SEGMENT(ILLNESS) INTO(ILLAREA)
 SEGMENT(TREATMNT) INTO(TRETAREA);
EXEC DLI REPL SEGMENT(PATIENT) FROM(PATAREA)
 SEGMENT(TREATMNT) FROM(TRETAREA);

Explanation: This example assumes that you want to replace the PATIENT and TREATMNT segments
for patient number 10401, but you do not want to change the ILLNESS segment. To do this issue this
command (assuming PATNO1 contains 10401).

Restrictions
Restrictions for the REPL command:

• You cannot issue any commands using the same PCB between the Get command and the REPL
command.

• You can issue only one REPL command for each Get command.
• To modify information in a segment, you must first reissue the GU command before reissuing the REPL

command.
• You must qualify the REPL command with at least one SEGMENT option and one FROM option.
• If you use a FROM option for a segment, you cannot qualify the segment by using the WHERE or KEYS

option; DL/I uses the key field value specified in the I/O area as qualification.

186 IMS: Application Programming APIs

RETRIEVE command
Use the RETRIEVE command to determine current position in the database in batch and BMP programs.

Format
EXEC DLI RETRIEVE USING PCB( expression) KEYFEEDBACK( area)

 FEEDBACKLEN( expression)

Options
USING PCB(expression)

Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

expression specifies the PCB for which you want to retrieve the concatenated key. It can be any
expression in the host language that converts to the integer data type. You can specify either a
number or a reference to a halfword containing a number. The value must be a positive integer not
greater than the number of PCBs generated for the PSB. The first PCB in the list, the I/O PCB, is 1. The
first DB PCB in the list is 2, the second is 3, and so forth.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

expression is the length of the key feedback I/O area. It can be any expression in the host language
that converts to integer data type; you can specify either a number or a reference to a halfword
containing a number. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
FEEDBACKLEN is optional. For COBOL programs that are not compiled with the IBM COBOL for z/OS &
VM (or VS COBOL II) compiler, you must specify FEEDBACKLEN with the KEYFEEDBACK option.

Usage
You can use the RETRIEVE command to retrieve the concatenated key to determine your current position
in all the PCBs your program accesses.

After issuing the RETRIEVE command, the segment type and level on which the position is established is
returned to the DIBSEGM and DIBSEGLV fields in the DIB. The value in DIBKFBL is set to the actual length
of the concatenated key.

Example
EXEC DLI RETRIEVE USING PCB(2) KEYFEEDBACK(KEYAREA);

EXEC DLI RETRIEVE USING PCB(5) KEYFEEDBACK(KEYAREA);

Explanation

These RETRIEVE commands retrieve the concatenated key for the first and fourth DB PCBs. (The first
PCB in the list is the I/O PCB, so the first DB PCB is the second one in the list.) After issuing the first
RETRIEVE command, you can determine your position in the first DB PCB by examining the concatenated
key in KEYAREA, and the values returned in the DIBSEGM and DIBSEGLV fields in the DIB. After issuing

Chapter 1. DL/I calls reference 187

the second RETRIEVE command, you can determine your position in the fourth DB PCB by examining the
same fields.

Restrictions
Restrictions for the RETRIEVE command:

• You cannot use this command in a CICS program.
• To use this command, you must first define an I/O PCB for your program.

ROLB command
The Rollback (ROLB) command is used to dynamically back out changes and return control to your
program. You cannot use this command in a CICS program.

Format
EXEC DLI ROLB

Options
No options are allowed with the ROLB command.

Usage
When a batch or BMP program determines that some of its processing is invalid, two commands make
it possible for the program to remove the effects of its inaccurate processing. These are the rollback
commands, ROLL and ROLB.

The ROLB command is valid in batch programs when the system log is stored on direct access storage and
dynamic backout has been specified through the use of the BKO execution parameter.

Issuing the ROLB causes IMS DB to back out any changes your program has made to the database since
its last checkpoint, or since the beginning of the program if your program has not issued a checkpoint.
When you issue a ROLB command, IMS DB returns control to your program after backing out the changes,
so that your program can continue processing with the next statement after the ROLB command.

Example
EXEC DLI ROLB;

Explanation

This example shows how to dynamically back out changes and return control to your program with the
ROLB command.

Restrictions
Restrictions for the ROLB command:

• You cannot use this command in a CICS program.
• You must first define an I/O PCB for your program before you can use this command.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• You cannot use this command when the system log is stored on direct access storage and dynamic

backout has not been specified.

Related reference
“ROLL command” on page 189

188 IMS: Application Programming APIs

The Roll (ROLL) command is used to dynamically back out changes. You cannot use this command in a
CICS program;

ROLL command
The Roll (ROLL) command is used to dynamically back out changes. You cannot use this command in a
CICS program;

Format
EXEC DLI ROLL

Options
No options are allowed with the ROLL command.

Usage
When a batch program determines that some of its processing is invalid, two commands make it possible
for the program to remove the effects of its inaccurate processing. These are the rollback commands,
ROLL and ROLB.

You can use ROLL in batch programs.

Issuing the ROLL causes CICS and DL/I to back out any changes your program has made to the database
since its last checkpoint, or since the beginning of the program provided your program has not issued
a checkpoint. When you issue a ROLL command, DL/I terminates your program after backing out the
updates.

Example
EXEC DLI ROLL;

Explanation

This example shows how to dynamically back out changes with the ROLL command.

If you use the ROLL command, IMS terminates the program with user abend code U0778. This type of
abnormal termination does not produce a storage dump.

Restrictions
Restrictions for the ROLL command:

• You cannot use this command in a CICS program.
• You must first define an I/O PCB for your program before you can use this command.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• You cannot use this command when the system log is stored on direct access storage and dynamic

backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

Related reference
“ROLB command” on page 188

Chapter 1. DL/I calls reference 189

The Rollback (ROLB) command is used to dynamically back out changes and return control to your
program. You cannot use this command in a CICS program.

ROLS command
The Rollback to SETS or SETU (ROLS) command is used to back out to a processing point set by an earlier
SETS command.

Format
EXEC DLI ROLS USING PCB( expression)

TOKEN( token) AREA( data_area)

Options
USING PCB(expression)

Specifies the DB PCB you want to use. Its argument can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing a
number.

TOKEN(token)
A 4-byte token associated with the current processing point. If you specify both TOKEN and AREA, the
ROLS command backs out to the SETS or SETU you specified.

AREA(data_area)
The name of the area to be restored to the program when a ROLS command is issued. The first 2 bytes
of the data-area field contain the length of the data-area, including the length itself. The second 2
bytes must be set to X'0000'. If you specify both TOKEN and AREA, the ROLS command backs out to
the SETS you specified.

The ROLS call has two formats: with TOKEN and AREA (for IOPCB only) and without TOKEN and AREA (for
IOPCB or DBPCB).

Usage
Use the SETS and ROLS commands to define multiple points at which to preserve the state of DL/I full-
function databases and to return to these points later. (For example, you can use them so your program
can handle situations that can occur when PSB scheduling completes without all of the referenced DL/I
databases being available.)

Use of the SETS and ROLS commands apply only to DL/I full-function databases. This means that if a
logical unit of work (LUW) is updating types of recoverable resources other than full-function databases,
for example, VSAM files, the SETS and ROLS requests have no effect on the non-DL/I resources. The
backout points are not CICS commit points; they are intermediate backout points that apply only to
DBCTL resources. It is up to you to ensure the consistency of all the resources involved.

You can use the ROLS command to backout to the state all full-function databases were in before either a
specific SETS or SETU request or the most recent commit point.

Examples
Example 1

EXEC DLI ROLS TOKEN(token1) AREA(data_area)

Explanation: In this example (for IOPCB only), backout takes place to the corresponding TOKEN, as
specified by a prior SETS call, and control returns to the application.

Example 2

EXEC DLI ROLS USING PCB(PCB5)

190 IMS: Application Programming APIs

Explanation: In this example, for IOPCB or DBPCB, backout takes place to the prior sync point and the
application is pseudoabended with a U3033 status code. Control does not return to the application.

In this example, PCB5 is the number of a DB PCB that has received a 'data unavailable' status code.
This command results in the same action that would have occurred had the program not issued an
ACCEPT STATUSGROUPA command. (See the topic "Data Availability Enhancements" in IMS Version 15.3
Application Programming.)

Example 3

EXEC DLI ROLS

Explanation: In this example, for IOPCB or DBPCB, backout takes place to the prior sync point and
the application is pseudoabended with a U3033, provided the previous reference to that PCB gave an
unavailable status code. Control does not return to the application.

Restrictions
Restrictions for the ROLS command:

• To use this command you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• You cannot use this command when the system log is stored on direct access storage and dynamic

backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

SCHD command
The Schedule (SCHD) command is used to schedule a PSB in a CICS online program.

For information on the I/O PCB, see the topic "PCBs and PSB" in IMS Version 15.3 Application
Programming.

Format
EXEC DLI SCHEDULE

SCHD

PSB( name)

PSB(( area)) SYSSERVE

NODHABEND

Options
PSB(name)

Specifies the name of the PSB available to your application program that you want to schedule with
the SCHD command.

PSB((area))
Specifies an 8-byte data area in your program that contains the name of the PSB available to your
program that you want to schedule with the SCHD command.

SYSSERVE
Specifies that the application program can handle an I/O PCB and might issue a system service
request in the logical unit of work (LUW).

NODHABEND
Specifies that a CICS transaction does not fail with a DHxx abend.

Should a schedule fail under EXEC DLI, a status code might be returned in the DIB, causing a CICS
transaction to fail with a DHxx abend. This option prevents this. Following an unsuccessful SCHD

Chapter 1. DL/I calls reference 191

command, the control, as well as the status code in the DIB are passed back to the application
program, which can then take the appropriate action.

Usage
Before you can access DL/I databases from a CICS program, you must notify DL/I that your program
will be accessing a database by scheduling a PSB. Do this by issuing the SCHD command. When you no
longer plan to use a PSB, or you want to schedule a subsequent PSB (one or more), you must terminate
the previous PSB with the TERM command. (For more information on the I/O PCB and PSB, see the topic
"PCBs and PSB" in IMS Version 15.3 Application Programming)

The SCHD command can be specified two ways, as shown by the following code examples.

Example
EXEC DLI SCHD PSB(psbname)SYSSERVE;

EXEC DLI SCHD PSB((AREA));

Explanation

These examples show two ways to schedule a PSB in a CICS program.

SETS command
The Set a Backout Point (SETS) command is used to define points in your application at which to preserve
the state of the DL/I databases before initiating a set of DL/I requests to perform a function. Your
application can issue a ROLS command later if it cannot complete the function.

Format
EXEC DLI SETS

TOKEN( mytoken) AREA( data_area)

Options
TOKEN(mytoken)

A 4-byte token associated with the current processing point.
AREA(data_area)

The name of the area to be restored to the program when a SETS command is issued. The first 2 bytes
of the data-area field contain the length of the data-area, including the length itself. The second 2
bytes must be set to X'0000'.

Usage
You can use the SETS command to define multiple points at which to preserve the state of the DL/I
databases and to return to these points later. For example, you can use the SETS command to allow your
program to handle situations that can occur when PSB scheduling completed without all of the referenced
DL/I databases being available.

The SETS command applies only to DL/I full-function databases. If a logical unit of work (LUW) is
updating types of recoverable resources other than full-function databases, for example VSAM files, the
SETS command has no effect on the non-DL/I resources. The backout points are not CICS commit points;
they are intermediate backout points that apply only to DBCTL resources. It is up to you to ensure the
consistency of all the resources involved.

192 IMS: Application Programming APIs

Example
EXEC DLI SETS TOKEN(mytoken) AREA(data_area)

Explanation

This example shows how to specify the SETS command.

Restrictions
Restrictions for the SETS command:

• To use this command you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• In batch, you can only use this command when the system log is stored on direct access storage and

dynamic backout has been specified. You must also specify BKO=Y in the parm field of your JCL when
you execute the program.

• It is rejected when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2 database.
• It is valid, but not functional, if unsupported PCBs exist in the PSB or if the program uses an external

subsystem.

SETU command
The Set a Backout Point Unconditionally (SETU) command is identical to the SETS command except that it
does not get rejected if unsupported PCBs are in the PSB or if the program uses an external subsystem.

Format
EXEC DLI SETU

TOKEN( mytoken) AREA( data_area)

Options
TOKEN(mytoken)

A 4-byte token associated with the current processing point.
AREA(data_area)

The name of the area to be restored to the program when a SETU command is issued. The first 2 bytes
of the data-area field contain the length of the data-area, including the length itself. The second 2
bytes must be set to X'0000'.

Usage
You can use the SETU command to define multiple points at which to preserve the state of the DL/I
databases and to return to these points later. For example, you can use the SETU command to allow your
program to handle situations that can occur when PSB scheduling completed without all of the referenced
DL/I databases being available.

The SETU command applies only to DL/I full-function data bases. If a logical unit of work (LUW) is
updating types of recoverable resources other than full-function databases, such as VSAM files, the SETU
command has no effect on the non-DL/I resources. The backout points are not CICS commit points;
they are intermediate backout points that apply only to DBCTL resources. It is up to you to ensure the
consistency of all the resources involved.

Example
EXEC DLI SETU TOKEN(mytoken) AREA(data_area)

Explanation

Chapter 1. DL/I calls reference 193

This example shows how to specify the SETU command.

Restrictions
Restrictions for the SETU command:

• You cannot use this command in a CICS program.
• To use this command you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• You cannot use this command when the system log is stored on direct access storage and dynamic

backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

STAT command
The Statistics (STAT) command is used to obtain IMS database statistics that you can use in debugging
your program.

This topic contains Product-sensitive Programming Interface information.

Format
EXEC DLI STATISTICS

STAT USING PCB( expression)

INTO( area)

LENGTH( expression)

VSAM

NONVSAM

FORMATTED

UNFORMATTED

SUMMARY

Options
USING PCB(expression)

Specifies the DB PCB you want to use. Its argument can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing a
number.

INTO(area)
Specifies an area into which the data is read.

LENGTH(expression)
Specifies the length of an area.

VSAM/NONVSAM
Specifies database type.

FORMATTED/UNFORMATTED/SUMMARY
Specifies type of output.

Usage
The STAT command is described in IMS Version 15.3 Application Programming.

Example
For examples of the STAT command, see IMS Version 15.3 Application Programming.

194 IMS: Application Programming APIs

SYMCHKP command
The Symbolic Checkpoint (SYMCHKP) command is used to issue a symbolic checkpoint and to end a
logical unit of work.

Format
EXEC DLI SYMCHKP ID( chkpid)

ID(' literal ')

AREA  # ( area#)LENGTH  # ( expression#)

Options
ID(chkpid)

Is the name of an 8-byte area in your program containing the checkpoint ID. If you are using PL/I,
specify this parameter as a pointer to a major structure, an array, or a character string.

ID('literal')
Is the 8-byte checkpoint ID, enclosed in quotation marks.

AREA#(area#)
Specifies the areas in your program you want IMS to checkpoint. You do not need to specify any
area to checkpoint; however, you cannot specify more than seven areas. If you specify more than one
area, you must include all intervening areas. For example, if you specify AREA3, you must also specify
AREA1 and AREA2. The areas you specify using the SYMCHKP command must be the same and in the
areas specified in the XRST command.

LENGTH#(expression#)
Can be any expression in the host language that converts to the integer data type; you can specify
either a number or a reference to a halfword containing a number. For IBM COBOL for z/OS & VM
(or VS COBOL II), PL/I, or assembler language programs, LENGTH1 to LENGTH7 are optional. For
COBOL programs that are not compiled with the IBM COBOL for z/OS & VM (or VS COBOL II) compiler,
LENGTHx (where x is 1 to 7) is required for each AREAx (where x is 1 to 7) that you specify.

Usage
The two kinds of commands that allow you to make checkpoints are: the CHKP, or basic Checkpoint
command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the symbolic or the basic command.

Both checkpoint commands make it possible for you to commit your program's changes to the database
and to establish places from which the program can be restarted, should it terminate abnormally. You
must not use the CHKPT=EOV parameter on any DD statement to take an IMS checkpoint.

Refer to IMS Version 15.3 Application Programming for an explanation of when and why you should issue
checkpoints in your program. Both commands cause a loss of database position at the time the command
is issued. Position must be reestablished by a GU command or other method of establishing position.

In addition to committing your program's changes to the database and establishing places from which
your program can be restarted, the Symbolic Checkpoint command:

• Works with the Extended Restart (XRST) command to restart your program if it terminates abnormally.
• Can save as many as seven data areas in your program, which are restored when your program is

restarted. You can save variables, counters, and status information.

Chapter 1. DL/I calls reference 195

Example

EXEC DLI SYMCHKP
 ID(chkpid)
 AREA1(area1) LENGTH1(expression1)
 …
 AREA7(area7) LENGTH7(expression7)

Explanation

This example shows how to issue a symbolic checkpoint and to end a logical unit of work with a
SYMPCHKP command.

Restrictions
Restrictions for the SYMCHKP command:

• If you issue this command, you must also issue the XRST command.
• You cannot use this command in a CICS program.
• To use the SYMCHKP command you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• The areas you specify using the SYMCHKP command must be the same, and in the same order, as the

areas specified in the XRST command.
• If you specify more than one area, you must specify all intervening areas. For example, if you specify

AREA3, you must also specify AREA1 and AREA2.
• When specifying expression1 with a COBOL program that is not compiled with the IBM COBOL for z/OS

& VM (or the VS COBOL II) compiler, LENGTHx (where x is 1 to 7) is required for each AREAx (where x is
1 to 7) that you specify.

TERM command
The Terminate (TERM) command is used to terminate a PSB in a CICS online program.

Format
EXEC DLI TERMINATE

TERM

Options
No options are allowed with the TERM command.

Usage
If you want to use a PSB other than the one already scheduled, use the TERM command to release the
PSB.

When you issue the TERM command, all database changes are committed and cannot be backed out.
Because returning to CICS also terminates the PSB and commits changes, you need not use the TERM
command unless you want to schedule another PSB, or commit database changes before returning to
CICS.

No options are allowed with the TERM command. If your program subsequently needs a PSB that has
terminated, it must reschedule that PSB by issuing another SCHD command.

In most applications, you do not need to use the TERM command.

196 IMS: Application Programming APIs

Example
EXEC DLI TERM

Explanation

This example shows how to terminate a PSB with the TERM command.

XRST command
The Extended Restart (XRST) command is used to issue an extended restart, and to perform a normal
start or an extended restart from a checkpoint ID or time/date stamp.

If you use Symbolic Checkpoint commands in your program, you must use the XRST command.

Format
EXEC DLI XRST

MAXLENGTH( expression) ID( chkpid)

ID(' literal ')

AREA  # ( area#)LENGTH  # ( expression#)

Options
MAXLENGTH(expression)

Specifies the length of an area from which a program is restarted. This parameter is the longest
segment in the PSB, or of all the segments in a path, if you use path commands in your program. It can
be any expression in the host language that converts to the integer data type. You can specify either a
number or a reference to a halfword containing a number. MAXLENGTH is not required, and defaults to
512 bytes.

ID(chkpid) ID('literal')
This parameter is either the name of a 30-byte area in your program or a 30-byte checkpoint ID,
enclosed in quotation marks. This parameter is optional; you can specify a checkpoint ID or a time/
date stamp in the parm field of your JCL instead. If you specify both, IMS uses the value in the parm
field of the EXEC statement. If you are starting your program normally, do not specify a checkpoint ID,
or ensure that the field pointed to by the chkpid contains blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC statement is not
used, then the rightmost bytes beyond the checkpoint ID being used in the I/O area must be set to
blanks.

You can issue a XRST command after supplying a time/date stamp of IIIIDDDHHMMSST, or from a
specific checkpoint in your program by supplying a checkpoint ID. IIIIDDD is the region ID and day;
HHMMSST is the actual time in hours, minutes, seconds, and tenths of seconds. The system message
DFS0540I supplies the checkpoint ID and time/date stamp.

If you are using PL/I, specify chkpid as a pointer to a major structure, an array, or a character string.

AREA#(area#)
Area# specifies the first area in your program you want to restore. You can specify up to seven areas.
You are not required to specify any areas; however, if you specify more than one area, you must
include all intervening areas. For example, if you specify AREA3, you must also specify AREA1, and
AREA2. The areas you specify on the XRST command must be the same—and in the same order—as
the areas you specify on the SYMCHKP command. When you restart the program, only the areas you
specified in the SYMCHKP command are restored.

Chapter 1. DL/I calls reference 197

LENGTH#(expression#)
Specifies the length of an area from which a program is restarted. Its argument can be any expression
in the host language that converts to the integer data type; you can specify either a number or a
reference to a halfword containing a number. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or
assembler language programs LENGTH1 to LENGTH7 are optional. For COBOL programs that are not
complied with the IBM COBOL for z/OS & VM (or VS COBOL II) compiler, LENGTHx (where x is 1 to 7)
is required for each AREAx (where x is 1 to 7) that you specify. Each qualification statement consists
of:

• The name of a field in a segment
• The relational operator, which indicates how you want the two values compared
• The name of a data area in your program containing the value that is compared against the value of

the field

Usage
If your programs issues Symbolic Checkpoint commands it must also issue the Extended Restart (XRST)
command. The XRST is issued once, at the start of your program. You can use the XRST command to start
your program normally, or to extend restart it in case of an abnormal termination.

You can extend restart your program from a specific checkpoint ID, or a time/date stamp. Because the
XRST attempts to reposition the database, your program also needs to check for correct position.

After issuing the XRST command, you should test the DIBSEGM field in the DIB. After a normal start,
the DIBSEGM field should contain blanks. At the completion of an Extended Restart, the DIBSEGM field
will contain a checkpoint ID. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed by
4 blanks. If the 8-byte ID consists of all blanks, then XRST will return the 14-byte time-stamp ID. The
only successful status code for an XRST command is a blank status code. If DL/I detects any error while
processing the XRST command, your program abends.

Example
EXEC DLI XRST MAXLENGTH(expression)
 ID(chkpid)
 AREA1(area1) LENGTH1(expression1)
 …
 AREA7(area7) LENGTH7(expression7)

Explanation

This example shows how to specify the XRST command.

Restrictions
Restrictions for the XRST command:

• You cannot use this command in a CICS program.
• To use this command you must first define an I/O PCB for your program.
• You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
• You cannot use this command unless the system log is stored on direct access storage and dynamic

backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

Command code reference
Use the following reference information for the command codes.

Restriction: Command codes cannot be used by MSDB calls.

Restrictions: The following restrictions apply for Fast Path secondary index command code and multiple
SSA support:

198 IMS: Application Programming APIs

• The C command code cannot be specified in any SSA other than the first SSA. If specified, it will be
rejected with a status code of AJ.

• The V command code for an ISRT call is ignored.
• A, G, and subset pointer related command codes (M, R, S, W, and Z) are not supported. They are

rejected with a status code of AJ.

Restrictions: The following restrictions apply for any DL/I call for a physical parent segment of the target
segment where target segment is not the root segment:

• The P, Q, U, and V command codes are ignored.
• The field name must be the sequence field name for the parent segment if the SSA contains a
qualification statement. If any field name other than the sequence field name is specified, it will be
rejected with a status code of AK.

Table 54. Summary of command codes

Command
code

 Description

A Clear positioning and start the call at the beginning of the database.

C Use the concatenated key of a segment to identify the segment.

D Retrieve or insert a sequence of segments in a hierarchic path using only one call,
instead of using a separate (path) call for each segment.

F Back up to the first occurrence of a segment under its parent when searching for a
particular segment occurrence. Disregarded for a root segment.

G Prevent randomization or the calling of the HALDB Partition Selection exit routine and
search the database sequentially.

L Retrieve the last occurrence of a segment under its parent.

M Move a subset pointer to the next segment occurrence after your current position.
(Used with DEDBs only.)

N Designate segments that you do not want replaced when replacing segments after a
Get Hold call. Typically used when replacing a path of segments.

O Either field names or both segment position and lengths can be contained in the SSA
qualification for combine field position.

P Set parentage at a higher level than what it usually is (the lowest-level SSA of the call).

Q Reserve a segment so that other programs cannot update it until you have finished
processing and updating it.

R Retrieve the first segment occurrence in a subset. (Used with DEDBs only.)

S Unconditionally set a subset pointer to the current position. (Used with DEDBs only.)

U Limit the search for a segment to the dependents of the segment occurrence on which
position is established.

V Use the hierarchic level at the current position and higher as qualification for the
segment.

W Set a subset pointer to your current position, if the subset pointer is not already set.
(Used with DEDBs only.)

Z Set a subset pointer to 0, so it can be reused. (Used with DEDBs only.)

- Null. Use an SSA in command code format without specifying the command code. Can
be replaced during execution with the command codes that you want.

Chapter 1. DL/I calls reference 199

The following table shows the list of command codes with applicable calls.

Table 55. Command codes and related calls

Command Code GU GHU GN GHN GNP GHNP REPL ISRT DLET

A X

C X X X X

D X X X X

F X X X X

G X

L X X X X

M X X X X X

N X

O X X X X

P X X X X

Q X X X X

R X X X X

S X X X X X

U X X X X

V X X X X

W X X X X X

Z X X X X X X

- X X X X X X

A command code
You can use the A command code to cause position in the database to be cleared which will result in the
call starting at the beginning of the database.

If an application had been traversing through a database and not finding the requested data down a
certain path, it could issue a qualified GN or GHN call with command code A to reset position at the
beginning of the database and search a different path for the data.

C command code
You can use the C command code to indicate to IMS that (instead of supplying a qualification statement)
you are supplying the segment's concatenated key as a means of identifying it. You can use either the C
command code or a qualification statement, but not both.

You can use the C command code for all Get calls and for the ISRT call. When you code the concatenated
key, enclose it in parentheses following the *C, and place it in the same position that would otherwise
contain the qualification statement.

For example, suppose you wanted to satisfy this request:

Did Joan Carter visit the clinic on March 3, 2009? Her patient number is 07755.

The PATIENT segment's key field is the patient number, and the ILLNESS segment's key field is the date
field, so the concatenated key is 0775520090303. This number is comprised of four digits for the year,

200 IMS: Application Programming APIs

followed by two digits for both the month and the day. You issue a GU call with the following SSA to satisfy
the request:

GU ILLNESSb*C(0775520090303)

Using the C command code is sometimes more convenient than a qualification statement because it is
easier to use the concatenated key than to move each part of the qualification statement to the SSA area
during program execution. Using the segment's concatenated key is the equivalent of giving all the SSA in
the path to the segment qualified on their keys.

For example, suppose that you wanted to answer this request:

What treatment did Joan Carter, patient number 07755, receive on March 3, 2009?

Using qualification statements, you would specify the following SSA with a GU call:

GU PATIENTb(PATNObbbEQ07755)
 ILLNESSb(ILLDATEbEQ20090303)
 TREATMNTb

Using a C command code, you can satisfy the previous request by specifying the following SSA on a GU
call:

GU ILLNESSb*C(0775520090303)
 TREATMNTb

If you need to qualify a segment by using a field other than the key field, use a qualification statement
instead of the C command code.

Only one SSA with a concatenated key is allowed for each call. To return segments to your program in
the path to the segment specified by the concatenated key, you can use unqualified SSA containing the D
command code.

For example, if you want to return the PATIENT segment for Joan Carter to your I/O area, in addition to
the ILLNESS segment, use the call:

GU PATIENTb*Db

 ILLNESSb*C(0775520090303)

You can use the C command code with the object segment for a Get call, but not for an ISRT call. The
object segment for an ISRT call must be unqualified.

D command code
You can use the D command code to retrieve or insert a sequence of segments in a hierarchic path with
one call rather than retrieving or inserting each segment with a separate call. A call that uses the D
command code is called a path call.

For your program to use the D command code, the P processing option must be specified in the PCB,
unless your program uses command code D when processing DEDBs.

Related reading: For more information on using the P processing option, see the description of PSB
generation in IMS Version 15.3 System Utilities.

Retrieving a sequence of segments
When you use the D command code with retrieval calls, IMS places the segments in your I/O area. The
segments in the I/O area are placed one after the other, left to right, starting with the first SSA you
supplied. To have IMS return each segment in the path, you must include the D command code in each
SSA. You can, however, include an intervening SSA without the D command code. You do not need to
include the D command code on the last segment in the path, because IMS always returns the last
segment in the path to your I/O area.

Chapter 1. DL/I calls reference 201

The D command code has no effect on the IMS retrieval logic. The only thing it does is cause each
segment to be moved to your I/O area. The segment name in the PCB is the lowest-level segment that
is retrieved or the last level that is satisfied in the call in the case of a GE (not-found) status code.
Higher-level segments with the D command code are placed in the I/O area.

If IMS is unable to find the lowest segment your program has requested, it returns a GE (not-found) status
code, just as it does if your program does not use the D command code and IMS is unable to find the
segment your program has requested. This is true even if IMS reaches the end of the database before
finding the lowest segment your program requested. If IMS reaches the end of the database without
satisfying any levels of a path call, it returns a GB (end of database) status code. However, if IMS returns
one or more segments to your I/O area (new segments for which there was no current position at the start
of the current call), and if IMS is unable to find the lowest requested segment, IMS returns a GE status
code, even if it has reached the end of the database.

The advantages of using the D command code are significant even if your program is not sure that it will
need the dependent segment returned by D. For example, suppose that after examining the dependent
segment, your program still needs to use it. Using the D command, your program has the segment if you
need it, and your program is not required to issue another call for the segment.

For an example of the D command code, suppose your program has this request:

Compute the balance due for each of the clinic's patients by subtracting the payments received
from the amount billed; print bills to be mailed to each patient.

To process this request for each patient, your program needs to know the patient's name and address,
what the charges are for the patient, and the amount of payment the patient has made. Issue this call
until your program receives a GE status code indicating that no more patient segments exist:

GN PATIENT␢*D␢
 BILLING␢*D␢
 PAYMENT␢␢

Each time you issue this call, your I/O area contains the patient segment, the billing segment, and the
payment segment for a particular person.

Inserting a sequence of segments
With ISRT calls, your program can use the D command code to insert a path of segments simultaneously.
Your program need not include D for each SSA in the path. Your program just specifies D on the first
segment that you want IMS to insert. IMS inserts the segments in the path that follow.

For example, suppose your program has this request:

Judy Jennison visited the clinic for the first time. Add a record that includes PATIENT, ILLNESS,
and TREATMNT segments.

After building the segments in your I/O area, issue an ISRT call with the following SSA:

ISRT PATIENT␢*D␢
 ILLNESS␢␢
 TREATMNT␢

Not only is the PATIENT segment added, but the segments following the PATIENT segment, ILLNESS and
TREATMNT, are also added to the database.

You cannot use the D command code to insert segments if a logical child segment in the path exists.

202 IMS: Application Programming APIs

F command code
You can use the F command code to start the search with the first occurrence of a certain segment type or
to insert a new segment as the first occurrence in a chain of segments.

Retrieving a segment as the first occurrence
You can use the F command code for GN and GNP calls. Using it with GU calls is redundant (and is
disregarded) because GU calls can already back up in the database. When you use F, you indicate that
you want the search to start with the first occurrence of the segment type you indicate under its parent in
attempting to satisfy this level of the call.

You can use the F command code for GN and GNP calls to back up in the database. You can back up to the
first occurrence of the segment type that has current position, or you can back up to a segment type that
is before the current position in the hierarchy.

Restriction: The parent of the segment that you are backing up from must be in the same hierarchic path
as the segment you are backing up to. IMS disregards F when you supply it at the root level or with a GU or
GHU.

The search must start with the first occurrence of the segment type that you indicate under the parent.
When the search at that level is satisfied, that level is treated as though a new occurrence of a segment
has satisfied the search. This is true even when the segment that satisfies an SSA where F command code
is specified as the same segment occurrence on which DL/I was positioned before the call was processed.

When a new segment occurrence satisfies an SSA, the position of all dependent segments is reset. New
searches for dependent segments then start with the first occurrence of that segment type under its
parent.

Inserting a segment as the first occurrence
When you use F with an ISRT call, you are indicating that you want IMS to insert the segment you have
supplied as the first segment occurrence of its segment type. Use F with segments that have either no key
at all or a non unique key, and that have HERE specified on the RULES operand of the SEGM statement
in the DBD. If you specify HERE in the DBD, the F command code overrides this, and IMS inserts the new
segment occurrence as the first occurrence of that segment type.

Using the F command code to override the RULES specification on the DBD applies only to the path (either
logical or physical) that you are using to access the segment for the ISRT call. For example, if you are
using the physical path to access the segment, the command code applies to the physical path but not to
the logical path. For clarification of using command codes with the RULES specification, ask the database
administrator at your installation.

For example, suppose that you specified RULES=HERE in the DBD for the TREATMNT segment. You want
to satisfy this request:

Mary Martin visited the clinic today and visited a number of different doctors. Add the
TREATMNT segment for Dr. Smith as the first TREATMNT segment for the most recent illness.

First you build a TREATMNT segment in your I/O area:

19930302ESEDRIXbbb0040SMITHbbbbb

Then you issue an ISRT call with the following SSA. This adds a new occurrence of the TREATMNT
segment as the first occurrence of the TREATMNT segment type among those with equal keys.

ISRT PATIENTb(PATNObbb=b06439)
 ILLNESSb*L
 TREATMNT*F

This example applies to HDAM or PHDAM root segments and to dependent segments for any type of
database.

Chapter 1. DL/I calls reference 203

Related reference
“GU/GHU call” on page 16
The Get Unique (GU) call is used to directly retrieve segments and to establish a starting position in the
database for sequential processing. The Get Hold Unique (GHU) is the hold form for a GU call.

G command code
You can use the G command code to indicate to IMS to skip randomization or the calling of the partition
selection exit and search the database sequentially. While this command code can be used with other
database types, it will affect the access of only HDAM/PHDAM, DEDB, and PHIDAM databases.

When accessing an HDAM/PHDAM, DEDB, or PHIDAM database that is accessed using a HALDB Partition
Selection exit routine, and the records are not in sequence across partition boundaries, all keys in the
requested range of a multiple qualification SSA might not be returned. If the first call to the database or
command A is used, command code G can be used to sequentially read through the database until the
SSA is satisfied.

L command code
You can use the L command code to retrieve the last occurrence of a particular segment type or to insert a
segment as the last occurrence of a segment type.

Retrieving a segment as the last occurrence
The L command code indicates that you want to retrieve the last segment occurrence that satisfies the
SSA, or that you want to insert the segment occurrence you are supplying as the last occurrence of that
segment type. Like F, L simplifies your programming because you can go directly to the last occurrence
of a segment type without having to examine the previous occurrences with program logic, if you know
that it is the last segment occurrence that you want. L can be used with GU or GHU, because IMS normally
returns the first occurrence when you use a GU call. IMS disregards L at the root level.

Using L with GU, GN, and GNP indicates to IMS that you want the last occurrence of the segment type
that satisfies the qualification you have provided. The qualification is the segment type or the qualification
statement of the SSA. If you have supplied just the segment type (an unqualified SSA), IMS retrieves the
last occurrence of this segment type under its parent.

For example, suppose you have this request using the medical hierarchy:

What was the illness that brought Jennifer Thompson, patient number 10345, to the clinic most
recently?

In this example, assume that RULES=LAST is specified in the DBD for the database on ILLNESS. Issue this
call to retrieve this information:

GU PATIENT␢(PATNO␢␢␢=␢10345)
 ILLNESS␢*L

The first SSA gives IMS the number of the particular patient. The second SSA asks for the last occurrence
(in this case, the first occurrence chronologically) of the ILLNESS segment for this patient.

Inserting a segment as the last occurrence
Use L with ISRT only when the segment has no key or a non-unique key, and the insert rule for the
segment is either FIRST or HERE. Using the L command code overrides both FIRST and HERE for HDAM or
PHDAM root segments and dependent segments in any type of database.

Using the L command code to override the RULES specification on the DBD applies only to the path
(either logical or physical) that you are using to access the segment for the ISRT call. For example, if you
are using the physical path to access the segment, the command code applies to the physical path but
not to the logical path. For clarification of using command codes with the RULES specification, ask your
database administrator.

204 IMS: Application Programming APIs

N command code
The N command code prevents you from replacing a segment on a path call. If you use the N command
code with the D command code, the application program can process multiple segments by using one
call. The D command code alone retrieves a path of segments in your I/O area. However, you can
determine which segments that you want to replace by using the N command code with the D command
code.

For example, the following code only replaces the TREATMNT segment.

GHU PATIENT*D(PATNObbb=b06439)
 ILLNESSb*D(ILLDATEb=19930301)
 TREATMNT

REPL PATIENT*N(PATNObbb=b06439)
 ILLNESSb*N(ILLDATEb=19930301)
 TREATMNT

Restriction: If you use D and N command codes together, IMS retrieves the segment but does not replace
it.

The N command code applies only to REPL calls, and IMS ignores it if you include the code in any other
call.

O command code
You can use the O command code to specify a SSA qualification with the position and length of the target
data instead of a DBD-defined field name.

This command code is valid for full function database types (HDAM, HIDAM, PHIDAM, and PHDAM) and
Fast Path DEDBs.

This command code is supported for the following DL/I calls:

• GU SSA
• GHU SSA
• GN SSA
• GNP SSA
• GHNP SSA
• ISRT SSA

When command code O is specified, the SSA qualification can contain either normal field names or the
starting offset and length of the data that you want to retrieve.

You must specify the offset and length as two 4-byte binary values in place of the usual 8-byte character
value that is used to specify a field name. The starting position for the offset is 1 and the offset is relative
to the physical start of the segment definition. The maximum length that is supported is the maximum
segment size for the database type. The minimum length is 1.

For example, a segment might have several fields defined in the DBD with the following offsets and
lengths:

Field Offset Length
Labname 1 5
Street 10 20
State 30 2

The application program has a COBOL copy book with the following map:

Field Offset Length
Labname 1 5
Type 6 3
Street 10 20
State 30 2

Chapter 1. DL/I calls reference 205

The database contains two records with the following data:

 I 11111111122222222233
 I 12345678901234567901235678901
___________I _____________________________
Segment #1 I SVL DEV 555 BAILEY AVE CA
Segment #2 I ARC RSC 650 HARRY RD CA
___________I _____________________________

You can specify a GU call with the O command code in the following format to retrieve data without
needing the fields to be specified in the DBD. The following example demonstrates how to specify the
offset and length values in a DFSDDLT0 test application using hexadecimal edit mode:

 00000000
GU IBMLABS*O ('00010005'x=SVL)
 00000000
GU IBMLABS*O ('00010005'x=ARC)
 00030000
GU IBMLABS*O ('00000002'x=CA)
 00000000
GU IBMLABS*O ('000060003'x=DEV)

In the first GU call, the offset is 1 and the length of the target data is 5.

P command code
Ordinarily, IMS sets parentage at the level of the lowest segment that is accessed during a call. To set
parentage at a higher level, you can use the P command code in a GU, GN, or GNP call.

The parentage that you set with P works just like the parentage that IMS sets: it remains in effect for
subsequent GNP calls, and is not affected by ISRT, DLET, or REPL calls. It is only affected by GNP if you
use the P command code in the GNP call. Parentage is canceled by a subsequent GU, GHU, GN, or GHN.

Use the P command code at only one level of the call. If you mistakenly use P in multiple levels of a call,
IMS sets parentage at the lowest level of the call that includes P.

If IMS cannot fully satisfy the call that uses P (for example, IMS returns a GE status code), but the level
that includes P is satisfied, P is still valid. If IMS cannot fully satisfy the call including the level that
contains P, IMS does not set any parentage. You would receive a GP (no parentage established) if you then
issued a GNP.

If you use P with a GNP call, IMS processes the GNP call with the parentage that was already set by
preceding calls. IMS then resets parentage with the parentage you specified using P after processing the
GNP call.

For example, if you want to send a current bill to all of the patients seen during the month, the
determining value is in the ILLNESS segment. You want to look at only patients whose ILLNESS segments
have dates after the first of the month. For patients who have been to the clinic during the month, you
need to look at their addresses and the amount of charges in the BILLING segment so that you can
print a bill. For this example, assume the date is March 31, 1993. Issue these two calls to process this
information:

GN PATIENT␢*PD
 ILLNESS␢(ILLDATE␢>=19930301)
GNP BILLING␢␢

After you locate a patient who has been to the clinic during the month, you issue the GNP call to retrieve
that patient's BILLING segment. Then you repeat the GN call to find each patient who has been to the
clinic during the month, until IMS returns a GB status code.

Q command code
Use the Q command code if you want to prevent another program from updating a segment until your
program reaches a commit point. The Q command code tells IMS that your application program needs to

206 IMS: Application Programming APIs

work with a segment and that no other tasks can be allowed to modify the segment until the program has
finished.

This means that you can retrieve segments using the Q command code, then retrieve them again later,
knowing that they have not been altered by another program. (You should be aware, however, that
reserving segments for the exclusive use of your program can affect system performance.)

You can use the Q command code in batch programs in a data-sharing environment and in CICS and IMS
online programs. IMS ignores Q in non-data sharing batch programs.

Limiting the number of database calls
For full function, before you use the Q command code in your program, you must specify a MAXQ value
during PSBGEN. This establishes the maximum number of database calls (with Q command codes) that
you can make between sync points.

Related reading: For information on PSBGEN, see IMS Version 15.3 System Utilities.

Fast Path does not support the MAXQ parameter. Consequently in Fast Path, you can issue as many
database calls with Q command codes as you want.

Using segment lock class
For full function, when you use the Q command code to retrieve a segment, you specify the letter Q
followed by a letter (A-J), designating the lock class of that segment (for example, QA). If the lock class is
not a letter (A-J), IMS returns the status code GL.

Fast Path supports the Q command code alone, without a letter designating the lock class. However, for
consistency between Fast Path and full function, Fast Path treats the Q command code as a 2-byte string,
where the second byte must be a letter (A-J). If the second byte is not a letter (A-J), IMS returns the
status code AJ.

For example, suppose a customer wants to place an order for items 1, 2, and 3, but only if 50 item 1's,
75 item 2's, and 100 item 3's are available. Before placing this order, the program must examine all three
item segments to determine whether an adequate number of each item is available. You do not want
other application programs to change any of the segments until your program has determined this and, if
possible, placed the order.

To process this request for full function, your program uses the Q command code when it issues the Get
calls for the item segments. When you use the Q command code in the SSA, you assign a lock class
immediately following the command code in the SSA.

GU PART X
 ITEM 1 *QA
GU PART X
 ITEM 2 *QA
GU PART X
 ITEM 3 *QA

Exception: For Fast Path, the second byte of the lock class is not interpreted as lock class 'A'.

After retrieving the item segments, your program can examine them to determine whether an adequate
number of each item are on hand to place the order. Assume 100 of each item are on hand. Your program
then places the order and updates the database accordingly. To update the segment, your program issues
a GHU call for each segment and follows it immediately with a REPL call:

GHU ITEM 1
REPL ITEM 1 with the value 50
GHU ITEM 2
REPL ITEM 2 with the value 25
GHU ITEM 3
REPL ITEM 3 with the value 0

Chapter 1. DL/I calls reference 207

Using the DEQ call with the Q command code
When you use the Q command code and the DEQ call, you reserve and release segments.

For full function, to issue a DEQ call against an I/O PCB to release a segment, you place the letter
designating the segment's lock class in the first byte of an I/O area. Then, you issue the DEQ call with the
name of the I/O area that contains the letter.

A DEDB DEQ call is issued against a DEDB PCB. Because Fast Path does not support lock class, a DEDB
DEQ call does not require that a lock class be specified in the I/O area.

Restriction: The EXEC DL/I interface does not support DEDB DEQ calls, because EXEC DL/I disallows a
PCB for DEQ calls.

Retrieving segments with full-function DEQ calls
The DEQ call releases all segments that are retrieved using the Q command code, except:

• Segments modified by your program, until your program reaches a commit point
• Segments required to keep your position in the hierarchy, until your program moves to another database

record
• A class of segments that has been locked again as another class

If your program only reads segments, it can release them by issuing a DEQ call. If your program does not
issue a DEQ call, IMS releases the reserved segments when your program reaches a commit point. By
releasing them with a DEQ call before your program reaches a commit point, you make them available to
other programs more quickly.

Retrieving buffers with Fast Path DEQ calls
DEQ calls cause Fast Path to release a buffer that satisfies one of the conditions:

• The buffer has not been modified, or the buffer does not protect a valid root position.
• The buffer has been protected by a Q command code.

Fast Path returns an FW status code when no buffers can be released for a DEQ call.

Any CI locking or segment-level locking performed with a Q command code is protected from other
application programs until a DEQ call is issued or a commit point is reached.

Considerations for root and dependent segments (full function only)
If you use the Q command code on a root segment, other programs in which the PCB does not have
update capability can access the database record. Programs in which the PCB has update capability
cannot access any of the segments in that database record. If you use the Q command code on a
dependent segment, other programs can read the segment using one of the Get calls without the hold. If
your program accesses shared databases, and if any of the segments in that block are reserved with the
Q command code, application programs in other IMS systems cannot update anything in that block. The Q
command code does not hold segments from one step of a conversation to another.

Related Reading: For more information on the relationship between the Q command code and the DEQ
call, see the topic "Reserving Segments for the Exclusive Use of Your Program" in IMS Version 15.3
Application Programming.

U command code
As IMS satisfies each level in a retrieval or ISRT call, a position on the segment occurrence that satisfies
that level is established. The U command code prevents position from being moved from a segment
during a search of its hierarchic dependents.

If the segment has a unique sequence field, using this code is equivalent to qualifying the SSA so that it is
equal to the current value of the key field. When a call is being satisfied, if the position is moved above the

208 IMS: Application Programming APIs

level that the U code was issued at, the code has no effect for the segment type whose parent changed
position.

U is especially useful when unkeyed dependents or non-unique keyed segments are being processed. The
position on a specific occurrence of an unkeyed or non-unique keyed segment can be held by using this
code.

Example: Suppose you want to find out about the illness that brought a patient named Mary Warren to
the clinic most recently, and about the treatments she received for that illness. The following figure shows
the PATIENT, ILLNESS, and TREATMNT segments for Mary Warren.

Figure 2. U command code example

To retrieve this information, retrieve the first ILLNESS segment and the TREATMNT segments associated
with that ILLNESS segment. To retrieve the most recent ILLNESS segment, you can issue the following GU
call:

GU PATIENTb(PATNObbb=b05810
 ILLNESSb*L

After this call, IMS establishes a position at the root level on the PATIENT segment with the key 05810
and on the last ILLNESS segment. Because other ILLNESS segments with the key 19860412 may exist,
you can think of this one as the most recent ILLNESS segment. You might want to retrieve the TREATMNT
segment occurrences that are associated with that ILLNESS segment. You can do this by issuing the GN
call below with the U command code:

GN PATIENTb*U
 ILLNESSb*U
 TREATMNT

In this example, the U command code indicates to IMS that you want only TREATMNT segments that
are dependents of the ILLNESS and PATIENT segments on which IMS has established position. Issuing
the above GN call the first time retrieves the TREATMNT segment with the key of 19860412. Issuing the
GN call the second time retrieves the TREATMNT segment with the key 19860418. If you issue the call
a third time, IMS returns a not-found status code. The U command code tells IMS that, if it does not
find a segment that satisfies the lower qualification under this parent, it cannot continue looking under
other parents. If the U command code was not in the PATIENT SSA, the third GN call causes IMS to move
forward at the root level in an attempt to satisfy the call. If you supply a U command code for a qualified
SSA, IMS ignores the U.

If used in conjunction with command code F or L, the U command code is disregarded at the level and all
lower levels of SSA for that call.

Chapter 1. DL/I calls reference 209

V command code
Using the V command code on an SSA is similar to using a U command code in that SSA and all preceding
SSA. Specifying the V command code for a segment level tells IMS that you want to use the position that
is established at that level and above as a qualification for the call.

Using the V command code is analogous to qualifying your request with a qualified SSA that specifies the
current IMS position.

For example, suppose that you wanted to answer this request:

Did Joan Carter, patient number 07755, receive any treatment on March 3, 2009?

Using a qualified SSA, specify the following call:

GU PATIENTb(PATNObbb=b07755)
 ILLNESSb(ILLDATEb=20090303)
 TREATMNT

If you have position established on the PATIENT segment for patient number 07755 and on the ILLNESS
segment for March 3, 2009, you can use your position to retrieve the TREATMNT segments in which you
are interested. You do this by specifying the V command code as follows:

GN PATIENTbb
 ILLNESSbb*V
 TREATMNT

Using the V command code for a call is like establishing parentage and issuing a subsequent GNP call,
except that the V command code sets the parentage for the call it is used with, not for subsequent calls.
For example, to satisfy the previous request, you could have set parentage at the ILLNESS segment level
and issued a GNP to retrieve any TREATMNT segments under that parent. With the V command code, you
specify that you want the ILLNESS segment to be used as parentage for that call.

You can specify the V command code for any parent segment. If you use the V command code with a
qualified SSA, it is ignored for that level and for any higher level that contains a qualified SSA.

NULL command code
The null command code (-) enables you to reserve one or more positions in a SSA in which a program can
store command codes, if they are needed during program execution.

For example, reserve position for two command codes as follows:

GU PATIENTb*--(PATNObbb=b07755)
 ILLNESSbILLDATEb=19930303)
 TREATMNT

Using the null command code lets you use the same set of SSAs for more than one purpose. However,
dynamically modifying the SSA makes debugging more difficult.

DEDB command codes for DL/I
The M, R, S, W, and Z command codes are only used with a DEDB.

Sample application program
The following examples are based on one sample application program—the recording of banking
transactions for a passbook (savings account) account. The transactions are written to a database as
either posted or unposted, depending on whether they were posted to the customer's passbook.

For example, when Bob Emery does business with the bank but forgets to bring in his passbook, an
application program writes the transactions to the database as unposted. The application program sets
a subset pointer to the first unposted transaction, so it can be easily accessed later. The next time Bob
remembers to bring in his passbook, a program posts the transactions.

210 IMS: Application Programming APIs

The program can directly retrieve the first unposted transaction using the subset pointer that was
previously set. After the program has posted the transactions, it sets the subset pointer to 0. An
application program that updates the database later will be able to tell that no unposted transactions
exist. The following figure summarizes the processing that is performed when the passbook is unavailable
and when it is available.

Figure 3. Processing for the passbook example

Chapter 1. DL/I calls reference 211

M command code
To move the subset pointer forward to the next segment after your current position, your program issues a
call with the M command code.

Using the passbook account example, suppose that you want to post some, but not all, of the
transactions, and that you want the subset pointer to be set to the first unposted transaction. The
following command sets subset pointer 1 to segment B6, as shown in the figure below.

GU Abbbbbbb(AKEYbbb
 Bbbbbbbb*R1M1

If the current segment is the last in the chain, and you use an M command code, IMS sets the pointer to 0.

Figure 4. Moving the subset pointer to the next segment after your current position

R command code
To retrieve the first segment occurrence in the subset, your program issues a Get call with the R command
code. The R command code does not set or move the pointer. It indicates to IMS that you want to
establish position on the first segment occurrence in the subset. The R command code is like the F

212 IMS: Application Programming APIs

command code, except that the R command code applies to the subset instead of to the entire segment
chain.

Using the passbook account example, suppose that Bob Emery visits the bank and brings his passbook;
you want to post all of the unposted transactions. Because subset pointer 1 was previously set to the first
unposted transaction, your program uses the following call to retrieve that transaction:

GU Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb*R1

As shown by the following figure, this call retrieves segment B5. To continue processing segments in the
chain, you can issue GN calls as you would if you were not using subset pointers.

If the subset does not exist (subset pointer 1 has been set to 0), IMS returns a GE status code, and your
position in the database will be immediately following the last segment in the chain. Using the passbook
example, the GE status code tells you that no unposted transactions exist.

Figure 5. Retrieving the first segment in a chain of segments

You can specify only one R command code for each SSA. If you use more than one R in a SSA, IMS returns
an AJ status code to your program.

You can use R with other command codes, except F and Q. Other command codes in a SSA take effect
after the R command code has been processed, and after position has been successfully established
on the first segment in the subset. If you use the L and R command codes together, the last segment
in the segment chain is retrieved. (If the subset pointer that was specified with the R command code,
IMS returns a GE status code instead of the last segment in the segment chain.) Do not use the R and F
command codes together. If you do, you will receive an AJ status code. The R command code overrides all
insert rules, including LAST.

S command code
To set a subset pointer unconditionally, regardless of whether it is already set, your program issues a call
with the S command code.

When your program issues a call that includes the S command code, IMS sets the pointer to your current
position.

For example, to retrieve the first B segment occurrence in the subset defined by subset pointer 1 and to
reset pointer 1 at the next B segment occurrence, you would issue the following commands:

GU Abbbbbbb(AKEYbbb=bB1)
 Bbbbbbbb*R1
GN Bbbbbbbb*S1

After you issue this call, instead of pointing to segment B5, subset pointer 1 points to segment B6, as
shown in the following figure.

Chapter 1. DL/I calls reference 213

Figure 6. Unconditionally setting the subset pointer to your current position

W command code
Like the S command code, the W command code sets the subset pointer conditionally. Unlike the S
command code, the W command code updates the subset pointer only if the subset pointer is not already
set to a segment.

For example, using the passbook example, suppose that Bob Emery visits the bank and forgets to bring
his passbook. You add the unposted transactions to the database. You want to set the pointer to the first
unposted transaction, so that later, when you post the transactions, you can immediately access the first
one. The following call sets the subset pointer to the transaction you are inserting if it is the first unposted
one.

ISRT Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb*W1

As shown by the following figure, this call sets subset pointer 1 to segment B5. If unposted transactions
already exist, the subset pointer is not changed.

214 IMS: Application Programming APIs

Figure 7. Conditionally setting the subset pointer to your current position

Z command code
The Z command code sets the value of the subset pointer to 0. After your program issues a call with the
Z command code, the pointer is no longer set to a segment, and the subset defined by that pointer no
longer exists.

IMS returns a status code of GE to your program if you try to use a subset pointer having a value of 0.

For example, using the passbook example, suppose that you used the R command code to retrieve
the first unposted transaction. You then process the chain of segments, posting the transactions. After
posting the transactions and inserting any new ones into the chain, use the Z command code to set the
subset pointer to 0 as shown in the following call:

ISRT Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb*Z1

After this call, subset pointer 1 is set to 0, which indicates to a program that subsequently updates the
database that no unposted transactions exist.

Chapter 1. DL/I calls reference 215

Relationship between calls, AIBs, and PCBs
The following table shows the relationship of calls to full function (FF), main storage database (MSDB),
data entry database (DEDB), I/O, and general sequential access method (GSAM) PCBs.

Table 56. Call relationship to PCBs

CALL AIB FF PCBs MSDB PCBs DEDB PCBs I/O PCBs GSAM PCBs

APSB X

CHKP X X

CIMS X

CLSE X X

DEQ X X X

DLET X X X X

DPSB X

FLD X X X

GHN X X X X

GHNP X X X X

GHU X X X X

GMSG X

GN X X X X X X

GNP X X X X

GSCD1 X X X X X

GU X X X X X X

ICMD X

INIT X X

INQY X

ISRT X X X X X X

LOG X X

OPEN X X

PCB2

POS X X

RCMD X

REPL X X X X

ROLB X X

ROLL2

ROLS X X X

SETS/SETU X X

SNAP3 X X X X X

216 IMS: Application Programming APIs

Table 56. Call relationship to PCBs (continued)

CALL AIB FF PCBs MSDB PCBs DEDB PCBs I/O PCBs GSAM PCBs

STAT4 X X

SYNC X X

TERM2

XRST X X

Note:

1. GSCD is a Product-sensitive Programming Interface.
2. The PCB, ROLL, and TERM calls do not have an associated PCB.
3. SNAP is a Product-sensitive Programming Interface.
4. STAT is a Product-sensitive Programming Interface.

DL/I test program (DFSDDLT0) reference
DFSDDLT0 is an IMS application program test tool that issues calls to IMS based on control statement
information. You can use it to verify and debug DL/I calls independently of application programs. You
can run DFSDDLT0 using any PSB, including those that use an IMS-supported language. You can also use
DFSDDLT0 as a general-purpose database utility program.

The functions that DFSDDLT0 provides include:

• Issuing any valid DL/I call against any database using:

– Any segment search argument (SSA) or PCB, or both

Important: Calls that use a PCB must have specified LIST=YES in the PSB.
– Any SSA or AIB, or both

• Comparing the results of a call to expected results. This includes the contents of selected PCB fields,
the data returned in the I/O area, or both.

• Printing the control statements, the results of calls, and the results of comparisons only when the
output is useful, such as after an unequal compare.

• Dumping DL/I control blocks, the I/O buffer pool, or the entire batch region.
• Punching selected control statements into an output file to create new test data sets. This simplifies the

construction of new test cases.
• Merging multiple input data sets into a single input data set using a SYSIN2 DD statement in the JCL.

You can specify the final order of the merged statements in columns 73 to 80 of the DFSDDLT0 control
statements.

• Sending messages to the z/OS system console (with or without a reply).
• Repeating each call up to 9,999 times.

Control statements
DFSDDLT0 processes control statements to control the test environment. DFSDDLT0 can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

When you are coding the DFSDDLT0 control statements, keep these items in mind:

• You must fill in column 1 of each control statement. If column 1 is blank, the statement type defaults to
the prior statement type. DFSDDLT0 attempts to use any remaining characters as it would for the prior
statement type.

• Use of reserved fields can produce invalid output and unpredictable results.

Chapter 1. DL/I calls reference 217

• Statement continuations are important, especially for the CALL statement.
• Sequence numbers are not required, but they can be very useful for some DFSDDLT0 functions.
• All codes and fields in the DFSDDLTO statements must be left justified followed by blanks, unless

otherwise specified.

Control statement guidelines
The order of control statements is critical in constructing a successful call. To avoid unpredictable results,
follow these guidelines:

• If you are using STATUS and OPTION statements, place them somewhere before the calls that are to
use them.

• Both types of COMMENT statements are optional but, if present, must appear before the call they
document.

• You must code CALL FUNCTION statements and any required SSAs consecutively without interruption.
• CALL DATA statements must immediately follow the last continuation, if any, of the CALL FUNCTION

statements.
• COMPARE statements are optional but must follow the last CALL (FUNCTION or DATA) statement.
• When CALL FUNCTION statements, CALL DATA statements, COMPARE DATA statements, COMPARE

PCB statements, and COMPARE AIB statements are coded together, they form a call sequence. Do not
interrupt call sequences with other DFSDDLT0 control statements.

Exception: IGNORE statements are the only exception to this rule.
• Use IGNORE statements (N or period (.)) to override any statement, regardless of its position in the

input stream. You can use IGNORE statements in either SYSIN or SYSIN2 input streams.

Related reference
“SYSIN DD statement” on page 257
The data set specified by the SYSIN DD statement is the normal input data set for DFSDDLT0. When
processing input data that is on direct-access or tape, you may want to override certain control
statements in the SYSIN input stream or to add other control statements to it. You do this with a SYSIN2
DD statement and the control statement sequence numbers.
“SYSIN2 DD statement” on page 258
DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLT0 will read
and process the specified data sets.
“PUNCH CTL statement” on page 250
The PUNCH CTL statement allows you to produce an output data set consisting of COMPARE PCB
statements, COMPARE DATA statements, COMPARE AIB statements, other control statements, or
combinations of these statements.

ABEND statement
The ABEND statement causes IMS to issue an abend and terminate DFSDDLT0.

The following table shows the format of the ABEND statement.

Table 57. ABEND statement

Column Function Code Description

1-5 Identifies control
statement

ABEND Issues abend U252. (No dump is produced unless
you code DUMP on the OPTION statement.)

6-72 Reserved ␢

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement override.

218 IMS: Application Programming APIs

Examples of ABEND statement
If you use ABEND in the input stream and want a dump, you must specify DUMP on the OPTION
statement. The default on the OPTION statement is NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 22100010

Dump will be produced; OPTION statement provided requests dump.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O DUMP 22100010

No dump will be produced; OPTION statement provided requests NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O NODUMP 22100010

CALL statement
The CALL control statement has two parts: CALL FUNCTION and CALL DATA.

• The CALL FUNCTION statement supplies the DL/I call function, the segment search arguments (SSAs),
and the number of times to repeat the call. SSAs are coded according to IMS standards.

• With the CALL DATA statement you provide any data (database segments, z/OS commands, checkpoint
IDs) required by the DL/I call specified in the CALL FUNCTION statement.

Examples of DFSDDLT0 call functions
STAK/END Call: The following example shows the STAK and END call functions.

//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*

SKIP/START Call: The following example demonstrates the use of the SKIP and START call functions
in SYSIN2 to override and stop the processing of the STAK and END call functions in SYSIN. DFSDDLT0
executes the GU call function in SYSIN, skips the processing of STACK, WTO, T comment, GN, and END in
SYSIN, and goes to the COMMENT.

//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*
//BATCH.SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SKIP 10001150
L START 10001450
U THIS COMMENT SHOULD REPLACE THE STAK COMMENT 10001500

Chapter 1. DL/I calls reference 219

U ********THIS COMMENT SHOULD GET PRINTED BECAUSE OF SYSIN2********* 10001650
/*

CALL FUNCTION statement
The following table gives the format for CALL FUNCTION statements, including the column number,
function, code, and description.

This is the preferred format when you are not working with column-specific SSAs.

Table 58. CALL FUNCTION statement

Column Function Code Description

1 Identifies control statement L Issues an IMS call.

2 Reserved b

3 SSA level b SSA level
(optional).

n Range of
hexadecimal
characters allowed
is 1-F.

4 Reserved b

5-8 Repeat count b If blank, repeat
count defaults to 1.

nnnn 'nnnn' is the
number of times
to repeat this call.
Range is 1 to 9999,
right-justified, with
or without leading
zeros.

9 Reserved b

10-13 Identifies DL/I call function b If blank, use
function from
previous CALL
statement.

xxxx 'xxxx' is a DL/I call
function.

220 IMS: Application Programming APIs

Table 58. CALL FUNCTION statement (continued)

Column Function Code Description

 Continue SSA CONT Continuation
indicator for SSAs
too long for a single
CALL FUNCTION
statement. Column
72 of the preceding
CALL FUNCTION
statement must
have an entry.
The next CALL
statement should
have CONT in
columns 10 - 13
and the SSA should
continue in column
16.

14-15 Reserved b

16-23 or SSA name xxxxxxxx Must be left-
justified.

16-23 or Token xxxxxxxx Token name (SETS/
ROLS).

16-23 or MOD name xxxxxxxx Modname
(PURG+ISRT).

16-23 or Subfunction xxxxxxxx nulls, DBQUERY,
FIND, ENVIRON,
ENVIRON2,
PROGRAM (INQY).

16-19 and Statistics type xxxx DBAS/DBES-OSAM
or VBAS/VBES-
VSAM (STAT).2

20 or Statistics format x F - Formatted U-
Unformatted S -
Summary.

16–19 SETO ID1 SETx Where x is 1, 2,
or 3. Specified on
SETO and CHNG
calls as defined in
Note.

Chapter 1. DL/I calls reference 221

Table 58. CALL FUNCTION statement (continued)

Column Function Code Description

21-24 SETO IOAREA SIZE nnnn Value of 0000 to
8192.

If a value
greater than 8192
is specified, it
defaults to 8192.

If no value is
specified, the call is
made with no SETO
size specified.

24–71 Remainder of SSA Unqualified SSAs
must be blank.
Qualified search
arguments should
have either an '*'
or a '(' in column
24 and follow
IMS SSA coding
conventions.

72 Continuation column b No continuations
for this statement.

x Alone, it indicates
multiple SSAs
each beginning
in column 16
of successive
statements. With
CONT in columns
10-13 of the
next statement,
indicates a
single SSA that
is continued
beginning in
column 16 of
the following
statement.

73-80 Sequence indication nnnnnnnn For SYSIN2
statement override.

25-32 OTMA descriptor name xxxxxxxx 8–byte character
field (ICAL).

34-39 The wait time for the
synchronous call to be
processed

nnnnnn 6–byte character
field with a range
from 1 to 999999
(ICAL).

222 IMS: Application Programming APIs

Table 58. CALL FUNCTION statement (continued)

Column Function Code Description

41-45 The input message length nnnnn The length of
the input data in
the request area
(ICAL).

47-51 The response area length nnnnn The length of
the response area
for the output
message (ICAL).

Note:

1. SETO CALL:

The SETO ID (SET1, SET2, or SET3) is required on the SETO call if DFSDDLT0 is to keep track of the text unit
address returned on the SETO call that would be passed on the CHNG call for option parameter TXTU.

If the SETO ID is omitted on the SETO call, DFSDDLT0 does not keep track of the data returned and is unable
to reference it on a CHNG call.

CHNG CALL:

The SETO ID (SET1, SET2, or SET3) is required on the CHNG call if DFSDDLT0 is to place the address of
the SETO ID I/O area returned on the SETO call. This is the SETO call of the text unit returned on the SETO
call with a matching SETO ID for this CHNG call into the “TXTU=ADDR” field of the option parameter in the
CHNG call.

When the SETO ID is specified on the CHNG call, DFSDDLT0 moves the address of that text unit returned on
the SETO call using the same SETO ID.

Code the OPTION statement parameter TXTU as follows: TXTU=xxxx where xxxx is any valid non-blank
character. It cannot be a single quote character.

Suggested value for xxxx could be SET1, SET2, or SET3. This value is not used by DFSDDLT0.
2. STAT is a Product-sensitive Programming Interface.

This information applies to different types of continuations:

• Column 3, the SSA level, is usually blank. If it is blank, the first CALL FUNCTION statement fills SSA 1,
and each following CALL FUNCTION statement fills the next lower SSA. If column 3 is not blank, the
statement fills the SSA at that level, and the following CALL FUNCTION statement fills the next lower
one.

• Columns 5 through 8 are usually blank, but if used, must be right justified. The same call is repeated as
specified by the repeat call function.

• Columns 10 through 13 contain the DL/I call function. The call function is required only for the first CALL
FUNCTION statement when multiple SSAs are in a call. If left blank, the call function from the previous
CALL FUNCTION statement is used.

• Columns 16 through 23 contain the segment name if the call uses a SSA.
• If the DL/I call contains multiple SSAs, the statement must have a nonblank character in column 72,

and the next SSA must start in column 16 of the next statement. The data in columns 1 and 10 through
13 are blank for the second through last SSAs.

Restriction: On ISRT calls, the last SSA can have only the segment name with no qualification or
continuation.

• If a field value extends past column 71, put a nonblank character in column 72. (This character is
not read as part of the field value, only as a continuation character.) In the next statement insert the
keyword CONT in columns 10 through 13 and continue the field value starting at column 16.

Chapter 1. DL/I calls reference 223

• Maximum length for the field value is 256 bytes, maximum size for a SSA is 290 bytes, and the
maximum number of SSAs for this program is 15, which is the same as the IMS limit.

• If columns 5 through 8 in the CALL FUNCTION statement contain a repeat count for the call, the call will
terminate when reaching that count, unless it first encounters a GB status code.

Related reference
“CALL FUNCTION statement with column-specific SSAs” on page 224
In this format, the SSA has intervening blanks between fields. Columns 24, 34, and 37 must contain
blanks.

CALL FUNCTION statement with column-specific SSAs
In this format, the SSA has intervening blanks between fields. Columns 24, 34, and 37 must contain
blanks.

Command codes are not permitted. The following table gives the format for the CALL FUNCTION
statement with column-specific SSAs.

Table 59. CALL FUNCTION statement (column-specific SSAs)

Column Function Code Description

1 Identifies control
statement

L Call statement (see columns 10-13).

2 Reserved b

3 Reserved b

4 Reserved b

5-8 Repeat Count b If blank, repeat count defaults to 1.

nnnn 'nnnn' is the number of times to repeat this call.
Range 1 to 9999, right-justified but need not
contain leading zeros.

10-13 Identifies DL/I call
function

b If blank, use function from previous CALL
statement.

xxxx 'xxxx' is a DL/I call function.

CONT Continuation indicator for SSAs too long for a
single CALL FUNCTION statement. Column 72 of
preceding CALL FUNCTION statement must contain
a nonblank character. The next CALL statement
should have CONT in columns 10 through 13 and
the SSA should continue in column 16.

14-15 Reserved b

16-23 SSA name s-name Required if call contains SSA.

24 Reserved b Separator field.

25 Start character for SSA (Required if segment is qualified.

26-33 SSA field name f-name Required if segment is qualified.

34 Reserved b Separator field.

35-36 DL/I call operator(s) name Required if segment is qualified.

37 Reserved b Separator field.

224 IMS: Application Programming APIs

Table 59. CALL FUNCTION statement (column-specific SSAs) (continued)

Column Function Code Description

38-nn Field value nnnnn Required if segment is qualified.

Note: Do not use '5D' or ')' in field value.

nn+1 End character for SSA) Required if segment is qualified.

72 Continuation column b No continuations for this statement.

x Alone, it indicates multiple SSAs each beginning in
column 16 of successive statements. With CONT in
columns 10-13 of the next statement, indicates a
single SSA that is continued beginning in column 16
of the following statement

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If a CALL FUNCTION statement contains multiple SSAs, the statement must have a nonblank character
in column 72 and the next SSA must start in column 16 of the next statement. If a field value extends
past column 71, put a nonblank character in column 72. In the next statement insert the keyword CONT in
columns 10 through 13 and continue the field value starting at column 16. Maximum length for field value
is 256 bytes, maximum size for a SSA is 290 bytes, and the maximum number of SSAs for this program is
15, which is the same as the IMS limit.

Related reference
“CALL FUNCTION statement” on page 220
The following table gives the format for CALL FUNCTION statements, including the column number,
function, code, and description.

CALL DATA statement
CALL DATA statements provide IMS with information normally supplied in the I/O area for that type of call
function.

CALL DATA statements must follow the last CALL FUNCTION statement. You must enter an L in column
1, the keyword DATA in columns 10 through 13, and code the necessary data in columns 16 through 71.
You can continue data by entering a nonblank character in column 72. On the continuation statement,
columns 1 through 15 are blank and the data resumes in column 16. The following table shows the format
for a CALL DATA statement.

Table 60. CALL DATA statement

Column Function Code Description

1 Identifies control
statement

L CALL DATA statement.

2 Increase segment
length

K Adds 2500 bytes to the length of data defined in
columns 5 through 8.

3 Propagate remaining
I/O indicator

P Causes 50 bytes (columns 16 through 65) to be
propagated through remaining I/O area.

Note: This must be the last data statement and
cannot be continued.

4 Format options ␢ Not a variable-length segment.

Chapter 1. DL/I calls reference 225

Table 60. CALL DATA statement (continued)

Column Function Code Description

V For the first statement describing the only
variable-length segment or the first variable-
length segment of multiple variable-length
segments, LL field is added before the segment
data.

M For statements describing the second through
the last variable-length segments, LL field is
added before the segment data.

P For the first statement describing a fixed-length
segment in a path call.

Z For message segment, LLZZ field is added
before the data.

U Undefined record format for GSAM records. The
length of segment for an ISRT is placed in the
DB PCB key feedback area.

5-8 Length of data in
segment

nnnn This value must be right justified but need not
contain leading zeros. If you do not specify a
length, DFSDDLT0 will use the number of DATA
statements read multiplied by 56 to derive the
length.

9 Reserved ␢
10-13 Identifies CALL DATA

statement
DATA Identifies this as a DATA statement.

14-15 Reserved ␢
16-71

or

Data area xxxx Data that goes in the I/O area.

16-23

or

Checkpoint ID Checkpoint ID (SYNC).

16-23

or

Destination name Destination name (CHNG).

16 DEQ option DEQ options (A,B,C,D,E,F,G,H,I, or J).

72 Continuation column ␢ If no more continuations for this segment.

x If more data for this segment or more segments.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

When inserting variable-length segments or including variable-length data for a CHKP or LOG call:

• You must use a V or M in column 4 of the CALL DATA statement.
• Use V if only one variable-length segment is being processed.
• You must enter the length of the data with leading zeros, right justified, in columns 5 through 8. The

value is converted to binary and becomes the first 2 bytes of the segment data.

226 IMS: Application Programming APIs

• You can continue a CALL DATA statement into the next CALL DATA statement by entering a nonblank
character in column 72. For subsequent statements, leave columns 1 through 15 blank, and start the
data in column 16.

If multiple variable-length segments are required (that is, concatenation of logical child and logical parent
segments, both of which are variable-length) for the first segment:

• You must enter a V in column 4.
• You must enter the length of the first segment in columns 5 through 8.
• If the first segment is longer than 56 bytes, continue the data as described for inserting variable-length

segments.

Exceptions:

– The last CALL DATA statement to contain data for this segment must have a nonblank character in
column 72.

– The next CALL DATA statement applies to the next variable-length statement and must contain an M
in column 4 and the length of the segment in columns 5 through 8.

You can concatenate any number of variable-length segments in this manner. Enter M or V and the length
(only in CALL DATA statements that begin data for a variable-length segment).

When a program is inserting or replacing through path calls:

• Enter a P in column 4 to specify that the length field is to be used as the length the segment will occupy
in the user I/O area.

• You only need to use P in the first statement of fixed-length-segment CALL DATA statements in path
calls that contain both variable- and fixed-length segments.

• You can use V, M, and P in successive CALL DATA statements.

For INIT, SETS, ROLS, and LOG calls:

• The format of the I/O area is

LLZZuser-data

where LL is the length of the data in the I/O area, including the length of the LLZZ portion.
• If you want the program to use this format for the I/O area, enter a Z in column 4 and the length of the

data in columns 5 through 8. The length in columns 5 through 8 is the length of the data, not including
the 4-byte length of LLZZ.

OPTION DATA statement
The OPTION DATA statement contains options as required for SETO and CHNG calls.

The following table shows the format for an OPTION DATA statement, including the column number,
function, code, and description.

Table 61. OPTION DATA statement

Column Function Code Description

1 Identifies control
statement

L OPTION statement.

2-9 Reserved ␢
10-13 Identifies OPT Identifies this as OPTION statement.

CONT Identifies this as a continuation of an option input.

14-15 Reserved ␢
16-71 Option area xxxx Options as defined for SETO and CHNG call.

Chapter 1. DL/I calls reference 227

Table 61. OPTION DATA statement (continued)

Column Function Code Description

72 Continuation column ␢ If no more continuations for options.

x If more option data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

FEEDBACK DATA statement
The FEEDBACK DATA statement defines an area to contain feedback data.

The FEEDBACK DATA statement is optional. However, if the FEEDBACK DATA statement is used, an
OPTION DATA statement is required.

The following table shows the format for a FEEDBACK DATA statement, including the column number,
function, code, and description.

Table 62. FEEDBACK DATA statement

Column Function Code Description

1 Identifies control
statement

L FEEDBACK statement.

2-3 Reserved ␢
4 Format option ␢ Feedback area contains LLZZ.

Z Length of feedback area will be computed and the LLZZ will
be added to the feedback area.

5-8 Length of
feedback area

nnnn This value must be right justified but need not contain
leading zeros. If you do not specify a length, DFSDDLT0
uses the number of FDBK inputs read multiplied by 56 to
derive the length.

2-9 Reserved ␢
10-13 Identifies FDBK Identifies this as feedback statement and continuation of

feedback statement.

14-15 Reserved ␢
16-71 Feedback area xxxx Contains user pre-defined initialized area.

72 Continuation
column

␢ If no more continuations for feedback.

x If more feedback data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

DL/I call functions
The following table shows the DL/I call functions supported in DFSDDLT0 and which ones require data
statements.

Table 63. DL/I call functions

Call
AIB
Support

PCB
Support

Data Stmt
1 Description

CHKP yes yes R Checkpoint.

228 IMS: Application Programming APIs

Table 63. DL/I call functions (continued)

Call
AIB
Support

PCB
Support

Data Stmt
1 Description

CHNG yes yes R Change alternate PCB.

R Contains the alternate PCB name option statement and
feedback statement optional.

CMD yes yes R Issue IMS command. This call defaults to I/O PCB.

DEQ yes yes R Dequeue segments locked with the Q command code. For
full function, this call defaults to the I/O PCB, provided a
DATA statement containing the class to dequeue immediately
follows the call. For Fast Path, the call is issued against a
DEDB PCB. Do not include a DATA statement immediately
following the DEQ call.

DLET yes yes O Delete. If the data statement is present, it is used. If not, the
call uses the data from the previous Get Hold Unique (GHU).

FLD yes yes R Field—for Fast Path MSDB calls using FSAs. This call
references MSDBs only. If there is more than one FSA, put
a nonblank character in column 34, and put the next FSA
in columns 16-34 of the next statement. A DATA statement
containing FSA is required.

GCMD yes yes N Get command response. This call defaults to I/O PCB.

GHN yes yes O2 Get Hold Next.

GHNP yes yes O2 Get Hold Next in Parent.

GHU yes yes O2 Get Hold Unique.

GMSG3 yes no R Get Message is used in an automated operator (AO)
application program to retrieve a message from an AO exit
routine (DFSAOE00 or another AOIE type user exit). The DATA
statement is required to allow for area in which to return
data. The area must be large enough to hold this returned
data.

GN yes yes O2 Get Next segment.

GNP yes yes O2 Get Next in Parent.

GU yes yes O2 Get Unique segment.

GUR yes no R Get Unique Record from the IMS catalog database.

Tip: Specify LCASE=C on the OPTION statement to make
the records, which are returned as XML instance documents,
more readable.

ICAL yes no R IMS Call enables an application program that runs in the IMS
TM environment to send a synchronous request for data or
services to a non-IMS application program or service that
runs in a z/OS or distributed environment.

Chapter 1. DL/I calls reference 229

Table 63. DL/I call functions (continued)

Call
AIB
Support

PCB
Support

Data Stmt
1 Description

ICMD3 yes no R Issue Command enables an automated operator (AO)
application program to issue an IMS command and retrieve
the first command response segment. The DATA statement is
required to contain the input command and to allow for area
in which to return data. The area must be large enough to
hold this returned data.

INIT yes yes R Initialization This call defaults to I/O PCB. A DATA statement
is required. Use the LLZZ format.

INQY3 yes no R Request environment information using the AIB and the
ENVIRON subfunction. The DATA statement is required to
allow for area in which to return data. The area must be large
enough to hold this returned data.

R Request database information using the AIB and the
DBQUERY subfunction, which is equivalent to the INIT
DBQUERY call. The DATA statement is required to allow for
area in which to return data. The area must be large enough
to hold this returned data.

ISRT yes yes Insert.

R DB PCB, DATA statement required.

O I/O PCB using I/O area with MOD name, if any, in columns
16-23.

R Alt PCB.

LOG yes yes R Log system request. This call defaults to I/O PCB. DATA
statement is required and can be specified in one of two
ways.

POS yes yes N Position - for DEDBs to determine a segment location. This
call references DEDBs only.

PURG yes yes Purge.

R This call defaults to use I/O PCB. If column 16 is not blank,
MOD (message output descriptor) name is used and a DATA
statement is required.

O If column 16 is blank, the DATA statement is optional.

RCMD3 yes no R Retrieve Command enables an automated operator (AO)
application program to retrieve the second and subsequent
command response segments after an ICMD call. The DATA
statement is required to allow for area in which to return
data. The area must be large enough to hold this returned
data.

REPL yes yes R Replace—This call references DB PCBs only. The DATA
statement is required.

RLSE yes yes N Release all locks held by an application that are for
unmodified data.

ROLB yes yes O Roll Back call.

230 IMS: Application Programming APIs

Table 63. DL/I call functions (continued)

Call
AIB
Support

PCB
Support

Data Stmt
1 Description

ROLL no yes O Roll Back call and issue U778 abend.

ROLS yes yes O Back out updates and issue 3303 abend. Uses the I/O PCB.
Can be used with the SETS call function. To issue a ROLS with
an I/O area and token as the fourth parameter, specify the
4-byte token in column 16 of the CALL statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token. (To issue a ROLS using the current
DB PCB, use ROLX.)

ROLX yes yes O Roll call against the DB PCB (DFSDDLT0 call function). This
call is used to request a Roll Back call to DB PCB, and is
changed to ROLS call when making the DL/I call.

SETO yes yes N Set options. OPTION statement required. FEEDBACK
statement optional.

SETS/SETU yes yes O Create or cancel intermediate backout points. Uses I/O PCB.
To issue a SETS with an I/O area and token as the fourth
parameter, specify the four-byte token in column 16 of
the CALL statement and include a DATA statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token.

SNAP4 yes yes O Sets the identification and destination for snap dumps. If a
SNAP call is issued without a CALL DATA statement, a snap
of the I/O buffer pools and control blocks will be taken and
sent to LOG if online and to PRINTDD DCB if batch. The SNAP
ID will default to SNAPxxxx where xxxx starts at 0000 and
is incremented by 1 for every SNAP call without a DATA
statement. The SNAP options default to YYYN. If a CALL
DATA statement is used, columns 16-23 specify the SNAP
destination, columns 24-31 specify the SNAP identification,
and columns 32-35 specify the SNAP options. SNAP options
are coded using ‘Y' to request a snap dump and ‘N' to prevent
it. Column 32 snaps the I/O buffer pools, columns 33 and
34 snap the IMS control blocks and column 35 snaps the
entire region. The SNAP call function is only supported for
full-function database PCB.

Chapter 1. DL/I calls reference 231

Table 63. DL/I call functions (continued)

Call
AIB
Support

PCB
Support

Data Stmt
1 Description

STAT5 yes yes O The STAT call retrieves statistics on the IMS system. This call
must reference only full-function DB PCBs. Statistics type is
coded in columns 16-19 of the CALL FUNCTION statement.
DBAS

For OSAM database buffer pool statistics.
VBAS

For VSAM database subpool statistics.
Statistics format is coded in column 20 of the CALL
FUNCTION statement.
F

For the full statistics to be formatted if F is specified, the
I/O area must be at least 360 bytes.

U
For the full statistics to be unformatted if U is specified,
the I/O area must be at least 72 bytes.

S
For a summary of the statistics to be formatted if S is
specified, the I/O area must be at least 120 bytes.

SYNC yes yes R Synchronization.

XRST yes yes R Restart.

Notes:

1. R = required; O = optional; N = none
2. The data statement and I/O area size is required on the AIB interface.
3. Valid only on the AIB interface.
4. SNAP is a Product-sensitive Programming Interface.
5. STAT is a Product-sensitive Programming Interface.

Examples of DL/I call functions
The following examples show how to use the DL/I call functions.

Basic CHKP Call: Use a CALL FUNCTION statement to contain the CHKP function and a CALL DATA
statement to contain the checkpoint ID.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHKP 10101400
L DATA TESTCKPT

Symbolic CHKP Call with Two Data Areas to Checkpoint: Use a CALL FUNCTION statement to contain
the CHKP function, a CALL DATA statement to contain the checkpoint ID data, and two CALL DATA
statements to contain the data that you want to checkpoint.

You also need to use an XRST call when you use the symbolic CHKP call. Prior usage of an XRST call is
required when using the symbolic CHKP call, as the CHKP call keys on the XRST call for symbolic CHKP.

Recommendation: Issue an XRST call as the first call in the application program.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST

232 IMS: Application Programming APIs

L .
L .
L .
L CHKP
L DATA TSTCHKP2 X
L 8 DATA STRING2- X
L 16 DATA STRING2-STRING2-
U EIGHT BYTES OF DATA (STRING2-) IS CHECKPOINTED AND
U SIXTEEN BYTES OF DATA (STRING2-STRING2-) IS CHECKPOINTED ALSO

CHNG Call: Use a CALL FUNCTION statement to contain the CHNG function and a CALL DATA statement
to contain the new logical terminal name.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHNG SET1
L OPT IAFP=A1M,PRTO=LLOPTION1,OPTION2,
L CONT OPTION4
L Z0023 DATA DESTNAME

LL is the hex value of the length of LLOPTION,.........OPTION4.

The following is an example of a CHNG statement using SETO ID SET2, OPTION statement, DATA
statement with MODNAME, and FDBK statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHNG SET2
L OPT IAFP=A1M,TXTU=SET2
L Z0023 DATA DESTNAME
L Z0095 FDBK FEEDBACK AREA

CMD Call: Use a CALL FUNCTION statement to contain the CMD function and a CALL DATA statement to
contain the Command data.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CMD
L ZXXXX DATA COMMAND DATA

WHERE XXXX = THE LENGTH OF THE COMMAND DATA

DEQ Call: For full function, use a CALL FUNCTION statement to contain the DEQ function and a CALL
DATA statement to contain the DEQ value (A,B,C,D,E,F,G,H,I or J).

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DEQ
L DATA A

For Fast Path, use a CALL FUNCTION statement to contain the DEQ function.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DEQ

DLET Call: Use a CALL FUNCTION statement to contain the DLET function. The data statement is optional.
If there are intervening calls to other PCBs between the Get Hold call and the DLET call, you must use a
data statement to refresh the I/O area with the segment to be deleted.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DLET

FLD Call: Use a CALL FUNCTION statement to contain the FLD function and ROOTSSA, and a CALL DATA
statement to contain the FSAs.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L FLD ROOTA (KEYA =ROOTA)
L DATA ??????? X
L DATA

GCMD Call: Use a CALL FUNCTION statement to contain the GCMD function; no CALL DATA statement is
required.

Chapter 1. DL/I calls reference 233

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GCMD

GHN Call: Use a CALL FUNCTION statement to contain the GHN function; no CALL DATA statement is
required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHN 10103210

GHNP Call: Use a CALL FUNCTION statement to contain the GHNP function; no CALL DATA statement is
required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHNP 10103210

GHU Call with a Continued SSA: Use two CALL FUNCTION statements to contain the single SSA.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHU SEGG (FILLRG = G131G131G131G131G131G131G131G131G131G*
 CONT 131G131G131G131G131G131G131)

GMSG Call: Use a CALL FUNCTION statement to contain the GMSG function. Use a CALL DATA statement
to retrieve messages from AO exit routine.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GMSG TOKEN111 WAITAOI
L Z0132 DATA
L GMSG
L Z0132 DATA

GN Call: Use a CALL FUNCTION statement to contain the GN function; no CALL DATA statement is
required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GN 10103210

GNP Call: Use a CALL FUNCTION statement to contain the GNP function; no CALL DATA statement is
required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GNP 10103210

GU Call with a Single SSA and a Relational Operator: Use a CALL FUNCTION statement to contain the
GU function; no CALL DATA statement is required. The qualified SSA begins in column 24 and is contained
in parentheses.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGF (KEYF > F131*KEYF < F400)

GU Call with a Single SSA and a Relational Operator Extended Across Multiple Inputs with Boolean
Operators: Use a CALL FUNCTION statement to contain the GU function and three additional continuation
of CALL FUNCTION input to continue with Boolean operators. No CALL DATA statement is required. The
qualified SSA begins in column 24 and is contained in parentheses. This type of SSA can continue over
several statements.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGG (FILLRG > G131G131G131G131G131G131G131G131G131G*
 CONT 131G131G131G131G131G131G131 &FILLRG < G400G400G4*
 CONT 00G400G400G400G400G400G400G400G400G400G400G400G400G400 *
 CONT)

GU Path Call: Use a CALL FUNCTION statement to contain the GU function and three additional
continuation of CALL function input to continue with two additional SSAs. No CALL DATA statement is

234 IMS: Application Programming APIs

required. The call uses command codes in columns 24 and 25 to construct the path call. This type of call
cannot be made with the column-specific SSA format.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGA *D(KEYA = A200) *
 SEGF *D(KEYF = F250) *
 SEGG *D(KEYG = G251)

GUR Call: Use a CALL FUNCTION statement to contain the GUR function and a DATA statement to specify
the maximum size of the output area for the returned XML document.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O LCASE=C
S1111 1 1 1 1DFSCAT00 AIB
L U0001 GUR HEADER (RHDRSEQ EQDBD DBOHIDK5)
L Z9999 DATA

The following table shows the key lines and elements in the example of the GUR call:

Table 64. Explanation of the example

Line in the example Explanation

O LCASE=C Specifies that DFSDDLT0 uses character representation and not
hexademcimal representation for the XML output. Without character
representation, you cannot read the returned XML document.

S1111 1 1 1 1DFSCAT00
AIB

Specifies that DFSDDLT0 uses the AIB interface and the DB PCB name is
DFSCAT00, which is the system-defined catalog.

L U0001 GUR HEADER Specifies that IMS is to issue one GUR call. The SSA contains the key field
RHDRSEQ, which is used to find a DBD that is named DBOHIDK5.

L Z9999 DATA Specifies that DFSDDLT0 is to use the maximum data output area, which is
9999 bytes.

If the GUR call returns an XML document that is too large to fit into the output area that is specified by the
DATA statement, you must modify the GUR call so that it is repeated. You can repeat the GUR call in one of
two ways:

• Set the repeat count on the GUR call (columns 5-8) to the number of times to repeat the call, which is
the recommended way. In the following example, U0002 specifies that IMS is to issue two GUR calls:

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L U0002 GUR HEADER (RHDRSEQ ==PSB BMP255)
L Z9999 DATA

• Use multiple GUR calls:

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L U0001 GUR HEADER (RHDRSEQ ==PSB BMP255)
L Z9999 DATA
L U0001 GUR HEADER (RHDRSEQ ==PSB BMP255)
L Z9999 DATA

Either method produces the same results.

ICAL Call: Use a CALL FUNCTION statement to contain the ICAL function. Use a CALL DATA statement to
contain the message to pass from the IMS application to the program that is specified in the IMS OTMA
descriptor.

The following example demonstrates how to send a synchronous callout request message to a destination
named DESCRPTR with 45 bytes of request data and expect 100 bytes of response data to be returned in
a timeout value of 500 (or 5 seconds).

Chapter 1. DL/I calls reference 235

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ICAL SENDRECV DESCRPTR 000500 00045 00100
L DATA HELLO OUT THERE. THIS IS A MESSAGE FROM IMS.

ICMD Call: Use a CALL FUNCTION statement to contain the ICMD function. Use a CALL DATA statement to
contain the command.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ICMD
L Z0132 DATA /DIS ACTIVE

INIT Call: Use a CALL FUNCTION statement to contain the INIT call and a CALL DATA statement to
contain the INIT function DBQUERY, STATUS GROUPA, or STATUS GROUPB.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INIT 10103210
L Z0011 DATA DBQUERY

INQY Call: Use a CALL FUNCTION statement to contain the INQY call and either the DBQUERY or
ENVIRON subfunction. The subfunctions are in the call input rather than the data input as in the INIT call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INQY ENVIRON 10103210
L V0256 DATA 10103211
L 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INQY DBQUERY 10103210
L V0088 DATA 10103211
L 10103212

ISRT Call: Use two CALL FUNCTION statements to contain the multiple SSAs and a CALL DATA statement
to contain the segment data.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT STOCKSEG(NUMFIELD =20011) X10103210
 ITEMSSEG 10103211
L V0018 DATA 3002222222222222 10103212

ISRT Containing Only One Fixed-Length Segment: Use a CALL FUNCTION statement to contain the ISRT
function and segment name, and two CALL DATA statements to contain the fixed-length segment. When
inserting only one fixed-length segment, leave columns 4 through 8 blank and put data in columns 16
through 71. To continue data, put a nonblank character in column 72, and the continued data in columns
16 through 71 of the next statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT JOKESSEG 10103210
L DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211
 XJUMPEDOVERTHELAZYDOGSIR 10103212

ISRT Containing Only One Variable-Length Segment: Use a CALL FUNCTION statement to contain
the ISRT function and segment name, and two CALL DATA statements to contain the variable-length
segment. When only one segment of variable-length is being processed, you must enter a V in column
4, and columns 5 through 8 must contain the length of the segment data. The length in columns 5
through 8 is converted to binary and becomes the first two bytes of the segment data. To continue data,
put a nonblank character in column 72, and the continued data in columns 16 through 71 of the next
statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT JOKESSEG 10103210
L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211
 XJUMPEDOVERTHELAZYDOGSIR 10103212

ISRT Containing Multiple Variable-Length Segments: Use a CALL FUNCTION statement to contain
the ISRT function and segment name, and four CALL DATA statements to contain the variable-length

236 IMS: Application Programming APIs

segments. For the first segment, you must enter a V in column 4 and the length of the segment data in
columns 5 through 8. If the segment is longer than 56 bytes, put a nonblank character in column 72, and
continue data on the next statement. The last statement to contain data for this segment must have a
nonblank character in column 72.

The next DATA statement applies to the next variable-length segment and it must contain an M in column
4, the length of the new segment in columns 5 through 8, and data starting in column 16. Any number of
variable-length segments can be concatenated in this manner. If column 72 is blank, the next statement
must have the following:

• An L in column 1
• An M in column 4
• The length of the new segment in columns 5 through 8
• The keyword DATA in columns 10 through 13
• Data starting in column 16

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT AAAAASEG 10103210
L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211
 XJUMPEDOVERTHELAZYDOGSIR *10103212
 M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103213
 ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103214

ISRT Containing Multiple Segments in a PATH CALL: Use a CALL FUNCTION statement to contain the
ISRT function and segment name, and seven CALL DATA statements to contain the multiple segments in
the PATH CALL.

When DFSDDLT0 is inserting or replacing segments through path calls, you can use V and P in
successive statements. The same rules apply for coding multiple variable-length segments, but fixed-
length segments must have a P in column 4 of the DATA statement. This causes the length field in
columns 5 through 8 to be used as the length of the segment, and causes the data to be concatenated in
the I/O area without including the LL field.

Rules for continuing data in the same segment or starting a new segment in the next statement are the
same as those applied to the variable-length segment.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT LEV01SEG*D *10103210
 LEV02SEG *10103211
 LEV03SEG *10103212
 LEV04SEG 10103213

L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103214
 XJUMPEDOVERTHELAZYDOGSIR *10103215
 M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103216
 ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY *10103217
L P0039 DATA THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSIR *10103218
L M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103219
 ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103220

LOG Call Using an LLZZ Format: Use a CALL FUNCTION statement to contain the LOG function and a
CALL DATA statement to contain the LLZZ format of data to be logged.

When you put a Z in column 4, the first word of the record is not coded in the DATA statement. The
length specified in columns 5 through 8 must include the 4 bytes for the LLZZ field that is not in the DATA
statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L LOG 10103210
L Z0016 DATA ASEGMENT ONE 10103211

The A in column 16 becomes the log record ID.

POS Call: Use a CALL FUNCTION statement to contain the POS function and SSA; CALL DATA statement is
optional.

Chapter 1. DL/I calls reference 237

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L POS SEGA (KEYA =A300)

PURG Call with MODNAME and Data: Use a CALL FUNCTION statement to contain the PURG function
and MOD name. Use the CALL DATA statement to contain the message data. If MOD name is provided, a
DATA statement is required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG MODNAME1
L DATA FIRST SEGMENT OF NEW MESSAGE

PURG Call with Data and no MODNAME: Use a CALL FUNCTION statement to contain the PURG function;
a DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG
L DATA FIRST SEGMENT OF NEW MESSAGE

PURG Call without MODNAME or Data: Use a CALL FUNCTION statement to contain the PURG function;
CALL DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG

RCMD Call: Use a CALL FUNCTION statement to contain the RCMD function. Use a CALL DATA statement
to retrieve second and subsequent command response segments resulting from an ICMD call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L RCMD
L Z0132 DATA

REPL Call: Use a CALL FUNCTION statement to contain the REPL function. Use a CALL DATA statement to
contain the replacement data.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L REPL
L V0028 DATA THIS IS THE REPLACEMENT DATA

RLSE Call: Use a CALL FUNCTION statement to contain the RLSE function.

|----+---1----+----2----+----3----+----4----+----5
L RLSE

ROLB Call Requesting Return of First Segment of Current Message: Use a CALL FUNCTION statement
to contain the ROLB function. Use the CALL DATA statement to request first segment of current message.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLB
L DATA THIS WILL BE OVERLAID WITH FIRST SEGMENT OF MESSAGE

ROLB Call Not Requesting Return of First Segment of Current Message: Use a CALL FUNCTION
statement to contain the ROLB function. The CALL DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLB

ROLL Call: Use a CALL FUNCTION statement to contain the ROLL function. The CALL DATA statement is
optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLL

ROLS Call with a Token: Use a CALL FUNCTION statement to contain the ROLS function and token, and
the CALL DATA statement to provide the data area that will be overlaid by the data from the SETS call.

238 IMS: Application Programming APIs

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLS TOKEN1

L Z0046 DATA THIS WILL BE OVERLAID WITH DATA FROM SETS

ROLS Call without a Token: Use a CALL FUNCTION statement to contain the ROLS function. The CALL
DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLS

ROLX Call: Use a CALL FUNCTION statement to contain the ROLX function. The CALL DATA statement is
optional. The ROLX function is treated as a ROLS call with no token.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLX

SETO Call: Use a CALL FUNCTION statement to contain the SETO function. The DATA statement is
optional; however, if an OPTION statement is passed on the call, the DATA statement is required. Also, if a
FEEDBACK statement is passed on the call, then both the DATA and OPTION statements are required. The
following is an example of a SETO statement using the OPTION statement and SETO token of SET1.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET1 5000
L OPT PRTO=11OPTION1,OPTION2,
L CONT OPTION3,
L CONT OPTION4

11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement and SETO token of SET1.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET1 7000
L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement and SETO token of SET2
and FDBK statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET2 5500
L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4
L Z0099 FDBK OPTION ERROR FEEDBACK AREA

11 is the hex value of the length of 11OPTION,.........OPTION4.

SETS Call with a Token: Use a CALL FUNCTION statement to contain the SETS function and token; use
the CALL DATA statement to provide the data that is to be returned to ROLS call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETS TOKEN1

L Z0033 DATA RETURN THIS DATA ON THE ROLS CALL

SETS Call without a Token: Use a CALL FUNCTION statement to contain the SETS function; CALL DATA
statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETS

This topic contains Product-sensitive Programming Interface information.

Chapter 1. DL/I calls reference 239

SNAP Call: Use a CALL FUNCTION statement to contain the SNAP function and a CALL DATA statement to
contain the SNAP data.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SNAP 10103210
L V0022 DATA PRINTDD 22222222 10103212

This topic contains Product-sensitive Programming Interface information.

STAT Call: OSAM statistics require only one STAT call. STAT calls for VSAM statistics retrieve only one
subpool at a time, starting with the smallest. See IMS Version 15.3 Application Programming for further
information about the statistics returned by STAT.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L STAT DBASF
L STAT VBASS
L STAT VBASS
L STAT VBASS
L STAT VBASS

SYNC Call: Use a CALL FUNCTION statement to contain the SYNC function. The CALL DATA statement is
optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SYNC

Initial XRST Call: Use a CALL FUNCTION statement to contain the XRST FUNCTION and a CALL DATA
statement that contains a checkpoint ID of blanks to indicate that you are normally starting a program
that uses symbolic checkpoints.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST 10101400
L DATA
L CKPT
L DATA YOURID01

Basic XRST Call: Use a CALL FUNCTION statement to contain the XRST function and a CALL DATA
statement to contain the checkpoint ID.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST 10101400
L DATA TESTCKPT

Symbolic XRST Call: Use a CALL FUNCTION statement to contain the XRST function, a CALL DATA
statement to contain the checkpoint ID data, and one or more CALL DATA statements where the data is to
be returned.

The XRST call is used with the symbolic CHKP call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST
L DATA TSTCHKP2 X
L 8 DATA OVERLAY2 X
L 16 DATA OVERLAY2OVERLAY2
U EIGHT BYTES OF DATA (OVERLAY2) SHOULD BE OVERLAID WITH CHECKPOINTED DATA
U SIXTEEN BYTES OF DATA (OVERLAY2OVERLAY2) IS OVERLAID ALSO

DFSDDLT0 call functions
The DFSDDLT0 call functions were created for DFSDDLT0. They do not represent "valid" IMS calls and are
not punched as output if DFSDDLT0 encounters them while a CTL (PUNCH) statement is active.

The following table shows the special call functions of the CALL FUNCTION statement. Descriptions and
examples of these special functions follow.

240 IMS: Application Programming APIs

Table 65. CALL FUNCTION statement with DFSDDLT0 call functions

Column Function Code Description

1 Identifies control
statement

L Call statement.

2-4 Reserved b

5-8 Repeat count b If blank, repeat count defaults to 1.

nnnn 'nnnn' is the number of times to repeat this
call. Range is 1 to 9999, right-justified but
need not contain leading zeros.

9 Reserved b

10-15 Special call function STAKb Stack control statements for later execution.

ENDb Stop stacking and begin execution.

SKIPb Skip statements until START function is
encountered.

START Start processing statements again.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

STAK/END (stacking) control statements
With the STAK statement, you repeat a series of statements that were read from SYSIN and held in
memory. All control statements between the STAK statement and the END statement are read and saved.
When DFSDDLT0 encounters the END statement, it executes the series of calls as many times as specified
in columns 5 through 8 of the STAK statement. STAK calls imbedded within another STAK cause the outer
STAK call to be abnormally terminated.

SKIP/START (skipping) control statements
With the SKIP and START statements, you identify groups of statements that you do not want DFSDDLT0
to process. These functions are normally read from SYSIN2 and provide a temporary override to an
established SYSIN input stream. DFSDDLT0 reads all control statements occurring between the SKIP and
START statements, but takes no action. When DFSDDLT0 encounters the START statement, it reads and
processes the next statement normally.

Related reference
“PUNCH CTL statement” on page 250
The PUNCH CTL statement allows you to produce an output data set consisting of COMPARE PCB
statements, COMPARE DATA statements, COMPARE AIB statements, other control statements, or
combinations of these statements.

COMMENT statement
Use the COMMENT statement to print comments in the output data.

The two types of COMMENT statements, conditional and unconditional are described. The following table
shows the format of the COMMENT statement.

Table 66. COMMENT statement

Column Function Code Description

1 Identifies control statement T Conditional comment statement.

U Unconditional comment statement.

Chapter 1. DL/I calls reference 241

Table 66. COMMENT statement (continued)

Column Function Code Description

2-72 Comment data Any relevant comment.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Conditional COMMENT statement
You can use up to five conditional COMMENT statements per call; no continuation mark is required
in column 72. Code the statements in the DFSDDLT0 stream before the call they are to document.
Conditional COMMENTS are read and held until a CALL is read and executed. (If a COMPARE statement
follows the CALL, conditional COMMENTS are held until after the comparison is completed.) You control
whether the conditional comments are printed with column 3 of the STATUS statement. DFSDDLT0
prints the statements according to the STATUS statement in the following order: conditional COMMENTS,
the CALL, and the COMPARE(s). The time and date are also printed with each conditional COMMENT
statement.

Unconditional COMMENT statement
You can use any number of unconditional COMMENT statements. Code them in the DFSDDLT0 stream
before the call they are to document. The time and date are printed with each unconditional COMMENT
statement. The previous table lists the column number, function, code, and description

Example of COMMENT statement
T/U Comment Calls: The following example shows the T and U comment calls.

//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGB (KEYA =A400) 10001100
T THIS COMMENT IS A CONDITIONAL COMMENT FOR THE FIRST GN 10001300
L GN 10001400
U THIS COMMENT IS AN UNCONDITIONAL COMMENT FOR THE SECOND GN 10001500
L 0020 GN 10001600
/*

COMPARE statement
The COMPARE statement compares the actual results of a call with the expected results. The three types
of COMPARE statements are the COMPARE PCB, COMPARE DATA, and COMPARE AIB.

When you use the COMPARE PCB, COMPARE DATA, and COMPARE AIB statements you must:

• Code COMPARE statements in the DFSDDLT0 stream immediately after either the last continuation, if
any, of the CALL DATA statement or another COMPARE statement.

• Specify the print option for the COMPARE statements in column 7 of the STATUS statement.

For all three COMPARE statements:

• The condition code returned for a COMPARE gives the total number of unequal comparisons.
• For single fixed-length segments, DFSDDLT0 uses the comparison length to perform comparisons if you

provide a length. The length comparison option (column 3) is not applicable.

When you use the COMPARE PCB statement and you want a snap dump when there is an unequal
comparison, request it on the COMPARE PCB statement. A snap dump to a log with SNAP ID COMPxxxx is
issued along with the snap dump options specified in column 3 of the COMPARE PCB statement.

The numeric part of the SNAP ID is initially set to 0000 and is incremented by 1 for each SNAP resulting
from an unequal comparison.

242 IMS: Application Programming APIs

COMPARE AIB statement
The COMPARE AIB statement is optional. You can use it to compare values returned to the AIB by IMS.

The following table shows the format of the COMPARE AIB statement.

Table 67. COMPARE AIB statement

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Hold compare option H Hold COMPARE statement. See note for
COMPARE AIB Statement.

␢ Reset hold condition for a single
COMPARE statement.

3 Reserved ␢
4-6 AIB compare AIB Identifies an AIB compare.

7 Reserved ␢
8-11 Return code xxxx Allow specified return code only.

12 Reserved

13-16 Reason code xxxx Allow specified reason code only.

17-72 Reserved ␢ ␢
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note for COMPARE AIB Statement: To execute the same COMPARE AIB after a series of calls, put an H
in column 2. When you specify an H, the COMPARE statement executes after each call. The H COMPARE
statement is particularly useful when comparing with the same status code on repeated calls. The H
COMPARE statement stays in effect until another COMPARE AIB statement is read.

COMPARE DATA statement
The COMPARE DATA statement is optional. It compares the segment returned by IMS to the data in the
statement to verify that the correct segment was retrieved.

The following table gives the format of the COMPARE DATA statement.

Table 68. COMPARE DATA statement

Column Function Code Description

1 Identifies control
statement

E COMPARE statement.

2 Reserved ␢
3 Length comparison option ␢ For fixed-length segments or if the LL

field of the segment is not included in the
comparison; only the data is compared.

L The length in columns 5-8 is converted
to binary and compared against the LL
field of the segment.

4 Segment length option ␢

Chapter 1. DL/I calls reference 243

Table 68. COMPARE DATA statement (continued)

Column Function Code Description

V For a variable-length segment only, or
for the first variable-length segment of
multiple variable-length segments in a
path call, or for a concatenated logical-
child–logical-parent segment.

M For the second or subsequent variable-
length segment of a path call, or
for a concatenated logical-child–logical-
parent segment.

P For fixed-length segments in path calls.

Z For message segment.

5-8 Comparison length nnnn Length to be used for comparison.
(Required for length options V, M, and P if
L is coded in column 3.)

9 Reserved ␢
10-13 Identifies type of

statement
DATA Required for the first I/O COMPARE

statement and the first statement of a
new segment if data from previous I/O
COMPARE statement is not continued.

14-15 Reserved ␢
16-71 String of data Data against which the segment in the

I/O area is to be compared.

72 Continuation column ␢ If blank, data is NOT continued.

x If not blank, data will be continued,
starting in columns 16-71 of the
subsequent statements for a maximum
of 3840 bytes.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Notes:

• If you code an L in column 3, the value in columns 5 through 8 is converted to binary and compared against
the LL field of the returned segment. If you leave column 3 blank and the segment is not in a path call, then
the value in columns 5 through 8 is used as the length of the comparison.

• If you code column 4 with a V, P, or M, you must enter a value in columns 5 through 8.
• If this is a path call comparison, code a P in column 4. The value in columns 5 through 8 must be the exact

length of the fixed segment used in the path call.
• If you specify the length of the segment, this length is used in the COMPARE and in the display. If you do not

specify a length, DFSDDLT0 uses the shorter value for the length of the comparison and display of:

– The length of data supplied in the I/O area by IMS
– The number of DATA statements read times 56

244 IMS: Application Programming APIs

COMPARE PCB statement
The COMPARE PCB statement is optional. You can use it to compare values returned to the PCB by IMS or
to print blocks or buffer pool.

The following table shows the format of the COMPARE PCB statement.

Table 69. COMPARE PCB statement

Column Function Code Description

1 Identifies control
statement

E COMPARE statement.

2 Hold compare option H Hold compare statement.

b Reset hold condition for a single COMPARE
statement.

3 Snap dump options (if
compare was unequal)

b Use default value. (You can change the default value
or turn off the option by coding the value in an
OPTION statement.)

1 The complete I/O buffer pool.

2 The entire region (batch regions only).

4 The DL/I blocks.

8 Terminate the job step on miscompare of DATA or
PCB.

S To SNAP subpools 0 through 127. Requests for
multiple SNAP dump options can be obtained by
summing their respective hexadecimal values. If
anything other than a blank, 1-9, A-F, or S is coded in
column 3, the SNAP dump option is ignored.

4 Extended SNAP1 options b Ignore extended option.

P SNAP the complete buffer pool (batch).

S SNAP subpools 0 through 127 (batch).

An area is never snapped twice. The SNAP option is a
combination of columns 3 (SNAP dump option) and 4
(extended SNAP option).

5-6 Segment level nn 'nn' is the segment level for COMPARE PCB. A leading
zero is required.

7 Reserved b

8-9 Status code b Allow blank status code only.

xx Allow specified status code only.

XX Do not check status code.

OK blank, GA, GC, or GK allowed.

10 Reserved b

11-18 Segment name
User Identification

xxxxxxxx Segment name for DB PCB compare.

Logical terminal for I/O.

Chapter 1. DL/I calls reference 245

Table 69. COMPARE PCB statement (continued)

Column Function Code Description

Destination for ALT PCB.

19 Reserved b

20-23 Length of key nnnn 'nnnn' is length of the feedback key.

24-71 or Concatenated key Concatenated key feedback for DB PCB compare.

24-31 User ID User identification for TP PCB.

72 Continuation column b If blank, key feedback is not continued.

x If not blank, key feedback is continued, starting in
columns 16-71 of subsequent statements.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive Programming Interface.

Blank fields are not compared to the corresponding field in the PCB, except for the status code field.
(Blanks represent a valid status code.) To accept the status codes blank, GA, GC, or GK as a group, put OK
in columns 8 and 9. To stop comparisons of status codes, put XX in columns 8 and 9.

To execute the same compare after a series of calls, put an H in column 2. This executes the COMPARE
statement after each call. This is particularly useful to compare to a blank status code only when loading a
database. The H COMPARE statement stays in effect until another COMPARE PCB statement is read.

Related reference
“OPTION statement” on page 249
Use the OPTION statement to override various default options.

Examples of COMPARE DATA and COMPARE PCB statements
The following examples show how COMPARE DATA and COMPARE PCB statements are used.

COMPARE PCB Statement for Blank Status Code

The COMPARE PCB statement is coded blank. It checks a blank status code for the GU.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10101100
E 10101200

COMPARE PCB Statement for SSA Level, Status Code, Segment Name, Concatenated Key Length, and
Concatenated Key

The COMPARE PCB statement is a request to compare the SSA level, a status code of OK (which includes
blank, GA, GC, and GK), segment name of SEGA, concatenated key length of 0004, and a concatenated
key of A100.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU
E 01 OK SEGA 0004A100

246 IMS: Application Programming APIs

COMPARE PCB Statement for SSA Level, Status Code, Segment Name, Concatenated Key Length, and
Concatenated Key

The COMPARE PCB statement causes the job step to terminate based on the 8 in column 3 when any of
the fields in the COMPARE PCB statement are not equal to the corresponding field in the PCB.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10105100
E 8 01 OK SEGK 0004A100 10105200

COMPARE PCB Statement for Status Code with Hold Compare

The COMPARE PCB statement is a request to compare the status code of OK (which includes blank, GA,
GC, and GK) and hold that compare until the next COMPARE PCB statement. The compare of OK is used
on GN following GU and is also used on a GN that has a request to be repeated six times.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGA (KEYA = A300) 20201100
L GN 20201300
EH OK 20201400
L 0006 GN 20201500

COMPARE DATA Statement for Fixed-Length Segment

The COMPARE DATA statement is a request to compare the data returned. 72 bytes of data are compared.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU
E DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10102200
E A100A100A100A100 10102300

COMPARE DATA Statement for Fixed-Length Data for 64 Bytes

The COMPARE DATA statement is a request to compare 64 bytes of the data against the data returned.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10101600
E 0064 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10101700
E A100A100B111B111 10101800

COMPARE DATA Statement for Fixed-Length Data for 72 Bytes

The COMPARE DATA statement is a request to compare 72 bytes of the data against the data returned.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10103900
E LP0072 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10104000
E A100A100A100A100 10104100

COMPARE DATA Statement for Variable-Length Data of Multiple-Segments Data and Length Fields

The COMPARE DATA statement is a request to compare 36 bytes of the data against the data returned for
segment 1 and 16 bytes of data for segment 2. It compares the length fields of both segments.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000
 DJ (DJSS = DJSS01) X38006100
 QAJAXQAJ (QAJASS = QAJASS97) 38006200
E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
E LM0016 DATA QAJSS01*2QAJ** 38006350

Chapter 1. DL/I calls reference 247

COMPARE DATA Statement for Variable-Length Data of Multiple Segments with no Length Field
COMPARE

The COMPARE DATA statement is a request to compare 36 bytes of the data against the data returned for
segment 1 and 16 bytes of data for segment 2 with no length field compares of either segment.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000
 DJ (DJSS = DJSS01) X38006100
 QAJAXQAJ (QAJASS = QAJASS97) 38006200
E V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
 M0016 DATA QAJSS01*2QAJ** 38006350

COMPARE DATA Statement for Variable-Length Data of Multiple Segments and One Length Field
COMPARE

The COMPARE DATA statement is a request to compare 36 bytes of the data against the data returned for
segment 1 and 16 bytes of data for segment 2. It compares the length field of segment 1 only.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000
 DJ (DJSS = DJSS01) X38006100
 QAJAXQAJ (QAJASS = QAJASS97) 38006200
E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
 M0016 DATA QAJSS01*2QAJ** 38006350

IGNORE statement
DFSDDLT0 ignores any statement with an N or a period (.) in column 1.

You can use the N or . (period) to comment out a statement in either the SYSIN or SYSIN2 input streams.
Using N or . (period) in a SYSIN2 input stream causes the SYSIN input stream to be ignored as well. The
following table gives the format of the IGNORE statement. An example of the statement follows.

Table 70. IGNORE statement

Column Function Code Description

1 Identifies control
statement

N or . IGNORE statement.

2-72 Ignored

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of IGNORE statement using N or .
 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
 . NOTHING IN THIS AREA WILL BE PROCESSED. ONLY THE SEQUENCE NUMBER 67101010
 N WILL BE USED IF READ FROM SYSIN2 OR SYSIN. 67101020

Related reference
“SYSIN2 DD statement” on page 258

248 IMS: Application Programming APIs

DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLT0 will read
and process the specified data sets.

OPTION statement
Use the OPTION statement to override various default options.

Use multiple OPTION statements if you cannot fit all the options you want in one statement. No
continuation character is necessary. Once you set an option, it remains in effect until you specify another
OPTION statement to change the first parameter. The following table shows the format of the OPTION
statement. An example follows.

Table 71. OPTION statement

Column Function Code Description

1 Identifies control
statement

O OPTION statement (free-form parameter
fields).

2 Reserved b b

3-72 Keyword parameters:

ABORT= • 0
• 1 to 9999

• Turns the ABORT parameter off.
• Number of unequal compares before

aborting job. Initial default is 5.

LINECNT= 10 to 99 Number of lines printed per page. Must be
filled with zeros. Initial default 54.

SNAP1 x SNAP option default, when results of
compare are unequal. To turn the SNAP
option off, code 'SNAP='. Initial default is 5
if this option is not coded. This causes the
I/O buffer pool and the DL/I blocks to be
dumped with a SNAP call.

DUMP/NODUMP Produce/do not produce dump if job abends.
Default is NODUMP.

LCASE= • H
• C

• Hexadecimal representation for lower case
characters. This is the initial default.

• Character representation for lower case
characters.

STATCD/NOSTATCD Issue/do not issue an error message for the
internal, end-of-job stat call that does not
receive a blank or GA status code. NOSTATCD
is the default.

ABU249/NOABU249 Issue/do not issue a DFSDDLT0
ABENDU0249 when an invalid status code
is returned for any of the internal end-of-job
stat calls in a batch environment. NOABU249
is the default.

73 - 80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive Programming Interface.

Chapter 1. DL/I calls reference 249

OPTION statement parameters can be separated by commas.

Example of OPTION control statement
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O ABORT=5,DUMP,LINECNT=54,SPA=4096,SNAP=5 67101010

Related reference
“COMPARE PCB statement” on page 245
The COMPARE PCB statement is optional. You can use it to compare values returned to the PCB by IMS or
to print blocks or buffer pool.

PUNCH CTL statement
The PUNCH CTL statement allows you to produce an output data set consisting of COMPARE PCB
statements, COMPARE DATA statements, COMPARE AIB statements, other control statements, or
combinations of these statements.

The following table shows the format and keyword parameters for the PUNCH CTL statement.

Table 72. PUNCH CTL statement

Column Function Code Description

1-3 Identifies control
statement

CTL PUNCH statement.

4-9 Reserved b

10-13 Punch control PUNC Begin punching (no default
values).

NPUN Stop punching (default
value).

14-15 Reserved b

16-72 Keyword
parameters:

OTHER Reproduces all input control
statements except:

• CTL (PUNCH) statements.
• N or . (IGNORE)

statements.
• COMPARE statements.
• CALL statements with

functions of SKIP and
START. Any control
statements that appear
between SKIP and START
CALLs are not punched.

• CALL statements with
functions of STAK and
END. Control statements
that appear between STAK
and END CALLS are saved
and then punched the
number of times indicated
in the STAK CALL.

250 IMS: Application Programming APIs

Table 72. PUNCH CTL statement (continued)

Column Function Code Description

DATAL Create a full data
COMPARE using all of
the data returned to
the I/O area. Multiple
COMPARE statements and
continuations are produced
as needed.

DATAS Create a single data
COMPARE statement using
only the first 56 bytes of
data returned to the I/O
area.

PCBL Create a full PCB COMPARE
using the complete key
feedback area returned
in the PCB. Multiple
COMPARE statements and
continuations are produced
as needed.

PCBS Create a single PCB
COMPARE statement using
only the first 48 bytes of the
key feedback area returned
in the PCB.

SYNC/NOSYNC If a GB status code is
returned on a Fast Path call
while in STAK, but prior to
exiting STAK, this function
issues or does not issue
SYNC.

START= 00000001 to 99999999.

This is the starting
sequence number to be
used for the punched
statements. Eight numeric
bytes must be coded.

INCR= 1 to 9999.

Increment the sequence
number of each punched
statement by this value.
Leading zeros are not
required.

AIB Create an AIB COMPARE
statement.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement
override.

Chapter 1. DL/I calls reference 251

To change the punch control options while processing a single DFSDDLT0 input stream, always use
PUNCH CTL statements in pairs of PUNC and NPUN.

One way to use the PUNCH CTL statement is as follows:

1. Code only the CALL statements for a new test. Do not code the COMPARE statements.
2. Verify that each call was executed correctly.
3. Make another run using the PUNCH CTL statement to have DFSDDLT0 merge the proper COMPARE

statements and produce a new output data set that can be used as input for subsequent regression
tests.

You can also use PUNCH CTL if segments in an existing database are changed. The control statement
causes DFSDDLT0 to produce a new test data set that has the correct COMPARE statements rather than
you having to manually change the COMPARE statements.

Parameters in the CTL statement must be the same length as described in the previous table, and they
must be separated by commas.

Example of PUNCH CTL statement
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
CTL PUNC PCBS,DATAS,OTHER,START=00000010,INCR=0010 33212010
CTL NPUN 33212020

The DD statement for the output data set is labeled PUNCHDD. The data sets are fixed block with
LRECL=80. Block size as specified on the DD statement is used. If not specified, the block size is set to 80.
If the program is unable to open PUNCHDD, DFSDDLT0 issues abend 251.

Example of PUNCH CTL statement for all parameters
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
CTL PUNC OTHER,DATAL,PCBL,START=00000001,INCR=1000,AIB 33212010

Related reference
“DFSDDLT0 call functions” on page 240
The DFSDDLT0 call functions were created for DFSDDLT0. They do not represent "valid" IMS calls and are
not punched as output if DFSDDLT0 encounters them while a CTL (PUNCH) statement is active.
“Control statements” on page 217
DFSDDLT0 processes control statements to control the test environment. DFSDDLT0 can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

STATUS statement
With the STATUS statement, you establish print options and name the PCB that you want subsequent calls
to be issued against.

The following table shows the format of the STATUS statement.

Table 73. STATUS statement

Column Function Code Description

1 Identifies control
statement

S STATUS statement.

2 Output device option ␢ Use PRINTDD when in a DL/I region; use I/O
PCB in MPP region.

1 Use PRINTDD in MPP region if DD statement
is provided; otherwise, use I/O PCB.

252 IMS: Application Programming APIs

Table 73. STATUS statement (continued)

Column Function Code Description

A Same as if 1, and disregard all other fields in
this STATUS statement.

3 Print comment option ␢ Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

4 Print AIB option ␢ Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

5 Print call option ␢ Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

6 Reserved ␢
7 Print compare option ␢ Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

8 Reserved ␢
9 Print PCB option ␢ Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

10 Reserved ␢
11 Print segment option ␢ Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

12 Set task and real time ␢ Do not time

1 Time each call.

2 Time each call if compare done and unequal.

13-14 Reserved ␢
15 PCB selection option 1 PCB name passed in columns 16-23 (use

option 1).

2 DBD name passed in columns 16-23 (use
option 2).

3 Relative DB PCB passed in columns 16-23
(use option 3).

4 Relative PCB passed in columns 16-23 (use
option 4).

Chapter 1. DL/I calls reference 253

Table 73. STATUS statement (continued)

Column Function Code Description

5 $LISTALL passed in columns 16-23 (use
option 5).

␢ If column 15 is blank, DFSDDLT0 selects
options 2 through 5 based on content of
columns 16-23.

Opt. 1
16-23

PCB selection
PCB name

alpha These columns must contain the name of the
label on the PCB at PSBGEN, or the name
specified on the PCBNAME= operand for the
PCB at PSBGEN time.

Opt. 2
16-23

PCB selection
DBD name

␢

alpha

The default PCB is the first database PCB in
the PSB. If columns 16-23 are blank, current
PCB is used. If DBD name is specified, this
must be the name of a database DBD in the
PSB.

Opt. 3
16-18
19-23

PCB selection
Relative position
of PCB in PSB

␢

numeric

When columns 16 through 18 are blank,
columns (19-23) of this field are interpreted
as the relative number of the DB PCB in
the PSB. This number must be right-justified
to column 23, but need not contain leading
zeros.

Opt. 4
16-18
19-23

PCB selection
I/O PCB
Relative position
of PCB in PSB

␢

numeric

When columns 16 through 18 = 'TP␢',
columns (19-23) of this field are interpreted
as the relative number of the PCB from the
start of the PCB list. This number must be
right-justified to column 23, but need not
contain leading zeros. I/O PCB is always the
first PCB in the PCB list in this program.

Opt. 5
16-23

List all PCBs in the PSB $LISTALL Prints out all PCBs in the PSB for test script.

24 Print status option ␢ Use print options to print this STATUS
statement.

1 Do not use print options in this statement;
print this STATUS statement.

2 Do not print this STATUS statement but use
print options in this statement.

3 Do not print this STATUS statement and do
not use print options in this statement.

25-28 PCB processing option xxxx This is optional and is only used when two
PCBs have the same name but different
processing options. If not blank, it is used
in addition to the PCB name in columns 16
through 23 to select which PCB in the PSB to
use.

29 Reserved ␢

254 IMS: Application Programming APIs

Table 73. STATUS statement (continued)

Column Function Code Description

30-32 AIB interface AIB Indicates that the AIB interface is used and
the AIB is passed rather than passing the
PCB. (Passing the PCB is the default.)

Note: When the AIB interface is used,
the PCB must be defined at PSBGEN with
PCBNAME=name. IOPCB is the PCB name
used for all I/O PCBs. DFSDDLT0 recognizes
that name when column 15 contains a 1 and
columns 16 through 23 contain IOPCB.

33 Reserved

37-72 Reserved

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If DFSDDLT0 does not encounter a STATUS statement, all default print options (columns 3 through 12) are
2 and the default output device option (column 2) is 1. You can code a STATUS statement before any call
sequence in the input stream, changing either the PCB to be referenced or the print options.

The referenced PCB stays in effect until a subsequent STATUS statement selects another PCB. However, a
call that must be issued against an I/O PCB (such as LOG) uses the I/O PCB for that call. After the call, the
PCB changes back to the original PCB.

Examples of STATUS statement
To Print Each CALL Statement: The following STATUS statement tells DFSDDLT0 to print these options:
COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA for all calls.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1

To Print Each CALL Statement, Select a PCB: The following STATUS statements tell DFSDDLT0 to print
the COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA options for all calls, and select a PCB.

The 1 in column 15 is required for PCBNAME. If omitted, the PCBNAME is treated as a DBDNAME.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 1PCBNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 1PCBNAME AIB␢

To print each CALL statement, select PCB based on a DBD name: The following STATUS statements tell
DFSDDLT0 to print the COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA options for all calls, and
select a PCB by a DBD name.

The 2 in column 15 is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 2DBDNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 2DBDNAME AIB␢

If you do not use the AIB interface, you do not need to change STATUS statement input to existing
streams; existing call functions will work just as they have in the past. However, if you want to use the AIB
interface, you must change the STATUS statement input to existing streams to include AIB in columns 30

Chapter 1. DL/I calls reference 255

through 32. The existing DBD name, Relative DB PCB, and Relative PCB will work if columns 30 through
32 contain AIB and the PCB has been defined at PSBGEN with PCBNAME=name.

WTO statement
The WTO (Write to Operator) statement sends a message to the z/OS console without waiting for a reply.

The following table shows the format for the WTO statement.

Table 74. WTO statement

Column Function Code Description

1-3 Identifies control
statement

WTO WTO statement.

4 Reserved ␢
5-72 Message to send Message to be written to the system

console.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTO statement
This WTO statement sends a message to the z/OS console and continues the test stream.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
WTO AT A "WTO" WITHIN TEST STREAM --WTO NUMBER 1-- TEST STARTED

WTOR statement
The WTOR (Write to Operator with Reply) statement sends a message to the z/OS system console and
waits for a reply.

The following table shows the format of the WTOR statement.

Table 75. WTOR statement

Column Function Code Description

1-4 Identifies control
statement

WTOR WTOR statement.

5 Reserved ␢
6-72 Message to send Message to be written to the system

console.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTOR statement
This WTOR statement causes the test stream to hold until DFSDDLT0 receives a response from the z/OS
console operator. Any response is valid.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
WTOR AT A "WTOR" WITHIN TEST STREAM - ANY RESPONSE WILL CONTINUE

256 IMS: Application Programming APIs

JCL requirements for the DL/I test program (DFSDDLT0)
DFSDDLT0 uses these DD statements.

Execution JCL depends on the installation data set naming standards as well as the IMS environment
(batch or online).

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8 33001100
//GET EXEC PGM=DFSRRC00,PARM='DLI,DFSDDLT0,PSBNAME' 33001200
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR 33001300
//IMS DD DSN=IMS2.PSBLIB,DISP=(SHR,PASS) 33001400
// DD DSN=IMS2.DBDLIB,DISP=(SHR,PASS) 33001500
//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP) 33001600
//IEFRDER DD DUMMY 33001700
//PRINTDD DD SYSOUT=A 33001800
//SYSUDUMP DD SYSOUT=A 33001900
//SYSIN DD * 33002000
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
U THIS IS PART OF AN EXAMPLE 33002100
S 1 1 1 1 1 PCB-NAME 33002200
L GU 33002300
/*
//SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 33002300
/*

The following code example shows how to code JCL for DFSDDLT0 in a BMP. Use of a procedure is
optional and is only shown here as an example.

Example JCL code for DFSDDLT0 in a BMP

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=A 00010047
//***
//* BATCH DL/I JOB *
//***
//BMP EXEC IMSBATCH,MBR=DFSDDLT0,PSB=PSBNAME
//BMP.PRINTDD DD SYSOUT=A
//BMP.PUNCHDD DD SYSOUT=B
//BMP.SYSIN DD *
U ***THIS IS PART OF AN EXAMPLE OF SYSIN DATA 00010000
S 1 1 1 1 1 1 00030000
L GU 00040000
L 0099 GN 00050000
/*
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
//BMP.SYSIN2 DD *
U ***THIS IS PART OF AN EXAMPLE OF SYSIN2 DATA ******************* 00020000
ABEND 00050000
/*

SYSIN DD statement
The data set specified by the SYSIN DD statement is the normal input data set for DFSDDLT0. When
processing input data that is on direct-access or tape, you may want to override certain control
statements in the SYSIN input stream or to add other control statements to it. You do this with a SYSIN2
DD statement and the control statement sequence numbers.

Sequence numbers in columns 73 to 80 for SYSIN data are optional unless a SYSIN2 override is used.

Related reference
“SYSIN2 DD statement” on page 258
DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLT0 will read
and process the specified data sets.
“Control statements” on page 217

Chapter 1. DL/I calls reference 257

DFSDDLT0 processes control statements to control the test environment. DFSDDLT0 can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

SYSIN2 DD statement
DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLT0 will read
and process the specified data sets.

When using SYSIN2:

• The SYSIN DD data set is the primary input. DFSDDLT0 attempts to insert the SYSIN2 control
statements into the SYSIN DD data set.

• You must code the control groups and sequence numbers properly in columns 73 to 80 or the merging
process will not work.

• Columns 73 and 74 indicate the control group of the statement.
• Columns 75 to 80 indicate the sequence number of the statement.
• Sequence numbers must be in numeric order within their control group.
• Control groups in SYSIN2 must match the SYSIN control groups, although SYSIN2 does not have to use

all the control groups used in SYSIN. DFSDDLT0 does not require that control groups be in numerical
order, but the control groups in SYSIN2 must be in the same order as those in SYSIN.

• When DFSDDLT0 matches a control group in SYSIN and SYSIN2, it processes the statements by
sequence number. SYSIN2 statements falling before or after a SYSIN statement are merged accordingly.

• If the sequence number of a SYSIN2 statement matches the sequence number of a SYSIN statement in
its control group, the SYSIN2 overrides the SYSIN.

• If the program reaches the end of SYSIN before it reaches the end of SYSIN2, it processes the records
of SYSIN2 as if they were an extension of SYSIN.

• Replacement or merging occurs only during the current run. The original SYSIN data is not changed.
• During merge, if one of the control statements contains blanks in columns 73 through 80, DFSDDLT0

discards the statement containing blanks, sends a message to PRINTDD, and continues the merge until
end-of-file is reached.

Related reference
“SYSIN DD statement” on page 257
The data set specified by the SYSIN DD statement is the normal input data set for DFSDDLT0. When
processing input data that is on direct-access or tape, you may want to override certain control
statements in the SYSIN input stream or to add other control statements to it. You do this with a SYSIN2
DD statement and the control statement sequence numbers.
“Control statements” on page 217
DFSDDLT0 processes control statements to control the test environment. DFSDDLT0 can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.
“IGNORE statement” on page 248
DFSDDLT0 ignores any statement with an N or a period (.) in column 1.

PRINTDD DD statement
The PRINTDD DD statement defines output data set for DFSDDLT0, including displays of control blocks
using the SNAP call. It must conform to the z/OS SNAP data set requirements.

PUNCHDD DD statement
The DD statement for the output data set is labeled PUNCHDD.

The data sets are fixed block with LRECL=80. Block size as specified on the DD statement is used; if not
specified, the block size is set to 80. If the program is unable to open PUNCHDD, DFSDDLT0 issues abend
251. Here is an example of the PUNCHDD DD statement.

258 IMS: Application Programming APIs

//PUNCHDD DD SYSOUT=B

Using the PREINIT parameter for DFSDDLT0 input restart
You use the DFSDDLT0 restart function to restart a DFSDDLT0 input stream within the same dependent
region.

The PREINIT parameter in the EXEC statement invokes the restart function. Code the PREINIT parameter
of DFSMPR as PREINIT=xx, where xx is the two-character suffix of the DFSINTxx PROCLIB member.
(PREINIT=DL refers to the default PROCLIB member.)

The PREINIT process establishes a checkpoint field for each active IMS region. This field is updated with
the sequence number of each GU call to an I/O PCB as it is processed. For this reason, sequence numbers
are required for all such GU calls that are used. On a restart, if the checkpoint field contains a sequence
number, the DFSDDLT0 stream starts at the next GU call to an I/O PCB following the sequence number in
the checkpoint field; otherwise the DFSDDLT0 stream starts from the beginning.

The DFSDDLSI module and the default IMS.PROCLIB member, DFSINTDL, are shipped with IMS and are
installed as part of normal IMS installation.

The following code shows examples of SYSIN/SYSIN2 and PREINIT.

//TSTPGM JOB CARD
//DDLTTST EXEC DFSMPR,PREINIT=DL
//MPP.SYSIN DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S11 1 1 1 1 TP 1 01000000
OPTIONS SNAP= ,ABORT=9999 01000010
U** 01000040
S11 1 1 1 1 TP 1 01000050
L GU 01000060
E OK 01000070
S11 1 1 1 1 DBPCBXXX 01000080
L GU 01000090
E DATA A INIT-LOAD UOW 01000100
E 01 ROOTSEG1 0008A 0004D 01000110
S11 1 1 1 1 TP 1 01000120
L ISRT 01000130
L Z0080 DATA -SYNC INTERVAL 1 SEG 1 -MESSAGE 1 X01000140
L P DATA 111 01000150
L ISRT 01000160
L Z0080 DATA -SYNC INTERVAL 1 SEG 2 -END EOM 1 X01000170
L P DATA 111 01000180
U** 01000190
U* ENDING FIRST SYNC INTERVAL 01000200
U** 01000210
L GU 01000220
E QC 01000230
L GU 01000240
E OK 01000250
S11 1 1 1 1 DBPCBXXX 01000260
WTO GETTING DATA BASE SEGMENT 1 FROM DBPCBXXX 01000270
L U GHU 01000280
E DATA INIT-LOAD UOW. 1 A.P. 1 01000290
E OK 01000300
L U0003 GN 01000310
E OK 01000320
S11 1 1 1 1 TP 1 01000330
L ISRT 01000340
L Z0080 DATA -SYNC INTERVAL 2 SEG 1 -MESSAGE 1 X01000350
L P DATA 22211 01000360
L ISRT 01000370
L Z0080 DATA -SYNC INTERVAL 2 SEG 2 -END EOM 1 X01000380
L P DATA 22211 01000390
U** 01000400
U* ENDING SECOND SYNC INTERVAL 01000410
U** 01000420
L GU 01000430
E QC 01000440
L GU 01000450
E OK 01000460
S11 1 1 1 1 DBPCBXXX 01000470
S11 1 1 1 1 TP 1 01000480
L ISRT 01000490
L Z0080 DATA -SYNC INTERVAL 3 SEG 1 -MESSAGE 1 X01000500

Chapter 1. DL/I calls reference 259

L P DATA 33311 01000510
L ISRT 01000520
L Z0080 DATA -SYNC INTERVAL 3 SEG 2 -END EOM 1 X01000530
L P DATA 33311 01000580
U** 01000590
U* ENDING THIRD SYNC INTERVAL 01000600
U** 01000610
L GU 01000620
E QC 01000630
//MPP.SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 01000430
/*

Notes for the SYSIN/SYSIN2 and PREINIT examples:

1. The PREINIT= parameter coded in the EXEC statement invokes the restart process.
2. When DFSDDLT0 starts processing, it substitutes the SYSIN2 ABEND statement for the statement in

SYSIN with the same sequence number. (It is the GU call with sequence number 01000430.)
3. DFSDDLT0 begins with statement 01000000 and processes until it encounters the ABEND statement

(statement number 01000430). The GU calls to the I/O PCB have already been tracked in the
checkpoint field (statements 01000060, 01000220, and 01000240).

4. When DFSDDLT0 is rescheduled, it examines the checkpoint field and finds 01000240. DFSDDLT0
begins processing at the next GU call to the I/O PCB, statement 01000450.

If the statement currently numbered 01000240 did not have a sequence number, DFSDDLT0 would
restart from statement 01000000 when it was rescheduled.

Execution of DFSDDLT0 in IMS regions
DFSDDLT0 is designed to operate in a DL/I or BMP region but can be executed in an IFP or MPP region. In
a BMP or DL/I region, the EXEC statement allows the program name to be different from the PSB name.
There is no problem executing calls against any database in a BMP or DL/I region.

In an MPP region, the program name must be the same as the PSB name. To execute a DFSDDLT0
program in an MPP region, you must give DFSDDLT0 the PSB name or an alias of the PSB named in the
IMS definition. You can use a temporary step library.

In an MPP region or a BMP region with an input transaction code specified in the EXEC statement,
DFSDDLT0 normally gets input by issuing a GU and GNs to the I/O PCB. DFSDDLT0 issues GU and GN
calls until it receives the "No More Messages" status code, QC. If there is a SYSIN DD statement and
a PRINTDD DD statement in the dependent region, DFSDDLT0 reads input from SYSIN and SYSIN2, if
present, and sends output to the PRINTDD. If the dependent region is an MPP region and the input stream
does not cause a GU to be issued to the I/O PCB before encountering end-of-file from SYSIN, the program
will implicitly do a GU to the I/O PCB to get the message that caused the program to be scheduled. If
the input stream causes a GU to the I/O PCB and a "No More Messages" status code is received, this is
treated as the end of file. When input is from the I/O PCB, you can send output to PRINTDD by coding a 1
or an A in column 2 of the STATUS statement.

Because the input is in fixed form, it is difficult to key it from a terminal. To use DFSDDLT0 to test DL/I in
a message region, execute another message program that reads control statements stored as a member
of a partitioned set. Insert these control statements to an input transaction queue. IMS then schedules
the program to process the transactions. This method allows you to use the same control statements to
execute in any region type.

Explanation of DFSDDLT0 return codes
A non-zero return code from DFSDDLT0 indicates the number of unequal comparisons that occurred
during that time.

A return code of 0 (zero) from DFSDDLTO does not necessarily mean that DFSDDLT0 executed without
errors. There are several messages issued by DSFDDLT0 that do not change the return code, but do
indicate some sort of error condition. This preserves the return code field for the unequal comparison
count.

260 IMS: Application Programming APIs

If an error message was issued during the run, a message ERRORS WERE DETECTED WITHIN THE
INPUT STREAM. REVIEW OUTPUT TO DETERMINE ERRORS. appears at the end of the DFSDDLT0
output. You must examine the output to ensure DFSDDLT0 executed as expected.

DFSDDLT0 operations
You can use DFSDDLT0 to load a database, print, retrieve, replace, and delete segments; perform
regression testing; as a debugging aid; and to verify how a call is executed.

Load a database
Use DFSDDLT0 for loading only very small databases because you must to provide all the calls and
data rather than have them generated. The following example shows CALL FUNCTION and CALL DATA
statements that are used to load a database.

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
 O SNAP= ,ABORT=0
 S 1 2 2 1 1
 L ISRT COURSE
 L DATA FRENCH
 L ISRT COURSE
 L DATA COBOL
 L ISRT CLASS
 L DATA 12
 L ISRT CLASS
 L DATA 27
 L ISRT STUDENT
 L DATA SMITH THERESE
 L ISRT STUDENT
 L DATA GRABOWSKY MARION

Print the segments in a database
Use either of the following sequences of control statements to print the segments in a database.

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
 .* Use PRINTDD, print call, compare, and PCB if compare unequal
 .* Do 1 Get Unique call
 .* Hold PCB compare, End step if status code is not blank, GA, GC, GK
 .* Do 9,999 Get Next calls
 S 2 2 2 1 DBDNAME
 L GU
 EH8 OK
 L 9999 GN

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
 .* Use PRINTDD, print call, compare, and PCB if compare unequal
 .* Do 1 Get Unique call
 .* Hold PCB compare, Halt GN calls when status code is GB.
 .* Do 9,999 Get Next calls
 S 2 2 2 1 DBDNAME
 L GU
 EH OK
 L 9999 GN

Both examples request the GN to be repeated 9999 times. Note that the first example uses a COMPARE
PCB of EH8 while the second uses a COMPARE PCB of EH.

The difference between these two examples is that the first halts the job step the first time the status
code is not blank, GA, GC, or GK. The second example halts repeating the GN and goes on to process any
remaining DFSDDLT0 control statements when a GB status code is returned or the GN has been repeated
9999 times.

Retrieve and replace a segment
Use the following sequence of control statements to retrieve and replace a segment.

Chapter 1. DL/I calls reference 261

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----
 S 1 1 1 1 1 COURSEDB
 L GHU COURSE (TYPE =FRENCH) X
 CLASS (WEEK =27) X
 STUDENT (NAME =SMITH)
 L REPL
 L DATA SMITH THERESE

Delete a segment
Use the following sequence of control statements to delete a segment.

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----
 S 1 1 1 1 1 4
 L GHU COURSE (TYPE =FRENCH) X
 CLASS *L X
 INSTRUC (NUMBER =444)
 L DLET

Do regression testing
DFSDDLT0 is ideal for doing regression testing. By using a known database, DFSDDLT0 can issue calls and
then compare the results of the call to expected results using COMPARE statements. The program then
can determine if DL/I calls are executed correctly. If you code all the print options as 2's (print only if
comparisons done and unequal), only the calls not properly satisfied are displayed.

Use as a debugging aid
When debugging a program, you usually need a print of the DL/I blocks. You can snap the blocks to a log
data set at appropriate times by using a COMPARE statement that has an unequal compare in it. You can
then print the blocks from the log. If you need the blocks even though the call executed correctly, such as
for the call before the failing call, insert a SNAP function in the CALL statement in the input stream.

Verify how a call is executed
Because it is very easy to execute a particular call, you can use DFSDDLT0 to verify how a particular call is
handled. This can be of value if you suspect DL/I is not operating correctly in a specific situation. You can
issue the calls suspected of not executing properly and examine the results.

262 IMS: Application Programming APIs

Chapter 2. DRDA DDM command architecture
reference

IMS supports the distributed data management architecture (DDM) of the Distributed Relational Database
Architecture™ (DRDA). You can develop your own source DDM server that communicates with the IMS
target DDM server to provide access to databases managed by IMS DB in DBCTL and DB/TM IMS systems.

The IMS documentation for the DDM architecture includes only the DDM structures that are required to
connect to and communicate with IMS and the DDM structures that have been changed or defined by
IMS.

For the complete documentation of the DDM, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at www.opengroup.org.

The DDM architecture includes the following elements or terms:

• Commands
• Command objects
• Reply objects
• Reply messages

Each term, whether it is a command, command object, reply object, parameter, or message, is
represented by a codepoint, a hexadecimal value that represents and identifies the component in
communication between a source server and the target server. For example, the EXCSAT command is
represented by X'1041', the EXCSATRD reply object is represented by X'1443', the SRVNAM parameter is
represented by X'116D', and so on.

As an open standard, the DRDA specification requires that products that use the specification must
conform to the conventions, protocols, standards, and so on, of its architecture. However, the DDM
architecture that is a part of the DRDA specification allows products to create product-unique extensions,
in which a product, such as IMS, uses a subset of the existing DDM-defined commands, parameters,
and messages, as well as product-unique structures that are defined by the product. When creating a
product-unique extension that has product-unique structures, the product must conform to the DDM
architecture.

The product-unique extension for IMS conforms to both the DDM architecture and the DRDA specification.
IMS uses a subset of the existing DDM-defined commands, parameters, and messages, as well as a
variety of IMS-defined structures that conform to the DDM architecture, but are unique to IMS.

Related concepts
Programming with the IMS support for DRDA (Application Programming)

Overview of the syntax for DDM terms supported by IMS
IMS supports the general syntax of terms defined by the distributed data management (DDM)
architecture.

All DDM commands, reply messages, and chained objects begin with a 6-byte data stream structure
header (DSSHDR), followed in order by a 2-byte binary integer that defines the length of the term (LL), and
a 2-byte hexadecimal codepoint (CP) that uniquely identifies the DDM term, and data, if any.

Parameters of commands, messages, and objects start with LL, followed in order by CP and the data.
Parameters, which are also known as instance variables, do not include a DSSHDR.

Some data structures, such as the IMS product-unique data structures aibStream, dbpcbStream, and
iopcbStream, do not include DSSHDR, LL, or CP.

Related reference
“DEALLOCDB command (X'C801')” on page 271

© Copyright IBM Corp. 1974, 2022 263

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_ddm_overview.htm#ims_ddm_overview

The distributed data management (DDM) DEALLOCDB command terminates all resources that are
associated with a PSB by deallocating the PSB named in the RDBNAM parameter.

DSSHDR syntax
DSSHDR is the 6-byte header that contains information about the data stream structure (DSS) of terms
defined by the distributed data management (DDM) architecture.

DSSHDR has the following format:
LL

A 2-byte specification of the length of the whole command, reply, or object, including the 6-byte DSS
HEADER. The minimum possible value is 6, and the maximum is 32,767.

DDMID
A 1-byte Systems Network Architecture (SNA) registered General Data Stream (GDS) identifier. The
DDMID field is always D0 for a DDM command.

FORMAT ID
A 1-byte indicator of whether the DSS is chained to the next DSS and what to do when errors occur.
The byte contains the following bits, from 0 to 7, left to right:
Bit 0

Unused.
Bit 1

A flag. 1 indicates that the DSS structure is chained to the next structure. 0 indicates no chaining.
Bit 2

A flag. 1 indicates to continue when errors occur, and 0, otherwise.
Bit 3

A flag. 1 indicates that the next DSS has the same request correlator, and 0, otherwise. If bit 1 is 0,
bit 3 is also 0.

Bits 4 through 7
Indicate the DSS type:

• 1: a Request DSS.
• 2: a Reply DSS.
• 3: an Object DSS.
• 4: an Encrypted Object DSS.

RQSDRR
A generated 2-byte field that associates a request with its request data, the replies to the request, and
the data that is returned for the request.

DDM commit and rollback processing
The IMS implementation of the distributed data management (DDM) architecture includes support for
commit and rollback processing.

XA support and the processing of global transactions is controlled by the DDM commands SYNCCTL and
SYNCCRD.

The processing of local transactions is controlled by the DDM commands RDBCMM and RDBRLLBCK.

IMS does not extend these DDM commands beyond their original specification by DRDA.

Documentation for these commands can be found in DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture.

264 IMS: Application Programming APIs

DDM commands and command objects
IMS supports a subset of the distributed data management (DDM) architecture commands and command
objects and defines other IMS product-unique DDM commands.

ACCRDB command (X'2001')
The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.

The PSB remains allocated until the database connection is closed and the communications conversation
is terminated.

Format

DSSHDR LL CP RDBNAM RDBACCCL PRDID

PRDDTA

TYPDEFNAM

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2001', the 2-byte codepoint of the ACCRDB command.
RDBNAM

A required parameter (X'2110') that contains the IMS PSB name that identifies the target database.
The PSB name is a character string up to 8 bytes long. RDBNAM can optionally include the alias name
of the IMS data store.

RDBACCCL
A required parameter that specifies the application manager that accesses the database. The
codepoint for RDBACCCL is X'210F'. The value of RDBACCCL is reserved and must be X'2407'.

PRDID
A required parameter that specifies the release level of the source DDM server. The codepoint for
PRDID is X'112E'.

PRDDTA
An optional parameter that specifies product-specific information that is passed to the target if the
SRVCLSNM of the target server is not known when the ACCRDB command is issued. The codepoint for
PRDDTA is X'2104'. This parameter can be ignored by the target server.

TYPDEFNAM

A required parameter (X'002F') that specifies the name of the data type definition. TYPDEFNAM
consists of a 2-byte specification of length (LL), a 2-byte codepoint (CP), and the VALUE. The VALUE is
reserved and must be QTDSQL370, which is the general EBCDIC SQL type definition for machines that
use EBCDIC strings, IEEE floating-point numbers, and non-byte-reversed floating-point and integer
numbers.

Usage
If no errors occur during the processing of the ACCRDB command, the IMS target server returns the
ACCRDBRM reply message to indicate that the database has been allocated.

Chapter 2. DRDA DDM command architecture reference 265

Chained command objects
No command objects can be chained to the ACCRDB command.

Positive reply messages
In response to the ACCRDB command, the IMS target DDM server returns to the source server the
following positive reply messages:

ACCRDBRM
Access to database completed.
Codepoint: X'2201'
Specifies that the named database in the previous ACCRDB command is now available to the client for
processing.

Error reply messages
In response to the ACCRDB command, the IMS target DDM server can return to the source DDM server the
following error reply messages that are unique to the ACCRDB command:

Table 76. Possible error reply messages unique to the ACCRDB command

Codepoint of reply message Name of reply message Meaning of reply message

X'2203' RDBATHRM Not authorized to database.

X'2211' RDBNFNRM Database not found.

X'221A' RDBAFLRM RDB access failed reply message.

If the RDBNAM parameter
was specified on the ACCRDB
command, the RDBAFLRM reply
message indicates that the
database (RDB) failed the
attempted connection.

Related reference
“ACCRDBRM reply message (X'2201')” on page 309
The distributed data management (DDM) architecture ACCRDBRM (access to database completed) reply
message specifies that the named database in the previous ACCRDB command is available to the client
for processing.
“RDBNAM parameter (X'2110')” on page 344
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.
“RDBAFLRM reply message (X'221A')” on page 326
The distributed data management (DDM) architecture RDBAFLRM (database access failed) reply message
indicates that the database access failed.
“RDBATHRM reply message (X'2203')” on page 327
The distributed data management (DDM) architecture RDBATHRM (not authorized to database) reply
message indicates that the user is not authorized to access the database.
“RDBNACRM reply message (X'2204')” on page 328

266 IMS: Application Programming APIs

The distributed data management (DDM) architecture RDBNACRM (database not accessed) reply
message indicates that the access database command (ACCRDB) was not issued prior to a command
that requested the database services.

ACCSEC command (X'106D')
The ACCSEC DDM command is used to determine the type of security checking that is performed when an
application program on the source server connects to a database on the IMS target server.

The source server uses the ACCSEC command to negotiate with the IMS target server which type of
security mechanism, as defined by the DDM architecture, is used for identification and authentication.
IMS supports only the user ID and Password Security Mechanism (USRIDPWD) of the DDM architecture.
The ACCSEC command must always precede the SECCHK command when any of the valid security
mechanisms are active.

Format

DSSHDR LL CP SECMEC

RDBNAM

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'106D', the 2-byte codepoint of the ACCSEC command.
SECMEC

A required parameter that specifies the security mechanism that the source server uses when
interacting with the IMS target server. IMS supports only the USRIDPWD security mechanism of the
DDM architecture. To specify USRIDPWD enter a 2-byte binary number 3 in the SECMEC parameter.

RDBNAM

An optional parameter (X'2110') that contains the IMS PSB name that identifies the target database.
The PSB name is a character string up to 8 bytes long. RDBNAM can optionally include the alias name
of the IMS data store.

Usage
During the initial handshaking between the source and target DRDA servers, the source server must issue
the EXCSAT command chained to the ACCSEC command.

In a successful exchange, the IMS target server returns the ACCSECRD reply data object in response to
the ACCSEC command. The ACCSECRD reply object identifies the security mechanism that is used by the
IMS target server to the source server. In a successful exchange, the value returned in the ACCSECRD
reply object is the same as the value of the SECMEC parameter of the ACCSEC command.

If the IMS target server detects an error while processing the ACCSEC command, the ACCSECRD reply
object contains the SECCHKCD parameter. In the ACCSECRD reply object, the SECCHKCD parameter has
an implied severity code of ERROR. After an error, the ACCSEC command must be sent again before a
SECCHK command can be sent to authenticate the connection.

Chained command objects
No command objects can be chained to the ACCSEC command.

Chapter 2. DRDA DDM command architecture reference 267

Reply data objects
In response to the ACCSEC command, the IMS target DDM server can return to the source DDM server the
following reply data objects:

ACCSECRD (X'14AC')
Access security reply data.

Error reply messages
In response to the ACCSEC command, the IMS target DDM server can return to the source DDM server the
following reply messages:

Table 77. Possible reply messages for the ACCSEC command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'123C' INVRQSRM Invalid request

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

Related reference
“ACCSECRD reply object (X'14AC')” on page 311
The distributed data management (DDM) architecture ACCSECRD (access security reply data) reply object
contains the security information from the security manager of the target server. This information is
returned in response to the ACCSEC command.
“RDBNAM parameter (X'2110')” on page 344
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.

CLSQRY command (X'2005')
The distributed data management (DDM) Architecture CLSQRY command closes a query that was opened
previously by an OPNQRY call.

Format

DSSHDR LL CP PCBNAME

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

268 IMS: Application Programming APIs

CP
X'2005', the 2-byte codepoint of the CLSQRY command.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907'.

Usage
Use the DDM command CLSQRY (close a query) to close a query that was opened previously by an
OPNQRY call.

Chained command objects
No command objects can be chained to the CLSQRY command.

Error reply messages
If errors occur during the processing of the CLSQRY command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 78. Possible error reply messages for the CLSQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

CNTQRY command (X'2006')
The distributed data management (DDM) architecture CNTQRY command continues a query by resuming
the return of the result set data that was generated by a previous OPNQRY call.

Format

DSSHDR LL CP

MAXBLKEXT

PCBNAME QRYBLKSZ

QRYROWSET

Chapter 2. DRDA DDM command architecture reference 269

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2006', the 2-byte codepoint of the CNTQRY command.
MAXBLKEXT

An optional parameter that specifies the maximum number of extra blocks per result set that the
requester is capable of receiving as reply data in the response to the CNTQRY command. The number
is specified as a 2-byte binary number. A value of 0 indicates that the requester is not capable of
receiving extra query blocks of answer set data. A value of -1 indicates that the requester is capable of
receiving the entire result set. The codepoint for MAXBLKEXT is X'2141'.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907'.

QRYBLKSZ
A required parameter that specifies the size of query blocks that is ideal for the source application
program. Query blocks are used by the target server to return answer set data. The target server
can override this parameter as needed. The query block size is specified as a 4-byte unsigned binary
number. The minimum size for a query block is 0.5 KB. The maximum size is 10 MB. The codepoint for
QRYBLKSIZ is X'2114'.

QRYROWSET
An optional parameter that specifies the number of rows of data to return in one network reply. The
number of rows is specified as a 4-byte binary number. The minimum value for QRYROWSET is 0. The
maximum value is 32 767. The code point for the QRYROWSET parameter is X'2156'.

The JDBC driver uses the following calculation to determine how many records can be placed into the
buffer that ODBM returns from the IMS DB through the DRDA protocol. Here is a brief description of
the variables used in the formula:

IOAREALENGTH: By leveraging the database metadata available in the catalog, the length for a given
path (record) call can be determined. This is the sum of the maximum possible length for all segments
in the path call. For example, if you specify SELECT * FROM SEGMA, SEGMB where SEGMB is a child
of SEGMA, then the length of the path call (record) being returned is the length of SEGMA + the length
of SEGMB. This length is referred to as IOAREALENGTH.

MAXRETURNDATA: ODBM has its own buffer that is used to collect data prior to sending it back to the
user. This buffer is referred to as MAXRETURNDATA and is set it to 1MB.

MAXROWDATA: For each record that gets returned, there is some additional overhead that uses
the amount of usable buffer space for actual record data. The formula accounts for this additional
overhead. 44 bytes will be used for the keyfeedback of each row as well as bytes used to describe
the SSAList (equivalent of the WHERE clause from the SQL statement). The amount of space required
per row of data is referred to as MAXROWDATA.

Formula used to calculate QRYROWSET:

IOAREALENGTH = LENGTH_OF_YOUR_PATHCALL
MAXRETURNDATA = 1MB
MAXROWDATA = 44 + (NUM_OF_SEGMENT_LEVELS_IN_SSALIST * 256) + IOAREALENGTH
QRYROWSET = MAXRETURNDATA / MAXROWDATA

270 IMS: Application Programming APIs

Usage
The DDM command CNTQRY (continue a query) to resume the return of result set data generated by a
previous OPNQRY call.

Chained command objects
No command objects are chained to the CNTQRY command.

Reply data objects
The following reply data objects can be returned in response to the CNTQRY command:

QRYDTA (X'241B')
Query answer set data.

Error reply messages
If errors occur during the processing of the CNTQRY command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 79. Possible error reply messages for the CNTQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220B' ENDQRYRM End of query

X'220D' ABNUOWRM Abnormal end of unit of work
condition

X'2213' SQLERRRM SQL error condition

X'2218' RDBUPDRM Database update reply message.

DEALLOCDB command (X'C801')
The distributed data management (DDM) DEALLOCDB command terminates all resources that are
associated with a PSB by deallocating the PSB named in the RDBNAM parameter.

Format

DSSHDR LL CP RDBNAM

Chapter 2. DRDA DDM command architecture reference 271

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C801', the 2-byte codepoint of the DEALLOCDB command.
RDBNAM

A required parameter (X'2110') that contains the IMS PSB name that identifies the target database.
The PSB name is a character string up to 8 bytes long. RDBNAM can optionally include the alias name
of the IMS data store.

Usage
If no errors occur during the processing of the DEALLOCDB command, the IMS target server returns the
DEALLOCDBRM reply message to indicate that the database has been successfully deallocated.

Chained command objects
No command objects can be chained to the DEALLOCDB command.

Positive reply messages
In response to the DEALLOCDB command, the IMS target DDM server returns to the source server the
following positive reply messages:

DEALLOCDBRM (X'CA01')
Deallocation of database complete.
Specifies that the named PSB is now deallocated.

Error reply messages
In response to the DEALLOCDB command, the IMS target DDM server can return to the source DDM server
the following error reply messages:

Table 80. Possible error reply messages for the DEALLOCDB command

Codepoint of reply message Name of reply message Meaning of reply message

X'1232' AGNPRMRM Permanent agent error

X'124C' SYNTAXRM Data stream syntax error

Related reference
“RDBNAM parameter (X'2110')” on page 344
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.
“DEALLOCDBRM reply message (X'CA01')” on page 314
The distributed data management (DDM) architecture DEALLOCDBRM (deallocate database completed)
reply message indicates that the named PSB is deallocated.
“Overview of the syntax for DDM terms supported by IMS” on page 263

272 IMS: Application Programming APIs

IMS supports the general syntax of terms defined by the distributed data management (DDM)
architecture.

DLIFUNC command object (X'CC05')
Use the distributed data management (DDM) architecture DLIFUNC (DL/I function) command object to
specify the DL/I function that is being called.

Format

DSSHDR LL CP BYTSTRDR

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC05', the 2-byte codepoint of the DLIFUNC command object.
BYTSTRDR

Byte String Data Representation, a required character string that contains the DL/I call to run on the
database. The following character string values can be specified in the DLIFUNC command object:
ISRT

Insert call
DLET

Delete call
REPL

Replace call
GHU

Get Hold Unique call
GU

Get Unique call
GHN

Get Hold Next call
GN

Get Next call
GHNP

Get Hold Next Within Parent call
GNP

Get Next Within Parent call
DELETE

Batch Delete call
UPDATE

Batch Replace call
RETRIEVE

Batch Retrieve call
Related reference
“EXCSQLIMM command (X'200A')” on page 276

Chapter 2. DRDA DDM command architecture reference 273

The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.
“OPNQRY command (X'200C')” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

DLIFUNCFLG command object (X'CC09')
Use the distributed data management (DDM) architecture DLIFUNCFLG (DL/I function flag) command
object to specify whether a DL/I batch processing operation starts with a GU or a GN call and which SSA
list is associated with each call.

Format
DSSHDR LL CP FFFF

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC09', the 2-byte codepoint of the DLIFUNCFLG command object.
FFFF

A required 4-byte flag value. Each byte in the flag specifies a different DL/I batch processing option:
First byte

X’00’
Begin batch processing with a GHN call.

X’80’
Begin batch processing with a GHU call.

Second byte
The first four bits of the second byte indicate which SSAList is associated with the get position call.
The second four bits indicate which SSAList is associated with an optional REPL call that follows
the get position call:
B’0000’

No SSA
B’1000’

First SSA in list
B’0100’

Second SSA in list
B’0010’

Third SSA in list
B’0001’

Fourth SSA in list
Third byte

The third byte is specified in the same format as the second byte, but is used for subsequent GHN
and optional REPL calls that follow the initial get position call.

Fourth byte
Reserved.

274 IMS: Application Programming APIs

EXCSAT command (X'1041')
The distributed data management (DDM) architecture EXCSAT command initiates the exchange of
attributes between a source application server and an IMS target server to identify the server class names
and levels of DDM support of each server. The EXCSAT command must always be the first command sent
from a source server to the IMS target server.

Format

DSSHDR LL CP

EXTNAM SRVNAM SRVRLSLV

SRVCLSNM

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'1041', the 2-byte codepoint of the EXCSAT command.
EXTNAM

Optional. The variable-length name of the process or thread that is requesting access to an IMS
database. The specified name identifies the application thread for tracing and problem determination.
If the job name includes embedded blanks, the name must be enclosed in quotation marks. The
maximum length of EXTNAM is 255 bytes. The codepoint is X'115E'.

SRVNAM
Optional. The variable-length name of the source DDM server. The specified name identifies
for tracing and problem determination purposes the hostname of the computer that the source
application program is running on. If the server name includes embedded blanks, the name must be
enclosed in quotation marks. The maximum length is 255 bytes. The codepoint is X'116D'.

SRVCLSNM
Specifies the DDM server class name used by IMS: DFS. DFS is currently the only class name
supported by IMS. The SRVCLSNM enables the DRDA product-unique extension used by IMS.
The codepoint of SRVCLSNM is X'1147'. The variable-length DDM server class name is specified as a
character string.

Usage
The EXCSAT DDM command is used to initiate a request to access an IMS database and identify the
requestor, a DDM source server to the DDM target server of IMS.

During the initial handshaking between the source and target DRDA servers, the source server must issue
the EXCSAT command chained to the ACCSEC command.

In a successful exchange, the IMS target server returns the EXCSATRD reply data object in response to
the EXCSAT command. The EXCSATRD reply object identifies the IMS target server to the source server.

Chained command objects
No command objects are chained to the EXCSAT command.

Reply data objects
In response to the EXCSAT command, the IMS target DDM server can return to the source DDM server the
following reply data objects:

Chapter 2. DRDA DDM command architecture reference 275

EXCSATRD (X'1443')
Exchange server attributes.

Error reply messages
In response to the EXCSAT command, the IMS target DDM server can return to the source DDM server the
following error reply messages:

Table 81. Possible error reply messages for the EXCSAT command

Codepoint of reply message Name of reply message Meaning of reply message

X'1210' MGRLVLRM Manager-level conflict

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

Related reference
“EXCSATRD reply object (X'1443')” on page 317
The EXCSATRD reply data object returns information about the IMS target DDM server, such as server
name or the product release level, to the source DDM server.

EXCSQLIMM command (X'200A')
The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.

Format
DLI Flow:

DSSHDR LL CP PCBNAME PKGNAMCSN

RDBCMTOK

RTNSETSTT

SQL Flow:
DSSHDR LL CP

MONITOR

PKGNAMCSN

PKGSN QRYINSID

RDBCMTOK RDBNAM RTNSETSTT

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'200A', the 2-byte code point of the EXCSQLIMM command.

276 IMS: Application Programming APIs

QRYINSID
An 8-byte query instance identifier.

Restriction: This parameter is required if the EXCSQLIMM command is operating on a positioned
delete/update SQL statement and more than one query instance exists for the section associated with
the query.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907'.

PKGNAMCSN(X'2113')
Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. The PKGNAMCSN can have one of the following formats, depending
on the length of the RDBNAM, RDBCOLID, and PKGID contained therein:

• RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of the PKGNAMCSN is
identical to the sole format used before DDM Level 7, where the length is fixed at 68. The use of the
SCLDTALEN is disallowed with this format.

• At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This format of the PKGNAMCSN
requires the SCLDTALEN precedes each of the RDBNAM, RDBCOLID, and PKGID. With this format,
the PKGNAMCSN has a minimum length of 75 and a maximum length of 785.

Format:

LL CP

SCLDTALEN

RDBNAM

SCLDTALEN

PKGID PKGNAM

PKGCNSTKN

PKGSN SCLDTALEN

RDBCOLID

Parameters:

RDBNAM
An 18- to 255-byte character field that represents the relational database name.

PKGID
An 18- to 255-byte character field that represents the relational database package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of a relational database
package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and the relational database
package are synchronized. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:

• RDB collection identifier (RDBCOLID)
• Relational database name (RDBNAM)
• RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the parameters listed is greater than
18 bytes.

Chapter 2. DRDA DDM command architecture reference 277

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of objects that are contained
in a relational database. It is used for user-defined grouping.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18 bytes, the SCLDTALEN is
mandatory and must precede the RDBCOLID. Otherwise, the SCLDTALEN is disallowed.

RDBCMTOK
An optional parameter (X'2105') that specifies whether the database allows the processing of commit
and rollback operations. Set the value to X'F1' (TRUE), which indicates that the database does allow
commit and rollback processing.

Note: IMS Universal drivers always send a value of TRUE.

RTNSETSTT(X'210E')
If any special register setting was modified during command execution, the return SET statement
controls whether the target server must return one or more SQLSTT reply data objects upon
successful command processing. Each SQLSTT reply data object contains an SQL SET statement for a
special register whose setting was modified on the current connection.
If no special register setting was modified, no SQLSTT reply data object is returned, regardless of the
RTNSETSTT setting.

Format:

LL CP VALUE

Parameters:

VALUE
X'00'

Target server must not return any SQL SET statements.
X'01'

Target server must return one or more SQL SET statements for special registers whose
settings were modified.

–

Note: IMS always sends X'01' from the IMS Universal drivers.

MONITOR(X'1900')
LL CP FLAGS

FLAGS
A 4-byte flag value.

Usage
The DDM command EXCSQLIMM (execute immediate SQL) executes a replace, insert, or delete operation
on an IMS database.

If no errors occur during the processing of the EXCSQLIMM command, the IMS target server returns the
database update reply message RDBUPDRM (X'2218').

Chained command objects
The following command objects can be chained to the EXCSQLIMM command:

INAIB (X'CC01')
Contains AIB data. If the DLIFUNC value is either DELETE or UPDATE, the AIB parameter is required.

278 IMS: Application Programming APIs

DLIFUNC (X'CC05')
The DL/I call to execute on the database. The DL/I call is specified as a character string and defines
the action to perform on the database. For a description of the possible values for DLIFUNC, see the
description of DLIFUNC.

FLDENTRY (X'CC03')
If DLIFUNC is set to ISRT, REPL, or UPDATE, the FLDENTRY parameter is required.

SSALIST (X'CC06')
Lists the segment search arguments. If DLIFUNC is set to UPDATE or DELETE, the SSALIST parameter
is required. If DLIFUNC is set to DLET, ISRT, or REPL, the SSALIST parameter is optional.

Positive reply messages
In response to the EXCSQLIMM command, the IMS target DDM server returns to the source server the
following positive reply message:

RDBUPDRM (X'2218')
Database update reply message.

Reply data objects
No reply data objects are returned in response to the EXCSQLIMM command.

Error reply messages
In response to the EXCSQLIMM command, the IMS target DDM server can return to the source DDM
server the following error reply messages:

Table 82. Possible error reply messages for the EXCSQLIMM command

Code point of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1253' OBJNSPRM Object not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220D' ABNUOWRM Abnormal end of unit of work
condition

X'220E' DTAMCHRM Data Descriptor Mismatch

X'2213' SQLERRRM SQL error condition

X'2225' CMMRQSRM Commitment request

Chapter 2. DRDA DDM command architecture reference 279

EXCSQLIMM examples
The following example shows EXCSQLIMM that is part of the request to an OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: EXCSQLIMM (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0060D0510002005A 200A00442113E2C1 .`.Q...Z ..D!... .-}....!......SA
[ibm][ims][drda][t4] 0010 D4D7D3C540404040 4040404040404040 @@@@@@@@@@@@ MPLE
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2C8F2 F0F0404040404040 @@........@@@@@@ SYSSH200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100410005 @@@@SYSLVL01.A.. ...<.<......
[ibm][ims][drda][t4] 0050 2105F10005210E01 0008190080000000 !....!.......... ..1.............

Related reference
“DLIFUNC command object (X'CC05')” on page 273
Use the distributed data management (DDM) architecture DLIFUNC (DL/I function) command object to
specify the DL/I function that is being called.
“FLDENTRY command object (X'CC03')” on page 282
Use the distributed data management (DDM) architecture FLDENTRY (field entry) command object to
specify the field to insert or update.
“SSALIST command object (X'CC06')” on page 307
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.
“INAIB command object (X'CC01')” on page 284
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.
“RDBUPDRM reply message (X'2218')” on page 330
The distributed data management (DDM) architecture RDBUPDRM (database update) reply message
indicates that the a DDM command resulted in an update at the target database.

EXCSQLSET command (X'2014')
The distributed data management (DDM) architecture Execute SQL SET command (EXCSQLSET) executes
one or more SET statements to establish the application environment.

Format

DSSHDR LL CP PKGNAMCSN RTNSETSTT MONITOR

Parameters
DSSHDR

The 6-byte header field containing information about the DSS.
LL

A 2-byte field that has the length of the EXCSQLSET command.
CP(X'2014')

The 2-byte codepoint of the EXCSQLSET command.
PKGNAMCSN(X'2113')

Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. The PKGNAMCSN can have one of the following formats, depending
on the length of the RDBNAM, RDBCOLID, and PKGID contained therein:

• RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of the PKGNAMCSN is
identical to the sole format used before DDM Level 7, where the length is fixed at 68. The use of the
SCLDTALEN is disallowed with this format.

280 IMS: Application Programming APIs

• At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This format of the PKGNAMCSN
requires the SCLDTALEN precedes each of the RDBNAM, RDBCOLID, and PKGID. With this format,
the PKGNAMCSN has a minimum length of 75 and a maximum length of 785.

Format:

LL CP

SCLDTALEN

RDBNAM

SCLDTALEN

PKGID PKGNAM

PKGCNSTKN

PKGSN SCLDTALEN

RDBCOLID

Parameters:

RDBNAM
An 18- to 255-byte character field that represents the relational database name.

PKGID
An 18- to 255-byte character field that represents the relational database package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of a relational database
package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and the relational database
package are synchronized. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:

• RDB collection identifier (RDBCOLID)
• Relational database name (RDBNAM)
• RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the parameters listed is greater than
18 bytes.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of objects that are contained
in a relational database. It is used for user-defined grouping.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18 bytes, the SCLDTALEN is
mandatory and must precede the RDBCOLID. Otherwise, the SCLDTALEN is disallowed.

RTNSETSTT(X'210E')
Return SET statement controls whether the target server must return one or more SQLSTT reply data
objects, each containing an SQL SET statement for a special register whose setting has been modified
on the current connection, upon successful processing of the command, if any special register had
its setting modified during execution of the command. NO SQLSTT reply data object is returned if no
special register has had its setting modified, regardless of RTNSETSTT setting.

Format:

LL CP VALUE

Parameters:

VALUE
X'00' – Target server must not return any SQL SET statements.

Chapter 2. DRDA DDM command architecture reference 281

X'01' – Target server must return one or more SQL SET statements for special registers whose
settings have been modified.

Note: IMS will always send a 0x'01' from the Universal Driver.

MONITOR(X'1900')
LL CP FLAGS

FLAGS
A 4-byte flag value.

EXCSQLSET examples
The following example shows EXCSQLSET that is part of the request to an OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: EXCSQLSET (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF
[ibm][ims][drda][t4] 0000 004ED05100010048 2014004421134BC9 .N.Q...H ..D!.K. .+}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C30310041 @@@@SYSLVL01.A ...<.<....

Note: RTNSETSTT & MONITOR are not in the example.

FLDENTRY command object (X'CC03')
Use the distributed data management (DDM) architecture FLDENTRY (field entry) command object to
specify the field to insert or update.

Format
DSSHDR LL CP RECOFF FLDVAL

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC03', the 2-byte codepoint of the FLDENTRY command object.
RECOFF

A required, 4-byte signed integer that contains the offset of the field within the hierarchic path I/O
area.

FLDVAL
A required string that contains the byte array to place into the I/O area for the ISRT or REPL DL/I call
starting at position RECOFF.

Usage
Multiple FLDENTRY command objects might be chained to the EXCSQLIMM command.

Related reference
“EXCSQLIMM command (X'200A')” on page 276

282 IMS: Application Programming APIs

The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.

FLDENTRYREL command object (X'CC0C')
Use the distributed data management (DDM) architecture FLDENTRYREL (relative field entry) command
object to specify which field to insert or update.

Restriction: The FLDENTRYREL command object is supported only with an ODBM DDM level of 1, 2, 3 or
1, 3.

Format
DSSHDR LL CP SEGMOFF SEGMID FLDVAL

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC0C', the 2-byte codepoint of the FLDENTRYREL command object.
SEGMOFF

A required, 4-byte, signed integer that specifies the relative offset of the target field from the start of
the parent segment.

SEGMID
A required, 1-byte, signed integer that specifies which segment in the SEGMLIST the field is
referenced from. This value is relative to 1 rather than 0.

FLDVAL
The value for the field that is being updated or inserted.

IMSCALL command (X'C803')
Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.

Format

DSSHDR LL CP CALLNAME

IOAREA

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C803', the 2-byte codepoint of the IMSCALL command.
CALLNAME

A required character string (codepoint is X'C90C') that represents the type of the DL/I call that is
made.

Chapter 2. DRDA DDM command architecture reference 283

IOAREA
An optional parameter in byte array (codepoint is X'C90B') that specifies the input and output area.

Usage
The IMSCALL command issues DL/I calls for IMS DB system services in the following format:

call_name INAIB IOAREA

Chained command objects
INAIB (X'CC01')

The AIB data to send from the source to the target server.

Positive reply messages
In response to the IMSCALL command, the IMS target DDM server returns to the source server the
following reply message:

IMSCALLRM (X'CA04')
Contains the results of the IMSCALL command. The results can indicate the success or failure of the
DL/I call for IMS DB system services.

Error reply messages
In response to the OPNQRY command, the IMS target DDM server can return to the source DDM server
the following error reply messages:

Table 83. Possible reply messages for the OPNQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'1232' AGNPRMRM Permanent agent error

X'124C' SYNTAXRM Data stream syntax error

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

Related reference
“IMSCALLRM reply message (X'CA04')” on page 318
The distributed data management (DDM) architecture IMSCALLRM (IMS call) reply message returns the
results of a DL/I call for IMS DB system services submitted by using the IMSCALL command.
“INAIB command object (X'CC01')” on page 284
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.
“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.

INAIB command object (X'CC01')
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

Format

284 IMS: Application Programming APIs

DSSHDR LL CP AIBRSNM1

AIBRSNM2 AIBSFUNC

AIBOALEN

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC01', the 2-byte codepoint of the INAIB command object.
AIBRSNM1

A required String that contains the resource (PCB) name. The string must be left-aligned and padded
with blanks, to a total of 8 bytes. The codepoint is X'C901'.

AIBRSNM2
An optional String that contains a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is the
4-character ID. The codepoint is X'C902'.

AIBSFUNC
An optional String that contains the sub-function code. The String must be left justified and padded
with blanks to a total of 8 bytes. The codepoint is X'C903'.

AIBOALEN
An optional, 4-byte integer that specifies the maximum output length. This field is used for all calls
that return data. The codepoint is X'C904'.

Usage
This AIB command object contains only the AIB data to send from the source to the target server. The
AIB and DBPCB data to send from the target to the source server is contained in the aibStream and
dbpcbStream data structures inside the OUTAIBDBPCB objects.

Related reference
“AIBOALEN parameter (X'C904')” on page 336
The AIBOALEN parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that identifies the maximum output length on all calls that return data.
“AIBRSNM1 parameter (X'C901')” on page 337
The AIBRSNM1 parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the PCB name.
“AIBRSNM2 parameter (X'C902')” on page 337
The AIBRSNM2 parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the identifier of the ODBA startup table.
“AIBSFUNC parameter (X'C903')” on page 338
The AIBSFUNC parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the sub-function code, if any, of a DL/I call.
“EXCSQLIMM command (X'200A')” on page 276
The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.
“IMSCALL command (X'C803')” on page 283

Chapter 2. DRDA DDM command architecture reference 285

Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.
“OPNQRY command (X'200C')” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

MONITORRD command (X'1C00')
The distributed data management (DDM) architecture MONITORRD allows the target agent to return
monitoring data to the source agent. The value returned is used to determine the elapsed CPU time for a
database call.

Format

DSSHDR LL CP ETIME

Parameters
DSSHDR

The 6-byte header field containing information about the DSS.
LL

A 2-byte field that has the length of the MONITORRD command.
CP(X'1C00')

The 2-byte codepoint of the MONITORRD command.
ETIME(X'1901')

The elapsed time is a 64-bit binary number that measures time in microseconds. Consists of two
bytes of length field (LL), and two bytes of the code point, followed by the data. The length is 12 bytes.

Format:

LL CP VALUE

Parameters:

VALUE
An 8-byte field representing the elapsed time.

MONITORRD example
In the following example, the server time is calculated in the trace by aggregated all of the MONITORRD
ETIME values for a communication exchange.

[ibm][ims][drda][t4] RECEIVE BUFFER: MONITORRD (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0016D04300020010 1C00000C19010000 ...C............ ..}.............
[ibm][ims][drda][t4] 0010 000000036B39 k9 ,.
[ibm][ims][drda][SystemMonitor:stop] core: 283.09152ms | network: 256.137805ms | server: 254.816ms

OPNQRY command (X'200C')
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

Format

DLI Flow:

286 IMS: Application Programming APIs

DSSHDR LL CP

MAXBLKEXT

PCBNAME

QRYBLKCTL

QRYBLKSZ

QRYROWSET

SQL Flow:

DSSHDR LL CP PKGNAMCSN

PKGSN MONITOR

QRYBLKSZ

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'200C', the 2-byte code point of the OPNQRY command.
MAXBLKEXT

An optional parameter that specifies the maximum number of extra blocks per result set that the
requester is capable of receiving as reply data in the response to an OPNQRY or CNTQRY command.
The number is specified as a 2-byte binary number. A value of 0 indicates that the requester is not
capable of receiving extra query blocks of answer set data. A value of -1 indicates that the requester is
capable of receiving the entire result set. The code point for MAXBLKEXT is X'2141'.

MONITOR(X'1900')
LL CP FLAGS

FLAGS
A 4-byte flag value.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907'.

PKGNAMCSN(X'2113')
Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

QRYBLKCTL
An optional parameter that specifies the type of query block protocol that is used when a query
is opened. IMS supports only the limited block query protocol of the DDM architecture. If the
QRYBLKCTL parameter is specified on the OPNQRY command, the 2-byte data portion of the
QRYBLKCTL parameter must specify the hexadecimal value of X'2417', the code point for the limited
block query protocol (LMTBLKPRC). If the QRYBLKCTL parameter is omitted from the OPNQRY
command, the IMS target server still uses the limited block query protocol. The code point for the
QRYBLKCTL parameter is X'2132'.

QRYBLKSZ
A required parameter that specifies the size of query blocks that is ideal for the source application
program. Query blocks are used by the target server to return answer set data. The target server
can override this parameter as needed. The query block size is specified as a 4-byte unsigned binary

Chapter 2. DRDA DDM command architecture reference 287

number. The minimum size for a query block is 0.5 KB. The maximum size is 10 MB. The code point for
the QRYBLKSIZ parameter is X'2114'.

QRYROWSET
An optional parameter that specifies the number of rows of data to return in one network reply. The
number of rows is specified as a 4-byte binary number. The minimum value for QRYROWSET is 0. The
maximum value is 32 767. The code point for the QRYROWSET parameter is X'2156'.

The JDBC driver uses the following calculation to determine how many records can be placed into the
buffer that ODBM returns from the IMS DB through the DRDA protocol. Here is a brief description of
the variables used in the formula:

IOAREALENGTH: By leveraging the database metadata available in the catalog, the length for a given
path (record) call can be determined. This is the sum of the maximum possible length for all segments
in the path call. For example, if you specify SELECT * FROM SEGMA, SEGMB where SEGMB is a child
of SEGMA, then the length of the path call (record) being returned is the length of SEGMA + the length
of SEGMB. This length is referred to as IOAREALENGTH.

MAXRETURNDATA: ODBM has its own buffer that is used to collect data prior to sending it back to the
user. This buffer is referred to as MAXRETURNDATA and is set it to 1MB.

MAXROWDATA: For each record that gets returned, there is some additional overhead that uses
the amount of usable buffer space for actual record data. The formula accounts for this additional
overhead. 44 bytes will be used for the keyfeedback of each row as well as bytes used to describe
the SSAList (equivalent of the WHERE clause from the SQL statement). The amount of space required
per row of data is referred to as MAXROWDATA.

Formula used to calculate QRYROWSET:

IOAREALENGTH = LENGTH_OF_YOUR_PATHCALL
MAXRETURNDATA = 1MB
MAXROWDATA = 44 + (NUM_OF_SEGMENT_LEVELS_IN_SSALIST * 256) + IOAREALENGTH
QRYROWSET = MAXRETURNDATA / MAXROWDATA

Usage
If no errors occur during processing of the OPNQRY, the IMS target server returns the OPNQRYRM reply
message to indicate that the query was successfully opened.

Command objects
The following command objects can be chained to the OPNQRY command:

INAIB (X'CC01')
A required command object that contains AIB data.

Note: The INAIB object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

DLIFUNC (X'CC05')
A required command object that specifies the action to take on the database. The data field of
DLIFUNC is a database function that is specified as a character string. The valid values for DLIFUNC,
when it is chained to the OPNQRY command, are: RETRIEVE, GHU, GU, GHN, GN, GNP, or GHNP.

Note: The DLIFUNC object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

RTRVLFD (X'CC04')
An optional scalar data object representing a field that the client wants to retrieve. Multiple RTRVFLD
objects can be chained to the OPNQRY command. If an RTRVFLD object is not included on the
OPNQRY command, all fields in the retrieved segment are returned.

Note: The RTRVLFD object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

288 IMS: Application Programming APIs

SSALIST (X'CC06')
An optional chained object that lists the segment search arguments. If the SSALIST is not included
on the OPNQRY command, the IMS target server ignores any RTRVFLD chained objects and the query
results in an unqualified step through the IMS database.

Note: The SSALIST object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

Positive reply messages
In response to the OPNQRY command, the IMS target DDM server returns to the source server the
following positive reply messages:

OPNQRYRM (X'2205')
Open query reply message.

Reply data objects
The following reply data objects can be returned in response to the CNTQRY command:

QRYDSC (X'241A')
Query answer set description.

QRYDTA (X'241B')
Query answer set data.

Error reply messages
In response to the OPNQRY command, the IMS target DDM server can return to the source DDM server
the following error reply messages:

Table 84. Possible reply messages for the OPNQRY command

Code point of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1253' OBJNSPRM Object not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220A' DSCINVRM Invalid description

X'220B' ENDQRYRM End of query

X'220D' ABNUOWRM Abnormal end of unit of work
condition

X'220E' DTAMCHRM Data descriptor mismatch

Chapter 2. DRDA DDM command architecture reference 289

Table 84. Possible reply messages for the OPNQRY command (continued)

Code point of reply message Name of reply message Meaning of reply message

X'220F' QRYPOPRM Query previously opened

X'2212' OPNQFLRM Open query failure

X'2218' RDBUPDRM Database update reply message

OPNQRY examples
OPNQRY only example:
[ibm][ims][drda][t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 005BD00100030055 200C004421134BC9 .[.....U ..D!.K. .$}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010008 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2114000000000005 215D01 !.......!]. ).

OPNQRY complete chained request example for SQL SELECT:
[ibm][ims][drda][t4] SEND BUFFER: EXCSQLSET (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF
[ibm][ims][drda][t4] 0000 004ED05100010048 2014004421134BC9 .N.Q...H ..D!.K. .+}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C30310041 @@@@SYSLVL01.A ...<.<....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0031D0430001002B 2414002353455420 .1.C...+$..#SET ..}.............
[ibm][ims][drda][t4] 0010 434C49454E542057 524B53544E4E414D CLIENT WRKSTNNAM .<..+.......++.(
[ibm][ims][drda][t4] 0020 452027392E36352E 3137342E32352700 E '9.65.174.25'.
[ibm][ims][drda][t4] 0030 00 . .
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: PRPSQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0058D05100020052 200D004421134BC9 .X.Q...R ..D!.K. ..}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010005 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2116F10005214604 !....!F. ..1.....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: SQLATTR (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 001CD05300020016 2450000E464F5220 ...S....$P..FOR ..}......&...|..
[ibm][ims][drda][t4] 0010 52454144204F4E4C 59200000 READ ONLY|+<....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0029D04300020023 2414001B53656C65 .).C...#$...Sele ..}...........%.
[ibm][ims][drda][t4] 0010 6374202A2066726F 6D20504844414D56 ct * from PHDAMV ?_.&...(.
[ibm][ims][drda][t4] 0020 41522E7761726400 00 AR.ward.. /....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 005BD00100030055 200C004421134BC9 .[.....U ..D!.K. .$}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010008 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2114000000000005 215D01 !.......!]. ).

Related reference
“OPNQFLRM reply message (X'2212')” on page 320
The distributed data management (DDM) architecture OPNQFLRM (open query failure) reply message
indicates that the OPNQRY command failed to open the query.
“DLIFUNC command object (X'CC05')” on page 273
Use the distributed data management (DDM) architecture DLIFUNC (DL/I function) command object to
specify the DL/I function that is being called.
“INAIB command object (X'CC01')” on page 284

290 IMS: Application Programming APIs

Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.
“RTRVFLD command object (X'CC04')” on page 294
Use the distributed data management (DDM) architecture RTRVFLD command object to specify the field
that the client wants to retrieve data from.
“SSALIST command object (X'CC06')” on page 307
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.
“OPNQRYRM reply message (X'2205')” on page 321
The distributed data management (DDM) architecture OPNQRYRM (open query) reply message indicates
that the open query (OPNQRY) command or execute SQL statement (EXCSQLSTT) command completed
normally, and that a query process has been initiated.
“QRYPOPRM reply message (X'220F')” on page 324
The distributed data management (DDM) architecture QRYPOPRM (query previously opened) reply
message is returned when a command is issued for a query that is already open.

PRPSQLSTT command (X'200D')
The distributed data management (DDM) architecture Prepare SQL Statement command (PRPSQLSTT)
dynamically binds a SQL statement to a section in an existing database (RDB) package.

Format

DSSHDR LL CP SQLSTTGRP

Parameters
DSSHDR

The 6-byte header field containing information about the DSS.
LL

A 2-byte field that has the length of the PRPSQLSTT command.
CP(X'200D')

The 2-byte codepoint of the PRPSQLSTT command.
PKGNAMCSN(X'2113')

Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. The PKGNAMCSN can have one of the following formats, depending
on the length of the RDBNAM, RDBCOLID, and PKGID contained therein:

• RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of the PKGNAMCSN is
identical to the sole format used before DDM Level 7, where the length is fixed at 68. The use of the
SCLDTALEN is disallowed with this format.

• At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This format of the PKGNAMCSN
requires the SCLDTALEN precedes each of the RDBNAM, RDBCOLID, and PKGID. With this format,
the PKGNAMCSN has a minimum length of 75 and a maximum length of 785.

Format:

LL CP

SCLDTALEN

RDBNAM

SCLDTALEN

PKGID PKGNAM

PKGCNSTKN

PKGSN SCLDTALEN

RDBCOLID

Parameters:

Chapter 2. DRDA DDM command architecture reference 291

RDBNAM
An 18- to 255-byte character field that represents the relational database name.

PKGID
An 18- to 255-byte character field that represents the relational database package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of a relational database
package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and the relational database
package are synchronized. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:

• RDB collection identifier (RDBCOLID)
• Relational database name (RDBNAM)
• RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the parameters listed is greater than
18 bytes.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18 bytes, the
SCLDTALEN is mandatory and must precede each of the three parameters RDBNAM, RDBCOLID,
and PKGID. Otherwise, the SCLDTALEN is disallowed.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of objects that are contained
in a relational database. It is used for user-defined grouping.

RTNSQLDA(X'2116')
Return SQL Descriptor Area controls whether to return an SQL descriptor area that applies to the SQL
statement this command identifies. The target SQLAM obtains the SQL descriptor area by performing
an SQL DESCRIBE function on the statement after the statement has been prepared.

LL CP VALUE

Parameters:

VALUE
TRUE (X'F1') – Indicates an SQLIMSDA is returned.
FALSE (X'F0') – Indicates an SQLIMSDA is not returned.

Note: IMS will always send a 0x'01' from the Universal Driver.

TYPSQLDA(X'2146')
Type of SQL Descriptor Area.

LL CP TYPE

Parameters:

TYPE
A single-byte signed number that specifies the type of SQLIMSDA to return for the command.
0

Standard output SQLIMSDA. This type is supported for ODBM.
1

Standard input SQLIMSDA. This type is supported for ODBM.

292 IMS: Application Programming APIs

2
Light output SQLIMSDA

3
Light input SQLIMSDA

4
Extended output SQLIMSDA

5
Extended input SQLIMSDA

MONITOR(X'1900')
LL CP FLAGS

FLAGS
A 4-byte flag value.

PRPSQLSTT examples
The following example shows PRPSQLSTT that is part of the request to an OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: PRPSQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0058D05100020052 200D004421134BC9 .X.Q...R ..D!.K. ..}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010005 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2116F10005214604 !....!F. ..1.....

RLSE command (X'C802')
Use the distributed data management (DDM) architecture RLSE command to release any database locks
that are held by the application.

Format
DSSHDR LL CP PCBNAME

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C802', the 2-byte codepoint of the RLSE command.
PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907'.

Chained command objects
No command objects are chained to the RLSE command.

Chapter 2. DRDA DDM command architecture reference 293

Positive reply messages
In response to the RLSE command, the IMS target DDM server returns to the source server the following
positive reply message:

RLSERM (X'CA03')
The Release Locks Reply Message indicates to the requester that an RLSE command has completed
normally.

Chained reply data objects
No reply data objects are returned in response to the RLSE command.

Error reply messages
In response to the RLSE command, the IMS target DDM server can return to the source DDM server the
following error reply messages:

Table 85. Possible error reply messages for the RLSE command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

Related reference
“RLSERM reply message (X'CA03')” on page 332
The distributed data management (DDM) architecture RLSERM (release locks) reply message indicates to
the requester that an RLSE command has completed normally.

RTRVFLD command object (X'CC04')
Use the distributed data management (DDM) architecture RTRVFLD command object to specify the field
that the client wants to retrieve data from.

Format

DSSHDR LL CP RECOFF FLDLEN

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

294 IMS: Application Programming APIs

CP
X'CC04', the 2-byte codepoint of the RTRVFLD command object.

RECOFF
A 4-byte signed integer that contains the offset of the field within the hierarchic path I/O area that is
to be returned from the DL/I call.

FLDLEN
A 4-byte signed integer that contains the length of the field.

Related reference
“OPNQRY command (X'200C')” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

RTRVFLDREL command object (X'CC0B')
Use the distributed data management (DDM) architecture FLDENTRYREL (relative retrieve field) command
object to specify which field the client wants to retrieve data from.

Restriction: The RTRVFLDREL command object is supported only with an ODBM DDM level of 1, 2, 3 or 1,
3.

Format
DSSHDR LL CP SEGMOFF FLDLEN SEGMID

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC0B', the 2-byte codepoint of the RTRVFLDREL command object.
SEGMOFF

A required, 4-byte, signed integer that specifies the relative offset of the target field from the start of
the parent segment.

SEGMID
A required, 1-byte, signed integer that specifies which segment in the SEGMLIST the field is
referenced from. This value is relative to 1 rather than 0.

FLDLEN
The length of the target field.

SECCHK command (X'106E')
The distributed data management (DDM) architecture SECCHK command passes the user information
from the source server to the target security manager of the IMS target server to authenticate the user
with RACF or another security product.

When security checking is active for the IMS target server, the SECCHK command must be preceded by
the ACCSEC command.

Format

DSSHDR LL CP PASSWORD SECMEC USRID

Chapter 2. DRDA DDM command architecture reference 295

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'106E', the 2-byte codepoint of the SECCHK command.
SECMEC

A required parameter that specifies the security mechanism agreed upon by the source server and the
target server. For IMS, specify USRIDPWD.

The security mechanism is negotiated between the source server and the target server by using the
ACCSEC command and the ACCSECRD reply object.

USRID
A required, variable-length parameter that specifies the user ID of the source application program as
a character string. The length can be from 1 to 255 characters.

PASSWORD
A required, variable-length parameter that specifies the password of the source application program
as a character string. The length can be from 1 to 255 characters.

If a RACF PassTicket is used to authenticate user access from an IMS Connect client to IMS DB, this
parameter specifies the PassTicket.

Usage
IMS uses a user ID and password to check security; therefore the value of the SECMEC parameter
specifies the DDM USRIDPWD security mechanism.

If no errors occur during the processing of the SECCHK command, the IMS target server returns the
SECCHKRM reply message to indicate the acceptability of the security information.

The SECCHK command must be preceded by the ACCSEC command.

Chained command objects
No command objects can be chained to the SECCHK command.

Positive reply messages
In response to the SECCHK command, the IMS target DDM server returns to the source server the
following positive reply message:

SECCHKRM (X'1219')
Security check reply message.

Error reply messages
In response to the SECCHK command, the IMS target DDM server can return to the source DDM server the
following error reply messages:

Table 86. Possible error reply messages for the SECCHK command

Codepoint of reply message Name of reply message Meaning of reply message

X'1218' MGRDEPRM Manager dependency error

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

296 IMS: Application Programming APIs

Table 86. Possible error reply messages for the SECCHK command (continued)

Codepoint of reply message Name of reply message Meaning of reply message

X'1233' RSCLMTRM Resource limits reached

X'123C' INVRQSRM Invalid request

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1253' OBJNSPRM Object not supported

X'1254' CMDCHKRM Command check reply message

X'125F' TRGNSPRM Target not supported

SEGMLIST command object (X'CC0A')
Use the distributed data management (DDM) architecture SEGMLIST (Segment List) command object to
specify the minimum and maximum length of each segment being retrieved or updated.

Restriction: The SEGMLIST command object is supported only with an ODBM DDM level of 1, 3 or 1, 2, 3.

Format

DSSHDR LL CP COUNT

MINMAX

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC0A', the 2-byte codepoint of the SEGMLIST command object.
COUNT

A 1-byte, signed value that counts the number of segments in a record that is being retrieved or
updated. The total number of segments in a record is limited to 15. The value of the COUNT parameter
corresponds to the number of instances of the MINMAX parameter included in the command object.
This value is required.

MINMAX
An 8-byte field that is divided into two 4-byte signed integers. The first integer is the minimum
number of bytes in a segment and the second integer is the maximum number of bytes. If these
integers are equal, the segment is fixed length.

Chapter 2. DRDA DDM command architecture reference 297

SQLATTR command (X'2450')
The distributed data management (DDM) architecture SQL Statement Attributes command (SQLATTR)
specifies the SQL statement attributes being prepared.

Format

DSSHDR LL CP SQLSTTGRP

Parameters
DSSHDR

The six byte header field containing information about the DSS.
LL

A two byte field that has the length of the SQLATTR command.
CP(X'2450')

The 2-byte codepoint of the SQLATTR command.
SQLSTTGRP

SQL Statement Group Description.

Format:

SQLSTATEMENT_m SQLSTATEMENT_s

Parameters:

SQLSTATEMENT_m
A variable length string containing the SQL statement.

SQLSTATEMENT_s
A variable length string containing the SQL statement.

SQLATTR examples
The following example shows SQLATTR that is part of the request to an OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: SQLATTR (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 001CD05300020016 2450000E464F5220 ...S....$P..FOR ..}......&...|..
[ibm][ims][drda][t4] 0010 52454144204F4E4C 59200000 READ ONLY|+<....

SQLCARD command (X'2408')
The distributed data management (DDM) architecture SQL Descriptor Area Row Description with SQL
Communications Area command (SQLCARD) provides metadata information about the columns being
retrieved along with the communications area.

Format

DSSHDR LL CP SQLCAGRP

Parameters
DSSHDR

The 6-byte header field containing information about the DSS.
LL

A 2-byte field that has the length of the SQLCARD command.

298 IMS: Application Programming APIs

CP(X'2408')
The 2-byte code point of the SQLCARD command.

SQLCAGRP
SQL Communications Area Group Description.

Format:

FLAG SQLCODE SQLSTATE SQLERRPROC SQLCAXGRP SQLDIAGGRP

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAGRP is null. A null indicator is denoted
with the value X'FF'.

SQLCODE
A 4-byte integer field that contains the return code that is sent by the database manager after
completion of each SQL statement.

SQLSTATE
A 5-byte character field that contains the outcome of the most recently executed SQL statement.

SQLERRPROC
An 8-byte character field that contains the name of the CSECT that detected the error reported by
the SQLIMSCODE.

SQLCAXGRP
SQL Communications Area Exceptions Group Description.

Format:

FLAG SQLERRD SQLWARN SQLRDBNAME SQLERRMSG_m SQLERRMSG_s

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAXGRP is null. A null indicator is
denoted with the value X'FF'.

SQLERRD
Six 1-byte integer fields whose values are used to diagnose error conditions

SQLWARN
Eleven 1-byte character fields that represents SQLIMSWARN0 to SQLIMSWARNA.

SQLRDBNAME
A variable character string that shows the name of the remote database.

SQLERRMSG_m
A variable character string that contains one or more tokens, separated by X'FF', that are
substituted for variables in the descriptions of error conditions. It may contain truncated
tokens. A message length of 70 bytes indicates a possible truncation.

SQLERRMSG_s
A variable character string that contains one or more tokens, separated by X'FF', that are
substituted for variables in the descriptions of error conditions. It may contain truncated
tokens. A message length of 70 bytes indicates a possible truncation.

SQLDIAGGRP
SQL Descriptor Optional Group Description

Format:

FLAG SQLDIAGSTT SQLDIAGCI SQLDIAGCN

Parameters:

Chapter 2. DRDA DDM command architecture reference 299

FLAG
A 1-byte field that determines if the value for the SQLCAXGRP is null. A null indicator is
denoted with the value X'FF'.

SQLDIAGSTT
SQL Diagnostics Statement Group Description.

SQLDIAGCI
SQL Diagnostics Condition Information Array.

SQLDIAGCN
SQL Diagnostics Connection Array.

SQLCARD examples
The following example shows SQLCARD that is part of the request to an OPNQRY call.

[ibm][ims][drda][t4] RECEIVE BUFFER: SQLCARD (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0059D05300030053 2408006400000030 .Y.S...S$..d...0 ..}.............
[ibm][ims][drda][t4] 0010 3230303053514C52 4930314600010004 2000SQLRI01F.... <.........
[ibm][ims][drda][t4] 0020 8001000000000000 0000000000000000
[ibm][ims][drda][t4] 0030 0000000000202020 2020202020202020
[ibm][ims][drda][t4] 0040 001253414D504C45 2020202020202020 ..SAMPLE (&<.........
[ibm][ims][drda][t4] 0050 2020202000000000 FF

SQLDARD command (X'2411')
The distributed data management (DDM) architecture SQL Descriptor Area Row Description with SQL
Communications Area command (SQLDARD) provides metadata information about the columns being
retrieved along with the communications area.

Format

DSSHDR LL CP SQLCARD SQLDHGRP SQLNUMGRP SQLDAGRP

Parameters
DSSHDR

The 6-byte header field containing information about the DSS.
LL

A 2-byte field that has the length of the SQLDARD command.
CP(X'2411')

The 2-byte codepoint of the SQLDARD command.
SQLCARD

SQL Communications Area Row Description
SQLDHGRP

SQL Descriptor Header Group Description (column metadata that applies to all fields in the result set).

Format:

FLAG SQLDHOLD SQLDRETURN SQLDSCROLL SQLDSENSITIVE SQLDFCODE

SQLDKEYTYPE SQLDRDBNAM SQLDSCHEMA_m SQLDSCHEMA_s

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is denoted
with the value X’FF.

300 IMS: Application Programming APIs

SQLDHOLD
A 2 byte short field. This field can have a value of 0 or 1. A value of 1 indicates this statement is
related to a cursor which is defined using the WITH HOLD clause. Otherwise, the value is 0.

SQLDRETURN
A 2-byte short field.

SQLDSCROLL
A 2-byte short field.

SQLDSENSITIVE
A 2-byte short field.

SQLDFCODE
A 2-byte short field.

SQLDKEYTYPE
A 2-byte short field.

SQLDRDBNAM
A variable character string that shows the name of the remote database.

SQLDSCHEMA_m
A variable character string that shows the name of the schema.

SQLDSCHEMA_s
A variable character string that shows the name of the schema.

SQLNUMBRP
SQL Number of Elements Group Descriptions.

Format:

Number of Columns

Parameters:

Number of Columns
A 2-byte short that represents the number of columns being returned by the query.

SQLDAGRP
SQL Data Area Group Description (column metadata specific to each column).

Format:

SQLPRECISION SQLSCALE SQLLENGTH SQLTYPE SQLCCSID SQLDOPTGRP

Parameters:

SQLPRECISION
A 2-byte short field representing the precision for the column.

SQLSCALE
A 2-byte short field representing the scale for the column.

SQLLENGTH
An 8-byte field representing the length of the column in bytes.

SQLTYPE
A 2-byte short field representing the data type of the column.

SQLCCSID
A 2-byte short field representing the CCSID of the column.

SQLDOPTGRP
SQL Descriptor Optional Group Description

Format:

Chapter 2. DRDA DDM command architecture reference 301

FLAG SQLUNNAMED SQLNAME_m SQLNAME_s SQLLABEL_m SQLLABEL_s

SQLCOMMENTS_m SQLCOMMENTS_s SQLUDTGRP SQLDXGRP

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is denoted
with the value X'FF'.

SQLUNNAMED
A 2-byte short field.

SQLNAME_m
A variable character string that shows the column name.

SQLNAME_s
A variable character string that shows the column name.

SQLLABEL_m
A variable character string

SQLLABEL_s
A variable character string

SQLCOMMENTS_m
A variable character string

SQLCOMMENTS_s
A variable character string

SQLUDTGRP:
SQL User-Defined Data Group Description

Format:

FLAG SQLUDTXTYPE SQLUDTRDB SQLUDTSCHEMA_m SQLUDTSCHEMA_s

SQLUDTNAME_m SQLUDTNAME_s

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is
denoted with the value X'FF'.

SQLUDTXTYPE
A 4-byte integer field.

SQLUDTRDB
A variable character string.

SQLUDTSCHEMA_m
A variable character string.

SQLUDTSCHEMA_s
A variable character string.

SQLUDTNAME_m
A variable character string.

SQLUDTNAME_s
A variable character string.

SQLDXGRP
SQL Descriptor Extended Group Description.

Format:

302 IMS: Application Programming APIs

FLAG SQLXKEYMEM SQLXUPDATEABLE SQLXGENERATED SQLXPARMMODE

SQLXRDBNAM SQLXCORNAME_m SQLXCORNAME_s SQLXBASENAME_m

SQLXBASENAME_s SQLXSCHEMA_m SQLXSCHEMA_s SQLXNAME_m

SQLXNAME_s

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is
denoted with the value X'FF'.

SQLXKEYMEM
A 2-byte short field.

SQLXUPDATEABLE
A 2-byte short field.

SQLXGENERATED
A 2-byte short field.

SQLXPARMMODE
A 2-byte short field.

SQLXRDBNAM
A variable character string that shows the name of the remote database.

SQLXCORNAME_m
A variable character string that shows the name of the table.

SQLXCORNAME_s
A variable character string that shows the name of the table.

SQLXBASENAME_m
A variable character string that shows the name of the table.

SQLXBASENAME_s
A variable character string that shows the name of the table.

SQLXSCHEMA_m
A variable character string that shows the name of the schema.

SQLXSCHEMA_s
A variable character string that shows the name of the schema.

SQLXNAME_m
A variable character string that shows the name of the column.

SQLXNAME_s
A variable character string that shows the name of the column.

SQLDARD examples
The following example shows SQLDARD that is part of the request to an OPNQRY call.

[ibm][ims][drda][t4] RECEIVE BUFFER: SQLDARD (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0185D0530002017F 2411000000000030 ...S....$......0 .e}...."........
[ibm][ims][drda][t4] 0010 3030303053514C30 3930373000000000 0000SQL09070.... <.........
[ibm][ims][drda][t4] 0020 0000000000010000 0040010000000000 @......
[ibm][ims][drda][t4] 0030 0000000000202020 2020202020202020
[ibm][ims][drda][t4] 0040 001253414D504C45 2020202020202020 ..SAMPLE (&<.........
[ibm][ims][drda][t4] 0050 2020202000000000 FF00010000000000
[ibm][ims][drda][t4] 0060 0000550000000000 0000000003000000 ..U.............
[ibm][ims][drda][t4] 0070 0000040000000000 0000F10100000000 1.....
[ibm][ims][drda][t4] 0080 000005454D504E4F 0000000000000000 ...EMPNO........ (&+|........
[ibm][ims][drda][t4] 0090 0000FF0000000000 0000000000065341 SA
[ibm][ims][drda][t4] 00A0 4D504C450006454D 504D444300000006 MPLE..EMPMDC.... (&<....(&(......
[ibm][ims][drda][t4] 00B0 454D504D44430000 0008524943485452 EMPMDC....RICHTR .(&(............

Chapter 2. DRDA DDM command architecture reference 303

[ibm][ims][drda][t4] 00C0 414E00000005454D 504E4F0000000000 AN....EMPNO..... .+.....(&+|.....
[ibm][ims][drda][t4] 00D0 0004000000000000 00F1010000000000 1......
[ibm][ims][drda][t4] 00E0 0004444550540000 0000000000000000 ..DEPT.......... &...........
[ibm][ims][drda][t4] 00F0 FF00000000000000 0000000653414D50 SAMP (&
[ibm][ims][drda][t4] 0100 4C450006454D504D 444300000006454D LE..EMPMDC....EM <....(&(.......(
[ibm][ims][drda][t4] 0110 504D444300000008 524943485452414E PMDC....RICHTRAN &(.............+
[ibm][ims][drda][t4] 0120 0000000444455054 0000000000000400 DEPT........ &.........
[ibm][ims][drda][t4] 0130 000000000000F101 0000000000000344 D 1.........
[ibm][ims][drda][t4] 0140 4956000000000000 00000000FF000000 IV..............
[ibm][ims][drda][t4] 0150 0000000000000006 53414D504C450006 SAMPLE.. (&<...
[ibm][ims][drda][t4] 0160 454D504D44430000 0006454D504D4443 EMPMDC....EMPMDC .(&(.......(&(..
[ibm][ims][drda][t4] 0170 0000000852494348 5452414E00000003 RICHTRAN.... +....
[ibm][ims][drda][t4] 0180 4449560000 DIV..

SQLDTA command (X'2412')
SQL Program Variable Data (SQLDTA) consists of input data to a SQL statement that a relational database
(RDB) is running. It also includes a description of the data.

Format

DSSHDR LL CP

FDOEXT

FDODSC FDODTA

FDOOFF

Parameters
DSSHDR

The 6-byte header field that contains information about the DSS.
LL

A 2-byte field that contains the length of the SQLDTA command.
CP(X'2412')

The 2-byte code point of the SQLDTA command.
FDOEXT(X'147B')

A scalar object that contains extent data for each SDA that a Formatted Data Object Architecture
descriptor (FDODSC) describes. There is an FDOEXT entry for each field definition in the SQLDTAGRP
in the FDODSC. The FDOEXT specification that corresponds to a field definition in the FDODSC defines
the number of times that field is repeated in the FDODTA object.

Format:

LL CP BYTSTRDR

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even number, such as X'01010101'
or X'3D2B11'.

FDODSC(X'0010')
A string that is a DDM scalar whose value is a Formatted Data Object Content Architecture (FD:OCA)
descriptor or a segment of an FD:OCA descriptor. An FDODSC consists of one or more FD:OCA triplets
that describe the data fields that are contained in another scalar object.

Format:

LL CP BYTSTRDR

Parameters:

304 IMS: Application Programming APIs

BYTSTRDR
A required byte-string data representation, whose length is an even number, such as X'01010101'
or X'3D2B11'.

FDODTA(X'147A')
A scalar object that contains data that a Formatted Data Object Architecture descriptor (FDODSC)
describes. The FDODSC might be present with the Formatted Data Object Data (FDODTA), or it might
be implicitly defined based on the context of the command in which the FDODTA is used.

Format:

LL CP BYTSTRDR

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even number, such as X'01010101'
or X'3D2B11'.

FDOOFF(X'147D')
A scalar object that contains offset data for each SDA that a Formatted Data Object Architecture
descriptor (FDODSC) describes. There is an FDOOFF entry for each field definition in the SQLDTAGRP
in the FDODSC. The FDOOFF specification corresponding to a field definition in the FDODSC defines
the offset to the start of the data entry in the FDODTA. The offset value for the first data array is 0.

Format:

LL CP BYTSTRDR

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even number, such as X'01010101'
or X'3D2B11'.

Formatted Data Object Content Architecture (FD:OCA)
The Formatted Data Object Content Architecture (FD:OCA) is an architecture for describing, organizing,
and manipulating a linear stream of data.

DDM uses FD:OCA primarily for the description of data for relational database (RDB) access. A complete
description of FD:OCA, including how to build and interpret FD:OCA descriptors, is in the FD:OCA
Reference.

The functions of FD:OCA are specified through an FD:OCA descriptor, which consists of data structures
called triplets. Attribute triplets describe the representation and layout of data in a data stream.
Generator triplets specify how the data is manipulated to produce an output data stream.

An FD:OCA-containing architecture, such as DDM, transmits data streams and FD:OCA descriptors
between communicating systems and starts a presentation process as needed. The presentation process
accepts both the data stream and the FD:OCA descriptor as input and produces a presentation stream as
output, as shown in Figure 3-39. The FD:OCA-containing architecture processes any further presentation
streams. For example, DDM can forward the presentation stream for storage to an RDB, or it can pass the
presentation stream to an application requester.

An Overview of selected FD:OCA triplets

FD:OCA defines many more attribute and generator triplets than the current level of DDM architecture
requires. The following is an overview of the triplets.

Scalar Data Arrays (SDA)
SDAs are the triplets that FD:OCA uses for describing data values that are either single items or linear
or rectangular arrays of single items that have the same format. DDM uses SDAs primarily to associate
data representation specifications with DDM and SQL data types.

Chapter 2. DRDA DDM command architecture reference 305

Group Data Array (GDA)
GDAs are triplets that define a group of data items as a referable unit. The elements of a GDA point (by
label) to SDAs, other GDAs, or to RLOs to describe the data items of the group. The GDA can override
certain attributes of each data representation.

Row Layouts (RLO)
RLOs are triplets that describe:

• A row that contains fields of one or more types
• A table that contains rows of one or more types
• Multi-dimensional, mixed data structures

RLOs describe data streams that consist of multiple unrelated structures. DDM uses RLOs primarily to
describe the answer data that the SQL statements return.

FD:OCA Descriptors
An FD:OCA descriptor consists of one or more triplets that are laid out consecutively in a byte stream.
Triplets that are referenced by other triplets must precede the referencing triplets. Unreferenced
triplets are ignored.

SQLDTA examples
The following example shows SQLDTA that is part of the request to an OPNQRY call.

[ibm][db2][jcc][t4] SEND BUFFER: SQLDTA (ASCII) (EBCDIC)
[ibm][db2][jcc][t4] 0000 002CD00300040026 2412001300100976 .,.....&$......v ..}.............
[ibm][db2][jcc][t4] 0010 D003000403000406 71E4D00001000F14 q....... }........U}.....
[ibm][db2][jcc][t4] 0020 7A00000000000200 00000005 z........... :...........

SQLSTT command (X'2414')
The distributed data management (DDM) architecture SQL Statement Row Description (SQLSTT)
command contains one SQL statement.

Format

DSSHDR LL CP SQLSTTGRP

Parameters
DSSHDR

The 6-byte header field containing information about the DSS.
LL

A 2-byte field that has the length of the SQLSTT command.
CP(X'2414')

The 2-byte codepoint of the SQLSTT command.
SQLSTTGRP

SQL Statement Group Description.

Format:

SQLSTATEMENT_m SQLSTATEMENT_s

Parameters:

SQLSTATEMENT_m
A variable length string containing the SQL statement.

306 IMS: Application Programming APIs

SQLSTATEMENT_s
A variable length string containing the SQL statement.

SQLSTT examples
The following example shows SQLSTT that is part of the request to an OPNQRY call.

SQLSTT for Special Registry:
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0032D0430001002C 2414002453455420 .2.C...,$..$SET ..}.............
[ibm][ims][drda][t4] 0010 434C49454E542057 524B53544E4E414D CLIENT WRKSTNNAM .<..+.......++.(
[ibm][ims][drda][t4] 0020 452027392E36352E 3135302E32313827 E '9.65.150.218'
[ibm][ims][drda][t4] 0030 0000

SQLSTT for Select Statement:
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0029D04300020023 2414001B53656C65 .).C...#$...Sele ..}...........%.
[ibm][ims][drda][t4] 0010 6374202A2066726F 6D20504844414D56 ct * from PHDAMV ?_.&...(.
[ibm][ims][drda][t4] 0020 41522E7761726400 00 AR.ward.. /....

SSALIST command object (X'CC06')
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.

Format

DSSHDR LL CP SSACOUNT

SSA

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC06', the 2-byte codepoint of the SSALIST command object.
SSACOUNT

Required. The number of SSAs in the SSAList, which is specified as a 2-byte value. The valid range is 1
to 15.

SSA
An optional byte string that contains an SSA object to be used in a DL/I database call.

Related reference
“EXCSQLIMM command (X'200A')” on page 276
The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.
“OPNQRY command (X'200C')” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.
“SSA parameter (X'C906')” on page 344
The SSA parameter is an IMS product-unique distributed data management (DDM) architecture parameter
that contains a segment search argument (SSA) that qualifies a DL/I call.
“SSACOUNT parameter (X'C905')” on page 345

Chapter 2. DRDA DDM command architecture reference 307

The SSACOUNT parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that specifies the number of segment search arguments (SSAs) included in the SSALIST
command object.

DDM reply messages and reply objects
The IMS target server communicates with source server applications by using reply messages defined by
the distributed data management (DDM) architecture. Some of the reply messages used by IMS contain
parameters, values, or reply objects that are unique to IMS.

ABNUOWRM reply message (X'220D')
The distributed data management (DDM) architecture ABNUOWRM (abnormal end unit of work condition)
reply message indicates that the current unit of work ended abnormally due to some action at the target
server.

This reply message can be a result of a deadlock resolution, operator intervention, or other similar
situations that cause the database to roll back the current unit of work.

Format

DSSHDR LL CP RDBNAM

SRVDGN

OUTAIBDBPCB SVRCOD

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'220D', the 2-byte codepoint of the ABNUOWRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code

308 IMS: Application Programming APIs

8
ERROR – Error severity code

16
SEVERE – Severe error severity code

32
ACCDMG – Access damage severity code

64
PRMDMG – Permanent damage severity code

128
SESDMG – Session damage severity code

ACCRDBRM reply message (X'2201')
The distributed data management (DDM) architecture ACCRDBRM (access to database completed) reply
message specifies that the named database in the previous ACCRDB command is available to the client
for processing.

Format

DSSHDR LL CP SVRCOD PRDID CRRTKN TYPDEFNAM

ACCRDBFDBK

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2201', the 2-byte codepoint of the ACCRDBRM reply message.
ACCRDBFDBK

An optional parameter (X'CC0D') that contains the psbfdbkStream and aliasfdbkStream data
sent from the target to the source.

LL CP psbfdbkStream aliasfdbkStream

Parameters
LL

The length of ACCRDBFDBK. This length includes the LL and CP.
CP

X'CC0D' , the 2 byte codepoint of ACCRDBFDBK.

The psbfdbkStream and aliasfdbkStream parameters data structure is as follows:

Chapter 2. DRDA DDM command architecture reference 309

Table 87. The psbfdbkStream and aliasfdbkStream parameters data structure

Offset Length Name Description

0 1 PSB name null indicator Binary integer

• X'00' - indicates that
the rest of the data
follows.

• X'FF' - indicates that
there is no data and
the total length is one
byte.

1 1 Length Binary integer

• Length of the data
including the length
itself.

2 8 PSB name Character string

Length of the PSB
name.

1 or 10 1 Alias name null
indicator

Binary integer

• X'00' - indicates that
the rest of the data
follows.

• X'FF' - indicates that
there is no data and
the total length is one
byte.

2 or 11 1 Length Binary integer

• Length of the data
including the length
itself.

3 or 12 4 Alias name Character string

Length of the alias
name.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code

310 IMS: Application Programming APIs

32
ACCDMG – Access damage severity code

64
PRMDMG – Permanent damage severity code

128
SESDMG – Session damage severity code

PRDID

Product Specific ID. The release level of the DDM server.

This is a required parameter for the ACCRDB command.

CRRTKN
A required correlation token that the source and the target servers use to correlate the work for an
application.

TYPDEFNAM

A required parameter (X'002F') that specifies the name of the data type definition. TYPDEFNAM
consists of a 2-byte specification of length (LL), a 2-byte codepoint (CP), and the VALUE. The VALUE is
reserved and must be QTDSQL370, which is the general EBCDIC SQL type definition for machines that
use EBCDIC strings, IEEE floating-point numbers, and non-byte-reversed floating-point and integer
numbers.

Related reference
“ACCRDB command (X'2001')” on page 265
The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.

ACCSECRD reply object (X'14AC')
The distributed data management (DDM) architecture ACCSECRD (access security reply data) reply object
contains the security information from the security manager of the target server. This information is
returned in response to the ACCSEC command.

Format
DSSHDR LL CP SECMEC

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'14AC', the 2-byte codepoint of the ACCSECRD reply object.
SECMEC

Specifies the security mechanism or mechanisms supported by the target server. If the target server
supports the DDM security mechanism specified by the source DDM server on the ACCSEC command,
the value of SECMEC in the ACCSECRD reply object is the same as the value of SECMEC in the ACCSEC
command. If the target server does not support the security mechanism specified by the source
server, SECMEC contains one or more values that identify the security mechanisms supported by the
target server.

Chapter 2. DRDA DDM command architecture reference 311

Usage
In a successful exchange, the IMS target server confirms the type of security checking requested by
the source application program by returning the ACCSECRD reply object with the same value in SECMEC
parameter as was submitted in the ACCSEC command.

If an error is detected in processing the ACCSEC command, a SECCHKCD is returned with the ACCSECRD.
The SECCHKCD parameter has an implied severity code of ERROR. Before the SECCHK command can be
sent to authenticate the connection, the ACCSEC command must be sent again to generate a new set of
instance variables on the ACCSECRD.

Related reference
“ACCSEC command (X'106D')” on page 267
The ACCSEC DDM command is used to determine the type of security checking that is performed when an
application program on the source server connects to a database on the IMS target server.

AGNPRMRM reply message (X'1232')
The distributed data management (DDM) architecture AGNPRMRM (permanent agent error) reply
message indicates that the requested command could not be completed because the target system
detected a permanent error condition.

Format

DSSHDR LL CP SVRCOD

RDBNAM SRVDGN

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'1232', the 2-byte codepoint of the AGNPRMRM reply message.
SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

312 IMS: Application Programming APIs

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

CMDVLTRM reply message (X'221D')
The distributed data management (DDM) architecture CMDVLTRM (command violation) reply message
indicates that a DDM command violated the processing capabilities of the conversation.

Format

DSSHDR LL CP RDBNAM

SRVDGN

OUTAIBDBPCB SVRCOD

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'221D', the 2-byte codepoint of the CMDVLTRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code

Chapter 2. DRDA DDM command architecture reference 313

16
SEVERE – Severe error severity code

32
ACCDMG – Access damage severity code

64
PRMDMG – Permanent damage severity code

128
SESDMG – Session damage severity code

DEALLOCDBRM reply message (X'CA01')
The distributed data management (DDM) architecture DEALLOCDBRM (deallocate database completed)
reply message indicates that the named PSB is deallocated.

Format

DSSHDR LL CP RDBNAM SVRCOD

SRVDGN

OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CA01', the 2-byte codepoint of the DEALLOCDBRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

314 IMS: Application Programming APIs

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

Related reference
“DEALLOCDB command (X'C801')” on page 271
The distributed data management (DDM) DEALLOCDB command terminates all resources that are
associated with a PSB by deallocating the PSB named in the RDBNAM parameter.
“DEALLOCDBRM reply message (X'CA01')” on page 314
The distributed data management (DDM) architecture DEALLOCDBRM (deallocate database completed)
reply message indicates that the named PSB is deallocated.

ENDQRYRM reply message (X'220B')
The distributed data management (DDM) architecture ENDQRYRM (end of query) reply message indicates
that the query processing is terminated and the query or result set is closed.

The query cannot be resumed with the CNTQRY command or closed with the CLSQRY command.

Format

DSSHDR LL CP

RDBNAM SRVDGN

SVRCOD

OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'220B', the 2-byte codepoint of the ENDQRYRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Chapter 2. DRDA DDM command architecture reference 315

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

Usage
The ENDQRYRM reply message is required to be chained to an OPNQRYRM reply message in the following
situations:

• In response to a GU, GN, or batch RETRIEVE call, when no data is returned. The aibdbpcbStream data
required by the client is contained in this object.

• In response to a batch RETRIEVE call when the QRYDTA object contains the last row of the data that
satisfies the query, which indicates to the source server that ODBM received a GE/GB status code on the
last GN call, and no CNTQRY should be sent.

ENDUOWRM reply message (X'220C')
The distributed data management (DDM) architecture ENDUOWRM (end unit of work) reply message
indicates that the unit of work has ended as a result of the last command.

Format

DSSHDR LL CP

RDBNAM

UOWDSP

SRVDGN

OUTAIBDBPCB

SVRCOD

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

316 IMS: Application Programming APIs

CP
X'220C', the 2-byte codepoint of the ENDUOWRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

UOWDSP
A required parameter (X'2115') that specifies the disposition of the last unit of work. If the disposition
is committed, all updates in the unit of work are successfully applied. If the disposition is rolled back,
all updates in the unit of work are removed.
For more information about UOWDSP, see DRDA, Version 4, Volume 3: Distributed Data Management
(DDM) Architecture.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

EXCSATRD reply object (X'1443')
The EXCSATRD reply data object returns information about the IMS target DDM server, such as server
name or the product release level, to the source DDM server.

Format

DSSHDR LL CP

EXTNAM SRVNAM SRVRLSLV

SRVCLSNM

Chapter 2. DRDA DDM command architecture reference 317

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The 2-byte specification of the length of the EXCSATRD reply object.
CP

X'1443', the 2-byte codepoint of the EXCSATRD reply object.
EXTNAM

Optional. The variable-length external name of the target DDM server. For the IMS target DDM server,
the external name is the name of the job the IMS system creates or activates to run the DDM server.
The EXTNAM parameter is used for tracing and problem determination. If the job name includes
embedded blanks, the name must be enclosed in quotation marks within the data field. The maximum
length of EXTNAM is 255 bytes. The codepoint is X'115E'.

SRVNAM
Optional. The variable-length name of the target DDM server specified as a character string. Returned
for tracing and problem determination purposes. If the server name includes embedded blanks, the
name must be enclosed in quotation marks. The maximum length is 255 bytes. The codepoint is
X'116D'.
If the DDM server name includes embedded blanks, the name must be enclosed in quotation marks
within the data field.

SRVRLSLV
Optional. The variable-length name of the product release level of the target DDM server. The
SRVRLSLV parameter is used to ensure compatibility between the source server of the application
program and the IMS target server. The maximum length of SRVRLSLV is 255 bytes. The codepoint is
X'115A'.

SRVCLSNM
Specifies the DDM server class name, DFS, used by IMS. DFS is currently the only name supported by
IMS. The SRVCLSNM enables the DRDA product-unique extension used by IMS.
The codepoint of SRVCLSNM is X'1147'. The variable-length DDM server class name is specified as a
character string.

Usage
The distributed data management (DDM) architecture EXCSATRD reply object is returned by an IMS target
server in response to an EXCSAT command. Unless errors occur, the EXCSATRD reply object is always the
first reply command from the IMS target DDM server to the source DDM server.

If errors occur during the exchange of server attributes, the IMS target server responds to the EXCSAT
command by issuing an error message instead of the EXCSATRD reply object.

Related reference
“EXCSAT command (X'1041')” on page 275
The distributed data management (DDM) architecture EXCSAT command initiates the exchange of
attributes between a source application server and an IMS target server to identify the server class names
and levels of DDM support of each server. The EXCSAT command must always be the first command sent
from a source server to the IMS target server.

IMSCALLRM reply message (X'CA04')
The distributed data management (DDM) architecture IMSCALLRM (IMS call) reply message returns the
results of a DL/I call for IMS DB system services submitted by using the IMSCALL command.

Format

318 IMS: Application Programming APIs

DSSHDR LL CP SVRCOD aib

SRVDGN IOAREA

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CA04', the 2-byte codepoint of the IMSCALLRM reply message.
SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

aib
A required parameter and placeholder for exactly one of the following two reply objects:

• OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

• OUTAIBIOPCB

A parameter (X'CC08') that contains the AIB and IOPCB data sent from the target to the source.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

IOAREA
An optional parameter in byte array that specifies the input and output area.

Related reference
“IMSCALL command (X'C803')” on page 283

Chapter 2. DRDA DDM command architecture reference 319

Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.

OPNQFLRM reply message (X'2212')
The distributed data management (DDM) architecture OPNQFLRM (open query failure) reply message
indicates that the OPNQRY command failed to open the query.

The reason for the failure is reported in the OUTAIBDBPCB parameter.

Format

DSSHDR LL CP SVRCOD RDBNAM OUTAIBDBPCB

SRVDGN

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2212', the 2-byte codepoint of the OPNQFLRM reply message.
SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the reason for the failure.

320 IMS: Application Programming APIs

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Related reference
“OPNQRY command (X'200C')” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

OPNQRYRM reply message (X'2205')
The distributed data management (DDM) architecture OPNQRYRM (open query) reply message indicates
that the open query (OPNQRY) command or execute SQL statement (EXCSQLSTT) command completed
normally, and that a query process has been initiated.

This reply message also indicates the type of query protocol and cursor that are used for the query.

Format

DSSHDR LL CP

QRYATTSCR QRYATTSET QRYATTSNS

QRYATTUPD QRYBLKFCT QRYBLKTYP

QRYINSID

QRYPRCTYP

SQLCSRHLD SRVDGN

SVRCOD

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2205', the 2-byte codepoint of the OPNQRYRM reply message.
QRYATTSCR

An optional parameter that specifies the query attribute for scrollability. The codepoint is X'2149'.
QRYATTSET

An optional parameter that indicates whether a cursor is enabled for the a single row or multiple rows
to be returned. The codepoint is X'214A'.

QRYATTSNS
An optional parameter that specifies the sensitivity of an opened cursor to changes made to the
underlying base table. The codepoint is X'2157'.

QRYATTUPD
An optional parameter that indicates the updatability of an opened cursor. The codepoint tis X'2150'.

QRYBLKFCT
An optional parameter that contains the value of the blocking factor, a limit that is imposed by the
target server that dictates the number of rows that can be blocked at a time for a query. The codepoint
is X'215F'.

Chapter 2. DRDA DDM command architecture reference 321

QRYBLKTYP
An optional parameter that indicates the type of query blocks in which the answer set data will be
returned. The codepoint is X'2133'.

QRYINSID
A required parameter that uniquely identifies the instance of a query. The codepoint is X'215B'.
This parameter is returned on the OPNQRYRM reply message by the target server when a query is
opened. Any subsequent references to this query by the target server must include the QRYINSID
value in order to identify the correct instance of the query.

QRYPRCTYP
A required String parameter that specifies the type of query protocol that is used. The codepoint is
X'2102'.

SQLCSRHLD
An optional Boolean parameter that indicates whether the requester specified the hold cursor
position option. The codepoint is X'211F'.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

For more information on these parameters, see DRDA, Version 4, Volume 3: Distributed Data Management
(DDM) Architecture, by the Open Group.

Reply data objects
The following reply data objects can be chained to the OPNQRYRM message in response to the OPNQRY
command:

QRYDSC (X'241A')
Query answer set description.

QRYDTA (X'241B')
Query answer set data.

322 IMS: Application Programming APIs

Related reference
“OPNQRY command (X'200C')” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

QRYDSC reply object (X'241A')
The distributed data management (DDM) architecture QRYDSC (query answer set description) reply object
defines the format of the data that is returned in a QRYDTA object.

Format

DSSHDR LL CP BYTSTRDR

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'241A', the 2-byte codepoint of the QRYDSC reply object.
BYTSTRDR

A required byte string data representation. This byte string contains the FD:OCA description of the
data that the QRYDTA object sends.

Usage
The format for the data that the QRYDTA object returns never changes. The BYTSTRDR value for the
ODBM is always as follows:

0676D0260000 0671E0D000010671 F0E00000

QRYDTA reply object (X'241B')
The distributed data management (DDM) architecture QRYDTA (query answer set data) reply object
contains some or all of the answer set data that results from a query.

Format

DSSHDR LL CP aibdbpcbStream data

LL CP XLXL

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'241B', the 2-byte codepoint of the QRYDTA reply object.

Chapter 2. DRDA DDM command architecture reference 323

When the QRYDTA object exceeds 32767 bytes long, an extended total length field format is used to
augment the normal two-byte object length. Setting the high-order bit of the x'241B' length field (LL)
to 1 specifies the following:

• An extended total length field immediately follows x'241B' and precedes its data.
• The x'241B' length field (LL) does not include the length of the data. It includes only the length of

the x'241B' (CP), length (LL), and extended total length (XLXL) fields.
• The value of the extended total length (XLXL) field specifies only the length of the object’s data. It

does not include its own length.
• The high-order bit of the DSSHDR LL field is set to 1 to indicate the QRYDTA object is greater than

32767 in length.

aibStream
An IMS-defined data structure.

When the Open Database Manager (ODBM) services a GU or GN call, it places the aibStream data
stream followed by the dbpcbStream at the beginning of each row in the QRYDTA object. The
requested row data follows immediately. The concatenation of the aibdbpcbStream and data fields
comprises a single row in a query row set.

dbpcbStream
An IMS-defined data structure.

When the Open Database Manager (ODBM) services a GU or GN call, it places the aibStream data
stream followed by the dbpcbStream at the beginning of each row in the QRYDTA object. The
requested row data follows immediately. The concatenation of the aibdbpcbStream and data fields
makes up a single row in a query row set.

data
The data that follows the aibStream and dbpcbStream data structures.

Usage
The contents of the QRYDTA reply object are described by the QRYDSC reply object. Because IMS sends
all of the data for a given row as if it were a single column of type "Fixed Length Byte Stream," the QRYDSC
information is the same for each query. Each row is made up of an aibdbpcbStream object followed by the
data.

Related reference
“aibStream data structure” on page 338
The distributed data management (DDM) architecture aibStream is a data structure that is contained in
the OUTAIBDBPCB DDM object when the object is passed back in a reply message.
“dbpcbStream data structure” on page 339
The distributed data management (DDM) architecture dbpcbStream is a data structure that is contained in
the OUTAIBDBPCB reply object when the object is passed back in a reply message.

QRYPOPRM reply message (X'220F')
The distributed data management (DDM) architecture QRYPOPRM (query previously opened) reply
message is returned when a command is issued for a query that is already open.

Format

DSSHDR LL CP PCBNAME RDBNAM

SRVDGN

SVRCOD

324 IMS: Application Programming APIs

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'220F', the 2-byte codepoint of the QRYPOPRM reply message.
PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907'.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

Related reference
“OPNQRY command (X'200C')” on page 286

Chapter 2. DRDA DDM command architecture reference 325

The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

RDBAFLRM reply message (X'221A')
The distributed data management (DDM) architecture RDBAFLRM (database access failed) reply message
indicates that the database access failed.

Format

DSSHDR LL CP RDBNAM

SRVDGN

SVRCOD OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'221A', the 2-byte codepoint of the RDBAFLRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

326 IMS: Application Programming APIs

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the reason for the failure.

Usage
The RDBAFLRM reply message is returned only when a RDBNAM value is provided and the connection
to the database failed. When the RDBAFLRM reply message is returned, the target Structured Query
Language Application Manager (SQLAM) instance is destroyed. For more information about the SQLAM
instance, see DRDA, Version 4, Volume 3: Distributed Data Management (DDM) Architecture by the Open
Group.

Related reference
“ACCRDB command (X'2001')” on page 265
The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.
“RDBNAM parameter (X'2110')” on page 344
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.
“OUTAIBDBPCB parameter (X'CC02')” on page 342
The distributed data management (DDM) architecture OUTAIBDBPCB (output AIBDBPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
dbpcbStream data structures.

RDBATHRM reply message (X'2203')
The distributed data management (DDM) architecture RDBATHRM (not authorized to database) reply
message indicates that the user is not authorized to access the database.

Format

DSSHDR LL CP RDBNAM

SRVDGN

SVRCOD OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2203', the 2-byte codepoint of the RDBATHRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Chapter 2. DRDA DDM command architecture reference 327

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the reason for the failure.

Related reference
“ACCRDB command (X'2001')” on page 265
The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.

RDBNACRM reply message (X'2204')
The distributed data management (DDM) architecture RDBNACRM (database not accessed) reply
message indicates that the access database command (ACCRDB) was not issued prior to a command
that requested the database services.

Format

DSSHDR LL CP RDBNAM

SRVDGN

SVRCOD OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2204', the 2-byte codepoint of the RDBNACRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

328 IMS: Application Programming APIs

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the reason for the failure.

Related reference
“ACCRDB command (X'2001')” on page 265
The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.

RDBNFNRM reply message (X'2211')
The distributed data management (DDM) architecture RDBNFNRM (database not found) reply message
indicates that the requested database was not found.

Format

DSSHDR LL CP RDBNAM

SRVDGN

SVRCOD OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

Chapter 2. DRDA DDM command architecture reference 329

CP
X'2211', the 2-byte codepoint of the RDBNFNRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the reason for the failure.

RDBUPDRM reply message (X'2218')
The distributed data management (DDM) architecture RDBUPDRM (database update) reply message
indicates that the a DDM command resulted in an update at the target database.

Format

DSSHDR LL CP RDBNAM SVRCOD

SRVDGN

UPDCNT OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

330 IMS: Application Programming APIs

CP
X'2218', the 2-byte codepoint of the RDBUPDRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

UPDCNT
A required 4-byte integer parameter (X'C90A') that contains the number of rows affected by a batch or
singleton INSERT, UPDATE, or DELETE.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the details.

Related reference
“EXCSQLIMM command (X'200A')” on page 276
The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.
“UPDCNT parameter (X'C90A')” on page 345

Chapter 2. DRDA DDM command architecture reference 331

The UPDCNT parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that identifies the number of rows affected by an individual or batch INSERT, UPDATE, or
DELETE action.

RLSERM reply message (X'CA03')
The distributed data management (DDM) architecture RLSERM (release locks) reply message indicates to
the requester that an RLSE command has completed normally.

Format

DSSHDR LL CP RDBNAM OUTAIBDBPCB SVRCOD

SRVDGN

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CA03', the 2-byte codepoint of the RLSERM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume

332 IMS: Application Programming APIs

3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Related reference
“RLSE command (X'C802')” on page 293
Use the distributed data management (DDM) architecture RLSE command to release any database locks
that are held by the application.

RSCLMTRM reply message (X'1233')
The distributed data management (DDM) architecture RSCLMTRM (resource limits reached) reply
message indicates that the requested command cannot be completed because of insufficient target
server resources.

Format

DSSHDR LL CP

PRDID

RDBNAM

RSCNAM RSCTYP

RSNCOD SRVDGN

SVRCOD

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'1233', the 2-byte codepoint of the RSCLMTRM reply message.
PRDID

An optional parameter that specifies the release level of the source DDM server. The codepoint for
PRDID is X'112E'.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

RSCNAM
An optional String parameter that specifies the name of the resource that reached its limit and sends
this RSCLMTRM reply message in response. The codepoint for RSCNAM is X'112D'.

RSCTYP
An optional String parameter that specifies the type of the resource that reached its limit and sends
this RSCLMTRM reply message. The codepoint for RSCTYP is X'111F'.

RSNCOD
An optional String parameter that specifies the reason code. The codepoint for RSNCOD is X'1127'.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Chapter 2. DRDA DDM command architecture reference 333

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

SECCHKRM reply message (X'1219')
The distributed data management (DDM) architecture SECCHKRM (security check) reply message
indicates the acceptability of the security information.

The security manager specifies the state of the security information by using the security check code
(SECCHKCD) parameter.

Format

DSSHDR LL CP SVRCOD SECCHKCD

SRVDGN SVCERRNO

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'1219', the 2-byte codepoint of the SECCHKRM reply message.
SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code

334 IMS: Application Programming APIs

16
SEVERE – Severe error severity code

32
ACCDMG – Access damage severity code

64
PRMDMG – Permanent damage severity code

128
SESDMG – Session damage severity code

SECCHKCD
A required String parameter that indicates the security information and condition for the SECCHKRM
reply message. For more information about the possible code values and the relationship of
SECCHKCD and SVRCOD in the SECCHKRM reply message, see DRDA, Version 4, Volume 3: Distributed
Data Management (DDM) Architecture by the Open Group.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVCERRNO
An optional parameter (X'11B4') that contains a security service error number from the local security
service. SRVDGN might contain additional information.
SVCERRNO consists of a 2-byte length field (LL), a 2-byte codepoint, followed by a 4-byte binary
number data.

SQLERRRM reply message (X'2213')
The distributed data management (DDM) architecture SQLERRRM (SQL error condition) reply message
indicates that an SQL error has occurred.

Format

DSSHDR LL CP RDBNAM

SRVDGN

SVRCOD OUTAIBDBPCB

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'2213', the 2-byte codepoint of the SQLERRRM reply message.
RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information. The data portion is a
string with a maximum length of 32,767 bytes. The string can be any information the server sends
to aid in problem diagnosis. For more information about SRVDGN, see DRDA, Version 4, Volume
3: Distributed Data Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Chapter 2. DRDA DDM command architecture reference 335

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD consists of a 2-byte length
field (LL), a 2-byte codepoint (CP), and the data. The data is a 2-byte binary value. The following list
describes the possible 2-byte values:
0

INFO – Information only severity code
4

WARNING – Warning severity code
8

ERROR – Error severity code
16

SEVERE – Severe error severity code
32

ACCDMG – Access damage severity code
64

PRMDMG – Permanent damage severity code
128

SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent from the target to the
source.

OUTAIBDBPCB contains the reason for the error.

DDM parameters used by IMS
In some of the DDM terms used by IMS, IMS defines product-unique parameter values and data
structures.

AIBOALEN parameter (X'C904')
The AIBOALEN parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that identifies the maximum output length on all calls that return data.

Format
LL CP AIBOALEN

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C904', the 2-byte codepoint of the AIBOALEN parameter.
AIBOALEN

A 4-byte integer containing the maximum output length.
Related reference
“INAIB command object (X'CC01')” on page 284

336 IMS: Application Programming APIs

Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

AIBRSNM1 parameter (X'C901')
The AIBRSNM1 parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the PCB name.

Format
LL CP AIBRSNM1

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C901', the 2-byte codepoint of the AIBRSNM1 parameter.
AIBRSNM1

A left-justified, 1- to 8-byte string that contains the PCB name.
Related reference
“INAIB command object (X'CC01')” on page 284
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

AIBRSNM2 parameter (X'C902')
The AIBRSNM2 parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the identifier of the ODBA startup table.

Format
LL CP AIBRSNM2

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C902', the 2-byte codepoint of the AIBRSNM2 parameter.
AIBRSNM2

A 4-byte string that specifies the 4-character identifier of the ODBA startup table. For example, in
DFSxxxx0, xxxx is the 4-character identifier.

Related reference
“INAIB command object (X'CC01')” on page 284

Chapter 2. DRDA DDM command architecture reference 337

Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

AIBSFUNC parameter (X'C903')
The AIBSFUNC parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the sub-function code, if any, of a DL/I call.

Format
LL CP AIBSFUNC

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C903', the 2-byte codepoint of the AIBSFUNC parameter.
AIBSFUNC

A left-justified, 1- to 8-byte string that contains the sub-function code of DL/I call.
Related reference
“INAIB command object (X'CC01')” on page 284
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

aibStream data structure
The distributed data management (DDM) architecture aibStream is a data structure that is contained in
the OUTAIBDBPCB DDM object when the object is passed back in a reply message.

Format

Table 88. Format of the aibStream data structure

Byte offset Length Name Description

0 1 AIB null indicator Binary integer.
X'00'

Indicates that the rest of the aibStream data
structure is present.

X'FF'
Indicates that the aibStream data structure
contains no data after the AIB null indicator. The
total length of the aibStream data structure is one
byte.

1 4 Output area used Binary integer.

5 4 Return code Binary integer.

9 4 Reason code Binary integer.

13 4 Error code extension Binary integer.

338 IMS: Application Programming APIs

Usage
When the Open Database Manager (ODBM) services a GU or GN call, ODBM returns requested data in
rows defined within the data stream of a QRYDTA reply object. Each row begins with a concatenation of
the aibStream and the dbpcbStream data structures followed by the requested data.

Related reference
“QRYDTA reply object (X'241B')” on page 323
The distributed data management (DDM) architecture QRYDTA (query answer set data) reply object
contains some or all of the answer set data that results from a query.
“dbpcbStream data structure” on page 339
The distributed data management (DDM) architecture dbpcbStream is a data structure that is contained in
the OUTAIBDBPCB reply object when the object is passed back in a reply message.
“OUTAIBDBPCB parameter (X'CC02')” on page 342
The distributed data management (DDM) architecture OUTAIBDBPCB (output AIBDBPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
dbpcbStream data structures.
“OUTAIBIOPCB parameter (X'CC08')” on page 343
The distributed data management (DDM) architecture OUTAIBIOPCB (output AIBIOPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
iopcbStream data structures.

dbpcbStream data structure
The distributed data management (DDM) architecture dbpcbStream is a data structure that is contained in
the OUTAIBDBPCB reply object when the object is passed back in a reply message.

Format

The following table defines the format of the dbpcbStream data structure.

Note: The table shows some fields as having two possible starting byte offsets. For each these fields, if a
database name is included in the dbpcbStream data structure, the field starts at the higher of the possible
byte offsets.

Table 89. Format of the dbpcbStream data structure

Byte
offset Length Name Description

0 1 DBPCB null indicator Binary integer.
X'00'

Indicates that the rest of the dbpcbStream data
structure is present.

X'FF'
Indicates that the dbpcbStream data structure
contains no data after the DBPCB null indicator. The
total length of the dbpcbStream data structure is
one byte.

1 1 Database name null
indicator

Binary integer.
X'00'

Indicates that a database name field is present at
offset 2.

X'FF'
Indicates that a database name field is not present.

Chapter 2. DRDA DDM command architecture reference 339

Table 89. Format of the dbpcbStream data structure (continued)

Byte
offset Length Name Description

2 8 Database name Character string.

2 or 10 2 Segment level number Right-justified, numeric character data.

4 or 12 2 Status code Character data.

6 or 14 8 Segment name Character string.

14 or 22 1 Key feedback null
indicator

Binary integer.
X'00'

Indicates that a key feedback fields begin at offset
15 or, if a database name is present at offset 2, at
offset 23.

X'FF'
Indicates that no key feedback fields are present.

15 or 23 4 Key feedback length Binary integer.

19 or 27 Variable Key feedback area Variable-length character string. The length of the key
feedback area is defined in the key feedback length field
at offset 15 or, if a database name is present in the
dbpcbStream data structure, at offset 23.

Usage
When the Open Database Manager (ODBM) services a GU or GN call, ODBM returns requested data in
rows defined within the data stream of a QRYDTA reply object. Each row begins with a concatenation of
the aibStream and the dbpcbStream data structures followed by the requested data.

Related reference
“aibStream data structure” on page 338
The distributed data management (DDM) architecture aibStream is a data structure that is contained in
the OUTAIBDBPCB DDM object when the object is passed back in a reply message.
“QRYDTA reply object (X'241B')” on page 323
The distributed data management (DDM) architecture QRYDTA (query answer set data) reply object
contains some or all of the answer set data that results from a query.
“OUTAIBDBPCB parameter (X'CC02')” on page 342
The distributed data management (DDM) architecture OUTAIBDBPCB (output AIBDBPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
dbpcbStream data structures.

iopcbStream data structure
The distributed data management (DDM) architecture iopcbStream is a data structure that is contained in
the OUTAIBIOPCB DDM object when the object is passed back in a reply message.

Format

340 IMS: Application Programming APIs

Table 90. Format of the iopcbStream data structure

Byte offset Length Name Description

0 1 IOPCB null indicator Binary integer.
X'00'

Indicates that the iopcbStream data structure is
present.

X'FF'
Indicates that the iopcbStream data structure
contains no data after the IOPCB null indicator. The
total length of the iopcbStream data structure is 1
byte.

1 1 LTERM name null
indicator

Binary integer.
X'00'

Indicates that the LTERM name field is present at
offset 2 and that the field contains a logical terminal
name.

X'FF'
Indicates that the LTERM name field is not present.

2 8 LTERM name Character string.

2 or 10 2 Reserved Reserved.

4 or 12 2 Status code Character data.

6 or 14 4 Local data and time Byte array.

10 or 18 4 Input message
sequence number

Byte array.

14 or 22 8 Message output
descriptor name

Character string.

22 or 30 8 User ID Character string.

30 or 38 8 Group name Character string.

38 or 46 12 Timestamp Byte Array.

50 or 58 1 User ID indicator Character data.

Usage
The figure and description in the preceding sections serve as the FD:OCA early descriptor definition of the
iopcbStream data structure. Do not confuse the iopcbStream data structure with the OUTAIBIOPCB reply
object (X'CC08') that contains it when iopcbStream is passed back in a reply message.

Related reference
“OUTAIBIOPCB parameter (X'CC08')” on page 343

Chapter 2. DRDA DDM command architecture reference 341

The distributed data management (DDM) architecture OUTAIBIOPCB (output AIBIOPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
iopcbStream data structures.

OUTAIBDBPCB parameter (X'CC02')
The distributed data management (DDM) architecture OUTAIBDBPCB (output AIBDBPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
dbpcbStream data structures.

Format
LL CP aibStream dbpcbStream

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC02', the 2-byte codepoint of the OUTAIBDBPCB parameter.
aibStream

Required. Contains the following data:

• AIB null indicator
• Output area
• Return code
• Reason code
• Error code extension

dbpcbStream
Required. Contains the following data:

• DBPCB null indicator
• Database name
• Segment level number
• Status code
• Key feedback

Usage
This OUTAIBDBPCB parameter is a scalar parameter. No length or codepoint values are placed in front of
the aibStream or dbpcbStream data structures.

Related reference
“DEALLOCDBRM reply message (X'CA01')” on page 314
The distributed data management (DDM) architecture DEALLOCDBRM (deallocate database completed)
reply message indicates that the named PSB is deallocated.
“aibStream data structure” on page 338
The distributed data management (DDM) architecture aibStream is a data structure that is contained in
the OUTAIBDBPCB DDM object when the object is passed back in a reply message.
“dbpcbStream data structure” on page 339
The distributed data management (DDM) architecture dbpcbStream is a data structure that is contained in
the OUTAIBDBPCB reply object when the object is passed back in a reply message.
“RDBAFLRM reply message (X'221A')” on page 326

342 IMS: Application Programming APIs

The distributed data management (DDM) architecture RDBAFLRM (database access failed) reply message
indicates that the database access failed.

OUTAIBIOPCB parameter (X'CC08')
The distributed data management (DDM) architecture OUTAIBIOPCB (output AIBIOPCB) parameter is
sent from the target server to the source server and contains a concatenation of the aibStream and the
iopcbStream data structures.

Format

LL CP aibStream iopcbStream

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'CC08', the 2-byte codepoint of the OUTAIBIOPCB parameter.
aibStream

Required. Contains the following data:

• AIB null indicator
• Output area
• Return code
• Reason code
• Error code extension

iopcbStream
Required. Contains the following data:

• IOPCB null indicator
• LTERM name
• Status code
• Input message segment number
• Message output descriptor name
• Group name
• Key feedback

Usage
The OUTAIBIOPCB parameter is a scalar parameter. No length or codepoint values are placed in front of
the aibStream or iopcbStream data structures.

Related reference
“iopcbStream data structure” on page 340
The distributed data management (DDM) architecture iopcbStream is a data structure that is contained in
the OUTAIBIOPCB DDM object when the object is passed back in a reply message.
“aibStream data structure” on page 338

Chapter 2. DRDA DDM command architecture reference 343

The distributed data management (DDM) architecture aibStream is a data structure that is contained in
the OUTAIBDBPCB DDM object when the object is passed back in a reply message.

RDBNAM parameter (X'2110')
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.

Format

LL CP PSBNAME

. ALIAS

Parameters
LL

The 2-byte specification of the length of the RDBNAM parameter.
CP

X'2110', the 2-byte codepoint of the RDBNAM parameter.
PSBNAME

The IMS PSB name, specified as a character string up to 8 bytes long. The PSB name identifies the
target database and must match a PSB name defined to IMS.

ALIAS
Optional. The alias name of the IMS data store name. ALIAS must be specified as 4 bytes. If the alias
name is fewer than 4 characters, the characters must be left aligned and the remaining bytes must be
padded with blank character spaces.
When ALIAS is used, the PSBNAME and the ALIAS must be separated by a period.

Related reference
“ACCRDB command (X'2001')” on page 265
The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.
“ACCSEC command (X'106D')” on page 267
The ACCSEC DDM command is used to determine the type of security checking that is performed when an
application program on the source server connects to a database on the IMS target server.
“DEALLOCDB command (X'C801')” on page 271
The distributed data management (DDM) DEALLOCDB command terminates all resources that are
associated with a PSB by deallocating the PSB named in the RDBNAM parameter.
“RDBAFLRM reply message (X'221A')” on page 326
The distributed data management (DDM) architecture RDBAFLRM (database access failed) reply message
indicates that the database access failed.

SSA parameter (X'C906')
The SSA parameter is an IMS product-unique distributed data management (DDM) architecture parameter
that contains a segment search argument (SSA) that qualifies a DL/I call.

Format
LL CP SSA

344 IMS: Application Programming APIs

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C906', the 2-byte codepoint of the SSA parameter.
SSA

A byte-string that contains an SSA.
Related reference
“SSALIST command object (X'CC06')” on page 307
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.

SSACOUNT parameter (X'C905')
The SSACOUNT parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that specifies the number of segment search arguments (SSAs) included in the SSALIST
command object.

Format
LL CP SSACOUNT

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C905', the 2-byte codepoint of the SSACOUNT parameter.
SSACOUNT

A 2-byte binary number field that indicates the number of SSAs included in the SSALIST command
object. The minimum value is 1 and the maximum value is 15.

Related reference
“SSALIST command object (X'CC06')” on page 307
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.

UPDCNT parameter (X'C90A')
The UPDCNT parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that identifies the number of rows affected by an individual or batch INSERT, UPDATE, or
DELETE action.

Format
LL CP UPDCNT

Parameters
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.
CP

X'C90A', the 2-byte codepoint of the UPDCNT parameter.

Chapter 2. DRDA DDM command architecture reference 345

UPDCNT
A 4-byte integer containing the number of rows affected by a batch or singleton INSERT, UPDATE, or
DELETE action.

Related reference
“RDBUPDRM reply message (X'2218')” on page 330
The distributed data management (DDM) architecture RDBUPDRM (database update) reply message
indicates that the a DDM command resulted in an update at the target database.

346 IMS: Application Programming APIs

Chapter 3. IMS Adapter for REXX reference
The IMS adapter for REXX (REXXTDLI) provides an environment in which IMS users can interactively
develop REXX EXECs under TSO/E (time-sharing option extensions) and execute them in IMS MPPs,
BMPs, IFPs, or Batch regions.

This product does not compete with DFSDDLT0 but is used as an adjunct. The IMS adapter for REXX
provides an application programming environment for prototyping or writing low-volume transaction
programs.

The REXX environment executing under IMS has the same abilities and restrictions as those documented
in the z/OS TSO/E REXX Reference. These few restrictions pertain to the absence of the TSO, ISPEXEC, and
ISREDIT environments, and to the absence of TSO-specific functions such as LISTDS. You can add your
own external functions to the environment as documented in the z/OS TSO/E REXX Reference.

IMS calls the REXX EXEC using IRXJCL. When this method is used, Return Code 20 (RC20) is a restricted
return code. Return Code 20 is returned to the caller of IRXJCL when processing was not successful, and
the EXEC was not processed.

A REXX EXEC runs as an IMS application and has characteristics similar to other IMS-supported
programming languages, such as COBOL. Programming language usage (REXX and other supported
languages) can be mixed in MPP regions. For example, a COBOL transaction can be executed after a
REXX transaction is completed, or vice versa.

The advantages of REXX are:

• REXX is an easy-to-use interpretive language.
• REXX does not require a special PSB generation to add an EXEC and run it because EXECs can run under

a standard PSB (IVPREXX or one that is established by the user).
• The REXX interface supports DL/I calls and provides these functions:

– Call tracing of DL/I calls, status, and parameters
– Inquiry of last DL/I call
– Extensive data mapping
– PCB specification by name or offset
– Obtaining and releasing storage
– Messaging through WTO, WTP, WTL, and WTOR

The following system environment conditions are necessary to run REXX EXECs:

• DFSREXX0 and DFSREXX1 must be in a load library accessible to your IMS dependent or batch region;
for example, STEPLIB.

• DFSREXX0 is stand-alone and must have the RENT option specified.
• DFSREXX1 must be bound with DFSLI000 and DFSCPIR0 (for SRRCMIT and SRRBACK) and optionally,

DFSREXXU. The options must be REUS, not RENT.
• IVPREXX (copy of DFSREXX0 program) must be installed as an IMS transaction program. IVP

(Installation Verification Program) installs the program.
• The PSB must be defined as assembler language or COBOL.
• SYSEXEC DD points to a list of data sets containing the REXX EXECs that will be run in IMS. You must

put this DD in your IMS dependent or batch region JCL.
• SYSTSPRT DD is used for REXX output, for example tracing, errors, and SAY instructions. SYSTSPRT DD

is usually allocated as SYSOUT=A or another class, depending on installation, and must be put in the
IMS dependent or batch region JCL.

• SYSTSIN DD is used for REXX input because no console exists in an IMS dependent region, as under
TSO. The REXX PULL statement is the most common use of SYSTSIN.

© Copyright IBM Corp. 1974, 2022 347

Related reading: For more information on SYSTSPRT and SYSTSIN, see z/OS TSO/E REXX Reference.

Related reference
“IVPREXX sample application” on page 377
The IVPREXX exec is a front-end generic exec that is shipped with IMS as part of the IVP. It runs other
execs by passing the exec name to execute after the TRANCODE (IVPREXX). For the latest version of the
IVPREXX source code, look for the IVPREXX member in the IMS.ADFSEXEC distribution library.

IMS Adapter for REXX overview
The following figure shows the IMS adapter for REXX environment at a high level. This figure shows how
the environment is structured under the IMS program controller, and some of the paths of interaction
between the components of the environment.

Figure 8. IMS Adapter for REXX logical overview diagram

Related reference
IMS Adapter for REXX exit routine (DFSREXXU) (Exit Routines)

Sample exit routine (DFSREXXU)
IMS provides a sample user exit routine that is used with the IMS Adapter for REXX.

For a description of how to write the user exit routine see IMS Version 15.3 Exit Routines. The sample user
exit routine checks to see if it is being called on entry. If so, the user exit routine sets the parameter list to
the transaction code with no arguments and sets the start-up IMSRXTRC level to 2. The return code is set
to 0. For the latest version of the DFSREXXU source code, see the IMS.ADFSSMPL distribution library; the
member name is DFSREXXU.

348 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsrexxu.htm#ims_dfsrexxu

Addressing other environments
Use the REXX ADDRESS instruction to change the destination of commands. The IMS Adapter for REXX
functions through two host command environments: REXXTDLI and REXXIMS. Other host command
environments can be accessed with an IMS EXEC as well.

The z/OS environment is provided by TSO in both TSO and non-TSO address spaces. It is used to run other
programs such as EXECIO for file I/O. IMS does not manage the z/OS EXECIO resources. An IMS COMMIT
or BACKOUT, therefore, has no effect on these resources. Because EXECIO is not an IMS-controlled
resource, no integrity is maintained. If integrity is an issue for flat file I/O, use IMS GSAM, which ensures
IMS-provided integrity.

If APPC/MVS is available, other environments can be used. The environments are:
APPCMVS

Used for z/OS-specific APPC interfacing
CPICOMM

Used for CPI Communications
LU62

Used for z/OS-specific APPC interfacing

Related reading: For more information on addressing environments, see z/OS TSO/E REXX Reference.

REXX transaction programs
A REXX transaction program can use any PSB definition. The definition set up by the IVP for testing is
named IVPREXX.

A section of the IMS stage 1 definition is shown in the following example:

**
* IVP APPLICATIONS DEFINITION FOR DB/DC, DCCTL *
**
 APPLCTN GPSB=IVPREXX,PGMTYPE=TP,LANG=ASSEM REXXTDLI SAMPLE
 TRANSACT CODE=IVPREXX,MODE=SNGL, X
 MSGTYPE=(SNGLSEG,NONRESPONSE,1)

This example uses a GPSB, but you could use any PSB that you have defined. The GPSB provides a
generic PSB that has an TP PCB and a modifiable alternate PCB. It does not have any database PCBs. The
language type of ASSEM is specified because no specific language type exists for a REXX application.

Recommendation: For a REXX application, specify either assembler language or COBOL.

IMS schedules transactions using a load module name that is the same as the PSB name being used for
MPP regions or the PGM name for other region types. You must use this load module even though your
application program consists of the REXX EXEC. The IMS adapter for REXX provides a load module for you
to use. This module is called DFSREXX0. You can:

• Copy to a steplib data set with the same name as the application PSB name. Use either a standard utility
intended for copying load modules (such as IEBCOPY or SAS), or the Binder.

• Use the Binder to define an alias for DFSREXX0 that is the same as the application PGM name.

For example, the following code sample shows a section from the PGM setup job that uses the binder to
perform the copy function to the name IVPREXX. The example uses the IVP.

//* REXXTDLI SAMPLE - GENERIC APPLICATION DRIVER
//*
//LINK EXEC PGM=IEWL,
// PARM='XREF,LIST,LET,SIZE=(192K,64K)'
//SYSPRINT DD SYSOUT=*
//SDFSRESL DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSLMOD DD DISP=SHR,DSN=IMS1.PGMLIB
//SYSUT1 DD UNIT=(SYSALLDA,SEP=(SYSLMOD,SYSLIN)),
// DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))
//SYSLIN DD *
 INCLUDE SDFSRESL(DFSREXX0)

Chapter 3. IMS Adapter for REXX reference 349

 ENTRY DFSREXX0
 NAME IVPREXX(R)
/*

When IMS schedules an application transaction, the load module is loaded and given control. The load
module establishes the REXX EXEC name as the PGM name with an argument of the Transaction Code (if
applicable). The module calls a user exit routine (DFSREXXU) if it is available. The user exit routine selects
the REXX EXEC (or a different EXEC to run) and can change the EXEC arguments, or do any other desired
processing.

Upon return from the user exit routine, the action requested by the routine is performed. This action
normally involves calling the REXX EXEC. The EXEC load occurs using the SYSEXEC DD allocation. This
allocation must point to one or more partitioned data sets containing the IMS REXX application programs
that will be run as well as any functions written in REXX that are used by the programs.

Standard REXX output, such as SAY statements and tracing, is sent to SYSTSPRT. This DD is required and
can be set to SYSOUT=A.

When the stack is empty, the REXX PULL statement reads from the SYSTSIN DD. In this way, you can
conveniently provide batch input data to a BMP or batch region. SYSTSIN is optional; however, you will
receive an error message if you issue a PULL from an empty stack and SYSTSIN is not allocated. The
following code example shows the JCL necessary for MPP region that runs the IVPREXX sample EXEC.

JCL code used to run the IVPREXX sample exec
//IVP32M11 EXEC PROC=DFSMPR,TIME=(1440),
// AGN=IVP, AGN NAME
// NBA=6,
// OBA=5,
// SOUT='*', SYSOUT CLASS
// CL1=001, TRANSACTION CLASS 1
// CL2=000, TRANSACTION CLASS 2
// CL3=000, TRANSACTION CLASS 3
// CL4=000, TRANSACTION CLASS 4
// TLIM=10, MPR TERMINATION LIMIT
// SOD=, SPIN-OFF DUMP CLASS
// IMSID=IVP1, IMSID OF IMS CONTROL REGION
// PREINIT=DC, PROCLIB DFSINTXX MEMBER
// PWFI=Y PSEUDO=WFI
//*
//* ADDITIONAL DD STATEMENTS
//*
//DFSCTL DD DISP=SHR,
// DSN=IVPSYS32.PROCLIB(DFSSBPRM)
//DFSSTAT DD SYSOUT=*
//* REXX EXEC SOURCE LOCATION
//SYSEXEC DD DISP=SHR,
// DSN=IVPIVP32.INSTALIB
// DD DISP=SHR,
// DSN=IVPSYS32.SDFSEXEC
//* REXX INPUT LOCATION WHEN STACK IS EMPTY
//SYSTSIN DD *
/*
//* REXX OUTPUT LOCATION
//SYSTSPRT DD SYSOUT=*
//* COBOL OUTPUT LOCATION
//SYSOUT DD SYSOUT=*

Related reference
IMS Adapter for REXX exit routine (DFSREXXU) (Exit Routines)

REXXTDLI commands
These topics contain REXX commands and describe how they apply to DL/I calls.

The terms command and call can be used interchangeably when explaining the REXXTDLI environment.
However, the term command is used exclusively when explaining the REXXIMS environment. For
consistency, call is used when explaining DL/I, and command is used when explaining REXX.

350 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsrexxu.htm#ims_dfsrexxu

To issue commands in the IMS adapter for REXX environment, you must first address the correct
environment. Two addressable environments are provided with the IMS adapter for REXX. The
environments are as follows:
REXXTDLI

Used for standard DL/I calls, for example GU and ISRT. The REXXTDLI interface environment is used
for all standard DL/I calls and cannot be used with REXX-specific commands. All commands issued to
this environment are considered to be standard DL/I calls and are processed appropriately. A GU call
for this environment could look like this:

Address REXXTDLI "GU MYPCB DataSeg"

REXXIMS
Used to access REXX-specific commands (for example, WTO and MAPDEF) in the IMS adapter for
REXX environment. The REXXIMS interface environment is used for both DL/I calls and REXX-specific
commands. When a command is issued to this environment, IMS checks to see if it is REXX-specific.
If the command is not REXX-specific, IMS checks to see if it is a standard DL/I call. The command is
processed appropriately.

The REXX-specific commands, also called extended commands, are REXX extensions added by the
IMS adapter for the REXX interface. A WTO call for this environment could look like this:

Address REXXIMS "WTO Message"

On entry to the scheduled EXEC, the default environment is z/OS. Consequently, you must either use
ADDRESS REXXTDLI or ADDRESS REXXIMS to issue the IMS adapter for REXX calls.

Related reading: For general information on addressing environments, see TSO/E Version 2 Procedures
Language MVS/REXX Reference.

REXXTDLI calls
The following information describes usage considerations for REXXTDLI calls.

Format

dlicall

parm1 parm2 ...

The format of a DL/I call varies depending on call type. The parameter formats for supported DL/I
calls can be found in “DL/I calls for database management” on page 1, “DL/I calls for transaction
management” on page 74, and “DL/I calls for IMS DB system services” on page 30. The parameters for
the calls are case-independent, separated by one or more blanks, and are generally REXX variables. See
“Parameter handling” on page 352 for detailed descriptions.

Issuing synchronous callout requests
To issue a synchronous callout (ICAL call) request using the REXXTDLI interface, you must specify the
DFSAIB keyword followed by the input and output areas. Both the input and output areas can be specified
as a variable, *mapname, or !token.

The syntax for the ICAL call from the REXXTDLI interface is:

ICAL DFSAIB In Out

A default length of 1024 bytes will be passed as an input to the AIBOAUSE field for undefined or implicit
variables in the output area. To specify larger messages, you will need to issue the STORAGE command.

Chapter 3. IMS Adapter for REXX reference 351

Return codes
If you use the AIBTDLI interface, the REXX RC variable is set to the return code from the AIB on the DL/I
call.

If you do not use the AIBTDLI interface, a simulated return code is returned. This simulated return code is
set to zero if the PCB status code was GA, GK, or bb. If the status code had any other value, the simulated
return code is X'900' or decimal 2304.

Parameter handling
The IMS adapter for REXX performs some parameter setup for application programs in a REXX
environment. This setup occurs when the application program uses variables or maps as the parameters.
When the application uses storage tokens, REXX does not perform this setup. The application program
must provide the token and parse the results just as a non-REXX application would. For a list of parameter
types and definitions, see Table 91 on page 353.

The REXXTDLI interface performs the following setup:

• The I/O area retrieval for the I/O PCB is parsed. The LL field is removed, and the ZZ field is removed
and made available by means of the REXXIMS('ZZ') function call. The rest of the data is placed in the
specified variable or map. Use the REXX LENGTH() function to find the length of the returned data.

• The I/O area building for the TP PCB or alternate PCB is done as follows:

– The appropriate LL field.
– The ZZ field from a preceding SET ZZ command or X'0000' if the command was not used.
– The data specified in the passed variable or map.

• The I/O area processing for the SPA is similar to the first two items, except that the ZZ field is 4 bytes
long.

• The feedback area on the CHNG and SETO calls is parsed. The LLZZLL fields are removed, and the
remaining data is returned with the appropriate length.

• The parameters that have the LLZZ as part of their format receive special treatment. These parameters
occur on the AUTH, CHNG, INIT, ROLS, SETO, and SETS calls. The LLZZ fields are removed when IMS
returns data to you and added (ZZ is always X'0000') when IMS retrieves data from you. In effect, your
application ignores the LLZZ field and works only with the data following it.

• The numeric parameters on XRST and symbolic CHKP are converted between decimal and a 32-bit
number (fullword) as required.

352 IMS: Application Programming APIs

Table 91. IMS adapter for REXX parameter types and definitions

Type1 Parameter Definition

PCB Important: The PCB parameter is not required if the
REXXTDLI interface is used for making a synchronous
callout request (ICAL call). Instead, the keyword DFSAIB
must be specified before the input and output parameters.

PCB identifier specified as a variable containing one of the
following:

• PCB name as defined in the PSB generation on the
PCBNAME= parameter. See IMS Version 15.3 System
Utilities for more information on defining PCB names. The
name can be from 1 to 8 characters long and does not
have to be padded with blanks. If this name is given,
the AIBTDLI interface is used, and the return codes and
reason codes are acquired from that interface.

• An AIB block formatted to DFSAIB specifications. This
variable is returned with an updated AIB.

• A # followed by PCB offset number (#1=first PCB).
Example settings are:

– IOPCB=:"#1"
– ALTPCB=:"#2"
– DBPCB=:"#3"

The IOAREA length returned by a database DL/I call
defaults to 4096 if this notation is used. The correct
length is available only when the AIBTDLI interface is
used.

In Input variable. It can be specified as a constant, variable,
*mapname2, or !token3.

SSA Input variable with an SSA (segment search argument). It
can be specified as a constant, variable, *mapname2, or !
token3.

Out Output variable to store a result after a successful
command. It can be specified as a variable, *mapname2,

or !token3.

In/Out Variable that contains input on entry and contains a result
after a successful command. It can be specified as a
variable, *mapname2, or !token3.

Const Input constant. This command argument must be the
actual value, not a variable containing the value.

Chapter 3. IMS Adapter for REXX reference 353

Table 91. IMS adapter for REXX parameter types and definitions (continued)

Type1 Parameter Definition

Note:

1. The parameter types listed in Table 91 on page 353 correspond to the types shown in Table 1 on
page 2, Table 26 on page 75, and Table 5 on page 31, as well as to those shown in Table 92 on page
356.

All parameters specified on DL/I calls are case independent except for the values associated with
the STEM portion of the compound variable (REXX terminology for an array-like structure). A period
(.) can be used in place of any parameter and is read as a NULL (zero length string) and written as a
void (place holder). Using a period in place of a parameter is useful when you want to skip optional
parameters.

2. For more information on *mapname, see “MAPGET” on page 361 and “MAPPUT” on page 362.
3. For more information on !token, see “STORAGE” on page 364.

Example DL/I calls
The following example shows an ISRT call issued against the I/O PCB. It writes the message "Hello
World".

IO = "IOPCB" /* IMS Name for I/O PCB */
OutMsg="Hello World"
Address REXXTDLI "ISRT IO OutMsg"
If RC¬=0 Then Exit 12

In this example, IO is a variable that contains the PCB name, which is the constant “IOPCB” for the I/O
PCB. If a non-zero return code (RC) is received, the EXEC ends (Exit) with a return code of 12. You can do
other processing here.

The next example gets a part from the IMS sample parts database. The part number is "250239". The
actual part keys have a "02" prefix and the key length defined in the DBD is 17 bytes.

The following example puts the segment into the variable called Part_Segment.

PartNum = "250239"
DB = "DBPCB01"
SSA = 'PARTROOT(PARTKEY = '||Left('02'||PartNum,17)||')'
Address REXXTDLI "GU DB Part_Segment SSA"

Notes:

• In a real EXEC, you would probably find the value for PartNum from an argument and would have to
check the return code after the call.

• The LEFT function used here is a built-in REXX function. These built-in functions are available to any
IMS REXX EXEC. For more information on functions, see TSO/E Version 2 Procedures Language MVS/
REXX Reference.

• The single quote (') and double quote (") are interchangeable in REXX, as long as they are matched.

The IMS.SDFSISRC library includes the DFSSUT04 EXEC. You can use this EXEC to process any
unexpected return codes or status codes. To acquire the status code from the last DL/I call issued,
you must execute the IMSQUERY('STATUS') function. It returns the two character status code.

If you use an EXEC that runs in both IMS and non-IMS environments, check to see if the IMS environment
is available. You can check to see if the IMS environment is available in two ways:

354 IMS: Application Programming APIs

• Use the z/OS SUBCOM command and specify either the REXXTDLI or REXXIMS environments. The code
looks like this:

 Address MVS 'SUBCOM REXXTDLI'
 If RC=0 Then Say "IMS Environment is Available."
 Else Say "Sorry, no IMS Environment here."

• Use the PARSE SOURCE instruction of REXX to examine the address space name (the 8th word). If it is
running in an IMS environment, the token will have the value IMS. The code looks like this:

 Parse Source Token .
 If Token='IMS' Then Say "IMS Environment is Available."
 Else Say "Sorry, no IMS Environment here."

The following sample IMS REXX program shows how to use the DL/I ICAL call to send a synchronous
callout request message to an OTMA descriptor name OTMDEST1 with an input string of "Hello from IMS"
and a timeout value of 60 seconds. The output data is set in the variable Output.

Address REXXIMS
Input = 'Hello from IMS';
Timer = 6000
'SET SUBFUNC SENDRECV'
'SET RSNAME1 OTMDEST1'
'SET TIMER Timer'

'ICAL DFSAIB Input Output'
Say Input
Say Output

Outlen = IMSQUERY('OUTLEN')
Say Outlen
Errxtn = IMSQUERY('ERRXTN')
Say Errxtn

The following sample shows the output of an IMS REXX program that issued an DL/I ICAL call:

DFS3180I INQY ENVIRON Region=BMP Number=1
DFS3180I INQY ENVIRON Tran=TXCD255 PGM=DFSREXX0
DFS3180I Starting EXEC Name=DFSREXX0
DFS3160I IMS CMD=SET SUBFUNC SENDRECV
DFS3161I REXXIMS Command=SET RC=0
DFS3160I IMS CMD=SET RSNAME1 OTMDEST1
DFS3161I REXXIMS Command=SET RC=0
DFS3160I IMS CMD=SET TIMER timer
DFS3161I REXXIMS Command=SET RC=0
DFS3160I IMS CMD=ICAL DFSAIB Input Output
DFS3161I REXXTDLI Call=ICAL RC=0000 Reason=0000 Status=".."
Hello from IMS
HELLO FROM TM RA APP
50
0

Environment determination

If you use an EXEC that runs in both IMS and non-IMS environments, check to see if the IMS environment
is available. You can check to see if the IMS environment is available in two ways:

• Use the z/OS SUBCOM command and specify either the REXXTDLI or REXXIMS environments. The code
looks like this:

Address z/OS 'SUBCOM REXXTDLI'
If RC=0 Then Say "IMS Environment is Available."
 Else Say "Sorry, no IMS Environment is here."

• Use the PARSE SOURCE instruction of REXX to examine the address space name (the 8th word). If it is
running in an IMS environment, the token will have the value IMS. The code looks like this:

Parse Source Token . If Token='IMS' Then Say "IMS Environment
is Available."
 Else Say "Sorry, no IMS Environment here."

Chapter 3. IMS Adapter for REXX reference 355

Related reference
“STORAGE” on page 364
The STORAGE command allows the acquisition of system storage that can be used in place of variables for
parameters to REXXTDLI and REXXIMS calls.
“DLIINFO” on page 357
The DLIINFO call requests information from the last DL/I call or on a specific PCB.
“SETO call” on page 109
The SET Options (SETO) call allows IMS application programs to set processing options. The SETO call can
also be used to set processing options for Spool API functions.
“REXXIMS extended commands” on page 356
The IMS adapter for REXX gives access to the standard DL/I calls and it supplies a set of extended
commands for the REXX environment.

REXXIMS extended commands
The IMS adapter for REXX gives access to the standard DL/I calls and it supplies a set of extended
commands for the REXX environment.

These commands are listed in the following tables and are available when you ADDRESS REXXIMS. DL/I
calls are also available when you address the REXXIMS environment.

Table 92. REXXIMS extended commands

Command Parameter Types

DLIINFO Out [PCB]

IMSRXTRC In

MAPDEF Const In [Const]

MAPGET Const In

MAPPUT Const Out

SET Const In

SRRBACK Out

SRRCMIT Out

STORAGE Const Const [In [Const]]

WTO In

WTP In

WTL In

WTOR In Out

Note:

All parameters specified on DL/I calls are case-independent except for the values associated with the
STEM portion of the compound variable (REXX terminology for an array-like structure). A period (.) can
be used in place of any parameter and has the effect of a NULL (zero length string) if read and a void
(place holder) if written. Use a period in place of a parameter to skip optional parameters.

Related reference
“REXXTDLI calls” on page 351

356 IMS: Application Programming APIs

The following information describes usage considerations for REXXTDLI calls.

DLIINFO
The DLIINFO call requests information from the last DL/I call or on a specific PCB.

Format
DLIINFO infoout

pcbid

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DLIINFO X X X X X

Usage
The infoout variable name is a REXX variable that is assigned the DL/I information. The pcbid variable
name returns the addresses associated with the specified PCB and its last status code.

The format of the returned information is as follows:
Word

Description
1

Last DL/I call ('.' if N/A)
2

Last DL/I PCB name (name or #number, '.' if N/A)
3

Last DL/I AIB address in hexadecimal (00000000 if N/A)
4

Last DL/I PCB address in hexadecimal (00000000 if N/A)
5

Last DL/I return code (0 if N/A)
6

Last DL/I reason code (0 if N/A)
7

Last DL/I call status ('.' if blank or N/A)

Example
Address REXXIMS 'DLIINFO MyInfo' /* Get Info */
Parse Var MyInfo DLI_Cmd DLI_PCB DLI_AIB_Addr DLI_PCB_Addr,
 DLI_RC DLI_Reason DLI_Status .

Always code a period after the status code (seventh word returned) when parsing to allow for transparent
additions in the future if needed. Words 3, 4, and 7 can be used when a pcbid is specified on the DLIINFO
call.

Related reference
“REXXTDLI calls” on page 351
The following information describes usage considerations for REXXTDLI calls.
“PCBINFO exec: display available PCBs in current PSB” on page 369

Chapter 3. IMS Adapter for REXX reference 357

The PCB exec maps the PCBs available to the exec, which are the PCBs for the executing PSB.

IMSRXTRC
The IMSRXTRC command is used primarily for debugging. It controls the tracing action taken (that is, how
much trace output through SYSTSPRT is sent to the user) while running a REXX program.

Format
IMSRXTRC level

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSRXTRC X X X X X

Usage
The level variable name can be a REXX variable or a digit, and valid values are from 0 to 9. The initial
value at EXEC start-up is 1 unless it is overridden by the user Exit. Traced output is sent to the DDNAME
SYSTSPRT. See IMS Version 15.3 Exit Routines for more information on the IMS adapter for REXX exit
routine.

The IMSRXTRC command can be used in conjunction with or as a replacement for normal REXX tracing
(TRACE).
Level

Description
0

Trace errors only.
1

The previous level and trace DL/I calls, their return codes, and environment status (useful for flow
analysis).

2
All the previous levels and variable sets.

3
All the previous levels and variable fetches (useful when diagnosing problems).

4-7
All previous levels.

8
All previous levels and parameter list to/from standard IMS language interface. See message
DFS3179 in IMS Version 15.3 Messages and Codes, Volume 2: Non-DFS Messages.

9
All previous levels.

Example
Address REXXIMS 'IMSRXTRC 3'

IMSRXTRC is independent of the REXX TRACE instruction.

358 IMS: Application Programming APIs

MAPDEF
The MAPDEF command makes a request to define a data mapping.

Format
MAPDEF mapname A

REPLACE

A
:

variable C

V

length

*

B

P

Z

. digit

length

. C length

*

startpos

:

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPDEF X X X X X

Usage
Data mapping is an enhancement added to the REXXIMS interface. Because REXX does not offer variable
structures, parsing the fields from your database segments or MFS output maps can be time consuming,
especially when data conversion is necessary. The MAPDEF, MAPGET, and MAPPUT commands allow
simple extraction of most formatted data.

• mapname is a 1- to 16-character case-independent name.
• definition (A) is a variable containing the map definition.
• REPLACE, if specified, indicates that a replacement of an existing map name is allowed. If not specified

and the map name is already defined, an error occurs and message DFS3171E is sent to the SYSTPRT.

The map definition has a format similar to data declarations in other languages, with simplifications for
REXX. In this definition, you must declare all variables that you want to be parsed with their appropriate
data types. The format is shown in A in the syntax diagram.

Variable name

The variable name variable is a REXX variable used to contain the parsed information. Variable names are
case-independent. If you use a STEM (REXX terminology for an array-like structure) variable, it is resolved
at the time of use (at the explicit or implicit MAPGET or MAPPUT call time), and this can be powerful. If you
use an index type variable as the STEM portion of a compound variable, you can load many records into
an array simply by changing the index variable. Map names or tokens cannot be substituted for variable
names inside a map definition.

Repositioning the internal cursor

A period (.) can be used as a variable place holder for repositioning the internal cursor position. In this
case, the data type must be C, and the length can be negative, positive, or zero. Use positive values to
skip over fields of no interest. Use negative lengths to redefine fields in the middle of a map without using
absolute positioning.

Chapter 3. IMS Adapter for REXX reference 359

The data type values are:
C

Character
V

Variable
B

Binary (numeric)
Z

Zoned decimal (numeric)
P

Packed decimal (numeric)

All numeric data types can have a period and a number next to them. The number indicates the number of
digits to the right of a decimal point when converting the number.

The .digit specification is expanded to 31 digits.

Length value

The length value can be a number or an asterisk (*), which indicates that the rest of the buffer will be
used. You can specify an asterisk only for data types C and V. Data type V maps a 2-byte length field
preceding the data string, such that when the declared length is 2, it takes 4 bytes. Data types P and Z
accept values of 0 to 31 digits.

Valid lengths for data types are:
C

1 - 32767 bytes or *
V

1 - 32765 bytes or *
B

1 - 4 bytes
Z

1 - 32 bytes
P

1 - 16 bytes

If a value other than asterisk (*) is given, the cursor position is moved by that value.

The startpos value resets the parsing position to a fixed location. If startpos is omitted, the column to the
right of the previous map variable definition (cursor position) is used. If it is the first variable definition,
column 1 is used.

Note: A length of asterisk (*) does not move the cursor position, so a variable declared after one with a
length of asterisk (*) without specifying a start column overlays the same definition.

Example
This example defines a map named DBMAP, which is used implicitly on a GU call by placing an asterisk (*)
in front of the map name.

DBMapDef = 'RECORD C * :', /* Pick up entire record */
 'NAME C 10 :', /* Cols 1-10 hold the name */
 'PRICE Z.2 6 :', /* Cols 11-16 hold the price */
 'CODE C 2 :', /* Cols 17-18 hold the code */
 '. C 25 :', /* Skip 25 columns */
 'CATEGORY B 1' /* Col 42 holds category */
Address REXXIMS 'MAPDEF DBMAP DBMapDef'

⋮

360 IMS: Application Programming APIs

Address REXXTDLI 'GU DBPCB *DBMAP' /* Read and decode a segment */
If RC¬=0 Then Signal BadCall /* Check for failure */
Say CODE /* Can now access any Map Variable*/

The entire segment retrieved on the GU call is placed in RECORD. The first 10 characters are placed in
NAME, and the next 6 are converted from zoned decimal to EBCDIC with two digits to the right of the
decimal place and placed in PRICE. The next two characters are placed in CODE, the next 25 are skipped,
and the next character is converted from binary to EBCDIC and placed in CATEGORY. The 25 characters
that are skipped are present in the RECORD variable.

MAPGET
The MAPGET command is a request to parse or convert a buffer into a specified data mapping previously
defined with the MAPDEF command.

Format
MAPGET mapname buffer

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPGET X X X X X

Usage
The mapname variable name specifies the data mapping to use. It is a 1- to 16-character case-
independent name. The buffer variable name is the REXX variable containing the data to parse.

Map names can also be specified in the REXXTDLI calls in place of variable names to be set or written.
This step is called an implicit MAPGET. Thus, the explicit (or variable dependent) MAPGET call can be
avoided. To indicate that a Map name is being passed in place of a variable in the DL/I call, precede the
name with an asterisk (*), for example, 'GU IOPCB *INMAP'.

Examples
This example uses explicit support.

Address REXXTDLI 'GU DBPCB SegVar'
If RC=0 Then Signal BadCall /* Check for failure */
Address REXXIMS 'MAPGET DBMAP SegVar'/* Decode Segment */
Say VAR_CODE /*Can now access any Map Variable */

This example uses implicit support.

Address REXXTDLI 'GU DBPCB *DBMAP' /* Read and decode segment if read*/
If RC=0 Then Signal BadCall /* Check for failure */
Say VAR_CODE /* Can now access any Map Variable*/

If an error occurs during a MAPGET, message DFS3172I is issued. An error could occur when a Map
is defined that is larger than the input segment to be decoded or during a data conversion error from
packed or zoned decimal format. The program continues, and an explicit MAPGET receives a return code
4. However, an implicit MAPGET (on a REXXTDLI call, for example) does not have its return code affected.
Either way, the failing variable's value is dropped by REXX.

Chapter 3. IMS Adapter for REXX reference 361

MAPPUT
This MAPPUT command makes a request to pack or concatenate variables from a specified Data Mapping,
defined by the MAPDEF command, into a single variable.

Format
MAPPUT mapname buffer

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPPUT X X X X X

Usage
The mapname variable name specifies the data mapping to use, a 1- to 16-character case-independent
name. The buffer variable name is the REXX variable that will contain the resulting value.

Map names can also be specified in the REXXTDLI call in place of variable names to be fetched or read.
This step is called an implicit MAPPUT and lets you avoid the explicit MAPPUT call. To indicate that a Map
name is being passed in the DL/I call, precede the name with an asterisk (*), for example, 'ISRT IOPCB
*OUTMAP'.

Note: If the data mapping is only partial and some fields in the record are not mapped to REXX variables,
then the first field in the mapping should be a character type of length asterisk (*), as shown in the
following code example. This step is the only way to ensure that non-mapped (skipped) fields are not lost
between the MAPGET and MAPPUT calls, whether they be explicit or implicit.

This example uses explicit support.

Address REXXTDLI
'GHU DBPCB SegVar SSA1' /* Read segment */
If RC¬=0 Then Signal BadCall /* Check for failure */
Address REXXIMS 'MAPGET DBMAP SegVar' /* Decode Segment */
DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */
Address REXXIMS 'MAPPUT DBMAP SegVar' /* Encode Segment */
'REPL DBPCB SegVar' /* Update Database */
If RC¬=0 Then Signal BadCall /* Check for failure */

This example uses implicit support.

Address REXXTDLI
'GHU DBPCB *DBMAP SSA1' /* Read and decode segment if read */
If RC¬=0 Then Signal BadCall /* Check for failure */
DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */
'REPL DBPCB *DBMAP' /* Update Database */
If RC¬=0 Then Signal BadCall /* Check for failure */

If an error occurs during a MAPPUT, such as a Map field defined larger than the variable's contents, then
the field is truncated. If the variable's contents are shorter than the field, the variable is padded:
Character (C)

Padded on right with blanks
Character (V)

Padded on right with zeros
Numeric (B,Z,P)

Padded on the left with zeros

If a MAP variable does not exist when a MAPPUT is processed, the variable and its position are skipped. All
undefined and skipped fields default to binary zeros. A null parameter is parsed normally. Conversion of
non-numeric or null fields to numeric field results in a value of 0 being used and no error.

362 IMS: Application Programming APIs

SET
The SET command resets AIB subfunction values and ZZ values before you issue a DL/I call.

Format
SET SUBFUNC variable

ZZ variable

RSNAME1 variable

TIMER variable

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SET X X X X X

Usage
The SET SUBFUNC command sets the AIB subfunction used on the next DL/I call. This value is used only
if the next REXXTDLI call passes a PCB name. If the call does pass a PCB name, the IMS adapter for REXX
places the subfunction name (1 to 8 characters or blank) in the AIB before the call is issued. This value
initially defaults to blanks and is reset to blanks on completion of any REXXTDLI DL/I call.

The SET ZZ command is used to set the ZZ value used on a subsequent DL/I call. This command is most
commonly used in IMS conversational transactions and terminal dependent applications to set the ZZ
field to something other than the default of binary zeros. Use the SET command before an ISRT call that
requires other than the default ZZ value.

If you are issuing a synchronous callout request by making an ICAL call, the following usage rules apply:

• The SET SUBFUNC command must be issued with the subfunction code set to SENDRECV.
• The SET RSNAME1 command must be issued with the variable set to the OTMA Descriptor name.
• Optionally, the SET TIMER command can be issued to set the ICAL timeout value. The timeout value

must be numeric and can contain up to six digits.

Examples
This example shows the SET SUBFUNC command used with the INQY call to get environment
information.

IO="IOPCB"
Func = "ENVIRON" /* Sub-Function Value */
Address REXXIMS "SET SUBFUNC Func" /* Set the value */
Address REXXTDLI "INQY IO EnviData" /* Make the DL/I Call */
IMS_Identifier = Substr(EnviData,1,8) /* Get IMS System Name*/

This example shows the SET ZZ command used with a conversational transaction for SPA processing.

Address REXXTDLI 'GU IOPCB SPA' /* Get first Segment */
Hold_ZZ = IMSQUERY('ZZ') /* Get ZZ Field (4 bytes) */

⋮

Address REXXIMS 'SET ZZ Hold_ZZ' /* Set ZZ for SPA ISRT */
Address REXXTDLI 'ISRT IOPCB SPA' /* ISRT the SPA */

This example shows the SET ZZ command used for setting 3270 Device Characteristics Flags.

Bell_ZZ = '0040'X /* ZZ to Ring Bell on Term */
Address REXXIMS 'SET ZZ Bell_ZZ' /* Set ZZ for SPA ISRT */
Address REXXTDLI 'ISRT IOPCB Msg' /* ISRT the Message */

Chapter 3. IMS Adapter for REXX reference 363

SRRBACK and SRRCMIT
The Common Programming Interface Resource Recovery (CPI-RR) commands allow an interface to use
the SAA resource recovery interface facilities for back-out and commit processing.

Format
SRRBACK return_code

SRRCMIT return_code

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SRRBACK,
SRRCMIT

X X

Usage
The return code from the SRR command is returned and placed in the return_code variable name as well
as the REXX variable RC.

For more information on SRRBACK and SRRCMIT, see IMS Version 15.3 Communications and Connections
and SAA CPI Resource Recovery Reference.

STORAGE
The STORAGE command allows the acquisition of system storage that can be used in place of variables for
parameters to REXXTDLI and REXXIMS calls.

Format
STORAGE OBTAIN !token length

KEEP

BELOW

RELEASE !token

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STORAGE X X X X X

Usage
Although REXX allows variables to start with characters (!) and (#), these characters have special
meanings on some commands. When using the REXXTDLI interface, you must not use these characters as
the starting characters of variables.

The !token variable name identifies the storage, and it consists of an exclamation mark followed by a 1- to
16-character case-independent token name. The length variable name is a number or variable containing
size in decimal to OBTAIN in the range 4 to 16777216 bytes (16 MB). The storage class has two possible
override values, BELOW and KEEP, of which only one can be specified for any particular token. The BELOW
function acquires the private storage below the 16 MB line. The KEEP function marks the token to be kept
after this EXEC is terminated. The default action gets the storage in any location and frees the token when
the EXEC is terminated.

Use the STORAGE command to get storage to use on DL/I calls when the I/O area must remain in a fixed
location (for example, Spool API) or when it is not desirable to have the LLZZ processing. Once a token is
allocated, you can use it in REXXTDLI DL/I calls or on the STORAGE RELEASE command.

When using STORAGE:

364 IMS: Application Programming APIs

• When used on DL/I calls, none of the setup for LLZZ fields takes place. You must fill the token in and
parse the results from it just as required by a non-REXX application.

• You cannot specify both KEEP and BELOW on a single STORAGE command.
• The RELEASE function is only necessary for tokens marked KEEP. All tokens not marked KEEP and not

explicitly released by the time the EXEC ends are released automatically by the IMS adapter for REXX.
• When you use OBTAIN, the entire storage block is initialized to 0.
• The starting address of the storage received is always on the boundary of a double word.
• You cannot re-obtain a token until RELEASE is used or the EXEC that obtained it, non-KEEP, terminates.

If you try, a return code of -9 is given and the error message DFS3169 is issued.
• When KEEP is specified for the storage token, it can be accessed again when this EXEC or another EXEC

knowing the token's name is started in the same IMS region.
• Tokens marked KEEP are not retained when an ABEND occurs or some other incident occurs that

causes region storage to be cleared. It is simple to check if the block exists on entry with the
IMSQUERY(!token) function.

Example
This example shows how to use the STORAGE command with Spool API.

/* Get 4K Buffer below the line for Spool API Usage */
Address REXXIMS 'STORAGE OBTAIN !MYTOKEN 4096 BELOW'
/* Get Address and length (if curious) */
Parse Value IMSQUERY('!MYTOKEN') With My_Token_Addr My_Token_Len.
Address REXXIMS 'SETO ALTPCB !MYTOKEN SETOPARMS SETOFB'

⋮

Address REXXIMS 'STORAGE RELEASE !MYTOKEN'

Related reference
“REXXTDLI calls” on page 351
The following information describes usage considerations for REXXTDLI calls.
“IMSQUERY extended functions” on page 366
The IMSQUERY function is available to query certain IMS information either on the environment or on the
prior DL/I call.

WTO, WTP, and WTL
The WTO command is used to write a message to the operator. The WTP command is used to write a
message to the program (WTO ROUTCDE=11). The WTL command is used to write a message to the
console log.

Format
WTO message

WTP message

WTL message

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTO, WTP, WTL X X X X X

Usage
The message variable name is a REXX variable containing the text that is stored displayed in the
appropriate place.

Chapter 3. IMS Adapter for REXX reference 365

Example
This example shows how to write a simple message stored the REXX variable MSG.

Msg = 'Sample output message.' /* Build Message */
Address REXXIMS 'WTO Msg' /* Tell Operator */
Address REXXIMS 'WTP Msg' /* Tell Programmer */
Address REXXIMS 'WTL Msg' /* Log It */

WTOR
The WTOR command requests input or response from the z/OS system operator.

Format
WTOR message response

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTOR X X X X X

Usage
The message variable name is a REXX variable containing the text that will be displayed on the z/OS
console. The operator's response is placed in the REXX variable signified by the response variable name.

Attention: This command hangs the IMS region in which it is running until the operator responds.

Example
This example prompts the operator to enter ROLL or CONT on the z/OS master or alternate console. Once
the WTOR is answered, the response is placed in the REXX variable name response, and the EXEC will
continue and process the IF statement appropriately.

Msg = 'Should I ROLL or Continue. Reply "ROLL" or "CONT"'
Address REXXIMS 'WTOR Msg Resp' /* Ask Operator */
If Resp = 'ROLL' Then /* Tell Programmer */
 Address REXXTDLI 'ROLL' /* Roll Out of this */

IMSQUERY extended functions
The IMSQUERY function is available to query certain IMS information either on the environment or on the
prior DL/I call.

The IMSQUERY function can be used to check for the return and reason codes after a synchronous callout
request is made using the ICAL call. If the return or reason code indicates that partial output data is being
returned, you can issue the IMSQUERY function to retrieve the output data length and the error extension
codes.

366 IMS: Application Programming APIs

Format
IMSQUERY (ERRXTN

FEEDBACK

IMSRXTRC

OUTLEN

REASON

SEGLEVEL

SEGNAME

STATUS

TRANCODE

USERID

ZZ

!token

)

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSQUERY X X X X X

Usage
The format of the function call is: IMSQUERY('Argument') where Argument is one of the values in the
following list.
Argument

Description of Data Returned
ERRXTN

The error extension code when an error response message is returned after a synchronous callout
request is made using ICAL.

FEEDBACK
FEEDBACK area from current PCB.

IMSRXTRC
Current IMSRXTRC trace level #.

OUTLEN
The output length of the response message when a partial response is returned after a synchronous
callout request is made using ICAL.

REASON
Reason code from last call (from AIB if used on last REXXTDLI type call).

SEGLEVEL
Segment level from current PCB (Last REXXTDLI call must be against a DB PCB, or null is returned).

SEGNAME
Segment name from current PCB (Last REXXTDLI call must be against a DB PCB, or null is returned).

STATUS
IMS status code from last executed REXXTDLI call (DL/I call). This argument is the two character
status code from the PCB.

TRANCODE
Current transaction code being processed, if available.

USERID
Input terminal's user ID, if available. If running in a non-message-driven region, the value is
dependent on the specification of the BMPUSID= keyword in the DFSDCxxx PROCLIB member:

• If BMPUSID=USERID is specified, the value from the USER= keyword on the JOB statement is used.

Chapter 3. IMS Adapter for REXX reference 367

• If USER= is not specified on the JOB statement, the program's PSB name is used.
• If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the program's PSB name

is used.

ZZ
ZZ (of LLZZ) from last REXXTDLI command. This argument can be used to save the ZZ value after you
issue a GU call to the I/O PCB when the transaction is conversational.

!token
Address (in hexadecimal) and length of specified token (in decimal), separated by a blank.

This value can be placed in a variable or resolved from an expression. In these cases, the quotation marks
should be omitted as shown below:

Token_Name="!MY_TOKEN"
AddrInfo=IMSQUERY(Token_Name)
 /* or */
AddrInfo=IMSQUERY("!MY_TOKEN")

Although the function argument is case-independent, no blanks are allowed within the function argument.
You can use the REXX STRIP function on the argument, if necessary. IMSQUERY is the preferred syntax,
however REXXIMS is supported and can be used, as well.

Example
If REXXIMS('STATUS')='GB' Then Signal End_Of_DB
⋮
Hold_ZZ = IMSQUERY('ZZ') /* Get current ZZ field*/
⋮
Parse Value IMSQUERY('!MYTOKEN') With My_Token_Addr My_Token_Len .

Related reference
IMS Adapter for REXX exit routine (DFSREXXU) (Exit Routines)
“REXXTDLI commands” on page 350
These topics contain REXX commands and describe how they apply to DL/I calls.
“STORAGE” on page 364
The STORAGE command allows the acquisition of system storage that can be used in place of variables for
parameters to REXXTDLI and REXXIMS calls.

Sample execs using REXXTDLI
The following samples of REXX execs show how to use REXXTDLI to access IMS services.

The example sets are designed to highlight various features of writing IMS applications in REXX. The
samples are simplified and might not reflect actual usage (for example, they do not use databases).

The PART exec database access example is a set of three execs that access the PART database, which is
built by the IMS installation verification program (IVP). The first two execs in this example, PARTNUM and
PARTNAME, are extensions of the PART transaction that runs the program DFSSAM02, which is supplied
with IMS as part of IVP. The third exec is the DFSSAM01 exec supplied with IMS and is an example of the
use of EXECIO within an exec.

SAY exec: for expression evaluation
The following code example is a listing of the SAY exec. SAY evaluates an expression supplied as an
argument and displays the results.

The REXX command INTERPRET is used to evaluate the supplied expression and assign it to a variable.
Then that variable is used in a formatted reply message.

368 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsrexxu.htm#ims_dfsrexxu

Exec to do calculations

/* EXEC TO DO CALCULATIONS */
Address REXXTDLI
Arg Args
If Args='' Then
 Msg='SUPPLY EXPRESSION AFTER EXEC NAME.'
Else Do
 Interpret 'X='Args /* Evaluate Expression */
 Msg='EXPRESSION:' Args '=' X
End
'ISRT IOPCB MSG'
Exit RC

This exec shows an example of developing applications with IMS Adapter for REXX . It also shows the
advantages of REXX, such as dynamic interpretation, which is the ability to evaluate a mathematical
expression at run-time.

A PDF EDIT session is shown in the following figure. This figure shows how you can enter a new exec to be
executed under IMS.

 EDIT ---- USER.PRIVATE.PROCLIB(SAY) - 01.03 ------------------ COLUMNS 001 072
 COMMAND ===> SCROLL ===> PAGE
 ****** ***************************** TOP OF DATA ******************************
 000001 /* EXEC TO DO CALCULATIONS */
 000002 Address REXXTDLI
 000003 Arg Args
 000004 If Args='' Then
 000005 Msg='SUPPLY EXPRESSION AFTER EXEC NAME.'
 000006 Else Do
 000007 Interpret 'X='Args /* Evaluate Expression */
 000008 Msg='EXPRESSION:' Args '=' X
 000009 End
 000010
 000011 'ISRT IOPCB MSG'
 000012 Exit RC
 ****** **************************** BOTTOM OF DATA ****************************

Figure 9. PDF EDIT session on the SAY exec

To execute the SAY exec, use IVPREXX and supply an expression such as:

IVPREXX SAY 5*5+7

This expression produces the output shown in the following figure.

 EXPRESSION: 5*5+7 = 32
 EXEC SAY ended with RC= 0

Figure 10. Example output from the SAY exec

PCBINFO exec: display available PCBs in current PSB
The PCB exec maps the PCBs available to the exec, which are the PCBs for the executing PSB.

The mapping consists of displaying the type of PCB (IO, TP, or DB), the LTERM or DBD name that is
associated, and other useful information. PCB mappings are created by placing DFSREXX0 in an early
concatenation library and renaming it to an existing application with a PSB/DBD generation.

Chapter 3. IMS Adapter for REXX reference 369

 IMS PCB System Information Exec: PCBINFO
 System Date: 09/26/92 Time: 15:52:15

 PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2
 Date=91269 Time=1552155
 PCB # 2: Type=TP, LTERM=* NONE * Status=AD
 PCB # 3: Type=TP, LTERM=* NONE * Status=
 PCB # 4: Type=TP, LTERM=CTRL Status=
 PCB # 5: Type=TP, LTERM=T3275 Status=
 EXEC PCBINFO ended with RC= 0

Figure 11. Example output of PCBINFO exec on a PSB without database PCBs

 IMS PCB System Information Exec: PCBINFO
 System Date: 09/26/92 Time: 15:53:34

 PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2
 Date=89320 Time=1553243
 PCB # 2: Type=DB, DBD =DI21PART Status= Level=00 Opt=G
 EXEC PCBINFO ended with RC= 0

Figure 12. Example output of PCBINFO exec on a PSB with a database PCB

PCBINFO exec listing

/* REXX EXEC TO SHOW SYSTEM LEVEL INFO */
Address REXXTDLI
Arg Dest .
WTO=(Dest='WTO')
Call SayIt 'IMS PCB System Information Exec: PCBINFO'
Call SayIt 'System Date:' Date('U') ' Time:' Time()
Call Sayit ' '
/* A DFS3162 message is given when this exec is run because it does */
/* not know how many PCBs are in the list and it runs until it gets */
/* an error return code. Note this does not show PCBs that are */
/* available to the PSB by name only, in other words, not in the PCB list. */
Msg='PCBINFO: Error message normal on DLIINFO.'
'WTP MSG'
Do i=1 by 1 until Result='LAST'
 Call SayPCB i
End
Exit 0

SayPCB: Procedure Expose WTO
 Arg PCB
 'DLIINFO DLIINFO #'PCB /* Get PCB Address */
 If rc<0 Then Return 'LAST' /* Invalid PCB Number */
 Parse Var DLIInfo . . AIBAddr PCBAddr .
 PCBINFO=Storage(PCBAddr,255) /* Read PCB */
 TPPCB=(Substr(PCBInfo,13,1)='00'x) /* Date Field, must be TP PCB */
 If TPPCB then Do
 Parse Value PCBInfo with,
 LTERM 9 . 11 StatCode 13 CurrDate 17 CurrTime 21,
 InputSeq 25 OutDesc 33 UserID 41
 If LTERM='' then LTERM='* NONE *'
 CurrDate=Substr(c2x(CurrDate),3,5)
 CurrTime=Substr(c2x(CurrTime),1,7)
 If CurrDate¬='000000' then Do
 Call SayIt 'PCB #'Right(PCB,2)': Type=IO, LTERM='LTERM,
 'Status='StatCode 'UserID='UserID 'OutDesc='OutDesc
 Call SayIt ' Date='CurrDate 'Time='CurrTime
 End
 Else
 Call SayIt 'PCB #'Right(PCB,2)': Type=TP, LTERM='LTERM,
 'Status='StatCode
 End
 Else Do
 Parse Value PCBInfo with,
 DBDName 9 SEGLev 11 StatCode 13 ProcOpt 17 . 21 Segname . 29,
 KeyLen 33 NumSens 37
 KeyLen = c2d(KeyLen)
 NumSens= c2d(NumSens)

 Call SayIt 'PCB #'Right(PCB,2)': Type=DB, DBD ='DBDName,

370 IMS: Application Programming APIs

 'Status='StatCode 'Level='SegLev 'Opt='ProcOpt
 End
Return '

SayIt: Procedure Expose WTO
 Parse Arg Msg
 If WTO Then
 'WTO MSG'
 Else
 'ISRT IOPCB MSG'
Return

Related reference
“DLIINFO” on page 357
The DLIINFO call requests information from the last DL/I call or on a specific PCB.

PART execs: database access examples
This set of execs accesses the PART database shipped with IMS. These execs demonstrate fixed-record
database reading, SSAs, and many REXX functions. The PART database execs (PARTNUM, PARTNAME,
and DFSSAM01) are also described.

The PARTNUM exec is used to show part numbers that begin with a number equal to or greater than the
number you specify. An example output screen is shown in the figure below.

To list part numbers beginning with the number "300" or greater, enter the command:

PARTNUM 300

All part numbers that begin with a 300 or larger numbers are listed. The listing is shown in the figure
below.

 IMS Parts DATABASE Transaction
 System Date: 02/16/92 Time: 23:28:41

 Request: Display 5 Parts with Part_Number >= 300
 1 Part=3003802 Desc=CHASSIS
 2 Part=3003806 Desc=SWITCH
 3 Part=3007228 Desc=HOUSING
 4 Part=3008027 Desc=CARD FRONT
 5 Part=3009228 Desc=CAPACITOR

 EXEC PARTNUM ended with RC= 0

Figure 13. Example output of PARTNUM exec

PARTNAME is used to show part names that begin with a specific string of characters.

To list part names beginning with "TRAN", enter the command:

PARTNAME TRAN

All part names that begin with "TRAN" are listed on the screen. The screen is shown in the following
figure.

 IMS Parts DATABASE Transaction
 System Date: 02/16/92 Time: 23:30:09

 Request: Display 5 Parts with Part Name like TRAN
 1 Part=250239 Desc=TRANSISTOR
 2 Part=7736847P001 Desc=TRANSFORMER
 3 Part=975105-001 Desc=TRANSFORMER
 4 Part=989036-001 Desc=TRANSFORMER
 End of DataBase reached before 5 records shown.

 EXEC PARTNAME ended with RC= 0

Figure 14. Example output of PARTNAME exec

Chapter 3. IMS Adapter for REXX reference 371

The DFSSAM01 exec is used to load the parts database. This exec is executed in batch, is part of the IVP,
and provides an example of EXECIO usage in an exec.

Related Reading: For details, see IMS Version 15.3 Installation.

PARTNUM exec: show set of parts near a specified number
The following code example is designed to be run by the IVPREXX exec with PSB=DFSSAM02.

PARTNUM exec: show set of parts near a specified number

/* REXX EXEC TO SHOW A SET OF PARTS NEAR A SPECIFIED NUMBER */
/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */
/* Syntax: IVPREXX PARTNUM string <start#> */

Address REXXTDLI
IOPCB='IOPCB' /* PCB Name */
DataBase='#2' /* PCB # */
RootSeg_Map = 'PNUM C 15 3 : DESCRIPTION C 20 27'
'MAPDEF ROOTSEG ROOTSEG_MAP'
Call SayIt 'IMS Parts DATABASE Transaction'
Call SayIt 'System Date:' Date('U') ' Time:' Time()
Call Sayit ' '

Arg PartNum Segs .
If ¬DataType(Segs,'W') then Segs=5 /* default view amount */

PartNum=Left(PartNum,15) /* Pad to 15 with Blanks */
If PartNum='' then
 Call Sayit 'Request: Display first' Segs 'Parts in the DataBase'
Else
 Call Sayit 'Request: Display' Segs 'Parts with Part_Number >=' PartNum
SSA1='PARTROOT(PARTKEY >=02'PartNum')'
'GU DATABASE *ROOTSEG SSA1'
Status=IMSQUERY('STATUS')
If Status='GE' then Do /* Segment Not Found */
 Call Sayit 'No parts found with larger Part_Number'
 Exit 0
End
Do i=1 to Segs While Status=' '
 Call Sayit Right(i,2) 'Part='PNum ' Desc='Description
 'GN DATABASE *ROOTSEG SSA1'
 Status=IMSQUERY('STATUS')
End
If Status='GB' then
 Call SayIt 'End of DataBase reached before' Segs 'records shown.'
Else If Status¬=' ' then Signal BadCall
Call Sayit ' '
 Exit 0

SayIt: Procedure Expose IOPCB
 Parse Arg Msg
 'ISRT IOPCB MSG'
 If RC¬=0 then Signal BadCall
Return

BadCall:
 'DLIINFO INFO'
 Parse Var Info Call PCB Status .
 Msg = 'Unresolved Status Code' Status,
 'on' Call 'on PCB' PCB
 'ISRT IOPCB MSG'
Exit 99

PARTNAME exec: show a set of parts with a similar name
The REXX exec shown in the following code example is designed to be run by the IVPREXX exec with
PSB=DFSSAM02.

The following PARTNAME exec code is used to show parts with similar names.

/* REXX EXEC TO SHOW ALL PARTS WITH A NAME CONTAINING A STRING */
/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */
/* Syntax: IVPREXX PARTNAME string <#parts> */

372 IMS: Application Programming APIs

Arg PartName Segs .
Address REXXIMS
Term ='IOPCB' /* PCB Name */
DataBase='DBPCB01' /* PCB Name for Parts Database */

Call SayIt 'IMS Parts DATABASE Transaction'
Call SayIt 'System Date:' Date('U') ' Time:' Time()
Call Sayit ' '

If ¬DataType(Segs,'W') & Segs¬='*' then Segs=5
If PartName='' then Do
 Call Sayit 'Please supply the first few characters of the part name'
 Exit 0
End

Call Sayit 'Request: Display' Segs 'Parts with Part Name like' PartName
SSA1='PARTROOT '
'GU DATABASE ROOT_SEG SSA1'
Status=REXXIMS('STATUS')
i=0
Do While RC=0 & (i<Segs | Segs='*')
 Parse Var Root_Seg 3 PNum 18 27 Description 47
 'GN DATABASE ROOT_SEG SSA1'
 Status=REXXIMS('STATUS')
 If RC¬=0 & Status¬='GB' Then Leave
 If Index(Description,PartName)=0 then Iterate
 i=i+1
 Call Sayit Right(i,2)') Part='PNum ' Desc='Description
End
If RC¬=0 & Status¬='GB' Then Signal BadCall
If i<Segs & Segs¬='*' then
 Call SayIt 'End of DataBase reached before' Segs 'records shown.'
Call Sayit ' '
Exit 0

SayIt: Procedure Expose Term
 Parse Arg Msg
 'ISRT Term MSG'
 If RC¬=0 then Signal BadCall
Return

BadCall:
 Call "DFSSUT04" Term
Exit 99

DFSSAM01 exec: load the parts database
For the latest version of the DFSSAM01 source code, see the IMS.ADFSEXEC distribution library; member
name is DFSSAM01.

DOCMD: IMS commands front end
DOCMD is an automatic operator interface (AOI) transaction program that issues IMS commands and
allows dynamic filtering of their output. The term dynamic means that you use the headers for the
command as the selectors (variable names) in the filter expression (Boolean expression resulting in 1 if
line is to be displayed and 0 if it is not).

This listing is shown in the code example at the end of this topic.

Not all commands are allowed through transaction AOI, and some setup needs to be done to use this AOI.

Some examples of DOCMD are given in the following figures.

 Please supply an IMS Command to execute.
 EXEC DOCMD ended with RC= 0

Figure 15. Output from = > DOCMD

Chapter 3. IMS Adapter for REXX reference 373

 Headers being shown for command: /DIS NODE ALL
 Variable (header) #1 = RECTYPE
 Variable (header) #2 = NODE_SUB
 Variable (header) #3 = TYPE
 Variable (header) #4 = CID
 Variable (header) #5 = RECD
 Variable (header) #6 = ENQCT
 Variable (header) #7 = DEQCT
 Variable (header) #8 = QCT
 Variable (header) #9 = SENT
 EXEC DOCMD ended with RC= 0

Figure 16. Output from = > DOCMD /DIS NODE ALL;?

 Selection criteria =>CID>0<= Command: /DIS NODE ALL
 NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT
 L3270A 3277 01000004 5 19 19 0 26 IDLE CON
 L3270C 3277 01000005 116 115 115 0 122 CON
 Selected 2 lines from 396 lines.
 DOCMD Executed 402 DL/I calls in 2.096787 seconds.
 EXEC DOCMD ended with RC= 0

Figure 17. Output from = > DOCMD /DIS NODE ALL;CID>0

 Selection criteria =>TYPE=SLU2<= Command: /DIS NODE ALL
 NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT
 WRIGHT SLU2 00000000 0 0 0 0 0 IDLE
 Q3290A SLU2 00000000 0 0 0 0 0 IDLE
 Q3290B SLU2 00000000 0 0 0 0 0 IDLE
 Q3290C SLU2 00000000 0 0 0 0 0 IDLE
 Q3290D SLU2 00000000 0 0 0 0 0 IDLE
 V3290A SLU2 00000000 0 0 0 0 0 IDLE
 V3290B SLU2 00000000 0 0 0 0 0 IDLE
 H3290A SLU2 00000000 0 0 0 0 0 IDLE
 H3290B SLU2 00000000 0 0 0 0 0 IDLE
 E32701 SLU2 00000000 0 0 0 0 0 IDLE
 E32702 SLU2 00000000 0 0 0 0 0 IDLE
 E32703 SLU2 00000000 0 0 0 0 0 IDLE
 E32704 SLU2 00000000 0 0 0 0 0 IDLE
 E32705 SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2A SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2B SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2C SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2D SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2E SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2F SLU2 00000000 0 0 0 0 0 IDLE
 ADLU2X SLU2 00000000 0 0 0 0 0 IDLE
 ENDS01 SLU2 00000000 0 0 0 0 0 IDLE
 ENDS02 SLU2 00000000 0 0 0 0 0 IDLE
 ENDS03 SLU2 00000000 0 0 0 0 0 IDLE
 ENDS04 SLU2 00000000 0 0 0 0 0 IDLE
 ENDS05 SLU2 00000000 0 0 0 0 0 IDLE
 ENDS06 SLU2 00000000 0 0 0 0 0 IDLE
 NDSLU2A1 SLU2 00000000 0 0 0 0 0 ASR IDLE
 NDSLU2A2 SLU2 00000000 0 0 0 0 0 ASR IDLE
 NDSLU2A3 SLU2 00000000 0 0 0 0 0 ASR IDLE
 NDSLU2A4 SLU2 00000000 0 0 0 0 0 ASR IDLE
 NDSLU2A5 SLU2 00000000 0 0 0 0 0 IDLE
 NDSLU2A6 SLU2 00000000 0 0 0 0 0 ASR IDLE
 OMSSLU2A SLU2 00000000 0 0 0 0 0 IDLE
 Selected 34 lines from 396 lines.
 DOCMD Executed 435 DL/I calls in 1.602206 seconds.
 EXEC DOCMD ended with RC= 0

Figure 18. Output from = > DOCMD /DIS NODE ALL;TYPE=SLU2

374 IMS: Application Programming APIs

 Selection criteria =>ENQCT>0 & RECTYPE='T02'<= Command: /DIS TRAN ALL
 TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
 TACP18 1 119 0 65535 65535 1 1 1 0 0 NONE 1
 Selected 1 lines from 1104 lines.
 DOCMD Executed 1152 DL/I calls in 5.780977 seconds.
 EXEC DOCMD ended with RC= 0

Figure 19. Output from = > DOCMD /DIS TRAN ALL;ENQCT>0 & RECTYPE='T02'

 Selection criteria =>ENQCT>0<= Command: /DIS LTERM ALL
 LTERM ENQCT DEQCT QCT
 CTRL 19 19 0
 T3270LC 119 119 0
 Selected 2 lines from 678 lines.
 DOCMD Executed 681 DL/I calls in 1.967670 seconds.
 EXEC DOCMD ended with RC= 0

Figure 20. Output from = > DOCMD /DIS LTERM ALL;ENQCT>0

The source code for the DOCMD exec is shown in the following code example.

DOCMD exec: process an IMS command

/***/
/* A REXX EXEC that executes an IMS command and parses the */
/* output by a user supplied criteria. */
/* */
/* */
/***/
/* Format: tranname DOCMD IMS-Command;Expression */
/* Where: */
/* tranname is the tranname of a command capable transaction that */
/* will run the DFSREXX program. */
/* IMS-Command is any valid IMS command that generates a table of */
/* output like /DIS NODE ALL or /DIS TRAN ALL */
/* Expression is any valid REXX expression, using the header names*/
/* as the variables, like CID>0 or SEND=0 or more */
/* complex like CID>0 & TYPE=SLU2 */
/* Example: TACP18 DOCMD DIS A Display active */
/* TACP18 DOCMD DIS NODE ALL;? See headers of DIS NODE */
/* TACP18 DOCMD DIS NODE ALL;CID>0 Show active Nodes */
/* TACP18 DOCMD DIS NODE ALL;CID>0;SYSOUT Output to SYSOUT */
/* TACP18 DOCMD DIS NODE ALL;CID>0 & TYPE='SLU2' */
/***/
Address REXXTDLI
Parse Upper Arg Cmd ';' Expression ';' SysOut
Cmd=Strip(Cmd);
Expression=Strip(Expression)
SysOut=(SysOut¬='')
If Cmd='' Then Do
 Call SayIt 'Please supply an IMS Command to execute.'
 Exit 0
End
AllOpt= (Expression='ALL')
If AllOpt then Expression=''
If Left(Cmd,1)¬='/' then Cmd='/'Cmd /* Add a slash if necessary */
If Expression='' Then
 Call SayIt 'No Expression supplied, all output shown',
 'from:' Cmd
Else If Expression='?' Then
 Call SayIt 'Headers being shown for command:' Cmd
Else
 Call SayIt 'Selection criteria =>'Expression'<=',
 'Command:' Cmd

x=Time('R'); Calls=0
ExitRC= ParseHeader(Cmd,Expression)
If ExitRC¬=0 then Exit ExitRC
If Expression='?' Then Do
 Do i=1 to Vars.0
 Call SayIt 'Variable (header) #'i '=' Vars.i
 Calls=Calls+1
 End
End

Chapter 3. IMS Adapter for REXX reference 375

Else Do
 Call ParseCmd Expression
 Do i=1 to Line.0
 If AllOpt then Line=Line.i
 Else Line=Substr(Line.i,5)
 If SysOut then Do
 Push Line
 'EXECIO 1 DISKW DOCMD'
 End
 Else Do
 Call SayIt Line
 Calls=Calls+1
 End
 End
 If SysOut then Do
 'EXECIO 0 DISKW DOCMD (FINIS'
 End
 If Expression¬='' then
 Call SayIt 'Selected' Line.0-1 'lines from',
 LinesAvail 'lines.'
 Else
 Call SayIt 'Total lines of output:' Line.0-1
 Call SayIt 'DOCMD Executed' Calls 'DL/I calls in',
 Time('E') 'seconds.'
End
Exit 0

ParseHeader:
 CurrCmd=Arg(1)
 CmdCnt=0
 'CMD IOPCB CURRCMD'
 CmdS= IMSQUERY('STATUS')
 Calls=Calls+1
 If CmdS=' ' then Do
 Call SayIt 'Command Executed, No output available.'
 Return 4
 End
 Else If CmdS¬='CC' then Do
 Call SayIt 'Error Executing Command, Status='CmdS
 Return 16
 End
 CurrCmd=Translate(CurrCmd,' ','15'x) /* Drop special characters */
 CurrCmd=Translate(CurrCmd,'__','-/') /* Drop special characters */
 CmdCnt=CmdCnt+1
 Interpret 'LINE.'||CmdCnt '= Strip(CurrCmd)'
 Parse Var CurrCmd RecType Header
 If Expression='' then Nop
 Else If Right(RecType,2)='70' then Do
 Vars.0=Words(Header)+1
 Vars.1 = "RECTYPE"
 Do i= 2 to Vars.0
 Interpret 'VARS.'i '= "'Word(CurrCmd,i)'"'
 End
 End
 Else Do
 Call SayIt 'Command did not produce a header',
 'record, first record''s type='RecType
 Return 12
 End
Return 0

ParseCmd:
 LinesAvail=0
 CurrExp=Arg(1)
 Do Forever
 'GCMD IOPCB CURRCMD'
 CmdS= IMSQUERY('STATUS')
 Calls=Calls+1
 If CmdS¬=' ' then Leave
 /* Skip Time Stamps */
 If Word(CurrCmd,1)='X99' & Expression¬='' then Iterate
 LinesAvail=LinesAvail+1
 CurrCmd=Translate(CurrCmd,' ','15'x)/* Drop special characters */
 If Expression='' then OK=1
 Else Do
 Do i= 1 to Vars.0
 Interpret Vars.i '= "'Word(CurrCmd,i)'"'
 End
 Interpret 'OK='Expression
 End
 If OK then Do
 CmdCnt=CmdCnt+1

376 IMS: Application Programming APIs

 Interpret 'LINE.'||CmdCnt '= Strip(CurrCmd)'
 End
 End
 Line.0 = CmdCnt
 If CmdS¬='QD' Then
 Call SayIt 'Error Executing Command:',
 Arg(1) 'Stat='CmdS
Return

SayIt: Procedure
 Parse Arg Line
 'ISRT IOPCB LINE'
Return RC

Related concepts
IMS security (System Administration)

IVPREXX sample application
The IVPREXX exec is a front-end generic exec that is shipped with IMS as part of the IVP. It runs other
execs by passing the exec name to execute after the TRANCODE (IVPREXX). For the latest version of the
IVPREXX source code, look for the IVPREXX member in the IMS.ADFSEXEC distribution library.

To use the IVPREXX driver sample program in a message-driven BMP or IFP environment, specify
IVPREXX as the program name and PSB name in the parameter list of the IMS region program. Specifying
IVPREXX loads the IVPREXX load module, which is a copy of the DFSREXX0 front-end program. The
IVPREXX program loads and runs an EXEC named IVPREXX that uses message segments sent to the
transaction as arguments to derive the EXEC to call or the function to perform.

Interactions with IVPREXX from an IMS terminal are shown in the following examples:

IVPREXX example 1
Entry:

 IVPREXX execname

or

 IVPREXX execname arguments

Response:

 EXEC execname ended with RC= x

IVPREXX example 2
Entry:

 IVPREXX LEAVE

Response:

 Transaction IVPREXX leaving dependent region.

IVPREXX example 3
Entry:

 IVPREXX HELLOHELLO

Response:

Chapter 3. IMS Adapter for REXX reference 377

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_secur.htm#ims_secur

 One-to-eight character EXEC name must be specified.

IVPREXX example 4
Entry:

 IVPREXX

or

 IVPREXX ?

Response:

 TRANCODE EXECNAME <Arguments> Run specified EXEC
 TRANCODE LEAVE Leave Dependent Region
 TRANCODE TRACE level 0=None,1=Some,2=More,3=Full
 TRANCODE ROLL Issue ROLL call

When an EXEC name is supplied, all of the segments it inserts to the I/O PCB are returned before the
completion message is returned.

REXX return codes (RC) in the range of 20000 to 20999 are usually syntax or other REXX errors. Check
the z/OS system console or region output for more details.

Related reading: For more information about REXX errors and messages, see z/OS TSO/E REXX Reference.

Stopping an infinite loop

To stop an EXEC that is in an infinite loop, you can enter either of the following IMS commands from the
master terminal or system console:

 /STO REGION p1 ABDUMP p2

 /STO REGION p1 CANCEL

In these examples, p1 is the region number and p2 is the TRANCODE that the EXEC is running under. Use
the /DISPLAY ACTIVE command to find the region number. This technique is not specific to REXX EXECs
and can be used on any transaction that is caught in an infinite loop.

Related concepts
“IMS Adapter for REXX reference” on page 347
The IMS adapter for REXX (REXXTDLI) provides an environment in which IMS users can interactively
develop REXX EXECs under TSO/E (time-sharing option extensions) and execute them in IMS MPPs,
BMPs, IFPs, or Batch regions.

378 IMS: Application Programming APIs

Chapter 4. Java programming reference
These topics contain reference information for the classes, interfaces, and methods supported by the IMS
solutions for Java development.

IMS Universal drivers support for JDBC
The IMS Universal JDBC driver and the IMS Universal JCA/JDBC driver supports the following methods in
the JDBC 4.0 specifications.
Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.sql.Clob methods supported
The javax.sql.Clob interface represents the mapping in Java for the SQL CLOB type. In Java
applications that use the IMS Universal drivers, the Clob data type is supported only for the retrieval
and storage of XML data.

The following table describes which methods are supported by the IMS Universal JDBC driver and the IMS
Universal JCA/JDBC driver for the Clob interface.

Table 93. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for the Clob interface

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

free() No

getAsciiStream() Yes

getCharacterStream() Yes

getCharacterStream(long pos, long length) No

getSubString(long pos, int length) Yes

length() Yes

position(Clob searchstr, long start) No

position(String searchstr, long start) No

setAsciiStream(long pos) No

setCharacterStream(long pos) No

setString(long pos, String str) No

setString(long pos, String str, int offset, int len) No

truncate(long len) No

java.sql.Connection methods supported
The Connection object represents a connection (session) with a specific database.

The following table lists the methods that are supported by the IMS JDBC drivers for the Connection
interface.

© Copyright IBM Corp. 1974, 2022 379

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

Table 94. IMS JDBC drivers support for Connection

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

clearWarnings() Yes

close() Yes

commit() Yes

createStatement() Yes

createStatement(int resultSetType, int resultSetConcurrency) Yes

createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

Yes

getAutoCommit() Yes

getCatalog() Yes

getHoldability() Yes

getMetaData() Yes

getTransactionIsolation() Yes

getTypeMap() Yes

getWarnings() Yes

isClosed() Yes

isReadOnly() Yes

nativeSQL(String sql) Yes

prepareCall(String sql) No

prepareCall(String sql, int resultSetType, int resultSetConcurrency) No

prepareCall(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

No

prepareStatement(String sql) Yes

prepareStatement(String sql, int autoGeneratedKeys) No

prepareStatement(String sql, int[] columnIndexes) No

prepareStatement(String sql, int resultSetType, int resultSetConcurrency) Yes

prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

Yes

prepareStatement(String sql, String[] columnNames) No

releaseSavepoint(Savepoint savepoint) No

rollback() Yes

rollback(Savepoint savepoint) No

setAutoCommit(boolean autoCommit) Yes

setCatalog(String catalog) Yes

setHoldability(int holdability) Yes

setReadOnly(boolean readOnly) Yes

setSavepoint() No

setTransactionIsolation(int level) Yes

setTypeMap(Map<String,Class<?>> map) No

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

380 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

java.sql.DatabaseMetaData methods supported
The DatabaseMetaData interface provides comprehensive information about the database as a whole.

The following methods are supported by the IMS JDBC drivers for the DatabaseMetaData interface.

Table 95. IMS JDBC drivers support for DatabaseMetaData

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

allProceduresAreCallable() Yes

allTablesAreSelectable() Yes

dataDefinitionCausesTransactionCommit() Yes

dataDefinitionIgnoredInTransactions() Yes

deletesAreDetected(int type) Yes

doesMaxRowSizeIncludeBlobs() Yes

getAttributes(String catalog, String schemaPattern, String typeNamePattern,
String attributeNamePattern)

Yes

getBestRowIdentifier(String catalog, String schema, String table, int scope,
boolean nullable)

Yes

getCatalogs() Yes

A second column, TIMESTAMP, is added to the returned Resultset object as a
String that represents the PSB timestamp.

getCatalogSeparator() Yes

getCatalogTerm() Yes

getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern)

Yes

getColumns(String catalog, String schemaPattern, String tableNamePattern,
String columnNamePattern)

Yes

getConnection() Yes

getCrossReference(String primaryCatalog, String primarySchema, String
primaryTable, String foreignCatalog, String foreignSchema, String
foreignTable)

Yes

getDatabaseMajorVersion() Yes

getDatabaseMinorVersion() Yes

getDatabaseProductName() Yes

getDatabaseProductVersion() Yes

getDefaultTransactionIsolation() Yes

getDriverMajorVersion() Yes

getDriverMinorVersion() Yes

getDriverName() Yes

getDriverVersion() Yes

getExportedKeys(String catalog, String schema, String table) Yes

getExtraNameCharacters() Yes

getIdentifierQuoteString() Yes

getImportedKeys(String catalog, String schema, String table) Yes

getIndexInfo(String catalog, String schema, String table, boolean unique,
boolean approximate)

Yes

getJDBCMajorVersion() Yes

getJDBCMinorVersion() Yes

getMaxBinaryLiteralLength() Yes

getMaxCatalogNameLength() Yes

getMaxCharLiteralLength() Yes

Chapter 4. Java programming reference 381

Table 95. IMS JDBC drivers support for DatabaseMetaData (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

getMaxColumnNameLength() Yes

getMaxColumnsInGroupBy() Yes

getMaxColumnsInIndex() Yes

getMaxColumnsInOrderBy() Yes

getMaxColumnsInSelect() Yes

getMaxColumnsInTable() Yes

getMaxConnections() Yes

getMaxCursorNameLength() Yes

getMaxIndexLength() Yes

getMaxProcedureNameLength() Yes

getMaxRowSize() Yes

getMaxSchemaNameLength() Yes

getMaxStatementLength() Yes

getMaxStatements() Yes

getMaxTableNameLength() Yes

getMaxTablesInSelect() Yes

getMaxUserNameLength() Yes

getNumericFunctions() Yes

getPrimaryKeys(String catalog, String schema, String table) Yes

getProcedureColumns(String catalog, String schemaPattern, String
procedureNamePattern, String columnNamePattern)

Yes

getProcedures(String catalog, String schemaPattern, String
procedureNamePattern)

Yes

getProcedureTerm() Yes

getResultSetHoldability() Yes

getSchemas() Yes

The following columns are added as column 3, 4, and 5:

• Column 3: PCB_PROCESSING_OPTIONS, a String that represents PCB
procopts

• Column 4: DBD_NAME, a String that represents the referenced DBD name

• Column 5: DBD_TIMESTAMP, a String that represents the referenced DBD
timestamp

getSchemaTerm() Yes

getSearchStringEscape() Yes

getSQLKeywords() Yes

getStringFunctions() Yes

getSuperTables(String catalog, String schemaPattern, String
tableNamePattern)

Yes

getSuperTypes(String catalog, String schemaPattern, String typeNamePattern) Yes

getSystemFunctions() Yes

getTablePrivileges(String catalog, String schemaPattern, String
tableNamePattern)

Yes

getTables(String catalog, String schemaPattern, String tableNamePattern,
String[] types)

Yes

getTableTypes() Yes

getTimeDateFunctions() Yes

getTypeInfo() Yes

382 IMS: Application Programming APIs

Table 95. IMS JDBC drivers support for DatabaseMetaData (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

getUDTs(String catalog, String schemaPattern, String typeNamePattern, int[]
types)

Yes

getURL() Yes

getUserName() Yes

getVersionColumns(String catalog, String schema, String table) Yes

insertsAreDetected(int type) Yes

isCatalogAtStart() Yes

isReadOnly() Yes

locatorsUpdateCopy() Yes

nullPlusNonNullIsNull() Yes

nullsAreSortedAtEnd() Yes

nullsAreSortedAtStart() Yes

nullsAreSortedLow() Yes

othersDeletesAreVisible(int type) Yes

othersInsertsAreVisible(int type) Yes

othersUpdatesAreVisible(int type) Yes

ownDeletesAreVisible(int type) Yes

ownInsertsAreVisible(int type) Yes

ownUpdatesAreVisible(int type) Yes

storesLowerCaseIdentifiers() Yes

storesLowerCaseQuotedIdentifiers() Yes

storesMixedCaseIdentifiers() Yes

storesMixedCaseQuotedIdentifiers() Yes

storesUpperCaseIdentifiers() Yes

storesUpperCaseQuotedIdentifiers() Yes

supportsAlterTableWithAddColumn() Yes

supportsAlterTableWithDropColumn() Yes

supportsANSI92EntryLevelSQL() Yes

supportsANSI92FullSQL() Yes

supportsANSI92IntermediateSQL() Yes

supportsBatchUpdates() Yes

supportsCatalogsInDataManipulation() Yes

supportsCatalogsInIndexDefinitions() Yes

supportsCatalogsInPrivilegeDefinitions() Yes

supportsCatalogsInProcedureCalls() Yes

supportsCatalogsInTableDefinitions() Yes

supportsColumnAliasing() Yes

supportsConvert() Yes

supportsConvert(int fromType, int toType) Yes

supportsCoreSQLGrammar() Yes

supportsCorrelatedSubqueries() Yes

supportsDataDefinitionAnd DataManipulationTransactions() Yes

supportsDataManipulationTransactionsOnly() Yes

Chapter 4. Java programming reference 383

Table 95. IMS JDBC drivers support for DatabaseMetaData (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

supportsDifferentTableCorrelationNames() Yes

supportsExpressionsInOrderBy() Yes

supportsExtendedSQLGrammar() Yes

supportsFullOuterJoins() Yes

supportsGetGeneratedKeys() Yes

supportsGroupByBeyondSelect() Yes

supportsGroupByUnrelated() Yes

supportsIntegrityEnhancementFacility() Yes

supportsLikeEscapeClause() Yes

supportsLimitedOuterJoins() Yes

supportsMinimumSQLGrammar() Yes

supportsMixedCaseIdentifiers() Yes

supportsMixedCaseQuotedIdentifiers() Yes

supportsMultipleOpenResults() Yes

supportsMultipleResultSets() Yes

supportsMultipleTransactions() Yes

supportsNamedParameters() Yes

supportsNonNullableColumns() Yes

supportsOpenCursorsAcrossCommit() Yes

supportsOpenCursorsAcrossRollback() Yes

supportsOpenStatementsAcrossCommit() Yes

supportsOpenStatementsAcrossRollback() Yes

supportsOrderByUnrelated() Yes

supportsOuterJoins() Yes

supportsPositionedDelete() Yes

supportsPositionedUpdate() Yes

supportsResultSetConcurrency(int type, int concurrency) Yes

supportsResultSetHoldability(int holdability) Yes

supportsResultSetType(int type) Yes

supportsSavepoints() Yes

supportsSchemasInDataManipulation() Yes

supportsSchemasInIndexDefinitions() Yes

supportsSchemasInPrivilegeDefinitions() Yes

supportsSchemasInProcedureCalls() Yes

supportsSchemasInTableDefinitions() Yes

supportsSelectForUpdate() Yes

supportsStatementPooling() Yes

supportsStoredProcedures() Yes

supportsSubqueriesInComparisons() Yes

supportsSubqueriesInExists() Yes

supportsSubqueriesInIns() Yes

supportsSubqueriesInQuantifieds() Yes

supportsTableCorrelationNames() Yes

384 IMS: Application Programming APIs

Table 95. IMS JDBC drivers support for DatabaseMetaData (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

supportsTransactionIsolationLevel(int level) Yes

supportsTransactions() Yes

supportsUnion() Yes

supportsUnionAll() Yes

updatesAreDetected(int type) Yes

usesLocalFilePerTable() Yes

usesLocalFiles() Yes

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

javax.sql.DataSource methods supported
A DataSource object is a factory for connections to the physical data source that this DataSource
object represents.

The following table list which methods are supported by the IMS Universal JDBC driver and the IMS
Universal JCA/JDBC driver for the DataSource interface.

Table 96. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for DataSource

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

getConnection() Yes

getConnection(String username, String password) Yes

getLoginTimeout() Yes

getLogWriter() Yes

setLoginTimeout(int seconds) Yes

setLogWriter(PrintWriter out) Yes

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.Driver methods supported
The Driver class is used for connecting to a database using the JDBC DriverManager interface.

The following methods are supported by the IMS JDBC drivers for the Driver interface.

Table 97. IMS JDBC drivers support for Driver

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

acceptsURL(String url) Yes

connect(String url, Properties info) Yes

getMajorVersion() Yes

getMinorVersion() Yes

getPropertyInfo(String url, Properties info) Yes

jdbcCompliant() Yes

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

Chapter 4. Java programming reference 385

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

java.sql.ParameterMetaData methods supported
An object that can be used to get information about the types and properties of the parameters in a
PreparedStatement object.

The following table list which methods are supported by the IMS Universal JDBC driver and the IMS
Universal JCA/JDBC driver for the ParameterMetaData interface.

Table 98. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for ParameterMetaData

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

getParameterCount Yes

isNullable Yes

isSigned Yes

getPrecision Yes

getScale Yes

getParameterType Yes

getParameterTypeName Yes

getParameterClassName Yes

getParameterMode Yes

java.sql.PreparedStatement methods supported
The PreparedStatement object represents a precompiled SQL statement.

The following methods are supported by the IMS JDBC drivers for the PreparedStatement interface.

Table 99. IMS JDBC drivers support for PreparedStatement

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

addBatch() No

clearParameters() Yes

execute() Yes

executeQuery() Yes

executeUpdate() Yes

getMetaData() Yes

getParameterMetaData() Yes

setArray(int i, Array x) Yes

setAsciiStream(int parameterIndex, InputStream x, int length) No

setBigDecimal(int parameterIndex, BigDecimal x) Yes

setBinaryStream(int parameterIndex, InputStream x, int length) No

setBlob(int i, Blob x) No

setBoolean(int parameterIndex, boolean x) Yes

setByte(int parameterIndex, byte x) Yes

setBytes(int parameterIndex, byte[] x) Yes

setCharacterStream(int parameterIndex, Reader reader, int length) No

setClob(int i, Clob x) Yes

setDate(int parameterIndex, Date x) Yes

setDate(int parameterIndex, Date x, Calendar cal) No

setDouble(int parameterIndex, double x) Yes

setFloat(int parameterIndex, float x) Yes

386 IMS: Application Programming APIs

Table 99. IMS JDBC drivers support for PreparedStatement (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

setInt(int parameterIndex, int x) Yes

setLong(int parameterIndex, long x) Yes

setNull(int parameterIndex, int sqlType) No

setNull(int paramIndex, int sqlType, String typeName) No

setObject(int parameterIndex, Object x) Yes

setObject(int parameterIndex, Object x, int targetSqlType) No

setObject(int parameterIndex, Object x, int targetSqlType, int scale) No

setRef(int i, Ref x) No

setShort(int parameterIndex, short x) Yes

setString(int parameterIndex, String x) Yes

setTime(int parameterIndex, Time x) Yes

setTime(int parameterIndex, Time x, Calendar cal) No

setTimestamp(int parameterIndex, Timestamp x) Yes

setUnicodeStream(int parameterIndex, InputStream x, int length) No

setURL(int parameterIndex, URL x) No

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.Statement methods supported
The Statement object is used for executing a static SQL statement and returning the results it produces.

The following table lists the methods that are supported by the IMS JDBC drivers for the Statement
interface.

Table 100. IMS JDBC drivers support for Statement

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

addBatch(String sql) No

cancel() No

clearBatch() No

clearWarnings() Yes

close() Yes

execute(String sql) Yes

execute(String sql, int autoGeneratedKeys) No

execute(String sql, int[] columnIndexes) No

execute(String sql, String[] columnNames) No

executeBatch() No

executeQuery(String sql) Yes

executeUpdate(String sql) Yes

executeUpdate(String sql, int autoGeneratedKeys) No

executeUpdate(String sql, int[] columnIndexes) No

executeUpdate(String sql, String[] columnNames) No

getConnection() Yes

getFetchDirection() Yes

getFetchSize() Yes

Chapter 4. Java programming reference 387

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 100. IMS JDBC drivers support for Statement (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

getGeneratedKeys() No

getMaxFieldSize() Yes

getMaxRows() Yes

getMoreResults() Yes

getMoreResults(int current) Yes

getQueryTimeout() Yes

getResultSet() Yes

getResultSetConcurrency() Yes

getResultSetHoldability() Yes

getResultSetType() Yes

getUpdateCount() Yes

getWarnings() Yes

setCursorName(String name) No

setEscapeProcessing(boolean enable) Yes

setFetchDirection(int direction) Yes

setFetchSize(int rows) Yes

setMaxFieldSize(int max) Yes

setMaxRows(int max) Yes

setQueryTimeout(int seconds) Yes

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.ResultSet methods supported
A ResultSet object is a table of data that represents a database result set, which is usually generated by
executing a statement that queries the database.

The following table describes the ResultSet field constants that are supported by the IMS Universal
JDBC driver and the IMS Universal JCA/JDBC driver.

Table 101. ResultSet field constants supported by the IMS Universal JDBC driver and the IMS Universal JCA/
JDBC driver

Field constant
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

ResultSet.CLOSE_CURSORS_AT_COMMIT Yes1

ResultSet.CONCUR_READ_ONLY Yes

ResultSet.CONCUR_UPDATABLE Yes

ResultSet.FETCH_FORWARD Yes2

ResultSet.FETCH_REVERSE Yes2

ResultSet.FETCH_UNKNOWN Yes2

ResultSet.HOLD_CURSORS_OVER_COMMIT No 3

ResultSet.TYPE_FORWARD_ONLY Yes

ResultSet.TYPE_SCROLL_INSENSITIVE Yes

388 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 101. ResultSet field constants supported by the IMS Universal JDBC driver and the IMS Universal JCA/
JDBC driver (continued)

Field constant
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

ResultSet.TYPE_SCROLL_SENSITIVE No3

Note:

1. This is the processing model that is used by IMS DB.
2. This is a hint to the JDBC driver. No special processing is performed by IMS DB.
3. Not supported by IMS DB.

The following methods are supported by the IMS JDBC drivers for the ResultSet interface.

Table 102. IMS JDBC drivers support for the ResultSet interface

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

absolute(int row) Yes

afterLast() Yes

beforeFirst() Yes

cancelRowUpdates() Yes

clearWarnings() Yes

close() Yes

deleteRow() Yes

findColumn(String columnName) Yes

first() Yes

getArray(int i) Yes

getArray(String colName) Yes

getAsciiStream(int columnIndex) No

getAsciiStream(String columnName) No

getBigDecimal(int columnIndex) Yes

getBigDecimal(int columnIndex, int scale) Yes

getBigDecimal(String columnName) Yes

getBigDecimal(String columnName, int scale) Yes

getBinaryStream(int columnIndex) No

getBinaryStream(String columnName) No

getBlob(int i) No

getBlob(String colName) No

getBoolean(int columnIndex) Yes

getBoolean(String columnName) Yes

getByte(int columnIndex) Yes

Chapter 4. Java programming reference 389

Table 102. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

getByte(String columnName) Yes

getBytes(int columnIndex) Yes

getBytes(String columnName) Yes

getCharacterStream(int columnIndex) No

getCharacterStream(String columnName) No

getClob(int i) Yes (for retrieval of XML only)

getClob(String colName) Yes (for retrieval of XML only)

getConcurrency() Yes

getCursorName() No

getDate(int columnIndex) Yes

getDate(int columnIndex, Calendar cal) Yes

getDate(String columnName) Yes

getDate(String columnName, Calendar cal) Yes

getDouble(int columnIndex) Yes

getDouble(String columnName) Yes

getFetchDirection() Yes

getFetchSize() Yes

getFloat(int columnIndex) Yes

getFloat(String columnName) Yes

getInt(int columnIndex) Yes

getInt(String columnName) Yes

getLong(int columnIndex) Yes

getLong(String columnName) Yes

getMetaData() Yes

getObject(int columnIndex) Yes

getObject(String columnName) Yes

getObject(int i, Map<String,Class<?>> map) No

getRef(int i) No

getRef(String colName) No

getRow() Yes

getShort(int columnIndex) Yes

getShort(String columnName) Yes

getStatement() Yes

getString(int columnIndex) Yes

390 IMS: Application Programming APIs

Table 102. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

getString(String columnName) Yes

getTime(int columnIndex) Yes

getTime(String columnName) Yes

getTime(String columnName, Calendar cal) Yes

getTime(int columnIndex, Calendar cal) Yes

getTimestamp(int columnIndex) Yes

getTimestamp(int columnIndex, Calendar cal) Yes

getTimestamp(String columnName) Yes

getTimestamp(String columnName, Calendar cal) Yes

getType() Yes

getUnicodeStream(int columnIndex) No

getUnicodeStream(String columnName) No

getURL(int columnIndex) No

getURL(String columnName) No

getWarnings() Yes

insertRow() No

isAfterLast() Yes

isBeforeFirst() Yes

isFirst() Yes

isLast() Yes

last() Yes

moveToCurrentRow() No

moveToInsertRow() No

next() Yes

previous() Yes

refreshRow() No

relative(int rows) Yes

rowDeleted() No

rowInserted() No

rowUpdated() No

setFetchDirection(int direction) Yes

setFetchSize(int rows) Yes

updateArray(int columnIndex, Array x) Yes

updateArray(String columnName, Array x) Yes

Chapter 4. Java programming reference 391

Table 102. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

updateAsciiStream(int columnIndex, InputStream x,
int length)

No

updateAsciiStream(String columnName, InputStream
x, int length)

No

updateBigDecimal(int columnIndex, BigDecimal x) Yes

updateBigDecimal(String columnName, BigDecimal x) Yes

updateBinaryStream(int columnIndex, InputStream x,
int length)

No

updateBinaryStream(String columnName, InputStream
x, int length)

No

updateBlob(int columnIndex, Blob x) No

updateBlob(String columnName, Blob x) No

updateBoolean(int columnIndex, boolean x) Yes

updateBoolean(String columnName, boolean x) Yes

updateByte(int columnIndex, byte x) Yes

updateByte(String columnName, byte x) Yes

updateBytes(int columnIndex, byte[] x) Yes

updateBytes(String columnName, byte[] x) Yes

updateCharacterStream(int columnIndex, Reader x, int
length)

No

updateCharacterStream(String columnName, Reader
reader, int length)

No

updateClob(int columnIndex, Clob x) No

updateClob(String columnName, Clob x) No

updateDate(int columnIndex, Date x) Yes

updateDate(String columnName, Date x) Yes

updateDouble(int columnIndex, double x) Yes

updateDouble(String columnName, double x) Yes

updateFloat(int columnIndex, float x) Yes

updateFloat(String columnName, float x) Yes

updateInt(int columnIndex, int x) Yes

updateInt(String columnName, int x) Yes

updateLong(int columnIndex, long x) Yes

updateLong(String columnName, long x) Yes

updateNull(String columnName) No

updateObject(int columnIndex, Object x) Yes

392 IMS: Application Programming APIs

Table 102. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/
JDBC driver support

updateObject(int columnIndex, Object x, int scale) No

updateObject(String columnName, Object x) Yes

updateObject(String columnName, Object x, int scale) No

updateRef(int columnIndex, Ref x) No

updateRef(String columnName, Ref x) No

updateRow() Yes

updateShort(int columnIndex, short x) Yes

updateShort(String columnName, short x) Yes

updateString(int columnIndex, String x) Yes

updateString(String columnName, String x) Yes

updateTime(int columnIndex, Time x) Yes

updateTime(String columnName, Time x) Yes

updateTimestamp(int columnIndex, Timestamp x) Yes

updateTimestamp(String columnName, Timestamp x) Yes

wasNull() Yes

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.ResultSetMetaData methods supported
A ResultSetMetaData object can be used to get information about the types and properties of the
columns in a ResultSet object.

The following methods are supported by the IMS JDBC drivers for the ResultSetMetaData interface.

Table 103. IMS JDBC drivers support for ResultSetMetaData

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

getCatalogName(int column) Yes

getColumnClassName(int column) Yes

getColumnCount() Yes

getColumnDisplaySize(int column) Yes

getColumnLabel(int column) Yes

getColumnName(int column) Yes

getColumnType(int column) Yes

getColumnTypeName(int column) Yes

getPrecision(int column) Yes

getScale(int column) Yes

getSchemaName(int column) Yes

getTableName(int column) Yes

isAutoIncrement(int column) Yes

Chapter 4. Java programming reference 393

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 103. IMS JDBC drivers support for ResultSetMetaData (continued)

JDBC method IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support

isCaseSensitive(int column) Yes

isCurrency(int column) Yes

isDefinitelyWritable(int column) Yes

isNullable(int column) Yes

isReadOnly(int column) Yes

isSearchable(int column) Yes

isSigned(int column) Yes

isWritable(int column) Yes

Related concepts
Programming with the IMS Universal JDBC driver (Application Programming)

IMS Universal drivers support for the Common Client Interface
The IMS Universal Database resource adapter supports the Common Client Interface (CCI) API in the
Java EE Connector Architecture 1.5 specification.
Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.Connection methods supported
The javax.resource.cci.Connection interface represents an application-level handle used by
client to access the underlying physical connection.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.Connection interface.

Table 104. IMS Universal Database resource adapter support for the javax.resource.cci.Connection
interface.

javax.resource.cci.Connection method IMS Universal Database resource adapter support

close() Yes

createInteraction() Yes

getLocalTransaction() Yes

getMetaData() Yes

getResultSetInfo() Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.ConnectionFactory methods supported
The javax.resource.cci.ConnectionFactory interface provides an application component with a
Connection instance to an EIS.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.ConnectionFactory interface.

394 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

Table 105. IMS Universal Database resource adapter support for the
javax.resource.cci.ConnectionFactory interface.

javax.resource.cci.ConnectionFactory
method IMS Universal Database resource adapter support

getConnection() Yes

getConnection(ConnectionSpec) Yes

getMetaData() Yes

getRecordFactory() Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.ConnectionMetaData methods supported
The javax.resource.cci.ConnectionMetaData interface provides information about an EIS
instance connected through a Connection instance.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.ConnectionMetaData interface.

Table 106. IMS Universal Database resource adapter support for the
javax.resource.cci.ConnectionMetaData interface.

javax.resource.cci.ConnectionMetaData
method IMS Universal Database resource adapter support

getEISProductName() Yes

getEISProductVersion() Yes

getUserName() Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.Interaction methods supported
The javax.resource.cci.Interaction interface provides a means for an application component to
execute EIS functions, such as relational database queries.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.Interaction interface.

Table 107. IMS Universal Database resource adapter support for the javax.resource.cci.Interaction
interface.

javax.resource.cci.Interaction method IMS Universal Database resource adapter support

clearWarnings() Yes

close() Yes

execute(InteractionSpec, Record) Yes

execute(InteractionSpec, Record, Record) No

getConnection() Yes

getWarnings() Yes

Chapter 4. Java programming reference 395

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.LocalTransaction methods supported
The javax.resource.cci.LocalTransaction interface defines a transaction demarcation interface
for resource manager local transactions.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.LocalTransaction interface.

Table 108. IMS Universal Database resource adapter support for the
javax.resource.cci.LocalTransaction interface.

javax.resource.cci.LocalTransaction
method IMS Universal Database resource adapter support

begin() Yes

commit() Yes

rollback() Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.ResultSetInfo methods supported
The interface javax.resource.cci.ResultSetInfo provides information on the support provided for
ResultSet by a connected EIS instance.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.ResultSetInfo interface.

Table 109. IMS Universal Database resource adapter support for the javax.resource.cci.ResultSetInfo
interface.

javax.resource.cci.ResultSetInfo method IMS Universal Database resource adapter support

deletesAreDetected(int) Yes

insertsAreDetected(int) Yes

othersDeletesAreVisible(int) Yes

othersInsertsAreVisible(int) Yes

othersUpdatesAreVisible(int) Yes

ownDeletesAreVisible(int) Yes

ownInsertsAreVisible(int) Yes

ownUpdatesAreVisible(int) Yes

supportsResultSetType(int) Yes

supportsResultTypeConcurrency(int, int) Yes

updatesAreDetected(int) Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

396 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

javax.resource.cci.ResourceAdapterMetaData methods supported
The interface javax.resource.cci.ResourceAdapterMetaData provides information about
capabilities of a resource adapter implementation.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.ResourceAdapterMetaData interface.

Table 110. IMS Universal Database resource adapter support for the
javax.resource.cci.ResourceAdapterMetaData interface.

javax.resource.cci.ResourceAdapterMetaDat
a method IMS Universal Database resource adapter support

getAdapterName() Yes

getAdapterShortDescription() Yes

getAdapterVendorName() Yes

getAdapterVersion() Yes

getInteractionSpecsSupported() Yes

getSpecVersion() Yes

supportsExecuteWithInputAndOutputRecord() Yes

supportsExecuteWithInputRecordOnly() Yes

supportsLocalTransactionDemarcation() Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

javax.resource.cci.RecordFactory methods supported
The javax.resource.cci.RecordFactory interface provides an application component with a
Record instance.

The following table list which methods are supported by the IMS Universal Database resource adapter for
the javax.resource.cci.RecordFactory interface.

Table 111. IMS Universal Database resource adapter support for the javax.resource.cci.RecordFactory
interface.

javax.resource.cci.RecordFactory method IMS Universal Database resource adapter support

createIndexedRecord(String) Yes

createMappedRecord(String) Yes

Related concepts
Programming using the IMS Universal Database resource adapter (Application Programming)

Java API documentation (Javadoc)
The Java API documentation (Javadoc) for the IMS Universal drivers and the IMS Java dependent region
resource adapter is briefly described in the following table.

To view the Javadoc directly, see Java API specification: IMS Universal drivers and IMS JDR resource
adapter.

The Java API documentation for IMS TM Resource Adapter is provided separately. See Java API
specifications (TM Resource Adapter).

Chapter 4. Java programming reference 397

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.tmra/topics/rimsapiref.htm#imsapiref
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.tmra/topics/rimsapiref.htm#imsapiref

IMS Universal drivers and IMS Java dependent region resource adapter
The IMS Universal drivers and the IMS Java dependent region (JDR) resource adapter are available in
the file imsudb.jar. For details about using the .jar file, see Software requirements for Java application
programs that use the IMS Universal drivers or JDR resource adapter (Release Planning).

To learn more about using the IMS Universal drivers and the IMS Java dependent region resource adapter
with your Java applications, see Programming with the IMS Universal drivers (Application Programming).

The following packages provide Java classes or interfaces for interacting with IMS Java batch processing
regions (JBPs), Java message processing regions (JMPs), or IMS database resources.

Table 112. Packages for IMS database access for IMS Universal drivers and IMS Java dependent region
resource adapter

Package Description Used by

com.ibm.ims.application Provides classes for IMS Java
dependent region transaction
and message processing. It
contains classes for managing
error messages, sending and
receiving messages providing
program access to IMS transaction
services such as commit and
rollback, and more.

IMS Java dependent region
resource adapter (imsudb.jar)

com.ibm.ims.base Provides classes for mapping Java
calls to DL/I APIs.

IMS Java dependent region
resource adapter (imsudb.jar)

com.ibm.ims.db.cci Provides classes for interacting
with IMS database resources using
the Common Client Interface (CCI)
architecture.

• IMS Universal Database
resource adapter with
local transaction support
(imsudbLocal.rar)

• IMS Universal Database
resource adapter with
additional two-phase commit
processing (imsudbXA.rar)

com.ibm.ims.dli Provides an API to write Java
applications that can access
IMS databases using DL/I
programming semantics.

imsudb.jar

• IMS Universal DL/I driver
• IMS Universal JDBC driver
• IMS Java dependent region

resource adapter

com.ibm.ims.dli.converters Provides an API to convert Java
data types to and from byte arrays.

imsudb.jar

• IMS Universal DL/I driver
• IMS Universal JDBC driver
• IMS Java dependent region

resource adapter

com.ibm.ims.dli.tm Provides a Java interface to
interact with JBPs and JMPs.

IMS Java dependent region
resource adapter (imsudb.jar)

398 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbprogrammingforims.htm#ims_odbprogrammingforims

Table 112. Packages for IMS database access for IMS Universal drivers and IMS Java dependent region
resource adapter (continued)

Package Description Used by

com.ibm.ims.jdbc Provides IMS-specific extensions
for connecting to IMS databases
using JDBC.

• IMS Universal JDBC driver
(imsudb.jar)

• IMS Universal JDBC
driver with JCA support
(imsudbJLocal.rar or
imsudbJXA.rar)

com.ibm.ims.jdbc.xa Provides IMS-specific extensions
for connecting to IMS databases
in two-phase commit (XA) mode
using JDBC.

IMS Universal JDBC driver with
JCA support (imsudbJXA.rar)

com.ibm.ims.jms The IMSCallout API is the
newer, IMS-specific way to issue
synchronous callout requests from
a Java dependent region. To
learn more about using class
IMSCallout, see the following
resources:

• Programming with the Callout
API (Application Programming)

• com.ibm.ims.dli.tm

The IMS implementation of the
Java Message Service (JMS) is
an older solution that uses JMS
classes to provide limited support
for synchronous callout requests
from JMP or JBP applications. It
includes IMS-specific extensions
for issuing synchronous callout
requests from JMP and JBP
regions. To learn more, see
com.ibm.ims.jms.

IMS Java dependent region
resource adapter (imsudb.jar)

Chapter 4. Java programming reference 399

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbprogrammingwithIMSCalloutAPI.htm#ims_odbprogrammingwithIMSCalloutAPI
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbprogrammingwithIMSCalloutAPI.htm#ims_odbprogrammingwithIMSCalloutAPI

400 IMS: Application Programming APIs

Chapter 5. Message Format Service (MFS) reference
These topics contain reference information for the IMS Message Format Service (MFS).

MFS application program design
Design objectives for MFS application programs should focus on device independence, operator
convenience, and application program simplicity. Effective design requires a fundamental understanding
of the MFS functions and of the factors that affect MFS operation and performance.

Relationships between MFS control blocks
Several levels of linkage exist between MFS control blocks.

You must understand these linkages to design an application environment properly.

The following figure shows the interrelationships between MFS control blocks. The subsequent illustrate
the four levels of linkages, which are then summarized in the final figure.

© Copyright IBM Corp. 1974, 2022 401

Figure 21. Control block interrelationships

The following figure shows the highest-level linkage, that of chained control blocks.

402 IMS: Application Programming APIs

Figure 22. Chained control block linkage

Notes to the previous figure:

1. This linkage must exist.
2. If the linkage does not exist, device input data from 3270 devices is not processed by MFS. For other

devices, the MID name can be provided by the operator.
3. This linkage is provided for application program convenience. It provides a MOD name to be used by

IMS if the application program does not provide a name by way of the format name option of the DL/I
ISRT or PURG call. This MOD name is also used if the input is a message switch to an MFS-supported
terminal.

4. The user-provided names for the DOF and DIF used in one output-input sequence are normally
the same. The MFS language utility alters the name for the DIF to allow the MFS pool manager to
distinguish between the DOF and DIF.

The direction of the linkage allows many message descriptors to use the same device format if desired.
One common device format can be used for several application programs whose output and input
message formats as seen at the application program interface are quite different.

The following figure shows another level of linkage that exists between message fields and device fields.
The dots show the direction of reference, not the direction of data flow, in the MFS language utility control
statements; that is, the item at the dotted end of a line references the item at the other end of the line.

References to device fields by message fields do not need to be in any particular sequence. An MFLD does
not need to refer to any DFLD. In this case, MFLD defines space in the application program segment that
is to be ignored if the MFLD is for output and padded if the MFLD is for input. Device fields do not need to
be referenced by message fields. In this case the fields are established on the device, but no output data
is transmitted to them and any input data from them is ignored.

Chapter 5. Message Format Service (MFS) reference 403

Figure 23. Linkage between message fields and device fields

The following figure shows a third level of linkage, which exists between the LPAGE and the DPAGE.

Figure 24. LPAGE and DPAGE relationships

A MOD LPAGE must refer to a DPAGE in the DOF. However, not all DPAGEs must be referred to from a
given MOD.

If no MID LPAGE is defined, the defined MFLDs can refer to fields in any DPAGE. However, input data for
any given input message from the device is limited to fields that are defined in a single DPAGE.

If one or more MID LPAGEs are defined, each LPAGE can refer to one or more DPAGEs. All DPAGEs must
be referred to by an LPAGE. When input data is processed as defined by a particular DPAGE, the LPAGE
referring to it governs the message editing.

The following figure shows a fourth level of linkage that is optionally available to allow selection of the
MID based on which MOD LPAGE is displayed when input data is received from the device.

404 IMS: Application Programming APIs

Figure 25. Optional message descriptor linkage

Notes to the previous figure:

1. The next MID name provided with the MSG statement is used if no name is provided with the current
LPAGE.

2. If a next MID name is provided with the current LPAGE, input is processed using this name.
3. When the format definition includes 3270 or SLU 2 devices, all MIDs must refer to the same DIF. The

same user-provided name must be used to refer to the DOF when the MOD is defined.

The following figure summarizes the previously explained MFS control block linkages.

Chapter 5. Message Format Service (MFS) reference 405

Figure 26. Summary of control block linkages

Control block linkages are fundamental to MFS functions but there are a few device-oriented conditions
that could affect application design.

3270 or SLU 2 display devices
Because output to these devices establishes fields on the device using hardware capabilities, and field
locations cannot be changed by the operator, special linkage restrictions exist.

Because formatted input can only occur from a screen formatted by output, the DPAGE and physical
page definition used for formatting input is always the same as that used to format the previous output.
Control block compilation by the MFS Language utility verifies that the MID referenced by the MOD refers

406 IMS: Application Programming APIs

to the same FMT name that the MOD references. During online processing, if the DIF corresponding to the
previous DOF cannot be fetched, an error message is sent to the display.

3290 information panel in partitioned format mode
The screen of the 3290 can be divided into several rectangular areas called partitions. Depending on
LPAGE/DPAGE selection, each logical page of an output message is sent to the partition specified on the
DPAGE statement.

When the 3290 is operating in partitioned mode, the usual control block linkages are in effect. There
are, however, additional functions, because the logical pages described in the MOD can be sent to
different partitions. The partition descriptor block (PDB) is a type of intermediate text block (ITB). The
PDB describes the set of partitions that can appear on the screen in response to a single output message.
Among other things, the PDB contains one partition definition statement coded with a partition descriptor
(PD) for each partition. Taken together, the PDs define a partition set.

The linkages work as follows:

1. A MOD is requested for a particular message. The MOD names an FMT and becomes associated with
the appropriate DEV statement—in this case, the DEV statement for the 3290. A DOF is created to
format the 3290 for the message.

2. The DEV statement itself names a PDB. Thus the MOD is linked to the DOF, which in turn links to the
PDB through the DEV statement for the 3290. This linkage gives the logical pages of the MOD (defined
by the LPAGE statements) access to the PDs in the PDB.

3. Each LPAGE statement in the MOD names a DPAGE statement in the DOF.
4. For the 3290 with partitioning, a DPAGE statement contains a PD keyword, which identifies one of the

partition descriptors in the PDB.

Because of this linkage, each logical page is associated with its appropriate partition that is described by a
partition descriptor. When the logical page is retrieved from the message queue, it is sent to that partition.

Figure 27. Linkages in partitioned format mode

Finance, 3770, SLU 1, NTO, or SLU P devices
Because no hardware-established field capabilities exist, no correlation is necessary between output
fields and input fields on these devices.

Operator input or the user-written program in the Finance or SLU P workstation controller can determine
which FMT is used (by specifying a MID name) and which DPAGE within the FMT is used (by the COND=
specification for the DPAGE).

Finance or SLU P workstations
Because of the asynchronous capabilities of the Finance and SLU P workstations, MFS cannot
automatically maintain the chain between the MOD and the MID.

Therefore, the MID name is sent to the device in the output message header. The chain can be
maintained, transparent to the operator, if the user-written application program in the remote controller
returns the MID name in the input message header.

Chapter 5. Message Format Service (MFS) reference 407

ISC subsystem (DPM-Bn)
The NXT=midname that is specified on the MSG TYPE=OUTPUT becomes the RDPN on output and, if not
changed by the remote program or subsystem, becomes the DPN on input.

Format library member selection
When a message is received as input or prepared for output, the DIF or DOF is selected on the basis of the
user-provided name from the message descriptor and the device type and features of the terminal.

The MFS language utility constructs the member name of each DIFand DOF in the IMS.FORMAT library
from the FMT label and the DEV TYPE= and FEAT= specifications as follows:
Byte

Contents
1

Device type indicator (hexadecimal). For a list of device types by indicator, see the following table.
2

Device feature indicator (hexadecimal). For a list of indicators by feature, see the subsequent table.
3

If DOF, first character of label provided in the FMT statement. If DIF, first character of label provided in
the FMT statement converted to lowercase.

4-8
Remaining characters from the label of the FMT statement.

For byte 1 of the DEV specification FMT=, the device type indicators are as listed in the following table.

Table 113. Device type indicators for FMT=

Device Feature Indicator (Hex)

SLU 2, Model 1 display 00

3284-1 or 3286-1 printer 01

3277, or SLU 2, Model 2 display 02

3284-2 or 3286-2 printer 03

3604-1 or 2 (FIDS) 05

3604-3 (FIDS3) 06

3604-4 (FIDS4) 07

3600 (FIN) 08

3610, 3612 journal printer (FIJP) 09

3611, 3612 passbook printer (FIPB) 0A

3618 administrative printer (FIFP) 0B

SCS1: 3770; NTO; and SLU 1 (print data set) 0C

SCS2: 3521 card punch, 3501 card reader, 2502 card
reader, and SLU 1 (transmit data set),

0D

3604-7 (FIDS7) 0E

DPM-A1 through DPM-A15, respectively 11 through 1F

DPM-B1 through DPM-B15, respectively 21 through 2F

3270-A1 through 3270-A15, respectively 41 through 4F

408 IMS: Application Programming APIs

Recommendation: You should define device formats for each device type expected to receive a given
message. If the MOD or the DOF with the required device type and feature specification cannot be located
during online execution, the IMS error default format (containing an error message) is used to display the
output message. If the MID or the DIF with the required device type and feature specification cannot be
located, input is ignored and an error message is sent to the device that entered it.

However, it is possible to use the same format for a variety of specific devices. Formats defined as
TYPE=3270,2 with FEAT=IGNORE specified, can be used as default formats for users of the following
devices:

• 3275
• 3276, models 2/3/4
• 3277, model 2
• 3278, models 2/3/4
• 3279, models 2/3

To define the terminal to IMS, you must specify TYPE=3270-An with SIZE=(n,80), where n≥24.

Restriction: The IGNORE feature is not supported in MFSTEST mode.

The terminal must be defined to IMS as TYPE=3270,2 or MFS searches for a block with the exact
TYPE and FEAT specification, and if one is not found, MFS searches for the default TYPE=3270,2 with
FEAT=IGNORE.

Another level of defaulting occurs for ETO terminals prior to the already described defaulting. If an ETO
terminal is defined with a screen size of 12x40 or 24x80 in the VTAM® PSERVIC information, and that
format block is not found, an additional search is made for a format of the same name using TYPE=3270,1
(12x40) or TYPE=3270,2 (24x80) and using the same features. If that search is unsuccessful, the already
described default search is performed. This new default search is also used when in MFSTEST mode,
whereas the old default search is not.

Device format selection is based upon the features of the destination terminal as defined at IMS system
definition. If feature selection is used, a device format must be created for every combination of features
in the system that can receive a message using feature selection. Feature selection is performed based on
the specification of the message descriptor (MOD or MID). If the IGNORE option is specified on the MOD,
device formats must be created with the IGNORE feature option to ensure proper operation.

Because the screen size for 3270 or SLU 2 devices, other than 3270 model 1 or 2, is specified during
IMS system definition, an IMS system definition must be performed before execution of the MFS language
utility for user-defined formats.

Use feature selection when devices with different feature combinations are to receive or enter a message
and the special features of each device are to be used.

For example, an operator at a device with program function keys can enter a literal in a field using a
program function key, and another operator at a device without program function keys can enter the same
literal by typing it in a field on the screen. To the application program, these literals are the same. To the
application program, the following input devices can enter messages that can look identical regardless of
how they were entered:

• Device Features
• Print Line 120
• Print Line 126
• Print Line 132
• Data Entry Keyboard
• Program Function Keys
• Selector Light Pen Detect
• Magnetic Card Reading Devices (OICR and MSR)
• Dual Platen

Chapter 5. Message Format Service (MFS) reference 409

• User-defined features for the 3270, SCS1, and SCS2 devices and DPM programs

Use the device feature indicator values listed in the following table for byte 2 of the DEV FEAT=
specification:

Table 114. Example of device feature indicator values

Device Feature Indicator (Hex)

P.L. 120 (Print Line 120) 40

P.L. 126 50

P.L. 132 60

DEK (data entry keyboard) C8

PFK (program function keys) C4

SLPD (selector light pen detect) C2

OICR/MSR (magnetic card reading devices) C1

IGNORE 7F

DEK,SLPD 4A

DEK,OICR C9

DEK,SLPD,OICR 4B

PFK,SLPD C6

PFK,OICR C5

PFK,SLPD,OICR C7

SLPD,OICR C3

DUAL (dual platen) C1

P.L. 132,DUAL 61

No features (3270) 40

3270,3270P,3770,SLU 1, SLU 2, SLU P,ISC (User-defined
features)

Indicators available for definition:

1. 01
2. 02
3. 03
4. 04
5. 05
6. 06
7. 07
8. 08
9. 09

10. 0A

410 IMS: Application Programming APIs

3270 or SLU 2 screen formatting
MFS is designed to transmit only required data to and from the 3270 display device. Device orders to
establish fields and display literals can cause significant transmission time, because there can be more
orders and literal data than program data.

Under normal operation, when the format to be displayed already exists on a device, only user-supplied
data from the message and modifiable field attributes are transmitted. The current format on the device is
determined by the device output format name, the DPAGE within the format, and the physical page within
the DPAGE. The following conditions cause MFS to perform a full format operation (device buffer erased
and all fields and literals are transmitted) for device output:

• The device output format changes.
• The DPAGE changes within a device output format.
• The physical page number changes.
• The operator presses the CLEAR key.
• The operator presses the CLEAR PARTITION key, which causes a full format write to the cleared

partition.
• DSCA option of the DEV statement requests format write.
• SCA field in the output message requests format write.
• The MFS bypass has been used.
• Terminal has been stopped as a result of a permanent I/O error. The screen is cleared and the next

output is a full format operation.
• The operator uses the operator identification card reader. The screen is cleared and the next output is a

full format operation.

A full format operation must be carefully planned. Several factors can result in undesirable screen
displays, program input, or both:

1. If the program depends upon the existence of data in non-literal fields and does not include this data
in the output message, the data might not be on the screen when the device receives the output
message. Several actions can cause this to occur:

• The terminal operator pressing the CLEAR key
• A device error
• Another message sent to the device before the response
• An IMS restart

This dependency also makes the application 3270 device-dependent.
2. If the program sends only part of an output field, data that already exists in the non-literal fields can

cause confusion. If a partial field is transmitted to a filled-in field, any modification of the field causes
the old data remaining in the field to be included in the new input. Use the PT (program tab X'05')
as a fill character on the DPAGE statement to solve this problem. If the PT fill character is specified,
message data fields (and message literal fields) that are to be transmitted are followed by a program
tab order if the data does not fill the device field. This clears the remainder of the device field to nulls.

When a program sends only a few of the output data fields on a given display screen, it might be
desirable to clear all the unprotected filled-in fields first. The unprotected fields can be cleared by
specifying the "erase all unprotected" option in the application program output with the system control
area (SCA) operand of the MFLD statement or the default SCA (DSCA) operand of the DEV statement.

3. Pre-modified attributes can be requested by the application program to ensure input of field data.
If pre-modified attributes are requested and the message was completely transmitted to the device
and not operator logically paged, then a device error, or IMS restart, prevents input. This error occurs
because the screen is not reestablished with the message when the terminal is started or IMS is
restarted.

Chapter 5. Message Format Service (MFS) reference 411

4. If dynamic attribute modification is specified for a device field with predefined attributes, an attribute
is sent to the device for that field in every output operation, even if the data for this device field is not
included in the output message. These attributes are used:

• If the output message field has an attribute and the attribute is valid, then the dynamic attribute
modification is performed.

• If the message field is not included in the LPAGE being used or the attribute is not valid, the
predefined attribute for the device field is used.

Recommendations: For application design, you should:

1. Use a common device format for as many applications as possible. Reducing the number of full format
operations can significantly reduce response time. Format block pool requirements are reduced as
well as message format buffer pool I/O activity.

2. Allow MFS to determine when a format operation is required. This results in transmission time savings
when formatting is not required.

3. Ensure that the application program output message contains all non-literal data required by the
device operator. Do not rely on previous data remaining on the device.

4. Use the PT fill option to ensure that fields on the device that receive program output data contain only
data from the message.

5. Use the erase all unprotected option of the SCA or DSCA if the application requires that unprotected
fields be cleared.

Two MFS facilities are available for controlling format operations. Both the system control area (SCA) of
the message field and the default SCA (DSCA) option of the DEV statement provide the ability to cause
IMS to force a reformat or to erase all unprotected fields or all partitions before transmitting output. The
force format write option causes the device buffer to be erased, all fields to be established, and all literals
to be transmitted. The erase all option causes all unprotected fields or all partitions to be cleared to
NULLs before data is written.

Related concepts
“System control area (SCA) and default SCA (DSCA)” on page 485
The system control area (SCA) is the means by which specific device operations are requested when an
output message is sent to the device.

3290 screen formatting
A 3290 screen can be divided into several independent areas, called logical units (LUs). Each LU can be
in base state or formatted state. If it is in formatted state, the LU can be in standard or partitioned format
mode.

Descriptions of 3290 screen formatting follow.

Screen division
The 3290 has a large screen, which allows the display of up to 62 rows by 160 columns for small
character cells (6 × 12 pels), and up to 50 rows by 106 columns for large character cells (9 × 15 pels).

The 3290 screen can be divided into several areas, each of which interacts independently with the
operator. This can be done in two ways:

• By dividing the screen into separate LUs
• By dividing a logical unit into separate partitions

In the first case, the 3290 terminal and its screen can be defined as up to four separate LUs. Each LU
is independent of the others, and is defined to IMS as a separate terminal with its own address. This
support is transparent to IMS. Defining multiple LUs is useful if the IMS application calls for more than
one input or output message (or both) to be concurrently active between the 3290 terminal and IMS. For
each logical unit, however, only one input or output message can be active.

412 IMS: Application Programming APIs

In addition, with software partitioning, each logical unit can be divided into as many as 16 partitions. Each
application message can specify a set of partitions, and each logical page of the message is associated
with a particular partition of the partition set. Software partitioning is useful if:

• The operator needs to view more than one logical page at a time.
• One partition is needed to view an output page and another to input data.
• A partition is to be defined to receive IMS system error messages while the logical unit is in formatted

mode. This function could be used in place of the current MFS SYSMSG field support.
• Scrolling is desired. Scrolling moves data up and down in the partition viewport. It can be defined

only for a 3290 in partitioned mode. With explicit partition scrolling, you can define MFS pages for
a presentation space larger than the viewport on the physical screen. This reduces the number of
interactions between IMS and the terminal that must occur to display the message.

The 3290 allows a maximum of 16 partitions per physical device. Also, each LU defined in partitioned
state must have available to it a minimum of 8 partitions, no matter how many partitions are actually
defined for it. Thus, if one LU is defined with 9 partitions, no other LU can be in partitioned state, because
there are only 7 partitions left for the physical device. Consequently, no more than 2 LUs (of the maximum
4 allowed) can be in partitioned state.

The following considerations also apply to defining partitions:

• Partitions must be rectangular.
• A single input message is constructed from one physical page of a single partition unless Multiple

Physical Page Input is used. If it is used, then multiple physical pages for a single input message must
come from a single partition.

• If the current PDB does not define a partition for system messages, and if the DOF does not define a
system message field, then a system message destroys the current partitioned format mode and the
3290 (or the particular LU in question) returns to standard format mode.

Terminal states and modes
The 3290 as a single LU, or any of the LUs into which it has been divided, can be in terminal base state or
terminal formatted state.

In terminal base state, the 3290 operates in the same way as any other currently supported SLU 2 node
when it is initially connected to IMS or when the clear key has been pressed. In this state, input messages
to IMS are edited with basic edit, and output messages without an associated MOD are formatted using
the default MFS MOD.

In terminal formatted state, the 3290 can be in:

• Standard format mode
• Partitioned format mode

The choice of format mode is made dynamically at the time of message output. The output message is
associated with a MOD, which in turn names a DOF. The specifications in the DOF determine the 3290
format mode:

• The 3290 is in standard format mode if the DOF does not name a partition descriptor block (PDB). The
terminal is then formatted and operated as an ordinary SLU 2 node.

• The 3290 is in partitioned format mode if the DOF names a partition descriptor block (PDB).

Partition set initialization, paging, and activation
If the 3290 (or any of the LUs into which it can be divided) is in partitioned format mode, there are various
ways in which:

• The partitions are initialized with one or more logical pages from the output message.
• The operator subsequently controls the flow of logical pages to the partitions.
• One particular partition becomes the active partition.

Chapter 5. Message Format Service (MFS) reference 413

Initialization and operator-controlled paging are determined by selecting one of the three options. The
option is specified by the PAGINGOP operand of the PDB. According to the selected option, initialization
can consist of:

1. The message's first logical page going to the appropriate partition
2. The message's initial logical pages going to their appropriate partitions until the second logical page of

any partition is reached
3. Each partition receiving its first appropriate logical page

The option also determines whether operator-controlled paging is affected, depending on which partition
is active.

When the 3290 enters partitioned format mode, one particular partition is the active partition. This is
determined in one of two ways:

• Logical pages are routed to their partitions using DPAGE statements. An ACTVPID operand might have
been specified on one of the DPAGEs that points to an initialized partition. The ACTVPID allows the
application program to declare which partition is the active partition.

• If no ACTVPID keywords are encountered, the active partition is the partition defined by the first PD
statement in the PDB.

The active partition can be a partition that has not initially received any data.

Related concepts
“3290 in partitioned format mode” on page 515
Support of 3290 partitioning and scrolling is provided for devices defined to IMS as SLU 2 terminals.
Partitioning and scrolling are not provided for devices using non-SNA VTAM.

3180 screen formatting
Like the 3290, the 3180 terminal is supported by IMS as an SLU 2 device. Partitioning and scrolling
support for the 3180 is similar to what is provided for the 3290.

Exceptions: For the 3180:

• Only one partition with specific size limits can be defined. (For the 3290, multiple partitions of various
sizes can be defined.)

• Logical unit display screen size and viewport location cannot be specified in picture elements (pels).
(The 3290 supports pels.)

• You cannot specify an active partition. (For the 3290, active partitions can be specified.)

These restrictions apply only if you want the 3180 screen size when it is connected to IMS to differ
from the 3180 screen size when it is connected to other subsystems. If no change is required, the 3180
customer set up installation instructions can be used and no special IMS code is necessary.

Device compatibility with previous versions of MFS
If you choose not to define 3270 devices during IMS system definition using the device type symbolic
name (option 1), no changes to device format definitions are needed.

If you choose to define 3270 devices during IMS system definition using a device type symbolic name
(3270-An) (options 2, 3, and 4), in some cases you must make changes in your 3270 device format
definitions.

The examples in the following table include the recommended standard for relating the device type
symbolic name to the screen size:

414 IMS: Application Programming APIs

Table 115. MFS device definition compatibility for 3270 devices

Device and Screen Size Device and Screen Size1 New IMS System Definition1

3275 or 3277 (12X40) MFS: DEV TYPE= (3270,1) Model
1

MFS: DEV TYPE= 3270-A5 2,4

3275, 3276, 3277, 3278 (24X80) MFS: DEV TYPE= (3270,2) Model
2

MFS: DEV TYPE= 3270-A2 2,4

3276, 3278 (12X80) MFS: DEV TYPE= (3270,1) Model
1

MFS: DEV TYPE= 3270-A1 2,3

3276, 3278 (32X80) MFS: DEV TYPE= (3270,2) Model
2

MFS: DEV TYPE= 3270-A3 2,3

3276, 3278 (43X80) MFS: DEV TYPE= (3270,2) Model
2

MFS: DEV TYPE= 3270-A4 2,3

3278 (27X132) MFS: DEV TYPE= (3270,2) Model
2

MFS: DEV TYPE= 3270-A7 2,3

Notes:

1. For screen sizes specified in type or terminal macro.
2. If the format will be used on the new device and will not be used on the old device, change TYPE=

(3270,1) or (3270,2) to 3270-An with the corresponding screen size, and recompile.
3. See option 3 in the following table.
4. See option 4 in the following table.

The following table lists the advantages and disadvantages of selecting a specific option for the larger
screen device and the required action if you choose to use existing device formats.

Table 116. Advantages and disadvantages of larger screen device

Option Advantage Disadvantage Conversion Action
Required

1 You can use existing MFS
formats unchanged.

You cannot use full screen. No (Use current formats as
shown in the previous table.)

2 You can use full screen. You must design new device
formats.

No (Define new formats.)

3 You can use existing formats
as a migration path on the
new screen device and you
can gradually replace them
with new device formats.

You must modify existing
device formats to use the
device symbolic name.

Yes (Refer to the previous
table.)

4 Consistency in definition for
current and new screen
sizes.

You must modify all formats. Yes (Refer to the previous
table.)

IBM 3278-52/3283-52 and IBM 5550 family (as 3270) compatibility
The message format definitions for the IBM 3278-52/3283-52 are upwardly compatible. However,
message formats created with Kanji functions for the 5550 family of devices cannot be used on the
IBM 3278-52/3283-52.

Chapter 5. Message Format Service (MFS) reference 415

Existing 3270 and IBM 5550 family (as 3270) compatibility
Note the following when adding field outlining and input control specifications to existing 3270 and
3278-52/3283-52 message formats:

• Field outlining

– For the 3270 display, left line, right line, overline, and underline do not take up a position in the user
field. The application program does not have to be modified unless dynamic modification of extended
attributes is performed.

– For the SCS1 printer, MFS reserves print positions for left and right lines. If a field starts from
the leftmost column or ends at the rightmost column, the left or right line is not printed correctly
because room is not available. To correct this, modify the application program to truncate 1 byte. If
two adjacent fields are logically one and the overline and underline should connect, the application
program does not have to be modified.

In either case, for dynamic modification, the application program must be modified.
• DBCS/EBCDIC mixed fields

– For 3270 displays, the SO/SI control characters take up 1 byte on the screen. This means that
the length on the display is equal to the message format length. Therefore, the existing application
program does not have to be changed.

When assigning DBCS/EBCDIC mixed data to an existing EBCDIC field, the application program must
check that the SO and SI are paired, that the EGCS data is of even length, and that neither the SO nor
SI is truncated when the MFLD is mapped to the DFLD.

– For SCS1 printers, MIX/MIXS must be specified when using DBCS/EBCDIC mixed data. In this case,
the message length and the length of the output differ and the application program must modify the
MFLD according to each field's characteristics.

Converting MFS 3270 device formats to symbolic name formats using STACK/
UNSTACK
The IMS MFS language utility's compilation statements STACK and UNSTACK can be used to convert
existing MFS 3270 device formats to the user-defined device type symbolic name formats. The STACK
statement is used to delineate one or more SYSIN or SYSLIB records, and to request that those records,
once processed, be kept in storage for use at a later time. The UNSTACK statement requests retrieval of a
previously processed stack of SYSIN/SYSLIB records.

For example, with the following existing 3270 format definition:

label FMT
 DEV TYPE=(3270,2), ...
 DIV TYPE=INOUT
 DPAGE CURSOR=((2,3))
label DFLD
label DFLD
label DFLD
 FMTEND

You can create a user-defined device type symbolic name (using TYPE=3270-An) format for the large
screened display devices by using the DEV statement and the compilation statements STACK and
UNSTACK as follows:

label FMT
 DEV TYPE=3270,2,...
 STACK ON
 DIV TYPE=INOUT
 DPAGE CURSOR=((1,2))
label DFLD
label DFLD
label DFLD
 STACK OFF
 DEV TYPE=3270-A2,...

416 IMS: Application Programming APIs

 UNSTACK
 FMTEND

The UNSTACK statement causes the statements between STACK ON and STACK OFF to be duplicated. In
addition to the 3270 model 2 device format, a device format is created for the 3270-A2, which has the
same device layout as the 3270 model 2.

3270 device format conversion example
This example is provided to clarify MFS device definition compatibility for 3270 devices.

Assume that the installation has 3270 model 1 and model 2 display devices and has installed additional
display devices with 12×80, 24×80, 32×80, and 43×80 screen sizes. A new IMS system definition was
performed for the additional devices, and the 3270 model 1 and model 2 devices were redefined to
specify the device symbolic name.

The IMS system definition specifications for these 3270 displays were as follows:

• TYPE=3270-A1, SIZE=(12x80) for the additional devices with 12x80 screen size.
• TYPE=3270-A2, SIZE=(24x80) for the 3270 model 2 and additional devices with 24x80 screen size.
• TYPE=3270-A3, SIZE=(32x80) for the additional devices with 32x80 screen size.
• TYPE=3270-A4, SIZE=(43x80) for the additional devices with 43x80 screen size.
• TYPE=3270-A5, SIZE=(12x40) for the 3270 model 1 device.

The following MFS changes were required to convert existing 3270 model 1 and 2 device format
definitions for use on the 3270 model 1, model 2, and on the additional devices:

Existing Definitions:

label FMT
 DEV TYPE=(3270,1)
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...
label DFLD ...
label DFLD ...
 DEV TYPE=(3270,2)
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...
label DFLD ...
label DFLD ...
 FMTEND ...

Changes Applied and Recompiled:

label FMT
 DEV TYPE=3270-A5 (changed from (3270,1) to 3270
 display with 12x40 screen size)
 STACK ON
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...
label DFLD ...
label DFLD ...
 STACK OFF
 DEV TYPE=3270-A1 (3270 display with 12x80 screen
 size)
 UNSTACK
 DEV TYPE-3270-A2 (changed from (3270,2) to 3270
 display with 24x80 screen size)
 STACK ON
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...
label DFLD ...
label DFLD ...
 STACK OFF
 DEV TYPE=3270-A3(3270 display with 32x80 screen
 size)
 UNSTACK ,KEEP

Chapter 5. Message Format Service (MFS) reference 417

 DEV TYPE=3270-A4(3270 display with 43x80 screen
 size)
 UNSTACK
 FMTEND

After the changes are applied and recompiled, the new device formats are designed to take advantage of
each screen size, and the previous format definition can be compiled again as follows:

label FMT
 DEV TYPE=3270-A5
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...
label DFLD ...
label DFLD ...(existing device fields
 using 12x40 screen size)
 DEV TYPE=3270-A1
 DPAGE ...
label DFLD ...(new device fields using
 12x80 screen size)
 .
 .
label DFLD ...
 DEV TYPE=3270-A2
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...(existing device fields
 using 24x80 screen size)
label DFLD ...
label DFLD ...
 DEV TYPE=3270-A3
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...(new device fields using
 32x80 screen size)
 .
 .
label DFLD ...
 DEV TYPE=3270-A4
 DIV TYPE=INOUT
 DPAGE ...
label DFLD ...(new device fields using
 43x80 screen size)
 .
 .
label DFLD ...
 FMTEND

3270 printer and SLU 1 compatibility
To use the extended attributes of color, highlighting, and programmed symbols, or to use the set vertical
format or set line density data streams, you might need to modify your application programs.

Additional 3270 printer devices attached to a non-SNA control unit compatible with the currently installed
3270 printer devices use the existing 3270P model 1 or model 2 device formats. For the printer buffer,
they use the existing IMS system definition with 480 characters (current model 1) or 1920 characters
(current model 2).

MFS users choosing to change device attachment to SLU 1 must change their MFS device format
definitions as shown in the following table. The following table lists the current device, the MFS device
type, new control units, system definitions, and MFS device types, and the z/OS changes required.

Table 117. MFS device definition compatibility for 3270 printers and SLU 1 devices

Current
Device

Current MFS
DEV TYPE

New Device or Control
Unit

New IMS
System
Definition

New MFS DEV
TYPE

z/OS
Changes
Required

3284/328
6

3270P 3827/3289 attached to
a 3274 or 3276 SNA
control unit

SLUTYPE1 SCS1 See Note

418 IMS: Application Programming APIs

Table 117. MFS device definition compatibility for 3270 printers and SLU 1 devices (continued)

Current
Device

Current MFS
DEV TYPE

New Device or Control
Unit

New IMS
System
Definition

New MFS DEV
TYPE

z/OS
Changes
Required

Note:

Change DEV TYPE=(3270P,n) to DEV TYPE=SCS1 and recompile. Or, if all printers are not changed to the
new device or control unit, add the following after DEV TYPE=3270P and recompile:

STACK ON
(3270P DPAGE, DFLD statements)
STACK OFF
DEV TYPE=SCS1
UNSTACK

SLU P compatibility
Application programs written for other MFS-supported devices can execute unchanged with SLU P (DPM-
An) devices once the DIFs and DOFs appropriate for the DPM devices are defined.

Changes might be required if the program depends on unique device-dependent features such as
premodified fields on a 3270 display. The program would execute unchanged only if the premodified
fields presented to the remote program are returned in the input message. This requires that the remote
program properly interpret the attribute bytes of the output message field and handle the indicated
device function in a way that satisfies the requirements of the IMS application program.

Existing IMS application programs that do not use MFS might have to be changed to adjust to the
appropriate 3600 or 3790 buffer size and to ensure that message text is a compatible subset of the SCS
character string.

Enhancing system performance of MFS message and device formats
The design of message and device formats usually has only a minor effect on the time or resources
required to edit a message. It can, however, have a considerable effect on transmission and response
time.

Enhancing system performance of MFS-supported devices
To enhance system performance when using MFS-supported devices, you can do the following.

Evaluating the message format buffer pool operation
The IMS /DISPLAY POOL command can be used to evaluate the message format buffer pool operation.

The objective should be to reduce the value of:

I/O+DI (The sum of the numbers of fetch
 REQ1 I/O operations and directory I/O operations
 divided by the number of block requests from
 the pool.)

Hints and tips for improving performance
To reduce this value, do one or more of the following:

• Reduce format block I/O. The most significant and tunable portions of MFS processing cost are the CPU
cycles and channel/device time required to read format blocks. To reduce format block I/O, use the
following techniques:

Chapter 5. Message Format Service (MFS) reference 419

– Evaluate and implement $$IMSDIR, the optional MFS index directory. Index the selected MFS control
blocks based on how frequently they are used. In most cases, using $$IMSDIR eliminates one read
per format block during online operation.

– Increase the size of the MFBP (Message Format Buffer Pool).
– Increase the number of fetch request elements (FREs).

• Minimize the number of segments. Messages should be segmented for application program
convenience or to meet segment size restrictions. Segment processing in MFS and DL/I requires a
considerable number of CPU cycles, so do not segment unnecessarily.

• Use option 2 input. In some cases, the application input can be segmented so that no device input can
be presented for segments under certain conditions. In such cases, option 2 input messages reduce
processing time slightly and reduce IMS message queue space requirements.

• Use option 3 input. Option 3 input can provide better performance than option 1 or 2 if many fields
are defined, but only a few fields are received on input. Additional buffer pool space is required during
editing, but message queue space requirements are reduced. When most of the defined fields are
received on input, option 3 performance is not as good as 1 or 2, either in processing time or in message
queue space.

• Combine multiple DFLD literals. When multiple DFLD literals are positioned at adjacent or nearly
adjacent device field locations, consideration should be given to combining the literals in fewer DFLD
literal definitions. The only limitation to the number of literals combined is the maximum DFLD literal
length. Combining DFLD literals reduces block size, reducing MFS processing time and, for 3270 or SLU
2 display devices, reducing transmission time.

• Do not define DFLDs that are not referred to by any MSG descriptor. Such DFLDs occupy block space
and, if used extensively, could adversely affect MFS processing time.

• Combine output message fields if appropriate. Where multiple, contiguous, output message fields of
a segment map to contiguous device fields of the same relative length, consider combining both the
message fields and the device fields so that a single message field maps to a single device field. The
greatest potential advantage is in those situations where only one blank separates the displayed fields,
and message data is always present and equal to the device field length.

Combining message fields is not recommended, however, in cases where an additional formatting
burden would be placed upon the application program.

• Do not define duplicate formats. If duplicate libraries exist in the concatenated libraries, there is no
guarantee that the copy from the first library will be fetched.

• Do not define separate formats for simple input. Most MFS device formats should include some user
input fields that allow the operator to enter any simple transaction or command, related or not related
to the application for which the format was designed. Any format requires four control blocks, and
formats designed specially for simple input should not be defined unnecessarily.

Related reference
“Input message formatting options” on page 462
MFS supports three message formatting options. The option selected determines how MFS interprets
the MID definition and thereby formats the data into message fields for presentation to the application
program.
/DISPLAY POOL command (Commands)

Enhancing system performance of 3270 or SLU 2 display devices
To enhance system performance when using 3270 or SLU 2 display devices, you can do the following.

• Use preformatted screens. This is the most significant performance consideration for MFS when 3270
or SLU 2 display devices are used. Significant amounts of data are usually required to define fields and
establish literals on a screen. These field definitions and literals do not always have to be transmitted. If
the format on the device can be used, transmission time for remote terminals can be reduced up to 50
percent.

420 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_displaypool.htm#ims_cr1displaypool

• Pad message output with nulls. The use of the FILL=NULL or PT option in the DPAGE statement reduces
the amount of data transmitted to the device and the amount of processing required to format the
output.

• Reduce mixed-mode operations. A mixed mode operation occurs when the selector light pen is used on
an immediately detectable field and other fields on the device are modified. The mixed mode operation
requires multiple I/O operations that increase response time, line utilization, and processing time. In
addition, the resulting message contains the same data as would be produced by the enter key except
for the indication that the selector pen was used.

• Use paging requests. Where application design permits, the PA1 (program access key 1) page advance
facility should be used instead of operator entry of a logical page request. The PA1 facility requires
less operator action and less communication line time, and does not require input editing before page
request processing.

• Define the length of a literal DFLD followed by a nonliteral DFLD to include space between the last
significant literal character and the position preceding the attribute position of the nonliteral field.
This action can reduce block size and character transmission but should only be considered when the
separating space is between two and five characters.

• Increase the length of DFLDs with the PROTECT attribute. When a nonliteral DFLD is defined with the
PROTECT attribute, separated from the next device field by two or more blanks, and is expected to
receive output data, consider increasing its length. The output data can originate from an application
program, a /FORMAT command, or an MFLD literal. Multiple MODs can be used to map message data to
the DFLD. Increasing DFLD length should reduce character transmission unless character fill (FILL=C' ')
is specified. Specifying FILL=C' ' is not recommended.

• Minimize the use of the CLEAR key. Advise terminal operators not to use the CLEAR key unnecessarily.
In addition, explain to terminal operators the proper use of other function keys such as the ERASE
INPUT and ERASE EOF.

Design screen formats with the objective of minimizing the use of the CLEAR key. Allow simple input
from a formatted screen. To provide for this capability, establish the same device field location of all
formatted screens as the standard device field for simple input. Enforce this standard for all format
definitions.

Decreasing CLEAR key usage can improve response time and use communication lines more effectively.

3270 or SLU 2 devices with large screens
If pages are combined for display on large screens, operator paging is reduced proportionally to the
reduction of number of pages. If the OUTBUF keyword of the IMS system definition TERMINAL macro or
ETO logon descriptor cannot specify the amount of data for an entire page, more than one VTAM SEND is
required to send the page.

Related concepts
“3270 or SLU 2 screen formatting” on page 411
MFS is designed to transmit only required data to and from the 3270 display device. Device orders to
establish fields and display literals can cause significant transmission time, because there can be more
orders and literal data than program data.
Extended Terminal Option (ETO) (Communications and Connections)

SLU P and ISC subsystems with DPM
If OPTIONS=PPAGE is specified in the DIV statement, the set of fields in a PPAGE (presentation page)
is transmitted together in one or more records. Additional presentation pages are sent on request of the
remote program or ISC subsystem for demand paging. This level of paging is the simplest for the remote
program or ISC subsystem to process but imposes the most burden on IMS processing time.

If OPTIONS=DPAGE is specified, all fields within a logical page are transmitted together in one or more
records. Additional logical pages are sent on request of the remote program or ISC subsystem for demand
paging. This level of paging makes it more difficult for the remote program or ISC subsystem to process
the data if more than one presentation page is included, but imposes less burden on IMS processing time.

Chapter 5. Message Format Service (MFS) reference 421

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_ccg_part_eto.htm#ims_ccg_part_eto

If OPTIONS=MSG is specified, all the data within a message is sent together and no paging is performed.
This technique might require more processing and logic in the remote program or ISC subsystem but is
the best for IMS performance if all pages are actually used by the remote program or ISC subsystem. If
many pages are not used by the remote program or ISC subsystem, this option results in unnecessary line
traffic and IMS processing.

If autopage is specified (SCA byte 1, bit 5) and option PPAGE or DPAGE is desired for DPM-Bn, all data
within the message is sent and no demand paging is performed.

The RCD statement can be used to influence the placement of fields within records. The DFLD that follows
the RCD statement begins in the first user data location of a new record. Fields can be placed in records
so that no field spans a record boundary, or so that logically related fields appear together in the same
record.

Restriction: For ISC subsystems, fields cannot span records.

Use of the RCD statement to set record boundaries can reduce transmission time and IMS processing
time only if records of maximum length are created. If field placement into records is controlled using
the RCDCTL specification only, the SPAN option causes the minimum number of records to be sent to the
remote program. Use of SPAN requires, however, that the remote program put together the fields that
have been split across records.

Loading programmed symbol buffers
If programmed symbol (PS) buffers are desired and if they have not been loaded by another means (for
example, a VTAM application), the buffers must be loaded.

Using an application program to determine whether programmed symbol buffers are
loaded
The buffers might have been loaded with the desired programmed symbols by a previous user of
the device, and this knowledge can save resending the entire programmed symbol data stream. A
handwritten log at the device is one method of maintaining the current status of the programmed symbol
buffers for subsequent users.

Another method is a user-written application program that attempts to use the desired programmed
symbols. If the desired programmed symbols are already loaded, the output from the application program
is successfully displayed at the device. If the programmed symbols are not loaded, the output message is
returned to the IMS message queue, the terminal is made inoperable, and a message is sent to the master
terminal operator (MTO). The MTO should have a procedure to correct this condition. For example, the
MTO could do one of the following:

• Reassign the LTERM, assign an LTERM that has the correct PS load message, restart the terminal, and
then reassign the first LTERM back to the terminal.

• If the terminal does not have PS capability, reassign the LTERM to one that does.
• If the terminal does not have PS capability, dequeue the rejected message.

Exception: For an SLU 2 terminal, the output rejected was not a response mode reply. In this case, the
MTO receives the error message and can try to enter a transaction that would cause the buffers to be
loaded.

How to load programmed symbol buffers
If the operator knows the programmed symbol buffers need to be loaded (because the device was just
turned on), the operator should enter a response mode transaction that loads the programmed symbols.

Make available, to all users at the installation, a user-written application program to load the programmed
symbols. The first part of the message sent by this application program should be the programmed
symbol data stream, and the remainder should be some user data displayed at the device (such as
THE PROGRAMMED SYMBOL LOAD FOR programmed-symbol-name COMPLETE). The user data displayed
at the device informs the terminal operator when the programmed symbols have been loaded. This
application program should use the MFS bypass option, because the write structured field (WSF) 3270

422 IMS: Application Programming APIs

command used to send the programmed symbol message is only supported by IMS through the MFS
bypass option.

When the programmed symbol buffers that are to be loaded include a printer or a different display,
other techniques must be used. Programmed symbol buffer loads are restricted to 3 KB for BSC-attached
devices.

For example, the following shows the loading of a programmed symbol buffer using an automated
operator interface (AOI) application program.

1. The operator at display A enters a transaction (response or conversational) requesting programmed
symbol loads for display A, printer B, and display C.

2. Another AOI transaction assigns LTERMs for printer B and display C, temporarily, to a special PTERM.
The AOI program assigns dummy LTERMs to printer B and display C.

3. The AOI program inserts a programmed symbol message to the dummy LTERMs of printer B and
display C.

4. The AOI program sends programmed symbol messages to display A.
5. The operator visually verifies messages on both displays and the printer and confirms that the

transaction executed correctly.
6. Another AOI transaction reassigns LTERMs to their original status.

Solving programmed symbol load problems
If a hardware error occurs while a programmed symbol buffer is being loaded, then the following actions
occur.

1. The programmed symbol load message is returned to the IMS message queue.
2. The terminal is taken out of service, except for SLU 2 devices when programmed symbols are not

available.
3. The error is logged to the IMS log.
4. A message is sent to the IMS master terminal.

Once the hardware error is corrected and the terminal is in service, the programmed symbol load
message is re-sent.

If the programmed symbol load failed because of an error in the programmed symbol load message, the
operator must:

1. Dequeue (/DEQ) the message (the master terminal operator might have to issue the /DEQ command).
2. Correct the error.
3. Reenter the transaction to send the programmed symbol load message again.

If a method is available for informing the next user of the programmed symbol buffer status, then the
terminals with loaded programmed symbol buffers should not be turned off. When a power failure occurs,
or a terminal is turned off, the contents of the programmed symbol buffers are lost.

When a terminal is turned on and no IMS messages are waiting to be sent to the display, load all required
programmed symbol buffers using an IMS transaction (or some non-IMS method). However, if IMS
messages are waiting to be sent, and these messages require the use of one or more programmed symbol
buffers, the sending of the queued messages must be delayed until the programmed symbol buffers
can be reloaded. This can be accomplished using response mode transactions to load the programmed
symbol buffers.

If the programmed symbol buffers are not loaded and a message that requires a programmed symbol
buffer is sent to the terminal, the following actions take place:

• For non-SLU 2 devices, IMS takes the terminal out of service, sends a message to the master terminal,
and returns the output message to the message queue.

• For SLU 2 devices, the message is rejected and a sense code is returned to IMS. IMS then:

– Returns the invalid message to the IMS queue.

Chapter 5. Message Format Service (MFS) reference 423

– Logs the error to the IMS log.
– Sends an error message to the IMS master terminal if the output was a response mode reply, and

takes the terminal out of service. If it is not in response mode, the error message is sent to the
terminal and it is left in protected mode.

If the user-written application program is designed to queue an unsolicited message requiring a particular
programmed symbol load buffer to an LTERM, the first part of the message could include a load
programmed symbol data stream; however, this message could not be processed by MFS.

When a message is waiting on the IMS queue for a terminal and requires a programmed symbol that is not
loaded, perform one of the following:

• If the terminal is attached by VTAM, load the programmed symbol buffers using a VTAM application.
• If a queued message requires a programmed symbol buffer and it is "normal" user output (for example,

the output is not response mode or conversational), then the use of a response mode transaction to
load the programmed symbol buffer permits the queued message to be properly displayed. If loading
the buffers requires multiple messages, multiple response mode transactions can be used.

• Dequeue (/DEQ) the message (or have the master terminal operator dequeue the message) requiring
use of a programmed symbol buffer; enter a transaction to load the programmed symbol buffer
required; and then reenter the transaction that originally generated the queued message.

• Temporarily assign the LTERM to which the message is queued to another physical terminal. Load the
programmed symbol buffer, then reassign the LTERM to the original physical terminal. The LTERM must
be assigned to a terminal that will not cause a message to be sent (as, for example, a 3270 display or
SLUTYPE2 that is in protected screen mode).

MFS definitions for intersystem communication
The following prototype MFS definitions can be used in an intersystem communication (ISC) system
between IMS and CICS.

In this example:

• CICS can request MFS editing with either 8-byte or 4-byte names.
• Messages from CICS can be multiple-page input or single-page input.
• Output to CICS can be one message of one page or multiple pages with one or more segments.
• Demand paged or autopaged output can be requested of IMS.

These formats can also be used by a 3270 terminal operator who wants to send a message to CICS using
an IMS message switch. Or, for example, an IMS message switch can be invoked by a user at a 3270
terminal, the message can be switched to CICS, and a reply is returned from CICS to IMS and then to the
3270 terminal. The routing is handled by MFS. The following samples show the MFS definition format.

FMTDIS FMT
 DEV TYPE=3270-A2,FEAT=IGNORE
 DIV TYPE=INOUT
DFLDIND1 DFLD LTH=5,POS=(1,2)
DFLDIND2 DFLD LTH=100,POS=(1,8)
 FMTEND
FMTDP2 FMT
 DEV TYPE=DPM-B1,FEAT=IGNORE,
 MODE=RECORD,DSCA=X'00A0' X
 DIV TYPE=OUTPUT,OPTIONS=(MSG,NODNM)
PPAGE1 PPAGE
DFLDOUT1 DFLD LTH=5
DFLDOUT2 DFLD LTH=100
 FMTEND
FMTDPM FMT
 DEV TYPE=DPM-B1,FEAT=IGNORE,MODE=RECORD
 DIV TYPE=INPUT,OPTIONS=(DPAGE,NODNM), X
 PRN=DFLDINP3, X
 RDPN=DFLDINP4, X
 RPRN=DFLDINP5
PPAGE2 PPAGE
DFLDINP1 DFLD LTH=5
DFLDINP2 DFLD LTH=100

424 IMS: Application Programming APIs

 DIV TYPE=OUTPUT,OPTIONS=(DPAGE,NODNM)
DPAGE2 DPAGE
DPAGE3 PPAGE
DFLDOUT3 DFLD LTH=5
DFLDOUT4 DFLD LTH=100
 DFLD SCA,LTH=2
 FMTEND
MFSMOD1 MSG TYPE=OUTPUT,SOR=(FMTDP2,IGNORE), X
 NXT=MFSMID1
 SEG
 MFLD DFLDOUT1,LTH=5
 MFLD DFLDOUT2,LTH=100
 MSGEND

MFSMODE2 MSG TYPE=OUTPUT,SOR=(FMTDPM,IGNORE), X
 NXT=MFSMID1
 SEG
 MFLD DFLDOUT3,LTH=5
 MFLD DFLDOUT4,LTH=100
 MFLD (,SCA),LTH=2
 MSGEND
MFSMID1 MSG TYPE=INPUT,SOR=(FMTDPM,IGNORE), X
 NXT=MFSMODD
 SEG
 MFLD DFLDINP1,LTH=5
 MFLD DFLDINP3,LTH=8
 MFLD DFLDINP4,LTH=8
 MFLD DFLDINP5,LTH=8
 MFLD DFLDINP2,LTH=100
 MSGEND
MFSMIDD MSG TYPE=INPUT,SOR=(FMTDIS,IGNORE), X
 NXT=MFSMOD1
 SEG
 MFLD DFLDIND1,LTH=5
 MFLD DFLDIND2,LTH=100
 MSGEND
MFSMODD MSG TYPE=INPUT,SOR=(FMTDIS,IGNORE),
 NXT=MFSMIDD
 SEG
 MFLD DFLDIND1,LTH=5
 MFLD DFLDIND2,LTH=100
 MSGEND
 END

MFS message formats
Use these topics if your application programs communicate with devices by using Message Format
Service (MFS).

Input message formats
MFS edits input data from a device into an IMS application message format using the message definition
that the MFS application designer writes as input to the MFS language utility program. An input message
consists of all segments presented to an IMS application program when the program issues a DL/I GU or
GN call.

The format of input messages is defined to the MFS Language utility. Each message consists of one or
more segments; each segment consists of one or more fields:

MESSAGE
 SEGMENTS
 FIELDS

Message field format is defined specifically to the utility in terms of data source, field length, justification,
truncation, and use of fill (pad) characters. How MFS actually formats the field is a function of the
formatting option selected for the message. The option used is identified in the second byte of the 2-byte
ZZ field (Z2) preceding the message text. An application program that depends on MFS should check this
field to verify that the expected option was used; a X'00' in the Z2 field indicates MFS did not format the
message.

Chapter 5. Message Format Service (MFS) reference 425

Logical pages
For 3270 or SLU 2, the input message is created from the currently displayed DPAGE on the device. For
some other devices, if the device input format has more than one DPAGE defined, the device data entered
determines which input LPAGE is selected to create an input message. However, for ISC (DPM-Bn)
subsystems, OPTIONS=DNM or COND= can be used for DPAGE selection.

When LPAGEs are defined, each LPAGE is related to one or more DPAGEs.

Related reference
“Input message formatting options” on page 462
MFS supports three message formatting options. The option selected determines how MFS interprets
the MID definition and thereby formats the data into message fields for presentation to the application
program.

Device-dependent input information (3270 or SLU 2)
Using certain options for inputting information can make the application program device-dependent.

Cursor location
As an option of the MFS Language utility, a field in the message can contain the location of the cursor
on the device when input was transmitted to IMS. This option is only available for 3270 or SLU 2 display
devices and its use can make programs device-dependent. The format of the cursor information is two
2-byte binary numbers, the first containing the line number, the second containing the column number.
The minimum value for the line or column is 1. For 3270-An device types, the maximum value for the line
is the first parameter of the SIZE= operand; the maximum value for the column is the second parameter
of the SIZE= operand.

The table below lists the maximum line and column values for MFS device types.

Table 118. Maximum line and column values for 3270 device types

Maximum Value

MFS Device Type Line Column

3270,1 12 40

3270,2 24 80

3270-An

SIZE=(12,40) 12 40

SIZE=(12,80) 12 80

SIZE=(24,80) 24 80

SIZE=(32,80) 32 80

SIZE=(43,80) 43 80

SIZE=(27,132) 27 132

SIZE=(62,160) 62 160

426 IMS: Application Programming APIs

Selector pen
Use of the selector light pen can affect input fields in several ways:

• If the ATTR output field option is not used dynamically to create detectable fields, the following occurs:

– A message field that refers to device fields defined with the attributes DET,STRIP is presented as a
device-independent field.

– The first data byte available for the message field is the byte beyond the designator character in the
device field.

– A message field that references device fields defined with the attributes IDET,STRIP is also presented
with device-independent data.

– The designator character is removed.
– Data from this field is not presented if no modified fields exist on the device when the field is

selected. In this case, the only device information available for the message is the value specified for
literal on the PEN= operand of the DFLD statement.

• If the ATTR output field option is used dynamically to create detectable fields, then the following
occurs:

– Fields dynamically established as either deferred detectable or immediate detectable do not have
designator characters removed from input.

– If a field altered to immediate detectable is selected when no other fields on the device are modified,
no device input data is available for the message.

• If a message field is defined to receive immediate detect selector pen literal data, one of the following
occurs:

– If device input is not the result of an immediate selector pen detect, the field is padded as requested.
– If device input is the result of an immediate selector pen detect, but at least one other field on

the device is modified, one data character of a question mark (?) is presented in the field with the
requested padding.

– If the device input is the result of an immediate selector pen detect and no other modified fields exist
on the device, that literal is placed in the message as requested if the detected field is defined with a
PEN=literal. If the detected field is not defined with a PEN=literal, one data byte of a question mark
(?) is placed in the message field. In either case, no other device information is provided.

• If an EGCS attribute is defined for a light-pen-detectable field, you should specify ATTR=NOSTRIP
on the DFLD statement and design your application program to bypass or remove the two designator
characters from the input data. If ATTR=STRIP is specified or defaulted, MFS removes only the first
designator character and truncates the last data character in the field.

Magnetic stripe reading devices
The use of magnetic stripe reading devices is transparent to the application program. For operator
identification (OID) card readers, the framing characters (SOR, EOR, EOI, LRC) are removed and parity
checking is performed before editing.

Program function keys
Use of program function keys is transparent to the application programs.

Program access keys
Program access key information is not available to application programs.

Chapter 5. Message Format Service (MFS) reference 427

Output message formats
MFS edits output segments created by an IMS application program into a device format suitable for the
device or remote program for which the message is destined.

Normally, the output segments from the IMS program contain no device-related data. All information
needed for output to a device or remote program is provided when the message format is defined to the
MFS Language utility program. For a remote program with DPM, specific device-dependent information is
provided by the remote program without interpretation by MFS.

An output message consists of all segments presented to IMS with an ISRT call between a GU call to the
I/O PCB and either a PURG call, another GU call to the I/O PCB, or normal program termination.

The format of output messages is defined to the MFS utility just like the format of input messages—one or
more segments, each with one or more fields.

MESSAGE
 SEGMENTs
 FIELDs

Logical pages
Output segments can be grouped for formatting by defining logical pages (LPAGE statement).

MESSAGE
 LPAGEs
 SEGMENTs
 FIELDs

When LPAGEs are defined, each LPAGE is related to a specific DPAGE that defines the device format for
the logical page. If LPAGEs are not defined, MFS considers the defined message as one LPAGE and the
rules that apply for messages with one LPAGE apply. Those rules are:

When a message has one LPAGE with one segment, each segment inserted by the application program is
edited in the same manner.

When a message has one LPAGE with multiple segments, message segments must be inserted in the
defined sequence. Not all segments in an LPAGE must be presented to IMS, but be careful when
segments are omitted. An option 1 or 2 segment can be omitted if all segments to the end of the LPAGE
are omitted; otherwise, a null segment must be inserted to indicate segment position. Option 3 output
message segments can be omitted but the segments sent must include the segment number identifier.

Multiple series of segments can be presented to IMS as an output message. If the LPAGE is defined as
having N segments, segment N+1 is edited as if it were segment 1, unless a segment with the page bit
(X'40') in the Z2 field is encountered prior to segment N+1. When multiple series of output segments are
presented and segments are omitted, the segment which begins a series must have bit 1 (X'40') of the Z2
field turned on.

When a message has multiple LPAGEs, data in the first segment of a series determines which LPAGE the
series belongs to, which determines the editing to be performed on the segments. If the LPAGE to be
used cannot be determined from the first segment of a series, the last LPAGE defined is used. Rules for
segment omission are the same. A bit in the Z2 field (X'80') of the message indicates structured data is
present in the outbound data stream. An output message using structured data must either define the
MODNAME as blanks or binary zeros, or use MFS bypass.

Segment format
Each output segment has a 4-byte prefix that defines the length of the segment and, if required, specifies
whether the segment is the first segment of an LPAGE series.

Option 3 output messages must contain an additional two bytes identifying the relative segment number
within the LPAGE series. The following table illustrates the format of an output segment.

428 IMS: Application Programming APIs

Table 119. Format of an output segment

Length of
Message
Segment

1-Byte Field
Reserved for
IMS

1-Byte Field
Used by
Application

2-Byte Field for
LPAGE

Parameters

LL Z1 Z2 SN FIELDS

Where:
LL

This is a 2-byte binary field representing the total length of the message segment, including LL, Z1,
and Z2 and if present, SN. The value of LL equals the number of bytes in text (all segment fields) plus
4 (6 if option 3). The application program must fill in this count. If a size limit was defined for output
segments of a transaction being processed, LL must not exceed the defined limit.

Restriction: The segment length must be less than the message queue buffer data size (buffer size—
prefix size) specified at IMS system definition. The segment length can be less than the length defined
to the MFS Language utility. If a segment is inserted that is larger than the segment defined to the
MFS utility, the segment is truncated. No error messages are issued. Fields truncated or omitted are
padded as requested in the format definition to the MFS Language utility.

When PL/I is used, the LL field must be defined as a binary fullword. The value provided by the PL/I
application program must represent the actual segment length minus two bytes. For example, if an
output message segment is 16 bytes, LL=14 and is the sum of: the length of LL (4 bytes - 2 bytes) + Z1
(1 byte) + Z2 (1 byte) + TEXT (10 bytes).

Z1
This is a 1-byte field containing binary zeros and is reserved for IMS.

Z2
This is a 1-byte field that can be used by the application program for control of various output device
functions.

For more information on this field, see IMS Version 15.3 Communications and Connections.

SN
For option 3 only. This is a 2-byte binary field containing the relative segment number of the segment
within the LPAGE. The first segment is number 1.

A NULL segment can be used to maintain position within a series of option 1 or 2 output segments within
an LPAGE. A null segment must be used if segments in the middle of an LPAGE series are to be omitted.
If all segments to the end of the LPAGE series are to be omitted, null segments are not required. A null
segment contains one data byte (X'3F') and has a length of 5.

The following example shows how to code a null character in COBOL.

Coding a null character in COBOL

ID DIVISION.
PROGRAM-ID. SAMPLPGM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PART1 PIC 9(3) VALUE 123.
77 CUR-NAME PIC 99 COMP VALUE 0.
77 CUR-PART PIC 99 COMP VALUE 0.
01 NULLC.
 02 FILLER PIC 9 COMP-3 VALUE 3.
01 LINE-A.
 02 NAME-1.
 03 NAME-2 OCCURS 30 PIC X.
 02 PARTNUM.
 03 PARTNUM1 OCCURS 10 PIC 9.
PROCEDURE DIVISION.
 MOVE ''ONES' TO NAME-1.
 MOVE 6 TO CUR-NAME.
 MOVE NULLC TO NAME-2 (CUR-NAME).

Chapter 5. Message Format Service (MFS) reference 429

 MOVE 4 TO CUR-PART.
 MOVE NULLC TO PARTNUM1 (CUR-PART).

Field format (options 1 and 2)
All fields in option 1 and 2 output segments are defined as fixed length and fixed position.

The data in the fields can be truncated or omitted by two methods:

• Inserting a short segment
• Placing a NULL character (X'3F') in the field

Fields are scanned left to right for a null character. The first null encountered terminates the field. If the
first character of a field is a null character, the field is omitted (depending on the fill character used).
Positioning of all fields in the segment remains the same regardless of null characters. Fields truncated or
omitted are padded as defined to the MFS Language utility.

If ATTR=YES is specified in the MFLD definition, and if X'3F' is the first or second byte of the attribute
portion of the field, the field is omitted and the attributes specified on the DFLD statement are used.

Related concepts
“Output message formatting options” on page 482
MFS provides three message formatting options for output data. The option selected determines how the
data is formatted and governs the way in which the application program builds the output message.

Field format (option 3)
Under option 3 output, fields can be placed in their segments in any order and with any length that
conforms to the segment size restriction.

Short fields or omitted fields are padded as defined to the MFS Language utility. Each field must be
preceded by a 4-byte field prefix of the same format provided by MFS for option 3 input fields, as shown in
the following table.

Table 120. Format of an option 3 output segment

Output Segment 1 Output Segment 2 Output Segment 3

FL FO DATA

Where:
FL

The length of the field, including the 4-byte field prefix. FL consists of 2 binary bytes, which require no
alignment.

FO
The relative offset of the field in the segment, based on the definition of the message to the MFS
Language utility. FO consists of 2 binary bytes, which require no alignment. The relative offset of the
first field defined in the segment is 4. The relative offset of the second field is 4 plus the length of the
first field as defined to the MFS Language utility.

Errors in the contents of FL and FO cause unpredictable results.

Option 3 fields do not need to be in sequence in the output segment, but all fields must be contiguous in
the segment; that is, the field prefix of the second field must begin in the byte beyond the first field's data.
Null characters in option 3 fields have no effect on the data transmitted to the device. They are treated as
any other nongraphic characters; that is, replaced with blanks.

Device control characters are invalid in output message fields. For 3270 display and SLU 2 terminals,
the control characters HT, CR, LF, NL, and BS are changed to null characters. For all other devices,
these control characters are changed to blanks. All other nongraphic characters (X'00' through X'3F', and
X'FF') are changed to blanks before transmission. For DPM devices, control characters are permitted if
GRAPHIC=NO has been specified.

430 IMS: Application Programming APIs

Related concepts
“Output message formatting options” on page 482
MFS provides three message formatting options for output data. The option selected determines how the
data is formatted and governs the way in which the application program builds the output message.

Device-dependent output information
Using certain options for outputting information can make the application program device-dependent.
Some options allow the application program to control certain features of devices receiving output.
Descriptions of the effects of various output options follow.

System Control Area (SCA)
An option of the MFS Language utility allows the creation of an SCA field in the first segment of a
message or, if LPAGEs are defined, in the first segment of any or all LPAGEs. This field allows application
program control of specific device features when the features apply to the device for which the message
is destined. The first 2 bytes of the SCA field are defined as shown in these tables:

Usage notes follow both tables.

Table 121. Valid bytes and bits for TYPE=3270, SLU 2, DPM-An, or DPM-Bn

Byte Bit Description

0 0-7 Should be 0.

1 0 Should be 1.

 1 Force format write (erase device buffer and write all required data).

 2 Erase unprotected fields before write.

 3 Sound device alarm.

 4 Copy output to candidate printer.

 5 B'0'—For 3270, protect the screen when output is sent. For DPM, demand
paging can be performed.

 B'1'—For 3270, do not protect the screen when output is sent. For DPM-B,
autopaging can be performed.

 6 For the partition formatted 3290: B'0'—do not erase existing partitions. B'1'—
erase all partitions before sending message. For others, should be 0.

 7 Should be 0.

Notes:

1. For the 3290 in partition format mode, the DOF on the current message is checked to see if it is the
same DOF used last. If it is, bit 6 in the SCA and DSCA operands is checked for the erase/do not erase
partitions option before the output message is sent.

2. The default for bit 6 is B'0', "do not erase". If this bit is not specified, the output is sent according to
the partition paging option specified, and partitions that do not receive output remain unchanged.

3. If bit 6 is set to B'1', then existing partitions will be erased and the output is sent according to the
partition paging option specified.

4. The SCA bit settings are "OR'd" to the DSCA bit settings. For example, if byte 1 bit 5 in the DSCA for
DPM-B is set to B'0' in the DSCA for DPM-B, the application program can request autopaged output
by setting the SCA value to B'1'. (This request is honored only if present in the first segment of the
first LPAGE of the output message.)

5. SCA information is sent to the remote program or ISC subsystem in a DFLD identified by the
parameter SCA. Any invalid bits for the device type are reset. The valid bits are used.

Chapter 5. Message Format Service (MFS) reference 431

Table 122. Valid bytes and bits for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or FIFP

Byte Bit Description

0 0-7 Should be 0.

1 0 Should be 1.

 1-2 Not applicable for FIN output devices.

 3 Set "device alarm" in output message header.

 4 Not applicable for FIN output devices.

 5-7 Should be 0.

Notes:

1. Bits 1, 2, and 4 function only for 3270 and are not applicable to finance workstations. If set on by the
program, and the message is edited for a finance workstation, they are ignored.

2. For TYPE=SCS1, or SCS2, the SCA parameter is ignored.
3. For TYPE=3270P, all bits except "set device alarm" are ignored.

Cursor location
An application program can set the cursor location on the screen either by setting a cursor attribute for a
field or by using a special cursor positioning field in the output message.

Recommendation: Use the cursor attribute method because the application program does not need to
know the position of fields on a device.

Using an option of the MFS Language utility, you can define a field in an output segment to allow the
application program to request cursor positioning to a specific line and column on the device. Depending
on the device output format used, there can be one or more such fields per LPAGE. If the field contains an
invalid number it is ignored and the cursor is positioned as requested in the device output format.

The cursor field should contain two 2-byte binary numbers (no alignment required), the first containing
the line number, the second containing the column number. The minimum value for the line or column is
1. For 3270-An device types, the maximum value for the line is the first parameter of the SIZE= operand;
the maximum value for the column is the second parameter of the SIZE= operand. The following table
lists the valid line and column values.

Table 123. Maximum line and column values for MFS device types

Maximum Value

MFS Device Type Line Column

FIDS (240 characters) 6 40

FIDS3 (480 characters) 12 40

FIDS4 (1024 characters) 16 64

FIDS7 (1920 characters) 24 80

3270,1 (480 characters) 12 40

3270,2 (1920 characters) 24 80

3270-An

SIZE=(12,40) (480 characters) 12 40

SIZE=(12,80) (960 characters) 12 80

432 IMS: Application Programming APIs

Table 123. Maximum line and column values for MFS device types (continued)

Maximum Value

MFS Device Type Line Column

SIZE=(24,80) (1920 characters) 24 80

SIZE=(32,80) (2560 characters) 32 80

SIZE=(43,80) (3440 characters) 43 80

SIZE=(27,132) (3564 characters) 27 132

SIZE=(62,160) (9920 characters) 62 160

Related concepts
“3290 in partitioned format mode” on page 515
Support of 3290 partitioning and scrolling is provided for devices defined to IMS as SLU 2 terminals.
Partitioning and scrolling are not provided for devices using non-SNA VTAM.
“Output format control for ISC (DPM-Bn) subsystems” on page 502
IMS supports the major output message formatting functions of MFS with ISC nodes.
Related reference
“Input message formatting options” on page 462
MFS supports three message formatting options. The option selected determines how MFS interprets
the MID definition and thereby formats the data into message fields for presentation to the application
program.
“Dynamic attribute modification” on page 433
An option of the MFS Language utility allows an IMS application program to dynamically modify, replace,
or simulate the attributes of a device field.

Dynamic attribute modification
An option of the MFS Language utility allows an IMS application program to dynamically modify, replace,
or simulate the attributes of a device field.

This dynamic attribute modification is requested in an output message definition by specifying ATTR=YES
in an MFLD statement. MFS then reserves the first two data bytes of the output message field for attribute
definition. Errors detected in the data of the 2-byte specification or X'3F' in the first or second attribute
byte produce the results shown in the table below.

Attributes are always sent, even if no data is sent.

When dynamic attribute modification is specified for a device field with predefined attributes, an attribute
is sent to the device for that field in every output operation, even if the data for this device field is not
included in the output message. These attributes are used:

• If the output message field has an attribute and the attribute is valid, then the dynamic attribute
modification is performed.

• If the message field is not included in the LPAGE being used or the attribute is not valid, the predefined
attribute for the device field is used.

When attribute simulation is defined, the first byte of the device field is reserved for attribute data. The
following attributes can be simulated:

• Cursor position (3604 display only)
• Nondisplayable
• High-intensity displayable
• Modified attributes

The two attribute bytes are defined in the following table.

Chapter 5. Message Format Service (MFS) reference 433

Table 124. Definitions of the two attribute bytes

Byte Bit Definition

0 0-1 If both bits are on, requests that the cursor be placed on the first position
of this field on the device. The first cursor-positioning request encountered
in an LPAGE series (first MFLD with cursor attribute or cursor line/column
value) that applies to a physical page is honored; these bits must be 00 or
11.

2-7 Must be off.

1 0 Must be on.

1 1. If on, these attribute specifications are to replace the attribute byte
defined for the field.

2. If off, these attribute specifications are to be added to the attribute
byte defined for the field logical "OR" operation. A zero in a bit position
indicates that the defined attribute is to be used (that is, if bit 2 is 0
then the field will be protected or unprotected depending on the DFLD
definition. A 1 in a bit position indicates that the corresponding attribute
is to be used (that is, if bit 3 is 1 then the field will have the numeric
attribute.)

2 Protected

3 Numeric

4 High-intensity (forces detectable and displayable); if simulated, an * appears
in the first byte of the device field.

5 Nondisplayable (forces nondetectable); if simulated, no data is sent
regardless of other attributes.

6 Detectable (forces normal intensity).

7 Premodified; if simulated, an underscore (_) appears in the first byte of the
device field.

Notes:

1. Bits 4, 5, and 6 are incompatible. If more than one is set, bit 4 takes precedence over bits 5 and 6. Bit
5 takes precedence over bit 6.

2. If both bits 4 and 7 are simulated, an ! appears in the first byte of the device field.

Dynamic modification of attributes to detectable requires other action by the IMS application program
to make the device function properly. Detectable fields must have a designator character and certain
padding characters.

For DPM, field attribute information can be passed from the IMS application program to the remote
program, but cannot be specified, unless ATTR=(YES,nn) appears in the MFS DFLD definitions.

See the appropriate component description manual to determine which extended attributes are available
to a given terminal type.

Related reference
“Device-dependent output information” on page 431

434 IMS: Application Programming APIs

Using certain options for outputting information can make the application program device-dependent.
Some options allow the application program to control certain features of devices receiving output.
Descriptions of the effects of various output options follow.

Dynamic modification of extended field attributes
For an application program to modify extended attribute data, the MFLD statement must specify
ATTR=nn. Any error causes the DFLD EATTR= specification for that extended attribute byte to be used.

For modification of the extended attributes, two additional bytes per attribute must be reserved. The
values that can be specified in these extended attribute modification bytes and the resulting values that
are used are:

Specification
Value Used

X'00'
Device default

Valid value
Your specification

Invalid or omitted
From EATTR= on DFLD statement

Duplicate
Last (rightmost) specification

During online execution, if ATTR=PROT is specified as a dynamic modification, any field validation
attributes defined on the DFLD statement or specified as a dynamic modification are reset.

Restriction: Trigger fields are not supported by MFS.

The following table shows the format of the extended attribute modification bytes.

Table 125. Format of extended attribute modification bytes

ATTR 1 type ATTR 1 value ATTR 2 type ATTR 2 value ATTR n type ATTR n value

 1 2 3 2xn_2 2xn_1

Types
Hexadecimal specifications:

01
Validation replacement

02
Validation addition

03
Field outlining replacement

04
Field outlining addition

05
Input control replacement

06
Input control addition

Field outlining applies to 3270 display devices, and to printers defined as 3270P or SCS1 that support the
3270 Structured Field and Attribute Processing option, and support the Extended Graphics Character Set
(EGCS).

Character specifications (the letter C indicates character):

Chapter 5. Message Format Service (MFS) reference 435

C1
Highlighting

C2
Color

C3
Programmed Symbols

Values
Field validation in hexadecimal:

Bit
Meaning

0 to 4
Reserved

5
Mandatory fill

6
Mandatory field

7
Reserved

For field highlighting:

Character
Meaning

X'00'
Device default

X'F1'
Blink

X'F2'
Reverse video

X'F4'
Underline

Field color (seven-color models only):

Character
Meaning

X'00'
Device default

X'F1'
Blue

X'F2'
Red

X'F3'
Pink

X'F4'
Green

X'F5'
Turquoise

X'F6'
Yellow

436 IMS: Application Programming APIs

X'F7'
Neutral

Field outlining in hexadecimal:

Bit
Meaning

0 to 3
Reserved

4
Left line

5
Over line

6
Right line

7
Under line

X'00'
Default (no outline)

Input control (of DBCS/EBCDIC mixed fields) in hexadecimal:

Bit
Meaning

0 to 6
Reserved

7
SO/SI creation

X'00'
Default (no SO/SI creation)

For the programmed symbols, valid local ID values are in the range X'40'—X'FE', or X'00' for the device
default.

Ways to specify the binary validation attribute type and value in COBOL are shown in the following code
example.

VAL_REP_MFILL PIC 9(3) COMP VALUE 260 (replace-mandatory fill)
*
VAL_REP_MFLD PIC 9(3) COMP VALUE 258 (replace-mandatory field)
*
VAL_ADD_MFILL PIC 9(3) COMP VALUE 516 (add-mandatory fill)
*
VAL_ADD_MFLD PIC 9(3) COMP VALUE 514 (add-mandatory field)
*

Ways to specify field outlining attributes, input control types, and values in COBOL are shown in the
following code example.

 01 BINVALUE.
 02 VAL0000 PIC S999 COMP VALUE +0.
 02 VAL0000X REDEFINES VAL0000.
 03 FILLER PIC X.
 03 VAL00 PIC X.
 * (NO FIELD OUTLINE)

 02 VAL0001 PIC S999 COMP VALUE +1.
 02 VAL0001X REDEFINES VAL0001.
 03 FILLER PIC X.
 03 VAL01 PIC X.
 * (UNDERLINE)

Chapter 5. Message Format Service (MFS) reference 437

 02 VAL0002 PIC S999 COMP VALUE +2.
 02 VAL0002X REDEFINES VAL0002.
 03 FILLER PIC X.
 03 VAL02 PIC X.
 * (RIGHTLINE)

 02 VAL0003 PIC S999 COMP VALUE +3.
 02 VAL0003X REDEFINES VAL0003.
 03 FILLER PIC X.
 03 VAL03 PIC X.
 * (RIGHTLINE & UNDERLINE)

 02 VAL0004 PIC S999 COMP VALUE +4.
 02 VAL0004X REDEFINES VAL0004.
 03 FILLER PIC X.
 03 VAL04 PIC X.
 * (OVERLINE)

 02 VAL0005 PIC S999 COMP VALUE +5.
 02 VAL0005X REDEFINES VAL0005.
 03 FILLER PIC X.
 03 VAL05 PIC X.
 * (OVERLINE & UNDERLINE)

 02 VAL0006 PIC S999 COMP VALUE +6.
 02 VAL0006X REDEFINES VAL0006.
 03 FILLER PIC X.
 03 VAL06 PIC X.
 * (OVERLINE & RIGHTLINE)

 02 VAL0007 PIC S999 COMP VALUE +7.
 02 VAL0007X REDEFINES VAL0007.
 03 FILLER PIC X.
 03 VAL07 PIC X.
 * (OVERLINE & RIGHTLINE
 * & UNDERLINE)

 02 VAL0008 PIC S999 COMP VALUE +8.
 02 VAL0008X REDEFINES VAL0008.
 03 FILLER PIC X.
 03 VAL08 PIC X.
 * (LEFTLINE)

 02 VAL0009 PIC S999 COMP VALUE +9.
 02 VAL0009X REDEFINES VAL0009.
 03 FILLER PIC X.
 03 VAL09 PIC X.
 * (LEFTLINE & UNDERLINE)

 02 VAL000A PIC S999 COMP VALUE +10.
 02 VAL000AX REDEFINES VAL000A.
 03 FILLER PIC X.
 03 VAL0A PIC X.
 * (LEFTLINE & RIGHTLINE)

 02 VAL000B PIC S999 COMP VALUE +11.
 02 VAL000BX REDEFINES VAL000B.
 03 FILLER PIC X.
 03 VAL0B PIC X.
 * (LEFTLINE & RIGHTLINE
 * & UNDERLINE)

 02 VAL000C PIC S999 COMP VALUE +12.
 02 VAL000CX REDEFINES VAL000C.
 03 FILLER PIC X.
 03 VAL0C PIC X.
 * (LEFTLINE & OVERLINE)

 02 VAL000D PIC S999 COMP VALUE +13.
 02 VAL000DX REDEFINES VAL000D.

438 IMS: Application Programming APIs

 03 FILLER PIC X.
 03 VAL0D PIC X.
 * (LEFTLINE & OVERLINE
 * & UNDERLINE)

 02 VAL000E PIC S999 COMP VALUE +14.
 02 VAL000EX REDEFINES VAL000E.
 03 FILLER PIC X.
 03 VAL0E PIC X.
 * (LEFTLINE & OVERLINE
 * & RIGHTLINE)

 02 VAL000F PIC S999 COMP VALUE +15.
 02 VAL000FX REDEFINES VAL000F.
 03 FILLER PIC X.
 03 VAL0F PIC X.
 * (BOX)

Examples

The following examples show the use of the EATTR= and ATTR=(,nn) operands:

AX DFLD EATTR=(VMFILL,HUL),ATTR=(NUM,HI)
AY MFLD AX,ATTR=(,2)

The EATTR= operand of the DFLD statement requests that the specified field must be completely filled
with data, high intensity, and underlined. The ATTR= operand of the DFLD statement requests that the
specified field be numeric and high intensity.

Specifying the ATTR=(,2) operand indicates the application program can dynamically modify the two
extended attributes specified in the EATTR= operand. If this is specified, the LTH= value on the MFLD
statement must be increased by 4 bytes for the modified attribute bytes. The application program can
dynamically modify the validation and the extended highlighting attributes. The extended attributes of
color and programmed symbols cannot be dynamically modified, because they were not specified in the
EATTR= operand. The existing 3270 attributes cannot be dynamically modified, because ATTR=YES was
not specified on the MFLD statement.

To dynamically modify the extended highlighting to blinking, and add mandatory field validation when
data is entered into the field, the extended attribute types and values shown in the following table must
be placed in the field referenced by the MFLD "AY" in the preceding example.

Table 126. Extended attribute types and values for COBOL

ATTR 1 type ATTR 1 value ATTR 2 type ATTR 2 value Field data

C1 F1 02 02 data

0 1 2 3 4–n

Specification of color and programmed symbols, if present, is ignored. Regardless of the number of
attribute modification bytes specified, MFS sends the number of extended attributes specified in the
EATTR=operand of the DFLD.

Because the validation addition type (X'02') is specified, rather than the validation replacement type
(X'01'), the change to the validation attribute byte is an addition rather than a replacement.

BX DFLD EATTR=(CD,HD,PC'Z'),ATTR=(PROT)
BY MFLD BX,ATTR=(YES,3)

The EATTR= operand of the DFLD statement requests a field with a programmed symbol buffer local ID
of "Z" and the protected attribute. If no dynamic modification by an IMS application program occurs,
the color and highlighting device defaults are used. Because of the specification of ATTR=(YES,3) in
this example, the color, extended highlighting, programmed symbol buffer local ID, and existing 3270
attributes can be dynamically modified.

Chapter 5. Message Format Service (MFS) reference 439

You can dynamically modify the color, extended highlighting, and the 3270 attribute bytes, while keeping
the programmed symbol local ID (PC'Z') as specified on the DFLD statement. For example, to dynamically
modify the color to pink, the extended highlighting to reverse video, and the 3270 attribute bytes to
numeric and unprotected, use the attribute modification bytes for fields referenced by MFLD "BY" as
shown in the following table.

Table 127. Example of dynamically modified attribute bytes

Existing 3270 ATTR
mods

ATTR 1
type

ATTR 1
value

ATTR 2
type

ATTR 2
value

ATTR 3
type

ATTR 3
value

Field
data

00 D0 C2 F3 C1 F2 40 40 data

0 1 2 3 4 5 6 7 8–n

With byte 1, bit 1 of the existing 3270 attribute modification bytes on, IMS replaces the existing 3270
attribute byte rather than adding to it. This changes the field to unprotected and specifies the numeric
attribute. The third attribute has a type of X'40' (an invalid type) specified, which causes IMS to use the
DFLD specification for programmed symbols.

Related reference
“Dynamic modification of DBCS/EBCDIC mixed data” on page 441
Programmed symbols and input control attribute bytes can be dynamically modified to permit EBCDIC or
EGCS data to be mapped to a particular field on the 3270 display. DBCS/EBCDIC mixed data can also be
dynamically modified. DBCS is a subset of EGCS, so the EGCS field can contain DBCS data, as shown in
the following figure.

Dynamic modification of EGCS data
EGCS data can also be dynamically modified to permit EBCDIC or EGCS data to be mapped to a particular
field on the 3270 display.

With this function:

• You can enter EBCDIC or EGCS data.
• The application program can receive EBCDIC or EGCS data.
• EBCDIC or EGCS data can be passed to an SLU P remote program or to an ISC subsystem.

If ATTR=(,nn) is specified in the MFLD statement and a programmed symbol attribute is specified in
the corresponding DFLD statement, the application program can modify the field programmed symbol
attribute. Dynamic modification of the programmed symbol attribute for EGCS requires two additional
bytes. These additional bytes precede the MFLD data and must be included in the MFLD LTH=
specification.

The IMS application program can modify the DFLD programmed symbol attribute if all the following
conditions are met:

• The DFLD specifies EATTR=PX'hh', PC'c', EGCS'hh' or EGCS.
• The corresponding MFLD statement specifies ATTR=(,nn), where nn is a value from 1 through 4.
• The application program includes 2 × nn additional bytes preceding the data field.
• One set of two attribute bytes has an X'C3' as its first byte and a valid value (X'00' or X'40'—X'FE') as its

second byte.

The following table illustrates what the MFS transmits in the value byte of the programmed symbol
attribute type, if the DFLD statement does or does not specify a programmed symbol attribute, and the
IMS application program does or does not modify it.

440 IMS: Application Programming APIs

Table 128. Attribute type value byte contents

Application Program
Programmed Symbol
Attribute Bytes of X
and: C3 EATTR= ATTR= EATTR=

 Programmed symbol
specified

Programmed symbol
default

Not specified

X'40_FE'1 Send X'40_FE' Send X'40_FE' Send no attribute

Default X'00'1 Send X'00' Send X'00' Send no attribute

Not specified 2 Send programmed
symbol DFLD
specification

Send no attribute N/A

Omitted or Invalid 3 Send programmed
symbol DFLD
specification

Send X'00' Send no attribute

Notes:

1. ATTR=nn is specified on at least one MFLD statement that maps to this DFLD statement. The IMS
application program specifies a programmed symbol attribute of X'40' to X'FE'.

2. ATTR=nn is not specified on any MFLD statement that maps to this DFLD statement.
3. ATTR=nn is specified on at least one MFLD statement that maps to this DFLD statement. The

application program omits specifying this attribute, or the specified attribute is not X'00' or X'40'
to X'FE'.

Dynamic modification of DBCS/EBCDIC mixed data
Programmed symbols and input control attribute bytes can be dynamically modified to permit EBCDIC or
EGCS data to be mapped to a particular field on the 3270 display. DBCS/EBCDIC mixed data can also be
dynamically modified. DBCS is a subset of EGCS, so the EGCS field can contain DBCS data, as shown in
the following figure.

Figure 28. Dynamic modification of a DBCS/EBCDIC mixed field

The IMS application program can make a field EBCDIC, EGCS, or DBCS/EBCDIC mixed when all of the
following conditions are satisfied:

• One of the following is specified on the DFLD statement:

Chapter 5. Message Format Service (MFS) reference 441

 EATTR=(EGCS,MIXD)
 EATTR=(EGCS'00',MIX)
 EATTR=(EGCS'00',MIXD)

A DBCS keyword does not exist; DBCS fields are specified using the EGCS keyword. The initial attribute
must specify an EGCS field, a DBCS/EBCDIC mixed field, or an EBCDIC field.

• The corresponding MFLD statement specifies ATTR=(,nn) where nn is 2 or greater.
• The application program contains 2 × nn additional bytes preceding the data field.

When nn=2, the initial attribute is changed as shown in the following table according to the value of the
two attribute byte sets (4 bytes) specified in front of the data field by the application program.

Table 129. Dynamic modification of a DBCS/EBCDIC mixed field

Attribute Byte EBCDIC EGCS Mixed

40404040 EBCDIC EGCS Mixed

05014040 Mixed Mixed Mixed

0501C3F8 EGCS EGCS EGCS

C3F84040 EGCS EGCS EGCS

C3F80501 Mixed Mixed Mixed

0500C3F8 EGCS EGCS EGCS

C3000501 Mixed Mixed Mixed

C3000500 EBCDIC EBCDIC EBCDIC

When the initial attribute specifies an EGCS field and the application program specifies dynamic
modification of the input control attribute to a DBCS/EBCDIC mixed field, MFS replaces the value of
the programmed symbol for which the EGCS field is specified with the device default.

Related reference
“Dynamic modification of extended field attributes” on page 435
For an application program to modify extended attribute data, the MFLD statement must specify
ATTR=nn. Any error causes the DFLD EATTR= specification for that extended attribute byte to be used.

Specification of message output descriptor name
Output messages destined for MFS terminals are formatted using a message output descriptor (MOD).

Which MOD IMS uses can be specified within the output call, either insert (ISRT) or purge (PURG). Both
ISRT and PURG allow you to specify an output MOD name parameter on the call that provides a segment
of an output message.

When the output MOD name parameter is specified, IMS uses the name supplied to select the message
output descriptor. If the call is directed to the TP PCB or alternate response PCB, IMS updates the
MESSAGE OUTPUT DESCRIPTOR NAME field of the TP PCB with the name supplied in the output call. The
MOD name of all output messages inserted on an alternate PCB that did not explicitly specify a MOD name
is set to the previous MOD name.

Which MOD IMS uses to format the message depends on the name specified:
Name Specified

Descriptor Used
Valid output MOD name

Message output descriptor named by output MOD name
Eight blanks

IMS default message output descriptor (3270 or SLU 2 only—other devices use IMS basic edit for
output)

442 IMS: Application Programming APIs

Invalid output MOD name
IMS error default message output descriptor

If the output MOD name parameter is not specified, IMS formats the message using the MOD named in
the MESSAGE OUTPUT DESCRIPTOR NAME field of the I/O PCB.

MFS bypass for the 3270 or SLU 2
IMS MFS allows the IMS application program to bypass MFS formatting of input and output messages.

With this option, the IMS application program can load programmed symbol buffers, or send a device-
dependent data stream to format and update the 3270 display, or write a message to a 3270 printer. The
bypass can be used only on the SLU 2, and 3270 devices. Optionally, the IMS application program can
examine an input message with the attention identification (AID) byte, cursor address, SBA orders, and
buffer addresses as received from the display. For non-SNA VTAM transmissions, the data to be sent must
be equal to or less than the value specified in the system definition OUTBUF parameter. Data sent to a
printer using the MFS bypass is restricted to 4 KB.

MFS recognizes two special message output descriptor (MOD) names: DFS.EDT and DFS.EDTN.

Output messages bypass MFS formatting only if DFS.EDT or DFS.EDTN is supplied as the MOD name
parameter of the application program CALL statement IMS system messages, IMS error messages,
application program messages with no MOD name, and message switches are always formatted by MFS
(using the IMS-supplied formats).

When MFS is bypassed on output, the application program is responsible for constructing the entire
3270 data stream, beginning with the command code and ending with the last data byte. An exception
to this could be 3270 output using the MFS bypass and destined to a printer. The hexadecimal EBCDIC
command codes for use with the 3271/3274 controllers are:
Command

3271/3274
Erase All Unprotected

6F
Erase/Write

F5
Erase/Write Alternate

7E
Read Buffer

F2
Read Modified

F6
Read Modified All

6E
Write

F1
Write Structured Field

F3

The user-written application program has two ways to send output to printers:

• By providing the command code and WCC character in the application program and by setting bit 0 to 1
(X'80') in the Z2 field of the message segment to show that the appropriate command is provided.

• By allowing IMS to provide the command code and other characters. However, to print less than the
maximum line length, insert new line (NL) characters at the appropriate places in the data stream. This
method is the default.

Chapter 5. Message Format Service (MFS) reference 443

Specifying input forms for MFS bypass
After using the MFS bypass, the IMS application program must accept the input in one of two forms
depending on the MOD name specified for the output message.

The two forms of input are:

• MODNAME=DFS.EDT edits the input data.
• MODNAME=DFS.EDTN performs no editing on the input data.

MODNAME=DFS.EDT

The AID and the cursor address are removed from the data stream and any SBA or start field sequences
are replaced with blanks. In addition, the basic input edit routine performs the editing. If the AID code
received is a CLEAR, PA2, PA3, PFK12, or selector pen attention, existing IMS functions are performed. If
a PA1 is received, IMS performs the same function as for PA2 (that is, the next output message is sent if
one is available).

MODNAME=DFS.EDTN
If the transaction is in conversational mode, all input is passed to the application as received from the
terminal. If the transaction is not in conversational mode, the transaction code must be positioned to
precede the AID character of the data stream received from the terminal.

The password should never be passed to the IMS application program. The basic editing functions are
performed on the destination and password fields only. If the password appears within parentheses
immediately after the transaction code, basic edit removes the password. No editing is performed on the
remainder of the data. Existing IMS functions are bypassed for AID codes resulting from a CLEAR, PA1,
PA2, PA3, or selector pen attention. PFK12 causes a copy to be performed if it is allowed.

Position the transaction code using the physical terminal input edit exit, or cause IMS to supply it using
the conversational or preset destination mode.

If the terminal is in conversational mode, the message is sent to the application program in the
conversation. If the terminal is in preset mode, the transaction code is added to the beginning of the
message and the message is sent to the destination established by the /SET command. Therefore, while
in preset mode, a slash (/) as the first character of the input data is not considered an IMS command.
To be recognized as a command, /RESET must immediately follow the cursor address in the input data
stream. To do this, enter the /RESET command from an unformatted screen (no fields defined for the
screen). If the screen is formatted (fields defined for the screen), press the clear key to unformat the
screen. However, an application program must receive the clear AID byte and write a data stream that
does not format the screen.

Example:

Data stream = F5C3, erases the 3270 buffer.
Data stream = F5C3114040, erases the 3275 buffer.
 Entering: The /RESET command
 resets preset mode.

If /RESET is received from an unformatted screen, while bypassing MFS and basic edit (MOD name is
DFS.EDTN) and in preset mode, the input is treated as a command, and the terminal is taken out of preset
mode. You are responsible for sending a data stream that leaves the screen unformatted.

If the transaction code and password (if required) are entered with the input message and the terminal is
not in conversational or preset mode, your physical terminal input edit exit routine must be included in the
IMS system definition. The physical terminal input edit routine gains control before IMS destination and
security checking and must modify the input to place the transaction code and password (if required) in
front of the AID code.

444 IMS: Application Programming APIs

If the OPTIONS keyword of the IMS system definition TERMINAL or TYPE macro specifies that the
keyboard is to remain locked, and the MFS bypass with MOD name DFS.EDTN is used, the application
program must assume responsibility for unlocking the 3270 keyboard and resetting the MDT flags.

After use of the MFS bypass, the next output message is formatted by MFS if the MOD name is not
supplied or the MOD name supplied is not DFS.EDT or DFS.EDTN.

MFS bypass is intended primarily for subsystems executing under IMS and is not recommended for
normal application usage. If IMS application programs deal with 3270 data streams, they become device-
dependent, which complicates the application development process.

When a read command is executing in the MFS bypass, the output message containing the read command
is dequeued or re-enqueued when the input is received, depending on the option (PAGDEL/NPGDEL)
specified on the TERMINAL macro during system definition.

MFS bypass for the SLU 2 (3290) with partitioning
When the MOD specified in an application is either DFS.EDT or DFS.EDTN, the output message generated
can cause an SLU 2 terminal to function in partitioned mode. Using DFS.EDTN, a conversational
application can send a Query and receive a Query reply.

For output, the application program must supply the Create Partition data stream within the output
message, along with the data for the partitions. Also, the SLU 2 Device-Dependent Module sets Change
Direction (CD) on non-last conversational output messages. This allows Reads and Queries to be sent in
Write Structured Fields data streams.

A Query Reply input can be processed only if the previous MOD specified is DFS.EDTN. A Query Reply
input can be received but does not have a transaction code in the data stream.

For partitions 01 through 0F, the X'88' byte is followed by a 2-byte field that is not used. If a X'80' byte
follows this field, then the next byte is the PID byte (X'01' through X'0F'). For partition 00, the input will
have the same format as input data from a non-partitioned SLU 2.

For input with DFS.EDT or DFS.EDTN, the first AID byte, X'88', causes the proper decoding of the second
AID byte. Depending on the second AID byte, one of the following occurs:

• If the second AID byte decoded is X'80', a third AID byte is decoded. The data stream following that AID
byte is passed to the application program as follows:

– Using basic edit, if DFS.EDT is specified
– As a complete data stream, if DFS.EDTN is specified

• If the second AID byte is not X'80', input is passed only if the MOD specified in the application is
DFS.EDTN. When DFS.EDTN is specified, the complete data stream starting with the X'88' AID byte is
passed to the application program.

DIV statement
The DIV statement defines device formats within a DIF or DOF. The formats are identified as input, output,
or both input and output, and can consist of multiple physical pages. For DEV TYPE=SCS1, SCS2, or
DPM-AN, two DIV statements can be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all other
device types, only one DIV statement per DEV is allowed.

Format for DEV TYPE=SCS1, or SCS2 and DIV TYPE=INPUT

label

DIV

TYPE = INPUT

, OPTIONS =

MSG

DPAGE

Chapter 5. Message Format Service (MFS) reference 445

Format for DEV TYPE=3270 or 3270-An

label

DIV

TYPE =

INOUT

OUTPUT

Format for DEV TYPE=FIN

label

DIV

TYPE = INPUT

, OPTIONS =

MSG

DPAGE

Format for DEV TYPE=SCS1, SCS2, 3270P, FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB,
or FIFP and DIV TYPE=OUTPUT

label

DIV

TYPE =
OUTPUT

──── , COMPR = FIXED

SHORT

ALL

Format for DEV TYPE=DPM-An

label

DIV

TYPE =

INPUT A

OUTPUT B

A

, RCDCTL = (

256

nnnnn

,NOSPAN

)

, NULL =

KEEP

DELETE

, OPTIONS = (
FLDEXIT

NOFLDEXIT

,SEGEXIT

,NOSEGEXIT

,MSG

,DPAGE

,NODNM
)

B

446 IMS: Application Programming APIs

, RCDCTL = (
256

nnnnn

,SPAN

,NOSPAN

)

, HDRCTL = (
FIXED

VARIABLE

,7

, nn
)

,OPTIONS=(
MSG

DPAGE

PPAGE

,SIM

,NOSIM2 ,DNM

)

, COMPR = FIXED

SHORT

ALL

Format for DEV TYPE=DPM-Bn

label

DIV

TYPE =

INPUT A

OUTPUT B

A

, RCDCTL = (

256

nnnnn

,NOSPAN

)

, OPTIONS = (
FLDEXIT

NOFLDEXIT

,SEGEXIT

,NOSEGEXIT

,MSG

,DPAGE

,DNM

,NODNM

)

, DPN = dfldname , RDPN = dfldname

, RPRN = dfldname

Chapter 5. Message Format Service (MFS) reference 447

, RCDCTL = (

256

nnnnn

,NOSPAN

)

, OPTIONS = (

,MSG

,DPAGE

,PPAGE

,SIM

,NOSIM2

,DNM

,NODNM

)

, DPN = (' literal '

, dfldname

)

, PRN = (' literal '

, dfldname

)

, RPRN = (' literal '

, dfldname

)

, OFTAB = (
X'hh'

C'c'

,MIX

,ALL

)

, COMPR = FIXED

SHORT

ALL

Parameters
label

A one- to eight-character alphanumeric name that is specified to uniquely identify this statement.
TYPE=

This describes the format as input, output, or both.
INOUT

Describes an input and output format.
INPUT|OUTPUT

Describes an input-only format (INPUT) or an output-only format (OUTPUT). Certain DEV
statement keywords can be used. For example:

• Specifying WIDTH=80 for DEV TYPE=SCS1 indicates that fields can be printed in columns 1
through 80 on output and received from columns 1 through 80 on input.

• Specifying WIDTH=80 for DEV TYPE=SCS2 indicates that both the card reader and card punch
have the same number of punch positions.

• Specifying WIDTH=80 and HTAB=(SET,5) for DEV TYPE=SCS1 indicates that fields can be
printed in columns 5 through 80 on output and received from columns 5 through 80 on input. In

448 IMS: Application Programming APIs

this case DFLD POS=(1,5) or POS=5 on input is the same as if you specified column 1 and a left
margin position at 1.

You enter data the same way, regardless of where the left margin is currently set.

RCDCTL=
Creates record definitions even if RCD statements are used in the same format definition. RCDCTL is
valid only if MODE=RECORD is specified on the DEV statement.

The first data field is the first field of the message for OPTIONS=MSG. The first data field is the first
field of the DPAGE or PPAGE for OPTIONS=DPAGE and PPAGE, respectively. If the first data field does
not fit in the same record as the output message header, and if OPTIONS=DPAGE or PPAGE has been
specified, the first data record will be sent in the next transmission. The output message header will
be transmitted by itself (as is always the case for OPTIONS=MSG).
256

The maximum length of an input or output transmission. The value 256 is valid only for DEV
TYPE=DPM-An or DPM-Bn.

nnnnn
The maximum length of an input or output transmission. A value is valid only for DEV TYPE=DPM-
An or DPM-Bn. The length cannot be greater than 32000 or less than the length of the message
output header.

When TYPE=OUTPUT is specified, nnnnn is less than or equal to the output buffer size specified
in the OUTBUF= macro at IMS system definition. If nnnnn is greater than the OUTBUF= value
specified, one record can require multiple output transmissions and can produce undesirable
results in the remote program. If fields do not exactly fit in the defined records, and NOSPAN has
been specified, records might not be completely filled.

SPAN
Specifies that fields can span records.

When TYPE=OUTPUT is specified you can specify SPAN only with DEV TYPE=DPM-An. Fields can
span a record boundary but not a PPAGE boundary. The remote program must include logic to
associate the partial fields or deal with them separately.

NOSPAN
Specifies that fields cannot span records. Every field is contained within a record and no field has
a length greater than the value specified. NOSPAN is the default.

NULL=
Specifies how MFS is to handle trailing nulls. NULL= is valid only for DEV TYPE=DPM-An and
TYPE=INPUT.
KEEP

Directs MFS to ignore trailing nulls.
DELETE

Directs MFS to search for and replace trailing nulls. MFS searches input message fields for trailing
nulls or for fields that are all nulls, and replaces the nulls with the fill character specified in the
message definition.

OPTIONS=
Specifies formatting and mapping of data.
DNM

Specifies the data name.

• For TYPE=INPUT:

DNM can be specified only for DEV TYPE=DPM-Bn. A specific DPAGE is selected to map
the current or only data transmission when the DPAGE data name is supplied as the DSN
parameter in the message header, and the DPAGE data name matches a defined DPAGE data
name. If these conditions are not met, the last defined DPAGE name is used to map the data,
unless the DPAGE is defined as conditional.

Chapter 5. Message Format Service (MFS) reference 449

• For TYPE=OUTPUT:

– DNM can be specified for DEV TYPE=DPM-An or DPM-Bn.

For DEV TYPE=DPM-An, use DNM with the FORS keyword on the DEV statement to specify
a literal in the message header. See the topic "Message Processing" in IMS Version 15.3
Application Programming. This parameter is optional.

For DEV TYPE=DPM-Bn, MFS includes the following in the DD header:

- The FMT name if OPTIONS=MSG
- The DPAGE name if OPTIONS=DPAGE
- The PPAGE name if OPTIONS=PPAGE

NODNM
Specifies that there is no data name.

• For TYPE=INPUT:

NODNM can be specified for either DEV TYPE=DPM-An or DPM-Bn. MFS selects a specific
DPAGE by performing a conditional test on the data received and the COND= parameter.

• For TYPE=OUTPUT:

NODNM can be specified only for DEV TYPE=DPM-Bn. If NODNM is specified, no data
structure name (DSN) is supplied in the DD header.

DPAGE
Specifies different ways of receiving and transmitting data, depending on the device type and
whether TYPE=INPUT or TYPE=OUTPUT:

• For TYPE=INPUT:

– For SCS1, SCS2, or FIN, or for DEV TYPE=DPM-An or DPM-Bn, DPAGE specifies that an input
message can be created from multiple DPAGEs.

If multiple DPAGE input is not requested in MFS definitions, messages cannot be created from
more than one DPAGE.

If a single DPAGE is transmitted and contains more data than defined for the DPAGE selected,
or multiple pages are transmitted, the input message is rejected and an error message is sent
to the other subsystem.

• For TYPE=OUTPUT:

For DEV TYPE=DPM-An or DPM-Bn, DPAGE specifies that IMS transmits all DFLDs that
are grouped in one page together. The logical page is transmitted in one or more records.
If PPAGE statements are defined with the DPAGE, each PPAGE statement begins a new
record. An additional logical page is sent when a paging request is received from the remote
program. Each logical page is preceded by an output message header, and the label on the
DPAGE is placed in the header. For DEV TYPE=DPM-Bn, the data structure name is optional in
the DD header and depends on the specification of DNM or NODNM.

FLDEXIT
Specifies that the exit routine in the MSG definition MFLD is to be called for DEV TYPE=DPM-An or
DPM-Bn and TYPE=INPUT.

FLDEXIT is the default.

This parameter is valid only when DEV TYPE=DPM-An or DPM-Bn and TYPE=INPUT.

NOFLDEXIT
Specifies that the exit routine in the MSG definition MFLD is to be bypassed.

MSG
Specifies different ways of creating and transmitting messages, depending on the device and
whether TYPE=INPUT or TYPE=OUTPUT:

450 IMS: Application Programming APIs

• For TYPE=INPUT:

For DEV TYPE=SCS1, SCS2, or FIN, or for DEV TYPE=DPM-An or DPM-Bn, MSG specifies that
an input message can be created from a single DPAGE.

• For TYPE=OUTPUT:

For DEV TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT, MSG is the default and specifies
that IMS transmits all the DFLDs within a message together as a single message group.
The message is preceded by an output message header. All DFLDs are transmitted. For DEV
TYPE=DPM-Bn, the data structure name is optional in the header.

PPAGE
Specifies that IMS transmits the DFLDs that are grouped in one presentation page (PPAGE)
together in one chain. PPAGE is valid only when DEV TYPE=DPM-An or DPM-Bn and
TYPE=OUTPUT. The presentation page is transmitted in a group of one or more records. An
additional presentation page is sent when a paging request is sent to IMS from the remote
program. Each presentation page is preceded by an output message header, and the label on the
PPAGE statement is placed in the header. For DEV TYPE=DPM-Bn, the data structure name is
optional in the DD header and depends on the specification of DNM or NODNM.

SEGEXIT
Specifies that the exit routine in the MSG definition SEG is to be called for DEV TYPE=DPM-An or
DPM-Bn and TYPE=INPUT. SEGEXIT is the default.

This parameter is valid only when DEV TYPE=DPM-An or DPM-Bn and TYPE=INPUT.

NOSEGEXIT
Specifies that the exit routine in the MSG definition SEG is to be bypassed.

SIM
Specifies that MFS is to simulate attributes. This is valid only when DEV TYPE=DPM-An or DPM-Bn
and TYPE=OUTPUT. SIM indicates that MFS is to simulate the attributes specified by the IMS
application program and place the simulated attributes in corresponding DFLDs that are defined
with ATTR=YES or YES,nn. The first byte of the field is used for the simulated attributes.

If the MFLD does not supply 3270 attribute information (by means of the ATTR=YES or YES,nn
operand) for the corresponding DFLD specifying ATTR=YES or YES,nn, a blank is sent in the first
byte of the field. The application designer of the remote program or ISC subsystem is responsible
for interpreting the simulated attribute within the remote program or ISC subsystem.

SIM is the default of SIM/NOSIM2.

NOSIM2
Specifies that MFS sends a bit string that is 2 bytes long to the remote program or subsystem.
This bit string is sent exactly as received from the IMS application program. 3270 extended bytes,
if any (ATTR=YES,nn), are always sent as received from the application program and follow the
2-byte string of 3270 attributes.

If the MFLD does not supply attribute information, binary zeros are sent in the 2 bytes preceding
the data for the field.

For more information on the ATTR parameter on the MFLD statement, see MFS Language utility
(DFSUPAA0) (System Utilities).

HDRCTL=
Specifies, for DEV TYPE=DPM-An and DIV TYPE=OUTPUT only, the characteristics of the output
message header.

FIXED
Specifies that a fully padded output message header is to be sent to the remote program. The
structure of the fixed output message header is the same for all DPM output messages that are built
using this FMT definition. The base DPM output message header has a length of 7, and includes the
version ID.

Chapter 5. Message Format Service (MFS) reference 451

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_mfslang.htm#ims_mfslang
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_mfslang.htm#ims_mfslang

VARIABLE
Specifies that MIDNAME and DATANAME have trailing blanks omitted and their length fields adjusted
accordingly. If MIDNAME is not used, neither the MIDNAME field nor its length is present.

nn
Specifies the minimum length of the header, that is, the base header without MFS fields. The default
is 7, which is the length of the base message header for DPM. Specifying other than 7 can cause
erroneous results in the remote program.

The parameters RDPN=, DPN=, PRN=, and RPRN= refer to both the ISC ATTACH function management
header and the equivalent ISC SCHEDULER function management header.
RDPN=

For DIV TYPE=INPUT, the dfldname specification permits the suggested return destination process
name (RDPN) to be supplied in the input message MFLD referencing this dfldname. If dfldname is not
specified, no RDPN is supplied in the input message.

DPN=
For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the DPN in the
output ATTACH message header. literal cannot exceed eight characters, and must be enclosed in
single quotes. If the dfldname is also specified, the data supplied in the MFLD referencing this
dfldname is used as the DPN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, literal is used. If the data in the MFLD referencing the dfldname is
greater than eight characters, the first eight characters are used.

PRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested primary resource name (PRN)
to be supplied in the input message MFLD referencing this dfldname. If the dfldname is not specified,
no PRN is supplied in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use literal as the PRN in the output
ATTACH message header. literal cannot exceed eight characters and must be enclosed in single
quotes. If the dfldname is also specified, the data supplied in the MFLD referencing this dfldname is
used as the PRN in the output ATTACH message header. If no output message MFLD reference to the
dfldname exists, 'literal' is used. If the data in the MFLD referencing the dfldname is greater than eight
characters, the first eight characters are used.

RPRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return primary resource
name (RPRN) to be supplied in the input message MFLD referencing this dfldname. If dfldname is not
specified, no RPRN is supplied in the input message to the application program.

For DIV TYPE=OUTPUT, 'literal' specification requests MFS to use literal as the suggested return
primary resource name (RPRN) in the output ATTACH message header. literal cannot exceed 8
characters and must be enclosed in single quotes. If the dfldname is also specified, the data supplied
in the MFLD referencing this dfldname is used as the RPRN in the output ATTACH message header.
If no output message MFLD reference to the dfldname exists, 'literal' is used. If the data in the MFLD
referencing the dfldname is greater than 8 characters, the first 8 characters are used.

OFTAB=
Directs MFS to insert output field tab separator characters in the output data stream for the message.
If OPTIONS=DNM and OFTAB, then the OFTAB character is placed in the DD header and an indicator is
set to MIX or ALL. If OPTIONS=NODNM, then no DD header is sent.
X'hh'

Specifies a hexadecimal character (hh) to be used as the output field tab separator character.
X'3F' and X'40' are invalid.

C'c'
Specifies a character (c) to be used as the output field tab separator character. You cannot specify
a blank for the character (C' ').

The character specified cannot be present in the data stream from the IMS application program. If
it is present, it is changed to a blank (X'40').

452 IMS: Application Programming APIs

If an output field tab separator character is defined, either MIX or ALL can also be specified. The
default is MIX.

MIX
Specifies that the output field tab separator character is inserted into each individual field with no
data or with data that is less than the defined DFLD length.

ALL
Specifies that the output field tab separator character is inserted into all fields, regardless of data
length.

COMPR=
Directs MFS to remove trailing blanks from short fields, fixed-length fields, or all fields presented by
the application program.

For DPM-An devices, trailing blanks are removed from the end of a segment if all of the following are
specified:

• FILL=NULL or FILL=PT
• GRAPHIC=YES for the current segment being mapped
• OPT=1 or OPT=2, in the MSG segment

If these conditions are met, trailing blanks are replaced as follows:
FIXED

Specifies that trailing blanks from fixed-length fields are replaced by nulls.
SHORT

Specifies that trailing blanks from fields shortened by the application are replaced by nulls.
ALL

Specifies that trailing blanks from all fields are replaced by nulls.

The trailing nulls are compressed at the end of the record. For more information on the FILL= operand
of the MFLD statement, see MFS Language utility (DFSUPAA0) (System Utilities).

For DPM-Bn devices, trailing blanks are removed if all of the following are specified:

• OFTAB (on the current DIV statement), FILL=NULL, or FILL=PT
• GRAPHIC=YES for the current segment being mapped
• OPT=1 or OPT=2 in the MSG segment

If these conditions are met, trailing blanks are removed as follows:
FIXED

Specifies that trailing blanks are to be removed from fixed-length fields.
SHORT

Specifies that trailing blanks are to be removed from fields shortened by the application.
ALL

Specifies that trailing blanks are to be removed from all fields.

Related concepts
“Output format control for SLU P DPM-An” on page 498
For SLU P devices with the DPM-An option, You can use several specifications in MFS to control the format
of output messages.
“Trailing blank compression” on page 504
Blanks at the end of segments are compressed if all of the following are true.
Related reference
“Optional deletion of null characters for DPM-An” on page 475
MFS provides for optional deletion of trailing null characters in transmission records and input data
fields from SLU P (DPM-An) remote programs. (A null character is a hexadecimal zero, X'00'.) In the DIV
statement, the device input format can specify NULL=KEEP or NULL=DELETE. NULL=DELETE means that

Chapter 5. Message Format Service (MFS) reference 453

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_mfslang.htm#ims_mfslang

MFS scans data fields and transmission records for trailing nulls and deletes them. KEEP is the default
and means that MFS leaves trailing nulls in the data and treats them as valid data characters.

DPAGE statement
The DPAGE statement defines a logical page of a device format. This statement can be omitted if none of
the message descriptors referring to this device format (FMT) contain LPAGE statements and no specific
device option is required.

Format for DEV TYPE=DPM-An or DPM-Bn AND DIV TYPE=INPUT

label

DPAGE

COND = (offset , >=

<=

>

<

=
¬

,' value ')

Format for DEV TYPE=DPM-An AND DIV TYPE=OUTPUT

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

Format for DEV TYPE=DPM-Bn AND DIV TYPE=OUTPUT

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

, OFTAB = (

X'hh'

C'c'

,MIX

,ALL

)

454 IMS: Application Programming APIs

Format for DEV TYPE=3270-An

label

DPAGE

CURSOR = (

,

(111,ccc

, dfld

))

, FILL =

PT

X'hh'

C'c'

NONE

NULL

, MULT = YES

, PD = pdname , ACTVPID = dfldname

Format for DEV TYPE=3270

label

DPAGE

CURSOR = (

,

(111,ccc

,dfld

))

, FILL =

PT

X'hh'

C'c'

NONE

NULL

, MULT = YES

Format for DEV TYPE=3270P

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

Chapter 5. Message Format Service (MFS) reference 455

Format for DEV TYPE=FIN

label

DPAGE

COND = (offset , >=

<=

>

<

=
¬

,' value ')

Format for DEV TYPE=FIDS, FIDS3, FIDS4, or FIDS7

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

CURSOR = (

,

(111, ccc

, dfld

))

, ORIGIN = (

,

ABSOLUTE

RELATIVE)

Format for DEV TYPE=FIJP or FIPB

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

456 IMS: Application Programming APIs

Format for DEV TYPE=FIFP

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

SELECT = (

,

LEFT

RIGHT

DUAL

)

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=INPUT

label

DPAGE

COND = (offset , >=

<=

>

<

=
¬

,' value ')

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=OUTPUT

label

DPAGE

FILL =

X'40'

X'hh'

C'c'

NONE

NULL

Parameters
label

A 1- to 8-byte alphanumeric name can be specified for this device format that contains LPAGE SOR=
references, or if only one DPAGE statement is defined for the device. If multiple DEV statements are
defined in the same FMT definition, each must contain DPAGE statements with the same label.

For device type DPM-An and DIV statement OPTIONS=DPAGE, this name is sent to the remote
program as the data name in the output message header. If label is omitted, MFS generates a
diagnostic name and sends it to the remote program in the header. If the DPAGE statement is omitted,
the label on the FMT statement is sent in the output message header. If OPTIONS=DNM, the label on
the FMT statement is sent as the DSN in the DD header.

COND=
Specifies a conditional test to be performed on the first input record. The offset specified is relative
to zero. The specification of the offset must allow for the LLZZ field of the input record (for example,
the first data byte is at offset 4). If the condition is satisfied, the DFLDs defined following this DPAGE
are used to format the input. When no conditions are satisfied, the last defined DPAGE will be used

Chapter 5. Message Format Service (MFS) reference 457

only if the last defined DPAGE does not specify COND=. If the COND= parameter is specified for the
last DPAGE defined and the last defined DPAGE condition is not satisfied, the input message will be
rejected. Multiple LPAGE definitions are allowed in message input definitions.

If this keyword is specified, and OPTIONS=NODNM is specified on the DIV statement, this
specification is used for DPAGE selection. If this keyword is specified and OPTIONS=DNM is specified
on the DIV statement, the COND= specification is ignored and the data structure name from the DD
header is used for DPAGE selection.

Lowercase data entered from Finance, SCS1, or SCS2 keyboards is not translated to uppercase when
the COND= comparison is made. Therefore, the literal operand must also be in lowercase.

FILL=
Specifies a fill character for output device fields. Default value for all device types except the 3270
display is X'40'; default for the 3270 display is PT. For 3270 output when EGCS fields are present,
only FILL=PT or FILL=NULL should be specified. A FILL=PT erases an output field (either a 1- or
2-byte field) only when data is sent to the field, and thus does not erase the DFLD if the application
program message omits the MFLD. For DPM-Bn, if OFTAB is specified, FILL= is ignored and FILL=NULL
is assumed.
NONE

Must be specified if the fill character from the message output descriptor is to be used to fill the
device fields.

X'hh'
Specifies a hexadecimal character (hh) that is used to fill the device fields.

C'c'
Specifies a character (c) that is used to fill the device fields.

NULL
Specifies that fields are not to be filled. For devices other than the 3270 display, compacted lines
are produced when message data does not fill the device fields.

For DPM-An devices, trailing nulls (X'3F') are removed from all records transmitted to the
remote program or subsystem. Trailing nulls are removed up to the first non-null character. Null
characters between non-null characters are transmitted. If the entire record is null, but more
data records follow, a record containing a single null is transmitted to the remote program. If
the entire record is null and more records follow, if OPTIONS=MSG or DPAGE, or in a PPAGE, if
OPTIONS=PPAGE, then all null records are deleted to the end of that DPAGE or PPAGE.

PT
Is identical to NULL except for the 3270 display. For the 3270 display, specifies that output fields
that do not fill the device field (DFLD) are followed by a program tab character to erase data
previously in the field; otherwise, this operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is changed to X'00' for
control characters or to X'40' for other nongraphic characters. For all other devices, any FILL=X'hh'
or FILL=C'c' specification with a value less than X'3F' is ignored and defaulted to X'3F' (which is
equivalent to a specification of FILL=NULL).

MULT=YES
Specifies that multiple physical page input messages are allowed for this DPAGE.

CURSOR=
Specifies the position of the cursor on a physical page. Multiple cursor positions might be required if
a logical page or message consists of multiple physical pages. The value lll specifies line number and
ccc specifies column. Both lll and ccc must be greater than or equal to 1. The cursor position must
either be on a defined field or defaulted. The default lll,ccc value for 3270 displays is 1,2. For Finance
display components, if no cursor position is specified, MFS does not position the cursor—the cursor
is normally placed at the end of the output data on the device. For Finance display components, all
cursor positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program with cursor information
on input and allowing the application program to specify cursor position on output.

458 IMS: Application Programming APIs

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the MFLD statement) for
output cursor positioning.

The dfld parameter specifies the name of a field containing the cursor position. This name can be
referenced by an MFLD statement and must not be used as the label of a DFLD statement in this
DEV definition. The format of this field is two binary halfwords containing line and column number,
respectively. When this field is referred to by a message input descriptor, it contains the cursor
position at message entry. If referred to by a message output descriptor, the application program
places the desired cursor position into this field as two binary halfwords containing line and column,
respectively. Binary zeros in the named field cause the values specified for lll,ccc to be used for cursor
positioning during output. During input, binary zeros in this field indicate that the cursor position is not
defined. The input MFLD referring to this dfld should be defined within a segment with GRAPHIC=NO
specified or should use EXIT=(0,2) to convert the binary numbers to decimal.

ORIGIN=
Specifies page positioning on the Finance display for each physical page defined. Default value is
ABSOLUTE.
ABSOLUTE

Erases the previous screen and positions the page at line 1 column 1. The line and column
specified in the DFLD statement become the actual line and column of the data on the screen.

RELATIVE
Positions the page starting on column 1 of the line following the line where the cursor is
positioned at time of output. Results might be undesirable unless all output to the device is
planned in a consistent manner.

OFTAB=
Directs MFS to insert the output field tab separator character specified on this DPAGE statement for
the output data stream of the DPAGE being described.
X'hh'

Specifies a hexadecimal character (hh) to be used as the output field tab separator character.
X'3F' and X'40' are invalid.

C'c'
Specifies a character (c) to be used as the output field tab separator character. You cannot specify
a blank for the character (C' ').

The character specified cannot be present in data streams from the IMS application program. If it
is present, it is changed to a blank (X'40').

If the output field tab separator character is defined, either MIX or ALL can also be specified.
Default value is MIX.

MIX
Specifies that an output field tab separator character is to be inserted into each individual field
with no data or with data less than the defined DFLD length.

ALL
Specifies that an output field tab separator character is to be inserted into all fields, regardless of
data length.

SELECT=
Specifies carriage selection for a FIFP device with FEAT=DUAL specified in the previous DEV
statement. It is your responsibility to ensure that proper forms are mounted and that left margins
are set properly. Default value is LEFT.
LEFT

Causes the corresponding physical page defined in this DPAGE to be directed to the left platen.
RIGHT

Causes the corresponding physical page defined in this DPAGE to be directed to the right platen.

Chapter 5. Message Format Service (MFS) reference 459

DUAL
Causes the corresponding physical page defined in this DPAGE to be directed to both the left and
right platens.

PD=
(for the 3180 and 3290 in partition formatted mode) Specifies the name of the partition descriptor of
the partition associated with the DPAGE statement. This is the parameter that maps a logical page of
a message to or from the appropriate partition. The name of the PD must be contained within the PDB
statement specified in the DEV statement.

ACTVPID=
(for the 3290 in partition formatted mode) Specifies the name of an output field in the message
containing the partition identification number (PID) of the partition to be activated. This dfldname
must be referenced by an MFLD statement and must not be used as the label of a DFLD statement in
the DEV definition. The application program places the PID of the partition to be activated in this field.
The PID must be in the format of a two byte binary number ranging from X'0000' to X'000F'.

Restriction: Do not specify this operand for the 3180. Because only one partition is allowed for this
device, you do not need to specify an active partition.

MFS message formatting functions
IMS provides message formatting functions for MFS. The control blocks format messages for different
device types.

Input message formatting
Use the following information to format your MFS input messages.
Related concepts
“Output message formatting options” on page 482
MFS provides three message formatting options for output data. The option selected determines how the
data is formatted and governs the way in which the application program builds the output message.
“Input format control for ISC (DPM-Bn) subsystems” on page 480
Use the major input message formatting functions of MFS with ISC nodes.

Input messages accepted by MFS
Only input data from devices that are defined to IMS TM as operating with MFS can be processed by
MFS. However, the use of MFS for specific input messages depends on the message content and, in some
cases, on the previous output message.

3770, SLU 1, and NTO
For MFS to process data from a 3770, SLU 1, or NTO, these devices must be defined to operate with MFS
at IMS TM system definition or with user descriptors if the extended terminal option (ETO) is available.

After the device is defined to operate with MFS, the terminal still operates in unformatted mode (using
basic edit, not MFS) until one of the following occurs:

• //midname is entered and sent to IMS.
• An output message to the terminal is processed using a message output descriptor (MOD) that names a

message input descriptor (MID) to be used to process subsequent input data.

When //midname is received, MFS gets control to edit the data using the named MID. If any data
follows //midname (//midname must be followed by a blank when data is also entered), MFS discards
the //midname and the blank and formats the data according to the named MID. If no data follows //
midname, MFS considers the next line received from the terminal to be the first line of the message.

When an output message is processed by a MOD that names a MID, the MID is used to format the
next input from that terminal. This output message can be created by an application program, the IMS
TM /FORMAT command, a message switch, or some other IMS TM function.

460 IMS: Application Programming APIs

Once in "formatted mode" (using MFS, not IMS TM basic edit), the device continues to operate in
formatted mode until one of the following occurs:

• // or //b (// followed by a blank) is received. The terminal returns to unformatted mode and the // (and
blank) are discarded. The two slashes are escape characters.

• //bH and data are received. The terminal is returned to unformatted mode, the // blank is discarded, and
the data is formatted by IMS TM basic edit.

• An output message whose MOD does not name a MID is sent to the terminal.

3270 and SLU 2
All 3270 and SLU 2 devices are automatically defined to operate with MFS.

Restriction: Situations in which 3270 and SLU 2 devices do not operate in formatted mode are:

• When first powered on
• After the CLEAR key is pressed
• When the MOD used to process an output message does not name a MID to use for the next input data

received
• When MFS is bypassed by the application program using the DFS.EDT or DFS.EDTN modname

While in unformatted mode, input is limited to IMS TM commands, terminal test requests for VTAM ,
paging requests, and transaction code or message switch data that does not require MFS.

Finance and SLU P workstations

For MFS to process data from a Finance or SLU P workstation, the terminal must be defined to operate
with MFS at IMS TM system definition or with user descriptors if ETO is available. Even when so defined,
the workstation operates in unformatted mode (using IMS TM basic edit, not MFS) until one of the
following occurs:

• The Finance or SLU P workstation remote application program requests MFS formatting by specifying
the name of a MID in the input message header.

• //midname is entered by a workstation operator and is sent to IMS TM by the remote application
program as the first or only part of the input message itself.

For proper SLU P formatting, include in the input message header a version identification (version
ID). The version ID ensures that the correct level of MFS descriptor (Device Input Format, or DIF) is
provided in mapping the input message. If this verification is not desired, the version ID can be sent
with hexadecimal zeros (X'0000') or it can be omitted from the message header.

When an output message sent to an SLU P or Finance workstation is formatted using a MOD that names
a MID, IMS TM sends the name of the MID to the workstation as part of the output message header.
Because IMS TM does not have direct control of the terminal devices in these systems, IMS TM cannot
guarantee the proper MID is used to process the next input. It is the responsibility of the remote program
to save the MID name and to include it in the next input message it sends to IMS TM as the DPN.

Finance and SLU P workstations continue in formatted mode only when the current message has an
associated MID or MOD.

Intersystem communication (ISC) subsystems
For data from an ISC subsystem to be processed by MFS, the ISC subsystem must be defined as
UNITYPE=LUTYPE6 on the TYPE macro at IMS TM system definition or with ETO user descriptors. Even
when so defined, the ISC subsystem operates in unformatted mode (using IMS TM basic edit or ISC edit,
not MFS) until the ISC application program requests MFS formatting by specifying the name of a MID in
the DPN field of the input message header.

Chapter 5. Message Format Service (MFS) reference 461

When an output message sent to an ISC subsystem is formatted using a MOD that names a MID, IMS
TM sends the name of the MID to the ISC subsystem in the RDPN field of the output message header.
Because IMS TM does not have direct control of the ISC subsystem, IMS TM cannot guarantee the proper
MID is used to process the next input. It is the responsibility of the ISC application program to save the
MID name and to include it in the next input message it sends to IMS.

ISC subsystems continue in formatted mode only when the current message has an associated MID or
MOD.

Formatting messages from terminals in preset destination mode
Preset destination mode is used to fix a destination for all messages entered from a terminal. Use
the /SET command to enter preset destination mode. When a terminal is in preset mode, all input
messages (processed by either MFS or basic edit) are routed to the destination established by the /SET
command. You do not have to include the message destination in the input message.

When IMS TM basic edit processes input from a preset terminal, the preset destination name is added
to the beginning of the first segment. When MFS processes input from a preset terminal, the preset
destination name is not added to the beginning of the first segment; input message format is a result of
your message definition and input. MFS provides many methods for reserving space in an input segment
or for inserting a transaction code, without requiring you to specify a message destination.

Formatting of messages using Fast Path
If you plan to implement Fast Path, MFS functions like other IMS TM applications, with the restriction that
all messages must be single-segment messages.

Related concepts
Using Intersystem Communication Edit (Application Programming)
Extended Terminal Option (ETO) (Communications and Connections)
Related reference
/SET command (Commands)
/FORMAT command (Commands)

How MFS formats input messages
Input data from MFS-supported devices in formatted mode is formatted based on the contents of two
MFS control blocks—the message input descriptor (MID) and the device input format (DIF). The MID
defines how the data should be formatted for presentation to the IMS TM application program and points
to the DIF associated with the input device. The DIF describes the data as the data is received from the
device.

If the message built by the MID is a command, the command must conform to the command format and
syntax rules as documented in IMS Version 15.3 Communications and Connections.

Input message formatting options
MFS supports three message formatting options. The option selected determines how MFS interprets
the MID definition and thereby formats the data into message fields for presentation to the application
program.

The MID's MFLD statement or statements describes message fields in terms of:

• Length
• The device field from which input data is to be obtained
• Literal data for message fields which will not or do not receive device data
• Fill characters to use when the input data does not fill the message field
• Field justification (left or right) or truncation (left or right) specifications
• Whether the first 2 bytes of the field should be reserved for attribute data

462 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_intersystemcommedit.htm#ims_intersystemcommedit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_ccg_part_eto.htm#ims_ccg_part_eto
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_set_cmd.htm#ims_cr2set
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_format.htm#ims_cr1format

The formatting option is specified in the MID's MSG statement (OPT=). The selection of the proper option
for an application is a design decision that should be based on the complexity and variability of the device
data stream, the programming language used, and the complexity of the program required to process the
application under a given option. In the option descriptions, a NULL character is X'3F'.

MFS option 1
The effect of option 1 depends on whether a fill character of NULL has been defined. When no field in an
option 1 message is defined to the MFS Language utility as having a fill character of NULL:

• Messages always contain the defined number of segments.
• Each segment is always of the defined length and contains all defined fields.
• All fields are filled with data, data and fill characters, or fill characters.

When fields in an option 1 message are defined as having a fill character of NULL:

• Each field with null fill and no input data from the device is eliminated from the message segment. If
all fields in a segment are eliminated in this manner and no literals (explicit or default) are defined,
the segment is eliminated; otherwise, the length of the segment is reduced and the relative position of
succeeding fields in the segment is altered.

• Fields with null fill that receive device data that does not fill the field are not padded—the number of
characters received for the device field becomes the number of characters of the input data. This alters
the length of the segment and the relative position of all succeeding fields in the segment.

MFS option 2
Option 2 formatting is identical to option 1 unless a segment contains no input data from the device after
editing. If this occurs and there are no more segments containing input data from the device, the message
is terminated, and the last segment in the message is the last segment that contained input data from the
device. If a segment is created that has no input data from the device, but there are subsequent segments
that do contain data from the device, a segment is created with a single byte of data (X'3F') signifying that
this is a pad or null segment. If this occurs on a first segment that is defined to contain a literal, an invalid
transaction code could result because MFS does not insert explicit or default literals into segments for
which no device input data is received.

MFS option 3
Option 3 formatting supplies the program with only the fields received from the input device. A segment
is presented only if it contains fields that were received from the device. Segments are identified by a
relative segment number and fields within a segment are identified by a segment offset. Segments and
fields are both of variable length if they are described as having a fill character of NULL. Empty fields
(fields without data) are not padded with fill characters. Segments that are presented to the application
program appear in relative segment number sequence. Fields within the segment are in segment offset
sequence.

Option 3 messages do not contain literals (explicit or default) specified in the MID.

If option 3 is used with conversational transactions, the transaction code is not removed from the
message, since fields and offsets of fields are maintained within the text. The transaction code is still
found in the SPA also.

Restriction: You cannot use option 3 input message formats to enter IMS TM commands. However, IMS
TM commands can be entered by using IMS-supplied default formats, from the cleared screen, or from
your defined option 1 and option 2 input message formats.

Related concepts
“Input message formats” on page 425
MFS edits input data from a device into an IMS application message format using the message definition
that the MFS application designer writes as input to the MFS language utility program. An input message

Chapter 5. Message Format Service (MFS) reference 463

consists of all segments presented to an IMS application program when the program issues a DL/I GU or
GN call.
“Fill characters for output device fields” on page 484
MFS uses fill characters to pad output device fields when the length of the data received from the
application program is less than the specified length or no data for the field is received.
Related reference
“Device-dependent output information” on page 431
Using certain options for outputting information can make the application program device-dependent.
Some options allow the application program to control certain features of devices receiving output.
Descriptions of the effects of various output options follow.

Examples of message segment definitions
The examples illustrate the message segment definitions, then for options 1, 2, and 3, the contents,
length in bytes, and a code for the type for each field.

The field types are labeled as shown in the following table.

Table 130. Input message field types

Type Code Description

A Total segment length, including fields A, B, C, 2 bytes, binary

B Z1 field—reserved for IMS TM usage

C Z2 field—indicates formatting option 1 byte, binary

D Relative segment number 2 bytes, binary

E Field length, including length of fields E, F, 2 bytes, binary

F Relative field offset in the defined segment 2 bytes, binary

G Field

Notes:

1. No boundary alignment is performed for fields A, D, E, or F.
2. Fields A, B, and D must be on halfword boundaries. To do this, ensure the I/O area is on a boundary

when the GU or GN call to IMS TM is made.
3. For the PLITDLI interface, the length (LL) field must be declared as a binary fullword. The value in the

LL field is the segment length minus 2 bytes. For example, if the input message segment is 16 bytes,
LL is 14 bytes, which is the sum of the lengths of LL (4 bytes minus 2 bytes), ZZ (2 bytes), and TEXT
(10 bytes).

Example 1: input message format
The following table describes the definition for an input message.

Table 131. Example 1: input message definition

Segment Number Field Name Field Length Field Value

1

LL 2 0072

ZZ 2 XXXX

TRANCODE 8 YYYY

Text 10 MAN NO.

Text 50 NAME

464 IMS: Application Programming APIs

Table 131. Example 1: input message definition (continued)

Segment Number Field Name Field Length Field Value

2

LL 2 0059

ZZ 2 XXXX

Text 5 DEPT

Text 50 LOCATION

3

LL 2 0064

ZZ 2 XXXX

Text 10 PART NO.

Text 50 DESCRIPTION

4

LL 2 0019

ZZ 2 XXXX

Text 10 QUANTITY

Text 5 ORDER PRIORITY

All fields defined as left justified, with a fill character of blank.

You enter:
Field Name

Input
NAME

ABJONES
PART NO.

23696
DESCRIPTION

WIDGET

The transaction code is provided from the message input description as a literal. The input message
would appear to the application program as shown in one of the following tables.

Table 132. Example 1: application program view for option 1

Segment Number Field Type Field Length Field Value

1

A 2 0072

B 1 XX

C 1 01

TRANCODE 8 YYYY

Text 10 blanks

Text 50 ABJONES

Chapter 5. Message Format Service (MFS) reference 465

Table 132. Example 1: application program view for option 1 (continued)

Segment Number Field Type Field Length Field Value

2

A 2 0059

B 1 XX

C 1 01

Text 5 blanks

Text 50 blanks

3

A 2 0064

B 1 XX

C 1 01

Text 10 23696

Text 50 WIDGET

4

A 2 0019

B 1 XX

C 1 01

Text 10 blanks

Text 5 blanks

Table 133. Example 1: application program view for option 2

Segment Number Field Type Field Length Field Value

1

A 2 0072

B 1 XX

C 1 02

TRANCODE 8 YYYY

Text 10 blanks

Text 50 ABJONES

2

A 2 0005

B 1 XX

C 1 02

Text 1 X'3F'

3

A 2 0064

B 1 XX

C 1 02

Text 10 23696

Text 50 WIDGET

466 IMS: Application Programming APIs

Table 134. Example 1: application program view for option 3

Segment Number Field Type Field Length Field Value

1

A 2 0060

B 1 XX

C 1 03

D 2 0001

E 2 0054

F 2 0022

G 50 ABJONES

2

A 2 0074

B 1 XX

C 1 03

Text 2 0003

D 2 0014

E 2 0004

F 2 23696

G 2 0054

F 2 0014

G 50 WIDGET

The option 3 example shows no transaction code in the first segment because literals are not inserted
into option 3 segments. This message would be rejected unless it is received from a terminal in
conversational or preset destination mode, because transaction code validation is performed after the
messages are formatted.

Example 2: input message format
The segments are similar to those in example 1. Fields are defined as in example 1, except for the
following:
Field Name

Contents
NAME

null pad
DEPT

null pad
LOCATION

null pad
PART NO.

right justify, pad of EBCDIC zero
QUANTITY

null pad

You enter:
Field Name

Input

Chapter 5. Message Format Service (MFS) reference 467

NAME
ABJONES

PART NO.
23696

DESCRIPTION
WIDGET

PRIORITY
HI

Transaction code is provided as a 3270 program function key literal or a special data field from a Finance
workstation. The input message appears as shown in one of the following tables.

Table 135. Example 2: application program view for option 1

Segment Number Field Type Field Length Field Value

1

A 2 0029

B 1 XX

C 1 01

TRANCODE 8 YYYY

Text 10 blanks

Text 50 ABJONES

2 No second segment is presented because all of its fields were null padded
and no input data was received from the device for these fields.

3

A 2 0064

B 1 XX

C 1 01

Text 10 0000023696

Text 50 WIDGET

4

A 2 0009

B 1 XX

C 1 01

Text 5 HI

Table 136. Example 2: application program view for option 2

Segment Number Field Type Field Length Field Value

1

A 2 0029

B 1 XX

C 1 02

TRANCODE 8 YYYY

Text 10 blanks

Text 7 ABJONES

468 IMS: Application Programming APIs

Table 136. Example 2: application program view for option 2 (continued)

Segment Number Field Type Field Length Field Value

2

A 2 0009

B 1 XX

C 1 02

Text 1 X'3F'

3

A 2 0064

B 1 XX

C 1 02

Text 10 0000023696

Text 50 WIDGET

4

A 2 0009

B 1 XX

C 1 02

Text 5 HI

Table 137. Example 2: application program view for option 3

Segment Number Field Type Field Length Field Value

1

A 2 0029

B 1 XX

C 1 03

D 2 0001

E 2 0012

F 2 0004

G 8 TRANCODE

E 2 0011

F 2 0022

G 7 ABJONES

Chapter 5. Message Format Service (MFS) reference 469

Table 137. Example 2: application program view for option 3 (continued)

Segment Number Field Type Field Length Field Value

2

A 2 0074

B 1 XX

C 1 03

D 2 0003

E 2 0014

F 2 0004

G 10 0000023696

E 2 0054

F 2 0014

G 50 WIDGET

3

A 2 0015

B 1 XX

C 1 03

D 2 0004

E 2 0009

F 2 0014

G 5 HI

Cursor position input and FILL=NULL
With MFS, a problem might arise when the application program is told the cursor position on input.

This problem occurs when:

• The input message uses formatting option 1 or 2.
• The MFLD used for cursor position data is defined in a segment where at least one MFLD is defined to

use null fill (FILL=NULL).

When these conditions occur, cursor position 63 (X'3F') results in a 3-byte field containing compressed
cursor data, rather than a normal 4-byte field. The MFLD with this potential problem is flagged with the
message "DFS1150".

To avoid this problem, change the MFLD statement for the cursor data field to specify EXIT=(0,2). This
will cause the IMS TM-provided field edit routine to convert the field contents from binary to EBCDIC. The
application program must also be changed to handle the EBCDIC format.

Input logical page selection
An input logical page (LPAGE) determines the content of the input message that is presented to the
application program. It consists of a user-defined group of related message segment and field definitions.
An input LPAGE is identified by an LPAGE statement. When no LPAGE statement is present, all message
field definitions in the MSG are treated as a single LPAGE. An input LPAGE identified by an LPAGE
statement can refer to one or more input device pages (DPAGE).

An input DPAGE defines a device format that can be used for an input LPAGE. It consists of a user-defined
group of device field definitions. An input DPAGE is identified by a DPAGE statement. When no DPAGE
statement is present, all device field definitions following the DIV statement are treated as a single
DPAGE. If multiple DPAGEs are defined, each DPAGE statement must be labeled. A DPAGE identified by a
labeled DPAGE statement must be referred to by an LPAGE statement.

470 IMS: Application Programming APIs

3270 and SLU 2 device input data is always processed by the currently displayed DPAGE. For other
devices, if multiple DPAGEs are defined in their formats, a conditional test is performed on the first input
record received from the device. The results of this test determine which DPAGE is selected for input data
processing. The LPAGE that refers to the selected DPAGE is used for input message formatting.

If input LPAGEs are not defined, message fields can refer to device fields in any DPAGE, but input data
from the device for any given input message is limited to fields defined in a single DPAGE.

Input message field and segment edit routines
To simplify programming, MFS application designers should consider using (for all but SLU P devices)
input message field and segment edit routines to perform common editing functions such as numeric
validation or conversion of blanks to numeric zeros.

While use by existing applications is unlikely, field and segment edit routines can simplify programming
of new applications by using standard field edits to perform functions that would otherwise need to
be coded in each application program. IMS Version 15.3 Exit Routines lists the field and segment edit
routines provided by IMS. The input message field or segment exit routines can be disabled for SLU P
(DPM-An and ISC) devices, because editing is probably done by the remote program.

Using field and segment edit routines causes extra processing in the IMS TM control region and, if
used extensively, creates a measurable performance cost. However, these edit routines can improve
performance by reducing processing time in the message processing region, reducing logging and
queuing time, and by allowing field verification and correction without scheduling an application program.
Efficiency of these user-written routines should be a prime concern.

Because these routines execute in the IMS TM control region, an abend in the edit routine causes an
abend of the IMS TM control region.

IMS-supplied field and segment edit routines
IMS TM provides both a field and a segment edit routine that the MFS application designer might want to
use.IMS Version 15.3 Exit Routines lists the IMS-supplied routines.

Under z/OS, any code written to replace these IMS-supplied routines must be able to execute in
RMODE 24, AMODE 31 and be capable of 31-bit addressing even if they do not reference any 31-
bit addressable resources. AMODE refers to addressing mode; when running modules in AMODE 31,
Extended Architecture processors interpret both instruction and data addresses to be 31 bits wide.

Field edit routine (DFSME000)
The functions of the field edit routine are based on the entry vector. It can use all three formatting
options. For options 1 and 2, entry vector 1 can produce undesirable results if FILL=NULL was specified in
the MFLD statement.

Input message literal fields
Input message fields can be defined to contain literal data that you specify during definition of the MID.
You can define a default literal that MFS always inserts as part of the input message. You can also define a
literal that MFS inserts as part of the input message when no data for the field is received from the device.

Using a default literal can simplify application programming. When used, application programs no longer
need to test for "no data" conditions or to provide exception handling. Default literals make it possible
for an application program to distinguish between zero-value data you enter and a condition of "no data
entered".

For example, consider this MFLD definition:

MFLD (DFLD1,'NO DATA'),LTH=7,JUST=R,FILL=C'0'

For example, an application program would view your entries as follows:
Your Entry

Program Data Viewed

Chapter 5. Message Format Service (MFS) reference 471

296
0000296

0
0000000

no data entered
NO DATA

Without a default literal, the results of entering a value of 0 and of entering no data are the same—
0000000.

Defaults can be altered without changing application programs, and multiple defaults can be provided by
using different message descriptors or different input logical pages.

Default literals can also expand device independence by providing a device-independent method of
inserting data in an input message field if no data is entered from the device for that field. This function of
the default literal is used often for 3270 or SLU 2 devices, which have the same device format for input as
for output. For these devices, the default (transaction code, data, or both) can be provided if you specify a
default literal on input (MID).

Input message field attribute data
Nonliteral input message fields can be defined to allow for attribute data, extended attribute data, or
both.

When defined to do so, MFS initializes to blanks and reserves the first bytes of the message field
for attribute or extended attribute data. These first bytes are filled in by a field edit routine or in its
preparation of an output message. When attribute or extended attribute space is specified, the specified
field length must include space for the attribute or extended attribute bytes.

Sometimes input messages are updated by an application program and returned to the device. The
application program can simplify message definitions if the message uses attribute data as the output
message, and the attribute data bytes are defined in the input message, also.

When a field edit routine is used, it can be designed (as the IMS-supplied field edit routine is) to set
attribute bytes on fields in error. In this way, erroneous fields can be highlighted before the segment edit
routine returns the message to the device. In this case, the application program is not concerned with
attribute bytes.

IMS TM password
The IMS TM password portion of an input message is defined in the input message definition. One or more
input message fields can be defined to create the IMS TM password.

Using this method of password definition allows passwords to be created from field data you enter, from
data read by a 3270, SLU 2, 3770 operator identification card reader, or data from a 3270 magnetic stripe
reader.

Recommendation: If you use an SLU 2 or a 3270, you can also define a specific device field as the
location of the IMS TM password, but the method discussed in this section takes precedence if both an
input message field and a device field are defined.

Fill characters for input message fields
MFS uses fill characters to pad message fields when the length of the data received from the device is less
than the specified field length, no data for the field is received and no default literal is defined, or the data
received from SLU P contains nulls and NULL=DELETE is specified.

The fill characters that can be selected are a blank (X'40'), any EBCDIC hexadecimal character (X'hh'), or
an EBCDIC graphic character (C'c'). Null compression, which causes compression of the message to the
left by the amount of missing data, can also be selected. How MFS actually pads the message fields is a
function of the selected fill character and the message formatting option being used.

Input modes (devices other than 3270, SLU 2, or ISC subsystems)
MFS expects input message fields to be entered in the sequence in which they were defined to the MFS
Language utility program. For devices other than SLU 2 and 3270, MFS application designers have a

472 IMS: Application Programming APIs

choice of how fields are defined and how MFS should scan those fields. You can select record mode or
stream mode. Record mode is the default.

In record mode:

• Input fields are defined as occurring within a specific record (a line or card from the 3770, or SLU 1; a
transmission from the Finance or SLU P workstation) that is sent from the input device.

• Fields must not be split across record boundaries.
• Fields defined within a record must appear on that record to be considered by MFS.
• When MFS locates the end of a record, the current field is terminated and any other fields defined for

that record are processed with no device data (message fill).
• If the record received by IMS TM contains more data fields than the number of fields defined for the

record, the remaining data fields are not considered by MFS.

For input data from a Finance or SLU P workstation remote program, the input message header or //
midname can be transmitted separately if the data fields for the first record do not fit in the same record.
If no data follows the input message header or the //midname, MFS considers the next transmission
received to be the first record of the input message.

In stream mode:

• Fields are defined as a contiguous stream of data unaffected by record boundaries.
• Fields can be split across input records and fields can be entered from any input record as long as they

are entered in the defined sequence.

Input field tabs (devices other than 3270 or SLU 2)
An input field tab (FTAB) is a character defined in the DEV statement for separating input fields if the
length of the data entered is less than the defined field length, or for when no data is specified for a field.
An FTAB causes the MFS input scan to move to the first position of the next defined field. FTABs can be
defined only for input from devices other than the 3270 or SLU 2. When no FTABs are defined, each device
input field is assumed to be of its defined length.

Select a character for input field separation that is never used for other user data in the data stream. If
FTAB is not unique, the data might be misinterpreted by MFS.

For example, the following figure shows some DFLD field definitions and the device format that results
from these definitions.

Figure 29. FTAB qualification descriptions

When an FTAB is defined, its use is qualified by specifying FORCE, MIX, or ALL. The previous figure shows
how the FTAB qualification affects the results of an MFS input scan following variable operator input of a
three-field message.

The following figure provides examples of correct and failed results produced by FTAB specifications. The
double-headed arrows indicate that the FTAB qualification does not affect input scan. Input examples 2,
3, and 6 produce correct results using any of the FTAB qualifications but example 8 does not produce

Chapter 5. Message Format Service (MFS) reference 473

correct results regardless of FTAB qualifications. The following sections (FORCE, MIX, and ALL) specify
which examples have failed results and why these results are undesirable.

FORCE
FORCE is the default value. Each device input field is assumed to be of its defined length until an FTAB is
encountered. When the first FTAB is encountered, it signifies the end of data for the current field. The byte
of data following the FTAB is considered the first byte of the next field. In record mode, all subsequent
fields in the current record require an FTAB. In stream mode, all subsequent fields require an FTAB.
FTABs used on subsequent fields indicate that the character following the FTAB is the first for the next
defined field. (This is as if ALL were specified).

In the following figure, examples 1, 2, 3, 5, 6, and 7 produce the desired result. Example 4 fails because
no FTAB is supplied following field B (compare with example 5). Example 8 fails because no FTABs
are entered, the 0 is occupying the blank (undefined) position, and subsequent fields are thus incorrect
(compare with example 1).

MIX
Each device input field is assumed to be of its defined length until an FTAB is encountered. When the first
FTAB is encountered, it signifies the end of data for the current field. The byte of data following the FTAB
is considered the first byte of the next field. Subsequent fields of the defined length do not require an
FTAB; if one is entered and the next field is contiguous (like fields B and C in the example), undesirable
results occur (see example 5). Mixed FTABs operate just like a typewriter with tab stops set at the first
position of each defined field (columns 1, 6, and 9 in the example).

In the following figure, examples 1, 2, 3, 4, 6, and 7 produce the desired result. Example 5 fails because
field B is of its defined length and does not require an FTAB; the FTAB is interpreted to indicate no data for
field C (compare with example 4). Example 8 fails because no FTABs are entered, the 0 is occupying the
blank (undefined) position, and subsequent fields are thus incorrect (compare with example 1).

ALL
When ALL is specified, each device input field must be terminated by an FTAB regardless of whether it is
greater than, less than, or equal to the defined length. When an FTAB is encountered, it signifies the end
of data for the current field. The byte of data following the FTAB is considered the first byte of the next
field.

In the following figure, examples 2, 3, 5, and 6 produce the desired result. Examples 1, 4, 7, and 8 fail
because the required FTABs are not entered.

474 IMS: Application Programming APIs

Figure 30. MFS input scan when FTABs are defined with FORCE, MIX, and ALL

Optional deletion of null characters for DPM-An
MFS provides for optional deletion of trailing null characters in transmission records and input data
fields from SLU P (DPM-An) remote programs. (A null character is a hexadecimal zero, X'00'.) In the DIV
statement, the device input format can specify NULL=KEEP or NULL=DELETE. NULL=DELETE means that
MFS scans data fields and transmission records for trailing nulls and deletes them. KEEP is the default
and means that MFS leaves trailing nulls in the data and treats them as valid data characters.

If trailing null characters have been replaced by fill characters by the remote program, MFS treats the fill
characters as valid data characters.

When NULL=DELETE is specified, nulls at the end of a record are deleted before the data fields are
scanned. In record mode, the end of the record is determined either by the FTAB or by the first other
non-null character found (searching backward from the end of the record). In stream mode, trailing nulls
at the end of the record are deleted only if an FTAB indicates the end of the record; otherwise, the record
is handled as received from the remote program.

During the data field scan, the first trailing null character encountered in the field signifies the end of the
data for the current field. The data is edited into the message field using the message fill character to pad
the field if required. If the entire field contains nulls (such as nulls at the end of the record), the entire
message field is padded with the specified fill character.

The scan for trailing null characters within fields is performed for each record transmitted. If an FTAB
character is encountered in the current record being processed, the scan for trailing nulls characters
within fields is discontinued for that record and resumes with the next record.

Transmitting null characters to either IMS TM or the delete operation is costly in execution time. Weigh
the relative costs when you decide whether to use the NULL=DELETE option or to delete the nulls using

Chapter 5. Message Format Service (MFS) reference 475

the remote program. You must also consider the effects of the FTAB options FORCE, MIX, and ALL. These
costs are affected by the following:

• When FTAB=ALL is specified with NULL=DELETE, only trailing null characters at the end of the record
can be removed by MFS.

• In stream mode, with NULL=DELETE, an FTAB should be used to show an omitted field at the end of
a record. Otherwise, nulls (equal to the number of characters defined for the field or fields) must be
transmitted.

• If FTABs are specified and NULL=DELETE, nulls and FTABs can be mixed. FTABs can be used for one
record, nulls for the next. The nulls are removed from the record with no FTABs. With FTABs in the
record, null characters are treated as data.

• With NULL=DELETE, binary data that might contain valid trailing hexadecimal zeros (not intended as
null characters) must be preceded by an FTAB character for a previous field to prevent deletion of the
trailing X'00'.

Related reference
“DIV statement” on page 445
The DIV statement defines device formats within a DIF or DOF. The formats are identified as input, output,
or both input and output, and can consist of multiple physical pages. For DEV TYPE=SCS1, SCS2, or
DPM-AN, two DIV statements can be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all other
device types, only one DIV statement per DEV is allowed.

Examples of optional null character deletion for DPM-An
The following are examples of optional null character deletion for DPM-An.

In the three examples that follow, the comma is the specified FTAB, X'5F' is input hexadecimal data, and
characters are defined as follows:

X'6B'=C","
X'C1'=C"A"
X'C2'=C"B"
X'C3'=C"C"
C"b"=blank
X'40'=C"b"

Example 1: input binary data and nulls
 Device Input Format Message Input Definition
 INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT
 DEV TYPE=DPM-A1, FTAB=(;;MIX) SEG
 DIV TYPE=INPUT, NULL=DELETE
 PPAGE
A DFLD LTH=3 MFLD A, LTH=3
B DFLD LTH=2 MFLD B, LTH=2
 FMTEND MSGEND

Input Message Record Field DFLD Data MFLD Data

(1) X'C1C2C3005F' 1 A C"ABC" C"ABC"

B X'005F' X'005F'

(2) X'C1C26B005F' 1 A C"AB" C"ABb"

B X'005F' X'005F'

(3) X'C1C200005F' 1 A C"AB" C"ABb"

B X'005F' X'005F'

(4) X'C1C2C35F00' 1 A C"ABC" C"ABC"

B X'5F' X'5F40'

476 IMS: Application Programming APIs

Input Message Record Field DFLD Data MFLD Data

(5) X'C1C26B5F00' 1 A C"AB" C"ABb"

B X'5F' X'5F40'

Note: The X'00' (null) at the end of the record in input messages (4) and (5) is deleted before the data fields (A and B) are scanned.
Therefore, the results are the same for field B, even though an FTAB (comma in this example) follows field A. If X'00' is to be
considered as data for field B, an FTAB (comma in this example) should be entered following the X'5F00'.

Example 2: record mode input
 Device Input Format Message Input Definition
 INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT
 DEV TYPE=DPM-A1, FTAB=(;;MIX), SEG
 MODE=RECORD
 DIV TYPE=INPUT, RCDCTL=12, MFLD A,LTH=3,FILL=C'*'
 NULL=DELETE
 PPAGE MFLD B,LTH=3,FILL=C'*'
A DFLD LTH=3 MFLD C,LTH=3,FILL=C'*'
B DFLD LTH=3 MFLD D,LTH=3,FILL=C'*'
C DFLD LTH=3 SEG
D DFLD LTH=3 MFLD E,LTH=5,FILL=C'*'
E DFLD LTH=5 MFLD F,LTH=7,FILL=C'*'
F DFLD LTH=7 SEG
G DFLD LTH=5 MFLD G,LTH=5,FILL=C'*'
 FMTEND MSGEND

Input Message Record Field
DFLD
Data Segment

MFLD
Data

(1) X'C10000C20000C3C3C3000000' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

 X'C5C56BC6C66B000000000000' 2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

 X'0000000000' 3 G no data 3 C'*****'

(2) X'C10000C20000C3C3C3' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

 X'C5C56BC6C6' 2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

no input record 3 G no data 3 C'*****'

Note: In this example, no input data was entered for fields D and G. Input message 1 contains nulls in place of omitted fields.
Input message 2 does not contain nulls for omitted fields, but the results are the same for both input messages.

Example 3: stream mode input

Device Input Format Message Input Definition
 INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT
 DEV TYPE=DPM-A1, FTAB=(;;MIX), SEG

Chapter 5. Message Format Service (MFS) reference 477

 MODE=STREAM
 DIV TYPE=INPUT, NULL=DELETE MFLD A,LTH=3,FILL=C'*'
 PPAGE MFLD B,LTH=3,FILL=C'*'
A DFLD LTH=3 MFLD C,LTH=3,FILL=C'*'
B DFLD LTH=3 MFLD D,LTH=3,FILL=C'*'
C DFLD LTH=3 SEG
D DFLD LTH=3 MFLD E,LTH=5,FILL=C'*'
E DFLD LTH=5 MFLD F,LTH=7,FILL=C'*'
F DFLD LTH=7 SEG
G DFLD LTH=5 MFLD G,LTH=5,FILL=C'*'
 FMTEND MSGEND

Input Message Record Field
DFLD
Data Segment MFLD Data

(1) X'C10000C20000C3C3C3000000' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

 X'C5C56BC6C66B000000000000' 2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

 X'00000000000000' 3 G no data 3 C'*****'

(2) X'C10000C20000C3C3C3' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

2 D C'EE' C'EE*'

 X'C5C56BC6C6' E C'FF' 2 C'FF***'

F no data C'*******'

no input record 3 G no data 3 C'*****'

Note: In this example, no input data was entered for fields D and G. Input message 1 contains nulls
in place of omitted fields. Input message 2 does not contain nulls for omitted fields and produces
undesirable results for fields D, E, and F.

Multiple physical page input messages (3270 and SLU 2 display devices)
Specifying multiple physical page input for 3270 and SLU 2 display devices allows creation of identical
input messages for a transaction regardless of the physical capacity of the device being used.

When this facility is used, an input message consisting of multiple physical pages can be entered using
multiple physical pages of a single output logical page. If multiple physical pages are defined for output,
the only action required to obtain multiple physical page input is to specify MULT=YES in the DPAGE
statement.

For the 3290 Information Display Panel in partitioned mode, multiple physical page input from a single
partition is supported only if the DPAGE statement for the current partition specifies MULT=YES. The
multiple physical pages for a single input message must come from a single partition.

If MULT=YES is not specified on the DPAGE statement for the current partition, one physical page of a
single partition constructs a single input message and the input message is restricted to a single logical
page.

Input messages can be created from multiple DPAGEs. This function is available for devices other than
3270 and SLU 2.

478 IMS: Application Programming APIs

Related concepts
“Physical paging of output messages” on page 484
A logical page can be defined to consist of one or more physical pages. Physical paging allows data from a
logical page to be displayed in several physical pages on the device. Physical page assignments are made
in the format definition. For display devices, the size of a physical page is defined by the screen capacity
(the number of lines and columns that can be referred to). For most printer devices, a physical page is
defined by the user-specified page length (number of lines) and the printer's line length.

General rules for multiple DPAGE input
Follow these rules for multiple DPAGE input.

1. If any mapped input LPAGE contains no data segments (as a result of segment routines canceling
all segments, for example), the input message is rejected and an error message is sent to the other
subsystem.

2. MFS echo to the input terminal is ignored.
3. MFS password creation occurs from any DPAGE, but once created, any other password is ignored. If

the password is included in the attach FM header, this password is used for DPM-Bn.
4. Input message options 1, 2, and 3 apply to LPAGEs. If option 2 is requested, null segments at end of

an LPAGE are eliminated. This alters the relative positions of the segments in the next LPAGE (if any)
in the input message. If option 1 or 2 is requested, the first segment of the second and all subsequent
LPAGEs have the page bit (X'40') in the Z2 field turned on regardless of any null segments resulting
at the end of the previous LPAGE. If option 3 is requested, the segment ID is equal to 1 for every first
segment in the new LPAGE.

5. Multiple DPAGE input requested in MFS definitions does not restrict message creation from the single
DPAGE.

6. If your control request is entered with the first input DPAGE, the request is processed and the input
message is rejected. If your control request is entered with an input DPAGE other than the first, the
request is ignored and the input message is accepted.

7. If your logical page request is entered with the first input DPAGE (that is, an equals sign (=) in the first
position of the input segment), the request is processed and the input message is rejected.

If multiple DPAGE input is not requested of MFS definitions, message creation from more than one DPAGE
is not permitted and these rules apply:

1. If a single transmission contains more data than defined for the DPAGE selected, the input message is
rejected and an error message is sent to the other subsystem.

2. If the message has multiple transmissions, the input message is rejected and an error message is sent
to the other subsystem.

3270 and SLU 2 input substitution character
A X'3F' can be received on input by IMS TM from some terminals (such as by using the ERROR key).

The substitution character (X'3F') provides a means of informing the host application that an error exists
in the field. MFS also uses X'3F' for IMS TM functions on input data streams. To eliminate the confusion
resulting from the two uses of the X'3F' characters, a parameter (SUB=) is provided on the DEV statement
for use with 3270 and SLU 2 display devices.

With this parameter, a user-specified character can be defined to replace any X'3F' characters received by
MFS in the 3270 and SLU 2 data stream. No translation occurs if any of the following is true:

The SUB= parameter is not specified.
The SUB= parameter is specified as X'3F'.
The input received bypasses MFS.

The specified SUB character should not appear elsewhere in the data stream, so, it should be nongraphic.

Chapter 5. Message Format Service (MFS) reference 479

Input format control for ISC (DPM-Bn) subsystems
Use the major input message formatting functions of MFS with ISC nodes.

You can use the following DPAGE selection options to format messages and create a message from
multiple DPAGEs.

Input DPAGE selection
The OPTIONS=(DNM) parameter on the DIV statement allows for DPAGE selection using data structure
name (DSN).

If more than one DPAGE is defined, a DPAGE label must be specified in every DPAGE. If no DPAGE is
selected, the message is rejected and an error message is sent to the other subsystem.

If OPTIONS=NODNM and multiple DPAGEs are defined, a conditional test is performed on the first input
record. The results of the test (matching the COND= specification with the data) determines which
DPAGE is selected for input data formatting. If the condition is not satisfied and all defined DPAGEs are
conditional, the input message is rejected and an error message is sent to the other subsystem.

Single transmission chain
For single transmission chains, DPAGEs can be selected using conditional data.

DPAGE selection using conditional data

For multiple DPAGE input with single transmission chain, use the OPTIONS=NODNM parameter. The data
in the first input record is used to select the first (or only) DPAGE for formatting. If the data supplied
does not match any COND= defined, the last defined DPAGE is selected if the COND= is not specified for
this DPAGE. If the condition is not satisfied and all defined DPAGEs are conditional, the input message is
rejected and an error message is sent to the other subsystem. If the DSN is supplied in the DD header, it is
ignored. For any additional DPAGE (more data supplied than defined for the DPAGE selected), the data in
the subsequent record is used to select the next DPAGE for formatting.

Multiple transmission chains
For multiple transmission chains, DPAGEs can be selected using DSN or by using a conditional test.

DPAGE selection using DSN

For multiple DPAGE input with multiple transmission chains, use the OPTIONS=DNM parameter. The DSN
supplied in the DD header with each chain of the message is used to select the DPAGE for formatting.
If no match is found, the message is rejected and an error message (DFS2113) is sent to the other
subsystem.

DPAGE selection using conditional test on the data

If DSN is supplied in the DD header with each chain (or any chain) of the message and OPTIONS=NODNM
is specified on the DIV statement, the DSN is ignored. The data in the first record of each chain is used to
select the DPAGE for formatting. If no condition is satisfied and the last defined DPAGE is unconditional
(that is, COND= parameter is not specified), this DPAGE is selected for formatting. If the condition is not
satisfied and all defined DPAGEs are conditional, the input message is rejected and an error message is
sent to the other subsystem.

How conditional and unconditional DPAGEs are specified depends on whether OPTIONS=DNM or
OPTIONS=NODNM is specified.

• For OPTIONS=DNM, conditional is specified with a label in the DPAGE statement.
• For OPTIONS=NODNM:

– To specify conditional, specify the COND= keyword on the DPAGE statement.
– To specify unconditional, omit the COND= keyword.

MFS supports two input modes: record and stream.

480 IMS: Application Programming APIs

Record mode
In record mode, one record presented to MFS by the ATTACH manager corresponds to one record defined
to MFS. Records and fields defined for each record are processed sequentially. Fields must not be split
across record boundaries. The data for fields defined in a record must be present in this record to be
considered by MFS. If no data exists for fields defined at the end of the record, a short record can be
presented to MFS. If the data for a field not at the end of the record is less than the length defined for the
corresponding DFLD, or if no data exists for the field, then a field tab separator character must be inserted
to show omission or truncation. If no data exists for the entire record, a null or a 1-byte record (containing
a single FTAB character) must be present if additional data records follow it. The record can be omitted:

• At the end of the DPAGE for single DPAGE input.
• At end of the DPAGE for multiple DPAGE input with multiple transmission chains.
• At the end of the last DPAGE for multiple DPAGE input with a single transmission chain. The record

cannot be eliminated from the DPAGE if data for another DPAGE follows.

Stream mode
In stream mode, record boundaries are ignored and fields can span record boundaries. Data omitted for
fields anywhere in the DPAGE must be indicated by an FTAB.

FTABs are not required for the data omitted to the end of the DPAGE:

• At the end of the DPAGE for single DPAGE input.
• At the end of the DPAGE for multiple DPAGE input with multiple transmission chains.
• At the end of the last DPAGE for multiple DPAGE input with single transmission chain. The FTABs cannot

be eliminated from the DPAGE if data for another DPAGE follows.

On input to IMS, the ATTACH manager provides for four deblocking algorithms, UNDEFINED, RU, VLVB,
and CHAINED ASSEMBLY, which specify the following:

• UNDEFINED or RU specify that one RU is equal to one MFS record processed. IMS TM defaults to the RU
algorithm when UNDEFINED is specified in the ATTACH FM header.

• VLVB specifies that one VLVB record is equal to one MFS record processed.
• CHAINED ASSEMBLY specifies that one input chain is equal to a single MFS record processed for the

entire DPAGE.

For MFS RECORD mode, use the VLVB deblocking algorithm. For MFS RECORD mode, do not use:

• CHAINED ASSEMBLY, because the entire input chain would be processed as a single MFS record.
• UNDEFINED or RU, because MFS record definitions would be dependent on the size of the RUs.

For the MFS STREAM mode, all deblocking options can be used. In most cases the UNDEFINED and RU
algorithms use less buffer space.

Paging requests
Use the FM headers for entering paging requests when using ISC.

Related concepts
“Input message formatting” on page 460

Chapter 5. Message Format Service (MFS) reference 481

Use the following information to format your MFS input messages.

Output message formatting
IMS supports the following MFS output message formatting, physical and logical paging, and
requirements for output devices.

Output messages accepted by MFS
Whether an output message is processed by IMS TM basic edit or MFS depends on the device type, the
device definition, and the message being processed.

Output messages to SLU 2 and 3270 devices are processed by MFS, unless bypassed by the application
program.

Output messages to a 3770, Finance workstation, SLU 1, NTO, SLU P, or ISC subsystem are processed by
MFS, if these devices are defined during IMS TM system definition to operate with MFS.

Even when a device is defined to operate with MFS, MFS does not process an output message unless
a MOD name was specified by the application program, the MID associated with the previous input
message, or the /FORMAT command. Also, message switches from other MFS devices are processed by
MFS if the message has an associated MOD.

If you attempt to access a transaction that is to be changed or deleted when the online change utility is
run, and you do this after the online change command /MODIFY PREPARE has been issued but before /
MODIFY COMMIT has been issued, you receive an error message.

Related reference
/MODIFY command (Commands)

How MFS formats output messages
Output messages processed by MFS are formatted based on the contents of two MFS control blocks: the
message output descriptor (MOD) and the device output format (DOF).

The MOD defines output message content and, optionally, literal data to be considered part of the output
message. Message fields (MFLDs) refer to device field locations through the device field (DFLD) definitions
in the DOF. The device output format (DOF) specifies the use of hardware features, device field locations
and attributes, and constant data considered part of the format.

Output message formatting options
MFS provides three message formatting options for output data. The option selected determines how the
data is formatted and governs the way in which the application program builds the output message.

Option 1, 2, or 3 is specified in the OPT= operand of the MOD MSG statement.

Segments inserted by the application program must be in the sequence defined to the MFS Language
utility program. Not all segments in a logical page must be present, but be careful when you omit
segments. An option 1 or 2 segment can be omitted if all subsequent segments to the end of the logical
page are omitted; otherwise, a null segment (X'3F') must be inserted to indicate segment position. Option
3 output message segments must include a 2-byte relative segment number.

Message fields in option 1 and 2 output segments are defined as fixed-length and fixed position. Fields
can be truncated or omitted by two methods:

• One method is by inserting a short segment.
• The other method is by placing a NULL character (X'3F') in the field. Fields are scanned left to right for

a null character; the first null encountered terminates the field. If the first character of a field is a null
character, the field is effectively omitted, depending on the fill character used. Positioning of all fields in
the segment remains the same regardless of null characters. Fields truncated or omitted are padded as
defined to the MFS Language utility.

Message fields in option 3 segments can be placed in any order and with any length that conforms to the
segment size restriction. Short fields or omitted fields are padded as defined to the MFS Language utility.

482 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_modify.htm#ims_cr1modify

Each field must be preceded by a 4-byte field prefix of the same format provided by MFS for option 3
input fields.

While option 3 fields do not have to be in sequence in the output segment, all fields must be contiguous
in the segment; that is, the field prefix of the second field must begin in the byte beyond the first field's
data. Null characters in option 3 fields have no effect on the data transmitted to the device. Like other
nongraphic characters, they are replaced with a blank.

Restriction: Device control characters are invalid in output message fields under MFS. For 3270 display
and SLU 2 terminals, the control characters HT, CR, LF, NL, and BS are changed to null characters
(X'00'). For other devices, these characters are changed to blanks (X'40'.) All other nongraphic characters
(X'00' through X'3F' and X'FF') are changed to blanks before transmission, with the exception of the
shift out/shift in (SO/SI) characters (X'0E' and X'0F') for EGCS capable devices. (The SO/SI characters
are translated to blanks only for straight DBCS fields.) An exception is allowed for SLU P (DPM-An)
remote programs and ISC (DPM-Bn) subsystems, for which GRAPHIC=NO can be specified on output.
If nongraphic data is allowed through this specification, the null (X'3F') cannot be used to truncate
segments in options 1 and 2.

Option 1 or 2—output segment example

Definition Output data length
Segment
Field, length=10 4
Field, length=20 field omitted
Field, length=5 5
Field, length=15 15

The segment shown produces the following results:

CONTENTS |54|0|0| DATA 1|*| |* | DATA 3 | DATA 4|
--
LENGTH 2 1 1 4 1 5 20 5 15

Option 3—output segment example
An option 3 segment that produces the same result appears as follows (the * represents a null (X'3F')
character):

CONTENTS |42|0|0|04|08|04| DATA 1|09|34| DATA 3 |19|39| DATA 4|

LENGTH 2 1 1 2 2 2 4 2 2 5 2 2 15

Related concepts
“Input message formatting” on page 460
Use the following information to format your MFS input messages.
Related reference
“Field format (options 1 and 2)” on page 430
All fields in option 1 and 2 output segments are defined as fixed length and fixed position.
“Field format (option 3)” on page 430
Under option 3 output, fields can be placed in their segments in any order and with any length that
conforms to the segment size restriction.

Operator logical paging of output messages
Output messages can be defined to permit operator logical paging (PAGE= operand in the MOD's MSG
statement). Use operator logical paging to request a specific logical page of an output message.

Operator logical paging is also available to your written remote program for SLU P (DPM-An) or ISC
subsystem (DPM-Bn). The remote program can request IMS to provide a specific logical page of the
output message.

Chapter 5. Message Format Service (MFS) reference 483

Related concepts
“Paging action at the device” on page 510
The paging operation for an MFS device depends on MFS control block definitions, the output message
content, and your input. If the device is a printer, each physical page of each logical page is transmitted to
the device in sequence and the message is dequeued.
“Your control of MFS” on page 508
IMS provides MFS facilities that can assist you, or allow a remote program to control the display or
transmission of output messages.

Physical paging of output messages
A logical page can be defined to consist of one or more physical pages. Physical paging allows data from a
logical page to be displayed in several physical pages on the device. Physical page assignments are made
in the format definition. For display devices, the size of a physical page is defined by the screen capacity
(the number of lines and columns that can be referred to). For most printer devices, a physical page is
defined by the user-specified page length (number of lines) and the printer's line length.

For SLU P (DPM-An) or ISC subsystems (DPM-Bn), a physical page is defined by the user-specified paging
option and the DPAGE or PPAGE statement specifying device pages or presentation pages. Physical
paging allows data from a message to be transmitted to the remote program or subsystem in several
presentation pages or logical pages.

Typically, a logical page has just one physical page. Multiple physical pages per logical page are generally
only used when the logical page is designed for a large screen but is also to be displayed on a small
screen device. The physical pages can have a totally different format from the pages defined for the large
screen device. The following figure illustrates the use of physical paging with a message that creates one
physical page on a 3277 model 2 or on a 3276/3278 with 24×80 screen size.

Figure 31. Physical paging for 3270 or SLU 2

Related concepts
“Multiple physical page input messages (3270 and SLU 2 display devices)” on page 478
Specifying multiple physical page input for 3270 and SLU 2 display devices allows creation of identical
input messages for a transaction regardless of the physical capacity of the device being used.

Fill characters for output device fields
MFS uses fill characters to pad output device fields when the length of the data received from the
application program is less than the specified length or no data for the field is received.

A fill character is defined in the message definition (MSG statement), the format definition (DPAGE
statement), or both. If a fill character is specified in both, the fill character specified in the DPAGE is used.

484 IMS: Application Programming APIs

If FILL=NONE is specified in the DPAGE statement, the fill character from the MSG statement is used. The
fill character specified in the MSG statement is used for all nonliteral fields defined in the DOF, not just
those defined by MFLDs in the MOD. Using a fill character tailored to the device type generally improves
message presentation and device performance. You can select the following fill characters on a DPAGE
statement:

• Blank (X'40')
• Blank (C' ')
• Any hexadecimal EBCDIC graphic character (X'hh')
• An EBCDIC graphic character (C'c')

You can select the following characters on a MSG statement:

• Blank (C' ')
• EBCDIC graphic character (C'c')

For the 3270 or SLU 2 display, the EBCDIC graphic fill character fills in any fields or partial fields on the
formatted display that do not receive any data or only partial data. This erases information remaining on
the display from the previous message, however, using the fill character increases transmission time.

Null fill can be specified, in which case fields are not filled on the 3270 or SLU 2 formatted screen (and
data from the previous message that is not updated by the current message is still displayed). For devices
other than 3270 or SLU 2 display, compacted lines are produced when message data does not fill device
fields. Using null fill for 3270 or SLU 2 display devices reduces transmission time, but might result in
confusion if a partial field does not cover all the data remaining from a previous display. Using null fill
for other devices causes additional processing in the IMS control region but reduces transmission and
printing time.

For 3270 or SLU 2 formatted screen, a program tab function can be requested that erases any data
remaining in a device field after new data for this field has been displayed, but does not produce any fill
characters. With program tab fill, display fields on a formatted screen are not cleared unless new data is
transmitted to them.

When the program sends only a few of the output data fields, the unwanted display of leftover data in
unprotected fields can be prevented by specifying the "erase all unprotected" function in the system
control area (SCA).

For 3270 output when EGCS fields are present, specify only FILL=PT or FILL=NULL on the DPAGE or MSG
statement. Any other specification can result in the device rejecting the message.

Related concepts
“System control area (SCA) and default SCA (DSCA)” on page 485
The system control area (SCA) is the means by which specific device operations are requested when an
output message is sent to the device.
Related reference
“Input message formatting options” on page 462
MFS supports three message formatting options. The option selected determines how MFS interprets
the MID definition and thereby formats the data into message fields for presentation to the application
program.

System control area (SCA) and default SCA (DSCA)
The system control area (SCA) is the means by which specific device operations are requested when an
output message is sent to the device.

These device requests can be defined in the message field (using the SCA) or in the device format
definition (using the default SCA, or DSCA). An SCA is defined as a message field. The IMS application
program can use the SCA to specify device operations to be performed when output is sent to a terminal
device.

The 3270 and SLU 2 functions that can be requested are:

• Force format write.

Chapter 5. Message Format Service (MFS) reference 485

• Erase unprotected fields before write.
• Erase all partitions before sending message.
• Sound device alarm.
• Unprotect screen for this message.
• Copy output to candidate printer.

For 3270 and SLU 2 devices, MFS interprets the IMS application program information and performs the
specified operations.

A "sound device alarm" can be requested for output to an FIN workstation in the SCA; in this case, MFS in
turn specifies "device alarm" in the header of the output message sent to the FIN workstation.

For an SLU P (DPM-An) or ISC subsystem (DPM-Bn), all the functions allowed for the 3270 and FIN can
be specified by the IMS application program in a message field defined as an SCA. Define a device field
(DFLD statement) as an SCA in the DOF. For the SLU P remote programs or ISC subsystems, MFS does not
interpret the specifications from IMS. MFS only relays the specifications in the user-defined device field
SCA that it sends to the remote program or ISC subsystem.

For devices other than 3270, SLU 2, FIN, SLU P, and ISC, the SCA is ignored.

For all devices that can have SCAs, a default system control area (DSCA) can also be defined in the DOF
(in the DEV statement) in which the same kinds of functions can be specified. Whenever the DOF DSCA
is used, the functions are performed if appropriate for the destination device. DSCA-specified functions
are performed regardless of whether an SCA field is provided. If DSCA and SCA requests conflict, only the
DSCA function is performed. Any invalid flag settings in the DSCA specifications are reset, and only the
valid settings are used.

For SLU P remote programs, DSCA information can similarly override SCA specifications. The SCA or DSCA
information is not interpreted by MFS but is transmitted to the remote program in the device field defined
as an SCA.

IMS application programs that control output through specifications in the SCA can be device-dependent.

Related concepts
“Fill characters for output device fields” on page 484
MFS uses fill characters to pad output device fields when the length of the data received from the
application program is less than the specified length or no data for the field is received.
“3270 or SLU 2 screen formatting” on page 411
MFS is designed to transmit only required data to and from the 3270 display device. Device orders to
establish fields and display literals can cause significant transmission time, because there can be more
orders and literal data than program data.

Output message literal fields
Output message fields can be defined to contain literal data you specified during definition of the MOD.
MFS includes the specified literal in the output message before sending the message to the device.

You can define your own literal field, select a literal from a number of literals provided by MFS, or both.
The MFS-provided literals are called system literals, and include:

• Various date formats
• The time stamp
• The output message sequence number
• The logical terminal name
• The number of the logical page
• The queue number of the message waiting

Related concepts
“Extended Graphic Character Set (EGCS)” on page 488

486 IMS: Application Programming APIs

Extended Graphic Character Sets (EGCS) extend the number of graphic characters beyond the limit
available using EBCDIC. This is an extension of the programmed symbol feature. The programmed symbol
is an optional feature on the IBM 3270 Information Display Station and SCS1 printers that store and use
the additional character sets.
Related reference
MFLD statement (System Utilities)

Output device field attributes
Device field attributes are defined in the DOF's DFLD statement. For 3270 display devices, specific
attributes can be defined in the ATTR= keyword or EATTR= keyword of the DFLD statement, or default
attributes are assumed.

For 3270 printers, 3770 terminals, and 3601 workstations, attribute simulation can be defined by
specifying ATTR=YES or ATTR=nn in the DFLD statement. The message field definition corresponding
to the device field can specify that the application program can dynamically modify, replace, or simulate
device field attributes.

Extended field attributes for output devices
Extended field attributes apply to 3270 display devices and to printers defined as 3270P or SCS1, that
support the 3270 Structured Field and Attribute Processing option.

These attributes also apply to 3270P or SCS1 printers that support the Extended Graphics Character Set
(EGCS) if field outlining or DBCS operation is desired. These extended field attributes provide additional
field attribute definition beyond that provided in the existing 3270 field attribute. They are associated with
a field of characters just as the existing 3270 field attributes are, but they do not take up display positions
in the characters buffer. They can define such field characteristics as:

• Color (seven-color models only)
• Highlighting
• Programmed Symbols (PS)
• Validation
• Field outlining
• Input control of mixed DBCS/EBCDIC data

Extended field attributes are defined in the EATTR= keyword of the DFLD statement. They can be
dynamically modified by specifying ATTR=nn on the ATTR=YES or ATTR=nn. corresponding MFLD
statement.

Any combination of existing and extended field attributes (except protect and validate) can be transmitted
in one display output stream.

When dynamic attribute modification (ATTR=YES) is specified for a device field with predefined attributes,
an attribute is sent to the device for that field in every output operation, even if the data for this device
field is not included in the output message.

These attributes are used:

• If the output message field has an attribute and the attribute is valid, then the dynamic attribute
modification is performed.

• If the message field is not included in the LPAGE being used or the attribute is not valid, the predefined
attribute for the device field is used.

The default attributes for nonliteral 3270 display device fields are:

• Alphabetic
• Not protected
• Normal display intensity
• Not modified

The default attributes for literal display device fields are:

Chapter 5. Message Format Service (MFS) reference 487

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_mfslangmfldstmt.htm#ims_mfslangmfldstmt

• Numeric
• Normal display intensity

The forced attributes for literal display device fields are:

• Protected
• Not modified

Attribute simulation can be defined for non-3270 display devices but these attributes are applied only
when requested by an application program. The device field definition reserves the first byte of the
field for attribute data. If the application program then specifies an attribute request, that request is
represented in the first byte of the device field.

Field attributes that can be simulated are:
Attribute

Action Taken
High-intensity display

An asterisk (*) is placed in the first byte
Modified field

An underscore character (_) is placed in the first byte
High-intensity and modified field

An exclamation point (!) is placed in the first byte
No display

No data is sent regardless of other attributes, except for DPM

Cursor position for the 3604 can also be specified as a simulated attribute.

If a field is defined to receive simulated attribute data but none is provided by the application program,
the first byte is a blank.

For an application program to modify, replace, or simulate attribute data, the message field definition
must specify ATTR=YES or ATTR=nn. When attributes are defined this way, the first bytes of the output
message field are reserved for attribute data. Any error in the specification causes the DFLD ATTR= or
EATTR= specification for that attribute byte to be used, although other attribute or extended attribute
specifications are processed.

For DPM devices, fields can be defined to receive attribute data, extended attribute data, or both, from
the IMS application program by specifying ATTR=YES or ATTR=nn on the DFLD statement corresponding
to the MFLD definition with ATTR=YES or ATTR=nn. The 3270 attributes from the IMS application program
can either be converted to simulated attributes and placed in the first byte of the device field or placed
unchanged (2 binary bytes as received from the IMS application program) in the first 2 bytes of the
device field. The decision to send attributes, extended attributes or simulated attributes is made when
the device format is defined. If a field is defined to receive attribute data but none is provided by the IMS
application program, the first byte contains a blank if attribute simulation was requested, or the first 2
bytes contain binary zeros if binary attributes were requested.

Extended Graphic Character Set (EGCS)
Extended Graphic Character Sets (EGCS) extend the number of graphic characters beyond the limit
available using EBCDIC. This is an extension of the programmed symbol feature. The programmed symbol
is an optional feature on the IBM 3270 Information Display Station and SCS1 printers that store and use
the additional character sets.

Where DBCS or DBCS/EBCDIC mixed fields are discussed in context with 3270 displays or SCS1 printer
devices, it is assumed that these devices are capable of handling DBCS data. Such devices include, for
example, the 5550, supported as a 3270 display, and the 5553 and 5557, supported as SCS1 printers.

Definition: The Double Byte Character Set (DBCS) is a subset of EGCS. In it, each graphic character is
represented by 2 bytes. The valid code range is X'4040' or X'41' through X'FE' for byte 1, and X'41'
through X'FE' for byte 2.

488 IMS: Application Programming APIs

An EGCS field is defined by the EATTR= parameter on the DFLD statement for 3270 displays or SCS1
device types.

All EGCS literals are in the form G'SO XX XX SI', where SO (shift out)=X'0E' and SI (shift in)=X'0F'.

For SCS1 device types, EGCS is specified as a pair of control characters framing the data in the form of:
G'SO XX XX XX SI'. The framing characters SO (shift out) and SI (shift in) are not actual characters, but are
1-byte codes: X'0E' or X'0F'.

EGCS literals must be specified as an even number of characters; otherwise, a warning message is issued.
All characters (X'00' through X'FF') are valid in an EGCS literal; however, a warning message is issued for
all characters not within the range of defined graphics, X'40' through X'FE'.

Restriction: An EGCS literal cannot be equated using the EQU statement if a hexadecimal value within the
literal is an X'7D', which is equivalent to a quote character.

For the MFS Language utility to recognize an EGCS literal, observe the following restrictions when defining
the EGCS literal:

• SO and SI characters cannot be defined as alphabetic characters using the ALPHA statement.
• The three characters G'SO (SO is a single character) must not span continuation lines as input to the

MFS Language utility, but must appear on the same line. The same is true for the two characters SI'.

An EGCS literal can be continued on the next line. An SI character can be coded in column 70, 71, or 72
to terminate EGCS data and is not included in the literal. If an SI is in column 70, the data in column 71
is ignored, except when it is a single quotation mark. On continuation lines for literals, an SO character is
not required but can be used, if it is placed in column 15. (This indicates the beginning of EGCS data and
is not included in the literal).

Restriction: IMS does not support a 2-byte fill function, inbound or outbound. For outbound data, the
MFS fill function is at the message level. To avoid MFS insertion of RA (Repeat to Address) orders for EGCS
fields that contain no data or are omitted in the output message, FILL=PT (the default) or FILL=NULL must
be specified.

The MFS Language utility uses SO and SI characters in its output listing only for the initial input statement
and for error messages that display EGCS literals from the input record. EGCS literals that are a part of
the device image map are displayed as a series of Gs. Additional utility output that is created by using
the EXEC PARM= operands DIAGNOSTIC, COMPOSITE, and SUBSTITUTE, and that contains EGCS literals,
does not have the G, SO, and SI characters inserted. Only the data between the SO and SI characters is
included.

You must define the screen location (row and column) where the field is to be displayed. This includes
any screen placement constraints imposed by a particular product implementation. Warning messages
are issued when:

• The DFLD attribute is EGCS and the field position parameter does not specify an odd column number
(3270 only)

• An EGCS literal is not specified as an even number of characters
• The DFLD length is not specified as an even number

When defining an EGCS field for a 3283 Model 52, you must ensure that the length specified is an even
number and, if an EGCS field spans device lines, specify WIDTH= and POS= so that an even number of
print positions are reserved on each of the device lines.

Related concepts
“Output message literal fields” on page 486
Output message fields can be defined to contain literal data you specified during definition of the MOD.
MFS includes the specified literal in the output message before sending the message to the device.

Mixed DBCS/EBCDIC fields
The Double Byte Character Set (DBCS) is a graphic character set in which each character is represented
by 2 bytes. It is a subset of the Extended Graphic Character Set (EGCS). DBCS is used to represent
some Asian languages, such as Chinese, Japanese, and Korean; because each of these written languages

Chapter 5. Message Format Service (MFS) reference 489

consists of more than 256 characters that can be represented by one byte. As with EGCS, this
representation is accomplished by an extension of the programmed symbol feature.

Because DBCS is a subset of EGCS, DBCS fields are specified using EGCS keywords and parameters
and are treated by MFS in much the same way as EGCS data. However, DBCS data can be used in two
field types, a DBCS field and a DBCS/EBCDIC mixed field. The DBCS field accepts only DBCS data and
no special control characters are needed with this type of field. (The valid code range of DBCS data is
X'4040', or X'41' through X'FE' for both bytes.) But, in a mixed field, where DBCS data is mixed with
EBCDIC data, the DBCS data must be enclosed by SO (shift out) and SI (shift in) control characters.

Using DBCS requires display and printer devices capable of handling DBCS data. One such group of
devices is the 5550 Family (as 3270); however, other 3270 DBCS devices are available.

Mixed DBCS and EBCDIC fields
When DBCS data is enclosed by SO/SI characters, a mixed field on a 3270 DBCS device accepts both
EBCDIC and DBCS data. Such a mixed field can contain multiple DBCS data entries enclosed by SO/SI
control characters.

The DBCS data should always be enclosed by SO/SI control characters for both inbound and outbound
data to a 3270 display. However, if the data is inbound, the control characters are automatically created
by the terminal. To explicitly specify DBCS/EBCDIC mixed fields, use the keywords MIX and MIXS on the
EATTR= parameter of the DFLD statement.

For example, the following figure shows the case of a DBCS/EBCDIC mixed field.

The DBCS/EBCDIC mixed data shown in the following figure consists of the following 16 characters:

• EBCDIC data 'ABCD' and 'EF' (6 bytes)
• DBCS data 'GGGG' and 'GG' (6 bytes)
• Two sets of SO/SI control characters (4 bytes)

The SO control character is represented by X'0E' and the SI control character is represented by X'0F'.

Figure 32. DBCS/EBCDIC mixed data

When DBCS is used, MFS sends the data directly to the 3270 display but performs SO/SI blank print
processing before sending it to the SCS1 printer. The SO/SI control characters for 3270 displays and SCS1
printers are treated as follows:

• On 3270 displays, an SO or SI control character takes up one position on the display and appears as a
blank.

• On SCS1 printers:

– If EATTR=MIXS is specified, an SO or SI control character does not take up a position on the listing.
To prevent insertion of blanks, specify EATTR=MIXS (SO/SI blank print suppress option).

– If EATTR=MIX is specified, the SO/SI blank print option inserts a blank before an SI control character
and after an SI control character in a mixed data field. Specifying MIX results in identical 3270
display output and SCS1 printer output.

The length of the mixed data containing SO/SI in the application program is different from the length of
the same data on the printed output.

490 IMS: Application Programming APIs

The length of the DBCS/EBCDIC mixed data shown in the previous figure is 16 bytes in the application
program. If the string is sent to a field specified with DFLD EATTR=MIX, the data is printed as a 16-byte
string. However, if sent to a field specified as DFLD EATTR=MIXS, the data is printed as a 12-byte string
(4 bytes of SO/SI control characters are suppressed). The length attributes of the DFLDs are LTH=16 and
LTH=12, respectively.

SO/SI control character processing
For 3270 displays, DBCS data enclosed by SO/SI control characters can be included as part of an existing
EBCDIC field. When DBCS data is mixed in an existing EBCDIC field, the IMS application program must
check that correct DBCS data is placed in the 3270 display field. DBCS data within an EBCDIC field is
correct when the following conditions are met:

• The length of DBCS characters is an even number of bytes.
• There are no unpaired SO or SI control characters.

When MIX or MIXS is specified on the DFLD statement, MFS checks these conditions, aligns the DBCS
data enclosed by SO/SI control characters, and corrects invalid SO/SI control characters.

DBCS/EBCDIC mixed literals
DBCS/EBCDIC mixed literals can be specified as DFLD/MFLD literals, as shown in the following code
example.

 literal format:'SO____SI..SO__SI'

 DFLD
 'literal'

 MFLD
 ,'literal'
 ,(dlfdname,'literal')

The DBCS data in a DBCS/EBCDIC mixed literal is expressed as a series of Gs in the device image map in
the MFS listing.

When the MFS Language utility specifies a DFLD/MFLD literal containing DBCS/EBCDIC mixed data within
an EBCDIC field without specifying EATTR=, a check for mixed field is performed for both 3270 display
and SCS1 printer output. A DBCS/EBCDIC mixed field attribute with EATTR=MIX is assigned for SCS1 only.
The LTH parameter is ignored even if specified. As a result, the field length is the same as the length of the
literal.

The following table shows the processing performed by the IMS MFS Language utility for SO/SI control
characters within a DBCS/EBCDIC mixed field. The Device and Field are listed, followed by the DFLD/
MFLD output literal, and the MFLD input literal.

Table 138. SO/SI processing performed by IMS MFS language utility

Device, Field DFLD/MFLD Output Literal MFLD Input Literal

3270 display, DBCS/
EBCDIC mixed field

• Check SO/SI pairing.
• Check even length.
• Adjust boundary alignment (with

warning message).

SO/SI checking not done

SCS1 printer, DBCS/
EBCDIC mixed field

• Check SO/SI pairing.
• Check even length.
• Perform SO/SI correction and boundary

adjustment according to SO/SI blank
print option.

Not applicable

Chapter 5. Message Format Service (MFS) reference 491

The following table shows the processing performed by the MFS message editor on SO/SI control
characters within a DBCS/EBCDIC field. The Device and Field are listed, followed by the outbound data
fields and the inbound data fields.

Table 139. SO/SI processing performed by MFS message editor

Device, Field Outbound Data Fields Inbound Data Fields

3270 display, DBCS/
EBCDIC mixed field

• Check SO/SI pairing.
• Check even length.
• Adjust boundary alignment.

SO/SI checking not done

SCS1 printer, DBCS/
EBCDIC mixed field

• Check SO/SI pairing.
• Check even length.
• Perform SO/SI correction and boundary

alignment according to SO/SI blank
print option.

Not applicable

Continuation rules for DBCS/EBCDIC mixed literals
The continuation rules for mixed literals are the same as the continuation rules for EGCS literals. The
continuation rules are as follows:

• An EGCS literal can be continued on the next line.
• An SI character can be coded in column 70, 71, or 72 to terminate EGCS data and is not included in the

literal. If an SI is in column 70, the data in column 71 is ignored, except when the character is a single
quotation mark.

• On continuation lines for literals, an SO character is not required, but can be used in column 15. (This
indicates the beginning of EGCS data and is not included in the literal.)

Because mixed literals have the DBCS character string, there are some considerations for their
continuation:

• When data is mixed EBCDIC and DBCS, the DBCS data must be enclosed by SO and SI control
characters. The SI characters can be located from column 70 to 72 in an EGCS literal; in a mixed
literal, SO and SI are part of the user data. Therefore, you must fill the data up to column 71, put a
non-blank character in column 72, and start the next line from column 15 (if SO) or from column 16.
Examples of continuations in mixed literals are shown in the following code sample.

• When the first byte of the DBCS character is in column 71, you can put a non-blank character in column
72 and put the second byte of the DBCS character in column 16 of the next line to continue the literal.
Another solution is to start the first line from column 17.

Continuation in a mixed literal

Mixed Literal

'abc{K1K2K3}'def where
 abc & def = EBCDIC characters
 K1K2K3 = DBCS characters
 { = shift out X'0E'
 } = shift in X'0F'

Examples of Continuations in Mixed Literals

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
 'zzabc{K1}
 {K2K3}def'

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

492 IMS: Application Programming APIs

 'zzabc{K1K2K3}
 {}def'

SO/SI pair verification and SO/SI correction
MFS corrects unpaired SO and SI control characters found during SO/SI pair verification as follows:

• Within a 3270 display field or SCS1 printer field with EATRR=MIX specified, all SO control characters
(except the last unpaired SO control character in the field) and all duplicate SI control characters are
replaced with blanks.

For the last unpaired SO control character in the field, an SI control character is placed in either the
last, or second from the last, byte so that the length of the DBCS field is even. If an SI control character
is placed in the second from the last byte, the last byte is replaced by a fill character. If an SO control
character is in the last byte of a field, it is replaced with a blank.

• Within an SCS1 printer field with EATRR=MIXS specified, all SO control characters (except the last
unpaired SO control character in the field) and all duplicate SI control characters are removed.

For the last unpaired SO control character in the field, an SI control character is placed in the last, or
second from the last, byte so that the length of the DBCS field is even. If the SI control character is
placed in the second from the last byte, the last byte is replaced by a fill character. If an SO control
character is in the last byte of a field, it is replaced with a fill character.

For SCS1 printers, all paired and unpaired SO/SI control characters exceeding the number of SO/SI pairs
defined for the field are:

• Replaced with blanks, if EATTR=MIX is specified
• Removed, if EATTR=MIXS is specified

If the length of DBCS data within a DBCS/EBCDIC field is odd, the odd SI position is moved one byte to the
left and the rest of the field is padded with blanks.

Input control and DBCS/EBCDIC mixed field (3270 display)
When sending DBCS/EBCDIC data to a DBCS/EBCDIC field, MFS checks for SO/SI pairs and even length
and performs SO/SI correction and boundary adjustment if necessary. In this way, the DBCS/EBCDIC field
appears correctly on the 3270 display screen or SCS1 printer output.

When receiving DBCS/EBCDIC data from a mixed field, MFS passes the data as is. This is because SO/SI
pairing and even length are always ensured when using the 3270 display.

However, when sending DBCS/EBCDIC data to a DBCS/EBCDIC field and receiving user-entered DBCS/
EBCDIC data from the same field, the application program must account for changes in the data. When
receiving user-entered DBCS data, the 3270 display builds the data and SO/SI control characters and
then truncates or realigns the data to assure SO/SI paring and even length. The IMS application program
must take this into account when using a part of the send data as receive data.

DBCS/EBCDIC mixed field and horizontal tab (SCS1 printer)
When using an online horizontal tab setting, tabs are not set within a DBCS/EBCDIC field. This is because
it is not possible to determine beforehand whether the actual position of the DBCS data within a mixed
field is on an odd or even boundary.

Field outlining
This function is used for user-defined 3270 display and SCS1 printer fields.

Field outlines are referred to as OVER, UNDER, LEFT, and RIGHT lines and they can be specified
independently or in any combination.

The area at the left and right ends of the field shown in the following figure are:

Chapter 5. Message Format Service (MFS) reference 493

• For 3270 displays, 3270 basic attribute bytes. The left attribute byte describes the first field; the right
attribute byte describes the following field.

• For SCS1 printers, left and right blanks, reserved for the user-defined field by MFS.

Figure 33. User field and field outlining

Connecting field outlines and joining fields
You can outline multiple fields jointly as shown in the following figure.

Figure 34. Field outlining when connecting user fields

The previous figure consists of nine logical fields. A1, B1, ... I1 are fields defined for the 3270 display
and A2, B2, ... I2 are fields defined for the SCS1 printer. Note that for 3270 displays, 3270 basic attribute
bytes are placed between fields. For SCS1 printers, the fields are connected without losing any print
positions and the field outlines are connected. The outline specification for each field in the previous
figure is shown in the following table.

Table 140. Outline specification for each field

Fields LEFT RIGHT OVER UNDER

A1, A2 X X

B1, B2 X

C1, C2 X X

D1, D2 X X

E1, E2 X

F1, F2 X X

G1, G2 X X X

H1, H2 X X

I1, I2 X X X

You need to define only the message field for 3270 displays in your IMS application program to produce
the same output on displays and printers.

494 IMS: Application Programming APIs

When field outlining is specified for an SCS1 printer, the MFS Language utility attempts to reserve 1 byte
for the left and right lines, but if adjacent fields cannot be reserved, a warning message is issued.

Cursor positioning
On 3270, 3604, or SLU 2 display devices, the cursor is positioned by its line and column position on
a physical page. When a specific cursor position is always required (and device-dependence is not an
issue), you can define cursor position in the DPAGE statement.

The DPAGE statement can also be defined so that cursor position is known to the application program
on input and is specified dynamically by the application program on output. To dynamically define cursor
position on output, specify a device field name along with its line and column position. If this field is then
referred to by a MID MFLD statement, the cursor position is provided in that message field on message
input. If the message field is referred to in a MOD MFLD statement, the message field can be used by the
application program to specify cursor position on output.

The application program cursor position request is used if its specified size is within the line and column
specifications of the SIZE= operand of the TERMINAL macro for device type 3270-An; or within the line
and column boundaries of 3270, model 1 or 2. Otherwise, the line and column positions specified on the
DPAGE statement or the default positions (line 1, column 2) are used.

Related reading: For a description of the TERMINAL macro, see IMS Version 15.3 System Definition.

The option of providing cursor location on input is available only for 3270 or SLU 2 devices. This method
of cursor positioning is not recommended for output, because it requires the application to use a specific
device field position, making the application device-dependent. MFS considers cursor position as a device
field attribute; the field attribute facility can be used to establish cursor position.

Application programs can dynamically replace, modify, or simulate attributes for a device field whose
corresponding message field is defined as ATTR=YES or ATTR=nn. At least the first 2 bytes of a message
field defined in this way are reserved for attribute data or extended attribute data provided by the
application program.

For a 3290 in partitioned-format mode, the first partition descriptor (PD) statement defined in the
partition descriptor block (PDB) is the first partition created. The cursor is placed in this partition, which
becomes the active partition unless overridden by the Jump Partition key or by the ACTVPID= keyword in
the DPAGE statement associated with a subsequent output message.

Using the Jump Partition key causes the cursor to jump to the next sequential partition defined by
the application program and that partition becomes the active one. The ACTVPID= keyword allows the
application program to activate and locate the cursor in a specific partition.

Prompt facility
The prompt facility provides a way to automatically notify you if the current page of output is the last page
of the message.

The notification text is defined as a literal which MFS inserts into a specified device field when it formats
the last logical page of the message. To further assist you, the prompting text can be used to tell you what
input is expected next.

Recommendation: For a 3270 or SLU 2 device, the combination of PROMPT and FILL=NULL should be
used with care because, once the prompt literal is displayed, it can remain on the screen if your input
does not cause reformatting of the screen.

System message field (3270 or SLU 2 display devices)
Output formats for 3270 or SLU 2 display devices can be defined to include a system message field. If
defined in this way, all IMS messages except REQUESTED FORMAT BLOCK NOT AVAILABLE are sent to the
system message field whenever the device is in formatted mode. Using a system message field or setting
byte 1 bit 5 to B'0' in the DSCA specification prevents an IMS message from destroying a screen format.

When MFS sends a message to the system message field, it activates the device alarm (if any) but does
not reset modified data tags (MDTs), move the cursor, or change the protect/unprotect status of the
display, except in the event of a multi-segment message. In this case, the status is changed to protected,
and the enter key must be pressed to view the next segment or segments of the message. Because IMS

Chapter 5. Message Format Service (MFS) reference 495

error messages are an immediate response to MDTs in input, MDTs remain as they were at entry and you
must correct the portion of the input that was in error.

After input from an operator identification (OID) card reader, the device is no longer in formatted mode.
Therefore, an IMS message is not sent to a SYSMSG field; it is sent using the default system message
format. This is also the case after an XRF (Extended Recovery Facility) takeover because the device is no
longer in formatted mode.

Printed page format control
The PAGE= keyword of the DEV statement provides much of the formatting control of the format of output
messages sent to printer devices.

The WIDTH= keyword provides additional formatting control. In conjunction with the FEAT=(1…10)
keyword, WIDTH= provides additional formatting control for printer devices specified as 3270P. (See
WIDTH= under the DEV statement for additional information.) The WIDTH= keyword, in conjunction with
the HTAB=, VTAB=, VT=, SLDI= and SLDP= keywords, provides additional formatting control for 3770 or
SLU 1 printer devices.

Using a PAGE= operand (DEFN, SPACE, FLOAT, or EJECT), with the page depth (the number of lines per
page), determines how MFS controls the printing of the output message. These are the PAGE= operands:
DEFN

MFS prints each line as defined by DFLD statements. In this mode, if the first DFLD defined line is
greater than 1, the printer position is moved to the first defined line. The printer position is also moved
over the blank lines between defined DFLDs. However, MFS does not add blank lines to the bottom of
the page of output if the last defined line is less than the page depth. The next page of output begins
on the line following the current line of output. The number specified in the PAGE= keyword is used to
check the validity of the line specification of the DFLD POS= keyword.

SPACE
This produces the same printing mode as DEFN except that lines are added to the bottom of the page
if the last defined line is less than the page depth. The printer is positioned through a series of new
lines. This option can be used for devices that do not have the page eject feature so that pages are not
grouped together.

FLOAT
This operand is used to request that lines not be printed if they are defined by DFLD statements, or if
they contain no data after formatting (all blank or NULL).

EJECT
This operand is specified for FIN, 3770, or SLU 1 printers. The following options can be specified for
EJECT (or any combination of these):
BGNPP or ENDPP

MFS ejects the page before (BGNPP) or after (ENDPP) each physical page of the output message.
BGNMSG

MFS ejects the page before any data in the output message is printed.
ENDMSG

MFS ejects the page after all the data in the output message is printed.
MFS does not add lines to or delete lines from the page. EJECT can be specified for FIN, 3770, or SLU
1 printers.

Related concepts
“Output format control for 3270P printers” on page 498
MFS provides several specifications to control the format of messages to 3270P printer devices.
“Format control for 3770 and SLU 1 printers” on page 497

496 IMS: Application Programming APIs

MFS provides several specifications to control the format of output messages to 3770 printer devices and
SLU 1 (print data set) (DEV TYPE=SCS1).

Format control for 3770 and SLU 1 printers
MFS provides several specifications to control the format of output messages to 3770 printer devices and
SLU 1 (print data set) (DEV TYPE=SCS1).

Line width
The WIDTH= keyword of the DEV statement is used to specify the maximum width of a print line, relative
to column 1. The specified width is used in place of the physical device line width. Specification of a line
width also establishes the right margin of the printed page (relative to column 1). Valid values are less
than or equal to the physical device line width. For example, if WIDTH=80 is specified, data can be printed
in columns 1 through 80.

Left margin position
The left margin operand of the HTAB= keyword of the DEV statement can be used to specify where MFS
should set the left margin for the device before sending an output message. A left margin specification
should be made if output fields always start at a column position other than column 1 (the default). For
example, if fields are always defined in columns 5 through 80, HTAB=(5) and WIDTH=80 can be specified
on the DEV statement.

Horizontal tabbing
The HTAB= keyword of the DEV statement is used to specify where MFS should set horizontal tab stops
before sending an output message.

MFS can insert tab control characters into the message to reduce the number of characters transmitted.
To control when tab control characters are inserted, specify the ONLINE or OFFLINE operand for the
HTAB= keyword. OFFLINE specifies that MFS insert the tab control characters during compilation of
the control blocks by the offline MFS Language utility program. ONLINE specifies that MFS insert the
control characters during online processing of the message. MFS can only be directed to insert tab control
characters into messages that have legitimate fill characters specified (FILL=X'hh' or FILL=C'c' in the
DPAGE statement), or use the default fill character, X'40'.

Specify OFFLINE when the message definition always supplies data to most defined device fields, or the
fill character is not a blank. Specify ONLINE if some device fields do not receive data, or the data contains
blanks. Even though the ONLINE specification increases MFS online processing, it reduces character
transmission to the device.

Vertical tabbing
The VT= keyword of the DEV statement is used to specify where MFS should insert vertical tab control
characters into the page of the output message. MFS assumes that the vertical tab stops are relative to
line 1 and have been set at the device by the specification of the VTAB= keyword or other means prior to
message transmission. VT= must be specified if vertical tabbing is required. There are no default values.
VT= is invalid if page control specifications direct MFS to delete lines that contain no data after formatting.
EJECT BGNMSG or EJECT BGNPP should be specified in conjunction with the VT= keyword to ensure
proper alignment at the beginning of a page. A specification of VT= without a suitable EJECT operation
defined can result in invalid device formatting.

Top and bottom margins
Top and bottom margins can be specified for printers specified as DEV TYPE=SCS1 by using the VTAB=
keyword on the DEV statement. VTAB= is invalid if page control specifications (PAGE=n,FLOAT) direct MFS
to delete lines that contain no data after formatting.

Chapter 5. Message Format Service (MFS) reference 497

When used together, the page depth (PAGE=), vertical tab (VT=), and top and bottom margin (VTAB=)
specify a "set vertical format" data stream.

Line density
For printers specified as DEV TYPE=SCS1, the density of lines on an output page can be specified with the
SLDx= keyword on the DEV statement, the DFLD statement, or both. Line density can be set in terms of
lines per inch or points per inch. If SLDx= is specified on both the DEV and DFLD statements, two SLD data
streams are sent, one at the beginning of a message and one within the message, just before the field
on which the SLDx specification, was encountered, but after any vertical tabs and new line characters.
The SLDx specification within the message changes the line density from that set at the beginning of the
message to that specified within the message. The line density specified within the message remains in
effect until explicitly reset.

Related concepts
“Printed page format control” on page 496
The PAGE= keyword of the DEV statement provides much of the formatting control of the format of output
messages sent to printer devices.

Output format control for 3270P printers
MFS provides several specifications to control the format of messages to 3270P printer devices.

Line width
The WIDTH= keyword of the DEV statement is used to specify the maximum width of a print line relative
to column 1. The specified width is used in place of the physical device line width. The default for 3270P
printers is 120. When WIDTH= is specified, a feature code from 1 to 10 must also be specified using the
FEAT= keyword on the DEV statement.

Related concepts
“Printed page format control” on page 496
The PAGE= keyword of the DEV statement provides much of the formatting control of the format of output
messages sent to printer devices.

Output format control for SLU P DPM-An
For SLU P devices with the DPM-An option, You can use several specifications in MFS to control the format
of output messages.

The RCDCTL= operand of the DIV and RCD statements identifies a related group of device field (DFLD)
definitions that are within one record, which is usually sent to a remote program as one transmission
(that is, if the RCDCTL= value is less than or equal to the value in the OUTBUF= parameter of the system
definition TERMINAL macro).

The number of device fields in the record is determined by the length (numeric value) specified in
RCDCTL. Device fields can be arranged in records through the RCD statements. The records created can
be smaller than the size specified in RCDCTL. The SPAN/NOSPAN parameter determines whether fields
are allowed to span record boundaries. All output messages are sent in record mode.

The PPAGE statement identifies a presentation page of a device format and can contain one or more
records.

The DPAGE statement defines a logical page of a device format and can contain one or more records.

Paging
The MSG, DPAGE, or PPAGE operands of the OPTIONS= specification of the DIV statement is used to
determine how the output message is sent to the remote program.
MSG

This specifies that all the data in the output message is to be transmitted together to the remote
program in one chain. This is the default.

498 IMS: Application Programming APIs

After transmitting the message to the remote program, IMS does not transmit another output
message if PROGRAM2 has been specified as the media parameter of the COMPTn operand of the
system definition TERMINAL macro. An input request is required from the remote program before the
next message is sent. If PROGRAM1 is specified, IMS does not wait for an input request, but sends
another output message if one is available.

DPAGE
This specifies that all the data in the logical page is to be transmitted together to the remote program
in one chain. A paging request is required from the remote program to retrieve the next logical page of
the output message.

PPAGE
This specifies that all the data in the presentation page is to be transmitted together to the remote
program in one chain. A paging request is required from the remote program to retrieve the next
presentation page of the output message.

A paging request can be specified through the input message header or through an operator control
table. For OPTIONS=DPAGE or PPAGE, when the last logical or presentation page has been sent to the
remote program, IMS MFS action is the same as for 3270 and 3604 devices regardless of PROGRAM1 or
PROGRAM2 specification.

Each chain contains an output message header. The DATANAME in the output message header is the
format name if OPTIONS=MSG is specified, the current name of the device logical page (DPAGE) if
OPTIONS=DPAGE is specified, or the current name of the presentation page if OPTIONS=PPAGE is
specified.

The output message header is always present in the first transmission record of the chain. For
OPTIONS=MSG, the first transmission record contains only the output message header, and the next
transmission begins the data for the message.

For OPTIONS=DPAGE or PPAGE, the data follows the output message header in the first transmission
record if either of the following occurs:

• RCDCTL=(,SPAN) is specified, and the RCDCTL length is greater than the output message header length.
• RCDCTL=(,NOSPAN) is specified, the RCDCTL length is greater than the output message header length,

and at least the first data field defined in the current DPAGE or PPAGE can be fully contained within the
first transmission record.

Output message header
The basic output message header contains the following MFS fields, presented in this sequence:

VERSION ID
MIDNAME
DATANAME

DATANAME is the FMT label for OPTIONS=MSG, the DPAGE label for OPTIONS=DPAGE, and the PPAGE
label for OPTIONS=PPAGE.

If a forms literal is specified in the DEV statement, the FORMSNAME field is present in the output
message header. For OPTIONS=MSG the FORMSNAME is present in the basic header after the
DATANAME. For OPTIONS=DPAGE OR PPAGE, an optional forms output message header precedes the
basic output message header. It contains the following fields:

MIDNAME
FORMSNAME

The forms header is sent to the remote program as the only element of a chain. A paging request is
required after the header has been processed and the remote program is ready to process the first logical
or presentation page of an output message.

The length of the output message header can be defined in the HDRCTL= operand of the DIV statement as
fixed or variable.

Chapter 5. Message Format Service (MFS) reference 499

The length of the fixed basic output message header (without FORMSNAME) is 23 bytes for
OPTIONS=MSG and 25 bytes for OPTIONS=DPAGE or PPAGE. If FORMSNAME is present, the maximum
length of the basic output message header for OPTIONS=MSG is 40 bytes, and the maximum length for
OPTIONS=DPAGE or PPAGE is 33 bytes.

• If HDRCTL=FIXED is specified, the MIDNAME and DATANAME fields are always padded with blanks
to the maximum definable length: MIDNAME to 8 bytes (if MIDNAME is not supplied, 8 blanks are
presented), FMT name to 6 bytes, and DPAGE or PPAGE name to 8 bytes. For this reason, the position
of the DATANAME is always at the same displacement in the basic output message header, and the
FORMSNAME, if present, is always at the same displacement, following the FMT name if OPTIONS=MSG
and following the MIDNAME if OPTIONS=DPAGE or PPAGE.

• If HDRCTL=VARIABLE is specified, neither MIDNAME nor DATANAME is padded. If MIDNAME is less
than 8 bytes or is not present, the position of the DATANAME, FORMSNAME, or both within the output
message header is variable.

The following table shows the format of the fixed output message header for OPTIONS=MSG.

Table 141. Fixed output message header format for OPTIONS=MSG

Type of
Field Type

Base
DPM-An
Header
With
Length

Leng
th of
MID
NAM
E
Plus
1

Default
MIDNAME

Length
of
Format
Name

Data Fields
Format Name

Leng
th of
Form
s
Liter
al
Plus
1

FORS= Parameter
Literal

FIELD
BYTES

BASE 7 LI 1 MIDNAME 8 L2 1 DATANAME 6 L3 1 FORMSNAME (user-
coded literal)

BASE
The base DPM-An output header with a length of 7 bytes, including the version ID.

L1
The full length of the MIDNAME plus 1. Contains the value 9.

MIDNAME
Contains the MIDNAME to be used for input. If this name is less than 8 characters, it is padded with
blanks to a full 8 bytes. If the MIDNAME is not specified, this field contains 8 blanks.

L2
The full length of the format name (DATANAME) plus 1. Contains the value 7.

DATANAME
The name of the format that was used to format the data fields. If the format name specified is less
than 6 characters, it is padded to a full 6 bytes.

L3
Contains the length of the forms literal plus 1. The maximum value is 17.

FORMSNAME
Contains the literal specified in the FORS= parameter of the DEV statement. It can have a length of
1-16 bytes. If FORS= is not specified in the DEV statement, the L3 and FORMSNAME fields are not
included in the output message header.

If a variable output message header is specified in the HDRCTL= operand of the DIV statement, the
output message header for OPTIONS=MSG will have the same format, but MIDNAME and DATANAME will
have trailing blanks omitted and their length fields adjusted accordingly. If MIDNAME is not used, neither
the MIDNAME field nor its length is present.

The following table shows the format of the fixed basic output message header (without FORMSNAME) for
OPTIONS=DPAGE or PPAGE.

500 IMS: Application Programming APIs

Table 142. Fixed basic output message header (without FORMSNAME) for OPTIONS=DPAGE or PPAGE

Type of Field
Type

Base DPM-
An Header
With Length

Length of
MIDNAME
Plus 1

Default
MIDNAME

Length of
Format Name

Data Fields Format
Name

FIELD BYTES BASE 7 L1 1 MIDNAME 8 L2 1 DATANAME 8

BASE
Content is the same as for OPTIONS=MSG.

L1
Content is the same as for OPTIONS=MSG.

MIDNAME
Content is the same as for OPTIONS=MSG.

L2
This is the full length of the DPAGE or PPAGE name (DATANAME plus 1). Contains the value 9.

DATANAME
Contains the name of the DPAGE or PPAGE that was used to format the data fields for the current
logical or presentation page. If the DPAGE or PPAGE name specified is less than 8 characters, it is
padded with blanks to the full 8 bytes.

The following table shows the format of the optional forms output message header for OPTIONS=DPAGE
or PPAGE.

Table 143. Optional forms output message header for OPTIONS=DPAGE or PPAGE

Type of Field
Type

Base DPM-An
Header With
Length

Length of
MIDNAME
Plus 1

Default
MIDNAME

Length of Format
Name

Data Fields
Format Name

FIELD BYTES BASE 5 L1 1 MIDNAME 8 L2 1 FORMSNAME
(user-coded

literal)

BASE
The base of the optional forms output message header does not include a version ID.

L1
Contains the value 9.

MIDNAME
Content is the same as for OPTIONS=MSG.

L3
Contains the length of the coded forms literal plus 1.

FORMSNAME
Contains a user-coded literal, as in the fixed output message header for OPTIONS=MSG.

Naming conventions
Establish naming conventions for formats, device logical pages, and presentation pages (that is, for the
labels of the FMT, DPAGE, and PPAGE statements). For example, you can establish conventions for FMT,
DPAGE, and PPAGE names that allow the remote program to interpret them in terms of 3790 panels or
functional program subroutines. Also standardize DPM-An output message headers.

User-written labels for PPAGE statements must be unique within a format definition. It is recommended
that labels also be unique within the IMS system.

If OPTIONS=PPAGE has been selected for a format definition, the PPAGE label is sent as the DATANAME
in the output message header. The label should give the remote program information that can be used in
deciding how to process the data. When you have not coded a label for a PPAGE, MFS generates a label

Chapter 5. Message Format Service (MFS) reference 501

for it and sends this generated name in the output message header. The MFS-generated names can be
used by the remote program, but leaving the label specification up to MFS is not recommended, because
the generated name for a given PPAGE can change every time the MFS definitions are recompiled.

Deletion of null characters in DPM output records
See the discussion of FILL=NULL in the DPAGE statement in IMS Version 15.3 Database Utilities for a
discussion of deletion of null characters in transmission records.

Related reference
“DIV statement” on page 445
The DIV statement defines device formats within a DIF or DOF. The formats are identified as input, output,
or both input and output, and can consist of multiple physical pages. For DEV TYPE=SCS1, SCS2, or
DPM-AN, two DIV statements can be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all other
device types, only one DIV statement per DEV is allowed.

Output format control for ISC (DPM-Bn) subsystems
IMS supports the major output message formatting functions of MFS with ISC nodes.

Format control
For ISC nodes, MFS allows several specifications to control the format of output messages. If
OPTIONS=DPAGE or OPTIONS=PPAGE is specified on the DIV statement, MFS sends an output message
in multiple logical or presentation pages. Transmission of these pages within the message occurs on
demand or automatically when you set byte 1 bit 5 of the system control area (SCA).

Function management (FM) headers
FM headers are headers on output messages that control functions such as paging.

Paged output messages
For DPM-Bn paging support, if OPTIONS=DPAGE or OPTIONS=PPAGE is specified on the DIV statement,
MFS sends an output message in multiple logical or presentation pages.

Demand paging
With demand paging, the logical or presentation pages are sent only when a paging request is received
from the other subsystem. The initial output for the message contains only the ATTACH FM header. If DIV
OPTIONS=DNM is specified, the data structure name (DSN) is also transmitted.

Autopaged output
This option is available message-by-message, based on SCA values. With this facility, the logical or
presentation pages are sent immediately, in multiple transmission chains (one transmission chain per
page). With this option, the receiver obtains an entire output message in multiple transmission chains.
Each transmission chain contains the DSN, if required.

Restriction: Paging requests cannot be entered to control receipt of the message.

If no data exists for variable-length fields of a page within the message, a null data chain can result.

Byte 1 bit 5 in the DSCA= operand of the DEV statement or in the SCA option of the MFLD statement
indicates autopaged output.

If PAGE=YES is specified in the corresponding MSG definition and autopaged output is requested, the
PAGE=YES specification (operator logical paging) function is reset and the output message is dequeued at
the end of the message. Operator logical paging applies only to MFS demand paged output.

502 IMS: Application Programming APIs

Output modes
For output from IMS, the ATTACH manager provides for two blocking algorithms: variable length, variable
blocked (VLVB) records and chained Request/Response Unit (RUs, MFS stream mode). Each record
presented by MFS to the ATTACH manager is preceded by a length field when sent to the other
subsystem. The length field contains the size of the record presented by MFS. The record itself is sent in
as many RUs as required. Fields span RU boundaries but do not span record boundaries. The number of
VLVB records in the transmission chain and the maximum size of the MFS record depend on the output
mode selected and the paging option specified.

In stream mode, the way DFLDs are defined depends on the OPTIONS= keyword used:

• For OPTIONS=MSG (paging is not defined), DFLDs are defined in a DPAGE.
• For OPTIONS=DPAGE (paging is defined), DFLDs are defined in a DPAGE.
• For OPTIONS=PPAGE (paging is defined), DFLDs are defined in a PPAGE.

For all three OPTIONS= keyword settings, All the DFLDs defined in a DPAGE (or PPAGE) are grouped into a
single MFS record for transmission, and all the data in one DPAGE (or PPAGE) is equal to one MFS record
and equal to one output RU chain. One or more RUs are sent in the single transmission chain of the output
message.

If the OFTAB parameter of a DIV or DPAGE statement is defined, contiguous output field tab separator
characters are removed and are not sent to the subsystem in the following cases:

• At end of message for OPTIONS=MSG
• At end of DPAGE for OPTIONS=DPAGE
• At end of PPAGE for OPTIONS=PPAGE

In record mode, the DFLDs defined in a DPAGE or PPAGE are grouped into smaller records for
transmission. The RCDCTL parameter of the DIV statement is used to define the maximum length of
the MFS record created. If the RCDCTL= parameter is not specified, the default value allows for records of
up to 256 bytes in length. The RCD statement is used to start a DFLD on a new record boundary.

If the OFTAB parameter is defined, contiguous output field tab separator characters at the end of the
record (for omitted fields and possible short last data field) are removed before transmission. If the entire
record is thus eliminated and additional data records follow, a 1-byte record containing the single output
field tab separator character is sent. The record is eliminated in the following cases:

• At end of message for OPTIONS=MSG
• At end of DPAGE for OPTIONS=DPAGE
• At end of PPAGE for OPTIONS=PPAGE

One or more VLVB records are sent in a single transmission chain of the output message (OPTIONS=MSG)
or the page (OPTIONS=DPAGE or PPAGE).

Related reference
“Device-dependent output information” on page 431
Using certain options for outputting information can make the application program device-dependent.
Some options allow the application program to control certain features of devices receiving output.
Descriptions of the effects of various output options follow.

FILL=NULL specification
Specify FILL=NULL on the DPAGE or MSG statement and specify the OFTAB= parameter in the DIV or
DPAGE statement to preserve field separation. If FILL=NULL is specified on the DPAGE or MSG statement
and the OFTAB= parameter is not present on the DIV statement or the DPAGE statement, a compressed
output data stream is produced and field separation is not evident.

Use FILL=NULL for graphic data. If GRAPHIC=NO and FILL=NULL are specified in the SEG statement, any
X'3F' in the non-graphic data stream is compressed out of the segment and undesirable results can be
produced. Send non-graphic data on output as fixed length output fields and do not specify FILL=NULL.

Chapter 5. Message Format Service (MFS) reference 503

Output message segments and message fields defined for each segment are processed sequentially by
MFS if option 1 or 2 is defined in the OPT= operand of the MSG statement. Message fields in option 1
and 2 segments are defined as fixed-length fields and in fixed position. The data for these fields can
be supplied as fixed-length fields, or it can be shortened by the application program. The data can be
shortened by two methods:

• By inserting a short segment if no data exists for fields defined at the end of a segment.
• By placing a null character (X'3F') in the field. MFS scans segment data left to right for a null character.

The first null character encountered terminates the data for a corresponding MFLD. Positioning of all
fields in the segment remains the same as the positioning of defined fields regardless of null characters.

Trailing blank compression
Blanks at the end of segments are compressed if all of the following are true.

• OFTAB= is specified on the DIV or DPAGE statement, or if FILL=NULL or FILL=PT.
• GRAPHIC=YES is specified for the segment.
• OPT=1 or OPT=2 is specified in the MSG statement.

Specifying COMPR
You can specify trailing blank compression (COMPR=) as FIXED, SHORT, or ALL.

FIXED

If COMPR=FIXED is specified, MFS removes trailing blanks from fixed-length data fields. The resulting
mapping in the DFLD is as if the application program inserted a short data field (by inserting X'3F' in the
position after significant data or by inserting a short segment) or omitted the field (by inserting X'3F' in the
first position of the field or by inserting a short segment) if the entire field contains blanks.

Fields shortened by an application program are not compressed in the same way as when COMPR=FIXED
is specified. This option is provided for application programs that always supply maximum-length fields
(such as the NAME field) for simplicity of the application program, and these blanks are not significant to
the receiver. The receiver can assume that fields shortened or omitted by the compress option or by the
application program have the same meaning.

SHORT

If COMPR=SHORT is specified, MFS removes trailing blanks from the data fields shortened by the
application program. The resulting mapping in the DFLD is as if the application program inserted a short
field with no trailing blanks or omitted the field. Fixed-length fields do not undergo this compression.

This option is provided for application programs written for the 3270 and without application program
changes.

ALL

If COMPR=ALL is specified, the trailing blanks in the fixed-length and short fields are removed.

Trailing blanks in a short field or a single blank short field causes a specific operation on the 3270 (that is,
to clear the entire field on the screen for a single blank and insert a program tab character (FILL=PT), or to
clear the remaining portion of the updated field and insert one or more null characters (FILL=NULL)).

Saving line transmission time
Line transmission time can be saved by using one of the following methods:

• Specifying COMPR=ALL, which removes the trailing blanks in fixed-length and short fields
• Defining record mode, and defining the fields as occurring at the end of the record

Blank compression on variable-length output
The following code example shows the data entered by the IMS application:

504 IMS: Application Programming APIs

Segment 1:

DLZZ FIELD A1 | FIELD A2 |FIELD A3 |FIELD A4 |FIELDC1|FIELD C2
0200 AAAAA44444|1234563...|43.......|A4A4A4
0800 00000| F |0F

Segment 2:

DLZZ FIELD B1 | FIELD B2 |FIELD D1 |FIELD D2 |FIELD D3|FIELD E1
0300 BBBBBBBBBB|4444444444|DDDDDD43.|3........|D3D3D3D3
0400 |0000000000| 0F |F |

Note: Both segments entered are shortened by the program.

The following table shows the MFS definitions used in the previous code example.

Table 144. MFS definitions for data entered by IMS application

MSGOUT MSG TYPE=OUTPUT, SOR=FMTOUT

 SEG

 MFLD A1,LTH=10

 MFLD A2,LTH=10

 MFLD A3,LTH=10

 MFLD A4,LTH=10

 MFLD C1,LTH=10

 MFLD C2,LTH=10

 SEG

 MFLD B1,LTH=10

 MFLD B2,LTH=10

 MFLD D1,LTH=10

 MFLD D2,LTH=10

 MFLD D3,LTH=10

 MFLD E1,LTH=10

 MSGEND

FMTOUT FMT

Examples of variable-length output with blank compression are shown in the code examples below.

The following code example shows variable-length output with blank compression in record mode:

VLVB FIELD A1 THRU A4: (First record)
01 AAAAA,123456,,A4A4A4
06
VLVB FIELD B1: (Second record)
00 BBBBBBBBBB
0C
VLVB NO DATA: (Third record)
00
03
VLVB FIELDS D1 and D3: (Fourth record)
01 DDDDDD,,D3D3D3D3
02

Note:

Chapter 5. Message Format Service (MFS) reference 505

1. Field A2 was short.
2. Field A3 had no data.
3. Field A4 was short. Trailing separators in a record are not transmitted.
4. Field B2 had no data.
5. Fields C1 and C2 had no data. A 1-byte record is transmitted because more data follows.
6. Field D1 was short.
7. Field D2 had no data.
8. Field E1 had no data. A record is not transmitted because no more data follows.

The following table shows the MFS definitions used for record mode output as shown in the previous code
example.

Table 145. MFS definitions for record mode

Field Type Definition

 DEV TYPE=DPM-B1, FEAT=5,
MODE=RECORD

 DIV TYPE=OUTPUT, X

 OFTAB=(c',',MIX),
COMPR=ALL

A1 DFLD LTH=10

A2 DFLD LTH=10

A3 DFLD LTH=10

A4 DFLD LTH=10

 RCD

B1 DFLD LTH=10

B2 DFLD LTH=10

 RCD

C1 DFLD LTH=10

C2 DFLD LTH=10

 RCD

D1 DFLD LTH=10

D2 DFLD LTH=10

D3 DFLD LTH=10

 RCD

E1 DFLD LTH=10

The following code example shows variable-length output with blank compression in stream mode:

VLVB FIELDS A1 THROUGH D3: (Single record)
03 AAAAA,123456,,A4A4A4,BBBBBBBBBB,,,DDDDDD,,D3D3D3D3

Note: In stream mode, a separator is not transmitted for field D3, which is short, and for field E1, which is
omitted.

506 IMS: Application Programming APIs

The following table shows the MFS definitions used for stream mode output as shown in the previous
code example.

Table 146. MFS definitions for stream mode

Field Type Definition

 DEV TYPE=DPM-B1, FEAT=6,
MODE=STREAM

 DIV TYPE=OUTPUT, X

 OFTAB=(c',',MIX),
COMPR=ALL

A1 DFLD LTH=10

A2 DFLD LTH=10

A3 DFLD LTH=10

A4 DFLD LTH=10

B1 DFLD LTH=10

B2 DFLD LTH=10

C1 DFLD LTH=10

C2 DFLD LTH=10

D1 DFLD LTH=10

D2 DFLD LTH=10

D3 DFLD LTH=10

E1 DFLD LTH=10

 FMTEND

Related reference
“DIV statement” on page 445
The DIV statement defines device formats within a DIF or DOF. The formats are identified as input, output,
or both input and output, and can consist of multiple physical pages. For DEV TYPE=SCS1, SCS2, or
DPM-AN, two DIV statements can be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all other
device types, only one DIV statement per DEV is allowed.

Data structure name
The data structure name is sent in a separate DD header unless you code OPTIONS=NODNM on the
DIV statement. If you code OPTIONS=DNM or the default is used, the DD header is present in each
transmission chain of an output message, or each transmission chain of a demand paged output message.

In addition to the data structure name parameter in the DD header, the version identification parameter
is present in the only transmission chain of an output message or in the first transmission chain of paged
output messages.

Version identification
You have an option of coding a 2-byte value on the DEV statement to be included in the DOF or DIF control
block as the version ID. If this parameter is not coded, the version ID is generated by MFS using a hashing
algorithm on the date and time. The value is also printed in the MFS Language utility output so that you
can reference it in format definitions in remote programs.

Chapter 5. Message Format Service (MFS) reference 507

Your control of MFS
IMS provides MFS facilities that can assist you, or allow a remote program to control the display or
transmission of output messages.
Related concepts
“Operator logical paging of output messages” on page 483
Output messages can be defined to permit operator logical paging (PAGE= operand in the MOD's MSG
statement). Use operator logical paging to request a specific logical page of an output message.

Operator logical paging
Operator logical paging allows you (or, for SLU P, a remote program, or ISC subsystems) to request a
specific logical page of an output message. It is defined on a message basis in the PAGE= operand of the
MOD's MSG statement.

Functions provided
When a MOD is defined to allow operator logical paging, the following functions are available to you once
the first physical page of the output message is displayed:

• Enter = to display the next logical page of the current message.
• Enter =n, =nn, =nnn , or =nnnn (where n is the logical page number) to display a specific logical page of

the current message. The maximum value for nnnn is 9999.
• Enter =+n, =+nn, or =+nnn to display the n th logical page past the current logical page. The maximum

value for nnn is 999.
• Enter =-n, =-nn, =-nnn , or =>nnn to display the n th logical page before the current logical page. The

maximum value for nnn is 999.
• Enter =L to display the first physical page of the last logical page of the current message.

Format design considerations
When operator logical paging is permitted, message and device formats should be designed to allow you
to enter the page request onto a currently displayed page and have the request edited to the first field of
the first input segment. If this is not done, or the PAGEREQ function is not used, paging requests can only
be entered on a cleared device.

Preferably, the installation standard for device formats should include a specific device field for you to
enter logical page requests, transaction codes, and IMS commands. If the transaction code is normally
provided through a message or program function key literal, the PAGEREQ function can be used, or a field
can be defined at the beginning of the first segment using the null pad character. A page request field on
the device can map to this field. If you do not enter a page request, the null pad causes the field to be
removed from the segment and the second field (literal transaction code) appears at the beginning of the
segment.

Transaction codes and logical page requests
If the PAGEREQ function is not used to specify a page request, MFS formats input data according to the
defined MID prior to determining whether operator logical paging was specified, and whether the input
contained a page request. If operator logical paging was not specified, the message undergoes standard
IMS destination determination.

If operator logical paging was specified, MFS examines the first data of the first message segment (first
field if the message uses format option 3) for an equals sign (=). If MFS does not find an equals sign,
it routes the message to its destination. If an equals sign is present, all following characters up to a
maximum of 4, or the first blank, are considered to be a page request.

A message destined for a single-segment command or transaction, as required in Fast Path applications,
should be defined as single-segment in its MID. If the MID defines more than one segment, you
must ensure that only one segment is created when the destination is a single-segment command or

508 IMS: Application Programming APIs

transaction. This can be achieved by careful input and the use of option 2, null compression (FILL=NULL)
or both.

Operator control tables
Input device fields can be defined to invoke MFS control functions when either the data or the data length
satisfies a predefined condition. Do this by defining one or more operator control tables and including the
related table name in the device field definition.

When a device field is defined with an associated operator control table, MFS processes the device input
field and performs the requested control function if the input data satisfies the conditions of the operator
control table.

The following control functions are available when you use operator control tables:
NEXTPP

Provides the next physical page of the current message.
NEXTLP

Provides the next logical page of the current message.
PAGEREQ

Provides the logical page requested by the second through last characters of this field. PAGEREQ
functions are specified as in operator logical paging. The first character is a page request "trigger"
character that you define. The remaining characters must be n[nnn], +n[nn], -n[nn], or L (an equals
sign (=) is not allowed).

NEXTMSG
Dequeues the current output message and provides the first physical page of the next message, if any.

NEXTMSGP
Dequeues the current output message and provides the first physical page of the next message, if any;
or notifies you that there are no other messages in the queue.

ENDMPPI
Terminates a multiple physical page input message. Available only for the 3270.

Unlike operator logical paging requests, these functions are always located by MFS during the editing
process.

3270 or SLU 2-only feature definitions
If you use SLU 2 or a 3270, MFS provides several ways to invoke MFS control functions.

• Program function keys and display device fields defined as detectable by the selector light pen can be
defined for all MFS control functions except PAGEREQ.

• The PA1 key is equivalent to, and reserved for, the NEXTPP function.
• The PA2 key is equivalent to the NEXTMSG function.
• The PA3 key, when not used for the copy function, is equivalent to the NEXTMSGP function.
• The PF12 key, or PA3 key on data entry keyboards, requests the copy function. This IMS-supported

copy function causes a copy of the currently displayed physical page to be printed on an available
candidate printer. This printer must be attached to the same control unit (3271 or 3274, for example) as
the display station containing the information to be copied.

Restriction: The request for a copy function is ignored if the device is not defined to allow the copy
function or the device does not support the copy function.

For more information about the copy function, see the DFLD statement field definitions for ALPHA/NUM
and NOPROT/PROT.

Chapter 5. Message Format Service (MFS) reference 509

Paging action at the device
The paging operation for an MFS device depends on MFS control block definitions, the output message
content, and your input. If the device is a printer, each physical page of each logical page is transmitted to
the device in sequence and the message is dequeued.

During output paging, if online change processing occurs that changes the format of the output message
you access, you can get an error message or get the message in a format different from the one expected.

If operator logical paging is not specified for a 3604, 3270, SLU 2 display, or SLU P using the DPM paging
option, each physical page of each logical page can be viewed in sequence using the NEXTPP function.
Because operator logical paging is not specified, entering NEXTPP after the last physical page of the
last logical page has been displayed causes the next message to be transmitted if only one exists in the
queue. If no message is in the queue, no action takes place.

If operator logical paging is specified for a 3604, 3270, SLU 2 display, or SLU P using the DPM paging
option, the NEXTPP function can be used to view pages sequentially. However, entering NEXTPP after
the last physical page of the last logical page causes MFS to return an error message and reset the page
position to the first page. If you are going to view pages out of sequence, the formats should be designed
to use the PAGEREQ capability or to have the page request edited to the first field of the first input
segment. If not, the screen must be cleared before the page request is entered as unformatted input. For
performance reasons, avoid this method.

The following tables describe IMS actions, and the possible message and device status from your input or
remote program actions after a successful message transmission.

The following factors must be considered and are included in the figure:

• Macro/statement specifications:

1. TERMINAL (or TYPE) macro (IMS system definition)

OPTIONS = (

,

other options

PAGDEL

NPGDEL)

or

PAGDEL =

YES

NO

When you use the default (PAGEDEL=YES), your input that invokes processing for a new transaction
causes the output message for the current transaction to be dequeued. To prevent current output
from being dequeued, OPTIONS=(...,NPGDEL,...), or PAGDEL=NO for nonswitched 3270 devices,
must be specified.

2. MSG statement (MOD definition)

PAGE =

NO

YES

PAGE=YES specifies that operator logical paging is permitted. PAGE=NO specifies that paging is not
permitted.

• Whether the last physical page of the last logical page in the current message has been sent.
• An IMS action performed automatically after successful message transmission and before your input.
• Your input or remote program action after receiving a message:

– PAGE ADVANCE: NEXTPP request is entered (or you press PA1 key on 3270 or SLU 2).
– LOGICAL PAGE ADVANCE: NEXTLP request is entered.
– =PAGE: specific logical page is requested.
– PAGEREQ: specific logical page is requested.

510 IMS: Application Programming APIs

– MESSAGE ADVANCE: NEXTMSG request is entered (or you press the PA2 key on a 3270 or SLU 2
device).

– MESSAGE ADVANCE PROTECT: NEXTMSGP request is entered (or you press PA3 key on 3270 or SLU
2 when PA3 is not defined for copy function).

– You enter (or a remote program enters) data that does not invoke an operator control function,
followed by enter (or 3270 or SLU 2 PFK, CARD, IMMEDIATE DETECT).

3270 or SLU 2 operators can also press the CLEAR key. The CLEAR key causes the screen to be
unprotected, and subsequent input is edited by IMS basic edit. CLEAR does not affect the status of
the current output message. The result of any operator action after using CLEAR is the same as if
CLEAR had not been used.

• The following tables use the following abbreviations to describe IMS action:
MSG DEQ

Message dequeue. IMS removes the current output message from the message queue. The
message is available until this action takes place.

MSG ENQ
Message enqueue. IMS places the input message in the message queue.

PROTECT
IMS prevents the device from receiving output from IMS.

UNPROTECT
IMS makes the device eligible to receive output from IMS. If a message is currently queued for this
device, IMS sends it (subject to controls established by response mode, conversational or exclusive
device status).

If a paged message is sent to the terminal with the unprotected screen option set to "unprotected"
(during system definition or using the DSCA or SCA specification), the screen is not protected between
pages and the IMS-described actions shown in the following tables should be ignored. If the message is
sent to the terminal with the unprotected screen option set to "protect", the IMS actions shown in the
following tables apply.

The following tables assume the system and message definition values and page position in the current
message that apply in the following four cases:
Case 1

PAGE=NO and the last physical page of the last logical page of the current message was sent.
Case 2

PAGE=NO and the last physical page of the last logical page of the current message was not sent.
Case 3

PAGE=YES and the last physical page of the last logical page of the current message was sent.
Case 4

PAGE=YES and the last physical page of the last logical page of the current message was not sent.

Note: If an error message has been sent to the last page, the following tables do not apply. The original
message is still in the queue. See IMS Version 15.3 System Utilities for the proper response to the
message.

For the following table, the IMS action, after successful IMS transmission of the message and terminal
receipt of the message, for each of these four cases is PROTECT, that is, IMS prevents the device from
receiving output from IMS. For Case 1, IMS also dequeues the message from the IMS message queue.

Chapter 5. Message Format Service (MFS) reference 511

Table 147. Paging operation for a device with MFS with PAGDEL specified. IMS-MFS action and resulting
terminal and message status

Operator Action IMS Action for Case
1

IMS Action for Case
2

IMS Action for Case
3

IMS Action for Case
4

Request
PAGE
ADVANCE
(NEXTPP)

Unprotected Send next physical
page unprotected

Send error message,
protected1

Send next physical
page, protected

Request
LOGICAL
PAGE
ADVANCE
(NEXTLP)

Unprotected Send first physical
page of next logical
page in current msg
2

Send error message,
protected 1

Send first physical
page of next logical
page in current msg
2

Request specific
logical page using
=PAGE

Send error message,
protected 3

MSG DEQ, send error
message protected 3

If valid, send first physical page of
requested logical page, protected. 1

If invalid, send error message protected. 1

Request specific
logical page using
PAGEREQ

Send error message,
protected

Send error message,
protected 1

If valid, send first physical page of
requested logical page, protected. 1

If invalid, send error message protected. 1

Request
MESSAGE
ADVANCE
(NEXTMSG)

Unprotected MSG DEQ,
unprotected

MSG DEQ,
unprotected

MSG DEQ,
unprotected

Request
MESSAGE
ADVANCE
PROTECT
(NEXTMSGP)

Protected 4 MSG DEQ,
protected
4

MSG DEQ,
protected
4

MSG DEQ,
protected
4

Enter data MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

Notes:

1. The original message is still in the queue. See IMS Version 15.3 System Utilities for the proper response to
the message.

2. If the current page was the last logical page, no new page is sent, and device status is unprotected.
3. If the device is preset or in conversation, the input is queued; no error message is sent and the device status

is unprotected.
4. If a message is in the queue and exclusive or conversational status does not prevent it from being sent, it

will be sent. If no message can be sent, a system message is sent indicating that no output is available.

For the following table, the IMS action, after successful IMS transmission of the message and terminal
receipt of the message, for Cases 2, 3, and 4 is PROTECT, that is, IMS prevents the device from receiving
output from IMS. For Case 1, IMS dequeues the message from the IMS message queue.

512 IMS: Application Programming APIs

Table 148. Paging operation for a device with MFS with NPAGDEL specified. IMS-MFS action and resulting
terminal and message status

Operator Action IMS Action for Case
1

IMS Action for Case
2

IMS Action for Case
3

IMS Action for Case
4

Request
PAGE
ADVANCE
(NEXTPP)

Unprotected Send next physical
page, protected

Send error message,
protected 1

Send next physical
page, protected

Request
LOGICAL
PAGE
ADVANCE
(NEXTLP)

Unprotected Send first physical
page of next logical
page in current msg
2

Send error message,
protected 1

Send first physical
page of next logical
page in current msg
2

Request specific
logical page using
=PAGE

Send error message,
protected 3

Send error message,
protected 1, 3

If valid, send first physical page of
requested logical page, protected.

If invalid, send error message, protected. 1

Request specific
logical page using
PAGEREQ

Send error message,
protected

Send error message,
protected 1

If valid, send first physical page of
requested logical page, protected.

If invalid, send error message, protected. 1

Request
MESSAGE
ADVANCE
(NEXTMSG)

Unprotected MSG DEQ,
unprotected

MSG DEQ,
unprotected

MSG DEQ,
unprotected

Request
MESSAGE
ADVANCE
PROTECT
(NEXTMSGP)

Protected 4 MSG DEQ,
unprotected

MSG DEQ,
protected 4

MSG DEQ,
protected 4

Enter data MSG ENQ,
unprotected

MSG ENQ 5 MSG ENQ 5 MSG ENQ 5

Notes:

1. The original message is still in the queue. See IMS Version 15.3 System Utilities for the proper response to
the message.

2. If the current page was the last logical page, no new page is sent, and device status is unprotected.
3. If the device is preset or in conversation, the input is queued; no error message is sent and the device status

is unprotected.
4. If a message is in the queue and exclusive or conversational status does not prevent it from being sent, it

will be sent. If no message can be sent, a system message is sent indicating that no output is available.
5. The original message is still in the queue. The first physical page of the first logical page is sent unless

the device is currently involved in an active conversation. If in conversation, an error message is sent. To
continue after a conversational response, NEXTMSG must be entered to dequeue that response.

Chapter 5. Message Format Service (MFS) reference 513

Related concepts
“Operator logical paging of output messages” on page 483
Output messages can be defined to permit operator logical paging (PAGE= operand in the MOD's MSG
statement). Use operator logical paging to request a specific logical page of an output message.
“Unprotected screen option” on page 514
IMS allows you to leave the screen in unprotected status when an output message is sent to the 3270
display and the message is formatted by MFS. This option is provided on a terminal-by-terminal basis or
on a message-by-message basis, except messages bypassing MFS.

Unprotected screen option
IMS allows you to leave the screen in unprotected status when an output message is sent to the 3270
display and the message is formatted by MFS. This option is provided on a terminal-by-terminal basis or
on a message-by-message basis, except messages bypassing MFS.

The terminal option of unprotected status applies to:

• All user-output messages that bypass MFS
• All IMS-generated messages (for example, error, /BROADCAST, and /DISPLAY command output)
• All messages that are formatted by MFS with one of the IMS-supplied default formats or with user-

supplied formats

If you do not select the unprotected screen option your messages that are formatted by MFS with
user-supplied formats or IMS-supplied default formats, and IMS-generated messages, leave the screen
protected or unprotected on a message-by-message basis.

If the message is paged, the screen is unprotected between pages. Therefore, this option is not
recommended for paged messages.

Use this option through one of the following:

• SCA output message option of the MFLD statement
• System definition TERMINAL macro specification
• DSCA specification on the DEV statement

Byte 1, bit 5 in the DSCA= operand of the DEV statement and in the SCA output message option of the
MFLD statement is defined for protecting or not protecting the screen when the message is sent to the
3270 display:
B'0'

Protects the screen when output is sent. B'0' (protected) is the default. This bit is used for autopaged
output in ISC.

B'1'
The screen is unprotected when output is sent.

If the DSCA value is set to B'0' and PROT (protected) is specified or used as the default on the TERMINAL
or TYPE macro, the application program can request that the screen be unprotected when this output is
sent (by setting the SCA value to B'1'). If unprotected status is requested when operator logical paging
(OLP) is used for the message (PAGE=YES is specified in the corresponding MSG definition), then OLP is
reset. You can modify IMS-supplied default formats to set the DSCA value to B'1'.

Whether your messages that bypass MFS leave the display protected or unprotected depends on
the OPTIONS specification on the TERMINAL or TYPE macro during system definition. The default is
protected.

If MFS formats an IMS message sent to the SYSMSG field of a user-defined format the screen is protected
or unprotected depending on the DSCA or SCA option of the format on the device.

When the display is in unprotected status, IMS can send output to the terminal at any time. If you press
ENTER, a PA key, or a PF key just before the IMS output, your input or request can be lost. This can be
avoided if MFS is used for output and input and you enter the NEXTMSGP function or press PA3 (if PA3 is
not used for copy) to obtain protected status before entering input data.

514 IMS: Application Programming APIs

If MFS is not used or is only used for output, and the MOD name specifies DFS.EDT, then PA3 protects
input data and must not be used for copying.

The following table illustrates the action to be taken (protected or unprotected) by IMS based on the
OPTIONS specification on the TERMINAL or TYPE macro during system definition, and the type of output
message sent.

Table 149. IMS protect or unprotect action based on OPTIONS specification

Output Message IMS System Definition (PRO) IMS System Definition (UNPRO)

IMS-generated message with:
DSCA|SCA=PROTECT

PROTECT UNPROTECT

IMS-generated message with:
DSCA|SCA=UNPROTECT

UNPROTECT UNPROTECT

Message using MFS bypass PROTECT UNPROTECT

Your message using MFS and
user-supplied format or IMS-
supplied default format with:
DSCA|SCA=PROTECT

PROTECT UNPROTECT

Your message using MFS and
user-supplied format or IMS-
supplied default format with:
DSCA|SCA=UNPROTECT

UNPROTECT UNPROTECT

Note:

1. PROTECT: Do not send additional output; wait for input.
2. UNPROTECT: Send output if an output message is available and eligible to be sent.

Related concepts
“Paging action at the device” on page 510
The paging operation for an MFS device depends on MFS control block definitions, the output message
content, and your input. If the device is a printer, each physical page of each logical page is transmitted to
the device in sequence and the message is dequeued.

3290 in partitioned format mode
Support of 3290 partitioning and scrolling is provided for devices defined to IMS as SLU 2 terminals.
Partitioning and scrolling are not provided for devices using non-SNA VTAM.

Partition initialization options and paging
You can choose one of three different options for initializing the partition set and paging. The option
you select determines how many logical pages of the output message are presented to their appropriate
partitions at the initial transmission of a message to a partition formatted screen. (An output message
consists of one or more logical pages, each destined for a particular partition according to the DPAGE
specifying that partition.) The option also determines how paging requests present additional logical
pages to their appropriate partitions. You can specify the option on the PAGINGOP= operand of the
partition descriptor block (PDB) statement.

The three options are:
Option 1

The initial data stream presented to the 3290 LU consists of the first logical page of the output
message, which is mapped using the DPAGE to the appropriate partition. Thereafter you control
all paging with keyed-in paging requests. You use the PA1 and PA2 keys just as in standard, non-
partitioned mode. The terminal can be using basic paging support or OLP.

Chapter 5. Message Format Service (MFS) reference 515

When you request the next logical page, MFS gets the next sequential logical page and sends it to its
associated partition. It does not matter which partition is active. A request for the next page results
in the next sequential page in the message being sent to the inputting (active) partition or to another
partition.

For example, if you enter =+1, the next logical page in the message is presented to the appropriate
partition, whatever that partition might be. If you enter =+3, the page that is sequentially third from
the last logical page presented is presented next.

Option 2
The initial data stream presented to the 3290 LU consists of the first logical page of the message and
additional logical pages in sequence until the second logical page of any partition is reached, or until
the end of the message. Thereafter you control all paging with keyed-in paging requests as described
for Option 1.

Option 3
The initial data stream presented to the 3290 LU consists of the first logical page of each partition
of the partition set. Thereafter you control all paging with keyed-in paging requests, with one crucial
difference from Options 1 and 2: the order in which subsequent logical pages are presented to the
partitions depends on the active partition, from which the request is entered. All requests for logical
pages apply only to logical pages associated with the active partition.

For example, if you enter =+1, the next logical page destined for the active partition is presented—not
necessarily the one that happens to be sequentially next in the message. This means that, for the
3290 operator, management of logical paging within the active partition is identical to paging support
in a non-partitioned environment.

Regardless of the option chosen, one partition is active after the initial data stream is sent. The active
partition is the one in which the cursor is located.

An ACTVPID operand might have been specified on one of the DPAGEs that points to an initialized
partition. The ACTVPID allows the application program to declare which partition is the active partition. If
option 2 or 3 is being used and data has been sent to several partitions, it is possible that more than one
partition has been specified by ACTVPID keywords. In that case, the last partition activated is the active
partition. If no ACTVPID keywords are encountered, the active partition is the partition defined by the first
partition descriptor (PD) statement in the PDB.

Clearing the display
There are two levels of clearing the screen and buffer:

• The CLEAR key (X'6D') resets the 3290 to base state, (non-partitioned mode), sets the buffer positions
to null, and places the cursor in the upper left corner of the screen. It also places the active message
back onto the queue and deletes the control block structure that was created for partitioning.

• The CLEAR PARTITION key (X'6A') resets only the active partition buffer to nulls and clears the active
partition viewport. It also places the cursor in the top left corner of the partition. The partition is
considered unformatted; any input from it is considered unformatted by MFS and is processed by basic
edit.

The JUMP PARTITION key
Using the JUMP PARTITION key, you can move from one partition to the next, in the order that the PD
statements define the partitions in the PDB.

Movement between partitions is determined by the order of the PD statements, not by the order of the
associated partition identifier (PID) values.

The partition to which the cursor moves becomes the active partition. Using this key causes no interaction
with the host.

516 IMS: Application Programming APIs

Scrolling operations
The VERTICAL SCROLLING keys cause the data to move up or down in the viewport, so that different
parts of the presentation space appear in the scrolling window. The scrolling window is the portion of
the presentation space that is mapped to the viewport at a given time. If the viewport has the same
depth as the presentation space, the viewport is nonscrollable. If the viewport depth is smaller than the
presentation space, it is scrollable.

The amount scrolled each time depends on what is specified by the SCROLLI keyword on the PD
statement. The default scrolling increment is one row. Scrolling causes no interaction with the host.

Related concepts
“3290 screen formatting” on page 412
A 3290 screen can be divided into several independent areas, called logical units (LUs). Each LU can be
in base state or formatted state. If it is in formatted state, the LU can be in standard or partitioned format
mode.
“3180 in partitioned format mode” on page 517
IMS support for the 3180 in partitioned format mode is provided through 3290 partitioning and scrolling
support.
Related reference
“Device-dependent output information” on page 431
Using certain options for outputting information can make the application program device-dependent.
Some options allow the application program to control certain features of devices receiving output.
Descriptions of the effects of various output options follow.

3180 in partitioned format mode
IMS support for the 3180 in partitioned format mode is provided through 3290 partitioning and scrolling
support.

Although interaction with the 3180 and the 3290 in partitioned format mode are similar, the following
differences apply:

• With the 3180, only one partition with specific size limits is possible. The 3290 supports multiple
partitions of various sizes.

• Logical unit display screen size and viewport location for the 3180 cannot be specified in picture
elements (pels). The 3290 supports rows, columns, and pels.

• With the 3180, the single partition is the only one initialized. With the 3290, the application program
can determine, with the ACTVPID keyword, which of the various partitions to initialize.

Because only one active partition is available on the 3180, you can either specify Option 1 on the
PAGINGOP= operand of the PDB statement or accept the default of 1. With this option, the initial data
stream presented to the 3180 LU consists of the first logical page of the output message, which is
mapped by the DPAGE to the single partition. When you request the next logical page, MFS gets the
logical page that is sequentially next in the message and sends it to the partition.

Clearing the display and scrolling is handled in the same way on the 3180 as on the 3290 in partitioned
format mode.

Related concepts
“3290 in partitioned format mode” on page 515
Support of 3290 partitioning and scrolling is provided for devices defined to IMS as SLU 2 terminals.
Partitioning and scrolling are not provided for devices using non-SNA VTAM.

MFS format sets supplied by IMS
Several format sets are provided by IMS for system use and to serve as defaults when you have not
supplied a correct MOD name. The IMS-supplied control blocks reside in the IMS.FORMAT library. When
the MFSTEST facility is in use, these control blocks also reside in the IMS.TFORMAT library. They can
be used in any IMS installation with MFS by specifying the appropriate MOD name after the /FORMAT

Chapter 5. Message Format Service (MFS) reference 517

command. In addition, the format definitions can be used independently by specifying the format name in
the SOR= operand of the user-written message definition.

The format definitions supplied by IMS combine with various message definitions to create several
separate message formats. All of the format sets except the MFS 3270 and the SLU 2 master terminal
formats use the DFSDF1, DFSDF2, or DFSDF4 format definitions. These format definitions include literals
for two of the 3270 or SLU type 2 program function keys, PFK1 and PFK11. Pressing PFK1 inserts the /
FORMAT command into the first message segment, in front of the entered data. Pressing PFK11 causes a
NEXTMSGP request.

System message format
The system message format is used for single-segment output messages from IMS and single-segment
broadcast messages. It permits two segments of input (transaction, command, or message switch).
DFSDF1 is the format name. The MOD name is DFSMO1, and the MID name is DFSMI1. Messages that use
this format are eligible for the SYSMSG field on 3270 or SLU 2 devices.

Multisegment system message format
The multisegment system message format is used for multisegment messages from IMS and
multisegment broadcast messages. It permits an output message of up to 22 segments. DFSDF2 is
the format name. The MOD name is DFSMO5, and the MID name is DFSMI2. Messages that use this
format are eligible for the SYSMSG field on 3270 or SLU 2 devices. Use the PA1 key to obtain subsequent
segments.

Output message default format
For 3270 or SLU 2 devices, the output message default format is used for message switches from
other terminals and application program output messages with no MOD name specified. It permits two
segments of input (transaction, command, or message switch). DFSDF2 is the format name. The MOD
name is DFSMO2, and the MID name is DFSMI2.

Block error message format
The block error message format is used for the DFS057I REQUESTED BLOCK NOT AVAILABLE
message sent by MFS when an error is encountered during output format block selection. This message
is accompanied by a return code (indicating the severity of error) and the block name (the name of the
MOD or DOF in error). It can include up to 21 segments of output per logical page. This format permits
two segments of input (transaction, command, or message switch). DFSDF2 is the format name. The MOD
name is DFSMO3, and the MID name is DFSMI2.

/DISPLAY command format
The /DISPLAY command format is used for /DISPLAY command output. Up to 22 segments per logical
page are permitted. This format permits two segments of input (transaction, command, or message
switch). DFSDF2 is the format name; The MOD name is DFSDSP01, and the MID name is DFSMI2.

Multisegment format
The multisegment format is used for entering multisegment transactions and commands. A /FORMAT
command specifying a MOD name of DFSMO4 can be used to obtain this format. This format is also
used for multisegment output messages not exceeding four segments. Up to four segments of input are
permitted. DFSDF4 is the format name. The MOD name is DFSMO4, and the MID name is DFSMI4.

MFS 3270 or SLU 2 master terminal format
The MFS 3270 or SLU 2 master terminal format is used when the optional IMS-supplied MFS support for
the 3270 or SLU 2 master terminal is selected.

518 IMS: Application Programming APIs

MFS sign-on device formats
The MFS sign-on device format is used for terminals that require user signon, such as terminals defined
with the extended terminal option (ETO). (For more information about ETO, see IMS Version 15.3
Communications and Connections.) The format applies to 3270 and SLU 2 devices only. For devices that
can receive the formatted /SIGN ON command panel (devices with at least 12 lines and 40 columns), the
MOD is DFSIGNP, and the MID is DFSIGNI. For devices with smaller screens, the MOD is DFSIGNN, and
the MID is DFSIGNJ.

IMS also supports the MFS sign-on device format for password phrases with lengths up to 100 characters.
The format applies to 3270 and SLU 2 devices only. For devices that can receive the formatted/SIGN
PASSPHRASE command panel (devices with at least 12 lines and 40 columns), the MOD is DFSIGNPC, and
the MID is DFSIGNIC. For devices with smaller screens, the MOD is DFSIGNNC, and the MID is DFSIGNJC.

Related concepts
“MFS formatting for the 3270 or SLU 2 master terminal” on page 519
If the IMS master terminal is a 3270 or SLU 2 display device defined as a 3275, 3277 model 2, or 3270-
An with SIZE=24x80, you can select the IMS-supplied format that uses MFS. To use the IMS-supplied
format you must specify OPTIONS=(...,FMTMAST,...) in the COMM macro during IMS system definition.

MFS formatting for the 3270 or SLU 2 master terminal
If the IMS master terminal is a 3270 or SLU 2 display device defined as a 3275, 3277 model 2, or 3270-
An with SIZE=24x80, you can select the IMS-supplied format that uses MFS. To use the IMS-supplied
format you must specify OPTIONS=(...,FMTMAST,...) in the COMM macro during IMS system definition.

When this format is used, the display screen is divided into four areas and several program function keys
are reserved.

The four areas of the screen are:
Message Area

This area is for IMS command output (except /DISPLAY and /RDISPLAY), message switch output,
application program output that uses a MOD name beginning with DFSMO, and IMS system messages.

Display Area
This area is for /DISPLAY and /RDISPLAY command output.

Warning Message Area
This area can display the following warning messages:

MASTER LINES WAITING
MASTER MESSAGE WAITING
DISPLAY LINES WAITING
USER MESSAGE WAITING

You can also enter an IMS password in this area.
User Input Area

This area is for your input.

Related reading: The format and use of these screen areas is described in IMS Version 15.3 System
Administration.

The IMS-supplied master terminal format defines literals for nine of the 3270 or SLU 2 program function
(PF) keys. PF keys 1 through 7 can be used for IMS command input. Pressing a PF key inserts a
corresponding command into the first message segment in front of the entered data. The keys and their
corresponding commands are:
PF Key

Command
1

/DISPLAY

Chapter 5. Message Format Service (MFS) reference 519

2
/DISPLAY ACTIVE

3
/DISPLAY STATUS

4
/START LINE

5
/STOP LINE

6
/DISPLAY POOL

7
/BROADCAST LTERM ALL

The PF11 key issues a NEXTMSGP request, and the PF12 key requests the copy function.

Do not change the definitions for the master terminal format, with the exception of the PFK literals.

When the master terminal format is used, any message whose MOD name begins with DFSMO (except
DFSMO3) is displayed in the message area. Any message whose MOD name is DFSDSPO1 is displayed
in the display area. Messages with other MOD names generate the warning message: USER MESSAGE
WAITING.

Related concepts
“MFS format sets supplied by IMS” on page 517
Several format sets are provided by IMS for system use and to serve as defaults when you have not
supplied a correct MOD name. The IMS-supplied control blocks reside in the IMS.FORMAT library. When
the MFSTEST facility is in use, these control blocks also reside in the IMS.TFORMAT library. They can
be used in any IMS installation with MFS by specifying the appropriate MOD name after the /FORMAT
command. In addition, the format definitions can be used independently by specifying the format name in
the SOR= operand of the user-written message definition.

MFS Device Characteristics table
The MFS Device Characteristics table (DFSUDT0x) is generated during system definition for the 3270 or
SLU 2 devices defined as TYPE=3270-An in the TYPE or TERMINAL macro statement.

The 'x' in DFSUDT0␠x corresponds to the parameter specified on the SUFFIX= keyword of the IMSGEN
macro.

The MFS Device Characteristics table can be updated with the MFS Device Characteristics Table utility
(DFSUTB00), which allows updates to the table without system regeneration. Each entry in the table
contains the user-defined device type symbolic name (3270-An), associated screen size (from SIZE=
parameter), and physical terminal features (from FEAT= parameter). Different specifications of the
physical terminal features (FEAT= parameter) for the same device type symbolic name cause separate
entries to be generated in the MFS Device Characteristics table.

MFS source definitions specify TYPE=3270-An and FEAT as operands on the DEV statement. For the
specified device type, MFS extracts the screen size from the specified DFSUDT0␠x in the IMS.SDFSRESL
library.

The MFS Language utility (DFSUPAA0) uses the screen size, feature, and device type specifications to
build a DIF/DOF member in the IMS.FORMAT library to match the IMS system definition specification.
Because the screen size is specified only during IMS system definition, an IMS system definition must be
performed before execution of the MFS Language utility for user-defined formats with DEV TYPE=3270-
An.

The MFS Device Characteristics table is created during stage 2 of IMS system definition using the same
suffix as the IMS composite control block, nucleus, and security directory block modules as specified in
the SUFFIX= keyword of the IMSGEN macro. If terminals defined with ETO are added to the system, the

520 IMS: Application Programming APIs

MFS Device Characteristics Table utility can be used to add to or update the table without regenerating
the system definition.

The alphanumeric suffix (x) of the table name (DFSUDT0␠x) is the level identification for the version of the
table to be read. The x suffix can also be specified using the DEVCHAR= parameter of the EXEC statement
for the MFSUTL, MFSBTCH1, MFSTEST, and MFSRVC procedures. Repetitive use of the same suffix by the
MFS Language utility causes the same version of the MFS device Characteristics table to be read from the
IMS.SDFSRESL library.

If an MFS Device Characteristics table is required, and either no suffix was provided or the suffixed table
is not present in the IMS.SDFSRESL library, the MFS Language utility attempts to load the IMS Device
Characteristics table using the default name (DFSUDT00).

Note: If no default table (DFSUDT00) was created at system definition a failure will result.

During the logon process for an ETO terminal, the MFS Device Characteristics table is used to determine
the MFS device type for the terminal. The screen size from the BIND unique data and the device features
from the ETO logon descriptor are used as search arguments.

Associate only one symbolic name with a given screen size. Establish a standard for relating the device
type symbolic name to the screen size.

Recommendation: Use the listed screen sizes for each of the user-defined symbolic names:

User-Defined Symbolic Name
Screen Size

3270-A1
12×80

3270-A2
24×80

3270-A3
32×80

3270-A4
43×80

3270-A5
12×40

3270-A6
6×40

3270-A7
27×132

3270-A8
62×160

Related reference
MFS Language utility (DFSUPAA0) (System Utilities)
MFS Device Characteristics Table utility (DFSUTB00) (System Utilities)
TYPE macro (System Definition)
TERMINAL macro (System Definition)

Version identification function for DPM formats
The MFS DOF defines how data is formatted for presentation to the remote program so the remote
program can efficiently locate and process the data. The MFS DIF defines how data is presented to IMS
from the remote program.

To ensure proper formatting and to present and interpret the data correctly the MFS DOFs and DIFs and
the remote program communication blocks of the data formats must be at the same level. The current
level of the MFS control block is a unique 2-byte field called the version identification (version ID). The
version ID is either user-supplied on the DEV statement or, if not specified, it is created by the MFS

Chapter 5. Message Format Service (MFS) reference 521

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_mfslang.htm#ims_mfslang
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dfsutb00.htm#ims_dfsutb00
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_type_macro.htm#ims_type_macro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_terminal_macro.htm#ims_terminal_macro

Language utility at the time the source definition is stored in the IMS.REFERRAL library in an ITB format.
The version ID is printed in the information messages DFS1048I and DFS1011I of the MFS Language
utility for the DOF or DIF, and must be included in the remote program if verification is to be performed.

The version ID of the DOF used in mapping the output message is provided in the output message header
and must be used by the remote program to verify that the control block in the remote program is at the
same level as the DOF's version ID.

The version ID of the control block used in mapping the input message to IMS must be provided by
the remote program in the input message header. It is used to verify that the correct level of the DIF is
provided to map the data for presentation to the IMS application program. If the version ID sent on input
does not match the version ID in the DIF, the input data is not accepted and an error message is sent to
the remote program. If the verification is not desired, the version ID can be sent with hexadecimal zeros
(X'0000') or it can be omitted from the input message header. In this case, both the remote program and
MFS assume that the DIF can be used to map the data correctly.

522 IMS: Application Programming APIs

Chapter 6. OTMA Callable Interface API reference
IMS provides OTMA access with the OTMA Callable Interface (C/I) API.

See IMS Version 15.3 Messages and Codes, Volume 2: Non-DFS Messages for codes and messages used by
the OTMA C/I.

OTMA Callable Interface API calls
The OTMA callable interface application programming interfaces (APIs) are listed here.

Using the Header File DFSYC0.H:
The header file included in the API calling program declares each API invocation and variables used for
the invocation.

For a C/C++ program using OTMA Callable Interface, the C/C++ header file, DFSYC0.H, needs to be
included in the C/C++ program.

Load Module DFSYCRET:
The object stub, DFSYCRET, receives all the API invocations and issues a SVC call to perform the
requested function. The object stub needs to be available during the binding of the API invoking program.
DFSYCRET can be found in SDFSRESL or ADFSLOAD data sets.

OTMA C/I hints and tips
Use the following hints and tips when programming with OTMA C/I.

• Some OTMA C/I API calls have an ECB parameter that is posted by the function or by an SRB routine
that the function precipitates. The caller must check the ECB and wait for it to be posted before
inspecting the return code and output data. Be sure to initialize the ECB with 0 before passing to the
OTMA C/I call. The calls that include the ECB parameter are:

– otma_open
– otma_openx
– otma_send_receive
– otma_send_receivex
– otma_send_receivey
– otma_send_async
– otma_send_asyncx
– otma_receive_async

• Each otma_alloc call creates an independent session for the subsequent otma_send_receive call. One
of the otma_alloc calls can be used to specify the name of IMS transaction or IMS command to be
sent to IMS. The maximum length of the transaction name is 8 characters. If no transaction name or
command is specified in the otma_alloc call, the transaction name, followed by one or more blanks, or
command needs be specified in the beginning of the send buffer of the otma_send_receive call. After
the otma_send_receive call, otma_free is required, except for the IMS conversation transaction. See the
invocation sample C for sending a conversation transaction.

• The OTMA C/I builds the standard LLZZ prefix of IMS application data format. You do not need to build
the LLZZ prefix.

• To send a multi-segment message to IMS, the send segment list of the otma_send_receive call must
identify the length of each input segment. The first element in the segment list specifies the number of

© Copyright IBM Corp. 1974, 2022 523

the segment. The first element is then followed by the length of segment 1, the length of segment 2,
and so on.

• When a multi-segment output message is received, an output segment list is provided for the
otma_send_receive call. The first element in the output segment list contains the number of the output
segment. The first element is then followed by the length of output segment 1, the length of output
segment 2, and so on.

• Sample programs (DFSYCSMP) are shipped with IMS.
• The OTMA C/I can be used to send a protected transaction to IMS by passing a context token to the

otma_send_receive call.
• Because some of the OTMA C/I calls require the calling program to wait, implementing the time-out

routine in the calling program is highly recommended to avoid long running transactions in IMS and the
internal OTMA C/I hang.

• To run the OTMA C/I application efficiently, limit the number of otma_open and otma_close calls in the
application. Also, for all otma_open and otma_create calls, try to use the same member name rather
than generating a different member name for each call.

• If the size of the output receive buffer specified in the otma_send_receive call is too small, the actual
data returned is limited by the size of the receive buffer. The output can be rejected if a special option,
SyncLevel1, is specified in the otma_alloc call. However, if the size of the output receive buffer is too
small for the otma_receive_async call, the OTMA C/I always rejects the output.

• The OTMA C/I can support various program-to-program switches in IMS. See IMS Version 15.3
Communications and Connections for more information.

• In some cases, OTMA C/I returns a return code to inform the caller about an abnormal condition.
Logging or saving the return code for debugging purpose is recommended.

• The otma_send_receive call sends an OTMA send-then-commit message with synclevel=none to IMS.
The caller can set a synclevel=confirm for otma_send_receive.

• When an input z/OS Resource Recovery Services (RRS) context token is given in the otma_send_receive
call, the synclevel is then changed to SYNCPT to support the protected transaction.

• For complex program-to-program switches in IMS, a send-then-commit input message could result
in a commit-then-send output message instead of the expected send-then-commit output message.
The OTMA C/I works in this scenario. See IMS Version 15.3 Communications and Connections for more
information on program-to-program switches.

• The otma_send_async call sends an OTMA commit-then-send message to IMS.
• The otma_receive_async call receives an OTMA commit-then-send output message from IMS.
• The OTMA C/I does not support either the OTMA resync protocol or the OTMA security PROFILE option.

Related reference
“OTMA C/I sample program for synchronous processing” on page 541
The program below shows how to use the OTMA C/I for synchronous (one in-one out) processing.
“OTMA C/I sample program for asynchronous processing” on page 550
The following program illustrates how to use OTMA C/I for asynchronous (unsolicited) processing.

otma_create API
Use the otma_create API to allocate storages for z/OS cross-system coupling facility (XCF) and IMS
communications.

Description
After the call, an anchor will be returned. The anchor must be used for the subsequent calls.
Invoking otma_create is not required. During the otma_open, OTMA C/I will allocate storages for
communication, if it detects that otma_create has not been called. If otma_create is invoked first, the
same input parameters need to be used again for the subsequent otma_open call.

524 IMS: Application Programming APIs

Invocation
Called by the client in TCB mode.

Input
*ecb

Pointer to the next event control block.
*group_name

Pointer to the string containing the XCF group name. (char[8])
*member_name

Pointer to the string containing the XCF member name for this member. (char[16])
*partner_name

Pointer to the string containing the XCF member name for IMS. (char[16])
*sessions

Number of parallel sessions that are intended to be supported with IMS. Long integer from 001 to
999.

*tpipe_prefix
First 1 to 4 characters of the tpipe names. (char[4])

For more information on OTMA tpipe naming conventions, see IMS Version 15.3 Communications and
Connections.

Attention: For the input fields group_name, member_name, and partner_name, all XCF names
that are pointed to must be left justified, filled with blanks, and consist of legal upper case EBCDIC
characters. If any of those naming rules are violated, underlying XCF errors will be reported.

Output
*anchor

Pointer to the anchor word.
*retrsn

Pointer to the return code structure.

C-language function prototype
otma_create(
 otma_anchor_t *anchor, [out]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [in]
 otma_grp_name_t *group_name, [in]
 otma_clt_name *member_name, [in]
 otma_srv_name *partner_name, [in]
 signed long int *sessions, [in]
 unsigned char *tpipe_name); [in]

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.
0

The call was completed successfully.
8

User error.
12

Storage obtain failure.

Chapter 6. OTMA Callable Interface API reference 525

otma_open API
The caller must call otma_open to connect when IMS is available. The caller must wait on the ECB, that is
posted when the connection is completed or when the attempt has failed. When IMS is not up or OTMA is
not started the attempt will fail.

Description
The caller can cancel the attempt to connect with IMS by issuing an otma_close call at any time. The
ECB will be posted accordingly.

If IMS fails after this connection is established, any call to a function interface will receive a return code
to indicate that IMS is no longer listening for messages. If IMS resumes before a close is performed, the
connection will be reestablished without any action from the client. The otma_close and otma_open
interfaces may be called again to reestablish communications with IMS. All existing conversations will
have been terminated. This implementation does not use OTMA Resynchronization Protocol.

An extended version of the otma_open API, which is called otma_openx, provides extended
functionality.

Invocation
Called by the client in TCB mode.

Input
*anchor

Pointer to the anchor word. If otma_create is not used to set up the anchor environment, the anchor
word must be initialized with a zero.

*group_name
Pointer to the string containing the z/OS cross-system coupling facility (XCF) group name. (char[8])

*member_name
Pointer to the string containing the XCF member name for this member. (char[16])

*partner_name
Pointer to the string containing the XCF member name for IMS. (char[16])

*sessions
Number of parallel sessions that are intended to be supported with IMS. Long integer from 001 to
999.

*tpipe_prefix
First 1 to 4 characters of the tpipe names. (char[4]).

For more information on OTMA tpipe naming conventions, see IMS Version 15.3 Communications and
Connections.

Attention: For the input fields group_name, member_name, and partner_name, all XCF names
that are pointed to must be left justified, filled with blanks, and consist of legal upper case EBCDIC
characters. If any of those naming rules are violated, underlying XCF errors will be reported.

Output
*anchor

Pointer to the anchor word to receive the address of global storage.
*retrsn

Pointer to the return code structure.
*ecb

Pointer to the event control block to be posted when the open completes.

526 IMS: Application Programming APIs

C-language function prototype
otma_open(
 otma_anchor_t *anchor [in/out]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]
 otma_grp_name_t *group_name, [in]
 otma_clt_name_t *member_name, [in]
 otma_srv_name_t *partner_name, [in]
 signed long int *sessions, [in]
 unsigned char *tpipe_name); [in]

Post codes
The caller of the OPEN routine must check the ECB that was provided to OPEN. If this ECB is not already
posted, the caller must wait for this ECB (for the OPEN protocol to complete).
0

XCF OPEN completes successfully.
4

IMS is not ready. Try again later.
8

Your XCF group and member are already active.
12

A system error occurred.

Return values (rc value)
The rc and reason are valid after ECB has been posted.

0
XCF JOIN was successful, client-bid was sent, and acknowledgment received. For the complete
description of each error, see IMS Version 15.3 Communications and Connections.

4
IMS is not ready. Try again later.

8
Your XCF group and member are already active.

12
A system error occurred.

Related reference
“otma_openx API” on page 527
The otma_openx API is an extended version of the otma_open API, with additional features. The caller
must call otma_openx to connect when IMS is available. The caller must wait on the ECB, that is posted
when the connection is completed or when the attempt has failed. When IMS is not up or OTMA is not
started the attempt will fail.

otma_openx API
The otma_openx API is an extended version of the otma_open API, with additional features. The caller
must call otma_openx to connect when IMS is available. The caller must wait on the ECB, that is posted
when the connection is completed or when the attempt has failed. When IMS is not up or OTMA is not
started the attempt will fail.

Description
The extended features include:

• The ability to specify an OTMA DRU exit routine.
• Added capability for future enhancements to the API.

Chapter 6. OTMA Callable Interface API reference 527

Invocation
Called by the client in TCB mode.

Input
Same as for the otma_open API, with two additional parameters:

*anchor
Pointer to the anchor word. If otma_create is not used to set up the anchor environment, the anchor
word must be initialized with a zero.

*group_name
Pointer to the string containing the z/OS cross-system coupling facility (XCF) group name. (char[8])

*member_name
Pointer to the string containing the XCF member name for this member. (char[16])

*partner_name
Pointer to the string containing the XCF member name for IMS. (char[16])

*sessions
Number of parallel sessions that are intended to be supported with IMS. Long integer from 001 to
999.

*tpipe_prefix
First 1 to 4 characters of the tpipe names. (char[4]).

For more information on OTMA tpipe naming conventions, see IMS Version 15.3 Communications and
Connections.

*ims_dru_name
Pointer to the string containing the user-defined OTMA User Data Formatting exit routine. This is an
extended API parameter.

*special_options
Pointer to an area codifying non-standard options. Currently, there are no special options supported.
Specify a NULL for this parameter. This is an extended API parameter.

Attention: For the input fields group_name, member_name, and partner_name, all XCF names
that are pointed to must be left justified, filled with blanks, and consist of legal upper case EBCDIC
characters. If any of those naming rules are violated, underlying XCF errors will be reported.

Output
*anchor

Pointer to the anchor word to receive the address of global storage.
*retrsn

Pointer to the return code structure.
*ecb

Pointer to the event control block to be posted when the open completes.

C-language function prototype
otma_openx(
 otma_anchor_t *anchor, [out]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]
 otma_grp_name_t *group_name, [in]
 otma_clt_name_t *member_name, [in]
 otma_srv_name_t *partner_name, [in]
 signed long int *sessions, [in]
 tpipe_prfx_t *tpipe_prefix, [in]
 otma_dru_name_t *ims_dru_name, [in]
 otma_profile4_t *special_options); [in]

528 IMS: Application Programming APIs

Post codes
Same as for the otma_open API.

Return values (rc value)
Same as for the otma_open API.

Related reference
“otma_open API” on page 526
The caller must call otma_open to connect when IMS is available. The caller must wait on the ECB, that is
posted when the connection is completed or when the attempt has failed. When IMS is not up or OTMA is
not started the attempt will fail.

otma_alloc API
The otma_alloc API is called to create an independent session to exchange messages.

Invocation
Called by the client in TCB mode.

Input
*anchor

Pointer to anchor word that was set up by otma_open.
*username

Pointer to string holding the RACF username for transaction commands.

For calls from authorized programs, the input username is trusted and passed to IMS. For calls from
unauthorized programs, OTMA C/I invokes a RACF call with the current accessor environment element
(ACEE) context to obtain the username. The input username, if any, will be ignored. A NULL can be
specified for callers from unauthorized programs.

*transaction
Name of IMS transaction or command to be sent to IMS.

If the IMS command entered is longer than eight characters, the first eight characters of the command
can be provided in this parameter. The rest of the characters of the command need to be provided in
the beginning of the send buffer of the subsequent otma_send_receive API.

If this parameter is left blank, then the IMS transaction name or command must be specified (left
aligned) in the beginning of the send buffer of the subsequent otma_send_receive API.

*prfname
Pointer to a string holding the RACF group name for transactions/commands.

*special_options
Pointer to the processing options for the subsequent otma_send_receive or
otma_send_receivex API call. The supported processing options include:
Bit 0

SyncOnReturn - with this option, IMS is asked to process the message without the z/OS Resource
Recovery Services (RRS) context token; in this case, the user ID is obtained when RRS CTXRDTA is
invoked.

Bit 1
SyncLevel1 - with this option, OTMA send_then_commit sync level 1 is used instead of sync level
0, which is the default for OTMA C/I. Refer to the DFSYCO header file for additional information.

Chapter 6. OTMA Callable Interface API reference 529

Output
*retrsn

Pointer to return code structure.
*session_handle

Pointer to session handle that uniquely identifies the session for the subsequent
otma_send_receive.

C-language function prototype
otma_alloc(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 sess_handle_t *session_handle, [out]
 otma_profile_t *special_options, [in]
 tran_name_t *transaction, [in]
 racf_uid_t *username, [in]
 racf_prf_t *prfname); [in]

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.

0
Success.

4
Session limit reached.

8
Null anchor.

otma_send_receive API
The otma_send_receive API is invoked to initiate a message exchange with IMS.

Description
The caller gives buffer definitions for both send and receive. Both send buffer and receive buffer
information is provided. By providing receive information at the same time as send there are no
unexpected messages from IMS, greatly simplifying the protocol. When the reply arrives from IMS the
ECB will be posted. All the work of buffer management is handled in the message exit routine.

An extended version of the otma_send_receive API, which is called otma_send_receivex, provides
extended functionality.

Invocation
Called by the client in TCB mode.

Input
*anchor

Pointer to anchor word that was set up by otma_open.
*session_handle

Pointer to session handle for tpipe returned by otma_alloc.
*lterm

Pointer to lterm name field. On input is passed to IMS. Will be updated on output to lterm field
returned by IMS. Can be blank in both cases.

530 IMS: Application Programming APIs

*modname
Pointer to MODname name field. On input is passed to IMS. Will be updated on output to MODname field
returned by IMS. May be blank in both cases.

If the input modname is DFSM01, DFSMO2, or DFSM05, it will be treated as blanks.

*send_buffer
Pointer to the data to be sent to IMS. When a NULL is specified for the transaction parameter, the
client code must provide the transaction name or command, and a blank, to the data in this buffer
when sending to IMS.

*send_length
Length of send data.

*send_segment_list
An array of lengths of message segments to be sent to IMS. First element is count of following
segment lengths. Optional: If a single segment is to be sent, either the first element or the address of
the array can be zero.

*receive_buffer
Pointer to buffer to receive reply message from IMS.

*receive_length
Length of buffer available to receive message.

*receive_segment_list
An array to hold the number of segments sent by IMS. First element must be set as the number of
elements in the array. Optional: If a single segment is to be received, either the first element or the
address of the array can be zero. In which case all segments will be received contiguously without
indication of segmentation boundaries.

*context_id
Null or Distributed Sync Point Context ID from z/OS Resource Recovery Services.

• For an authorized caller, OTMA C/I passes the Context ID directly to IMS and does not validate the
Context ID data.

• For an unauthorized caller, OTMA C/I invokes the CTXSWCH call to disassociate the token and to
validate if the token is current for a task. When OTMA C/I receives a response from IMS, it switches
the context back onto the task before returning control to the caller.

Output
*retrsn

Pointer to return code structure.
*ecb Event

Control block to be posted when the message exchange is complete.
*received_length

Field to receive length of data received to receive_buffer. Should be equal to the sum of the
segment lengths.

*receive_segment_list
An array of lengths of message segments received from IMS. First element is count of following
segment lengths and must be set by client to indicate maximum length of array. It will be modified by
receive.

*error_message
Address of the pointer to the error message field. It is provided by the user to receive error or
informational messages from IMS. If the post code returns a 20, then this field will contain data.

C-language function prototype
 otma_send_receive(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]

Chapter 6. OTMA Callable Interface API reference 531

 ecb_t *ecb, [out]

 sess_handle_t *session_handle, [in]
 lterm_name_t *lterm, [in/out]
 mod_name_t *modname, [in/out]

 char *send_buffer, [in]
 data_leng_t *send_length, [in]
 ioseg_list_t *send_seg_list, [in]

 char *receive buffer, [in]
 data_leng_t *receive_length, [in]
 data_leng_t *received_length, [out]
 ioseg_list_t *receive_segment_list, [in/out]
 context_t *context_id, [in]

 char *error_message); [out]

Post codes
0

Normal completion.
8

No anchor/bad session handle/segment too large.
12

Send failed.
16

Receive has been canceled.
20

Error from IMS.

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.

0
Normal completion.

8
No anchor/bad session handle/segment too large.

12
Send failed.

16
Receive has been canceled.

20
Error from IMS.

otma_send_receivex API
The otma_send_receivex API has the same functionality as the otma_send_receive API, but adds
the extended ability to pass OTMA user data.

Invocation
Same as for the otma_send_receive API.

Input
Same as for the otma_send_receive API, with the following additional parameter:

532 IMS: Application Programming APIs

*otma_user_data
Pointer to the OTMA user data. The OTMA user data field can contain any user data that is used to
identify the user input, or to correlate input with output. If a value is specified in this field, the data
is sent to IMS. IMS user exits OTMAIOED and DFSYDRU0 can read or change the data. The data is
returned to the user if the otma_receive_async API with otma_user_data is issued.

If there is no OTMA user data, specify a NULL for this field.

Output
Same as for the otma_send_receive API.

C-language function prototype
 otma_send_receivex(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]

 sess_handle_t *session_handle, [in]
 lterm_name_t *lterm, [in/out]
 mod_name_t *modname, [in/out]

 char *send_buffer, [in]
 data_leng_t *send_length, [in]
 data_leng_t *send_segment_list, [in]

 char *receive buffer, [in]
 data_leng_t *receive_length, [in]
 data_leng_t *received_length, [out]
 data_leng_t *receive_segment_list, [in/out]
 context_t *context_id, [in]

 char *error_message, [out]
 otma_user_t *otma_userdata); [in/out]

Post codes
Same as for the otma_send_receive API.

Return values (rc value)
Same as for the otma_send_receive API.

otma_send_receivey API
The otma_send_receivey API has the same functionality as the otma_send_receivex API, but adds
the extended ability to pass distributed network security credentials.

Invocation
Same as for the otma_send_receivex API.

Input
Same as for the otma_send_receivex API, with the following additional parameters:
*network userid length

Length of distributed network user ID. The maximum length is 100 bytes.
*network userid

Pointer to the distributed network userid.

If there is no data, specify NULL for this field.

Chapter 6. OTMA Callable Interface API reference 533

*network session id length

Length of distributed network session ID. The maximum length is 100 bytes.

*network session id

Pointer to the distributed network session ID.

If there is no data, specify NULL for this field.

Output
Same as for the otma_send_receivex API.

C-language function prototype
otma_send_receivey(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]

 sess_handle_t *session_handle, [in]
 lterm_name_t *lterm, [in/out]
 mod_name_t *modname, [in/out]

 char *send_buffer, [in]
 data_leng_t *send_length, [in]
 data_leng_t *send_segment_list, [in]

 char *receive buffer, [in]
 data_leng_t *receive_length, [in]
 data_leng_t *received_length, [out]
 data_leng_t *receive_segment_list, [in/out]
 context_t *context_id, [in]

 char *error_message, [out]
 otma_user_t *otma_userdata, [in/out]
 char *network_userid, [in]
 data_leng_t *network_userid_length, [in]
 char *network_session_id, [in]
 data_leng_t *network_session_id_length);[in]

Post codes
Same as for the otma_send_receivex API.

Return values (rc value)
Same as for the otma_send_receivex API.

Related reference
“otma_send_receivex API” on page 532
The otma_send_receivex API has the same functionality as the otma_send_receive API, but adds
the extended ability to pass OTMA user data.

otma_send_async API
The otma_send_async API is invoked to send a transaction or command to IMS.

Invocation
Called by the client in TCB mode.

Restriction: This API cannot be used to submit an IMS fast path transaction, a protected transaction (the
transactions with z/OS Resource Recovery Services context IDs), or an IMS conversational transaction.
For these three types of transactions, use the otma_send_receive API instead.

534 IMS: Application Programming APIs

Input
*anchor

Pointer to anchor word that was set up by otma_open.
*lterm

Pointer to lterm name field. If there is no input lterm, specify a NULL.
*modname

Pointer to MODname name field. If there is no input MODname, specify a NULL.
*otma_user_data

Pointer to the OTMA user data. This 1022-byte field is optional. The OTMA user data field can contain
any data that is used to identify your input, or to correlate input with output. If a value is specified in
this field, the data is sent to IMS. IMS user exits OTMAIOED and DFSYDRU0 can read or change the
data. The data is returned if the otma_receive_async API with otma_user_data is issued.

If there is no OTMA user data, specify a NULL for this field.

*prfname
Pointer to string holding the RACF group name for transaction commands. This parameter is optional.
If there is no input RACF group name, specify a NULL.

*send_buffer
Pointer to the data to be sent to IMS. When a NULL is specified for the transaction parameter, the
client code must provide the transaction name or command, and a blank, to the data in this buffer
when sending to IMS.

*send_length
Length of send data.

*send_segment_list
An array of lengths of message segments to be sent to IMS. This parameter is required for multi-
segment input messages. If specified, the first element needs to contain the count of total input
segments. This field is optional for single segment input. If a single segment is to be sent, either the
first element or the address of the array can be zero.

*special_options
Pointer to an area codifying non-standard options. Currently, no special options are supported. Specify
a NULL for this parameter.

*tpipe_name
Pointer to OTMA tpipe name field. This name must be different from the tpipe name specified for the
otma_create and otma_open APIs.

*transaction
Name of IMS transaction or command to be sent to IMS.

If the IMS command entered is longer than eight characters, the first eight characters of the command
can be provided in this parameter. The rest of the characters of the command need to be provided in
the beginning of the send buffer.

If NULL or blanks are specified in this parameter, OTMA C/I expects you to include the IMS transaction
name or command in the beginning of the send buffer.

*username
Pointer to a string holding the RACF username for transaction/commands.

For calls from authorized programs, the input username is trusted and passed to IMS. For calls from
unauthorized programs, OTMA C/I invokes a RACF call with the current accessor environment element
(ACEE) context to obtain the username. The input username, if any, will be ignored. A NULL can be
specified for callers from unauthorized programs.

Output
*ecb Event

Event control block to be posted when IMS receives or rejects the input.

Chapter 6. OTMA Callable Interface API reference 535

*error_message
Address of the pointer to the error message field. You provide this address to receive error or
informational messages from IMS. If the post code returns a 20, then this field will contain data.

*retrsn
Pointer to the return and reason code structure. If IMS OTMA rejects the input, the NAK code and
its associated reason code are available in OTMA C/I reason codes 2 and 3. See IMS Version 15.3
Messages and Codes, Volume 2: Non-DFS Messages for an explanation of the NAK code.

C-language function prototype
 otma_send_async(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]

 tpipe_name_t *tpipe_name, [in]
 tran_name_t *transaction, [in]
 racf_uid_t *username, [in]
 racf_prf_t *prfname, [in]
 lterm_name_t *lterm, [in]
 mod_name_t *modname, [in]
 otma_user_t *otma_userdata, [in]

 char *send_buffer, [in]
 data_leng_t *send_length, [in]
 data_leng_t *send_segment_list[], [in]
 char *error_message, [out]
 void *special_options); [in]

Post codes
0

Normal completion.
8

Invalid input.
12

Input failed.
16

Input canceled (IMS is down or OTMA is stopped).
20

Error or information message from IMS.

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.

0
Normal completion.

8
No anchor/bad input.

12
Send failed.

16
Input canceled (IMS is down or OTMA is stopped).

20
Error or information message from IMS.

536 IMS: Application Programming APIs

otma_send_asyncx API
The otma_send_asyncx API has the same functionality as the otma_send_async API, but adds the
extended ability to pass distributed network security credentials.

Invocation
Same as for the otma_send_async API.

Input
Same as for the otma_send_async API, with the following additional parameters:
*network userid length

Length of distributed network user ID. The maximum length is 100 bytes.

*network userid

Pointer to the distributed network user ID.

If there is no data, specify NULL for this field.

*network session id length

Length of distributed network session ID. The maximum length is 100 bytes.

*network session id

Pointer to the distributed network session ID.

If there is no data, specify NULL for this field.

Output
Same as for the otma_send_async API.

C-language function prototype
otma_send_asyncx(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]

 tpipe_name_t *tpipe_name, [in]
 tran_name_t *transaction, [in]
 racf_uid_t *username, [in]
 racf_prf_t *prfname, [in]
 lterm_name_t *lterm, [in]
 mod_name_t *modname, [in]
 otma_user_t *otma_userdata, [in]

 char *send_buffer, [in]
 data_leng_t *send_length, [in]
 data_leng_t *send_segment_list[], [in]
 char *error_message, [out]
 void *special_options, [in]
 char *network_userid, [in]
 data_leng_t *network_userid_length, [in]
 char *network_session_id, [in]
 data_leng_t *network_session_id_length);[in]

Post codes
Same as for the otma_send_async API.

Return values (rc value)
Same as for the otma_send_async API.

Chapter 6. OTMA Callable Interface API reference 537

Related reference
“otma_send_async API” on page 534
The otma_send_async API is invoked to send a transaction or command to IMS.

otma_receive_async API
The otma_receive_async API is invoked to receive an IMS output message or an unsolicited message.
The caller provides the buffer definitions to receive the IMS message. When the IMS message arrives, the
ECB is posted.

Invocation
Called by the client in TCB mode.

Input
*anchor

Pointer to anchor word that was set up by otma_open.
*tpipe_name

Pointer to OTMA tpipe name field. This name must be different from the tpipe name specified for the
otma_create and otma_open APIs.

receive_length
Length of buffer available to receive message.

Output
*ecb Event

Event control block to be posted when IMS receives the reply.
*error_message

Address of the pointer to the error message field. You provide this address to receive error or
informational messages from IMS. If the post code returns a 20, then this field will contain data.

*lterm
Pointer to lterm name field. Can be updated with lterm value that is returned by IMS.

*modname
Pointer to MODname name field. Can be updated with MODname value that is returned by IMS.

*otma_user_data
Pointer to the OTMA user data. This 1022-byte field is optional. If the field is specified and IMS
returns the OTMA user data, the data is passed back to the caller.

The OTMA user data received is either provided in the otma_send_async API or created by the IMS
DRU exit DFSYDRU0.

*receive_buffer
Pointer to buffer to receive reply message from IMS.

*received_length
Field to receive length of data received to receive_buffer. Should be equal to the sum of the segment
lengths.

*receive_segment_list
An array of lengths of message segments received from IMS. The client must set the first element to
indicate the maximum number of message segments that can be received. After all the segments are
received, the first array element indicates the actual number of segments received, and the rest of the
array elements indicate the length of each segment received.

*retrsn
Pointer to the return and reason code structure.

538 IMS: Application Programming APIs

*special_options
Pointer to an area codifying non-standard options. Currently, no special are options supported. Specify
a NULL for this parameter.

C-language function prototype
 otma_receive_async(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 ecb_t *ecb, [out]

 tpipe_name_t *tpipe_name, [in]
 lterm_name_t *lterm, [out]
 mod_name_t *modname, [out]
 otma_user_t *otma_userdata, [out]

 char *receive_buffer, [out]
 data_leng_t *receive_length, [in]
 data_leng_t *received_length, [out]
 data_leng_t *receive_segment_list[], [in/out]

 void *special_options); [in]

Post codes
0

Normal completion.
12

Receive failed.

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.

0
Normal completion.

8
No anchor/bad session handle/segment too large.

12
Send failed.

otma_free API
The otma_free API is called to free an independent session created by otma_alloc.

Invocation
Called by the client in TCB mode.

Input
*anchor

Pointer to anchor word returned by otma_open.
*session_handle

Pointer to session handle returned by otma_alloc.

Chapter 6. OTMA Callable Interface API reference 539

Output
*retrsn

Pointer to return code structure.
*session_handle

Pointer to session handle will be nulled by otma_free.

C-language function prototype
otma_free(
 otma_anchor_t *anchor, [in]
 otma_retrsn_t *retrsn, [out]
 sess_handle_t *session_handle); [in/out]

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.

0
Success.

4
Not allocated session.

8
Incorrect anchor.

otma_close API
The otma_close API is called to free storages for communication and to leave the z/OS cross-system
coupling facility (XCF) group. This function may be called when communications are in flight or an open is
processing. In these cases all relevant ECBs will be posted with a canceled post code.

Invocation
Called by the client in TCB mode.

Input
*anchor

Pointer to anchor word returned by otma_open.

Output
*anchor

Pointer to anchor word returned by otma_open.
*retrsn

Pointer to return code.

C-language function prototype
otma_close(
 otma_anchor_t *anchor, [in/out]
 otma_retrsn_t *retrsn); [out]

Return values (rc value)
The rc and reason are valid after ECB has been posted. For the complete description of each error, see
IMS Version 15.3 Communications and Connections.

540 IMS: Application Programming APIs

0
Success.

4
Null anchor.

8
Cannot leave the XCF group.

OTMA C/I sample programs
The following two sample C programs are for display purposes only.

Warranty and distribution for OTMA C/I sample programs
The OTMA C/I sample programs have warranty and distribution restrictions.

The code is provided "AS IS." IBM makes no warranties, express or implied, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose, regarding the function or
performance of this code. IBM shall not be liable for any damages arising out of your use of the sample
code, even if they have been advised of the possibility of such damages.

The sample code can be freely distributed, copied, altered, and incorporated into other software, provided
that it bears the following Copyright notices and DISCLAIMER OF WARRANTIES intact.

(c) Copyright IBM Corp.
2000 All Rights Reserved. Licensed Materials - Property of IBM
DISCLAIMER OF WARRANTIES.

The following "enclosed" code is sample code created by IBM Corporation.
This sample code is not part of any standard or IBM product and is provided
to you solely for the purpose of assisting you in the development
of your applications.

OTMA C/I sample program for synchronous processing
The program below shows how to use the OTMA C/I for synchronous (one in-one out) processing.

In this sample program, the otma_send_receive API is used to send and receive IMS data.

#pragma langlvl(extended)
/***/
/* */
/* Callable Interface sample program using synchronous APIs */
/* */
/* Parameters: */
/* Server Name */
/* Client Name */
/* User Name */
/* Iterations */
/* Transaction */
/* User Group */
/* OTMA Data */
/* */
/* Note: The send buffer is sent as a file with a ddname of */
/* SENDBUFn in the invoking JCL. */
/* */
/* Example: //SENDBUF0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1 */
/* $$ */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. '?' is used to delimit */
/* the compare string and '|' is used to ignore a char compare */
/* */
/* Example: //COMPAR0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1? */
/* $$ */
/* */
/***/

Chapter 6. OTMA Callable Interface API reference 541

/**/
/* Entry... */
/* */
/* This test program is callable from JCL */
/* */
/* //NA1OTMA JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H,REGION=2M */
/* //** */
/* //* PARM=server_member_name tpipe_name client_member_name */
/* //* iterations command groupid OTMA_Data */
/* //MINISAMP EXEC PGM=NA1OTMA, */
/* // PARM='TRAP(OFF)/IMS61CR1 IMSTESR G214992 1 /DISP groupid */
/* // OTMAData' */
/* //STEPLIB DD DISP=SHR,DSN=OTMA.TEST.LOAD */
/* //SYSUDUMP DD SYSOUT=* */
/* //STDOUT DD SYSOUT=* */
/* //STDERR DD SYSOUT=* */
/* //CEEDUMP DD SYSOUT=* */
/* //COMPAR1 DD *,DLM=$$ */
/* EXPECTED OUTPUT GOES HERE */
/* $$ */
/* //SENDBUF0 DD *,DLM=$$ */
/* SEND DATA GOES HERE */
/* $$ */
/* */
/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */
/* off LE condition handling. To get a LE dump on abend set */
/* TRAP ON and provide a CEEDUMP DDNAME. */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. '?' is used to delimit */
/* the compare string and '|' is used to ignore a char compare*/
/* */
/**/

/***/
/* An example for using the OTMA Client API in C lang. */
/* This program is broken into the following parts: */
/* Declarations for special support */
/* Process invocation parameters */
/* Setup for C signal handling */
/* Do XCF open processing and analysis */
/* Do session allocate processing */
/* Execute a command or transaction per invocation parm */
/* Do session free processing */
/* Do close */
/* End */
/***/

/***/
/* API's for non-authorized OTMA caller */
/***/
#include "dfsyc0.h" /* Non-authorized OTMA API's */
#include <stdlib.h> /* Standard C Header file */
#include <stddef.h> /* Standard C Header file */
#include <stdio.h> /* Standard C Header file */

/***/
/* Internal functions */
/***/
int memc(char *comp_buf, char *rec_buf1);

/* macro to move string to blank filled left justified char field */
#define splat(t,s) \
 {\
 memset((char*)&(t),' ',sizeof(t));\
 strncpy((char*)&(t), s ,strlen(s));}

/* standard math routines */
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))

main(int argc,char *argv[])
{

 /* Following fields used by all Functions */

 otma_anchor_t anchor; /* Handle returned by create */
 /* and used by all others. */
 otma_retrsn_t retrsn; /* Return code returned by all. */
 long int retsave; /* Return code save area */

 /* Following fields used by several Functions */

542 IMS: Application Programming APIs

 sess_handle_t sess_handle; /* Handle returned by allocate */
 /* used by send_receive and free. */
 otma_grp_name_t grp_name; /* API XCF Group Member Name. */
 otma_clt_name_t clt_name; /* API XCF Client Member Name. */
 otma_srv_name_t srv_name; /* API XCF Server Member Name. */
 /* (the IMS XCF member name). */
 racf_uid_t userid; /* Our z/OS logon ID. */
 racf_prf_t groupid; /* RACF Group ID */
 otma_user_t otma_data; /* Otma Data */

 lterm_name_t lterm; /* Lterm name */
 mod_name_t modname; /* ModName */

 unsigned char error_message_text[120];/* IMS error msg field */
 /* A place to receive any IMS */
 /* DFS error messages. */
 unsigned char *error_message = (unsigned char*)&error_message_text;
 /* a pointer to which is parameter */
 /* on send_receive. */

 char *tran; /* Transaction Name / IMS Command */
 tran_name_t tran_name; /* Transaction Name / IMS Command */

#define BUFFER_LEN 4096 /* set our buffer sizes */
#define NUM_BUFFER 60
#define COM_BUFFER 80
#define GROUP_NAME "HARRY" /* Set XCF group name to join */

 char compare_buf[NUM_BUFFER + 1]; /* Compare buffer */
 int long buffer_length = 0;
 int long rec_buffer_len = BUFFER_LEN;
 char rec_buf[BUFFER_LEN];
 long int rec_data_len = 0;
 char send_buf[BUFFER_LEN];
 char temp_buf[NUM_BUFFER];

 context_t context = {0x00000000000000000000000000000000};
 /* This test is not distributed sync point. */
 /* Too complicated for here. */
 /* Normally this is obtained from RRS */

/***/
/* The callable interface makes use of z/OS Event Control Blocks. */
/* Any language which call the interface must deal with this. */
/***/

 unsigned long *(ecb_list[2]); /* z/OS pause stuff */
 unsigned long **pecb_list;

 ecb_t ecbOPEN = 0L; /* ecb to be posted by OTMA API */
 ecb_t ecbIO = 0L; /* ecb to be posted by OTMA API */
 ecb_t signal = 0L; /* ecb to be posted by C runtime */

 ecb_t temp_ecb = 0L; /* used by compare and swap */
 ecb_t reset_ecb = 0L; /* used by compare and swap */

/***/
/* Local variables */
/***/

 int iterations;
 int loop_count;
 int compare_result;
 long int retcode;

 signed long sessions; /* number of sessions to support */
 tpipe_prfx_t tpipe_prefix; /* first part of tpipe NAME */

 FILE * stream;
 int num; /* number of characters read from stream */

/***/
/* To support test functions - names of parms */
/* Print the parms out for documentation */
/***/

 char * argdefs[8]={ "pgm name", /* 1 */
 "server name", /* 2 */
 "client name", /* 3 */
 "userid ", /* 4 */

Chapter 6. OTMA Callable Interface API reference 543

 "iterations ", /* 5 */
 "transaction", /* 6 */
 "group id ", /* 7 */
 "otma data ", /* 8 */
 };

/***/
/* Declare an array of compare file ddnames to */
/* compare actual output received with expected output. */
/***/

 char * infiledd[4]={"DD:COMPAR0", /* 1 */
 "DD:COMPAR1" , /* 2 */
 "DD:COMPAR2" , /* 3 */
 "DD:COMPAR3" , /* 4 */
 };

/***/
/* Declare an array of send file ddnames to */
/* send application data to OTMA. */
/***/

 char * sndfiledd[4]= {"DD:SENDBUF0", /* 1 */
 "DD:SENDBUF1" , /* 2 */
 "DD:SENDBUF2" , /* 3 */
 "DD:SENDBUF3" , /* 4 */
 };

/* -- */
/* Anounce the startup of the test program. */
/* -- */
 printf("Otmci01 Starting, version %s %s\n" ,__DATE__,__TIME__);

/* -- */
/* z/OS Pause Init - do this first, in case it fails bail out. */
/* This sets up a C environment for signaling from the API. */
/* -- */

 ecb_list[0] = (unsigned long *) &(signal); /* post by C signal */
 ecb_list[1] = (unsigned long *) /* post by OTMA */
 ((unsigned long)&(ecbOPEN) |
 (unsigned long)0x80000000);/* end of list */
 pecb_list = &ecb_list[0]; /* pointer to list */
 /* define callable I/F */

/***/
/* Begin Test Case... */
/* Anounce the startup of the test program. */
/***/
 printf("OTMCI01 Run Date: %s Run Time: %s\n" ,__DATE__,__TIME__);

/***/
/* Process parms/command line arguments. */
/***/

 /* First, print the parameters. */
 printf("Invocation parameters = \n");
 for (i=1 ; i<(min(8,argc));i++)
 {
 printf("%d %s = ", i, argdefs[i]);
 printf("%s.\n", argv[i]);
 }

 if (argc>1) splat(srv_name, argv[1]) /* XCF memname of IMS */
 else splat(srv_name, "IMS61CR1"); /* hard coded default */
 if (argc>2) splat(clt_name, argv[2]) /* Client name */
 else splat(clt_name, "XCFTEST"); /* hard coded default */
 if (argc>3) splat(userid , argv[3]) /* ID to use */
 else splat(userid , "XCFTEST"); /* hard coded default */
 if (argc>4) iterations = atoi(argv[4]); /* loop count */
 else iterations = 1; /* hard coded default */
 if (argc>5) tran = argv[5]; /* Transaction/IMS CMD*/
 else tran = ""; /* hard coded default */
 if (argc>6) splat(groupid, argv[6]) /* Group ID to use */
 else splat(groupid, " "); /* hard coded default */
 if (argc>7) splat(otma_data, argv[7]) /* OTMA Data */
 else splat(otma_data, ""); /* hard coded default */

 /* ---*/
 /* Open the file with the ddname SENDBUF0 supplied in the */
 /* JCL which invoked this C driver. Then read the file into */
 /* temp_buf. */

544 IMS: Application Programming APIs

 /* ---*/

 if ((stream = fopen("DD:SENDBUF0","rb")) != NULL)
 {
 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
 printf("BUFF SIZE = %d.\n", num);
 if (num == NUM_BUFFER) {
 printf("Number of characters read = %i\n", num);
 fclose(stream);
 }
 else {
 if (ferror(stream))
 printf("Error reading DDNAME sendbuf0/n");
 else if (feof(stream)) {
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("temp_buf = %.*s\n", num, temp_buf);
 fclose(stream);
 }
 }
 }
 else
 printf("ERROR opening DDNAME sendbuf0/n");

 /* Initialize API parameters and buffers. */
 splat(grp_name,GROUP_NAME); /* XCF Group Name */
 splat(tpipe_prefix,"TPAS"); /* tpipe Prefix Name */
 splat(tran_name,tran); /* do scan here */
 strncat(send_buf, temp_buf,num); /* Copy temp_buf into send_buf */
 buffer_length = strlen(send_buf); /* Set send buffer length */

 /***/
 /* Example of setting up parms to Open the XCF Link */
 /***/

 retrsn.ret = -1;
 retrsn.rsn[0] = -1;
 retrsn.rsn[1] = -1;
 retrsn.rsn[2] = -1;
 retrsn.rsn[3] = -1;

 sessions = 10; /* OTMA supports multiple parallel */
 /* sessions (TPIPES) How many do you want?*/

 /***/
 /*BEGIN: */
 /* We have a CREATE function to set up storage and */
 /* an OPEN function to start the protocol. */
 /* If you do not need to customize the environment you can start */
 /* with the OPEN function, the CREATE will be done by OPEN. */
 /***/

 printf("-\n");
 otma_create(&anchor, /* (out) ptr to addr to receive ancho*/
 &retrsn, /* (out) return code */
 (ecb_t *) &ecbOPEN,/* not posted by create but stored */

 &grp_name, /* (in) ptr to valid groupname */
 &clt_name, /* (in) Our member name */
 &srv_name, /* (in) Our server name */

 &sessions, /* (in) number of sessions to support*/
 &tpipe_prefix /* (in) first part of tpipe name */
);

 printf("OTMA_CREATE issued. ret = %d rsn = %.8x,%.8x,%.8x,%.8x\n"
 " anchor is at %.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 anchor);

 printf("-\n");

 /***/
 /* Connect to IMS */
 /***/

 otma_open(&anchor, /* out ptr to addr to receive anchor */

Chapter 6. OTMA Callable Interface API reference 545

 &retrsn, /* out return code */
 (ecb_t *)&ecbOPEN, /* out posted by open if failure */
 /* else posted by exit pgm */
 &grp_name, /* in ptr to valid XCF groupname */
 &clt_name, /* in Our member name */
 &srv_name, /* in Our server name */

 &sessions, /* in number of sessions to support */
 &tpipe_prefix /* in first part of tpipe name */
);

 printf("OTMA_OPEN issued. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
 " Waiting for ecb at %.8x.=%.8x.\n",
 retrsn.ret,
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1],
 *ecb_list[1]
);

 printf("-\n");

 /* -- */
 /* Here we wait for Open to signal complete */
 /* -- */
 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 printf("OPEN_OTMA done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n"
 "\nEcb at %.8x.= %.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1], *ecb_list[1]
);

 printf("Local Area Anchor at %8.8X = %8.8X\n",
 &anchor, anchor);

 printf("-\n");

 /* ---*/
 /* The post code from open indicates success or failure */
 /* ---*/
 if (0!=(0x00ffffff & ecbOPEN))
 {
 printf("OPEN_OTMA ecb is posted failure.\n");
 return(retrsn.rsn[0]);
 }

 /* ---*/
 /* Set userid to blanks if userid = bobdavis */
 /* ---*/

 printf(" Trans = %.8s,\n ", tran_name);
 printf(" Userid = %.8s,\n ", userid);
 printf("Groupid = %.8s,\n ", groupid);

 /**/
 /* Like CREATE the ALLOC function just creates control blocks */
 /* and stores data in them. Other functions may be invented */
 /* to modify these structures before the command-of-execution,*/
 /* SEND_RECEIVE is issued. */
 /**/

 otma_alloc(
 &anchor, /* in ptr to global word */
 &retrsn, /* out rc,reason(1-4) */

 &sess_handle, /* out session id */
 NULL, /* in default overrides */

 &tran_name, /* in IMS tp name or cmd */
 &userid, /* in RACFid or blanks */
 &groupid /* in RACF group id or blnk*/
);

 printf("OTMA_ALLOC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
 retrsn.ret,
 retrsn.rsn[0],

546 IMS: Application Programming APIs

 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 /**/
 /* Even if ALLOC fails we go on here just to prove the */
 /* API will reject the call. */
 /**/

 /**/
 /* This is the call that sends the data and prepares to */
 /* receive the answer from IMS. */
 /* */
 /* This test program can iterate with multiple calls here. */
 /**/

 /* ___Send message wait for reply______________________ */
 for (loop_count = 0 ; loop_count<iterations ; loop_count++)
 {
 /* ___Change the environment to wait for ecbIO */
 ecbIO = 0; /* clear ecb for reuse */
 ecb_list[1] = (unsigned long *) /* posted by OTMA */
 ((unsigned long)&(ecbIO) |
 (unsigned long)0x80000000); /* end of list */

 if (loop_count != 0)
 {

 /* ---*/
 /* If looping more than once open the next file to send */
 /* and read it into the send_buf. */
 /* ---*/

 if ((stream = fopen(sndfiledd[loop_count],"rb")) != NULL)
 {
 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
 printf("BUFF SIZE = %d.\n", num);
 if (num == NUM_BUFFER) {
 fclose(stream);
 }
 else {
 if (ferror(stream))
 printf("Error opening file
 else if (feof(stream)) {
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("temp_buf = %.*s\n", num, temp_buf);
 fclose(stream);
 }
 }
 }
 else
 printf("Error opening file %s\n", sndfiledd[loop_count]);
 /* Initialize send and receiving buffers. */
 memset(rec_buf ,0, sizeof(rec_buf));
 memset(send_buf ,0, sizeof(send_buf));
 strcat(send_buf, temp_buf);
 strcat(send_buf, " ");
 buffer_length = strlen(send_buf);
 printf("
 printf ("buffer length = %d\n", buffer_length);
 } /* end if loop_count != 0 */

 /* Print otma_send_receive parms and start of API */
 memset(error_message_text ,0, sizeof(error_message_text));
 printf("Send buf at %.8x.\n", &send_buf);
 printf("Send buf = %s.\n", send_buf);
 printf("Receive buf at %.8x.\n", &rec_buf);
 printf("Lterm = %.8s.\n", lterm);
 printf("Modname = %.8s.\n", modname);

 printf("-\n");
 otma_send_receivex(
 &anchor, /* (in) anchor block */
 &retrsn, /* (out) return status */
 &ecbIO, /* (in) ecb address */

 &sess_handle, /* (in) session handle */
 <erm, /* (in/out) logical terminal */
 &modname, /* (in/out) module name */

Chapter 6. OTMA Callable Interface API reference 547

 (unsigned char *) &send_buf, /* (in) send buffer */
 &buffer_length, /* (in) size of send buffer */
 0, /* (in) send_segment_list */

 (unsigned char *) &rec_buf, /* (in) receive buffer */
 &rec_buffer_len, /* (in) size of buffer */
 &rec_data_len, /* (out) received data length */
 0, /* (in/out) receive seg list */

 &context, /* (in) context id */
 &error_message, /* (out) ims message */
 &otma_data); /* (in) Otma Data */

 printf("OTMA_SEND done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]);

 /* -- */
 /* Here we wait for receive to signal complete */
 /* An application can go do other thing while IMS is processing and */
 /* while the XCF scheduled SRBs are returning data to the caller's */
 /* buffers. DO NOT DEALLOCATE THE BUFERS WHILE THIS IS GOING ON! */
 /* None of the output areas of the SEND_RECIEVE can be freed until */
 /* the ECB is posted complete. */
 /* -- */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 retsave = retrsn.ret; /* Save Receive return code */

 printf("OTMA_RECEIVE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
 "\nEcb at %.8x.= %.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1],
 *ecb_list[1]
);

 if (retrsn.ret != 0)
 {

 /* ___Error path Free allocated session _____________________ */
 printf("-error path retrsn.ret=
 printf("-\n");
 printf("Error message = %s\n", error_message);
 otma_free(
 & anchor, /* (out) ptr to global word */
 & retrsn, /* (out) rc,reason (1-4) */
 & sess_handle /* (in) unique path id */
);

 printf("OTMA_FREE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 /* ___Sever IMS connection ____________________________ */
 printf("-\n");
 otma_close(
 & anchor, /* (in,out) tr to otma anchor */
 & retrsn /* (out) rc,reason (1-4) */
);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 return (retsave); /* EXIT with receive API return code */
 }

548 IMS: Application Programming APIs

 /* ---*/
 /* If SEND_RECEIVE worked .. */
 /* ---*/

 /* ---*/
 /* Open the compare file containing the expected output */
 /* of the receive buffer. Compare the expected output */
 /* with the actual output and return the result. */
 /* ---*/

 rec_buf[0] = ' '; /* Remove possible NL ie x'15' */
 printf("infiledd = %s\n", infiledd[loop_count]);

 if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)
 {
 num = fread(compare_buf, sizeof(char), COM_BUFFER, stream);
 if (num == COM_BUFFER) { /* fread success */
 printf("compare_buf = %s\n", compare_buf);
 printf(" rec_buf = %s\n", rec_buf);
 fclose(stream);
 compare_result = memc(compare_buf, rec_buf);
 printf("compare_result =
 if (compare_result != 0)
 return(compare_result); /* Exit if NO COMPARE */
 }
 else { /* fread() failed */
 if (ferror(stream)) /* possibility 1 */
 printf("Error reading file %s\n", infiledd[loop_count]);
 else if (feof(stream)) { /* possibility 2 */
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("compare_buf = %.*s\n", num, compare_buf);
 }
 }
 }
 else
 printf("Error opening file %s\n", infiledd[loop_count]);
} /* end of loop */

 /***/
 /* Once a message is sent to IMS and the answer received it */
 /* is usual to release the tpipe for use by other transactions. */
 /* For conversational trans an application would keep using */
 /* the handle to continue a conversational transaction with IMS. */
 /* The Transaction name is specified in the ALLOC and it is */
 /* intended that a FREE be done at the end of each transaction */
 /* and a new ALLOC be done for the next one. This is not */
 /* expensive. */
 /***/

 printf("-\n");
 otma_free(
 & anchor, /* (out) ptr to global word */
 & retrsn, /* (out) rc,reason (1-4) */
 & sess_handle /* (in) unique path id */
);

 printf("OTMA_FREE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 printf("-\n");

 /* */
 /* Finally, CLOSE severs the connection with IMS and frees the */
 /* Storage used by the OTMA API. */
 /* This will be done at job-step termination but its untidy. */
 /* */

 otma_close(
 & anchor, /* (in,out) ptr to otma anchor */
 & retrsn /* (out) rc,reason (1-4) */
);
 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",
 retrsn.ret,
 retrsn.rsn[0],

Chapter 6. OTMA Callable Interface API reference 549

 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 return (compare_result); /* Retern return code */
} /* end of main */

/*===*/
/* Subroutine to compare expected results(compare_buf) */
/* with actual results(err_msg) the "|" is used to signify */
/* an ignore compare and "?" is used to mark the end of string. */
/* Note: Compare starts using an index i=1 ie. the 2nd character */
/* because the 1st character was blanked out. (NL x'15') */
/*===*/

int memc(char *comp_buf, char *rec_buf1)
{

 int j;
 int i;

 j = 0;

 for (i=1;
 ((j==0) && (comp_buf[i] != '?'));
 i++)
 {
 if(comp_buf[i] != '|') /* Ignore compare */
 {
 if(comp_buf[i] != rec_buf1[i]) /* compare ok ? */
 {
 j++; /* No */
 printf("MISCOMPARE !!! \n");
 printf("comp_buf[%d] = %c\n", i, comp_buf[i]);
 printf("rec_buf1[%d] = %c\n", i, rec_buf1[i]);
 }
 else
 ;
 }
 else
 ; /* Else null */
 }

 return (j);
}

Related reference
“OTMA C/I hints and tips” on page 523
Use the following hints and tips when programming with OTMA C/I.

OTMA C/I sample program for asynchronous processing
The following program illustrates how to use OTMA C/I for asynchronous (unsolicited) processing.

In this sample program, one otma_send_asynch and one otma_receive_asynch call is issued per
loop.

Recommendation: If you will be using synchronous (one in-one out) processing exclusively, use
the otma_send_receive API. The otma_send_receiveAPI provides the most efficient means of
synchronous processing.

#pragma langlvl(extended)

/***/
/* */
/* Callable Interface sample program using asynchronous APIs */
/* */
/* Parameters: */
/* Server Name */
/* Client Name */
/* Transaction */
/* User Name */
/* User Group */
/* Lterm */
/* Mod Name */

550 IMS: Application Programming APIs

/* OTMA Data */
/* Iterations */
/* */
/* Note: The send buffer is sent as a file with a ddname of */
/* SENDBUFn in the invoking JCL. */
/* */
/* Example: //SENDBUF0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1 */
/* $$ */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. '?' is used to delimit */
/* the compare string and '|' is used to ignore a char compare */
/* */
/* Example: //COMPAR0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1? */
/* $$ */
/* */
/* Note: TPIPBUFn is the DDNAME of an input file used to specify */
/* the tpipe name to be used for each iteration. */
/* */
/* Example: //TPIPEBUF0 DD *,DLM=$$ */
/* TPIPE001 */
/* $$ */
/* */
/***/

/**/
/* Entry... */
/* */
/* This test program is callable from JCL */
/* */
/* //NA1OTMA JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H,REGION=2M */
/* //** */
/* //* PARM=server_member_name client_member_name transaction */
/* //* user_name group_name lterm_name ModName OTMA_Data */
/* //* iterations */
/* //** */
/* //MINISAMP EXEC PGM=NA1OTMA, */
/* // PARM='TRAP(OFF)/IMS61CR1 IMSTESR G214992 /DISP user01 groupid */
/* // Lterm ModName OTMAData 1' */
/* //STEPLIB DD DISP=SHR,DSN=OTMA.TEST.LOAD */
/* //SYSUDUMP DD SYSOUT=* */
/* //STDOUT DD SYSOUT=* */
/* //STDERR DD SYSOUT=* */
/* //CEEDUMP DD SYSOUT=* */
/* //COMPAR1 DD *,DLM=$$ */
/* EXPECTED OUTPUT GOES HERE */
/* $$ */
/* //SENDBUF0 DD *,DLM=$$ */
/* SEND DATA GOES HERE */
/* $$ */
/* //TPIPBUF0 DD *,DLM=$$ */
/* TPIPE NAME GOES HERE */
/* $$ */
/* */
/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */
/* off LE condition handling. To get a LE dump on abend set */
/* TRAP ON and provide a CEEDUMP DDNAME. */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. '?' is used to delimit */
/* the compare string and '|' is used to ignore a char compare*/
/* */
/**/

/***/
/* An example for using the OTMA Client API in C lang. */
/* This program is broken into the following parts: */
/* Declarations for special support */
/* Process invocation parameters */
/* Setup for C signal handling */
/* Do XCF open processing and analysis */
/* Execute an API to send data per invocation parm */
/* Execute an API to receive data per invocation parm */
/* Do close */
/* End */
/***/

/***/
/* Header Definitions. */
/***/

Chapter 6. OTMA Callable Interface API reference 551

#include "dfsyc0.h" /* Non-authorized OTMA API's */
#include <stdlib.h> /* Standard C Header file */
#include <stddef.h> /* Standard C Header file */
#include <stdio.h> /* Standard C Header file */

/***/
/* Internal functions */
/***/
/* memory comparison macro. */
/* int memc(char *comp_buf, char *rec_buf1); */
/* */
/* */
/* macro to move string to blank filled left justified char field */
/* #define splat(t,s) \ */
/* {\ */
/* memset((char*)&(t),' ',sizeof(t));\ */
/* strncpy((char*)&(t), s ,strlen(s));} */
/* */
/* standard math routines */
/* #define min(a,b) ((a)<(b)?(a):(b)) */
/* #define max(a,b) ((a)>(b)?(a):(b)) */

/***/
/* */
/* This OTMA C/I Program */
/* */
/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */
/* off LE condition handling. To get a LE dump on abend set */
/* TRAP ON and provide a CEEDUMP DDNAME. */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. '?' is used to delimit */
/* the compare string and '|' is used to ignore a char compare */
/* */
/***/
main(int argc,char *argv[])
{

/***/
/* Fields used by OTMA C/I APIs. */
/***/

/* The following fields used by all the OTMA C/I API's. */

 otma_anchor_t anchor; /* Handle returned by create */
 /* and used by all others. */
 otma_retrsn_t retrsn; /* Return code returned by all. */
 */
/* The following fields are used by the otma_create and */
/* otma_open API's. */

otma_grp_name_t grp_name; /* API XCF Group Member Name. */
 otma_clt_name_t clt_name; /* API XCF Client Member Name. */
 otma_srv_name_t srv_name; /* API XCF Server Member Name. */
 /* (IMS's XCF member name). */
 signed long sessions; /* number of sessions to support */
 tpipe_prfx_t tpipe_prefix; /* first part of tpipe NAME */
 /* The following fields are used by otma_send_async API. */

 tpipe_name_t tpipe; /* User tpipe Name. */
 tran_name_t trans; /* IMS Trancode or CMD. */
 racf_uid_t user_name; /* RACF UserID. */
 racf_prf_t user_prf; /* RACF Groupname. */
 lterm_name_t lterm; /* Input Lterm. */
 mod_name_t modname; /* Input Modname. */
 otma_user_t otma_data; /* OTMA Userdata. */
 char send_buf[BUFFER_LEN];
int long buffer_length = 0; /* Send Buffer length. */
unsigned char error_message_text[120]; /* IMS error msg field - */
 /* A place to receive any IMS */
 /* DFS error messages. */
 unsigned char *error_message = (unsigned char*)&error_message_text;
 /* a pointer to which is parameter */
 /* on send_receive. */
 otma_profile2_t send_options; /* Send Special Options. */

 /* The following fields are used by otma_receive_async API. */

 lterm_name_t rec_lterm; /* Output Lterm. */
 mod_name_t rec_modname; /* Output Modname. */
 otma_user_t rec_otma_data; /* OTMA Userdata. */
 char rec_buf[BUFFER_LEN];

552 IMS: Application Programming APIs

 int long rec_buffer_len = BUFFER_LEN;
 long int rec_data_len = 0;
 otma_profile3_t rec_options; /* Receive Special Options. */

/***/
/* The callable interface makes use of z/OS Event Control Blocks. */
/* Any language which call the interface must deal with this. */
/***/

 unsigned long *(ecb_list[2]); /* z/OS pause ecb list */
 unsigned long **pecb_list;

 ecb_t ecbOPEN = 0L; /* ecb to be posted by OTMA API */
 ecb_t ecbIO = 0L; /* ecb to be posted by OTMA API */
 ecb_t signal = 0L; /* ecb to be posted by C runtime */

 ecb_list[0] = (unsigned long *) &(signal); /* post by C signal */
 ecb_list[1] = (unsigned long *) /* post by OTMA */
 ((unsigned long)&(ecbOPEN) |
 (unsigned long)0x80000000); /* end of list */
 pecb_list = &ecb_list[0]; /* pointer to list */
 /* define callable I/F */

/***/
/* Local Variables */
/***/

 long int retsave; /* Return code save area */
int iterations; /* Number of iterations to use */
int loop_count; /* Number of iterations used */
int compare_result; /* Return Code result of the */
 /* comparison for buffers. */

/***/
/* Local Constants */
/***/

 #define BUFFER_LEN 4096 /* Set our buffer sizes */
 #define NUM_BUFFER 80 /* Set the number of buffers */
 #define GROUP_NAME "HARRY" /* Set XCF group name to join */
 char temp_buf[NUM_BUFFER]; /* Swapping buffer */
 char compare_buf[NUM_BUFFER + 1]; /* Compare buffer
*/
 FILE * stream;
 int num; /* number of characters read from stream */

/***/
/* To support test functions - names of parms in order to pring */
/* the parms out for documentation. */
/***/

char * argdefs[10]={"Program Name", /* 1 */
 "Server Name", /* 2 */
 "Client Name", /* 3 */
 "Transaction", /* 4 */
 "User Name ", /* 5 */
 "User Group ", /* 6 */
 "Lterm ", /* 7 */
 "Mod Name ", /* 8 */
 "OTMA Data ", /* 9 */
 "Iterations ", /* 10 */
 };

/***/
/* Declare an array of compare file ddnames to */
/* compare actual output received with expected output. */
/***/

 char * infiledd[4]={"DD:COMPAR0", /* 1 */
 "DD:COMPAR1" , /* 2 */
 "DD:COMPAR2" , /* 3 */
 "DD:COMPAR3" , /* 4 */
 };

/***/
/* Declare an array of send file ddnames to */
/* send application data to OTMA. */
/***/

 char * sndfiledd[4]= {"DD:SENDBUF0", /* 1 */
 "DD:SENDBUF1" , /* 2 */
 "DD:SENDBUF2" , /* 3 */

Chapter 6. OTMA Callable Interface API reference 553

 "DD:SENDBUF3" , /* 4 */
 };

/***/
/* Declare an array of tpipe names ddnames for the */
/* otma_send_async API. */
/***/

 char * tpipefiledd[4]= {"DD:TPIPBUF0", /* 1 */
 "DD:TPIPBUF1" , /* 2 */
 "DD:TPIPBUF2" , /* 3 */
 "DD:TPIPBUF3" , /* 4 */
 };

/***/
/* Begin Test Case... */
/* Anounce the startup of the test program. */
/***/
 printf("OTMCI02 Run Date: %s Run Time: %s\n" ,__DATE__,__TIME__);

/***/
/* Process parms/command line arguments. */
/* */
/* Note: If not a parameter is not used, then "NONE" is used in */
/* its place. */
/* */
/***/

 /* First, print the parameters. */
 printf("Invocation parameters = \n");
 for (i=1 ; i<(min(11,argc));i++)
 {
 printf("%d %s = ", i, argdefs[i]);
 printf("%s.\n", argv[i]);
 }

 printf("\n");

 if (argc>1 && strcmp(argv[1],"NONE") != 0)
 splat(srv_name, argv[1]) /* Server Name. */
 else
 splat(srv_name, "IMS61CR1"); /* Hard coded default */
 if (argc>2 && strcmp(argv[2],"NONE") != 0)
 splat(clt_name, argv[2]) /* Client name */
 else
 splat(clt_name, "XCFTEST"); /* Hard coded default */
 if (argc>3 && strcmp(argv[3],"NONE") != 0)
 splat(trans, argv[3]) /* IMS Tran/Cmd to use*/
 else
 splat(trans, ""); /* Hard coded default */
 if (argc>4 && strcmp(argv[4],"NONE") != 0)
 splat(user_name, argv[4]) /* RACF Username */
 else
 splat(user_name, ""); /* Hard coded default */
 if (argc>5 && strcmp(argv[5],"NONE") != 0)
 splat(user_prf, argv[5]) /* RACF Group ID */
 else
 splat(user_prf, ""); /* Hard coded default */
 if (argc>6 && strcmp(argv[6],"NONE") != 0)
 splat(lterm , argv[6]) /* Lterm to use */
 else
 splat(lterm , ""); /* Hard coded default */
 if (argc>7 && strcmp(argv[7],"NONE") != 0)
 splat(modname , argv[7]) /* ModName to use */
 else
 splat(modname , ""); /* Hard coded default */
 if (argc>8 && strcmp(argv[8],"NONE") != 0)
 splat(otma_data, argv[8]) /* OTMAData to use */
 else
 splat(otma_data, ""); /* Hard coded default */
 if (argc>9 && strcmp(argv[9],"NONE") != 0)
 iterations = atoi(argv[9]); /* Loop count */
 else
 iterations = 1; /* Hard coded default */

 /* ---*/
 /* Open the file with the ddname SENDBUF0 supplied in the */
 /* JCL which invoked this C driver. Then read the file into */
 /* temp_buf. */
 /* ---*/

554 IMS: Application Programming APIs

 if ((stream = fopen("DD:SENDBUF0","rb")) != NULL)
 {
 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
 if (num == NUM_BUFFER) {
 printf("Number of characters read = %i\n", num);
 fclose(stream);
 }
 else {
 if (ferror(stream))
 printf("Error reading DDNAME sendbuf0/n");
 else if (feof(stream)) {
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("temp_buf = %.*s\n", num, temp_buf);
 fclose(stream);
 }
 }
 }
 else
 printf("ERROR opening DDNAME sendbuf0/n");

 /*---*/
 /* Initialize parameters for the otma_create and otma_open */
 /* APIs. */
 /*---*/

 splat(grp_name,GROUP_NAME); /* XCF Group Name */
 splat(tpipe_prefix,"TPAS"); /* XCF Group Name */
 strcat(send_buf, temp_buf); /* Copy temp_buf into send_buf */
 strcat(send_buf, " "); /* add a blank for strlen */
 buffer_length = strlen(send_buf);

 /***/
 /* Example of setting up parms to Open the XCF Link */
 /***/

 retrsn.ret = -1;
 retrsn.rsn[0] = -1;
 retrsn.rsn[1] = -1;
 retrsn.rsn[2] = -1;
 retrsn.rsn[3] = -1;
 r = 0;
 sessions = 10; /* OTMA supports multiple parallel */
 /* sessions (TPIPES) How many do you want?*/

 /***/
 /*BEGIN: */
 /* We have a CREATE function to set up storage and */
 /* an OPEN function to start the protocol. */
 /* If you don't need to customize the environment you can start */
 /* with the OPEN function, the CREATE will be done by OPEN. */
 /***/

 otma_create(&anchor, /* (out) ptr to addr to receive ancho*/
 &retrsn, /* (out) return code */
 (ecb_t *) &ecbOPEN,/* not posted by create but stored */

 &grp_name, /* (in) ptr to valid groupname */
 &clt_name, /* (in) Our member name */
 &srv_name, /* (in) Our server name */

 &sessions, /* (in) number of sessions to support*/
 &tpipe_prefix /* (in) first part of tpipe name */
);

 printf("OTMA_CREATE issued. ret = %d rsn = %.8x,%.8x,%.8x,%.8x\n"
 " anchor is at %.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 anchor);

 printf("-\n");

 /***/
 /* Time to try to connect to IMS */
 /***/

Chapter 6. OTMA Callable Interface API reference 555

 /* ___start XCF connection_____________________________ */

 otma_open(&anchor, /* out ptr to addr to receive anchor */
 &retrsn, /* out return code */
 (ecb_t *)&ecbOPEN, /* out posted by open if failure */
 /* else posted by exit pgm */
 &grp_name, /* in ptr to valid XCF groupname */
 &clt_name, /* in Our member name */
 &srv_name, /* in Our server name */

 &sessions, /* in number of sessions to support */
 &tpipe_prefix /* in first part of tpipe name */
);

 printf("OTMA_OPEN issued. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
 " Waiting for ecb at %.8x.=%.8x.\n",
 retrsn.ret,
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1],
 *ecb_list[1]
);

 printf("-\n");

 /* -- */
 /* Here we wait for Open to signal complete */
 /* -- */
 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 printf("OTMA_OPEN done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n"
 "\nEcb at %.8x.= %.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1], *ecb_list[1]
);

 printf("Local Area Anchor at %8.8X = %8.8X\n",
 &anchor, anchor);

 /* ---*/
 /* The post code from open indicates success or failure */
 /* ---*/
 if (0!=(0x00ffffff & ecbOPEN))
 {
 printf("OPEN_OTMA ecb is posted failure.\n");
 return(retrsn.rsn[0]);
 }

 /**/
 /* This is the loop that sends and receives data. */
 /* */
 /* This test program can iterate with multiple calls here. */
 /**/

 for (loop_count = 0 ; loop_count<iterations ; loop_count++)
 {

 /* Change the environment to wait for ecbIO */
 ecbIO = 0; /* clear ecb for reuse */
 ecb_list[1] = (unsigned long *) /* posted by OTMA */
 ((unsigned long)&(ecbIO) |
 (unsigned long)0x80000000); /* end of list */

 if (loop_count != 0)
 {

 /* ---*/
 /* If looping more than once open the next file to send */
 /* and read it into the send_buf. */
 /* ---*/

 if ((stream = fopen(sndfiledd[loop_count],"rb")) != NULL)
 {
 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
 if (num == NUM_BUFFER) {
 fclose(stream);

556 IMS: Application Programming APIs

 }
 else {
 if (ferror(stream))
 printf("Error opening file
 else if (feof(stream)) {
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("temp_buf = %.*s\n", temp_buf);
 fclose(stream);
 }
 }
 }
 else
 printf("Error opening file %s\n", sndfiledd[loop_count]);

 /* Put data in to Send Buffer. */
 memset(error_message_text ,0, sizeof(error_message_text));
 memset(send_buf ,0, sizeof(send_buf));
 strcat(send_buf, temp_buf);
 strcat(send_buf, " ");
 buffer_length = strlen(send_buf);

 } /* end if loop_count != 0 */

 /* ---*/
 /* If looping more than once open the next tpipe to use */
 /* and read it into the tpipe. */
 /* ---*/

 if ((stream = fopen(tpipefiledd[loop_count],"rb")) != NULL)
 {
 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
 if (num == NUM_BUFFER) {
 fclose(stream);
 }
 else {
 if (ferror(stream))
 printf("Error opening file
 else if (feof(stream)) {
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("temp_buf = %.*s\n", temp_buf);
 fclose(stream);
 }
 }
 }
 else
 printf("Error opening file %s\n", sndfiledd[loop_count]);

 memcpy(tpipe, temp_buf, 8);

 /* Print announcement of send API. */
 printf("-\n-\n- Iteration #%d Send API ---------------\n-\n",
 loop_count+1);
 printf("tpipe Name = %.8s.\n", tpipe);
 printf("Transaction = %.8s.\n", trans);
 printf("RACF UserID = %.8s.\n", user_name);
 printf("RACF Group = %.8s.\n", user_prf);
 printf("Lterm = %.8s.\n", lterm);
 printf("Modname = %.8s.\n", modname);
 printf("OTMA Data = %.50s.\n", otma_data);
 printf("Send buf = %s.\n", send_buf);
 printf("Send buf at %.8x.\n", &send_buf);
 printf ("Buffer length = %d.\n", buffer_length);
 printf ("Waiting for ecb at %.8x.=%.8x.\n", ecb_list[1],
 *ecb_list[1]);

 otma_send_async(
 &anchor, /* (in) anchor block */
 &retrsn, /* (out) return status */
 &ecbIO, /* (out) ecb address */

 &tpipe, /* (in) user tpipe name */
 &trans, /* (in) IMS trancode or cmd */
 &user_name, /* (in) RACF userid */
 &user_prf, /* (in) RACF group name */
 <erm, /* (in) logical terminal */
 &modname, /* (in) module name */
 &otma_data, /* (in) OTMA user data */

Chapter 6. OTMA Callable Interface API reference 557

 (unsigned char *) &send_buf, /* (in) send buffer */
 &buffer_length, /* (in) size of send buffer */
 0, /* (in) send_segment_list */
 &error_message, /* (out) IMS Error msg. */
 &send_options); /* (in) send special options */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 /* Print results of send API. */
 printf("OTMA_SEND_ASYNC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
 "Ecb at %.8x.=%.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1],
 *ecb_list[1]
);

 retsave = retrsn.ret; /* Save otma_send_async Return Code. */

 /* Error Processing for OTMA_SEND_ASYNC API. */
 if (retrsn.ret != 0)
 {

 /* ___Error path Free allocated session _____________________ */
 printf("-Error send_async API retrsn.ret=
 printf("Error message = %s\n", error_message);

 if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)
 {
 num = fread(compare_buf, sizeof(char), NUM_BUFFER, stream);
 if (num == NUM_BUFFER) { /* fread success */
 printf("Compare_buf = %.80s.\n", compare_buf);
 printf("Error_buf = %.80s.\n", error_message);
 fclose(stream);
 compare_result = memc(compare_buf, error_message);
 printf("compare_result =
 if (compare_result != 0)
 return(compare_result); /* Exit if NO COMPARE */
 }
 else { /* fread() failed */
 if (ferror(stream)) /* possibility 1 */
 printf("Error reading file %s\n", infiledd[loop_count]);
 else if (feof(stream)) { /* possibility 2 */
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("Receive compare_buf = %.*s\n", num, compare_buf);
 }
 }
 }
 else
 printf("Error opening file %s\n", infiledd[loop_count]);

 printf("-\n");

 /* ___Sever IMS connection ____________________________ */
 printf("-\n");
 otma_close(
 & anchor, /* (in,out) tr to otma anchor */
 & retrsn /* (out) rc,reason (1-4) */
);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 return (retsave); /* EXIT with receive API return code */
 }

 /* Initialize otma_receive_async parameters. */
 splat(rec_lterm , "");
 splat(rec_modname , "");
 splat(rec_otma_data , "");
 ecbIO = 0; /* clear ecb for reuse */
 ecb_list[1] = (unsigned long *) /* posted by OTMA */

558 IMS: Application Programming APIs

 ((unsigned long)&(ecbIO) |
 (unsigned long)0x80000000); /* end of list */

 /* Print announcement of receive API. */
 printf("-\n-\n- Iteration #%d Receive API ---------------\n-\n",
 loop_count+1);
 printf("tpipe Name = %.8s.\n", tpipe);
 printf("Waiting for ecb at %.8x=%.8x.\n", ecb_list[1],
 *ecb_list[1]);

 otma_receive_async(
 &anchor, /* (in) anchor block */
 &retrsn, /* (out) return status */
 &ecbIO, /* (out) ecb address */

 &tpipe, /* (in) user tpipe name */
 &rec_lterm, /* (in) logical terminal */
 &rec_modname, /* (in) module name */
 &rec_otma_data, /* (in) OTMA user data */

 (unsigned char *) &rec_buf, /* (out) Receive buffer */
 &rec_buffer_len, /* (in) size of rec buffer */
 &rec_data_len, /* (in) send_segment_list */
 0, /* (in/out) rec multiple seg */
 &rec_options); /* (in) rec special options */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb
*/
 /* Print results of receive API. */
 printf("OTMA_REC_ASYNC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
 "Ecb at %.8x.=%.8x.\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3],
 ecb_list[1],
 *ecb_list[1]);
 printf("Lterm = %.8s.\n", rec_lterm);
 printf("Modname = %.8s.\n", rec_modname);
 printf("OTMA Data = %.50s.\n", rec_otma_data);
 printf("Receive buf = %.80s.\n", rec_buf);
 printf("Receive buf at %.8x.\n", &rec_buf);
 printf("Data length = %d.\n", rec_data_len);
 printf("Buffer length = %d.\n", rec_buffer_len);

 retsave = retrsn.ret; /* Save otma_receive_async Return Code. */

 /* Error Processing for OTMA_RECEIVE_ASYNC API. */
 if (retrsn.ret != 0)
 {

 /* ___Error path Free allocated session _____________________ */
 printf("-error path retrsn.ret=
 printf("-\n");

 /* ___Sever IMS connection ____________________________ */
 printf("-\n");
 otma_close(
 & anchor, /* (in,out) tr to otma anchor */
 & retrsn /* (out) rc,reason (1-4) */
);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 return (retsave); /* EXIT with receive API return code */
 }

 /* ---*/
 /* Open the compare file containing the expected output */
 /* of the receive buffer. Compare the expected output */
 /* with the actual output and return the result. */
 /* ---*/

Chapter 6. OTMA Callable Interface API reference 559

 printf("-\n-\n- Iteration #%d Data Validation -----------\n-\n",
 loop_count+1);

 if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)
 {
 num = fread(compare_buf, sizeof(char), NUM_BUFFER, stream);
 if (num == NUM_BUFFER) { /* fread success */
 printf("compare_buf = %.80s.\n", compare_buf);
 printf(" rec_buf = %.80s.\n", rec_buf);
 fclose(stream);
 compare_result = memc(compare_buf, rec_buf);
 printf("compare_result =
 if (compare_result != 0)
 return(compare_result); /* Exit if NO COMPARE */
 }
 else { /* fread() failed */
 if (ferror(stream)) /* possibility 1 */
 printf("Error reading file %s\n", infiledd[loop_count]);
 else if (feof(stream)) { /* possibility 2 */
 printf("EOF found\n");
 printf("Number of characters read %d\n", num);
 printf("Receive compare_buf = %.*s\n", num, compare_buf);
 }
 }
 }
 else
 printf("Error opening file %s\n", infiledd[loop_count]);

 memset(rec_buf ,' ', sizeof(rec_buf));

 printf("End of loop \n");
} /* end of loop */

 printf("-\n");

 /***/
 /* Finally, CLOSE severs the connection with IMS and frees the */
 /* Storage used by the OTMA API. */
 /* This will be done at job-step termination but its untidy. */
 /***/

 otma_close(
 & anchor, /* (in,out) ptr to otma anchor */
 & retrsn /* (out) rc,reason (1-4) */
);
 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",
 retrsn.ret,
 retrsn.rsn[0],
 retrsn.rsn[1],
 retrsn.rsn[2],
 retrsn.rsn[3]
);

 return (compare_result); /* We're done */
} /* end of main */

/*===*/
/* Subroutine to compare expected results(compare_buf) */
/* with actual results(err_msg) the "|" is used to signify */
/* an ignore compare and "?" is used to mark the end of string. */
/* Note: Compare starts using an index i=1 ie. the 2nd character */
/* because the 1st character was blanked out. (NL x'15') */
/*===*/

int memc(char *comp_buf, char *rec_buf1)
{

 int j;
 int i;

 j = 0;

 for (i=1;
 ((j==0) && (comp_buf[i] != '?'));
 i++)
 {
 if(comp_buf[i] != '|') /* Ignore compare */
 {
 if(comp_buf[i] != rec_buf1[i]) /* compare ok ? */
 {

560 IMS: Application Programming APIs

 j++; /* No */
 printf("MISCOMPARE !!! \n");
 printf("comp_buf[%d] = %c\n", i, comp_buf[i]);
 printf("rec_buf1[%d] = %c\n", i, rec_buf1[i]);
 }
 else
 ;
 }
 else
 ; /* Else null */
 }

 return (j);
}

Related reference
“OTMA C/I hints and tips” on page 523
Use the following hints and tips when programming with OTMA C/I.

Chapter 6. OTMA Callable Interface API reference 561

562 IMS: Application Programming APIs

Chapter 7. WSDL-to-PL/I segmentation APIs for web
service development

The WSDL-to-PL/I segmentation APIs are used and referenced by the PL/I application templates that are
generated by IBM Developer for System z® for the WSDL-to-PL/I top-down development scenario.

In general, each API operates on a @dfs_async_msg_header instance to consume IMS messages that
have been derived from XML or SOAP, or to produce IMS messages that need to be converted to XML or
SOAP.

These APIs are implemented in a new module named DFSPWSIO that is provided with IMS. The
DFSPWSIO module must be statically linked to PL/I-XML converters and service provider MPPs generated
in the IBM Developer for System z WSDL2PLI scenario for web services to deploy on IMS Enterprise Suite
SOAP Gateway. The DFSPWSHK exit routine can be used to inspect, modify, or replace the buffer that
contains the current SOAP header, body, or fault data structure before it is sent or received.

Important: A minimum of IMS Enterprise Suite V3.1 SOAP Gateway and IBM Developer for System z
V9.0.1.1 are required to use this set of APIs.

Related concepts
WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I templates (Application
Programming)
Related reference
WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK) (Exit Routines)

Include file DFSPWSH
The include file DFSPWSH defines the PL/I structures used with the WSDL-to-PL/I segmentation APIs
DFSQGETS, DFSQSETS, DFSXGETS, and DFSXSETS.

The include file DFSPWSH is located on the z/OS server in the data set DFSSSAMP installed by IMS.

The following code shows the first part of DFSPWSH, before the definition of the segmentation APIs:

First part of the include file DFSPWSH

 /**
 * IBM IMS Web service segmentation APIs
 * IMS Connect and IMS MPP
 * DFSPWSH
 *
 * This file must be included by all IMS service provider MPPs
 * developed using the IBM Ratinal Developer for System z WSDL2PLI
 * support for IMS Enterprise Suite SOAP Gateway.
 *
 * @since 1.0.0.0, 1F64F288-F037-469F-987B-60BF1FBE4B4B
 * @version 2.0.0.0, 2FFA2F75-8D4F-4951-80D5-D2444181745C
 **/

 %push;
 %noprint;
 %include CEEIBMCT;
 %include CEEIBMAW;
 %pop;

 /**
 * Required, symmetric asynchronous message header segment for use
 * with DFSPWSIO APIs: DFSQGETS, DFSQSETS, DFSXGETS, DFSXSETS.
 * @version 2.0.0.0, 2FFA2F75-8D4F-4951-80D5-D2444181745C
 **/
 dcl 01 @dfs_async_msg_header_ptr pointer;
 dcl 01 @dfs_async_msg_header unaligned
 based(@dfs_async_msg_header_ptr),
 02 ll fixed bin (15) init(0),
 02 zz fixed bin (15) init(0),

© Copyright IBM Corp. 1974, 2022 563

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfspwshk.htm#ims_dfspwshk

 02 trancode char (08) init(''),
 02 header_guid char (36) init
 ('2FFA2F75-8D4F-4951-80D5-D2444181745C'),
 02 service_context,
 03 target_namespace wchar (1024) varying init(''),
 03 service_name wchar (0512) varying init(''),
 03 port_name wchar (0512) varying init(''),
 03 operation_name wchar (0512) varying init(''),
 02 language_binding,
 03 struct_max_segment_size fixed bin(31) init(32767),
 03 soap_header_bit bit (1) aligned init('0'b),
 03 soap_header,
 04 header_struct_name wchar (100) varying init(''),
 04 header_struct_segment_num fixed bin (31) init(0),
 04 header_struct_segment_cnt fixed bin (31) init(0),
 04 header_struct_size fixed bin (31) init(0),
 04 header_struct_ptr pointer,
 03 soap_body_bit bit (1) aligned init('0'b),
 03 soap_body,
 04 body_struct_name wchar (100) varying init(''),
 04 body_struct_segment_num fixed bin (31) init(0),
 04 body_struct_segment_cnt fixed bin (31) init(0),
 04 body_struct_size fixed bin (31) init(0),
 04 body_struct_ptr pointer,
 03 soap_fault_bit bit (1) aligned init('0'b),
 03 soap_fault,
 04 fault_struct_name wchar (100) varying init(''),
 04 fault_struct_segment_num fixed bin (31) init(0),
 04 fault_struct_segment_cnt fixed bin (31) init(0),
 04 fault_struct_size fixed bin (31) init(0),
 04 fault_struct_ptr pointer;

 dcl @dfs_async_msg_header_size fixed bin(31)
 value(storage(@dfs_async_msg_header));

 /**
 * IMS I/O Program Communication Block (IOPCB) declarations and
 * constants.
 **/
 dcl 01 @dfs_iopcb_mask_ptr pointer;
 dcl 01 @dfs_iopcb_mask unaligned based(@dfs_iopcb_mask_ptr),
 02 iopcb_lterm char(8),
 02 resv char(2),
 02 iopcb_status_code char(2),
 02 iopcb_date decimal fixed(7,0),
 02 iopcb_time decimal fixed(6,9),
 02 iopcb_msg_seq_number fixed bin(31),
 02 iopcb_mod_name char(8),
 02 iopcb_user_id char(8);

 /**
 * @param @dfs_STRUCT_TYPE constants for use with DFSPWSIO APIs:
 * DFSQGETS, DFSQSETS.
 **/
 dcl @dfs_soap_header_struct fixed bin(31) value(1);
 dcl @dfs_soap_body_struct fixed bin(31) value(2);
 dcl @dfs_soap_fault_struct fixed bin(31) value(3);

 /**
 * Return code constants for use with DFSPWSIO APIs:
 * DFSQGETS, DFSQSETS, DFSXGETS, DFSXSETS.
 **/
 dcl @dfs_success fixed bin(31) value(000);
 dcl @dfs_omitted_parameter fixed bin(31) value(100);
 dcl @dfs_invalid_pointer fixed bin(31) value(101);
 dcl @dfs_invalid_struct_type fixed bin(31) value(102);
 dcl @dfs_struct_not_found fixed bin(31) value(103);
 dcl @dfs_struct_name_mismatch fixed bin(31) value(104);
 dcl @dfs_invalid_struct_order fixed bin(31) value(105);
 dcl @dfs_invalid_struct_size fixed bin(31) value(106);
 dcl @dfs_invalid_struct_name fixed bin(31) value(107);
 dcl @dfs_struct_already_set fixed bin(31) value(108);
 dcl @dfs_invalid_segment_size fixed bin(31) value(109);

 dcl @dfs_icon_buf_exhausted fixed bin(31) value(997);
 dcl @dfs_cee_call_failure fixed bin(31) value(998);
 dcl @dfs_dli_call_failure fixed bin(31) value(999);

 /**
 * IMS CEETDLI interface declarations and constants.
 **/
 dcl @dfs_dli_get_unique char (4) value('GU ');

564 IMS: Application Programming APIs

 dcl @dfs_dli_get_next char (4) value('GN ');
 dcl @dfs_dli_insert char (4) value('ISRT');
 dcl @dfs_dli_message_exists char (2) value('CF');
 dcl @dfs_dli_end_segments char (2) value('QD');
 dcl @dfs_dli_end_messages char (2) value('QC');
 dcl @dfs_dli_status_ok char (2) value(' ');

 dcl @dfs_message_max_data fixed bin(31) value(2147123205);
 dcl @dfs_segment_max_data fixed bin(31) value(32763);

 /**
 * Language Environment declarations and constants.
 **/
 dcl 1 @dfs_cee_feedback feedback;

 /**
 * Note: The remainder of this file contains declarations for
 * the APIs that enable the XML Converters
 * running in IMS Connect and the MPP running in an MPR to
 * exchange messages that conform to a protocol that provides
 * service invocation context and unique language bindings for
 * each part of a SOAP message: header, body, fault.
 ***/
 dcl @dfs_icon_buf_ptr pointer init(null());
 dcl @dfs_icon_buf_size fixed bin(31) init(0);
 dcl @dfs_icon_buf_used fixed bin(31) init(0);
 dcl @dfs_struct_name wchar(100) varying init('');
 dcl @dfs_struct_ptr pointer init(null());
 dcl @dfs_struct_size fixed bin(31) init(0);
 dcl @dfs_cee_feedback_ptr pointer init(null());
 dcl @dfs_commit_structs bit(1) init('0'b);
 dcl @dfs_debug bit(1) init('0'b);
 dcl @return_code fixed bin(31) init(0);

 /**
 * DFSQGETS,
 * Get a language structure that contains either a SOAP Header,
 * SOAP Body, or SOAP Fault. Language structures are retrieved
 * from the IMS Message Queue using the CEETDLI interface. All
 * language structures must retrieved from the IMS Message Queue
 * prior to setting language structures using API DFSQSETS.
 *
 * @param @dfs_async_msg_header_ptr,
 * A pointer-by-value to the instance of @dfs_async_msg_header
 * that was retrieved from the IMS Message Queue by issuing
 * a GU using the CEETDLI interface prior to invoking the API.
 * This same instance must be passed on subsequent calls to
 * DFSQGETS and DFSQSETS.
 *
 * @param @dfs_iopcb_ptr,
 * A pointer-by-value to the I/O PCB that was passed to the
 * MPP by IMS. The I/O PCB will be used by the API when invoking
 * CEETDLI to interact with the IMS Message Queue. If a return
 * code of 999 is received from the API, inspect the I/O PCB
 * to determine the cause of the error.
 *
 * @param @dfs_struct_type,
 * An integer-by-value that specifies which language structure
 * to retrieve from the MPP's input message. The following
 * constants defined in include file DFSPWSH may be used:
 * @dfs_soap_header_struct, @dfs_soap_body_struct,
 * @dfs_soap_fault_struct.
 *
 * @param @dfs_struct_name,
 * A string-by-reference which contains the name of the
 * language structure that the API should retrieve from the
 * IMS Message Queue. This value of this parameter must
 * correspond to the value of parameter @dfs_struct_type.
 *
 * @param @dfs_struct_ptr,
 * A pointer-by-reference into which the API will write the
 * address of newly-allocated storage into which the requested
 * language structure has been copied from the IMS Message
 * Queue. The storage allocated by the API resides in the
 * same address space as the caller. Therefore, it is highly
 * recommended that the storage be explicilty freed by the
 * caller when no longer needed.
 *
 * @param @dfs_struct_size,
 * An integer-by-reference into which the API will write the
 * size in bytes of the language structure.
 *

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 565

 * @param @dfs_cee_feedback_ptr,
 * A pointer-by-value to an instance of @dfs_cee_feedback
 * which defines a Language Environment Condition Token.
 * The supplied instance is updated each time the API invokes
 * Language Environment Callable Services. If a return code of
 * 998 is received from the API, use the publication Language
 * Environment Run-Time Messages (SA22-7566-10) to inspect
 * the contents of the condition token and determine the
 * cause of the error.
 *
 * @param @dfs_debug,
 * An optional bit that indicates whether or not
 * trace information should be displayed by the API.
 * Under normal circumstances trace information is written
 * to standard out and therefore can be found in the
 * job log of the Message Processing Region.
 *
 * @return One of the following codes will be returned by the API,
 * o @dfs_success
 * o @dfs_omitted_parameter
 * o @dfs_invalid_pointer
 * o @dfs_invalid_dfs_struct_type
 * o @dfs_struct_not_found
 * o @dfs_struct_name_mismatch
 * o @dfs_invalid_struct_order
 * o @dfs_cee_call_failure
 * o @dfs_dli_call_failure
 **/
 dcl DFSQGETS entry(pointer byvalue, pointer byvalue,
 fixed bin(31) byvalue, wchar(100) varying byaddr,
 pointer byaddr, fixed bin(31) byaddr, pointer byvalue,
 bit(1) optional) returns(fixed bin(31));

 /**
 * DFSQSETS,
 * Set a language structure that contains either the SOAP
 * Header, SOAP Body, or SOAP Fault. This API does not
 * insert language structures into the IMS Message Queue
 * until instructed to do so via parameter @dfs_commit_structs.
 * Therefore it is an error to deallocate or otherwise
 * invalidate structure pointers passed to the API via parameter
 * @dfs_struct_ptr before instructing the API to commit (insert)
 * all structures to the IMS Message Queue.
 *
 * @param @dfs_async_msg_header_ptr,
 * A pointer-by-value to the instance of @dfs_async_msg_header
 * that was supplied on a previous call to DFSQGETS or DFSQSETS.
 * Subsequent calls to this API must specify the same instance
 * of @dfs_async_msg_header as it will be progressively updated.
 *
 * @param @dfs_iopcb_ptr,
 * A pointer-by-value to the IOPCB that was passed to the
 * MPP by IMS. The IOPCB will be used by the API when invoking
 * CEETDLI to interact with the IMS Message Queue. If a return
 * code of 999 is received from the API, inspect the I/O PCB
 * to determine the cause of the error.
 *
 * @param @dfs_struct_type,
 * An integer-by-value that specifies which language structure
 * to set in the IMS Message Queue. The following
 * constants defined in include file DFSPWSH may be used:
 * @dfs_soap_header_struct, @dfs_soap_body_struct,
 * @dfs_soap_fault_struct.
 *
 * @param @dfs_struct_name,
 * A string-by-reference which contains the name of the
 * language structure that corresponds to the supplied value of
 * the @dfs_struct_type parameter.
 *
 * @param @dfs_struct_ptr,
 * A pointer-by-value to the language structure that
 * corresponds to the values specified for parameters
 * @dfs_struct_type and @dfs_struct_name.
 *
 * @param @dfs_struct_size,
 * An integer-by-value that specifies the size in bytes of the
 * language structure supplied via parameter @dfs_struct_ptr.
 *
 * @param @dfs_commit_structs,
 * A bit-by-value that indicates whether the API should
 * insert the current and all previously supplied language
 * structures into the IMS Message Queue.

566 IMS: Application Programming APIs

 *
 * @param @dfs_cee_feedback_ptr,
 * A pointer-by-value to an instance of @dfs_cee_feedback
 * which defines a Language Environment Condition Token.
 * The supplied instance is updated each time the API invokes
 * Language Environment Callable Services. If a return code of
 * 998 is received from the API, use the publication Language
 * Environment Run-Time Messages (SA22-7566-10) to inspect
 * the contents of the condition token and determine the
 * cause of the error.
 *
 * @param @dfs_debug,
 * An optional bit that indicates whether or not
 * trace information should be displayed by the API.
 * Under normal circumstances trace information is written
 * to standard out and therefore can be found in the
 * job log of the Message Processing Region.
 *
 * @return One of the following codes will be returned by the API,
 * o @dfs_success
 * o @dfs_omitted_parameter
 * o @dfs_invalid_pointer
 * o @dfs_invalid_dfs_struct_type
 * o @dfs_invalid_struct_order
 * o @dfs_invalid_struct_size
 * o @dfs_invalid_struct_name
 * o @dfs_struct_already_set
 * o @dfs_invalid_segment_size
 * o @dfs_cee_call_failure
 * o @dfs_dli_call_failure
 **/
 dcl DFSQSETS entry(pointer byvalue, pointer byvalue,
 fixed bin(31) byvalue, wchar(100) varying byaddr,
 pointer byvalue, fixed bin(31) byvalue, bit(1) byvalue,
 pointer byvalue, bit(1) optional) returns(fixed bin(31));

 /**
 * DFSXGETS,
 * Get a language structure that contains either the SOAP
 * Header, SOAP Body, or SOAP Fault. Since the IMS Message
 * Queue is not available to XML Conversion in IMS Connect,
 * language structures are retrieved from the IMS Connect input
 * buffer. The expected format of the IMS Connect input buffer
 * is an [LLZZDATA]+ byte stream. This API is for use by PL/I
 * XML Converters running in IMS Connect. It is not to be used
 * by an MPP.
 *
 * @param @dfs_async_msg_header_ptr,
 * A pointer-by-value to the instance of @dfs_async_msg_header
 * that was retrieved from the first segment of the IMS Connect
 * input buffer prior to invoking the API.
 *
 * @param @dfs_icon_buf_ptr,
 * A pointer-by-value to the IMS Connect input message buffer.
 * The expected format of the buffer is an array of LLZZDATA.
 *
 * @param @dfs_icon_buf_size,
 * An integer-by-value that specifies the length in bytes of
 * the buffer supplied in parameter @dfs_icon_buf_ptr.
 *
 * @param @dfs_struct_type,
 * An integer-by-value that specifies which language structure
 * to retrieve from the MPP's input message. The following
 * constants defined in include file DFSPWSH may be used:
 * @dfs_soap_header_struct, @dfs_soap_body_struct,
 * @dfs_soap_fault_struct.
 *
 * @param @dfs_struct_name,
 * A string-by-reference which contains the name of the
 * language structure that the API should retrieve from the
 * IMS Connect input buffer. This value of this parameter
 * must correspond to the value of parameter @dfs_struct_type.
 *
 * @param @dfs_struct_ptr,
 * A pointer-by-reference into which the API will write the
 * address of a buffer that contains the bytes of the structure
 * that corresponds to the values specified for parameters
 * @dfs_struct_type and @dfs_struct_name. This buffer must be
 * freed by the XML Converter prior to returning to IMS Connect
 * because the Language Environment enclave in which the XML
 * Converters execute is persistent.
 *

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 567

 * @param @dfs_struct_size,
 * An integer-by-reference into which the API will write the
 * size in bytes of the structure that corresponds to the
 * specified values of parameters @dfs_struct_type
 * and @dfs_struct_name.
 *
 * @param @dfs_cee_feedback_ptr,
 * A pointer-by-value to an instance of @dfs_cee_feedback
 * which defines a Language Environment Condition Token.
 * The supplied instance is updated each time the API invokes
 * Language Environment Callable Services. If a return code of
 * 998 is received from the API, use the publication Language
 * Environment Run-Time Messages (SA22-7566-10) to inspect
 * the contents of the condition token and determine the
 * cause of the error.
 *
 * @param @dfs_debug,
 * An optional bit that indicates whether or not
 * trace information should be displayed by the API.
 * Under normal circumstances trace information is written
 * to standard out and therefore can be found in the
 * IMS Connect job log.
 *
 * @return One of the following codes will be returned by the API,
 * o @dfs_success
 * o @dfs_omitted_parameter
 * o @dfs_invalid_pointer
 * o @dfs_invalid_dfs_struct_type
 * o @dfs_struct_not_found
 * o @dfs_struct_name_mismatch
 * o @dfs_invalid_struct_order
 * o @dfs_icon_buf_exhausted
 * o @dfs_cee_call_failure
 **/
 dcl DFSXGETS entry(pointer byvalue, pointer byvalue,
 fixed bin(31) byvalue, fixed bin(31) byvalue,
 wchar(100) varying byaddr, pointer byaddr, fixed bin(31) byaddr,
 pointer byvalue, bit(1) optional) returns(fixed bin(31));

 /**
 * DFSXSETS,
 * Set a language structure that contains either the SOAP
 * Header, SOAP Body, or SOAP Fault. This API does not
 * copy language structures into the IMS Connect output buffer
 * until instructed to do so via parameter @dfs_commit_structs.
 * Therefore it is an error to deallocate or otherwise
 * invalidate structure pointers passed to the API via parameter
 * @dfs_struct_ptr before instructing the API to commit (copy)
 * all structures to the IMS Connect output buffer.
 * This API is for use by PL/I XML Converters running in IMS
 * Connect. It is not to be used by an MPP.
 *
 * @param @dfs_async_msg_header_ptr,
 * A pointer-by-value to the instance of @dfs_async_msg_header
 * that will be sent as the first segment of the IMS message.
 *
 * @param @dfs_icon_buf_ptr,
 * A pointer-by-value to the IMS Connect output message buffer.
 * The expected format of the buffer is an array of LLZZDATA.
 *
 * @param @dfs_icon_buf_size,
 * An integer-by-value that specifies the length in bytes of
 * the buffer supplied in parameter @dfs_icon_buf_ptr.
 *
 * @param @dfs_icon_buf_used,
 * An integer-by-reference into which the API will write
 * the number of bytes that were required to format the
 * language structure as a multi-segment IMS message
 * in the IMS Connect output buffer. The value of this
 * parameter will always be greater than the actual size
 * of the language structure by at least 4 bytes.
 *
 * @param @dfs_struct_type,
 * An integer-by-value that specifies which language structure
 * to set in the IMS Connect output buffer. The following
 * constants defined in include file DFSPWSH may be used:
 * @dfs_soap_header_struct, @dfs_soap_body_struct,
 * @dfs_soap_fault_struct.
 *
 * @param @dfs_struct_name,
 * A string-by-reference which contains the name of the
 * language structure that corresponds to the supplied value of

568 IMS: Application Programming APIs

 * the @dfs_struct_type parameter.
 *
 * @param @dfs_struct_ptr,
 * A pointer-by-value to the language structure that
 * corresponds to the values specified for parameters
 * @dfs_struct_type and @dfs_struct_name.
 *
 * @param @dfs_struct_size,
 * An integer-by-value that specifies the size in bytes of the
 * language structure.
 *
 * @param @dfs_commit_structs,
 * A bit-by-value that indicates whether the API should
 * copy the current and all previously supplied language
 * structures into the IMS Connect output buffer.
 *
 * @param @dfs_cee_feedback_ptr,
 * A pointer-by-value to a Language Environment Condition Token
 * (@dfs_cee_feedback) that is updated by the API after each
 * invocation of a Language Environment Callable Service. When
 * a RETURN_CODE of 998 is received from the API, use the
 * publication Language Environment Run-Time Messages
 * (SA22-7566-10) to inspect the contents of the condition
 * token and determine the cause of the error.
 *
 * @param @dfs_debug,
 * An optional bit that indicates whether or not
 * trace information should be displayed by the API.
 * Under normal circumstances trace information is written
 * to standard out and therefore can be found in the
 * IMS Connect job log.
 *
 * @return One of the following codes will be returned by the API,
 * o @dfs_success
 * o @dfs_omitted_parameter
 * o @dfs_invalid_pointer
 * o @dfs_invalid_dfs_struct_type
 * o @dfs_invalid_struct_order
 * o @dfs_invalid_struct_size
 * o @dfs_invalid_struct_name
 * o @dfs_struct_already_set
 * o @dfs_invalid_segment_size
 * o @dfs_icon_buf_exhausted
 * o @dfs_cee_call_failure
 **/
 dcl DFSXSETS entry(pointer byvalue, pointer byvalue,
 fixed bin(31) byvalue, fixed bin(31) byaddr,
 fixed bin(31) byvalue, wchar(100) varying byaddr,
 pointer byvalue, fixed bin(31) byvalue, bit(1) byvalue,
 pointer byvalue, bit(1) optional) returns(fixed bin(31));

 /**
 * DFSB64E,
 * This API encodes an input buffer using the base64 encoding
 * scheme specified by RFC 3548 available at
 * http://tools.ietf.org/html/rfc3548.
 *
 * @param @bin_input_buf_ptr (input),
 * A pointer-by-value to the binary buffer to encode in base64.
 * The base64 sequence will be encoded in UTF-16.
 *
 * @param @bin_input_buf_len (input),
 * An integer-by-value that specifies the length in bytes of
 * the binary buffer supplied in parameter @bin_input_buf_ptr.
 *
 * @param @b64_output_buf_ptr (input),
 * A pointer-by-value to a buffer in which to write the base64
 * representation of the supplied binary buffer
 * @bin_input_buf_ptr(1:@bin_input_buf_len). The buffer pointed
 * to by this parameter must have a minimum length in bytes of
 * [4 * floor((@bin_input_buf_len + 2) /3]. If this
 * parameter is set to null, the API will write the length
 * in bytes of the base64 result to parameter
 * @b64_output_buf_len but will not actually perform encoding.
 *
 * @param @b64_output_buf_len (input),
 * An integer-by-reference into which the API will write the
 * length in bytes of the base64 sequence that was written to
 * the buffer pointed to by parameter @b64_output_buf_ptr.
 * Recall that result will be encoded in UTF-16.
 *
 * @return This API does not return any codes.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 569

 **/
 dcl DFSB64E entry(pointer byvalue, fixed bin(31) byvalue,
 pointer byvalue, fixed bin(31) byaddr);

 /**
 * DFSB64D,
 * This API decodes a base64 input buffer by reversing the
 * encoding scheme specified by RFC 3548
 * available at http://tools.ietf.org/html/rfc3548.
 *
 * @param @b64_input_buf_ptr (input),
 * A pointer-by-value to the base64 buffer to decode.
 * The base64 sequence must be encoded in UTF-16.
 *
 * @param @b64_input_buf_len (input),
 * An integer-by-value that specifies the length in bytes of
 * the base64 buffer supplied in parameter @b64_input_buf_ptr.
 *
 * @param @bin_output_buf_ptr (input),
 * A pointer-by-value to a buffer in which to write the decoded
 * representation of the supplied base64 buffer
 * @b64_input_buf_ptr(1:@b64_input_buf_len). If this
 * parameter is set to null, the API will write the length
 * in bytes of the decoded result to parameter
 * @bin_output_buf_len but will not actually perform decoding.
 *
 * @param @bin_output_buf_len (input),
 * An integer-by-reference into which the API will write the
 * length in bytes of the decoded result that was written
 * to the buffer pointed to by parameter @bin_output_buf_ptr).
 *
 * @return This API does not return any codes.
 **/
 dcl DFSB64D entry(pointer byvalue, fixed bin(31) byvalue,
 pointer byvalue, fixed bin(31) byaddr);

Related concepts
WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I templates (Application
Programming)

DFSQGETS
The DFSQGETS API retrieves a SOAP structure from the IMS Message Queue and returns the information
to the caller in a high-level language structure.

The structures and variables referred to in this topic are defined in the include file DFSPWSH (see
“Include file DFSPWSH” on page 563).

Usage:

• You must retrieve all structures in the IMS Message Queue using DFSQGETS before invoking DFSQSETS
to put structures into it.

Limitations:

• DFSQGETS supports the retrieval of SOAP Body and SOAP Fault structures only. The SOAP Header
structure is not supported.

Parameters:

570 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio

Table 150. Parameters for DFSQGETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYVALUE

Input A pointer-by-value to the instance
of @dfs_async_msg_header that the
Message Processing Program (MPP)
retrieves from the IMS Message Queue
prior by issuing a Get Unique (GU) call
using the CEETDLI interface.

Important: This instance must be
passed on all calls to DFSQGETS and
DFSQSETS.

@dfs_iopcb_ptr POINTER
BYVALUE

Input A pointer-by-value to the I/O PCB that
was passed to the Message Processing
Program (MPP) on entry by IMS.
DFSQGETS uses this I/O PCB when
invoking CEETDLI to interact with the
IMS Message Queue.

Note: If the return code from
DFSQGETS is 999 then inspect the I/O
PCB to determine the cause of the
error.

@dfs_struct_type SIGNED FIXED
BIN(31) BYVALUE

Input An integer-by-value specifying the type
of the language structure to retrieve
from the IMS Message Queue. The
following constants defined in the
include file DFSPWSH can be used:
@dfs_soap_body_struct.

@dfs_struct_name WCHAR(100)
VARYING
BYADDR

Input A string-by-reference containing the
name of the language structure to
retrieve from the IMS Message Queue.
The value of this parameter must
correspond to the value of the
parameter @dfs_struct_type.

@dfs_struct_ptr POINTER
BYADDR

Output A pointer-by-reference to a newly
allocated storage block containing the
returned language structure.

Important: This storage block resides
in the same address space as
the caller. Therefore it is highly
recommended that the caller free this
storage block when it is no longer
needed.

@dfs_struct_size SIGNED FIXED
BIN(31) BYADDR

Output An integer-by-reference containing the
size in bytes of the returned language
structure.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 571

Table 150. Parameters for DFSQGETS (continued)

Parameter Type Usage Description

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an instance
of @dfs_cee_feedback defining a
Language Environment® Condition
Token. This instance is updated each
time DFSQGETS invokes Language
Environment Callable Services.

Note: If the return code from
DFSQGETS is 998 then use the
publication Language Environment
Run-Time Messages (SA22-7566-10) to
inspect the contents of the condition
token and determine the cause of the
error.

@dfs_debug BIT(1) OPTIONAL Input An optional bit indicating whether
DFSQGETS should display trace
information (see Trace output for
WSDL-to-PL/I segmentation APIs
(Application Programming)).

Return codes:

The return codes for DFSQGETS are constants defined in the DFSPWSH include file:

Table 151. Return codes for DFSQGETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_struct_not_found 103

@dfs_struct_name_mismatch 104

@dfs_invalid_struct_order 105

@dfs_cee_call_failure 998

@dfs_dli_call_failure 999

Example invocation of DFSQGETS

01: /* Invoke API DFSQGETS to retrieve the SOAP body
02: * language structure from the IMS Message Queue.
03: */
04: @dfs_struct_name = 'RequestBodyStruct';
05: @dfs_cee_feedback_ptr = addr(@dfs_cee_feedback);
06: @dfs_debug = '0'b;
07:
08: @return_code =
09: DFSQGETS(@dfs_async_msg_header_ptr,
10: @dfs_iopcb_mask_ptr, @dfs_soap_body_struct,
11: @dfs_struct_name, @dfs_struct_ptr,
12: @dfs_struct_size, @dfs_cee_feedback_ptr,
13: @dfs_debug);
14:

572 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

15: if (@return_code != @dfs_success) then do;
16: display('MYMPP#handle_myOperation(): '
17: || 'ERROR, DFSQGETS @dfs_soap_body_struct, '
18: || '@return_code: '|| trim(@return_code) || '.');
19: return;
20: end; else do;
21: RequestBodyStruct_ptr = @dfs_struct_ptr;
22: end;

DFSQSETS
The DFSQSETS API creates a SOAP structure from the information in a language structure passed as
input. Also, when specified, DFSQSETS copies the current SOAP structure and all previously supplied
SOAP structures into the IMS Message Queue.

The structures and variables referred to in this topic are defined in DFSPWSH (see “Include file
DFSPWSH” on page 563).

Usage:

• Do not deallocate or otherwise invalidate structure pointers passed to DFSQSETS via the parameter
@dfs_struct_ptr until you have committed the IMS multi-segment message to the IMS Message Queue
by calling DFSQSETS with the @dfs_commit_structs bit set.

• You must retrieve all structures in the IMS Message Queue using DFSQGETS before invoking DFSQSETS
to put structures into it.

Limitations:

• DFSQSETS does not support the storing of a SOAP Header structure.

Parameters:

Table 152. Parameters for DFSQSETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYVALUE

Output A pointer-by-value to the instance
of @dfs_async_msg_header that the
Message Processing Program (MPP)
retrieves from the IMS Message Queue
prior by issuing a Get Unique (GU) call
using the CEETDLI interface.

Important: This instance must be
passed on all calls to DFSQGETS and
DFSQSETS.

@dfs_iopcb_ptr POINTER
BYVALUE

Input A pointer-by-value to the I/O PCB that
was passed to the Message Processing
Program (MPP) on entry by IMS.
DFSQSETS uses this I/O PCB when
invoking CEETDLI to interact with the
IMS Message Queue.

Note: If the return code from DFSQSETS
is 999 then inspect the I/O PCB to
determine the cause of the error.

@dfs_struct_type SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the type
of the language structure to set in the
IMS message. The following constants
defined in include file DFSPWSH can be
used: @dfs_soap_body_struct.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 573

Table 152. Parameters for DFSQSETS (continued)

Parameter Type Usage Description

@dfs_struct_name WCHAR(100)
VARYING
BYADDR

Input A string-by-reference containing the
name of the language structure to set
in the IMS message. The value of this
parameter must correspond to the value
of the parameter @dfs_struct_type.

@dfs_struct_ptr POINTER
BYVALUE

Input A pointer-by-reference to the language
structure to set in the IMS message.

Note: This value must correspond
to the values specified for the
parameters @dfs_struct_type and
@dfs_struct_name.

@dfs_struct_size SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the size
in bytes of the language structure
pointed to by @dfs_struct_ptr.

@dfs_commit_structs BIT(1)
BYVALUE

Input A bit-by-value that indicating whether
DFSQSETS should insert the current
language structure and all previously
supplied language structures into the
IMS Message Queue.

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an instance
of @dfs_cee_feedback defining a
Language Environment Condition Token.
This instance is updated each
time DFSQSETS invokes Language
Environment Callable Services.

Note: If the return code from
DFSQSETS is 998 then use the
publication Language Environment Run-
Time Messages (SA22-7566-10) to
inspect the contents of the condition
token and determine the cause of the
error.

@dfs_debug BIT(1)
OPTIONAL

Input An optional bit indicating whether
DFSQSETS should display trace
information (see Trace output for WSDL-
to-PL/I segmentation APIs (Application
Programming)).

Return codes:

The return codes for DFSQSETS are constants defined in the DFSPWSH include file:

574 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

Table 153. Return codes for DFSQSETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_struct_not_found 103

@dfs_struct_name_mismatch 104

@dfs_invalid_struct_order 105

@dfs_invalid_segment_size 109

@dfs_cee_call_failure 998

@irz_dli_call_failure 999

Example invocation of DFSQSETS

01: /* Invoke API DFSQSETS to set the SOAP body language
02: * structure and commit it to the IMS Message Queue.
03: */
04: @irz_struct_name = 'ResponseBodyStruct';
05: @irz_struct_ptr = ResponseBodyStruct_ptr;
06: @dfs_struct_size = storage(ResponseBodyStruct);
07: @dfs_commit_structs = '1'b;
08: @dfs_cee_feedback_ptr = addr(@dfs_cee_feedback);
09: @dfs_debug = '0'b;
10:
11: @return_code =
12: DFSQSETS(@dfs_async_msg_header_ptr,
13: @dfs_iopcb_mask_ptr, @dfs_soap_body_struct,
14: @dfs_struct_name, @dfs_struct_ptr,
15: @dfs_struct_size, @dfs_commit_structs,
16: @dfs_cee_feedback_ptr, @dfs_debug);
17:
18: if (@return_code != @dfs_success) then do;
19: display('MYMPP#handle_myOperation(): '
20: || 'ERROR, DFSQSETS @dfs_soap_body_struct, '
21: || '@return_code: '|| trim(@return_code) || '.');
22: return;
23: end;

DFSXGETS
The DFSXGETS API retrieves a SOAP structure from the IMS Connect input buffer and returns the
information to the caller in a high-level language structure.

Because the IMS Message Queue is not available to XML Conversion in IMS Connect, DFSXGETS retrieves
language structures from the IMS Connect input buffer. The expected format of the IMS Connect input
buffer is an array of IMS message segments (LLZZDATA).

The structures and variables referred to in this topic are defined in the include file DFSPWSH (see
“Include file DFSPWSH” on page 563).

Note: This API is for use by PL/I XML converters running in IMS Connect. It is not to be used by a message
processing program (MPP).

Restrictions:

• DFSXGETS supports the retrieval of SOAP Body and SOAP Fault structures only. The SOAP Header
structure is not supported.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 575

Parameters:

Table 154. Parameters for DFSXGETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYADDR

Output A pointer-by-reference to the
instance of @dfs_async_msg_header
that was received in the IMS Connect
input buffer.

@dfs_icon_buf_ptr POINTER
BYVALUE

Input A pointer-by-value to the IMS
Connect input message buffer. The
expected format of the buffer is an
array of LLZZDATA.

@dfs_icon_buf_len SIGNED FIXED
BIN(31) BYVALUE

Input An integer-by-value specifying the
length in bytes of the buffer pointed
to by @dfs_icon_buf_ptr.

@dfs_struct_type SIGNED FIXED
BIN(31) BYVALUE

Input An integer-by-value specifying the
type of structure to retrieve from
the IMS Connect input buffer. The
following constants defined in the
include file DFSPWSH can be used:
@dfs_soap_body_struct.

@dfs_struct_name WCHAR(100)
VARYING
BYADDR

Input A string-by-reference containing the
name of the language structure to
retrieve from the IMS Connect input
buffer. The value of this parameter
must correspond to the value of the
parameter @dfs_struct_type.

@dfs_struct_ptr POINTER
BYADDR

Output A pointer-by-reference into which
DFSXGETS writes the address of
a buffer containing the bytes
of the structure requested in
parameters @dfs_struct_type and
@dfs_struct_name.

Important: This buffer must be
freed by the XML Converter prior to
returning to IMS Connect because
the Language Environment enclave in
which the XML Converters execute is
persistent.

@dfs_struct_size SIGNED FIXED
BIN(31) BYADDR

Output An integer-by-reference into which
DFSXGETS writes the size in bytes
of the structure returned in the
parameter @dfs_struct_ptr.

576 IMS: Application Programming APIs

Table 154. Parameters for DFSXGETS (continued)

Parameter Type Usage Description

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an instance
of @dfs_cee_feedback defining a
Language Environment Condition
Token. This instance is updated each
time DFSXGETS invokes Language
Environment Callable Services.

Note: If the return code from
DFSXGETS is 998 then use the
publication Language Environment
Run-Time Messages (SA22-7566-10)
to inspect the contents of the
condition token and determine the
cause of the error.

@dfs_debug BIT(1) OPTIONAL Input An optional bit indicating whether
DFSXGETS should display trace
information (see Trace output for
WSDL-to-PL/I segmentation APIs
(Application Programming)).

Return codes:

The return codes for DFSXGETS are constants defined in the DFSPWSH include file:

Table 155. Return codes for DFSXGETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_struct_not_found 103

@dfs_struct_name_mismatch 104

@dfs_invalid_struct_order 105

@dfs_icon_buf_exhausted 997

@dfs_cee_call_failure 998

DFSXSETS
The DFSXSETS API creates a SOAP structure from the information in a language structure passed as
input. Also, when specified, DFSXSETS copies the current SOAP structure and all previously supplied
SOAP structures into the IMS Connect output buffer.

Because the IMS Message Queue is not available to XML Conversion in IMS Connect, DFSXSETS inserts
language structures into the IMS Connect output buffer. The format of the IMS Connect output buffer is an
array of IMS message segments (LLZZDATA).

The structures and variables referred to in this topic are defined in DFSPWSH (see “Include file
DFSPWSH” on page 563).

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 577

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

Note: This API is for use by PL/I XML converters running in IMS Connect. It is not to be used by a message
processing program (MPP).

Limitations:

• DFSXSETS does not support the storing of a SOAP Header structure.

Parameters:

Table 156. Parameters for DFSXSETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYVALUE

Input A pointer-by-value to the instance of
@dfs_async_msg_header that is to
be sent as the first segment of the
IMS message.

@dfs_icon_buf_ptr POINTER
BYVALUE

Input A pointer-by-value to the IMS
Connect output message buffer. The
expected format of the buffer is
an array of IMS message segments
(LLZZDATA).

@dfs_icon_buf_len SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the
length in bytes of the buffer pointed
to by @dfs_icon_buf_ptr.

@dfs_icon_buf_used SIGNED FIXED
BIN(31) BYADDR

Output An integer-by-reference into which
DFSXSETS writes the number
of bytes that are required to
format the language structure as
a multisegment IMS message in
the IMS Connect output buffer. The
value of this parameter is always
greater than the actual size of the
language structure by at least 4
bytes.

@dfs_struct_type SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the
type of language structure to set
in the IMS Connect output buffer.
The following constants defined in
include file DFSPWSH can be used:
@dfs_soap_body_struct.

@dfs_struct_name WCHAR(128)
VARYING
BYADDR

Input A string-by-reference containing the
name of the language structure that
corresponds to the value of the
parameter @dfs_struct_type.

@dfs_struct_ptr POINTER
BYVALUE

Input A pointer-by-value to a
structure corresponding to
the structure specified in
parameters @dfs_struct_type and
@dfs_struct_name.

@dfs_struct_size SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the
size in bytes of the structure pointed
to by parameter @dfs_struct_ptr.

578 IMS: Application Programming APIs

Table 156. Parameters for DFSXSETS (continued)

Parameter Type Usage Description

@dfs_commit_structs BIT(1) BYVALUE Input A bit-by-value indicating whether
DFSXSETS should copy the current
language structure and all previously
supplied language structures into the
IMS Connect output buffer.

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an instance
of @dfs_cee_feedback defining a
Language Environment Condition
Token. This instance is updated each
time DFSXSETS invokes Language
Environment Callable Services.

Note: If the return code from
DFSXSETS is 998 then use the
publication Language Environment
Run-Time Messages (SA22-7566-10)
to inspect the contents of the
condition token and determine the
cause of the error.

@dfs_debug BIT(1)
OPTIONAL

Input An optional bit indicating whether
DFSXSETS should display trace
information (see Trace output for
WSDL-to-PL/I segmentation APIs
(Application Programming)).

Return codes:

The return codes for DFSXSETS are constants defined in the DFSPWSH include file:

Table 157. Return codes for DFSXSETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_invalid_struct_order 105

@dfs_invalid_struct_size 106

@dfs_invalid_struct_name 107

@dfs_struct_already_set 108

@dfs_invalid_segment_size 109

@dfs_icon_buf_exhausted 997

@dfs_cee_call_failure 998

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 579

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

Return codes from the DFSPWSIO APIs
This topic describes the return codes from the DFSPWSIO APIs.

The following table describes the return codes:

Table 158. Return codes from the DFSPWSIO APIs

Value DFSPWSH constant Description

000 @dfs_success The API completed successfully.

100 @dfs_omitted_parameter A required parameter was not specified to the API.

101 @dfs_invalid_pointer The value of a pointer supplied to the API specified
an invalid memory address.

102 @dfs_invalid_struct_type The language structure type specified to the API
was not one of DFSPWSH.@dfs_soap_header_struct,
DFSPWSH.@dfs_soap_body_struct, or
DFSPWSH.@dfs_soap_fault_struct.

103 @dfs_struct_not_found A language structure with the specified type was not
found in the IMS message.

104 @dfs_struct_name_mismatch A language structure of the specified type was found
in the IMS message, but the specified name does not
match.

105 @dfs_invalid_struct_order An attempt to get or set a language structure out
of order was detected. For example, it is an error
to attempt to to get the SOAP body structure before
getting the SOAP header structure, if a SOAP header
is present in the IMS message.

106 @dfs_invalid_struct_size The size of the language structure specified to the
API was invalid (<=0) or exceeded the maximum (see
DFSPWSH.@dfs_message_max_data).

107 @dfs_invalid_struct_name The specified language structure name was not a
valid PL/I identifier.

108 @dfs_struct_already_set The specified language structure type already exists
in the IMS message.

109 @dfs_invalid_segment_size The segment size specified in IMS Connect parameter
XMPAMAXS is invalid (< = 5 or > = 32767).

995 @dfs_fetch_failure The API was unable to fetch a required load module
from the available libraries. An instance of Enterprise
PL/I runtime message IBM0590S was generated
prior to receiving this return code.

997 @dfs_icon_buf_exhausted The API was unable to get or set a language structure
because it encountered the end of the IMS Connect
input or output buffer. This error may only be raised
when Compiled XML Conversion invokes the API.

998 @dfs_cee_call_failure An error was encountered by the API when it
invoked a Language Environment callable service.
Inspect the Language Environment condition token
supplied in parameter @dfs_cee_feedback_ptr for
more information.

580 IMS: Application Programming APIs

Table 158. Return codes from the DFSPWSIO APIs (continued)

Value DFSPWSH constant Description

999 @dfs_dli_call_failure An error was encountered by the API when it invoked
the CEETDLI interface. Inspect the IOPCB supplied in
parameter @dfs_iopcb_ptr for more information.

The following table shows the return codes used by each API:

Table 159. Return codes used by each API

Value DFSPWSH constant DFSQGETS DFSQSETS DFSXGETS DFSXSETS

000 @dfs_success X X X X

100 @dfs_omitted_parameter X X X X

101 @dfs_invalid_pointer X X X X

102 @dfs_invalid_struct_type X X X X

103 @dfs_struct_not_found X

104 @dfs_struct_name_mismatch X X

105 @dfs_invalid_struct_order X X X X

106 @dfs_invalid_struct_size X X

107 @dfs_invalid_struct_name X X

108 @dfs_struct_already_set X X

109 @dfs_invalid_segment_size X X

995 @dfs_fetch_failure X X X X

997 @dfs_icon_buf_exhausted X X

998 @dfs_cee_call_failure X X X

999 @dfs_dli_call_failure X X X

1At runtime these error codes are cited by messages IRZ0500S and IRZ0501S, even though the APIs are
internal to compiled XML conversion.
Related information
PL/I run-time messages

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 581

https://www.ibm.com/docs/en/zos/latest?topic=messages-pli-runtime

582 IMS: Application Programming APIs

Chapter 8. SQL programming reference
These topics provide the reference information for Structured Query Language (SQL) for IMS.

SQL concepts for IMS
Certain IMS concepts are important to understand when using Structured Query Language (SQL).

Structured query language
One language that you use to access the data in IMS is SQL. SQL is a standardized language for defining
and manipulating data in a relational database.

The language consists of SQL statements. SQL statements let you retrieve, insert, update, or delete data
in IMS databases.

When you write an SQL statement, you specify what you want done, not how to do it. To access data,
for example, you need only to name the segment and fields that contain the data. You do not need to
describe how to get to the data.

In accordance with the relational model of data:

• The database is perceived as a set of tables.
• Relationships are represented by values in tables.
• Data is retrieved by using SQL to specify a result table that can be derived from one or more tables.

IMS transforms each SQL statement, that is, the specification of a result table, into a sequence of
operations for data retrieval or modifications.

All executable SQL statements must be prepared before they can run.

DDL SQL
IMS supports and extends the SQL data definition language (DDL).

IMS databases use a hierarchical database structure. The standard SQL DDL statements use parameters,
keywords, and concepts that are based on relational database structures. While it is not always necessary
to understand the hierarchical structure and associated concepts of IMS databases when creating or
altering IMS databases with DDL, such an understanding will likely help you define IMS database
structures that are more efficient and perform better. For more information about how relational database
terms and concepts map to the hierarchical structures of IMS, see Comparison of hierarchical and
relational databases (Application Programming).

Related concepts
Using DDL to define databases and program views (Database Administration)
Related reference
Security for IMS DDL (Database Administration)

Static SQL
The source form of a static SQL statement is embedded within an application program that is written
in a host language such as COBOL. The statement is prepared before the program is executed and the
operational form of the statement persists beyond the execution of the program.

In IMS Version 13 and later, static SQL is not supported for COBOL.

© Copyright IBM Corp. 1974, 2022 583

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_imspldbdes_ddl.htm#ims_imspldbdes_ddl
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_securityddl.htm#ims_securityddl

Dynamic SQL
Programs that contain embedded dynamic SQL statements must be precompiled like those that contain
static SQL, but unlike static SQL, the dynamic statements are constructed and prepared at run time.

The source form of a dynamic statement is a character string that is passed to IMS by the program
using the SQL PREPARE statement. A statement that is prepared using the PREPARE statement can be
referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement.

Interactive SQL
Interactive SQL refers to SQL statements submitted using IMS Enterprise Suite Explorer for Development.

IMS data structures for SQL
SQL support allows you to issue standard SQL query to access IMS data instead of using DL/I calls. To
use SQL calls in IMS application, you need to understand the difference between the hierarchical model
for IMS databases and the standard relational database model since SQL calls are commonly used for
relational databases. You also need to understand how IMS database elements are being mapped to
relational database elements.

A database segment definition defines the fields for a set of segment instances similar to the way that a
relational table defines columns for a set of rows in a table. In this regard, segments relate to tables, and
fields in a segment relate to columns in a table. An occurrence of a segment in a database corresponds to
a row in a table.

The following table summarizes the mapping between IMS database elements and relational database
elements.

Table 160. Mapping between IMS database elements and relational database elements.

Hierarchical database elements in IMS Equivalent relational database elements

Segment name Table name

Segment instance Table row

Segment field name Column name

Segment unique key Table primary key

Foreign key field Table foreign key

PCB Schema

Segment Table

Field Column

Record Row

Data set group or Area Tablespace

Related tasks
Database design and implementation (Database Administration)

Hierarchical and relational databases
There are differences between the hierarchical model for IMS databases and the standard relational
database model.

IMS presents a relational model of a hierarchical database. In addition to the one-to-one mappings of
terms, IMS can also show a hierarchical parentage through the primary or foreign key constraints.

For a comparison of the hierarchical and relational database models, see Comparison of hierarchical and
relational databases (Application Programming).

584 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_db_design_part.htm#ims_db_design_part
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs

Language elements
An understanding of the basic syntax of SQL and language elements that are common to many SQL
statements can be helpful in using SQL with IMS.

The following topics provide information about these language elements:

Characters
The basic symbols of keywords and operators in the SQL language are characters that are classified as
letters, digits, or special characters.

• A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z) letters of the English
alphabet.

• A digit is any one of the characters 0 through 9.
• A special character is any character other than a letter or a digit.

Tokens
The basic syntactical units of the SQL language are called tokens. A token consists of one or more
characters of which none are blanks, control characters, or characters within a string constant or
delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

• An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or a keyword.

Examples:

 1 .1 +2 SELECT E 3

• A delimiter token is a string constant, a delimited identifier, an operator symbol, or any of the special
characters shown in the syntax diagrams. A question mark (?) is also a delimiter token when it serves as
a parameter marker, as explained in “PREPARE” on page 755.

Examples:

 , 'string' "fld1" = .

Spaces
A space is a sequence of one or more blank characters.

Uppercase and lowercase
A token in an SQL statement can include lowercase letters, but lowercase letters in an ordinary token are
folded to uppercase. Delimiter tokens are never folded to uppercase.

Example: The following two statements, after folding, are equivalent:

 select * from PCB01.HOSPITAL where hospname = 'Alexandria';

 SELECT * FROM PCB01.HOSPITAL WHERE HOSPNAME = 'Alexandria';

Chapter 8. SQL programming reference 585

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier.

SQL identifiers
SQL identifiers can be ordinary identifiers or delimited identifiers.

Ordinary identifiers
An ordinary identifier is an uppercase letter followed by zero or more characters, each of which is an
uppercase letter, a digit, or the underscore character.

An ordinary identifier should not be a reserved word. If a reserved word is used as an identifier in SQL, it
must be specified in uppercase and must be a delimited identifier or specified in a host variable.

Example: The following example is an ordinary identifier:

 HOSPITAL

Host identifiers
A host identifier is a name declared in the host program.

Naming conventions
The rules for forming a name depend on the type of the object designated by the name.

The syntax diagrams use different terms for different types of names. The following list defines these
terms.

column-name
A qualified or unqualified name that designates a column of a table.

A qualified column name is a qualifier followed by a period and an SQL identifier. The qualifier is a
table name, a view name, a synonym, an alias, or a correlation name. The unqualified column name is
an SQL identifier.

cursor-name
An SQL identifier that designates an SQL cursor.

descriptor-name
A host identifier that designates an SQL descriptor area (SQLIMSDA). See “References to host
variables” on page 593 for a description of a host identifier. A descriptor name never includes an
indicator variable.

host-variable
A sequence of tokens that designates a host variable. A host variable includes at least one host
identifier, as explained in “References to host variables” on page 593.

statement-name
An SQL identifier that designates a prepared SQL statement.

table-name
A qualified or unqualified name that designates a table (IMS segment).

A one-part or unqualified table name is an SQL identifier with two implicit qualifiers.

Data types
IMS supports data types from SQL.

The smallest unit of data that can be manipulated in SQL is called a value. How values are interpreted
depends on the data type of their source. The sources of values are:

• Columns

586 IMS: Application Programming APIs

• Constants
• Expressions
• Variables (such as host variables and parameter markers)

The following image shows the built-in data types that IMS supports.

Figure 35. Built-in data types supported by IMS

Important:

1. BOOLEAN, FLOAT, DOUBLE, and fixed-length binary data types are supported only for Java application
programs.

2. Fixed-length binary data type is supported for COBOL and .NET applications for retrieval and
parameter marker use only.

Related concepts
Data transformation support for JDBC (Application Programming)
Related reference
COBOL copybook types that map to Java data types (Application Programming)

Chapter 8. SQL programming reference 587

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_datatransform.htm#ims_datatransform
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_cobol_copybooktypes.htm#ims_cobol_copybooktypes

Nulls
All data types include the null value. Distinct from all non-null values, the null value is a special value that
denotes the absence of a (non-null) value.

IMS does not support setting columns to null. However, IMS interprets certain cases as null. For instance,
variable-length segments where a field lies outside the segment boundary and segments with multiple
mappings where a specific mapping does not apply are interpreted as null.

Numbers
The numeric data types are categorized as exact numerics: binary integer and decimal; and approximate
numerics: floating-point

Binary integer includes small integer, large integer, and big integer. Binary numbers are exact
representations of integers. Decimal numbers are exact representations of real numbers. Binary and
decimal numbers are considered exact numeric types. Floating-point includes double precision. Floating-
point numbers are approximations of real numbers and are considered approximate numeric types.

All numbers have a sign, a precision, and a scale. If a column value is zero, the sign is positive. Decimal
floating point has distinct values for a number and the same number with various exponents (for example:
0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of binary or decimal digits
excluding the sign. The scale is the total number of binary or decimal digits to the right of the decimal
point. If there is no decimal point, the scale is zero.

Small integer (SMALLINT)
A small integer is a binary integer that occupies 2 bytes. The range of small integers is -32768 to +32767.

Large integer (INTEGER)
A large integer is a binary integer that occupies 4 bytes.

The range of large integers is -2147483648 to +2147483647.

Big integer (BIGINT)
A big integer is a binary integer that occupies 8 bytes.

The range of big integers is -9223372036854775808 to +9223372036854775807.

Double precision floating-point (DOUBLE or FLOAT)
A double precision floating-point number is a long (64 bits) floating-point number.

DOUBLE and FLOAT are not supported by SQL for COBOL.

The range of double precision floating-point numbers is about -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive value is about 5.4E-079.

Decimal
A decimal number is a packed decimal number with an implicit decimal point.

The position of the decimal point is determined by the precision and the scale of the number. The scale,
which is the number of digits in the fractional part of the number, cannot be negative or greater than the
precision. The maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a decimal variable or the
numbers in a decimal column is -n to +n, where n is the largest positive number that can be represented
with the applicable precision and scale. The maximum range is 1 - 1031 to 1031 - 1.

Numeric host variables
The COBOL format for binary numeric data is USAGE BINARY. BINARY, COMP, and COMP-4 are synonyms.
Binary-format numbers occupy 2, 4, or 8 bytes of storage.

For COBOL, COMP-1 refers to short floating-point format and COMP-2 refers to long floating-point format,
which occupy 4 and 8 bytes of storage, respectively.

588 IMS: Application Programming APIs

In COBOL, decimal numbers can be represented in the following formats:

• Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
• External decimal format, denoted by USAGE DISPLAY with SIGN LEADING SEPARATE

Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Fixed-length character strings
When fixed-length character strings, columns, and variables are defined, the length attribute is specified,
and all values have the same length. For a fixed-length character string, the length attribute must be
between 1 and 255 inclusive.

Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

Moreover, strings can represent datetime values.

Date
A date is a three-part value (year, month, and day) designating a point in time using the Gregorian
calendar, which is assumed to have been in effect from the year 1 A.D.

The range of the year part is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to 28, 29, 30, or 31, depending on the month and year.1

The internal representation of a date is a string of 4 bytes. Each byte consists of two packed decimal
digits. The first 2 bytes represent the year, the third byte the month, and the last byte the day.

A character-string representation must have an actual length that is not greater than 255 bytes.

Time
A time is a three-part value (hour, minute, and second) designating a time of day using a 24-hour clock.
The range of the hour part is 0 to 24. The range of the minute and second parts is 0 to 59. If the hour is
24, the minute and second parts are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of two packed decimal
digits. The first byte represents the hour, the second byte the minute, and the last byte the second.

A character-string representation must have an actual length that is not greater than 255 bytes.

Timestamp
A timestamp is a six-part or seven-part value (year, month, day, hour, minute, second, and optional
fractional second) with an optional time zone specification, that represents a date and time.

In Java, timestamp maps with the type java.sql.Timestamp.

In COBOL, timestamp is a character string with an application-defined length,

1 Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15
are accepted as valid dates although they never existed in the Gregorian calendar.

Chapter 8. SQL programming reference 589

Datetime host variables
Character-string host variables are normally used to contain date, time, and timestamp values.

Assignment and comparison
The basic operations of SQL are assignment and comparison.

Assignment operations are performed during the execution of statements such as INSERT and UPDATE
statements. In addition, when a function is invoked or a stored procedure is called, the arguments of the
function or stored procedure are assigned. Comparison operations are performed during the execution of
statements that include predicates and other language elements such as ORDER BY.

The basic rule for both operations is that data types of the operands must be compatible.

The following table shows the compatibility of data types for assignments and comparisons.

Table 161. Data type compatibility for assignments and comparisons

O
pe

ra
nd

BY
TE

S

SH
O

RT

IN
T

LO
N

G

DO
UB

LE

BI
T

CH
AR

PA
CK

ED

ZO
N

ED

DA
TE

TI
M

E

FL
OA

T

TI
M

ES
TA

M
P

BYTES Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

SHORT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

INT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

LONG Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

DOUBLE Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

BIT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

CHAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PACKED Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

ZONED Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

DATE No No No No No No Yes No No Yes Yes No Yes

TIME No No No No No No Yes No No Yes Yes No Yes

FLOAT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

TIMESTAMP No No No No No No Yes No No Yes Yes No Yes

Notes:

1. LOBs and bit data are not supported.
2. The compatibility of datetime values is limited to assignment and comparison:

• Datetime values can be assigned to string columns and to string variables.
• A valid string representation of a date can be assigned to a date column or compared to a date.
• A valid string representation of a time can be assigned to a time column or compared to a time.
• A valid string representation of a timestamp can be assigned to a timestamp column or compared to

a timestamp.
3. Character strings can be assigned to XML columns.

String assignments
There are two types of string assignments; storage assignment and retrieval assignment.

• Storage assignment is when a value is assigned to a column.

590 IMS: Application Programming APIs

• Retrieval assignment is when a value is assigned to a variable.

The rules differ for storage and retrieval assignment.

Character string assignment
The rules for storage and retrieval assignment apply when both the source and the target are strings.

Storage assignment
The basic rule for character storage assignment is that the length of a string that is assigned to a column
or parameter of a function must not be greater than the length attribute of the column or the parameter.

Trailing blanks are included in the length of the string. When the length of the string is greater than the
length attribute of the column or the parameter, the following actions occur:

• If all of the trailing characters that must be truncated to make a string fit the target are blanks and the
string is a character or graphic string, the string is truncated and assigned without warning.

• Otherwise, the string is not assigned and an error occurs to indicate that at least one of the excess
characters is non-blank.

When a string is assigned to a fixed-length column or parameter and the length of the string is less than
the length attribute of the target, the string is padded to the right with the necessary number of blanks.

Retrieval assignment
In COBOL, the length of a string that is assigned to a host variable can be greater than the length attribute
of the variable. When the length of the string is greater than the length of the variable, the string is
truncated on the right by the necessary number of characters.

When truncation occurs, the value W is assigned to the SQLIMSWARN1 field of the SQLIMSCA.

When a character string is assigned to a fixed-length variable and the length of the string is less than the
length attribute of the target, the string is padded to the right with the necessary number of blanks.

String comparisons
String comparisons can occur with binary string, character strings.

Character string comparisons
Two strings are compared by comparing the corresponding bytes of each string. If the strings do not
have the same length, the comparison is made with a temporary copy of the shorter string that has been
padded on the right with blanks so that it has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are equal. An empty string is
equal to a blank string. If two strings are not equal, their relationship (that is, which has the greater value)
is determined by the comparison of the first pair of unequal bytes from the left end of the strings.

Constants
A constant (also called a literal) specifies a value. Constants are classified as string constants or numeric
constants. Numeric constants are further classified as integer, floating-point, decimal, or decimal floating-
point. String constants are classified as character or binary.

All constants have the attribute NOT NULL. A negative sign in a numeric constant with a value of zero is
ignored, except for a decimal floating-point constant.

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a maximum of 19 digits that
does not include a decimal point.

The data type of an integer constant is large integer if its value is within the range of a large integer. The
data type of an integer constant is big integer if its value is outside the range of a large integer, but within
the range of a big integer. A constant that is defined outside the range of big integer values is considered a
decimal constant.

Chapter 8. SQL programming reference 591

Examples:

 64 -15 +100 32767 720176

In syntax diagrams, the term integer is used for a large integer constant that must not include a sign.

Floating-point constants
A floating-point constant specifies a double-precision floating-point number as two numbers separated by
an E.

The first number can include a sign and a decimal point. The second number can include a sign but not a
decimal point. The value of the constant is the product of the first number and the power of 10 specified
by the second number. It must be within the range of floating-point numbers. The number of characters in
the constant must not exceed 30. Excluding leading zeros, the number of digits in the first number must
not exceed 17 and the number of digits in the second must not exceed 2.

Examples: The following floating-point constants represent the numbers '150', '200000', -0.22, and '500':

 15E1 2.E5 -2.2E-1 +5.E+2

Decimal constants
A decimal constant is a signed or unsigned number of no more than 31 digits and either includes a
decimal point or is not within the range of binary integers.

The precision is the total number of digits, including those, if any, to the right of the decimal point. The
total includes all leading and trailing zeros. The scale is the number of digits to the right of the decimal
point, including trailing zeros.

Examples: The following decimal constants have, respectively, precisions and scales of 5 and 2; 4 and 0; 2
and 0; and 23 and 2:

 025.50 1000. -15. +375893333333333333333.33

Character string constants
A character string constant specifies a varying-length character string. There is one form of character
string constant.

• A sequence of characters that starts and ends with a string delimiter.

Examples:

'10/14/2013' '32' 'DON''T CHANGE' ''

The right most string in the example ('') represents an empty character string constant, which is a string of
zero length.

For COBOL, only character string EBCDIC 037 is supported.

Field names
The meaning of a field name depends on its context.

A field name can be used to:

• Identify a field.
• Specify values of the field, as in the following contexts:

– In an ORDER BY clause, a field name specifies all values in the intermediate result table to which
the clause is applied. For example, ORDER BY HOSPNAME orders an intermediate result table by the
values of the field HOSPNAME.

592 IMS: Application Programming APIs

– In a search condition, a field name specifies a value for each row or group to which the construct
is applied. For example, when the search condition CODE = 20 is applied to some row, the value
specified by the field name CODE is the value of the field CODE in that row.

• Provide a field name for an expression to temporarily rename a field, or as in the AS clause in the
select-clause.

Qualified field names
A qualifier for a field name is a segment name.

Where a qualifier is optional, it can serve two purposes. See “Field name qualifiers to avoid ambiguity” on
page 593 and for details.

Field name qualifiers to avoid ambiguity
In the context of an ORDER BY clause, an expression, or a search condition, a field name refers to values
of a field in some segment or view in a DELETE or UPDATE statement or table-reference in a FROM clause.

One reason for qualifying a field name is to designate the object from which the field comes.

Table designators: A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for them. For example, the
object tables of an expression in a SELECT statement are named in the FROM clause that follows it, as in
the following statement:

SELECT Z.HOSPCODE, WARDNO, WARDLL
FROM PCB01.HOSPITAL Z, PCB01.WARD
WHERE Z.HOSPNAME = 'ALEXANDRIA'
AND Z.HOSPCODE = 'R1210010000A'

Table designators in the FROM clause are established as follows:

• A name that follows a table or view name is both a correlation name and a table designator. Thus, Z is a
table designator and qualifies the first column name in the select list.

• An exposed table or view name is a table designator. Thus, the qualified table name, PCB01.WARD is a
table designator and qualifies the second column name in the select list.

References to variables
A variable in an SQL statement specifies a value that can be changed when the SQL statement is
executed. There are several types of variables used in SQL statements.
host variable

Host variables are defined by statements of a host language. For more information about how to refer
to host variables, see “References to host variables” on page 593.

parameter marker
Parameter markers are specified in an SQL statement that is dynamically prepared instead of host
variables. For more information about parameter markers, see Parameter markers in the PREPARE
statement.

Unless otherwise noted, the term host variable in syntax diagrams is used to describe where a host
variable or parameter marker can be used.

References to host variables
Host variables are defined directly by statements of the host language. A host-variable in an SQL
statement must identify a host variable that is described in the program according to the rules for
declaring host variables. Host variables cannot be referenced in dynamic SQL statements; parameter
markers must be used instead.

A host variable is a data element in COBOL.

Chapter 8. SQL programming reference 593

A host-variable in an SQL statement must identify a host variable that is described in the program
according to the rules for declaring host variables.

The term host-variable, as used in the syntax diagrams, shows a reference to a host variable. In the INTO
clause of a FETCH statement, a host variable is an output variable to which a value is assigned by IMS. A
host variable can also be an input variable which provides a value to IMS.

variable references

The general form of a host variable reference is:

: host-identifier

Each host identifier must be declared in the source program.

An SQL statement that refers to host variables must be within the scope of the declaration of those host
variables. For host variables referred to in the SELECT statement of a cursor, the OPEN statement, and the
DECLARE CURSOR statement have to be in the same scope.

All references to host variables must be preceded by a colon. If an SQL statement references a host
variable without a preceding colon, the coprocessor issues an error for the missing colon or interprets the
host variable as an unqualified column name, which might lead to unintended results. The interpretation
of a host variable without a colon as a column name occurs when the host variable is referenced in a
context in which a column name can also be referenced.

Related concepts
“Host variables in dynamic SQL” on page 594
In dynamic SQL statements, parameter markers are used instead of host variables.

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables.

A parameter marker is a question mark (?) that represents a position in a dynamic SQL statement where
the application will provide a value.

 INSERT INTO PCB01.DOCTOR (hospital_HOSPCODE, patient_patnum, ward_wardno, doctno,docname) VALUES
(?,?,?,?,?)

Parameter marker replacement:
Before the prepared statement is executed, each parameter marker in the statement is effectively
replaced by its corresponding host variable. The replacement is an assignment operation in which
the source is the value of the host variable and the target is a variable. The assignment rules are
those described for assignment to a column in Assignment and comparison (Application Programming
APIs).

Host structures in COBOL
A host structure is a COBOL group that is referred to in an SQL statement.

As used here, the term host structure does not include an SQLIMSCA or SQIMSLDA.

The form of a host structure reference is identical to the form of a host variable reference. The
reference :S1 is a host structure reference if S1 names a host structure.

A host structure can be referred to in any context where a list of host variables can be referenced. A
host structure reference is equivalent to a reference to each of the host variables contained within the
structure in the order which they are defined in the host language structure declaration. The nth variable
of the indicator array is the indicator variable for the nth variable of the host structure.

594 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison

For example, if V1, V2, and V3 are declared as the variables within the structure S1, the following two
statements are equivalent:

 EXEC SQLIMS FETCH CURSOR1 INTO :S1;
 EXEC SQLIMS FETCH CURSOR1 INTO :V1, :V2, :V3;

In addition to structure references, individual host variables in COBOL can be referred to by qualified
names. The qualified form is a host identifier followed by a period and another host identifier. The first
host identifier must name a structure, and the second host identifier must name a host variable at the
next level within that structure.

In COBOL, the syntax of host-variable is:

:

host-identifier .

 host-identifier
INDICATOR

: host-identifier

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row or group.

The types of predicates are:

basic predicate

The following rules apply to predicates of any type:

• All values that are specified in the same predicate must be compatible.

Basic predicate
A basic predicate compares two values or compares a set of values with another set of values.

This statement can be embedded only in a COBOL application program.

column =

<>

!=

<

>

<=

>=

 literal

column

table-name .

column-name
1

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

This statement is supported only for Java application programs.

Chapter 8. SQL programming reference 595

column

alias

=

<>

!=

<

>

<=

>=

 literal

column

schema-name .

table-name .

column-name
1

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

The result of the predicate depends on the operator, as in the following two cases:

• If the operator is =, the result of the predicate is:

– True if all pairs of corresponding value expressions evaluate to true.
– False if any one pair of corresponding value expressions evaluates to false.

• If the operator is <>, the result of the predicate (x1,x2,...,xn) <> (y1,y2,...,yn) is:

– True, if and only if xi=yi evaluates to false for some value of i. (that is, there is at least one pair of
non-null values, xi and yi, that are not equal to each other).

– False, if and only if xi=yi evaluates to true for every value of i. (that is, (x1,x2,...,xn)=(y1,y2,...,yn) is
true).

Table 162. For values x and y

Predicate Is true only if ...

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

Examples for values x and y:

 HOSPCODE = '528671'
 XINTEGER < 20000
 HOSPNAME <> :VAR1

Example: List the hospital code and hospital name from the HOSPITAL segment where the hospital code
is H5140070000H.

 SELECT HOSPCODE, HOSPNAME
 FROM PCB01.HOSPITAL
 WHERE HOSPCODE = 'H5140070000H'

596 IMS: Application Programming APIs

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other given values that are
specified in ascending order.

The BETWEEN predicate is supported only for Java application programs.

column

alias NOT

BETWEEN literal AND literal

column

schema-name .

table-name .

column-name
1

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

Each of the predicate's two forms has an equivalent search condition, as shown in the following table:

Table 163. BETWEEN predicate and equivalent search conditions

BETWEEN predicate Equivalent search condition

column1 BETWEEN value1 AND value2 column1 >= value1 AND columnn1 <=
value2

column1 NOT BETWEEN value1 AND value2 column1 < value1 OR column1 > value2

Search conditions are discussed in “Search conditions” on page 598.

If the operands include a mixture of datetime values and valid string representations of datetime values,
all values are converted to the data type of the datetime operand.

Example: Consider the following predicate:

 A BETWEEN B AND C

The following table shows the value of the predicate for various values of A, B, and C.

Value of A Value of B Value of C Value of predicate

1,2, or 3 1 3 true

0 or 4 1 3 false

null any value any value false

IN predicate
The IN predicate compares a value or values with a set of values.

The IN predicate is supported only for Java application programs.

column

alias NOT

IN (

,

literal)

column

Chapter 8. SQL programming reference 597

schema-name .

table-name .

column-name
1

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

The IN predicate is equivalent to the quantified predicate as follows:

Table 164. IN predicate and equivalent quantified predicates

IN predicate Equivalent quantified predicate

column1 IN (value1, value2, valuen) column1 = value1 or
column1 = value2 or
column1 = valuen

column1 NOT IN (value1, value2,
valuen)

column1 <> value1 and
column1 <> value2 and
column1 <> valuen

Example: The following predicate is true for any row whose employee is in department D11, B01, or C01.

 WORKDEPT IN ('D11', 'B01', 'C01')

Search conditions
A search condition specifies a condition that is true or false about a given row or group. When the
condition is true, the row or group qualifies for the results. When the condition is false or unknown, the
row or group does not qualify.

predicate

AND
1

OR

predicate

Notes:
1 Predicates across different tables must be connected by AND.

Description
The result of a search condition is derived by application of the specified logical operators (AND, OR)
to the result of each specified predicate. If logical operators are not specified, the result of the search
condition is the result of the specified predicate.

AND and OR are defined in the following table, in which P and Q are any predicates:

Table 165. Truth table for AND and OR

P Q P and Q P or Q

True True True True

True False False True

False True False True

598 IMS: Application Programming APIs

Table 165. Truth table for AND and OR (continued)

P Q P and Q P or Q

False False False False

Example

For the following search condition, AND is applied first. After the application of AND, the OR operators
could be applied in either order without changing the result. IMS can therefore select the order of
applying the OR operators.

 PATNUM > ? AND AGE > ? OR HOSPCODE = ? OR HOSPNAME = ?

For COBOL only:

 PATNUM>:VAR1 AND AGE>:VAR2 OR HOSPCODE=:VAR3 OR HOSPNAME=:VAR4

Related concepts
“Predicates” on page 595
A predicate specifies a condition that is true, false, or unknown about a given row or group.

SQL statements
This section contains syntax diagrams, semantic descriptions, rules, and examples of the use of the SQL
statements.

The SQL support for COBOL provides the underlying SQL functions for the IBM IMS Data Provider for
Microsoft .NET. All SQL statements supported for COBOL application programs and their syntax and rules
also apply to .NET applications.

Table 166. SQL statements

SQL statement Function
Supported application program
type

“ALTER DATABASE” on page
603

Changes an existing database Java

“ALTER TABLESPACE” on page
645

Changes attributes of a data set
group within a database or an
area for a DEDB

Java

“ALTER TABLE” on page 617 Changes attributes of a table
within a database.

Java

“CLOSE” on page 651 Closes a cursor COBOL, .NET

“COMMENT ON” on page 652 Adds a comment to the definition
of a resource or object

Java

“CREATE DATABASE” on page
654

Defines a new database to IMS Java

“CREATE PROGRAMVIEW” on
page 667

Defines a new program view Java

“CREATE TABLE” on page 684 Defines a new table Java

“CREATE TABLESPACE” on page
727

Defines a data set group or Fast
Path Area.

Java

“DECLARE CURSOR” on page
741

Defines an SQL cursor COBOL, .NET

Chapter 8. SQL programming reference 599

Table 166. SQL statements (continued)

SQL statement Function
Supported application program
type

“DECLARE STATEMENT” on page
742

Declares names used to identify
prepared SQL statements

COBOL, .NET

“DELETE” on page 742 Deletes one or more rows from a
table

COBOL, .NET, Java

“DESCRIBE OUTPUT” on page
743

Describes the result columns of a
prepared statement

COBOL, .NET

“DROP DATABASE” on page 744 Removes a database from IMS Java

“DROP PROGRAMVIEW” on page
745

Removes a program view Java

“DROP TABLE” on page 745 Removes an existing table from a
database

Java

“DROP TABLESPACE” on page
746

Removes a data set group within
the database or an area for a
DEDB

Java

“EXECUTE” on page 747 Executes a prepared SQL
statement

COBOL, .NET

“FETCH” on page 748 Positions the cursor, returns data,
or both positions the cursor and
returns data

COBOL, .NET

“INCLUDE” on page 750 Inserts declarations into a source
program

COBOL, .NET

“INSERT” on page 750 Inserts one or more rows into a
table

COBOL, .NET, Java

“OPEN” on page 753 Opens a cursor COBOL, .NET

“PREPARE” on page 755 Prepares an SQL statement
(with optional parameters) for
execution

COBOL, .NET

“SELECT” on page 757 Specifies the SELECT statement
of the cursor

COBOL, .NET, Java

“UPDATE” on page 767 Updates the values of one or
more columns in one or more
rows of a table

COBOL, .NET, Java

“WHENEVER” on page 770 Defines actions to be taken on
the basis of SQL return codes

COBOL, .NET

How SQL statements are invoked
SQL statements are invoked in different ways depending on whether the statement is an executable or
nonexecutable statement or the select-statement.

The SQL statements are classified as executable or nonexecutable. The description of each statement
includes a heading on invocation that indicates whether or not the statement is executable.

Executable statements can be invoked in the following ways:

• Dynamically prepared and executed in an application program

600 IMS: Application Programming APIs

• Issued interactively

A nonexecutable statement can only be embedded in an application program.

Using an SQL statement in an application program
You can include SQL statements in a source program that will be submitted to the IMS coprocessor. An
SQL statement can be placed anywhere in the application program where a host language statement is
allowed. Each statement must be preceded by a keyword (or keywords) to indicate that the statement is
an SQL statement.

• In COBOL, each SQL statement must be preceded by the keywords EXEC SQLIMS.

Executable statements: An executable SQL statement in an application program is executed every time a
statement of the host language would be executed if specified in the same place. (Thus, for example, a
statement within a loop is executed every time the loop is executed, and a statement within a conditional
construct is executed only when the condition is satisfied.)

An SQL statement can contain references to host variables. A host variable referred to in this way can be
used in one of two ways:

As input
The current value of the host variable is used in the execution of the statement.

As output
The variable is assigned a new value as a result of executing the statement.

In particular, all references to host variables in predicates are effectively replaced by current values of
the variables; that is, the variables are used as input. The treatment of other references is described
individually for each statement.

The successful or unsuccessful execution of the statement is indicated by setting the SQLIMSCODE and
SQLIMSSTATE fields in the included SQLIMSCA. You must therefore follow all executable statements by
a test of SQLIMSCODE or SQLIMSSTATE. Alternatively, you can use the WHENEVER statement (which is
itself nonexecutable) to change the flow of control immediately after the execution of an SQL statement.

Nonexecutable statements: An nonexecutable statement is processed only by the coprocessor. The
coprocessor reports any errors encountered in the statement. The statement is never executed, and acts
as a no-operation if placed among executable statements of the application program. Therefore, do not
follow such statements with a test of an SQL return code.

Dynamic preparation and execution
Your application program can dynamically build an SQL statement in the form of a character string placed
in a host variable.

The statement so constructed can be prepared for execution by means of the (embedded) statement
PREPARE and executed by means of the (embedded) statement EXECUTE.

A statement that is going to be prepared must not contain references to host variables. It can instead
contain parameter markers. (See Parameter markers in the description of the PREPARE statement for
rules concerning parameter markers.) When the prepared statement is executed, the parameter markers
are effectively replaced by current values of the host variables specified in the EXECUTE statement. (See
the EXECUTE statement for rules concerning this replacement.) After it is prepared, a statement can be
executed several times with different values of host variables.

The successful or unsuccessful execution of the statement is indicated by the values returned in the
SQLIMSCODE and SQLIMSSTATE fields in the SQLIMSCA after the EXECUTE (or EXECUTE IMMEDIATE)
statement. You should check the fields as described above for embedded statements.

Chapter 8. SQL programming reference 601

Dynamic invocation of a SELECT statement
Your application program can dynamically build a SELECT statement in the form of a character string
placed in a host variable.

The statement so constructed can be prepared for execution by means of the (embedded) statement
PREPARE, and referred to by a (nonexecutable) statement DECLARE CURSOR. The statement is then
executed every time you open the cursor by means of the (embedded) statement OPEN. After the cursor
is open, you can retrieve the result table a row at a time by successive executions of the (embedded) SQL
FETCH statement.

The SELECT statement used in that way must not contain references to host variables. It can instead
contain parameter markers. (See "Notes" in “PREPARE” on page 755 for rules concerning parameter
markers.) The parameter markers are effectively replaced by the values of the host variables specified in
the OPEN statement. (See “OPEN” on page 753 for rules concerning this replacement.)

The successful or unsuccessful execution of the SELECT statement is indicated by the values returned in
the SQLIMSCODE and SQLIMSSTATE fields in the SQLIMSCA after the OPEN. You should check the fields
as described above for embedded statements.

Detecting and processing error and warning conditions in host language
applications
Errors and warnings conditions in host language applications can be checked by using the SQLIMSCODE
or SQLIMSSTATE host variables or by using the SQLIMSCA.

Each host language provides a mechanism for handling diagnostic information.

In COBOL, an application program that contains executable SQL statements must provide a stand-alone
integer variable named SQLIMSCODE.

SQLIMSSTATE
IMS sets SQLIMSSTATE after each SQL statement is executed. IMS returns values that conform to the
error specification in the SQL standard. Thus, application programs can check the execution of SQL
statements by testing SQLIMSSTATE instead of SQLIMSCODE.

SQLIMSSTATE provides application programs with common codes for common error conditions (the
values of SQLIMSSTATE are product-specific if the error or warning is product-specific). Furthermore,
SQLIMSSTATE is designed so that application programs can test for specific errors or classes of errors.

In the case of a LOOP statement, the SQLIMSSTATE is set after the END LOOP portion of the LOOP
statement completes. With the REPEAT statement, the SQLIMSSTATE is set after the UNTIL and END
REPEAT portions of the REPEAT statement completes.

SQLIMSCODE
The SQLIMSCODE is also set by IMS after each SQL statement is executed.

IMS conforms to the SQL standard as follows:

• If SQLIMSCODE = 0 and SQLIMSWARN0 is blank, execution was successful.
• If SQLIMSCODE = 100, "no data" was found. For example, a FETCH statement returned no data because

the cursor was positioned after the last row of the result table.
• If SQLIMSCODE > 0 and not = 100, execution was successful with a warning.
• If SQLIMSCODE = 0 and SQLIMSWARN0 = 'W', execution was successful with a warning.
• If SQLIMSCODE < 0, execution was not successful.

In the case of a LOOP statement, the SQLIMSSTATE is set after the END LOOP portion of the LOOP
statement completes. With the REPEAT statement, the SQLIMSSTATE is set after the UNTIL and END
REPEAT portions of the REPEAT statement completes.

The SQL standard does not define the meaning of any other specific positive or negative values of
SQLIMSCODE, and the meaning of these values is product specific.

602 IMS: Application Programming APIs

SQLIMSERRM
The SQLIMSERRM is a variable length character string set by IMS after each SQL statement which
contains the error message and length.

In COBOL, SQLIMSERRM includes SQLIMSERRML and SQLIMSERRMC. SQLIMSERRMC contains the SQL
error message returned by IMS. It can be up to 255 characters. SQLIMSERRML is the length of the SQL
error message.

Related reference
SQL codes (Messages and Codes)

ALTER DATABASE
By using the ALTER DATABASE statement, you can change an existing database. Unlike the CREATE
DATABASE statement, there are no default values.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “PHIDAM syntax” on page 603
• “HDAM syntax” on page 604
• “HIDAM syntax” on page 605
• “PHDAM syntax” on page 606
• “GSAM syntax” on page 607
• “HISAM syntax” on page 607
• “SHISAM syntax” on page 608
• “DEDB syntax” on page 609
• “HSAM syntax” on page 609
• “SHSAM syntax” on page 610
• “LOGICAL syntax” on page 610
• “INDEX syntax” on page 610
• “PSINDEX syntax” on page 610

PHIDAM syntax
ALTER DATABASE database_name

DBVER CURRENT

AUTO

dbd_vers_number

CCSID 'encoding' VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

PSNAME psname

DATA CAPTURE

NONE

CHANGES(A)

Chapter 8. SQL programming reference 603

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_sqlcodes.htm#ims_sqlcodes

A
LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

HDAM syntax
ALTER DATABASE database_name

DBVER CURRENT

AUTO

dbd_vers_number

CCSID 'encoding' VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

RMNAME( mod

RMANCH anch RMRBN rbn RMBYTES bytes

)

DATA CAPTURE

NONE

CHANGES(A)

A

604 IMS: Application Programming APIs

LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

HIDAM syntax
ALTER DATABASE database_name

DBVER CURRENT

AUTO

dbd_vers_number

CCSID 'encoding' VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

DATA CAPTURE

NONE

CHANGES(A)

A
LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B

Chapter 8. SQL programming reference 605

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

PHDAM syntax
ALTER DATABASE database_name

DBVER CURRENT

AUTO

dbd_vers_number

CCSID 'encoding' VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

PSNAME psname

RMNAME( mod

RMANCH anch RMRBN rbn RMBYTES bytes

)

DATA CAPTURE

NONE

CHANGES(A)

A
LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B

606 IMS: Application Programming APIs

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

GSAM syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

HISAM syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

DATXEXITNO

DATXEXITYES DATA CAPTURE

NONE

CHANGES(A)

A
LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B

Chapter 8. SQL programming reference 607

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

SHISAM syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

DATA CAPTURE

NONE

CHANGES(A)

A
LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

608 IMS: Application Programming APIs

DEDB syntax
ALTER DATABASE database_name

DBVER CURRENT

AUTO

dbd_vers_number

CCSID 'encoding' VERSION 'version_identifier'

RMNAME( mod

RMANCH anch XCINO

XCIYES

)

DATA CAPTURE

NONE

CHANGES(A)

A
LOG

NOLOG

B

,

exitname
NOLOG

LOG

B

B
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

HSAM syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' DATXEXITNO

DATXEXITYES

Chapter 8. SQL programming reference 609

SHSAM syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' DATXEXITNO

DATXEXITYES

LOGICAL syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier'

INDEX syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' DOSCOMPNO

DOSCOMPYES

PROTYES

PROTNO

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

FPINDEXNO

FPINDEXYES

PSINDEX syntax
ALTER DATABASE database_name

CCSID 'encoding'

VERSION 'version_identifier' PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

PROTYES

PROTNO

Description
The following keyword parameters are defined for the ALTER DATABASE statement:
database_name

Name of the database to be altered. The name can be from 1- to 8-alphanumeric characters.

610 IMS: Application Programming APIs

CCSID 'encoding'
An optional 1- to 25-character field that specifies the default encoding of all character data in this
database. The CCSID is stored as metadata in the Catalog. The OpenDatabase/JDBC drivers use this
metadata for preparing result sets with the proper encoding type.

This value cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

This value can be overridden in individual segments or fields.

DATA CAPTURE
When DATA CAPTURE is specified on the CREATE DATABASE statement, these options apply to all
tables within the physical database. If you specify this parameter in the CREATE or ALTER TABLE
statement, it overrides the specification for this statement.

The following physical databases support DATA CAPTURE:

• HISAM
• SHISAM
• HDAM
• PHDAM
• HIDAM
• PHIDAM
• DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of change options. If you do not
provide an exit routine, they can only specify 1 set of change options for logging. This method is
equivalent to specifying an asterisk (*) in place of an exit routine name on the EXIT= parameter
in a DBD macro statement. Each set is separated by a comma. NOCASCADE is mutually exclusive
with any combination of the C* (for example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

NOBEFORE | BEFORE
Before data is included in X'99' log records for REPL calls. NOBEFORE is the default. This
attribute is valid only for DEDB.

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA also identifies the
segment being deleted when the physical concatenated key is unable to do so. This attribute is
mutually exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the segment being
deleted by a cascade delete. This attribute is mutually exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical root's hierarchical
path. Use CNODATA to eliminate the substantial amount of path data needed for a cascade
delete. This attribute is mutually exclusive with NOCASCADE.

Chapter 8. SQL programming reference 611

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine for updating. When
DATA is specified and an EDITPROC exit routine is also used on a table, the data passed is
expanded data. DATA is the default.

NODLET |DLET
X'99' log records are written for DLET calls. NODLET is the default. This attribute is valid only
for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name must match
the name of a Data Capture exit routine as defined by the user to IMS. A maximum of 8
alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key. This key identifies the
physical table updated by the application. KEY is the default.

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment. Cascade delete is not
necessary when a segment without dependents is deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be captured. This option is
valid only for a DEDB, and this information is logged only in the X'9904' log records if the
option log is specified. This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is done for an unkeyed or
non-unique keyed segment when an insert rule of HERE is used and the F or L command code
is not used. The twin data IMS is positioned on at the time before the ISRT will be captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data be written to the IMS
system log.
For more information, see Asynchronous data propagation (System Programming APIs).

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time needed to retrieve
path data. NOPATH is the default.

PATH can be specified when the data from each segment in the physical root's hierarchical
path must be passed to the exit routine for an updated segment. Use PATH to allow an
application to separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the path is needed to compose
the DB2® for z/OS primary key. The DB2 for z/OS primary key would then be used in a
propagation request for a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the dependent contains
additional data that would not fit in the parent table.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several tables with one call; for example, you did not invoke the D command code.
In this case, additional processing is necessary if the application is to access each table with a
separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command codes are captured. This
option is valid for DEDBs only.

DATXEXITNO | DATXEXITYES

Allows the Data Conversion user exit routine (DFSDBUX1) to be used by an application while it is
processing this database.

612 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

If YES is specified, the user exit DFSDBUX1 is called at the beginning and at the end of each database
call. If DFSDBUX1 is not loaded, IMODULE is called to load it.

If NO is specified, the user DFSDBUX1 can be called, provided DFSDBUX1 is located in the SDFSRESL.
If DFSDBUX1 does not need to be called again for the database definition, X'FF' is returned in the
SRCHFLAG field in the JCB, and DFSDLA00 dynamically marks the database definition as not requiring
the exit. In this case, the user exit is not called again for that database definition for the duration of
the IMS session, unless the DMB is purged from the DMB pool.

DBVER
A numeric value in the range 0 - 2147483647 that identifies a specific version of the DBD. Specifying
a numeric value drives IMS to generate a new version of the DBD that can be used by different
application programs.

• If the specified version number is not an increment of the current active version in the IMS catalog,
the ALTER fails.

• If the specified version number already exists in the IMS catalog and not the current version, the
ALTER fails.

• If the specified version number is the current active version, IMS will generate a new instance of
that DBD version.

You can also specify the following instead of a numeric version number:
DBVER AUTO

AUTO drives IMS to auto increment the version number based on the current active version
number that is saved in the IMS catalog.

DBVER CURRENT
CURRENT drives IMS to ALTER the current active DBD. DBVER CURRENT is the default.

DOSCOMPNO | DOSCOMPYES
Indicates if this is a DLI/DOS index database. Must be specified if the database is an index, and it
was created using DLI/DOS. DLI/DOS index databases contain a segment code as part of the prefix.
Specifying that a database is a DLI/DOS index database causes IMS to expect this code to be present
in the defined database, and to process in a way that preserves this code. This includes providing a
segment code for new segments being inserted. DLI/DOS databases must use VSAM and cannot be
PHDAM, PHIDAM, or PSINDEX databases.

FPINDEXNO | FPINDEXYES
Specifies whether an index database is a secondary index for a primary Fast Path DEDB database.

PASSWDNO | PASSWDYES
Specifying PASSWDYES causes DL/I to use the database name as the VSAM password when opening
any data set for this database. This parameter is only valid for databases that use VSAM as the access
method. You cannot use the database name as the password for the LOGICAL or DEDB database
types. When the user defines the VSAM data sets for this database using the DEFINE statement of
z/OS Access Method Services, the control level (CONTROLPW) or master level (MASTERPW) password
must be the same as the DBDNAME for this DBD. All data sets associated with this DBD must use the
same password.

For the IMS DB/DC system, all VSAM OPENs bypass password checking and thus avoid operator
password prompting. For the IMS DB system, VSAM password checking is performed. In the batch
environment, operator password prompting occurs if automatic password protection is not specified,
and the data set is password protected at the control level (CONTROLPW) with passwords not equal to
the database name.

PROTYES | PROTNO

Specifies if a secondary index database uses index pointer protection. This optional parameter
ensures the integrity of all fields in index pointer segments that are used by IMS. Use of this
parameter prevents an application program from doing a replace operation on any field within an
index pointer segment except for fields within the user data portion of index pointer segments. Delete
operations are still enabled for index pointer segments. If a delete is issued for an index pointer

Chapter 8. SQL programming reference 613

segment, the index target segment pointer in the index pointer segment is deleted. However, the
index source segment that caused the index pointer segment to be created originally is not deleted.

If index pointer protection is not used, an application program can replace all fields within an index
pointer segment except the constant, search, and subsequence fields. Inserts to an index database
are invalid under all conditions.

PSNAME name
Specifies the module that selects the HALDB partition for PSINDEX, PHDAM, or PHIDAM databases.
The parameter is a HALDB partition selection exit routine module name. This parameter is only valid
when the access type for the database is PSINDEX, PHDAM, or PHIDAM.

Exception: A user-provided HALDB partition selection routine is not needed if root key ranges define
HALDB partition membership.

RMNAME name
Specifies a module name that is used to manage the data that is stored in a DEDB or in the primary
data set group of an HDAM or PHDAM database. This parameter is only valid when the database
access type is HDAM, PHDAM, or DEDB. A randomizing module controls root segment placement in
or retrieval from the DEDB, HDAM, or PHDAM database. One or more modules, called randomizing
modules, can be utilized within the IMS system. A particular database has only one randomizing
module associated with it. A generalized module, which uses user-supplied parameters to perform
randomizing for a particular database, can be written to service several databases. The purpose of
a randomizing module is to convert a value supplied by an application program for root segment
placement in, or retrieval from, a DEDB, HDAM, or PHDAM database into a relative block number
and anchor point number. You can randomize within an area by selecting a two-stage randomizer.
When you select a two-stage randomizer, the number of root anchor points in an area can be changed
without having to stop all areas in the DEDB with the /DBRECOVERY command.

For PHDAM databases, the randomizer module names and values become the default for each
partition. You can set a different randomizer name and values for each partition during HALDB
partition definition. HALDB partition selection is done prior to invoking the randomizing module. The
randomizing module selects locations only within a partition.

The module name is the 1- to 8-character alphanumeric name of a user-supplied randomizing module
that is used to store and access segments in this DEDB, PHDAM, or HDAM database. Select a two-
stage randomizer by specifying the randomizer name in the module name parameter and 2 in the
anchor point parameter.

RMANCH number
The purpose of the anch value is different depending on whether you are defining a Fast Path DEDB
database or a full-function HDAM or PHDAM database.

This parameter must be an unsigned decimal integer.

For a DEDB database, the value of anch specifies the type of randomizer. A value of 1 indicates a
single-stage randomizer. A value of 2 indicates a two-stage randomizer. Any other value is invalid.

For HDAM and PHDAM databases, the value of anch specifies the number of root anchor points
desired in each control interval or block in the root addressable area of the HDAM or PHDAM
database. Typical values are from 1 to 5 and the value cannot exceed 255.

When accessing a HDAM or PHDAM database, if a user randomizing routine produces an anchor point
number greater than the number specified for this parameter, the highest-numbered anchor point
in the control interval or block is used. When a randomizing routine produces an IMS anchor point
number of zero, IMS uses anchor point one in the control interval or block.

RMRBN number
Specifies the maximum relative block number value that you want to allow a randomizing module
to produce for this database. This parameter is for HDAM or PHDAM databases only. This value
determines the number of control intervals or blocks in the root addressable area of an HDAM or
PHDAM database. This parameter must be an unsigned decimal integer whose value does not exceed
224-1. If this parameter is omitted, no upper limit check is performed on the relative block number
created by the randomizing module. If this parameter is specified, but the specified randomizing

614 IMS: Application Programming APIs

module produces an relative block number greater than this parameter, the highest control interval
or block in the root addressable area is used by IMS. If a user randomizing module produces a block
number of zero, the control interval or block one is used by IMS.

In an HDAM or PHDAM data set, the first bit map is in the first block of the first extent of the data set.
In an HDAM or PHDAM database, the first control interval or block of the first extent of the data set
specified for each data set group is used for a bit map. In a VSAM data set, the second control interval
is used for the bit map and the first control interval is reserved. IMS adds one to the block calculated
by the randomizer.

RMBYTES number
Specifies the maximum number of bytes of database record that can be stored into the root
addressable area in a series of inserts unbroken by a call to another database record. This parameter
is for HDAM and PHDAM databases only. If this parameter is omitted, no limit is placed on the
maximum number of bytes of a database record that can be inserted into this database's root
segment addressable area. The bytes parameter must be an unsigned decimal integer whose value
does not exceed 224-1. When the maximum relative block number parameter is omitted, this
parameter is ignored. In this case, there is no limit on the number of bytes of a database record
that can be inserted into the root addressable area.

If this parameter is specified for an HDAM or PHDAM database and the length of the database record
is larger, the remainder of the record is inserted into the overflow area following the current end-of-
file (EOF). This operation requires that enough space be available after the current EOF to contain the
remainder of all database records that exceed the value of this parameter. If sufficient space is not
available in the overflow area following the current EOF, the database records are inserted randomly
in the database.

XCINO | XCIYES
Specifies whether this DEDB uses the Extended Call Interface when making calls to the randomizer.
This option allows the randomizer to be called in three different ways. On initialization of IMS or
during a /START DB command, IMS will first load the randomizer and then make an INIT call to the
randomizer to invoke its initialization routines. During a /DBR DB command, IMS will make a TERM
call to the randomizer to invoke the termination routines before unloading the randomizer. The normal
randomizing call to the randomizer is made when the application issues a GU or ISRT call on a root
segment. The XCI option is only valid for DEDBs.

VERSION 'version_identifier'
Specifies a version identification string. You can use this identifier to differentiate the versions of the
resource in subsequent queries to the IMS catalog.

Usage notes
Because the ALTER DATABASE statement modifies a database to IMS, the statement will fail with a -9000
message if the database specified on the ALTER DATABASE statement does not exist.

Database versioning notes
An ALTER DATABASE in its own DDL stream changes an existing DBD. Database versioning is optional.
To implement changes against the current version, supply the current version number on the DBVER
keyword. You can also specify “DBVER CURRENT” and IMS will identify the currently active version
number for them.

To generate a new version, supply the next version number on the DBVER keyword. The version number
supplied must be an increment of the currently active database version.

To automatically assign a version number on the DBD, specify “DBVER AUTO”. DDL will temporarily assign
the INIT token as the version number. This assignment handles the case where multiple workstations are
implementing different DBD changes.

You can optionally specify CREATE PROGRAMVIEW to generate new PSBs. As part of this stream, specify
“DBVER AUTO” on the PCBs to have them locked to the same version number being generated. When the

Chapter 8. SQL programming reference 615

changes in the DDL stream are activated in the IMS system, IMS assigns the version number to the DBDs
and PSBs.

If the DBVER keyword is omitted from the ALTER DATABASE statement, IMS implements changes against
the currently active database version as indicated by the IMS catalog.

Example: full function database
The following input to the DBD generation utility creates a basic full function database:

The original DBD source to define a new database.

DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,VSAM), C
 RMNAME=(DFSHDC40,3,3,25), C
 PASSWD=NO, C
 VERSION=’Latest version of COGDBD’

The following example is the DDL equivalent to the DBD source.

CREATE DATABASE COGDBD
 ACCESS HDAM VSAM
 RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
 VERSION ‘Latest version of COGDBD’
 CCSID 'Cp1047';

The DBD source to provide a different randomizer, PASSWD, and VERSION.

DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,VSAM), C
 RMNAME=(DFSHDC20,3,3,25), C
 PASSWD=YES, C
 VERSION=’Latest version of COGDBD’

The following example is the DDL equivalent to the DBD source.

ALTER DATABASE COGDBD
 RMNAME(DFSHDC20 RMANCH 3 RMRBN 3 RMBYTES 25)
 PASSWDYES
 VERSION ‘Latest version of COGDBD’

Example: Fast Path Data Entry Database (DEDB)
Similarly to the previous example, the following input can be submitted to the DBD generation utility to
create a DEDB:

Original DBD source to define the database:

DBD NAME=HOSPDBD1, C
 ENCODING=Cp1047, C
 ACCESS=(DEDB), C
 RMNAME=(RMOD3,1,,,XCI) C
 PASSWD=NO

The following example is the DDL equivalent to the DBD source.

CREATE DATABASE HOSPDBD1
 ACCESS DEDB
 RMNAME(RMOD3 RMANCH 1 XCIYES)
 CCSID 'Cp1047';

COMMENT ON DATABASE HOSPDBD1 IS 'This describes database HOSPDBD1.'

The DBD source change to provide a different randomizer, XCI, encoding, and new comment.

DBD NAME=HOSPDBD1, C
 ENCODING=Cp943C, C

616 IMS: Application Programming APIs

 ACCESS=(DEDB), C
 RMNAME=(FPERNDM0,1,,,) C
 PASSWD=NO

The following example is the DDL equivalent to the DBD source.

ALTER DATABASE HOSPDBD1
 RMNAME(FPERNDM0 RMANCH 1 XCINO)
 CCSID 'Cp943C';
COMMENT ON DATABASE HOSPDBD1 IS 'Implemented change to database HOSPDBD1.'

ALTER TABLE
The ALTER TABLE statement enables you to make changes to an existing table. Unlike the CREATE TABLE
statement, there are no default values for each keyword attribute. You must specify a keyword or value in
order to change that value. If a keyword or value is not specified, then no change is made to that attribute.

Restriction: If you specify any of the following keywords on the CREATE TABLE statement, you cannot
change the keyword and keyword value by using the ALTER TABLE statement. To change the keyword
and keyword value, you must first use the DROP TABLE statement to delete the table. Then, you must
re-create the table by using the CREATE TABLE statement and specify the keyword and keyword value
again.

• The INTERNALNAMEinternalname keyword to specify the internal name of the segment type being
defined.

• DIRECT DEPENDENT | SEQUENTIAL DEPENDENT

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “ALTER TABLE syntax” on page 618
• “table-options syntax” on page 619
• “data capture changes syntax” on page 620
• “exit_attributes syntax” on page 620
• “alter-options syntax” on page 620
• “column-alteration syntax” on page 621
• “datatype syntax” on page 621
• “ims-column syntax” on page 622
• “inline-constraint syntax” on page 623
• “constraint syntax” on page 623
• “references-clause syntax” on page 623
• “map-definition syntax” on page 623
• “case-definition syntax” on page 623

Chapter 8. SQL programming reference 617

ALTER TABLE syntax
ALTER TABLE tblname

IN

dbname.tablespace_name

IN DATABASE dbname

,

table-options

,

alter-options

618 IMS: Application Programming APIs

table-options syntax

MAXBYTES

maxbytes

MINBYTES minbytes

SOURCE( dbname.table_name
DATA

KEY
, dbname.table_name

DATA

KEY

)

SSPTR n

CCSID

'Cp1047'

encoding

DSGROUP

A

B

C

D

E

F

G

H

I

J

FREQ frequency

TWINBWD

NOTWIN

TWIN

HIER

HIERBWD

LTWIN

LTWINBWD

LPARNTYES

LPARNTNO

PAIREDYES

PAIREDNO

CTRNO

CTRYES

INSERT LOGICAL

PHYSICAL

VIRTUAL

DELETE LOGICAL

PHYSICAL

VIRTUAL

BIDIRECTIONAL

REPLACE LOGICAL

PHYSICAL

VIRTUAL

AMBIGUOUS INSERT LAST

FIRST

HERE

EDITPROC( routinename

WITH
DATA

KEY INIT max

PAD

)

LPARENT table_name

dbname.table_name

VIRTUAL

PHYSICAL

DATA CAPTURE

NONE

CHANGES(change_syntax)

Chapter 8. SQL programming reference 619

data capture changes syntax
LOG

NOLOG

exit_attributes

,

exitname
NOLOG

LOG

exit_attributes

exit_attributes syntax
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE
1

NOBEFORE

DLET

NODLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

Notes:
1 BEFORE, NOBEFORE, DLET, NODLET, SSPCMD, NOSSPCMD, FLD, and NOFLD are for DEDB only.

alter-options syntax
1

ADD

COLUMN

column-definition
2

ALTER

COLUMN

column-alteration

DROP

COLUMN

column-name RESTRICT

ADD constraint
3

DROP PRIMARY KEY
4

UNIQUE

FOREIGN KEY

constraint-name

ADD lchild-definition

DROP LCHILD table_name

ADD map-definition

DROP MAP column_name

Notes:

620 IMS: Application Programming APIs

1 The same clause must not be specified more than one time, except for the ADD COLUMN or ALTER
COLUMN clauses. If multiple ADD COLUMN clauses are specified in the same statement, at most one
ADD COLUMN clause can contain a references-clause.
2 See column-definition descriptions from CREATE TABLE section.
3 ADD constraint, DROP PRIMARY KEY, DROP FOREIGN KEY clauses are mutually exclusive and can
only have one per ALTER TABLE statement.
4 ADD constraint, DROP PRIMARY KEY, DROP FOREIGN KEY clauses are mutually exclusive and can
only have one per ALTER TABLE statement.

column-alteration syntax
columnName

| datatype | INTERNALNAME-internalname

| ims-column-syntax | | inline-constraints |

datatype syntax
ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

(bytes)

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

Chapter 8. SQL programming reference 621

ims-column syntax

TYPE

C

X

P

BYTES bytes

MAXBYTES max_array_bytes

START start_position

STARTAFTER field_name

RELSTART relative_start_position

MINOCCURS min_array_elements

MAXOCCURS max_array_elements DEPENDSON control_column

IN column_name

INTERNAL TYPECONVERTER CHAR

BIT

BINARY

BYTE

UBYTE

SHORT

USHORT

INT

UINT

LONG

ULONG

FLOAT

DOUBLE

PACKEDDECIMAL

ZONEDDECIMAL

CLOB

BLOB

XML_CLOB

ARRAY

STRUCT

USER TYPECONVERTER typeconverter PROPERTIES(

,

 'name' = 'value')

CCSID

'Cp1047'

encoding

ISSIGNEDYES

ISSIGNEDNO

OVERFLOW table_name PATTERN 'pattern'

URL 'xml_schema_url'

622 IMS: Application Programming APIs

inline-constraint syntax

CONSTRAINT constraintname

PRIMARY KEY

NON UNIQUE

constraint syntax

CONSTRAINT constraint_name

PRIMARY KEY ( column_name)

NON UNIQUE

FOREIGN KEY references-clause

references-clause syntax
REFERENCES table_name

SINGLE

DOUBLE

map-definition syntax

MAP column_name

AS mapName

(

,

case-definition)

case-definition syntax

CASE caseid

AS case_name

(

,

column-definition)

Keyword parameters for ALTER TABLE
Descriptions of all table-options are defined in the CREATE TABLE section. All table-options are optional
and do not imply a default value if not specified. Specifying a table-option means a new value is being
supplied to replace the existing one.

Specifying the DATA CAPTURE keyword replaces all data capture exits that were previously supplied, if
any. If multiple data capture exits were previously supplied they must all be respecified if needed.

The following keyword parameters are defined for the ALTER TABLE statement:
ALTER TABLEtblname

Identifies the table to be altered. The name must identify a table that exists at the current database.

Specify an external name as a 1 to 128 character uppercase alphanumeric string. A table name can
include the underscore character. Table names cannot be reserved SQL keywords or begin with DFS.

Keyword parameters for ALTER TABLE (table-options)
The following keyword parameters are defined for the ALTER TABLE (table-options) statement:
SOURCE

Is the IMS internal table name and is used for two purposes:

Chapter 8. SQL programming reference 623

• To identify the real logical child segment type that is to be represented by the virtual logical child
segment type that is being defined

• To identify the segment type or types in physical databases that are represented by the segment
type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM databases because they
support only physical pairing.

When defining a virtual logical child the statement is:

SOURCE=(( segname ,
DATA

, dbname))

segname
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be used in constructing the
segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical child.

When defining a segment type in a logical database the statement is:

SOURCE=

(( segname ,

DATA

KEY ,  dbname), (segname ,

DATA

KEY ,  dbname))

(segname, KEY | DATA,dbname)
The first occurrence refers to the segment in a physical database that is being defined as a logical
segment, or it refers to the logical child segment type in a physical database that is used for the
first portion of a concatenated segment type in this logical database.

segname
Is the name of the segment type in the physical database.

KEY
Specifies that the key portion of the segment specified in segname is to be placed in the key
feedback area. The segment must not be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

DATA
Specifies that the key portion of the segment specified in segname must be placed in the key
feedback area, and the segment must be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

dbname
Specifies the name of the physical database that contains segname. The second occurrence of
(segname, KEY|DATA, dbname) refers to the logical or physical parent segment type in a physical
database that is used for the destination parent part of a concatenated segment in this logical
database. The description of each parameter for the second occurrence is the same as described
for the first occurrence.

When the first occurrence of (segname, KEY | DATA, dbname) refers to a virtual logical child, the
second occurrence, if specified, must refer to the real logical child's physical parent.

When the source segments is used to represent a concatenated segment, the KEY and DATA
parameters are used to control which of the two segments (or both) are placed in the user's I/O
area on retrieval calls. If DATA is specified, the segment is placed in the user's I/O area. If KEY
is specified, the segment is not placed in the user's I/O area, but the sequence field key, if one
exists, is placed in the key feedback area of the PCB. The key of a concatenated segment is the
key of the logical child, either the physical twin sequence field or the logical twin sequence field,

624 IMS: Application Programming APIs

depending on which path the logical child is accessed from. The KEY and DATA parameters apply
to retrieval type calls only.

On insert calls, the user's I/O area must always contain the logical child segment and, unless
the insert rule is physical, the logical parent segment. Even if KEY is specified for a segment,
the database containing that segment must be available to IMS when calls are issued against
the logical database containing the referenced segment. When the first occurrence of the
SOURCE segment specification references a logical child, the second occurrence referencing
the destination parent for the concatenated segment should also be specified. If not explicitly
specified it is included with the KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their physical definition from
segments previously defined in one or more physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the SOURCE parameter is invalid.

MAXBYTES maxbytes
MINBYTES minbytes

Defines a segment type as variable-length if the minbytes parameter is included. The maxbytes field
specifies the maximum length of any occurrence of this segment type. The maximum and minimum
allowable values for the maxbytes parameter are the same values as described for a fixed-length
segment.

If the segment is processed by a compression routine, set the maxbytes field to accommodate
control information to indicate whether the segment length can be longer than the specified maximum
definition. in order to avoid an abend 0799. To allow for the expansion, add an arbitrary value of 10
bytes to the maxbytes.

The minbytes parameter specifies the minimum amount of storage used by a variable-length
segment. The maximum value for minbytes is the value specified for maxbytes. The minimum value
for minbytes must be:

• For a segment type that is not processed by an edit/compression routine or is processed by an
edit/compression routine but the key compression option has not been specified, minbytes must be
large enough to contain the complete sequence field if a sequence field has been specified for the
segment type.

• For a segment type that is processed by an edit/compression routine that includes the key
compression option or a segment that is not sequenced, the minimum value is 4.

Because segments in an HSAM, SHSAM, INDEX, PSINDEX or SHISAM database cannot be variable-
length, the minbytes parameter is invalid for these databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines the length of the segment
including the 2-byte length field, followed by user data specified by a column. The value of minbytes
can be specified from a minimum of 4 bytes to a maximum of maxbytes; however, the minbytes
value must be large enough to contain this segment's sequence field (that is, minbytes ≥ START -
1 + BYTES of the sequence field following the table). For example, the smallest minbyte value for a
segment with a 20-byte sequence field length and START = 7 is 26. On any given DL/I call, the actual
segment length can fall anywhere between a length that includes the sequence field and the value of
maxbytes. The value of maxbytes must not exceed the control interval size minus 120.

TWINBWD | NOTWIN | TWIN | HIER | HIERBWD
Specifies the pointer fields to be reserved in the prefix area of occurrences of the segment type being
defined. These fields are used to relate this segment to its immediate parent segments and twin
segments.
TWINBWD

Reserves a 4-byte physical twin forward pointer field and a 4-byte physical twin backward pointer
field in the segment prefix being defined. The twin backward pointers provide increased delete
performance.

Recommendation: This option is recommended for HIDAM and PHIDAM database root segments.

Chapter 8. SQL programming reference 625

NOTWIN
Prevents space from being reserved for a physical twin forward pointer in the prefix of occurrences
of the segment type being defined.

NOTWIN can be specified for a dependent segment type if:

• The physical parent does not have hierarchic pointers specified.
• No more than one occurrence of the dependent segment type is stored as a physical child of any

occurrence of the physical parent segment type.

In addition, NOTWIN can be specified for the root segment type of HDAM and PHIDAM databases,
but only when the randomizing module does not produce synonyms (keys with different values
having the same block and anchor point).

When NOTWIN is specified for a dependent segment type and an attempt is made to load or insert
a second occurrence of the dependent segment as a physical child of a given physical parent
segment:

• An LB status code is returned when trying to insert the second occurrence during initial load.
• An II status code is returned when trying to insert the second occurrence after initial load.

Any attempt to load or insert a synonym is rejected with an LB or II status code.

TWIN
Reserves a 4-byte physical twin forward pointer field in the segment prefix being defined.

HIER
Reserves a 4-byte hierarchic forward pointer field in the prefix of occurrences of the segment type
being defined. HALDB does not support HIER.

HIERBWD
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic backward pointer field
in the prefix of occurrences of the segment type being defined. Hierarchic backward pointers
provide increased delete performance. HALDB does not support HIERBWD.

LPARNTYES | LPARNTNO
Specifies the type of logical parent.
LPARNTYES

This parameter can be specified only when the segment type that is being defined is a logical child
and the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database. If the logical parent
is in a HISAM database, omit this parameter and specify PHYSICAL in the PARENT= parameter for
the segment that is being defined.

For HDAM, HIDAM, and HISAM databases, LPARNT reserves a 4-byte logical parent pointer field in
the prefix of occurrences of the segment type being defined.

For PHDAM and PHIDAM databases, LPARNT reserves a 28-byte extended pointer set in the prefix
of occurrences of the segment type being defined.

LPARNTNO
Specifies that the segment type that is being defined is not a logical child or the logical parent is
not in an HDAM, HIDAM, PHDAM, or PHIDAM database.

PAIREDYES | PAIREDNO
Specifies whether this segment participates in a bidirectional logical relationship.
PAIREDYES

Indicates that this segment participates in a bidirectional logical relationship. This parameter is
specified for the following types:

• A virtual logical child segment type
• Both physically paired logical child segment types in a bidirectional logical relationship

If PAIRED is specified, the LTWIN and LTWINBWD parameters are invalid.

626 IMS: Application Programming APIs

PAIREDNO
Indicates that this segment does not participate in a bidirectional logical relationship.

CTRNO | CTRYES
Specifies...
CTRNO

Does not reserve a 4-byte counter field in the prefix of occurrences of the segment type being
defined.

CTRYES
Reserves a 4-byte counter field in the prefix of occurrences of the segment type being defined. A
counter is required if a logical parent segment in a HISAM, HDAM, or HIDAM database has logical
child segments which are not connected to it by logical child pointers. Counters are placed in all
segments requiring them automatically during DBD generation without the user specifying this
parameter. To avoid a later DBD generation, however, the user can anticipate future requirements
for counters and reserve a counter field in the prefix of occurrences of a segment type by using
this parameter. HALDB does not support CTR.

INSERT {LOGICAL | PHYSICAL | VIRTUAL}
DELETE {LOGICAL | PHYSICAL | VIRTUAL | BIDIRECTIONAL}
REPLACE {LOGICAL | PHYSICAL | VIRTUAL}

Specifies the rules used for insertion, deletion, and replacement of occurrences of the segment type
being defined. These parameters are specified for logical child segments and for their physical and
logical parent segments. They should be omitted for all segment types that do not participate in
logical relationships.

AMBIGUOUS INSERT {LAST | FIRST | HERE}
Specifies where new occurrences of the segment type defined by this table are inserted into their
physical database (establishes the physical twin sequence). This value is used only when processing
segments with no sequence field or with a nonunique sequence field. The value is ignored when
specified for a segment type with a unique sequence field defined.

Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do not apply to the initial
loading of a database and segments are loaded in the sequence presented in load mode. If a unique
sequence field is not defined for the HDAM root on initial load or HD reload, the insert rules of FIRST,
LAST, or HERE determine the sequence in which roots are chained. Thus the reload of an HDAM or
PHDAM database reverses the order of the unsequenced roots when HERE or FIRST is used.

LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden. For direct dependent segment processing, you can specify FIRST, LAST, or
HERE. HERE is the default.

FIRST
For segments without a sequence field defined, a new occurrence is inserted before all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted before all existing physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is inserted after all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted after all existing physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted immediately before the
physical twin on which position was established. If a position was not established on a physical
twin of the segment being inserted, the new occurrence is inserted before all existing physical
twins. For segments with a nonunique sequence field defined, a new occurrence is inserted
immediately before the physical twin with the same sequence field value on which position was
established. If a position was not established on a physical twin with the same sequence field
value, the new occurrence is inserted before all physical twins with the same sequence field value.
The insert position is dependent on the position established by the previous DL/I call.

Chapter 8. SQL programming reference 627

A command code of L (last) takes precedence over the insert rule specified causing a new
occurrence to be inserted according to the insert rule of LAST, for insert calls issued against a
physical path.

DSGROUP
Specifies multiple data set groups for PHDAM and PHIDAM databases. The format is DSGROUP c,
where c is equivalent to the letters A through J. This enables you to divide PHDAM and PHIDAM
databases into a maximum of ten data set groups. The default for every segment is A (single set for
data per partition). If specified on the root segment, it must be DSGROUP A.

Restriction: Gaps in the A-J sequence are not allowed. For example, if DSGROUP C is specified on a
CREATE TABLE statement, there must also be at least one CREATE TABLE statement with DSGROUP
B, and each HALDB partition will have A, B, and C data sets.

FREQ frequency
Specifies the estimated number of times that this segment is likely to occur for each occurrence of
its physical parent. The frequency parameter must be an unsigned decimal number in the range 0.01
to 2²⁴-1. If this is a root segment, "frequency" is the estimate of the maximum number of database
records that appear in the database being defined. The value of the FREQ parameter when applied to
dependent segments is used to determine the logical record length and physical storage block sizes
for each data set group of the database.

CCSID encoding
An optional 1- to 25-character field that specifies the encoding of the character data in the segment.

The value specified on the CCSID parameter cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The value of the CCSID parameter in the table overrides the value of the CCSID parameter in the
database for this segment. If the CCSID parameter is not specified on the table, the default value
is either the value of the CCSID parameter on the database or, if CCSID was not specified on the
database, the value Cp1047, which specifies EBCDIC encoding.

This value can be overridden in individual fields by the CCSID parameter in the column definition.

SSPTR n
For databases defined with a DEDB access type only. Specifies the number of subset pointers. You can
specify from 0 to 8. When you specify 0 or if SSPTR is not specified, you are not using a subset pointer.

EDITPROC routinename
Selects a Segment Edit/Compression exit routine for either DEDB or full-function database.

For segment edit/compression of full-function database

Do not specify this keyword if the SOURCE keyword is used. The DL/I EDITPROC keyword is invalid
for HSAM, SHSAM, SHISAM, INDEX, and logical databases. It is also invalid for logical child segments
in any database. When used for a HISAM database, it must not change the sequence field offset for
HISAM root segments. In addition, the minimum segment length that can be specified for a segment
type where the segment edit/compression option is specified is 4 bytes.

Remember: If you are using a segment edit/compression exit routine and defined your segments
as variable-length, be aware that when a variable-length segment is compressed, it is padded with
null bytes up to the minimum segment length that was defined in the DBD. Minimum segment length
essentially overrides the compression; this enables you to provide additional space during load time
for segments that are heavily compressed.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This name must be a 1- to
8-character alphanumeric value, must not be the same as any other name in IMS.SDFSRESL, and
must not be the same as a database name.

628 IMS: Application Programming APIs

DATA
Specifies that the indicated exit routine condenses or modifies data fields only. Sequence fields
must not be modified, nor data fields that change the position of the sequence field in respect
to the start of the segment. DATA is the default value if a compression routine is named but no
parameter is selected.

KEY
Specifies that the exit routine can condense or modify any fields within the named segment. This
parameter is invalid for the root segment of a HISAM database.

INIT
Indicates that initialization and termination processing control is required by the segment exit
routine. When this parameter is specified, the edit/compression routine gains control after
database open and after database close.

max
Specifies the maximum number of bytes by which fixed-length segments can increase during
compression exits. You can specify from 1 to 32 767 bytes. The default for max is 10.

PAD
Indicates that the numeric value supplied by MAX should be used for padding and not for MAX.
The numeric range of 1 to 32 767 indicates a size to which an inserted segment will be padded
when the compression of that segment results in a length somewhat less than the PAD value.

For segment edit/compression of DEDB

routinename
Specifies the z/OS load module name of the user-supplied segment edit/compression exit routine.
The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA is the default.

Restriction: The KEY parameter is not supported for DEDB. If you specify the KEY parameter, an
error message is issued.

INIT
Allows the segment compression exit routine to gain control immediately after the first area in the
database is opened and returns control immediately before the last area in the database is closed.
As long as the segment length is within the values specified, no errors occur while checking the
field qualification for segment compression or expansion.

Restriction: The EDITPROC clause is prohibited on DEDB tables containing a unique key field located
at the end of the table.

LPARENT table_name {VIRTUAL | PHYSICAL}
Specifies the logical parent of the table being defined.
table_name

Specifies the IMS internal table name and the name of the logical parent of the table being
defined. If the logical parent resides within the same database then you may just specify the
table name. If the logical parent resides in a different database then you must specify both the
database and table name, such as "database_name.tablename".

VIRTUAL | PHYSICAL
Specifies whether the concatenated key of the logical parent (LPCK) is stored as a part of the
logical child segment. Specify the parameter only for logical child segments. If PHYSICAL is
specified, the LPCK is stored with each logical child segment. If VIRTUAL is specified, the LPCK is
not stored in the logical child segment. PHYSICAL must be specified for a logical child segment
whose logical parent is in a HISAM database. It must be specified also for a logical child segment
that is sequenced on its physical twin chain through use of any part of the concatenated key of the
logical parent.

• PHDAM and PHIDAM

– PHYSICAL is the default for PHDAM and PHIDAM.

Chapter 8. SQL programming reference 629

– If VIRTUAL is specified for PHDAM or PHIDAM, it is ignored, and PHYSICAL is used.
• HDAM and HIDAM

– VIRTUAL is the default for HDAM and HIDAM.
– Symbolic pointers in HDAM and HIDAM databases use the LPCK and require the PHYSICAL

specification.

Keyword parameters for ALTER TABLE data capture changes (change_syntax)
The following keyword parameters are defined for the ALTER TABLE data capture changes
(change_syntax) statement:
DATA CAPTURE

When DATA CAPTURE is specified on the CREATE DATABASE statement, these options apply to all
tables within the physical database. If you specify this parameter in the CREATE or ALTER TABLE
statement, it overrides the specification for this statement.

The following physical databases support DATA CAPTURE:

• HISAM
• SHISAM
• HDAM
• PHDAM
• HIDAM
• PHIDAM
• DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of change options. If you do not
provide an exit routine, they can only specify 1 set of change options for logging. This method is
equivalent to specifying an asterisk (*) in place of an exit routine name on the EXIT= parameter
in a DBD macro statement. Each set is separated by a comma. NOCASCADE is mutually exclusive
with any combination of the C* (for example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

NOBEFORE | BEFORE
Before data is included in X'99' log records for REPL calls. NOBEFORE is the default. This
attribute is valid only for DEDB.

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA also identifies the
segment being deleted when the physical concatenated key is unable to do so. This attribute is
mutually exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the segment being
deleted by a cascade delete. This attribute is mutually exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical root's hierarchical
path. Use CNODATA to eliminate the substantial amount of path data needed for a cascade
delete. This attribute is mutually exclusive with NOCASCADE.

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine for updating. When
DATA is specified and an EDITPROC exit routine is also used on a table, the data passed is
expanded data. DATA is the default.

630 IMS: Application Programming APIs

NODLET |DLET
X'99' log records are written for DLET calls. NODLET is the default. This attribute is valid only
for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name must match
the name of a Data Capture exit routine as defined by the user to IMS. A maximum of 8
alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key. This key identifies the
physical table updated by the application. KEY is the default.

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment. Cascade delete is not
necessary when a segment without dependents is deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be captured. This option is
valid only for a DEDB, and this information is logged only in the X'9904' log records if the
option log is specified. This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is done for an unkeyed or
non-unique keyed segment when an insert rule of HERE is used and the F or L command code
is not used. The twin data IMS is positioned on at the time before the ISRT will be captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data be written to the IMS
system log.
For more information, see Asynchronous data propagation (System Programming APIs).

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time needed to retrieve
path data. NOPATH is the default.

PATH can be specified when the data from each segment in the physical root's hierarchical
path must be passed to the exit routine for an updated segment. Use PATH to allow an
application to separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the path is needed to compose
the DB2® for z/OS primary key. The DB2 for z/OS primary key would then be used in a
propagation request for a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the dependent contains
additional data that would not fit in the parent table.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several tables with one call; for example, you did not invoke the D command code.
In this case, additional processing is necessary if the application is to access each table with a
separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command codes are captured. This
option is valid for DEDBs only.

Keyword parameters for ALTER TABLE (alter-options)
Descriptions of all table-options are defined in the ALTER TABLE statement. All table-options are optional
and do not imply a default value if not specified. Specifying a table-option means a new value is being
supplied to replace the existing one.

Specifying the DATA CAPTURE keyword replaces all data capture exits that were previously supplied, if
any. If multiple data capture exits were previously supplied they must all be respecified if needed.

Chapter 8. SQL programming reference 631

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

Restrictions: You can specify the following clauses only once in an ALTER TABLE statement:

• ADD LCHILD
• ADD MAP
• DROP COLUMN
• DROP LCHILD
• DROP MAP
• RENAME COLUMN

The ADD COLUMN and ALTER COLUMN clauses can be specified multiple times in an ALTER TABLE
statement.

The following keyword parameters are defined for the ALTER TABLE (alter-options) statement:
ADD [COLUMN] column-definition

Adds a column to the table. The column must be unique in the table.
column_name

column_name represents the external name that is stored only in the IMS catalog, not in the database
that you are defining. Specify an external name as a 1- to 128-character uppercase alphanumeric
string. An external name can include underscore characters. Column names must be unique within a
segment.

Restriction: Column names cannot be reserved SQL keywords or begin with DFS.

For a list of the reserved SQL keywords that are restricted by the IMS Universal drivers, see Portable
SQL keywords restricted by the IMS Universal JDBC drivers (Application Programming).

INTERNALNAME internalname
Specifies the name of this field within a segment type. The name can be referred to by an application
program in a DL/I call SSA. Field names must be unique within a segment definition. The fldname1
value must be a 1- to 8-character alphanumeric value. The INTERNALNAME parameter is required on
the following types of fields:

• Key-sequenced field types, which specify the SEQ parameter
• Field types that are referenced by a segment search argument (SSA)
• Field types that are referenced by a PSB as a sensitive field.
• Field types that are referenced by an XDFLD

For other field types, you can omit the INTERNALNAME parameter. Omitting the INTERNALNAME
parameter can save storage in the data management block (DMB) of a database. However, to be
able to search on this field, you must specify the INTERNALNAME parameter. The INTERNALNAME
parameter cannot be specified on the following types of fields:

• Fields that are defined as arrays. A field that is defined as an array includes ARRAY in the field
definition.

• Fields that are defined as array elements. A field that is an array element specifies the name of an
array field on the IN keyword in the column.

• Fields that are defined as structures that contain one or more nested dynamic arrays. A field that is
defined as a structure includes STRUCT in the column.

• Fields that are contained in a structure that also contains a dynamic array. A field that is contained
within a structure specifies the name of the structure field on the IN keyword in the column.

• Fields that follow a dynamic array in a segment. A field that follows a dynamic array specifies the
STARTAFTER parameter.

• Fields that include the RELSTART parameter to specify a starting position that is relative to the
starting position of another field.

• Fields that are defined with XML.

632 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

The INTERNALNAME parameter must be specified for /CK and /SX columns. When specifying /CK
or /SK names, they must be enclosed in double quotes (").

• HSAM, SHSAM, INDEX, PSINDEX, and DEDB do not allow /CK or /SX columns.
• HISAM and SHISAM only allow /CK columns.
• HDAM, HIDAM, PHDAM, and PHIDAM allow /CK and /SX columns.

ALTER [COLUMN] column-alteration
Alters the definition of an existing column. Only the attributes specified are altered. Other attributes
remain unchanged. Only future values of the column are affected by the changes made with an
ALTER TABLE ALTER COLUMN statement. The column-alteration attributes are similar to the column-
definition attributes defined in the CREATE TABLE section with the exception that they only need to be
specified if an attribute needs to be changed.

RENAME [COLUMN] source-column-name TO target-column-name
Renames the specified column. The names must not be qualified.

source-column-name
Identifies the column that is to be renamed. The name must identify an existing column of the table.

target-column-name
Specifies the new name for the column. The name must not identify a column that already exists in
the table.

DROP [COLUMN] column-name RESTRICT
Drops the identified column from the table.

ADD lchild-definition
Adds an lchild. For an explanation of the options, see the lchild definitions in “CREATE TABLE” on page
684

DROP LCHILD table_name
Drops the identified lchild from the table and associated xdfld if any. The table_name parameter
specifies the IMS internal name of the logical child.

Keyword parameters for ALTER TABLE (column-definition)
The following keyword parameters are defined for the ALTER TABLE (column-definition) statement:
column_name

column_name represents the external name that is stored only in the IMS catalog, not in the database
that you are defining. Specify an external name as a 1- to 128-character uppercase alphanumeric
string. An external name can include underscore characters. Column names must be unique within a
segment.

Restriction: Column names cannot be reserved SQL keywords or begin with DFS.

For a list of the reserved SQL keywords that are restricted by the IMS Universal drivers, see Portable
SQL keywords restricted by the IMS Universal JDBC drivers (Application Programming).

INTERNALNAME internalname
Specifies the name of this field within a segment type. The name can be referred to by an application
program in a DL/I call SSA. Field names must be unique within a segment definition. The fldname1
value must be a 1- to 8-character alphanumeric value. The INTERNALNAME parameter is required on
the following types of fields:

• Key-sequenced field types, which specify the SEQ parameter
• Field types that are referenced by a segment search argument (SSA)
• Field types that are referenced by a PSB as a sensitive field.
• Field types that are referenced by an XDFLD

For other field types, you can omit the INTERNALNAME parameter. Omitting the INTERNALNAME
parameter can save storage in the data management block (DMB) of a database. However, to be

Chapter 8. SQL programming reference 633

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

able to search on this field, you must specify the INTERNALNAME parameter. The INTERNALNAME
parameter cannot be specified on the following types of fields:

• Fields that are defined as arrays. A field that is defined as an array includes DATATYPE=ARRAY in the
field definition.

• Fields that are defined as array elements. A field that is an array element specifies the name of an
array field on the PARENT parameter in the FIELD statement.

• Fields that are defined as structures that contain one or more nested dynamic arrays. A field that is
defined as a structure includes DATATYPE=STRUCT in the field definition.

• Fields that are contained in a structure that also contains a dynamic array. A field that is contained
within a structure specifies the name of the structure field on the PARENT parameter in the FIELD
statement.

• Fields that follow a dynamic array in a segment. A field that follows a dynamic array specifies the
STARTAFTER parameter.

• Fields that include the RELSTART parameter to specify a starting position that is relative to the
starting position of another field.

• Fields that are defined with DATATYPE=XML.

Keyword parameters for ALTER TABLE (datatype)
The following keyword parameters are defined for the ALTER TABLE (datatype) statement:
ARRAY | BINARY | ...

An optional 3- to 9-character alphanumeric field that specifies the external data type of the field.

If DECIMAL is specified on the DATATYPE parameter, the default INTERNAL TYPECONVERTER is
signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP is specified on the DATATYPE parameter, you must specify either LONG
or CHAR on the INTERNAL TYPECONVERTER parameter in the column definition or specify a USER
TYPECONVERTER. If a column definition is not included for this field, INTERNAL TYPECONVERTER
LONG is the default. When LONG is used, the value is stored on DASD as the number of milliseconds
since January 1, 1970.

If XML is specified on the DATATYPE parameter, the default INTERNAL TYPECONVERTER is
XML_CLOB, which is the only valid value when DATATYPE=XML is specified.

If STRUCT or ARRAY is specified on the DATATYPE parameter, the default INTERNAL
TYPECONVERTER is STRUCT or ARRAY, respectively, which are the only valid values when either
one is specified on the DATATYPE parameter.

For all other values for DATATYPE, the value is used as the default INTERNAL TYPECONVERTER.

If TYPE=C, DATATYPE defaults to CHAR. For any other specification of the TYPE parameter, DATATYPE
defaults to BINARY.

Valid values are:
ARRAY

When ARRAY is specified:

• The INTERNALNAME parameter is not supported
• The byte value specified on either the BYTES or MAXBYTES parameter must be equal to or

greater than the sum total of the bytes of all fields contained in the array.

The MSDB database type does not support the ARRAY data type.

You cannot redefine a field that has been defined as an ARRAY or that contains an ARRAY.

A field that is defined as an array includes DATATYPE=ARRAY in the field definition.

A field that is an array element specifies the name of an array field on the PARENT parameter in
the FIELD statement.

634 IMS: Application Programming APIs

BINARY
If TYPE=P or TYPE=X is specified, BINARY is the default value of the DATATYPE parameter.

BIT
If you specify BIT, you must also specify BYTES=1.

BYTE
If you specify BYTE, you must also specify BYTES=1.

UBYTE
If you specify UBYTE, you must also specify BYTES=1.

CHAR
If TYPE=C is specified, CHAR is the default value of the DATATYPE parameter.

DATE
When DATE is specified, you must also specify BYTES=8, unless you also specify a column
definition that includes either INTERNAL TYPECONVERTER CHAR or USER TYPECONVERTER
convertername.

DECIMAL(pp,ss)
pp

Precision. A 1- to 2-byte numeric field greater than 0.
ss

Scale. A 1- to 2-byte numeric field greater than or equal to 0. The value specified for ss cannot
be greater than the value of pp.

You must specify a value on the BYTES parameter that matches the decimal format that is used.

The default decimal format is signed packed decimal. To calculate the required value of the BYTES
parameter for the signed packed decimal format, use the following formula: length = ceiling ((pp
+ 1) / 2)

The default decimal format can be changed by specifying the INTERNAL TYPECONVERTER
parameter.

When the zoned decimal format is used, as specified by INTERNAL TYPECONVERTER
ZONEDDECIMAL, use the following formula to calculate the value of the BYTES parameter: length
= pp

DOUBLE
If you specify DOUBLE, you must also specify BYTES=8.

FLOAT
If you specify FLOAT, you must also specify BYTES=4.

INT
If you specify INT, you must also specify BYTES=4.

UINT
If you specify UINT, you must also specify BYTES=4.

LONG
If you specify LONG, you must also specify BYTES=8.

ULONG
If you specify ULONG, you must also specify BYTES=8.

OTHER
Specifies the use of a user-defined data type. When OTHER is specified, a column definition must
also be specified with a user-provided type converter specified on the USER TYPECONVERTER
parameter.

SHORT
If you specify SHORT, you must also specify BYTES=2.

USHORT
If you specify USHORT, you must also specify BYTES=2.

Chapter 8. SQL programming reference 635

STRUCT
When STRUCT is specified, you cannot also specify the SEQ parameter if this structure field
contains a dynamic array field as a child. Dynamic array fields are defined with DATATYPE=ARRAY
and the DEPENDSON and MAXBYTES parameters, among others.

Also, the byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the structure.

The MSDB database type does not support the STRUCT datatype.

TIME
When TIME is specified, you must also specify BYTES=8, unless you also specify a column
definition that includes either INTERNAL TYPECONVERTER CHAR or USER TYPECONVERTER
convertername.

TIMESTAMP
When TIMESTAMP is specified, you must also specify BYTES=8, unless you also specify a column
definition that includes either INTERNAL TYPECONVERTER CHAR or USER TYPECONVERTER
convertername.

XML

Restriction: DATATYPE=XML is not supported when the NAME parameter is specified.

Keyword parameters for ALTER TABLE (ims-column-syntax)
The following keyword parameters are defined for the ALTER TABLE (ims-column-syntax) statement:
BYTES bytes

Specifies the length of the field being defined in bytes. For fields other than system-related fields,
BYTES must be a valid self-defining term whose value does not exceed 255.

If a concatenated key or a portion of a concatenated key of an index source segment type is defined
as a system-related field, the value specified can be greater than 255, but must not exceed the length
of the concatenated key of the index source segment.

A case in which the byte length can be greater than 255 is when the column is defined as not
searchable by IMS. These columns cannot be defined as primary keys and cannot have the NAME
keyword specified.

The length of a /SX system-related field is always 4 bytes; therefore, when specified, the BYTES
parameter is disregarded.

If this field is defined as either a structure or an array by STRUCT or ARRAY, the value specified
on BYTES must be greater than or equal to the sum total of the bytes of all fields contained in the
structure or array.

When XML, the BYTES parameter is optional and the valid values for BYTES range from 0 to the
maximum size of the segment. If the BYTES parameter is omitted when XML, BYTES and MAXBYTES
are not allowed.

CCSID encoding
An optional 1- to 25-character field enclosed in single quotation marks that specifies the encoding of
the character data in the column. It is valid only when the INTERNAL TYPECONVERTER is CHAR.

The value specified cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

If not specified on for the column, the default value is determined by the value specified on either the
table or, if not specified on the table, the database. If the parameter is not specified on either the table
or database, the default value is Cp1047, which specifies EBCDIC encoding.

636 IMS: Application Programming APIs

DEPENDSON=
Specifies the name of a field that defines the number of elements in a dynamic array. The FIELD
statement of the referenced field must precede the FIELD statement that specifies the DEPENDSON
parameter. The name specified must be the value, whether explicitly defined or accepted by default,
of the EXTERNALNAME parameter in the definition of the referenced field.

The DEPENDSON parameter is valid only when DATATYPE=ARRAY is also specified. DEPENDSON is
required if the values of MINOCCURS and MAXOCCURS are different.

The field referenced by the DEPENDSON parameter must be defined with one of the following
DATATYPE values:

• INT
• SHORT
• LONG
• DECIMAL with either (pp) or (pp,ss) specified, where ss is either 0 or 00.

TYPE {C | X | P}
Determines the type of character that IMS uses to mask or pad the data in this field.
C

Specifies alphanumeric data or a combination of types of data. When C is specified, if IMS needs
to fill unused bytes in the field, IMS left justifies the value and fills the unused bytes to the right
of the value with X'40'. For example, a 3-byte value X'F5F4F3' in a 5-byte field is written out as
X'F5F4F34040'.

X
Specifies hexadecimal data. When X is specified, if IMS needs to fill unused bytes in the field, IMS
right justifies the value and fills the unused bytes to the left of the value with X'00'. For example, a
3-byte value X'543210' in a 5-byte field is written out as X'0000543210'.

P
Packed decimal data. When P is specified, if IMS needs to fill unused bytes in the field, IMS right
justifies the value and fills the unused bytes to the left of the value with X'00'. For example, a
3-byte value X'54321C' in a 5-byte field is written out as X'000054321C'.

MAXBYTES max_array_bytes
Specifies the maximum size of a field in bytes when the byte-length of the field instance can vary
based on the number of elements in a dynamic array. MAXBYTES and BYTES are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum total of the byte values of all
fields nested under this field.

The MAXBYTES parameter is required and valid only in the following cases:

• The field is defined as a dynamic array. A field is a dynamic array when the number of elements in
the array can vary from one instance of the field to another. In the definition of a dynamic array, the
DEPENDSON parameter references another field in the segment definition that defines the number
of array elements for an instance of the dynamic array.

• For a field defined as a static array or a structure that contains a nested field that is defined as a
dynamic array.

The MSDB database type does not support the MAXBYTES parameter.

IN column_name
Specifies the name of a field that is defined as a structure or array in which this field is contained. The
referenced field must be defined with either DATATYPE=ARRAY or DATATYPE=STRUCT.

INTERNAL TYPECONVERTER
Specifies the internal conversion routine that IMS uses to convert the IMS data into the data types
that are expected by the application program.

You can specify either INTERNAL TYPECONVERTER or USER TYPECONVERTER, but not both.
INTERNAL TYPECONVERTER or USER TYPECONVERTER are mutually exclusive.

Chapter 8. SQL programming reference 637

Valid values for the INTERNAL TYPECONVERTER parameter are:

ARRAY
An array is a data structure that contains as element that repeats.

BINARY
Binary integer includes small integer, large integer, and big integer. Binary numbers are exact
representations of integers.

BIT
If you specify BIT, you must also specify BYTES 1 on the corresponding column.

BLOB
The BLOB value can be specified on the INTERNALTYPECONVERTER parameter only when
DATATYPE=BINARY is specified in the preceding FIELD statement.

BYTE
If you specify BYTE, you must also specify BYTES 1 on the corresponding column.

UBYTE
If you specify UBYTE, you must also specify BYTES 1 and either DATATYPE BYTE or DATATYPE
UBYTE on the corresponding column.

CHAR
The CHAR value can be specified on the INTERNALTYPECONVERTER parameter only when CHAR,
DATE, TIME, or TIMESTAMP is specified on the DATATYPE parameter in the preceding FIELD
statement.

DOUBLE
If you specify DOUBLE, you must also specify BYTES 8 on the corresponding column.

FLOAT
If you specify FLOAT, you must also specify BYTES 4 on the corresponding column.

INT
If you specify INT, you must also specify BYTES 4 on the corresponding column.

UINT
If you specify UINT, you must also specify BYTES 4 and either DATATYPE INT or DATATYPE UINT
on the corresponding column.

LONG
If you specify LONG, you must also specify BYTES 8 on the corresponding column.

ULONG
If you specify ULONG, you must also specify BYTES 8 and either DATATYPE LONG or DATATYPE
ULONG on the corresponding column.

PACKEDDECIMAL
PACKEDDECIMAL is a data type extension for the IMS Universal JDBC driver and the IMS Universal
DL/I driver.

SHORT
If you specify SHORT, you must also specify BYTES 2 on the corresponding column.

USHORT
If you specify USHORT, you must also specify BYTES 2 and either DATATYPE SHORT or DATATYPE
USHORT on the corresponding column.

STRUCT
XML_CLOB

A Character Large Object (CLOB) is a collection of character data in a database management
system.

ZONEDDECIMAL
ZONEDDECIMAL is a data type extension for the IMS Universal JDBC driver and the IMS Universal
DL/I driver. You need to specify DATATYPE DECIMAL.

When you specify INTERNAL TYPECONVERTER, you must also specify the DATATYPE parameter.

638 IMS: Application Programming APIs

The value that is specified on the INTERNAL TYPECONVERTER parameter must be consistent with
the value specified on the DATATYPE parameter. In most cases, you must specify the same value on
INTERNAL TYPECONVERTER that you specify on the DATATYPE parameter.

ISSIGNEDYES | ISSIGNEDNO
This parameter is valid only for DATATYPE DECIMAL. The default is ISSIGNEDYES.

MINOCCURS min_array_elements
For ARRAY only, a required numeric value that specifies the minimum number of elements in an
ARRAY. MINOCCURS must be lesser than or equal to MAXOCCURS.

MAXOCCURS max_array_elements
For ARRAY only, a required numeric value that specifies the maximum number of elements in an
ARRAY. MAXOCCURS must be greater than or equal to MINOCCURS and not zero.

OVERFLOW table_name
A 1- to 8-character name of a dependent table that can be used to store any portion of an XML
document that does not fit into the column that is defined to hold the XML document. The parent
of the dependent table is the table that contains the XML data column. OVERFLOW applies only to
columns that specify DATATYPE XML for XML_CLOB data.

PATTERN
An optional 1- to 50-character field, enclosed in single quotation marks, that specifies the pattern to
use for the date, time, and time stamp Java datatypes.

PATTERN applies only when DATE, TIME, or TIMESTAMP is specified on the DATATYPE keyword
and CHAR is specified on the INTERNAL TYPECONVERTER keyword. PATTERN is invalid for other
datatypes.

Patterns are case-sensitive and must be enclosed in single quotation marks.

Except for single quotation marks that are used as delimiters for the keyword value, the value that is
specified on the PATTERN keyword cannot contain the following characters:

• Single and double quotation marks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

Patterns that you can specify are defined by the Java class java.text.SimpleDateFormat. DDL does not
check that the value entered on PATTERN conforms to the patterns defined by Java.

For example, if you enter the Java format yyyy.MM.dd, the resulting time format is "2013.01.01".

PROPERTIES name=value
Specifies properties for a user type converter that is specified on the USER TYPECONVERTER
parameter. These properties are passed to the user type converter.

The PROPERTIES parameter is valid only when USER TYPECONVERTER is specified.

The names and properties that are specified on the PROPERTIES keyword are case-sensitive and
must be enclosed in single quotation marks.

The following characters are not supported by the PROPERTIES keyword:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The maximum length for a property name is 128 characters. The maximum length for a property value
is also 128 characters.

The format is:

PROPERTIES=('name1' = 'value1' , 'name2' = 'value2')

Chapter 8. SQL programming reference 639

For example,

PROPERTIES=('DOG' = 'BUTCH' , 'CAT' = 'LUCY')

RELSTART relative_start_position
Specifies the starting position of a field that is defined as an element of an array or, in some
circumstances, a structure. Valid values are from 1 to 32767.

The value specified on RELSTART is the starting byte offset of the field relative to the start of the array
or structure. For example, the first field in an array would typically specify RELSTART 1, even if the
array that contains the field starts at byte 50 of a segment.

For fields that specify an array field as a parent, RELSTART is required.

For fields that specify a structure as a parent, RELSTART is required if the structure field is defined
with RELSTART or STARTAFTER.

In the following example, the field DYNARRAY is a dynamic array. The field STRUCT01 is a structure.
The fields FLD03 and FLD04 both specify STRUCT01 as a parent. Because a dynamic array precedes
STRUCT01 in the segment, the starting offsets of FLD03 and FLD04 can be specified only relative to
the start of STRUCT01.

FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100
 MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10
FIELD EXTERNALNAME=FLD03,RELSTART=1,BYTES=5,PARENT=STRUCT01
FIELD EXTERNALNAME=FLD04,RELSTART=6,BYTES=5,PARENT=STRUCT01

START, STARTAFTER, and RELSTART are mutually exclusive.

START start_position
Specifies the starting position of the field being defined in terms of bytes relative to the beginning
of the segment. The value of START must be a numeric term whose value does not exceed 32767.
The starting position for the first byte of a segment is one. For variable-length segments, the first 2
bytes contain the length of the segment. Therefore the first actual user data field starts in byte 3.
Overlapping fields are permitted. When defining a logical child segment, the first n number of bytes
of the segment type is the concatenated key of the logical or physical parent. A field starting in
position one would define all or a portion of this field. A field starting in position n+1 would start with
intersection data.

START can be used for a system-related field, to describe a portion of the concatenated key as a
field in an index source segment type. If used in this way, START specifies the starting position of the
relevant portion of the concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be a numeric term whose
value does not exceed the length of the concatenated key plus one. Subtract the value specified in the
BYTES parameter. The starting position parameter for the /SX system-related field is disregarded.

START, STARTAFTER, and RELSTART are mutually exclusive.

When XML, the START parameter is optional and START 0 can be specified. If the START parameter is
omitted when XML, START 0 is the default.

STARTAFTER field_name

When the starting byte offset of a field cannot be calculated because the field starts after a dynamic
array, specifies the name of the field that directly precedes this field in the segment. The name cannot
be the name provided on the NAME keyword.

STARTAFTER is required and valid only when the starting position of a field cannot be calculated
because the field is preceded at a prior offset by a field defined as a dynamic array.

Dynamic arrays make it impossible to calculate the starting offsets of subsequent fields in a segment,
because the byte lengths of dynamic arrays can vary from one instance of a segment to another. The

640 IMS: Application Programming APIs

columns of dynamic array fields can be identified by the inclusion of the DEPENDSON and MAXBYTES
parameters.

The STARTAFTER parameter cannot be specified on fields that define an array field as a parent.
Instead, specify the RELSTART parameter.

START, STARTAFTER, and RELSTART are mutually exclusive.

The STARTAFTER data is not returned if the GUR application is using IMS Universal Drivers (UDB).

URL xml_schema_url
An optional 1- to 256-character field, enclosed in single quotation marks, for the URL that references
the XML schema that describes this field.

For example,

URL='MySchema.xsd'

The value that is specified on the URL keyword cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The URL parameter applies only with DATATYPE XML for XML_CLOB data.

USER TYPECONVERTER typeconverter
Specifies a 1- to 256-character, enclosed in single quotation marks, fully qualified Java class name of
the user-provided Java class to be used for type conversion.

For example,

USER TYPECONVERTER 'class://com.ibm.ims.dli.types.PackedDateConverter'

The value that is specified on the USER TYPECONVERTER keyword cannot contain the following
characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

USER TYPECONVERTER is mutually exclusive with INTERNAL TYPECONVERTER.

Keyword parameters for ALTER TABLE (constraint)
The following keyword parameters are defined for the ALTER TABLE (constraint) statement:
CONSTRAINT constraint_name

Names the constraint. If a constraint name is not specified, a unique constraint name is generated. If
the name is specified, it must be different from the names of any constraints previously specified on
the table.

PRIMARY KEY(column_name) NON UNIQUE
Identifies this field as a sequence field in the segment type.
NON UNIQUE

An optional keyword that indicates that duplicate values are allowed in the sequence field of
occurrences of the segment type. For a root segment type, the sequence field of each occurrence
must contain a unique value, except in HDAM. The root segment type in an HDAM database does
not need a key field; if a key field is defined, it does not have to be unique.

Chapter 8. SQL programming reference 641

If not specified, only unique values are allowed in the sequence field of occurrences of the
segment type. For a dependent segment type, the sequence field of each occurrence under a
given physical parent segment must contain a unique value.

Keyword parameters for ALTER TABLE (references-clause)
The following keyword parameters are defined for the ALTER TABLE (references-clause) statement:
FOREIGN KEY REFERENCES

For dependent segment types, specifies the name of this segment's physical parent. The
column_name must follow the format of x_y, where x is the parent table name and y is that table's
primary key column name.
REFERENCES table_name

Specifies the dependent segments parent segment and is the IMS external table name.
SINGLE|DOUBLE

Specifies the type of physical child pointers to be placed in all occurrences of the physical parent of
the current table. SINGLE and DOUBLE can be specified only for tables in PHDAM, PHIDAM, HDAM,
HIDAM or DEDB databases and are ignored if the physical parent specifies hierarchic pointers (HIER
or HIERBWD).

SINGLE causes a 4-byte physical child first pointer to be placed in all occurrences of the physical
parent of the current table. SINGLE is the default.

DOUBLE causes a 4-byte physical child first pointer and a 4-byte child last pointer to be placed in all
occurrences of the physical parent of the current table.

DROP PRIMARY KEY
Drops the definition of the primary key.

DROP FOREIGN KEY
Drops the definition of the foreign key.

Keyword parameters for ALTER TABLE (map-definition)
The following keyword parameters are defined for the ALTER TABLE (map-definition) statement:
MAP

A map definition must be preceded by a column definition. The MAP statement enables the alternate
mapping of columns within a table. A group of one or more CASE statements that relate to a control
column is nested within the table. The control column identifies which CASE is used in a table
instance.

column_name
The external name of the column within this table that contains the value that determines which map
case is used for a segment instance. If the column does not contain a value that corresponds to a
caseid value in a CASE statement for this map, this map is not being used for this table instance.

AS map_name
An optional 1- to 128-character alphanumeric field that defines the name of this map. If not provided,
IMS will automatically generate a unique name within this table. The name must be in the form of
DFSMAPxxxxxxxx, where xxxxxxxx is an incremental number. The DFS prefix is reserved by IMS
and cannot be part of a user-created name.

Keyword parameters for ALTER TABLE (case-definition)
The following keyword parameters are defined for the ALTER TABLE (case-definition) statement:
CASE

The CASE statement defines a map case, which is a set of columns that define an optional, alternative
field layout for a particular byte range within a table.

Map cases that map the same byte range in a segment are grouped by a MAP statement. The MAP
statement also links the map cases to a separately defined control field in the table definition.

642 IMS: Application Programming APIs

Each map case has a unique ID. In an instance of the table, the ID of the map case that is in effect is
stored in the control field when the segment is created.

Unless the IMS Universal drivers are used, the field layouts that are defined by the map cases must
be defined to the application programs that access this byte range by a COBOL copybook or other
programming artifact. When a table instance is accessed, the application programs determine which
copybook to use by checking the value of the control field.

When application programs access IMS through the IMS Universal drivers, no additional programming
artifacts are needed to define the field layouts to the application programs.

caseid
A 1- to 128 byte field that defines a unique character or hex string. A table instance specifies the
caseid value in a user-defined control field when part or all of the field structure of the segment is
mapped by this case.

When specified as a character string the value must be specified within single quotes, for
example: 'name01'. When specified as a hex string the value must be specified within single
quotes followed by a hex indicator, for example: '00000001'x.

The caseid value can contain alphanumeric characters, underscore (_), @, $, and #. Or, it can be
a hexadecimal string. The length of the value must be supported by the length of the user-defined
control field. If alphanumeric, the length of the value must be less than or equal to the value
specified on the BYTES parameter of the control field. If it is a hexadecimal string, the length
of the CASEID value must be exactly equal to twice the value that is specified on the BYTES
parameter of the control field.

A case ID must be unique within the map that the case belongs to.

AS case_name
An optional 1- to 128-character alphanumeric field that defines the name of this case. A case
name must be unique within a table. If not provided, IMS will automatically generate a unique
name within this table. The name must be in the form of DFSCASExxxxxxxx, where xxxxxxxx is
an incremental number. The DFS prefix is reserved by IMS and cannot be part of a user-created
name.

Example: COGDBD
DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,OSAM), C
 RMNAME=(DFSHDC40,3,3,25), C
 PASSWD=NO
 DATASET DD1=COGDATA, C
 DEVICE=3390, C
 SIZE=(8192)
 SEGM NAME=ROOT, C
 PARENT=0, C
 BYTES=(28), C
 RULES=(LLL,HERE)
 FIELD NAME=(ROOTKEY,SEQ,U), C
 BYTES=12, C
 START=1, C
 TYPE=C, C
 DATATYPE=CHAR
 FIELD NAME=TABTYPE, C
 BYTES=8, C
 START=13, C
 TYPE=C, C
 DATATYPE=CHAR
 FIELD NAME=NEWFLD01, C
 EXTERNALNAME=New_Field_01, C
 BYTES=8, C
 START=21, C
 TYPE=X, C
 DFSMARSH ENCODING=Cp1047, C
 INTERNALTYPECONVERTER=DOUBLE
 SEGM NAME=TSINT, C
 PARENT=ROOT, C
 BYTES=(8,6), C

Chapter 8. SQL programming reference 643

 REMARKS='This describes table TSINT for testing.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CSINT, C
 EXTERNALNAME=CSINT, C
 BYTES=2, C
 START=7, C
 DATATYPE=SHORT
 SEGM NAME=TINT, C
 EXTERNALNAME=TESTINTEGER, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 RULES=(PPP,FIRST) C
 REMARKS='This describes table TINT.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CINT, C
 EXTERNALNAME=CINTEGER, C
 BYTES=4, C
 START=7, C
 DATATYPE=INT

ALTER TABLE root (
 ADD COLUMN New_Field_01 DOUBLE INTERNALNAME newfld01
) IN DATABASE COGDBD
 MAXBYTES 28;

Example: Modifying for Database Versioning
For more information about database versioning, see Database versioning (Database Administration).

DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,OSAM), C
 RMNAME=(DFSHDC40,3,3,25), C
 PASSWD=NO
DATASET DD1=COGDATA, C
 DEVICE=3390, C
 SIZE=(8192)
SEGM NAME=ROOT, C
 PARENT=0, C
 BYTES=(28), <-- From 20 to 28 C
 RULES=(LLL,HERE)
FIELD NAME=(ROOTKEY,SEQ,U), C
 BYTES=12, C
 START=1, C
 TYPE=C, C
 DATATYPE=CHAR
FIELD NAME=TABTYPE, C
 BYTES=8, C
 START=13, C
 TYPE=C, C
 DATATYPE=CHAR
FIELD NAME=NEWFLD01, C
 EXTERNALNAME=New_Field_01, C
 BYTES=8, C
 START=21, C
 TYPE=X, C
DFSMARSH ENCODING=Cp1047, C
 INTERNALTYPECONVERTER=DOUBLE

ALTER DATABASE COGDBD
 DBVER 1;

644 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_db_versioning.htm#ims_database_versioning

ALTER TABLE root (
 ADD COLUMN New_Field_01 DOUBLE INTERNALNAME newfld01
) IN DATABASE COGDBD
 MAXBYTES 28;

ALTER TABLESPACE
The ALTER TABLESPACE statement changes attributes of a data set group within a database or an area for
a DEDB. Altering a tablespace is an alter against the database resource.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “ALTER TABLESPACE syntax” on page 645
• “HSAM or SHSAM syntax” on page 645
• “GSAM syntax” on page 646
• “HISAM or INDEX syntax” on page 646
• “SHISAM syntax” on page 646
• “HDAM or HIDAM syntax” on page 646
• “DEDB syntax” on page 646

ALTER TABLESPACE syntax
ALTER TABLESPACE ddname IN database_name

Options for HSAM or SHSAM

Options for GSAM

Options for HISAM or INDEX

Options for SHISAM

Options for HDAM or HIDAM

Options for DEDB

HSAM or SHSAM syntax

OUTPUT (ddname) RECORD( reclen1 , reclen2)

BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

Chapter 8. SQL programming reference 645

GSAM syntax

OUTPUT (ddname) RECORD( reclen1 , reclen2)

BLOCK PRIMARY blkfact

SIZE PRIMARY area

FORMAT FIXED

FIXEDBLOCK

VARIABLE

VARIABLEBLOCK

UNDEFINED

HISAM or INDEX syntax

OVERFLOW (ddname) RECORD( reclen1 , reclen2)

BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

SIZE PRIMARY size SIZE SECONDARY size

SHISAM syntax

RECORD( reclen1 , reclen2) BLOCK PRIMARY blkfact

BLOCK SECONDARY blkfact SIZE PRIMARY size

SIZE SECONDARY size

HDAM or HIDAM syntax

BLOCK PRIMARY blkfact SIZE PRIMARY size

FREEBLOCK fbff FREESPACE fspf SCAN cyls

SEARCHA 0

1

2

DEDB syntax
SIZE PRIMARY size UOW( number1 , number2) ROOT( number1 , number2)

Description
The following keyword parameters are defined for the ALTER TABLESPACE statement:

646 IMS: Application Programming APIs

ddname
The 1- to 8-character ddname for the Fast Path database area or data set group that you want to
change. The name can include alphanumeric characters and special characters (#, @, and $).

For a database area, this name can be an area name or a ddname for a data set that contains only one
database area, but it must be an area name if the data set contains multiple database areas. If the
database is registered with DBRC, use the area name.

HSAM | SHSAM | GSAM
The ddname of input data set. The input data set is used when an application program retrieves
data from the database.

HISAM | SHISAM | INDEX
The ddname of primary data set in data set group.

HIDAM | HDAM
The ddname of data set in data set group.

DEDB
The area name or a ddname for single area data sets but can only be an area name for multiple
area data sets. If the database is registered in DBRC, this parameter should specify the area
name.

INdatabase_name
The name of the database that this database area or data set group belongs to.

database_name
The database this data set group belongs to.

Specifies the DBD name of a database whose data sets are to be dynamically allocated. This name
is used as a member name in IMS.SDFSRESL to identify this database parameter list. Care should
be taken to ensure that this name does not conflict with existing members in IMS.SDFSRESL. This
includes, but is not limited to, IMS modules and user-supplied exit routines.

BLOCK PRIMARY
BLOCK SECONDARY

Is used to specify the blocking factors to be used for data sets in a data set group for HSAM, SHSAM,
GSAM, HISAM, SHISAM, and INDEX databases, or is used to specify the block size or control interval
size without overhead for the data set in a data set group for HDAM and HIDAM databases.

For HISAM, SHISAM, and INDEX databases that use VSAM as the access method, use the SIZE
PRIMARY parameter to specify control interval size in place of the BLOCK PRIMARY or BLOCK
SECONDARY parameter. If the SIZE keyword is used for a HISAM, SHISAM, or INDEX database, the
BLOCK keyword is invalid.

In cases where the RECORD, BLOCK PRIMARY, and BLOCK SECONDARY operands are used, the
resulting control interval size must be a multiple of 512 when the resulting size is less than 8192
bytes. If the product of the record length specified times the blocking factor specified plus VSAM
overhead is not a multiple of 512 and is less than 8192 bytes, the resulting control interval size is
obtained by rounding the value up to the next higher multiple of 512. Control interval sizes from 8192
to 30720 bytes (maximum allowed size) must be in multiples of 2048 bytes. When the product of the
RECORD and BLOCK operands plus VSAM overhead is from 8192 to 30720 bytes but is not a multiple
of 2048, the resulting control interval size is obtained by rounding the value up to the next higher
multiple of 2048.

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10 bytes. The maximum block
size for OSAM data sets is 32 KB.

For HDAM and HIDAM databases, the BLOCK PRIMARY parameter is used to enable you to override
the computation of control interval or block size of IMS. However, in addition to the value specified
in the BLOCK PRIMARY parameter, IMS adds space for root anchor points, a free space anchor point,
and access method overhead. The block or control interval size that results can be determined by
referring to the equations in the description of the SIZE PRIMARY parameter or by examining the
output of IMS. If the SIZE parameter is not specified and the access method is VSAM, IMS calculates

Chapter 8. SQL programming reference 647

the best VSAM LRECL value by equally distributing any unused space in the CI to each logical record in
the CI. If the SIZE PRIMARY parameter is specified, this is not done.

The following table explains the use of the BLOCK and RECORD operands.

Table 167. BLOCK and RECORD operands

Database type Use of BLOCK and RECORD operands

HSAM/SHSAM BLOCK
BLOCK PRIMARY applies to input data set and should always be 1.

BLOCK SECONDARY applies to output data set and should always be 1.

RECORD
recordlength1 is the input record length.

recordlength2 is the output record length.

HSAM/SHSAM is always unblocked; LRECL and BLKSIZE are equal.

GSAM BLOCK
BLOCK PRIMARY applies to input/output data set.

BLOCK SECONDARY is an invalid subparameter.

RECORD
recordlength1 is the size of an LRECL length or maximum size for a
variable length record.

recordlength2 is the minimum size for a variable length record.

SIZE
SIZE PRIMARY is the BLKSIZE for input/output data set.

SIZE SECONDARY is an invalid subparameter.

HISAM/SHISAM BLOCK
BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the data set logical record length.

recordlength2 is the overflow data set logical record length.

HIDAM, HDAM BLOCK
size0 is size without overhead of OSAM or VSAM data set group

RECORD
Is ignored.

DEDB BLOCK and RECORD operands are invalid.

INDEX BLOCK
BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the primary data set logical record length.

recordlength2 is the overflow data set logical record length.

Note: When both recordlength1 and recordlength2 are specified in a TABLESPACE statement,
recordlength2 must be equal to or greater than recordlength1, except for GSAM.

648 IMS: Application Programming APIs

FORMAT
Specifies the format of the records in the data set. The valid record formats are:
FIXED

Fixed length.
FIXEDBLOCK

Fixed length and blocked
VARIABLE

Variable length.
VARIABLEBLOCK

Variable length and blocked.
UNDEFINED

Undefined length.

This keyword is required and only valid for a GSAM database.

FREEBLOCK
Specifies the free block frequency factor. Every nth control interval or block in this data set group
is left as free space during database load or reorganization. The valid range is 0-100 except 1. The
default is 0.

A smaller value increases the frequency of free space in the database. A value of 2, for example,
would mean that after each piece of data there would be a free space block. This causes
system performance degradation when running reorganization or load utilities because of the extra
processing required for the free space blocks.

FREEBLOCK is equivalent to the IMS keyword FRSPC=(fbff,)).

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE
Specifies the free space percentage factor, which is the minimum percentage of each control interval
or block that is to be left as free space in this data set group. The valid range is 0-99. The default is 0.

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE is equivalent to the IMS keyword FRSPC=(,fspf)).

OUTPUT (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the output data set that is required for an
HSAM or SHSAM database and optional for a GSAM database. This output data set is used by IMS
when loading the database. This keyword is invalid for other database access types.

OUTPUT is equivalent to the IMS keyword DD2=.

OVERFLOW (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in this data set group.
This parameter must be specified for:

• An INDEX database that contains index pointer segments with non-unique keys.
• All data set groups of a HISAM database except when only one segment type is defined in the

HISAM database.

The following conditions apply:

• Invalid for a simple HISAM (SHISAM) database.
• Not required for an HISAM database that contains only one segment type.
• Not required for an index DBD because all index segments are inserted in the key sequenced data

set of the index.
• Invalid for an INDEX database defined with an osaccess type of SHISAM.
• Only valid for HISAM and INDEX database access types.

Chapter 8. SQL programming reference 649

RECORD(recordlength1,recordlength2)
Specifies the data management logical record lengths to be used for this data set group. This keyword
is optional and only valid for HSAM, SHSAM, GSAM, HISAM, SHISAM, INDEX.

SCAN cylinders
Specifies the number of direct-access device cylinders to be scanned when searching for available
storage space during segment insertion operations. This parameter is optional and only valid for
HIDAM or HDAM databases. If specified, the value must be a decimal integer that does not exceed
255. Typical values are 0 - 5. The default is 3. If 0 is specified, only the current cylinder is scanned for
space.

Scanning is performed in both directions from the current cylinder position. If a scan limit value
causes scanning to include an area outside of the current extent, IMS adjusts the scan limits so that
scanning does not exceed current extent boundaries. If space cannot be found for segment insertion
within the cylinder bounds defined by this parameter, space is used at the current end of the data set
group for the database.

SEARCHA 0 | 1 | 2
Specifies the type of HD space search algorithm that IMS uses to insert a segment into an HD
database.
0

Specifies that IMS chooses which HD space search algorithm to use. 0 is the default.
1

Specifies that IMS uses the HD space search algorithm that does not search for space in the
second-most desirable block or CI.

2
Specifies that IMS uses the HD space search algorithm that includes a search for space in the
second-most desirable block or CI.

This keyword is optional and only valid for HDAM or HIDAM database.

SIZE PRIMARY size1
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block size of primary data set in
a data set group.

For HDAM, HIDAM, this keyword specifies the control interval or block size of the data set in the data
set group. For GSAM, this keyword specifies the block size for input/output data set.

For DEDB, this keyword is required and specifies the control interval.

This keyword is invalid for all other database types.

SIZE PRIMARY is equivalent to the IMS keyword SIZE=(size1,)).

SIZE SECONDARY size2
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block size of overflow data set.

This keyword is valid only for HISAM, SHISAM, and INDEX.

SIZE SECONDARY is equivalent to the IMS keyword SIZE=(,size2))

ROOT(number1,number2)
Specifies the total space that is allocated to the root addressable part of the area and to the area
reserved for independent overflow.
number1

Specifies the total space that is allocated to the root addressable part of the area. It is expressed
in UOWs. The rest of the VSAM data set is reserved for sequential dependent data.

The valid range is 2-32767; it cannot be larger than the amount of space in the VSAM data set.

number2
Specifies the space that is reserved for independent overflow in terms of UOWs. It must be at
least 1 and must be less than the value specified for number1. Although independent overflow
does not contain UOWs, the UOW size is used as the unit for space allocation.

650 IMS: Application Programming APIs

The reorganization UOW is automatically allocated by the DEDB Initialization utility. VSAM space
definition should include this additional UOW. That is, the total space required is the root addressable
area, the independent overflow, and one additional UOW for reorganization. The reorganization UOW
is not used by the High-Speed DEDB Direct Reorganization utility, but might be used by other
functions of IMS.

The ROOT keyword is required and only valid for DEDB.

UOW(number1,number2)
Required and only valid for DEDB. number1 specifies the number of control intervals in a unit of work.
The valid range is 2-32767. number2 specifies the number of control intervals in the overflow section.
Any value greater than or equal to 1 but at least one less than number1.

CLOSE
The CLOSE statement closes a cursor.

Invocation
This statement can be embedded only in a COBOL application program. It is an executable statement that
cannot be dynamically prepared.

Syntax
CLOSE cursor-name

Description
The following keyword parameters are defined for the CLOSE statement:
cursor-name

Identifies the cursor to be closed. The cursor name must identify a declared cursor as explained in
“DECLARE CURSOR” on page 741.

Example

A cursor C1 is used to fetch one row at a time into the application program variables HOSPCODE,
HOSPNAME, WARDNAME, and PATNAME. Finally, the cursor is closed. If the cursor is reopened, it is again
located at the beginning of the rows to be fetched.

EXEC SQLIMS
 DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
 PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS
 FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME
END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND
ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

Chapter 8. SQL programming reference 651

COMMENT ON
The COMMENT ON statement adds a comment to the definition of a resource or object in the IMS catalog.
You can alter a comment by reissuing the COMMENT ON statement.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “COMMENT ON syntax” on page 652
• “comment_option syntax” on page 652
• “comment_suboption syntax” on page 652

COMMENT ON syntax
COMMENT ON comment_option IS string_constant

comment_option syntax
DATABASE database_name

PROGRAMVIEW psb_name

comment_suboption IN resource_name

comment_suboption syntax
COLUMN table_name.column_name

COLUMN table_name.map_name.case_name.column_name

TABLE table_name

TABLESPACE ts_name

LCHILD table_name.lchild_table_name

XDFLD table_name.lchild_table_name.xdfld_name

MAP table_.map_name

CASE table_name.map_name.case_name

SCHEMA pcb_name

SENSEGVIEW pcb_name.senseg_name

SENFLD pcb_name.senseg_name.senfld_name

Description
The following keyword parameters are defined for the COMMENT ON statement:
IS string_constant

Optional user comments. A 1 to 256 character string enclosed in single quotation marks. The value
cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. The
following examples show correct and incorrect usages of single quotation marks:

 CORRECT
 IS 'These remarks apply to the XYZ application'

652 IMS: Application Programming APIs

 INCORRECT
 IS 'These remarks apply to the 'XYZ' application'

• Double quotation marks
• Less than (<) symbols
• Greater than (>) symbols
• Ampersands (&)

IN resource_name
Specifies the resource that the comment applies to. The resource can be a database (DBD) or a
program view (PSB). The name can be from 1 to 8 alphanumeric characters.

Omit the IN resource_name keyword for the following:

• COMMENT ON DATABASE database_name
• COMMENT ON PROGRAMVIEW psb_name

DATABASE database_name
Identifies the database. The name can be from 1 to 8 alphanumeric characters. Database resource
must be previously defined.

PROGRAMVIEW psb_name
Identifies the PROGRAMVIEW or PSB. The name can be from 1 to 8 alphanumeric characters.
PROGRAMVIEW must be previously defined.

COLUMN table_name.column_name
Identifies the column and table the column belongs to. The names can be from 1 to 128 alphanumeric
characters. Column and table must be previously defined.

COLUMN table_name.map_name.case_name.column_name
Identifies the alternative column mapping and map case the column belongs to. The names can be
from 1 to 128 alphanumeric characters. The table, map, case, and column must be previously defined.

TABLE table_name
Identifies the table. The name can be from 1 to 128 alphanumeric characters. Table must be
previously defined.

TABLESPACE ts_name
Identifies the TABLESPACE. The name can be from 1 to 8 alphanumeric characters. TABLESPACE must
be previously defined.

LCHILD table_name.lchild_table_name
Identifies the logical child table name specified on a LCHILD statement. The name can be from 1
to 128 alphanumeric characters. LCHILD table name and the table it belongs to must be previously
defined.

XDFLD table_name.child_table_name.xdfld_name
Identifies the indexed data field specified on a XDFLD statement. The name can be from 1 to 26
alphanumeric characters. XDFLD name and the table it belongs to must be previously defined.

MAP table_name.map_name
Identifies the map. The name can be from 1 to 128 alphanumeric characters. The map and table
names must be previously defined.

CASE table_name.map_name.case_name
Identifies the case. The name can be from 1 to 128 alphanumeric characters. The case, map, and
table names must be previously defined.

SCHEMA pcb_name
Identifies the PCB. The name can be from 1 to 8 alphanumeric characters. The PCB name must be
previously defined.

SENSEGVIEW pcb_name.senseg_name
Identifies the SENSEG. The name can be from 1 to 8 alphanumeric characters. The SENSEG and PCB
names must be previously defined.

Chapter 8. SQL programming reference 653

SENFLD pcb_name.senseg_name.senfld_name
Identifies the SENFLD. The name can be from 1 to 8 alphanumeric characters. The SENFLD, SENSEG,
and PCB names must be previously defined.

Usage notes
Text that is submitted with this statement is stored in a REMARKS segment in the IMS catalog definition
for the resource. The REMARKS segment that pertains to a resource or object is a direct child of that
resource or object in the catalog.

Example
Example for specifying a comment on the database:

COMMENT ON DATABASE dhvntz02 IS 'This describes database DHVNTZ02.'

Example for specifying a comment on a table:

COMMENT ON TABLE root IN dhvntz02 IS 'This describes the root table.'

Example for specifying a comment on a tablespace:

COMMENT ON TABLESPACE hidam IN dhvntz02 IS 'Dataset Group 1'

CREATE DATABASE
The CREATE DATABASE statement defines a new database to IMS.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “PHIDAM syntax” on page 655
• “HDAM syntax” on page 655
• “HIDAM syntax” on page 656
• “PHDAM syntax” on page 656
• “GSAM syntax” on page 657
• “HISAM syntax” on page 657
• “SHISAM syntax” on page 657
• “DEDB syntax” on page 658
• “HSAM syntax” on page 658
• “SHSAM syntax” on page 658
• “LOGICAL syntax” on page 659
• “INDEX syntax” on page 659
• “PSINDEX syntax” on page 659
• “data capture changes syntax” on page 660
• “exit_attributes syntax” on page 660

654 IMS: Application Programming APIs

PHIDAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS PHIDAM
1

OSAM

VSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

PSNAME psname

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

Notes:
1 If the ACCESS keyword is not specified, PHIDAM OSAM is the default database access type. If a
specific database access type is required, the user must specify the ACCESS keyword followed by the
access type.

HDAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

HDAM
OSAM

VSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

RMNAME (mod

RMANCH anch RMRBN rbn RMBYTES bytes

)

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

Chapter 8. SQL programming reference 655

HIDAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

HIDAM
OSAM

VSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

PHDAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

PHDAM
OSAM

VSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

PSNAME psname

RMNAME (mod

RMANCH anch RMRBN rbn RMBYTES bytes

)

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

656 IMS: Application Programming APIs

GSAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

GSAM
VSAM

BSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

HISAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

HISAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

SHISAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

SHISAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

Chapter 8. SQL programming reference 657

DEDB syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

DEDB

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

RMNAME( mod

RMANCH anch

XCINO

XCIYES

)

DATA CAPTURE

NONE

CHANGES(data_capture_changes)

HSAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

HSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

DATXEXITNO

DATXEXITYES

SHSAM syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

SHSAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

DATXEXITNO

DATXEXITYES

658 IMS: Application Programming APIs

LOGICAL syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

LOGICAL

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

INDEX syntax
CREATE DATABASE database_name

LIKE resource_name

ACCESS

INDEX
VSAM

SHISAM

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

DOSCOMPNO

DOSCOMPYES

PROTYES

PROTNO

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

FPINDEXNO

FPINDEXYES

PSINDEX syntax
CREATE DATABASE database_name

LIKE resource_name

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

ACCESS PSINDEX

CCSID

'Cp1047'

'encoding'

VERSION 'version_identifier'

PROTYES

PROTNO

Chapter 8. SQL programming reference 659

data capture changes syntax
LOG

NOLOG

exit_attributes

,

exitname
NOLOG

LOG

exit_attributes

exit_attributes syntax
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

NOBEFORE
1

BEFORE

NODLET

DLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

Notes:
1 BEFORE, NOBEFORE, DLET, NODLET, SSPCMD, NOSSPCMD, FLD, and NOFLD are for DEDB only.

Description
The following keyword parameters are defined for the CREATE DATABASE statement:
database_name

Specifies the name of the database being described. The name can be from 1 to 8 alphanumeric
characters. Do not give a database the same name as an existing database or program view.

If a resource already exists with the database name, a -9002 error message is returned.

ACCESS

Specifies the DL/I access method and the operating system access method to be used for this
database. This keyword also defines the secondary index database as a HALDB. The different access
methods are:
HSAM

Hierarchical sequential access method (HSAM). When HSAM is specified, and only one segment
type is defined in the HSAM database, this parameter defaults to SHSAM.

SHSAM
Simple HSAM database that contains only one fixed-length segment type. When a simple HSAM
database is defined, no prefix is required in occurrences of the segment type to enable IMS to
process the database.

GSAM
Generalized sequential access method (GSAM). BSAM or VSAM can be specified as the operating
system access method. VSAM is the default. When GSAM is specified, physical segments are not
allowed in the DBD.

660 IMS: Application Programming APIs

HISAM
Hierarchical index sequential access method (HISAM). IMS creates a HISAM database with a
VSAM operating system access method.

SHISAM
Simple HISAM database that contains only one fixed-length segment type. IMS creates a SHISAM
database with a VSAM operating system access method. When a simple HISAM database is
defined, no prefix is required in occurrences of the segment type to enable IMS to process the
database.

HDAM
Hierarchical direct access method (HDAM). OSAM or VSAM can be specified as the operating
system access method. OSAM is the default.

PHDAM
Partitioned hierarchical direct access method (PHDAM). OSAM or VSAM can be specified as the
operating system access method. OSAM is the default.

HIDAM
Hierarchical indexed direct access method (HIDAM). OSAM or VSAM can be specified as the
operating system access method. OSAM is the default.

PHIDAM
Partitioned hierarchical indexed direct access method (PHIDAM) is the default access method.
OSAM or VSAM can be specified as the operating system access method. OSAM is the default.

DEDB
Data entry database (DEDB).

INDEX
Creates the primary index to occurrences of the root segment type in a HIDAM database, or
creates a secondary index to a segment type in a HISAM, HDAM, or HIDAM database. For the
primary or secondary index to a HIDAM database, VSAM must be specified as the operating
system access method.

The INDEX parameter is also used to create a secondary index for a DEDB database. In such a
case, VSAM and SHISAM are both valid operating system access types.

The INDEX parameter is not used to define the primary index of a PHIDAM database.

PSINDEX
Creates the partitioned secondary index to a segment type in PHDAM and PHIDAM databases. A
PSINDEX is created with a VSAM operating system access method.

LOGICAL
A logical database comprises logical concatenations of some or all of one or more physical
databases. Logical databases must reference existing physical databases.

CCSID 'encoding'
An optional 1- to 25-character field that specifies the default encoding of all character data in this
database.

The default code page is Cp1047, which specifies EBCDIC encoding.

This value cannot contain the following characters:

• Single or double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

This value can be overridden in individual tables or columns.

Chapter 8. SQL programming reference 661

DATA CAPTURE
When DATA CAPTURE is specified on the CREATE DATABASE statement, these options apply to all
tables within the physical database. If you specify this parameter in the CREATE or ALTER TABLE
statement, it overrides the specification for this statement.

The following physical databases support DATA CAPTURE:

• HISAM
• SHISAM
• HDAM
• PHDAM
• HIDAM
• PHIDAM
• DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of change options. If you do not
provide an exit routine, they can only specify 1 set of change options for logging. This method is
equivalent to specifying an asterisk (*) in place of an exit routine name on the EXIT= parameter
in a DBD macro statement. Each set is separated by a comma. NOCASCADE is mutually exclusive
with any combination of the C* (for example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

NOBEFORE | BEFORE
Before data is included in X'99' log records for REPL calls. NOBEFORE is the default. This
attribute is valid only for DEDB.

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA also identifies the
segment being deleted when the physical concatenated key is unable to do so. This attribute is
mutually exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the segment being
deleted by a cascade delete. This attribute is mutually exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical root's hierarchical
path. Use CNODATA to eliminate the substantial amount of path data needed for a cascade
delete. This attribute is mutually exclusive with NOCASCADE.

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine for updating. When
DATA is specified and an EDITPROC exit routine is also used on a table, the data passed is
expanded data. DATA is the default.

NODLET |DLET
X'99' log records are written for DLET calls. NODLET is the default. This attribute is valid only
for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name must match
the name of a Data Capture exit routine as defined by the user to IMS. A maximum of 8
alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key. This key identifies the
physical table updated by the application. KEY is the default.

662 IMS: Application Programming APIs

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment. Cascade delete is not
necessary when a segment without dependents is deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be captured. This option is
valid only for a DEDB, and this information is logged only in the X'9904' log records if the
option log is specified. This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is done for an unkeyed or
non-unique keyed segment when an insert rule of HERE is used and the F or L command code
is not used. The twin data IMS is positioned on at the time before the ISRT will be captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data be written to the IMS
system log.
For more information, see Asynchronous data propagation (System Programming APIs).

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time needed to retrieve
path data. NOPATH is the default.

PATH can be specified when the data from each segment in the physical root's hierarchical
path must be passed to the exit routine for an updated segment. Use PATH to allow an
application to separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the path is needed to compose
the DB2® for z/OS primary key. The DB2 for z/OS primary key would then be used in a
propagation request for a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the dependent contains
additional data that would not fit in the parent table.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several tables with one call; for example, you did not invoke the D command code.
In this case, additional processing is necessary if the application is to access each table with a
separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command codes are captured. This
option is valid for DEDBs only.

DATXEXITNO | DATXEXITYES

Allows the Data Conversion user exit routine (DFSDBUX1) to be used by an application while it is
processing this database. The default is DATXEXITNO.

If DATXEXITYES is specified, the user exit DFSDBUX1 is called at the beginning and at the end of each
database call. If DFSDBUX1 is not loaded, IMODULE is called to load it.

If DATXEXITNO is specified, the DFSDBUX1 user exit routine can be called, provided DFSDBUX1 is
located in the SDFSRESL. If DFSDBUX1 does not need to be called again for the database definition,
X'FF' is returned in the SRCHFLAG field in the JCB, and DFSDLA00 dynamically marks the database
definition as not requiring the exit. In this case, the user exit is not called again for that database
definition for the duration of the IMS session, unless the DMB is purged from the DMB pool.

DOSCOMPNO | DOSCOMPYES
Indicates if this is a DLI/DOS index database. Must be specified if the database is an index, and it
was created using DLI/DOS. DLI/DOS index databases contain a segment code as part of the prefix.
Specifying that a database is a DLI/DOS index database causes IMS to expect this code to be present
in the defined database, and to process in a way that preserves this code. This includes providing a

Chapter 8. SQL programming reference 663

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

segment code for new segments being inserted. DLI/DOS databases must use VSAM and cannot be
PHDAM, PHIDAM, or PSINDEX databases.

FPINDEXNO | FPINDEXYES
Specifies whether an index database is a secondary index for a primary Fast Path DEDB database. By
default, an index database is not a secondary index.

LIKE resource_name
Specifies the name of a model resource to base the new resource on.

PASSWDNO | PASSWDYES
Specifying PASSWDYES causes DL/I to use the database name as the VSAM password when opening
any data set for this database. This parameter is only valid for databases that use VSAM as the access
method. You cannot use the database name as the password for the LOGICAL or DEDB database
types. When the user defines the VSAM data sets for this database using the DEFINE statement of
z/OS Access Method Services, the control level (CONTROLPW) or master level (MASTERPW) password
must be the same as the DBDNAME for this DBD. All data sets associated with this DBD must use the
same password.

For the IMS DB/DC system, all VSAM OPENs bypass password checking and thus avoid operator
password prompting. For the IMS DB system, VSAM password checking is performed. In the batch
environment, operator password prompting occurs if automatic password protection is not specified,
and the data set is password protected at the control level (CONTROLPW) with passwords not equal to
the database name.

Specifying PASSWDNO indicates that the database name should not be used as the VSAM password.
This is the default behavior.

PROTYES | PROTNO

Specifies if a secondary index database uses index pointer protection. This optional parameter
ensures the integrity of all fields in index pointer segments that are used by IMS. Use of this
parameter prevents an application program from doing a replace operation on any field within an
index pointer segment except for fields within the user data portion of index pointer segments. Delete
operations are still enabled for index pointer segments. If a delete is issued for an index pointer
segment, the index target segment pointer in the index pointer segment is deleted. However, the
index source segment that caused the index pointer segment to be created originally is not deleted.

If index pointer protection is not used, an application program can replace all fields within an index
pointer segment except the constant, search, and subsequence fields. Inserts to an index database
are invalid under all conditions.

By default, a secondary index database uses index pointer protection.

PSNAME psname
Specifies the module that selects the HALDB partition for PSINDEX, PHDAM, or PHIDAM databases.
The parameter is a HALDB partition selection exit routine module name. This parameter is only valid
when the access type for the database is PSINDEX, PHDAM, or PHIDAM.

Exception: A user-provided HALDB partition selection routine is not needed if root key ranges define
HALDB partition membership.

RMNAME mod
Specifies a module name that is used to manage the data that is stored in a DEDB or in the primary
data set group of an HDAM or PHDAM database. This parameter is only valid when the database
access type is HDAM, PHDAM, or DEDB. A randomizing module controls root segment placement in
or retrieval from the DEDB, HDAM, or PHDAM database. One or more modules, called randomizing
modules, can be utilized within the IMS system. A particular database has only one randomizing
module associated with it. A generalized module, which uses user-supplied parameters to perform
randomizing for a particular database, can be written to service several databases. The purpose of
a randomizing module is to convert a value supplied by an application program for root segment
placement in, or retrieval from, a DEDB, HDAM, or PHDAM database into a relative block number
and anchor point number. You can randomize within an area by selecting a two-stage randomizer.

664 IMS: Application Programming APIs

When you select a two-stage randomizer, the number of root anchor points in an area can be changed
without having to stop all areas in the DEDB with the /DBRECOVERY command.

For PHDAM databases, the randomizer module names and values become the default for each
partition. You can set a different randomizer name and values for each partition during HALDB
partition definition. HALDB partition selection is done prior to invoking the randomizing module. The
randomizing module selects locations only within a partition.

The module name is the 1- to 8-character alphanumeric name of a user-supplied randomizing module
that is used to store and access segments in this DEDB, PHDAM, or HDAM database. Select a two-
stage randomizer by specifying the randomizer name in the module name parameter and 2 in the
anchor point parameter.

RMANCH anch
The purpose of the anch value is different depending on whether you are defining a Fast Path DEDB
database or a full-function HDAM or PHDAM database.

This parameter must be an unsigned decimal integer. The default value of this parameter is one.

For a DEDB database, the value of anch specifies the type of randomizer. A value of 1 indicates a
single-stage randomizer. A value of 2 indicates a two-stage randomizer. Any other value is invalid.

For HDAM and PHDAM databases, the value of anch specifies the number of root anchor points
desired in each control interval or block in the root addressable area of the HDAM or PHDAM
database. Typical values are from 1 to 5 and the value cannot exceed 255.

When accessing a HDAM or PHDAM database, if a user randomizing routine produces an anchor point
number greater than the number specified for this parameter, the highest-numbered anchor point
in the control interval or block is used. When a randomizing routine produces an IMS anchor point
number of zero, IMS uses anchor point one in the control interval or block.

RMRBN rbn
Specifies the maximum relative block number value that you want to allow a randomizing module
to produce for this database. This parameter is for HDAM or PHDAM databases only. This value
determines the number of control intervals or blocks in the root addressable area of an HDAM or
PHDAM database. This parameter must be an unsigned decimal integer whose value does not exceed
224-1. If this parameter is omitted, no upper limit check is performed on the relative block number
created by the randomizing module. If this parameter is specified, but the specified randomizing
module produces an relative block number greater than this parameter, the highest control interval
or block in the root addressable area is used by IMS. If a user randomizing module produces a block
number of zero, the control interval or block one is used by IMS.

In an HDAM or PHDAM data set, the first bit map is in the first block of the first extent of the data set.
In an HDAM or PHDAM database, the first control interval or block of the first extent of the data set
specified for each data set group is used for a bit map. In a VSAM data set, the second control interval
is used for the bit map and the first control interval is reserved. IMS adds one to the block calculated
by the randomizer.

RMBYTES bytes
Specifies the maximum number of bytes of database record that can be stored into the root
addressable area in a series of inserts unbroken by a call to another database record. This parameter
is for HDAM and PHDAM databases only. If this parameter is omitted, no limit is placed on the
maximum number of bytes of a database record that can be inserted into this database's root
segment addressable area. The bytes parameter must be an unsigned decimal integer whose value
does not exceed 224-1. When the maximum relative block number parameter is omitted, this
parameter is ignored. In this case, there is no limit on the number of bytes of a database record
that can be inserted into the root addressable area.

If this parameter is specified for an HDAM or PHDAM database and the length of the database record
is larger, the remainder of the record is inserted into the overflow area following the current end-of-
file (EOF). This operation requires that enough space be available after the current EOF to contain the
remainder of all database records that exceed the value of this parameter. If sufficient space is not

Chapter 8. SQL programming reference 665

available in the overflow area following the current EOF, the database records are inserted randomly
in the database.

XCINO | XCIYES
Specifies whether this DEDB uses the Extended Call Interface when making calls to the randomizer.
This option allows the randomizer to be called in three different ways. On initialization of IMS or
during a /START DB command, IMS will first load the randomizer and then make an INIT call to the
randomizer to invoke its initialization routines. During a /DBR DB command, IMS will make a TERM
call to the randomizer to invoke the termination routines before unloading the randomizer. The normal
randomizing call to the randomizer is made when the application issues a GU or ISRT call on a root
segment. The XCI option is only valid for DEDBs.

VERSION 'version_identifier'
Specifies an identification string. You can use this as a comment descriptor for your database
changes.

Usage notes
Defining a database with the default options (with a CREATE DATABASE database_name statement
and no other parameters) creates a PHIDAM database with the OSAM dataset access type. You can
also explicitly specify that a PHIDAM database uses either the VSAM or OSAM dataset access type
by including either keyword in the CREATE statement: CREATE DATABASE database_name ACCESS
PHIDAM OSAM or CREATE DATABASE database_name ACCESS PHIDAM VSAM

Notes on data versioning
On a CREATE DATABASE statement, the database version number (DBVER) is always 0. CREATE defines
a new database to IMS, and 0 is always the base version. All CREATE and ALTER statements under the
same DDL stream (before an activate command) will work with version 0.

All dummy PSBs that are automatically generated will by default refer to the current version which is
version 0. You can optionally issue CREATE SENSEGVIEW to create PSBs manually, and specify “DBVER
0” on the PCBs to lock them at version 0. You cannot specify higher version numbers because only version
0 will exist in this stream. You can also optionally specify a “DBLEVEL CURR | BASE” setting. Be aware
that if a PSB that references version 0 is activated, but database versioning is not enabled, IMS rejects
application call from that PSB.

Example: Full Function Database
The following input can be used to specify DATA CAPTURE CHANGES keywords without a data capture
exit. This indicates to IMS that the user only wants logging.

DBD source equivalent:

DBD NAME=DHVNTZ02,ACCESS=(PHIDAM,OSAM), X
 EXIT=((*,KEY,DATA,NOPATH,(CASCADE,KEY,DATA,NOPATH), X
 LOG))

DDL equivalent:

CREATE DATABASE DHVNTZ02
 DATA CAPTURE CHANGES(
 LOG KEY DATA NOPATH CKEY CDATA CNOPATH
)

The following input can be used to specifying DATA CAPTURE CHANGES keywords with multiple data
capture exit.

DBD source equivalent:

DBD NAME=DHVNTZ02,ACCESS=(PHIDAM,OSAM), X
 EXIT=((EXIT1A,(CASCADE,KEY,DATA,PATH), X
 KEY,DATA,PATH,NOLOG), X
 (EXIT1B,NOKEY,NOPATH,NOLOG,(CASCADE,NOKEY,DATA,NOPATH)),X
 (EXIT1C,(CASCADE,NOKEY,NODATA,NOPATH), X

666 IMS: Application Programming APIs

 NOKEY,DATA,PATH,NOLOG), X
 (EXIT1D,KEY,NODATA,PATH,NOLOG, X
 (CASCADE,NOKEY,NODATA,PATH)))

DDL equivalent:

CREATE DATABASE DHVNTZ02
 DATA CAPTURE CHANGES(
 EXIT1A NOLOG KEY DATA PATH CKEY CDATA CPATH,
 EXIT1B NOLOG NOKEY NOPATH CNOKEY CDATA CNOPATH,
 EXIT1C NOLOG NOKEY DATA PATH CNOKEY CNODATA CNOPATH,
 EXIT1D NOLOG KEY NODATA PATH CNOKEY CNODATA CPATH
)

The following input to the DBD generation utility creates a basic full function database:

DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,OSAM), C
 RMNAME=(DFSHDC40,3,3,25), C
 PASSWD=NO, C
 VERSION=’Latest version of COGDBD’

The same database can be created with the following CREATE DATABASE statement:

CREATE DATABASE COGDBD
 ACCESS HDAM OSAM
 RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
 VERSION ‘Latest version of COGDBD’
 CCSID 'Cp1047';

Example: Fast Path Data Entry Database (DEDB)
Similarly to the previous example, the following input can be submitted to the DBD generation utility to
create a DEDB:

DBD NAME=HOSPDBD1, C
 ENCODING=Cp1047, C
 ACCESS=(DEDB), C
 RMNAME=(RMOD3,1,,,XCI) C
 PASSWD=NO

An equivalent database can be created with the CREATE DATABASE statement:

CREATE DATABASE HOSPDBD1
 ACCESS DEDB
 RMNAME(RMOD3 RMANCH 1 XCIYES)
 CCSID 'Cp1047';

CREATE PROGRAMVIEW
Before running an application program under IMS, an application PROGRAMVIEW must be created to
describe how the program can use logical terminals and logical data structures. A PROGRAMVIEW is
known as a program specification block (PSB) to IMS. The CREATE PROGRAMVIEW statement creates a
PSB, which is an IMS specific resource.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS JDBC drivers. It is an executable statement that cannot be dynamically prepared.
CREATE SENSEGVIEW and CREATE SCHEMA statements are required for the CREATE PROGRAMVIEW
statement.

• “CREATE PROGRAMVIEW syntax” on page 668
• “alternate_schema_statement syntax” on page 668
• “DB_schema_statement syntax” on page 669

Chapter 8. SQL programming reference 667

• “GSAM_schema_statement syntax” on page 669
• “sch_procopt syntax” on page 669
• “ssview_statement syntax” on page 670
• “sf_statement syntax” on page 670
• “ssv_procopt syntax” on page 671

CREATE PROGRAMVIEW syntax
CREATE PROGRAMVIEW psb_name

CREATE SCHEMA pcb_name A

CREATE SCHEMA TP pcbname B DBLEVELCURR

DBLEVELBASE

CMPATNO

CMPATYES

GSROLBOKNO

GSROLBOKYES

OLICNO

OLICYES LOCKMAX n

IOASIZE n MAXQ n SSASIZE n

LANGASSEM

LANGCOBOL

LANGPLI

LANGPASCAL

LANGJAVA

IOEROPN n
WTORNO

WTORYES

alternate_schema_statement syntax
CREATE SCHEMA TP pcbname

USING
1

lterm_name

transaction_code

AS external_name

SAMETRMNO

SAMETRMYES

MODIFYNO

MODIFYYES

EXPRESSNO

EXPRESSYES

LISTYES

LISTNO

ALTRESPNO

ALTRESPYES

Notes:
1 The lterm_name or transaction_code is required except when MODIFYYES is specified.

668 IMS: Application Programming APIs

DB_schema_statement syntax

CREATE SCHEMA
DB

pcb_name USING database_name

AS external_name

(

,

ssview_statement)

PROCOPT A

PROCOPT sch_procopt DBVER n COPIES n

LISTYES

LISTNO

POSSNGL

POSMULT

SBNO

SBCOND DEDBVIEW

MSDBVIEW

PROCSEQ ff_index

GSAM_schema_statement syntax
CREATE SCHEMA GSAM pcb_name USING database_name

AS external_name

PROCOPT G

S

L

S

LISTYES

LISTNO

sch_procopt syntax
A

a

b

GO

GOP

GON

GONH

GONP

GOT

GOTH

GOTP

L

P

S

P

Chapter 8. SQL programming reference 669

a
A

E P H

b
G

S E P H

I

E P H

R

E P H

D

E P H

ssview_statement syntax
CREATE SENSEGVIEW senseg_name

(

,

sf_statement)

WITH

with_options

with_options

PROCOPT ssv_procopt

INDICES(

,

list)
SSPTR(

,

n
R

U

)

REFERENCES table_name

sf_statement syntax

sf_name WITH START ( n)
REPLYES

REPLNO

670 IMS: Application Programming APIs

ssv_procopt syntax
G

I

E P

R

D

A

E P

K

Keyword parameters for CREATE PROGRAMVIEW
The following keywords parameters can be specified in the CREATE PROGRAMVIEW statement:
psb_name

Specifies the name of the program view. A program view is equivalent to a PSB in IMS. The name must
not be the same as that of a database or PSB that exists in the catalog.

DBLEVELCURR | DBLEVELBASE
When database versioning is enabled, specifies the version of the database definition that is used to
return data to application programs that do not request a specific database version. For all application
programs that use this program specification, the value that is specified here overrides the system
default for the DBLEVEL parameter that is specified in the DFSDFxxx member of the IMS.PROCLIB
data set.
DBLEVELCURR specifies that applications receive data according to the latest version of the database
definition.
DBLEVELBASE specifies that applications receive data according to version 0 of the database
definition.
Regardless of the default version of the database specification that is used, applications can request
to use a specific version of the database specification when the program is scheduled.

CMPATNO | CMPATYES
Provides compatibility between BMP or MSG and Batch-DL/I parameter lists. If set to YES, this PSB is
always treated as if there were an I/O PCB, no matter how it is used. If set to NO, the PSB has an I/O
PCB added only for BMP or MSG regions. The default is NO.

GSROLBOKNO | GSROLBOKYES
Controls whether an internal ROLB call should be done to roll back non-GSAM database updates
when:

• The application is a non-message-driven BMP.
• The PSB contains a PCB for a GSAM database.
• Db2 for z/OS reports a deadlock either on a thread create or on an SQL call.

YES means that the internal ROLB call is done and that the SQL code regarding the deadlock is
returned to the application program. NO means that a user abend 777 occurs instead of the ROLB call.
The default is NO.

OLICNO | OLICYES
Indicates whether the user of this PSB is authorized to execute the Online Database Image Copy
utility or the Surveyor utility feature that runs as a BMP against a database named in this PSB. YES
allows the Online Image Copy and the Surveyor utility feature; NO prohibits the Online Image Copy
and the Surveyor utility feature. NO is the default. This parameter is invalid if any database PCB (a PCB
with DB specified for the TYPE parameter) in the PSB specifies the L or LS processing options.

Exception: This parameter is not applicable to CICS, GSAM, HSAM, MSDB, or DEDB databases.

Chapter 8. SQL programming reference 671

LOCKMAX n
Indicates the maximum number of locks an application program can get at one time. n is a numeric
value 0 - 255. n is specified in units of 1000. For example, a specification of LOCKMAX=5 indicates a
maximum of 5000 locks at one time.

The default value is 0, which indicates that there is no maximum number of locks that are allowed at
one time.

If an application program runs for an extended time without committing, the locking done by IMS of
database records and changes can accumulate. You can use the LOCKMAX parameter to prevent a
single application program from consuming all locking storage and causing other programs to abend.

You can override the LOCKMAX value that is specified at program execution by specifying LOCKMAX=0
(to turn off limit completely) or by specifying LOCKMAX=1 to 32767 on the dependent region (BMP,
MPP, or IFP) or Batch (DBB or DLI). The value is in units of 1000. You can use this method to exceed
the maximum value of 255 that can be specified on the LOCKMAX parameter.

IOASIZE n
Specifies the size (in bytes) of the largest I/O area used by the application program. The size
specification is used to determine the amount of main storage reserved in the PSB pool to hold
the control region copy of the user I/O area data during scheduling of this application program. If you
do not specify this value, the IMS calculates a maximum default I/O area size. The default size is the
total length of all of the sensitive segments in the longest possible path call. (The total length of the
segment must be used, even if the application program is not sensitive to all fields in a segment.)
The value specified is in bytes, with a maximum of 256000. However, the combined length of all
concatenated segments to be returned to the application on a single path call must not exceed 65535
bytes.

If the PSB contains any field-sensitive segments, and IOASIZE is specified, the specified value is used
only if it is larger than the IOASIZE calculated by the ACBGEN utility. The value of the IOASIZE that
will be used is indicated. The major components of this pool requirement are IOASIZE and SSASIZE.

If STAT calls or the test program (DFSDDLT0) are used with this PSB, IOASIZE must be greater than
600 bytes.

If CMD or GCMD calls (from automated operator interface application programs) are used with this
PSB, IOASIZE must be at least 132 bytes.

If extended checkpoint/restart is used, IOASIZE must be set to a value equal to or greater than the
larger of the following:

• I/O area needed to receive data from a GU call issued during restart, while repositioning DL/I
databases that have a previous checkpoint (if this PSB contains any).

• Largest LRECL used in a GSAM data set that has a previous checkpoint.

Either the value pointed to by the third parameter (I/O AREA LEN) of the XRST CALL or the value of
this parameter will be used, depending on which value is larger.

MAXQ n
Is the maximum number of database calls with Qx command codes that can be issued between
synchronization points. The maximum number is 32,767. The default value is zero.

SSASIZE n
Specifies the maximum total length of all SSAs used by the application program. IMS uses the size
specification to determine the amount of main storage that is reserved in the PSB work pool to hold a
copy of the user's SSA strings during execution of this application program. If you do not specify this
value, IMS calculates a maximum SSA size to be used as a default. The size that is calculated is the
maximum number of levels in any PCB within this PSB multiplied by 280. The value that is specified is
in bytes, with a maximum of 256000.

Restriction: When you run IMS under CICS without DBCTL, the PSB work pool requirement cannot
exceed 64 KB.

The major components of this pool requirement are IOASIZE and SSASIZE.

672 IMS: Application Programming APIs

Important: For Fast Path secondary index calls, an SSASIZE workarea holds the converted SSAs that
accommodate the additional storage from SUBSEQ fields and number of qualifications. When a DL/I
call is initiated, the converted SSAs are passed into the full-function database.

The default SSASIZE is specified as the default SSA size defined during ACBGEN plus 840 bytes.

If you specify an SSASIZE or if you use the default and the SSASIZE is not large enough, an AU status
code is issued. To correct this problem, specify a larger SSASIZE in the PSB and rerun PSBGEN and
ACBGEN to resolve the problem.

LANGASSEM | LANGCOBOL | LANGPLI | LANGPASCAL | LANGJAVA
An optional keyword that indicates the compiler language in which the message processing or batch
processing program is written. If you specify OLICYES, LANGPLI is invalid. If your application program
is written in C language, specify LANGASSEM.

CICS and the Language Environment for z/OS do not support LANGPASCAL.

You must specify LANGJAVA if the application is using the Java class libraries for IMS in a JMP region.

If you are using IMS PL/I applications that run in a compatibility mode using the PLICALLA entry point,
you must specify LANGPLI.

IOEROPN n
Is applicable only in batch-type regions (DLI or DBB). This parameter is not valid for CICS. The n
subparameter is the condition code returned to the operating system when IMS terminates normally
and one or more input or output errors occurred on any database during the application program
execution. The n subparameter is a number from 0 to 4095.

If n=451, IMS terminates with a U451 abend instead of passing a condition code to the operating
system. If n=451 and the IMS or the application program abends with an abend other than U451, and
an I/O error has also occurred, a write-to-programmer of message DFS0426I is issued. This message
indicates that an I/O error has occurred during execution and that a U451 abend has occurred if the
actual abend has not.

If n=451, IMS terminates with abend U0451, even if the operator responds CONT to the DFS0451A
message.

By using the IOEROPN parameter, you can set a unique JCL condition code when an I/O error occurs
and test the condition code in subsequent job steps. If you do not specify this parameter, the return
code passed from the application program is passed to the operating system and status codes and
console messages are the only indications of database I/O errors.

WTORNO | WTORYES
If you specify WTORYES, a WTOR for the DFS0451A I/O error message is issued, and DL/I waits
for the operator to respond before continuing. If you respond ABEND, IMS terminates with a U0451
abend. If you respond CONT IMS continues. Any other response causes the DFS0451A message to be
reissued.

If you specify WTORYES or WTORNO, you must also specify IOEROPN.

Keyword parameters for CREATE SCHEMA
The following keyword parameters are defined for the CREATE SCHEMA statement:
ALTRESPNO | ALTRESPYES

Specifies whether this alternate schema can be used instead of the I/O PCB for responding to
terminals in response mode, conversational mode, or exclusive mode. Valid only for alternate
schemas (TP PCBs). The default is ALTRESPNO.

EXPRESSNO | EXPRESSYES
Specifies whether messages from this alternate schema are to be sent or are to be backed out if
the application program should abend. Valid only for alternate schemas (TP PCBs). The default is
EXPRESSNO.

EXPRESSYES, when specified indicates that messages can be sent to the destination terminal even
though the program abends or issues a ROLL or ROLB call. For all PCBs (express or non-express)

Chapter 8. SQL programming reference 673

under these conditions, messages that are inserted but not made available for transmission are
canceled, while messages made available for transmission are never canceled.

For a non-express PCB, the message is not available for transmission to its destination until the
program reaches a sync (commit) point. The sync point occurs when the program terminates, issues a
CHKP call, or requests the next input message (if the transaction is defined with MODE=SNGL).

For an express PCB, the message is available for transmission to the destination when IMS knows it
has the complete message. The message is available when a PURG call is made using that PCB, or
when the program requests the next input message.

When the PSB is defined as a Fast Path application in the IMS system definition, EXPRESSYES, if
specified, is ignored at execution time for a response alternate PCB.

EXPRESSNO, when specified indicates that messages are backed out if the application program
abends.

MODIFYNO | MODIFYYES
Specifies whether the alternate schema is modifiable. This feature allows for the dynamic
modification of the destination name that is associated with this schema. If MODIFYYES is specified,
omit the USING clause. Valid only for alternate schemas (TP PCBs). The default is MODIFYNO.

SAMETRMNO | SAMETRMYES
Specifies whether IMS verifies that the logical terminal that is named in the response alternate
schema is assigned to the same physical terminal as the logical terminal that originated the
input message. You must specify SAMETRMYES for response alternate schemas that are used
by conversational programs and programs operating with terminals in response mode. Specify
SAMETRMNO if alternate response schemas are used to send messages to output-only devices that
are in exclusive mode. Valid only for alternate schemas (TP PCBs). The default is SAMETRMNO.

DBVER n
When database versioning is enabled, specifies the version number of the database definition (DBD)
that this application program requires.

The numeric value specified must match a version number defined on the DBD and stored in the IMS
catalog. Valid values for a database version number are 0 to 2147483647.

If multiple PCBs within a PSB refer to the same database, each PCB must specify the same DBD
version number.

LISTYES | LISTNO
Specifies whether the named PCB is included in the PCB list passed to the application program at
entry. Specify YES to include a named PCB in the PCB list. Specify NO to exclude a named PCB from
the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with either the label or
PCBNAME= parameter. You can specify LIST=NO if an application program does not need a PCB's
address.

POSSNGL | POSMULT
Specifies single or multiple positioning for the logical data structure. Single or multiple positioning
provides a functional variation in the call.

The performance variation between single and multiple positioning is insignificant. HSAM does not
support multiple positioning.

POS=SINGLE or S is the default.

Exception: For DEDBs having more than two dependent segments, the default is POS=MULTPLE or M.

Coding a POS value on the PCB statement for a DEDB will not override the default that is selected
based on the number of dependent segments.

674 IMS: Application Programming APIs

SBNO | SBCON
Specifies which PCBs will be buffered using sequential buffering (SB). This is an optional parameter.
The default is SB=NO, unless the default option has been modified for Batch and BMPs by the
DFSSBUX0 to SB=COND.
COND

Specifies that SB should be activated conditionally. IMS will monitor statistics about the I/O
reference pattern of this PCB to the DB data set. If IMS detects a sequential I/O reference pattern
and a reasonable activity rate, it will activate SB and acquire the required buffers.

NO
Specifies that SB should not be used for this DB PCB.

Tip: For short-running MPPs, Fast Path programs, and CICS programs, either omit the SB= keyword or
specify SB=NO.

DEDBVIEW | MSDBVIEW

Applications can use the default DEDB commit view, or can use either the MSDB or MSDBL commit
view if you specify VIEW=MSDB or VIEW=MSDBL. If you specify VIEW=MSDBL, a lock is held for the
duration of DL/I data access and then released at the end of the call.

If you choose to use the default DEDB commit view after having previously specified VIEW=MSDB or
VIEW=MSDBL, no changes to existing application programs are required to migrate your MSDBs to
DEDBs.

If you issue a REPL call with a PCB that specifies VIEW=MSDB or VIEW=MSDBL, the segment must
have a key. This includes any segment in a path if command code 'D' is specified. Otherwise, status
AM is returned.

PROCSEQ index_dbname
Specifies the name of a secondary index that is used to process the database named in the DBDNAME
parameter through a secondary processing sequence. The parameter is optional. It is valid only if a
secondary index exists for this database. If this parameter is used, subsequent SENSEG statements
must reflect the secondary processing sequence hierarchy of segment types in the indexed database.
For example, the first SENSEG statement must name the indexed segment with a PARENT=0
parameter.

full_function_index_dbname must be the name of a secondary index DBD.

For a secondary processing sequence, processing options L and LS are invalid. Inserting and deleting
the index target segment and any of its inverted parents is not allowed. When the blocks are built,
if the processing option for these segments includes I or D, a warning message indicates that the
processing option has been changed to reflect this restriction.

PROCOPT sch_procopt
Specifies the processing options for the sensitive segments that are declared in this PCB. You can use
these specified options in an associated application program. You can use a maximum of four options
with this parameter. The letters in the parameter have the following meaning:
A

All options. By default, PROCOPT=A includes the G (get), I (insert), R (replace), and D (delete)
options. PROCOPT=A is the default setting.

G
Get option.

I
Insert option. By default, PROCOPT=I includes the G (get) option for Fast Path DEDBs;
PROCOPT=I does not include the G option for other database types.

R
Replace option. By default, PROCOPT=R includes the G (get) option.

D
Delete option. By default, PROCOPT=D includes the G (get) option.

Chapter 8. SQL programming reference 675

P
Path calls. Required if command code D is to be used, except for ISRT calls in a batch program
that is not sensitive to fields. PROCOPT=P is not required if command code D is used when
processing DEDBs. P is used in conjunction with the A (all), G (get), I (insert), D (delete), and L
(load) options.

O
If the O option is used for a PCB, IMS does not check the ownership of the segments returned.
Therefore, the read without integrity program might get a segment that has been updated by
another program. If the updating program abends and backs out, the read without integrity
program will have a segment that does not exist in the database and never did. If a segment
has been deleted and another segment of the same type has been inserted in the same location,
the segment data, and all subsequent data returned to the application, can be from a different
database record. Therefore, if you use the O option, do not update based on data read with that
option. O must be specified as GO, GON, GONP, GOT, GOTP, or GOP only.

IMS recognizes some of these error types and converts them to abend U0849. However, other
conditions that occur under PROCOPT GOx are not detected as having been caused by the
read-without-integrity. It is possible to get loops, hangs, and system abends. When using this
PROCOPT, carefully consider system design to determine if concurrent update activity is likely to
cause higher risk of these kinds of conditions.

N
Reduces the number of abends that read-only application programs are subject to. Read-only
application programs can reference data being updated by another application program. When
this happens, an invalid pointer to the data might exist. If an invalid pointer is detected, the read-
only application program abends. By specifying N, you avoid this. A GG status code is returned
to the program instead. The program must determine whether to terminate processing, continue
processing by reading a different segment, or access the data using a different path. N must be
specified as GON, GONH, or GONP.

T
Similar to the N option, except that T causes DL/I to automatically retry the operation. If the retry
fails, a GG status code is returned to the application program. T must be specified as GOT, GOTH,
or GOTP.

E
Enables exclusive use of the database or segment by online programs. Used in conjunction with G,
I, D, R, and A.

Restriction: For a DEDB, PROCOPT=E is not permitted.

L
Load option for database loading (except HIDAM and PHIDAM).

GS
Get segments in ascending sequence only (HSAM only). If you specify GS for HSAM databases,
they will be read using the Queued Sequential Access Method (QSAM) instead of the basic
Sequential Access Method (BSAM) in a DL/I IMS region.

LS
Load segments in ascending sequence only (HIDAM, HDAM, PHIDAM, PHDAM). This load option
is required for HIDAM and PHIDAM. Because you must specify LS for HIDAM and PHIDAM
databases, the index for the root segment sequence field will be created at the time the database
is loaded.

H
Specifies high-speed sequential processing for the application program that is using a particular
PSB. The following restrictions apply to using PROCOPT=H:

• It can be used for DEDBs only.
• It is allowed on the PCB level and not on the segment level.
• It must be used with other Fast Path processing options.

676 IMS: Application Programming APIs

• A maximum of four PROCOPT options can be specified, including H.
• It can only be specified for BMPs.
• Only one PROCOPT=H PCB per database per PSB is allowed. If a BMP that is using HSSP uses

multiple PCBs with PROCOPT=H for the same database within the same PSB, all database calls
that are using a PCB other than the first one that is used will receive an FH status code. You can
use the NOPROCH keyword on the SETO statement to alleviate this restriction.

• PROCOPT=H cannot be used if PROCSEQD=Fast_Path_index_dbdname is specified.
• PROCOPT=H cannot be used with PROCOPT=GO.

H is used in conjunction with A, G, I, R, and D.
The PROCOPT value can be up to 4 characters long. It needs to have at least one option from A, G, I,
R, D, and L; that is, option E, S, P, O, N, T, or H cannot exist without an option from the group of A, G, I,
R, D, and L group.
The default PROCOPT value is A. PROCOPT GOx and Lx groups need to follow the sequence in the
diagram.

Keyword parameters for CREATE SENSEGVIEW
The following keyword parameters are defined for the CREATE SENSEGVIEW statement:
PROCOPT ssv_procopt

Indicates the processing options valid for use of this sensitive segment by an associated application
program. This parameter has the same meaning as the PROCOPT= parameter on the PCB statement.
In addition to the valid options for this parameter, an option can be used on the SENSEG statement
which does not apply to the PCB statement. A PROCOPT of K indicates key sensitivity only. A GN
call with no SSAs can access only data-sensitive segments. If a key-sensitive segment is designated
for retrieval in an SSA, the segment is not moved to the user's I/O area. The key is placed at the
appropriate offset in the key feedback area of the PCB. If this PROCOPT= parameter is not specified,
the PCB PROCOPT parameter is used as default. If there is a difference in the processing options
specified on the PCB and SENSEG statements and the options are compatible, SENSEG PROCOPT
overrides the PCB PROCOPT. If PROCOPT= L or LS is specified on the preceding PCB statement, this
parameter must be omitted.

Do not specify a SENSEG statement for a virtual logical child segment type if PROCOPT= L or LS is
specified. The Replace and Delete functions also imply the Get function.

If a segment has PROCOPT=K specified, an unqualified Get Next call (GN) skips to the next sensitive
segment with a PROCOPT other than K.

The SENSEG PROCOPT overrides the PCB PROCOPT. If PROCOPT=E is specified in the PCB, the
SENSEG PROCOPT must also specify E if it is intended to schedule exclusively for that SENSEG.

It is not valid to code the N or T processing option in the SENSEG statement. You can code them only
in the PCB statement.

The processing option for a DEDB sequential dependent segment must be either G or I. If one of these
values is not specified on the PCB statement, PROCOPT=G or I must be specified on the SENSEG PCB
statement.

In the case of concatenated segments, the PROCOPT= parameter governs the logical child segment
of the concatenated segment. The logical parent of the concatenated segment is governed by the
RULES= parameter of the SEGM PCB statement.

INDICES
Specifies which secondary indexes contain search fields that are used to qualify SSAs for an indexed
segment type. The INDICES= parameter can be specified for indexed segment types only. It enables
SSAs of calls for the indexed segment type to be qualified on the search field of the index segment
type contained in each secondary index specified.

Restriction:

Chapter 8. SQL programming reference 677

• An SSA of a call for an indexed segment type cannot be qualified on the search field of a secondary
index unless that secondary index was specified in the INDICES= parameter of the SENSEG
statement for the indexed segment type or in the PROCSEQ= parameter of the PCB statement.

• The INDICES= parameter is not supported for Fast Path secondary indexing.

For list1, you can specify up to 32 DBD names of secondary indexes. If two or more names are
specified, these names must be separated by commas and the list enclosed in parentheses.

REFERENCES table_name
For tables that are involved in logical relationships or that are in databases that are accessed by a
secondary index, use REFERENCES to identify the parent table of this table.

For tables involved in a logical relationship, the name must be the IMS internal name of the logical
parent of the table.

For a table that is the physical parent of a source segment pointed to by a secondary index, use the
name of the source segment.

For a table that is dependent of a source segment pointed to by a secondary index, use the name of
the dependent segment's physical parent.

The REFERENCES keyword does not apply to secondary index source segments.

Schemas or PCBs that reference a physical, non-logical database and that are not in a database that
has a secondary index do not support the REFERENCES keyword. If the CREATE SENSEGVIEW clause
defines a root as being sensitive, omit the REFERENCES keyword.

REPLYES | REPLNO
Specifies whether or not this field can be altered on a replace call. You can specify NO or N. If omitted,
REPLACE=YES (or Y) is the default.

SSPTR
Specifies the subset pointer number and the sensitivity for the pointer. Up to 8 subset pointers can be
defined. The subset pointer number (the first parameter) must be 1 through 8. The sensitivity for the
pointer (the second parameter) must be R (read sensitive) or U (update). If the first parameter and the
second parameter are not specified, the pointer has no sensitivity. If only n is specified, the pointer is
read sensitive. SSPTR=R is the default.

You cannot use U (update sensitivity) if the processing option is not A, R, I, or D.

sf_name
Is the name of this field as defined through a FIELD statement. The field is from 1- to 8-alphanumeric
characters.

START(n)
Specifies the starting position of this field relative to the beginning of the segment within the user's
I/O area. startpos for the first byte of a segment is 1. startpos must be a decimal number whose value
does not exceed 32 767.

Types of statements
The following lists the types of schema for the CREATE PROGRAMVIEW statement:
Alternate_schema_statement

The alternate schema (PCB) describes a destination other than the source of the current input
message.

This statement instruction allows the application program to send output messages to a destination
other than the source of an input message.

Note: A schema statement is required for each destination to which output is to be sent.

These messages can be sent to either an output terminal or an input transaction queue to be
processed by another program. Each output message destination requires a separate alternate
schema (PCB) destination. If the input source terminal is all that is required to respond with
output, do not include any schema statements of this type. Message processing programs, batch

678 IMS: Application Programming APIs

message processing programs, and Fast Path programs can have alternate schema statements in their
associated PROGRAMVIEW. An alternate schema cannot be used to send a message to a Fast Path
transaction; however, Fast Path application programs can use an alternate schema to route messages
to any terminal or IMS transaction.

DB_schema_statement
The schema statement that describes application program access for a DL/I, Fast Path, or GSAM
database.

Although one or more of these schema statements are usually included, they are not always required.
For example, a message switching program or conversational message program might not require
access to a database. Therefore, a database schema is not required.

The maximum number of schemas that can be defined in a PROGRAMVIEW is 2500. This is the
maximum value for application programs executing in all IMS region types (MSG, DL/I, and so on).

Usage notes
The CREATE PROGRAMVIEW statement describes the PSB. One or more CREATE SCHEMA statements
must be nested in the CREATE PROGRAMVIEW statement to describe the PCBs.

One or more CREATE SENSEGVIEW statements must be nested within each CREATE SCHEMA statement
to describe the SENSEGs. SENFIELDs can be nested in each SENSEGVIEW. The order in which the
SCHEMA and SENSEGVIEW statements are specified matters.

CREATE PROGRAMVIEW … (
 CREATE SCHEMA … (
 CREATE SENSEGVIEW … ,
 CREATE SENSEGVIEW … WITH …,
 CREATE SENSEGVIEW …
)
 CREATE SCHEMA … (
 CREATE SENSEGVIEW … (
 senfld WITH …
 senfld WITH …
 senfld WITH …
) WITH … ,
 CREATE SENSEGVIEW … (
 senfld WITH …
 senfld WITH …
 senfld WITH …
),
 CREATE SENSEGVIEW … (
 senfld WITH …
 senfld WITH …
 senfld WITH …
)
)
 …
)

Examples
The following example shows a sample of a traditional IMS program specification block macro statement
with multiple PCBs, followed by the equivalent DDL using the CREATE PROGRAMVIEW, CREATE SCHEMA,
and CREATE VIEW statements.

PSB utility source:

* DB PCB NUMBER 1 DB DEDBJN21

 PCB TYPE=DB,DBDNAME=DEDBJN21,POS=M,PROCOPT=A,KEYLEN=26, C
 PCBNAME=PCB01,EXTERNALNAME=PCB01
 SENSEG NAME=HOSPITAL,PARENT=0
 SENSEG NAME=PAYMENTS,PARENT=HOSPITAL,PROCOPT=GI
 SENSEG NAME=WARD,PARENT=HOSPITAL
 SENSEG NAME=PATIENT,PARENT=WARD
 SENSEG NAME=ILLNESS,PARENT=PATIENT

Chapter 8. SQL programming reference 679

 SENSEG NAME=TREATMNT,PARENT=ILLNESS
 SENSEG NAME=DOCTOR,PARENT=TREATMNT
 SENSEG NAME=BILLING,PARENT=PATIENT
 SENSEG NAME=ARRAY,PARENT=HOSPITAL
 SENSEG NAME=STRUCT,PARENT=HOSPITAL
 SENSEG NAME=REDEFINE,PARENT=HOSPITAL
 SENSEG NAME=MAP,PARENT=HOSPITAL
 SENSEG NAME=EXFLDSEG,PARENT=HOSPITAL
 SENSEG NAME=NUMSEGM,PARENT=HOSPITAL

* DB PCB NUMBER 2 DB DEDBJN21

 PCB TYPE=DB,DBDNAME=DEDBJN21,POS=M,PROCOPT=GO,KEYLEN=26, C
 PCBNAME=PCB10,EXTERNALNAME=PCB10
 SENSEG NAME=HOSPITAL,PARENT=0
 SENSEG NAME=PAYMENTS,PARENT=HOSPITAL
 SENSEG NAME=WARD,PARENT=HOSPITAL
 SENSEG NAME=PATIENT,PARENT=WARD
 SENSEG NAME=ILLNESS,PARENT=PATIENT
 SENSEG NAME=TREATMNT,PARENT=ILLNESS
 SENSEG NAME=DOCTOR,PARENT=TREATMNT
 SENSEG NAME=BILLING,PARENT=PATIENT
 SENSEG NAME=ARRAY,PARENT=HOSPITAL
 SENSEG NAME=STRUCT,PARENT=HOSPITAL
 SENSEG NAME=REDEFINE,PARENT=HOSPITAL
 SENSEG NAME=MAP,PARENT=HOSPITAL
…

* DB PCB NUMBER 11 HIDAM HOSPITAL DB DH41SK01

 PCB TYPE=DB,DBDNAME=DH41SK01,POS=M,PROCOPT=AP,KEYLEN=26, C
 PCBNAME=PCB11,EXTERNALNAME=PCB11
 SENSEG NAME=HOSPITAL,PARENT=0
 SENSEG NAME=PAYMENTS,PARENT=HOSPITAL,PROCOPT=GI
 SENSEG NAME=WARD,PARENT=HOSPITAL
 SENSEG NAME=PATIENT,PARENT=WARD
 SENSEG NAME=ILLNESS,PARENT=PATIENT
 SENSEG NAME=TREATMNT,PARENT=ILLNESS
 SENSEG NAME=DOCTOR,PARENT=TREATMNT
 SENSEG NAME=BILLING,PARENT=PATIENT
 SENSEG NAME=PHARMACY,PARENT=HOSPITAL
 SENSEG NAME=BACKORDR,PARENT=PHARMACY
 SENSEG NAME=ARRAY,PARENT=HOSPITAL
 SENSEG NAME=STRUCT,PARENT=HOSPITAL
 SENSEG NAME=REDEFINE,PARENT=HOSPITAL
 SENSEG NAME=MAP,PARENT=HOSPITAL
 SENSEG NAME=SFTEST,PARENT=HOSPITAL
 SENFLD NAME=SF1,START=1
 SENFLD NAME=SF2,START=40
 SENFLD NAME=SF3,START=30

* PSBGEN PSBNAME=BMP255

 PSBGEN PSBNAME=BMP255,LANG=ASSEM,CMPAT=YES,IOASIZE=32000, C
 SSASIZE=32000

Equivalent DDL statements:

CREATE PROGRAMVIEW bmp255 (
 CREATE SCHEMA pcb01 USING DEDBJN21(
 CREATE SENSEGVIEW hospital,
 CREATE SENSEGVIEW payments WITH PROCOPT GI,
 CREATE SENSEGVIEW ward,
 CREATE SENSEGVIEW patient,
 CREATE SENSEGVIEW illness,
 CREATE SENSEGVIEW treatmnt,
 CREATE SENSEGVIEW doctor,
 CREATE SENSEGVIEW billing,
 CREATE SENSEGVIEW array,
 CREATE SENSEGVIEW struct,
 CREATE SENSEGVIEW redefine,
 CREATE SENSEGVIEW map,
 CREATE SENSEGVIEW exfldseg,
 CREATE SENSEGVIEW numsegm
)
 PROCOPT A
POS=MULTIPLE|SINGLE,

 CREATE SCHEMA pcb10 USING DEDBJN21(
 CREATE SENSEGVIEW hospital,

680 IMS: Application Programming APIs

 CREATE SENSEGVIEW payments,
 CREATE SENSEGVIEW ward,
 CREATE SENSEGVIEW patient,
 CREATE SENSEGVIEW illness,
 CREATE SENSEGVIEW treatmnt,
 CREATE SENSEGVIEW doctor,
 CREATE SENSEGVIEW billing,
 CREATE SENSEGVIEW array,
 CREATE SENSEGVIEW struct,
 CREATE SENSEGVIEW redefine,
 CREATE SENSEGVIEW map
)
 PROCOPT GO
 POSMULTI,

 CREATE SCHEMA pcb11 USING DH41SK01(
 CREATE SENSEGVIEW hospital,
 CREATE SENSEGVIEW payments WITH PROCOPT GI,
 CREATE SENSEGVIEW ward,
 CREATE SENSEGVIEW patient,
 CREATE SENSEGVIEW illness,
 CREATE SENSEGVIEW treatmnt,
 CREATE SENSEGVIEW doctor,
 CREATE SENSEGVIEW billing,
 CREATE SENSEGVIEW pharmacy,
 CREATE SENSEGVIEW backordr,
 CREATE SENSEGVIEW array,
 CREATE SENSEGVIEW struct,
 CREATE SENSEGVIEW redefine,
 CREATE SENSEGVIEW map,
 CREATE SENSEGVIEW sftest (
sf1 WITH START(1),
sf2 WITH START(40),
sf3 WITH START(30)
)
)
 PROCOPT AP
 POSMULTI
)
LANGASSEM
CMPATYES
IOASIZE 32000
SSASIZE 32000

TPPCBs source:

PCB TYPE=TP,NAME=OUTPUT1
 PCB TYPE=TP,NAME=OUTPUT2
 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
 PCB TYPE=GSAM,DBDNAME=REPORT,PROCOPT=LS
 PSBGEN LANG=COBOL,PSBNAME=APPLPGM3
 END

Equivalent DDL statements:

CREATE PROGRAMVIEW applpgm3 (
 CREATE SCHEMA TP pcb01,
 CREATE SCHEMA TP pcb02,

 CREATE SCHEMA pcb03 USING DH41SK01(
 CREATE SENSEGVIEW partmast WITH PROCOPT ‘A’,
 CREATE SENSEGVIEW cpws WITH PROCOPT ‘A’
)
 PROCOPT ‘A’,

 CREATE SCHEMA pcb04
 PROCOPT ‘LS’,
)
LANGCOBOL

TPPCBs source:

PCB TYPE=DB,NAME=FISDBD1,PROCOPT=GRP,KEYLEN=20
 SENSEG NAME=EMPLOYEE,PARENT=0
 SENFLD NAME=EMPLNAME,START=13,REPL=NO
 SENFLD NAME=EMPFNAME,START=1,REPL=NO

Chapter 8. SQL programming reference 681

 SENFLD NAME=EMPMI,START=11
 SENSEG NAME=OFFICE,PARENT=EMPLOYEE
 SENSEG NAME=EMPLPROJ,PARENT=EMPLOYEE
 SENFLD NAME=PROJNUM,START=1
 SENFLD NAME=PROJTITLE,START=10
 SENFLD NAME=EPFUNCTN,START=35
 SENFLD NAME=EPTIMEST,START=60
 SENFLD NAME=EPTIMCUR,START =70
 PSBGEN LANG=ASSEM,PSBNAME=APPLPGM1
 END

CREATE SENSEGVIEW APPLPGM1 (
 FISDBD1 DB FOR FISDBD1 PROCOPT ‘GRP’
 EMPLOYEE SENSEG IN FISDBD1
 EMPLNAME SENSEG IN FISDBD1 START (13) REPLACEN
 …
) LANGASSEM

CREATE PROGRAMVIEW applpgm1 (
 CREATE SCHEMA pcb01 USING FISDBD1(
 CREATE SENSEGVIEW employee (
 emplname WITH START (13) REPLNO,
 empfname WITH START (1) REPLNO,
 empmi WITH START (11)
)

 CREATE SENSEGVIEW office,

 CREATE SENSEGVIEW emplproj (
 projnum WITH START (1),
 projtitle WITH START (10),
 epfunctn WITH START (35),
 eptimest WITH START (60),
 eptimcur with START (70)
)
)
)
LANGASSEM

Fast Path example:

PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R,KEYLEN=4 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0 (DEFAULT)
PCB TYPE=DB,DBDNAME=MSDBLM02,PROCOPT=R,KEYLEN=1 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM03,PROCOPT=R,KEYLEN=2 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM04,PROCOPT=R,KEYLEN=8 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM05,PROCOPT=R,KEYLEN=8 FIXED RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=A,KEYLEN=8 DYNAMIC RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=R,KEYLEN=8 DYNAMIC RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=G,KEYLEN=8 DYNAMIC RELATED
SENSEG NAME=LDM,PARENT=0
PSBGEN LANG=ASSEM,PSBNAME=APPLPGM1 END OF PSBGEN MACRO
END END OF PSB GEN

CREATE PROGRAMVIEW applpgm1 (
 CREATE SCHEMA pcb01 USING MSDBLM01 (
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘R’,
 CREATE SCHEMA pcb02 USING MSDBLM02(
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘R’,
 CREATE SCHEMA pcb03 USING MSDBLM03(
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘R’,
 CREATE SCHEMA pcb04 USING MSDBLM04 (
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘R’,
 CREATE SCHEMA pcb05 USING MSDBLM05 (
 CREATE SENSEGVIEW lim
)

682 IMS: Application Programming APIs

 PROCOPT ‘R’,
 CREATE SCHEMA pcb06 USING MSDBLM06 (
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘A’,
 CREATE SCHEMA pcb06 USING MSDBLM06(
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘R’,
 CREATE SCHEMA pcb06 USING MSDBLM06
 CREATE SENSEGVIEW lim
)
 PROCOPT ‘G’
)
LANGASSEM

TPPCBs source:

DEDB SSPTR
PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R, NONTERMINAL-RELATED X
PCB TYPE=DB,DBDNAME=X,PROCOPT=A,KEYLEN=100
SENSEG NAME=A,PARENT=0
SENSEG NAME=B,PARENT=A,SSPTR=((1,R),(2,U),(5))
SENSEG NAME=C,PARENT=B
SENSEG NAME=D,PARENT=A,SSPTR=((2,R))
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END

CREATE PROGRAMVIEW applpgm1 (
 CREATE SCHEMA pcb01.msdblm01 AS pcb01
 PROCOPT ‘R’,

 CREATE SCHEMA pcb02.x AS pcb02 (
 CREATE SENSEGVIEW a,

 CREATE SENSEGVIEW b
 WITH SSPTR (1 R,2 U,5),

 CREATE SENSEGVIEW c.b,

 CREATE SENSEGVIEW d.a
 SSPTR (2 R)
)
 PROCOPT ‘A’
)
LANGCOBOL

TPPCBs source:

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X4
SENSEG NAME=DA,PARENT=0
SENSEG NAME=DB,PARENT=DA
SENSEG NAME=DC,PARENT=DA,INDICES=X5
SENSEG NAME=DD,PARENT=DC
SENSEG NAME=DE,PARENT=DC,INDICES=X6
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END

CREATE PROGRAMVIEW applpgm1 (
 CREATE SCHEMA pcb01.dta3 AS pcb01 (
 CREATE SENSEGVIEW da,

 CREATE SENSEGVIEW db.da,

 CREATE SENSEGVIEW dc.da WITH INDICES (X5)

 CREATE SENSEGVIEW dd.dc

 CREATE SENSEGVIEW de.dc WITH INDICES (X6)
)
 PROCOPT ‘A’
 PROCSEQ X4
)
LANGCOBOL

Chapter 8. SQL programming reference 683

CREATE TABLE
The CREATE TABLE statement defines a new table.

Restriction: If you specify any of the following keywords on the CREATE TABLE statement, you cannot
change the keyword and keyword value by using the ALTER TABLE statement. To change the keyword
and keyword value, you must first use the DROP TABLE statement to delete the table. Then, you must
re-create the table by using the CREATE TABLE statement and specify the keyword and keyword value
again.

• The INTERNALNAMEinternalname keyword to specify the internal name of the segment type being
defined.

• DIRECT DEPENDENT | SEQUENTIAL DEPENDENT

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “CREATE TABLE syntax” on page 685
• “column-definition syntax” on page 685
• “data-type syntax” on page 686
• “ims-column syntax” on page 687
• “inline-constraints syntax” on page 688
• “constraint syntax” on page 688
• “references-clause syntax” on page 688
• “map-definition syntax” on page 688
• “case-definition syntax” on page 688
• “lchild-definition syntax” on page 688
• “lchild-option syntax (HISAM)” on page 688
• “lchild-option syntax (HDAM)” on page 689
• “lchild-option syntax (HIDAM)” on page 689
• “lchild-option syntax (PHDAM or PHIDAM)” on page 689
• “lchild-option syntax (INDEX for Full-Function secondary index database)” on page 689
•
• “lchild-option syntax (PSINDEX)” on page 689
• “xdfld-options syntax (HISAM, SHISAM, HDAM, HIDAM, PHDAM, or PHIDAM)” on page 690
• “table-options syntax (PHIDAM or PHDAM)” on page 691
• “table-options syntax (HIDAM or HDAM)” on page 692
• “table-options syntax (DEDB)” on page 692
• “table-options syntax (HISAM or SHISAM)” on page 693
• “table-options syntax (HSAM or SHSAM)” on page 693
• “table-options syntax (INDEX)” on page 693
• “table-options syntax (LOGICAL)” on page 693
• “source-clause syntax” on page 694
• “editproc-clause syntax” on page 694
• “lparent-clause syntax” on page 694
• “data_capture syntax” on page 694
• “exit_changes syntax” on page 694

684 IMS: Application Programming APIs

• “exit_attributes syntax” on page 695

CREATE TABLE syntax

CREATE TABLE table_name (

,

column-definition

constraints
1

map-definition

lchild-definition

)

INTERNALNAME
2

internalname

IN

database_name

tablespace_name

IN DATABASE database_name

,

CCSID

'Cp1047'

encoding

,

table-options
3

Notes:
1 The constraints and lchild-definition fragments are invalid for a GSAM database.
2 INTERNALNAME is invalid for a GSAM database.
3 The table-options fragment is invalid for a GSAM database.

column-definition syntax
column_name data-type

INTERNALNAME
1

internalname

IMS-column-syntax inline-constraints
2

Notes:
1 INTERNALNAME is invalid for a GSAM database.
2 The inline-constraints fragment is invalid for a GSAM database.

Chapter 8. SQL programming reference 685

data-type syntax
ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

(bytes)
1

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

Notes:
1 The default bytes for CHAR is 1.

686 IMS: Application Programming APIs

ims-column syntax

TYPE

C

X

P

BYTES bytes

MAXBYTES max_array_bytes

START start_position

STARTAFTER field_name

RELSTART relative_start_position

MINOCCURS min_array_elements

MAXOCCURS max_array_elements DEPENDSON control_column

IN column_name

INTERNAL TYPECONVERTER CHAR

BIT

BINARY

BYTE

UBYTE

SHORT

USHORT

INT

UINT

LONG

ULONG

FLOAT

DOUBLE

PACKEDDECIMAL

ZONEDDECIMAL

CLOB

BLOB

XML_CLOB

ARRAY

STRUCT

USER TYPECONVERTER typeconverter PROPERTIES(

,

 'name' = 'value')

CCSID

'Cp1047'

encoding

ISSIGNEDYES

ISSIGNEDNO

OVERFLOW table_name PATTERN 'pattern'

URL 'xml_schema_url'

Chapter 8. SQL programming reference 687

inline-constraints syntax

CONSTRAINT constraintname PRIMARY KEY

NON UNIQUE

constraint syntax

CONSTRAINT constraint_name

PRIMARY KEY ( column_name)

NON UNIQUE

FOREIGN KEY reference clause

references-clause syntax
REFERENCES table_name

SINGLE

DOUBLE

map-definition syntax

MAP column_name

AS mapName

(

,

case definition)

case-definition syntax

CASE caseid

AS case_name

(

,

column_definition)

lchild-definition syntax
LCHILD

database_name.

table_name lchild options

, XDFLD xdfld_name XDFLD options

lchild-option syntax (HISAM)

SINGLE

DOUBLE

NONE

SYMBOL

AMBIGUOUS INSERT

LAST

FIRST

HERE

PAIR table_name

688 IMS: Application Programming APIs

lchild-option syntax (HDAM)

SINGLE

DOUBLE

NONE

SYMBOL

AMBIGUOUS INSERT

LAST

FIRST

HERE

PAIR table_name

lchild-option syntax (HIDAM)

SINGLE

DOUBLE

INDEX

NONE

SYMBOL

AMBIGUOUS INSERT

LAST

FIRST

HERE

PAIR table_name

lchild-option syntax (PHDAM or PHIDAM)

INDEX

NONE AMBIGUOUS INSERT

LAST

FIRST

HERE

PAIR table_name

lchild-option syntax (INDEX for Full-Function secondary index database)

SINGLE

SYMBOL

INDEXFIELD column_name

lchild-option syntax (PSINDEX)
RKSIZE integer

INDEXFIELD column_name

Chapter 8. SQL programming reference 689

xdfld-options syntax (HISAM, SHISAM, HDAM, HIDAM, PHDAM, or PHIDAM)

INTERNALNAME name

SRCH(

,

name)

DDATA(

,

name) SUBSEQ(

,

name)

SEGMENT name NULLVAL value EXTRTN name

CONST value

690 IMS: Application Programming APIs

table-options syntax (PHIDAM or PHDAM)

MAXBYTES maxbytes

MINBYTES minbytes

FREQ frequency

TWIN

TWINBWD

NOTWIN

LPARNTYES

LPARNTNO

PAIREDNO

PAIREDYES

INSERT LOGICAL

PHYSICAL

VIRTUAL

DELETE LOGICAL

PHYSICAL

VIRTUAL

BIDIRECTIONAL

REPLACE LOGICAL

PHYSICAL

VIRTUAL

AMBIGUOUS INSERT HERE

LAST

FIRST

DSGROUP A

B

C

D

E

F

G

H

I

J

editproc_clause lparent_clause

data_capture

Chapter 8. SQL programming reference 691

table-options syntax (HIDAM or HDAM)

MAXBYTES maxbytes

MINBYTES minbytes

source_clause

FREQ frequency

TWIN

TWINBWD

NOTWIN

HIER

HIERBWD

LTWIN

LTWINBWD

LPARNTNO

LPARNTYES

PAIREDNO

PAIREDYES

CTRNO

CTRYES

INSERT LOGICAL

PHYSICAL

VIRTUAL

DELETE LOGICAL

PHYSICAL

VIRTUAL

BIDIRECTIONAL

REPLACE LOGICAL

PHYSICAL

VIRTUAL

AMBIGUOUS INSERT HERE

LAST

FIRST

editproc_clause lparent_clause data_capture

table-options syntax (DEDB)

MAXBYTES maxbytes

MINBYTES minbytes

FREQ frequency

AMBIGUOUS INSERT HERE

LAST

FIRST

DIRECT DEPENDENT

SEQUENTIAL DEPENDENT

SSPTR n editproc_clause data_capture

692 IMS: Application Programming APIs

table-options syntax (HISAM or SHISAM)

MAXBYTES maxbytes

MINBYTES minbytes

source_clause

FREQ frequency

LPARNTNO

LPARNTYES

PAIREDNO

PAIREDYES

CTRNO

CTRYES

INSERT LOGICAL

PHYSICAL

VIRTUAL

DELETE LOGICAL

PHYSICAL

VIRTUAL

BIDIRECTIONAL

REPLACE LOGICAL

PHYSICAL

VIRTUAL

AMBIGUOUS INSERT HERE

LAST

FIRST

editproc_clause lparent_clause data_capture

table-options syntax (HSAM or SHSAM)

MAXBYTES maxbytes FREQ frequency

table-options syntax (INDEX)

MAXBYTES maxbytes FREQ frequency

AMBIGUOUS INSERT HERE

LAST

FIRST

table-options syntax (LOGICAL)

source_clause

Chapter 8. SQL programming reference 693

source-clause syntax

SOURCE( dbname.table_name
DATA

1

KEY
, dbname.table_name

2
DATA

KEY

)

Notes:
1 KEY is not allowed for HISAM or SHISAM.
2 Second portion not allowed for HISAM or SHISAM.

editproc-clause syntax

EDITPROC( program_name

WITH
DATA

KEY INIT max

PAD

)

lparent-clause syntax

LPARENT table_name

database_name.table_name

VIRTUAL

PHYSICAL

data_capture syntax

DATA CAPTURE

NONE

CHANGES(exit_changes)

exit_changes syntax
LOG

NOLOG

exit_attributes

,

exitname
NOLOG

LOG

exit_attributes

694 IMS: Application Programming APIs

exit_attributes syntax
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE
1

NOBEFORE

DLET

NODLET

NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY

CNOKEY

CNOPATH

CPATH

CDATA

CNODATA

NOCASCADE

Notes:
1 BEFORE, NOBEFORE, DLET, NODLET, SSPCMD, NOSSPCMD, FLD, and NOFLD are for DEDB only.

Keyword parameters for CREATE TABLE
The following keyword parameters are defined for the CREATE TABLE statement:
TABLE table_name

Specifies an external name as a 1- to 128-character uppercase alphanumeric string. A table name can
include the underscore character. The table name must be unique within a database.

Restriction: Table names cannot be reserved SQL keywords or begin with DFS.

lchild_definition
Must be preceded by a column-definition.

INTERNALNAME internalname
Specifies the internal name of the segment type being defined. The specified name is used by DL/I
and application programs in all references to this segment. Duplicate segment names are not allowed.
The internalname parameter must be a 1- to 8-character alphanumeric value. Each character must be
in the range of A - Z or 0 - 9, or the character $, #, or @.

Restriction: The first character of the name cannot be numeric.

Restriction: After you specify the internal name of the segment type being defined, you cannot
change the internal name by using the ALTER TABLE statement. To change the internal name of the
segment type, you must first use the DROP TABLE statement to delete the table. Then, you must
re-create the table by using the CREATE TABLE statement and specify the new internal name.

The default value of the INTERNALNAME parameter will start with a 'TBL' prefix followed by an
incremented number. Although listed as optional since IMS will generate a default internal name, it
is highly recommended that you provide your own internal name. This way you have control of the
internal name used by IMS and the program views (PSB).

For example:

TBL00001
TBL00255

IN dbname.tablespace_name
Specifies the database and tablespace to which the table belongs.

Note: This clause does not apply for DEDB, LOGICAL, PSINDEX, PHIDAM or PHDAM databases. Use
IN DATABASE instead.

IN DATABASE dbname
Specifies the database to which the table belongs. When the tablespace name is not provided, the
table will be associated with the latest defined tablespace.

Chapter 8. SQL programming reference 695

Keyword parameters for CREATE TABLE (table-options)
The following keyword parameters are defined for the CREATE TABLE (table-options) statement:
SOURCE

Is the IMS internal table name and is used for two purposes:

• To identify the real logical child segment type that is to be represented by the virtual logical child
segment type that is being defined

• To identify the segment type or types in physical databases that are represented by the segment
type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM databases because they
support only physical pairing.

When defining a virtual logical child the statement is:

SOURCE=(( segname ,
DATA

, dbname))

segname
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be used in constructing the
segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical child.

When defining a segment type in a logical database the statement is:

SOURCE=

(( segname ,

DATA

KEY ,  dbname), (segname ,

DATA

KEY ,  dbname))

(segname, KEY | DATA,dbname)
The first occurrence refers to the segment in a physical database that is being defined as a logical
segment, or it refers to the logical child segment type in a physical database that is used for the
first portion of a concatenated segment type in this logical database.

segname
Is the name of the segment type in the physical database.

KEY
Specifies that the key portion of the segment specified in segname is to be placed in the key
feedback area. The segment must not be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

DATA
Specifies that the key portion of the segment specified in segname must be placed in the key
feedback area, and the segment must be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

dbname
Specifies the name of the physical database that contains segname. The second occurrence of
(segname, KEY|DATA, dbname) refers to the logical or physical parent segment type in a physical
database that is used for the destination parent part of a concatenated segment in this logical
database. The description of each parameter for the second occurrence is the same as described
for the first occurrence.

When the first occurrence of (segname, KEY | DATA, dbname) refers to a virtual logical child, the
second occurrence, if specified, must refer to the real logical child's physical parent.

696 IMS: Application Programming APIs

When the source segments is used to represent a concatenated segment, the KEY and DATA
parameters are used to control which of the two segments (or both) are placed in the user's I/O
area on retrieval calls. If DATA is specified, the segment is placed in the user's I/O area. If KEY
is specified, the segment is not placed in the user's I/O area, but the sequence field key, if one
exists, is placed in the key feedback area of the PCB. The key of a concatenated segment is the
key of the logical child, either the physical twin sequence field or the logical twin sequence field,
depending on which path the logical child is accessed from. The KEY and DATA parameters apply
to retrieval type calls only.

On insert calls, the user's I/O area must always contain the logical child segment and, unless
the insert rule is physical, the logical parent segment. Even if KEY is specified for a segment,
the database containing that segment must be available to IMS when calls are issued against
the logical database containing the referenced segment. When the first occurrence of the
SOURCE segment specification references a logical child, the second occurrence referencing
the destination parent for the concatenated segment should also be specified. If not explicitly
specified it is included with the KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their physical definition from
segments previously defined in one or more physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the SOURCE parameter is invalid.

MAXBYTES maxbytes
MINBYTES minbytes

Defines a segment type as variable-length if the minbytes parameter is included. The maxbytes field
specifies the maximum length of any occurrence of this segment type. The maximum and minimum
allowable values for the maxbytes parameter are the same values as described for a fixed-length
segment.

If the segment is processed by a compression routine, set the maxbytes field to accommodate
control information to indicate whether the segment length can be longer than the specified maximum
definition. in order to avoid an abend 0799. To allow for the expansion, add an arbitrary value of 10
bytes to the maxbytes.

The minbytes parameter specifies the minimum amount of storage used by a variable-length
segment. The maximum value for minbytes is the value specified for maxbytes. The minimum value
for minbytes must be:

• For a segment type that is not processed by an edit/compression routine or is processed by an
edit/compression routine but the key compression option has not been specified, minbytes must be
large enough to contain the complete sequence field if a sequence field has been specified for the
segment type.

• For a segment type that is processed by an edit/compression routine that includes the key
compression option or a segment that is not sequenced, the minimum value is 4.

Because segments in an HSAM, SHSAM, INDEX, PSINDEX or SHISAM database cannot be variable-
length, the minbytes parameter is invalid for these databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines the length of the segment
including the 2-byte length field, followed by user data specified by a column. The value of minbytes
can be specified from a minimum of 4 bytes to a maximum of maxbytes; however, the minbytes
value must be large enough to contain this segment's sequence field (that is, minbytes ≥ START -
1 + BYTES of the sequence field following the table). For example, the smallest minbyte value for a
segment with a 20-byte sequence field length and START = 7 is 26. On any given DL/I call, the actual
segment length can fall anywhere between a length that includes the sequence field and the value of
maxbytes. The value of maxbytes must not exceed the control interval size minus 120.

TWINBWD | NOTWIN | TWIN | HIER | HIERBWD
Specifies the pointer fields to be reserved in the prefix area of occurrences of the segment type being
defined. These fields are used to relate this segment to its immediate parent segments and twin
segments.

Chapter 8. SQL programming reference 697

TWINBWD
Reserves a 4-byte physical twin forward pointer field and a 4-byte physical twin backward pointer
field in the segment prefix being defined. The twin backward pointers provide increased delete
performance.

Recommendation: This option is recommended for HIDAM and PHIDAM database root segments.

NOTWIN
Prevents space from being reserved for a physical twin forward pointer in the prefix of occurrences
of the segment type being defined.

NOTWIN can be specified for a dependent segment type if:

• The physical parent does not have hierarchic pointers specified.
• No more than one occurrence of the dependent segment type is stored as a physical child of any

occurrence of the physical parent segment type.

In addition, NOTWIN can be specified for the root segment type of HDAM and PHIDAM databases,
but only when the randomizing module does not produce synonyms (keys with different values
having the same block and anchor point).

When NOTWIN is specified for a dependent segment type and an attempt is made to load or insert
a second occurrence of the dependent segment as a physical child of a given physical parent
segment:

• An LB status code is returned when trying to insert the second occurrence during initial load.
• An II status code is returned when trying to insert the second occurrence after initial load.

Any attempt to load or insert a synonym is rejected with an LB or II status code.

TWIN
Reserves a 4-byte physical twin forward pointer field in the segment prefix being defined.

HIER
Reserves a 4-byte hierarchic forward pointer field in the prefix of occurrences of the segment type
being defined. HALDB does not support HIER.

HIERBWD
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic backward pointer field
in the prefix of occurrences of the segment type being defined. Hierarchic backward pointers
provide increased delete performance. HALDB does not support HIERBWD.

LPARNTYES | LPARNTNO
Specifies the type of logical parent.
LPARNTYES

This parameter can be specified only when the segment type that is being defined is a logical child
and the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database. If the logical parent
is in a HISAM database, omit this parameter and specify PHYSICAL in the PARENT= parameter for
the segment that is being defined.

For HDAM, HIDAM, and HISAM databases, LPARNT reserves a 4-byte logical parent pointer field in
the prefix of occurrences of the segment type being defined.

For PHDAM and PHIDAM databases, LPARNT reserves a 28-byte extended pointer set in the prefix
of occurrences of the segment type being defined.

LPARNTNO
Specifies that the segment type that is being defined is not a logical child or the logical parent is
not in an HDAM, HIDAM, PHDAM, or PHIDAM database.

PAIREDYES | PAIREDNO
Specifies whether this segment participates in a bidirectional logical relationship.
PAIREDYES

Indicates that this segment participates in a bidirectional logical relationship. This parameter is
specified for the following types:

698 IMS: Application Programming APIs

• A virtual logical child segment type
• Both physically paired logical child segment types in a bidirectional logical relationship

If PAIRED is specified, the LTWIN and LTWINBWD parameters are invalid.

PAIREDNO
Indicates that this segment does not participate in a bidirectional logical relationship.

CTRNO | CTRYES
CTRNO

Does not reserve a 4-byte counter field in the prefix of occurrences of the segment type being
defined.

CTRYES
Reserves a 4-byte counter field in the prefix of occurrences of the segment type being defined. A
counter is required if a logical parent segment in a HISAM, HDAM, or HIDAM database has logical
child segments which are not connected to it by logical child pointers. Counters are placed in all
segments requiring them automatically during DBD generation without the user specifying this
parameter. To avoid a later DBD generation, however, the user can anticipate future requirements
for counters and reserve a counter field in the prefix of occurrences of a segment type by using
this parameter. HALDB does not support CTR.

INSERT {LOGICAL | PHYSICAL | VIRTUAL}
DELETE {LOGICAL | PHYSICAL | VIRTUAL | BIDIRECTIONAL}
REPLACE {LOGICAL | PHYSICAL | VIRTUAL}

Specifies the rules used for insertion, deletion, and replacement of occurrences of the segment type
being defined. These parameters are specified for logical child segments and for their physical and
logical parent segments. They should be omitted for all segment types that do not participate in
logical relationships.

AMBIGUOUS INSERT {LAST | FIRST | HERE}
Specifies where new occurrences of the segment type defined by this table are inserted into their
physical database (establishes the physical twin sequence). This value is used only when processing
segments with no sequence field or with a nonunique sequence field. The value is ignored when
specified for a segment type with a unique sequence field defined.

Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do not apply to the initial
loading of a database and segments are loaded in the sequence presented in load mode. If a unique
sequence field is not defined for the HDAM root on initial load or HD reload, the insert rules of FIRST,
LAST, or HERE determine the sequence in which roots are chained. Thus the reload of an HDAM or
PHDAM database reverses the order of the unsequenced roots when HERE or FIRST is used.

LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden. For direct dependent segment processing, you can specify FIRST, LAST, or
HERE. HERE is the default.

FIRST
For segments without a sequence field defined, a new occurrence is inserted before all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted before all existing physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is inserted after all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted after all existing physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted immediately before the
physical twin on which position was established. If a position was not established on a physical
twin of the segment being inserted, the new occurrence is inserted before all existing physical
twins. For segments with a nonunique sequence field defined, a new occurrence is inserted

Chapter 8. SQL programming reference 699

immediately before the physical twin with the same sequence field value on which position was
established. If a position was not established on a physical twin with the same sequence field
value, the new occurrence is inserted before all physical twins with the same sequence field value.
The insert position is dependent on the position established by the previous DL/I call.

A command code of L (last) takes precedence over the insert rule specified causing a new
occurrence to be inserted according to the insert rule of LAST, for insert calls issued against a
physical path.

DSGROUP
Specifies multiple data set groups for PHDAM and PHIDAM databases. The format is DSGROUP c,
where c is equivalent to the letters A through J. This enables you to divide PHDAM and PHIDAM
databases into a maximum of ten data set groups. The default for every segment is A (single set for
data per partition). If specified on the root segment, it must be DSGROUP A.

Restriction: Gaps in the A-J sequence are not allowed. For example, if DSGROUP C is specified on a
CREATE TABLE statement, there must also be at least one CREATE TABLE statement with DSGROUP
B, and each HALDB partition will have A, B, and C data sets.

FREQ frequency
Specifies the estimated number of times that this segment is likely to occur for each occurrence of
its physical parent. The frequency parameter must be an unsigned decimal number in the range 0.01
to 2²⁴-1. If this is a root segment, "frequency" is the estimate of the maximum number of database
records that appear in the database being defined. The value of the FREQ parameter when applied to
dependent segments is used to determine the logical record length and physical storage block sizes
for each data set group of the database.

CCSID encoding
An optional 1- to 25-character field that specifies the encoding of the character data in the segment.

The value specified on the CCSID parameter cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The value of the CCSID parameter in the table overrides the value of the CCSID parameter in the
database for this segment. If the CCSID parameter is not specified on the table, the default value
is either the value of the CCSID parameter on the database or, if CCSID was not specified on the
database, the value Cp1047, which specifies EBCDIC encoding.

This value can be overridden in individual fields by the CCSID parameter in the column definition.

DIRECT DEPENDENT | SEQUENTIAL DEPENDENT
For databases defined with a DEDB access type only. Describes the type of DEDB dependent segment.
Must not be specified for root segments. Only one sequential dependent segment is permitted per
DEDB, and, if specified, it must be the first dependent segment type. Direct dependent segment type
is the default.

Restriction: After you define the type of DEDB dependent segment by specifying DIRECT DEPENDENT
or SEQUENTIAL DEPENDENT, you cannot change the segment type by using the ALTER TABLE
statement. To change the type of DEDB dependent segment, you must first use the DROP TABLE
statement to delete the table. Then, you must re-create the table by using the CREATE TABLE
statement and specify the keyword for the segment type that you require.

SSPTR n
For databases defined with a DEDB access type only. Specifies the number of subset pointers. You can
specify from 0 to 8. When you specify 0 or if SSPTR is not specified, you are not using a subset pointer.

EDITPROC routinename
Selects a Segment Edit/Compression exit routine for either DEDB or full-function database.

For segment edit/compression of full-function database

700 IMS: Application Programming APIs

Do not specify this keyword if the SOURCE keyword is used. The DL/I EDITPROC keyword is invalid
for HSAM, SHSAM, SHISAM, INDEX, and logical databases. It is also invalid for logical child segments
in any database. When used for a HISAM database, it must not change the sequence field offset for
HISAM root segments. In addition, the minimum segment length that can be specified for a segment
type where the segment edit/compression option is specified is 4 bytes.

Remember: If you are using a segment edit/compression exit routine and defined your segments
as variable-length, be aware that when a variable-length segment is compressed, it is padded with
null bytes up to the minimum segment length that was defined in the DBD. Minimum segment length
essentially overrides the compression; this enables you to provide additional space during load time
for segments that are heavily compressed.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This name must be a 1- to
8-character alphanumeric value, must not be the same as any other name in IMS.SDFSRESL, and
must not be the same as a database name.

DATA
Specifies that the indicated exit routine condenses or modifies data fields only. Sequence fields
must not be modified, nor data fields that change the position of the sequence field in respect
to the start of the segment. DATA is the default value if a compression routine is named but no
parameter is selected.

KEY
Specifies that the exit routine can condense or modify any fields within the named segment. This
parameter is invalid for the root segment of a HISAM database.

INIT
Indicates that initialization and termination processing control is required by the segment exit
routine. When this parameter is specified, the edit/compression routine gains control after
database open and after database close.

max
Specifies the maximum number of bytes by which fixed-length segments can increase during
compression exits. You can specify from 1 to 32 767 bytes. The default for max is 10.

PAD
Indicates that the numeric value supplied by MAX should be used for padding and not for MAX.
The numeric range of 1 to 32 767 indicates a size to which an inserted segment will be padded
when the compression of that segment results in a length somewhat less than the PAD value.

For segment edit/compression of DEDB

routinename
Specifies the z/OS load module name of the user-supplied segment edit/compression exit routine.
The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA is the default.

Restriction: The KEY parameter is not supported for DEDB. If you specify the KEY parameter, an
error message is issued.

INIT
Allows the segment compression exit routine to gain control immediately after the first area in the
database is opened and returns control immediately before the last area in the database is closed.
As long as the segment length is within the values specified, no errors occur while checking the
field qualification for segment compression or expansion.

Restriction: The EDITPROC clause is prohibited on DEDB tables containing a unique key field located
at the end of the table.

LPARENT table_name {VIRTUAL | PHYSICAL}
Specifies the logical parent of the table being defined.

Chapter 8. SQL programming reference 701

table_name
Specifies the IMS internal table name and the name of the logical parent of the table being
defined. If the logical parent resides within the same database then you may just specify the
table name. If the logical parent resides in a different database then you must specify both the
database and table name, such as "database_name.tablename".

VIRTUAL | PHYSICAL
Specifies whether the concatenated key of the logical parent (LPCK) is stored as a part of the
logical child segment. Specify the parameter only for logical child segments. If PHYSICAL is
specified, the LPCK is stored with each logical child segment. If VIRTUAL is specified, the LPCK is
not stored in the logical child segment. PHYSICAL must be specified for a logical child segment
whose logical parent is in a HISAM database. It must be specified also for a logical child segment
that is sequenced on its physical twin chain through use of any part of the concatenated key of the
logical parent.

• PHDAM and PHIDAM

– PHYSICAL is the default for PHDAM and PHIDAM.
– If VIRTUAL is specified for PHDAM or PHIDAM, it is ignored, and PHYSICAL is used.

• HDAM and HIDAM

– VIRTUAL is the default for HDAM and HIDAM.
– Symbolic pointers in HDAM and HIDAM databases use the LPCK and require the PHYSICAL

specification.

Keyword parameters for CREATE TABLE data capture changes (change_syntax)
The following keyword parameters are defined for the CREATE TABLE data capture changes
(change_syntax) statement:
DATA CAPTURE

When DATA CAPTURE is specified on the CREATE DATABASE statement, these options apply to all
tables within the physical database. If you specify this parameter in the CREATE or ALTER TABLE
statement, it overrides the specification for this statement.

The following physical databases support DATA CAPTURE:

• HISAM
• SHISAM
• HDAM
• PHDAM
• HIDAM
• PHIDAM
• DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of change options. If you do not
provide an exit routine, they can only specify 1 set of change options for logging. This method is
equivalent to specifying an asterisk (*) in place of an exit routine name on the EXIT= parameter
in a DBD macro statement. Each set is separated by a comma. NOCASCADE is mutually exclusive
with any combination of the C* (for example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

NOBEFORE | BEFORE
Before data is included in X'99' log records for REPL calls. NOBEFORE is the default. This
attribute is valid only for DEDB.

702 IMS: Application Programming APIs

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA also identifies the
segment being deleted when the physical concatenated key is unable to do so. This attribute is
mutually exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the segment being
deleted by a cascade delete. This attribute is mutually exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical root's hierarchical
path. Use CNODATA to eliminate the substantial amount of path data needed for a cascade
delete. This attribute is mutually exclusive with NOCASCADE.

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine for updating. When
DATA is specified and an EDITPROC exit routine is also used on a table, the data passed is
expanded data. DATA is the default.

NODLET |DLET
X'99' log records are written for DLET calls. NODLET is the default. This attribute is valid only
for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name must match
the name of a Data Capture exit routine as defined by the user to IMS. A maximum of 8
alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key. This key identifies the
physical table updated by the application. KEY is the default.

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment. Cascade delete is not
necessary when a segment without dependents is deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be captured. This option is
valid only for a DEDB, and this information is logged only in the X'9904' log records if the
option log is specified. This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is done for an unkeyed or
non-unique keyed segment when an insert rule of HERE is used and the F or L command code
is not used. The twin data IMS is positioned on at the time before the ISRT will be captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data be written to the IMS
system log.
For more information, see Asynchronous data propagation (System Programming APIs).

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time needed to retrieve
path data. NOPATH is the default.

PATH can be specified when the data from each segment in the physical root's hierarchical
path must be passed to the exit routine for an updated segment. Use PATH to allow an
application to separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the path is needed to compose
the DB2® for z/OS primary key. The DB2 for z/OS primary key would then be used in a
propagation request for a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the dependent contains
additional data that would not fit in the parent table.

Chapter 8. SQL programming reference 703

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several tables with one call; for example, you did not invoke the D command code.
In this case, additional processing is necessary if the application is to access each table with a
separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command codes are captured. This
option is valid for DEDBs only.

Keyword parameters for CREATE TABLE (column-definition)
The following keyword parameters are defined for the CREATE TABLE (column-definition) statement:
column_name

column_name represents the external name that is stored only in the IMS catalog, not in the database
that you are defining. Specify an external name as a 1- to 128-character uppercase alphanumeric
string. An external name can include underscore characters. Column names must be unique within a
segment.

Restriction: Column names cannot be reserved SQL keywords or begin with DFS.

For a list of the reserved SQL keywords that are restricted by the IMS Universal drivers, see Portable
SQL keywords restricted by the IMS Universal JDBC drivers (Application Programming).

INTERNALNAME internalname
Specifies the name of this field within a segment type. The name can be referred to by an application
program in a DL/I call SSA. Field names must be unique within a segment definition. The fldname1
value must be a 1- to 8-character alphanumeric value. The INTERNALNAME parameter is required on
the following types of fields:

• Key-sequenced field types, which specify the SEQ parameter
• Field types that are referenced by a segment search argument (SSA)
• Field types that are referenced by a PSB as a sensitive field.
• Field types that are referenced by an XDFLD

For other field types, you can omit the INTERNALNAME parameter. Omitting the INTERNALNAME
parameter can save storage in the data management block (DMB) of a database. However, to be
able to search on this field, you must specify the INTERNALNAME parameter. The INTERNALNAME
parameter cannot be specified on the following types of fields:

• Fields that are defined as arrays. A field that is defined as an array includes ARRAY in the field
definition.

• Fields that are defined as array elements. A field that is an array element specifies the name of an
array field on the IN keyword in the column.

• Fields that are defined as structures that contain one or more nested dynamic arrays. A field that is
defined as a structure includes STRUCT in the column.

• Fields that are contained in a structure that also contains a dynamic array. A field that is contained
within a structure specifies the name of the structure field on the IN keyword in the column.

• Fields that follow a dynamic array in a segment. A field that follows a dynamic array specifies the
STARTAFTER parameter.

• Fields that include the RELSTART parameter to specify a starting position that is relative to the
starting position of another field.

• Fields that are defined with XML.

The INTERNALNAME parameter must be specified for /CK and /SX columns. When specifying /CK
or /SK names, they must be enclosed in double quotes (").

• HSAM, SHSAM, INDEX, PSINDEX, and DEDB do not allow /CK or /SX columns.
• HISAM and SHISAM only allow /CK columns.

704 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

• HDAM, HIDAM, PHDAM, and PHIDAM allow /CK and /SX columns.

Keyword parameters for datatype
The following keyword parameters are defined for the CREATE TABLE (datatype) statement:
ARRAY | BINARY | ...

If DECIMAL is specified on the DATATYPE parameter, the default INTERNAL TYPECONVERTER is
signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP is specified, you can specify either LONG or CHAR on the INTERNAL
TYPECONVERTER keyword or specify a USER TYPECONVERTER. INTERNAL TYPECONVERTER LONG
is the default. When LONG is used, the value is stored on DASD as the number of milliseconds since
January 1, 1970.

If XML is specified, the default INTERNAL TYPECONVERTER is XML_CLOB, which is the only valid
value when XML is specified.

If STRUCT or ARRAY is specified, the default INTERNAL TYPECONVERTER is STRUCT or ARRAY,
respectively, which are the only valid values when either one is specified.

For all other values for the data type, the value is used as the default INTERNAL TYPECONVERTER.

Valid values are:
ARRAY

When ARRAY is specified:

• The INTERNALNAME parameter is not supported
• The byte value specified on either the BYTES or MAXBYTES parameter must be equal to or

greater than the sum total of the bytes of all fields contained in the array.

You cannot redefine a field that has been defined as an ARRAY or that contains an ARRAY.

A field that is defined as an array includes ARRAY in the field definition.

A field that is an array element specifies the name of an array field on the IN keyword in the
column.

BINARY
BINARY can be specified with TYPE P or TYPE X. It defaults to a column size of 1 byte, however
you can specify your own size using the MAXBYTES keyword.

BIT
If you specify BIT, you set a column size of 1 byte. If you specify MAXBYTES you can only specify a
value of 1.

BYTE
If you specify BYTES, you set a column size of 1 byte. If you specify MAXBYTES you can only
specify a value of 1.

UBYTE
If you specify UBYTE, you set a column size of 1 byte. If you specify MAXBYTES you can only
specify a value of 1.

CHAR
If you specify CHAR, the default column size of 1 byte. You can specify the actual column size by
including the value in parens next to CHAR or on the MAXBYTES keyword. For example: CHAR(8).

DATE
When DATE is specified, you can only specify MAXBYTES 8, unless you also specify a column
definition that includes either INTERNAL TYPECONVERTER CHAR or USER TYPECONVERTER
convertername.

DECIMAL(pp,ss)
pp

Precision. A 1- to 2-byte numeric field greater than 0.

Chapter 8. SQL programming reference 705

ss
Scale. A 1- to 2-byte numeric field greater than or equal to 0. The value specified for ss cannot
be greater than the value of pp.

You must specify a value on the BYTES parameter that matches the decimal format that is used.

The default decimal format is signed packed decimal. To calculate the required value of the BYTES
parameter for the signed packed decimal format, use the following formula: length = ceiling ((pp
+ 1) / 2)

The default decimal format can be changed by specifying the INTERNAL TYPECONVERTER
parameter.

When the zoned decimal format is used, as specified by INTERNAL TYPECONVERTER
ZONEDDECIMAL, use the following formula to calculate the value of the BYTES parameter: length
= pp

DOUBLE
If you specify DOUBLE, you can only specify MAXBYTES 8.

FLOAT
If you specify FLOAT, you can only specify MAXBYTES 4.

INT
If you specify INT, you can only specify MAXBYTES 4.

UINT
If you specify UINT, you can only specify MAXBYTES 4.

LONG
If you specify LONG, you can only specify MAXBYTES 8.

ULONG
If you specify ULONG, you can only specify MAXBYTES 8.

OTHER
Specifies the use of a user-defined data type. When OTHER is specified, a column definition must
also be specified with a user-provided type converter specified on the USER TYPECONVERTER
parameter.

SHORT
If you specify SHORT, you can only specify MAXBYTES 2.

USHORT
If you specify USHORT, you can only specify MAXBYTES 2.

STRUCT
When STRUCT is specified, you cannot define this column as a primary key if the structure
contains a dynamic array. Dynamic arrays are defined with a data type of ARRAY and the
DEPENDSON and MAXBYTES keywords.

Also, the byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the structure.

TIME
When TIME is specified, you can only specify MAXBYTES 8, unless you also specify a column
definition that includes either INTERNAL TYPECONVERTER CHAR or USER TYPECONVERTER
convertername.

TIMESTAMP
When TIMESTAMP is specified, you can only specify MAXBYTES 8, unless you also
specify a column definition that includes either INTERNAL TYPECONVERTER CHAR or USER
TYPECONVERTER convertername.

XML

Restriction: XML is not supported when the INTERNALNAME keyword is specified or for columns
defined as a primary key.

706 IMS: Application Programming APIs

Keyword parameters for CREATE TABLE (ims-column-syntax)
The following keyword parameters are defined for the CREATE TABLE (ims-column-syntax) statement:
BYTES bytes

Specifies the length of the field being defined in bytes. For fields other than system-related fields,
BYTES must be a valid self-defining term whose value does not exceed 255.

If a concatenated key or a portion of a concatenated key of an index source segment type is defined
as a system-related field, the value specified can be greater than 255, but must not exceed the length
of the concatenated key of the index source segment.

A case in which the byte length can be greater than 255 is when the column is defined as not
searchable by IMS. These columns cannot be defined as primary keys and cannot have the NAME
keyword specified.

The length of a /SX system-related field is always 4 bytes; therefore, when specified, the BYTES
parameter is disregarded.

If this field is defined as either a structure or an array by STRUCT or ARRAY, the value specified
on BYTES must be greater than or equal to the sum total of the bytes of all fields contained in the
structure or array.

When XML, the BYTES parameter is optional and the valid values for BYTES range from 0 to the
maximum size of the segment. If the BYTES parameter is omitted when XML, BYTES and MAXBYTES
are not allowed.

CCSID encoding
An optional 1- to 25-character field enclosed in single quotation marks that specifies the encoding of
the character data in the column. It is valid only when the INTERNAL TYPECONVERTER is CHAR.

The value specified cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

If not specified on for the column, the default value is determined by the value specified on either the
table or, if not specified on the table, the database. If the parameter is not specified on either the table
or database, the default value is Cp1047, which specifies EBCDIC encoding.

DEPENDSON
Specifies the name of a field that defines the number of elements in a dynamic array. The column of
the referenced field must precede the FIELD statement that specifies the DEPENDSON parameter.

The DEPENDSON parameter is valid only when ARRAY is also specified. DEPENDSON is required if the
values of MINOCCURS and MAXOCCURS are different.

The field referenced by the DEPENDSON parameter must be defined with one of the following
datatype of XML values:

• INT
• SHORT
• LONG
• UINT
• USHORT
• ULONG
• DECIMAL with either (pp) or (pp,ss) specified, where ss is either 0 or 00.

TYPE {C | X | P}
Determines the type of character that IMS uses to mask or pad the data in this field.

Chapter 8. SQL programming reference 707

C
Specifies alphanumeric data or a combination of types of data. When C is specified, if IMS needs
to fill unused bytes in the field, IMS left justifies the value and fills the unused bytes to the right
of the value with X'40'. For example, a 3-byte value X'F5F4F3' in a 5-byte field is written out as
X'F5F4F34040'.

X
Specifies hexadecimal data. When X is specified, if IMS needs to fill unused bytes in the field, IMS
right justifies the value and fills the unused bytes to the left of the value with X'00'. For example, a
3-byte value X'543210' in a 5-byte field is written out as X'0000543210'.

P
Packed decimal data. When P is specified, if IMS needs to fill unused bytes in the field, IMS right
justifies the value and fills the unused bytes to the left of the value with X'00'. For example, a
3-byte value X'54321C' in a 5-byte field is written out as X'000054321C'.

MAXBYTES max_array_bytes
Specifies the maximum size of a field in bytes when the byte-length of the field instance can vary
based on the number of elements in a dynamic array. MAXBYTES and BYTES are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum total of the byte values of all
fields nested under this field.

The MAXBYTES parameter is required and valid only in the following cases:

• The field is defined as a dynamic array. A field is a dynamic array when the number of elements in
the array can vary from one instance of the field to another. In the definition of a dynamic array, the
DEPENDSON parameter references another field in the segment definition that defines the number
of array elements for an instance of the dynamic array.

• For a field defined as a static array or a structure that contains a nested field that is defined as a
dynamic array.

IN column_name
Specifies the name of a field that is defined as a structure or array in which this field is contained. The
referenced field must be defined with either DATATYPE=ARRAY or DATATYPE=STRUCT.

INTERNAL TYPECONVERTER
Specifies the internal conversion routine that IMS uses to convert the IMS data into the data types
that are expected by the application program.

You can specify either INTERNAL TYPECONVERTER or USER TYPECONVERTER, but not both.
INTERNAL TYPECONVERTER or USER TYPECONVERTER are mutually exclusive.

Valid values for the INTERNAL TYPECONVERTER parameter are:

ARRAY | BINARY | ...
If DECIMAL data type, the default INTERNAL TYPECONVERTER is signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP data type, you must specify either LONG or CHAR on the INTERNAL
TYPECONVERTER keyword or specify a USER TYPECONVERTER. INTERNAL TYPECONVERTER
LONG is the default. When LONG is used, the value is stored on DASD as the number of
milliseconds since January 1, 1970.

If XML data type, the default INTERNAL TYPECONVERTER is XML_CLOB, which is the only valid
value for XML.

If STRUCT or ARRAY data type, the default INTERNAL TYPECONVERTER is STRUCT or ARRAY,
respectively, which are the only valid values.

For all other data types, the value is used as the default INTERNAL TYPECONVERTER.

Valid values are:
ARRAY

When ARRAY is specified:

• The INTERNALNAME parameter is not supported

708 IMS: Application Programming APIs

• The byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the array.

You cannot redefine a field that has been defined as an ARRAY or that contains an ARRAY.

An array element specifies the name of the array on the IN keyword for the column.

BIT
If you specify BIT, you can only specify MAXBYTES 1.

BYTE
If you specify BYTE, you can only specify MAXBYTES 1.

UBYTE
If you specify UBYTE, you can only specify MAXBYTES 1.

CLOB
A Character Large Object is a collection of character data in a database management system.

DOUBLE
If you specify DOUBLE, you can only specify MAXBYTES 8.

FLOAT
If you specify FLOAT, you can only specify MAXBYTES 4.

INT
If you specify INT, you can only specify MAXBYTES 4.

UINT
If you specify UINT, you can only specify MAXBYTES 4.

LONG
If you specify LONG, you can only specify MAXBYTES 8.

ULONG
If you specify ULONG, you can only specify MAXBYTES 8.

SHORT
If you specify SHORT, you can only specify MAXBYTES 2.

USHORT
If you specify USHORT, you can only specify MAXBYTES 2.

XML_CLOB

Restriction: Datatype of XML is not supported when the NAME parameter is specified.

ZONEDDECIMAL
ZONEDDECIMAL is a data type extension for the IMS Universal JDBC driver and the IMS
Universal DL/I driver. You need to specify datatype of XML.

The value that is specified on the INTERNAL TYPECONVERTER parameter must be consistent with
the value specified as the column's data type. In most cases, you must specify the same value on
INTERNAL TYPECONVERTER that you specify as the data type.

ISSIGNEDYES | ISSIGNEDNO
This parameter is valid only for a DECIMAL data type. The default is ISSIGNEDYES.

MINOCCURS min_array_elements
For ARRAY only, a required numeric value that specifies the minimum number of elements in an
ARRAY. MINOCCURS must be lesser than or equal to MAXOCCURS.

MAXOCCURS max_array_elements
For ARRAY only, a required numeric value that specifies the maximum number of elements in an
ARRAY. MAXOCCURS must be greater than or equal to MINOCCURS and not zero.

OVERFLOW table_name
A 1- to 8-character internal name of a dependent table that can be used to store any portion of an
XML document that does not fit into the column that is defined to hold the XML document. The parent
of the dependent table is the table that contains the XML data column. OVERFLOW applies only to
columns that specify XML.

Chapter 8. SQL programming reference 709

PATTERN
An optional 1- to 50-character field, enclosed in single quotation marks, that specifies the pattern to
use for the date, time, and time stamp Java datatypes.

PATTERN applies only when DATE, TIME, or TIMESTAMP is specified as the data typeand CHAR is
specified on the INTERNAL TYPECONVERTER keyword. PATTERN is invalid for other datatypes.

Patterns are case-sensitive and must be enclosed in single quotation marks.

Except for single quotation marks that are used as delimiters for the keyword value, the value that is
specified on the PATTERN keyword cannot contain the following characters:

• Single and double quotation marks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

Patterns that you can specify are defined by the Java class java.text.SimpleDateFormat. DDL does not
check that the value entered on PATTERN conforms to the patterns defined by Java.

For example, if you enter the Java format yyyy.MM.dd, the resulting time format is "2013.01.01".

PROPERTIES name value
Specifies properties for a user type converter that is specified on the USER TYPECONVERTER
parameter. These properties are passed to the user type converter.

The PROPERTIES parameter is valid only when USER TYPECONVERTER is specified.

The names and properties that are specified on the PROPERTIES keyword are case-sensitive and
must be enclosed in single quotation marks.

The following characters are not supported by the PROPERTIES keyword:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The maximum length for a property name is 128 characters. The maximum length for a property value
is also 128 characters.

The format is:

PROPERTIES ('name1' = 'value1' , 'name2' = 'value2')

For example,

PROPERTIES ('DOG' = 'BUTCH' , 'CAT' = 'LUCY')

RELSTART relative_start_position
Specifies the starting position of a field that is defined as an element of an array or, in some
circumstances, a structure. Valid values are from 1 to 32767.

The value specified on RELSTART is the starting byte offset of the field relative to the start of the array
or structure. For example, the first field in an array would typically specify RELSTART 1, even if the
array that contains the field starts at byte 50 of a segment.

For fields that specify an array field as a parent, RELSTART is required.

For fields that specify a structure as a parent, RELSTART is required if the structure field is defined
with RELSTART or STARTAFTER.

In the following example, the field DYNARRAY is a dynamic array. The field STRUCT01 is a structure.
The fields FLD03 and FLD04 both specify STRUCT01 as a parent. Because a dynamic array precedes
STRUCT01 in the segment, the starting offsets of FLD03 and FLD04 can be specified only relative to
the start of STRUCT01.

710 IMS: Application Programming APIs

FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100
 MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10
FIELD EXTERNALNAME=FLD03,RELSTART=1,BYTES=5,PARENT=STRUCT01
FIELD EXTERNALNAME=FLD04,RELSTART=6,BYTES=5,PARENT=STRUCT01

START, STARTAFTER, and RELSTART are mutually exclusive.

START start_position
Specifies the starting position of the field being defined in terms of bytes relative to the beginning
of the segment. The value of START must be a numeric term whose value does not exceed 32767.
The starting position for the first byte of a segment is one. For variable-length segments, the first 2
bytes contain the length of the segment. Therefore the first actual user data field starts in byte 3.
Overlapping fields are permitted. When defining a logical child segment, the first n number of bytes
of the segment type is the concatenated key of the logical or physical parent. A field starting in
position one would define all or a portion of this field. A field starting in position n+1 would start with
intersection data.

START can be used for a system-related field, to describe a portion of the concatenated key as a
field in an index source segment type. If used in this way, START specifies the starting position of the
relevant portion of the concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be a numeric term whose
value does not exceed the length of the concatenated key plus one. Subtract the value specified in the
BYTES parameter. The starting position parameter for the /SX system-related field is disregarded.

START, STARTAFTER, and RELSTART are mutually exclusive.

When XML, the START parameter is optional and START 0 can be specified. If the START parameter is
omitted when XML, START 0 is the default.

STARTAFTER field_name

When the starting byte offset of a field cannot be calculated because the field starts after a dynamic
array, specifies the name of the field that directly precedes this field in the segment. The name cannot
be the name provided on the NAME keyword.

STARTAFTER is required and valid only when the starting position of a field cannot be calculated
because the field is preceded at a prior offset by a field defined as a dynamic array.

Dynamic arrays make it impossible to calculate the starting offsets of subsequent fields in a segment,
because the byte lengths of dynamic arrays can vary from one instance of a segment to another. The
columns of dynamic array fields can be identified by the inclusion of the DEPENDSON and MAXBYTES
parameters.

The STARTAFTER parameter cannot be specified on fields that define an array field as a parent.
Instead, specify the RELSTART parameter.

START, STARTAFTER, and RELSTART are mutually exclusive.

The STARTAFTER data is not returned if the GUR application is using IMS Universal Drivers (UDB).

URL xml_schema_url
An optional 1- to 256-character field, enclosed in single quotation marks, for the URL that references
the XML schema that describes this field.

For example,

URL 'MySchema.xsd'

The value that is specified on the URL keyword cannot contain the following characters:

• Single and double quotation marks
• Blanks

Chapter 8. SQL programming reference 711

• Less than (<) and greater than (>) symbols
• Ampersands (&)

The URL parameter applies only with XML for XML_CLOB data.

USER TYPECONVERTER typeconverter
Specifies a 1- to 256-character, enclosed in single quotation marks, fully qualified Java class name of
the user-provided Java class to be used for type conversion.

For example,

USER TYPECONVERTER 'class://com.ibm.ims.dli.types.PackedDateConverter'

The value that is specified on the USER TYPECONVERTER keyword cannot contain the following
characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

USER TYPECONVERTER is mutually exclusive with INTERNAL TYPECONVERTER.

Keyword parameters for CREATE TABLE (inline-constraints)
The following keyword parameters are defined for the CREATE TABLE (inline-constraints) statement:
CONSTRAINT constraint_name

Names the constraint. If a constraint name is not specified, a unique constraint name is generated. If
the name is specified, it must be different from the names of any constraints previously specified on
the table.

PRIMARY KEY NON UNIQUE
Identifies this field as a sequence field in the segment type.
NON UNIQUE

An optional keyword that indicates that duplicate values are allowed in the sequence field of
occurrences of the segment type. For a root segment type, the sequence field of each occurrence
must contain a unique value, except in HDAM. The root segment type in an HDAM database does
not need a key field; if a key field is defined, it does not have to be unique.

If not specified, only unique values are allowed in the sequence field of occurrences of the
segment type. For a dependent segment type, the sequence field of each occurrence under a
given physical parent segment must contain a unique value.

Keyword parameters for CREATE TABLE (constraint)
The following keyword parameters are defined for the CREATE TABLE (constraint) statement:
CONSTRAINT constraint_name

Names the constraint. If a constraint name is not specified, a unique constraint name is generated. If
the name is specified, it must be different from the names of any constraints previously specified on
the table.

PRIMARY KEY(column_name) NON UNIQUE
Identifies this field as a sequence field in the segment type.
NON UNIQUE

An optional keyword that indicates that duplicate values are allowed in the sequence field of
occurrences of the segment type. For a root segment type, the sequence field of each occurrence
must contain a unique value, except in HDAM. The root segment type in an HDAM database does
not need a key field; if a key field is defined, it does not have to be unique.

712 IMS: Application Programming APIs

If not specified, only unique values are allowed in the sequence field of occurrences of the
segment type. For a dependent segment type, the sequence field of each occurrence under a
given physical parent segment must contain a unique value.

Keyword parameters for CREATE TABLE (references-clause)
The following keyword parameters are defined for the CREATE TABLE (references-clause) statement:
FOREIGN KEY REFERENCES

For dependent segment types, specifies the name of this segment's physical parent.
REFERENCES table_name

Specifies the dependent segments parent segment and is the IMS external table name.

Keyword parameters for CREATE TABLE (map-definition)
The following keyword parameters are defined for the CREATE TABLE (map-definition) statement:
MAP

A map definition must be preceded by a column definition. The MAP statement enables the alternate
mapping of columns within a table. A group of one or more CASE statements that relate to a control
column is nested within the table. The control column identifies which CASE is used in a table
instance.

column_name
The external name of the column within this table that contains the value that determines which map
case is used for a segment instance. If the column does not contain a value that corresponds to a
caseid value in a CASE statement for this map, this map is not being used for this table instance.

AS map_name
An optional 1- to 128-character alphanumeric field that defines the name of this map. If not provided,
IMS will automatically generate a unique name within this table. The DFS prefix is reserved by IMS
and cannot be part of a user-created name.

Keyword parameters for CREATE TABLE (case-definition)
The following keyword parameters are defined for the CREATE TABLE (case-definition) statement:
CASE

The CASE statement defines a map case, which is a set of columns that define an optional, alternative
field layout for a particular byte range within a table.

Map cases that map the same byte range in a segment are grouped by a MAP statement. The MAP
statement also links the map cases to a separately defined control field in the table definition.

Each map case has a unique ID. In an instance of the table, the ID of the map case that is in effect is
stored in the control field when the segment is created.

Unless the IMS Universal drivers are used, the field layouts that are defined by the map cases must
be defined to the application programs that access this byte range by a COBOL copybook or other
programming artifact. When a table instance is accessed, the application programs determine which
copybook to use by checking the value of the control field.

When application programs access IMS through the IMS Universal drivers, no additional programming
artifacts are needed to define the field layouts to the application programs.

caseid
A 1- to 128 byte field that defines a unique character or hex string. A table instance specifies the
caseid value in a user-defined control field when part or all of the field structure of the segment is
mapped by this case.

When specified as a character string the value must be specified within single quotes, for
example: 'name01'. When specified as a hex string the value must be specified within single
quotes followed by a hex indicator, for example: '00000001'x.

Chapter 8. SQL programming reference 713

The caseid value can contain alphanumeric characters, underscore (_), @, $, and #. Or, it can be
a hexadecimal string. The length of the value must be supported by the length of the user-defined
control field. If alphanumeric, the length of the value must be less than or equal to the value
specified on the BYTES parameter of the control field. If it is a hexadecimal string, the length
of the CASEID value must be exactly equal to twice the value that is specified on the BYTES
parameter of the control field.

A case ID must be unique within the map that the case belongs to.

AS case_name
An optional 1- to 128-character alphanumeric field that defines the name of this case. A case
name must be unique within a table. If not provided, IMS will automatically generate a unique
name within this table. The DFS prefix is reserved by IMS and cannot be part of a user-created
name.

Keyword parameters for CREATE TABLE (lchild)
The following keyword parameters are defined for the CREATE TABLE (lchild syntax) statement:
lchild_definition

Must be preceded by a column-definition.
database_name.table_name

The table_name parameter specifies the IMS internal name of the logical child, index pointer, index
target, HIDAM or PHIDAM root segment type that is to be associated with the segment type defined
by a preceding TABLE. The database_name parameter is the name of the database that contains
the segment type specified in the table_name parameter. The database_name parameter can be
omitted when the table_name parameter is defined in this database.

The database_name parameter must be one- to eight-character alphanumeric values. The
table_name parameter and must be one- to 128-character alphanumeric values.

SINGLE|DOUBLE|NONE|INDEX|SYMBOL
Specifies the pointers used in logical or index relationships. When omitted from any index database
generation, SINGLE is the default. You must specify INDEX or SYMBOL for any LCHILD statement
following an index target segment type; no default is provided for this part of the index relationship.
When omitted from an LCHILD statement which establishes a unidirectional or physically paired
bidirectional logical relationship, NONE is the default. When omitted or specified as NONE for an
LCHILD statement which establishes a virtually paired bidirectional logical relationship, SINGLE is the
default.

Restriction:

• For PHDAM and PHIDAM databases, only the operands INDEX and NONE are supported. All other
operands are treated as if errors are present.

• For DEDB secondary index databases, only the SYMBOL operand is supported.

SINGLE
Is used for logical relationships, or index relationships implemented with direct address pointers.
Specifies that a logical child first pointer field is to be reserved in each occurrence of the segment
type defined by the preceding TABLE. When the preceding TABLE defines a logical parent, the
pointer field contains a direct address pointer to the first occurrence of a logical child segment
type. When the preceding TABLE defines the HIDAM Primary index database segment type, the
pointer field contains a direct address pointer to a HIDAM database root segment. When the
preceding TABLE defines an index pointer segment type in a secondary index database, the
pointer field contains a direct address pointer to an index target segment.

DOUBLE
Is used to specify two 4-byte pointer fields, logical child first and logical child last, reserved in
the logical parent segment. The two pointers point to the first and last occurrences of logical child
segment type under a logical parent. The logical child last pointer is of value when the logical child
is not sequenced and the rules parameter is LAST.

714 IMS: Application Programming APIs

NONE
Should be used when the logical relationship from the logical parent to the logical child segment
is not implemented or not implemented with direct address logical child pointers. In this case, the
relationship from logical parent to logical child does not exist or is maintained by using physically
paired segments. No pointer fields are reserved in the logical parent segment.

INDEX
Is specified on the LCHILD statement in a HIDAM database used to establish the index
relationship between the HIDAM root segment type and the HIDAM Primary index during a HIDAM
database DBD generation. INDX can also be specified on the LCHILD statement in the DBD for
the target database that establishes the index relationship between an index target segment type
and a secondary index. In these cases, omit the parameter or specify SINGLE on the LCHILD
statement of the primary or secondary index DBD. An LCHILD statement for a HIDAM primary
index must precede the LCHILD statements for secondary indexes.

Requirement: If the target database is a HALDB, the index database must be defined as a HALDB
index by use of the PSINDEX parameter in the DBD statement ACCESS parameter.

SYMBOL
Can be used in the DBD generation for the target database of a secondary index to specify that the
concatenated keys of the index target segments are to be placed in the index pointer segments
in lieu of a direct pointer. You must specify SYMBOL when the index target segment type is in
a HISAM database. SYMBOL is optional when the index target segment type is in an HDAM or
HIDAM database.

An additional use of the SYMBOL parameter in the INDEX DBD is to prevent reserving space in the
prefix of index pointer segments for the 4-byte direct address index target segment pointer that is
not used when the index pointer is symbolic.

PAIR
Is specified for bidirectional logical relationships only. The provide name is the logical child segment/
table that is, physically or virtually, paired with the logical child segment/table specified on the
LCHILD statement. The name must be a 1- to 128-character alphanumeric value.

Restriction: This parameter is not allowed for virtual pairing when using PHDAM and PHIDAM
databases, because they only support physical pairing.

INDEXFIELD
Is specified on LCHILD statements for an Index DBD generation only. It specifies the name of the
sequence field of a HIDAM root segment type during DBD generation of the primary index for a HIDAM
database, or the name of an indexed field, defined through an XDFLD statement in an index target
segment type during DBD generation of a secondary index database. This parameter is not needed for
a primary index of a PHIDAM database.

RKSIZE
Specifies the root key size of the target database. This parameter is for partitioned secondary index
(PSINDEX) databases only, and is invalid for any other database type. (Required in DBD source,
optional in DDL).

FIRST|LAST|HERE
Is used for logical relationships when no sequence field or a nonunique sequence field has been
defined for a virtual logical child. Under these conditions, the rule of FIRST, LAST, or HERE controls
the sequence in which occurrences of the real logical child in the logical relationship are sequenced
from the logical parent through logical child and logical twin pointers (this establishes the logical twin
sequence).

Restriction: This parameter is not allowed for virtual pairing when using PHDAM and PHIDAM
databases, because they only support physical pairing.

FIRST
Indicates that, if no sequence field is specified for the logical child, a new occurrence is inserted
before the first existing occurrence of the logical child. If a nonunique sequence field is specified
for the logical child, a new occurrence is inserted before all existing occurrences with the same
key.

Chapter 8. SQL programming reference 715

LAST
Indicates that, if no sequence field is specified for the logical child, a new occurrence is inserted
after the last existing occurrence of the logical child. If a nonunique sequence field is specified for
the logical child, a new occurrence is inserted after all existing occurrences with the same keys.
LAST is the default option.

HERE
Indicates that the insert is dependent on the position established by the previous DL/I call. If
no sequence field is defined, the segment is inserted before the logical twin that position was
established on through the previous call. If no position was established by a previous call, the
new twin is inserted before all existing logical twins. If a nonunique sequence field is defined, the
segment is inserted before the logical twin with the same sequence field value on which position
was established by a previous call. If no position was established on a logical twin with the same
sequence field value, the segment is inserted before all twins with the same sequence field value.

When a new occurrence of a logical child is inserted from its physical parent, no previous position
exists for the logical child on its logical twin chain. Therefore, the new occurrence is placed before
all existing occurrences on the logical twin chain when no sequence field has been defined, or
before all existing occurrences with the same sequence field value when a nonunique sequence
field has been defined.

A command code of L (last) takes precedence over the insert rule specified, causing a new
occurrence to be inserted according to the insert rule of LAST, for insert calls issued against a
logical path.

Keyword parameters for CREATE TABLE (xdfld)
The following keyword parameters are defined for the CREATE TABLE (xdfld syntax) statement:
xdfld_definition

Must be preceded by a lchild-definition.
xdfld_name

Specifies the name of the indexed data field of an index target segment. The name specified actually
represents the search field of an index pointer segment type as being a field in the index target
segment type. You can use the name specified to qualify SSAs of calls for an index target segment
type through the search field keys of index pointer segments. This enables accessing occurrences of
an index target segment type through a primary or secondary processing sequence based on data
contained in a secondary index. fldname must be a 1- to 26-character alphanumeric value.

Since the name specified is used to access occurrences of the index target segment type based on the
content of a secondary index, the name specified must be unique among all field names specified for
the index target segment type.

INTERNALNAME
Optional IMS internal name. Must be a 1- to 8-character alphanumeric value.

SEGMENT
Specifies the index source segment type for this secondary index relationship. Must be the name of a
subsequently defined segment type, which is hierarchically below the index target segment type or it
can be the name of the index target segment type itself. The segment name specified must not be a
logical child segment. If this parameter is omitted, the index target segment type is assumed to be the
index source segment.

CONST
Specifies a character with which every index pointer segment in a particular secondary index is
identified. This parameter is optional. The purpose of this parameter is to identify all index pointer
segments associated with each secondary index when multiple secondary indexes reside in the same
secondary index database. Must be specified as a 1-byte hexstring term, for example X'F9'.

Restriction: CONST is not supported for HALDB or DEDB databases.

716 IMS: Application Programming APIs

SRCH
Specifies which field or fields of the index source segment you must use as the search field of a
secondary index. list1 must be a list of one to five field names defined in the index source segment
type by column definitions. If two or more names are included, they must be separated by commas
and enclosed in parentheses. The sequence of names in the list is the sequence in which the field
values are concatenated in the index pointer segment search field. The sum of the lengths of the
participating fields constitutes the index target segment indexed field length which must be reflected
in segment search arguments.

SUBSEQ
Specifies which, if any, fields of the index source segment you must use as the subsequence field of a
secondary index. list2 must be a list of one to five field names defined in the index source segment
by column definitions. If two or more names are included, they must be separated by commas and
enclosed in parentheses. The sequence of names in the list is the sequence in which field values are
concatenated in the index pointer segment subsequence field. This parameter is optional.

DDATA
Specifies which, if any, fields of the index source segment you must use as the duplicate data field of
a secondary index. list3 must be a list of one to five field names defined in the index source segment
by column definitions. If two or more names are included, they must be separated by commas and
enclosed in parentheses. The sequence of names in the list is the sequence in which field values are
concatenated in the index pointer segment duplicate data field. This parameter is optional.

NULLVAL
Suppresses the creation of index pointer segments when the index source segment data used in the
search field of an index pointer segment contains the specified value.

The value must be a 1-byte hex-string term. For example, X'10', X’40’ for blank, X’00’ for zero. If a
packed decimal value is required, it must be specified as a hexadecimal term with a valid number digit
and zone or sign digit (X'3F' for a packed positive 3 or X'9D' for negative 9).

No indexing is performed when each field of the index source segment specified in the SRCH
parameter has the value of this parameter in every byte. For example, if the NULLVAL X'F9' were
specified, the associated index would have no entries indexed on the value C'9999...9'.

There is a slight difference in the case of packed fields. For packed fields, each field that composes
the search field is considered to be a separate packed value. For example, if the NULLVAL X'9F' were
specified in a case where the search field was composed of three 2-byte packed source fields, there
would be no index entries with the search field value of X'999F999F999F' because all index entries
containing a X'9F' would be suppressed.

Also, with the same NULLVAL X'9F', if the search field were one 6-byte field, no indexing would be
performed whenever the value of the search field was X'99999999999F'.

The only form of the sign that is checked is the form specified. For example, if X'9C' is specified, X'9F'
does not cause suppression. If both the NULLVAL and the EXTRTN operands are specified, indexing of
a segment is performed only if neither causes suppression.

EXTRTN
Specifies the name of a user-supplied index maintenance exit routine that is used to suppress the
creation of selected index pointer segments. The parameter (name1) must be the name of a user-
supplied routine which receives control whenever DL/I attempts to insert, delete or replace an index
entry because of changes occurring in the indexed database. This exit routine can inspect the affected
index source segment and decide whether an index pointer segment should be generated. If both the
NULLVAL and the EXTRTN operands are specified, indexing of a segment is performed only if neither
causes suppression.

Usage notes
This statement is equivalent to the AREA statement of the IMS DBD generation utility.

Chapter 8. SQL programming reference 717

Example: COGDBD
DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,OSAM), C
 RMNAME=(DFSHDC40,3,3,25), C
 PASSWD=NO
 DATASET DD1=COGDATA, C
 DEVICE=3390, C
 SIZE=(8192)
 SEGM NAME=ROOT, C
 PARENT=0, C
 BYTES=(20), C
 RULES=(LLL,HERE)
 FIELD NAME=(ROOTKEY,SEQ,U), C
 BYTES=12, C
 START=1, C
 TYPE=C, C
 DATATYPE=CHAR
 FIELD NAME=TABTYPE, C
 BYTES=8, C
 START=13, C
 TYPE=C, C
 DATATYPE=CHAR
 SEGM NAME=TSINT, C
 PARENT=ROOT, C
 BYTES=(8,6), C
 REMARKS='This describes table TSINT.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CSINT, C
 EXTERNALNAME=CSINT, C
 BYTES=2, C
 START=7, C
 DATATYPE=SHORT
 SEGM NAME=TINT, C
 EXTERNALNAME=TESTINTEGER, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 REMARKS='This describes table TINT.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CINT, C
 EXTERNALNAME=CINTEGER, C
 BYTES=4, C
 START=7, C
 DATATYPE=INT

CREATE DATABASE COGDBD
ACCESS HDAM OSAM
RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
CCSID 'Cp1047';

CREATE TABLESPACE COGDATA
 SIZE PRIMARY 8192;

CREATE TABLE TEST_ROOT (
 ROOT_KEY CHAR(12) INTERNALNAME ROOTKEY PRIMARY KEY ,
 TABLE_TYPE CHAR(8) INTERNALNAME TABTYPE
) IN COGDBD.COGDATA
 INTERNALNAME ROOT
 MAXBYTES 20
 AMBIGUOUS INSERT HERE;

CREATE TABLE TEST_SHORT_INTEGER (
 TABLE_LENGTH SHORT INTERNALNAME LL,
 R_NUMBER INT INTERNALNAME RNUM,

718 IMS: Application Programming APIs

 C_SHORT_INTEGER SHORT INTERNALNAME CSINT,
 FOREIGN KEY REFERENCES TEST_ROOT
) IN COGDBD.COGDATA
 INTERNALNAME TSINT
 MAXBYTES 8
 MINBYTES 6
 AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_SHORT_INTEGER IN COGDBD IS 'This describes table TSINT.';

CREATE TABLE TESTINTEGER (
TABLE_LENGTH SHORT INTERNALNAME LL,
R_NUMBER INT INTERNALNAME RNUM,
CINTEGER INT INTERNALNAME CINT,
FOREIGN KEY REFERENCES TEST_ROOT
) IN COGDBD.COGDATA
 INTERNALNAME TINT
 MAXBYTES 10
 MINBYTES 6
 AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TESTINTEGER IN COGDBD IS 'This describes table TINT.';

Example: Continuation of COGDBD with DECIMAL
SEGM NAME=TDEC, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 REMARKS='This describes table TDEC.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CDEC, C
 EXTERNALNAME=CDECIMAL, C
 BYTES=4, C
 START=7, C
 DATATYPE=DECIMAL(7,2)

CREATE TABLE TEST_DECIMAL (
 TABLE_LENGTH SHORT INTERNALNAME LL,
 R_NUMBER INT INTERNALNAME RNUM,
 CDECIMAL DECIMAL(7,2) INTERNALNAME CDEC,
 FOREIGN KEY REFERENCES TEST_ROOT
) IN COGDBD.COGDATA
 INTERNALNAME TDEC
 MAXBYTES 10
 MINBYTES 6
 AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_DECIMAL IN COGDBD IS 'This describes table TDEC.';

Example: Continuation of COGDBD with DFSMARSH
SEGM NAME=TNCHAR, C
 PARENT=ROOT, C
 BYTES=(38,6), C
 REMARKS='This describes table TNCHAR.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CNCHAR, C
 EXTERNALNAME=CNCHAREXT, C
 BYTES=32, C
 START=7, C
 DATATYPE=CHAR

Chapter 8. SQL programming reference 719

 DFSMARSH ENCODING=UTF-8, C
 INTERNALTYPECONVERTER=CHAR

CREATE TABLE TEST_NEW_CHAR (
 TABLE_LENGTH SHORT INTERNALNAME LL,
 R_NUMBER INT INTERNALNAME RNUM,
 CNCHAREXT CHAR(32) INTERNALNAME CNCHAR CCSID 'UTF-8',
 FOREIGN KEY REFERENCES TEST_ROOT
) IN COGDBD.COGDATA
 INTERNALNAME TNCHAR
 MAXBYTES 38
 MINBYTES 6
 AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_NEW_CHAR IN COGDBD IS 'This describes table TNCHAR.';

Example: Continuation of COGDBD with PATTERN
SEGM NAME=TTS, C
 PARENT=ROOT, C
 BYTES=(35,6), C
 REMARKS='This describes table TTS.', C
 RULES=(LLL,HERE)
 FIELD NAME=RNUM, C
 BYTES=4, C
 START=3, C
 DATATYPE=INT
 FIELD NAME=LL, C
 BYTES=2, C
 START=1, C
 DATATYPE=SHORT
 FIELD NAME=CTS, C
 EXTERNALNAME=CTSNAME, C
 BYTES=29, C
 START=7, C
 DATATYPE=TIMESTAMP
 DFSMARSH ENCODING=Cp1047, C
 INTERNALTYPECONVERTER=CHAR, C
 PATTERN='yyyy-MM-dd HH:mm:ss.fffffffff'

CREATE TABLE TEST_TIMESTAMP (
 TABLE_LENGTH SHORT INTERNALNAME LL,
 R_NUMBER INT INTERNALNAME RNUM,
 CTSNAME TIMESTAMP INTERNALNAME CTS CCSID 'Cp1047'
 PATTERN 'yyyy-MM-dd HH:mm:ss.fffffffff',
 FOREIGN KEY REFERENCES TEST_ROOT
) IN DATABASE COGDBD
 INTERNALNAME TTS
 MAXBYTES 35
 MINBYTES 6
 AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_TIMESTAMP IN COGDBD IS 'This describes table TTS.';

Example: Arrays
SEGM NAME=HOSPITAL,
 EXTERNALNAME=HOSPITAL,
 ENCODING=Cp1047,
 PARENT=0,
 BYTES=(900),
 RULES=(LLL,HERE)
...

 FIELD EXTERNALNAME=TABLEARRAY,
 BYTES=14,
 START=224,
 MINOCCURS=1,
 MAXOCCURS=1,
 DATATYPE=ARRAY
 FIELD EXTERNALNAME=TABLEARRAY1,
 BYTES=2,
 START=224,
 TYPE=X,
 PARENT=TABLEARRAY,
 DATATYPE=CHAR
 DFSMARSH INTERNALTYPECONVERTER=CHAR

720 IMS: Application Programming APIs

 FIELD EXTERNALNAME=TABLEARRAY2,
 BYTES=4,
 START=226,
 TYPE=X,
 PARENT=TABLEARRAY,
 DATATYPE=CHAR
 DFSMARSH INTERNALTYPECONVERTER=CHAR
 FIELD EXTERNALNAME=TABLEARRAY3,
 BYTES=8,
 START=230,
 TYPE=X,
 PARENT=TABLEARRAY,
 DATATYPE=CHAR
 DFSMARSH INTERNALTYPECONVERTER=CHAR
...

CREATE TABLE hospital (
 ...
 tablearray ARRAY MAXBYTES 14 START 224 MINOCCURS 1 MAXOCCURS 1,
 tablearray1 CHAR(2) IN tablearray,
 tablearray2 CHAR(4) IN tablearray,
 tablearray3 CHAR(8) IN tablearray,
 ...
) IN DATABASE dedbjn21
 INTERNALNAME hospital
 MAXBYTES 900
 AMBIGUOUS INSERT HERE

Example: Dynamic Arrays
FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100
 MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10

CREATE TABLE dynamic_array_table (
 arraynum DECIMAL(7,0)
 dynarray ARRAY MAXBYTES 100 MINOCCURS 10 MAXOCCURS 50 DEPENDSON arraynum,
 fld01 SHORT RELSTART 1 IN dynarray,
 fld02 CHAR(10) STARTAFTER dynarray,
 struct01 STRUCT BYTES 10 STARTAFTER fld02
) IN DATABASE dynarrdb
 INTERNALNAME dynarrs;

Example: Maps
DFSMAP NAME=MAP1, C
 DEPENDINGON=CASENUM
~~~~~~~DFSCASE NAME=CASE1 redefines the schema for bytes 791 to 831.~~~~ 
      DFSCASE  NAME=CASE1,                                             C
               CASEID=CASEONE,                                         C
               CASEIDTYPE=C,                                           C
               MAPNAME=MAP1
      FIELD    EXTERNALNAME=FIELDB,                                    C
               CASENAME=CASE1,                                         C
               BYTES=20,                                               C
               START=791,                                              C
               DATATYPE=CHAR
      FIELD    EXTERNALNAME=FIELDC,                                    C
               CASENAME=CASE1,                                         C
               BYTES=20,                                               C
               START=811,                                              C
               DATATYPE=CHAR
~~~~~~~DFSCASE NAME=CASE2 redefines the schema for bytes 831 to 855~~~~
 DFSCASE NAME=CASE2, C
 CASEID=CASETWO, C
 CASEIDTYPE=C, C
 MAPNAME=MAP1
 FIELD EXTERNALNAME=FIELDD, C
 CASENAME=CASE2, C
 BYTES=20, C
 START=831, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=CARDTYPE, C

Chapter 8. SQL programming reference 721

 BYTES=4, C
 START=851, C
 DATATYPE=CHAR

CREATE TABLE customer (
 id INT PRIMARY KEY,
 …
 casenum CHAR(12),
 cardtype CHAR(4),
 …
 MAP casenum AS MAP1 (
 CASE caseone AS case1 (
 fieldb CHAR(20) START 792 ,
 fieldc CHAR(20) START 811
) ,
 CASE casetwo AS case2 (
 fieldd CHAR(20) START 831,
 cardtype CHAR(4) START 851)
)
)
) IN DATABASE dedbjn21
 INTERNALNAME customer
 MAXBYTES 900

Example: Structs
FIELD NAME=(NAME), C
 EXTERNALNAME=PAYEE_NAME, C
 BYTES=20, C
 START=11, C
 DATATYPE=CHAR
 DFSMARSH ENCODING=Cp1047, C
 INTERNALTYPECONVERTER=CHAR

 FIELD EXTERNALNAME=INDIVIDUALNAME, C
 BYTES=20, C
 START=11, C
 DATATYPE=STRUCT, C
 REDEFINES=PAYEE_NAME, C
 REMARKS='This is a STRUCT with lastname and firstname'

 FIELD EXTERNALNAME=LASTNAME, C
 BYTES=10, C
 START=11, C
 DATATYPE=CHAR, C
 PARENT=INDIVIDUALNAME
 DFSMARSH ENCODING=Cp1047, C
 INTERNALTYPECONVERTER=CHAR

 FIELD EXTERNALNAME=FIRSTNAME, C
 BYTES=10, C
 START=21, C
 DATATYPE=CHAR, C
 PARENT=INDIVIDUALNAME
 DFSMARSH ENCODING=Cp1047, C
 INTERNALTYPECONVERTER=CHAR

CREATE TABLE customer (
 …
 payee_name CHAR(20) START 11 CCSID 'Cp1047',
 individualname STRUCT BYTES 20 START 11,
 lastname CHAR(10) IN individualname,
 firstname CHAR(10 IN individualname
) IN DATABASE dedbjn21
 INTERNALNAME customer
 MAXBYTES 900

COMMENT ON COLUMN customer.individualname IN dedbjn21 IS 'This is
 a STRUCT with lastname and firstname'

Example: Continuation of Structs
FIELD EXTERNALNAME=PERSONAL_INFO, C
 BYTES=184, C
 START=156, C
 DATATYPE=STRUCT

722 IMS: Application Programming APIs

 DFSMARSH INTERNALTYPECONVERTER=STRUCT

 FIELD EXTERNALNAME=ADDRESS, C
 BYTES=184, C
 START=156, C
 MINOCCURS=2, C
 MAXOCCURS=2, C
 PARENT=PERSONAL_INFO, C
 DATATYPE=ARRAY

 FIELD EXTERNALNAME=NAME_TYPE, C
 BYTES=1, C
 RELSTART=1, C
 PARENT=ADDRESS, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=INDIVIDUAL_NAME, C
 BYTES=20, C
 RELSTART=2, C
 PARENT=ADDRESS, C
 DATATYPE=STRUCT

 FIELD EXTERNALNAME=LAST_NAME, C
 BYTES=12, C
 RELSTART=1, C
 PARENT=INDIVIDUAL_NAME, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=FIRST_NAME, C
 BYTES=8, C
 RELSTART=13, C
 PARENT=INDIVIDUAL_NAME, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=ADDRESS_LINE2, C
 BYTES=40, C
 RELSTART=22, C
 PARENT=ADDRESS, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=CITY, C
 BYTES=20, C
 RELSTART=62, C
 PARENT=ADDRESS, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=STATE, C
 BYTES=2, C
 RELSTART=82, C
 PARENT=ADDRESS, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=ZIP, C
 BYTES=9, C
 RELSTART=84, C
 PARENT=ADDRESS, C
 DATATYPE=CHAR
…
 FIELD EXTERNALNAME=COMPANY_CARDS, C
 BYTES=200, C
 START=584, C
 DATATYPE=STRUCT

 FIELD EXTERNALNAME=CARDS, C
 BYTES=200, C
 START=584, C
 MINOCCURS=5, C
 MAXOCCURS=5, C
 PARENT=COMPANY_CARDS, C
 DATATYPE=ARRAY

 FIELD EXTERNALNAME=COMPANY_NAME, C
 BYTES=20, C
 RELSTART=1, C
 PARENT=CARDS, C
 DATATYPE=STRUCT

 FIELD EXTERNALNAME=CO_TYPE, C
 BYTES=12, C
 RELSTART=1, C
 PARENT=COMPANY_NAME, C
 DATATYPE=CHAR

Chapter 8. SQL programming reference 723

 FIELD EXTERNALNAME=NEW_TYPE, C
 BYTES=12, C
 RELSTART=1, C
 REDEFINES=CO_TYPE, C
 PARENT=COMPANY_NAME, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=CO_NAME, C
 BYTES=8, C
 RELSTART=13, C
 PARENT=COMPANY_NAME, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=EMPLOYEE_NAME, C
 BYTES=20, C
 RELSTART=21, C
 PARENT=CARDS, C
 DATATYPE=STRUCT

 FIELD EXTERNALNAME=EMPLOYEE_LAST_NAME, C
 BYTES=12, C
 RELSTART=1, C
 PARENT=EMPLOYEE_NAME, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=EMPLOYEE_MAIDEN_NAME, C
 BYTES=12, C
 RELSTART=1, C
 REDEFINES=EMPLOYEE_LAST_NAME, C
 PARENT=EMPLOYEE_NAME, C
 DATATYPE=CHAR

 FIELD EXTERNALNAME=EMPLOYEE_FIRST_NAME, C
 BYTES=8, C
 RELSTART=13, C
 PARENT=EMPLOYEE_NAME, C
 DATATYPE=CHAR

CREATE TABLE employee (
 …
 personal_info STRUCT BYTES 184 START 156,
 address ARRAY BYTES 184 START 156 MINOCCURS 2 MAXOCCURS 2 IN personal_info,
 name_type CHAR RELSTART 1 IN address,
 individual_name STRUCT BYTES 20 RELSTART 2 IN address,
 last_name CHAR(12) RELSTART 1 IN individual_name,
 first_name CHAR(8) RELSTART 13 IN individual_name,
 address_line2 CHAR(40) RELSTART 22 IN address,
 city CHAR(20) RELSTART 62 IN address,
 state CHAR(20) RELSTART 82 IN address,
 zip CHAR(9) RELSTART 84 IN address,
 company_cards STRUCT BYTES 200 START 584,
 cards ARRAY BYTES 200 START 584 MINOCCURS 5 MAXOCCURS 5 IN company_cards,
 company_name STRUCT BYTES 20 RELSTART 1 IN cards,
 co_type CHAR(12) RELSTART 1 IN company_name,
 new_type CHAR(12) RELSTART 1 IN company_name,
 co_name CHAR(8) RELSTART 13 IN company_name,
 employee_name STRUCT BYTES 20 RELSTART 21 IN cards,
 employee_last_name CHAR(12) RELSTART 1 IN employee_name,
 employee_maiden_name CHAR(12) RELSTART 1 IN employee_name,
 employee_first_name CHAR(8) RELSTART 13 IN employee_name
) IN dedbjn21
 INTERNALNAME employee
 MAXBYTES 900

Example: Logical relationships EMPDB2
DBD NAME=EMPDB2,ACCESS=(HDAM,OSAM), X
 RMNAME=(DFSHDC40,1,5,200)
 DATASET DD1=DFSEMPL
 SEGM NAME=EMPL,PARENT=0,BYTES=56
 LCHILD NAME=(SALESPER,AUTODB),PAIR=EMPSAL,POINTER=DBLE
 FIELD NAME=(EMPNO,SEQ,U),BYTES=6,START=1,TYPE=C
 FIELD NAME=LASTNME,BYTES=25,START=7,TYPE=C
 FIELD NAME=FIRSTNME,BYTES=25,START=32,TYPE=C
 SEGM NAME=EMPSAL,PARENT=EMPL,PTR=PAIRED, X
 SOURCE=((SALESPER,DATA,AUTODB))
 FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C (LPK)

724 IMS: Application Programming APIs

 SEGM NAME=EMPLINFO,PARENT=EMPL,BYTES=61
 FIELD NAME=(STATE,SEQ,M),BYTES=2,START=51,TYPE=C
 FIELD NAME=ADDRESS,BYTES=61,START=1,TYPE=C
 FIELD NAME=STREET,BYTES=25,START=1,TYPE=C
 FIELD NAME=CITY,BYTES=25,START=26,TYPE=C
 FIELD NAME=ZIP,BYTES=9,START=53,TYPE=C
 DBDGEN
 FINISH
 END

CREATE DATABASE empdb2
 ACCESS HDAM OSAM
 RMNAME(DFSHDC40 RMANCH 1 RMRBN 5 RMBYTES 200);

CREATE TABLESPACE dfsempl
 IN empdb2;

CREATE TABLE employee (
 empno CHAR(6) INTERNALNAME empno PRIMARY KEY,
 lastnme CHAR(25) INTERNALNAME lastnme,
 firstnme CHAR(25) INTERNALNAME firstnme,
 LCHILD autodb.sales_person PAIR empyee_salary DOUBLE
) IN empdb2.DFSEMP1
 INTERNALNAME empl
 MAXBYTES 56;

CREATE TABLE employee_salary (
 dealer_number CHAR(4) INTERNALNAME dlrno PRIMARY KEY,
 FOREIGN KEY REFERENCES employee
) IN empdb2.DFSEMP1
 INTERNALNAME empsal
 SOURCE (autodb.sales_person);

CREATE TABLE employee_information (
 address CHAR(61) START 1 INTERNALNAME address,
 street CHAR(25) START 1 INTERNALNAME street,
 city CHAR(25) START 26 INTERNALNAME city,
 state CHAR(2) START 51 INTERNALNAME state PRIMARY KEY NON UNIQUE,
 zip CHAR(9) START 53 INTERNALNAME zip,
 FOREIGN KEY REFERENCES employee
) IN empdb2.dfsemp1
 INTERNALNAME emplinfo
 MAXBYTES 61;

Example: Logical database
DBD NAME=EMPLDB2,ACCESS=LOGICAL
 DATASET LOGICAL
 SEGM NAME=EMPL,PARENT=0,SOURCE=((EMPL,,EMPDB2))
 SEGM NAME=DEALER,PARENT=EMPL, X
 SOURCE=((EMPSAL,KEY,EMPDB2),(DEALER,DATA,AUTODB))
 SEGM NAME=SALESINF,PARENT=DEALER, X
 SOURCE=((SALESINF,,AUTODB))
 SEGM NAME=EMPLINFO,PARENT=EMPL, X
 SOURCE=((EMPLINFO,,EMPDB2))

CREATE DATABASE empldb2
 ACCESS LOGICAL;

CREATE TABLE empl
IN empldb2
SOURCE(empdb2.empl);

CREATE TABLE dealer (
 FOREIGN KEY REFERENCES empl
) IN empldb2
 SOURCE(empdb2.empsal KEY, autodb.dealer DATA);

CREATE TABLE salesinf (
 FOREIGN KEY REFERENCES empl
) IN empldb2
 SOURCE(autodb.salesinf);

CREATE TABLE emplinfo (
 FOREIGN KEY REFERENCES empl
) IN empldb2
 SOURCE(empdb2.emplinfo);

Chapter 8. SQL programming reference 725

Example: Secondary Index database
DBD NAME=SINDEX22,ACCESS=(INDEX,VSAM)
 DATASET DD1=SINDX2P
 SEGM NAME=SINDXB,PARENT=0,BYTES=34
 FIELD NAME=(XFLDB,SEQ,U),BYTES=28,START=1,TYPE=C SEARCH
 FIELD NAME=COUNT,BYTES=2,START=25,TYPE=C DUP DATA
 FIELD NAME=ENQUIRS,BYTES=4,START=25,TYPE=P USER DATA
 LCHILD NAME=(DEALER,AUTODB),INDEX=XFLD2
 DBDGEN
 FINISH
 END

CREATE DATABASE sindex22
 ACCESS INDEX;

CREATE TABLESPACE sindx2p
IN sindex22;

CREATE TABLE secondary_indexb (
 xfldb CHAR(28) INTERNALNAME xfldb PRIMARY KEY,
 count CHAR(2) INTERNALNAME count start(25),
 enquirs BINARY(4) START(25) INTERNALNAME enquirs,
 LCHILD autodb.dealer LCINDEX xfld2
) IN sindex22
 INTERNALNAME sindxb
 MAXBYTES 34;

Example: Data Capture Exit

* DBD DHVNTZ02 FROM CMVC (CDCI19-3.DBDGEN) *

 DBD NAME=DHVNTZ02, C
 ACCESS=(HIDAM,VSAM),PASSWD=NO,VERSION=CDCTEST

* DATASET GROUP NUMBER 1

DSG001 DATASET DD1=HIDAM,DEVICE=3300,SIZE=(2048),SCAN=3

* SEGMENT NUMBER 1 *

 SEGM NAME=K1, C
 PARENT=0,BYTES=10,RULES=(LLL,LAST),PTR=(NOTWIN,,,,) C
 EXIT=(*,LOG,PATH,KEY,DATA)
 FIELD NAME=(K1,SEQ,U), C
 START=1,BYTES=5,TYPE=C
 FIELD NAME=(ID), C
 START=6,BYTES=4,TYPE=C
 LCHILD NAME=(INDEX,DXVNTZ02), C
 PTR=INDX,RUTLES=LAST,TYPE=C
. . . .
. . . .

* SEGMENT NUMBER 5 *

 SEGM NAME=K5,PARENT=((K1,SNGL)), C
 BYTES=10,RULES=(LLL,LAST),PTR=(TWIN,,,,) C
 EXIT=(*,LOG,PATH,KEY,DATA)
 FIELD NAME=(K5,SEQ,U), C
 START=1,BYTES=5,TYPE=C
 FIELD NAME=(ID), C
 START=6,BYTES=4,TYPE=C
 LCHILD NAME=(K3), C
 PTR=SNGL,PAIR=K5X,RULES=LAST
 LCHILD NAME=(K8), C
 PTR=DBLE,PAIR=K5Y,RULES=HERE
. . . .
. . . .
 DBDGEN
 FINISH
 END

726 IMS: Application Programming APIs

Example: Data Capture Exit

* DBD DIVNTZ02 FROM CMVC (CDCI29-3 DBDGEN) *

 DBD NAME=DIVNTZ02,ACCESS=(HISAM,VSAM),VERSION=DIVNTZ02, X
 EXIT=(COBXSQL,LOG,PATH,KEY,DATA,NOCASCADE)
*
DSG01 DATASET DD1=DBHVSAM1,DEVICE=3330,OVFLW=DBHVSAM2, X
 BLOCK=(00004,00002),RECORD=(00200,00200)
*
 SEGM NAME=J1, X
 PARENT=0, X
 BYTES=10, X
 FREQ=1, X
 POINTER=NONE, X
 RULES=(PPP,LAST)
 FIELD NAME=(J1,SEQ,U),BYTES=005,START=00001,TYPE=C
 FIELD NAME=ID,BYTES=4,START=6,TYPE=C
**
* DLI Change Data Capture - Change delete rule to virtual
**
 SEGM NAME=J2, X
 PARENT=((J1,SNGL),(J6,PHYSICAL,DIVNTZ02)), X
 BYTES=37, X
 FREQ=0000000001.00, X
 POINTER=NONE, X
 RULES=(PVP,LAST)
 FIELD NAME=(J2,SEQ,U),BYTES=005,START=00016,TYPE=C
 FIELD NAME=ID,BYTES=4,START=21,TYPE=C
 FIELD NAME=(1J2),BYTES=004,START=00026,TYPE=C
 FIELD NAME=(2J2),BYTES=004,START=00030,TYPE=C
 FIELD NAME=(3J2),BYTES=004,START=00034,TYPE=C
. . . .
. . . .
 SEGM NAME=J15,EXIT=NONE, X
 PARENT=J12, X
 POINTER=PAIRED, X
 SOURCE=((K10,DATA,DHVNTZ02))
 FIELD NAME=(J15,SEQ,U),BYTES=5,START=16,TYPE=C
 FIELD NAME=ID,BYTES=4,START=22,TYPE=C
 DBDGEN
 FINISH
 END

Related reference
DBD generation for database types (System Utilities)

CREATE TABLESPACE
The CREATE TABLESPACE statement defines a data set group for a full-function database or a database
area for a Fast Path Data Entry Database (DEDB) to IMS.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

• “CREATE TABLESPACE syntax” on page 728
• “GSAM syntax” on page 728
• “HDAM or HIDAM syntax” on page 729
• “HSAM or SHSAM syntax” on page 729
• “HISAM or INDEX syntax” on page 729
• “SHISAM syntax” on page 729
• “DEDB syntax” on page 729

The following database types can have only one TABLESPACE statement defined to it:

• HSAM

Chapter 8. SQL programming reference 727

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dbdgdt.htm#ims_dbdgdt

• SHSAM
• GSAM
• HISAM
• SHISAM
• INDEX

The following database types do not allow for any TABLESPACE statements:

• PSINDEX
• LOGICAL
• PHDAM
• PHIDAM

The following database types can have between 1 and 10 TABLESPACE statements defined to it:

• HDAM
• HIDAM

The following database type can have between 1 and 2048 TABLESPACE statements defined to it:

• DEDB

CREATE TABLESPACE syntax
CREATE TABLESPACE ddname IN database_name

Options for HSAM or SHSAM

Options for GSAM

Options for HISAM or INDEX

Options for SHISAM

Options for HDAM or HIDAM

Options for DEDB

GSAM syntax

OUTPUT (ddname)

RECORD (recordlength1 , recordlength2)

BLOCK PRIMARY blkfact

SIZE PRIMARY area

FORMAT FIXED

FIXEDBLOCK

VARIABLE

VARIABLEBLOCK

UNDEFINED

728 IMS: Application Programming APIs

HDAM or HIDAM syntax

BLOCK PRIMARY blkfact SIZE PRIMARY size

FREEBLOCK fbff FREESPACE fspf SCAN cylinders

SEARCHA 0

1

2

HSAM or SHSAM syntax
OUTPUT (ddname)

RECORD (recordlength1 , recordlength2)

BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

HISAM or INDEX syntax
OVERFLOW (ddname)

RECORD (recordlength1 , recordlength2)

BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

SIZE PRIMARY size SIZE SECONDARY size

SHISAM syntax

RECORD (recordlength1 , recordlength2)

BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

SIZE PRIMARY size SIZE SECONDARY size

DEDB syntax
SIZE PRIMARY size UOW (number1 , number2) ROOT (

number1 , number2)

Chapter 8. SQL programming reference 729

Description
The ddnames used on the CREATE TABLESPACE statement must be unique within an IMS system
or account. Non-unique ddnames in two or more DBDs might result in corruption of the database.
One situation that can result in corruption of a database is if both ddnames were inadvertently used
concurrently (both used in two different message regions of a data communications system or in two
PCBs of one PSB used in a batch DL/I region of a database only system).

The following keyword parameters are defined for the CREATE TABLESPACE statement:

CREATE TABLESPACE ddname
Specifies the ddname defining the primary data set in this data set group, or the area of a DEDB.
Name must be 1 to 8- characters alphanumeric. IMS use of the data set indicated by this parameter
depends on the type of database being defined as shown in the following list:
HSAM | SHSAM | GSAM

The ddname of input data set. The input data set is used when an application program retrieves
data from the database.

HISAM | SHISAM | INDEX
The ddname of primary data set in data set group.

HIDAM | HDAM
The ddname of data set in data set group.

DEDB
The area name or a ddname for single area data sets but can only be an area name for multiple
area data sets. If the database is registered in DBRC, this parameter should specify the area
name.

IN database_name
Denotes this data set group belongs to a database.
database_name

The database this data set group belongs to.

Specifies the DBD name of a database whose data sets are to be dynamically allocated. This name
is used as a member name in IMS.SDFSRESL to identify this database parameter list. Care should
be taken to ensure that this name does not conflict with existing members in IMS.SDFSRESL. This
includes, but is not limited to, IMS modules and user-supplied exit routines.

BLOCK PRIMARY
BLOCK SECONDARY

Is used to specify the blocking factors to be used for data sets in a data set group for HSAM, SHSAM,
GSAM, HISAM, SHISAM, and INDEX databases, or is used to specify the block size or control interval
size without overhead for the data set in a data set group for HDAM and HIDAM databases.

For HISAM, SHISAM, and INDEX databases that use VSAM as the access method, use the SIZE
PRIMARY parameter to specify control interval size in place of the BLOCK PRIMARY or BLOCK
SECONDARY parameter. If the SIZE keyword is used for a HISAM, SHISAM, or INDEX database, the
BLOCK keyword is invalid.

In cases where the RECORD, BLOCK PRIMARY, and BLOCK SECONDARY operands are used, the
resulting control interval size must be a multiple of 512 when the resulting size is less than 8192
bytes. If the product of the record length specified times the blocking factor specified plus VSAM
overhead is not a multiple of 512 and is less than 8192 bytes, the resulting control interval size is
obtained by rounding the value up to the next higher multiple of 512. Control interval sizes from 8192
to 30720 bytes (maximum allowed size) must be in multiples of 2048 bytes. When the product of the
RECORD and BLOCK operands plus VSAM overhead is from 8192 to 30720 bytes but is not a multiple
of 2048, the resulting control interval size is obtained by rounding the value up to the next higher
multiple of 2048.

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10 bytes. The maximum block
size for OSAM data sets is 32 KB.

730 IMS: Application Programming APIs

For HDAM and HIDAM databases, the BLOCK PRIMARY parameter is used to enable you to override
the computation of control interval or block size of IMS. However, in addition to the value specified
in the BLOCK PRIMARY parameter, IMS adds space for root anchor points, a free space anchor point,
and access method overhead. The block or control interval size that results can be determined by
referring to the equations in the description of the SIZE PRIMARY parameter or by examining the
output of IMS. If the SIZE parameter is not specified and the access method is VSAM, IMS calculates
the best VSAM LRECL value by equally distributing any unused space in the CI to each logical record in
the CI. If the SIZE PRIMARY parameter is specified, this is not done.

The following table explains the use of the BLOCK and RECORD operands.

Table 168. BLOCK and RECORD operands

Database type Use of BLOCK and RECORD operands

HSAM/SHSAM BLOCK
BLOCK PRIMARY applies to input data set and should always be 1.

BLOCK SECONDARY applies to output data set and should always be 1.

RECORD
recordlength1 is the input record length.

recordlength2 is the output record length.

HSAM/SHSAM is always unblocked; LRECL and BLKSIZE are equal.

GSAM BLOCK
BLOCK PRIMARY applies to input/output data set.

BLOCK SECONDARY is an invalid subparameter.

RECORD
recordlength1 is the size of an LRECL length or maximum size for a
variable length record.

recordlength2 is the minimum size for a variable length record.

SIZE
SIZE PRIMARY is the BLKSIZE for input/output data set.

SIZE SECONDARY is an invalid subparameter.

HISAM/SHISAM BLOCK
BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the data set logical record length.

recordlength2 is the overflow data set logical record length.

HIDAM, HDAM BLOCK
size0 is size without overhead of OSAM or VSAM data set group

RECORD
Is ignored.

DEDB BLOCK and RECORD operands are invalid.

Chapter 8. SQL programming reference 731

Table 168. BLOCK and RECORD operands (continued)

Database type Use of BLOCK and RECORD operands

INDEX BLOCK
BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the primary data set logical record length.

recordlength2 is the overflow data set logical record length.

Note: When both recordlength1 and recordlength2 are specified in a TABLESPACE statement,
recordlength2 must be equal to or greater than recordlength1, except for GSAM.

FORMAT
Specifies the format of the records in the data set. The valid record formats are:
FIXED

Fixed length.
FIXEDBLOCK

Fixed length and blocked
VARIABLE

Variable length.
VARIABLEBLOCK

Variable length and blocked.
UNDEFINED

Undefined length.

This keyword is required and only valid for a GSAM database.

FREEBLOCK
Specifies the free block frequency factor. Every nth control interval or block in this data set group
is left as free space during database load or reorganization. The valid range is 0-100 except 1. The
default is 0.

A smaller value increases the frequency of free space in the database. A value of 2, for example,
would mean that after each piece of data there would be a free space block. This causes
system performance degradation when running reorganization or load utilities because of the extra
processing required for the free space blocks.

FREEBLOCK is equivalent to the IMS keyword FRSPC=(fbff,)).

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE
Specifies the free space percentage factor, which is the minimum percentage of each control interval
or block that is to be left as free space in this data set group. The valid range is 0-99. The default is 0.

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE is equivalent to the IMS keyword FRSPC=(,fspf)).

OUTPUT (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the output data set that is required for an
HSAM or SHSAM database and optional for a GSAM database. This output data set is used by IMS
when loading the database. This keyword is invalid for other database access types.

OUTPUT is equivalent to the IMS keyword DD2=.

732 IMS: Application Programming APIs

OVERFLOW (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in this data set group.
This parameter must be specified for:

• An INDEX database that contains index pointer segments with non-unique keys.
• All data set groups of a HISAM database except when only one segment type is defined in the

HISAM database.

The following conditions apply:

• Invalid for a simple HISAM (SHISAM) database.
• Not required for an HISAM database that contains only one segment type.
• Not required for an index DBD because all index segments are inserted in the key sequenced data

set of the index.
• Invalid for an INDEX database defined with an osaccess type of SHISAM.
• Only valid for HISAM and INDEX database access types.

RECORD(recordlength1,recordlength2)
Specifies the data management logical record lengths to be used for this data set group. This keyword
is optional and only valid for HSAM, SHSAM, GSAM, HISAM, SHISAM, INDEX.

SCAN cylinders
Specifies the number of direct-access device cylinders to be scanned when searching for available
storage space during segment insertion operations. This parameter is optional and only valid for
HIDAM or HDAM databases. If specified, the value must be a decimal integer that does not exceed
255. Typical values are 0 - 5. The default is 3. If 0 is specified, only the current cylinder is scanned for
space.

Scanning is performed in both directions from the current cylinder position. If a scan limit value
causes scanning to include an area outside of the current extent, IMS adjusts the scan limits so that
scanning does not exceed current extent boundaries. If space cannot be found for segment insertion
within the cylinder bounds defined by this parameter, space is used at the current end of the data set
group for the database.

SEARCHA 0 | 1 | 2
Specifies the type of HD space search algorithm that IMS uses to insert a segment into an HD
database.
0

Specifies that IMS chooses which HD space search algorithm to use. 0 is the default.
1

Specifies that IMS uses the HD space search algorithm that does not search for space in the
second-most desirable block or CI.

2
Specifies that IMS uses the HD space search algorithm that includes a search for space in the
second-most desirable block or CI.

This keyword is optional and only valid for HDAM or HIDAM database.

SIZE PRIMARY size1
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block size of primary data set in
a data set group.

For HDAM, HIDAM, this keyword specifies the control interval or block size of the data set in the data
set group. For GSAM, this keyword specifies the block size for input/output data set.

For DEDB, this keyword is required and specifies the control interval.

This keyword is invalid for all other database types.

SIZE PRIMARY is equivalent to the IMS keyword SIZE=(size1,)).

Chapter 8. SQL programming reference 733

SIZE SECONDARY size2
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block size of overflow data set.

This keyword is valid only for HISAM, SHISAM, and INDEX.

SIZE SECONDARY is equivalent to the IMS keyword SIZE=(,size2))

ROOT(number1,number2)
Specifies the total space that is allocated to the root addressable part of the area and to the area
reserved for independent overflow.
number1

Specifies the total space that is allocated to the root addressable part of the area. It is expressed
in UOWs. The rest of the VSAM data set is reserved for sequential dependent data.

The valid range is 2-32767; it cannot be larger than the amount of space in the VSAM data set.

number2
Specifies the space that is reserved for independent overflow in terms of UOWs. It must be at
least 1 and must be less than the value specified for number1. Although independent overflow
does not contain UOWs, the UOW size is used as the unit for space allocation.

The reorganization UOW is automatically allocated by the DEDB Initialization utility. VSAM space
definition should include this additional UOW. That is, the total space required is the root addressable
area, the independent overflow, and one additional UOW for reorganization. The reorganization UOW
is not used by the High-Speed DEDB Direct Reorganization utility, but might be used by other
functions of IMS.

The ROOT keyword is required and only valid for DEDB.

UOW(number1,number2)
Required and only valid for DEDB. number1 specifies the number of control intervals in a unit of work.
The valid range is 2-32767. number2 specifies the number of control intervals in the overflow section.
Any value greater than or equal to 1 but at least one less than number1.

Usage notes
The CREATE TABLESPACE statement is equivalent to the DATASET or AREA statement of the IMS DBD
generation utility.

In IMS, a DATASET statement is also used by LOGICAL database access types but not required for DDL.
DATASET LOGICAL

Example: Basic HDAM database
The following input to the DBD generation utility defines an HDAM database:

* DBD COGDBD FROM CATU02-F *

 DBD NAME=COGDBD, C
 ENCODING=Cp1047, C
 ACCESS=(HDAM,OSAM), C
 RMNAME=(DFSHDC40,3,3,25), C
 PASSWD=NO
 DATASET DD1=COGDATA, C
 DEVICE=3390, C
 SIZE=(8192), C
 REMARKS=’Dataset Group 1’
 SEGM NAME=ROOT, C
 PARENT=0, C
 BYTES=(20), C
 RULES=(LLL,HERE)

* SEGMENT SMALLINT

 SEGM NAME=TSINT, C
 PARENT=ROOT, C

734 IMS: Application Programming APIs

 BYTES=(8,6), C
 REMARKS='This describes table TSINT.', C
 RULES=(LLL,HERE)

* SEGMENT INT

 SEGM NAME=TINT, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 REMARKS='This describes table TINT.', C
 RULES=(LLL,HERE)

* SEGMENT BIGINT

 SEGM NAME=TBINT, C
 PARENT=ROOT, C
 BYTES=(14,6), C
 REMARKS='This describes table TBINT.', C
 RULES=(LLL,HERE)

* SEGMENT DECIMAL(7,2)

 SEGM NAME=TDEC, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 REMARKS='This describes table TDEC.', C
 RULES=(LLL,HERE)

* SEGMENT FLOAT

 SEGM NAME=TFLT, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 REMARKS='This describes table TFLT.', C
 RULES=(LLL,HERE)

* SEGMENT REAL

 SEGM NAME=TRL, C
 PARENT=ROOT, C
 BYTES=(10,6), C
 REMARKS='This describes table TRL.', C
 RULES=(LLL,HERE)

* SEGMENT DOUBLE

 SEGM NAME=TDBL, C
 PARENT=ROOT, C
 BYTES=(14,6), C
 REMARKS='This describes table TDBL.', C
 RULES=(LLL,HERE)

* SEGMENT CHAR(32)

 SEGM NAME=TCHAR, C
 PARENT=ROOT, C
 BYTES=(38,6), C
 REMARKS='This describes table TCHAR.', C
 RULES=(LLL,HERE)

* SEGMENT NCHAR(32)

 SEGM NAME=TNCHAR, C
 PARENT=ROOT, C
 BYTES=(38,6), C
 REMARKS='This describes table TNCHAR.', C
 RULES=(LLL,HERE)
. . . .
. . . .
 DBDGEN
 FINISH
 END

In DDL, the same data set group (cogdata) is defined with the CREATE TABLESPACE statement and then
each table is assigned to it.

CREATE TABLESPACE cogdata
 IN COGDBD
 SIZE PRIMARY 8192;
COMMENT ON TABLESPACE cogdata IN cogdbd IS 'Dataset Group 1';

Chapter 8. SQL programming reference 735

CREATE TABLE tsinit
 IN cogdbd.cogdata
 ...

CREATE TABLE tinit
 IN cogdbd.cogdata
 ...

CREATE TABLE tbinit
 IN cogdbd.cogdata
 ...

CREATE TABLE tdec
 IN cogdbd.cogdata
 ...

CREATE TABLE tflt
 IN cogdbd.cogdata
 ...

CREATE TABLE trl
 IN cogdbd.cogdata
 ...

CREATE TABLE tdbl
 IN cogdbd.cogdata
 ...

CREATE TABLE tchar
 IN cogdbd.cogdata
 ...

CREATE TABLE tnchar
 IN cogdbd.cogdata
 ...

Example: HIDAM database with multiple data set groups
The following input to the DBD generation utility creates a HIDAM database with two data set groups,
DSG001 and DSG002. Segment types K1, K2, K3, K4, K5, K6, and K8 are assigned to DSG001. Segment
types K5X, K5Y, K9, K10, K11, K12, K13, and K14 are assigned to DSG002.

* DBD DHVNTZ02 FROM CMVC (CDCI19-3.DBDGEN) *

 DBD NAME=DHVNTZ02, C
 ACCESS=(HIDAM,VSAM), C
 PASSWD=NO, C
 VERSION=CDCTEST

* DATASET GROUP NUMBER 1

DSG001 DATASET DD1=HIDAM, C
 DEVICE=3330, C
 SIZE=(2048), C
 SCAN=3, C
 REMARKS=’Dataset Group 1’

* SEGMENT NUMBER 1 *

 SEGM NAME=K1, C
 PARENT=0, C
 BYTES=10, C
 EXIT=(*,LOG,PATH,KEY,DATA), X
 RULES=(LLL,LAST), C
 PTR=(NOTWIN,,,,)
. . . .
. . . .

* SEGMENT NUMBER 2 *

 SEGM NAME=K2, C
 PARENT=((K1)), C
 BYTES=10, C
 RULES=(LLL,LAST), C
 PTR=(TWIN,,,CTR,)
. . . .

736 IMS: Application Programming APIs

. . . .

* SEGMENT NUMBER 3 *

 SEGM NAME=K3, C
 PARENT=((K2,SNGL), C
 (K5,PHYSICAL)), C
 BYTES=34, C
 RULES=(LVL,LAST), C
 PTR=(TWIN,LTWIN,LPARNT,,)
. . . .
. . . .

* SEGMENT NUMBER 4 *

 SEGM NAME=K4, C
 PARENT=((K3,SNGL)), C
 BYTES=10, C
 RULES=(LLL,LAST), C
 PTR=(TWIN,,,,)
. . . .
. . . .

* SEGMENT NUMBER 5 *

 SEGM NAME=K5, C
 PARENT=((K1,SNGL)), C
 BYTES=10, C
 EXIT=(*,LOG,PATH,KEY,DATA), X
 RULES=(LLL,LAST), C
 PTR=(TWIN,,,,)
. . . .
. . . .

* SEGMENT NUMBER 6 *

 SEGM NAME=K6, C
 PARENT=((K5,SNGL)), C
 BYTES=10, C
 RULES=(LLL,LAST), C
 PTR=(TWIN,,,,)
. . . .
. . . .

* DATASET GROUP NUMBER 2

DSG002 DATASET DD1=HIDAM2, C
 DEVICE=3330, C
 SIZE=(512), C
 SCAN=3, C
 REMARKS=’Dataset Group 2’

* SEGMENT NUMBER 7 *

 SEGM NAME=K5X, C
 PARENT=((K5)), C
 PTR=PAIRED, C
 SOURCE=((K3,DATA,DHVNTZ02))
. . . .
. . . .

* SEGMENT NUMBER 8 *

 SEGM NAME=K5Y, C
 PARENT=((K5)), C
 PTR=PAIRED, C
 SOURCE=((K8,DATA,DHVNTZ02))
. . . .
. . . .

* DATASET GROUP NUMBER 1

DSG001 DATASET

* SEGMENT NUMBER 9 *

 SEGM NAME=K8, C
 PARENT=((K1,SNGL), C
 (K5,PHYSICAL)), C
 BYTES=32, C
 RULES=(LVL,LAST), C
 PTR=(TWIN,LTWINBWD,LPARNT,,)

Chapter 8. SQL programming reference 737

. . . .

. . . .

* DATASET GROUP NUMBER 2

DSG002 DATASET

* SEGMENT NUMBER 10 *

 SEGM NAME=K9, C
 PARENT=K1, C
 BYTES=29, C
 EXIT=(*,LOG,PATH,KEY,DATA), X
 RULES=(VLV,LAST), C
 PTR=(TWIN,,,CTR,)
. . . .
. . . .

* SEGMENT NUMBER 11 *

 SEGM NAME=K10, C
 PARENT=((K9,SNGL), C
 (J12,PHYSICAL,DIVNTZ02)), C
 BYTES=26, C
 RULES=(VVV,LAST), C
 PTR=(TWIN,LTWINBWD,,,)
. . . .
. . . .

* SEGMENT NUMBER 12 *

 SEGM NAME=K11, C
 PARENT=((K9,DBLE)), C
 BYTES=29, C
 RULES=(LLL,LAST), C
 PTR=(TWIN,,,,)
. . . .
. . . .

* SEGMENT NUMBER 13 *

 SEGM NAME=K12, C
 PARENT=((K11,DBLE)), C
 BYTES=20, C
 RULES=(LLL,LAST), C
 PTR=(TWIN,,,,)
. . . .
. . . .

* SEGMENT NUMBER 14 *

 SEGM NAME=K13, C
 PARENT=((K11,DBLE)), C
 BYTES=20, C
 RULES=(LLL,HERE), C
 PTR=(TWIN,,,,)
. . . .
. . . .

* SEGMENT NUMBER 15 *

 SEGM NAME=K14, C
 PARENT=((K9,SNGL), C
 (J12,PHYSICAL,DIVNTZ02)), C
 BYTES=24, C
 RULES=(LVV,LAST), C
 PTR=(TWIN,,,,PAIRED)
. . . .
. . . .
 DBDGEN
 FINISH
 END

The following DDL creates the same data set groups and equivalent table assignments:

CREATE TABLESPACE hidam
 IN DHVNTZ02
 SIZE PRIMARY 2048
 SCAN 3;
COMMENT ON TABLESPACE hidam IN dhvntz02 IS 'Dataset Group 1';

738 IMS: Application Programming APIs

CREATE TABLESPACE hidam2
 IN DHVNTZ02
 SIZE PRIMARY 512
 SCAN 3;
COMMENT ON TABLESPACE hidam2 IN dhvntz02 IS 'Dataset Group 2';

CREATE TABLE k1
 IN dhvntz02.hidam
 ...

CREATE TABLE k2
 IN dhvntz02.hidam
 ...

CREATE TABLE k3
 IN dhvntz02.hidam
 ...

CREATE TABLE k4
 IN dhvntz02.hidam
 ...

CREATE TABLE k5
 IN dhvntz02.hidam
 ...

CREATE TABLE k6
 IN dhvntz02.hidam
 ...

CREATE TABLE k5x
 IN dhvntz02.hidam2
...

CREATE TABLE k5y
 IN dhvntz02.hidam2
...

CREATE TABLE k8
 IN dhvntz02.hidam
...

CREATE TABLE k9
 IN dhvntz02.hidam2
...

CREATE TABLE k10
 IN dhvntz02.hidam2
...

CREATE TABLE k11
 IN dhvntz02.hidam2
...

CREATE TABLE k12
 IN dhvntz02.hidam2
...

CREATE TABLE k13
 IN dhvntz02.hidam2
...

CREATE TABLE k14
 IN dhvntz02.hidam2
...

Example: Fast Path DEDB with multiple data areas
The following DBD generation utility input creates a DEDB with 7 areas:

 DBD NAME=DEDBJN21, C
 ENCODING=Cp1047, C
 ACCESS=(DEDB), C
 RMNAME=(RMOD3), C
 PASSWD=NO

* AREA NUMBER 1

Chapter 8. SQL programming reference 739

 AREA DD1=HOSPAR0, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)
 AREA DD1=HOSPAR1, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)
 AREA DD1=HOSPAR2, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)
 AREA DD1=HOSPAR3, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)
 AREA DD1=HOSPAR4, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)
 AREA DD1=HOSPAR5, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)
 AREA DD1=HOSPAR6, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5)

The following DDL defines equivalent data areas:

CREATE TABLESPACE hospar0
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

CREATE TABLESPACE hospar1
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

CREATE TABLESPACE hospar2
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

CREATE TABLESPACE hospar3
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

CREATE TABLESPACE hospar4
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

CREATE TABLESPACE hospar5
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

CREATE TABLESPACE hospar6
 IN dedbjn21
 SIZE PRIMARY 2048
 UOW(15, 10)
 ROOT(10, 5);

740 IMS: Application Programming APIs

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
This statement can be embedded only in a COBOL application program. It is not an executable statement.

Syntax

DECLARE cursor-name
NO SCROLL

FOR statement-name

Description
The following keyword parameters are defined for the DECLARE CURSOR statement:
cursor-name

Names the cursor. The name must not identify a cursor that has already been declared in the source
program.

statement-name
Identifies the prepared select-statement that specifies the result table of the cursor whenever the
cursor is opened. The statement-name must not be identical to a statement name specified in
another DECLARE CURSOR statement of the source program. For an explanation of prepared SELECT
statements, see “PREPARE” on page 755.

Notes
Cursors in COBOL programs: In COBOL source programs, the DECLARE CURSOR statement must precede
all statements that explicitly refer to the cursor by name.

Examples

This example declares a cursor named C1 for statement named DYSQL.

EXEC SQLIMS
DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS
FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME
END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND
ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

Chapter 8. SQL programming reference 741

DECLARE STATEMENT
The DECLARE STATEMENT statement is used for application program documentation. It declares names
that are used to identify prepared SQL statements.

Invocation
This statement can be embedded only in a COBOL application program. It is not an executable statement.

Syntax

DECLARE

,

statement-name STATEMENT

Description
The following keyword parameters are defined for the DECLARE statement:
statement-name STATEMENT

Lists one or more names that are used in your application program to identify prepared SQL
statements.

Example

This example shows the use of the DECLARE STATEMENT statement in a COBOL program. It declares a
statement named UPD.

EXEC SQLIMS
 DECLARE UPD STATEMENT
END-EXEC.

EXEC SQLIMS
 PREPARE UPD FROM :SQLSTMT
END-EXEC.
IF SQLIMSCODE < 0
 MOVE ‘**** PREPARE ERROR ****’ TO ERR-MSG1
 PERFORM 100-ERROR
ELSE
 PERFORM EXECUTE-STMT
END-IF

DELETE
The DELETE statement deletes rows from a table.

The searched DELETE form is used to delete one or more rows, optionally determined by a search
condition.

Invocation
This statement can be embedded in a COBOL or Java application program or issued interactively.

• “DELETE syntax” on page 742
• “table syntax” on page 743

DELETE syntax
DELETE FROM table

WHERE search-condition

742 IMS: Application Programming APIs

table syntax

schema-name .

table-name

Description
The following keyword parameters are defined for the DELETE statement:
DELETE FROM

Identifies the table from which rows are to be deleted.
table-name

The table-name defines the name of the table in your SQL query. The name must identify a
segment in IMS.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema name is the PCB
name.

WHERE
Specifies the rows to be deleted. You can omit the clause or give a search condition. When the clause
is omitted, all the rows of the table are deleted.
search-condition

Is any search condition as described in “Search conditions” on page 598. Each column-name in
the search condition must identify a column of the table.

The search condition is applied to each row of the table and the rows are those for which the
result of the search condition is true are deleted.

Example

From the table PCB01.HOSPITAL, delete all rows for hospitals Alexandria and Santa Teresa.

 DELETE FROM PCB01.HOSPITAL WHERE HOSPNAME = 'Alexandria' OR HOSPNAME = 'Santa Teresa';

DESCRIBE OUTPUT
The DESCRIBE OUTPUT statement obtains information about a prepared statement.

Invocation
This statement can be embedded only in a COBOL application program. It is an executable statement that
can be dynamically prepared.

Syntax

DESCRIBE
OUTPUT

statement-name INTO descriptor-name

Description
The following keyword parameters are defined for the DESCRIBE OUTPUT statement:
OUTPUT

When a statement-name is specified, optional keyword to indicate that the describe will return
information about the select list columns in the prepared SELECT statement.

Chapter 8. SQL programming reference 743

statement-name
Identifies the prepared statement. When the DESCRIBE statement is executed, the name must
identify a statement that has been prepared.

INTO descriptor-name
Identifies an SQL descriptor area (SQLIMSDA), which is described in “SQL descriptor area
(SQLIMSDA)” on page 773. Use the INCLUDE SQLIMSDA statement to declare the SQLIMSDA in
the application.

After the DESCRIBE statement is executed, all the fields in the SQLIMSDA except SQLN are either set
by IMS or ignored.

Example
Execute a DESCRIBE statement with the included SQLIMSDA. After DESCRIBE, SQLIMSD specifies the
number of result fields returned. IF SQLIMSD equals 0, the statement is a non-SELECT statement such as
INSERT, UPDATE, or DELTEE. If SQLIMSD is greater than zero, the statement is a SELECT statement and
allocates storage for each result field and specify its address to the SQLIMSDATA field in the SQLIMSDA.
Finally, FETCH the result dataset into the SQLIMSDA.

EXEC SQLIMS
 INCLUDE SQLIMSDA
END-EXEC

EXEC SQLIMS
 DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
 PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS
 DESCRIBE DYSQL INTO :SQLIMSDA
END-EXEC

IF SQLIMSD > 0
 EXEC SQLIMS OPEN C1 END-EXEC.
 /* Code to allocate the storage for each result field */
 /* Set the storage address to each SQLIMSDATA variable */
 EXEC SQLIMS FETCH C1 INTO :SQLIMSDA END-EXEC.

 IF SQLIMSCODE = 100
 PERFORM DATA-NOT-FOUND
 ELSE
 PERFORM GET-REST-OF-HOSP
 UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

 EXEC SQLIMS CLOSE C1 END-EXEC.

DROP DATABASE
The DROP DATABASE statement removes a database from IMS. Whenever a database is deleted, its
description is deleted from the catalog at the current IMS.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

Syntax
DROP DATABASE database_name

744 IMS: Application Programming APIs

Description
The following keyword parameters are defined for the DROP DATABASE statement:
DATABASE database_name

Identifies the database to drop. The name must identify a database that exists in IMS. When a
database is dropped, all of its tables, indexes are also dropped.

Usage notes
Any objects of the database (such as table spaces, tables, and columns) and pending changes are also
dropped.

Example
Assuming you have already created a database with the following example (see CREATE DATABASE
(Application Programming APIs)), and you now want to drop the database:

DROP DATABASE hospdbd1

DROP PROGRAMVIEW
The DROP PROGRAMVIEW statement removes an application PROGRAMVIEW (PSB) from IMS. Whenever
an application PROGRAMVIEW is deleted, its description is deleted from the catalog at the current IMS.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

Syntax
DROP PROGRAMVIEW psb_name

Description
The following keyword parameters are defined for the DROP PROGRAMVIEW statement:
PROGRAMVIEW psb_name

Identifies the PSB to drop. The name must identify a PSB that exists in IMS.

Usage notes
Any pending changes to the definitions of the program view and schemas are also dropped.

Example
DROP PROGRAMVIEW PSB123

DROP TABLE
The DROP TABLE statement removes an existing table from a database in IMS. Any resources that are
directly or indirectly dependent on that table are deleted. Whenever a table is deleted, its description is
deleted from the catalog at the current IMS.

Invocation
This statement can be submitted from a Java application program with an establish connection to IMS
through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

Chapter 8. SQL programming reference 745

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_database.htm#ims_sql_create_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_database.htm#ims_sql_create_database

Syntax
DROP TABLE table_name IN database_name

Description
The following keyword parameters are defined for the DROP TABLE statement:
TABLE table_name

Identifies the 1- to 128-character uppercase alphanumeric name of the table to drop. A table name
can include the underscore character. The name must identify a table that exists in IMS. When a table
is dropped, all tables defined as its children are also dropped.

IN database_name
Specifies the DBD name of a database where the table is defined. Specifying a DROP TABLE indicated
that the table will be removed from the database. This triggers an alteration of this database.

Usage notes
When a table is directly or indirectly dropped, the following items are also dropped:

• All of the privileges associated with the table.
• All of the tables defined as children that are associated with the table being dropped through use of the

FOREIGN KEY clause.

Example
Assuming you have already created a table with the following example (see CREATE TABLE (Application
Programming APIs)), and you now want to drop the table:

DROP TABLE testinteger IN COGDBD

DROP TABLESPACE
The DROP TABLESPACE statement removes a data set group within the database or an area for a DEDB.
Dropping a TABLESPACE is an ALTER against the database resource.

Invocation
This statement can be submitted from a Java application program with an established connection to
IMS through the IMS Universal JDBC drivers. It is an executable statement that cannot be dynamically
prepared.

Syntax
DROP TABLESPACE ddname IN database_name

Description
The following keyword parameters are defined for the DROP TABLESPACE statement:
TABLESPACE ddname

Identifies the 1 to 8- character alphanumeric tablespace ddname to drop. The ddname must identify a
tablespace that exists in IMS.

IN database_name
Specifies the database from which the tablespace is to be removed from.

Usage notes
When a tablespace is dropped, a new one can be created within the same commit scope. Any pending
changes to the definitions of the tablespace are also dropped. Whenever a tablespace is directly or

746 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_table.htm#ims_sql_create_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_table.htm#ims_sql_create_table

indirectly dropped, all of the tables in that tablespace are moved into the next available tablespace. If the
dropped tablespace is the last one, you will receive the -9000 (Messages and Codes) error message.

A table space can be dropped from a database of the following access types:

• DEDB
• GSAM
• HDAM
• HIDAM
• HISAM
• HSAM
• INDEX
• SHISAM
• SHSAM

Example
Assuming you have already created a table space with the following example (see CREATE TABLESPACE
(Application Programming APIs)), and you now want to drop the table space:

DROP TABLESPACE hidam2 IN DHVNTZ02

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can be embedded only in a COBOL application program. It is an executable statement that
cannot be dynamically prepared.

Syntax
EXECUTE statement-name

USING

,

host-variable

Description
The following keyword parameters are defined for the EXECUTE statement:
statement-name

Identifies the prepared statement to be executed. statement-name must identify a statement that
was previously prepared within the unit of work and the prepared statement must not be a SELECT
statement.

USING
Introduces a list of variables whose values are substituted for the parameter markers (question
marks) in the prepared statement. (For an explanation of parameter markers, see “PREPARE” on
page 755.) If the prepared statement includes parameter markers, you must include USING in the
EXECUTE statement. USING is ignored if there are no parameter markers.

For more on the substitution of values for parameter markers, see Parameter marker replacement.

host-variable
Identifies structures or variables that must be described in the application program in accordance
with the rules for declaring host structures and variables. A reference to a structure is replaced
by a reference to each of its variables. The number of variables must be the same as the number

Chapter 8. SQL programming reference 747

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/sql9000.htm#sql9000
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_tablespace.htm#ims_sql_create_tablespace
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_tablespace.htm#ims_sql_create_tablespace

of parameter markers in the prepared statement. The nth variable supplies the value for the nth
parameter marker in the prepared statement.

Notes
Parameter marker replacement:

Before the prepared statement is executed, each parameter marker in the statement is effectively
replaced by its corresponding host variable. The replacement is an assignment operation in which
the source is the value of the host variable and the target is a variable. The assignment rules are
those described for assignment to a column in Assignment and comparison (Application Programming
APIs).

Example

In this example, an UPDATE statement is prepared from the variable SQLSTMT and executed.

EXEC SQLIMS
 DELCARE UPD STATEMENT
END-EXEC.

EXEC SQLIMS
 PREPARE UPD FROM :SQLSTMT
END-EXEC.
IF SQLIMSCODE < 0
 MOVE ‘**** PREPARE ERROR ****’ TO ERR-MSG1
 PERFORM 100-ERROR
ELSE
 EXEC SQLIMS
 EXECUTE UPD
 END-EXEC
END-IF.

FETCH
The FETCH statement positions a cursor on a row of its result table. It can return zero or one and assigns
the values of the rows to host variables if there is a target specification.

Invocation
This statement can be embedded only in a COBOL application program. It is an executable statement that
cannot be dynamically prepared.

• “FETCH syntax” on page 748
• “single-row-fetch syntax” on page 748

FETCH syntax
FETCH cursor-name

single-row-fetch

Notes:

single-row-fetch syntax

INTO

,

 host-variable

INTO DESCRIPTOR descriptor-name

748 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison

Description
The following keyword parameters are defined for the FETCH statement:
INTO host-variable

Specifies a list of host variables. Each host-variable must identify a structure or variable that is
described in the application program in accordance with the rules for declaring host structures and
variables. A reference to a structure is replaced by a reference to each of its variables. The first value
in the result row is assigned to the first host variable, the second value to the second host variable,
and so on.

INTO DESCRIPTOR descriptor-name
Identifies an SQLIMSDA that contains a valid description of the host output variables. Result values
from the associated SELECT statement are returned to the application program in the output host
variables.

Before the FETCH statement is processed, you must set the following fields in the SQLIMSDA:

• SQLIMSN to indicate the number of SQLIMSVAR occurrences provided in the SQIMSLDA
• SQLIMSABC to indicate the number of bytes of storage allocated in the SQLIMSDA
• SQLIMSD to indicate the number of variables used in the SQLIMSDA when processing the statement
• SQLIMSVAR occurrences to indicate the attributes of the variables

The SQLIMSDA must have enough storage to contain all SQLIMSVAR occurrences. Each SQLIMSVAR
occurrence describes a host variable or buffer into which a value in the result table is to be assigned.
For more information on the SQLIMSDA, which includes a description of the SQLIMSVAR and an
explanation on how to determine the number of SQLIMSVAR occurrences, see “SQL descriptor area
(SQLIMSDA)” on page 773.

SQLIMSD must be set to a value greater than or equal to zero and less than or equal to SQLIMSN.

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor name must identify a declared
cursor or an allocated cursor. When the FETCH statement is executed, the cursor must be in the open
state.

Example
Example 1: The FETCH statement fetches the results of the SELECT statement into the application
program variables HOSPCODE and HOSPNAME. When no more rows remain to be fetched, the not found
condition is returned.

EXEC SQLIMS
 DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
 PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS FETCH C1 INTO :HOSPCODE, :HOSPNAME END-EXEC.

 IF SQLIMSCODE = 100
 PERFORM DATA-NOT-FOUND
 ELSE
 PERFORM GET-REST-OF-HOSP
 UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

 EXEC SQLIMS CLOSE C1 END-EXEC.

Chapter 8. SQL programming reference 749

INCLUDE
The INCLUDE statement inserts application code, including declarations and statements, into a source
program.

Invocation
This statement can be embedded only in a COBOL application program. It is not an executable statement.

Syntax
INCLUDE SQLIMSCA

SQLIMSDA

member-name

Description
The following keyword parameters are defined for the INCLUDE statement:
SQLIMSCA

Indicates that the description of an SQL communication area (SQLIMSCA) is to be included. INCLUDE
SQLIMSCA must not be specified more than once in the same application program. In COBOL,
INCLUDE SQLIMSCA must be specified in the Working-Storage Section or the Linkage Section.

For a description of the SQLIMSCA, see “SQL communication area (SQLIMSCA)” on page 771.

SQLIMSDA
Indicates that the description of an SQL descriptor area (SQLIMSDA) is to be included. For a
description of the SQLIMSDA, see “SQL descriptor area (SQLIMSDA)” on page 773.

member-name
Names a member of the partitioned data set to be the library input when your application program is
prepared (with the IMS coprocessor). It must be an SQL identifier.

The member can contain any host language source statements and any SQL statements other than an
INCLUDE statement. In COBOL, INCLUDE member-name must not be specified in other than the Data
Division or the Procedure Division.

Notes
When your application program is prepared (with the IMS coprocessor), the INCLUDE statement is
replaced by source statements. Thus, the INCLUDE statement must be specified at a point in your
application program where the resulting source statements are acceptable to the compiler.

The INCLUDE statement cannot refer to source statements that themselves contain INCLUDE statements.

Example

Include an SQL communications area in a COBOL program.

 EXEC SQLIMS INCLUDE SQLIMSCA END-EXEC.

INSERT
The INSERT statement inserts rows into a table.

The INSERT via VALUES form is used to insert a single row into the table using the values provided or
referenced.

750 IMS: Application Programming APIs

Invocation
This statement can be embedded in a COBOL or Java application program or issued interactively.
An INSERT can be embedded in an application program. It is an executable statement that can be
dynamically prepared.

• “Syntax for COBOL” on page 751
• “Syntax for Java” on page 751

Syntax for COBOL

INSERT INTO table

(

,

column)

VALUES (

,

value)

table syntax

schema-name .

table-name

column syntax

table-name .

column-name

multi-row-insert syntax

table-name .

VALUES expression

host-variable-array

NULL

DEFAULT

(

,

expression

host-variable-array

NULL

DEFAULT

)

Syntax for Java

INSERT INTO table

(

,

column)

VALUES (

,

value)

table

Chapter 8. SQL programming reference 751

schema-name .

table-name

column

schema-name .

table-name .

column-name
1

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

Description
The following keyword parameters are defined for the INSERT statement:
INSERT INTO

Identifies the object of the INSERT statement.
table-name

The table-name defines the name of the table in your SQL query. The name must identify a
segment in IMS.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema name is the PCB
name.

column-name
Specifies the columns for which insert values are provided. Each name must identify a field of the
segment. The columns can be identified in any order, but the same column must not be identified
more than one time.

Omission of the column list is an implicit specification of a list in which every column in the table is
identified in the order identified by the metadata.

VALUES
Specifies one new row in the form of a list of values. The number of values in the VALUES clause must
be equal to the number of names in the column list. The first value is inserted in the first column in
the list, the second value in the second column, and so on. The list of values must be enclosed in
parentheses.

Notes
Insert rules:

Insert values must satisfy the following rules. If they do not, or if any other errors occur during the
execution of the INSERT statement, no rows are inserted and the position of the cursors are not
changed.

• Length. If the insert value of a column is a number, the column must be a numeric column with the
capacity to represent the integral part of the number. If the insert value of a column is a string, the
column must be either a string column with a length attribute at least as great as the length of the
string, or a datetime column if the string represents a date, time, or timestamp.

• Referential constraints. When inserting a record in a table at a non-root level, you must specify
values for all the foreign key fields of the table. Foreign key fields properly position the new record
(or segment instance) to be inserted in the hierarchic path using standard SQL processing, similar to
foreign keys in a relational database.

• Omitting the column list. When you omit the column list, you must specify a value for every column
that was present in the table when the INSERT statement was bound or (for dynamic execution)
prepared.

752 IMS: Application Programming APIs

Number of rows inserted:
For COBOL, the value of SQLIMSERRD(3) in the SQLIMSCA is the number of rows inserted after
an INSERT statement completes execution. For a complete description of the SQLIMSCA, see “SQL
communication area (SQLIMSCA)” on page 771.

Inserting binary fields:
For COBOL, when inserting a binary field, you must use a parameter marker to specify the binary
value. Not using a parameter marker would result in a 408 (data type not compatible) error.

Examples
Inserting data at the root

The following statement inserts a new HOSPITAL record:

INSERT INTO PCB01.HOSPITAL (HOSPCODE, HOSPNAME)
VALUES ('R1210050000A', 'O''MALLEY CLINIC')

Inserting data into a specified table in a hierarchic path
When inserting a record in a table at a non-root level, you must specify values for all the virtual
foreign key fields of the table. The following statement inserts a new ILLNESS record under a
specific HOSPITAL, WARD, and PATIENT table. In this example, the ILLNESS table has three
virtual foreign keys HOSPITAL_HOSPCODE, WARD_WARDNO, and PATIENT_PATNUM. The new record
will be inserted if and only if there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H', a WARD table with a WARDNO value of '01', and a PATIENT table with PATNUM
value of 'R1210050000A'.

INSERT INTO PCB01.ILLNESS (HOSPITAL_HOSPCODE, WARD_WARDNO,
 ILLNAME, PATIENT_PATNUM)
VALUES ('H5140070000H', '01', 'COLD', 'R1210050000A')

The following statement inserts a new WARD record under a specific HOSPITAL table. In this example,
the WARD table has the virtual foreign key HOSPITAL_HOSPCODE. The new record will be inserted if
and only if there is a HOSPCODE in the HOSPITAL table with the value of 'H5140070000H'.

INSERT INTO PCB01.WARD (WARDNO, HOSPITAL_HOSPCODE, WARDNAME)
VALUES ('0001', 'H5140070000H', 'EMGY')

Inserting data in a searchable field with subfields
If a searchable field consists of subfields, you can insert data by setting all the subfield values such
that the searchable field is completely populated.

Inserting a record at a non-root level without specifying virtual foreign key fields
In this statement, the WARD_WARDNO virtual foreign key field is missing. The query will fail because
it violates the referential integrity constraint that all foreign keys must be provided with legal values.

INSERT INTO PCB01.PATIENT (HOSPITAL_HOSPCODE, PATNAME, PATNUM)
VALUES ('HW3201', 'JOHN O''CONNER', 'Z800')

OPEN
The OPEN statement opens a cursor so that it can be used to process rows from its result table.

Invocation
This statement can be embedded only in a COBOL application program. It is an executable statement that
cannot be dynamically prepared.

Chapter 8. SQL programming reference 753

Syntax
OPEN cursor-name

USING

,

host-variable

Description
The following keyword parameters are defined for the OPEN statement:
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared cursor as explained in
“DECLARE CURSOR” on page 741. When the OPEN statement is executed, the cursor must be in the
closed state.

The SELECT statement of the cursor is either one of the following types of SELECT statements:

• The prepared SELECT statement that is identified by the statement-name that is specified in the
DECLARE CURSOR statement.

If the statement has not been successfully prepared, or is not a SELECT statement, the cursor cannot
be successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement. The evaluation uses the
current values of any host variables that are specified in the USING clause of the OPEN statement.
The rows of the result table can be derived during the execution of the OPEN statement. The cursor is
placed in the open state and positioned before the first row of its result table.

USING
Introduces a list of host variables whose values are substituted for the parameter markers (question
marks):

• If the DECLARE CURSOR statement included statement-name, the statement was prepared with
a PREPARE statement. The host variables specified in the USING clause of the OPEN statement
replace any parameter markers in the prepared statement. This reflects the typical use of the
USING clause of the OPEN statement For an explanation of parameter marker replacement, see
“PREPARE” on page 755.

If the prepared statement includes parameter markers, you must use USING. If the prepared
statement does not include parameter markers, USING is ignored.

host-variable
Identifies host structures or variables that must be described in the application program in
accordance with the rules for declaring host structures and variables. When the statement is
executed, a reference to a structure is replaced by a reference to each of its variables. The number
of variables must be the same as the number of parameter markers in the prepared statement.
The nth variable corresponds to the nth parameter marker in the prepared statement. Where
appropriate, locator variables can be provided as the source of values for parameter markers.

Notes

Closed state of cursors: All cursors in an application process are in the closed state when:

• The application process is started.
• A new unit of work is started for the application process.

A cursor can also be in the closed state because:

• A CLOSE statement was executed.
• An error was detected that made the position of the cursor unpredictable.

754 IMS: Application Programming APIs

To retrieve rows from the result table of a cursor, you must execute a FETCH statement when the cursor is
open. The only way to change the state of a cursor from closed to open is to execute an OPEN statement.

Parameter marker replacement: Before the OPEN statement is executed, each parameter marker in
the query is effectively replaced by its corresponding host variable. The replacement is an assignment
operation in which the source is the value of the host variable and the target is a variable within IMS. The
assignment rules are those described for assignment to a column in “Assignment and comparison” on
page 590.

When the SELECT statement of the cursor is evaluated, each parameter marker in the statement
is effectively replaced by the value of its corresponding host variable. For more on the process of
replacement, see Parameter marker replacement.

Examples

Example 1: Execute an OPEN statement, which places the cursor at the beginning of the rows to be
fetched.

EXEC SQLIMS
 DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
 PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME END-EXEC.

 IF SQLIMSCODE = 100
 PERFORM DATA-NOT-FOUND
 ELSE
 PERFORM GET-REST-OF-HOSP
 UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

 EXEC SQLIMS CLOSE C1 END-EXEC.

PREPARE
The PREPARE statement creates an executable SQL statement from a string form of the statement. The
character-string form is called a statement string. The executable form is called a prepared statement.

Invocation
This statement can be embedded only in a COBOL application program. It is an executable statement that
can be dynamically prepared.

Syntax
PREPARE statement-name FROM host-variable

Description
The following keyword parameters are defined for the PREPARE statement:
statement-name

Names the prepared statement. If the name identifies an existing prepared statement, that prepared
statement is destroyed. The name must not identify a prepared statement that is the SELECT
statement of an open cursor.

FROM
Specifies the statement string. The statement string is the value of the identified host-variable.

Chapter 8. SQL programming reference 755

host-variable
Must identify a host variable that is described in the application program in accordance with the
rules for declaring variable-length string variables for statement string. The length of the SQL
statement cannot be over 32767.

Notes
Rules for statement strings: The value of the specified statement-name is called the statement string.
The statement string must be declared with a varying-length character host variable. The first two bytes
must contain the length of the SQL statement. The maximum length of the SQL statement is 32,767. For
example:

01 STMTSTR.
 49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
 49 STMTSTR-TXT PIC X(180) VALUE SPACES.

The statement string must be one of the following SQL statements:

• DELETE
• INSERT
• SELECT
• UPDATE

The statement string must not:

• Begin with EXEC SQLIMS
• End with END-EXEC or a semicolon
• Include references to host variables

Parameter markers: Although a statement string cannot include references to host variables, it can
include parameter markers. The parameter markers are replaced by the values of host variables when
the prepared statement is executed. A parameter marker is a question mark (?) that appears where a
host variable could appear if the statement string were a static SQL statement. For an explanation of how
parameter markers are replaced by values, see “EXECUTE” on page 747 and “OPEN” on page 753.

Error checking: When a PREPARE statement is executed, the statement string is parsed and checked for
errors. If the statement string is invalid, a prepared statement is not created and the error condition that
prevents its creation is reported in the SQLIMSCA.

Reference and execution rules: Prepared statements can be referred to in the following kinds of
statements, with the following restrictions shown:
 DESCRIBE

No restrictions
 DECLARE CURSOR

Must be SELECT when the cursor is opened
 EXECUTE

Must not be SELECT

Scope of a statement name: The scope of a statement-name is the same as the scope of a cursor-name.
See “DECLARE CURSOR” on page 741 for more information about the scope of a cursor-name.

Examples

Example 1: Prepare a dynamic SELECT statement with a host variable on the PREPARE statement. The
text of the SELECT statement is in a variable named SELECT-STATEMENT.

756 IMS: Application Programming APIs

In the example, the statement text in host variable SELECT-STATEMENT is SELECT HOSPCODE,
HOSPNAME, WARDNAME, PATNAME FROM PCB01.HOSPITAL, WARD,PATIENT.

EXEC SQLIMS
DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND
ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

Example 2: Prepare a dynamic INSERT statement with parameter markers and is executed.

For the INSERT statement:

INSERT INTO PCB01.HOSPITAL HOSPCODE, HOSPNAME VALUES(?,?)

The following statement prepares and executes the INSERT statement with parameter marker. Before
execution, the values for the parameter markers are read into the host variables S1, S2.

EXEC SQLIMS
PREPARE DYSQL FROM :INSERT-STATEMENT
END-EXEC

EXEC SQLIMS
EXECUTE USING :S1, :S2
END-EXEC.

SELECT
The SELECT statement is used to retrieve data from one or more tables. The result is returned in a tabular
result set.

Invocation
This statement can be used in COBOL or Java application programs, but the syntax is different.

For COBOL application programs, this is an executable statement that cannot be dynamically prepared.

• Syntax for COBOL
• Syntax for Java

Chapter 8. SQL programming reference 757

Syntax for COBOL

SELECT *

,

select-expression

FROM

,

table

WHERE search-condition

GROUP BY

,

column

ORDER BY

,

column
ASC

DESC

select-expression
column

aggregate-function

table

schema-name .

table-name

column

table-name .

column-name
1

aggregate-function
SUM

AVG

MIN

MAX

(column)

COUNT(*

column

)

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, an ambiguity
check is performed to determine the table that the column belongs to.

758 IMS: Application Programming APIs

Syntax for Java
SELECT

*

ALL

DISTINCT

,

select-expression

AS  column-alias

FROM

,

table

AS  table-alias

INNER
JOIN

1
table

AS  table-alias

ON column

column-alias

= column

column-alias

WHERE search-condition

ORDER BY

,

column

column-alias

column-index

ASC

DESC

GROUP BY

,

column

column-alias

column-index

FETCH FIRST
1

integer

ROW

ROWS

ONLY

select-expression
math-operator

+
-

column

literal

aggregate

numeric-function

date-functions

table

schema-name .

table-name

column

Chapter 8. SQL programming reference 759

schema-name .

table-name .

table-alias .

column-name
2

math-operator
+
-

/

*

literal
' string-literal '

integer-literal

decimal-literal

aggregate

SUM

AVG

MIN

MAX

(
ALL

DISTINCT

aggregate-expression)

COUNT(*

ALL

DISTINCT

aggregate-expression

)

numeric-function

760 IMS: Application Programming APIs

ABS

ACOS

ASIN

ATAN

CEIL

CEILING

COS

COT

DEGREES

EXP

FLOOR

LN

LOG

LOG10

SIGN

SIN

SINH

SQRT

TAN

TANH

RADIANS

(select-expression)

ATAN2

MOD

POWER

(select-expression ,select-expression)

date-functions
CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

LOCALTIME

LOCALTIMESTAMP

(precision)

aggregate-expression
math-operator

+
-

column

literal

numeric-function

Notes:
1 JOIN tables must have referential integrity, expressed by the key field of a parent segment and
the virtual foreign key of the dependent segment. You cannot specify both a comma separated list of
tables and a JOIN statement.
2 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

Chapter 8. SQL programming reference 761

Description
The following keyword parameters are defined for the SELECT statement:
ALL

Retains all rows of the final result table and does not eliminate redundant duplicates. This is the
default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table. This keyword is valid only
for Java application programs.

Two rows are duplicates of one another only if each value in the first row is equal to the corresponding
value in the second row. For determining duplicate rows, two null values are considered equal.

AS column-alias
Names or renames the result column. The name must be unique. The AS clause is not supported in
COBOL or .NET application programs.

FROM table-name
Identifies the table from which rows are to be retrieved. The name must identify a segment in IMS.

AS table-alias
Renames the table. The name must be unique. The AS clause is not supported in COBOL or .NET
application programs.

INNER JOIN
JOIN

If a join operator is not specified, INNER is the default. The INNER JOIN keyword selects all rows from
both tables as long as there is a match between the columns in both tables.

WHERE
Specifies the rows to be retrieved. You can omit the clause or give a search condition. When the clause
is omitted, all the rows of the table are retrieved.
search-condition

Is any search condition as described in “Search conditions” on page 598. Each column-name in
the search condition must identify a column of the table.

The search condition is applied to each row of the table and the retrieved rows are those for which
the result of the search condition is true.

ORDER BY
The ORDER BY clause specifies an ordering of the rows of the result table.

A column, column-alias, or a column-index that specifies the value that is to be used to order the rows
of the result of the table.

The column-index n identifies the nth column of the result table.

ASC
Uses the values of the column, column-alias, or column-index in ascending order. ASC is the
default.

DESC
Uses the values of the column, column-alias, or column-index in descending order.

GROUP BY
The GROUP BY clause specifies a result table that consists of a grouping of the rows of intermediate
result table that is the result of the previous clause.

The result of GROUP BY is a set of groups of rows. In each group of more than one row, all values
of each column, column-alias, or column-index are equal, and all rows with the same set of values of
the column, column-alias, or column-index are in the same group. For grouping, all null values for a
column, column-alias, or column-index are considered equal.

If your SELECT statement contains both aggregate and non-aggregate select-expressions, all of the
non-aggregate select-expressions need to be in a GROUP BY clause.

762 IMS: Application Programming APIs

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema name is the PCB name.

table-name
The table-name defines the name of the table in your SQL query. The name must identify a segment in
IMS.

table-alias
The table-alias defines the alias that is defined in your SQL query that can be used in place of the
table-name.

column-name
The column-name defines the name of the column in your SQL query.

column-name
The column-name defines the name of the column in your SQL query.

'string-literal'
A 'string-literal' defines a static character string that is UTF-8 encoded.

integer-literal
An integer-literal defines an integer value within the range of −2,147,483,648 to 2,147,483,647.

decimal-literal
A decimal-literal defines a decimal value of double point precision.

SUM
The SUM function returns the sum of a set of numbers.

AVG
The AVG function returns the average of a set of numbers.

MIN
The MIN function returns the minimum value in a set of values.

MAX
The MAX function returns the maximum value in a set of values.

COUNT
The COUNT function returns the number of rows or values in a set of rows or values.

numeric functions:
ABS

The ABS function returns the absolute value of a number.
ACOS

The ACOS function returns the arc cosine of the argument as an angle, expressed in radians. The
ACOS and COS functions are inverse operations.

ASIN
The ASIN function returns the arc sine of the argument as an angle, expressed in radians. The
ASIN and SIN functions are inverse operations.

ATAN
The ATAN function returns the arc tangent of the argument as an angle, expressed in radians. The
ATAN and TAN functions are inverse operations.

CEIL
CEILING

The CEILING function returns the smallest integer value that is greater than or equal to the
argument.

COS
The COS function returns the cosine of the argument, where the argument is an angle, expressed
in radians. The COS and ACOS functions are inverse operations.

COT
The COT function returns the cotangent of the argument, where the argument is an angle,
expressed in radians. The COT and TAN functions are reciprocal operations.

Chapter 8. SQL programming reference 763

DEGREES
The DEGREES function returns the number of degrees of the argument, which is an angle,
expressed in radians.

EXP
The EXP function returns a value that is the base of the natural logarithm (e), raised to a power
that is specified by the argument. The EXP and LN functions are inverse operations.

FLOOR
The FLOOR function returns the largest integer value that is less than or equal to the argument.

LN
LOG

The LN and LOG function returns the natural logarithm of the argument. The LN and EXP functions
are inverse operations.

LOG10
The LOG10 function returns the common logarithm (base 10) of a number.

SIGN
The SIGN function returns an indicator of the sign of the argument.

SIN
The SIN function returns the sine of the argument, where the argument is an angle, expressed in
radians.

SINH
The SINH function returns the hyperbolic sine of the argument, where the argument is an angle,
expressed in radians.

SQRT
The SQRT function returns the square root of the argument.

TAN
The TAN function returns the tangent of the argument, where the argument is an angle, expressed
in radians.

TANH
The TANH function returns the hyperbolic tangent of the argument, where the argument is an
angle, expressed in radians.

RADIANS
The RADIANS function returns the number of radians for an argument that is expressed in
degrees.

ATAN2
The ATAN2 function returns the arc tangent of x and y coordinates as an angle, expressed in
radians.

MOD
The MOD function divides the first argument by the second argument and returns the remainder.

POWER
The POWER function returns the value of the first argument to the power of the second argument.

CURRENT_DATE
The CURRENT_DATE special register specifies a date that is based on a reading of the time-of-day
clock when the SQL statement is executed at the application.

CURRENT_TIME
The CURRENT_TIME special register specifies a time that is based on a reading of the time-of-day
clock when the SQL statement is executed at the application.
precision

The precision specifies the fractions of a second. precision can range from 0 to 12. The default
precision is 3.

764 IMS: Application Programming APIs

CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP special register specifies a timestamp that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application.
precision

The precision specifies the fractions of a second. precision can range from 0 to 12. The default
precision is 6.

LOCALTIME
The LOCALTIME special register specifies a time that is based on a reading of the time-of-day clock
when the SQL statement is executed at the application.
precision

The precision specifies the fractions of a second. precision can range from 0 to 12. The default
precision is 3.

LOCALTIMESTAMP
The LOCALTIMESTAMP special register specifies a timestamp that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application.
precision

The precision specifies the fractions of a second. precision can range from 0 to 12. The default
precision is 6.

Note
• If you are selecting from multiple tables and the same column name exists in one or more of these

tables, you must table-qualify the column or an ambiguity error will occur.
• The FROM clause must list all the tables you are selecting data from. The tables listed in the FROM

clause must be in the same hierarchic path in the IMS database.
• Because there are multiple database PCBs in a PSB, queries must specify which PCB in a PSB to use.

To specify which PCB to use, always qualify segments that are referenced in the FROM clause of an SQL
statement by prefixing the segment name with the PCB name. You can omit the PCB name only if the
PSB contains only one PCB.

Examples
Selecting all fields with * symbol

The following statement retrieves all fields for the PATIENT table:

SELECT *
FROM PCB01.PATIENT

The following statement retrieves the hospital name from the HOSPITAL table and all fields from the
WARD table:

SELECT HOSPITAL.HOSPNAME, WARD.*
FROM PCB01.HOSPITAL, PCB01.WARD

Selecting specified columns
The following statement retrieves the ward names and patient names from the WARD and PATIENT
tables, respectively:

SELECT WARD.WARDNAME,PATIENT.PATNAME
FROM PCB01.WARD, PATIENT

Selecting with ORDER BY
The ORDER BY clause is used to sort the rows. By default, results are sorted by ascending
numerical or alphabetical order. The following statement retrieves all distinct hospital names, sorted
in alphabetical order:

SELECT DISTINCT HOSPNAME FROM PCB01.HOSPITAL
 ORDER BY HOSPNAME

Chapter 8. SQL programming reference 765

The following statement retrieves all ward names sorted in alphabetical order, and the number of
patients in each ward sorted in ascending numerical order. If two WARDNAME values in the ORDER BY
compare are equal, the tiebreaker will be their corresponding PATCOUNT values (in this case, the row
with the numerically smaller corresponding PATCOUNT value is displayed first).

SELECT WARDNAME, PATCOUNT FROM PCB01.WARD
 ORDER BY WARDNAME, PATCOUNT

Use the DESC qualifier to sort the query result in descending numerical or reverse alphabetical order.
The following statement retrieves all patient names in reverse alphabetical order:

SELECT PATNAME FROM PCB01.PATIENT
 ORDER BY PATNAME DESC

Use the ASC qualifier to explicitly sort the query result in ascending numerical or reverse alphabetical
order. The following statement retrieves all ward names sorted in ascending alphabetical order, and
the number of patients in each ward sorted in descending numerical order:

SELECT WARDNAME, PATCOUNT FROM PCB01.WARD
 ORDER BY WARDNAME ASC, PATCOUNT DESC

Selecting with GROUP BY
The GROUP BY clause is used to return results for aggregate functions, grouped by column values.
The following statement returns the aggregated sum of all doctors in every ward in a hospital, grouped
by distinct ward names :

SELECT WARDNAME, SUM(DOCCOUNT)
FROM PCB01.WARD
WHERE HOSPITAL_HOSPCODE = 'H5140070000H
 GROUP BY WARDNAME

The following statement returns the hospital name, ward name, and the count of all patients in each
ward in each hospital, grouped by distinct hospital names and sub-grouped by ward names:

SELECT HOSPNAME, WARDNAME, COUNT(PATNAME)
FROM PCB01.HOSPITAL, WARD, PATIENT
 GROUP BY HOSPNAME, WARDNAME

Selecting with DISTINCT
For SQL for the IMS Universal JDBC driver, the DISTINCT keyword is supported. The following
statement retrieves all distinct patient names from the PATIENT table for SQL:

SELECT DISTINCT PATNAME
FROM PCB01.PATIENT

Using the AS clause
For SQL for the IMS Universal JDBC driver, use the AS clause to rename the aggregate function
column in the result set or any other field in the SELECT statement. The AS clause is not supported for
SQL for COBOL application programs.

For SQL for the IMS Universal JDBC driver, the DISTINCT keyword is supported. The following
statement returns the aggregate count of distinct patients in the PATIENT table with the alias of
"PATIENTCOUNT":

SELECT COUNT(DISTINCT PATNAME)
 AS PATIENTCOUNT
FROM PCB01.PATIENT

The following statement returns the aggregate count of distinct wards in all hospitals with the alias of
"WARDCOUNT", sorted by the hospital names in alphabetical order, and grouped by distinct hospital
names (under a renamed column alias "HOSPITALNAME"):

SELECT HOSPNAME AS HOSPITALNAME, COUNT(DISTINCT WARDNAME)
 AS WARDCOUNT
FROM PCB01.HOSPITAL, WARD

766 IMS: Application Programming APIs

 GROUP BY HOSPNAME
 ORDER BY HOSPNAME

Example of SELECT using a parameter marker:
The following statement retrieves data based on the value that is supplied for the parameter for
HOSPNAME:

SELECT * FROM PCB01.HOSPITAL WHERE HOSPNAME = ?

Example of using the FETCH FIRST clause:
The following statement fetches the first n number of rows returned:

SELECT HOSPNAME FROM PCB01.HOSPITAL FETCH FIRST 3 ROWS ONLY

Examples of invalid SELECT queries:
The following statement is invalid because the FROM clause is missing the WARD table:

SELECT WARD.WARDNAME,PATIENT.PATNAME
FROM PCB01.PATIENT

Related reference
SQL aggregate functions supported by the IMS JDBC drivers (Application Programming)
SQL aggregate functions supported for COBOL (Application Programming)

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table.

The searched UPDATE form is used to update one or more rows optionally determined by a search
condition.

Invocation
This statement can be embedded in a COBOL or Java application program or issued interactively.
An UPDATE can be embedded in an application program. It is an executable statement that can be
dynamically prepared.

• “Syntax for COBOL” on page 767
• “Syntax for Java” on page 768

Syntax for COBOL
update

UPDATE table SET assignment-clause

WHERE search-condition

table

schema-name .

table-name

assignment clause
,

column = value

column

table-name .

column-name

Chapter 8. SQL programming reference 767

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_sqlaggregatefuncs.htm#ims_sqlaggregatefuncs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_sqlaggregatefuncs_cobol.htm#ims_sqlaggregatefuncs_cobol

Syntax for Java
update

UPDATE table SET assignment-clause

WHERE search-condition

table

schema-name .

table-name

assignment clause
,

column = value

column

schema-name .

table-name .

column-name
1

Notes:
1 You can have the same column name in multiple tables, but if the table is not qualified, each table
must be searched for the column.

Description
The following keyword parameters are defined for the UPDATE statement:
UPDATE

Identifies the object of the UPDATE statement.
table-name

The table-name defines the name of the table in your SQL query. The name must identify a
segment in IMS.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema name is the PCB
name.

SET
Introduces the assignment of values to column names.

column-name
Identifies a column that is to be updated. column-name must identify a field of the specified segment.

WHERE
Specifies the rows to be updated. You can omit the clause or give a search condition. When the clause
is omitted, all the rows of the table are updated.
search-condition

Is any search condition as described in “Search conditions” on page 598. Each column-name in
the search condition must identify a column of the table.

The search condition is applied to each row of the table and the rows are those for which the
result of the search condition is true are updated.

value
Indicates the new value of the column.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema name is the PCB name.

table-name
The table-name defines the name of the table in your SQL query.

768 IMS: Application Programming APIs

column-name
The column-name defines the name of the column in your SQL query.

Notes

Update rules:
Update values must satisfy the following rules. If they do not, or if other errors occur during the
execution of the UPDATE statement, no rows are updated and the position of the cursors are not
changed.

• Assignment. Update values are assigned to columns using the assignment rules described in
“Language elements” on page 585.

• When updating a record in a table at a non-root level, you must specify values for all the foreign key
fields of the table to identify the exact record (or segment instance) to update.

• Making an UPDATE on a foreign key field is invalid.

Number of rows updated:
For COBOL, the value of SQLIMSERRD(3) in the SQLIMSCA is the number of rows updated after
an UPDATE statement completes execution. For a complete description of the SQLIMSCA, including
exceptions to the preceding sentence, see “SQL communication area (SQLIMSCA)” on page 771.

Examples

Updating one column in a record
The following statement updates the root:

UPDATE HOSPITAL SET HOSPNAME = 'MISSION CREEK'
WHERE HOSPITAL.HOSPCODE = 'H001007'

Updating multiple fields in a specified record in a hierarchic path
Foreign keys are used to maintain referential integrity by identifying the exact record (or segment
instance) to update. The following statement updates a WARD record under a specific HOSPITAL. In
this example, the WARD table has the virtual foreign key HOSPITAL_HOSPCODE. The record will be
updated if and only if there is a HOSPCODE in the HOSPITAL table with the value of 'H5140070000H'.

UPDATE WARD SET WARDNAME = 'EMGY',
 DOCCOUNT = '2', NURCOUNT = '4'
WHERE HOSPITAL_HOSPCODE = 'H5140070000H'
 AND WARDNO = '01'

Example of an invalid UPDATE query
This statement is invalid because it does not use the correct syntax to specify a legal value for the
virtual foreign key field (HOSPITAL_HOSPCODE).

UPDATE WARD SET WARDNAME = 'EMGY',
 DOCCOUNT = '2', NURCOUNT = '4'
WHERE HOSPITAL.HOSPCODE = 'H5140070000H'
 AND WARDNO = '01'

Example of an invalid foreign key field UPDATE query
Making an UPDATE query on a foreign key field is invalid. For example, the following UPDATE query
will fail:

UPDATE WARD SET WARDNAME = 'EMGY',
 HOSPITAL_HOSPCODE = 'H5140070000H'
WHERE WARDNO = '01'

Chapter 8. SQL programming reference 769

WHENEVER
The WHENEVER statement specifies the host language statement to be executed when a specified
exception condition occurs.

Invocation
This statement can be embedded only in a COBOL application program. It is not an executable statement.

Syntax
WHENEVER NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO

GO TO :
host-label

Description
The following keyword parameters are defined for the WHENEVER statement:

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the type of exception condition.
NOT FOUND

Identifies any condition that results in an SQLIMSCODE of +100 (equivalently, an SQLIMSSTATE code
of '02000').

SQLERROR
Identifies any condition that results in a negative SQLIMSCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLIMSWARN0 is W), or that results in a
positive SQLIMSCODE other than +100.

The CONTINUE or GO TO clause specifies the next statement to be executed when the identified type of
exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single token, optionally
preceded by a colon. The form of the token depends on the host language. In COBOL, for example, it
can be section-name or an unqualified paragraph-name.

Notes
There are three types of WHENEVER statements:

• WHENEVER NOT FOUND
• WHENEVER SQLERROR
• WHENEVER SQLWARNING

Every executable SQL statement in an application program is within the scope of one implicit or explicit
WHENEVER statement of each type. The scope of a WHENEVER statement is related to the listing
sequence of the statements in the application program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each type that is specified
before that SQL statement in the source program. If a WHENEVER statement of some type is not specified
before an SQL statement, that SQL statement is within the scope of an implicit WHENEVER statement of
that type in which CONTINUE is specified.

Examples

770 IMS: Application Programming APIs

The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.

 EXEC SQLIMS WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.

 EXEC SQLIMS WHENEVER SQLWARNING CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return.

 EXEC SQLIMS WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

SQL communication area (SQLIMSCA)
An SQLIMSCA is a structure or collection of variables that is updated after each SQL statement executes.
An application program that contains executable SQL statements must provide exactly one SQLIMSCA.

In COBOL, the INCLUDE statement can be used to provide the declaration of the SQLIMSCA.

Description of SQLIMSCA fields
The SQLIMS INCLUDE statement provides SQLIMSCA field.

The names in the following table are those provided by the SQLIMS INCLUDE statement.

Table 169. Fields of SQLIMSCA

COBOL name Data type Purpose

SQLIMSCAID CHAR(8) An "eye catcher" for storage dumps, containing the text
'SQLIMSCA'.

SQLIMSCABC INTEGER Contains the length of the SQLIMSCA: 224.

SQLIMSCODE INTEGER Contains the SQL return code. (See note “2” on page 772)
Code

Means
0

Successful execution (though there might have been
warning messages).

positive
Successful execution, but with a warning condition or
other information.

negative
Error condition.

SQLIMSERRML
(See note “1” on page 772)

SMALLINT Length indicator for SQLIMSERRMC, in the range 0 through
255. 0 means that the value of SQLIMSERRMC is not
pertinent.

SQLIMSERRMC
(See note “1” on page 772)

VARCHAR(158) Contains the error message.

SQLIMSERRP CHAR(8) Provides a product signature and, in the case of an error,
diagnostic information such as the name of the module that
detected the error. In all cases, the first three characters are
'DQF' or 'DFS' for IMS.

Chapter 8. SQL programming reference 771

Table 169. Fields of SQLIMSCA (continued)

COBOL name Data type Purpose

SQLIMSERRD(1) INTEGER Reserved.

SQLIMSERRD(2) INTEGER Reserved.

SQLIMSERRD(3) INTEGER Contains the number of rows that qualified to be deleted,
inserted, or updated after a DELETE, INSERT, or UPDATE
statement.

SQLIMSERRD(4) INTEGER Reserved.

SQLIMSERRD(5) INTEGER Reserved.

SQLIMSERRD(6) INTEGER Reserved.

SQLIMSWARN0 CHAR(1) Contains a blank if no other indicator is set to a warning
condition (that is, no other indicator contains a W or Z).
Contains a W if at least one other indicator contains a W or Z.

SQLIMSWARN1 CHAR(1) Contains a W if the value of a string column was truncated
when assigned to a host variable.

SQLIMSWARN2 CHAR(1) Reserved.

SQLIMSWARN3 CHAR(1) Contains a W if the number of result columns is larger than
the number of host variables.

SQLIMSWARN4 CHAR(1) Contains a W if a prepared UPDATE or DELETE statement
does not include a WHERE clause.

SQLIMSWARN5 CHAR(1) Contains a W if the SQL statement was not executed
because it is not a valid SQL statement in IMS.

SQLIMSWARN6 CHAR(1) Contains a W if a field is not initialized with the proper format
for the INSERT statement because the field overlays with
another field that is of a different type. ZONEDDECIMAL and
PACKEDDECIMAL fields are initialized during the processing
of an INSERT statement. If the field is overlaid by another
field and the field cannot be initialized, W is set for the
statement during the EXECUTE call.

SQLIMSWARN7 CHAR(1) Reserved.

SQLIMSWARN8 CHAR(1) Reserved.

SQLIMSWARN9 CHAR(1) Reserved.

SQLIMSWARNA CHAR(1) Reserved.

SQLIMSSTATE CHAR(5) Contains a return code for the outcome of the most recent
execution of an SQL statement (See note “2” on page 772).

Notes:

1. In COBOL, SQLIMSERRM includes SQLIMSERRML and SQLIMSERRMC. See the examples for the
various host languages in “The included SQLIMSCA” on page 773.

2. For a description of the SQLIMSSTATE values, see SQL codes (Messages and Codes).

772 IMS: Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_sqlcodes.htm#ims_sqlcodes

The included SQLIMSCA
The description of the SQLIMSCA that is given by INCLUDE SQLIMSCA is shown for COBOL.

COBOL:

01 SQLIMSCA GLOBAL.
 05 SQLIMSCAID PIC X(8).
 05 SQLIMSCABC PIC S9(9) COMP-5.
 05 SQLIMSCODE PIC S9(9) COMP-5.
 05 SQLIMSERRM.
 49 SQLIMSERRML PIC S9(4) COMP-5.
 49 SQLIMSERRMC PIC X(158).
 05 SQLIMSERRP PIC X(8).
 05 SQLIMSERRD PIC S9(9) COMP-5
 05 SQLIMSWARN.
 10 SQLIMSWARN0 PIC X.
 10 SQLIMSWARN1 PIC X.
 10 SQLIMSWARN2 PIC X.
 10 SQLIMSWARN3 PIC X.
 10 SQLIMSWARN4 PIC X.
 10 SQLIMSWARN5 PIC X.
 10 SQLIMSWARN6 PIC X.
 10 SQLIMSWARN7 PIC X.
 05 SQLIMSEXT.
 10 SQLIMSWARN8 PIC X.
 10 SQLIMSWARN9 PIC X.
 10 SQLIMSWARNA PIC X.
 10 SQLIMSSTATE PIC X(5).

SQL descriptor area (SQLIMSDA)
An SQLIMSDA is a collection of variables that is required for execution of the SQLIMS DESCRIBE
statement, and can be optionally used by the FETCH statements. An SQLIMSDA can be used in a
DESCRIBE statement, modified with the addresses of host variables, and then reused in a FETCH
statement.

The meaning of the information in an SQLIMSDA depends on the context in which it is used. For
DESCRIBE, IMS sets the fields in the SQLIMSDA to provide information to the application program. For
FETCH, the application program sets the fields in the SQLIMSDA to provide IMS with information:

DESCRIBE statement-name
With the exception of SQLIMSN, IMS sets fields of the SQLIMSDA to provide information to an
application program about a prepared statement. Each SQLIMSVAR occurrence describes a column of
the result table.

FETCH
The application program sets fields of the SQLIMSDA to provide information about host variables
or output buffers in the application program to IMS. Each SQLIMSVAR occurrence describes a host
variable or output buffer.

• For FETCH, each SQLIMSVAR occurrence describes a host variable or buffer in the application
program that is to be used to contain an output value from a row of the result.

Description of SQLIMSDA fields
An SQLIMSDA consists of four variables, a header, and an arbitrary number of occurrences of a sequence
of variables collectively named SQLIMSVAR.

In DESCRIBE, each occurrence of the SQLIMSVAR describes the column of a table. In FETCH, each
occurrence describes a host variable.

Chapter 8. SQL programming reference 773

The SQLIMSDA header
The fields in the SQLIMSDA header have different usage depending on whether the SQLIMSDA is being
used in a DESCRIBE or FETCHstatement.

The following table describes the fields in the SQLIMSDA header.

Table 170. Fields of the SQLIMSDA header

COBOL name Data type Usage in DESCRIBE Usage in FETCH

sqlimsdaid
SQLIMSDAID

CHAR(8) An "eye catcher" for storage
dumps, containing the text
'SQLIMSDA '.

SQLIMSDAID is not used.

sqlimsdabc
SQLIMSDABC

INTEGER Length of the SQLIMSDA, equal to
SQLIMSNx * 44+16.

Length of the SQLIMSDA, greater
than or equal to SQLIMSNx *
44+16.

sqlimsn
SQLIMSN

SMALLINT The field must be set to a value
greater than or equal to zero before
the statement is executed. The
field indicates the total number
of occurrences of SQLIMSVAR. In
COBOL, the included SQLIMSDA
contains up to 750 occurrences of
SQLIMSVAR.

Total number of occurrences
of SQLIMSVAR provided in the
SQLIMSDA. SQLIMSN must be set
to a value greater than or equal
to zero. In COBOL, the included
SQLIMSDA contains up to 750
occurrences of SQLIMSVAR.

sqlimsd
SQLIMSD

SMALLINT The number of columns described
by occurrences of SQLIMSVAR.

The number of host variables
described by occurrences of
SQLIMSVAR.

SQLIMSVAR entries
For each column or host variable described by the SQLIMSDA, it is described using the SQLIMSVAR entry.

The fields of this entry contain the base information about the column or host variable such as data
type code, length attribute (except for LOBs), column name, host variable address, and indicator variable
address.

Determining how many SQLIMSVAR occurrences are needed
The number of SQLIMSVAR occurrences needed depends on the statement that the SQLIMSDA was
provided for and the data types of the columns or parameters being described.

The included SQLIMSDA provides up to 750 occurrences of SQLIMSVAR. The SQLIMSD is set to the
number of columns in the result and represents the number of SQLIMSVAR occurrences needed. If
an insufficient number of SQLIMSVAR occurrences were provided, IMS returns a +239 warning in
SQLIMSCODE.

SQLIMSD is set to the number of columns in the result.

Field descriptions of an occurrence of a base SQLIMSVAR
The fields of a base SQLIMSVAR have different uses depending on the SQL statement.

The following table describes the contents of the fields of a base SQLIMSVAR.

774 IMS: Application Programming APIs

Table 171. Fields in an occurrence of a base SQLIMSVAR

COBOL name Data type Usage in DESCRIBE Usage in FETCH

sqlimstype
SQLIMSTYPE

SMALLINT Indicates the data type of the
column and whether it can contain
null values. For a description of the
type codes, see Table 172 on page
775.

Indicates the data type of the
host variable and whether an
indicator variable is provided. For a
description of the type codes, see
“SQLIMSTYPE and SQLIMSLEN” on
page 775.

sqlimslen
SQLIMSLEN

SMALLINT The length attribute of the
column. See “SQLIMSTYPE and
SQLIMSLEN” on page 775 for a
description of allowable values.

The length attribute of the host
variable. See “SQLIMSTYPE and
SQLIMSLEN” on page 775 for a
description of allowable values.

sqlimsdata
SQLIMSDATA

pointer Reserved. Contains the address of the host
variable.

sqlimsind
SQLIMSIND

pointer Reserved Contains the address of an
associated indicator variable, if
SQLIMSTYPE is odd. Otherwise, the
field is not used.

sqlimsname
SQLIMSNAME

VARCHAR(30) Contains the unqualified name or
label of the column, or a string of
length zero if the name or label
does not exist. If the name is longer
than 30 bytes, it is truncated at a
byte boundary.

Contains the unqualified name or
label of the column, or a string of
length zero if the name or label
does not exist. If the name is longer
than 30 bytes, it is truncated at a
byte boundary.

SQLIMSTYPE and SQLIMSLEN
The contents of the SQLIMSTYPE and SQLIMSLEN fields of the SQLIMSDA depends on the SQL statement
that is returning the value.

The following table shows the values that can appear in the SQLIMSTYPE and SQLIMSLEN fields of
the SQLIMSDA. In DESCRIBE, an even value of SQLIMSTYPE means the column does not allow nulls,
and an odd value means the column does allow nulls. In FETCH, an even value of SQLIMSTYPE means
no indicator variable is provided, and an odd value means that SQLIMSIND contains the address of an
indicator variable.

Table 172. SQLIMSTYPE and SQLIMSLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE

SQLIMSTYPE

For DESCRIBE For FETCH

Column or
parameter data type SQLIMSLEN

Host variable data
type SQLIMSLEN

384/385 date 10 1 fixed-length character
string representation of
a date

length attribute of the
host variable

388/389 time 8 2 fixed-length character
string representation of
a time

length attribute of the
host variable

392/393 timestamp 26 fixed-length character
string representation of
a timestamp

length attribute of the
host variable

Chapter 8. SQL programming reference 775

Table 172. SQLIMSTYPE and SQLIMSLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE (continued)

SQLIMSTYPE

For DESCRIBE For FETCH

Column or
parameter data type SQLIMSLEN

Host variable data
type SQLIMSLEN

452/453 fixed-length
character string

length attribute of the
column

fixed-length character
string

length attribute of the
host variable

480/481 floating point 4 for single precision,
8 for double precision

floating point 4 for single precision,
8 for double precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

492/493 big integer4 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

504/505 N/A N/A DISPLAY SIGN
 LEADING SEPARATE,
NATIONAL SIGN
 LEADING SEPARATE

precision in byte 1;
scale in byte 2

912/913 fixed-length binary
string

length attribute of the
column

fixed-length binary
string

length attribute of the
host variable

Note:

1. SQLIMSLEN might be different if a date installation exit is specified.
2. SQLIMSLEN might be different if a time installation exit is specified.
3. Field SQLIMSLONGLEN in the extended SQLIMSVAR contains the length attribute of the column.
4. BIGINT is supported by other IMS platforms.

The included SQLIMSDA
Only COBOL is supported for the SQLIMSDA that is given by INCLUDE SQLIMSDA.

COBOL (IBM COBOL only):

01 SQLIMSDA GLOBAL.
 02 SQLIMSDAID PIC X(8).
 02 SQLIMSDABC PIC S9(9) COMP-5.
 02 SQLIMSN PIC S9(4) COMP-5.
 02 SQLIMSD PIC S9(4) COMP-5.
 02 SQLIMSVAR OCCURS 0 TO 750 TIMES DEPENDING ON SQLIMSN.
 03 SQLIMSVAR1.
 04 SQLIMSTYPE PIC S9(4) COMP-5.
 04 SQLIMSLEN PIC S9(4) COMP-5.
 04 FILLER REDEFINES SQLIMSLEN.
 05 SQLIMSPRECISION PIC X.
 05 SQLIMSSCALE PIC X.
 04 SQLIMSDATA POINTER.
 04 SQLIMSIND POINTER.
 04 SQLIMSNAME.
 49 SQLIMSNAMEL PIC S9(4) COMP-5.
 49 SQLIMSNAMEC PIC X(30).
 03 SQLIMSVAR2 REDEFINES SQLIMSVAR1.
 04 SQLIMSVAR2-RESERVED-1
 PIC S9(9) COMP-5.
 04 SQLIMSLONGLEN REDEFINES
 SQLIMSVAR2-RESERVED-1
 PIC S9(9) COMP-5.

776 IMS: Application Programming APIs

 04 SQLIMSVAR2-RESERVED-2
 PIC S9(9) COMP-5.
 04 SQLIMSDATALEN POINTER.
 04 SQLIMSDATATYPE-NAME.
 05 SQLIMSDATATYPE-NAMEL
 PIC S9(4) COMP-5.
 05 SQLIMSDATATYPE-NAMEC PIC X(30).

Chapter 8. SQL programming reference 777

778 IMS: Application Programming APIs

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan, Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1974, 2022 779

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and Associated Guidance
Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or
as a result of service. Product-sensitive Programming Interface and Associated Guidance Information
is identified where it occurs, either by an introductory statement to a section or topic, or by a Product-
sensitive programming interface label. IBM requires that the preceding statement, and any statement in
this information that refers to the preceding statement, be included in any whole or partial copy made of
the information described by such a statement.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

780 Notices

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

To learn more, see IBM Privacy Statement.

Notices 781

https://www.ibm.com/privacy

782 IMS: Application Programming APIs

Bibliography

This bibliography lists all of the publications in the IMS 15.3 library.

Title Acronym

IMS Version 15.3 Application Programming APG

IMS Version 15.3 Application Programming APIs APR

IMS Version 15.3 Commands, Volume 1: IMS Commands A-M CR1

IMS Version 15.3 Commands, Volume 2: IMS Commands N-V CR2

IMS Version 15.3 Commands, Volume 3: IMS Component and z/OS
Commands

CR3

IMS Version 15.3 Communications and Connections CCG

IMS Version 15.3 Database Administration DAG

IMS Version 15.3 Database Utilities DUR

IMS Version 15.3 Diagnosis DGR

IMS Version 15.3 Exit Routines ERR

IMS Version 15.3 Installation INS

IMS Version 15.3 Licensed Program Specifications LPS

IMS Version 15.3 Messages and Codes, Volume 1: DFS Messages MC1

IMS Version 15.3 Messages and Codes, Volume 2: Non-DFS Messages MC2

IMS Version 15.3 Messages and Codes, Volume 3: IMS Abend Codes MC3

IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes MC4

IMS Version 15.3 Operations and Automation OAG

IMS Version 15.3 Release Planning RPG

IMS Version 15.3 System Administration SAG

IMS Version 15.3 System Definition SDG

IMS Version 15.3 System Programming APIs SPR

IMS Version 15.3 System Utilities SUR

© Copyright IBM Corp. 1974, 2022 783

784 IMS: Application Programming APIs

Index

Special Characters
: (colon)

preceding a host variable 593
! (exclamation mark) as not sign 595
!token

IMSQUERY function 366
STORAGE command 364

? (question mark) 747
. (period) usage

null or void placeholder 356
parsing, transparent additions 357
REXX 354

*mapname 361, 362
/DISPLAY command 517
/DISPLAY POOL command 419
/FORMAT command 482, 517
/MODIFY COMMIT command 482
/MODIFY PREPARE command 482
/RDISPLAY command 519
/RESET command 444
/SET command 460
&DPN= operand (DIV statement), specifying 445
$$IMSDIR

effect on performance 419

Numerics
3180

in partitioned format mode
clearing the display 517
paging 517
restrictions 517
scrolling 517

screen formatting 414
3270 Information Display System

compatibility with 5550 414
copy function

bit 4 of SCA, byte 1 431
description 509

default literal input message fields 471
defining IMS TM password 472
defining system message field 495
entering and exiting formatted mode 460
increasing performance 419
master terminal format

display area 519
literals defined for PF keys 519

multiple physical page input 478
PA (program access) key, control functions 509
printed page format control 496
screen formatting 411
selector pen

for control functions 509
3270 operator identification card reader

application program device-dependent information 426
defining IMS TM password 472

3270 operator identification card reader (continued)
effect on input fields 426
system message field 495

3270P Printer
printed page format control 497

3270P Printers
MFS controlling format 498

3275/3277 Display Station
physical paging 484
using default formats with 408

3276 Control Unit/Display Station
physical paging 484
using default formats with 408

3278 Display Station
compatibility with 5550 414
physical paging 484
using default formats with 408

3279 Display Station, default formats 408
3290 Display Panel

in partitioned format mode 495
in standard format mode 412
screen formatting 412

3770 Data Communication System
entering and exiting formatted mode 460
printed page format control 496

3790 Communication System
operating with MFS

FTABs 473
input modes 472

5550 Family (as 3270)
compatibility with other devices 414
using DBCS fields 489
using DBCS/EBCDIC fields 489

8-blanks (null) 37

A
abend statement 218
abend, avoiding an 155
ABNUOWRM reply message

format 308
ACCEPT command

ACCEPT command
description 155

example 155
format 155
options 155
system service command 153
usage 155

ACCESS parameter
CREATE DATABASE statement 660

accessibility
features xi
keyboard shortcuts xi

ACCRDB command
format 265

ACCRDBRM reply message

Index 785

ACCRDBRM reply message (continued)
format 309

ACCSEC command
format 267

ACCSECRD reply object 311
ACTVPID= operand (DPAGE statement)

cursor positioning (3290 only) 495
specifying 454
use 515

adding
a segment sequentially 179
segments to a database 174

addressing environments 349, 350
AGNPRMRM reply message

format 312
AIB (application interface block)

AIB identifier
in RCMD call 60

AIB identifier (AIBID)in GSCD call 39
AIB identifier (AIBID)

in APSB call 33
in CHKP (basic) call 34
in CHKP (symbolic) call 35
in DPSB call 36
in GMSG call 37
in ICMD call 40
in INIT call 41
in INQY call 47
in LOG call 58
in ROLB call 61
in ROLS call 62
in SETS/SETU call 64
in SNAP call 65
in STAT call 68
in SYNC call 69

AIB identifier (AIBID) in XRST call 71
AIBLEN (DFSAIB allocated length)in GSCD call 39
AIBLEN (DFSAIB allocated length)

in APSB call 33
in CHKP (basic) call 34
in CHKP (symbolic) call 35
in DPSB call 36
in GMSG call 37
in ICMD call 40
in INIT call 41
in INQY 47
in LOG call 58
in RCMD call 60
in ROLB call 61
in ROLS call 62
in SETS/SETU call 64
in SNAP call 65
in STAT call 68
in SYNC call 69

AIBLEN (DFSAIB allocated length) in XRST call 71
AIBOALEN ((maximum output area length) in ROLS call
62
AIBOALEN (maximum outpu area length)

in LOG call 58
AIBOALEN (maximum output area length)in GSCD call
39
AIBOALEN (maximum output area length)

in CHKP (symbolic) call 35
in GMSG call 37

AIB (application interface block) (continued)
AIBOALEN (maximum output area length) (continued)

in ICMD call 40
in INIT call 41
in INQY call 47
in RCMD call 60
in SETS/SETU call 64
in SNAP call 65
in STAT call 68

AIBOALEN (maximum output area length) in ROLB call
61
AIBOALEN (maximum output area length) in XRST call
71
AIBOAUSE (used output area length)

in GMSG call 37
in ICMD call 40
in RCMD call 60

AIBRSNM1 (resource name)
in APSB call 33
in CHKP (symbolic) call 35
in DPSB call 36
in GMSG call 37
in INIT call 41
in INQY call 47
in LOG call 58
in ROLB call 61
in ROLS call 62
in SETS/SETU call 64
in SNAP call 65
in STAT call 68
in SYNC call 69

AIBRSNM1 (resource name) in CHKP (basic) call 34
AIBRSNM1 (resource name) in XRST call 71
AIBRSNM2

in APSB call 33
in CHKP (basic) call 34

AIBSFUNC (subfunction code)
in DPSB call 36
in GMSG call 37
in INQY call 47

DL/I calls, system service
ROLB 61

interface, REXX 351
ROLB (Roll Back) call

format 61
parameters 61

subfunction, setting 363
AIBOALEN parameter 336
AIBRSNM1 (resource name)

in GSCD call 39
AIBRSNM1 parameter 337
AIBRSNM2 parameter 337
AIBSFUNC parameter 338
aibStream data structure

format 338
overview 338

Allocate PSB (APSB) call
format 33
parameters 33
usage 33

allocate PSB call 116
allowed commands, EXEC DLI 153
ALTER DATABASE

statement

786 IMS: Application Programming APIs

ALTER DATABASE (continued)
statement (continued)

description 603
ALTER TABLE

statement
description 617

ALTER TABLESPACE
statement

description 645
AND

truth table 598
AO (automated operator) application

after status codes
GCMD call 88

GCMD call
status codes 88

GMSG call 37, 120
ICMD call 40, 123
RCMD call 60, 143

AOI (Automated Operator Interface)
IOASIZE requirement 672

AOI token, usage 37
API

otma_alloc 529
otma_close 540
otma_create 524
otma_free 539
otma_open 526
otma_openx 527
otma_receive_async 538
otma_send_async 534
otma_send_asyncx 537
otma_send_receive 530
otma_send_receivex 532
otma_send_receivey 533

APPC environment 349
application program

deadlock occurrence, in 41
SQLIMSCA 771
SQLIMSDA 773

APSB (Allocate PSB) call
format 33
parameters 33
usage 33

APSB call
description 116
format 116
parameters 116
restrictions 116
summary 74
usage 116

area
in CHKP (symbolic) call 35

area length
in CHKP (symbolic) call 35
in XRST call 71

assignment
compatibility rules 590
retrieval rules 591
storage rules 591
strings, basic rules for 590

ATTACH FM header 445, 502
ATTACH manager

blocking algorithms 502

ATTACH manager (continued)
deblocking algorithms 480

ATTR= operand (MFLD statement)
example 435
use 487

attribute data
input message fields

description 472
output device fields

description 487
for cursor positioning 495

attribute simulation
description 487
restrictions 433

AUTH call
description 76
format 76
I/O area format
76
parameters 76
restrictions 76
summary 74
usage 76

authorization call 76
Automated Operator Interface (AOI) 672
avoiding an abend 155

B
backing out

changes dynamically 188
backout point

setting 192
unconditionally setting 193

basic checkpoint
description 156

Basic Checkpoint (CHKP Basic)
description 34
format 34
parameters 34
usage 34

basic checkpoint call 117
Basic CHKP call

description 117
format 117
parameters 117
restrictions 117
summary 74
usage 117

Basic edit
IMS TM 482

basic operations in SQL 590
basic predicate 595
batch programs

deadlock occurrence, in 41
BETWEEN predicate 597
BIGINT

data type 588
binding

SQL statements 583
BKO execution parameter 188
block error message format 517
BLOCK= parameter

DATASET statement 647, 730

Index 787

BSAM (basic sequential access method)
using with Spool API 104

built-in data type 586

C
call functions, DL/I 232
CALL statement

CALL DATA 225
CALL DATA statement internal field 225
CALL FUNCTION 220
SETO, DFSDDLT0

description 220
CALL statements

CALL FUNCTION statement 224
FEEDBACK DATA statement 227
OPTION DATA statement 228

call summary, transaction management 74
Callable Interface (C/I)

otma_alloc API 529
otma_close API 540
otma_create API 524
otma_free API 539
otma_open API 526
otma_openx API 527
otma_receive_async API 538
otma_send_async API 534
otma_send_asyncx API 537
otma_send_receive API 530
otma_send_receivex API 532
otma_send_receivey API 533
sample programs 541

calls, DB
CIMS 3
CLSE 5
DEQ 6
DLET 7
FLD 8
GHNP 14
GHU 16
GN 11
GNP 14
GU 16
GUR 19
ISRT 22
OPEN 25
POS 26
REPL 28
RLSE 30

calls, system service
APSB (allocate PSB) 33
CHKP (basic) 34
CHKP (symbolic) 35
GMSG (get message) 37
ICMD (issue command) 40
INIT (initialize) 41
INQY (inquiry) 47
LOG (log) 58
PCB (schedule a PSB) 59
RCMD (retrieve command) 60
ROLB (roll back) 61
SETS/SETU (set a backout point)
64
SNAP 65

calls, system service (continued)
STAT (statistics) 68
SYNC (synchronization point) 69
TERM (terminate) 70
XRST (extended restart) 71

change call 80
changing the values of a segment’s fields 183
CHAR

data type 589
character 585
CHARACTER data type

description 589
character string

assignment 591
comparison 591
constants 592
description 589
empty 589

checkpoint (CHKP)
command

description 156
example 156
format 156
issuing 156
options 156
restrictions 156
usage 156

checkpoint call, basic 117
checkpoint call, symbolic 118
CHKP (basic checkpoint) call

CHKP (basic checkpoint) call
description 34

format 34
parameters 34
usage 34

CHKP (Checkpoint)
command

description 156
example 156
format 156
issuing 156
options 156
restrictions 156
usage 156

CHKP (symbolic checkpoint) call
CHKP (symbolic checkpoint) call

description 35
format 35
parameters 35
usage 35

CHKP call function 228
CHKPT=EOV parameter 156
CHNG call

and OTMA environment 80
description 80
format 80
parameters 80
restrictions 80
summary 75
usage 80

CHNG call function 228
CICS online programs

PCB call 59
TERM call 70

788 IMS: Application Programming APIs

CIMS call
description 3
format 3
parameters 3
usage 3

class, record segment 206
CLEAR key 411
CLEAR PARTITION key 411
CLOSE

statement
description 651
example 651

closing a GSAM database explicitly 5
CLSE (Close) call

CLSE (Close) call
description 5

format 5
parameters 5
usage 5

CLSQRY command
format 268

CMD call
description 87
examples 87
format 87
parameters 87
restrictions 87
summary 74
usage 87

CMD call function 228
CMDVLTRM reply message

format 313
CNTQRY command

format 269
COBOL application program

host structure 594
host variable

description 593
INCLUDE SQLIMSCA 773

colon
host variable in SQL 593

column
derived

INSERT statement 752
UPDATE statement 768

naming convention 586
Command (CMD) call

See CMD call 87
Command (ICAL) call

See ICAL call 92
command codes

A
description 200

C
description 200

D
examples 200
Get calls 201
ISRT call 201
P processing option 201

DL/I calls 198
F

Get calls 203
HERE insert rule 22

command codes (continued)
F (continued)

ISRT call 203
G

description 204
L

FIRST insert rule 22, 204
Get calls 204

M 212
N 205
Null 210
O

description 205
P 206
Q 206
R 212
reference 198
S 213
U 208
V 210
Z 215

command-level programs
command-level programs

syntax of EXEC DLI commands 153
command, path 183
commands

EXEC DLI
ACCEPT 155
CHKP (Checkpoint) 156
DEQ (Dequeue) 157
DLET (Delete) 158
GN (Get Next) 159
GNP (Get Next in Parent) 164
GU (Get Unique) 169
ISRT (Insert) 174
LOAD 179
LOG 180
POS (Position) 181
QUERY 182
REFRESH 182
REPL (Replace) 183
RETRIEVE 187
ROLB (Rollback) 188
ROLL 189
ROLS (Rollback to SETS or SETU) 190
SCHD (Schedule) 191
SETS (Set a Backout Point) 192
SETU (Set a Backout Point Unconditionally) 193
STAT (Statistics) 194
summary 154
SYMCHKP (Symbolic Checkpoint) 195
TERM (Terminate) 196
XRST (Extended Restart) 197

symbolic checkpoint 195
system service 153

commands allowed, EXEC DLI 153
comment

SQL 585
COMMENT ON

statement
description 652

COMMENT statement
conditional (T) 241
unconditional (U) 241

Index 789

COMPARE statement
COMPARE AIB 243
COMPARE DATA 243
COMPARE PCB 245
introduction 242

comparison
compatibility rules 590
strings 591

compatibility
3270 printer and SLU 1 418
converting device definitions to SLU P 419
data types 590
rules 590
SLU P 419

COMPR= operand (DIV statement), specifying 445
COND= operand (DPAGE statement), specifying 454
connector, field search argument (FSA) 8
constant

character string 592
decimal 592
floating-point 592
hexadecimal 592
integer 591

CONTINUE
clause of WHENEVER statement 770

control blocks, MFS
chained control blocks 401

control character 585
conversion

3270 device format, example 417
device formats 416

copy function
bit 4 of SCA, byte 1 431
cursor positioning

for output messages 431
description 509
dynamic attribute modification, output message

formats
specifying attributes 431

CREATE DATABASE
statement

description 654
CREATE PROGRAMVIEW

statement
description 667

CREATE TABLE
statement

description 684
CREATE TABLESPACE

statement
description 727

CTL (PUNCH) statement 250
current position

qualification 208
current position in the database, determining the 187
cursor

closing
CLOSE statement 651
error in UPDATE 769

naming convention 586
opening

errors 754
OPEN statement 753

using

cursor (continued)
using (continued)

DECLARE CURSOR statement 741
FETCH statement 748

cursor position input 470
cursor positioning

3270 Information Display System
selector pen 426

for input messages 426, 495
for output messages

CURSOR operand 454
dynamic 495

selector pen, 3270
application program device-dependent information
426
effect on input fields 426

cursor-name clause
DECLARE CURSOR statement 741
FETCH statement 749

CURSOR= operand (DPAGE statement), specifying 454

D
data mapping, define with MAXDEF command 359
data structures

hierarchy 584
types 584

data type
built-in 586
character string 589
compatibility matrix 590
datetime 589
list of built-in types 586
numeric 588

database
calls

summary 1
deallocating resources 36
determining the current position in the 187
establishing a starting position in a 169
position

establishing using GU 16
database versioningINIT VERSION call 41
databases

hierarchical
comparison to relational 584

relational
comparison to hierarchical 584

date
data type 589

DATE
data type

description 589
datetime

data types
description 589

datetime host variables
data type

description 590
DB PCB

status codes
NU 41

DB PCB (database program communication block)

790 IMS: Application Programming APIs

DB PCB (database program communication block) (continued)
AIB (application interface block)I/O

area
in GSCD call 39

I/O PCB
in GSCD 39

in GSCD 39
status codes

NA 41
DBCS (double byte character set)

definition 489
types of fields 489

DBCS/EBCDIC mixed fields
description 489
horizontal tab (SCS1 device) 489
input control 489
SO/SI control characters in 489

DBCS/EBCDIC mixed literals
continuation rules for 489
description 489
specifying as DFLD/MFLD literals 489

DBD (Database Description) generation
block size, specifying minimum for databases 647, 730
control interval size, specifying minimum for databases
647, 730

dbpcbStream data structure
format 339

DBQUERY
using with INIT call 41

DDL SQL 583
DDL statements

ALTER DATABASE
description 603

ALTER TABLE
description 617

ALTER TABLESPACE
description 645

COMMENT ON
description 652

CREATE DATABASE
description 654

CREATE PROGRAMVIEW
description 667

CREATE TABLE
description 684

CREATE TABLESPACE
description 727

DROP DATABASE
description 744

DROP PROGRAMVIEW
description 745

DROP TABLE
description 745

DROP TABLESPACE
description 746

DDM (distributed data management architecture)
command objects 265
commands 263, 265
commit processing 264
data structures, product-unique 336
DSSHDR syntax 264
global transaction processing 264
local transaction processing 264
parameters, product-unique 336

DDM (distributed data management architecture) (continued)
replies 263
syntax 263
terms 263

DDM (distributed data management)
abnormal ending of unit of work 308
ABNUOWRM reply message 308
access security reply object 311
access to database completed reply message 309
accessing database 265
ACCRDB command 265
ACCRDBRM reply message 309
ACCSEC command 267
ACCSECRD reply object 311
AGNPRMRM reply message 312
aibStream data structure 338
closing a query 268
CLSQRY command 268
CMDVLTRM reply message 313
CNTQRY command 269
command violation reply message 313
continuing a query 269
data field 294
database access failed reply message 326
database deallocation completed reply message 314
database not accessed reply message 328
database not found reply message 329
database update reply message 330
dbpcbStream data structure 339
deallocating database 271
DEALLOCDB command 271
DEALLOCDBRM reply message 314
DL/I function 273
DLIFUNC command object 273
end of query reply message 315
end unit of work reply message 316
ENDQRYRM reply message 315
ENDUOWRM reply message 316
exchange server attributes 275, 317
EXCSAT command 275
EXCSATRD reply object 317
EXCSQLIMM command 276
executing immediate SQL 276
field entry 282
FLDENTRY command object 282
IMS call reply message 318
IMSCALL command 283
IMSCALLRM reply message 318
INAIB command object 284
input AIB data 284
iopcbStream data structure 340
issuing an IMS call 283
not authorized to database reply message 327
open query failure reply message 320
open query reply message 321
opening a query 286
OPNQFLRM reply message 320
OPNQRY command 286
OPNQRYRM reply message 321
OUTAIBDBPCB parameter 342
OUTAIBIOPCB parameter 343
Output AIBDBPCB 342
output AIBIOPCB 343
permanent agent error reply message 312

Index 791

DDM (distributed data management) (continued)
QRYDSC reply object 323
QRYDTA reply object 323
QRYPOPRM reply message 324
query answer set data reply object 323
query answer set description reply object 323
query previously opened reply message 324
RDBAFLRM reply message 326
RDBATHRM reply message 327
RDBNACRM reply message 328
RDBNFNRM reply message 329
RDBUPDRM reply message 330
release locks reply message 332
releasing database locks 293
reply messages 308
resource limits reached reply message 333
RLSE command 293
RLSERM reply message 332
RSCLMTRM reply message 333
RTRVFLD command object 294
SECCHK command 295
SECCHKRM reply message 334
security access 267
security check 295
security check reply message 334
SQL error condition reply message 335
SQLERRRM reply message 335
SSA object list 307
SSALIST command object 307

DDM (distributed data management) architecture
AIBRSNM1 parameter 337
AIBRSNM2 parameter 337
AIBSFUNC parameter 338
RDBNAM parameter 344
SECCHK command 295
security check 295
SSA parameter 344
SSACOUNT parameter 345
UPDCNT parameter 345

DDM (distributed data management) Architecture
AIBOALEN parameter 336

DDM command objects
DLIFUNCFLG command object (X'CC09') 274
FLDENTRYREL command object (X'CC0C') 283
RTRVFLDREL Command object (X'CC0B') 295
SEGMLIST Command object (X'CC0A') 297

deadlock occurrence
application programs 41
batch programs, in 41

deallocate PSB call 119
DEALLOCDB command

format 271
DEALLOCDBRM reply message

format 314
debugging, IMSRXTRC 358
decimal

constants 592
numbers 588

DECIMAL
data type 588

DECLARE CURSOR statement
description 741
example 741

DECLARE STATEMENT statement

DECLARE STATEMENT statement (continued)
description 742
example 742

DEDB (data entry database)
command codes 210
PCBs and DL/I calls 216

default system control area 485
define a data mapping with MAXDEF command 359
DELETE

statement
description 742
example 743

Delete (DLET) call
description 7
format 7
parameters 5, 7, 25
SSA 7
usage 7

Delete (DLET) command
description 158
example 158
format 158
options 158
restrictions 158

deleting
rows from a table 742

dependent segments
retrieving

sequentially 164
the location of a 181

sequential
retrieving the location of the last one inserted 181

dependents of a segment, removing 158
DEQ (Dequeue) call

DEQ (Dequeue) call
description 6

format
Fast Path 6
full function 6

function 228
parameters

Fast Path 6
full function 6

Q command code 6, 206
restrictions 6
summary 1
usage 6

DEQ (Dequeue) command
DEQ (Dequeue) command

description 157
example 157
format 157
options 157
restrictions 157
usage 157

Dequeue (DEQ) call
description 6
format

Fast Path 6
full function 6

function 228
parameters

Fast Path 6
full function 6

792 IMS: Application Programming APIs

Dequeue (DEQ) call (continued)
Q command code 6, 206
summary 1
usage 6

Dequeue (DEQ) command
description 157
example 157
format 157
options 157
restrictions 157
usage 157

DESCRIBE OUTPUT statement 743
descriptor

naming convention 586
design objectives, application 401
designator character 426
determining the current position in the database 187
DEV statement

FEAT= operand 408
FORS= operand 498
FTAB= operand 473
HTAB= operand 497
PAGE= operand 496
SLDx= operand 497
SUB= operand 479
TYPE= operand 408
VT= operand 497
VTAB= operand 497
WIDTH= operand 497

device control characters 482
device feature selection 408
device format conversion 416
device formats, default 408
device input format 521
device output format 521
device page 470
DFLD/MFLD literal

containing DBCS/EBCDIC mixed data 489
DFS.EDT 444
DFS.EDTN 444
DFS057I block error message 517
DFS1150 470
DFSDDLT0

call statements
CALL FUNCTION statement 224
FEEDBACK DATA statement 227
OPTION DATA statement 228

DFSDDLT0 (DL/I Test Program) 217
DFSDF1 517
DFSDF2 517
DFSDF4 517
DFSDSP01 517
DFSIGNI 517
DFSIGNJ 517
DFSIGNN 517
DFSIGNP 517
DFSM0 519
DFSM01 517
DFSM02 517
DFSM03 517
DFSM04 517
DFSM05 517
DFSME000 471
DFSMI1 517

DFSMI2 517
DFSMI4 517
DFSPWSIO

DFSPWSH include files 563
DFSQGETS API 570
DFSQSETS API 573
DFSXGETS API 575
DFSXSETS API 577
overview 563
return codes 580

DFSREXXU, example user exit routine 348
DFSUDT0x (device characteristics table)

description 520
MFS Device Characteristics Table utility 520

DIB (DL/I interface block)
information, obtaining the most recent 182

DIF (device input format)
definition 521
input formatting functions 462
language statements used to create

DIV 445
DPAGE 454

relationship to other control blocks 401
selection 408

digit, description in IMS 585
distributed data management (DDM)

abnormal ending of unit of work 308
ABNUOWRM reply message 308
access security reply object 311
access to database completed reply message 309
accessing database 265
ACCRDB command 265
ACCRDBRM reply message 309
ACCSEC command 267
ACCSECRD reply object 311
AGNPRMRM reply message 312
aibStream data structure 338
closing a query 268
CLSQRY command 268
CMDVLTRM reply message 313
CNTQRY command 269
command violation reply message 313
continuing a query 269
data field 294
database access failed reply message 326
database deallocation completed reply message 314
database not accessed reply message 328
database not found reply message 329
database update reply message 330
dbpcbStream data structure 339
deallocating database 271
DEALLOCDB command 271
DEALLOCDBRM reply message 314
DL/I function 273
DLIFUNC command object 273
end of query reply message 315
end unit of work reply message 316
ENDQRYRM reply message 315
ENDUOWRM reply message 316
exchange server attributes 275, 317
EXCSAT command 275
EXCSATRD reply object 317
EXCSQLIMM command 276
executing immediate SQL 276

Index 793

distributed data management (DDM) (continued)
field entry 282
FLDENTRY command object 282
IMS call reply message 318
IMSCALL command 283
IMSCALLRM reply message 318
INAIB command object 284
input AIB data 284
iopcbStream data structure 340
issuing an IMS call 283
not authorized to database reply message 327
open query failure reply message 320
open query reply message 321
opening a query 286
OPNQFLRM reply message 320
OPNQRY command 286
OPNQRYRM reply message 321
OUTAIBDBPCB parameter 342
OUTAIBIOPCB parameter 343
Output AIBDBPCB 342
output AIBIOPCB 343
permanent agent error reply message 312
QRYDSC reply object 323
QRYDTA reply object 323
QRYPOPRM reply message 324
query answer set data reply object 323
query answer set description reply object 323
query previously opened reply message 324
RDBAFLRM reply message 326
RDBATHRM reply message 327
RDBNACRM reply message 328
RDBNFNRM reply message 329
RDBUPDRM reply message 330
release locks reply message 332
releasing database locks 293
reply messages 308
resource limits reached reply message 333
RLSE command 293
RLSERM reply message 332
RSCLMTRM reply message 333
RTRVFLD command object 294
SECCHK command 295
SECCHKRM reply message 334
security access 267
security check 295
security check reply message 334
SQL error condition reply message 335
SQLERRRM reply message 335
SSA object list 307
SSALIST command object 307

distributed data management (DDM) architecture
AIBOALEN parameter 336
AIBRSNM1 parameter 337
AIBRSNM2 parameter 337
AIBSFUNC parameter 338
RDBNAM parameter 344
SECCHK command 295
security check 295
SSA parameter 344
SSACOUNT parameter 345
UPDCNT parameter 345

distributed data management architecture (DDM)
command objects 265
commands 263, 265

distributed data management architecture (DDM) (continued)
commit processing 264
data structures, product-unique 336
DSSHDR syntax 264
global transaction processing 264
local transaction processing 264
parameters, product-unique 336
replies 263
syntax 263
terms 263

Distributed relational database architecture (DRDA)
DLIFUNCFLG command object (X'CC09') 274
FLDENTRYREL command object (X'CC0C') 283
RTRVFLDREL Command object (X'CC0B') 295
SEGMLIST Command object (X'CC0A') 297

Distributed Relational Database Architecture (DRDA)
abnormal ending of unit of work 308
ABNUOWRM reply message 308
access security reply object 311
access to database completed reply message 309
accessing database 265
ACCRDB command 265
ACCRDBRM reply message 309
ACCSEC command 267
ACCSECRD reply object 311
AGNPRMRM reply message 312
aibStream data structure 338
closing a query 268
CLSQRY command 268
CMDVLTRM reply message 313
CNTQRY command 269
command violation 313
continuing a query 269
data field 294
data structures

aibStream data structure 338
dbpcbStream data structure 339
iopcbStream data type 340

database access failed reply message 326
database deallocation completed 314
database not accessed reply message 328
database not found reply message 329
database update reply message 330
dbpcbStream data structure 339
DDM command objects

data field 294
DL/I function 273
DLIFUNC 273
field entry 282
FLDENTRY 282
INAIB 284
input AIB data 284
RTRVFLD 294
SSA object list 307
SSALIST 307

DDM commands
accessing database 265
ACCRDB 265
ACCSEC 267
closing a query 268
CLSQRY 268
CNTQRY 269
continuing a query 269
deallocating database 271

794 IMS: Application Programming APIs

Distributed Relational Database Architecture (DRDA) (continued)
DDM commands (continued)

DEALLOCDB 271
exchange server attributes 275
EXCSAT 275
EXCSQLIMM 276
executing immediate SQL 276
IMSCALL 283
issuing an IMS call 283
opening a query 286
OPNQRY 286
releasing database locks 293
RLSE 293
SECCHK 295
security access 267
security check 295

DDM parameters
OUTAIBDBPCB 342
OUTAIBIOPCB 343
Output AIBDBPCB 342
output AIBIOPCB 343

DDM reply messages
abnormal ending of unit of work 308
ABNUOWRM 308
access to database completed 309
ACCRDBRM 309
AGNPRMRM 312
CMDVLTRM 313
database access failed 326
database deallocation completed 314
database not accessed 328
database not found 329
database update 330
DEALLOCDBRM 314
end of query 315
end unit of work 316
ENDQRYRM 315
ENDUOWRM 316
IMS calls 318
IMSCALLRM 318
not authorized to database 327
open query 321
open query failure 320
OPNQFLRM 320
OPNQRYRM 321
permanent agent errors 312
QRYPOPRM 324
query previously opened 324
RDBAFLRM 326
RDBATHRM 327
RDBNACRM 328
RDBNFNRM 329
RDBUPDRM 330
release locks 332
resource limits reached 333
RLSERM 332
RSCLMTRM 333
SECCHKRM 334
security check 334
SQL error condition 335
SQLERRRM 335

DDM reply objects
access security 311
ACCSECRD 311

Distributed Relational Database Architecture (DRDA) (continued)
DDM reply objects (continued)

exchange server attributes 317
EXCSATRD 317
QRYDSC 323
QRYDTA 323
query answer set data 323
query answer set description reply object 323

deallocating database 271
DEALLOCDB command 271
DEALLOCDBRM reply message 314
DL/I function 273
DLIFUNC command object 273
end of query reply message 315
end unit of work reply message 316
ENDQRYRM reply message 315
ENDUOWRM reply message 316
exchange server attributes 275, 317
EXCSAT command 275
EXCSATRD reply object 317
EXCSQLIMM command 276
executing immediate SQL 276
field entry 282
FLDENTRY command object 282
IMS call reply message 318
IMSCALL command 283
IMSCALLRM reply message 318
INAIB command object 284
input AIB data 284
iopcbStream data structure 340
issuing an IMS call 283
not authorized to database reply message 327
open query failure reply message 320
open query reply message 321
opening a query 286
OPNQFLRM reply message 320
OPNQRY command 286
OPNQRYRM reply message 321
OUTAIBDBPCB parameter 342
OUTAIBIOPCB parameter 343
Output AIBDBPCB 342
output AIBIOPCB 343
permanent agent errors 312
QRYDSC reply object 323
QRYDTA reply object 323
QRYPOPRM reply message 324
query answer set data reply object 323
query answer set description reply object 323
query previously opened reply message 324
RDBAFLRM reply message 326
RDBATHRM reply message 327
RDBNACRM reply message 328
RDBNFNRM reply message 329
RDBUPDRM reply message 330
release locks reply message 332
releasing database locks 293
reply messages 308
resource limits reached reply message 333
RLSE command 293
RLSERM reply message 332
RSCLMTRM reply message 333
RTRVFLD command object 294
SECCHK command 295
SECCHKRM reply message 334

Index 795

Distributed Relational Database Architecture (DRDA) (continued)
security access 267
security check 295
security check reply message 334
SQL error condition reply message 335
SQLERRRM reply message 335
SSA object list 307
SSALIST command object 307

Distributed Relational Database Architecture (DRDA)
Specification

AIBOALEN parameter 336
AIBRSNM1 parameter 337
AIBRSNM2 parameter 337
AIBSFUNC parameter 338
RDBNAM parameter 344
SECCHK command 295
security check 295
SSA parameter 344
SSACOUNT parameter 345
UPDCNT parameter 345

DIV statement
&DPN= operand 445
COMPR= operand 445
HDRCTL= operand 498
NOSPAN= operand 445
NULL= operand 445, 475
OFTAB= operand

output mode 502
specifying 445

OPTIONS= operand 445, 498
PRN= operand 445
RCDCTL= operand 445, 498
RDPN= operand 445
RPRN= operand 445
SPAN= operand 445
TYPE= operand 445

DL/I
setting a backout point 192

DL/I call functions
special DFSDDLT0

END 240
SKIP 240
STAK 240
START 240

supported
CHKP 228
CHNG 228
CMD 228
DEQ 228
DLET 228
FLD 228
GCMD 228
GHN 228
GHNP 228
GHU 228
GMSG 228
GN 228
GNP 228
ICAL 228
ICMD 228
INIT 228
INQY 228
ISRT 228
LOG 228

DL/I call functions (continued)
supported (continued)

POS 228
PURG 228
RCMD 228
REPL 228
ROLB 228
ROLL 228
ROLS 228
ROLX 228
SETO 228
SETS 228
SNAP 228
STAT 228
SYNC 228
XRST 228

DL/I call functions, examples 232
DL/I call functionsDL/

supported
GU 228
GUR 228

DL/I calls (general information)
qualifying calls

concatenated key 200
relationships to PCBs, FF PCBs 216

DL/I calls for transaction management
AUTH call 76
call summary 74
CHNG call 80
CMD call 87
GCMD call 88
GN call 89
GU call 90
ISRT call 104
PURG call 107
SETO call 109

DL/I calls, database management
CIMS 3
DEDB (data entry database)

root segments, order 11
DEQ 6
DL/I calls, database management

CLSE 5
FLD 8
GNHP call 11

DLET 7
FLD 8
FLD (Field) call

description 8
get hold next (GHN), usage 11
Get Next (GN) call

hold form (GHN) 11
parameters 11
SSA 11
usage 11

GHN (get hold next), usage 11
GHNP call 14
GN 11
GN (Get Next) call

hold form (GHN) 11
parameters 11
SSA 11
usage 11

GNP 14

796 IMS: Application Programming APIs

DL/I calls, database management (continued)
GU 16
GUR 19
HDAM

order of root segments 11
ISRT 22
OPEN 25
PHDAM database 11
POS 26
randomizing routine

exit routine 11
REPL 28
RLSE 30
summary 1

DL/I calls, system service
APSB 33
CHKP 34, 35
CHKP (basic) 34
description 30
DPSB 36
GMSG 37
GSCD 39
INIT 41
INQY 47
LOG 58
PCB 59
ROLB 61
ROLL 62
ROLS 62
SETS/SETU 64
SNAP 65
STAT 68, 70
summary 31
SYNC 69
XRST 71

DL/I processing
batch processing options 274, 283, 295, 297

DL/I return codes (REXX) 351
DL/I system service calls

APSB call 116
Basic CHKP call 117
call summary 113
DPSB call 119
GSCD Call 122
INIT call 125
INQY call 128
LOG call 142
ROLB call 145
ROLL Call 146
ROLS call 147
SETS call 148
SETU call 148
Symbolic CHKP call 118
SYNC call 150
XRST call 150

DL/I test program (DFSDDLT0)
JCL requirements

PRINTDD DD statement 258
SYSIN DD statement 257
SYSIN2 DD statement 258

DL/I Test Program (DFSDDLT0)
control statements

guidelines 217
execution in IMS regions 260

DL/I Test Program (DFSDDLT0) (continued)
explanation of return codes 260
hints on usage 261
JCL requirements 257, 259
overview 217
restarting input stream 259

DLET (Delete) call
DLET (Delete) call

description 7
format 7
parameters 5, 7, 25
SSA 7
usage 7

DLET (Delete) command
Delete (DLET) command

usage 158
DLET (Delete) command

description 158
usage 158

example 158
format 158
options 158
restrictions 158
usage

DLET (Delete) command 158
DLET call function 228
DLIFUNC command object

format 273
DLIFUNCFLG command object (X'CC09') 274
DLIINFO

. (period) usage 357
REXX extended command 356, 357

DOCMD exec 373
DOF (device output format)

associated MFS functions 482
definition 521
language statements used to create

DIV 445
DPAGE 454

relationship to other control blocks 401
selection 408

double byte character set 489
DOUBLE data type

description 588
DOUBLE PRECISION data type

description 588
double precision floating-point number 588
DPAGE

ACTVPID= operand 454, 515
COND= operand 454
CURSOR= operand 454
input 470
MULT= operand 454
OFTAB= operand

output mode 502
specifying 454

ORIGIN= operand 454
overview 470
PD= operand 454
SELECT= operand 454
selection

using conditional data 480
using conditional test on the data 480
using DSN transmission chains 480

Index 797

DPAGE (continued)
specifying conditional 480
specifying unconditional 480

DPM (distributed presentation management)
control character translation 430, 482
deleting nulls on input 475
GRAPHIC= operand (SEG statement)

use 430
increasing performance 421
naming conventions 498
output message header examples 498
version identification 521

DPN field
control block linkages 408
DIV statement 445
MFS formatting 460

DPSB call
description 36, 119
format 36, 119
parameters 36, 119
restrictions 119
summary 74
usage 36, 119

DRDA
DLIFUNCFLG command object (X'CC09') 274
FLDENTRYREL command object (X'CC0C') 283
RTRVFLDREL Command object (X'CC0B') 295
SEGMLIST Command object (X'CC0A') 297

DRDA (Distributed Relational Database Architecture)
abnormal ending of unit of work 308
ABNUOWRM reply message 308
access security reply object 311
access to database completed reply message 309
accessing database 265
ACCRDB command 265
ACCRDBRM reply message 309
ACCSEC command 267
ACCSECRD reply object 311
AGNPRMRM reply message 312
aibStream data structure 338
closing a query 268
CLSQRY command 268
CMDVLTRM reply message 313
CNTQRY command 269
command violation 313
continuing a query 269
data field 294
data structures

aibStream data structure 338
dbpcbStream data structure 339
iopcbStream data type 340

database access failed reply message 326
database deallocation completed 314
database not accessed reply message 328
database not found reply message 329
database update reply message 330
dbpcbStream data structure 339
DDM command objects

data field 294
DL/I function 273
DLIFUNC 273
field entry 282
FLDENTRY 282
INAIB 284

DRDA (Distributed Relational Database Architecture) (continued)
DDM command objects (continued)

input AIB data 284
RTRVFLD 294
SSA object list 307
SSALIST 307

DDM commands
accessing database 265
ACCRDB 265
ACCSEC 267
closing a query 268
CLSQRY 268
CNTQRY 269
continuing a query 269
deallocating database 271
DEALLOCDB 271
exchange server attributes 275
EXCSAT 275
EXCSQLIMM 276
executing immediate SQL 276
IMSCALL 283
issuing an IMS call 283
opening a query 286
OPNQRY 286
releasing database locks 293
RLSE 293
SECCHK 295
security access 267
security check 295

DDM parameters
OUTAIBDBPCB 342
OUTAIBIOPCB 343
Output AIBDBPCB 342
output AIBIOPCB 343

DDM reply messages
abnormal ending of unit of work 308
ABNUOWRM 308
access to database completed 309
ACCRDBRM 309
AGNPRMRM 312
CMDVLTRM 313
database access failed 326
database deallocation completed 314
database not accessed 328
database not found 329
database update 330
DEALLOCDBRM 314
end of query 315
end unit of work 316
ENDQRYRM 315
ENDUOWRM 316
IMS calls 318
IMSCALLRM 318
not authorized to database 327
open query 321
open query failure 320
OPNQFLRM 320
OPNQRYRM 321
permanent agent errors 312
QRYPOPRM 324
query previously opened 324
RDBAFLRM 326
RDBATHRM 327
RDBNACRM 328

798 IMS: Application Programming APIs

DRDA (Distributed Relational Database Architecture) (continued)
DDM reply messages (continued)

RDBNFNRM 329
RDBUPDRM 330
release locks 332
resource limits reached 333
RLSERM 332
RSCLMTRM 333
SECCHKRM 334
security check 334
SQL error condition 335
SQLERRRM 335

DDM reply objects
access security 311
ACCSECRD 311
exchange server attributes 317
EXCSATRD 317
QRYDSC 323
QRYDTA 323
query answer set data 323
query answer set description reply object 323

deallocating database 271
DEALLOCDB command 271
DEALLOCDBRM reply message 314
DL/I function 273
DLIFUNC command object 273
end of query reply message 315
end unit of work reply message 316
ENDQRYRM reply message 315
ENDUOWRM reply message 316
exchange server attributes 275, 317
EXCSAT command 275
EXCSATRD reply object 317
EXCSQLIMM command 276
executing immediate SQL 276
field entry 282
FLDENTRY command object 282
IMS call reply message 318
IMSCALL command 283
IMSCALLRM reply message 318
INAIB command object 284
input AIB data 284
iopcbStream data structure 340
issuing an IMS call 283
not authorized to database reply message 327
open query failure reply message 320
open query reply message 321
opening a query 286
OPNQFLRM reply message 320
OPNQRY command 286
OPNQRYRM reply message 321
OUTAIBDBPCB parameter 342
OUTAIBIOPCB parameter 343
Output AIBDBPCB 342
output AIBIOPCB 343
permanent agent errors 312
QRYDSC reply object 323
QRYDTA reply object 323
QRYPOPRM reply message 324
query answer set data reply object 323
query answer set description reply object 323
query previously opened reply message 324
RDBAFLRM reply message 326
RDBATHRM reply message 327

DRDA (Distributed Relational Database Architecture) (continued)
RDBNACRM reply message 328
RDBNFNRM reply message 329
RDBUPDRM reply message 330
release locks reply message 332
releasing database locks 293
reply messages 308
resource limits reached reply message 333
RLSE command 293
RLSERM reply message 332
RSCLMTRM reply message 333
RTRVFLD command object 294
SECCHK command 295
SECCHKRM reply message 334
security access 267
security check 295
security check reply message 334
SQL error condition reply message 335
SQLERRRM reply message 335
SSA object list 307
SSALIST command object 307

DRDA (Distributed Relational Database Architecture)
Specification

AIBOALEN parameter 336
AIBRSNM1 parameter 337
AIBRSNM2 parameter 337
AIBSFUNC parameter 338
RDBNAM parameter 344
SECCHK command 295
security check 295
SSA parameter 344
SSACOUNT parameter 345
UPDCNT parameter 345

DROP DATABASE
statement

description 744
DROP PROGRAMVIEW

statement
description 745

DROP TABLE
statement

description 745
DROP TABLESPACE

statement
description 746

DSCA (default system control area)
autopaged output 502
description 485
destroying screen format 495
ERASE/DO NOT ERASE option 431
use 514

DSN (data structure name) 507
DSSHDR syntax 264
dynamic attribute modification, output message formats

default attributes 487
specifying extended field attributes 433

dynamic modification of EGCS data 435
dynamic SQL

description 600
EXECUTE statement 747
execution 601
INTO clause

DESCRIBE statement 743
invocation of SELECT statement 602

Index 799

dynamic SQL (continued)
preparation 601
SQLIMSDA 773

dynamically backing out changes 188, 189

E
E (COMPARE) statement 242
EATTR= operand (DFLD statement)

example 435
use 487

EBCDIC format 470
edit routines, IMS-supplied

field edit routine 470, 471
EGCS (extended graphic character set)

/EBCDIC data, dynamic modification 435
description 487
modifying data 440
SO/SI framing characters 488
use with selector pen 426

END call function 240
end multiple page input request 509
ending a logical unit of work 156, 195
ENDMPPI request 509
ENDQRYRM reply message

format 315
ENDUOWRM reply message

format 316
environment (REXX)

address 349, 350
determining 351
DL/I calls (general information)

REXXTDLI 350
extended 350

erase all unprotected option (SCA/DSCA) 411
error

during update 769
ERROR key 479
establishing a starting position in a database 169
examples

ACCEPT command 155
CHKP (Checkpoint) command 156
D command code 201
DEQ (Dequeue) command 157
DFSDDLT0 statements

COMMENT 241
DATA/PCB COMPARE 246
DD 258
DL/I call functions 232
IGNORE 248
OPTION 249
PUNCH 250
STATUS 252
SYSIN, SYSIN2, and PREINIT 259
WTO 256
WTOR 256

DFSREXXU user exit routine 348
DLET (Delete) command 158
GN (Get Next) command 159
GNP (Get Next in Parent) command 164
GU (Get Unique) command 169
ISRT (Insert) command 174
L command code 204
LOAD command 179

examples (continued)
LOG command 180
N command code 205
Null command code 210
P command code 206
QUERY command 182
REFRESH command 182
REPL (Replace) 183
REPL (Replace) command 183
RETRIEVE command 187
ROLB (Rollback) command 188
ROLL command 189
ROLS (Rollback to SETS or SETU) command 190
SCHD (Schedule) command 191
SETS (Set a Backout Point) command 192
STAT (Statistics) command 194
SYMCHKP (Symbolic Checkpoint) command 195
TERM (Terminate) command 196
U Command Code 208
V command code 210
XRST (Extended Restart) command 197

EXCSAT command
format 275

EXCSATRD reply object
format 317

EXCSQLIMM command 276
EXCSQLSET command

format 280
EXEC DLI

allowable commands 153
commands

ACCEPT 155
CHKP (Checkpoint) 156
DEQ (Dequeue) 157
DLET (Delete) 158
GN (Get Next) 159
GNP (Get Next in Parent) 164
GU (Get Unique) 169
ISRT (Insert) 174
LOAD 179
LOG 180
POS (Position) 181
QUERY 182
REFRESH 182
REPL (Replace) 183
RETRIEVE 187
ROLB (Rollback) 188
ROLL 189
ROLS (Rollback to SETS or SETU) 190
SCHD (Schedule) 191
SETS (Set a Backout Point) 192
SETU (Set a Backout Point Unconditionally) 193
STAT (Statistics) 194
SYMCHKP (Symbolic Checkpoint) 195
TERM (Terminate) 196
XRST (Extended Restart) 197

EXEC DLI
syntax of commands 153

program summary 154
EXEC statement, operands

DEVCHAR= 520
EXECIO

managing resources 349
executable statement 600, 601

800 IMS: Application Programming APIs

EXECUTE statement
description 747
example 748

expression
row-value 595

extended attribute data
input message fields 472
output devices, dynamic modification 487

extended commands 356
extended environment 350
extended functions 366
extended graphic character set 487
Extended Recovery Facility 495
Extended Restart (XRST)

with Symbolic Checkpoint (CHKP Symbolic) 35
Extended Restart (XRST) command

description 197
example 197
format 197
options 197
restrictions 197
usage 197

F
Fast Path

FSA 8
FEAT= operand (DEV statement), specifying 408
FETCH statement

description 748
example 749

field edit exit routine
use 471

field edit routine
about 471
designing 472
DFSME000 471
using 472
using edit routines, IMS-supplied

segment edit routine 471
field format

input message 425
output message 428

field name
FSA 8

field names
qualified 593

field search argument (FSA)
connector 8
field name 8
Op code 8
operand 8
reference 8
status code 8

field tab
example 473

fields
changing the values of a segment’s 183

fill characters
DPAGE

FILL= operand 454
input message fields

MFS treatment 472
output device fields

fill characters (continued)
output device fields (continued)

MFS treatment 484
specifying 454

FILL= operand
DPAGE statement, specifying 454
multiple physical pages, input messages

specifying 454
Fill=NULL 470
FIN (Finance Communication System)

workstation
entering and exiting formatted mode 461
FTABs 473
input modes 472
physical page positioning 454

Finance Communication System 461
FIRST insert rule 174
FIRST insert rule, L command code 204
FLD (Field) call

format 8
FSAs 8
parameters 8
summary 1
usage 8

FLD call function 228
FLDENTRY command object 282
FLDENTRYREL command object (X'CC0C') 283
FLOAT

data type
description 588

floating-point
constants 592
double precision number 588

force format write option (SCA/DSCA) 411
format library member selection 408
format set

IMS-provided format sets 517
format, message

input
device-dependent considerations 426, 431

output 419
output device-dependent considerations 428, 431

formats
ACCEPT command 155
CHKP (Checkpoint) command 156
DEQ (Dequeue) command 157
DLET (Delete) command 158
GN (Get Next) command 159
GNP (Get Next in Parent) command 164
GU (Get Unique) command 169
ISRT (Insert) command 174
LOAD command 179
LOG command 180
POS (Position) command 181
QUERY command 182
REFRESH command 182
REPL (Replace) command 183
RETRIEVE command 187
ROLB (Rollback) command 188
ROLL command 189
ROLS (Rollback to SETS or SETU) command 190
SCHD (Schedule) command 191
SETS (Set a Backout Point) command 192

Index 801

formats (continued)
SETU (Set a Backout Point Unconditionally) command
193
STAT (Statistics) command 194
SYMCHKP (Symbolic Checkpoint) command 195
TERM (Terminate) command 196
XRST (Extended Restart) command 197

FORS= operand (DEV statement), use for DPM 498
framing characters (SO/SI) 488
FROM clause

DELETE statement 743
PREPARE statement 755

FSA (field search argument)
connector 8
field name 8
Op code 8
operand 8
reference 8
status code 8

FTAB= operand (DEV statement)
ALL 473
ALL parameter 474
defining 473
description 473
FORCE 473
forced FTABs, FORCE parameter 473
MIX 473
mixed FTABs, MIX parameter 473
with NULL=DELETE specified 475

full format write 411
full-function database

PCBs and DL/I calls 216
segment release 206

function
aggregate

field name 592

G
GB (end of database), return status code 201
GCMD call

description 88
format 88
parameters 88
restrictions 89
status codes 88
summary 75
usage 89

GCMD call function 228
GE (segment not found), return status code 201
Get calls

D command code 201
F command code 203
function 228
L command code 204
Null command code 210
P command code 206
Q command code 206
U Command Code 208
V command code 210

Get Command (GCMD) call
See GCMD call 88

Get Hold Unique (GHU) description 16
Get Message (GMSG) call

Get Message (GMSG) call (continued)
description 37
format 37
parameters 37
restrictions 37
See GMSG call 120

Get Next (GN) call
description 11
format 11

Get Next (GN) command
description 159
examples 159
format 159
options 161
restrictions 159
usage 159

get next call 89
Get Next in Parent (GNP) call

description 14
effect in parentage 14
format 14
hold form (GHNP) 14
parameters 14
SSA 14
usage

linking with previous DL/I calls 14
processing with parentage 14

Get Next in Parent (GNP) command
description 164
examples 164
format 164
options 164
restrictions 164
usage 164

Get System Contents Directory (GSCD) call
description 39
format 39
parameters 39
usage 39

get system contents directory call 122
Get Unique (GU) call

description 16
DL/I calls, database management

GHU call 16
format 16
hold form (GHU) 16
parameters 16
usage 16

Get Unique (GU) command
description 169
examples 169
format 169
Get Unique (GU) command

options 169
GU (Get Unique) command

options 169
options

GU (Get Unique) command 169
restrictions 169
usage 169

get unique call 90
Get Unique Record (GUR) call

description 19
format 19

802 IMS: Application Programming APIs

Get Unique Record (GUR) call (continued)
parameters 19
usage 19

getting IMS database statistics 194
GHNP

call 14
hold form 14

GHU (Get Hold Unique), description 16
GMSG call

description 37, 120
format 37, 120
parameters 37, 120
restrictions 37, 120
usage 37
use 120

GN (Get Next) call
format 11
GN (Get Next) call

description 11
GN (Get Next) command

description 159
examples 159
format 159
options 161
restrictions 159
usage 159

GN call
description 89
format 89
parameters 89
restrictions 89
summary 75
usage 89

GNP (Get Next in Parent) call
effect in parentage 14
format 14
GNP (Get Next in Parent) call

description 14
hold form (GHNP) 14
parameters 14
SSA 14
usage

linking with previous DL/I calls 14
processing with parentage 14

GNP (Get Next in Parent) command
description 164
examples 164
format 164
options 164
restrictions 164
usage 164

GO TO clause of WHENEVER statement 770
GRAPHIC= operand (SEG statement)

use 482
GSAM (generalized sequential access method)

PCBs and DL/I calls 216
GSCD (Get System Contents Directory) call

format 39
GSCD (Get System Contents Directory) call

description 39
parameters 39
usage 39

GSCD call
description 122

GSCD call (continued)
format 122
parameters 122
restrictions 122
summary 74
usage 122

GU (Get Unique) call
description 16
format 16
Get Unique (GU) call

restrictions 16
hold form (GHU) 16
parameters 16
restrictions 16
usage 16

GU (Get Unique) command
description 169
examples 169
format 169
restrictions 169
usage 169

GU call
description 90
format 90
parameters 90
restrictions 90
summary 75
usage 90

GUR (Get Unique Record) call
description 19
format 19
Get Unique Record (GUR) call

restrictions 19
parameters 19
restrictions 19
usage 19

H
HDRCTL= operand (DIV statement), use 498
HERE insert rule

F command code 203
L command code 204

hexadecimal constant 592
hierarchic sequence 11
host identifier 586
host structure

description 594
host variable

colon 593
description 593
FETCH statement 749
input 593
naming convention 586
output 593
PREPARE statement 756

HTAB= operand (DEV statement)
use 497

I
I/O area

for XRST 150

Index 803

I/O area (continued)
in CHKP (symbolic) call 35
in GMSG call 37
in INIT call 41
in INQY call 47
Initialize (INIT) call

usage 41
length in CHKP (symbolic) call 35
returned

keywords 26
map of 26

I/O area format, AUTH call 76
I/O PCB

PCBs and DL/I calls 216
ICAL call

description 92
format 92
parameters 92
restrictions 92
return and reason codes 92
summary 74
usage 92

ICMD call
commands that can be issued 40, 123
description 40, 41, 123
format 40, 123
parameters 40, 123
restrictions 40, 123
use 40, 123

identifier in SQL
ordinary 586

IGNORE (N or period (.)) statement 248
IMS database statistics, obtaining 194
IMS JDBC driversDatabaseMetaData interface

methods supported 381, 385–387, 393
IMS JDBC driversDriverManager interface

methods supported 381, 385–387, 393
IMS JDBC driversPreparedStatement interface

methods supported 381, 385–387, 393
IMS JDBC driversResultSetMetaData interface

methods supported 381, 385–387, 393
IMS JDBC driversStatement interface

methods supported 381, 385–387, 393
IMS TM

password 472
IMS Universal Database resource adapter

Common Client Interface (CCI) API support 394
Connection

methods supported 394
ConnectionFactory

methods supported 394
ConnectionMetaData

methods supported 395
Interaction

methods supported 395
javax.resource.cci.ResultSetInfo

methods supported 396
LocalTransaction

methods supported 396
RecordFactory

methods supported 397
ResourceAdapterMetaData

methods supported 397
IMS Universal JCA/JDBC driver

IMS Universal JCA/JDBC driver (continued)
driver support for JDBC 379

IMS Universal JDBC driver
driver support for JDBC 379
ResultSet object

supported field constants 388
IMS Universal JDBC driverClob interface

methods supported 379, 385, 386
IMS Universal JDBC driverDataSource interface

methods supported 379, 385, 386
IMS Universal JDBC driverParameterMetaData interface

methods supported 379, 385, 386
IMS-provided formats

/DISPLAY command format 517
DFS057I block error message format 517
multisegment format 517
multisegment system message format 517
output message default format 517
system message format 517

IMS.FORMAT
member selection 408

IMS.RESLIB 520
IMSCALL command

format 283
IMSCALLRM reply message

format 318
IMSQUERY extended function

arguments 366
usage 366

IMSRXTRC command 356, 358
IN

predicate 597
INAIB command object

format 284
INCLUDE statement

description 750
example 750
SQLIMSCA

COBOL 773
SQLIMSDA

COBOL 776
indicator variable

description 593
infinite loop, stopping 377
INIT (Initialize) call

automatic INIT DBQERY 41
call function 228
database availability, determining 41
enabling data availability, status codes 41
enabling deadlock occurrence, status codes 41
format 41
I/O PCB

in INIT call 41
INIT (Initialize) call

description 41
INIT STATUS GROUPA 41
INIT STATUS GROUPB 41
INIT STATUS RSA12 41
parameters 41
performance 41
restrictions 41
status codes

DB PCB, for 41
usage 41

804 IMS: Application Programming APIs

INIT (Initialize) call (continued)
using with DBQUERY 41
VERSION function 41

INIT call
description 125
determining data availability 126
format 125
parameters 125
performance considerations 125
summary 74
usage 125

Initialize (INIT) call
automatic INIT DBQERY 41
database availability, determining 41
description 41
enabling data availability, status codes 41
enabling deadlock occurrence, status codes 41
format 41
INIT STATUS GROUPA 41
INIT STATUS GROUPB 41
INIT STATUS RSA12 41
parameters 41
performance 41
restrictions 41
status codes 41
using with DBQUERY 41
VERSION function 41

initialize call 125
input field tab (FTAB)

See FTAB= operand (DEV statement) 473
input host variable 593
input message

field attribute data 472
fill characters 472
formatting options 462
IMS TM password 472
input modes 472
input substitution character 479
literal fields 471
MFS formatting of 462
nonliteral fields 472
with multiple physical pages 478, 509

input message field
defining 472
record mode 472
stream mode 472

input message format
device-dependent information 426, 431
field and segment format 425
formatting options, examples 462

input modes
record mode

description 472
process of record in 480
treatment of nulls 475
with ISC 480

stream mode
description 472
process of record in 480
treatment of nulls 475
with ISC 480

inquiry call 128
INQY (Inquiry) call

format 47

INQY (Inquiry) call (continued)
INQY (Inquiry) call

description 47
map of INQY subfunction to PCB type 47
parameters 47
querying

data availability 47
environment 47
PCB 47
program name 47

restriction 47
return and reason codes 47
usage 47

INQY call
description 128
format 128
querying

LERUNOPT, using LERUNOPT subfunction 47
summary 74

INQY call function 228
INQY DBQUERY 47
INQY ENVIRON, data output 47
INQY FIND 47
INQY PROGRAM 47
Insert (ISRT) command

description 174
examples 174
format 174
insert rules 174
options 174
restrictions 174
usage 174

insert call 104
insert rule 752
INSERT statement

description 750
inserting

declaration in a program 750
first occurrence of a segment 203
last occurrence 204
rows in a table 750
segments 23

inserting a segment
as first occurrence 203
as last occurrence 204
in sequence 201
path of segments 201
root 22
rules to obey 22
specifying rules 22

INTEGER
data type

large 588
small 588

integer constants 591
interactive SQL 584
intersystem communication 460
INTO clause

DESCRIBE statement 744
FETCH statement 749
INSERT statement 752

INTO DESCRIPTOR clause
FETCH statement 749

iopcbStream data structure

Index 805

iopcbStream data structure (continued)
format 340

ISC (intersystem communication)
ATTACH FM header 445, 502
blocking algorithms 502
entering and exiting formatted modes 460
increasing performance 421
input format control

input modes 479
MFS definitions 424
output format control

data structure name 507
for paging messages 502
trailing blank compression 504

output modes 502
subsystem definition 460
use of DPN field 408, 460
use of RDPN field 408, 460

ISRT (Insert) call
D command code 201
F command code 203
format 22
ISRT (Insert) call

description 22
L command code 204
loading a database 204
parameters 22
RULES parameter 203
SSA 22

ISRT (Insert) command
description 174
examples 174
format 174
insert rules 174
options 174
restrictions 174
usage 174

ISRT call
description 104
format 104
parameters 104
restrictions 104
Spool API functions 104
summary 75
usage 104

ISRT call function 228
Issue Command (ICMD) call

See ICMD call 40, 123
issuing

a basic checkpoint 156
an extended restart 197

IVPREXX exec 377
IVPREXX sample application 377

J
Java API specification

for IMS Universal drivers 397
Java reference

for IMS solutions for Java development 379
JCL (job control language), requirements 257, 259
JDBC

methods supported
Connection 379

justification
of input messages 462

K
keyboard shortcuts xi
keys

concatenated 200
keyword, SYSSERVE 153

L
L (CALL) statement 219
LAST insert rule 174
last inserted sequential dependent segment, retrieving the
location of the 181
legal notices

notices 779
trademarks 779, 780

length attribute of column 589
length field 464
letter, description in IMS 585
limiting

number of full-function database calls 206
literal 591
literal fields

input message, default literals 471
output message

system literals 486
LOAD command

description 179
example 179
format 179
options 179
usage 179

location of a dependent segment, retrieving the 181
lock

during update 769
lock class and Q command code 206
LOCKCLASS option 157
LOG (Log) call

format 58
LOG (Log) call

description 58
parameters 58
restrictions 58
usage 58

LOG call
description 142
examples 142
format 142
on LOG I/O area 142
parameters 142
restrictions 142
restrictions on I/O area
142
summary 74
usage 142

LOG call function 228
LOG command

example 180
format 180
LOG command

806 IMS: Application Programming APIs

LOG command (continued)
LOG command (continued)

description 180
options 180
restrictions 180
usage 180

logical operator 598
logical page advance request 509
logical page request 508
logical page. See LPAGELPAGE

input 470
logical unit of work, ending 156, 195
lowercase character folded to uppercase 585
LPAGE

input, conditional LPAGE selection 454
output

format 428
overview 470

M
M command code

examples 212
subset pointers, moving forward 212

MAP definition (MAPDEF) 356, 359
map name 361
MAP reading (MAPGET) 356, 361
MAP writing (MAPPUT) 356, 362
MAPGET 361
mapping

MAPDEF 359
MAPGET 361
MAPPUT 362

MAXQ and Q command code 206
MDT (modified data tag) 495
message advance protect 509
message advance request 509
message calls

call summary 74
Message Format Buffer Pool 411
Message Format Service (MFS)

3270 or SLU 2 display devices 406, 420
control blocks

Finance or SLU P workstations 407
output messages

format control for 3270P printers 498
MFS bypass for SLU 2 (3290) 445
specifying descriptor name 442

paging action at device 510
programmed symbol buffers

determining if loaded 422
message formatting options

input
description 462
examples 462
performance factors 419

output
description 482
effects on segments 428
performance factors 419

MFLD (message field statement)
FILL=NULL 470
function 462

MFS (Message Format Service)

MFS (Message Format Service) (continued)
control blocks

Finance or SLU P workstations 407
how input messages are formatted by MFS 462
input message

formats 462
output message

field format options 430
format control for ISC 503
formatting 482
modifying EGCS data 440
processing output message 482

MFS bypass
printer byte restriction 443
protected and unprotected messages 514
specifying for 3270 or SLU 2 443
specifying for 3290 with partitioning 444

MFS Device Characteristics table (DFSUDT0x), description
520
MFS language utility

construction of member names 408
treatment of EGCS input/output
488

MID (message input descriptor)
input formatting functions 462
relationship to other control blocks 401

MOD (message output descriptor)
associated MFS functions 482
name specification 441
relationship to other control blocks 401

modified data tag (MDT) 495
MONITORRD command

format 286
MSDB (main storage database)

PCBs and DL/I calls 216
MULT= operand (DPAGE statement), specifying 454
multiple physical pages, input messages

description 478
terminating (ENDMPPI request) 509

multisegment format 517

N
N command code 205
NA 41
NAME parameter

ALTER DATABASE statement 610
CREATE DATABASE statement 660

names, prepared SQL statements 742
naming convention

SQL 586
NEXTLP request

description 509
operator control table function 508

NEXTMSG request
description 509

NEXTMSGP request
description 509

NEXTPP request
use 509

nonexecutable statement 600, 601
nonliteral input fields

defining 472
NOT FOUND clause of WHENEVER statement 770

Index 807

NU 41
null

coding in COBOL 428
compression

example 464
specifying 445

deleting on input (DPM) 475
fill character

input message fields 462
output device fields 484

segment, output 428
transmitting to IMS TM 475
truncating fields with 482

Null command code 210
null value

assignment 590
description 588
specified by indicator variable 593

NULL= operand (DIV statement)
example 475
options 475
specifying 445

numbers in SQL 588
numeric

data type 588
NUMERIC data type

description 588

O
O (OPTION) Statement 249
obtaining

IMS database statistics 194
recent information from the DIB 182
status code 182

OFTAB= operand (DIV statement), specifying 445
OFTAB= operand (DPAGE statement), specifying 454
OID 495
online performance 419
op code 8
OPEN

statement
description 753
example 755

OPEN (Open) call
format 25
OPEN (Open) call

description 25
usage 25

Open Transaction Manager Access
Callable Interface (C/I)

otma_alloc API 529
otma_close API 540
otma_create API 524
otma_free API 539
otma_open API 526
otma_openx API 527
otma_receive_async API 538
otma_send_async API 534
otma_send_asyncx API 537
otma_send_receive API 530
otma_send_receivex API 532
otma_send_receivey API 533
sample programs 541

Open Transaction Manager Access (continued)
CHNG call 80
PURG call 107
SETO call 109

operand
FSA 8

operation parameter, SNAP external call 66
operator control of MFS 508
operator control tables

functions
ENDMPPI request 509
NEXTLP request 509
NEXTMSG request 509
NEXTMSGP request 509
NEXTPP request 509

operator logical paging
description 483, 508
format design considerations 508
in partitioned format mode, 3180 517
in partitioned format mode, 3290 515
transaction codes and page requests 508

OPNQFLRM reply message
format 320

OPNQRY command
format 286

OPNQRYRM reply message
format 321

OPTION statement 249
options

ACCEPT command 155
CHKP (Checkpoint) command 156
DEQ (Dequeue) command 157
DLET (Delete) command 158
GN (Get Next) command 161
GNP (Get Next in Parent) command 164
ISRT (Insert) command 174
LOAD command 179
LOCKCLASS 157
LOG command 180
POS (Position) command 181
QUERY command 182
REFRESH command 182
REPL (Replace) command 183
RETRIEVE command 187
ROLB (Rollback) command 188
ROLL command 189
ROLS (Rollback to SETS or SETU) command 190
SCHD (Schedule) command 191
SETS (Set a Backout Point) command 192
SETU (Set a Backout Point Unconditionally) command
193
STAT (Statistics) command 194
SYMCHKP (Symbolic Checkpoint) command 195
TERM (Terminate) command 196
XRST (Extended Restart) command 197

options list parameter
CHNG call

advanced print function 80
APPC 84

SETO call
advanced print function 109
APPC 109

OPTIONS= operand (DIV statement)
effects on performance 421

808 IMS: Application Programming APIs

OPTIONS= operand (DIV statement) (continued)
specifying 445
use 498
use with ISC 502

OR truth table 598
ordinary identifier in SQL 586
ORIGIN= operand (DPAGE statement), specifying 454
OTMA C/I

hints and tips 523
OTMA C/Iwarranty

sample programs 541
otma_alloc API 529
otma_close API 540
otma_create API 524
otma_free API 539
otma_open API 526
otma_openx API 527
otma_receive_async API 538
otma_send_async API 534
otma_send_asyncx API 537
otma_send_receive API 530
otma_send_receivex API 532
otma_send_receivey API 533
OUTAIBDBPCB parameter 342
OUTAIBIOPCB parameter

format 343
output device fields

dynamic modification 431
for cursor positioning 431

output host variable 593
output message

cursor positioning 495
default system control area 485
device field attributes 487
extended field attributes for devices 487
extended graphic character set (EGCS) 488
fill characters for device fields 484
formatting options

description 482
header 460
how MFS formats messages 482
literal fields 486
mixed DBCS/EBCDIC fields 489
operator logical paging 483
physical paging 484
processing 482
prompt facility 495
system control area (SCA) 485
truncation 482

output message format
default 517
device-dependent information 428, 431

overriding
FIRST insert rule 204
HERE insert rule 203, 204
insert rules 22

P
P command code 206
P processing option 201
page advance request 509
PAGE= operand (DEV statement)

use 496

PAGEREQ function 508
paging, operator logical

description 508
format design considerations 508
in partitioned format mode, 3180 517
in partitioned format mode, 3290 515
transaction codes and page requests 508

PAGINGOP= operand (PDB statement), use 515
parameter marker

description 756
EXECUTE statement 747
host variables in dynamic SQL 594
PREPARE statement 756
rules 756

parameters
BKO execution 188
CHKPT=EOV 156
RULES 174

parentage, P command code 206
PART exec 371
partition

activating 495
considerations for defining 412
defining 407
descriptor (PD) 407
descriptor block (PDB) 407
initialization options

for the 3180 517
for the 3290 515

uses 412
partition set, description 407
PARTNAME exec 372
PARTNUM exec 372
password, IMS

description 472
path call

D command code 201
path command 183
PCB (program communication block)

DL/I calls, relationship 216
DLIINFO call 357

PCB (schedule a PSB) call
format 59
parameters 59
PCB (schedule a PSB) call

description 59
usage 59

PCBINFO exec 369
PCHSEGTS 27
PCLBSGTS 27
PCSEGRTS 27
PD statement (partition definition)

use 407
PD= operand (DPAGE statement), specifying 454
PDB (partition descriptor block)

function 407
language statements used to create

PD 407
PAGINGOP= operand 515

performance factors
3270 or SLU 2 419
all devices 419
large screen 3270 or SLU 2 devices 420

period usage 354

Index 809

physical page positioning (FIN) 454
physical paging

description 484
specifying multiple input pages 454

PL/I segmentation APIs
DFSPWSH include files 563
DFSQGETS 563
DFSQGETS API 570
DFSQSETS 563
DFSQSETS API 573
DFSXGETS 563
DFSXGETS API 575
DFSXSETS 563
DFSXSETS API 577
overview 563
return codes 580

POS (Position) call
examples 26
format 26
I/O area 26
parameters 26
POS (Position) call

description 26
unqualified

keywords 26
usage 26

POS (Position) command
EXEC DLI command format 181
format 181
options 181
POS (Position) command

description 181
restriction 181
usage 181

POS call function 228
position

establishing in database 16
Position (POS) command

description 181
EXEC DLI command format 181
format 181
options 181
restriction 181
usage 181

position in the database, determining the current 187
precision of numbers

description 588
determined by SQLIMSLEN variable 775
values for data types 588

predicate
basic 595
BETWEEN 597
description 595
IN 597

PREINIT parameter, input restart 257
PREPARE statement

description 755
example 756

prepared SQL statement
dynamically prepared by PREPARE 755
executing 747
identifying by DECLARE 742
obtaining information

with DESCRIBE 743

prepared SQL statement (continued)
SQLIMSDA provides information 773

preset destination mode 460
print mode 496
printed page format control

bottom margin 497
horizontal tabbing 497
left margin position 497
line density 497
line width 497
page depth 497
top margin 497
vertical tabbing 497

PRN= operand (DIV statement), specifying 445
processing

options
P (path) 201

program deadlock 41
program function keys (3270)

literals for master terminal format 519
program tab function

3270 or SLU 2 484
fill character 411

programmed symbol
buffers 422
feature 487
solving problems 423

programmed symbols (PS)
buffers

determining if loaded 422
loading 422

prompt facility for output messages 495
protecting the screen

PROTECT option 514
PRPSQLSTT command

format 291
PSB (program specification block)

in a CICS online program
scheduling a 191
terminating a 196

PSSEGHWM 27
PT (program tab) function

3270 or SLU 2 484
fill character 411

PUNCH statement 250
PURG call

and OTMA environment 107
description 107
format 107
parameters 107
restrictions 107
Spool API 107
summary 75
usage 107

PURG call function 228
purge call 107

Q
Q command code

and the DEQ call 206
example 206
full function and segment release 206
lock class 206

810 IMS: Application Programming APIs

Q command code (continued)
MAXQ 206

QRYDSC reply object
format 323

QRYDTA reply object
format 323

QRYPOPRM reply message
format 324

qualified field names 593
QUERY command

example 182
format 182
options 182
QUERY command

description 182
restrictions 182
usage 182

question mark (?) 747

R
R command code 212
RCDCTL= operand (DIV statement)

specifying 445
use 498

RCMD call
description 60, 143
format 60, 143
parameters 60, 143
restrictions 60, 143
use 60, 143

RDBAFLRM reply message
format 326

RDBATHRM reply message
format 327

RDBNACRM reply message
format 328

RDBNAM parameter
format 344

RDBNFNRM reply message
format 329

RDBUPDRM reply message
format 330

RDPN (return destination process name)
specifying in MFLD statement 445
use on Finance or SLU P workstations 408
use with ISC subsystem communication 460

RDPN= operand (DIV statement), specifying 445
record mode

description 472
input example 477
process of record in 480
treatment of nulls 475
with ISC 480

REFRESH command
example 182
format 182
options 182
REFRESH command

description 182
restrictions 182
usage 182

releasing
a segment 157

removing a segment and its dependents 158
REPL (Replace) call

format 28
N command code 205
parameters 28
REPL (Replace) call

description 28
SSAs 28
usage 28

REPL (Replace) command
examples 183
format 183
REPL (Replace) command

description 183
restrictions 183
usage 183

REPL call function 228
Replace (REPL) command

description 183
examples 183
format 183
options 183
REPL (Replace) command

options 183
restrictions 183
usage 183

replacing a segment 183
requesting a catalog record

using GUR 19
requesting a segment

using GU 16
resetting a subpointer 213
restart call 150
Restart, Extended

position in database 71
Restart, Extended (XRST)

description 71
with Symbolic Checkpoint (CHKP Symbolic) 35

restarting your program
XRST call 150

restrictions
CHKP (Checkpoint) command 156
DEQ (Dequeue) command 157
DLET (Delete) command 158
F command code 203
GN (Get Next) command 159
GNP (Get Next in Parent) command 164
GU (Get Unique) command 169
ISRT (Insert) command 174
LOG command 180
number of database calls and Fast Path 206
POS (Position) command 181
QUERY command 182
REFRESH command 182
REPL (Replace) command 183
RETRIEVE command 187
ROLB (Rollback) command 188
ROLL command 189
ROLS (Rollback to SETS or SETU) command 190
SETS (Set a Backout Point) command 192
SETU (Set a Backout Point Unconditionally) command
193
SYMCHKP (Symbolic Checkpoint) command 195
XRST (Extended Restart) command 197

Index 811

retrieval calls
D command code 201
F command code 203
L command code 204

RETRIEVE command
example 187
format 187
options 187
restrictions 187
RETRIEVE command

description 187
usage 187

Retrieve Command (RCMD) call
See RCMD call 60, 143

retrieving
dependent segments sequentially 164
dependents sequentially 14
first occurrence of a segment 203
last occurrence 204
segments

Q command code, Fast Path 206
Q command code, full function 206
sequentially 201

segments sequentially 159
segments with D 201
specific segments 169
the location of a dependent segment 181
the location of the last inserted sequential dependent
segment 181

returning a status code 155
REXX

. (period) usage 354
calls

return codes 351
summary 351
syntax 351

commands
DL/I calls 350
summary 350

DL/I calls, example 351
execs

DOCMD 373
IVPREXX 377
PART 371
PARTNAME 372
PARTNUM 372
PCBINFO 369
SAY 368

IMSRXTRC, trace output 358
issuing synchronous callout requests

default output area length 351
ICAL 351
input area 351
output area 351

REXX, IMS adapter
. (period) usage 356
address environment 349
AIB, specifying 351
description 347
DFSREXX0 program 347, 377
DFSREXX1 347
DFSREXXU user exit 347
DFSRRC00 377
diagram 348

REXX, IMS adapter (continued)
DL/I parameters 351
environment 351
example execs 368
feedback processing 351
I/O area 351
installation 347
IVPREXX exec 377
IVPREXX PSB 349
IVPREXX setup 349
LLZZ processing 351
LNKED requirements 347
non-TSO/E 347
PCB, specifying 351
programs 347
PSB requirements 347
sample generation 349
sample JCL 349
SPA processing 351
SRRBACK 347
SRRCMIT 347
SSA, specifying 351
SYSEXEC DD 347, 349
system environment 347, 349
SYSTSIN DD 349
SYSTSPRT DD 347, 349
TSO environment 347
TSO/E restrictions 347
ZZ processing 351

REXXIMS commands
DLIINFO 356, 357
IMSRXTRC 356, 358
MAPDEF 356
MAPGET 356
MAPPUT 356, 362
SET 356, 363
SRRBACK 356, 364
SRRCMIT 356, 364
STORAGE 356, 364
WTL 356, 365
WTO 356, 365
WTOR 356, 366
WTP 356, 365

REXXTDLI commands 350
RLSE (Release locks) call

summary 1
RLSE (Release Locks) call

format 30
parameters 30
RLSE (Release Locks) call

description 30
SSAs 30
usage 30

RLSE command 293
RLSERM reply message

format 332
RMODE 24, AMODE 31, running user modules in 471
ROLB (Roll Back) call

ROLB (Roll Back) call
description 61

ROLB (Rollback) command
example 188
format 188
options 188

812 IMS: Application Programming APIs

ROLB (Rollback) command (continued)
restrictions 188
ROLB (Rollback) command

description 188
usage 188

ROLB call
description 145
format 145
parameters 145
restrictions 145
summary 74
usage 145

ROLB call function 228
ROLL (Roll) call

DL/I calls, system service
ROLL 62

ROLL (Roll) call
description 62
format 62

roll back to SETS/SETU call 147
ROLL call

description 146
format 146
parameters 146
restrictions 146
summary 74
usage 146

ROLL call function 228
ROLL command

example 189
format 189
options 189
restrictions 189
ROLL command

description 189
usage 189

Rollback (ROLB) command
description 188
example 188
format 188
options 188
restrictions 188
usage 188

rollback call 145
Rollback to SETS or SETU (ROLS) command

description 190
examples 190
format 190
options 190
restrictions 190
usage 190

ROLS (Roll Back to SETS) call
format 62
parameters 62
ROLS (Roll Back to SETS) call

description 62
ROLS (Rollback to SETS or SETU) command

DB PCB
specifying 190

examples 190
format 190
options 190
restrictions 190
ROLS (Rollback to SETS or SETU) command

ROLS (Rollback to SETS or SETU) command (continued)
ROLS (Rollback to SETS or SETU) command (continued)

description 190
specifying the DB PCB 190
usage 190

ROLS call
description 147
format 147
parameters 147
restrictions 147
Spool API functions 148
summary 74
usage 147

ROLS call function 228
ROLX call function 228
row

deleting 742
inserting 750

row-value expression 595
RPRN (return primary resource name) 445
RPRN= operand (DIV statement), specifying 445
RSCLMTRM reply message

format 333
RTRVFLD command object

format 294
RTRVFLDREL Command object (X'CC0B') 295
RULES parameter

FIRST, L command code 204
HERE

F command code 203
L command code 204

RULES= 174

S
S (STATUS) statement 252
S command code

examples 213
subpointer, resetting 213

sample
code

asynchronous processing 550
synchronous processing 541

sample JCL 257
sampleswarranty

OTMA C/I 541
SAY exec 368
SCA (system control area)

description 485
device-dependent information 431
specifying 431
use 514

scale of numbers
description 588

SCHD (Schedule) command
example 191
format 191
options 191
SCHD (Schedule) command

description 191
usage 191

Schedule (SCHD) command
description 191
example 191

Index 813

Schedule (SCHD) command (continued)
format 191
options 191
usage 191

scheduling a PSB in a CICS online program 191
screen formatting

3180 414
3270 or SLU 2

erase all unprotected option 411
force format write option 411

3290
logical units 412
partitions 412

SCS1 devices
DEV statement 445

search condition
description 598
order of evaluation 598

SECCHK command
format 295

SECCHKRM reply message
format 334

segment
adding one sequentially 179
adding to a database 174
and its dependents, removing 158
releasing a 157
replacing 183
requesting using GU 16
retrieving sequentially 159
retrieving specific 169
sequential dependent

retrieving the location of the last one inserted 181
segment edit routine

use 471
segment format, output message

restriction 428
SEGMLIST Command object (X'CC0A') 297
SELECT statement

description 757
dynamic invocation 602

SELECT= operand (DPAGE statement), specifying 454
sequence

hierarchy 11
sequence, indication for statements 257
sequential dependent segments

retrieving the location of the last one inserted 181
sequentially retrieving

dependent segments 164
segments 159

Set a Backout Point (SETS) command
description 192
example 192
format 192
options 192
restrictions 192
usage 192

Set a Backout Point Unconditionally (SETU) command
description 193
formats 193
options 193
restrictions 193
usage 193

set backout point call 148

set backout point unconditional call 148
SET clause of UPDATE statement 768
SET command (REXX) 356, 363
set options call 109
SET SUBFUNC command (REXX) 363
SET ZZ 363
SETO call

and OTMA environment 109
description 109
format 109
parameters 109
restrictions 109
summary 74
usage 109

SETO call function 228
SETS (Set a Backout Point) call

format 64
parameters 64
SETS (Set a Backout Point) call

description 64
SETS (Set a Backout Point) command

example 192
format 192
options 192
restrictions 192
SETS (Set a Backout Point) command

description 192
usage 192

SETS call
description 148
format 148
parameters 148
restrictions 148
Spool API functions 148
summary 74
usage 148

SETS call function 228
setting

parentage with the P command code 206
subset pointer to zero 215

setting a backout point
DL/I 192
unconditionally 193

SETU (Set a Backout Point Unconditional) call
description 64
format 64
parameters 64

SETU (Set a Backout Point Unconditionally) command
example 193
examples

SETU (Set a Backout Point Unconditionally)
command 193

formats 193
options 193
restrictions 193
Set a Backout Point Unconditionally (SETU) command

example 193
SETU (Set a Backout Point Unconditionally) command

description 193
usage 193

SETU call
description 148
restrictions 148
Spool API functions 148

814 IMS: Application Programming APIs

SETU call (continued)
summary 74

shift in (SI) control character 489
shift in (SI) framing character 488
shift out (SO) control character 489
shift out (SO) framing character 488
short string column 589
SKIP call function 240
SLDx= operand (DEV statement), use 497
SLU type 2

default literal input message fields 471
defining IMS TM password 472

SNAP call
format 65
parameters 65
SNAP call

description 65
status codes 65

SNAP call function 228
SO/SI control characters

blank suppress option 489
hex representation 489
pair verification 489
processing by MFS 489
use in mixed data field 489

SO/SI framing characters 488
space character 585
special character 585
specific segments, retrieving 169
Spool API

functions 104
ISRT call 104
STORAGE command example 364

SQL (Structured Query Language)
assignment operation 590
character 585
comparison operation 590
constants 591
data types

character strings 589
datetime 589
description 586
numbers 588

dynamic 584
identifier 586
interactive 584
naming conventions 586
null value 588
ordinary identifier 585
static 583
token 585
value 586
variable names 586

SQL statements
ALTER DATABASE

description 603
ALTER TABLE

description 617
ALTER TABLESPACE

description 645
CLOSE 651
COMMENT ON

description 652
CONTINUE 770

SQL statements (continued)
CREATE DATABASE

description 654
CREATE PROGRAMVIEW

description 667
CREATE TABLE

description 684
CREATE TABLESPACE

description 727
DECLARE CURSOR

description 741
example 741

DECLARE STATEMENT 742
DELETE

description 742
example 743

DESCRIBE OUTPUT 743
DROP DATABASE

description 744
DROP PROGRAMVIEW

description 745
DROP TABLE

description 745
DROP TABLESPACE

description 746
EXECUTE 747
FETCH

description 748
example 749

INCLUDE
description 750
example 750
SQLIMSCA 773
SQLIMSDA 776

INSERT
description 750

invocation 600
OPEN

description 753
example 755

operational form 583
PREPARE 755
SELECT 757
UPDATE

description 767
example 769

WHENEVER 770
SQLATTR command

format 298
SQLCARD command

format 298
SQLCODE

+100 754
SQLDARD command

format 300
SQLDTA command

format 304
SQLERROR

clause of WHENEVER statement 770
SQLERRRM reply message

format 335
SQLIMSCA (SQL communication area)

contents 771
entry changed by UPDATE 769

Index 815

SQLIMSCA (SQL communication area) (continued)
INCLUDE statement 750

SQLIMSCABC field of SQLIMSCA 771
SQLIMSCAID field of SQLIMSCA 771
SQLIMSCODE

+100 602, 770
description 602
field of SQLIMSCA 771

SQLIMSD field of SQLIMSDA 774
SQLIMSDA

header 774
SQLIMSDA (SQL descriptor area)

clause of INCLUDE statement 750
contents 773

SQLIMSDABC field of SQLIMSDA 774
SQLIMSDAID field of SQLIMSDA 774
SQLIMSDATA field of SQLIMSDA 774
SQLIMSERRD(n) field of SQLIMSCA 771
SQLIMSERRM

description 603
SQLIMSERRMC field of SQLIMSCA 771
SQLIMSERRML field of SQLIMSCA 771
SQLIMSERRP field of SQLIMSCA 771
SQLIMSIND field of SQLIMSDA 774
SQLIMSLEN field of SQLIMSDA 774
SQLIMSN field of SQLIMSDA

description 774
SQLIMSNAME field of SQLIMSDA 774
SQLIMSSTATE

'02000' 770
description 602
field of SQLIMSCA 771

SQLIMSTYPE field of SQLIMSDA
description 774
values 775

SQLIMSWARNn field of SQLIMSCA 771
SQLSTATE

'02000' 754
SQLSTT command

format 306
SQLWARNING clause

WHENEVER statement 770
SRRBACK command (REXX)

description 356
format, usage 364

SRRCMIT command (REXX)
description 356
format, usage 364

SSA parameter 344
SSACOUNT parameter 345
SSALIST command object

format 307
SSAs (segment search arguments)

GN 11
usage

DLET 7
GNP 14
ISRT 22
REPL 28
RLSE 30

STACK statement (language utility) 416
STAK call function 240
standard, SQL (ANSI/ISO)

SQL-style comments 585

START call function 240
starting position in a database, establishing a 169
STAT (Statistics) call

format 68
parameters 68
STAT (Statistics) call

description 68
usage 68

STAT (Statistics) command
example 194
format 194
options 194
STAT (Statistics) command

description 194
usage 194

STAT call function 228
statement

naming convention 586
STATEMENT clause of DECLARE STATEMENT statement 742
static SQL

description 600
Statistics (STAT) command

description 194
example 194
format 194
options 194
usage 194

statistics, obtaining IMS database 194
status code

GE (segment not found) 201
status codes

GB, end of database 201
obtaining 182
returning a 155

STATUS statement 252
storage

!token 364
STORAGE command 364

STORAGE command (REXX)
description 356
format, usage 364

stream mode
description 472
input example 477
process of record in 480
treatment of nulls 475
with ISC 480

string
character 589
comparison 591
constant 592
fixed-length

description 589
short 589

structured query language (SQL)
result tables 583

SUB= operand (DEV statement)
use 479

subset pointers
M command 212
R command code 212
resetting 213
S command code 213
sample application 210

816 IMS: Application Programming APIs

subset pointers (continued)
Z command code 215

substitution character 479
Summary

database management call 1
system service calls 31

summary, EXEC DLI commands 154
Symbolic Checkpoint (CHKP Symbolic)

format 35
parameters 35
restrictions 35
usage 35

Symbolic Checkpoint (SYMCHKP) command
description 195
example 195
format 195
options 195
restrictions 195
usage 195

symbolic checkpoint call 118
Symbolic CHKP call

description 118
format 118
parameters 118
restrictions 118
summary 74
usage 118

SYMCHKP (Symbolic Checkpoint) command
current position 195
example 195
format 195
options 195
restrictions 195
SYMCHKP (Symbolic Checkpoint) command

description 195
usage 195

SYNC (Synchronization Point) call
format 69
parameters 69
SYNC (Synchronization Point) call

description 69
usage 69

SYNC call
description 150
format 150
parameters 150
restrictions 150
summary 74
usage 150

SYNC call function 228
synchronization call 150
syntax diagram

how to read x
syntax of EXEC DLI commands 153
SYSIN input 257
SYSIN2 input processing 257
SYSSERVE keyword 153
system contents directory 122
system control area 485
system definition

3270 master terminal format support 519
considerations, with MFS 498

system literals
description 486

system log, writing information to the 180
system message format, IMS-provided 517
system service

ACCEPT 155
CHKP (Checkpoint) 156
command summary 153
DEQ (Dequeue) 157
LOAD 179
LOG 180
QUERY 182
REFRESH 182
ROLB (Rollback) 188
ROLL 189
ROLS (Rollback to SETS or SETU) 190
SETS (Set a Backout Point) 192
SETU (Set a Backout Point Unconditionally) 193
STAT (Statistics) 194
SYMCHKP (Symbolic Checkpoint) 195
XRST (Extended Restart) 197

system service calls
APSB (Allocate PSB) 33
CHKP (Basic) 34
CHKP (Symbolic) 35
DPSB (deallocate) 36
GMSG (Get Message) 37
ICMD (Issue Command) 40
INIT (Initialize) 41
INQY (Inquiry) 47
LOG (Log) 58
PCB (schedule a PSB) 59
RCMD (Retrieve Command) 60
ROLB (Roll Back) 61
SETS/SETU (Set a Backout Point)
64
SNAP 65
STAT (Statistics) 68
SYNC (Synchronization Point) 69
TERM (Terminate) 70
XRST (Extended Restart) 71

T
T (Comment) statement 241
tabbing

control characters 497
field tabs 473
horizontal 497
vertical 497

table
naming convention 586
result table 755

TERM (Terminate) call
format 70
TERM (Terminate) call

description 70
usage 70

TERM (Terminate) command
example 196
format 196
options 196
TERM (Terminate) command

description 196
usage 196

Terminate (TERM) command

Index 817

Terminate (TERM) command (continued)
description 196
example 196
format 196
options 196
usage 196

terminating a PSB in a CICS online program 196
test program 217
time

data type 589
TIME

data type
description 589

timestamp
data type 589

TIMESTAMP
data type

description 589
trademarks 779, 780
trailing blank compression 504
transaction code 508
translation, character

for input messages
using XX'3F' 479

for output messages
device control characters 482

SUB= operand (DEV statement) 479
transmission chains 502
truncation

of input messages 462
of output fields 482

TSO/E REXX 347
TYPE= operand (DEV statement), specifying 408
TYPE= operand (DIV statement)

specifying 445

U
U (Comment) statement 241
U Command Code 208
unconditionally setting a backout point 193
unit of work (UOW)

ending a logical 156
unprotecting the screen

UNPROTECT option 514
unqualified POS call

I/O returned area
key words 26
map of 26

keywords 26
UNSTACK statement (language utility) 416
UOW (unit of work)

ending a logical 156
UPDATE

statement
description 767
example 769

update rule 769
updating

rows in a table 767
UPDCNT parameter 345
usage

ACCEPT command 155
CHKP (Checkpoint) command 156

usage (continued)
DEQ (Dequeue) command 157
GN (Get Next) command 159
GNP (Get Next in Parent) command 164
GU (Get Unique) command 169
ISRT (Insert) command 174
LOAD command 179
LOG command 180
POS (Position) command 181
QUERY command 182
REFRESH command 182
REPL (Replace) command 183
RETRIEVE command 187
ROLB (Rollback) command 188
ROLL command 189
ROLS (Rollback to SETS or SETU) command 190
SCHD (Schedule) command 191
SETS (Set a Backout Point) command 192
SETU (Set a Backout Point Unconditionally) command
193
STAT (Statistics) command 194
SYMCHKP (Symbolic Checkpoint) command 195
TERM (Terminate) command 196
XRST (Extended Restart) command 197

USING clause
EXECUTE statement 747
OPEN statement 754

V
V command code 210
V5SEGRBA 27
value

SQL 586
VALUES clause

INSERT statement 752
variable

description 593
host

referencing 593
SQL syntax 593

referencing 593
SQL syntax 593
substitution for parameter markers 747

VERSION
function of INIT call 41

version identification
description 507
for DPM formats 521
for SLU P 461

VSAM, STAT call 69
VT= operand (DEV statement)

use 497
VTAB= operand (DEV statement)

use 497

W
W command code

examples 214
WAITAOI 37
WHENEVER statement

description 770

818 IMS: Application Programming APIs

WHENEVER statement (continued)
example 770

WIDTH= operand (DEV statement)
use 497

writing information to the system log 180
WTL command (REXX)

description 356
format, usage 365

WTO command (REXX)
description 356
format, usage 365

WTO statement 256
WTOR command (REXX)

description 356
format, usage 366

WTOR statement 256
WTP command (REXX)

description 356
format, usage 365

X
XRF (Extended Recovery Facility)

message format after takeover 495
XRST (Extended Restart) 35
XRST (Extended Restart) call

XRST (Extended Restart) call
description 71

XRST (Extended Restart) command
example 197
format 197
options 197
restrictions 197
usage 197
XRST (Extended Restart) command

description 197
XRST call

description 150
format 150
parameters 150
restrictions 150
summary 74
usage 150

XRST call function 228

Z
Z command code

examples 215
setting a subpointer to zero 215

z/OS environment 349

Index 819

820 IMS: Application Programming APIs

IBM®

Product Number: 5635-A06
 5655-DS5
 5655-TM4

	Contents
	About this information
	Prerequisite knowledge
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS 15.3
	How to send your comments

	Chapter 1. DL/I calls reference
	Database management
	DL/I calls for database management
	Database management call summary
	CIMS call
	CLSE call
	DEQ call
	DLET call
	FLD call
	GN/GHN call
	GNP/GHNP call
	GU/GHU call
	GUR call
	ISRT call
	OPEN call
	POS call
	REPL call
	RLSE call

	DL/I calls for IMS DB system services
	System service call summary
	APSB call
	CHKP (basic) call
	CHKP (symbolic) call
	DPSB call
	GMSG call
	GSCD call
	ICMD call
	INIT call
	INQY call
	LOG call
	PCB call (CICS online programs only)
	RCMD call
	ROLB call
	ROLL call
	ROLS call
	SETS/SETU call
	SNAP call
	STAT call
	SYNC call
	TERM call (CICS online programs only)
	XRST call

	Transaction management
	DL/I calls for transaction management
	AUTH call
	CHNG call
	CMD call
	GCMD call
	GN call
	GU call
	ICAL call
	ISRT call
	PURG call
	SETO call

	DL/I calls for IMS TM system services
	APSB call
	CHKP (basic) call
	CHKP (symbolic) call
	DPSB call
	GMSG call
	GSCD call
	ICMD call
	INIT call
	INQY call
	LOG call
	RCMD call
	ROLB call
	ROLL call
	ROLS call
	SETS/SETU call
	SYNC call
	XRST call

	EXEC DLI commands
	Summary of EXEC DLI commands
	ACCEPT command
	CHKP command
	DEQ command
	DLET command
	GN command
	GNP command
	GU command
	ISRT command
	LOAD command
	LOG command
	POS command
	QUERY command
	REFRESH command
	REPL command
	RETRIEVE command
	ROLB command
	ROLL command
	ROLS command
	SCHD command
	SETS command
	SETU command
	STAT command
	SYMCHKP command
	TERM command
	XRST command

	Command code reference
	A command code
	C command code
	D command code
	F command code
	G command code
	L command code
	N command code
	O command code
	P command code
	Q command code
	U command code
	V command code
	NULL command code
	DEDB command codes for DL/I
	M command code
	R command code
	S command code
	W command code
	Z command code

	Relationship between calls, AIBs, and PCBs
	DL/I test program (DFSDDLT0) reference
	Control statements
	ABEND statement
	CALL statement
	CALL FUNCTION statement
	CALL FUNCTION statement with column-specific SSAs

	CALL DATA statement
	OPTION DATA statement
	FEEDBACK DATA statement
	DL/I call functions
	Examples of DL/I call functions
	DFSDDLT0 call functions

	COMMENT statement
	COMPARE statement
	COMPARE AIB statement
	COMPARE DATA statement
	COMPARE PCB statement
	Examples of COMPARE DATA and COMPARE PCB statements

	IGNORE statement
	OPTION statement
	PUNCH CTL statement
	STATUS statement
	WTO statement
	WTOR statement
	JCL requirements for the DL/I test program (DFSDDLT0)
	SYSIN DD statement
	SYSIN2 DD statement
	PRINTDD DD statement
	PUNCHDD DD statement
	Using the PREINIT parameter for DFSDDLT0 input restart

	Execution of DFSDDLT0 in IMS regions
	Explanation of DFSDDLT0 return codes
	DFSDDLT0 operations

	Chapter 2. DRDA DDM command architecture reference
	Overview of the syntax for DDM terms supported by IMS
	DSSHDR syntax

	DDM commit and rollback processing
	DDM commands and command objects
	ACCRDB command (X'2001')
	ACCSEC command (X'106D')
	CLSQRY command (X'2005')
	CNTQRY command (X'2006')
	DEALLOCDB command (X'C801')
	DLIFUNC command object (X'CC05')
	DLIFUNCFLG command object (X'CC09')
	EXCSAT command (X'1041')
	EXCSQLIMM command (X'200A')
	EXCSQLSET command (X'2014')
	FLDENTRY command object (X'CC03')
	FLDENTRYREL command object (X'CC0C')
	IMSCALL command (X'C803')
	INAIB command object (X'CC01')
	MONITORRD command (X'1C00')
	OPNQRY command (X'200C')
	PRPSQLSTT command (X'200D')
	RLSE command (X'C802')
	RTRVFLD command object (X'CC04')
	RTRVFLDREL command object (X'CC0B')
	SECCHK command (X'106E')
	SEGMLIST command object (X'CC0A')
	SQLATTR command (X'2450')
	SQLCARD command (X'2408')
	SQLDARD command (X'2411')
	SQLDTA command (X'2412')
	SQLSTT command (X'2414')
	SSALIST command object (X'CC06')

	DDM reply messages and reply objects
	ABNUOWRM reply message (X'220D')
	ACCRDBRM reply message (X'2201')
	ACCSECRD reply object (X'14AC')
	AGNPRMRM reply message (X'1232')
	CMDVLTRM reply message (X'221D')
	DEALLOCDBRM reply message (X'CA01')
	ENDQRYRM reply message (X'220B')
	ENDUOWRM reply message (X'220C')
	EXCSATRD reply object (X'1443')
	IMSCALLRM reply message (X'CA04')
	OPNQFLRM reply message (X'2212')
	OPNQRYRM reply message (X'2205')
	QRYDSC reply object (X'241A')
	QRYDTA reply object (X'241B')
	QRYPOPRM reply message (X'220F')
	RDBAFLRM reply message (X'221A')
	RDBATHRM reply message (X'2203')
	RDBNACRM reply message (X'2204')
	RDBNFNRM reply message (X'2211')
	RDBUPDRM reply message (X'2218')
	RLSERM reply message (X'CA03')
	RSCLMTRM reply message (X'1233')
	SECCHKRM reply message (X'1219')
	SQLERRRM reply message (X'2213')

	DDM parameters used by IMS
	AIBOALEN parameter (X'C904')
	AIBRSNM1 parameter (X'C901')
	AIBRSNM2 parameter (X'C902')
	AIBSFUNC parameter (X'C903')
	aibStream data structure
	dbpcbStream data structure
	iopcbStream data structure
	OUTAIBDBPCB parameter (X'CC02')
	OUTAIBIOPCB parameter (X'CC08')
	RDBNAM parameter (X'2110')
	SSA parameter (X'C906')
	SSACOUNT parameter (X'C905')
	UPDCNT parameter (X'C90A')

	Chapter 3. IMS Adapter for REXX reference
	IMS Adapter for REXX overview
	Sample exit routine (DFSREXXU)
	Addressing other environments
	REXX transaction programs
	REXXTDLI commands
	REXXTDLI calls
	REXXIMS extended commands
	DLIINFO
	IMSRXTRC
	MAPDEF
	MAPGET
	MAPPUT
	SET
	SRRBACK and SRRCMIT
	STORAGE
	WTO, WTP, and WTL
	WTOR
	IMSQUERY extended functions

	Sample execs using REXXTDLI
	SAY exec: for expression evaluation
	PCBINFO exec: display available PCBs in current PSB
	PART execs: database access examples
	PARTNUM exec: show set of parts near a specified number
	PARTNAME exec: show a set of parts with a similar name

	DOCMD: IMS commands front end
	IVPREXX sample application

	Chapter 4. Java programming reference
	IMS Universal drivers support for JDBC
	javax.sql.Clob methods supported
	java.sql.Connection methods supported
	java.sql.DatabaseMetaData methods supported
	javax.sql.DataSource methods supported
	java.sql.Driver methods supported
	java.sql.ParameterMetaData methods supported
	java.sql.PreparedStatement methods supported
	java.sql.Statement methods supported
	java.sql.ResultSet methods supported
	java.sql.ResultSetMetaData methods supported

	IMS Universal drivers support for the Common Client Interface
	javax.resource.cci.Connection methods supported
	javax.resource.cci.ConnectionFactory methods supported
	javax.resource.cci.ConnectionMetaData methods supported
	javax.resource.cci.Interaction methods supported
	javax.resource.cci.LocalTransaction methods supported
	javax.resource.cci.ResultSetInfo methods supported
	javax.resource.cci.ResourceAdapterMetaData methods supported
	javax.resource.cci.RecordFactory methods supported

	Java API documentation (Javadoc)

	Chapter 5. Message Format Service (MFS) reference
	MFS application program design
	Relationships between MFS control blocks
	3270 or SLU 2 display devices
	3290 information panel in partitioned format mode
	Finance, 3770, SLU 1, NTO, or SLU P devices
	Finance or SLU P workstations
	ISC subsystem (DPM-Bn)

	Format library member selection
	3270 or SLU 2 screen formatting
	3290 screen formatting
	3180 screen formatting

	Device compatibility with previous versions of MFS
	Converting MFS 3270 device formats to symbolic name formats using STACK/UNSTACK
	3270 device format conversion example
	3270 printer and SLU 1 compatibility
	SLU P compatibility

	Enhancing system performance of MFS message and device formats
	Enhancing system performance of MFS-supported devices
	Enhancing system performance of 3270 or SLU 2 display devices
	SLU P and ISC subsystems with DPM
	Loading programmed symbol buffers
	Using an application program to determine whether programmed symbol buffers are loaded
	How to load programmed symbol buffers
	Solving programmed symbol load problems

	MFS definitions for intersystem communication

	MFS message formats
	Input message formats
	Device-dependent input information (3270 or SLU 2)

	Output message formats
	Logical pages
	Segment format
	Field format (options 1 and 2)
	Field format (option 3)
	Device-dependent output information
	Dynamic attribute modification
	Dynamic modification of extended field attributes
	Dynamic modification of EGCS data
	Dynamic modification of DBCS/EBCDIC mixed data
	Specification of message output descriptor name
	MFS bypass for the 3270 or SLU 2
	Specifying input forms for MFS bypass
	MFS bypass for the SLU 2 (3290) with partitioning
	DIV statement
	DPAGE statement

	MFS message formatting functions
	Input message formatting
	Input messages accepted by MFS
	How MFS formats input messages
	Input message formatting options
	Examples of message segment definitions
	Cursor position input and FILL=NULL
	Input logical page selection
	Input message field and segment edit routines
	Input message literal fields
	Input message field attribute data
	IMS TM password
	Fill characters for input message fields
	Input modes (devices other than 3270, SLU 2, or ISC subsystems)
	Input field tabs (devices other than 3270 or SLU 2)
	Optional deletion of null characters for DPM-An
	Examples of optional null character deletion for DPM-An
	Multiple physical page input messages (3270 and SLU 2 display devices)

	General rules for multiple DPAGE input
	3270 and SLU 2 input substitution character
	Input format control for ISC (DPM-Bn) subsystems
	Output message formatting
	Output messages accepted by MFS
	How MFS formats output messages
	Output message formatting options
	Operator logical paging of output messages
	Physical paging of output messages
	Fill characters for output device fields
	System control area (SCA) and default SCA (DSCA)
	Output message literal fields
	Output device field attributes
	Extended field attributes for output devices
	Extended Graphic Character Set (EGCS)
	Mixed DBCS/EBCDIC fields
	Cursor positioning
	Prompt facility
	System message field (3270 or SLU 2 display devices)
	Printed page format control
	Format control for 3770 and SLU 1 printers
	Output format control for 3270P printers
	Output format control for SLU P DPM-An

	Output format control for ISC (DPM-Bn) subsystems
	FILL=NULL specification
	Trailing blank compression
	Data structure name

	Your control of MFS
	Operator logical paging
	Operator control tables
	3270 or SLU 2-only feature definitions
	Paging action at the device
	Unprotected screen option
	3290 in partitioned format mode
	3180 in partitioned format mode

	MFS format sets supplied by IMS
	MFS formatting for the 3270 or SLU 2 master terminal
	MFS Device Characteristics table
	Version identification function for DPM formats

	Chapter 6. OTMA Callable Interface API reference
	OTMA Callable Interface API calls
	OTMA C/I hints and tips
	otma_create API
	otma_open API
	otma_openx API
	otma_alloc API
	otma_send_receive API
	otma_send_receivex API
	otma_send_receivey API
	otma_send_async API
	otma_send_asyncx API
	otma_receive_async API
	otma_free API
	otma_close API

	OTMA C/I sample programs
	Warranty and distribution for OTMA C/I sample programs
	OTMA C/I sample program for synchronous processing
	OTMA C/I sample program for asynchronous processing

	Chapter 7. WSDL-to-PL/I segmentation APIs for web service development
	Include file DFSPWSH
	DFSQGETS
	DFSQSETS
	DFSXGETS
	DFSXSETS
	Return codes from the DFSPWSIO APIs

	Chapter 8. SQL programming reference
	SQL concepts for IMS
	Structured query language
	DDL SQL
	Static SQL
	Dynamic SQL
	Interactive SQL

	IMS data structures for SQL
	Hierarchical and relational databases

	Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers
	Ordinary identifiers

	Host identifiers

	Naming conventions
	Data types
	Nulls
	Numbers
	Small integer (SMALLINT)
	Large integer (INTEGER)
	Big integer (BIGINT)
	Double precision floating-point (DOUBLE or FLOAT)
	Decimal
	Numeric host variables

	Character strings
	Fixed-length character strings

	Datetime values
	Date
	Time
	Timestamp
	Datetime host variables

	Assignment and comparison
	String assignments
	Character string assignment
	Storage assignment
	Retrieval assignment

	String comparisons
	Character string comparisons

	Constants
	Integer constants
	Floating-point constants
	Decimal constants
	Character string constants

	Field names
	Qualified field names
	Field name qualifiers to avoid ambiguity

	References to variables
	References to host variables
	Host variables in dynamic SQL

	Host structures in COBOL
	Predicates
	Basic predicate
	BETWEEN predicate
	IN predicate

	Search conditions

	SQL statements
	How SQL statements are invoked
	Using an SQL statement in an application program
	Dynamic preparation and execution
	Dynamic invocation of a SELECT statement
	Detecting and processing error and warning conditions in host language applications
	SQLIMSSTATE
	SQLIMSCODE
	SQLIMSERRM

	ALTER DATABASE
	ALTER TABLE
	ALTER TABLESPACE
	CLOSE
	COMMENT ON
	CREATE DATABASE
	CREATE PROGRAMVIEW
	CREATE TABLE
	CREATE TABLESPACE
	DECLARE CURSOR
	DECLARE STATEMENT
	DELETE
	DESCRIBE OUTPUT
	DROP DATABASE
	DROP PROGRAMVIEW
	DROP TABLE
	DROP TABLESPACE
	EXECUTE
	FETCH
	INCLUDE
	INSERT
	OPEN
	PREPARE
	SELECT
	UPDATE
	WHENEVER

	SQL communication area (SQLIMSCA)
	Description of SQLIMSCA fields
	The included SQLIMSCA

	SQL descriptor area (SQLIMSDA)
	Description of SQLIMSDA fields
	The SQLIMSDA header
	SQLIMSVAR entries
	Determining how many SQLIMSVAR occurrences are needed
	Field descriptions of an occurrence of a base SQLIMSVAR
	SQLIMSTYPE and SQLIMSLEN

	The included SQLIMSDA

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

