IMS
15.3.0

Application Programming APIs
(2024-08-30 edition)

.||I




Note

Before you use this information and the product it supports, read the information in “Notices” on page
779.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.03.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.03.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2022.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

ADOUL this INFOrMAtION...ccieiiiiiiiiiriiiririererereetesesseresessesesessesessasesessssesassasessssasessnsase IX

PrereqUISIte KNOWLEAZE. ......uiiiiee ettt et et e et e e te e e ate e e abe e e saaesensae e sseeeensaaaasseesnnsaeennseenn iX
How new and changed information is identified..........ccuieeiiecciecceceee e iX
HOW 10 read SYNtaX ia@ramS.....cccueeieiieeeieeceieeceiee et e te e e te e e te e s te e s ate e eeatee s steesssteesneeessaeeesteesnseessnnens X
Accessibility features fOr IMS L5.3 ... ettt et eete e e et e e e eate e eerteeeesteeesstesesntaseessaessssesenes Xi
HOW 10 SENA YOU COMMIEBNES....iiiiiiiieecieeecieeectee et e ecteeeeteeeeteesetaeessasee e sbeeessaeesseeessseeassseesnssaesnssaeensseenn xii

Chapter 1. DL/I calls reference......cccccceieiieiiieiieieiiecicienicacieniecesiessscessecsssesssassesaes 4

Database MaNAZEMENT.....ccciiecciieccee ettt ecte e et e e ete e et ee e s teesesbee s seee s sseesasseeessseesasseeensseeannseesnnseennnseen 1
DL/I calls for database Management........cccuiiciiiieiiiieiieecee ettt re e e e e e s e e e raeeesaeeensaeean 1
DL/I calls for IMS DB SYSTEM SEIVICES...cccciiiecirieeiriieeiieeeitieeeiteeeitreeessseeessseeessseesssseesssssessssessssssesssseens 30

TranSaCtioN MANAZEMENT......iiiciiieecieeciie et e cee e ecee e e rre e e see e e raeeesbaeeesaee e seseesseeessesaseesensseeensseeesseeennees 74
DL/I calls for transaction ManagemMENT.......cuiicciiiiiiie ettt et ete e e ree e e re e e s bae e saaee e saseeeeaes 74
DL/I calls for IMS TM SYStEIM SEIVICES..ccutiieiuieieitieeeiieeeiteeeiteeesaeeesreeessseessseeessseeessseessssessnsseeennsens 113

EXEC DLI COMMEANUS..uttiiiiiiiireeieiitieeeeeeiteeeeeesstteeeeesssreeseessssessesessssaseeesssssseesssssssessesssssssssssssssessssssessessnnns 153
Summary of EXEC DLI COMMANGS....ciiiiiiiieieeieieeecieeeeteeeeteeeeteeeeteesesaeesssteessssesssssesssssessssssssssessnnes 154
ACCEPT COMMEANG...uuiiiiiiiiiiieiiiieeeeeeitreeeeeeitteeeeesibeeseeesseeseeesssssseeesssssssesssssessessnsssssesssssssesesssssseseeens 155
CHKP COMMEANTG..iiiiiiitiiiiiiiiiieeeeeeitereeeeitree e eeeireeeeeeesbeeeeeensbaeseesesraeeesessssseeeesssessessssssssesesssseessnnsareeas 156
D] (O oleY 2] n T 12 e FEUEE TR 157
DLET COMMANG..iiiiiitiiiiiiiiiieeeeiiteeeeeesitreeeeeeitteeeeesssbeeeeeesssaeseeesssseseeeesssessessnssessessasessessanssaseessssssneeesns 158
GIN COMIMANG. ...ttt ettt e e eertbeeeeeesabaeeeeeebbaeeesesssaeeeeesssaeseeesssessessasbrasessnsasreesnnssreeas 159
GINP COMMANTG..eiiiiiitiiiieiiiiiee et ceetree e eeette e e e eesabeeeeeessbeeeeeessseseeeenssassesenssaseessansassessasssaesesssssneeenns 164
GU COMMEANTG..utiiiiiiitiiiieeeeitiee ettt ceette e e e eetbe e e e eeebeeeeessabeeseeseabasressessssseeeessstesesenstesessssssaeeesenssanseesans 169
ISRT COMMEANG..iiiiitiiiiiieiiiiie ettt ettt e eeire e e e eerbeeeeeeeaaeeeeeessbaeeeseebessessesssaeseeessreseesssssessesensrareeenns 174
LOAD COMMANG. . .utiiiiiiiiiiieeieiiteeeeeeiteeeeeestreeeeestaeeeeeessseseeseassesseseesssaseesesssssseesassseseesessssseessnsssessessnses 179
LOG COMMEANT.utiiiiiiiiiiieiiiiiieeeeiiteee e eetteeeeeestteeeeeesbeeeeesesbeeeesesssseseeesssaessesssssessessssbessessnsrssessensssreesans 180
POS COMMEANTG...ttiiiiiiitiiieieitee et e eeerre e e eeetreeeeeeeabeeeeeeesbeeseesebtseeseesssaeeesesssbeseesessessesessaneeeesnsseeees 181
(@101 3 A eTo] 121 2=\ [ FE TR 182
REFRESH COMMANG..iiiiiitiiiiiiiiiiiieciiitiee e ceeiteeeeeeiteeeeeesraeeeeesnsseeseessssessessssssssesessssseseessssseseessnssnsessnns 182
REPL COMMANT.ciiiiiiiiiiiiiiiiieeceetree e ceeireeeeeestteeeeeeeabeeeeeessbeeeeeeessseseeeesssessesesssaseessessssseseesssrnseessnssnseennn 183
RETRIEVE COMMEANT...iiiiiiitiiiiiiiiiieeeeeiiteeeeeeireeeeesitreeeeeesisseseeesesseseeeesssessessnssssessssssssessesssseessnssseseenns 187
ROLB COMMANG...ciittiiiiiiiiiiieeeeiieeeeceetreeeeeeeteeeeeesiaeeeeeeessaeeeeeeessaeeeseesssaseeeessseseeesssressessssrsseesnsssaneeenns 188
ROLL COMMEANT.eiiiiiiiiiieiiiitiieeeeiieeeeeeeireeeceeiveeeeeesaraeeeeessseseeessssesseesssbessesssssssessessssseessnsssseeesnssseneenn 189
ROLS COMMANG.ciiiiiiitiiiiiiiiiiieceiiteee e eeeireeeeeetreeeeesareeeeeessbeeeeeesssseeeeesssessesssssessesssssessessnssssseesenssseesnns 190
SCHD COMMEANT.criiiiiiitiiiieiiiiieeeeeeitree e ceerteeeeeestbeeeeeessbeeeeeeabtrreeeessssseeeesssssseesessssseessssssseeessssessessssrenes 191
SETS COMMEANTG..uiiiiiiiiiiieeiiiiieeeeeetreeeeerrteeeeesstbeeeeeessreeseeessbesseeenssssseeeesssassessssssseesesssaseesessressesnssrenes 192
SETU COMMEANG...utiiiiiiiiiiieiiiitieeececiree e eeireee e eeeitreeeeesssaeeeeeessseeseessbeseeesessssseesesssseseesessteseesenssseessnnsres 193
STAT COMMEANTG...utiiiiiiciiiieeeeiiiieeeerireeeeeeeteeeeeestareeeesssbeeseeessasseeesssseseessassesseesssessessassrasessnssssneesenssrees 194
SYMCHKP COMMEANT..eiiiiiitiiiiiiiiieiee et eeetteeeeeesieeeeeeebteeeeeesstaeeeeesssseseeesssessessssressessssssssessnsssnseesans 195
TERM COMMANG..cittiiiiiiitiiie ettt eeiree e e eeetee e e eeetteeeeeeesbeeeeeseabtseeesesssasseeesssreseessssbessesessssseessnssrsnesen 196
XRST COMMEANG. ...tiiiiiiiiiiieeieiiree ettt eerree e e eebeeeeeeeetaeeeeesssbeereesesssseeesesssseseeessssessessssbessessnnsessessnnsre 197

COMMANT COUR MEIEIENCE. . .vveiiieeireiee ettt ettt eeeite e eebte e e e eeeabaeeeeessbeeeeeesraeeesessraseeesessseseessnsseneessnnes 198
A COMMEANT COUR...uuuiiiiiiiiitiie ettt ettt et et e eeetee e e eesbaeeeeesssbeseeeessbaseeeeeasbeseessesssssessasssseesesssreseenns 200
C COMMEANT COUB....ciiiitriiieiicitiee ettt ceetee e e eetbee e e e eetbre e e e esbaaeeeeesssaeeeeessssseeesesbaseesesstaseseenssreseesnsrenns 200
D COMMEANT COUB...ceiiiiitiiiieieitee ettt eeerte e e eeirer e e eestbeeeeeesbbeeeeeesbaeeeeessbeseesssssessessansesseesassreneesnnnnes 201
F COMMEANT COUB....c ittt eee e e e etbee e e e eebte e e e eebbareesensbaeeeesessseeeesensraneeeesnseneeas 203
G COMMEANT COUB...ccittiiiiiieireeee ettt ettt e eeette e e eeebtee e e eebbeeeesessbaeeeeeesbeseesssssessessnsessessanssaeessenssreeas 204
L COMMANG COUR...uuiiiiiiiiiieiieiiteee ettt eetee e e eestaeeeeeessbeeeeeesabeeeeeesseaseesessbaseeeenssseseesesssaneesessreseessses 204
N COMMEANT COUR...uuiiiiiiiiiiiie ettt eerrae e e eeebbe e e eesabeeseeessaeesesesssasseeessssseesensssesesensreseessnnns 205
O COMMANT COUB.....ciiutriiiiieireeee ettt e ettt e e eeebre e e e eebreee e eesabaeeeeessbasseesssressesessbasseesessasseesenssessessnnsenes 205



[aote] 2 0] na =Y a e [ olo Lo [T 206

(O N oTeYa0] 1 g F=TaTe I elo Lo [T USSR 206
U COMMANG COUBuuiiiiiiiiiiieicctrtttee et e et ree e e et e e se e e asbabaeereeseeeeesessssssssaaeseaeeeeesesassssssserrnesees 208
V COMMIANA COUBcuuiiiiiiiiiiiecccitteeee e eeeecbrr e e e e e e e see e asbbbaeereeeeeeeeeeaasssabsaseseeeeeeesessssssssareerreeaeses 210
NULL COMMANG COUE.....uiiititriiiiiiieee ettt e e e e eeeeeeabrer e e e e e eeeesesesssssssaeeeeseessessessnssssssseseseeesssenen 210
DEDB commMand COAES FOr DL/I....ccooiiiiiieieeeettee e e e e e e e e e e ee et e et ee e e aas b ssesseeseeaasaesannsenes 210
Relationship between calls, AIBS, aNd PCBS........uiiiiiciiiieicciiie e secivee e seeitee e e e etvee e e sesvaeesseessaeesseensenseeas 216
DL/I test program (DFSDDLTO) refErENCE....ciciieiiecteete ettt ete ettt sae b e st e e e e sraeeeeesaaeeneas 217
CONTIOL STATEIMENTS. . ettt e e e e e s e s e esabaaeaeeeeeeseessessassssssseseseeeeseeesnnnnssnses 217
PN = 1= VD IR} = =T 0 1 T= 1 | S 218
L0 I I =Y = 0 4 1= o ) 219
COMMENT STATEMENT...cceeieeiiiitcccccceeeeeee e e ee e eee e eeee e b reeeeeeseeseeeeaeessesssssssssssssssssnnnnnnnnnnnnnns 241
(000 1171 7N ad =] = 1 (=] 0 11=] 0 S RURPURRRRt 242
B\ O Ry =] = 1 1=] 4 U= o SO PUPRRRRRRINt 248
OPTION StatBMENT... i i it rreereee e e e e e e e e eeeeeeeeeeeeeeees s s s s s s s s s s aaeesessaseaaeeesessssssssssssssnssnnnn 249
N[0 o IO 3 - 1 (=1 0 1] | S PUPRPRRURRRPRNt 250
VAN S RES] = (=1 1 1= 0| SO PUPRRRRRRRNt 252
LA O =] =X =T 0 4 L= 0 | U 256
L O] 3 =] = L (=T 0 = 1 U 256
JCL requirements for the DL/I test program (DFSDDLTO) .....ceveveerieiceeeieecee e eeeeseeeeveesveesveeseeeas 257
Execution of DFSDDLTO iN IMS FEEI0NS.....uiiiiiieriieriieesiieessetessreesseeessirtessreesssseesssseesssseesssseessases 260
Explanation of DFSDDLTO retUIM COUES. ...uuiiiiiiiiiiieeiiiee e cecitee e eeerre e s esree e e e esre e e e s esraeeeseessaeeessnsens 260
DFSDDLTO OPEIAtIONS. . uitiiectieeeeeeitireeeeeeitteeeseeirteeesesistreeeeaasseeeeaaasstaessaasseesesssssesessssssesesssssssnesssnssenes 261

Chapter 2. DRDA DDM command architecture reference.......ccccceeucreireiieincnncnecs 263

Overview of the syntax for DDM terms supported by IMS........cuiiii e 263
DI 1 Y 1 = PR 264
DDM commit and rollDack ProCESSING.....ccccuiiiiiiiiiiieriite ettt see e s essate e ssabe e sseeesaseeeas 264
DDM commands and COMMANG ObJECES.....uiiiiiciiieee ettt eere e e e eeae e e e s e abe e e e e e beeeeeeeseeeeeenns 265
ACCRDB commMaNnd (X'20071")....uiieeiieeeieeeeieeeeieeeeteeeeteeeeteeeeteeeeteeeeseeeesseeeessasesssasassseseassesessasannes 265
ACCSEC comMMANd (X'LOBD)...uiieeiieeeiieeeiee et eetteeeteeeetee e tee e e teeeesseeaesaeeesseeesesasseeaeseeasnsesessees 267
(OIS0 2 A A oo nal aa b= LaTe I 0. G2 0101 3 TR 268
CNTORY cOMMANT (X'2006")...ccioeeeeeeierieeeeeeteee e eesree e e e et ee s eebeeeessestaeessessseeesesssseeeessesranessssnreeeess 269
DEALLOCDB command (X'CBOL")....uueeieuieeeciiieeciieeeciteeeciteeectteeectteeeetteeseteeeseseeessaeessaessasseesasseesasanesnns 271
DLIFUNC command 0bjECt (X'CCOB5") ittt et tte et e e e e e e te e e e teeeereeeeeaaeessaeeenseeasnneaann 273
DLIFUNCFLG command 0bject (X'CCO9") ettt ettt et ee vt e e te e e et e e re e e re e e ba e e nnaeaan 274
EXCSAT comMmMaNd (X' LOZ4L") ... ittt et etee e et e e e etee e e etee e ebeeeebeeeeseeeensaeeensaeeenseeeensaeennses 275
EXCSOLIMM command (X'200A") ..o cueeeeeeeeeeeeieeteeeeceetreeeeeesaveeeessensaeeessesssaeesesssssesessesssenessesssneeessan 276
EXCSOLSET COMMANT (X'20L4") ittt e ettt e e s eeaaee e s seeasee e s sensreeeessnsseneessennannessens 280
FLDENTRY command 0bjeCt (X'CCO3")....uuiieeiiieeiieeeieeeeteeeetee et e e tee e teeeeteeeeaeeeeaseeesnbaeeensasaeaseeas 282
FLDENTRYREL command 0bjeCt (X'CCOC").....uuiiiieeeie ettt eeteeeeteeeete e e etee e eaee s ae e e araaenns 283
IMSCALL cOmMMANT (X'CB03").cieiiieeiieeeiiee ettt eecteeeectte e e ctteeesteeeesaeeeeesseeesaeeesseaesseassseassssesssaaansseann 283
INAIB command 0bJECT (X'CCOZL")..uuuiiieiieeiee ettt ettt ectee e eetee e ectee e e etee e etreesebaeesebaeeebaeessaeessaeanans 284
MONITORRD command (X' LCO0")..cccuuieeeiieeeiee e itieeeteeeecreeeeteeeeteeeetee e e beeeebeeeeseeasseeesseeeeseeasnnees 286
OPNQRY cOMMANA (X'200C") . icueieeieereieeeeeteeee e ceteee s eeeraeeeeeetreeeeesabeeeesensseeeesseseseessensssesessnneenessn 286
PRPSQLSTT cOMMAN (X'200D").....ciiiieiiiieiiieie e eeeieeeeceereeee e eeveeessessaaeeeeseaseeeesensseesessessseessessneesess 291
RLSE COMMANT (X'CB02").uuiiiuiiieeiieeeieeeetee e tte et eeeteeeeteeeeteeaensaeeesasasabeeaensasaensesasnsesaeseeeenseeesnnees 293
RTRVFLD command 0bjJECt (X'CCOA") ..ttt ette e ettt e e etae e e eaae e e aaeeeenaeeenseeensaeensaaan 294
RTRVFLDREL command 0bject (X'CCOB).....iiccuiieeiieeeiie ettt et e te e e e e e tee e aee e area e aaaeennas 295
SECCHK cOMMANd (X'LOBE")....iiciieeeciieeciee et ettt eeite e ettt e e e e e e e e e teeseasaeesnseeeesbesesnsaeaenseeeensesesnsens 295
SEGMLIST command 0bJECt (X'CCOA")...ui ittt ettt ettt e et e ectee e e cteeeebeeeebaeesbaeeebaeesaseeesraaannns 297
SOLATTR COMMANT (X 2450") .. uueiiieeeeieeeeteeee ettt e e eeiree e e e eette e e s eesveeessesssseeeessareesessnsseseessenssnnessans 298
SQLCARD COMMANA (X'2408") ..ttt e ettt e ettt e s eevae e s eesavaeeseesssaeesesssseeesssnnsaneessesaeneas 298
SOLDARD COMMANA (X'241L") ettt eettee ettt e s ee e e e e esaaae e e s sensteee s sesnvaeesesssseeeeessnsneeeesan 300
SOLDTA COMMANT (X'24L2") oottt e ettt e et e e s e eeabae e e s s sbaeee s sensaaeessesseeessessnneeeean 304
SOLSTT COMMEANT (X 24TA" oottt e et e ettt e e e e e e e s sesateeessesbeeressessraeessesssaeeesennsrees 306

SSALIST command ObJECE (X'CCOB)...uieiueieeiiieeceteecite e et e ettt e e ette e e reeeeate e s abee e aseeeesseeeenseeeenseasnsnas 307



DDM reply messages and rEPLlY ODJECTS. ...ttt ssre e s see e s ee e ssate e sereeessseeessneeesans 308

ABNUOWRM reply MeSSage (X' 220D")..uiccieceeeieeieeeieecreesteesteeseessseesseessessseesssssssesssssssessssssssesssees 308
ACCRDBRM reply Message (X'220L") ...t cieeieeceeeiesteeseeesteeseestesseeeseessveessaeeseesseesseessassnsesnseennes 309
ACCSECRD reply 0DJECT (X' LAAC) ittt ettt et e e te e e e te e et e e e tte e s aee e e steesnteesseeeennes 311
AGNPRMRM reply MeSSage (X' 12327 ...uiiiciieeeeieeeeeesieesreesteeseeseeseeesseesseesseessseesseesssessessssssnsesnnes 312
CMDVLTRM reply MeSSAZE (X'221D").uuiiiiecieeieeeiteeieeeteeeiessteeseessseesseesseesseessssssessssssssessssssnsesssenans 313
DEALLOCDBRM reply Message (X'CAODL) it eceereeeieeeeeeieesieeseeesteesseesseesseesnseesseesssesseesssssnsens 314
ENDQRYRM reply MesSage (X'220B")...ciciiceicieeieereeeieecieeseeseeesseesseesseesssesssessssesssessssesssessssesnses 315
ENDUOWRM reply MesSage (X'220C ). i iiecieeieeceertesieesieesiteesseesteesseeseeesseessassnsesssssssesssessnsenns 316
EXCSATRD reply ODJECE (X'LAZA3") ... ettt ettt ettt e ctee e e tee e e beeeebaeeebaeeeasaeesabaaeensasasnsaeanns 317
IMSCALLRM reply MeSSage (X'CADA) ...ttt et e ete et s e ste e s e e sseesreesnseesbeesnaeesaesnaeenseennns 318
OPNQFLRM reply MesSSage (X'2212")...uiiciecieeceesieeiteesee st esteesseesseesseesseesseessseesssessessssessessssssnses 320
OPNQRYRM reply Message (X'2205") . uiiieeerceeeieesieestessteeseesseesseesseesseesseesseesssesssesssesssesssessnes 321
QRYDSC reply ODJECE (X'24LA" .ottt ettt e et e e e te e e e te e e e te e e ateeseate e e steeeseeesseeeennes 323
QRYDTA reply 0DJECT (X'24LB") ittt ettt e ettt e e te e e ae e et e e e aae e e ate e s stae e sseeeenseaeesseeennes 323
QRYPOPRM reply MesSage (X'220F") ... iieieeceerieeiteesee st esteesseesseesteesseesseesseessaeeseesssesnsessssssnses 324
RDBAFLRM reply MESSAgE (X'22LA")...uiiiieeieeceerteeieeseesiessseeseessseesseeesseesseesssesssessssessseessessssessseens 326
RDBATHRM reply Message (X'2203")...ciciiiieecieeierieeseesieeseeseessseessseesseesssessseessesssessssssssesssesssenns 327
RDBNACRM reply MeSSage (X'2204")...ccciieeeeceeeieecieeeeescieesreesteesreesseesseesseesseesssssssessssessessssssnsens 328
RDBNFNRM reply MeSSage (X'2211")...ciciicceecieeieeieeeiessreeseessseesseesseesseessesssessssesssesssssssssssessnsen 329
RDBUPDRM reply MesSage (X'2218")...ccciicceeceeeieeceeeeesreeseesteesreesteesseesseesseesnsesssessssessessssesnses 330
RLSERM reply MesSage (X'CADS"). . eieceeeieeieesieesteestesteeseesteesseessseesseessseessessssessessssesnsesssesans 332
RSCLMTRM reply MeSSAZE (X'L1233")..uiiciiecieeieriieesreesieesieesteesteeste e seessaessseesseesnseesseesnsesssessssesssennn 333
SECCHKRM reply Message (X'L219") ... eeeeeeeeeeetiesieesteesieesseestessreesseesnseesseesseesseesnseensessnsssnnes 334
SQLERRRM reply Message (X'2213") . i ieceeceeeieesteeste st e seesteesseesneeessessatessseessaeeseessassnseenseesnns 335
DDM parameters USEA DY IMS ... .. ettt sttt e e e et e e s e ate e e e s e tae e e s e nsteeeesennbaeeeeennsanaeeanns 336
AIBOALEN parameter (X'CO0A").. .o e ceiie ettt et e ettt e ettt e e ctteeeetteeeeaaee e sseeeesseesesseaesseaessessnseennsaenn 336
AIBRSNMIL parameter (X'COOL). ..ottt eette e ette e eaee e e etee e e tee e ebee e ebeeassaeessaeesseaaenneas 337
AIBRSNM2 parameter (X'CO02") ... ettt eetee e eette e eetee e e ette e e tee e ebeeeeneeeeseeesnseeesseaaennens 337
AIBSFUNC parameter (X'C903") ... i iiecieeeeciee ettt eetee e tee e cteeeesseeeesee e e taeesseeaesaaassseaensseasseaesnnees 338
AIDSTrEamM data STIUCTUIE ..ottt et te e s te e s aee e s ssteessateessseeesaneaesnns 338

o] o] oTol o Iy A=Y= T gIKe F= X €= I U Lot (UL YR 339
[To]oTol oSy A=Y= T g Ie F= X €= BE) U Lot (U1 TS 340
OUTAIBDBPCB parameter (X'CCO2").. . e eciee ettt e ectte e ecteeeeeteeeeteeeeeteeeereeessaeeessaeesaseeeeaseeeenses 342
OUTAIBIOPCB parameter (X'CCO8").....oiccuieecieeeiieeecieeectee e teeeeteeeetee e ateeesasaeeenseessaseeesnseseenseeesnsens 343
RDBNAM parameter (X'2110") . ... ceiee e eeiee et e eetteeeetteeeetteeeeteeeseaeeesesaeeeseeeeseeasseeeenseeessesesnsens 344
SSA PAramMEtEr (X'CO06"). ittt et e ettt eeette e e ette e e tte e ebee e e beeesbeeeebeeassesessesasseaessesasnses 344
SSACOUNT parameter (X'CO05).. ittt ettt e tee et e e e tee e ete e e eabeeeeabeeesaseeeeasaeeenseaensens 345
UPDCNT parameter (X'COOA) . ... e eeeee et e et e ettt e e te e e te e e tte e seateeeeste e e steesesseesesaeeeseeesseaesnnens 345
Chapter 3. IMS Adapter for REXX reference....c.cccceieireieiieieeiecinceniececensececessecenes 347
IMS Adapter fOr REXX OVEIVIEW.......uiiieiieieieececieeeeeeectteeesecttteeeessbteeessesseseesesnssssessesseneesssnssneesssnsseesennn 348
Sample exit routing (DFSREXXU)......uuieeiiieeiiieeiieeeciteeetteeecteeeecteeeesaeeeeesaeeeesaeesesseassseassseessssasnsseessseann 348
Addressing Other ENVIFONMENTS. ......uiiiiiiiiciee ettt sttt sete e sere e seee e s ebeeesereeesebeeeseseeesasaeesaseeesaseassans 349
REXX 1ranSaCtionN PrOZramS..cicuieieieeieieeieteeieieessieessteessseessseessssesssssesssssessssseesssesssssesssssesssssasssssessnnes 349
REXXTDLI COMMANGS...tiiitttieititeriiterireesiteeenttessteessseeessseeessssaessssaessssaesssseesssseesssseessseesssseesssseessseessssees 350
] )0 QI oY U ST 351
REXXIMS extended COMMEANGS. ... .ciiiiiiiiiieeiiieeiitesssitessrtessieessteeesteessbeessbeessasaessseessseesssseessnseesnnses 356
DI AN PRSP 357

H ] 2 I 3 SRR 358
MA P D EF e se e s e e s e e e e e e e et e et e et e et e e e e e e e b e eeaeeaeeeeeeeeeeeeetet et e et e reeran i aaannnn 359
Y ] = PP 361
MA P PUT . rrre e re e e e e e e e e e e et et ettt e e et e a e e e e e s e s ssassassaesaeeeeeeeseseenseeessssssssssssssssssssnssensenns 362
5 SRR 363
SRRBACK @Nd SRRCMIT ....eiiiiiiiiieecccitee e eectte e seettt e e s e e ttte e s s enbee e e s snbeeeessensteaessensssassssanssnesssnnssenessnnns 364
STORAGE. ..ttt et e et e e e e e e e e s e s e e e et e eeeeeeeeeeesasa s ssseaanaaeaeseesesaaansnsraaaneaeeeeeeeeanannes 364
WTO, WTP, @NA WL ettt s eettee e e e e cttte e e s eabe e e e s seastaeesseessaaeseeenssaseesasseneseennsssaeasssseneesannes 365



IMSQUERY extended fUNCHIONS.......cooiieiiiiiiieeee ettt e e e e e e e s e e s assbaeaeeeeeeeeesesnns 366
Sample eXeCs USING REXXT DL ...uiiiiiiieiiiieiieeeiiee st essteessiteessieeesseeessseeessaeeesssseesssseessaseesnssaesnnseessnsens 368
SAY exec: for eXpression VAlUATION.......ccicc e e e e srere e e e ree e e e s are e e e e eenbeeeeeeensraeeseeas 368
PCBINFO exec: display available PCBS in CUrrent PSB.........coviicciieiiccieee ettt e 369
PART execs: database acCess XamMPLES........uiiiicciiieiiccciiee et eeerre e e cree e e e esrre e e s senreeesseeasaneeeeas 371
DOCMD: IMS commands frONT €N ....uuiieiiiieieenie ettt e s sae e s sare e s sabe e ssabeessabeessaseas 373
IAVARISY =0 0 QT TaaY o] (=T=T o] o] L ToF=1 o o PR 377

Chapter 4. Java programming reference.......ccccceevcivieiiciecrecrecieniecincinccacnecnecness 379

IMS Universal drivers SUPPOIt fOr JDBC......uuiiiiiiciiiieececiiee e e eciiee e e eetre e s e e eette e e s e enaeeesssnreeeesennseaeesennnens 379
javax.sql.Clob methods SUPPOItEd.... ..ottt e et et e e e 379
java.sqgl.Connection Methods SUPPOrtEd........coociiiiciieeciiece et 379
java.sqgl.DatabaseMetaData methods SUPPOrted......ccccuiieiiicciiecceeeeeeee e 381
javax.sql.DataSource methods SUPPOITEd......cceiiceiieeiieeeie ettt et e 385
java.sql.Driver methods SUPPOITEU... ..ottt ettt et e e nae s 385
java.sqgl.ParameterMetaData methods SUPPOrtEd.......cccieeciieeciieccee e e 386
java.sql.PreparedStatement methods sUPPOrted......cccciieeciieeciieccee e 386
java.sqgl.Statement methods SUPPOrtEd.. ... iiiiciie et 387
java.sgl.ResultSet methods SUPPOrtEd.. ... iii et et 388
java.sqgl.ResultSetMetaData methods sUPPOrtEd......cccciecciieeciie e e 393

IMS Universal drivers support for the Common Client Interface.......cccceeeecciieiieccieee e cecieee s 394
javax.resource.cci.Connection methods sUppOrted.....cccccoieciiicciieciieccee e 394
javax.resource.cci.ConnectionFactory methods supported.......ccceecieeciieccieecneeenen. 394
javax.resource.cci.ConnectionMetaData methods supported......ccccoeeeveieciiicciiiecinenns 395
javax.resource.cci.Interaction methods sUppPOrted.....cccccoieiiiieciiiieccieecce e 395
javax.resource.cci.LocalTransaction methods supported.......ccccoooieiieeecieeccieeecreeeenen. 396
javax.resource.cci.ResultSetInfo methods supported.......cccooeiiciiicciieccieeccieecciieene 396
javax.resource.cci.ResourceAdapterMetaData methods supported......cccccoveeciveecnnnenns 397
javax.resource.cci.RecordFactory methods supported.......ccccecoeeeciieccieeccieeccieeeciieeae 397

Java API documentation (JAVAAOC)......ccueeiercieeeieeieeste et et e steesreesteesteesree s teesaeesseessaesnteenseesneeenseennes 397

Chapter 5. Message Format Service (MFS) reference........ccccceevvecrencrncrnncneciannn.. 401

MFS application Program AESIEN.....ccuiiieciieieiieieiteerite et ettt e e st eesbee e s beeesbaeesbaeesssaeesseeesseessseeenn 401
Relationships between MFS control BlOCKS.........uvieiiiiiie et 401
Format library member SELECTION......ccc.eviiie e e e e e bae e e e enaaee s 408
3270 0r SLU 2 SCreen fOrMatting....ccuiiecieieciieeiiieeeiteesiteseite s ssree s st e e ssree e sbeeesbeeessaesssaesssaessasaeenns 411
Device compatibility with previous versions of MFS.........ooo i e e e 414
Enhancing system performance of MFS message and device formats........cceveeveveeiiveeinvieensnieennns 419
MFS definitions for intersystem COMMUNICAtION........ciiiiiiiiiee et 424

MFS MESSAZE FOIMIALS. ..iiiiiiiieiieiiiee ettt e s see e e sre e s ee e s saee e s saee e ssaeeesseeesseeessseeesseeesnseeesnnens 425
INPUL MESSAEE TOMMALS..ci ittt e s st e s sbe e e s be e s sabeeesabeessaseessabaeesaseas 425
OULPUL MESSAZE fOIMALS..ci ittt ete e s te e st e e seateesebteesstaesaneeesaneaesneeesane 428
MFS message formatting fUNCHIONS......civiiiiiiiieeeccree et s e e e s s 460

Chapter 6. OTMA Callable Interface API reference.....ccccoccceiieceececiecececeecenneceenesss 323

OTMA Callable INterface APT CallS......uii ittt e e e ebee e e s erbe e e e s eessaeeeeeenseeeeean 523
(O I N O B oV o} £ VgL I Ao 3SR 523
o] 1 g = IO £=T= 1 =AY o SN 524
Loy 0 a = o] 1= 1o = PSSR 526
Loy 0 a =T o] =T 0 D q Y o R SSPRRRT 527
(o1 AT N1 [T e Yoy 2 = USRS O R PP 529
OTMA_SENA_TECEIVE APt e e et e e e e ee s babaeaeeeeeeeeeseessssssssaeseeeaeeeessesnnsnes 530
OtMA_SENA_TECEIVEX APL....eeiiiiiiiieieee ettt e e e eeeee et e e e e e e e e eesesssbabaereeeeeeeessesssssssrasreereeeeeeas 532
OtMA_SENA_FECEIVEY AP ... ettt e e e e e e e e et e e e e s bt e e e s e nrteeeseesseeeeeesnsteeessnnnsens 533
Lo F= YT a T = o1/ [ A = SR 534

OtMA_SENA_ASYNCX APt e e e e e e ee e e e e seeabeaeeseeasteeeesenbeeeesenseeeeeennsseneanans 537



OtMA_TECEIVE_ASYNC APt ccteee ettt e ree e e e e ette e e e e erte e e s e esaeeeeeenseeeesesnbseaeseansseaaeesnssenaenannns 538

OTMIA_TTEE AP ettt e et ee et eeeeeeeeses s s sabaaaeasaeaeessesaassssbbeaeeeseeeeeseenansssrrrnens 539
OTMA_CLOSE AP ettt e et e e eee e e e e eeeeeeesessssssbeaaeeeeeeeeseesasssssssassaeseeseeseesannsrares 540
(O ) B\ TN OF A= Tn ol o] (= o] o T={ =10 1 1= F PRSP 541
Warranty and distribution for OTMA C/I sample Programs.......c.eeeeeeeniieesnieeesnieessieesssseesssseessnes 541
OTMA C/I sample program for SynChronoUS ProCESSING....cccvtirieeirrirerniirernieessieesseeesseeesseeessenes 541
OTMA C/I sample program for asynchronouS ProCESSING.......cecueeriveeriireriiieeriieessieessreesseeessssees 550

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development.........563

INCLUAE TILE DFSPWSH..ooeeeiiiiii ettt eeeeccr e e e e e e e e s e s essbaaaeereeeeeseessesassssssarasaeseessessesssssssnnnns 563
DY @1 = 1 TR 570
DY O 1] = 1 TR 573
DYy (] = 1 TS 575
DY) ] = 1 TR 577
Return codes from the DFESPWSTIO APIS......iiiiiiiieeeeeeeeecciirteree e e e e eeeeeseaasrtareeeeeeessesesssssssasseeeseseessenns 580

Chapter 8. SQL programming reference......ccccceivcieiriicreciecrenieniesiniiaccaccscsecsenses 383

Y@ ] It g Tot=Y o) 63 (o] 1 TSR 583
SErUCTUrEd QUEIY LANGUAEE. ...eiicvieiiiiee ittt ettt sttt ste e st e e s ette e sebte e sbeeessbteesbaeesasaessseeesseeesasaeesane 583
IMS data StrUCTUIES TOr SOL.iiiiiiiiiiiiiiiiiieee et e e e e eeeee b be e e e e e e e e seessssssaseereeeeeeeeesennnns 584

LaNGUAEE ELEMENTS. .. ittt ettt ettt e st e st e s s bt e e s bt e s sabee s sabeeessbeeesabaesssbeeesssaessnsaeenaraas 585
L0 3 F= U=Vt =Y USSR 585
0] 2= R 585
La 1T o 413 =Y SR SR 586
NaMINE CONVENTIONS. .. ttiiiiiiee ittt scte ettt e sttt esette e ssrte s srbteesbeeesbeeesbeessbeessseeesabaeesssaessseesssseessseesnnses 586
DY €= V] 1= TSP 586
ASSIZNMENT AN COMPATISON..utiiiiieiritieieitereieeratteeettesssseesssteesssseeesseeessseeessseesssssesssseesssseesssseesssseees 590
(O00] 0 E] 7= ) £ RSP PURRNE 591
=Y o N g = o 1SRN 592
Y (] (=T Ao =T (o Y= YA =Y o U= SR 593
HOSt STrUCTUIES IN COBOL.uiiiiiiiiieecciieee ettt eecttee e e e tree e e e ette e e e e envee e e e eabteeeseensseeeesesssnessennssnnansnnns 594
LT Lo L= TSRS 595
SY=T- 1ol AT to] gl I To o F= USSR 598

1O IES] = 1 (=1 0 =] 01 £ 599
How SQL Statements are iNVOKE........ooovieiiiiiiiieeeee ettt e e e e e e e e e s eansareaeeeeeeas 600
ALTER DATABASE. ..ottt ettt e ettt e e e e e cttte e e e et e e e s sebtaee e e e ssaaeesesssbaeaesassesessesnsseeesannssenaesannes 603
I I 1Y = PSR 617
F I 1Y = I Y A O S 645
L0 ] =PSRN 651
COMMENT ON ttiiiieiiieee e eciiee e e ectre e e e e ctee e s e e ette e e e eesteeeesesssaaeeaassaseeeasasseseseansseaeesaassenseeannsseseennassenesnans 652
CREATE DATABASE. ... oottt ettt e ecttte e e e ettte e s e e atee e e s esasteaeesestaeeeaensaseeeeenssesaeeennsenaessnnsssaessssssnes 654
CREATE PROGRAMVIEW. ... .ttt ettt e ettt e e s ette e e s e sbtee e s e e saaeeesessteeessnstasessanstanessesssnesssnnssenes 667
(O] oy I S 172 = 1 USRSt 684
CREATE TABLESPACE.....cc ottt sttt ettt e e s ette e e s e btee e s s e aate e e s senste e e s eanstaseseenntaseeeennsseaessnnnsenes 727
DECLARE CURSOR .ottt ettt e ettt e s ettt e e e e tte e e s e s ate e e e e sanbaee e s e nbaaeeaeanssesaeesasssnsessassasessannssnnensnnnes 741
DECLARE STATEMENT ..ceii ittt ettt e eecttte e e e e tte e e e e bte e e s seateee e s e staeeesessstaeessenssesasaensanesesnnsseneesannsenes 742
DI I SRR 742
]Sy O3 1 =1 S 0 I = R 743
DROP DATABASE. ...ttt ettt ee e e s e et e e e s et eee e e e e btaee e e e sseaeesaasstaeessanstaaesasssesessansssnesasnsseeensan 744
DROP PROGRAMVIEW.....ccctteee e cctite e eecttte e eeettee e s eettee e e seabtaeeseenbataeseensstaeeesanstaaassanssasesssnsssnesssnnnsenes 745
DROP TABLE. ..ottt ettt ettt e ettt e e e etee e e e et ae e e e e e ateeeeeeasteeeesennbeaaesasnssasassanssteeessanssanesannsssnessennse 745
DROP TABLESPACE. ... ettt ettt eecttte e e ettt e e e e s tee e e e eabteee s e s ssteeaeesstaeessanssaaessenssasessennssnesssnnnsenes 746
=L U I SR 747
I TSR 748
AL U 1 SRR 750
LA Y = U 750
L0 ] S 753

vii



viii

PREPARE ... .ottt aa s 755

] = I O USRS 757
L o 10 I RNt 767
LAY 1 N YA = R 770
SOL communication area (SOLIMSCA).....uuuiiiieceeeeeieeteeee et e e eertee e e eesateeeesssareeeesssberessensseeessssssenessens 771
Description Of SQLIMSCA fIElS..uuii ittt e e e e srrre e e e e ree e e e s nbee e e s s nnreee e s e nnaneeeeas 771
THE INCLUAEA SOLIMSCA. ..ottt e e e e e e e e e e e aasbsraeeeeeeeeeeeseasnsssssasseereeaeeesesannnes 773
SQL descriptor area (SQLIMSDA).....oo et ectee ettt e eeee e e etee e eeteeeeeteeeebeeeebeeesnsaeeeseseenseaeensaeesnseeennses 773
Description of SQLIMSDA fIEldS.....uuiii ettt ecree e e e e ere e e s e are e e s senbaee e seensaeeeeeennsens 773
The INCLUAEA SOLIMSDA. ... ettt e et e et e eee bbb e e e e e e eeessesesasssbaeeeeeseeeeessessasssssrasernees 776

[\ 0] (=Y - TR A A

Programming interface iNfOrmMation. ... s e e 780
= e (=10 =T O RSO UPURROPRRROPRPRNt 780
Terms and conditions for product doCUMENTAtION........uiviiiciiiiecccee e ree e 781
IBM ONliNg Privacy Stat@mMENt....cc i eiiee et ectee e ctrte e e e ette e e e e eate e e s e eare e e e s ntaeeeseensaneeeennnsenanaan 781

=11 110 == 1] 1)U | - X

T =) R | . 1.



About this information

These topics provide reference information for the IMS application programming interfaces (APIs). The
topics also provide reference information for SQL programming for IMS, the IMS Adapter for REXX, the
DL/I test program (DFSDDLTO), and the IMS Message Format Service (MFS). Guidance information for
writing IMS application programs is in IMS Version 15.3 Application Programming.

This information is available in IBM® Documentation.

Prerequisite knowledge

This book is an API (application programming interface) reference for IMS application programming in any
of the following environments:

IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)
« IMS Transaction Manager (IMS TM)

CICS® EXEC DLI

WebSphere® Application Server for z/0S°®

« WebSphere Application Server for distributed platforms
- Java" dependent regions (JMP and JBP)
« Any environment for stand-alone Java application development

This book provides reference information for the IMS application programming interfaces (APIs),
including DL/I, EXEC DLI, the IMS Universal drivers, and the Java class libraries for IMS. It also provides
reference information for the IMS Adapter for REXX, the DL/I test program (DFSDDLTO), and the IMS
Message Format Service (MFS). Guidance information for writing IMS application programs is in IMS
Version 15.3 Application Programming.

Before using this book, you should understand the concepts of application design described in IMS
Version 15.3 Application Programming, which assumes that you understand basic z/OS and IMS concepts
and the IMS environments. You should also know how to use assembler language, C language, COBOL,
Pascal, or PL/I. CICS programs can be written in assembler language, C language, COBOL, PL/I, and C++.

To write Java applications, you must thoroughly understand the Java language and JDBC. This book
assumes that you know Java and JDBC. It does not explain any Java or JDBC concepts.

To create the Java database metadata class, which is a required step in writing Java applications for
IMS using the IMS Universal drivers or the Java class libraries, you must understand IMS databases. IMS
database concepts are described in IMS Version 15.3 Database Administration.

To write applications that store or retrieve XML, you must understand XML and its related technologies,
such as XML schemas.

To learn about z/0S, see z/0S Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified

For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

« Only technical changes are marked; style and grammatical changes are not marked.

© Copyright IBM Corp. 1974, 2022 ix


https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

- If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

- If a topicis changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

« Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.

The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item -»<

« Optional items appear below the main path.
»— required_item >«
L optional_item J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

J_ optional_item T
»— required_item >«

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N

required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.

»— required_item <
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

f_ default_choice T
»— required_item

t optional_choice j
optional_choice

X About this information



- An arrow returning to the left, above the main line, indicates an item that can be repeated.

<

»— required_item L repeatable_item ln

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<

»— required_item L repeatable_item lu

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

»— required_item fragment-name

fragment-name

»— required_item >4
L optional_item —J

« In IMS, a b symbol indicates one blank position.

- Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

- Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.3

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS 15.3. These
features support:

» Keyboard-only operation.
« Interfaces that are commonly used by screen readers and screen maghnifiers.
- Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.3 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.3 ISPF panels using TSO/E or ISPF, refer to the z/0S TSO/E
Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

About this information xi



Related accessibility information

Online documentation for IMS 15.3 is available in IBM Documentation.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments

Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

e Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

« Send an email to imspubs@us.ibm.com. Be sure to include the book title.
« Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xii IMS: Application Programming APIs


http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

Chapter 1. DL/I calls reference

These topics contain reference information for IMS DL/I calls.

Database management

Use the following DL/I calls to access and administer IMS databases.

DL/I calls for database management

Use these DL/I calls with IMS DB to perform database management functions in your application
program.

Each call description contains:

« A syntax diagram

« Definitions for parameters that are available to the call

« Details on how to use the call in your application program
« Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input” refers to input to IMS
from the application program. "Output"” refers to output from IMS to the application program.

Database management calls must use either db pcb or aib parameters. The syntax diagrams for these
calls begin with the function parameter. The call, call interface (xxxTDLI), and parmcount (if it is required)
are not included in the syntax diagrams.

Related reading: For specific information about coding your program in assembler language, C language,
COBOL, Pascal, and PL/I, see the topic "Defining Application Program Elements" in IMS Version 15.3
Application Programming.

Related reference

“DL/I calls for IMS TM system services” on page 113
Use these DL/I calls with IMS Transaction Manager system services.

“DL/I calls for transaction management” on page 74
Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.

“EXEC DLI commands” on page 153

The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

Database management call summary
The following table shows the parameters that are valid for each database management call.
Optional parameters are enclosed in brackets ([ ]).

Restriction: Language-dependent parameters are not shown here. The variable parmcount is required for
all PLITDLI calls. Either parmcount or VL is required for assembler language calls. Parmcount is optional
in COBOL, C, and Pascal programs.

Related reading: For more information on language-dependent application elements, see the topic
"Defining Application Program Elements" in IMS Version 15.3 Application Programming.

© Copyright IBM Corp. 1974, 2022 1



Table 1. Summary of DB calls

Function Code Meaning and Use Options Parameters Valid for

CIMS Initializes and aib DB/DC, DBCTL,
terminates the ODBA
ODBA interface in
a z/0S application
region.

CLSE Close Closes a GSAM function, gsam pcb  DB/DC, DBCTL, DB
database explicitly  oraib batch, ODBA

DEQb Dequeue Releases segments  function, i/o pcb (full DB batch, BMP, MPP,
reserved by Q function only), or aib, IFP, DBCTL, ODBA
command code i/o area (full function

only)

DLET Delete Removes a segment function, db pcbor  DB/DC, DBCTL, DB
and its dependents  aib, i/o area, [ssa] batch, ODBA
from the database

FLDb Field Accesses a field function, db pcbor  DB/DC, ODBA
within a segment aib, i/o area, rootssa

GHNb Get Hold Next Retrieves function, db pcbor  DB/DC, DBCTL, DB
subsequent aib, i/o area, [ssal] batch, ODBA
message segments

GHNP Get Hold Next in Retrieves function, db pcb or  DB/DC, DBCTL, DB

Parent dependents aib, i/o area, [ssa] batch, ODBA

sequentially

GHUb Get Hold Unique Retrieves segments  function, db pcbor  DB/DC, DBCTL, DB
and establishes a aib, i/o area, [ssa] batch, ODBA
starting position in
the database

GNbb Get Next Retrieves function, db pcbor  DB/DC, DBCTL, DB
subsequent aib, i/o area, [ssaor batch, ODBA
message segments  rsal

GNPbH Get Next in Parent Retrieves function, db pcb or  DB/DC, DBCTL, DB
dependents aib, i/o area, [ssa] batch, ODBA
sequentially

GUbb Get Unique Retrieves segments  function, db pcbor  DB/DC, DBCTL, DB
and establishes a aib, i/o area, [ssaor batch, ODBA
starting position in rsaj
the database

GUR Get Unique Record Retrieves a complete function, aib, i/o DB/DC, DBCTL, DB
record from the area, [ssa] batch, ODBA
IMS catalog in XML
format

ISRT Insert Loads and adds one  function, db pcbor  DB/DC, DCCTL, DB
or more segments to aib, i/o area, [ssaor batch, ODBA
the database rsal

OPEN Open Opens a GSAM function, gsam pcb  DB/DC, DBCTL, DB

database explicitly

or aib, [i/o area]

batch, ODBA

2 IMS: Application Programming APIs



Table 1. Summary of DB calls (continued)

Function Code Meaning and Use Options Parameters Valid for

POSH Position Retrieves the function, db pcb or  DB/DC, DBCTL, DB
location of a specific aib, i/o area, [ssa] batch, ODBA
dependent or last-
inserted sequential
dependent segment

REPL Replace Changes values of function, db pcbor  DB/DC, DBCTL, DB
one or more fields in aib, i/o area, [ssa] batch, ODBA
a segment

RLSE Release Locks Releases all locks function, db pcb DB/DC, DBCTL, DB
held for unmodified batch, ODBA
data

CIMS call

The CIMS call is used to initialize and terminate the ODBA interface in a z/OS application region.

Format

»— CIMS — aib »«

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch
CIMS X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and

output parameter.

These fields must be initialized in the AIB:

AIBID

Eye-catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the application program

obtained.

AIBRSNM1
Character value.

AIBSFUNC

Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

INIT

AIBRSNM2. A 4-character ID of the ODBA startup table.

CONNECT

AIBRSA1L. Address of the CONNECT parameter list.
The following table shows the CIMS CONNECT parameter list format.

Chapter 1. DL/I calls reference 3



Table 2. CIMS CONNECT parameter list format

Offset Length Field Usage description
X'00' X'04' Input Count of connect
request table entries.
X'04' X'04' Input Address of the
connect request
table.
TERM

AIBRSNM2. A 4-character ID of the ODBA startup table that represents the IMS connection
that is to be terminated.

TALL
Terminate all IMS connections.

Usage

The CIMS call is used by an application program that is running in an application address space to
establish or terminate the ODBA environment.

INIThbbb
The CIMS subfunction INIT must be issued by the application to establish the ODBA environment in
the z/OS application address space.

Optionally, AIBRSNM2 can specify the 4-character ID of the ODBA Startup table member. This
member is named DFSxxxx0 where xxxx is equal to the 4-character ID. If AIBRSNM2 is specified,
ODBA tries to establish a connection to the IMS specified in the DFSxxxx0 member after the ODBA
environment is initialized in the z/OS application address space.

CONNECTh
Use the CIMS CONNECT call to establish multiple ODBA connections to IMS systems from the CSL
Open Database Manager (ODBM).

A CIMS CONNECT call can be issued instead of, or in addition to, a CIMS INIT call. A CIMS CONNECT
call will initialize ODBA if ODBA has not already been initialized. To complete initialization only, issue a
CIMS CONNECT call with AIBRSA1 set to -1 (X'FFFFFFFF").

The connect request table contains one or more connect request entries in contiguous storage. Each
entry contains the following fields:

« A1l-to 4-character alias name, left justified and padded on the right with blanks. The alias name is
the value (cccc) taken from the startup properties table DFSccccO. This parameter is required.

« A 4-byte address of the connection properties table (DFSPRP) or 0.

A value of 0 indicates that ODBA must load DFSccccO to obtain the IMS connection properties. This
member is constructed by specifying the DFSPRP macro in DFScccc0, and then assembling and
linking the member. This member must be in the STEPLIB or JOBLIB of the ODBA application job.

A nonzero value indicates that the caller is passing the address of the connection properties
parameter table. The connection properties parameters are mapped by the DFSPRP macro.

« A 4-byte field to contain the connection request return code. The return code is one of the
AIBRETRN codes.

A 4-byte field to contain the connection request reason code. The reason code is one of the
AIBREASN codes.

« A 4-byte field to contain the connection request error extension information code. The error
extension contains additional diagnostic information specific to the return and reason codes.

The following table summarizes the CIMS CONNECT table entry format.

4 IMS: Application Programming APIs



Table 3. CIMS CONNECT table entry format

Offset Length Field Usage description

X'00' X'04' Input 1- to 4-character IMS
alias name (cccec) from
the startup properties
table DFSccccO, where
cccc is the alias name.

X'04' X'04 Input 0 or the address
of an ODBA startup
properties table.

A value of O indicates
that ODBA must load

a startup properties
table named DFSccccO,
where ccccis the
supplied alias name.

An address indicates
that the caller is
supplying the startup
properties table. The
table is mapped by the

DFSPRP macro.

X'08' X'04' Output Connect request return
code for this entry.

X'oC! X'04' Output Connect request reason
code for this entry.

X'10' X'04' Output Connect request error
extension code for this
entry.

TERMbbbb

The CIMS subfunction TERM can be issued to terminate one IMS connection. AIBRSNM2 specifies the
4-character ID of the startup table member that represents the IMS connection to be terminated. On
completion of the TERM subfunction, the ODBA environment remains intact in the z/OS application
address space.

Note: If the application that issued CIMS INIT chooses to return to the operating system following
completion of the CIMS TERM, the address space will terminate with a system abend A03. This can be
avoided by issuing the CIMS TALL prior to returning to the operating system

TALLbbbb
The CIMS subfunction TALL must be issued to terminate all IMS connections and terminate the ODBA
environment in the application address space.

CLSE call
The close (CLSE) call is used to explicitly close a GSAM database.

For more information on GSAM, see the topic "Processing GSAM Databases" in IMS Version 15.3
Application Programming.

Chapter 1. DL/I calls reference 5



Format

»— CLSE tgsam pcbj—N
aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: CLSE X X X X X

Parameters

gsam pch
Specifies the GSAM PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB length. This field must contain the actual length of the AIB that the application program

obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a GSAM PCB.

Usage

For information on using CLSE, see the topic "Explicit Open and Close Calls to GSAM" in IMS Version 15.3
Application Programming.

DEQ call

The Dequeue (DEQ) call is used to release a segment that is retrieved using the Q command code.

Format (full function)
»— DEQ i/o pcb i/o area »«

Format (Fast Path DEDB)

LT
aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function and DEDB: DEQ X X X

Parameters

DEDB pcb (Fast Path only)
Specifies any DEDB PCB for the call.

i/o pcb (full function only)
Specifies the I/O PCB for the DEQ call. This is an input and output parameter.

6 IMS: Application Programming APIs



aib
Specifies the AIB for the call. This is an input and output parameter. These fields must be initialized in
the AIB:
AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/0 area specified in the call list.

i/o area (full function only)
Specifies the 1-byte area containing a letter (A-J), which represents the lock class of the locks to be
released. This is a mandatory input parameter.

Usage
The DEQ call releases all segments that are retrieved using the Q command code, except:

- Segments modified by your program, until your program reaches a commit point

« Segments required to keep your position in the hierarchy, until your program moves to another database
record

« Aclass of segments that has been locked using a different lock class

If your program only reads segments, it can release them by issuing a DEQ call. If your program does
not issue a DEQ call, IMS releases the reserved segments when your program reaches a commit point.
By releasing the segments with a DEQ call before your program reaches a commit point, you make them
available to other programs more quickly.

For more information on the relationship between the DEQ call and the Q command code, see the
topic "Reserving Segments for the Exclusive Use of Your Program" in IMS Version 15.3 Application
Programming.

Restrictions

In a CICS DL/I environment, calls made from one CICS (DBCTL) system are supported in a remote CICS
DL/I environment, if the remote environment is also CICS (DBCTL).

DLET call

The Delete (DLET) call is used to remove a segment and its dependents from the database.

Format
»— DLET db pcb i/fo area <
—
ssa
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: DLET X X X
For DEDB: DLET X X
For MSDB: DLET X

Chapter 1. DL/I calls reference 7



Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area in your program that communicates with IMS. This parameter is an input
parameter. Before deleting a segment, you must first issue a Get Hold call to place the segment in the
I/O area. You can then issue the DLET call to delete the segment and its dependents in the database.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA that you
supply in the call point to data areas in your program where the SSAs have been defined for the call.
You can use only one SSA in the parameter. This parameter is optional for the DLET call.

Usage

The DLET call must be preceded by one of the three Get Hold calls. When you issue the DLET call, IMS
deletes the held segment, along with all its physical dependents from the database, regardless of whether
your program is sensitive to all of these segments. IMS rejects the DLET call if the preceding call for

the PCB was not a Get Hold, REPL, or DLET call. If the DLET call is successful, the previously retrieved
segment and all of its dependents are removed from the database and cannot be retrieved again.

If the Get Hold call that precedes the DLET call is a path call, and you do not want to delete all the
retrieved segments, you must indicate to IMS which of the retrieved segments (and its dependents, if any)
you want deleted; to do this, specify an unqualified SSA for that segment. Deleting a segment this way
automatically deletes all dependents of the segment. Only one SSA is allowed in the DLET call, and this is
the only time a SSA is applicable in a DLET call.

No command codes apply to the DLET call. If you use a command code in a DLET call, IMS disregards the
command code.

FLD call
The Field (FLD) call is used to access a field within a segment for MSDBs or DEDBs.

Format

»— FLD tdb pcbj— i/o area >«
aib

ssa

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
For MSDB: FLD X

8 IMS: Application Programming APIs



Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For DEDB: FLD X X

Parameters

db pch
Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies your program's I/0 area, which contains the field search argument (FSA) for this call. This
parameter is an input parameter.

ssa
Specifies the SSA, if any, that you want to use in this call. You can use up to 15 SSAs in this input
parameter. The SSA that you supply will point to those data areas that you have defined for the call.
This parameter is optional for the FLD call.

Usage
Use the FLD call to access and change the contents of a field within a segment.

The FLD call does two things for you: it compares the value of a field to the value you supply (FLD/
VERIFY), and it changes the value of the field in the way that you specify (FLD/CHANGE).

AlLDL/I command codes are available to DEDBs, using the FLD call. The FLD call formats for DEDBs are
the same as for other DL/I calls. So, if your MSDBs have been converted to DEDBSs, you do not need to
change application programs that use the FLD call.

You can also use the FLD call in application programs for DEDBSs, instead of the combination of GHU, REPL,
and DL/T calls.

FSAs

The field search argument (FSA) is equivalent to the I/0 area that is used by other DL/I database calls. For
a FLD call, data is not moved into the I/O area; rather, the FSAs are moved into the I/O area.

Multiple FSAs are allowed on one FLD call. This is specified in the FSA's connector field. Each FSA can
operate on either the same or different fields within the target segment.

The FSA that you reference in a FLD call contains five fields. The rules for coding these fields are as
follows:

Field name
This field must be 8 bytes long. If the field name you are using is less than 8 bytes, the name must be
left-justified and padded on the right with blanks.

FSA status code
This field is 1 byte. After a FLD call, IMS returns one of these status codes to this area:

Chapter 1. DL/I calls reference 9



Successful

Invalid operation

Operand length invalid

Invalid call—program tried to change key field
Verify check was unsuccessful

Packed decimal or hexadecimal field is invalid
Program tried to change an unowned segment

Arithmetic overflow
H
Field not found in segment
Op code
This 1-byte field contains one of these operators for a change operation:

+
To add the operand to the field value

To subtract the operand from the field value

To set the field value to the value of the operand
For a verify operation, this field must contain one of the following;:
E

Verify that the field value and the operand are equal.

G
Verify that the field value is greater than the operand.

Verify that the field value is greater than or equal to the operand.
Verify that the field value is less than the operand.

Verify that the field value is less than or equal to the operand.

N
Verify that the field value is not equal to the operand.

Operand
This variable length field contains the value that you want to test the field value against. The data
in this field must be the same type as the data in the segment field. (You define this in the DBD.) If
the data is hexadecimal, the value in the operand is twice as long as the field in the database. If the
data is packed decimal, the operand does not contain leading zeros, so the operand length might be
shorter than the actual field. For other types of data, the lengths must be equal.

Connector

This 1-byte field must contain a blank if this is the last or only FSA, or an asterisk (*) if another FSA
follows this one.

The format of SSA in FLD calls is the same as the format of SSA in DL/I calls. If no SSA exists, the first
segment in the MSDB or DEDB is retrieved.

10 IMS: Application Programming APIs



Related concepts
Commit-point processing in MSDBs and DEDBs (Application Programming)
Updating segments: REPL, DLET, ISRT, and FLD (Application Programming)

GN/GHN call

The Get Next (GN) call is used to retrieve segments sequentially from the database. The Get Hold Next
(GHN) is the hold form for a GN call.

Format

»d

GN db pcb i/o area >«
L aib —J [ ]
ssa

— rsq ——
GHN db pcb i/o area
aib —J

ssa

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
For Full-Function: GN/GHN X X X
For GSAM: GN X X X X X
For DEDB: GN X X
For MSDB: GN X
Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/0 area specified in the call list.

i/o area
Specifies the I/0 area. This parameter is an output parameter. When you issue one of the Get calls
successfully, IMS returns the requested segment to this area. If your program issues any path calls,
the I/O area must be long enough to hold the longest path of concatenated segments following a path
call. This area always contains left-justified segment data. The I/O area points to the first byte of this
area.

When you use the GN call with GSAM, the area named by the i/o area parameter contains the record
you are retrieving.

Chapter 1. DL/I calls reference 11


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_commitprocessingmsdbanddedb.htm#ims_commitprocessingmsdbanddedb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_updatesegments.htm#ims_updatesegments

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA that you
supply in the call point to data areas in your program where the SSA have been defined for the call.
You can use up to 15 SSAs in the parameter. This parameter is optional for the GN call.

rsa
Specifies the area in your program where the RSA for the record should be returned. This output
parameter is used for GSAM only and is optional. See the topic "GSAM Data Areas" in IMS Version 15.3
Application Programming for more information on RSAs.

Usage: Get Next (GN)

A Get Next (GN) call is a request for a segment, as described by the SSA you supply, that is linked to the
call that was issued prior to the GN call. IMS starts its search at the current position.

When you use the GN call:

» Processing moves forward from current position (unless the call includes the F command code).
« IMS uses the current position (that was set by the previous call) as the search starting point.

« The segment retrieved is determined by a combination of the next sequential position in the hierarchy
and the SSA included in the call.

« Be careful when you use GN, because it is possible to use SSAs that force IMS to search to the end of
the database without retrieving a segment. This is particularly true with the "not equal" or "greater than"
relational operators.

A GN call retrieves the next segment in the hierarchy that satisfies the SSA that you supplied. Because
the segment retrieved by a GN call depends on the current position in the hierarchy, GN is often issued
after a GU call. If no position has been established in the hierarchy, GN retrieves the first segment in the
database. A GN call retrieves a segment or path of segments by moving forward from the current position
in the database. As processing continues, IMS looks for segments at each level to satisfy the call.

For example, sequential retrieval in a hierarchy is always top to bottom and left to right. For example,
if you repeatedly issue unqualified GN calls against the hierarchy in the following figure, IMS returns the
segment occurrences in the database record in this order:

1. Al (the root segment)
2. B1 and its dependents (C1,D1,F1,D2,D3,E1,E2, and G1)
3. H1 and its dependents (11,12,J1, and K1).

If you issue an unqualified GN again after IMS has returned K1, IMS returns the root segment occurrence
whose key follows segment Al in the database.

A GN call that is qualified with the segment type can retrieve all the occurrences of a particular segment
type in the database.

For example, if you issue a GN call with qualified SSAs for segments A1 and B1, and an unqualified SSA
for segment type D, IMS returns segment D1 the first time you issue the call, segment D2 the second time
you issue the call, and segment D3 the third time you issue the call. If you issue the call a fourth time, IMS
returns a status code of GE, which means that IMS could not find the segment you requested.

You can use unqualified GN calls to retrieve all of the occurrences of a segment in a hierarchy, in their
hierarchic sequence, starting at the current position. Each unqualified GN call retrieves the next sequential
segment forward from the current position. For example, to answer the processing request:

Print out the entire medical database.

You would issue an unqualified GN call repeatedly until IMS returned a GB status code, indicating that it
had reached the end of the database without being able to satisfy your call. If you issued the GN again
after the GB status code, IMS would return the first segment occurrence in the database.

Like GU, a GN call can have as many SSAs as the hierarchy has levels. Using fully qualified SSAs with
GN calls clearly identifies the hierarchic path and the segment you want, thus making it useful in
documenting the call.

12 IMS: Application Programming APIs



A GN call with an unqualified SSA retrieves the next occurrence of that segment type by going forward
from the current position.

GN with a qualified SSA retrieves the next occurrence of the specified segment type that satisfies the
SSAs.

When you specify a GN that has multiple SSAs, the presence or absence of unqualified SSAs in the call has
no effect on the operation unless you use command codes on the unqualified SSA. IMS uses only qualified
SSAs plus the last SSA to determine the path and retrieve the segment. Unspecified or unqualified SSAs
for higher-level segments in the hierarchy mean that any high-level segment that is the parent of the
correct lower-level, specified or qualified segment will satisfy the call.

A GN call with a SSA that is qualified on the key of the root can produce different results from a GU with
the same SSA, depending on the position in the database and the sequence of keys in the database. If
the current position in the database is beyond a segment that would satisfy the SSA, the segment is not
retrieved by the GN. GN returns the GE status code if both of these conditions are met:

« The value of the key in the SSA has an upper limit that is set, for example, to less-than-or-equal-to the
value.

- A segment with a key greater than the value in the SSA is found in a sequential search before the
specified segment is found.

GN returns the GE status code, even though the specified segment exists and would be retrieved by a GU
call.

Usage: Get Hold Next (GHN)

Before your program can delete or replace a segment, it must retrieve the segment and indicate to IMS
that it is going to change the segment in some way. The program does this by issuing a Get call with

a "hold" before deleting or replacing the segment. When the program has successfully retrieved the
segment with a Get Hold call, it can delete the segment or change one or more fields (except the key field)
in the segment.

The only difference between Get calls with a hold and Get calls without a hold is that the hold calls can be
followed by REPL or DLET.

The hold status on the retrieved segment is canceled and must be reestablished before you reissue the
DLET or REPL call. After issuing a Get Hold call, you can issue more than one REPL or DLET call to the
segment if you do not issue intervening calls to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you can continue with
other processing without releasing the segment. The segment is freed as soon as the current position
changes—when you issue another call to the same PCB that you used for the Get Hold call. In other
words, a Get Hold call must precede a REPL or DLET call. However, issuing a Get Hold call does not
require you to replace or delete the segment.

Usage: HDAM, PHDAM, or DEDB database with GN

For database organizations other than HDAM, PHDAM, and DEDB, processing the database sequentially
using GN calls returns the root segments in ascending key sequence. However, the order of the root
segments for a HDAM, PHDAM, or DEDB database depends on the randomizing routine that is specified
for that database. Unless a sequential randomizing routine was specified, the order of the root segments
in the database is not in ascending key sequence.

For a hierarchic direct access method (HDAM, PHDAM) or a DEDB database, a series of unqualified GN
calls or GN calls that are qualified only on the root segment:

1. Returns all the roots from one anchor point
2. Moves to the next anchor point
3. Returns the roots from the anchor point

Chapter 1. DL/I calls reference 13



Unless a sequential randomizing routine was specified, the roots on successive anchor points are not

in ascending key sequence. One situation to consider for HDAM, PHDAM, and DEDB organizations is
when a GN call is qualified on the key field of the root segment with an equal-to operator or an equal-to-
or-greater-than operator. If IMS has an existing position in the database, it checks to ensure that the
requested key is equal to or greater than the key of the current root. If it is not, a GE status code is
returned. If it is equal to or greater than the current key and is not satisfied using the current position,
IMS calls the randomizing routine to determine the anchor point for that key. IMS tries to satisfy the call
starting with the first root of the selected anchor.

Restrictions
You can use GN to retrieve the next record of a GSAM database, but GHN is not valid for GSAM.

Related reference

“GNP/GHNP call” on page 14

The Get Next in Parent (GNP) call is used to retrieve dependents sequentially. The Get Hold Next in Parent
(GHNP) call is the hold form for the GNP call.

GNP/GHNP call

The Get Next in Parent (GNP) call is used to retrieve dependents sequentially. The Get Hold Next in Parent
(GHNP) call is the hold form for the GNP call.
Format

»t GNP _J db pcb ifo area >4
GHNP L aib _J

ssa

Call Name DB/DC DBCTL DCCTL DB Batch  TM Batch
For Full-Function: GNP/GHNP X X X
For DEDB: GNP/GHNP X X X
For MSDB: GNP/GHNP X
Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/0 area. This parameter is an output parameter. When you issue the Get call
successfully, IMS returns the requested segment to this area. If your program issues any path calls,

14 IMS: Application Programming APIs



the I/O area must be long enough to hold the longest path of concatenated segments following a path
call. The segment data that this area contains is always left-justified. The I/O area points to the first
byte of this area.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA you
supply in the call point to data areas in your program in which you have defined the SSAs for the call.
You can use up to 15 SSAs for this parameter. This parameter is optional for the GNP call.

Usage: Get Next in Parent (GNP)

A GNP call retrieves segments sequentially. The difference between a GN and a GNP is that GNP limits the
segments that can satisfy the call to the dependent segments of the established parent.

An unqualified GNP retrieves the first dependent segment occurrence under the current parent. If your
current position is already on a dependent of the current parent, an unqualified GNP retrieves the next
segment occurrence.

If you are moving forward in the database, even if you are not retrieving every segment in the database,
you can use GNP to restrict the returned segments to only those children of a specific segment.

Linking with previous DL/I calls
A GNP call is linked to the previous DL/I calls that were issued by your program in two ways:

 Current position: The search for the requested segment starts at the current position established by the
preceding GU, GN, or GNP call.

« Parentage: The search for the requested segment is limited to the dependents of the lowest-level
segment most recently accessed by a GU or GN call. Parentage determines the end of the search and is
in effect only following a successful GU or GN call.

Processing with parentage
You can set parentage in two ways:

« By issuing a successful GU or GN call. When you issue a successful GU or GN call, IMS sets parentage at
the lowest-level segment returned by the call. Issuing another GU or GN call (but against a different PCB)
does not affect the parentage that you set using the first PCB in the previous call. An unsuccessful GU or
GN call cancels parentage.

« By using the P command code with a GU, GN, or GNP call, you can set parentage at any level.
How DL/I calls affect parentage
A GNP call does not affect parentage unless it includes the P command code.

Unless you are using a secondary index, REPL does not affect parentage. If you are using a secondary
index, and you replace the indexed segment, parentage is lost.

A DLET call does not affect parentage unless you delete the established parent. If you do delete the
established parent, you must reset parentage before issuing a GNP call.

ISRT affects parentage only when you insert a segment that is not a dependent of the established parent.
In this case, ISRT cancels parentage. If the segment you are inserting is a dependent at some level of the
established parent, parentage is unaffected. For example, in the topic "Position after ISRT" in IMS Version
15.3 Application Programming, assume segment B11 is the established parent. Neither of these two ISRT
calls would affect parentage:

ISRT  Abbbbbbb (AKEYbbbb=A1)
Bbbbbbbb (BKEYbbbb=bB11)
Cbbbbbbbb

ISRT  Abbbbbbbb (AKEYbbbb=bA1)
Bbbbbbbbb (BKEYbbbb=bB11)
Cbbbbbbb (CKEYbbbb=bC111)
Dbbbbbbbb

Chapter 1. DL/I calls reference 15



The following ISRT call would cancel parentage, because the F segment is not a direct dependent of B,
the established parent:

ISRT  Abbbbbbbb (AKEYbbb=bA1)
Fbbbbbbbb

You can include one or more SSAs in a GNP call. The SSA can be qualified or unqualified. Without SSAs, a
GNP call retrieves the next sequential dependent of the established parent. The advantage of using SSAs
with GNP is that they allow you to point IMS to a specific dependent or dependent type of the established
parent.

A GNP with an unqualified SSA sequentially retrieves the dependent segment occurrences of the segment
type you have specified under the established parent.

A GNP with a qualified SSA describes to IMS the segment you want retrieved or the segment that is to
become part of the hierarchic path to the segment you want retrieved. A qualified GNP describes a unique
segment only if it is qualified on a unique key field and not a data field or a non-unique key field.

A GNP with multiple SSAs defines the hierarchic path to the segment you want. If you specify SSAs

for segments at levels above the established parent level, those SSAs must be satisfied by the current
position at that level. If they cannot be satisfied using the current position, a GE status code is returned
and the existing position remains unchanged. The last SSA must be for a segment that is below the
established parent level. If it is not, a GP status code is returned. Multiple unqualified SSAs establish the
first occurrence of the specified segment type as part of the path you want. If some SSAs between the
parent and the requested segment in a GNP call are missing, they are generated internally as unqualified
SSAs. This means that IMS includes the first occurrence of the segment from the missing SSAs as part of
the hierarchic path to the segment you have requested.

Usage: Get Hold Next in Parent (GHNP)

Retrieval for the GHNP call is the same as for the GHN call.

Related concepts
How secondary indexing affects your program (Application Programming)
Related reference

“GN/GHN call” on page 11
The Get Next (GN) call is used to retrieve segments sequentially from the database. The Get Hold Next
(GHN) is the hold form for a GN call.

GU/GHU call

The Get Unique (GU) call is used to directly retrieve segments and to establish a starting position in the
database for sequential processing. The Get Hold Unique (GHU) is the hold form for a GU call.

Format

»d

GU db pcb ifo area >
U J )
ssa

— rsq ———
GHU db pcb ifo area
aib —J

ssa

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GU/GHU X X X

16 IMS: Application Programming APIs


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_secondaryindexaffect.htm#ims_secondaryindexaffect

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: GU X X X X X
For DEDB: GU X X
For MSDB: GU X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/0O area. This parameter is an output parameter. When you issue one of the Get calls
successfully, IMS returns the requested segment to this area. If your program issues any path calls,
the I/O area must be long enough to hold the longest path of concatenated segments following a path
call. The segment data that this area contains is always left-justified. The I/O area points to the first
byte of this area.

When you use the GU call with GSAM, the area named by the i/o area parameter contains the record
you are retrieving.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA you
supply in the call point to data areas in your program where you have defined the SSAs for the call.
You can use up to 15 SSAs for the parameter. This parameter is optional for the GU call.

rsa
Specifies the area in your program that contains the record search argument. This required input
parameter is only used for GSAM. See the topic "GSAM Data Areas" in IMS Version 15.3 Application
Programming for more information on RSAs.

Usage: Get Unique (GU)

GU is a request for a segment, as described by the SSAs you supply. You use it when you want a specific
segment. You can also use it to establish your position in the database.

The GU call is the only call that can establish position backward in the database. (The GN and GNP calls,
when used with the F command code, can back up in the database, but with limitations. Unlike GN and
GNP, a GU call does not move forward in the database automatically.

If you issue the same GU call repeatedly, IMS retrieves the same segment each time you issue the call. If
you want to retrieve only particular segments, use fully qualified GUs for these segments instead of GNs.
If you want to retrieve a specific segment occurrence or obtain a specific position within the database, use
GU.

Chapter 1. DL/I calls reference 17



If you want to retrieve a specific segment or to set your position in the database to a specific place, you
generally use qualified GU calls. A GU call can have the same number of SSAs as the hierarchy has levels,
as defined by the DB PCB. If the segment you want is on the fourth level of the hierarchy, you can use four
SSAs to retrieve the segment. (No reason would ever exist to use more SSAs than levels in the hierarchy.
If your hierarchy has only three levels, you would never need to locate a segment lower than the third
level.) The following is additional information for using the GU call with SSAs:

« A GU call with an unqualified SSA at the root level attempts to satisfy the call by starting at the beginning
of the database. If the SSA at the root level is the only SSA, IMS retrieves the first segment in the
database.

« A GU call with a qualified SSA can retrieve the segment described in the SSA, regardless of that
segment's location relative to current position.

« When you issue a GU that mixes qualified and unqualified SSAs at each level, IMS retrieves the first
occurrence of the segment type that satisfies the call.

« If you leave out an SSA for one of the levels in a GU call that has multiple SSAs, IMS assumes an SSA for
that level. The SSA that IMS assumes depends on current position:

— If IMS has a position established at the missing level, the SSA that IMS uses is derived from that
position, as reflected in the DB PCB.

— If IMS does not have a position established at the missing level, IMS assumes an unqualified SSA for
that level.

— If IMS moves forward from a position established at a higher level, IMS assumes an unqualified SSA
for that level.

— If the SSA for the root level is missing, and IMS has position established on a root, IMS does not move
from that root when trying to satisfy the call.

Usage: Get Hold Unique (GHU)

Before your program can delete or replace a segment, it must retrieve the segment and indicate to

IMS that it is going to change the segment in some way. The program does this by issuing a Get call

with a "hold" before deleting or replacing the segment. Once the program has successfully retrieved the
segment with a Get Hold call, it can delete the segment or change one or more fields (except the key field)
in the segment.

The only difference between Get calls with a hold and without a hold is that the hold calls can be followed
by a REPL or DLET call.

The hold status on the retrieved segment is canceled and must be reestablished before you reissue the
DLET or REPL call. After issuing a Get Hold call, you can issue more than one REPL or DLET call to the
segment if you do not issue intervening calls to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you can continue with

other processing without releasing the segment. The segment is freed as soon as the current position
changes—when you issue another call to the same PCB you used for the Get Hold call. In other words, a
Get Hold call must precede a REPL or DLET call. However, issuing a Get Hold call does not require you to
replace or delete the segment.

Restrictions

You can use GU to retrieve the record with the RSA you provide with a GSAM database, but GHU is not valid
for GSAM.

Related concepts
“F command code” on page 203

18 IMS: Application Programming APIs



You can use the F command code to start the search with the first occurrence of a certain segment type or
to insert a new segment as the first occurrence in a chain of segments.

GUR call

The Get Unique Record (GUR) call is used to retrieve entire records from the IMS catalog database. The
records are returned as XML instance documents.

Format

»w— GUR — aib — i/o area — header ssa <
L resource ssa —J

Parameters

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
four-byte input parameter specifies the size of the I/O area in bytes that will hold the records
retrieved from the IMS catalog database.

AIBRTKN
AIB return token. This 8-byte field contains a token value when a GUR call returns more data than
can fit in the I/O area. You can retrieve the rest of the data by setting this field to the returned
value and providing the same resource name and type in the SSA when you issue a subsequent
GUR call. IMS returns the next block of data, and you can continue to issue sequential calls by
continuing to set the AIBRTKN field until all of the data is retrieved.

A GUR call for a new resource is done if the resource name and type in the SSA do not match the
resource name and type for the AIBRTKN.

If an invalid or unrecognized token value is specified, the call fails.

AIBOAUSE
Specifies the total length of the XML instance document returned by the GUR call. This value is set
by IMS after a successful GUR call. The value is given in bytes.

When the value of the AIBOAUSE field is less than the value of the AIBOALEN field, the application
program can retrieve the entire XML document from the I/0 area.

When the value of the AIBOAUSE field is greater than the value of the AIBOALEN field, the
application program must make additional GUR calls with the AIBRTKN value set to the returned
token value of the first call to retrieve the entire XML instance document.

The size of the last GUR call in a linked series might not match the size of the remaining data. For
example, a GUR call that returns 9000 bytes of data for a request with AIBOALEN=4096 requires
three linked GUR calls to retrieve all of the data. The third call returns only 808 bytes of data in the
I/0 area.

The AIBOAUSE value is returned for all GUR calls in a linked series, and always reflects the total
size of the XML instance document.

Chapter 1. DL/I calls reference 19



AIBRETRN
Return code.

AIBREASN
Reason code.

i/o area
Specifies the I/O area where IMS places the XML instance document returned by the call. This
parameter is an output parameter. When you issue the calls successfully, IMS returns the requested
record to this area. The XML instance document that this area contains is always left-aligned. The I/O
area parameter points to the first byte of this area.

header ssa
Specifies the name of the HEADER segment to search for. This parameter is required.
resource ssa

Specifies the ACB generation timestamp of the DBD or PSB segment to search for. This parameter is
optional and is valid only if a HEADER SSA is specified.

If the user ACB generation timestamp is not specified,IMS uses the time stamp for the active
resource, either a DBD or PSB, in the ACBLIB to find the corresponding resource in the catalog.

Usage
The Get Unique Record (GUR) call is a request for a complete record from the IMS catalog.

Catalog records are returned as XML instance documents, and can be larger than the available I/0 area.
IMS stores a complete XML instance document for a successful GUR call in an internal retrieval cache and
can return it to an application program in pieces that are each the size of the available I/O area. Each
subsequent GUR call to retrieve another piece of the XML instance document must use the token value
set by IMS in the AIBRTKN field after the original call.

The XML schemas for the documents returned as responses to this call are included in the
IMS.ADFSSMPL data set:

« DFS3XDBD.xsd (for DBD records)
« DFS3XPSB.xsd (for PSB records)

You can use z/OS XML System Services to parse the response document. The z/OS XML parser is started
as a callable service. The services stubs are shipped in CSSLIB.

A GUR call SSA must start with the HEADER segment.

A GUR call that is issued with an unqualified SSA attempts to satisfy the request by starting at the
beginning of the target database. If the SSA at the root level is the only SSA, IMS retrieves the first
segment in the database. A GUR call with a qualified SSA can retrieve the segment described in the SSA,
regardless of the location of the segment relative to the current position of the cursor. The two levels of
SSA qualification that can be used with a GUR call correspond to the levels of the DBD or PSB stored in
the catalog.

The IMS catalog has a structure that uses a header segment as the root for each record. Each header
segment instance has either a PSB or DBD child segment instance. This structure is important to
understand because an unqualified GUR call (such as the following example) might not return the
expected record.

GUR HEADER
PSB

This call locates the first record, which is always a DBD record because DBD precedes PSB in
alphanumeric order. Because the first record does not contain a PSB segment instance, the call does

20 IMS: Application Programming APIs



not return the first PSB record as expected. You must qualify the wanted record type at the level of the
segment header:

GUR HEADER (TYPE = PSB )
PSB

A GUR call that is issued without a qualification at the PSB or DBD level retrieves the record for the
member that is currently active in the ACB library. If no catalog record is found that corresponds to the
active member, the call fails with return code X’108’ and reason code X’338’ This error occurs even if
there are one or more catalog records for inactive members of the ACB library or records for members
that do not currently exist in the ACB library. To retrieve those catalog records, you must determine the
ACB generation timestamp for the member corresponding to the wanted catalog record and include it as a
PSB or DBD-level qualification.

For example, the following GUR call fails if there is no active ACB library member for BMP255:
GUR  HEADER (RHDRSEQ ==PSB BMP255 )

To retrieve the record for an inactive or removed ACB library member, add an SSA qualification for the
correct ACB generation timestamp:

GUR HEADER (RHDRSEQ ==PSB BMP255 )
PSB (TSVERS ==XXXXXXXXXXXXX)

Restriction: A GUR call that is not qualified with a timestamp always fails in environments without an
active ACB library, such as batch regions.

IMS returns the active or last instance of the record in catalog or a return code if the following conditions
are met:

« You specify the resource ssa with no ACB generation timestamp of the record of your choice.
« IMS s unable to find the timestamp for the active record in the ACBLIB or in the catalog header.
« Depending on whether the pending timestamp in the catalog header is zero or not:

— If the pending timestamp is zero, which indicates that the record is activated and copied from the
catalog staging data to the directory data sets, IMS returns the last instance of the record.

— If the pending timestamp is non-zero, which indicates that the record is still in the catalog staging
data set and is yet to be activated by the IMPORT DEFN SOURCE(CATALOG) command so that it is

placed in the directory data sets, IMS returns the AIB return code X’108’ and reason code X’338’,
which means that the active record was not found in the catalog.

Special AIB return and reason codes
The following combinations of AIB return and reason codes have specific meanings for the GUR call:

AIBRETRN = X’000’ (CALLCOMP)
AIBREASN = X’000’ (CALLOK)
The GUR call completed successfully.

AIBRETRN = X’100’ (CALLOKWE)

AIBREASN = X’00C’ (PARTDATA)
The XML response document did not fit in the I/O area. A GUR continuation token is set in the
AIBRTKN field.

AIBRETRN = X’004’ (CALLOKWTI)

AIBREASN = X’004’ (LASTSEG)
This GUR call contains the last portion of response data for a continued GUR call that was previously
issued. The GUR continuation token for the call is now invalid.

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’224’ (INVAOITK)
The GUR continuation token passed with the call is invalid.

Chapter 1. DL/I calls reference 21



AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’248’ (INVPCBN)
The correct PCB name specified to access the IMS™ catalog was not found.

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’404’ (INVFUNC)
The function code specified on the DL/I call was unknown or invalid.

AIBRETRN = X’108’ (SYSERROR)

AIBREASN = X’338’ (NOCATACB)
The requested catalog member is not in the catalog. IMS searched for a member with the timestamp
of the active ACBLIB member, but no member with a matching timestamp was found.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’340’ (NOGURDLI)
The GUR call did not find the specified IMS catalog resource in the batch region.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’342’ (NOGURXML)
The GUR call was unable to build a valid XML response document.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’344° (NOGURNFD)
The requested catalog member is not in the catalog.

Example
The following GUR example retrieves the catalog record for the DBD named DX41SK01

GUR HEADER (RHDRSEQ==DBD DX41SK01)

Restrictions

The GUR call is valid only for retrieving records from the IMS catalog database. If a user PSB is used, the
IMS catalog database must be available, and CATPSBATTACH in the CATALOG section of DFSDFxxx must
be set to YES.

The GUR callis only supported by the AIB interface.
SSA command codes are not allowed.

Related concepts

Application programming with the IMS catalog (Application Programming)
Overview of the IMS catalog (Database Administration)

Related reference

AIB return and reason codes (Messages and Codes)

ISRT call

The Insert (ISRT) call is used to load a database and to add one or more segments to the database. You
can use ISRT to add a record to the end of a GSAM database or for an alternate PCB that is set up for
IAFP processing.

Format

»— ISRT db pcb i/o area ssa
t aib _J rsa

22 IMS: Application Programming APIs


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_catalog_prog.htm#ims_catalog_prog
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_overview.htm#ims_cat_db_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_aibretandreasoncodes_ims.htm#ims_aibretandreasoncodes_ims

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: ISRT X X X
For GSAM: ISRT X X X X X
For DEDB: ISRT X X
For MSDB: ISRT X
Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/0 area. This parameter is an input parameter. When you want to add a new segment
to the database, you place the new segment in this area before issuing the ISRT call. This area must
be long enough to hold the longest segment that IMS returns to this area. For example, if none of
the segments your program retrieves or updates is longer than 48 bytes, your I/O area should be 48
bytes.

If your program issues any path calls, the I/O area must be long enough to hold the longest
concatenated segment following a path call. The segment data that this area contains is always
left-justified. The I/O area points to the first byte of this area.

When you use the ISRT call with GSAM, the area named by the i/o area parameter contains the record
you want to add. The area must be long enough to hold these records.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input parameter. The SSA you
supply in the call point to data areas in your program where you have defined the SSAs for the call.
You can use up to 15 SSAs on the call. This parameter is required.

rsa
Specifies the area in your program where the RSA should be returned by DL/I. This output parameter
is used for GSAM only and is optional. See the topic "GSAM Data Areas" in IMS Version 15.3
Application Programming for more information on RSAs.

Usage

Your program uses the ISRT call to initially load a database and to add information to an existing one. The
call looks the same in either case. However, the way it is used is determined by the processing option in
the PCB.

ISRT can add new occurrences of an existing segment type to a HIDAM, PHIDAM, HISAM, HDAM,
PHDAM, DEDB, or MSDB database.

Chapter 1. DL/I calls reference 23



Restriction: New segments cannot be added to a HSAM database unless you reprocess the whole
database or add the new segments to the end of the database.

Before you issue the ISRT call, build the new segment in the I/O area. The new segment fields must be in
the same order and of the same length as defined for the segment. (If field sensitivity is used, they must
be in the order defined for the application program's view of the segment.) The DBD defines the fields
that a segment contains and the order in which they appear in the segment.

Root segment occurrence

If you are adding a root segment occurrence, IMS places it in the correct sequence in the database by
using the key you supply in the I/O area. If the segment you are inserting is not a root, but you have just
inserted its parent, you can insert the child segment by issuing an ISRT call with an unqualified SSA. You
must build the new segment in your I/O area before you issue the ISRT call. Also, you use an unqualified
SSA when you insert a root. When you are adding new segment occurrences to an existing database, the
segment type must have been defined in the DBD. You can add new segment occurrences directly or
sequentially after you have built them in the program's I/O area. At least one SSA is required in an ISRT
call; the last (or only) SSA specifies the segment being inserted. To insert a path of segments, you can set
the D command code for the highest-level segment in the path.

Insert rules

If the segment type you are inserting has a unique key field, the place where IMS adds the new segment
occurrence depends on the value of its key field. If the segment does not have a key field, or if the key is
not unique, you can control where the new segment occurrence is added by specifying either the FIRST,
LAST, or HERE insert rule. Specify the rules on the RULES parameter of the SEGM statement of DBDGEN
for this database.

The rules on the RULES parameter are as follows:

FIRST
IMS inserts the new segment occurrence before the first existing occurrence of this segment type. If
this segment has a nonunique key, IMS inserts the new occurrence before all existing occurrences of
that segment that have the same key field.

LAST
IMS inserts the new occurrence after the last existing occurrence of the segment type. If the segment
occurrence has a nonunique key, IMS inserts the new occurrence after all existing occurrences of that
segment type that have the same key.

HERE
IMS assumes you have a position on the segment type from a previous IMS call. IMS places the new
occurrence before the segment occurrence that was retrieved or deleted by the last call, which is
immediately before current position. If current position is not within the occurrences of the segment
type being inserted, IMS adds the new occurrence before all existing occurrences of that segment
type. If the segment has a nonunique key and the current position is not within the occurrences of the
segment type with equal key value, IMS adds the new occurrence before all existing occurrences that
have equal key fields.

You can override the insert rule of FIRST with the L command code. You can override the insert rule of
HERE with either the F or L command code. This is true for HDAM and PHDAM root segments and for
dependent segments in any type of database that have either nonunique keys or no keys at all.

An ISRT call must have at least one unqualified SSA for each segment that is added to the database.
Unless the ISRT is a path call, the lowest-level SSA specifies the segment being inserted. This SSA must
be unqualified. If you use the D command code, all the SSAs below and including the SSA containing the D
command code must be unqualified.

Provide qualified SSAs for higher levels to establish the position of the segment being inserted. Qualified
and unqualified SSAs can be used to specify the path to the segment, but the last SSA must be
unqualified. This final SSA names the segment type to be inserted.

If you supply only one unqualified SSA for the new segment occurrence, you must be sure that current
position is at the correct place in the database to insert that segment.

24 IMS: Application Programming APIs



Mix qualified and unqualified SSA

You can mix qualified and unqualified SSAs, but the last SSA must be unqualified. If the SSAs are
unqualified, IMS satisfies each unqualified SSA with the first occurrence of the segment type, assuming
that the path is correct. If you leave out a SSA for one of the levels in an ISRT with multiple SSAs, IMS
assumes an SSA for that level. The SSA that IMS assumes depends on current position:

« If IMS has a position established at the missing level, the SSA that IMS uses is derived from that
position, as reflected in the DB PCB.

« If IMS does not have a position established at the missing level, IMS assumes an unqualified SSA for
that level.

 If IMS moves forward from a position established at a higher level, IMS assumes an unqualified SSA for
that level.

- If the SSA for the root level is missing, and IMS has position established on a root, IMS does not move
from that root when trying to satisfy the call.

Using SSA with the ISRT call

Using SSA with ISRT is a good way to check for the parent segments of the segment you want to insert.
You cannot add a segment unless its parent segments exist in the database. Instead of issuing Get calls
for the parents, you can define a fully qualified set of SSAs for all the parents and issue the ISRT call for
the new segment. If IMS returns a GE status code, at least one of the parents does not exist. You can then
check the segment level number in the DB PCB to find out which parent is missing. If the level number in
the DB PCB is 00, IMS did not find any of the segments you specified. A 01 means that IMS found only the
root segment; a 02 means that the lowest-level segment that IMS found was at the second level; and so
on.

OPEN call
The OPEN call is used to explicitly open a GSAM database.

Format
»— OPEN gsam pcb »<
{ aib J L i/o area J
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
For GSAM: OPEN X X X X X
Parameters
gsam pch

Specifies the GSAM PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name of a GSAM PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

Chapter 1. DL/I calls reference 25



i/o area
Specifies the kind of data set you are opening. This parameter is an input parameter.

Usage

For more information, see the topic "Explicit Open and Close Calls to GSAM" in IMS Version 15.3
Application Programming.

POS call

A qualified Position (POS) call is used to retrieve the location of a specific sequential dependent segment.
In addition to location, a qualified POS call using an SSA for a committed segment will return the
sequential dependent segment (SDEP) time stamp and the ID of the IMS owner that inserted it.

For more information about the qualified POS call, refer to the topic "Processing Fast Path Databases" in
IMS Version 15.3 Application Programming.

An unqualified POS points to the logical end of the sequential dependent segment (SDEP) data. By
default, an unqualified POS call returns the DMACNXTS value, which is the next SDEP CI to be allocated.
Because this CI has not been allocated, its specification without the EXCLUDE keyword will often result in
a DFS2664A message from the SDEP utilities.

Format
»— POS db pcb i/o area ﬁn
[:—aw—:j ssa
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
For DEDB: POS X X
Parameters
db pcb

Specifies the DB PCB for the DEDB that you are using for this call. This parameter is an input and
output parameter.

aib
Specifies the AIB for the DEDB that you are using for this call. This parameter is an input and output
parameter. These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

keyword
Specifies the Keyword for the DEDB that you are using for this call. It goes in the first part of the 1/0
area. Returns six words containing field codes to I/O area. The following table lists the five keywords
and the corresponding output.

i/o area
Specifies the I/O area in your program that you want to contain the positioning information that is
returned by a successful POS call. This parameter is both an input and an output parameter. The I/O

26 IMS: Application Programming APIs



area must be long enough to contain all the returned entries. IMS returns an entry for each area in the
DEDB.

The I/O area returned on POS call contained six words with nine potential fields of data for each
return output. Each field is four or eight bytes. When the successful POS is an unqualified call, the
I/0 area consists of a 2 byte field that contains the length of the data area (LL), followed by 24 bytes
of positioning information. The I/O data area will have 24 bytes of positioning information for every
area in the DEDB. By placing one of the five keywords in position zero of the input I/O area, the user
specifies the kind of data in the return I/O area. The following table lists the five keywords and the
data that an unqualified POS call returns based on the keyword you choose for position zero of the
input I/O area. Any keyword should be specified at the beginning of the I/0 area.

Table 4. Unqualified POS call: keywords and map of the I/O area return output

Keyword byte2 |word O word 1 word 2 word 3 word 4 word 5
<null> LL Field 1 Field 2 Field 4 Field 5
V5SEGRBA LL Field 1 Field 3 <null>
PCSEGRTS LL Field 1 Field 3 Field 6
PCSEGHWM LL Field 1 Field 3 Field 7
PCHSEGTS LL Field 1 Field 8 Field 6
PCLBSGTS LL Field 1 Field 9 Field 6
Field 1
Area name
This 8-byte field contains the ddname from the AREA statement.
Field 2

Sequential dependent next to allocate CI
This field is the default if no keyword is specified in position zero of the I/O area. The data
returned is the 8-byte cycle count and RBA (CC+RBA) acquired from the global DMACNXTS
field. This data represents the next pre-allocated CI as a CI boundary.

Field 3

Local sequential dependent next segment
The data returned is the 8-byte CC+RBA segment boundary of the most recently committed
SDEP segment. This data is specific to only the IMS that executes the POS call. Its scope is for
local IMS use only.

Field 4

Unused CIs in sequential dependent part
This 4-byte field contains the number of unused control intervals in the sequential dependent
part.

Field 5

Unused CIs in independent overflow part
This 4-byte field contains the number of unused control intervals in the independent overflow
part.

Field 6

Sequential dependent segment time stamp
The data returned is the 8-byte time stamp of the most recently committed SDEP segment
across all IMS partners, or for a local SDEP, the time stamp of the first pre-allocated SDEP CI
dummy segment of the local IMS. If the area (either local or shared) has not been opened,
or a /DBR was performed without any subsequent SDEP segment inserts, the current time is
returned.

Chapter 1. DL/I calls reference 27



Field 7

Sequential dependent High Water Mark (HWM)
This 8-byte field contains the cycle count plus RBA (CC+RBA) of the last pre-allocated SDEP CI
which is the High Water Mark (HWM) CI.

Field 8

Highest committed SDEP segment
The data returned is the 8-byte cycle count plus RBA (CC+RBA) for the most recently
committed SDEP segment across all IMS partners, or for a local SDEP, the CC+RBA of the most
recently committed SDEP segment of the local IMS. If the area (either local or shared) has not
been opened, or a /DBR was performed without any subsequent SDEP segment inserts, the
HWM Cl is returned.

Field 9

Logical begin time stamp
This 8-byte field contains the logical begin time stamp from the
DMACSDEP_LOGICALBEGIN_TS field.

ssa
Specifies the SSA that you want to use in this call. This parameter is an input parameter. The format
of SSA in POS calls is the same as the format of SSA in DL/I calls. You can use only one SSA in this
parameter. This parameter is optional for the POS call.

Usage
The POS call:

- Retrieves the location of a specific sequential dependent segment.
- Retrieves the location of last-inserted sequential dependent segment, its time stamp, and the IMS ID.
» Retrieves the time stamp of a sequential dependent segment or Logical Begin.

« Tells you the amount of unused space within each DEDB area. For example, you can use the information
that IMS returns for a POS call to scan or delete the sequential dependent segments for a particular
time period.

If the area which the POS call specifies is unavailable, the I/O area is unchanged, and the status code FH
is returned.

Restrictions

You can only use the POS call with a DEDB.

REPL call

Use the Replace (REPL) call to change the values of one or more fields in a segment.

Format
»— REPL db pcb i/fo area <
aib —J
ssa
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: REPL X X X
For DEDB: REPL X X
For MSDB: REPL X

28 IMS: Application Programming APIs



Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) for the call. This parameter is an input and output
parameter. The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/O area in your program that communicates with IMS. This parameter is an input
parameter.

ssa
Specifies any segment search arguments (SSAs) to be used in the call. This parameter is an input
parameter and is optional for the REPL call. Use only unqualified SSAs. The SSAs that you specify
point to data areas in your program in which you have defined the SSAs for the call. You can use up to
15 SSAs in this parameter.

Usage
Before using a REPL call, be aware of the following conditions:

- Segments that can be replaced must be defined as replace-sensitive by setting PROCOPT=A or
PROCOPT=R on the SENSEG statement in the PCB. To learn more about PROCOPT, see SENSEG
statement (System Utilities).

« A REPL call must be preceded by one of the three Get Hold calls: GHN, GHNP, or GHU.

- If your program tries to replace a segment that is not replace-sensitive and command code N is not
specified, the segment data in the I/0 area must match the segment data that gets returned by the Get
Hold call. Any variance results in an AM status code, and no data gets replaced by the REPL call. To
learn more, see AM (Messages and Codes).

« After you retrieve a segment, do not change the field lengths in the I/O area before you issue the REPL
call.

« Use only unqualified SSAs on a REPL call. Using a qualified SSA is invalid and results in an AJ status
code. To learn more see AJ (Messages and Codes).

To change field values in a segment, issue a Get Hold call to retrieve the segment and place it in the I/O
area. Make your desired changes. Then issue a REPL call to replace the segment in the database with the
modified segment from the I/O area.

You can use command codes with the REPL call.

« Specify an unqualified SSA withan N command code if you do not change one or more segments that
are returned on a Get Hold call, or if you do not want modifications in the I/O area to be reflected in
the database. The N command code is available for use whether or not a D command code (Application
Programming APIs) is used to return multiple segments on the preceding Get Hold call. To learn more,
see N command code (Application Programming APIs).

« Use the Q command code to preserve a segment for use with your program. Normally, if no fields in
a segment are changed by the REPL call, the lock is released when the application moves to another

Chapter 1. DL/I calls reference 29


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgensensegstmt.htm#ims_psbgensensegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgensensegstmt.htm#ims_psbgensensegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gnghncall.htm#ims_gnghncall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gnpghnpcall.htm#ims_gnpghnpcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gughucall.htm#ims_gughucall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/msgs/am.htm#am
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/msgs/aj.htm#aj
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dcmdcode.htm#ims_dcmdcode
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dcmdcode.htm#ims_dcmdcode
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_ncmdcode.htm#ims_ncmdcode

database record. The Q command prevents another program from updating the segment until your
program reaches a commit point. To learn more, see Q command code (Application Programming APIs).

RLSE call

The Release Locks (RLSE) call is used to release all locks held for unmodified data.

Format
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
For Full-Function: RLSE X X X
For DEDB: RLSE X X X
Parameters
db pcb

Specifies the DB PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program

obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a DB PCB.

Usage

For Fast Path databases, use the RLSE call to release all locks held for unmodified data that are owned by
an application. For full-function databases, use the RLSE call to release the locks held by the DB PCB that
is referenced in the call. If the lock is protecting a resource that has been updated, the lock will not be
released. After the RLSE call, all database position information is lost.

Restrictions
The RLSE call has to be issued using a DB PCB. The PCB cannot be an I/O PCB or an MSDB PCB.

DL/I calls for IMS DB system services
Use these DL/I calls to obtain IMS DB system services.
Each call description contains:

« A syntax diagram

« Definitions for parameters that are available to the call

« Details on how to use the call in your application program
« Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input” refers to input to IMS
from the application program. “Output” refers to output from IMS to the application program.

30 IMS: Application Programming APIs


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_qcmdcode.htm#ims_qcmdcode

Syntax diagrams for these calls begin with the function parameter. The call interface (xxxTDLI) and
parmcount (if it is required) are not included in the syntax diagrams.

Related reading: For specific information about coding your program in assembler language, C language,
COBOL, Pascal, and PL/I, see the topic "Defining Application Program Elements" inIMS Version 15.3
Application Programming for the complete structure.

Related reference
“DL/I calls for IMS TM system services” on page 113

Use these DL/I calls with IMS Transaction Manager system services.

“DL/I calls for transaction management” on page 74

Use these DL/I calls with IMS TM to perform transaction management functions in your application

programs.

“EXEC DLI commands” on page 153

The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

“IMSCALL command (X'C803")” on page 283

Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.

System service call summary

The following table summarizes which system service calls you can use in each type of IMS DB
application program and the parameters for each call. Optional parameters are enclosed in brackets

@D.

Exception: Language-dependent parameters are not shown here.

For more information on language-dependent application elements, see the topic "Defining Application
Program Elements" in IMS Version 15.3 Application Programming.

Table 5. Summary of system service calls

Function Code

Meaning

Use/Options

Parameters

Valid for

APSB

Allocate PSB

Allocates a PSB
for an ODBA
application

aib

DB/DC, IMS DB

DPSB

Deallocate PSB

Deallocates a PSB
for an ODBA
application

aib

DB/DC, IMS DB

CHKP (Basic)

Basic checkpoint

Prepares for
recovery

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP

CHKP (Symbolic)

Symbolic checkpoint

Prepares for
recovery. Specifies

function, i/o pcb or
aib, i/o area len, i/o

DB batch, TM batch,
BMP

up to seven areal, area len, area]
program areas to
be saved
GMSG Get Message Retrieves a function, aib, i/o area DB/DC and DCCTL

message from the
AO exit routine.
Waits for an AOI
message when
none is available

(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

Chapter 1.

DL/I calls reference 31



Table 5. Summary of system service calls (continued)

Function Code

Meaning

Use/Options

Parameters

Valid for

GScD?t

Get System Contents

Directory

Gets address of
system contents

function, db pcb, i/o
pcb or aib, i/o area

DB Batch, TM Batch

directory

ICMD Issue Command Issues an IMS function, aib, i/o area DB/DC and DCCTL
command and (BMP, MPP, IFP),
retrieves the first DB/DC and DBCTL
command response (DRA thread), DBCTL
segment (BMP non-message

driven), ODBA

INIT Initialize application Receives data function, i/o pcb or DB batch, TM batch,
availability aib, i/o area BMP, MPP, IFP,
and deadlock DBCTL, ODBA
occurrence status
codes and checks
each PCB database
for data availability

INQY Inquiry Returns function, aib, i/o DB batch, TM batch,
information and area, AIBFUNC=FIND| BMP, MPP, IFP, ODBA
status codes about DBQUERY| ENVIRON|
I/O or alternate ENVIRON2
PCB destination
type, location, and
session status

LOGb Log Writes a message  function, ifo pcb or DB batch, TM batch,
to the system log aib, i/o area BMP, MPP, IFP,

DBCTL, ODBA
PCBb Program Specifies and function, psb name, CICS (DBCTL or
Communication schedules another  uibptr, [,sysserve] DB/DC)
Block PSB

RCMD Retrieve Command  Retrieves the function, aib, i/oarea DB/DC and DCCTL
second and (BMP, MPP, IFP),
subsequent DB/DC and DBCTL
command response (DRA thread), DBCTL
segments resulting (BMP non-message
from an ICMD call driven), ODBA

ROLB Roll back Eliminates function, i/o pcb or DB batch, TM batch,
database updates aib, i/o area BMP, MPP, IFP
and returns last
message to ifo area

ROLL Roll Eliminates function DB batch, TM batch,
database updates BMP, MPP, IFP

ROLS Roll back to SETS Issues call using function, db pch, i/o DB batch, TM batch,
name of DB PCB pcb or aib, i/o area, BMP, MPP, IFP,
orifoPCBand token DBCTL, ODBA

backs out database
changes to SETS
points

32 IMS: Application Programming APIs



Table 5. Summary of system service calls (continued)

Function Code Meaning Use/Options Parameters Valid for
SETS/SETU Set a backout point  Cancels all existing function, i/o pch or DB batch, TM batch,
backout points aib, i/o area, token BMP, MPP, IFP,
and establishes DBCTL, ODBA
as many as
nine intermediate
backout points
SNAP? Collects diagnostic  function, db pcb or DB batch, BMP, MPP,
information; aib, i/o area IFP, CICS (DBCTL or
choose SNAP DB/DC), ODBA
options
STAT3 Statistics Retrieves IMS function, db pcb or DB batch, BMP, MPP,
system statistics; aib, i/o area, stat IFP, DBCTL, ODBA
choose type and function
format
SYNC Synchronization Releases locked function, ifo pcb or BMP
resources and aib
requests commit-
point processing
TERM Terminate Releases a PSB function CICS (DBCTL or
so another can DB/DC)
be scheduled to
commit database
changes
XRST Extended restart Specifies up to function, i/o pcb or DB batch, TM batch,
seven areas to aib, i/o area len, i/o BMP
be saved. Works areal, area len, area]
with symbolic
checkpoint to
restart application
program
Note:

1. GSCD is a Product-sensitive Programming Interface.

2. SNAP is a Product-sensitive Programming Interface.

3. STAT is a Product-sensitive Programming Interface.

APSB call
The Allocate PSB (APSB) calls are used to allocate a PSB for an ODBA application.

Format

»— APSB — aib »«

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

APSB X X

Chapter 1. DL/I calls reference 33



Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBRSNM2
This is the 4-character ID of ODBA startup table representing the target IMS of the APSB.

Usage

The ODBA application must load or be link edited with the ODBA application interface AERTDLI.
The APSB call must be issued prior to any DLI calls.

The APSB call uses the AIB to allocate a PSB for ODBA application programs.

z/0OS Resource Recovery Services (RRS) must be active at the time of the APSB call. If RRS is not active,
the APSB call will fail and the application will receive:

AIBRETRN = X'00000108'
AIBREASN = X'00000548'

CHKP (basic) call
A basic Checkpoint (CHKP) call is used for recovery purposes.

The ODBA interface does not support this call.

Format
»— CHKP ti/o pcbj— i/o area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
CHKP X X X X X
Parameters
i/o pch

Specifies the I/O PCB for the call. A basic CHKP call must refer to the I/O PCB. This parameter is an
input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

34 IMS: Application Programming APIs



AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies your program's I/O area that contains the 8-byte checkpoint ID. This parameter is an input
parameter. If the program is an MPP or a message-driven BMP, the CHKP call implicitly returns the
next input message to this I/O area. Therefore, the area must be large enough to hold the longest
returned message.

Usage

Basic CHKP commits the changes your program has made to the database and establishes places in your
program from which you can restart your program, if it terminates abnormally.

CHKP (symbolic) call

A symbolic Checkpoint (CHKP) call is used for recovery purposes. If you use the symbolic Checkpoint call
in your program, you also must use the XRST call.

The ODBA interface does not support this call.

Format

»— CHKP ti/o pcbj— i/o area length — i/o area >«
aib h

area length — area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
CHKP X X X X X
Parameters

i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output parameter. A symbolic CHKP
call must refer to the I/O PCB.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/0 area specified in the call list.

Chapter 1. DL/I calls reference 35



i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this parameter must be included
in the call, and it must contain a valid address. You can get a valid address by specifying the name of
any area in your program.

i/o area
Specifies the I/0 area in your program that contains the 8-byte ID for this checkpoint. This parameter
is an input parameter. If the program is a message-driven BMP, the CHKP call implicitly returns the
next input message into this I/0 area. Therefore, the area must be large enough to hold the longest
returned message.

area length
Specifies a 4-byte field in your program that contains the length (in binary) of the area to checkpoint.
This parameter is an input parameter. You can specify up to seven area lengths. For each area length,
you must also specify the area parameter. All seven area parameters (and corresponding length
parameters) are optional. When you restart the program, IMS restores only the areas you specified in
the CHKP call.

area
Specifies the area in your program that you want IMS to checkpoint. This parameter is an input
parameter. You can specify up to seven areas. Each area specified must be preceded by an area length
parameter.

Usage

The symbolic CHKP call commits the changes your program has made to the database and establishes
places in your program from which you can restart your program, if it terminates abnormally. In addition,
the CHKP call:

« Works with the Extended Restart (XRST) call to restart your program if it terminates abnormally

- Enables you to save as many as seven data areas in your program, which are restored when your
program is restarted

An XRST call is required before a CHKP call to indicate to IMS that symbolic check points are being taken.

Restrictions
The Symbolic CHKP call is allowed only from batch and BMP applications.

DPSB call

The DPSB call is used to deallocate IMS DB resources.

Format

»— DPSB — aib »«

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch
DPSB X X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

36 IMS: Application Programming APIs



AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

bbbbbbbb (Null)
PREPbbbb

Usage

The DPSB call is used by an application running in a z/OS application region to deallocate a PSB. If the
PREP subfunction is not used, the application must activate sync-point processing prior to issuing the
DPSB. Use the z/OS Resource Recovery Services (RRS) SRRCMIT/ATRCMIT calls to activate the sync-point
process. Refer to z/0S MVS Programming: Resource Recovery for more information on these calls.

If the DPSB is issued before changes are committed, and, or locks released, the application will receive:

AIBRETRN = X'00000104'
AIBREASN = X'00000490'

The thread will not be terminated. The application should issue a SRRCMIT or SRRBACK call, and retry the
DPSB.

The PREP sub-function allows the application to issue the DPSB prior to activating the sync-point process.
The sync-point activation can occur at a later time, but still must be issued.

GMSG call

A Get Message (GMSG) call is used in an automated operator (AO) application program to retrieve a
message from an AO exit routine (DFSAOEQO or another AOIE type exit routine).

Format

»w— GMSG — aib — i/o area »«

Parameters

aib
Specifies the application interface block (AIB) to be used for this call. This parameter is an input and
output parameter.

You must initialize the following fields in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the length of the AIB the application actually obtained.

AIBSFUNC
Subfunction code. This field must contain one of these 8-byte subfunction codes:

8-blanks (null)
When coded with an AOI token in the AIBRSNML1 field, indicates IMS is to return when no AOI
message is available for the application program.

WAITAOI
When coded with an AOI token in the AIBRSNML1 field, WAITAOI indicates IMS is to wait for an
AOI message when none is currently available for the application program. This subfunction

Chapter 1. DL/I calls reference 37



value is invalid if an AOI token is not coded in AIBRSNM1. In this case, error return and reason
codes are returned in the AIB.

The value WAITAOI must be left justified and padded on the right with a blank character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI token identifies the
message the AO application is to retrieve. The token is supplied for the first segment of a
message. If the message is a multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric left-justified field that is padded
on the right with blanks.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area should
be large enough to hold the largest segment that is passed from IMS to the AO application program. If
the I/O area is not large enough to contain all the data, IMS returns partial data.

Usage

GMSG is used in an AO application program to retrieve a message associated with an AOI token. The

AOQ application program must pass an 8-byte AOI token to IMS in order to retrieve the first segment

of the message. IMS uses the AOI token to associate messages from an AO exit routine of type AOIE,
with the GMSG call from an AO application program. IMS returns to the application program only those
messages associated with the AOI token. By using different AOI tokens, the AOIE type exit routine can
direct messages to different AO application programs. Note that your installation defines the AOI token.

To retrieve the second through the last segments of a multisegment message, issue GMSG calls with
no token specified (set the token to blanks). If you want to retrieve all segments of a message, you
must issue GMSG calls until all segments are retrieved. IMS discards all nonretrieved segments of a
multisegment message when a new GMSG call that specifies an AOI token is issued.

Your AO application program can specify a wait on the GMSG call. If no messages are currently available
for the associated AOI token, your AO application program waits until a message is available. The decision
to wait is specified by the AO application program, unlike a WFI transaction where the wait is specified

in the transaction definition. The wait is done on a call basis; that is, within a single application program
some GMSG calls can specify waits, while others do not. The following table shows, by IMS environment,
the types of AO application programs that can issue GMSG. GMSG is also supported from a CPI-C driven
program.

Table 6. GMSG support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL
DRA thread Yes Yes N/A
BMP (nonmessage-driven) Yes Yes Yes
BMP (message-driven) N/A Yes Yes
MPP N/A Yes Yes
IFP N/A Yes Yes

38 IMS: Application Programming APIs



Restrictions
A CPI-C driven program must issue an allocate PSB (APSB) call before issuing GMSG.

GSCD call

A Get System Contents Directory (GSCD) call retrieves the address of the IMS system contents directory
for batch programs.

This topic contains Product-sensitive Programming Interface information.

The ODBA interface does not support this call.

Format
»— GSCD db pcb i/fo area >«
i/o pcb
aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X
Parameters
db pch

Specifies the DB PCB for the call. This parameter is an input and output parameter.

i/o pch
Specifies the I/O PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. The these fields must
be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb (if the I/O
PCB is used), or the name of a DB PCB (if a DB PCB is used).

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/0 area, which must be 8 bytes long. IMS places the address of the system contents
directory (SCD) in the first 4 bytes and the address of the program specification table (PST) in the
second 4 bytes. This parameter is an output parameter.

Usage

IMS does not return a status code to a program after it issues a successful GSCD call. The status code
from the previous call that used the same PCB remains unchanged in the PCB.

Restrictions

The GSCD call can be issued only from batch application programs.

Chapter 1. DL/I calls reference 39



ICMD call

An Issue Command (ICMD) call enables an automated operator (AO) application program to issue an IMS
command and retrieve the first command response segment.

Format

»— ICMD — aib — i/o area »«

Parameters

aib
Specifies the application interface block (AIB) for this call. This parameter is an input and output
parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

Your program must check this field to determine whether the ICMD call returned data to the I/O
area. When the only response to the command is a DFS058 message indicating that the command
is either in progress or complete, the response is not returned.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/0 area to use for this call. This parameter is an input and output parameter. The I/O
area should be large enough to hold the largest command that is passed from the AO application
program to IMS, or the largest command response segment that is passed from IMS to the AO
application program. If the I/O area is not large enough to contain all the data, IMS returns partial
data.

Usage

ICMD enables an AO application to issue an IMS command and retrieve the first command response
segment.

When using ICMD, put the IMS command that is to be issued in your application program's I/0 area.
After IMS has processed the command, it returns the first segment of the response message to your AO
application program's I/0 area. To retrieve subsequent segments (one segment at a time) use the RCMD
call.

Some IMS commands that complete successfully result in a DFS058 message indicating that the
command is complete. Some IMS commands that are processed asynchronously result in a DFS058
message indicating that the command is in progress. For a command entered on an ICMD call, neither
DFS058 message is returned to the AO application program. In this case, the AIBOAUSE field is set to O to
indicate that no segment was returned. So, your AO application program must check the AIBOAUSE field
along with the return and reason codes to determine if a response was returned.

Related reading: For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

40 IMS: Application Programming APIs



The following table shows, by IMS environment, the types of AO application programs that can issue
ICMD. ICMD is also supported from a CPI-C driven program.

Table 7. ICMD support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL
DRA thread Yes Yes N/A
BMP (nonmessage-driven) Yes Yes Yes
BMP (message-driven) N/A Yes Yes
MPP N/A Yes Yes
IFP N/A Yes Yes

See IMS Version 15.3 Operations and Automation for a list of commands that can be issued using the
ICMD call.

Restrictions
Before issuing ICMD, a CPI-C driven program must issue an allocate PSB (APSB) call.

INIT call

The Initialize (INIT) call allows an application to receive status codes regarding deadlock occurrences and
data availability (by checking each DB PCB).

For GSAM databases, you can use the Initialize (INIT) call to tell IMS that the program can accept a
12-byte record search argument (RSA) when retrieving a record for a large format data set.

Format
»— INIT ti/o pcbj— i/o area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
INIT X X X X X
Parameters
i/o pcb

Specifies the I/O PCB for the call. INIT must refer to the I/O PCB. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

Chapter 1. DL/I calls reference 41



AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/0O area in your program that contains the character string or strings indicating which
INIT functions are requested. This parameter is an input parameter.

The functions that you can specify include:
- DBQUERY

« RSA12

« STATUS GROUPA

« STATUS GROUPB

« VERSION

Usage
You can use the call in any application program, including IMS batch in a sharing environment.
Specify the function in your application program with a character string in the I/O area.

For example, use the format LLZZ Character-String, where LL is the length of the character string including
the length of the LLZZ portion; ZZ must be binary 0. For PL/I, you must define the LL field as a fullword;
the value is the length of the character string including the length of the LLZZ portion, minus 2. If the

I/O areais invalid, an AJ status code is returned. The following tables contain sample I/O areas for INIT
when it is used with assembler language, COBOL, C language, Pascal, and PL/I.

Determining database availability: INIT DBQUERY

When the INIT call is issued with the DBQUERY character string in the I/O area, the application program
can obtain information regarding the availability of data for each PCB.

Application programs that use the language-independent AIB interface or the language-specific
interfaces for the assembler, COBOL, C, or Pascal programming languages use a 2-byte LL field to specify
the length of the I/O area. The following table shows an example of the INIT call I/O area with the LLZZ
length field and DBQUERY specified.

Table 8. INIT DBQUERY example for the AIB, ASMTDLI, CBLTDLI, CTDLI, and PASTDLI interfaces

L L z z Character String
00 0B 00 00 DBQUERY

Note: The LL value of X'OB' is a hexadecimal representation of decimal 11. ZZ fields are binary.

The following table contains a sample I/0 area for the INIT call with DBQUERY for PL/I. The PLITDLI
interface uses a 4-byte LLLL field for the length of the I/O area.

Table 9. INIT DBQUERY: I/O area example for PLITDLI
L L L L z z Character String
00 00 00 0B 00 00 |[DBQUERY

Note: The LL value of X'0OB' is a hexadecimal representation of decimal 11. ZZ fields are binary.

LL or LLLL
A 2-byte field that contains the length of the character string, plus two bytes for LL. For the PLITDLI
interface, use the 4-byte field LLLL. When you use the AIB interface (AIBTDLI), PL/I programs require
only a 2-byte field.

2z
A 2-byte field of binary zeros.

42 IMS: Application Programming APIs



One of the following status codes is returned for each database PCB:

NA
At least one of the databases that can be accessed using this PCB is not available. A call made using
this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has been
issued, orin a DFS3303I message and 3303 pseudoabend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a call results in an AI (unable
to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, orin a DFS3303I message and 3303 pseudoabend if it has not. The database that
caused the NU status code might be required only for delete processing. In that case, DLET calls fail,
but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions that the PCB allows. DEDBs
and MSDBs always have the bb status code.

In addition to data availability status, the name of the database organization of the root segment is
returned in the segment name field of the PCB. The segment name field contains one of the following
database organizations: DEDB, MSDB, GSAM, HDAM, PHDAM, HIDAM, PHIDAM, HISAM, HSAM, INDEX,
SHSAM, or SHISAM.

For a DCCTL environment, the database organization is UNKNOWN.

Important: If you are working with a High Availability Large Database (HALDB), you need to be aware that
the feedback on data availability at PSB schedule time only shows the availability of the HALDB master,
not of the HALDB partitions. However, the error settings for data unavailability of a HALDB partition are
the same as those of a non-HALDB database, namely status code 'BA' or pseudo abend U3303.

Automatic INIT DBQUERY

When the program is initially scheduled, the status code in the database PCBs is initialized as if the INIT
DBQUERY call were issued. The application program can therefore determine database availability without
issuing the INIT call.

Performance considerations for the INIT call (IMS online only)
For a DCCTL environment, the status code is NA.

For performance reasons, the INIT call should not be issued before the first GU call to the I/O PCB. If the
INIT callisissued first, the GU call is not processed as efficiently.

Determining data availability status without abends

To avoid abendu3303, first use INIT STATUS GROUPx (x=A or B).IMS will give you a status code for
unavailable databases (or HALDB partitions). Then, use INIT DBQUERY, which will set a status code in
each DB PCB. Before attempting any DB call, you can test all PCBs for non-blank status.

Enabling data availability status codes: INIT STATUS GROUPA

The following table contains a sample I/O area for the INIT call for assembler language, COBOL, C
language, and Pascal.

Table 10. INIT I/0O area examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L z z Character String
00 11 00 00 STATUS GROUPA

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call for PL/I.

Chapter 1. DL/I calls reference 43



Table 11. INIT I/O area examples for PLITDLI

L L L L Y4 z Character String

00 00 00 11 00 00 [STATUS GROUPA

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

LL or LLLL
LL is a halfword-length field. For non-PLITDLI calls, LLLL is a fullword-length field for PLITDLI.

2z
A 2-byte field of binary zeros.

The value for LLZZ data or LLLLZZ data is always 4 bytes (for LLZZ or LLLLZZ), plus data length.
Recommendation: You should be familiar with data availability.

When the INIT call is issued with the character string STATUS GROUPA in the I/O area, the application
program informs IMS that it is prepared to accept status codes regarding data unavailability. IMS then
returns a status code rather than a resultant pseudoabend if a subsequent call requires access to
unavailable data. The status codes that are returned when IMS encounters unavailable data are BA and
BB. Status codes BA and BB both indicate that the call could not be completed because it required access
to data that was not available. DEDBs can receive the BA or BB status code.

In response to status code BA, the system backs out only the updates that were done for the current call

before it encountered the unavailable data. If changes have been made by a previous call, the application
must decide to commit or not commit to these changes. The state of the database is left as it was before

the failing call was issued. If the call was a REPL or DLET call, the PCB position is unchanged. If the call is
a Get type or ISRT call, the PCB position is unpredictable.

In response to status code BB, the system backs out all database updates that the program made since
the last commit point and cancels all nonexpress messages that were sent since the last commit point.
The PCB position for all PCBs is at the start of the database.

Enabling deadlock occurrence status codes: INIT STATUS GROUPB

The following table contains a sample I/O area for the INIT call for assembler language, COBOL, C
language, and Pascal.

Table 12. INIT I/O area examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L z z Character String

00 11 00 00 STATUS GROUPB

Note: The LL value of X'11'is a hexadecimal representation of decimal 17. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call for PL/I.

Table 13. INIT I/0O area examples for PLITDLI

L L L L z z Character String

00 00 00 11 00 00 [STATUS GROUPB

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are binary.

LL or LLLL
LL is a halfword-length field. For non-PLITDLI calls, LLLL is a fullword-length field for PLITDLI.

2z
A 2-byte field of binary zeros.

The value for LLZZ data or LLLLZZ data is always four bytes (for LLZZ or LLLLZZ), plus data length.

44 IMS: Application Programming APIs



When the INIT call is issued with the character string STATUS GROUPB in the I/O area, the application
program informs IMS that it is prepared to accept status codes regarding data unavailability and deadlock
occurrences. The status codes for data unavailability are BA and BB, as described under "Enabling data
availability status codes: INIT STATUS GROUPA".

When a deadlock occurs in batch and the INITSTATUS GROUPB call has been issued, the following
occurs:

- If no changes were made to the database, the BC status code is returned.

« If updates were made to the database, and if a datalog exists and BKO=YES is specified, the BC status
code is returned.

- If changes were made to the database, and a disklog does not exist or BKO=YES is not specified, a 777
pseudoabend occurs.

When the application program encounters a deadlock occurrence, IMS:

- Backs out all database resources (with the exception of GSAM and DB2°) to the last commit point.
Although GSAM PCBs can be defined for pure batch or BMP environments, GSAM changes are not
backed out. Database resources are backed out for DB2 only when IMS is the sync-point coordinator.

When you use INIT STATUS GROUPB in a pure batch environment, you must specify the DISKLOG and
BACKOUT options.

« Backs out all output messages to the last commit point.
« Requeues all input messages as follows:

Environment
Action

MPP and BMP
All input messages are returned to the message queue. The application program no longer controls
its input messages.

IFP
All input messages are returned to IMS Fast Path (IFP) balancing group queues (BALGRP), making
them available to any other IFP region on the BALGRP. The IFP that is involved in the deadlock
receives the next transaction or message that is available on the BALGRP.

DBCTL
Action is limited to resources that are managed by DBCTL, for example, database updates.

« Returns a BC status code to the program in the database PCB.
Determining GSAM databases for large format data sets: INIT RSA12

When you issue the INIT call with the character string "RSA12" set in the I/O area, the GSAM application
program tells IMS that the program can accept a 12-byte RSA when retrieving a record for a large format
data set. The following table contains a sample I/O area for the INIT call with RSA12 for assembler
language, COBOL, C language, and Pascal.

Table 14. INIT RAS12: Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L y4 p4 Character string
00 09 00 00 RSA12

Note: The LL value of X'09' is a hexadecimal representation of decimal 9. ZZ fields are binary.

The following table contains a sample I/O area for the INIT call with RSA12 for PL/I.

Table 15. INIT RSA12: Example for PLITDLI

L L L L z z Character string
00 00 00 09 00 00 RSA12

Chapter 1. DL/I calls reference 45



Table 15. INIT RSA12: Example for PLITDLI (continued)

L L L L z z Character string

Note: The LL value of X'09' is a hexadecimal representation of decimal 9. ZZ fields are binary.

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/0 area. For PL/I, the length of the LLLL
field is considered 2 bytes even though it is a 4-byte field. When you use the AIBTDLI interface, the
length of the record is equal to the total length of LL + ZZ + character string. For the PLITDLI interface,
the length of the record is equal to the total length of LLLL + ZZ + character string, where LLLL is
considered 2 bytes.

2z
A 2-byte field of binary zeros.

Specify a database version number: INIT VERSION(dbname=version)

When database versioning is enabled, an application program can use the "VERSION" function to request
a version of a database that is different from the version number that is specified for the application
program on the PCB or from the default version that is returned by IMS. A version number specified on the
INIT VERSION call takes precedence over all other version specifications and defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database, the version of the
database that is returned to the application program is determined by the DBVER keyword of the PCB
statement. If the DBVER keyword is not specified, IMS returns either the version of the database that is
active in the ACB library or version 0 of the database, as determined by the DBLEVEL keyword in either the
PSBGEN statement or the database section of the DFSDFxxx PROCLIB member.

In the I/O area, the VERSION function is specified by using the following format:

»— VERSION( L dbname =version l ) >«

Each database name is specified by using alphabetic characters and can be specified only once. Specify
only names of physical databases. The names of logical databases are not supported.

Each version is specified as a numeric value from 0 to 2147483647. The number that is specified must
match a version number that is defined on a DBD for the named database and stored in the IMS catalog.

Calculate the size that is required for the I/O area by multiplying the number of databases that are
specified in the input I/O area by 20.

For example, the following table contains a sample I/O area for the INIT VERSION call for assembler
language, COBOL, C language, and Pascal. In the table, the LL value of X'3C' is the hexadecimal
representation of decimal 60, the length in bytes that is required to hold the output in the I/O area
when three database names are specified on input. The ZZ fields are binary.

Table 16. INIT VERSION: Example format for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L y4 p4 Character string
00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

The following table contains a sample I/O area for the INIT call with VERSION for PL/I. In the table, the LL
value of X'3C' is the hexadecimal representation of decimal 60. The ZZ fields are binary.

Table 17. INIT VERSION: Example format for PLITDLI
L L L L Z Z Characterstring
00 00 00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

46 IMS: Application Programming APIs



LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For PL/I, the length of the LLLL
field is considered 2 bytes even though it is a 4-byte field. When you use the AIBTDLI interface, the
length of the record is equal to the total length of LL + ZZ + character string. For the PLITDLI interface,
the length of the record is equal to the total length of LLLL + ZZ + required length for output, where
LLLL is considered 2 bytes.

Y74
A 2-byte field of binary zeros.

Character string
The function specification on input. The length that is specified in the LL or LLLL is the length that is
required for the output: 20 bytes for each database that is specified in the input character string.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

You should be familiar with deadlock occurrences as described in IMS Version 15.3 System
Administration.

Related concepts

Retrieving and inserting GSAM records (Application Programming)

Converting HDAM and HIDAM databases to HALDB (Database Administration)

Data availability considerations (Application Programming)

INQY call

The Inquiry (INQY) call is used to request information about the current execution environment,
destination type and status, and session status. INQY is valid only for application interfaces that use
the AIB structure.

Format

»w— INQY — aib — i/o area »«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
INOQY X X X X X
Parameters

aib

Specifies the address of the application interface block (DFSAIB) for the call. This parameter is an
input and output parameter. These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

« bbbbbbbb (Null)
- DBQUERYb
- ENVIRONbD
» ENVIRON2
FINDbbbb

Chapter 1. DL/I calls reference 47


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_retrieveinsertgsamdb.htm#ims_retrieveinsertgsamdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_convhdam2phdam.htm#ims_conv_2_haldb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dataavailconsid.htm#ims_dataavailconsid

« LERUNOPT
« MSGINFOb
+ PROGRAMb (Not supported with the ODBA interface)

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of any named PCB in the
PSB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

i/o area
Specifies the data output area to use with the call. This parameter is an output parameter. An I/0
area is required for INQY subfunctions ENVIRONb, ENVIRON2, MSGINFOb and PROGRAMb. It is not
required for subfunctions DBQUERYb, FINDbbbb, and LERUNOPT.

Restrictions

The INQY call is valid only when using the AIB. An INQY call that is issued through the PCB interface is
rejected with an AD status code.

Usage

The INQY call operates in both batch and online IMS environments. IMS application programs can use the
INQY call to request information about the output destination, the session status, the current execution
environment, the availability of databases, and the PCB address, which is based on the PCB name. You
must use the AIB when issuing an INQY call. Before you can issue an INQY call, initialize the fields of the
AIB.

When you use the INQY call, specify an 8-byte subfunction code, which is passed in the AIB. The INQY
subfunction determines the information that the application program receives.

The INQY call returns information to the caller's I/O area. The length of the data that is returned from the
INQY call is passed back to the application program in the AIB field, AIBOAUSE.

Specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call returns only as much data as
the area can hold in one call. If the area is not large enough for all the information, an AG status code is
returned, and partial data is returned in the I/O area. In this case, the AIB field AIBOALEN contains the
actual length of the data that is returned to the I/O area, and the AIBOAUSE field contains the output area
length that would be required to receive all the data.

Querying data availability: INQY DBQUERY

When the INQY call is issued with the DBQUERY subfunction, the application program obtains information
about the data for each PCB. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb.
The INQY DBQUERY call is similar to the INITDBQUERY call. The INQY DBQUERY call does not return
information in the I/O area, but like the INIT DBQUERY call, it updates status codes in the database PCBs.

The application program is not made aware of the status of each PCB until an INQY FIND call is issued. To
retrieve the status for a database, you must pass the DB PCB for that database in the INQY FIND call.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns these status codes in the
I/0 PCB:

bb
The call is successful and all databases are available.

BJ
None of the databases in the PSB are available, or no PCBs exist in the PSB. All database PCBs
(excluding GSAM) contain an NA status code as the result of processing the INQY DBQUERY call.

48 IMS: Application Programming APIs



BK
At least one of the databases in the PSB is not available, or availability is limited. At least one
database PCB contains an NA or NU status code as the result of processing the INQY DBQUERY call.
When CATALOG PCBs show NA, the status code is bb.

The INQY call returns the following status codes in each DB PCB:

NA
At least one of the databases that can be accessed by using this PCB is not available. A call that is
made using this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has
been issued, orin a DFS3303I message and 3303 pseudoabend if the call has not been issued. An
exception is when the database is not available because dynamic allocation failed. In this case, a call
results in an Al (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, orin a DFS3303I message and 3303 pseudoabend if it has not been issued. The
database that caused the NU status code might be required only for delete processing. In that case,
DLET calls fail, but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions the PCB allows. DEDBs and
MSDBs always have the bb.

Querying the environment: INQY ENVIRON or ENVIRON2

When the INQY call is issued with the ENVIRON or ENVIRON2 subfunctions, the application program
obtains information about the current execution environment. Both subfunctions cannot be used with the
same INQY call, so use either ENVIRON or ENVIRON2. The ENVIRON subfunction provides compatibility
for existing programs that require its specific use, whereas ENVIRONZ2 is newer and provides more
information. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb. This includes the
IMS identifier, release, region, and region type.

The INQY ENVIRON and ENVIRON2 calls return character-string data. The output is left-aligned and
padded with blanks on the right.

Recommendations: To account for expansion in the length of the reply data, specify an I/O area length of
512 bytes.

To reference the field that contains the recovery token or the application parameter string, code your
application programs to locate the field by using the address of the field that is returned in the data
output of the INQY ENVIRON or INQY ENVIRON2 calls. This is the only valid programming technique
to reference the recovery token field and the application parameter string field. No other programming
technique should be used to reference these fields.

The recovery token or the application parameter string are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

For more information about the recovery token and application parameter fields, see note 2 after the
following table.

The following table describes the INQY ENVIRON output.

Table 18. INQY ENVIRON data output

Length
in Actual
Information returned bytes value Explanation
IMS Identifier 8 Provides the identifier from the execution parameters.

Chapter 1. DL/I calls reference 49



Table 18. INQY ENVIRON data output (continued)

Length
in Actual
Information returned bytes value Explanation
IMS Release Level 4 Provides the release level for IMS. For example, X'00000410".
IMS Control Region Type 8 BATCH Indicates that an IMS batch region is active.
DB Indicates that only the IMS Database Manager is active. (DBCTL
system)
™ Indicates that only the IMS Transaction Manager is active.
(DCCTL system)
DB/DC Indicates that both the IMS Database and Transaction managers
are active. (DB/DC system)
IMS Application Region 8 BATCH Indicates that the IMS Batch region is active.
Type - . . -
YpP BMP Indicates that the Batch Message Processing region is active.
DRA Indicates that the Database Resource Adapter Thread region is
active.
IFP Indicates that the IMS Fast Path region is active.
JBP Indicates that the Java batch processing region is active.
IMP Indicates that the Java message processing region is active.
MPP Indicates that the Message Processing region is active.
Region Identifier 4 Provides the region identifier. For example, X'00000001".
Application Program Provides the name of the application program being run.
Name
PSB Name (currently 8 Provides the name of the PSB currently allocated.
allocated)
Transaction Name 8 Provides the name of the transaction.
b Indicates that no associated transaction exists.
User Identifier® 8 Provides the user ID.
b Indicates that the user ID is unavailable.
Group Name 8 Provides the group name.
b Indicates that the group name is unavailable.
Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.
B Indicates an INIT STATUS GROUPB call is issued.
b Indicates that a status group is not initialized.
Address of Recovery 4 Provides the address of the LL field, followed by the recovery
Token 2" on page 52 token.
0 Indicates that the recovery token is not available.

50 IMS: Application Programming APIs



Table 18. INQY ENVIRON data output (continued)

Length
in Actual
Information returned bytes value Explanation
Address of the 4 Provides the address of the LL field, followed by the application
Application Parameter program parameter string.
String 2" on page 52 ) . .
0 Indicates that the APARM= parameter is not coded in the
execution parameters of the dependent region JCL.
Shared Queues 4 Indicates that IMS is not using Shared Queues.
Indicator . - .
SHRQ Indicates IMS is using Shared Queues.
User ID of Address 8 User ID of dependent address space.
Space
User ID Indicator 1 Contains one of the following possible values to indicate the
contents of the userid field:
U
Indicates the user’s identification from the source terminal
during sign-on.
L
Indicates the LTERM name of the source terminal in sign-on
is not active.
P
Indicates the PSBNAME of the source BMP or transaction.
(0]
Indicates some other name.
z/0S Resource Recovery 3 b Indicates that IMS has not expressed interest in the UR with
Services (RRS) Indicator RRS. Therefore, the application should refrain from performing
any work that causes RRS to become the syncpoint manager for
the UR because IMS will not be involved in the commit scope.
For example, the application should not issue any outbound
protected conversations.
RRS Indicates that IMS has expressed interest in the UR with RRS.
Therefore, IMS is involved in the commit scope if RRS is the
syncpoint manager for the UR.
IMS catalog enablement 8 b Indicates that the IMS catalog is not enabled in the DFSDFxxx
indicator PROCLIB member.

For information about setting up and enabling an IMS catalog,
see IMS catalog definition and tailoring (System Definition).

For information about enabling the IMS catalog in the DFSDFxxx
PROCLIB member, see DFSDFxxx member of the IMS PROCLIB
data set (System Definition).

CATALOG Indicates that the IMS catalog is enabled. Database and

plus one application metadata are available in IMS. Data mask definitions
byte of that use this value must include all eight bytes.

reserved

space

initialized

asa

blank.

Chapter 1. DL/I calls reference 51


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Table 18. INQY ENVIRON data output (continued)

Length
in Actual
Information returned  bytes value

Explanation

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY
ENVIRON call. The PSTUSID field is one of the following;:

« For message-driven BMP regions that have not completed successful GU calls to the IMS message queue
and for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is

currently scheduled into the BMP region.

« For message-driven BMP regions that have completed a successful GU call and for any MPP region, the
PSTUSID field is derived which is usually the input terminal's RACF® ID. If the terminal has not signed on
to RACF, the ID is the input terminal's LTERM.

2. The pointer is an address that identifies a length field (LL) which contains the length of the recovery token
or application program parameter string in binary, including the two bytes required for LL. Use this pointer to
set up addressability of the AIB between releases in a batch program.

- The length byte is two more than the length of the string passed as APARM. This is because it includes the
length of the halfword length. Thus, to turn the length byte into a machine length for an executed move,
you need to subtract three. This is unlike z/OS parm strings, where length does not additionally include
the length of the length byte, and you only subtract one before your executed move.

The INQY ENVIRON2 subfunction returns all the information provided by the ENVIRON subfunction, plus
the output described in the following table.

Table 19. INQY ENVIRONZ2 data output

Length
in Actual
Information returned bytes value

Explanation

INQY ENVIRON2 output 4

Indicates the version number of this INQY ENVIRON2 output.

version
IMS installed version 4 X'000015 Indicates IMS version 15.1.0
(Entries in this row's 10
Actual value column X'000015 Indicates IMS version 15.2.0
show actual values for 20'
IMS versions 15.1, 15.2, - -
and 15.3. A similar X'000015 Indicates IMS version 15.3.0
output pattern applies 30’
for newer versions of
IMS.)
IMS function level 4 Indicates the currently installed function level of IMS.
Functions enabled 32 Is the value of the IMS functions enabled bitmap.
bitmap
Primary Language 2 31 Indicates that the primary Language Environment enclave
Environment enclave addressing mode is 31-bit.
addressing mode 64 Indicates that the primary Language Environment enclave
addressing mode is 64-bit.
0 Indicates that no JVM was requested.

52 IMS: Application Programming APIs



Table 19. INQY ENVIRONZ2 data output (continued)

Length
in Actual
Information returned bytes value Explanation
Language Environment 2 31 Indicates that the Language Environment enclave addressing
enclave addressing mode of the requested JVM is 31-hit.
de for JVM ) . .
mode for 64 Indicates that the Language Environment enclave addressing
mode of the requested JVM is 64-bit.
0 Indicates that no JVM was requested.
IMS MACB enablement 4 No value Indicates that managed ACBs is disabled.
indicato . -
ind! ' MACB Indicates that managed ACBs is enabled.
Notes:

1. To learn more about the functions enabled bitmap, see IMS function levels overview (System
Administration).

2. ENVIRON2 reports primary and active addressing modes as decimal values. Some programs, such as
DFSDDLTO, displays these values in hexadecimal. In such cases, 31-bit displays as 1F and 64-bit displays
as 40.

Querying the input message information: INQY MSGINFO

To obtain information regarding the current input message, use the INQY call with the MSGINFO
subfunction. The only valid PCB name that can be passed in the AIBRSNM1 field is IOPCBbbb. The output
returns the version number and the output fields for the message information. The INQY MSGINFO call
returns the response in the I/O area.

The following table lists the output that is returned from the INQY MSGINFO call. Included with the
information returned is the byte length, the actual value, and an explanation of the output.

The distributed network user ID, if used, has a variable length from 1 to 246 bytes and the distributed
network session ID, if used, has a variable length from 1 to 254 bytes. Because the size of the distributed
network security credentials can vary, the information is appended to the end of the response in the I/O
area. If network security credentials are included in the message, define the I/O area, in the AIB field
AIBOALEN, with the appropriate 2-byte length to account for the variable length of the network user ID
and the network session ID.

To reference the field that contains the distributed network user ID or distributed network session ID,
code your application programs to locate the field by using the address of the field that is returned in
the data output of the INQY MSGINFO call. The address identifies a length field (LL) that contains the
length of the ID followed by the distributed network user ID or network session ID. This is the only valid
programming technique to reference the network user ID and network session ID.

The distributed network user ID or network session ID are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

Chapter 1. DL/I calls reference 53


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions

Table 20. INQY MSGINFO data output

Information returned Length in bytes Actual value Explanation

Version number 4 lor2 Output response version
1 contains the origin IMS
ID.

Output response version
2 contains both the
origin IMS ID and

the distributed network
security credentials.

Origin IMSID 8 The IMS identifier from
which the input message
originated.

Address of distributed 4 If this field is zero,

network user ID network user ID is not

available. If this field is
nonzero, it provides the
address of the LL field
followed by the network
user ID for the input

message.
Address of distributed 4 If this field is zero,
network session ID network session ID is

not available. If this field
is non-zero, it provides
the address of the LL
field followed by the
network session ID for
the input message.

Reserved for IMS 60 This field is reserved for
future output expansion.

Querying the PCB: INQY FIND

When the INQY call is issued with the FIND subfunction, the application program is returned with the

PCB address of the requested PCB name. The only valid PCB names that can be passed in AIBRSNM1 are
IOPCBbbb or the name of an alternate PCB or DB PCB, as defined in the PSB. The PCB address is returned
in the AIBRSAL1 field of the AIB mask. When the INQY call is completed, the AIBRSA1 field contains
call-specific information.

To retrieve the status for a database, you must pass the DB PCB for that database in the INQY FIND call.
You must issue one call for each PCB required.

On a FIND subfunction, the requested PCB remains unmodified, and no information is returned in an I/O
area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY call. This process allows
the application program to analyze the PCB status code to determine whether either an NA or NU status
code is set in the PCB.

The following PL/I code sample shows how to retrieve the database status values.

ITOO_INITSTAT: PROC;
DCL DUMMY_LENGTH CHAR(4) INIT(' '); /* TO PLEASE IMS =/
AIB.PCBNAME = 'IOPCB';
CALL AIBTDLI($3,INIT,AIB,STATUS_CALL2);

54 IMS: Application Programming APIs



IF AIB.RETURN = O THEN
PUT SKIP LIST('INIT ISSUED');

ELSE
DO;
PUT SKIP LIST ('AIB RETURN CODE ' ,AIB.RETURN) ;
PUT SKIP LIST ('AIB REASON CODE ' ,AIB.REASON) ;
PUT SKIP LIST ('IOPCB STATUS CODE ',IO_PCB.STATUS_CODE);
PUT SKIP LIST ('INIT UNSUCCESSFULL');
END;
SELECT (IO_PCB.STATUS_CODE);
WHEN (' ")
GROUPA_STATUS = ' ';
WHEN ('NA")
GROUPA_STATUS = 'NA';
WHEN ('NU')
GROUPA_STATUS = 'NU';
OTHERWISE
DO;
PUT SKIP LIST
("INIT STATUS GROUPA FAILED ',IO_PCB.STATUS_CODE);
END;
END;
PUT SKIP LIST
("INIT STATUS GROUPA = ',I0_PCB.STATUS_CODE);

END IIOO_INITSTAT;
JJOO_INQY: PROC;
DCL DUMMY_LENGTH CHAR(4) INIT(' '); /* TO PLEASE IMS x/
AIB.PCBNAME "IOPCB';
AIB.SUB_FUNC 'DBQUERY E
AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST('INQY ISSUED ON IOPCB BEFORE CHECK OF AIB RETURN');
IF AIB.RETURN = O THEN
PUT SKIP LIST('INQY ISSUED - © RC ON AIB.RETURN');

ELSE
DO;
PUT SKIP LIST ('AIB RETURN CODE ' ,AIB.RETURN) ;
PUT SKIP LIST ('AIB REASON CODE ' ,AIB.REASON) ;
PUT SKIP LIST ('IOPCB STATUS CODE ',IO_PCB.STATUS_CODE);
PUT SKIP LIST ('INQY IOPCB DBQUERY UNSUCCESSFULL');
END;
SELECT (IO_PCB.STATUS_CODE);
WHEN (' ")
DO;
PUT SKIP DATA (IO_AREA);
PUT SKIP DATA (IO_PCB.STATUS_CODE);
END;
WHEN ('NA')
PUT SKIP LIST ('NA STATUS ON IO_PCB.STATUS_CODE');
WHEN ('NU")
PUT SKIP LIST ('NU STATUS ON IO_PCB.STATUS_CODE');
OTHERWISE
DO;
PUT SKIP LIST
("INQY FAILED ',IO_PCB.STATUS_CODE);
END;
END;
PUT SKIP LIST ('START BA1CSTP FIND CALL');
AIB.PCBNAME = 'B1CSTP';

AIB.SUB_FUNC 'FIND e
AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST('INQY BLCSTP FIND READY TO BE CALLED');
IF AIB.RETURN = O THEN
PUT SKIP LIST('INQY BICSTP FIND CALLED - O RC');

ELSE
DO;
PUT SKIP LIST ('AIB RETURN CODE ' ,AIB.RETURN) ;
PUT SKIP LIST ('AIB REASON CODE ' ,AIB.REASON) ;
PUT SKIP LIST ('CSTP_PCB STATUS CODE ',CSTP_PCB.STATUS_CODE);

PUT SKIP LIST ('INQY BACSTP FIND UNSUCCESSFULL'");
END;
PUT SKIP LIST ('CSTP STATUS ' ,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST ('IO PCB ', I0_PCB.STATUS_CODE);
SELECT (CSTP_PCB.STATUS_CODE);
WHEN (' ")
DO;
PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
PUT SKIP DATA (IO_AREA);
END;
WHEN ('NA')
PUT SKIP LIST ('NA STATUS ON BI1CSTP CSTPPCB.STATUS_CODE');

Chapter 1. DL/I calls reference 55



WHEN ('NU")
PUT SKIP LIST ('NU STATUS ON BI1CSTP CSTPPCB.STATUS_CODE');
OTHERWISE
DO;
PUT SKIP LIST
('"INQY FAILED ',IO_PCB.STATUS_CODE);

END;
END;
PUT SKIP LIST ('START D1CSTP FIND CALL');
AIB.PCBNAME = 'D1CSTP';
AIB.SUB_FUNC = 'FIND E

AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST('INQY DACSTP FIND READY TO BE CALLED');
IF AIB.RETURN = O THEN
PUT SKIP LIST('INQY DACSTP FIND CALLED - O RC');
ELSE
DO;
PUT SKIP LIST ('AIB RETURN CODE ' ,AIB.RETURN) ;
PUT SKIP LIST ('AIB REASON CODE ' ,AIB.REASON) ;
PUT SKIP LIST ('CSTP_PCB STATUS CODE ', CSTP_PCB.STATUS_CODE);
PUT SKIP LIST ('INQY DACSTP FIND UNSUCCESSFULL'");
END;
PUT SKIP LIST ('CSTP STATUS ' ,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST ('IO PCB ', I0_PCB.STATUS_CODE);
SELECT (CSTP_PCB.STATUS_CODE) ;
WHEN (' ')
DO;
PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
PUT SKIP DATA (IO_AREA);
END;
WHEN ('NA")
PUT SKIP LIST ('NA STATUS ON DI1CSTP CSTPPCB.STATUS_CODE');
WHEN ('NU")
PUT SKIP LIST ('NU STATUS ON DI1CSTP CSTPPCB.STATUS_CODE');
OTHERWISE
DO;
PUT SKIP LIST
('"INQY FAILED ',IO_PCB.STATUS_CODE);
END;
END;
PUT SKIP LIST ('START S1CSTP FIND CALL');

AIB.PCBNAME = 'XXCSTP';
AIB.SUB_FUNC = 'FIND E
AIB.OUT_LEN_TOT = 2000;

CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST('INQY S1CSTP FIND READY TO BE CALLED');
IF AIB.RETURN = O THEN

PUT SKIP LIST('INQY S1CSTP FIND CALLED - O RC');

ELSE
DO;
PUT SKIP LIST ('AIB RETURN CODE ' ,AIB.RETURN) ;
PUT SKIP LIST ('AIB REASON CODE ' ,AIB.REASON) ;
PUT SKIP LIST ('CSTP_PCB STATUS CODE ', CSTP_PCB.STATUS_CODE);

PUT SKIP LIST ('INQY SA1CSTP FIND UNSUCCESSFULL'");
END;
PUT SKIP LIST ('CSTP STATUS ' ,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST ('IO PCB ', I0_PCB.STATUS_CODE);
SELECT (CSTP_PCB.STATUS_CODE) ;
WHEN (' ')
DO;
PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
PUT SKIP DATA (IO_AREA);
END;
WHEN ('NA")
PUT SKIP LIST ('NA STATUS ON SI1CSTP CSTPPCB.STATUS_CODE');
WHEN ('NU")
PUT SKIP LIST ('NU STATUS ON SI1CSTP CSTPPCB.STATUS_CODE');
OTHERWISE
DO;
PUT SKIP LIST
('"INQY FAILED ',IO_PCB.STATUS_CODE);
END;
END;

Querying for LE overrides: INQY LERUNOPT

When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS determines whether LE overrides
are allowed based on the LEOPT system parameter. The LE override parameters are defined to IMS

56 IMS: Application Programming APIs



through the UPDATE LE command. IMS checks to see whether there are any overrides applicable to

the caller based on the specific combinations of transaction name, lterm name, userid, or program name
in the callers environment. IMS returns the address of the string to the caller if an override parameter

is found. The LE overrides are used by the IMS supplied CEEBXITA exit, DFSBXITA, to allow dynamic
overrides for LE runtime parameters.

The call string must contain the function code and the AIB address. The I/O area is not a required
parameter and is ignored if specified. The only valid PCB name that can be passed in AIBRSNM1 is IOPCB.
The AIBOALEN and AIBOAUSE fields are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY LERUNOPT call are:

< An MPP or JMP region uses transaction name, lterm, userid, and program to match with each entry.

« An IFB, JBP, or non-message-driven BMP uses program name to match with each entry. If an entry has
a defined filter for transaction name, lterm, or userid, it does not match. Message driven BMPs also use
transaction name.

« The entries are scanned to find the entry with the most filter matches. The first entry in the list with the
most exact filter matches is selected. The scan stops with an entry found with all of the filters matching
the entry.

Note: Searching table entries may cause user confusion because of the way entries are built and
searched. For example, assume that there are two entries in the table that match on the filters specified
on the DL/I INQY call. The first transaction matches on transaction name and lterm name. The second
entry matches on transaction name and program name. IMS chooses the first entry because it was the
first entry encountered with highest number of filter matches. If the second entry is now updated with

a longer parameter string, which causes a new entry to be built, it is added to the head of the queue.
The next search would result in the entry with transaction name and program name being selected. This
could result in a set of runtime options being selected that were not expected by the user.

Querying the program name: INQY PROGRAM

When you issue the INQY call with the PROGRAM subfunction, the application program name is returned
in the first 8 bytes of the I/O area. The only valid PCB name that can be passed in AIBRSNM1 is
IOPCBbbb.

INQY return codes and reason codes

When you issue the INQY call, return and reason codes are returned to the AIB. Status codes can be
returned to the PCB. If return and reason codes other than those that apply to INQY are returned, your
application should examine the PCB to see what status codes are found.

Map of INQY subfunction to PCB type

Table 21. Subfunction, PCB, and I/O area combinations for the INQY call

I/O Area

Subfunction I/0 PCB Alternate PCB DB PCB Required
FIND OK OK OK NO
ENVIRON or ENVIRON2 OK NO NO YES
DBQUERY OK NO NO NO
LERUNOPT OK NO NO NO
PROGRAM OK NO NO YES
MSGINFO OK NO NO YES

Chapter 1. DL/I calls reference 57



LOG call

The Log (LOG) call is used to send and write information to the IMS system log.

Format
»— LOG tio pcbj— i/o area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
LOG X X X X X
Parameters
ifo pch

Specifies the I/0 PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to write to the system log.
This is an input parameter. This record must follow the format shown in the following tables.

Table 22. Log record formats for COBOL, C, assembler, Pascal, and PL/I programs for the AIBTDLI,
ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

LL Y74 Cc Text

2 2 1 Variable

Table 23. Log record formats for COBOL, C, assembler, Pascal, and PL/I programs for the PLITDLI
interface

LLLL zZ Cc Text

4 2 1 Variable

The fields must be:

LL or LLLL
Specifies a 2-byte field (or, for PL/I, a 4-byte-long field) to contain the length of the record. The
length of the record is equal to LL + ZZ + C + text of the record. When you calculate the length of
the log record, you must account for all fields. The total length you specify includes:

« 2 bytes for LL or LLLL. (For PL/I, include the length as 2, even though LLLL is a 4-byte field.)
2 bytes for the ZZ field.
« 1 byte for the C field.

58 IMS: Application Programming APIs



 n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must define the length field as a binary
fullword.

zz
Specifies a 2-byte field of binary zeros.

c
Specifies a 1-byte field containing a log code, which must be equal to or greater than X'AQ".

Text
Specifies any data to be logged.

Usage

An application program can write a record to the system log by issuing the LOG call. When you issue the
LOG call, specify the I/O area that contains the record you want written to the system log. You can write
any information to the log, and you can use different log codes to distinguish between different types of
information.

You can issue the LOG call:

« Inabatch program, and the record is written to the IMS log
« Inan online program in the DBCTL environment, and the record is written to the DBCTL log
 In the IMS DB/DC environment, and the record is written to the IMS log

Restrictions

The length of the I/0 area (including all fields) cannot be larger than the logical record length (LRECL)
for the system log data set, minus four bytes, or the I/O area specified in the IOASIZE keyword of the
PSBGEN statement of the PSB.

For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

PCB call (CICS online programs only)
The PCB call is used to schedule a PSB call.
The ODBA interface does not support this call.

Format

»— PCB — psb name — uibptr L J >«
sysserve

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
PCB X X

Parameters

The AIB is not valid for PCB calls.

psb name

Specifies the PSB. An asterisk can be used for the parameter to indicate the default. This parameter is
an input parameter.

uibptr
Specifies a pointer, which is set to the address of the UIB after the call. This parameter is an output
parameter.

Chapter 1. DL/I calls reference 59



sysserve
Specifies an optional 8-byte field that contains either IOPCB or NOIOPCB. This parameter is an input
parameter.

Usage

Before a CICS online program can issue any DL/I calls, it must indicate to DL/I its intent to use a particular
PSB. A PCB call accomplishes this and also obtains the address of the PCB list in the PSB. When you issue
a PCB call, specify:

« The call function: PCBb

« The PSB you want to use, or an asterisk to indicate that you want to use the default name. The default
PSB name is not necessarily the name of the program issuing the PCB call, because that program could
have been called by another program.

« A pointer, which is set to the address of the UIB after the call.

For more information on defining and establishing addressability to the UIB, see the topic "Specifying
the UIB (CICS Online Programs Only)" in IMS Version 15.3 Application Programming.

- The system service call parameter that names an optional 8-byte field that contains either IOPCB or
NOIOPCB.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

RCMD call

A Retrieve Command (RCMD) call enables an automated operator (AO) application program retrieve the
second and subsequent command response segments after an ICMD call.

Format

»— RCMD — aib — i/o area >«

Parameters

aib
Specifies the application interface block (AIB) used for this call. This parameter is an input and output
parameter.

These fields must be initialized in the AIB:
AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

60 IMS: Application Programming APIs



i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area should
be large enough to hold the largest command response segment that is passed from IMS to the AO
application program. If the I/O area is not large enough for all of the information, partial data is
returned in the I/O area.

Usage

RCMD lets an AO application program retrieve the second and subsequent command response segments
resulting from an ICMD call.

Related reading For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

The following table shows, by IMS environment, the types of AO application programs that can issue
RCMD. RCMD is also supported from a CPI-C driven program.

Table 24. RCMD support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL
DRA thread Yes Yes N/A
BMP (nonmessage-driven) Yes Yes Yes
BMP (message-driven) N/A Yes Yes
MPP N/A Yes Yes
IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional response segments, you
must issue RCMD one time for each response segment that is issued by IMS.

Restrictions
An ICMD call must be issued before an RCMD call.

ROLB call

The Roll Back (ROLB) call is used to dynamically back out database changes and return control to your
program.

For more information on the ROLB call, see the topic "Maintaining Database Integrity" in IMS Version 15.3
Application Programming.

The ODBA interface does not support this call.

Format
»— ROLB ifo pcb <
t aib _J L i/o area —J
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ROLB X X X X X
Parameters
ifo pch

Specifies the I/0 PCB for the call. This parameter is an input and output parameter.

Chapter 1. DL/I calls reference 61



aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:
AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB nhame, IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/0 area specified in the call list.

i/o area
Specifies the area in your program where IMS returns the first message segment. This parameter is an
output parameter.

Restrictions
The AIB must specify the I/O PCB for this call.

ROLL call

The Roll (ROLL) call is used to abnormally terminate your program and to dynamically back out database
changes.

For more information on the ROLL call, see the topic "Maintaining Database Integrity" in IMS Version 15.3
Application Programming.

The ODBA interface does not support this call.

Format
»— ROLL >«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ROLL X X X X X
Parameters

The only parameter required for the ROLL call is the call function.

Usage
When you issue a ROLL call, IMS terminates the application program with a U0778 abend.

Restrictions
Unlike the ROLB call, the ROLL call does not return control to the program.

ROLS call

The Roll Back to SETS (ROLS) call is used to back out to a processing point set by a prior SETS or SETU
call.

For more information on the ROLS call, see the topic "Maintaining Database Integrity" in IMS Version 15.3
Application Programming.

62 IMS: Application Programming APIs



Format

»— ROLS —— i/o pcb >
L i/o area — token J

M aib —

“— db pcb —
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ROLS X X X X X
Parameters

db pch
Specifies the DB PCB for the call. This parameter is an input and output parameter.
i/o pcb
Specifies the I/O PCB for the call. This parameter is an input and output parameter.
aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb, or the
name of a DB PCB.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the I/0 area has the same format as the I/O area supplied on the SETS call. This parameter
is an output parameter.

token
Specifies the area in your program that contains a 4-byte identifier. This parameter is an input
parameter.

Usage

When you use the Roll Back to SETS (ROLS) call to back out to a processing point set by a prior SETS or
SETU, the ROLS enables you to continue processing or to back out to the prior commit point and place the
input message on the suspend queue for later processing.

Issuing a ROLS call for a DB PCB can result in the user abend code 3303.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database.

Chapter 1. DL/I calls reference 63



SETS/SETU call

The Set a Backout Point (SETS) call is used to set an intermediate backout point or to cancel all existing
backout points.

The SET Unconditional (SETU) call operates like the SETS call, except that the SETU call is accepted even
if unsupported PCBs exist or an external subsystem is used. For more information on the SETS and SETU
calls, see the topic "Maintaining Database Integrity" in IMS Version 15.3 Application Programming.

Format
»t SETS ifo pcb <
SETU J L aib _J L i/o area — token J
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
SETS/SETU X X X X X
Parameters
ifo pch

Specifies the I/O PCB for the call. SETS and SETU must refer to the I/O PCB. This parameter is an
input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program that contains the data to be returned on the corresponding ROLS
call. This parameter is an input parameter.

token
Specifies the area in your program that contains a 4-byte identifier. This parameter is an input
parameter.

Usage
The SETS and SETU format and parameters are the same, except for the call functions, SETS and SETU.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call. The ROLS call
operates with the SETS and SETU call backout points.

The meaning of the SC status code for SETS and SETU is as follows:

SETS
The SETS call is rejected. The SC status code in the I/O PCB indicates that either the PSB contains
unsupported options or the application program made calls to an external subsystem.

SETU
The SETU call is not rejected. The SC status code indicates either that unsupported PCBs exist in the
PSB or the application program made calls to an external subsystem.

64 IMS: Application Programming APIs



Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database. The SETU call is valid, but not functional, if unsupported PCBs exist in the PSB or if the program
uses an external subsystem.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same token and still back
out to the correct message level. After 255 SETS calls, the messages continue to back out, but only to
the same message level as at 255th SETS call. The SETS token count resets to zero during sync point
processing.

SNAP call
The SNAP call is used to collect diagnostic information.

This topic contains Product-sensitive Programming Interface information.

Format
»— SNAP tdb pcbj— i/o area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
SNAP X X X
Parameters
db pch

Specifies the address that refers to a full-function PCB that is defined in a calling program PSB. This
parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a full-function DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies the area in your program that contains SNAP operation parameters. This parameter is an
input parameter. The following figure shows the SNAP operation parameters you specify, including:

 Length for bytes 1 through 2

- Destination for bytes 3 through 10

« Identification for bytes 11 through 18
« SNAP options for bytes 19 through 22

Chapter 1. DL/I calls reference 65



Length field
Destination

Identification
SMAP options

123 1011 18 19 22
Figure 1. I/O area for SNAP operation parameters

The following table explains the values that you can specify.

Table 25. SNAP operation parameters

Byte Value Meaning

1-2 XX This 2-byte binary field specifies the length of the SNAP operation
parameters. The length must include this 2-byte length field.

When you do not specify operation parameters, IMS uses default values. This
chart lists the lengths that result from your parameter specifications.

If you supply values And IMS supplies Then the length (in
for: default values for: hexadecimal) is:
Destination, 16
Identification, SNAP
options
Destination, SNAP options 12
Identification
Destination Identification, SNAP 10

options

Destination, 2

Identification, SNAP

options

If you specify another length, IMS uses default values for the destination,
identification, and SNAP operation parameters.

66 IMS: Application Programming APIs



Table 25. SNAP operation parameters (continued)

Byte Value Meaning

3-10 This 8-byte field tells IMS where to send SNAP output. You can direct output
to the IMS log by specifying LOG or bbbbb
Directs the output to the IMS log. This is the default destination.

dcbaddr Directs the output to the data set defined by this DCB address.

The application program must open the data set before the SNAP call refers
to it. This option is valid only in a batch environment. The output data set
must conform to the rules for a z/OS SNAP data set.

ddname Directs the output to the data set defined by the corresponding DD
statement. The DD statement must conform to the rules for a z/OS SNAP
data set. The data set specified by ddname is opened and closed for this
SNAP request.

In a DB/DC environment, you must supply the DD statement in the JCL for
the control region.
If the destination is invalid, IMS directs output to the IMS log.

11-18 cceeececc This is an eight-character name you can supply to identify the SNAP. If you do
not supply a name, IMS uses the default value, NOTGIVEN.

19-22 ccce This four-character field identifies which data elements you want the SNAP
output to include. YYYN is the default.

19 Buffer Pool:

Y Dump all buffer pools and sequential buffering control blocks with a SNAP
call.

N Do not dump buffer pools or sequential buffering control blocks with a SNAP
call.

20 Control Blocks:

Y Dump control blocks related to the current DB PCB with a SNAP call.

Do not dump control blocks related to the current DB PCB with a SNAP call.

21 Y Dump all control blocks for this PSB with a SNAP call. Specifying Y in byte
21 produces a snap dump for the current DB PCB request in byte 20 to Y,
regardless of the current value.

N Do not dump all control blocks for this PSB with a SNAP call. In this case, the
current DB PCB SNAP request in position 20 is used as specified.

19-21 ALL This is equivalent to specifying YYY in positions 19-21.
22 Region:

Y Dump the entire region on the DCB address or data set ddname that you
supplied in bytes 3-10 with a SNAP call. IMS processes this request before it
acts on any SNAP requests made in bytes 19-21. If the destination is the IMS
log, IMS does not dump the entire region. Instead, it processes the request
as if you had specified ALL.

N Do not dump the entire region with a SNAP call.

S Dump subpools 0-127 with a SNAP call.

Chapter 1. DL/I calls reference 67



After the SNAP call, IMS can return the AB, AD, or bb (blank) status code. For a description of these codes
and the response required, see IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes.
Usage

Any application program can issue this call.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

STAT call

The Statistics (STAT) call is used in a CICS, IMS online, or batch program to obtain database statistics that
might be useful for performance monitoring.

This topic contains Product-sensitive Programming Interface information.

Format
»w— STAT tdb pcbj— ifo area — stat function —»<
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
STAT X X X
Parameters
db pch

Specifies the DB PCB used to pass status information to the application program. The VSAM statistics
used by the data sets associated with this PCB are not related to the type of statistics that is returned
from the STAT call. This PCB must reference a full-function database. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a full-function DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list.

i/o area
Specifies an area in the application program that is large enough to hold the requested statistics. This
parameter is an output parameter. In PL/I, this parameter should be specified as a pointer to a major
structure, array, or character string.

stat function
Specifies a 9-byte area whose content describes the type and format of the statistics required. The
first 4 bytes define the type of statistics requested and byte 5 defines the format to be provided.
The remaining 4 bytes contain EBCDIC blanks. If the stat function that is provided is not one of the
defined functions, an AC status code is returned. This parameter is an input parameter. The 9-byte
field contains:

68 IMS: Application Programming APIs



« 4 bytes that define the type of statistics you want:
DBAS
OSAM database buffer pool statistics

DBES
OSAM database buffer pool statistics, enhanced or extended

VBAS
VSAM database subpool statistics

VBES
VSAM database subpool statistics, enhanced or extended

- 1 byte that gives the format of the statistics:

F
Full statistics to be formatted. If you specify F, your I/O area must be at least 360 bytes for
DBAS or VBAS and 600 bytes for DBES or VBES.

(o]
Full OSAM database subpool statistics in a formatted form. If you specify O, your I/O area must
be at least 360 bytes.

S
Summary of the statistics to be formatted. If you specify S, your I/O area must be at least 120
bytes for DBAS or VBAS and 360 bytes for DBES or VBES.

U

Full statistics to be unformatted. If you specify U, your I/O area must be at least 72 bytes.
4 bytes of EBCDIC blanks for normal or enhanced STAT call, or bE1b

Restriction: The extended format parameter is supported by the DBESO, DBESU, and DBESF
functions only.

Extended OSAM buffer pool statistics can be retrieved by including the parameter bE1b following
the enhanced call function. The extended STAT call returns all of the statistics returned with the
enhanced call, plus the statistics on the coupling facility buffer invalidates, OSAM caching, and
sequential buffering IMMED and SYNC read counts.

Usage

The STAT call can be helpful in debugging because it retrieves IMS database statistics. It is also helpful in
monitoring and tuning for performance. The STAT call retrieves OSAM database buffer pool statistics and
VSAM database buffer supports.

When you request VSAM statistics, each issued STAT call retrieves the statistics for a subpool. Statistics
are retrieved for all VSAM local shared resource pools in the order in which they are defined. For each
local shared resource pool, statistics are retrieved in ascending order based on buffer size. Statistics for
index subpools always follow those for data subpools if any index subpool exists in the shared resource
pool. The index subpools are also retrieved in ascending order based on buffer size.

For more information on the STAT call, see IMS Version 15.3 Application Programming.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

Related concepts
Retrieving database statistics: the STAT call (Application Programming)

SYNC call

The Synchronization Point (SYNC) call is used to release resources that IMS has locked for the application
program.

Chapter 1. DL/I calls reference 69


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_statcalldbstatistics.htm#ims_statcalldbstatistics

The ODBA interface does not support this call.

Format
»— SYNC i/o pcbj—u
t a[b
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
SYNC X X X
Parameters
i/o pch

Specifies the I0 PCB for the call. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

Usage

SYNC commits the changes your program has made to the database, and establishes places in your
program from which you can restart, if your program terminates abnormally.

Restrictions

The SYNC call is valid only in non-message driven BMPs; you cannot issue a SYNC call from an CPI-C
driven application program.

For important considerations about using the SYNC call, see IMS Version 15.3 Database Administration.

TERM call (CICS online programs only)
The Terminate (TERM) call is used to terminate a PSB in a CICS online program.

The ODBA interface does not support this call.

Format

»— TERM >«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
TERM X X

Usage

If your program needs to use more than one PSB, you must issue a TERM call to release the first PSB it
uses and then issue a second PCB call to schedule the second PSB. The TERM call also commits database
changes.

70 IMS: Application Programming APIs



The only parameter in the TERM call is the call function: TERM or bbb When your program issues the call,
CICS terminates the scheduled PSB, causes a CICS sync point, commits changes, and frees resources for
other tasks.

Restrictions
For function shipping in the CICS environment, the local and remote CICS must both be DBCTL.

XRST call
The Extended Restart (XRST) call is used to restart your program.

If you use the symbolic Checkpoint call in your program, you must precede it with an XRST call that
specifies checkpoint data of blanks.

The ODBA interface does not support this call.

Format

»— XRST t/o pcbj— ifo area length — i/o area >«
aib h

area length — area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
XRST X X X X X
Parameters

i/o pcb

Specifies the I/O PCB for the call. XRST must refer to the I/O PCB. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name, IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area specified in the call list. This
parameter is not used during the XRST call. For compatibility reasons, this parameter must still be
coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this parameter must still be
included in the call, and it must contain a valid address. You can get a valid address by specifying the
name of any area in your program.

i/o area
Specifies a 14-byte area in your program. This area must be either set to blanks if you are starting
your program normally or, if performing an extended restart, have a checkpoint ID.

Chapter 1. DL/I calls reference 71



area length
Specifies a 4-byte field in your program that contains the length (in binary) of the area to restore.
This parameter is an input parameter. You can specify up to seven area lengths. For each area length,
you must specify the area parameter. All seven area parameters (and corresponding area length
parameters) are optional. When you restart the program, IMS restores only the areas specified on the
CHKP call.

The number of areas you specify on an XRST call must be less than or equal to the number of areas
you specify on a CHKP call.

area
Specifies the area in your program that you want IMS to restore. You can specify up to seven areas.
Each area specified must be preceded by an area length. This is an input parameter.

Usage

Programs that want to issue Symbolic Checkpoint calls (CHKP) must also issue the Extended Restart

call (XRST). The XRST call must be issued only once and should be issued early in the execution of the
program. It does not need to be the first call in the program. However, it must precede any CHKP call. Any
Database calls issued before the XRST call are not within the scope of a restart.

To determine whether to perform a normal start or a restart, IMS evaluates the I/O area provided by the
XRST call or CKPTID= value in the PARM field on the EXEC statement in your program's JCL.

Starting your program normally

When you are starting your program normally, the I/O area pointed to in the XRST call must contain
blanks and the CKPTID= value in the PARM field must be nulls. This indicates to IMS that subsequent
CHKP calls are symbolic checkpoints rather than basic checkpoints. Your program should test the I/O area
after issuing the XRST call. IMS does not change the area when you are starting the program normally.
However, an altered I/O area indicates that you are restarting your program. Consequently, your program
must handle the specified data areas that were previously saved and that are now restored.

Restarting your program

You can restart the program from a symbolic checkpoint taken during a previous execution of the
program. The checkpoint used to perform the restart can be identified by entering the checkpoint ID
either in the I/O area pointed to by the XRST call (left-most justified, with the rest of the area containing
blanks) or by specifying the ID in the CKPTID= field of the PARM= parameter on the EXEC statement in
your program's JCL. (If you supply both, IMS uses the CKPTID= value specified in the parameter field of
the EXEC statement.)

The ID specified can be:

« A 1-to 8-character extended checkpoint ID.
e A 14-character "time stamp" ID from message DFS05401, where:

— IIII is the region ID.
— DDD is the day of the year.
— HHMMSST is the time in hours, minutes, seconds, and tenth of a second.
« The 4-character constant "LAST". (BMPs only: this indicates to IMS that the last completed checkpoint
issued by the BMP will be used for restarting the program.)
The system message DFS05401 supplies the checkpoint ID and the time stamp.

The system message DFS6821 supplies the checkpoint ID of the last completed checkpoint which can
be used to restart a batch program or batch message processing program (BMP) that was abnormally
terminated.

At completion of the XRST call the I/O area always contains the 8-character checkpoint ID used for the
restart. An exception exists when the checkpoint ID is equal to 8 blank characters; the I/O area then
contains a 14-character time stamp (IIIIDDDHHMMSST).

72 IMS: Application Programming APIs



If the program being restarted is in a DL/I batch region, the IMSLOGR DD statement that defines the log
data set must be supplied in the JCL. IMS reads these data sets and searches for the checkpoint records
that have the ID that was specified.

However, if the program being restarted is in a BMP region and all of the following conditions are met, an
IMSLOGR DD statement is not required:

« The BMP program is restarted with CKPTID=LAST.

« The BMP program is restarted on the same IMS system with the same job name, same PSB, and same
program name that was used when it abended.

« IMS has not been cold-started since the BMP program abended.

« The checkpoint records that are needed to restart the program are on an OLDS data set that has not
been archived and reused since the time of the abend, or the SLDSREAD logger function is active in IMS.

If any of the preceding conditions are not met, you must supply an IMSLOGR DD statement that points to
the data set that contains the required checkpoint records.

If an IMSLOGR DD statement is supplied, it must contain the required checkpoint log records. IMS does
not automatically locate and retrieve checkpoint records for a BMP if an IMSLOGR DD statement is
present. Only the IMSLOGR DD data set is searched and, if the record is not found, the BMP program
terminates with abend U0102.

Note: A DD DUMMY statement is permissible for an IMSLOGR DD statement and is treated as if no
IMSLOGR DD statement was supplied.

At the completion of the XRST call, the I/O area always contains the 8-character checkpoint ID used for
the restart. An exception exists when the checkpoint ID is equal to 8 blank characters; the I/O area then
contains a 14-character time stamp (IIIIDDDHHMMSST).

Also check the status code in the I/O PCB. The only successful status code for an XRST call are blanks.
Position in the database after issuing XRST

The XRST call attempts to reposition all databases to the position that was held when the last checkpoint
was taken. This is done by including each PCB and PCB key feedback area in the checkpoint record.
Issuing XRST causes the key feedback area from the PCB in the checkpoint record to be moved to the
corresponding PCB in the PSB that is being restarted. Then IMS issues a GU call, qualified with the
concatenated key (using the C command code), for each PCB that held a position when the checkpoint
was taken.

After the XRST call, the PCB reflects the results of the GU repositioning call, not the value that was present
when the checkpoint was taken. The GU call is not made if the PCB did not hold a position on a root or
lower-level segment when the checkpoint was taken. A GE status code in the PCB means that the GU for
the concatenated key was not fully satisfied. The segment name, segment level, and key feedback length
in the PCB reflect the last level that was satisfied on the GU call. A GE status code can occur because IMS
is unable to find a segment that satisfies the segment search argument that is associated with a Get call
for one of the following reasons:

« The call preceding the checkpoint call was a DLET call issued against the same PCB. In this case, the
position is correct because the position after the Get call does not find its target is the same position
that would exist following the DLET call.

Restriction: Avoid taking a checkpoint immediately after a DLET call.

« The segment was deleted by another application program between the time your program terminated
abnormally and the time you restarted your program. A GN call issued after the restart returns the first
segment that follows the deleted segment or segments.

This explanation assumes that position at the time of checkpoint was on a segment with a unique key.
XRST cannot reposition to a segment if that segment or any of its parents have a non-unique key.

For a DEDB, the GC status code is received when position is not on a segment but at a unit-of-work (UOW)
boundary. Because the XRST call attempts to reestablish position on the segment where the PCB was

Chapter 1. DL/I calls reference 73



positioned when the symbolic checkpoint was taken, the XRST call does not reestablish position on a PCB
if the symbolic checkpoint is taken when the PCB contains a GC status code.

If your program accesses GSAM databases, the XRST call also repositions these databases.

During GSAM XRST processing, a check is made to determine if the GSAM output data set to be
repositioned is empty and if the abending job had previously inserted records in the data set.

Restrictions
If your program is being started normally, the first 5 bytes of the I/O area must be set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC statement is not used,
then the right-most bytes beyond the checkpoint ID being used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP application programs.

Transaction management

Use the following reference information to make DL/I calls for transaction management.

DL/I calls for transaction management

Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.

Transaction management calls must use either i/o pcb or aib parameters.
Each call description contains:

« A syntax diagram

« A definition for each parameter that can be used in the call

« Details on how to use the call in your application program

- Restrictions on the use of the call

Each parameter is described as an input or output parameter. "Input" refers to input to IMS from the
application program. "Output" refers to output from IMS to the application program.

The syntax diagrams for the transaction managment calls do not contain the complete call structure.
Instead, the calls begin with the function parameter. The call, the call interface (xxxTDLI), and parmcount
(if it is required) are not included in the syntax diagrams. See language-specific information (for COBOL,
C language, Pascal, PL/I, and assembler language) in the topic "Defining Application Program Elements"
inIMS Version 15.3 Application Programming for the complete structure.

Transaction Management Call Summary

The following table summarizes the parameters that are valid for each of the transaction management
message calls. The following table lists the function code, its meaning, use, parameters, and in which
regions it is valid. Optional parameters are enclosed in brackets, [ ].

Exception: Language-dependent parameters are not shown here. The variable parmcount is required
for all PLITDLI calls. Either parmcount or VL is required for assembler language calls. Parmcount

is optional in COBOL, C, and Pascal programs. See the topic "Formatting DL/I Calls for Language
Interfaces" in IMS Version 15.3 Application Programming for language-specific information.

Related reading: For information on writing calls with programming language interfaces, see the topic
"Defining Application Program Elements" in IMS Version 15.3 Application Programming.

74 IMS: Application Programming APIs



Table 26. Summary of TM message calls

Function Code

Meaning

Use

Parameters

Valid for

AUTH

Authorization

Verifies user's
security
authorization

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

CHNG Change Sets destination on  function, alt pcb DB/DC, DCCTL
modifiable alternate or aib, destination
PCB namel, options list,

feedback area]

CMD Command Used by a program  function, i/o pcbor  DB/DC, DCCTL
to issue IMS aib, i/o area
commands

GCMD Get Command Retrieves second function, i/opcb or  DB/DC, DCCTL
and any subsequent aib, i/o area
responses to a
command

GN Get Next Retrieves second function, i/opcb or  DB/DC, DCCTL
and any subsequent aib, i/o area
message segments

GU Get Unique Retrieves the first function, i/opcbor  DB/DC, DCCTL
segment of a aib, i/o area
message

ICAL IMS Call Sends a aib, request area, DB/DC, DCCTL
synchronous request response area
for data or services
to a non-IMS
application program
or service that runs
in a distributed
environment

ISRT Insert Builds an output function, i/o or alt DB/DC, DCCTL
message in a pcb or aib, i/o area
program's I/O area  [,mod name.]

PURG Purge Enqueues messages function, i/o or alt DB/DC, DCCTL
from a PCB to pcb or aibl, i/o area,
destinations mod name.]

SETO Sets processing Feedback area function, i/o pcbor  BMP, MPP, IFP

options for advanced

print functions and
APPC/IMS message
processing

returns information
about errors in the
options list

alternate pcb or aib,

i/o area, options list|,

feedback area]

DB/DC, DCCTL

Related reading: DCCTL users can issue calls using GSAM database PCBs, which are described in IMS
Version 15.3 Application Programming.
Related reference

“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.

“DL/I calls for database management” on page 1

Chapter 1. DL/I calls reference 75



Use these DL/I calls with IMS DB to perform database management functions in your application
program.

“EXEC DLI commands” on page 153

The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

AUTH call

An Authorization (AUTH) call verifies each user's security authorization. It determines whether a user is
authorized to access the resources specified on the AUTH call.

Format
»— AUTH ti/o-pcbj— i/o_area »<
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
AUTH X X
Parameters
i/o pch

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area used for the call. This parameter is an input and output parameter.

I/0 Area
The following tables show the format of the parameter list in the I/O area before the AUTH call is issued.

I/0 area before the AUTH call

Table 27. I/O area before the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces

Field Name Field Length
LL 2
77 2

76 IMS: Application Programming APIs



Table 27. I/O area before the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces (continued)

Field Name Field Length
CLASSNAME 8
RESOURCE 8
USERDATA 8

Table 28. I/0O area before the AUTH call is issued for the PLITDLI interface

Field Name Field Length
LLLL 4
77 2
CLASSNAME 8
RESOURCE 8
USERDATA 8

LL or LLLL
specifies a 2-byte field that contains the length of the parameter list, including two bytes for LL.
For the PLITDLI interface, use the 4-byte field LLLL. However, if you use the AIBTDLI interface, PL/I
programs require only a 2-byte field.

2z
specifies a 2-byte field that contains binary zeros.

CLASSNAME
specifies an 8-byte field that contains one of the following values:

TRANbbbb
DATABASE
SEGMENTbH
FIELDbbb
OTHERbbb

All parameters are 8 bytes in length, left-justified, and must be padded to the right with blanks.

The use of a generic class name in the call parameter list eliminates the need for the application

to be sensitive to the actual Resource Access Control Facility (RACF) class names being used. Since
transaction authorization must be active, only the RACF class associated with the generic class name
identifier for the transaction class must be defined. The generic class name in the call parameter list
causes the authorization function to select the proper RACF class and request access checking for
that class.

RESOURCE
specifies the 8-byte field that contains the name of the resource to be checked. Except for the generic
class TRAN, the resource name can be whatever the application designates because the name has no
meaning for IMS TM.

IMS TM performs no validity checking of the resource name.

USERDATA
specifies the 8-byte keyword constant USERDATA is the only value supported. Its presence in the
parameter list means that the application program wants any RACF installation data that exists in the
RACF accessor environment element (ACEE).

The following tables show the I/O area after the AUTH call.
I/0 area after the AUTH call

Chapter 1. DL/I calls reference 77



Table 29. I/O area after the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces

Field Name Field Length
LL 2

2z 2

FEEDBACK 2

EXITRC 2

STATUS 2

RESERVED 16

uL 2

USERDATA Variable

Table 30. I/0O area after the AUTH call is issued for the PLITDLI interface

Field Name Field Length
LLLL 4

77 2
FEEDBACK 2

EXITRC 2

STATUS 2

RESERVED 16

UL 2

USERDATA Variable

LL or LLLL

A 2-byte field that contains the length of the character string, plus 2 bytes for LL. For the PLITDLI
interface, use the 4-byte field LLLL. However, if you use the AIBTDLI interface, PL/I programs require
only a 2-byte field.

y a4
specifies a 2-byte field that contains binary zeros.
FEEDBACK
specifies a 2-byte field that contains one of the following RACF return codes:
0000
User is authorized.
0004
Resource or class not defined.
0008
User is not authorized.
000C
RACF is not active.
0010

Invalid installation exit return code.

78 IMS: Application Programming APIs



EXITRC
specifies a 2-byte field that contains the return code from the user exits if they were used. The
EXITRC field contains the return code from the last user exit that was entered. If none of the user
exits are present or invoked, the field contains binary zeros. If installation data is returned from the
exit, the EXITRC field is set to zero to indicate an authorized return code from the exit.

STATUS
specifies a 2-byte field that contains the hexadecimal status code indicating installation data status:

0000
RACF installation data is present in the I/O area.

0004
Security exit installation data present in then I/O area.

0008
User is not currently signed on.

000C
User is not authorized, so installation data is not made available, or user is authorized, but no
installation data has been defined.

0010
User was authorized, but installation data was not requested.

0014
USERDATA exceeds PSBWORK area length.

0018
RACF not active and TRN=N defined.

RESERVED
Binary zeros (reserved)

UL
specifies a 2-byte field that specifies the length of the installation data, including the length of the UL
parameter.

USERDATA
specifies a variable-length field that contains installation data from ACEE or a user security exit. The
length of the installation data is limited to 1026 bytes, including the length (UL) field. If a security exit
returns a value greater than 1026, IMS truncates the installation data and adjusts the length field to
represent the amount of installation data actually returned to the application program. If security exit
installation data is returned, IMS passes it to the application program even if the parameter list did not
contain the USERDATA parameter.

Any available installation data is returned if the return code from RACF indicates that the user is
authorized to the resource named in the call parameter list. No installation data is returned if the user
who originated the transaction is no longer signed on to the terminal associated with the transaction.
Installation data might or might not be provided by the security exits when they are involved in the
security decision. However, when either of the exits returns installation data, IMS passes it on to the
application program.

If provided, installation data is returned from a security exit to the application even when the call
parameter list does not specify the USERDATA parameter. In that case, the STATUS field of the I/O
area contains the code X'0004' indicating the presence of the installation data.

Usage

The AUTH call determines whether a user is authorized to access the resources specified on the AUTH

call. AUTH is issued with an I/O PCB and its function depends on the application program. Authorization
checking depends on the dependent region type and whether a GU call has been issued. The call functions
are as follows:

« In BMPs, AUTH uses the user ID of the IMS control region or installation specific user exits to determine
the status of the call.

Chapter 1. DL/I calls reference 79



« For BMPs that have issued a successful GU call to the I/O PCB, AUTH functions as it does in an MPP.

« In MPPs, AUTH verifies user authorization with RACF for the specified resource classes of those
resources used by the application program.

Because the call can request RACF user data to be passed back in the I/0 area as installation data, the
processing of the call always results in changes to the STATUS field in the I/O area. This STATUS field
notifies the application of the status of installation data in the I/O area: available or not available. It might
not be available because the installation data is not defined or the originating user is no longer signed on
to the IMS system.

Either of the supported security exits for transaction authorization (DFSCTRNO or DFSCTSEOQ) can present
installation data upon return to IMS. If an exit returns installation data, the data is returned to the
application even if the parameter list did not contain the USERDATA parameter. The STATUS field is set

to indicate the origination of the installation data. The STATUS field indicates the presence of either RACF
installation data or security exit installation data.

The application program also receives notification of the actual RACF return code. This return code,
presented as FEEDBACK in the I/O area, can be used by the application program to detect inconsistent
operational modes and take alternate action. Examples of inconsistent operational modes are the proper
RACF classes not being defined or the requested resource not properly defined to RACF.

By checking the FEEDBACK, EXITRC, and STATUS in the I/0 area, the application program can be
sensitive to issues such as the proper RACF definitions and resources not being defined. If RACF is

being used, and the AUTH call references any resources that are not defined, the PCB status code is set to
blanks and the FEEDBACK field of the I/O area is set to indicate that the resource is not protected.

Because the value for EXITRC is provided by a user security exit, use of this field must be made with an
understanding of exit operation and the knowledge that any changes to the exit can result in application
errors. If due to operational errors, the proper resources are not protected, the application can deal with
the error in any way. This feedback can make operational control simpler and give the application more
flexibility.

Related reading: RACF terms and concepts are discussed in more detail in other information units. For
additional information, see IMS Version 15.3 System Administration and IMS Version 15.3 Exit Routines.
Restrictions

The AUTH call must not be issued before a successful GU call to the I/O PCB.

CHNG call

The Change (CHNG) call sets the destination of a modifiable alternate PCB to the logical terminal, LU 6.2
descriptor, or transaction code that you specify. You can also use the CHNG call with the Spool Application
Program Interface (Spool API) to specify print data set characteristics.

Format

»— CHNG T alternate_pcb T destination_name —»
aib

» »d
» 1 J >4

options_list
L feedback_area J

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHNG X X

80 IMS: Application Programming APIs



Parameters

alternate pch
Specifies the modifiable alternate PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a modifiable alternate
PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

destination name
Specifies an 8-byte field containing the destination name (the logical terminal or transaction code) to
which you want messages sent. This parameter is an input parameter. The destination name can be
up to 8 bytes. When you specify LU 6.2 options, IMS TM sets the destination name in the alternate
PCB to DFSLU62b. If an LU 6.2 options list is specified the destination name parameter is ignored.

For more information on LU 6.2, see IMS Version 15.3 Communications and Connections.

The destination name may also be used to implement message switches from OTMA to non-OTMA
destinations. In this case, the destination name must match the name of the routing descriptor in the
DFSYDTx member of IMS.PROCLIB.

Restriction: Some destination names are invalid. For more information on resource naming rules, see
IMS Version 15.3 Communications and Connections.

options list
Specifies one of several option keywords. This parameter is an input parameter. The options in the
list are separated by commas and cannot contain embedded blanks. Processing for the options list
terminates when the first blank in the list is reached or when the specified options list length has been
processed. You can specify options for advanced print functions or for APPC.

For more information on APPC, see IMS Version 15.3 Communications and Connections.

The format for the options list is shown here:

LLorLLLL 123 2z keywordi=variablel
Halfword length of the options  Halfword of zero. CHNG options separated by
string, including the 4-byte commas.

length of LLZZ or LLLLZZ.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the CHNG call as if
the options list parameter was not specified.

3. A keyword must be separated from the following variable by an equal sign (=). A keyword with no
variable must be delimited by a comma or blank.

Chapter 1. DL/I calls reference 81



feedback area
Specifies an optional parameter used to return error information about the options list to the
application program. This parameter is an output parameter. The amount of information that the
application program receives is based on the size of the feedback area. If no feedback area is
specified, the status code returned is the only indication of an options list error. If you specify a
feedback area 1% to 2 times the size of the specified options list (@ minimum of eight words), IMS TM
returns more specific information about errors in the options list.

The following table shows the format for the feedback area passed to IMS in the call list:

LL or LLLL 1,2 2z

Halfword length of the feedback area, including  Halfword of zero.
the 4-byte length of the LLZZ fields.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the CHNG call as
if the feedback area parameter was not specified.

The output format returned to the application program from IMS for the feedback area is as follows:

LLZZ or LLLLZZ LL feedback data

The length field as specified Halfword length of the feedback Data returned by IMS TM.

in the input format for the data returned by IMS TM, The feedback data generally
feedback area. including the 2-byte LL field. includes the option keyword

found to be in error and a 4-byte
EBCDIC code in parentheses
that indicates the reason for

the error. Multiple errors are
separated by commas.

Usage

Use the CHNG call to send an output message to an alternate destination in your system or in another
system. When you issue the CHNG call, you supply the name of the destination to which you want to send
the message. The alternate PCB you name then remains set to that destination until you do one of the
following:

« Issue another CHNG call to reset the destination.

« Issue a Get Unique (GU) call to the message queue to start processing a new message. In this case, the
name of the PCB you specify with the CHNG call still appears in the alternate PCB, even though it is no
longer valid.

« Terminate the application program. When you terminate the application, IMS TM resets the destination
to blanks.

You can use the CHNG call to perform Spool API functions.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a separate JES spool
data set. (PURG calls have no effect when issued against a nonexpress, alternate PCB.) If the destination
of the PCB is the JES spool, it cannot be CHNGed to a non-JES spool destination until the data set(s) have
been released by a sync point. Keywords that can be specified on the CHNG call are discussed below.

In the OTMA environment

If an IMS application program issues a CHNG call to an alternate PCB and specifies an options list, then the
output destination cannot be an IMS Open Transaction Manager client.

82 IMS: Application Programming APIs



An IMS application program that issues a CHNG call to an alternate PCB (specifying an options list) does
not cause IMS to call the OTMA Prerouting and Destination Resolution exit routines to determine the
destination. But an IMS application program that issues a CHNG call to an alternate PCB (specifying

an APPC descriptor) does cause IMS to call the OTMA exit routines to determine the destination. For
information on these exit routines, see IMS Version 15.3 Exit Routines.

The application program can still issue ISRT calls to the I/O PCB to send data to an OTMA destination.

OTMA application programs can use CHNG and ISRT calls for APPC destinations. For more information,
see IMS Version 15.3 Communications and Connections.

Advanced print function options

The IAFP keyword identifies the CHNG call as a request for Spool API functions. The parameters of the
IAFP keyword are:

Keyword
Description

IAFP=abc
a — specifies carriage control options

b — specifies integrity options
¢ — specifies message processing options
These options specify advanced print functions for the CHNG call.

Carriage control options: The 1-character carriage control options indicate the type of carriage control that
is present in the message data when the ISRT or PURG call is issued. Your application program must
insert the proper carriage control characters in the data stream. You can specify one of the following
values for the IAFP keyword:

A
The data stream contains ASA carriage control characters.

M
The data stream contains machine carriage control characters.

N
The data stream does not contain carriage control characters.

Integrity options: The 1-character integrity options indicate the method IMS TM uses in allocating the IMS
Spool data set that contains the IAFP message. You can specify one of the following options for the IAFP
keyword:

0
IMS TM attempts no data set protection. Your application program must provide any disposition or
hold status by using the appropriate OUTPUT descriptor options. IMS TM does attempt to prevent a
partial message from printing and to deallocate data sets that contain messages that have already
reached a sync point. To control whether error messages about the IMS Spool data set are issued, use
the message processing options for the IAFP keyword.

The IMS Spool data set is placed on the SYSOUT HOLD queue when it is allocated. If IMS TM issues
message DFS00121 or DFS00141, the operator must query the SYSOUT HOLD queue to locate the
appropriate data sets. IMS TM releases the data set and deallocates it to be printed at sync point.

When you specify 1 for the integrity option, you must specify M for the message processing option of
the IAFP keyword.

A remote destination is specified in the destination name parameter on the CHNG call. The IMS Spool
data set, when allocated, is placed on a SYSOUT remote workstation, IMSTEMP. This destination must
be included in the definitions as nonselectable so that the data set is not automatically selected to

be printed. If IMS TM issues message DFS00121 or DFS00141, the operator must query IMSTEMP

to locate the appropriate data sets. At sync point, IMS TM releases the data set and deallocates it

Chapter 1. DL/I calls reference 83



to the remote workstation ID specified in the destination name parameter. The value 2 overrides any
destination specified in the IAFP OUTPUT options.

Message processing options: The 1-character message processing options indicate whether IMS TM
issues message DFS00141 during restart and message DFS00121 for dynamic allocation failures. You
can specify one of the following options:

0
DFS00121 and DFS00141 are not issued. Your application program controls IAFP message integrity.

M
DFS00121 and DFS00141 are issued if necessary. IMS TM controls IAFP message integrity.

The CHNG call can provide the data set characteristics by:

« Directly, using the PRTO= option

- Referencing prebuilt text units, using the TXTU= option

» Referencing an OUTPUT JCL statement in the dependent region's JCL, using the OUTN= option

When you use the IAFP keyword, you must also specify the PRTO, TXTU, or OUTN option. (The options
PRTO, TXTU, and OUTN are mutually exclusive.) If you do not specify one of these additional options, or if
you specify more than one of these options, or if you specify IAFP with an invalid value, IMS TM returns an
AR status code to your application program.

Keyword
Description

PRTO=outdes options
Describes the data set processing options as they are specified on the TSO OUTDES statement.

The format for the PRTO= keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer Any valid combination of OUTDES printer options.
options, including the 2-byte length of LL.

Note: Some options depend on the release level of MVS™.

TXTU=address
specifies the address of a list of text-unit pointers. The list (with the associated text units) can be
created by a previous SETO call, or it can be created by your application program. The LLZZ or LLLLZZ
prefix must be included on the buffer that contains the list. TXTU allows your application program to
issue a SETO call to build the text units for the OUTDES options before the CHNG call is issued.

If your application program issues several CHNG calls with the same OUTDES printer options, the
TXTU option means you do not need to build OUTDES options for each CHNG call.

OUTN=name
specifies a character string up to eight characters long that contains the name of an OUTPUT JCL
statement that identifies the printer processing options to be used. If the specified OUTPUT DD
statement is not included in the JCL for the region in which the application program runs, a dynamic
allocation error occurs when the application attempts to insert data to the data set.

APPC options: The following APPC options are available for the CHNG call:

Keyword
Description

LU=logical unit name
Specifies the logical unit (LU) name of a partner for an LU 6.2 conversation with a partner application
program. It is used in conjunction with the MODE and TPN options to establish the conversation. The
LU name can be any alphanumeric string including national characters, but the first character cannot
be a number. If the LU name is a network-qualified name, it can be up to seventeen characters long

84 IMS: Application Programming APIs



and consist of the network ID of the originating system, followed by ', then the LU name. (for example,
netwrkid.luname). The LU name and the network ID are both one to eight characters long. The default
for this option is DFSLU.

MODE=mode name
Specifies the mode of the partner for an LU 6.2 conversation with a partner application program. It
is used in conjunction with the LU and TPN options to establish the conversation. The mode name
can be any alphanumeric string up to eight characters long, including national characters, but the
first character cannot be a number. If both MODE and SIDE options are specified, the mode name
specified in the SIDE entry is ignored but is not changed. The default for this option is DFSMODE.

TPN=transaction program name
Specifies the transaction program (TP) name of the partner application program in an LU 6.2
conversation. The option is used in conjunction with the LU and MODE keywords to establish the
conversation.

TP names can be up to 64 characters long and can contain any character from the 00640 character
set except a blank. The 00640 character set includes the letters A-Z, the digits 0-9, and 20 special
characters. The default for this option is DFSASYNC. For more information on the 00640 character set,
see CPI Communications Reference. The format for the TPN option is as follows:

LL tpn
Halfword length of the TP name, including the The TP name, which can be up to 64 characters
2-byte length of LL. long.

TP names that are processed with the IMS command processor must contain characters that are valid
to IMS. For example, names that contain lower case letters cannot be processed and are rejected if
they are used as operands for IMS commands.

SIDE=side information entry name
Specifies the side information entry name that can be used to establish an LU 6.2 conversation with
a partner application program. The SIDE name can contain up to eight characters, including the
uppercase alphabet (A-Z), and the digits 0-9. If the LU, MODE, or TPN keywords are specified, they
override the SIDE keyword, but they do not change the side information entry name. This option has
no default.

SYNC=NC
Overrides the APPC/IMS conversation synchronization level. N sets the synchronization level to NONE.
C sets the synchronization level to CONFIRM. The default for this option is C.

TYPE=BM

Overrides the APPC/IMS conversation type. B sets the conversation type to BASIC. M sets the
conversation type to MAPPED. The default for this option is M.

Related reading: For more information on APPC and the default options, see IMS Version 15.3
Communications and Connections.

Options list feedback area:When errors are encountered in the options list, the options list feedback area
is used to return error information to the application.

IMS attempts to parse the entire options list and return information on as many errors as possible. If
the feedback area is not large enough to contain all the error information, only as much information is
returned as space permits. The status code is the only indication of an option list error if you do not
specify the area.

The feedback area must be initialized by the application with a length field indicating the length of the
area. A feedback area approximately 1.5 to 2 times the length of the options list or a minimum of 8 words
should be sufficient.

Error codes

This section contains information on error codes that your application can receive.

Chapter 1. DL/I calls reference 85



Error Code
Reason

(0002)
Unrecognized option keyword.

Possible reasons for this error are:

« The keyword is misspelled.

« The keyword is spelled correctly but is followed by an invalid delimiter.

- The length specified field representing the PRTO is shorter than the actual length of the options.
« A keyword is not valid for the indicated call.

(0004)
Either too few or too many characters were specified in the option variable. An option variable
following a keyword in the options list for the call is not within the length limits for the option.

(0006)
The length field (LL) in the option variable is too large to be contained in the options list. The options
list length field (LL) indicates that the options list ends before the end of the specified option variable.

(0008)
The option variable contains an invalid character or does not begin with an alphabetic character.

(000A)
A required option keyword was not specified.

Possible reasons for this error are:

« One or more additional keywords are required because one or more keywords were specified in the
options list.

« The specified length of the options list is more than zero but the list does not contain any options.

(oooC)
The specified combination of option keywords is invalid. Possible causes for this error are:

« The keyword is not allowed because of other keywords specified in the options list.
« The option keyword is specified more than once.

(00OE)
IMS found an error in one or more operands while it was parsing the print data set descriptors.
IMS usually uses z/0S services (SJF) to validate the print descriptors (PRTO= option variable). When
IMS calls SJF, it requests the same validation as for the TSO OUTDES command. Therefore, IMS
is insensitive to changes in output descriptors. Valid descriptors for your system are a function of
the MVS release level. For a list of valid descriptors and proper syntax, use the TSO HELP OUTDES
command.

IMS must first establish that the format of the PRTO options is in a format that allows the use of SJF
services. If it is not, IMS returns the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the error.

The range of some variables is controlled by the initialization parameters. Values for the maximum
number of copies, allowable remote destination, classes, and form names are examples of variables
influenced by the initialization parameters.

Restrictions

Before you can use the CHNG call to set or alter the destination of an alternate PCB, you must issue the
PURG call to indicate to IMS that the message that you have been building with that PCB is finished.

LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG call in an LU 6.2 conversation. The
LU 6.2 conversation can only be associated with the IOPCB. The application sends a message on the
existing LU 6.2 conversation (synchronous) or has IMS create a new conversation (asynchronous) using

86 IMS: Application Programming APIs



the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation, only the IOPCB represents
the original LU 6.2 conversation.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a separate JES spool
data set. (PURG calls have no effect when issued against a nonexpress, alternate PCB.) If the destination
of the PCB is the JES spool, it cannot be CHNGed to a non-JES spool destination until the data set(s) have
been released by a sync point.

Related reference

“ISRT call” on page 104

The Insert (ISRT) call sends one message segment to the destination that you specify in the call. The
destination is represented by the I/O PCB, alternate PCB, or AIB you specify in the call parameters.

“PURG call” on page 107

The Purge (PURG) call allows your application program to send one or more output message segments
(specified with the ISRT call) to the specified destination before the application program retrieves the
next input message or issues a commit point.

CMD call

The Command (CMD) call enables an application program to issue IMS commands.

Format

»— CMD ifo_pcb i/o_area »«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
CMD X X

Parameters

i/o pch

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:
AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.
AIBOALEN

I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0O area to use for this call. This parameter is an input and output parameter. The I/O
area must be large enough to hold the largest segment passed between the program and IMS TM.

Chapter 1. DL/I calls reference 87



Usage

Use the CMD call with the GCMD call to send commands to and receive responses from IMS TM. After the
CMD call issues the command to IMS TM, IMS TM processes the command and returns the first segment
of the response message to the application program's I/O area, but only if a CC status code is returned
on the CMD call. Your application program must then issue GCMD calls to retrieve all subsequent message
segments one segment at a time. The CMD and GCMD command calls are typically used to perform
functions that are usually handled by someone at a terminal. These programs are called automated
operator (AO) applications.

Before you issue a CMD call, the IMS command that you want to execute must be in the I/O area that you
refer to in the call. When you issue a CMD call, IMS TM passes the command from the I/0O area to the IMS
control region for processing. IMS TM places your application program in a wait state until the command
is processed. The application program remains in a wait state until IMS TM returns a response. (Response
means that IMS TM has received and processed the command.) For asynchronous commands, you receive
a response when the command is processing, but not when it is complete.

You can also issue DB2 commands from your IMS TM application program. Issue the command call and
use the /SSR command, followed by the DB2 command. IMS TM routes the command to DB2. DB2 issues
a response to the command, and IMS TM routes the DB2 response to the master terminal operator (MTO).

Restrictions

The AIB must specify the I/O PCB for this call.

Any application program that uses this call must be authorized by the security administrator.
You cannot issue a CMD call from a CPI-C driven application program.

This call is not supported in an IFP or non-message-driven BMP.

Related reference

“GCMD call” on page 88

The Get Command (GCMD) call retrieves the response segments from IMS TM when your application
program processes IMS commands using the CMD call.

GCMD call

The Get Command (GCMD) call retrieves the response segments from IMS TM when your application
program processes IMS commands using the CMD call.

Format
»— GCMD ti/o_pcbj— ifo_area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
GCMD X X
Parameters
ifo pch

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

88 IMS: Application Programming APIs



The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/0 area that is specified in the call list.

i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

Usage

When you issue a CMD call, IMS TM returns the first command response segment to the application
program's I/O area. If you are processing commands that return more than one command response
segment, use the GCMD call to retrieve the second and subsequent command response segments. IMS
TM returns one command response segment to the I/O area of your application program each time the
application program issues a GCMD call. The I/O area must be large enough to hold the longest message
segment expected by your application program. IMS allows a maximum segment size of 132 bytes
(including the 4-byte LLZZ field).

The CMD and GCMD calls are typically used to perform functions that are usually performed by someone at
a terminal. These programs are called automated operator (AQO) applications.

PCB status codes indicate the results of a GCMD call. The status codes are similar to those that result from
a message GN call. A QD status indicates that there are no more segments in the response. A QE status
indicates that a GCMD call was issued after a CMD call that did not produce response segments. A blank
status ('bb') indicates that a segment was retrieved successfully.

Restrictions

The AIB must specify the I/0 PCB for this call.

Any AO application that uses this call must be authorized by the security administrator.
You cannot issue a GCMD call from a CPI-C driven application program.

This call is not supported in an IFP, or non-message driven BMP.

Related reference

“CMD call” on page 87
The Command (CMD) call enables an application program to issue IMS commands.

GN call

If an input message contains more than one segment, a Get Unique (GU) call retrieves the first segment of
the message and Get Next (GN) calls retrieve the remaining segments.

Format

»— GN ti/o_pcbj— i/o_area »«
aib

Chapter 1. DL/I calls reference 89



Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GN X X

Parameters

ifo pch
Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.
The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

Usage

If you are processing messages that contain more than one segment, you use the GN call to retrieve the
second and subsequent segments of the message. IMS TM returns one message segment to the I/O area
of your application program each time the application program issues a GN call.

You can issue a GN call from a BMP program.

Restrictions
The AIB must specify the I/O PCB for this call.
You cannot issue a GN call from a CPI-C driven application program.

Related reference

“GU call” on page 90
The Get Unique (GU) call retrieves the first segment of a message.

GU call
The Get Unique (GU) call retrieves the first segment of a message.
Format
»— GU ti/o_pcbj— ifo_area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
GU X X

90 IMS: Application Programming APIs



Parameters

i/o pch
Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

Usage

An MPP or message-driven BMP uses two calls to retrieve input message from the host: GN and GU. A GU
call retrieves the first segment of a message. The Get Next (GN) call retrieves subsequent segments.

When you issue a successful GU or GN, IMS TM returns the message segment to the I/0 area that you
specify in the call. Message segments are not all the same length. Because the segment length varies,
your I/O area must be long enough to hold the longest segment that your program can receive. The first
two bytes of the segment contain the length of the segment.

Your application program must issue a GU call to the message queue before issuing other DL/I calls. When
IMS TM schedules an MPP, the Transaction Manager transfers the first segment of the first message to
the message processing region. When the MPP issues the GU for the first message, IMS TM already has
the message waiting. If the application program does not issue a GU message call as the first call of the
program, IMS TM has to transfer the message again, and the efficiency provided by message priming is
lost.

If an MPP responds to more than one transaction code, the MPP has to examine the text of the input
message to determine what processing the message requires.

After a successful GU call, IMS TM places the following information in the I/O PCB mask:

« The name of the logical terminal that sent the message.

« The status code for this call. (See the topic "I/O PCB mask" in IMS Version 15.3 Application
Programming)

- The input prefix, giving the date, time, and sequence number of the message at the time it was first
queued. IMS returns both an 8-byte local date containing a 2-digit year and a 12-byte time stamp (local
or UTC time) containing a 4-digit year.

« The MOD name (if you are using MFS).

« The user ID of the person at the terminal, or if user IDs are not used in the system, the logical terminal
name. If the message is from a BMP, IMS TM places the PSB name of the BMP in this field.

« Group name, used by DB2 to provide security for SQL calls.

Related reading: For more information on the format of the I/O PCB mask, see the topic "Specifying the
I/O PCB Mask" in IMS Version 15.3 Application Programming.

Chapter 1. DL/I calls reference 91



Restrictions
The AIB must specify the I/O PCB for this call.
You cannot issue a GU call from a CPI-C driven application program.

Related reference

“GN call” on page 89

If an input message contains more than one segment, a Get Unique (GU) call retrieves the first segment of
the message and Get Next (GN) calls retrieve the remaining segments.

ICAL call

The IMS Call (ICAL) call allows an application program that runs in the IMS TM environment to send a
synchronous request for data or services to a non-IMS application program or service that runs in a z/0OS
or distributed environment, or to initiate a synchronous program switch to an IMS transaction.

Format for the SENDRECV subfunction

»d

»— ICAL — aib — request_area — response_area >«
L control_data_area —J

Format for the RECEIVE subfunction

»— ICAL — aib — response_area —»<

Call name DB/DC DBCTL DCCTL DB batch TM batch
ICAL X X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

You must initialize the following fields in the AIB:

AIBERRXT
This 4-byte length field contains the additional error information that is returned by OTMA,
IMS Connect, IMS TM Resource Adapter, the IMS Enterprise Suite SOAP Gateway server, or
user-written IMS Connect client applications. The default is 0.

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
A 4-byte field that, when an ICAL call is issued, must contain the length of the request area.

When a response to an ICAL call is received, if the response data is too large to fit in the response
area, the AIBOALEN field contains the total length of the entire response data. When the response
area is too small to fit all of the response data, the AIB return code is X'100' and the AIB

reason code is X'00C". For any other return codes that are received with a response, this field is
unchanged.

When partial data is returned, you can use the value of this field to determine how much space
is required in the response data buffer. Your application program can then expand the buffer and
issue an ICAL call with the RECEIVE subfunction code to retrieve the complete response message.

92 IMS: Application Programming APIs



AIBOAUSE

A 4-byte field that, when an ICAL is issued, contains the length of the output response area that is
specified in the call list.

When a response to an ICAL call is received, IMS updates the field to contain the length of the
response message that is returned in the response area. If only partial data is returned because
the response area is not large enough, AIBOAUSE contains the length of the data that is returned
in the response area, and AIBOALEN contains the total length of the response message.

AIBOPLEN
A 4-byte field that, when an ICAL call is issued, contains the total length of the control data area
that is specified in the call list. This parameter is ignored if control area is not specified on the
ICAL call. The control area can consist of 1 to many control data items. The total length of the
control data area cannot be larger than 8,160,000.

AIBREASN
AIB reason code.

AIBRETRN
AIB return code.

AIBRSFLD
The time to wait for the synchronous call process to complete. When the timeout value is reached,

the IMS application that issues the synchronous callout request receives a return code of X'0100'
and a reason code of X'0104". The message is discarded.

This 4-byte parameter contains a time value in 100th of a second. The valid range is 0-999999.
The system default is 10 seconds.

- If the specified value is larger than the maximum value, the maximum value is used.

- If the value is set to 0, the timeout value that is specified in the SYNTIMER parameter of the
OTMA descriptor is used. If there is no timeout value in the OTMA descriptor, the system default
is used for the timeout.

Both this parameter and the SYNTIMER parameter in the OTMA destination description can be
used to specify the timeout value for a synchronous callout process. However, if the timeout value
specified by the SYNTIMER parameter differs from the timeout value specified by this parameter,
OTMA uses the smaller value.

For more information about the usage of the SYNTIMER parameter, see OTMA destination
descriptor syntax and parameters (System Definition)

AIBRSNM1
OTMA descriptor name. This 8-byte, alphanumeric, left-aligned field must contain the name of the
OTMA descriptor that defines the destination of the IMS call.

AIBRSNM2

This 8-byte, alphanumeric, left-aligned field contains the logical terminal name used to override
the LTERM name in the I/O PCB of the IMS application program for the target transaction of

an ICAL call for synchronous program switch. The name specified in the AIB is used instead

of any name specified in the OTMA destination descriptor. However, if no name is specified in
AIBRSNM2, the name from the OTMA descriptor is used. If no name is found in the descriptor or in
the AIB, the IMS application terminal symbolic (PSTSYMBO) is used as the default logical terminal

name for the target transaction.
AIBSFUNC
Subfunction code. This field must contain an 8-byte subfunction code. The valid subfunction codes
are:
SENDRECV

The IMS application program uses this subfunction to send a message and wait for the
response. This subfunction is used for synchronous program-to-program communication.

Chapter 1. DL/I calls reference 93


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsydtx_proclib_dest_dscrp.htm#ims_dfsydtx_proclib_dest_dscrp
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsydtx_proclib_dest_dscrp.htm#ims_dfsydtx_proclib_dest_dscrp

RECEIVE
The IMS application program uses this subfunction to retrieve the complete response data
from a previous incomplete ICAL call. If a SENDRECV subfunction call completes with AIB
return code X'0100' and reason code X'000C", the response data did not fit in the response
area. The application program can expand the response area and then retrieve the complete
response with the RECEIVE subfunction call.

AIBUTKN
Map name. If specified, this 1- to 8-byte alphanumeric, left-justified field contains the 1- to
8-character map name used for message formatting or service identification purpose. This map
name is included in the OTMA state data prefix sent to the destination for callout.

request_area
Specifies the request area to use for this call. This parameter is an input parameter.

This request area contains the request message data that is sent from the IMS application program
to the application that is specified in the OTMA descriptor. The AIBOALEN field specifies the length of
the request message data. Because the ICAL call bypasses the IMS TM message queue, the format of
the request area does not require the LLZZ fields.

If the OTMA descriptor specifies that the request message must be routed to another IMS application
program (TYPE=IMSTRAN), the LLZZ fields and transaction code must be specified in the first 8 bytes
of the data area that follows the LLZZ. For transactions specified with MULTSEG, the request data
must include the entire multi-segment message. The standard IMS LLZZ format is required for each
segment, but the transaction code is only required for the first segment.

LL
Specifies the length of the segment.

2z
Sets the segment to binary zeros.

response_area
Specifies the response area to use for this call. This parameter is an output parameter.

If the response area is not large enough to contain all of the returned data, IMS returns partial data.
When partial data is returned, the AIBOAUSE field contains the length of the returned data in the
response area, and AIBOALEN contains the actual length of the response message.

Because an ICAL call for synchronous callout bypasses the IMS TM message queue, the format of the
response area does not require the LLZZ fields. However, ICAL calls for synchronous program switch
to another IMS application do require the LLZZ fields. The LLZZ fields for a synchronous program
switch are populated by the output from the target IMS application. Synchronous program switch
requests do not bypass the message queue.

If the original request message was routed to another IMS application program, the response data
follows the standard LLZZ format for each segment in the response message.

control_data_area
Specifies the control area to use for this call. This parameter is an optional input parameter. This
control area is sent from the IMS application program to the target client application that is specified
in the OTMA descriptor. The AIBOPLEN field must specify the length of the control data. The ICAL
control data can consist of 1 to many control data items so that a number of services and operations
can be specified on the same ICAL call.

Each control data item starts with a 4-byte length field, which is followed by a tag, data, and the end
tag. Tags can be of any length. The beginning tag consists of a less than sign (<), a tag name, and a
greater than sign (> ). The ending tag consists of a less than sign (<), aslash (/), and the tag name
that matches the beginning tag name, and a greater than sign ( > ). You must specify a less than sign
(<) and a greater than sign prefixed by a slash (/>) in EBCDIC. The tag name and data contents are
treated as binary and passed "as is" to the target client.

94 IMS: Application Programming APIs



The format of a control data item in the ICAL control data is as follows:

LLLL | <tag> | data ... | </tag>
There might be IBM-initiated control data items, which start with DFS in the tag. The DFS prefix is
restricted to IBM-specified control data items.

For SOAP Gateway messages, you can specify a converter name in the control data by using the
tags <DFSCNVTR>CONVERTER_NAME</DFSCNVTR>. The converter name and the tags must be in
uppercase EBCDIC. If a converter name is specified, it overrides the name of the converter that IMS
Connect would have used to process the message.

The following table contains the IBM-initiated control data tag names and their descriptions:

Table 31. IBM-initiated control data tags

Begin tag Data End tag Description

<DFSCNVTR> Converter name </DFSCNVTR> Specifies the name of the converter
that IMS Connect will use to process
the message.

Usage: SENDRECYV subfunction

An ICAL call is used in an IMS application program for synchronous callout that does not use the IMS
message queue. Because the IMS message queue is not used, synchronous callout messages are not
constrained to the 32 KB message segment restriction.

However, An ICAL call that is used in an IMS application program for synchronous program switch
processing to an IMS transaction does use the IMS message queue. The 32 KB message limit applies to
synchronous program switch requests.

Before you run the IMS application that issues this call:

« The OTMA descriptor for the outbound destination routing information must be already defined.

« If the ICAL request is for synchronous callout, the external application or server that the IMS application
is calling out to must be configured to listen for callout messages with the IMS OTMA RESUME TPIPE
function. If the RESUME TPIPE is not set up before the ICAL call times out, a timeout error is returned to
the IMS application.

« If the ICAL request is for synchronous program switch, the target is an IMS transaction that is defined
with the TRANSACT macro or the equivalent type-2 commands CREATE TRAN and UPDATE TRAN. The
transaction must be started.

« For a synchronous program switch request in a shared queues environment, all of the IMS systems in
the same shared queues group must have a MINVERS value of 13.1.

When the synchronous callout timeout value is specified in both the OTMA destination descriptor and the
DL/I ICAL call, IMS uses the lower value of the two.

For a synchronous program switch, the target transaction can be in the same IMS system, in an IMS that
is accessible through shared queues, or in a remote IMS that is accessible with MSC. The synchronous
program switch request is queued as an OTMA transaction, but OTMA is not required.

The target application of a synchronous program switch can issue an additional synchronous program
switch request before returning to the original application program. You can chain together any number
of synchronous program switch requests. However, consider the timeout value for each ICAL call when
making nested synchronous program switch requests. Also, there must be an IMS dependent region
available for each of the target transactions to be scheduled. Lastly, consider that a multi-switch program
flow can hold database locks until the entire sequence of switches is resolved. Two or more applications
in the same synchronous program switch chain can encounter database locking contention with each
other.

Chapter 1. DL/I calls reference 95



If the ICAL call for a synchronous program switch request times out, or if more than one response is
returned after the first one, IMS treats further responses as late messages. The default response to a late
message is to dequeue it. If you want to retain late messages, you can configure a tpipe in the OTMA
destination descriptor for request to hold the late responses, or you can code a DFSMSCEO exit routine to
reroute them.

Synchronous program switch requests made from Fast Path regions do not support late response
messages. Any late response message is discarded, including subsequent redundant responses.

If a late response message for a synchronous program switch request is routed to an OTMA client, but the
original request was not initiated from an OTMA client, you must use the DFSYIOEO exit routine to re-build
the default 1 KB OTMA message user data prefix for the response message.

If the destination descriptor for a synchronous program switch request is configured to queue late
messages to a tpipe or reroute them with a DFSMSCEOQ user exit routine, OTMA transaction expiration
checking at the application GU time is disabled for the message.

Depending on the transaction security specifications (TRN=Y), the IMS region that is running the
application that issues an ICAL request calls RACF and the DFSCTRNO user exit to determine if the user
is authorized to issue the ICAL call. For APPC or OTMA transactions, additional security specifications are
checked. If the security level for APPC or OTMA is set to NONE, then RACF and the DFSCTRNO user exit
are not called even if TRN=Y is specified.

For a synchronous program switch request, IMS schedules the transaction as an OTMA transaction. The
OTMA security configuration (NONE, CHECK, FULL, or PROFILE) is used even if OTMA is not active. The
default security setting is FULL, which is also used if OTMA is not enabled for the IMS system.

You can change the synchronous program switch security configuration with by issuing the following
command:

/SECURE OTMA TMEMBER DFSYICAL value
DFSYICAL is the dedicated synchronous program switch processing TMEMBER. It is not used for other
types of requests. Replace value with NONE, CHECK, FULL, or PROFILE as appropriate.

When OTMA security is set to FULL for DFSYICAL, IMS always creates an ACEE in the dependent region
when it is scheduled. IMS uses this ACEE if security checks are necessary.

When OTMA security is set to CHECK for DFSYICAL, IMS does not create an ACEE at scheduling time. IMS
creates an ACEE in the control region if security checks are necessary.

When OTMA security is to set to NONE for DFSYICAL, no security check is performed.

Usage: RECEIVE subfunction

When a SENDRECV subfunction call returns too much data to fit in the allocated response buffer (AIB
return code X'0100' and reason code X'000C'), the value of the AIBOLEN field is updated with the length
of the complete response message. Expand the size of the response area and then issue an ICAL call with
the RECEIVE subfunction code to retrieve the complete response message.

The complete response data for the original ICAL call is held in the IMS control region until one of the
following events occurs:

« The application issues a new ICAL call with the SENDRECV subfunction code is issued
« The IMS application reaches a sync point or terminates abnormally
« The IMS application issues a ROLB or CHECKPOINT call

Restrictions
ICAL calls for external callout have the following restrictions:

« Coordinated two-phase commit between the IMS application program and the external application
program is not supported.

96 IMS: Application Programming APIs



An ICAL call cannot be issued from IMS in a shared-queues environment that is not connected to IMS
Connect.

Synchronous program switch requests have the following restrictions:

R

The OTMA Input/Output Edit exit routine (DFSYIOEO) is not called for a synchronous program switch
request or response message.

The TM and MSC Message Routing and Control exit routine (DFSMSCEOQ) is not called for a synchronous
program switch request.

The target transaction is not part of the RRS commit scope of the initiating application program.

BMP and JBP applications cannot make synchronous program switch requests in a DBCTL environment.
The target transaction has read-only access to Fast Path MSDBs.

The target transaction cannot be an IMS conversational transaction.

All of the participating IMS systems in a shared queues environment must have a DBRC MINVERS value
of 13.1 or greater.

eturn codes and reason codes

The following table lists the return codes and reason codes for the ICAL call.

Table 32. Return codes and reason codes for the ICAL call

Return code Reason code Extended reason code Description

X'0000' X'0000' X'0000' Call was completed successfully.
Proceed.

X'0100' X'000C! X'0000' Partial output response data was
returned.

Issue a new ICAL call with the
RECEIVE subfunction code and
an expanded response data area
to retrieve the complete response
message.

X'0100'

X'000C! X'000D' An IMS informational or error
message was returned in
response to a synchronous
program switch request.

X'0100'

X'0100 The default value is 0. If the Error message was returned in
value is non-zero, it is set by the  the output response data.
external application.

X'0100'

X'0100' X'000D' The synchronous program switch
request was returned with an IMS
message.

X'0100'

X'0100" X'0004' An IMS informational or error
message was returned in
response to a synchronous
program switch request.

X'0100'

X'0104' X'0004' The request timed out. The ICAL
was not sent to the external
application.

Chapter 1. DL/I calls reference 97



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code

Reason code

Extended reason code

Description

X'0100'

X'0104'

X'0008"

The request timed out. The ICAL
was sent, but the ACK was not
received.

X'0100'

X'0104'

X'oooc'

The request timed out. The ICAL
was sent, but the response was
not received.

X'0100'

X0104'

X'0010'

The request timed out. The ICAL
was sent, but IMS failed to
process the response.

X'0100'

X'0104'

X'0020'

The request timed out. The ICAL
request for synchronous program
switch was sent, but no response
was received.

X'0100'

X'0108'

The default value is 0. If the
value is non-zero, it is set by the
external application.

Request message was rejected
by the external application.

X'0100'

X'010C!

X'0000'

The synchronous call was cleared
by a command (such as a /STOP
or /PSTOP command).

X'0100'

X'0110'

X'0000"

The request message was
rejected because the specified
transaction is not supported.
Either the trancode was not
found or the specified transaction
was an IMS conversational
transaction, a CPIC transaction,
or an IMS command transaction.

X'0100'

X'0110'

X'0004'

The request message was
rejected because the user is
not authorized to issue a
synchronous program switch
request.

X'0100'

X'0110'

X'0005'

The request message was
rejected because the tmember
that IMS uses to process
synchronous program switch
requests (DFSYICAL) is stopped.
Issue the command /START
TMEMBER DFSYICAL to resolve
the problem.

98 IMS: Application Programming APIs



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code

Reason code

Extended reason code

Description

X'0100'

X'0110'

X'0006'

The request message was
rejected because the tpipe

that IMS uses to process
synchronous program switch
requests (DFSTPIPE of the
OTMA tmember DFSYICAL) is
stopped. Issue the command /
START TMEMBER DFSYICAL
TPIPE DFSTPIPE to resolve the
problem.

X'0100'

X'0110'

X'000D!

The request message was
rejected because IMS failed to
get an internal storage YTIB to
process the message.

X'0100'

X'0110'

X'000E!

The request message was
rejected because IMS failed to
activate DFSYTIBO to process the
message.

X'0100'

X'0110'

X'0010'

The TMEMBER or TPIPE name for
late response message routing is
invalid because it contains invalid
characters. Check the destination
descriptor.

X'0100'

X'0110'

X'0011'

The TMEMBER or TPIPE name for
late response message routing

is missing from the destination
descriptor. If either value is
specified, both must be included.

X'0100'

X'0110'

X'0012

The TMEMBER or TPIPE name for
late response message routing is
incorrect. Check the destination
descriptor.

X'0100'

X'0110'

X'0013'

The SMEM and SYNCTP
parameters are mutually
exclusive.

X'0100'

X'0110'

X'0014'

The TPIPE name for late message
processing is either missing

or invalid in the destination
descriptor.

X'0100'

X'0110'

X'0015'

The request message was
rejected because the request
was made in a shared queues
environment with different IMS
MINVERS values. The IMS
systems in the shared queues
group must have the MINVERS
value 13.1.

Chapter 1. DL/I calls reference 99



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110 X'0016' The request is rejected due
to OTMA global message flood
condition. Too many OTMA
message blocks (TIB) were
allocated in the system.

X'0100' X'0110' X'0020' The request message was
rejected because the input data
length is incorrect. The length
of the segment must match
the LLZZ value specified on the
request. The total length of all
segments in the request must
match the AIBOALEN value in the
AIB.

X'0100' X'0110' X'0030' The request message was
rejected because the transaction
is currently unavailable.

X'0100' X'0110' X'0031" The request message was
rejected because the transaction
is stopped.

X'0100' X'0110' X'0033' The request message was

rejected because the destination
name for the program switch is
an RCNT.

X'0100' X'0110 X'0034' The request message was
rejected because the destination
name for the program switch is a
CNT.

X'0100' X'0110 X'0035' The request message was
rejected because the destination
transaction can only accept a
single input segment. Multiple
input segments were specified
for the request.

X'0100' X'0110' X'0036' The request message was
rejected because an IMS queue
manager encountered an insert
error.

X'0100' X'0110' X'0037" The request message was
rejected because an IMS queue
manager encountered an internal
error.

X'0100' X'0110' X'0038' The request message was
rejected because a queue
overflow was detected.

100 IMS: Application Programming APIs



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110 X'0039' The request message was
rejected because IMS failed
to process the Fast Path
transaction.

X'0100' X'0110' X'003A' The request message was
rejected because IMS queue
manager failed to update the
message prefix.

X'0100' X'0110' X'003B' The request message was
rejected because IMS failed to
enqueue the transaction.

X'0100' X'0110' X'0060' The request message
was rejected because the
synchronous program switch was
canceled before a reply was
received.

X'0100' X'0110' X'0061" The request message was
rejected because the target
transaction does not reply to the
IOPCB and does not perform
a program-to-program switch.
The ICAL is rejected to avoid
a timeout. This rejection occurs
when the REPLYCHK descriptor
is set to YES for the destination
transaction. If there is an
asynchronous response for the
ICAL, you can set REPLYCHK to
NO and this ICAL is treated as
valid.

X'0100' X'0110 X'0070" IMS failed to process the
response message for the
synchronous program switch
ICAL call. The length of an output
message segment was greater
than the 32K limit.

X'0100' X'0110 X'0071' IMS failed to process the
response message for the
synchronous program switch
ICAL call. IMS is running out of
LUMP storage space to process
the response message.

X'0100' X'0110' X'0072' IMS failed to process the
response message for the
synchronous program switch
ICAL call. IMS failed to allocate
storage from subpool 231, which
is required to process the
response message.

Chapter 1. DL/I calls reference 101



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code

Reason code

Extended reason code

Description

X'0100'

X'0110'

X'0073'

IMS failed to retrieve the
response message from the IMS
message queue.

X'0104"

X'0210'

X'0000"

Input area length (AIBOALEN) is
set to zero.

X'0104"

X'0214'

X'0000"

Output area length (AIBOAUSE) is
set to zero.

X'0104'

X'0218'

X'0000'

Subfunction code is not known or
invalid.

X'0104'

X'0610'

X'0000'

Request input area address
parameter is missing

X'0104'

X'0614'

X'0000'

Response output area address
parameter is missing.

X'0104"

X'1020'

X'0000"

Descriptor name is invalid.

X'0104"

X'1024'

X'0000"

Timeout value is invalid.

X'0104'

X'1028'

X'0000"

The ICAL RECEIVE call was
rejected because no additional
response data is available. Either
the additional response data
from a previous ICAL SENDRECV
call was already retrieved, or a
subsequent ICAL SENDRECYV call
cleared the response buffer.

X'0104'

X'102C'

X'0000'

Incorrect ICAL call with control
data. The AIBOPLEN value is
zero.

X'0104'

X'102C'

X'0004'

Incorrect ICAL call with control
data. Additional data area is
found following control data area.

X'0104'

X'102C

X'0008'

Incorrect ICAL call with
control data. OTMA destination
descriptor is not TYPE=IMSCON.

X'0104'

X'102C'

X'oooc!

Incorrect ICAL call with
control data. Resume TPIPE
cannot receive control data
(TMAMCRHQ_MODE does not
have TMAMCRHQ_CTLDATA)

X'0104"

X'102C'

X'0010'

Incorrect ICAL call with control
data. Control data length does
not match control data items.

X'0104'

X'102C'

X'0014'

Incorrect ICAL call with control
data. Control data tag error.

102 IMS: Application Programming APIs



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0104' X'102C' X'0018' Incorrect ICAL call with control
data. The AIBOPLEN value is
larger than the maximum allowed
length, 8,160,000.

X'0108' X'0008' X'0000' IMS failed to release PSTICALO
(internal storage) for the ICAL
call.

X'0108' X'0010' X'0000' Unable to obtain private storage.

The size of the input request data
might be too large.

X'0108' X'0570" X'0000' The ICAL RECEIVE call was
rejected because the internal
buffer storage at PSTICALO is
invalid.

X'0108' X'0580' X'0004' Unable to send the request
message to the external
application. IMS is shutting down.

X'0108' X'0580" X'0008' Unable to send the request
message to the external
application. The IMS callout
function is disabled.

X'0108' X'0580" X'000cC! Unable to send the request
message to the external
application. The OTMA member
was invalid or is inactive.

X'0108' X'0580" X'0010' Unable to send the request
message to the external
application. The OTMA TPIPE was
not found or is stopped.

X'0108' X'0580" X'0014' Unable to send the request
message to the external
application. IMS failed to obtain
storage to queue a request.

X'0108' X'0580" X'0018' Unable to send the request
message to the external
application. IMS failed to obtain
LUMP storage to process the
message.

X'0108' X'0580' X'001C! Unable to send the request
message to the external
application. IMS failed to contact
OTMA to process the ICAL call.

X'0108' X'0580" X'0024' Unable to send the request
message to the external
application. IMS detected that
there was no RESUME TPIPE
request from the client.

Chapter 1. DL/I calls reference 103



Table 32. Return codes and reason codes for the ICAL call (continued)

Return code

Reason code

Extended reason code

Description

X'0108"

X'0580"

X'0100"'

IMS failed to obtain the required
LUMP storage space to process
the synchronous program switch
request.

X'0108'

X'0580"

X'0104'

OTMA failed to process the
synchronous program switch.
See the associated X'67D0' log
record.

X'0108'

X'0584'

X'0004'

Unable to process the response
output message from the
external application. No data in
the response message.

X'0108'

X'0584'

X'0008'

Unable to process the response
output message from the
external application. The XCF
buffer length for the response
message is incorrect.

X'0108"

X'0584'

X'oooc!

Unable to process the response
message from the external
application. IMS failed to allocate
storage for the response message
processing.

X'0108'

X'0584'

X'0010'

Unable to process the response
message from the external
application. A null segment
was found in a multi-segment
response message.

X'0108'

X'0588'

The default value is 0. If the
value is non-zero, it is set by IMS
Connect.

IMS Connect failed to process
the response. No response data
returned.

X'0108'

X'058C'

The default value is 0. If the
value is non-zero, it is set by IMS
Connect.

IMS Connect failed to process
the response. Complete or partial
raw data from the external client
application is returned.

Related concepts
OTMA descriptors (Communications and Connections)

Related reference
AIB return and reason codes set by IMS (Messages and Codes)

ISRT call

The Insert (ISRT) call sends one message segment to the destination that you specify in the call. The
destination is represented by the I/O PCB, alternate PCB, or AIB you specify in the call parameters.

For Spool API functions, the ISRT call is also used to write data to the JES Spool.

104 IMS: Application Programming APIs


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_004.htm#ims_otma_admin_004
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_aibcodes_ims.htm#ims_aibcodes_ims

Format

»d

»— ISRT ifo_pcb ifo_area L J ><
} alternate_pch { mod_name

aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ISRT X X
Parameters
i/0 pch

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

alternate pcb
Specifies the PCB to use for this call. These parameters are input and output parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb (if the TP
PCB is used), or the name of an alternate PCB (if an alternate PCB is used).

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area to be used for the call. This parameter is an input parameter. The I/O area must
be large enough to hold the largest segment passed between the application program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is an input parameter.
The 8-byte MOD name must be left-justified and padded with blanks as necessary. If the terminal
receiving the output does not use MFS, this parameter is ignored. If you specify a valid MOD name,
IMS TM uses that MOD to format the screen for the output message you are sending.

Usage

To issue the ISRT call successfully, your application program must first build the message you want

to send in the application program's I/O area. The ISRT uses the destination name in the I/O PCB or
alternate PCB, and the I/0 area that you specify in the call, to locate the message to be sent. The ISRT
call then sends the output message from your application program to another terminal. ISRT sends one
message segment per issue, so your application program must issue one ISRT call for each segment of
the message in the I/0 area.

You can also specify a MOD name if you want to change the screen format. For example, if the application
program detects an error and must notify the person at the terminal, you can specify a MOD name that
formats the screen to receive the error message. ISRT and PURG are the only DL/I calls that allow you to
specify a MOD name on the first segment of an output message.

Chapter 1. DL/I calls reference 105



When your application program issues one or more ISRT calls, IMS TM groups the message segments
to be sent in the message queue. IMS TM sends the message segments to the destination when the
application program does one of the following:

« Issues a GU call to retrieve the first segment of the next message
« Reaches a commit point
« Issues a PURG call on an express alternate PCB

Your application must also use the ISRT call to issue replies to other terminals in conversational programs
and to pass a conversation between application programs.

In the shared queues environment

A STATUSQF can be received on an ISRT call in a shared queues environment if the MSGQ structure is full.
If the MSGQ structure is full, one of the following can happen:

« If the ISRT is for a multi-segment message, STATUSQF will be received.

« If the ISRT for a multi-segment message still completes correctly (enough space) but not enough space
is found to be available at PURG or CHKP time, the application will abend with ABENDUQ370.

« If the ISRT is for a single segment message, STATUSQF can be received. If the program continues to
insert further messages that cause all available device relative record number (DRRN) to be exhausted,
IMS will fail with ABENDUQ758. If the program issues a checkpoint before exhausting all available
DRRN, queue buffers will be freed and the messages will be written on the log as “unresolved UOWEs.”
Logs containing the original type01 and type03 log records are needed to later insert the messages in
the structure if space becomes available and must not be reused. IMS will issue message DFS19941I to
remind the user at every check point time.

Spool API functions

You can use the ISRT call to write data to the JES Spool. These writes are done using BSAM and, if
possible, each BSAM "write" is done directly from the application program's buffer area.

Restriction: BSAM does not support the I/O area for sysout data sets above the 16-MB line. If IMS finds
an I/O area above the 16-MB line, it moves the application data to a work area below the line before it
performs the BSAM write. If the I/O area is already below the line, the write is done directly from the I/O
area. Do not take unusual steps to place the I/O area below the line unless performance indicates a need
to do so.

When you issue the ISRT call for an alternate PCB set up for IAFP processing, prefix the I/0O area with a
BSAM block descriptor word for variable length records.

LLor LLLLY2 222 13 zz3
Halfword length of the Halfword of zero Halfword length of Halfword of zero
I/O area or block, the logical record or
including the 4-byte segment, including the
length of the LLZZ fields. 4-byte length of the llzz
fields.
Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL). However,
the length of the LLLLZZ field is still considered 4 bytes.

2. LLZZ is the equivalent of the BSAM Block Descriptor Word (BDW).
3. llzz is the equivalent of the BSAM Record Descriptor Word (RDW).

Restrictions

A CPI-C driven application program can only issue the ISRT call to an alternate PCB.

106 IMS: Application Programming APIs



If you want to send message segments before retrieving the next message or issuing a commit point, you
must use the PURG call.

MOD name can be specified only once per message, on the first ISRT or PURG call that begins the
message.

BSAM does not support the I/O area for sysout data above the 16 MB line.

Related reference

Output message format and contents (Application Programming)

“CHNG call” on page 80

The Change (CHNG) call sets the destination of a modifiable alternate PCB to the logical terminal, LU 6.2
descriptor, or transaction code that you specify. You can also use the CHNG call with the Spool Application
Program Interface (Spool API) to specify print data set characteristics.

“PURG call” on page 107

The Purge (PURG) call allows your application program to send one or more output message segments
(specified with the ISRT call) to the specified destination before the application program retrieves the
next input message or issues a commit point.

PURG call

The Purge (PURG) call allows your application program to send one or more output message segments
(specified with the ISRT call) to the specified destination before the application program retrieves the
next input message or issues a commit point.

For Spool API functions, the PURG call can also be used to release a print data set for immediate printing.

Format
»— PURG i/o_pcb P
alternate_pch { L ifo_area L J J
i mod_name
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
PURG X X
Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

alternate pch
Specifies the PCB to use for the call. These parameters are input and output parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb (if the TP
PCB is used), or the name of an alternate PCB (if an alternate PCB is used).

Chapter 1. DL/I calls reference 107


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_outputmessageformat.htm#ims_outputmessageformat

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area to use for this call. This parameter is an input parameter. The I/O area must be
large enough to hold the largest segment passed between the program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is an input parameter. The
8-byte MOD name must be left justified and padded with blanks as necessary. PURG can specify the
MOD name for the first message segment for an output message. If the terminal receiving the output
does not use MFS, this parameter is ignored. If you specify a valid MOD name, IMS TM uses that MOD
to format the screen for the output message you are sending.

Usage

Use the PURG call to send output messages to several different terminals. A PURG call tells IMS TM that
the message built against the specified I/O PCB, or alternate PCB (with the ISRT call) is complete. IMS
TM collects the message segments that have been inserted into one PCB as one message and sends the
message to the destination specified by the destination name of the alternate PCB listed in the PURG call.

If you specify an I/O area in the PURG call parameters, PURG acts as an ISRT call to insert the first
segment of the next message. When you identify the I/O area, you can also specify a MOD name to
change the screen format.

In the OTMA environment

An IMS application program that issues a PURG call causes IMS to call the Open Transaction Manager
Access (OTMA) Prerouting and Destination Resolution exit routines to determine the destination. For
information on these exit routines, see IMS Version 15.3 Exit Routines.

In the shared queues environment

A STATUSQF can be received on a PURG call in a shared queues environment if the MSGQ structure is full.
If the MSGQ structure is full, one of the following can happen:

« If the PURG is for a multi-segment message, STATUSQF will be received.

« If the PURG for a multi-segment message still completes correctly (enough space) but not enough
space is found to be available at PURG or CHKP time, the application will abend with ABENDUQ370.

Spool API functions

You can use the PURG call with an express alternate PCB to release a print data set for immediate printing.
When you issue the PURG call with an I/O area, IMS treats the call as two functions: the purge request,
and the insertion of data provided by the I/O area.

If you issue the PURG call:

« Against an express alternate PCB, the data set is closed, unallocated, and released for printing. The
destination is reset.

« With an I/O area against a non-express alternate PCB, the puxrge function is ignored and the data in the
insert portion of the call is put into the print data set. This means that the call behaves like an ISRT call.

- With no I/O area against an express alternate PCB, the data set is closed, unallocated, and released for
printing. IMS returns a status code of blanks.

« With no I/O area against a non-express alternate PCB, no action is taken.

Restrictions
CPI-C driven application programs can only issue the PURG call to alternate PCBs.

MOD name can be specified only once per message, in the first ISRT or PURG call that begins the
message. For conversational transactions, if the first ISRT is the SPA, the MOD name can either be
provided on the SPA ISRT or on the first ISRT of a message segment.

108 IMS: Application Programming APIs



This call is not supported in an IFP.

For synchronized APPC/OTMA conversations or OTMA commit-then-send (CM0) transactions with
TMAMIPRG indicator set in the OTMA prefix, PURG calls on the TP PCB are ignored. The next ISRT call is
processed for the next segment of the current message.

Related reference

“CHNG call” on page 80

The Change (CHNG) call sets the destination of a modifiable alternate PCB to the logical terminal, LU 6.2
descriptor, or transaction code that you specify. You can also use the CHNG call with the Spool Application
Program Interface (Spool API) to specify print data set characteristics.

“ISRT call” on page 104
The Insert (ISRT) call sends one message segment to the destination that you specify in the call. The
destination is represented by the I/O PCB, alternate PCB, or AIB you specify in the call parameters.

SETO call

The SET Options (SETO) call allows IMS application programs to set processing options. The SETO call can
also be used to set processing options for Spool API functions.

Format
»— SETO i/o_pcb i/o_area _t options_list >«
F alternate_pch % Lfeedback_area J
aib
Notes:

1 The I/0 area parameter is not used for calls that specify APPC options.

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
SETO X X

Parameters

i/o pcb

Specifies the I/O PCB, the first PCB address in the list that is passed to the program. This parameter is
an input and output parameter.

alternate pch
Specifies the TP or alternate PCB to be used for the call. These parameters are input and output
parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb (if the TP
PCB is used), or the name of an alternate PCB (if an alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

Chapter 1. DL/I calls reference 109



i/o area
Specifies the I/0 area to be used for the call. This parameter is an output parameter. If you specify
an options list that contains advanced print functions, you must specify an I/O area. If you use APPC
options, the I/O area parameter is optional.

For advanced print function options the I/O area must be at least 4 KB. If the I/O area including the
LLZZ or LLLLZZ prefix is less than 4096 bytes in length, an AJ status code is returned. Once the text
units area built in the I/O area, the area must not be copied to a new area. The I/O area passed on the
SETO call must contain a LLZZ or, if PL/I, a LLLLZZ prefix.

LLLL applies only to DL/I call interface.

options list
Specifies several option keywords. This input parameter is required. The options in the list are
separated by commas and cannot contain embedded blanks. Processing for the options list
terminates when the first blank in the list is reached or when the specified options list length has
been processed. You can specify options for advanced print functions or for APPC. The options you
can specify are described in "Advanced print function options" and "APPC options".

The format for the options list is as follows:

LLor LLLLY,2 z2z keyword=variablel
Halfword length of the options  Halfword of zero. SETO options separated by
string, including the 4-byte commas.

length of LLZZ or LLLLZZ.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the SETO call as if
the options list parameter was not specified.

feedback area
Specifies an optional parameter used to return error information about the options list to the
application program. This parameter is an output parameter. The amount of information that the
application program receives is based on the size of the feedback area. If no feedback area is
specified, the status code returned is the only indication of an options list area. If you specify a
feedback area 1% to 2 times the size of the specified options list (a minimum of eight words), IMS TM
returns more specific information about errors in the options list.

The format for the feedback area passed to IMS TM in the call list is as follows:

LL or LLLLY2 Z

Halfword length of the feedback area, including  Halfword of zero.
the 4-byte length of the LLZZ fields.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword (LLLL).
However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the SETO call as
if the feedback area parameter was not specified.

The output format returned to the application program from IMS TM for the feedback area is as
follows:

110 IMS: Application Programming APIs



LLZZ or LLLLZZ LL feedback area

The length field as specified Halfword length of the feedback Data returned by IMS TM.
in the input format for the data returned by IMS TM, The feedback data generally
feedback area. including the 2-byte LL field. includes the option keyword

found to be in error and a 4-byte
EBCDIC code in parentheses
that indicates the reason for

the error. Multiple errors are
separated by commas.

Usage
The SETO call allows you to set processing options.

You can use the SETO call to reduce the overhead necessary to perform parsing and text construction
of the OUTPUT descriptors for a data set. If your application program can use a set of descriptors
more than once during an installation, the application can use the SETO call to provide print data

set characteristics to the Spool API. When the SETO call is processed, it parses the OUTPUT options
and constructs the dynamic OUTPUT text units in the work area provided by the application. After the
application has received the prebuilt text units, you can use the CHNG call and TXTU= option to provide
the print characteristics for the data set without incurring the overhead of parsing and text unit build.

It is not necessary to use the SETO call to prebuild the text units if they can be prebuilt with another
programming technique.

Related reading: For more information about Spool API, see IMS Version 15.3 Application Programming.
In the OTMA environment

An IMS application program that issues a SETO call does not cause IMS to call the Open Transaction
Manager Access (OTMA) Prerouting and Destination Resolution exit routines to determine the destination.
For information on these exit routines, see IMS Version 15.3 Exit Routines.

Existing IMS application programs that issue SETO calls might not run as expected because a return code
is returned to the program if it is processing an OTMA-originated transaction. Also, APPC/IMS application
programs that issue SETO calls might not need modification if they require implicit OTMA support.

A solution to this problem is to use an INQY call before issuing the SETO call. The application program can
use the output from the INQY call to determine if a transaction is an OTMA-originated one, to bypass the
SETO call.

Advanced print function options
The PRTO= keyword identifies the SETO call as a Spool API request:

Keyword
Description

PRTO=outdes options
Describes the data set processing options as they are specified on the TSO OUTDES statement. The
format for the PRTO keyword is as follows:

LL outdes options
Halfword length of the total OUTDES printer Any valid combination of OUTDES printer options,
options, including the 2-byte length of LL. separated by commas.

Note: For information about TSO OUTDES options, see z/0S MVS Programming: Authorized Assembler
Services Reference. Some options depend on the release level of MVS.

If z/OS detects an error in the OUTDES printer options, an AS status code is returned to the application
program.

Chapter 1. DL/I calls reference 111



APPC options
The following options are available for the SETO call:

SEND_ERROR
causes the IMS LU Manager to issue SEND_ERROR on the conversation associated with the I/O or
alternate PCB when a message is sent. Messages for express PCBs are sent during the PURG call or
sync point processing, whichever comes first. Messages for nonexpress PCBs are sent during sync
point processing.

This option is only used by LU 6.2 devices, and it is ignored if specified for a non-LU 6.2 device.

The option is mutually exclusive with the DEALLOCATE_ABEND option. If both options are coded in
the options list, an AR status code is returned to the application.

DEALLOCATE_ABEND
deallocates a conversation by issuing a SEND_ERROR followed by a DEALLOCATE_ABEND at the time
the message is sent. Once a SETO call with the DEALLOCATE_ABEND option is issued, any subsequent
ISRT calls made to the PCB are rejected with a QH status code.

This option is applicable only to LU 6.2 devices. If specified for a non-LU 6.2 device, any subsequent
ISRT calls made to the PCB are rejected with a QH status code.

When the SETO call is issued on a TP PCB in an IFP region, the DEALLOCATE_ABEND option is not
valid. If you attempt to use the option under these conditions, an AD status code is returned to the
application.

The option is mutually exclusive with the SEND_ERROR option. If both options are coded in the
options list, an AR status code is returned to the application.

Related reading: For more information about APPC and LU 6.2, see IMS Version 15.3 Communications
and Connections.

Options list feedback area

When errors are encountered in the options list, the options list feedback area is used to return error
information to the application.

IMS attempts to parse the entire options list and return information on as many errors as possible. If
the feedback area is not large enough to contain all the error information, only as much information is
returned as space permits. The status code is the only indication of an option list error if you do not
specify the area.

The feedback area must be initialized by the application with a length field indicating the length of the
area. A feedback area approximately 1% to 2 times the length of the options list or a minimum of 8 words
should be sufficient.

Error codes

This section contains information on error codes that your application can receive.

Error Code
Reason

(0002)
Unrecognized option keyword.

Possible reasons for this error are:

« The keyword is misspelled.

- The keyword is spelled correctly but is followed by an invalid delimiter.

- The length specified field representing the PRTO is shorter than the actual length of the options.
« A keyword is not valid for the indicated call.

112 IMS: Application Programming APIs



(0004)
Either too few or too many characters were specified in the option variable. An option variable
following a keyword in the options list for the call is not within the length limits for the option.

(0006)
The length field (LL) in the option variable is too large to be contained in the options list. The options
list length field (LL) indicates that the options list ends before the end of the specified option variable.

(0008)
The option variable contains an invalid character or does not begin with an alphabetic character.

(000A)
A required option keyword was not specified.

Possible reasons for this error are:

« One or more additional keywords are required because one or more keywords were specified in the
options list.

« The specified length of the options list is more than zero but the list does not contain any options.

(oo0cC)
The specified combination of option keywords is invalid. Possible causes for this error are:

» The keyword is not allowed because of other keywords specified in the options list.
« The option keyword is specified more than once.

(00OE)
IMS found an error in one or more operands while it was parsing the print data set descriptors.
IMS usually uses z/0S services (SJF) to validate the print descriptors (PRTO= option variable). When
IMS calls SJF, it requests the same validation as for the TSO OUTDES command. Therefore, IMS
is insensitive to changes in output descriptors. Valid descriptors for your system are a function of
the MVS release level. For a list of valid descriptors and proper syntax, use the TSO HELP OUTDES
command.

IMS must first establish that the format of the PRTO options is in a format that allows the use of SJF
services. If it is not, IMS returns the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the error.

The range of some variables is controlled by the initialization parameters. Values for the maximum
number of copies, allowable remote destination, classes, and form names are examples of variables
influenced by the initialization parameters.

Restrictions
A CPI-C driven application program can issue SETO calls only to an alternate PCB.

Related reference

“REXXTDLI calls” on page 351
The following information describes usage considerations for REXXTDLI calls.

DL/I calls for IMS TM system services
Use these DL/I calls with IMS Transaction Manager system services.
The calls are listed in alphabetical order. Each call description contains:

« A syntax diagram

« A definition for each parameter that can be used in the call
« Details on how to use the call in your application program
- Restrictions on the use of the call

Chapter 1. DL/I calls reference 113



Each parameter is described as an input or output parameter. "Input" refers to input to IMS from the

application program. "Output" refers to output from IMS to the application program.

System service calls must refer only to TP PCBs. The system service calls are described only as they
pertain to IMS TM functions.

Syntax diagrams for these calls begin with the function parameter. The call, the call interface, (xxxTDLI),
and parmcount (if it is required) are not included in the following syntax diagrams. See specific
information for assembler language, COBOL, Pascal, and PL/I in the topic "Defining Application Program

Elements" in IMS Version 15.3 Application Programming for the complete structure.

System Service Call Summary

The following table is a summary of which system service calls you can use in each type of IMS TM
application program, and the parameters for each call. The following table lists the function code, its
meaning, use, parameters, and in which regions it is valid. Optional parameters are shown in brackets

@D.

System service calls issued in a DCCTL environment must refer only to I/O PCBs or GSAM database
PCBs. Calls that cannot be used in a DCCTL environment are noted.

Language-dependent parameters are not shown here. For language-specific information, see the topic
"Formatting DL/I Calls for Language Interfaces" in IMS Version 15.3 Application Programming.

For information on writing calls with programming language interfaces see the topic "Defining
Application Program Elements" in IMS Version 15.3 Application Programming.

Table 33. Summary of system service calls

Function Code Meaning and Use Options Parameters Valid for
APSB Allocate PSB. None function, aib MPP
Allocates a PSB
for use in CPI-C
driven application
programs.
CHKP (Basic) Basic checkpoint. None function, i/o pcb or  batch, BMP, MPP
For recovery aib, i/o area
purposes.
CHKP (Symbolic) Symbolic Can specify seven function, i/o pcb batch, BMP
checkpoint. For program areas to be oraib, i/o area
recovery purposes.  saved. length, i/o area],
area length, area]
DPSB Deallocate PSB. None function, aib MPP
Frees a PSB in use
by a CPI-C driven
application program.
GMSG Retrieve a message Can wait foran AOI  function, aib, i/o area DB/DC and
from the AO exit message when none DCCTL(BMP, MPP,
routine. is available. IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP non-
message driven)
GSCD1? Get the address of None function, ifopcb or  batch

the system contents
directory.

aib, i/o area

114 IMS: Application Programming APIs



Table 33. Summary of system service calls (continued)

Function Code Meaning and Use Options Parameters Valid for
ICMD Issue an IMS None function, aib, i/o area DB/DC and
command and DCCTL(BMP, MPP,
retrieve the first IFP), DB/DC and
command response DBCTL(DRA thread),
segment. DBCTL(BMP non-
message driven)
INIT Application receives Checks each PCB for function, i/o pcbor  batch, BMP, MPP,
data availability data availability. aib, i/o area IFP
status codes.
INQY Inquiry. Retrieves None function, aib, i/o area batch, BMP, MPP,
information IFP
about output
destinations, session
status, execution
environment, and
the PCB address.
LOGb Log. Write a None function, i/o pcb or  batch, BMP, MPP,
message to the aib, i/o area IFP
system log.
RCMD Retrieve the second None function, aib, i/o area DB/DC and
and subsequent DCCTL(BMP, MPP,
command response IFP), DB/DC and
segments resulting DBCTL(DRA thread),
from an ICMD call. DBCTL(BMP non-
message driven)
ROLB Rollback. Backs Call returns last function, i/o pcb or  batch, BMP, MPP,
out messages sent  message to ifo area. aibl, i/o area] IFP
by the application
program.
ROLL Roll. Backs out None function batch, BMP, MPP
output messages
and terminates the
conversation.
ROLS Returns message Issues call withifo  function, i/o pcbor  batch, BMP, MPP,
gueue positions to PCB or aib aibi/o area, token IFP
sync points set by
the SETS or SETU
call.
SETS Sets intermediate Cancels all existing  function, ifo pcb or  batch, BMP, MPP,
sync (backout) backout points. Can aib, i/o area, token IFP
points. establishupto 9
backout points.
SETU Sets intermediate Cancels all existing  function, ifo pcb or  batch, BMP, MPP,
sync (backout) backout points. Can aib, i/o area, token  IFP
points. establishupto 9
backout points.
SYNC Synchronization Request commit function, i/opcbor  BMP

point processing.

aib

Chapter 1. DL/I calls reference 115



Table 33. Summary of system service calls (continued)

Function Code Meaning and Use Options Parameters Valid for
XRST Restart. Works with  Can specifyupto 7  function, i/o pcb batch, BMP
symbolic CHKP to areas to be saved. or aib, i/o area
restart application length, i/o area],
program failure. area length, area]
Note:

1. GSCD is a Product-sensitive Programming Interface.

Related reading: DCCTL users can issue calls using GSAM database PCBs. GSAM databases are
described in IMS Version 15.3 Application Programming.

Related reference

“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.

“DL/I calls for database management” on page 1
Use these DL/I calls with IMS DB to perform database management functions in your application
program.

“EXEC DLI commands” on page 153

The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

APSB call

The Allocate PSB (APSB) call is used to allocate a PSB for a CPI Communications driven application
program. These types of application programs are used for conversations that include LU 6.2 devices.

Format

»— APSB — aib »«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
APSB X X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

116 IMS: Application Programming APIs



Usage

CPI-C driven application programs must be link edited with the IMS language interface module and must
indicate the PSB to be used before the application program can issue DL/I calls. The APSB call uses the
AIB to allocate a PSB for these types of application programs.

When you issue the APSB call, IMS TM returns a list of PCB addresses contained in the specified PSB to
the application program. The PCB list is returned in the AIBRSA1 field in the AIB.

IMS TM allows the APSB call to complete even if the databases that the PSB points to are not available.
You can issue the INIT call to inform IMS TM of the application program's capabilities to accept
additional status codes regarding data availability.

Related reading: For more information on CPI Communications driven application programs, see IMS
Version 15.3 Communications and Connections.

Restrictions

An application program that uses APSB can allocate only one PSB at a time. If your application requires
more than one PSB, you must first release the PSB in use by issuing the deallocate PSB (DPSB) call.

CPI Communications driven application programs must issue the APSB call before issuing any other DL/I
calls. If your application program attempts to issue DL/I calls before a PSB has been allocated with the
APSB call, the application program receives error return and reason codes in the AIB.

CHKP (basic) call
A basic Checkpoint (CHKP) call is used for recovery purposes.
Format
»— CHKP ti/o_pcbj— ifo_area »<
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
CHKP X X X X X
Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program, to use for this call. It is
an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB hame IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

Chapter 1. DL/I calls reference 117



i/o area
Specifies the I/0 area to use for the call. This parameter is an input and output parameter. For the
CHKP call, the I/0 area that contains the 8-character checkpoint ID. If the program is an MPP or
a message-driven BMP, the CHKP call implicitly returns the next input message into this I/O area.
Therefore, the area must be long enough to hold the longest message that can be returned.

Usage

In transaction management application programs, the basic CHKP call can be used to retrieve the
conversational SPA or the initial message segment that was queued before the application was
scheduled. The CHKP call commits all changes made by the program and, if your application program
abends, establishes the point at which the program can be restarted.

Restrictions

CPI Communications driven application programs cannot issue a basic CHKP call.

CHKP (symbolic) call

A symbolic Checkpoint (CHKP) call is used for recovery purposes.

Format

»— CHKP ti/o_pcbj— i/o_area_length — i/o_area —»
aib

] L area_length — ,— area J B

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
CHKP X X X X X
Parameters

i/o pch

Specifies the I/O PCB to use for the call, the first PCB address in the list passed to the program, to use
for this call. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

118 IMS: Application Programming APIs



i/o area length
Is no longer used by IMS. For compatibility reasons, this parameter must still be included in the call,
and it must contain a valid address. You can get a valid address by specifying the name of any area in
your program.

i/o area
Specifies the I/0 area to be used for your call. This parameter is an input and output parameter.
For the CHKP call, the I/O area contains the 8-character checkpoint ID. If the program is a message-
driven BMP, the CHKP call implicitly returns the next input message into this I/O area. Therefore, the
area must be long enough to hold the longest message that can be returned.

area length
Specifies a 4-byte field in your program that contains the length in binary of the first area to
checkpoint. This parameter is an input parameter. Up to seven area lengths can be specified. For
each area length, you must also specify an area parameter.

area
Specifies the area in your program that you want IMS to checkpoint. This parameter is an input
parameter. You can specify up to seven areas in your program that you want IMS to checkpoint.
Always specify the area length parameter first, followed by the area parameter. The number of areas
you specify on a XRST call must be less than or equal to the number of areas you specify on the CHKP
calls the program issues. When you restart the program, IMS restores only the areas you specified in
the CHKP call.

Usage

In transaction management application programs, the symbolic CHKP call can be used to retrieve

the conversational SPA or the initial message segment that was queued before the application was
scheduled. The CHKP call commits all changes made by the program and, if your application program
abends, establishes the point at which the program can be restarted. In addition, the symbolic CHKP call
can:

« Work with the extended restart (XRST) call to restart your program if your program abends.

- Enables you to save as many as seven data areas in your program, which are restored when your
program is restarted.

Restrictions

A CPI Communications driven application program cannot issue the symbolic CHKP call. The symbolic
CHKP call is only allowed from batch and BMP applications.

You must issue an XRST call before the symbolic CHKP call.

Related reference

“XRST call” on page 150
The Extended Restart (XRST) call is used to restart your program.

DPSB call
The Deallocate PSB (DPSB) call frees a PSB that was allocated with the APSB call.

Format

»— DPSB — aib »«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
DPSB X X

Chapter 1. DL/I calls reference 119



Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.
The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

Usage

The DPSB call must be used in a CPI Communications driven application program to release a PSB

after a commit point occurs and before another PSB can be allocated. In a CPI Communications driven
application program, the commit point is achieved with the COMMIT verb. For more information on CPI
Communications driven application programs, see the topic "CPI-C Driven Application Programs" in IMS
Version 15.3 Communications and Connections.

Restrictions

You can issue the DPSB call only after a commit point occurs, and it is valid only after a successful APSB
call.

GMSG call

A Get Message (GMSQG) call is used in an automated operator (AO) application program to retrieve a
message from an AO exit routine (DFSAOEOQO or another AOIE type exit routine).

Format

»w— GMSG — aib — i/o_area >«

Parameters

aib
Specifies the application interface block (AIB) to be used for this call. This parameter is an input and
output parameter.

You must initialize the following fields in the AIB:
AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBSFUNC
Subfunction code. This field must contain one of the listed 8-byte subfunction codes:

8-blanks (null)
When coded with an AOI token in the AIBRSNML1 field, indicates IMS is to return when no AOI
message is available for the application.

120 IMS: Application Programming APIs



WAITAOI
When coded with an AOI token in the AIBRSNM1 field, indicates IMS is to wait for an AOI
message when none is currently available for the application. This subfunction value is invalid
if an AOI token is not coded in AIBRSNM1. In this case, error return and reason codes are
returned in the AIB.

The value WAITAOI must be left justified and padded with a blank character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI token identifies the
message the AO application is to retrieve. The token is supplied for the first segment of a
message. If the message is a multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric left-justified field padded with
blanks.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.
This field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area should
be large enough to hold the largest segment passed from IMS to the AO application. If the I/O area is
not large enough to contain all of the data, IMS returns partial data.

Usage

GMSG is used in an AO application to retrieve a message associated with an AOI token. The AO application
must pass an 8-byte AOI token to IMS to retrieve the first segment of the message. IMS uses the AOI
token to associate messages from the AO exit routine of type AOIE, with the GMSG call from an AO
application. IMS returns to the application only those messages associated with the AOI token. By using
different AOI tokens, the AOIE type exit routine can direct messages to different AO applications. Note
that your installation defines the AOI token.

To retrieve the second through the last segments of a multisegment message, issue GMSG calls with
no token specified (set the token to blanks). If you want to retrieve all segments of a message, you
must issue GMSG calls until all segments are retrieved. IMS discards all non-retrieved segments of a
multisegment message when a new GMSG call specifying an AOI token is issued.

Your AO application can specify a wait on the GMSG call. If no messages are currently available for the
associated AOI token, your AO application waits until a message is available. The decision to wait is
specified by the AO application, unlike a WFI transaction where the wait is specified in the transaction
definition. The wait is done on a call basis; that is, within a single AO application some GMSG calls might
specify waits while others do not.

The following table shows, by IMS environment, the types of application programs that can issue GMSG.
GMSG is also supported from a CPI-C driven application program.

Table 34. GMSG support by application region type

Application region type IMS environment

DBCTL DB/DC DCCTL
DRA thread Yes Yes N/A
BMP (nonmessage-driven) Yes Yes Yes
BMP (message-driven) N/A Yes Yes

Chapter 1. DL/I calls reference 121



Table 34. GMSG support by application region type (continued)

Application region type IMS environment

DBCTL DB/DC DCCTL
MPP N/A Yes Yes
IFP N/A Yes Yes
Restrictions

A CPI-C driven program must issue an APSB (allocate PSB) call before issuing GMSG.

GSCD call

The Get System Contents Directory (GSCD) call retrieves the address of the IMS system contents directory
(SCD) for batch programs.

This topic contains Product-sensitive Programming Interface information.
Format

»— GSCD ti/o_pcbj— i/o_area >«
aib

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters

i/o pcb
Specifies the PCB, the first PCB address in the list passed to the program, to use for this call. This
parameter is an input and output parameter.

aib
Specifies the address of the application interface block (AIB) that is used for the call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB nhame IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area to be used for the call. This parameter is an output parameter. For the GCSD
call, the I/O area must be 8 bytes in length. IMS TM places the address of the SCD in the first 4 bytes
and the address of the program specification table (PST) in the second 4 bytes.

122 IMS: Application Programming APIs



Usage

IMS does not return a status code to a program after it issues a successful GSCD call. The status code
from the previous call that used the same PCB remains unchanged in the PCB.

Restrictions
The GSCD call can be issued only from DLI or DBB batch application programs.

ICMD call

An Issue Command (ICMD) call lets an automated operator (AO) application program issue an IMS
command and retrieve the first command response segment.

Format

»— ICMD — aib — i/o_area »«

Parameters

aib
Specifies the application interface block (AIB) used for this call. This parameter is an input and output
parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.
This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

Your program must check this field to determine whether the ICMD call returned data to the I/O
area. When the only response to the command is a DFS058 message indicating either COMMAND
IN PROGRESS or COMMAND COMPLETE, the response is not returned.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data, and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/0 area to use for this call. This parameter is an input and output parameter. The I/O
area should be large enough to hold the largest command passed from the AO application to IMS,
or command response segment passed from IMS to the AO application. If the I/O area is not large
enough to contain all of the data, IMS returns partial data.

The general format of your I/O work area on an ICMD call is:
LLZZ/VERB KEYWORD1 P1 KEYWORD2 P2, P3.

LL
Two-byte field containing the length of the command text, including LLZZ.

2z
Two-byte field reserved for IMS.

Chapter 1. DL/I calls reference 123



/ or CRC
Indicates an IMS command follows. CRC (Command Recognition Character) rather than a slash (/)
is used in the DBCTL environment.

VERB
The IMS command you are issuing.

KEYWORDX
Keywords that apply to the command being issued.

PX
Parameters for the keywords you are specifying.

. (Period)
End of the command.

The length of a command is limited by the size of the I/0 area; the size is specified in the IOASIZE
parameter in the PSBGEN macro during PCB generation. LL is the length of the command text. The
size of the I/O area is the length of the actual command text, plus 4 bytes for LLZZ. The minimum size
of the I/O work area is 132 bytes.

The fifth byte must be a "/" (or CRC for DBCTL), and the verb must follow immediately. The /
BROADCAST and /LOOPTEST commands must have a period between the command segment and
text segment, and must be preceded by an LLZZ field that includes the size of the text. Comments can
be added by placing a period (.) after the last parameter.

Restriction: When issuing the /SSR command, do not code an end-of-command indicator (period) as
shown in IMS Version 15.3 Operations and Automation. If a period is used, it is considered part of the
text.

Usage

ICMD enables an AO application to issue an IMS command and retrieve the first command response
segment.

When using ICMD, put the IMS command that is to be issued in your application's I/O area. After IMS has
processed the command, it returns the first segment of the response message to your AO application's
I/0 area to retrieve subsequent segments (one segment at a time), using the RCMD call.

Some IMS commands that complete successfully result in a DFS058 COMMAND COMPLETE message.
Some IMS commands that are processed asynchronously result in a DFS058 COMMAND IN PROGRESS
message. For a command entered on an ICMD call, neither DFS058 message is returned to the AO
application. The AIBOAUSE field is set to zero to indicate no segment was returned. So, your AO
application must check the AIBOAUSE field along with the return and reason codes to determine if a
response was returned.

Related reading: For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

The following table shows, by IMS environment, the types of application programs that can issue ICMD.
ICMD is also supported from a CPI-C driven application.

Table 35. ICMD support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL
DRA thread Yes Yes N/A
BMP (nonmessage-driven) Yes Yes Yes
BMP (message-driven) N/A Yes Yes
MPP N/A Yes Yes
IFP N/A Yes Yes

124 IMS: Application Programming APIs



See IMS Version 15.3 Operations and Automation for a list of commands that can be issued using the
ICMD call.

Restrictions
A CPI-C driven program must issue an APSB (allocate PSB) call before issuing ICMD.

INIT call

An Initialize (INIT) call allows the application to receive data availability status codes by checking each
DB PCB for data availability.

Format
»— INIT ti/o_pcbj— ifo_area »«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
INIT X X X X X
Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the address of the application interface block (AIB) that is used for the call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the I/0 area to be used for the call. This parameter is an input parameter.
The I/O area of an INIT call can contain the character string "DBQUERY" or
"VERSION(dbnamel=version,dbname2=version)".

Usage
The INIT callis valid for all IMS TM application programs.
Performance considerations for the INIT call (IMS online only)

For performance reasons, the INIT call should not be issued in online application programs before the
first GU call to the I/O PCB. If the INIT call is issued first, the GU call to the I/O PCB is not processed as
efficiently.

To specify the database query subfunction in your application program, specify the character string
"DBQUERY" in the I/O area.

Chapter 1. DL/I calls reference 125



Determining database availability: INIT DBQUERY

When the INIT call is issued with the DBQUERY character string in the I/O area, the application program
can obtain information regarding the availability of data for each PCB. The following tables contain sample
I/O areas for the INIT call with DBQUERY.

Table 36. INIT I/O area examples for all xxxTDLI interfaces except PLITDLI

L L z z Character String
00 0B 00 00 DBQUERY

Note: The LL and ZZ fields are binary. The LL value X'0B' is a hexadecimal representation of decimal 11.

Table 37. INIT I/O area examples for the PLITDLI interface

L L L L z z Character String
00 00 00 0B 00 00 DBQUERY

Note: The LLLL and ZZ fields are binary. The L value X'OB' is a hexadecimal representation of decimal 11.

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes for LL. For the PLITDLI
interface, use the 4-byte field LLLL. When you use the AIBTDLI interface, PL/I programs require only a
2-byte field.

2z
A 2-byte field of binary zeros.

One of the following status codes is returned for each database PCB:

NA
At least one of the databases that can be accessed using this PCB is not available. A call made using
this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has been
issued, orin a DFS3303I message and 3303 pseudo-abend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a call results in an AI (unable
to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, orin a DFS3303I message and 3303 pseudoabend if it has not. The database that
caused the NU status code might be required only for delete processing. In that case, DLET calls fail,
but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions the PCB allows. DEDBs and
MSDBs always have the bb.

In addition to data availability status, the name of the database organization of the root segment is
returned in the segment name field of the PCB. In DCCTL environments, the name of the database
organization is UNKNOWN.

Automatic INIT DBQUERY

When the application program is entered initially, the status code in the database PCBs is initialized
as ifthe INIT DBQUERY call was issued. This enables the application program to determine database
availability without issuing the INIT call.

In DCCTL environments, the status code is NA.

Specify a database version number: INIT VERSION(dbname=version)

126 IMS: Application Programming APIs



When database versioning is enabled, an application program can use the "VERSION" function to request
a version of a database that is different from the version number that is specified for the application
program on the PCB or from the default version that is returned by IMS. A version number specified on the
INIT VERSION call takes precedence over all other version specifications and defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database, the version of the
database that is returned to the application program is determined by the DBVER keyword of the PCB
statement. If the DBVER keyword is not specified, IMS returns either the version of the database that is
active in the ACB library or version 0 of the database, as determined by the DBLEVEL keyword in either the
PSBGEN statement or the database section of the DFSDFxxx PROCLIB member.

In the I/O area, the VERSION function is specified by using the following format:

»— VERSION( L dbname =version l ) >«

Each database name is specified by using alphabetic characters and can be specified only once. Specify
only names of physical databases. The names of logical databases are not supported.

Each version is specified as a numeric value from 0 to 2147483647. The number that is specified must
match a version number that is defined on a DBD for the named database and stored in the IMS catalog.

Calculate the size that is required for the I/O area by multiplying the number of databases that are
specified in the input I/O area by 20.

For example, the following table contains a sample I/O area for the INIT VERSION call for assembler
language, COBOL, C language, and Pascal. In the table, the LL value of X'3C' is the hexadecimal
representation of decimal 60, the length in bytes that is required to hold the output in the I/O area
when three database names are specified on input. The ZZ fields are binary.

Table 38. INIT VERSION: Example format for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L z y4 Character string
00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

The following table contains a sample I/O area for the INIT call with VERSION for PL/I. In the table, the LL
value of X'3C' is the hexadecimal representation of decimal 60. The ZZ fields are binary.

Table 39. INIT VERSION: Example format for PLITDLI
L L L L Z Z Character string
00 00 00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For PL/I, the length of the LLLL
field is considered 2 bytes even though it is a 4-byte field. When you use the AIBTDLI interface, the
length of the record is equal to the total length of LL + ZZ + character string. For the PLITDLI interface,
the length of the record is equal to the total length of LLLL + ZZ + required length for output, where
LLLL is considered 2 bytes.

2z
A 2-byte field of binary zeros.

Character string
The function specification on input. The length that is specified in the LL or LLLL is the length that is
required for the output: 20 bytes for each database that is specified in the input character string.

Chapter 1. DL/I calls reference 127



INQY call

The Inquiry (INQY) call is used to request information regarding execution environment, destination type
and status, and session status. INQY is valid only for application interfaces that use the AIB structure.

Format

»w— INQY — aib — i/o area »«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
INQY X X X X X
Parameters

aib

Specifies the address of the application interface block (DFSAIB) for the call. This parameter is an
input and output parameter. These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction codes as follows:

 bbbbbbbb (Null)

- DBQUERYb

- ENVIRONbD

« ENVIRON2

« FINDbbbb

- LERUNOPT

« MSGINFOb

« PROGRAMb (Not supported with the ODBA interface)

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of any named PCB in the
PSB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area specified in the call list. This
field is not changed by IMS.

i/o area
Specifies the data output area to use with the call. This parameter is an output parameter. An I/0
area is required for INQY subfunctions ENVIRONb, ENVIRON2, MSGINFOb and PROGRAMb. It is not
required for subfunctions DBQUERYb, FINDbbbb, and LERUNOPT.

Restrictions

A CPI Communications driven application program cannot issue an INQY call with the null subfunction
against an I/O PCB.

A batch program cannot issue an INQY call with a null subfunction.

128 IMS: Application Programming APIs



Usage

The INQY call operates in both batch and online IMS environments. IMS application programs can use the
INQY call to request information about the output destination, the session status, the current execution
environment, the availability of databases, and the PCB address, which is based on the PCB name. You
must use the AIB when issuing an INQY call. Before you can issue an INQY call, initialize the fields of the
AIB.

When you use the INQY call, specify an 8-byte subfunction code, which is passed in the AIB. The INQY
subfunction determines the information that the application program receives.

The INQY call returns information to the caller's I/O area. The length of the data that is returned from the
INQY call is passed back to the application program in the AIB field, AIBOAUSE.

Specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call returns only as much data as
the area can hold in one call. If the area is not large enough for all the information, an AG status code is
returned, and partial data is returned in the I/O area. In this case, the AIB field AIBOALEN contains the
actual length of the data that is returned to the I/O area, and the AIBOAUSE field contains the output area
length that would be required to receive all the data.

Querying information from the PCB: INQY null

When the INQY call is issued with the null subfunction, the application program obtains information
related to the PCB, including output destination type and location, and session status. The INQY call
can use the I/O PCB or the alternate PCB. The information you receive regarding destination location
and session status is based on the destination type. The destination types are APPC, OTMA, TERMINAL,
TRANSACT, and UNKNOWN.

Related reading: For more information about APPC and LU 6.2, see IMS Version 15.3 Communications
and Connections.

The INQY null subfunction returns character string data in the I/O area. The output that is returned for the
destination types APPC, OTMA, TERMINAL, and TRANSACT is left justified and padded with blanks. The
UNKNOWN destination type does not return any information. The following tables list the output returned
from the INQY null call. Refer to the notes associated with the table for further information about some of
the entries.

Table 40. INQY null data output for terminal-type destinations

Information returned Lengthin  Actual value Explanation
bytes
Destination Type 8 Terminal The destination of the I/O PCB or alternate
PCB is a terminal.
Terminal Location 8 Local The terminal is defined as local.
Remote The terminal is defined as remote.
Queue Status 8 Started The queue is started and can accept work.
Stopped The queue is stopped and cannot accept
work.
Session Status 8 b The status is not available.
ACTIVE The session is active.
INACTIVE The session is inactive.

Chapter 1. DL/I calls reference 129



Table 41. INQY null data output for transaction-type destinations

Information returned Lengthin  Actual value Explanation
bytes
Destination Type 8 TRANSACT The destination of the alternate PCB is a
program.
Transaction Location 8 Local The transaction is defined as local.
Remote The transaction is defined as remote.
DYNAMIC The transaction is defined as dynamic.!
Transaction Status 8 STARTED The transaction can be scheduled.?
STOPPED The transaction cannot be scheduled.?
Destination PSB Name 8 This field gives the name of the destination
PSB.
b The Program Routing exit routine has

defined the destination as a transaction
not on this system or the transaction is
dynamic. The transaction destination is not

available.
Destination Program or 8 b The status is not available.
Session Stat
ession Status ACTIVE The MSC link session is active (remote

transaction or a transaction that was
rerouted to a remote IMS by the TM and
Message Routing and Control user exit
routine (DFSMSCEOQ)).

INACTIVE The MSC link session is inactive (remote
transaction or a transaction that was
rerouted to a remote IMS by the TM and
Message Routing and Control user exit
routine (DFSMSCEOQ)).

STARTED The program can be scheduled (local
transaction).

STOPPED The program cannot be scheduled (local
transaction).

Notes:

1. A dynamic transaction is only possible in a shared-queues environment. A transaction is dynamic when it is
not defined to the IMS system that is sending the message, but rather to another IMS system that is sharing
the queues. The dynamic transaction is created when the Destination Creation exit routine (DFSINSXO0)
indicates a transaction whose destination is unknown to IMS. The output fields for the destination PSB
name and destination program are set to blanks.

2. If the transaction was rerouted to a remote IMS by the TM and Message Routing and Control user exit
routine (DFSMSCEDQ, the status returned is the MSNAME status.

Table 42. INQY null data output for APPC-Type destinations

Information returned Lengthin  Actual value Explanation
bytes
Destination Type 8 APPC The destination is an LU 6.2 device.

130 IMS: Application Programming APIs



Table 42. INQY null data output for APPC-Type destinations (continued)

Information returned

Lengthin  Actual value
bytes

Explanation

APPC/MVS Side Information 8 This field provides the Side Name.
1
Entry Name b The Side Name is not available.
Partner Logical Unit Name? 8 This field provides the partner LU name for
the conversation.
b The partner LU name is not available.
Partner Mode Table Entry 8 This field provides the Mode Name for the
Name3 conversation.

b The Mode Name is not available.
User Identifier 8 This field provides the user ID.

b The user ID is not available.
Group Name 8 This field provides the Group Name.

b The Group Name is not available.
Synchronization Level* 1 C The synchronization level is defined as

CONFIRM.
N The synchronization level is defined as
NONE.
Conversation Type® 1 B The conversation is defined as BASIC.
M The conversation is defined as MAPPED.
Userid Indicator 1 The value of the Userid Indicator field
indicates the contents of the user ID field.
The Userid Indicator field has four possible
values.

u The U value indicates the user's
identification from the source terminal
during signon.

L The L value indicates the LTERM name of
the source terminal if signon is not active.

P The P value indicates the PSBNAME of the
source BMP or transaction.

0] The O value indicates some other name.

Address of TPN® 4 This is the address of the LL field of the
Transaction Program Name. ”
0 The address of the Transaction Program

Name is not available.

Chapter 1. DL/I calls reference 131



Table 42. INQY null data output for APPC-Type destinations (continued)

Information returned Lengthin  Actual value Explanation
bytes

Notes:

1. If the callis issued against a TP PCB, the Side Name cannot be used and b is returned. If the call is issued
against an alternate modifiable PCB, the Side Name must be supplied in a CHNG call that is issued before
INQY.

2. If the callis issued against a TP PCB, the LU name must be coded. If the call is issued against a modifiable
alternate PCB, the LU name must be supplied in a CHNG call that is issued before INQY.

3. If the callis issued against a TP PCB, the Mode Name cannot be used and b is returned. If the call is issued
against an alternate modifiable PCB, the Mode Name must be supplied in a CHNG call that is issued before
INQY.

4. When the synchronization level is not available, IMS uses the default value of CONFIRM.
5. When the conversation type is not available, IMS uses the default value of MAPPED.

6. The pointer identifies a length field (LL), which contains the length of the TPN in binary, including the 2 bytes
required for LL.

7. The TPN can be up to 64 bytes long.

Table 43. INQY null data output for OTMA-Type destinations

Information Returned Lengthin  Actual Value Explanation
Bytes
Destination Type 8 OTMA The destination is an OTMA client.
tpipe Name 8 This field provides the OTMA transaction
pipe name.
b The tpipe Name is not available.
Member Name 16 This field provides the z/OS cross-system
coupling facility (XCF) member name of the
OTMA client.
b The Member Name is not available.
User Identifier 8 This field provides the User ID.
b The User ID is not available.
Group Name 8 This field provides the group name.
b The Group Name is not available.
Synchronization Level 1 S The OTMA transaction pipe is synchronized.
b The OTMA transaction pipe is not
synchronized.
Message Synchronization 1 C The synchronization level is defined as
Levell CONFIRM.
N The synchronization level is defined as
NONE.

132 IMS: Application Programming APIs



Table 43. INQY null data output for OTMA-Type destinations (continued)

Information Returned Lengthin  Actual Value Explanation
Bytes
Userid Indicator 1 The value of the Userid Indicator field

indicates the contents of the user ID field.
The Userid Indicator field has four possible
values.

u The U value indicates the user's
identification from the source terminal
during signon.

L The L value indicates the LTERM name of
the source terminal if signon is not active.
P The P value indicates the PSBNAME of the
source BMP or transaction.
0 The O value indicates some other name.
Reserved for IMS 1 This field is reserved.

Notes:

1. When the synchronization level is not available, IMS uses the default value of CONFIRM.

Table 44. INQY null data output for unknown-type destinations

Information returned Lengthin  Actual value Explanation
bytes
Destination Type 8 UNKNOWN Unable to find destination.

The contents of the output fields vary depending on the type of PCB used for the INQY call. The following
table shows how INQY output for APPC destinations varies depending on the PCB type. The PCB can be a
TP PCB or an alternate PCB.

Table 45. INQY output and PCB type

Alternate PCB (Non-
Output field TP PCB modifiable) Alternate PCB (Modifiable)
Destination Type APPC APPC APPC
Side Name blanks Side Name if available or ~ Side Name if supplied on
blanks previous CHNG call or blanks
LU Name Input LU Name LU Name if available or LU Name if supplied on
blanks previous CHNG call or blanks
Mode Name blanks Mode Name if available or Mode Name if supplied on
blanks previous CHNG call or blanks
User Identifier USERID if USERID if available or USERID if available or blanks
available or blanks
blanks
Group Name Group Name if Group Name if available or Group Name if available or
available or blanks blanks
blanks
Sync Level CorN CorN CorN

Chapter 1. DL/I calls reference 133



Table 45. INQY output and PCB type (continued)

Alternate PCB (Non-

Output field TP PCB modifiable) Alternate PCB (Modifiable)
Conversation Type BorM BorM BorM
Userid Indicator UorLorPorO UorLorPorO UorLorPorO
TPN Address Address of the Address of the TPN Address of the TPN

TPN character character string or zero character string or zero

string
TPN character string Inbound name of Partner TPN, if available. If TP Name if it is supplied
Note: If vour TPN name IMS Transaction  not available, address field on the previous CHNG call.

A that is executing. is zero. If not supplied, the address

is DFSASYNC, the destination
represents an asynchronous
conversation.

field is zero.

Related reading: For more information on APPC and LU 6.2, see IMS Version 15.3 Communications and
Connections.

Querying data availability: INQY DBQUERY

When the INQY call is issued with the DBQUERY subfunction, the application program obtains information
about the data for each PCB. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb.
The INQY DBQUERY call is similar to the INITDBQUERY call. The INQY DBQUERY call does not return
information in the I/O area, but like the INIT DBQUERY call, it updates status codes in the database PCBs.

The application program is not made aware of the status of each PCB until an INQY FIND call is issued. To
retrieve the status for a database, you must pass the DB PCB for that database in the INQY FIND call.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns these status codes in the
I/0 PCB:

bb
The call is successful and all databases are available.

BJ
None of the databases in the PSB are available, or no PCBs exist in the PSB. All database PCBs
(excluding GSAM) contain an NA status code as the result of processing the INQY DBQUERY call.
BK
At least one of the databases in the PSB is not available, or availability is limited. At least one
database PCB contains an NA or NU status code as the result of processing the INQY DBQUERY call.
When CATALOG PCBs show NA, the status code is bb.

The INQY call returns the following status codes in each DB PCB:

NA
At least one of the databases that can be accessed by using this PCB is not available. A call that is
made using this PCB probably results in a BA or BB status code if the INIT STATUS GROUPA call has
been issued, orin a DFS3303I message and 3303 pseudoabend if the call has not been issued. An
exception is when the database is not available because dynamic allocation failed. In this case, a call
results in an Al (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU
At least one of the databases that can be updated using this PCB is unavailable for update. An ISRT,
DLET, or REPL call using this PCB might result in a BA status code if the INIT STATUS GROUPA call
has been issued, orin a DFS3303I message and 3303 pseudoabend if it has not been issued. The

134 IMS: Application Programming APIs



database that caused the NU status code might be required only for delete processing. In that case,
DLET calls fail, but ISRT and REPL calls succeed.

bb
The data that can be accessed with this PCB can be used for all functions the PCB allows. DEDBs and
MSDBs always have the bb.

Querying the environment: INQY ENVIRON or ENVIRON2

When the INQY callis issued with the ENVIRON or ENVIRON2 subfunctions, the application program
obtains information about the current execution environment. Both subfunctions cannot be used with the
same INQY call, so use either ENVIRON or ENVIRON2. The ENVIRON subfunction provides compatibility
for existing programs that require its specific use, whereas ENVIRONZ2 is newer and provides more
information. The only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb. This includes the
IMS identifier, release, region, and region type.

The INQY ENVIRON and ENVIRON2 calls return character-string data. The output is left-aligned and
padded with blanks on the right.

Recommendations: To account for expansion in the length of the reply data, specify an I/O area length of
512 bytes.

To reference the field that contains the recovery token or the application parameter string, code your
application programs to locate the field by using the address of the field that is returned in the data
output of the INQY ENVIRON or INQY ENVIRONZ2 calls. This is the only valid programming technique
to reference the recovery token field and the application parameter string field. No other programming
technique should be used to reference these fields.

The recovery token or the application parameter string are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

For more information about the recovery token and application parameter fields, see note 2 after the
following table.

The following table describes the INQY ENVIRON output.

Table 46. INQY ENVIRON data output

Length
in Actual
Information returned bytes value Explanation
IMS Identifier 8 Provides the identifier from the execution parameters.
IMS Release Level 4 Provides the release level for IMS. For example, X'00000410'.
IMS Control Region Type 8 BATCH Indicates that an IMS batch region is active.
DB Indicates that only the IMS Database Manager is active. (DBCTL
system)
™ Indicates that only the IMS Transaction Manager is active.
(DCCTL system)

DB/DC Indicates that both the IMS Database and Transaction managers
are active. (DB/DC system)

Chapter 1. DL/I calls reference 135



Table 46. INQY ENVIRON data output (continued)

Length
in Actual
Information returned bytes value Explanation
IMS Application Region 8 BATCH Indicates that the IMS Batch region is active.
T ) - . .
ype BMP Indicates that the Batch Message Processing region is active.
DRA Indicates that the Database Resource Adapter Thread region is
active.
IFP Indicates that the IMS Fast Path region is active.
JBP Indicates that the Java batch processing region is active.
IJMP Indicates that the Java message processing region is active.
MPP Indicates that the Message Processing region is active.
Region Identifier 4 Provides the region identifier. For example, X'00000001".
Application Program Provides the name of the application program being run.
Name
PSB Name (currently 8 Provides the name of the PSB currently allocated.
allocated)
Transaction Name 8 Provides the name of the transaction.
b Indicates that no associated transaction exists.
User Identifier® 8 Provides the user ID.
b Indicates that the user ID is unavailable.
Group Name 8 Provides the group name.
b Indicates that the group name is unavailable.
Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.
B Indicates an INIT STATUS GROUPB call is issued.
b Indicates that a status group is not initialized.
Address of Recovery 4 Provides the address of the LL field, followed by the recovery
Token“2” on page 138 token.
0 Indicates that the recovery token is not available.
Address of the 4 Provides the address of the LL field, followed by the application
Application Parameter program parameter string.
String“2" on page 138
0 Indicates that the APARM= parameter is not coded in the
execution parameters of the dependent region JCL.
Shared Queues 4 Indicates that IMS is not using Shared Queues.
Indicato . - .
! r SHRQ Indicates IMS is using Shared Queues.
User ID of Address 8 User ID of dependent address space.
Space

136 IMS: Application Programming APIs



Table 46. INQY ENVIRON data output (continued)

Length
in Actual
Information returned bytes value Explanation
User ID Indicator 1 Contains one of the following possible values to indicate the
contents of the userid field:
U
Indicates the user’s identification from the source terminal
during sign-on.
L
Indicates the LTERM name of the source terminal in sign-on
is not active.
P
Indicates the PSBNAME of the source BMP or transaction.
(0]
Indicates some other name.
z/0S Resource Recovery 3 b Indicates that IMS has not expressed interest in the UR with
Services (RRS) Indicator RRS. Therefore, the application should refrain from performing
any work that causes RRS to become the syncpoint manager for
the UR because IMS will not be involved in the commit scope.
For example, the application should not issue any outbound
protected conversations.
RRS Indicates that IMS has expressed interest in the UR with RRS.
Therefore, IMS is involved in the commit scope if RRS is the
syncpoint manager for the UR.
IMS catalog enablement 8 b Indicates that the IMS catalog is not enabled in the DFSDFxxx
indicator PROCLIB member.
For information about setting up and enabling an IMS catalog,
see IMS catalog definition and tailoring (System Definition).
For information about enabling the IMS catalog in the DFSDFxxx
PROCLIB member, see DFSDFxxx member of the IMS PROCLIB
data set (System Definition).
CATALOG Indicates that the IMS catalog is enabled. Database and
plus one application metadata are available in IMS. Data mask definitions
byte of that use this value must include all eight bytes.
reserved
space
initialized
asa
blank.

Chapter 1. DL/I calls reference 137


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Table 46. INQY ENVIRON data output (continued)

Length
in Actual
Information returned  bytes value

Explanation

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY
ENVIRON call. The PSTUSID field is one of the following;:

« For message-driven BMP regions that have not completed successful GU calls to the IMS message queue
and for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is

currently scheduled into the BMP region.

« For message-driven BMP regions that have completed a successful GU call and for any MPP region, the
PSTUSID field is derived which is usually the input terminal's RACF ID. If the terminal has not signed on to
RACF, the ID is the input terminal's LTERM.

2. The pointer is an address that identifies a length field (LL) which contains the length of the recovery token
or application program parameter string in binary, including the two bytes required for LL. Use this pointer to
set up addressability of the AIB between releases in a batch program.

- The length byte is two more than the length of the string passed as APARM. This is because it includes the
length of the halfword length. Thus, to turn the length byte into a machine length for an executed move,
you need to subtract three. This is unlike z/OS parm strings, where length does not additionally include
the length of the length byte, and you only subtract one before your executed move.

The INQY ENVIRON2 subfunction returns all the information provided by the ENVIRON subfunction, plus
the output described in the following table.

Table 47. INQY ENVIRONZ2 data output

Length
in Actual
Information returned bytes value

Explanation

INQY ENVIRON2 output 4

Indicates the version number of this INQY ENVIRON2 output.

version
IMS installed version 4 X'000015 Indicates IMS version 15.1.0
(Entries in this row's 10
Actual value column X'000015 Indicates IMS version 15.2.0
show actual values for 20'
IMS versions 15.1, 15.2, - -
and 15.3. A similar X'000015 Indicates IMS version 15.3.0
output pattern applies 30
for newer versions of
IMS.)
IMS function level 4 Indicates the currently installed function level of IMS.
Functions enabled 32 Is the value of the IMS functions enabled bitmap.
bitmap
Primary Language 2 31 Indicates that the primary Language Environment enclave
Environment enclave addressing mode is 31-bit.
addressing mode 64 Indicates that the primary Language Environment enclave
addressing mode is 64-bit.
0 Indicates that no JVM was requested.

138 IMS: Application Programming APIs



Table 47. INQY ENVIRONZ2 data output (continued)

Length
in Actual
Information returned bytes value Explanation
Language Environment 2 31 Indicates that the Language Environment enclave addressing
enclave addressing mode of the requested JVM is 31-hit.
de for JVM ) . .
mode for 64 Indicates that the Language Environment enclave addressing
mode of the requested JVM is 64-bit.
0 Indicates that no JVM was requested.
IMS MACB enablement 4 No value Indicates that managed ACBs is disabled.
indicato . -
ind! ' MACB Indicates that managed ACBs is enabled.
Notes:

1. To learn more about the functions enabled bitmap, see IMS function levels overview (System
Administration).

2. ENVIRON2 reports primary and active addressing modes as decimal values. Some programs, such as
DFSDDLTO, displays these values in hexadecimal. In such cases, 31-bit displays as 1F and 64-bit displays
as 40.

Querying the input message information: INQY MSGINFO

To obtain information regarding the current input message, use the INQY call with the MSGINFO
subfunction. The only valid PCB name that can be passed in the AIBRSNM1 field is IOPCBbbb. The output
returns the version number and the output fields for the message information. The INQY MSGINFO call
returns the response in the I/O area.

The following table lists the output that is returned from the INQY MSGINFO call. Included with the
information returned is the byte length, the actual value, and an explanation of the output.

The distributed network user ID, if used, has a variable length from 1 to 246 bytes and the distributed
network session ID, if used, has a variable length from 1 to 254 bytes. Because the size of the distributed
network security credentials can vary, the information is appended to the end of the response in the I/O
area. If network security credentials are included in the message, define the I/O area, in the AIB field
AIBOALEN, with the appropriate 2-byte length to account for the variable length of the network user ID
and the network session ID.

To reference the field that contains the distributed network user ID or distributed network session ID,
code your application programs to locate the field by using the address of the field that is returned in
the data output of the INQY MSGINFO call. The address identifies a length field (LL) that contains the
length of the ID followed by the distributed network user ID or network session ID. This is the only valid
programming technique to reference the network user ID and network session ID.

The distributed network user ID or network session ID are optional and therefore are not always returned.
If they are not returned, the value in the address field is zero.

Chapter 1. DL/I calls reference 139


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_functions.htm#ims_functions

Table 48. INQY MSGINFO data output

Information returned Length in bytes Actual value Explanation

Version number 4 lor2 Output response version
1 contains the origin IMS
ID.

Output response version
2 contains both the
origin IMS ID and

the distributed network
security credentials.

Origin IMSID 8 The IMS identifier from
which the input message
originated.

Address of distributed 4 If this field is zero,

network user ID network user ID is not

available. If this field is
nonzero, it provides the
address of the LL field
followed by the network
user ID for the input

message.
Address of distributed 4 If this field is zero,
network session ID network session ID is

not available. If this field
is non-zero, it provides
the address of the LL
field followed by the
network session ID for
the input message.

Reserved for IMS 60 This field is reserved for
future output expansion.

Querying the PCB address: INQY FIND

When the INQY call is issued with the FIND subfunction, the application program is returned with the
PCB address of the requested PCB name. The valid PCB names that can be passed in AIBRSNM1 are
IOPCBbbb or the name of the alternate PCB (TP PCB) or database PCB as it is defined in the PSB.

On a FIND subfunction, the requested PCB remains unmodified, and no information is returned in an I/O
area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY call. This process allows
the application to analyze the PCB status code to determine if an NA or NU status code is set in the PCB.

Querying for LE overrides: INQY LERUNOPT

When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS determines whether LE overrides
are allowed based on the LEOPT system parameter. The LE override parameters are defined to IMS
through the UPDATE LE command. IMS checks to see whether there are any overrides applicable to

the caller based on the specific combinations of transaction name, lterm name, userid, or program name
in the callers environment. IMS returns the address of the string to the caller if an override parameter

is found. The LE overrides are used by the IMS supplied CEEBXITA exit, DFSBXITA, to allow dynamic
overrides for LE runtime parameters.

140 IMS: Application Programming APIs



The call string must contain the function code and the AIB address. The I/O area is not a required
parameter and is ignored if specified. The only valid PCB name that can be passed in AIBRSNM1 is IOPCB.
The AIBOALEN and AIBOAUSE fields are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY LERUNOPT call are:

< An MPP or JMP region uses transaction name, lterm, userid, and program to match with each entry.

- An IFB, JBP, or non-message-driven BMP uses program name to match with each entry. If an entry has
a defined filter for transaction name, lterm, or userid, it does not match. Message driven BMPs also use
transaction name.

« The entries are scanned to find the entry with the most filter matches. The first entry in the list with the
most exact filter matches is selected. The scan stops with an entry found with all of the filters matching
the entry.

Note: Searching table entries may cause user confusion because of the way entries are built and
searched. For example, assume that there are two entries in the table that match on the filters specified
on the DL/I INQY call. The first transaction matches on transaction name and lterm name. The second
entry matches on transaction name and program name. IMS chooses the first entry because it was the
first entry encountered with highest number of filter matches. If the second entry is now updated with

a longer parameter string, which causes a new entry to be built, it is added to the head of the queue.
The next search would result in the entry with transaction name and program name being selected. This
could result in a set of runtime options being selected that were not expected by the user.

Environments: The LERUNOPT subfunction can be specified from DB/DC, DBCTL, and DCCTL
environments. Overrides are based on a combination of transaction name, lterm name, user ID, and
program name in MPP and JMP regions. IFP, BMP, and JBP regions will have overrides based on program
name. Message driven BMP regions can also use transaction name.

Return and reason codes: AIB return and reason codes must be checked to determine if the call has
been successfully completed. AIBRSA2 is used to return the address of the parameter string if override
parameters are available for the caller.

Querying the program name: INQY PROGRAM

When you issue the INQY call with the PROGRAM subfunction, the application program name is returned
in the first 8 bytes of the I/O area. The only valid PCB name that can be passed in AIBRSNM1 is
IOPCBbbb.

INQY return codes and reason codes

When you issue the INQY call, return and reason codes are returned to the AIB. Status codes can be
returned to the PCB. If return and reason codes other than those that apply to INQY are returned, your
application should examine the PCB to see what status codes are found.

Map of INQY subfunction to PCB type

Table 49. Subfunction, PCB, and I/O area combinations for the INQY call

I/O Area

Subfunction I/0 PCB Alternate PCB DB PCB Required
FIND OK OK OK NO
ENVIRON or ENVIRON2 OK NO NO YES
DBQUERY OK NO NO NO
LERUNOPT OK NO NO NO
PROGRAM OK NO NO YES
MSGINFO OK NO NO YES

Chapter 1. DL/I calls reference 141



LOG call

The Log (LOG) call is used to send and write information to the IMS system log.

Format
»— LOG ti/o pcbj— i/o area >«
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
LOG X X X X X
Parameters
ifo pch

Specifies the address of the PCB, the first PCB address in the list passed to the program, to use for
this call. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to write to the system log.
This parameter is an input parameter. This record must be in the format shown in the following tables.

Table 50. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for AIBTDLI,
ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length
LL 2

z7 2

C 1

Text Variable

Table 51. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for PLITDLI

interface

Field Name Field Length
LLLL 4

2z 2

C 1

142 IMS: Application Programming APIs



Table 51. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for PLITDLI
interface (continued)

Field Name Field Length

Text Variable

The fields must be as follows:

LL or LLLL
Specifies a 2-byte field that contains the length of the record. When you use the AIBTDLI
interface, the length of the record is equal to LL + ZZ + C + text of the record. For the PLITDLI
interface, the length of the record is equal to LLLL + ZZ + C + the text of the record. When you
calculate the length of the log record, you must account for all of the fields. The total length you
specify includes:
2 bytes for LL or LLLL. (For PL/I, include the length as 2, even though LLLL is a 4-byte field.)
« 2 bytes for the ZZ field.
« 1 byte for the C field.

 n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must define the length field as a binary
fullword.

zz
Specifies a 2-byte field of binary zeros.

(o
Specifies a 1-byte field containing a log code, which must be equal to or greater than X'AQ".

Text
Specifies any data to be logged.

Usage

An application program can write a record to the system log by issuing the LOG call. When you issue
the LOG call, you specify the I/O area that contains the record you want written to the system log. You
can write any information to the log, and you can use log codes to distinguish among various types of
information. You can issue the LOG:

« Inthe IMS DB/DC environment, and the record is written to the IMS log.
« In the DCCTL environment, and the record is written to the DCCTL log.

Restrictions

The length of the I/0 area (including all fields) cannot be larger than the logical record length (LRECL) for
the system log data set minus 4 bytes and the length of logrec prefix (which is x'4A" bytes in length), or
the I/0 area specified in the IOASIZE keyword of the PSBGEN statement of the PSB.

RCMD call

A Retrieve Command (RCMD) call lets an automated operator (AO) application program retrieve the
second and subsequent command response segments after an ICMD call.

Format

»— RCMD — aib — ifo area >«

Chapter 1. DL/I calls reference 143



Parameters

aib
Specifies the application interface block (AIB) used for this call. This parameter is an input and output
parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.
This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output parameter.

When partial data is returned because the I/O area is not large enough, AIBOAUSE contains the
length required to receive all of the data and AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/0 area to use for this call. This parameter is an output parameter. The I/O area
should be large enough to hold the largest command response segment passed from IMS to the AO
application. If the I/O area is not large enough for all of the information, partial data is returned in the
I/0 area.

Usage

RCMD lets an AO application retrieve the second and subsequent command response segments resulting
from an ICMD call.

Related reading: For more information on the AOI exits, see IMS Version 15.3 Exit Routines.

RCMD is also supported from a CPI-C driven application program.

Table 52. RCMD support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL
DRA thread Yes Yes N/A
BMP (nonmessage-driven) Yes Yes Yes
BMP (message-driven) N/A Yes Yes
MPP N/A Yes Yes
IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional response segments, you
must issue RCMD once for each response segment issued by IMS.

Restrictions
An ICMD call must be issued before an RCMD call.

144 IMS: Application Programming APIs



ROLB call
The Rollback (ROLB) call backs out messages sent by the application program.

Format
»— ROLB ifo pcb <
t aib _J L i/o area —J
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ROLB X X X X X
Parameters
ifo pch

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
An output parameter that specifies the area in your program to which IMS TM returns the first
message segment. For conversational transactions the SPA will be the first item returned to the
application. Your next GN call will then return the first user segment of the message.

Usage

Issuing a ROLB in a conversational program causes IMS TM to back out the messages that the application
program has sent. If the program issues a ROLB call and then reaches a commit point without sending
the required response to the originating terminal, IMS TM terminates the conversation and sends the
message DFS21711 NO RESPONSE CONVERSATION TERMINATED to the originating terminal.

If your application program has allocated resources that IMS TM cannot roll back, the resources are
ignored. For example, if your application program issues CPI-C verbs to allocate resources (for modified
DL/I or CPI-C driven programs), ROLB only affects those resources allocated by IMS. Your application
must notify any CPI-C conversations that a ROLB call was issued.

For CPI-C driven application programs, all messages inserted to nonexpress alternate PCBs are
discarded. Messages inserted to express alternate PCBs are discarded if the PURG call was not issued
against the PCB before the ROLB call was issued.

Any application program that uses Spool API functions and creates print data sets can issue the ROLB
call. This backs out any print data sets that have not been released to JES.

Chapter 1. DL/I calls reference 145



The following processing considerations apply to modified message-driven IMS applications issuing the
IMS ROLB call that can receive protected input messages from OTMA or APPC/MVS and issue outbound
protected work to other z/OS Resource Recovery Services (RRS) resource managers:

- If a modified message-driven IMS application program with protected input issues a ROLB call, the
ROLB call is isolated to the IMS application without affecting the entire protected unit of work. After
the ROLB call is issued, the protected input message remains in process for the IMS application until a
commit point is reached.

« If a modified message-driven IMS application program issues an outbound protected conversation,
the outbound protected conversation is not included in the ROLB processing (that is, the outbound
protected conversation is not backed out as part of the ROLB call). The modified message-driven IMS
application program is responsible for explicitly cleaning up any outbound protected work to be backed
out.

Restrictions
The AIB must specify the I/O PCB for this call.

Related concepts
Backing out to a prior commit point: ROLL, ROLB, and ROLS calls (Application Programming)

ROLL call

The Roll (ROLL) call backs out output messages sent by a conversational application program and
terminates the conversation.

Format
»— ROLL >«

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ROLL X X X X X
Parameters

The only parameter required for the ROLL call is the call function.

Usage
IMS terminates the application with a U0778 abend.

If you issue a ROLL call during a conversation, IMS TM backs out the update and cancels output
messages. IMS TM also terminates the conversation with a U0778 abend code.

For applications that use the CPI Communications interface, the original transaction is discarded if it is
classified by IMS as a discardable transaction.

Any remote LU 6.2 conversation transactions generated by a modified DL/I or CPI-C driven application
program are deallocated with TYPE (ABEND_SVC).

Any application program that uses Spool API functions and creates print data sets can issue the ROLL
call. This backs out any print data sets that have not been released to JES.

Restrictions
The ROLL call cannot use the AIBTDLI interface.

Related concepts
Backing out to a prior commit point: ROLL, ROLB, and ROLS calls (Application Programming)

146 IMS: Application Programming APIs


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit

Administering APPC/IMS and LU 6.2 devices (Communications and Connections)
Related reference
NDMX: Non-Discardable Messages user exit (DFSNDMXO0 and other NDMX exits) (Exit Routines)

ROLS call

The Roll Back to SETS/SETU (ROLS) call returns message queue positions to sync points established by
the SETS/ SETU call.

For more information on the ROLS and SETS/SETU calls, see the topic "Backing out to a Prior Commit
Point: ROLL, ROLB, and ROLS Calls" in IMS Version 15.3 Application Programming.

Format
»— ROLS i/o pcb >
{ aib J L ifo area J L token J
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
ROLS X X X X X
Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/0 area that is specified in the call list.

i/o area
Specifies the I/0 area. It has the same format as the I/O area supplied on the SETS/SETU call. This
parameter is an output parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier. This parameter is an
input parameter.

Usage

Issuing a ROLS in a conversational program causes IMS TM to back out the messages that the application
program has sent. For conversation transactions, this means that if the program issues a ROLS call and
then reaches a commit point without sending the required response to the originating terminal, IMS

TM terminates the conversation and sends the message DFS21711 NO RESPONSE, CONVERSATION
TERMINATED to the originating terminal.

Chapter 1. DL/I calls reference 147


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsndmx0.htm#ims_dfsndmx0

When you issue a ROLS call with a token and the messages to be rolled back include nonexpress
messages that are processed by IMS TM, message queue repositioning might occur. The repositioning can
include the initial message segment, and the original input transaction can be presented again to the IMS
TM application program.

Input and output positioning is determined by the SETS/SETU call in standard and modified DL/I
application programs. Input and output positioning does not apply to CPI-C driven application programs.

The application program must notify any remote transaction programs of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying the
transaction program instance (TPI). This causes all conversations associated with the application program
to be DEALLOCATED TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device and
IMS TM received the message from APPC/MVS, a discardable transaction is discarded. Nondiscardable
transactions are placed on the suspend queue.

Related reading: For more information on LU 6.2, see IMS Version 15.3 Communications and
Connections.

Restrictions

When ROLS is issued during a conversational application program that includes resources outside of IMS
TM (for example, a CPI-C driven application program), only the IMS TM resources are rolled back. The
application program notifies the remote transactions of the ROLS call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls because these calls can
be used by the application program outside the processing of print data sets. When these commands are
issued, the Spool API takes no action because these commands cannot be used for the partial backout

of print data sets. No special status codes are returned to the application program to indicate that the
SETS/SETU or ROLS call was issued by an application that is using Spool API.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database.

Related reference

“SETS/SETU call” on page 148

The Set Backout Point (SETS) call is used to set an intermediate backout point or to cancel all existing
backout points.

SETS/SETU call

The Set Backout Point (SETS) call is used to set an intermediate backout point or to cancel all existing
backout points.

The Set Unconditional (SETU) call operates like the SETS call except that the SETU call is not rejected if
unsupported PCBs are in the PSB or if the program uses an external subsystem.

Format
»— SETS ifo pcb >«
{ aib J L i/o area J L token J
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
SETS/SETU X X X X X
Parameters
i/o pch

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

148 IMS: Application Programming APIs



aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.

i/o area
Specifies the area in your program that contains the data that is to be kept by IMS and returned on the
corresponding ROLS call. This parameter is an input parameter.

token

Specifies the name of the area in your program that contains a 4-byte identifier. This parameter is an
input parameter.

Usage
Except for the call names themselves, the SETS and SETU format and parameters are the same.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call. The ROLS call
operates consistent with the SETS and SETU call backout points.

The meaning of the SC status code for SETS or SETU is as follows:

SETS
The SETS call is rejected. The SC status code in the I/O PCB indicates that either the PSB contains
unsupported options or the application program made calls to an external subsystem.

SETU
The SETU call is not rejected. The SC status code indicates that unsupported PCBs exist in the PSB or
the application made calls to an external subsystem.

Restrictions

The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2
database.

CPI-C driven transaction programs cannot issue the SETS/SETU call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls. This is so, because
these calls can be used by the application outside the processing of print data sets. When these
commands are issued, the Spool API takes no action because these commands cannot be used for the
partial backout of print data sets.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same token and still back
out to the correct message level. After 255 SETS calls, the messages continue to back out, but only to
the same message level as at 255th SETS call. The SETS token count resets to zero during sync point
processing.

You may specify a maximum of 255 SETS calls with the same token before a ROLS call and still be able
to back out to the correct message level. After 255 SETS calls, the messages will continue to back out to
the same message level as at 255th SETS call. The SETS token count is reset to zero during sync point
processing.

Chapter 1. DL/I calls reference 149



Related reference

“ROLS call” on page 147

The Roll Back to SETS/SETU (ROLS) call returns message queue positions to sync points established by
the SETS/ SETU call.

SYNC call

The Synchronization Point (SYNC) call is used to request commit point processing.

Format
»— SYNC ti/o pcbj—N
aib
Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
SYNC X X X
Parameters
i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.
The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbbb.

Usage

Issue the SYNC call to request that IMS TM process the application program with commit points for the
application program.

Restrictions

The SYNC call is valid only in batch-oriented BMPs.

You cannot issue a SYNC call from a CPI Communications driven application program.

XRST call
The Extended Restart (XRST) call is used to restart your program.

If you use the symbolic Checkpoint call in your program, you must use the XRST call.

150 IMS: Application Programming APIs



Format

»— XRST t/o pcbj— i/o area length — i/o area >«
aib h

area length — area

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch
XRST X X X X X
Parameters

i/o pcb

Specifies the I/O PCB, the first PCB address in the list passed to the program. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This parameter is an input and
output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the application program
obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name IOPCBbb.

AIBOALEN
I/0 area length. This field must contain the length of the I/O area that is specified in the call list.
This parameter is not used during the XRST call. For compatibility reasons, this parameter must
still be coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this parameter must still be
included in the call, and it must contain a valid address. You can get a valid address by specifying the
name of any area in your program.

i/o area
Specifies a 14-byte area in your program. This area must be either set to blanks if you are starting
your program normally or, if you are performing an extended restart, have a checkpoint ID.

area length
Specifies a 4-byte field in your program containing the length (in binary) of an area to restore. This
input parameter is optional. You can specify up to seven area lengths. For each area length, you must
also specify the area parameter. The number of areas you specify on a XRST call must be less than or
equal to the number of areas you specify on the CHKP calls the program issues. When you restart the
program, IMS TM restores only the areas you specified in the CHKP call.

area
Specifies the area in your program that you want IMS TM to restore. You can specify up to seven areas.
Each area specified must be preceded by an area length value. This parameter is an input parameter.

Usage

Programs that want to issue Symbolic Checkpoint calls (CHKP) must also issue the Extended Restart

call (XRST). The XRST call must be issued only once and should be issued early in the execution of the
program. It does not need to be the first call in the program. However, it must precede any CHKP call. Any
Database calls issued before the XRST call are not within the scope of a restart.

Chapter 1. DL/I calls reference 151



IMS determines whether to perform a normal start or a restart based on the I/O area provided by the
XRST call or CKPTID= value in the PARM field on the EXEC statement in your program's JCL.

Starting your program normally

When you are starting your program normally, the I/O area pointed to in the XRST call must contain blanks
and the CKPTID= value in the PARM field must be nulls. This indicates to IMS that subsequent CHKP

calls are symbolic checkpoints rather than basic checkpoints. Your program should test the I/O area after
issuing the XRST call. IMS does not change the area when you are starting the program normally.

Restarting your program

You can restart the program from a symbolic checkpoint taken during a previous execution of the
program. The checkpoint used to perform the restart can be identified by entering the checkpoint ID
either in the I/O area pointed to by the XRST call (leftmost justified, with the rest of the area containing
blanks) or by specifying the ID in the CKPTID= field of the PARM= parameter on the EXEC statement in
your program's JCL. (If you supply both, IMS uses the CKPTID= value specified in the parameter field of
the EXEC statement.)

The ID specified can be:

« A1 to 8-character extended checkpoint ID.
« A 14-character "time stamp" ID from message DFS05401, where:
ITII is the region ID.

DDD is the day of the year.
HHMMSST is the time in hours, minutes, seconds, and tenth of a second.

« The 4-character constant "LAST". (BMPs only: this indicates to IMS that the last completed checkpoint
issued by the BMP will be used for restarting the program.)

The system message DFS05401 supplies the checkpoint ID and the time stamp.

The system message DFS6821 supplies the checkpoint ID of the last completed checkpoint which can
be used to restart a batch program or batch message processing program (BMP) that was abnormally
terminated.

If the program being restarted is in a DL/I batch region, the IMSLOGR DD statement that defines the log
data set must be supplied in the JCL. IMS reads these data sets and searches for the checkpoint records
that have the ID that was specified.

However, if the program being restarted is in a BMP region and all of the following conditions are met, an
IMSLOGR DD statement is not required:

« The BMP program is restarted with CKPTID=LAST.

« The BMP program is restarted on the same IMS system with the same job name, same PSB, and same
program name that was used when it abended.

« IMS has not been cold-started since the BMP program abended.

« The checkpoint records that are needed to restart the program are on an OLDS data set that has not
been archived and reused since the time of the abend, or the SLDSREAD logger function is active in IMS.

If any of the preceding conditions are not met, you must supply an IMSLOGR DD statement that points to
the data set that contains the required checkpoint records.

If an IMSLOGR DD statement is supplied, it must contain the required checkpoint log records. IMS does
not automatically locate and retrieve checkpoint records for a BMP if an IMSLOGR DD statement is
present. Only the IMSLOGR DD data set is searched and, if the record is not found, the BMP program
terminates with abend U0102.

Note: A DD DUMMY statement is permissible for an IMSLOGR DD statement and is treated as if no
IMSLOGR DD statement was supplied.

At the completion of the XRST call, the I/O area always contains the 8-character checkpoint ID used for
the restart. An exception exists when the checkpoint ID is equal to 8 blank characters; the I/O area then
contains a 14-character time stamp (IIIIDDDHHMMSST).

152 IMS: Application Programming APIs



Also check the status code in the I/O PCB. The only successful status code for an XRST call are blanks.

Restrictions
If your program is being started normally, the first 5 bytes of the I/O area must be set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC statement is not used,
then the rightmost bytes beyond the checkpoint ID being used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP applications.

Related reference

“CHKP (symbolic) call” on page 118
A symbolic Checkpoint (CHKP) call is used for recovery purposes.

EXEC DLI commands

The EXEC DLI commands are the only commands that are allowed for EXEC DLI. These commands can be
used to read and update DL/I databases with a batch program, a BMP region (running DBCTL or DB/DC),
or a CICS program using DBCTL.

System service commands

The following system service commands require that you first issue the SCHD command with the
SYSSERVE keyword:

« ACCEPT command
« DEQ command

« LOG command

« QUERY command

« REFRESH command
« ROLS command

e SETS command

« SETU command

« STAT command

The following system service commands are valid in batch or BMP regions or programs without first
issuing the SCHD command with the SYSSERVE keyword:

e CHKP command
« ROLB command
e ROLL command
SYMCHKP command
e XRST command

The following system service commands are valid in an online CICS program using DBCTL:

« ACCEPT
. DEQ

. LOG

. QUERY
REFRESH
« ROLS

. SETS
STAT

Chapter 1. DL/I calls reference 153



To issue system service commands, the input/output PCB (I/O PCB) is required.

The examples in the following topics use the PL/I delimiter. Code the commands in free form:

Where keywords, operands, and parameters are shown separated by commas, no blanks can appear
immediately before or after the comma. Where keywords, operands, and parameters are shown
separated by blanks, you can include as many blanks as you want. The format of the commands is the
same for users of COBOL, PL/I, or assembler language.

Related reference

“DL/I calls for IMS TM system services” on page 113
Use these DL/I calls with IMS Transaction Manager system services.

“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.

“DL/I calls for database management” on page 1
Use these DL/I calls with IMS DB to perform database management functions in your application
program.

“DL/I calls for transaction management” on page 74
Use these DL/I calls with IMS TM to perform transaction management functions in your application
programs.

PCBs and PSB (Application Programming)

Summary of EXEC DLI commands
A summary of all the EXEC DLI commands is provided in the following table.

The table lists the EXEC DLI commands and specifies if they are valid in the Batch, Batch-Oriented BMP,
or CICS with DBCTL environment.

Table 53. Summary of EXEC DLI commands

Program Characteristics

Batch- Oriented CICS with

Request Type Batch BMP DBCTL?
ACCEPT command? Yes Yes Yes
CHKP command* Yes Yes No
DEQ command? Yes Yes Yes
DLET command 4 Yes Yes Yes
Get commands (GU, GHU, GN, GHN, GNP, GHNP)# Yes Yes Yes
GMSG command® No Yes Yes
ICMD command?® No Yes Yes
ISRT command® Yes Yes Yes
LOAD command Yes No No
LOG command* Yes Yes Yes
POS command* No Yes Yes
QUERY command? Yes Yes Yes
RCMD command® No Yes Yes
REFRESH command* Yes Yes Yes
REPL command* Yes Yes Yes

154 IMS: Application Programming APIs


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pcbandpsbs.htm#ims_pcbandpsbs

Table 53. Summary of EXEC DLI commands (continued)

Program Characteristics

Batch- Oriented CICS with

Request Type Batch BMP DBCTL?
RETRIEVE command Yes Yes No
ROLB command Yes Yes No
ROLL command Yes Yes No
ROLS command?# Yes Yes Yes
SCHD command No No Yes
SETS command?4 Yes Yes Yes
SETU command Yes Yes No
STAT command?4 Yes Yes Yes
SYMCHKP command Yes Yes No
TERM command No No Yes
XRST command Yes Yes No
Notes:

1. In a CICS remote DL/I environment, commands in the CICS with DBCTL column are supported if you are
shipping a function to a remote CICS that uses DBCTL.

2. ROLS and SETS commands are not valid when the PSB contains a DEDB.
3. STAT is a Product-sensitive Programming Interface.

4. These commands are supported in the AIB format.

5. These commands are described in the AOI documentation.

Related reference
IMS Automated Operator Interface (AOI) (Operations and Automation)

ACCEPT command

The Accept (ACCEPT) command is used to tell IMS to return a status code to your program, rather than
abend the transaction.

Format
»— EXEC — DLI T ACCEPT STATUSGROUP(A') j-n
ACCEPT STATUSGROUP('B")

Options

STATUSGROUP('A")
Informs IMS that the application is prepared to accept status codes regarding unavailability. IMS then
returns a status code instead of pseudoabending if a call issued later requires access to unavailable
data.

This is a required option.

Chapter 1. DL/I calls reference 155


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.oag/ims_automate_aoi.htm#ims_automate_aoi

STATUSGROUP('B")
Informs IMS that the application is prepared to accept status codes regarding unavailability and
deadlock occurrence. IMS returns a status code instead of pseudoabending if a call issued later
requires access to unavailable data or deadlock occurrence.

Usage

Use the ACCEPT command to tell IMS to return a status code instead of abending the program. These
status codes result because PSB scheduling completed without all of the referenced databases being
available.

Example

EXEC DLI ACCEPT STATUSGROUP('A');
This example shows how to specify the ACCEPT command.

CHKP command

The Checkpoint (CHKP) command is used to issue a basic checkpoint and to end a logical unit of work. You
cannot use this command in a CICS program.

Format

»w— EXEC — DLI ﬂECKPOINTjT ID(area) j—N
CHKP ID( literal '

Options

ID(area)

Contains the checkpoint ID. Specifies the name of an area in your program containing the checkpoint
ID. The area pointed to is eight bytes. If you are using PL/I, specify this option as a pointer to a major
structure, an array, or a character string.

ID('literal')
'literal' is an 8-byte checkpoint ID, enclosed in quotation marks. In CHKP commands the area pointed
to is 8 bytes long.

Usage

The two kinds of commands that allow you to make checkpoints are: the CHKP, or basic Checkpoint
command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the symbolic or the basic command.

Both checkpoint commands make it possible for you to commit your program's changes to the database
and to establish places from which the program can be restarted, should it terminate abnormally.

You must not use the CHKPT=EQV parameter on any DD statement to take an IMS checkpoint.

Both commands cause a loss of database position at the time the command is issued. Position must be
reestablished by a GU command or other method of establishing position.

It is not possible to re-establish position in the midst of nonunique keys or nonkeyed segments.

You can issue the basic CHKP command to commit your program's changes to the database and establish
places from which your program can be restarted. When you issue a basic CHKP command, you must
provide the code for restarting your program.

156 IMS: Application Programming APIs



When you issue a CHKP command, you specify the ID for the checkpoint. You can supply either the name
of a data area in your program that contains the ID, or you can supply the actual ID, enclosed in single
quotes.

Examples

EXEC DLI CHKP ID(chkpid);

EXEC DLI CHKP ID('CHKPGOO7');

Explanation

These examples show how to specify the CHKP command.

Restrictions
Restrictions for the CHKP command:

 You cannot use this command in a CICS program.
« You must first define an I/O PCB for your program before you can use the CHKP command.
 You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

DEQ command

The Dequeue (DEQ) command is used to release a segment that is retrieved with the LOCKCLASS option.

Format

»— EXEC — DLI — DEQ — LOCKCLASS( data_value ) »<

Option

LOCKCLASS(data_value)
Specifies that you want to release the lock that is being held as the result of an earlier GU, GN, or
GNP command that had a LOCKCLASS option with the same data_value. Data_value must be a
1-byte alphabetic character in the range of B to J.

For full function, specify the LOCKCLASS option followed by the lock class of that segment (for
example, LOCKCLASS ('B"')). If the option is not followed by a letter (B-J), EXECDLI sets a status
code of GL and initiates an ABENDU1041.

DEQ commands are not supported for Fast Path.

Usage

Use the DEQ command to release locks on segments that were retrieved using the LOCKCLASS

option. Using LOCKCLASS on Get commands allows you to reserve segments for exclusive use by
your transaction. No other transaction is allowed to update these reserved segments until either your
transaction reaches a sync point or the DEQ command has been issued, thereby releasing the locks on
these reserved segments. The LOCKCLASS option lets your application program leave these segments
and retrieve them later without any changes having been added.

Example
Your program can use the LOCKCLASS option as follows:

EXEC DLI DEQ LOCKCLASS(data_value)
EXEC DLI GU SEGMENT (PARTX)
SEGMENT (ITEM1) LOCKCLASS('B') INTO(PTAREA1);

Chapter 1. DL/I calls reference 157



EXEC DLI GU SEGMENT (PARTX)
SEGMENT (ITEM2) LOCKCLASS('C') INTO(PTAREA2);
EXEC DLI DEQ LOCKCLASS('B');

Explanation

This example shows the format of the DEQ command, where data_value is a 1-byte alphabetic character
in the range B to J. The DEQ command releases the lock that was gotten and held with a LOCKCLASS of 'B'
for the PARTX segment as a result of the first GU. The lock that was gotten with a LOCKCLASS of 'C' on the
PARTX segment during the second GU remains held.

Restriction

Restrictions for the DEQ command:

 To use this command you must first define an I/O PCB for your program.

DLET command

The Delete (DLET) command is used to remove a segment and its dependents from the database.

Format

»»— EXEC — DLI — DLET

»
»

L USING PCB( expression) —J L VARIABLE J

T SEGMENT( name) L J FROM(area) —»
SEGMENT(( area)) _J SEGLENGTH( expression)

L SETZERO( data_value ) —J

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to retrieve, insert, delete,
or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment type. You can specify an
area instead of specifying the name of the segment in the command.

SEGLENGTH(expression)
Specifies the length of the I/0 area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to

a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

FROM(area)

Specifies an area containing the segment to be added, replaced, or deleted. Use FROM to insert one or
more segments with one command.

158 IMS: Application Programming APIs



SETZERO(data_value)
Specifies setting a subset pointer to zero.

Usage

You use the DLET command to delete a segment and its dependents from the database. You must first
retrieve segments you want to delete, just as if you were replacing segments, The DLET command deletes
the retrieved segment and its dependents, if any, from the database.

Example

"Evelyn Parker has moved away from this area. Her patient number is 10450. Delete her record from the
database."

Explanation

You want to delete all the information about Evelyn Parker from the database. To do this, you must delete
the PATIENT segment. When you do this, DL/I deletes all the dependents of that segment. This is exactly
what you want DL/I to do—there is no reason to keep such segments as ILLNESS and TREATMNT for
Evelyn Parker if she is no longer one of the clinic's patients.

Before you can delete the patient segment, you have to retrieve it:

EXEC DLI GU
SEGMENT (PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

To delete this patient's database record, you issue a DLET command and use the FROM option to give the
name of the I/0 area that contains the segment you want deleted:

EXEC DLI DLET SEGMENT(PATIENT) FROM(PATAREA);

When you issue this command, the PATIENT segment, and its dependents—the ILLNESS, TREATMNT,
BILLING, PAYMENT, and HOUSHOLD segments—are deleted.

Restrictions

You cannot issue any commands using the same PCB between the retrieval command and the DLET
command, and you can issue only one DLET command for each GET command.

GN command

The Get Next (GN) command is used to retrieve segments sequentially.

Format
»— EXEC — DLI GET NEXT L J >
t GN _J USING PCB( expression)
1
> J INTO(area) —»

L KEYFEEDBACK( area)
L

FEEDBACKLEN( expression) J

lp) LeJ

A For each parent segment (optional)

Chapter 1. DL/I calls reference 159



>
>

L VARIABLE J M FIRST — SEGMENT( name)

LAST SEGMENT(( area))
\— CURRENT —/

T J T ] . ]
SEGLENGTH( expression) OFFSET( expression) L INTO( area)

Y

\ 4

>
>

M LOCKED ——— L MOVENEXT( data_value ) J

“— LOCKCLASS( class) —

L GETFIRST( datg_value ) —J L SET(data_value ) J L SETCOND( data_value ) J
L SETZERO( data value ) J L SETPARENT J

»
»

A 4

A 4

Y

~—
v

L WHERE( qualification statement ) L

s
FIELDLENGTH( expression)

L KEYS( area) L J
.
KEYLENGTH( expression)

B For the object segment (optional)

L VARIABLE J hFIRSTj h SEGMENT( name)
LAST

SEGMENT(( area))

L SEGLENGTH( expression) —J L OFFSET( expression) J L INTO( area) —J ]

\ 4

Y

>
»

Y

M LOCKED —— L MOVENEXT( data_value ) —J

“— LOCKCLASS( class) —

L GETFIRST( data_value ) —J L SET(data_value ) J L SETCOND( data_value ) J
L SETZERO( data_value ) J ]

»
»

A 4

\ 4

A 4

~
v

L WHERE( qualification statement ) L

s
FIELDLENGTH( expression)

A 4

L KEYS( area) J
L |
KEYLENGTH( expression)

160 IMS: Application Programming APIs




Notes:

11f you leave out the SEGMENT option, specify the INTO option as shown.

2 Specify INTO on parent segments for a path command.

3 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)

4 You can use either the KEYS option or the WHERE option, but not both on one segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment type, or that you want to
insert a segment as the first occurrence.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence.

CURRENT
Qualifies the command, and specifies that you want to use the level of and levels above the current
position as qualifications for this segment.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area of your program
containing the name of the segment type that you want to retrieve.

You can have as many levels of qualification for a GN command as there are levels in the database's
hierarchy. Using fully qualified commands with the WHERE or KEYS option clearly identifies the
hierarchical path and the segment you want, and is useful in documenting the command. However,
you do not need to qualify a GN command, because you can specify a GN command without the
SEGMENT option.

Once you have established position in the database record, issuing a GN command without a
SEGMENT option retrieves the next segment occurrence in sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GN command, the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from the DIB the segment type
retrieved.)

Chapter 1. DL/I calls reference 161



If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next segment
in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the segment occurrences that are
to be part of the path to the segment you want retrieved. Omitting the SEGMENT option for a level,

or including only the SEGMENT option without a WHERE option, indicates that any path to the option
satisfies the command. DL/I uses only the qualified parent segments and the lowest-level SEGMENT
option to satisfy the command. DL/I does not assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing
a number. Use OFFSET when you process concatenated segments in logical relationships. OFFSET is
required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your program, until a checkpoint
or sync point is reached. This option performs the same function as the Q command code, and
it applies to both Fast Path and full function. A 1-byte alphabetic character of 'A' is automatically
appended as the class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your program until a DEQ
command is issued or until a checkpoint or sync point is reached. (DEQ commands are not supported
for Fast Path.) Class is a 1-byte alphabetic character (B-J), representing the lock class of the
retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J) designates the class of the
lock for the segment. An example is LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in
the range B to J, then EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function and Fast Path,
you must specify LOCKCLASS ('x')), where x is a letter in the range B to J. An example is
LOCKCLASS('B"').If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets a
status code of GL and initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

162 IMS: Application Programming APIs



KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It can be any expression
in the host language that converts to the integer data type; if it is a variable, it must be declared as a
binary halfword value. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the IBM COBOL for z/0S &
VM (or the VS COBOL II) compiler, you must specify KEYLENGTH with the KEYS option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use either KEYS or WHERE for a
segment level, but not both.

"Area" specifies an area in your program containing the segment's concatenated key.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply. Each
gualification statement consists of:

« The name of a field in a segment
« The relational operator, which indicates how you want the two values compared

- The name of a data area in your program containing the value that is compared against the value of
the field

Usage

Use the GN command to sequentially retrieve segments from the database. Each time you issue a GN
command, IMS DB retrieves the next segment, as described by the options you include in the command.
Before issuing a GN command, you should establish position in the database record by issuing a GU
command.

You do not have to use a segment option with a GN command. However, you should qualify your GN
commands as much as possible with the KEYS or WHERE options after the SEGMENT option.

Examples
Example 1

"We need a list of all patients who have been to this clinic."

Explanation: To answer this request, your program would issue a command qualified with the segment
name PATIENT until DL/I returned a GB status code to the program. (GB means that DL/I reached the end
of the database before being able to satisfy your command). This command looks like this:

EXEC DLI GN
SEGMENT (PATIENT) INTO(PATAREA);

Each time your program issued this command, the current position moves forward to the next database
record.

Example 2

"What are the names of the patients we have seen since the beginning of this month?"

Explanation: A GN command that includes one or more WHERE or KEYS options retrieves the next
occurrence of the specified segment type that satisfies the command. To answer this request, the
program issues the following GN command until DL/I returned a GB status code. The example shows
the command you use at the end of April, 1988 (assuming ILLDATE1 contains 198804010):

EXEC DLI GN
SEGMENT (PATIENT) INTO(PATAREA)
SEGMENT (ILLNESS) INTO(ILLAREA) WHERE (ILLDATE>=ILLDATE1);

Chapter 1. DL/I calls reference 163



Example 3

EXEC DLI GN INTO(PATAREA);

Explanation: If you just retrieved the PATIENT segment for patient 04124 and then issued this command,
you retrieve the first ILLNESS segment for patient 04124.

Restrictions

With an unqualified GN command, the retrieved segment type might not be the one expected. Therefore,
specify an I/O area large enough to contain the largest segment accessible to your program.

Use either the KEYS option or the WHERE option, but not both on one segment level.

GNP command

The Get Next in Parent (GNP) command is used to retrieve dependent segments sequentially.

Format

»
»

»— EXEC — DLI T GET NEXT IN PARENT L _J
GNP J USING PCB( expression)

»
»

1
J INTO(area) —»

L KEYFEEDBACK( area)
L FEEDBACKLEN( expression) J

L) L

A For each parent segment (optional)

164 IMS: Application Programming APIs



>
>

L VARIABLE J M FIRST — SEGMENT( name)

LAST SEGMENT(( area))
\— CURRENT —/

T J T ] . ]
SEGLENGTH( expression) OFFSET( expression) L INTO( area)

Y

\ 4

>
>

M LOCKED ——— L MOVENEXT( data_value ) J

“— LOCKCLASS( class) —

L GETFIRST( datg_value ) —J L SET(data_value ) J L SETCOND( data_value ) J
L SETZERO( data value ) J L SETPARENT J

»
»

A 4

A 4

Y

L WHERE( qualification statement ) L J

s
FIELDLENGTH( expression)

L KEYS( area) L J
.
KEYLENGTH( expression)

B For the object segment (optional)

L VARIABLE J hFIRSTj h SEGMENT( name)
LAST

SEGMENT(( area))

L SEGLENGTH( expression) —J L OFFSET( expression) J L INTO( area) —J ]

\ 4

Y

>
»

Y

M LOCKED —— L MOVENEXT( data_value ) —J

“— LOCKCLASS( class) —

L GETFIRST( data_value ) —J L SET(data_value ) J L SETCOND( data_value ) J
L SETZERO( data_value ) J ]

»
»

A 4

\ 4

A 4

L WHERE( qualification statement ) L J

s
FIELDLENGTH( expression)

A 4

L KEYS( area) J
L |
KEYLENGTH( expression)

Chapter 1. DL/I calls reference 165



Notes:

11f you leave out the SEGMENT option, specify the INTO option as shown.

2 Specify INTO on parent segments for a path command.

3 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)

4 You can use either the KEYS option or the WHERE option, but not both on one segment level.

Options
You can qualify your GNP command by using SEGMENT and WHERE options.

If you do not qualify your command, IMS DB retrieves the next sequential segment under the established
parent. If you include a SEGMENT option, IMS DB retrieves the first occurrence of that segment type that
it finds by searching forward under the established parent.

You can have as many levels of qualification for a GNP command as there are levels in the database's
hierarchy. However, you should not qualify your command in a way that causes DL/I to move off of the
segment type you have established as a parent for the command.

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated. Use this to retrieve a segment's concatenated key.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read. Use this to retrieve one or more segments with one
command.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment type, or that you want
to insert a segment as the first occurrence. Use this to retrieve the first segment occurrence of a
segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence. Use this to retrieve the last segment occurrence of a
segment type.

CURRENT
Qualifies the command, and specifies that you want to use the level of and levels above the current
position as qualifications for this segment. Use this to retrieve a segment based on your current
position.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

166 IMS: Application Programming APIs



OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a halfword in your program
containing a number. Use OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your program, until a checkpoint
or sync point is reached. Use this to reserve a segment for the exclusive use of your program. This
option performs the same function as the Q command code, and it applies to both Fast Path and
full function. A 1-byte alphabetic character of 'A' is automatically appended as the class for the Q
command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your program until a DEQ
command is issued or until a checkpoint or sync point is reached. (DEQ commands are not supported
for Fast Path.) Class is a 1-byte alphabetic character (B-J), representing the lock class of the
retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J) designates the class of the
lock for the segment. An example is LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in
the range B to J, then EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function and Fast Path,
you must specify LOCKCLASS ('x')), where x is a letter in the range B to J. An example is
LOCKCLASS('B"). If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets a
status code of GL and initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)

Specifies that you want the search to start with the first segment occurrence in a subset.
SET(data_value)

Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)

Specifies setting a subset pointer to zero.
SETPARENT

Sets parentage at the level you want.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply. Each
qualification statement consists of:
« The name of a field in a segment
« The relational operator, which indicates how you want the two values compared
« The name of a data area in your program containing the value that is compared against the value of
the field
FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use either KEYS or WHERE for a
segment level, but not both.

"Area" specifies an area in your program containing the segment's concatenated key.

Chapter 1. DL/I calls reference 167



KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It can be any expression
in the host language that converts to the integer data type; if it is a variable, it must be declared as a
binary halfword value. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the IBM COBOL for z/0S &
VM (or VS COBOL II) compiler, you must specify KEYLENGTH with the KEYS option.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in your program
containing the name of the segment type that you want to retrieve, insert, delete, or replace.

You can have as many levels of qualification for a GNP command as there are levels in the database's
hierarchy. Using fully qualified commands with the WHERE or KEYS option clearly identifies the
hierarchic path and the segment you want, and is useful in documenting the command. However, you
do not need to qualify a GNP command at all, because you can specify a GNP command without the
SEGMENT option.

Once you have established position in the database record, issuing a GNP command without a
SEGMENT option retrieves the next segment occurrence in sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GNP command, the segment type you retrieve might not be the one you expected, so you
should specify an I/0 area large enough to contain the largest segment your program has access

to. (After successfully issuing a retrieval command, you can find out from DIB the segment type
retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next segment
in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the segment occurrences that are
to be part of the path to the segment you want retrieved. Omitting the SEGMENT option for a level,

or including only the SEGMENT option without a WHERE option, indicates that any path to the option
satisfies the command. DL/I uses only the qualified parent segments and the lowest-level SEGMENT
option to satisfy the command. DL/I does not assume a qualification for the missing level.

Usage

The Get Next in Parent (GNP) command makes it possible to limit the search for a segment; you can
retrieve only the dependents of a particular parent. You must have established parentage before issuing a
GNP command.

Examples
Example 1

"We need the complete record for Kate Bailey. Her patient number is 09080."

Explanation: To satisfy this request, you want only to retrieve the dependent segments of the patient
whose patient number is 09080; you do not want to retrieve all the dependents of each patient. To
do this, use the GU command to establish your position and parentage on the PATIENT segment for
Kate Bailey. Then continue to issue a GNP without SEGMENT or WHERE options until DL/I returns all
the dependents of that PATIENT segment. (A GE status code indicates that you have retrieved all the
dependent segments.) To answer this request, your program can issue these commands:

EXEC DLI GU
SEGMENT (PATIENT) INTO(PATAREA)
WHERE (PATNO=PATNO1) ;

EXEC DLI GNP
INTO(ILLAREA);

A GNP command without SEGMENT or WHERE options retrieves the first dependent segment occurrence

under the current parent. If your current position is already on a dependent of the current parent, this
command retrieves the next segment occurrence under the parent.

168 IMS: Application Programming APIs



With an unqualified GNP command, the segment type you retrieve might not be the one you expected, so
you should specify an I/O area large enough to contain the largest segment your program has access to.
(After successfully issuing a GNP command, you can find out from the DIB the segment type retrieved.)

Example 2
"Which doctors have been prescribing acetaminophen for headaches?"

Explanation: A GNP command with only a SEGMENT option sequentially retrieves the dependent
segments of the segment type you have specified under the established parent. Suppose that for

this example, the key of ILLNESS is ILLNAME, and the key of TREATMNT is MEDICINE. You want to
retrieve each TREATMNT segment where the treatment was acetaminophen. The name of the doctor
who prescribed the treatment is part of the TREATMNT segment. (Assume that data area ILLNAME1
contains HEADACHE, and MEDIC1 contains ACETAMINOP). To answer this request, you can issue these
commands:

EXEC DLI GN

SEGMENT (ILLNESS) WHERE (ILLNAME=ILLNAME1);
EXEC DLI GNP

SEGMENT (TREATMNT) WHERE (MEDICINE=MEDIC1);

To process this, your program continues issuing the GNP command until DL/I returned a GE (not found)
status code, then your program retrieves the next headache segment and retrieves the TREATMNT
segments for it. Your program does this until there were no more ILLNESS segments where the ILLNAME
was headache.

Restrictions
Restrictions for GNP command:

« You must have established parentage before issuing this command.

« You cannot qualify your GNP command in a way that causes DL/I to move off of the segment type you
have established as the parent for the command.

« You can retrieve only the dependents of a particular parent.

GU command

The Get Unique (GU) command is used to directly retrieve specific segments, and to establish a starting
position in the database for sequential processing.

Format

»— EXEC — DLI GET UNIQUE L J
{ GU J USING PCB( expression)

»
»

>
>

L J INTO( area) —»
KEYFEEDBACK( area)

L FEEDBACKLEN( expression) J

L) L

Chapter 1. DL/I calls reference 169



L VARIABLE J L LAST J h SEGMENT( name) j L SEGLENGTH( expression) J

SEGMENT(( area))

Y
\4

L OFFSET( expression) L INTO( area)l J M LOCKED ———
— LOCKCLASS( class) —

L MOVENEXT( data_value ) J L GETFIRST( dafa_value ) J L SET( data_value ) J
L SETCOND( datg_value ) J L SETZERO( data_value ) J L SETPARENT J

A 4

\ 4

A 4

L WHERE( qualification statement ) L J

2
FIELDLENGTH( expression)

A 4

L KEYS( area) L J
s
KEYLENGTH( expression)
B

L VARIABLE J L LAST J h SEGMENT( name) j L SEGLENGTH( expression) J

SEGMENT(( area))

\ 4
\4

L OFFSET( expression) J L INTO( area) —J M LOCKED ———

— LOCKCLASS( class) —

L MOVENEXT( data_value ) J L GETFIRST( dafa_value ) J L SET(data_value ) J ]
L SETCOND( data value ) J L SETZERO( data_value ) J ]

L WHERE( qualification statement ) L
.
FIELDLENGTH( expression)

L KEYS( area) L J
s )
KEYLENGTH( expression)

1 Specify INTO on parent segments for a path command.

2 If you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)

3 You can use either the KEYS option or the WHERE option, but not both on one segment level.

A 4

A 4

\ 4

>
>

J

\ 4

Notes:

170 IMS: Application Programming APIs



Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in your program
containing the name of the segment type that you want to retrieve, insert, delete, or replace.

To retrieve the first occurrence of a segment type, you need only specify the SEGMENT option. You can
specify as many levels of qualification as there are hierarchic levels defined by the PCB you are using.

To establish position at the beginning of the database, issue a GU command with a SEGMENT option
that names the root segment type.

If you leave out SEGMENT options for one or more hierarchic levels, DL/I assumes a segment
qualification for that level. The qualification that DL/I assumes depends on your current position.

« If DL/I has a position established at the missing level, DL/I uses the segment on which position is
established.

« If DL/I does not have a position established at the missing level, DL/I uses the first occurrence at
that level.

« If DL/I moves forward from a position established at a higher level, DL/I uses the first occurrence at
the missing level that falls within the new path.

« If you leave out a SEGMENT option for the root level, and DL/I has position established on a root,
DL/I does not move from that root when trying to satisfy the command.

You can have as many levels of qualification for a GU command as there are levels in the database's
hierarchy. Using fully qualified commands with the WHERE or KEYS option clearly identifies the
hierarchic path and the segment you want, and is useful in documenting the command. However,
you do not need to qualify a GU command at all, because you can specify a GU command without the
SEGMENT option.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GU command, the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB the segment type
retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next
segment in sequential order, as described by the options.

Chapter 1. DL/I calls reference 171



Including the WHERE or KEYS options for parent segments defines the segment occurrences that
are to be part of the path to the segment you want retrieved. Omitting the SEGMENT option for a
level, or including only the SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/I uses only the qualified parent segments and the lowest-level
SEGMENT option to satisfy the command. DL/I does not assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a halfword in your program
containing a number. Use OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your program, until a checkpoint
or sync point is reached. This option performs the same function as the Q command code. It applies to
both Fast Path and full function. A 1-byte alphabetic character of 'A' is automatically appended as the
class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your program until a DEQ
command is issued or until a checkpoint or sync point is reached. (DEQ commands are not supported
for Fast Path.) Class is a 1-byte alphabetic character (B-J), representing the lock class of the
retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J) designates the class of the
lock for the segment. An example is LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in
the range B to J, then EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function and Fast Path,
you must specify LOCKCLASS ('x')), where x is a letter in the range B to J. An example is
LOCKCLASS('B").If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets a
status code of GL and initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.
KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. The argument can be any

expression in the host language that converts to the integer data type; a variable must be declared as
a binary halfword value. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,

172 IMS: Application Programming APIs



KEYLENGTH is optional. For COBOL programs that are not compiled with the IBM COBOL for z/0S &
VM (or VS COBOL II) compiler, you must specify KEYLENGTH with the KEYS option.

WHERE(qualification statement)
Use WHERE to further qualify your GU commands after using SEGMENT. If you fully qualify a GU
command, you can retrieve a segment regardless of your position in the database record.

KEYS(area)
Use KEYS to further qualify your GU commands and specify the segment occurrence by using its
concatenated key.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB retrieves the first
occurrence of that segment type it encounters by searching forward from current position. With an
unqualified GU command, the segment type you retrieve might not be the one you expected, so you
should specify an I/0 area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB the segment type
retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would retrieve the next segment
in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the segment occurrences that are
to be part of the path to the segment you want retrieved. Leaving the SEGMENT option out for a level,
or including only the SEGMENT option without a WHERE option, indicates that any path to the option

satisfies the command. DL/I uses only the qualified parent segments and the lowest level SEGMENT

option to satisfy the command. DL/I does not assume a qualification for the missing level.

Usage

Use the GU command to retrieve specific segments from the database, or to establish a position in the
database for sequential processing.

You must at least specify the SEGMENT option with a GU command to indicate the segment type you want
to retrieve. (IMS DB retrieves the first occurrence of the segment you named in the SEGMENT argument.)

When you need to retrieve a specific occurrence of a segment type, you can further qualify the command
by using the WHERE or KEYS option after the SEGMENT option.

You probably want to further qualify your GU commands with the WHERE or KEYS option, and specify a
specific occurrence of a segment type. If you fully qualify a GU command, you can retrieve a segment
regardless of your position in the database record.

Examples
Example 1

"What illness was Robert James here for most recently? Was he given any medication on that day for that
illness? His patient number is 05136."

Explanation: This example requests two pieces of information. To answer the first part of the request
and retrieve the most recent ILLNESS segment, issue this GU command (assuming that PATNO1 contains
05163):

EXEC DLI GU
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) INTO(AREA);

Once you had retrieved the ILLNESS segment with the date of the patient's most recent visit to the clinic,
you can issue another command to find out whether he was treated during that visit. If the date of his
most recent visit was January 5, 1988, you can issue the following command to find out whether or

not he was treated on that day for that illness (assuming PATNO1 contains 05163, and DATE1 contains
19880105):

EXEC DLI GU
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)

Chapter 1. DL/I calls reference 173



SEGMENT (ILLNESS) WHERE (ILLDATE=DATEZ1)
SEGMENT (TREATMNT) INTO(TRTAREA) WHERE (DATE=DATE1);

Example 2

"What is Joan Carter currently being treated for? Her patient number is 10320."

EXEC DLI GU
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) INTO(ILLAREA);

Explanation: In this example you want the ILLNESS segment for the patient whose patient number is
10320.

Example 3

EXEC DLI GU
SEGMENT (PATIENT)
SEGMENT (ILLNESS)
SEGMENT (TREATMNT) INTO(AREA);

Explanation: This example retrieves the first TREATMNT segment and specifies the three levels of
qualification.

Restriction

You must at least specify the SEGMENT option to indicate the segment type you want to retrieve.

ISRT command

The Insert (ISRT) command is used to add one or more segments to the database.

Format

»— EXEC — DLI tINSERT N

ISRT —J L USING PCB( expression)

A For each parent segment (optional)

174 IMS: Application Programming APIs



L VARIABLE J M FIRST — h SEGMENT( name) j

LAST

SEGMENT(( area))

“— CURRENT —

SEGLENGTH( expression) —J L

Y

1 J L MOVENEXT( data_value ) J

FROM( area)

A 4

v

GETFIRST( data_value ) —J L SET( data_value ) J L SETCOND( dafq_value ) J

A 4

»
»

SETZERO( data_value ) J

WHERE( qualification statement ) L
2
FIELDLENGTH( expression)

»d
J >4

Y

L
L
L
L

J >

\ 4

L

KEYS( area) L
s
KEYLENGTH( expression)

B For the object segment (required)

L VARIABLE J hFIRST j L SEGLENGTH( expression) —J

LAST

A 4

»
»

L OFFSET( expression) —J L MOVENEXT( dala_value ) —J
L GETFIRST( data_value ) —J L SET(data_value ) J L SETCOND( data_value ) J

L SETZERO( data_value ) J h SEGMENT( name) j L FROM( area) J

SEGMENT(( area))

»
»

A 4

A 4

Notes:

1 Specify FROM on parent segments for a path command.

2 1f you use multiple qualification statements, specify a length for each, using FIELDLENGTH. For
example: FIELDLENGTH(24,8)

3 You can use either the Keys option or the Where option, but not both on one segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

VARIABLE
Indicates that a segment is variable-length.

Chapter 1. DL/I calls reference 175



FIRST
Specifies that you want to retrieve the first segment occurrence of a segment type, or that you want
to insert a segment as the first occurrence. Use FIRST to insert a segment as a first occurrence of a
segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment type, or that you want to
insert a segment as the last segment occurrence. Use LAST to insert a segment as the last occurrence
of a segment type.

CURRENT
Qualifies the command, and specifies that you want to use the level of and levels above the current
position as qualifications for this segment. Use CURRENT to insert a segment based on your current
position.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in the program
containing the name of the segment type that you want to retrieve, insert, delete, or replace.

You must include at least a SEGMENT option for each segment you want to add to the database.
Unless ISRT is a path command, the lowest level SEGMENT option specifies the segment being
inserted. You cannot use a WHERE or KEYS option for this level.

If a segment has a unique key, DL/I inserts the segment in its key sequence. (If the segment does
not have a key, or has a nonunique key, DL/I inserts it according to the value specified for the RULES
parameter during DBDGEN.

If you specify a SEGMENT option for only the lowest level segment, and do not qualify the parent
segments with SEGMENT, WHERE, or KEYS options, you must make sure that the current position is
at the correct place in the database to insert the segment. The SEGMENT option that DL/I assumes
depends on your current position in the database record:

« If DL/I has a position established at the missing level, DL/I uses the segment on which position is
established.

« If DL/I does not have a position established at the missing level, DL/I uses the first occurrence at
that level.

« If DL/I moves forward from a position established at a higher level, DL/I uses the first occurrence at
the missing level that falls within the new path.

« If you leave out a SEGMENT option for the root level, and DL/I has position established on a root,
DL/I does not move from that root when trying to satisfy the command.

It is good practice to always provide qualifications for higher levels to establish the position of the
segment being inserted.

If you are inserting a root segment, you need only specify a SEGMENT option. DL/I determines the
correct place for its insertion in the database by the key taken from the I/O area. If the segment you
are inserting is not a root segment, but you have just inserted its immediate parent, the segment can
be inserted as soon as it is built in the I/O area just by using a SEGMENT option for it in the ISRT
command. You need not code the parent level segments to establish your position.

When you specify multiple parent segments, you can mix segments with and without the WHERE
option. If you include only SEGMENT options on parent segments, DL/I uses the first occurrence of
each segment type to satisfy the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

176 IMS: Application Programming APIs



FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted. Use FROM to insert one or
more segments with one command.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply. Each
qualification statement consists of:

« The name of a field in a segment
« The relational operator, which indicates how you want the two values compared

« The name of a data area in your program containing the value that is compared against the value of
the field

WHERE establishes position on the parents of a segment when you are inserting that segment. You
can do this by specifying a qualification of WHERE or KEYS for the higher level SEGMENT options.

When you specify multiple parent segments, you can mix segments with and without the WHERE
option. If you include only SEGMENT options on parent segments, DL/I uses the first occurrence of
each segment type to satisfy the command.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use either KEYS or WHERE for a
segment level, but not both.

KEYs can be used to qualify a parent segment. Instead of using WHERE, you can specify KEYS and
use the concatenated key of the segment as qualification. You can use the KEYS option once for each
command, immediately after the highest level SEGMENT option.

"Area" specifies an area in your program containing the segment's concatenated key.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It can be any expression
in the host language that converts to the integer data type; if it is a variable, it must be declared as a
binary halfword value. For IBM COBOL (or VS COBOL II), PL/I, or assembler language, KEYLENGTH is
optional. For COBOL programs that are not compiled with the IBM COBOL for MVS & VM (or VS COBOL
IT) compiler, you must specify KEYLENGTH with the KEYS option.

Usage

To add new segments to an existing database, use the ISRT command. When you issue the ISRT
command, DL/I takes the data from the I/O area you have named in the FROM option and adds the
segment to the database. (The initial loading of a database requires using the LOAD command, instead of
the ISRT command.)

You can use ISRT to add new occurrences of an existing segment type to a HIDAM, HISAM, or HDAM
database. For an HSAM database, you can add new segments only by reprocessing the whole database or
by adding the new segments to the end of the database.

Chapter 1. DL/I calls reference 177



Before you can issue the ISRT command to add a segment to the database, your program must build the
segment to be inserted in an I/O area. If the segment has a key, you must place the correct key in the
correct location in the I/0 area. If field sensitivity is used, the fields must be in the order defined by the
PSB for the application's view of the segment.

If you are adding a root segment occurrence, DL/I places it in the correct sequence in the database by
using the key you supply in the I/O area. If the segment you are inserting is not a root, but you have just
inserted its parent, you can insert the child segment by issuing an insert request qualified with only the
segment name. You must build the new segment in your I/O area before you issue the ISRT request.
You also qualify insert requests with the segment name when you add a new root segment occurrence.
When you are adding new segment occurrences to an existing database, the segment type must have
been defined in the DBD. You can add new segment occurrences directly or sequentially after you have
built them in the program's I/O area.

If the segment type you are inserting has a unique key field, the location where DL/I adds the new
segment occurrence depends on the value of its key field. If the segment does not have a key field, or if
the key is not unique, you can control where the new segment occurrence is added by specifying either
the FIRST, LAST, or HERE insert rule. Specify the rules on the RULES parameter of the SEGM statement for
the database.

Examples
Example 1

"Add information to the record for Chris Edwards about his visit to the clinic on February 1, 1993. His
patient number is 02345. He had a sore throat."

Explanation: First, build the ILLNESS segment in your program's I/O area. Your I/O area for the ILLNESS
segment looks like this:

19930201SORETHROAT

Use the command to add this new segment occurrence to the database is:

EXEC DLI ISRT
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) FROM(ILLAREA);

Example 2

"Add information about the treatment to the record for Chris Edwards, and add information about the
illness."

Explanation: You build the TREATMNT segment in a segment I/0O area. The TREATMNT segment includes
the date, the medication, amount of medication, and the doctor's name:

19930201MYOCINDDD
OO01TRIEBbbDbDD
&b

The following command adds both the ILLNESS segment and the TREATMNT segment to the database:

EXEC DLI ISRT
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) FROM(ILLAREA)
SEGMENT (TREATMNT) FROM(TRETAREA) ;

Example 3

EXEC DLI ISRT
SEGMENT (ILLNESS) KEYS(CONKEY)
SEGMENT (TREATMNT) FROM(TRETAREA) ;

Explanation: Using this command is the same as having a WHERE option qualified on the key field for the
ILLNESS and PATIENT segments.

178 IMS: Application Programming APIs



Restrictions
Restrictions the ISRT command:

 You cannot issue the ISRT command until you have built a new segment in the I/O area.
« You must specify at least one SEGMENT option for each segment being added to the database.
- When inserting a segment, you must have position established on the parents of the segment.

- If you specify a SEGMENT option for only the lowest level segment, and do not qualify the parent
segments with SEGMENT, WHERE, or KEYS options, be sure that current position is at the correct place
in the database to insert the segment.

- If you use a FROM option for a segment, you cannot qualify the segment by using the WHERE or KEYS
option; DL/I uses the key field value specified in the I/O area as qualification.

« You must use a separate I/O area for each segment type you want to add.

« You cannot mix SEGMENT options with and without the FROM option. When you use a FROM option for
a parent segment, you must use a FROM option for each dependent segment. (You can begin the path at
any level, but you must not leave out any levels.)

 You can only use the FIRST option with segments that have either no keys or have a nonunique key with
HERE specified on the RULES operand of the SEGM statement in the DBD.

 You can only use the LAST option when the segment has no key or a nonunique key, and the INSERT
rule for the segment is either FIRST or HERE.

LOAD command

The Load (LOAD) command is used to add a segment sequentially while loading the database.

Format

»— EXEC — DLI — LOAD

»
»

L USING PCB( expression) J L VARIABLE J

T SEGMENT( name) L _J FROM(area) »«
SEGMENT(( area)) _J SEGLENGTH( expression)

Options

USING PCB(expression)
Specifies the DB PCB you want to use. Its argument can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing a
number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Specifies the name of the segment type you want to retrieve, insert, delete, or replace.
SEGMENT((area))

A reference to an area in your program containing the name of the segment type. You can specify an
area instead of the name of the segment in the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

Chapter 1. DL/I calls reference 179



FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.
Usage
The LOAD command is used for database load programs, which are described in IMS Version 15.3
Database Administration.
Example

EXEC DLI LOAD
SEGMENT (ILLNESS) FROM(ILLAREA);

LOG command

The Log (LOG) command is used to write information to the system log.

Format

»— EXEC — DLI — LOG — FROM( area) — LENGTH( expression) -»«

Options

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.

LENGTH(expression)
Specifies the length of an area.

Usage

You use the LOG command to write information to the system log.

Example
EXEC DLI LOG
FROM(ILLAREA) LENGTH(18);

Restriction
Restrictions for the LOG command:

« To use this command you must first define an I/O PCB for your program.

180 IMS: Application Programming APIs



POS command

The Position (POS) command retrieves the location of either a dependent or the segment.

Format

»— EXEC — DLI tPOSITIONj_ USING PCB( n) — INTO( data_area) —»
POS

[
>

L KEYFEEDBACK( area) J
L FEEDBACKLEN( expression) —J

h SEGMENT( name) j WHERE( qualification _statement) j
SEGMENT(( area)) FIELDLENGTH( expression)

Options

USING PCB(n)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

INTO(data_area)
Specifies an area into which the segment is read.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (FEEDBACKLEN is required
in COBOL programs and optional in PL/I and assembler language programs.)

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to retrieve, insert, delete,
or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment type. You can specify an
area instead of specifying the name of the segment in the command.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one or more qualification
statements, each of which compares the value of a field in a segment to a value you supply.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

Y

Usage
Use the POS command to:

- Retrieve the location of a specific sequential dependent segment, including the last one inserted
« Determine the amount of unused space within each DEDB area

If the area specified by the POS command is unavailable, the I/O area is unchanged and an FH status code
is returned.

Chapter 1. DL/I calls reference 181



Restriction
The POS command is for DEDBs only.

QUERY command

The Query (QUERY) command obtains status code and other information in the DL/I interface block (DIB),
which is a subset of the IMS PCB.

Format

»— EXEC — DLI — QUERY — USING — PCB(expression) -»«

Options

USING PCB(expression) is required. No other options are allowed with the QUERY command.

Usage

For full-function databases, the DIB should contain NA, NU, TH or blanks. For an explanation of the codes,
see IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes.

Use the QUERY command after scheduling the PSB but before making the database call. If the program
has already issued a call using the DB PCB, you then use the REFRESH command to update the
information in the DIB.

Example
Example 1

EXEC DLI QUERY USING PCB(expression);

Explanation: This example shows how to specify the QUERY command. In this example, (n) specifies the
PCB.

Example 2

EXEC DLI REFRESH DBQUERY;

Explanation: If your program has already issued a call using the DB PCB name, use the REFRESH
command to update the information in the DIB. The REFRESH command updates all DB PCBs. You can
issue it only one time.

Restrictions
Restrictions for the QUERY command:

« To use this command you must first define an I/O PCB for your program.
« You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

REFRESH command

The Refresh (REFRESH) command is used to obtain the most recent information from the DIB for the most
recently issued command.

Format

»»— EXEC — DLI — REFRESH — DBQUERY —»«

182 IMS: Application Programming APIs



Options
DBQUERY is required. Other options are not allowed with the REFRESH command.

Usage
The REFRESH command is used with the QUERY command.

The QUERY command is used after scheduling the PSB but before making the first database call. If
the program has already issued a call using the DB PCB, use the REFRESH command to update the
information in the DIB.

The REFRESH command updates all DB PCBs. It can be issued only once.

Example
EXEC DLI REFRESH DBQUERY;

Explanation

This example shows how to specify the REFRESH command.

Restrictions
Restrictions for the REFRESH command:

« To use this command, you must first define an I/O PCB for your program.
« You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.
« You can issue this command only one time.

REPL command

The Replace (REPL) command is used to replace a segment, usually to change the values of one or more
of its fields.

Format

»— EXEC — DLI REPLACE T N
t REPL —j USING PCB( expression)

A For each parent segment (optional)

L VARIABLE J h SEGMENT( name) j L SEGLENGTH( expression) —J

SEGMENT(( area))

\ 4

L J FROM(area) L J >
OFFSET( expressiorn) MOVENEXT( data_value )

L SET( data_value ) J L SETCOND( data_value ) J L SETZERO( data_value ) J -

B For the object segment (required)

Y

Chapter 1. DL/I calls reference 183



L VARIABLE J h SEGMENT( name) j L SEGLENGTH( expression) —J

SEGMENT(( area))

L _J FROM( area) L _J >
OFFSET( expression) MOVENEXT( data_value )

L SET(data_value ) J L SETCOND( dafa_value ) J L SETZERO( dafa_value ) J -

A

A 4

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to retrieve, insert, delete,
or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment type. You can specify an
area instead of specifying the name of the segment in the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its argument can be any
expression that converts to the integer data type; you can specify either a number or a reference to
a halfword in your program containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or equal to the length of the
longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing
a number. You use OFFSET when you process concatenated segments in logical relationships. It is
required whenever the destination parent is a variable length segment.

FROM(area)
Specifies an I/0 area containing the segment to be added, replaced or deleted. You can replace more
than the segment by including the FROM option after the corresponding SEGMENT option for each
segment you want to replace. Including FROM options for one or more parent segments is called a
path command.

The argument following FROM identifies an I/O area that you have defined in your program. You must
use a separate I/0 area for each segment type you want to replace.

MOVENEXT(data_value)

Specifies a subset pointer to be moved to the next segment occurrence after your current segment.
SET(data_value)

Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

184 IMS: Application Programming APIs



Usage

You must qualify the REPL command with at least one SEGMENT and FROM option, which together
indicate the retrieved segments you want replaced.

If the Get command that preceded the REPL command was a path command, and you do not want to
replace all of the retrieved segments or the PSB does not have replace sensitivity for all of the retrieved
segments, you can indicate which of the segments are not to be replaced by omitting the SEGMENT
option.

If your program attempts to do a path replace of a segment where it does not have replace sensitivity, the
data for the segment in the I/O area for the REPL command must be the same as the segment returned
on the preceding GET command. If the data changes in this situation, the transaction is abended and no
datais changed as a result of the Replace command.

Notice that the rules for a REPL path command differ from the rules for an ISRT path command. You
cannot skip segment levels to be inserted with an ISRT command, as you can with a REPL command.

To update information in a segment, you can use the REPL command. The REPL command replaces data
in a segment with data you supply in your application program. First, you must retrieve the segment

into an I/O area. You then modify the information in the I/O area and replace the segment with the

REPL command. For your program to successfully replace a segment, that segment must already have
been defined as replace-sensitive in the PCB by specifying PROCOPT=A or PROCOPT=R on the SENSEG
statement in the PCB.

You cannot issue any commands using the same PCB between a Get command and the REPL command,
and you can issue only one REPL command for each Get command.

Examples
Example 1

EXEC DLI GU SEGMENT (PATIENT) INTO(PATAREA);
EXEC DLI REPL SEGMENT (PATIENT) FROM(PATAREA);

Explanation: This example shows that you cannot issue any commands using the same PCB between

the Get command and the REPL command, and you can issue only one REPL command for each Get
command. If you issue this commands and wanted to modify information in the segment again, you must
first reissue the GU command, before reissuing the REPL command.

Example 2

"We have received a payment for $65.00 from a patient whose ID is 08642. Update the patient's billing
record and payment record with this information, and print a current bill for the patient."

Explanation: The four parts to satisfying this processing request are:

1. Retrieve the BILLING and PAYMENT segments for the patient.

2. Calculate the new values for these segments by subtracting $65.00 from the value in the BILLING
segment, and adding $65.00 to the value in the PAYMENT segment.

3. Replace the values in the BILLING and PAYMENT segments with the new values.

4. Print a bill for the patient, showing the patient's name, number, address, the current amount of the bill,
and the amount of the payments to date.

To retrieve the BILLING and PAYMENT segments, issue a GU command. Because you also need the
PATIENT segment when you print the bill, you can include INTO following the SEGMENT options for the
PATIENT segment and for the BILLING segment:

EXEC DLI GU
SEGMENT (PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1)
SEGMENT (BILLING) INTO(BILLAREA)
SEGMENT (PAYMENT) INTO(PAYAREA) ;

Chapter 1. DL/I calls reference 185



After you have calculated the current bill and payment, you can print the bill, then replace the billing and
payment segments in the database. Before issuing the REPL command, you must change the segments in
the I/O area.

Because you have not changed the PATIENT segment, you do not need to replace it when you replace
the BILLING and PAYMENT segments. To indicate to DL/I that you do not want to replace the PATIENT
segment, you do not specify the SEGMENT option for the PATIENT segment in the REPL command.

EXEC DLI REPL
SEGMENT (BILLING) FROM(BILLAREA)
SEGMENT (PAYMENT) FROM(PAYAREA) ;

This command tells DL/I to replace the BILLING and PAYMENT segments, but not to replace the PATIENT
segment.

These two examples are called path commands. You use a path REPL command to replace more than one
segment with one command.

Example 3

"Steve Arons, patient number 10250, has moved to a new address in this town. His new address is 4638
Brooks Drive, Lakeside, California. Update the database with his new address."

Explanation: You need to retrieve the PATIENT segment for Steve Arons and replace the address portion
of the segment. To retrieve the PATIENT segment, you can use this GU command (assuming PATNO1
contains 10250):

EXEC DLI GU
SEGMENT (PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

Since you are not replacing the first two fields of the PATIENT segment (PATNO and NAME), you do not
have to change them in the I/O area. Place the new address in the I/O area following the PATNO and
NAME fields. Then you issue the REPL command:

EXEC DLI REPL
SEGMENT (PATIENT) FROM(PATAREA);

Example 4

EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA)
WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) INTO(ILLAREA)
SEGMENT (TREATMNT) INTO(TRETAREA);

EXEC DLI REPL SEGMENT (PATIENT) FROM(PATAREA)
SEGMENT (TREATMNT) FROM(TRETAREA) ;

Explanation: This example assumes that you want to replace the PATIENT and TREATMNT segments
for patient number 10401, but you do not want to change the ILLNESS segment. To do this issue this
command (assuming PATNO1 contains 10401).

Restrictions
Restrictions for the REPL command:

« You cannot issue any commands using the same PCB between the Get command and the REPL
command.

 You can issue only one REPL command for each Get command.

« To modify information in a segment, you must first reissue the GU command before reissuing the REPL
command.

« You must qualify the REPL command with at least one SEGMENT option and one FROM option.

« If you use a FROM option for a segment, you cannot qualify the segment by using the WHERE or KEYS
option; DL/I uses the key field value specified in the I/O area as qualification.

186 IMS: Application Programming APIs



RETRIEVE command

Use the RETRIEVE command to determine current position in the database in batch and BMP programs.

Format

»— EXEC — DLI — RETRIEVE — USING PCB( expression) — KEYFEEDBACK( area) —»

»— FEEDBACKLEN( expression) »«

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a reference to a halfword in your
program containing a number.

expression specifies the PCB for which you want to retrieve the concatenated key. It can be any
expression in the host language that converts to the integer data type. You can specify either a
number or a reference to a halfword containing a number. The value must be a positive integer not
greater than the number of PCBs generated for the PSB. The first PCB in the list, the I/O PCB, is 1. The
first DB PCB in the list is 2, the second is 3, and so forth.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If the area is not long
enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the concatenated key retrieved.
Its argument can be any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

expression is the length of the key feedback I/O area. It can be any expression in the host language
that converts to integer data type; you can specify either a number or a reference to a halfword
containing a number. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
FEEDBACKLEN is optional. For COBOL programs that are not compiled with the IBM COBOL for z/0S &
VM (or VS COBOL II) compiler, you must specify FEEDBACKLEN with the KEYFEEDBACK option.

Usage

You can use the RETRIEVE command to retrieve the concatenated key to determine your current position
in all the PCBs your program accesses.

After issuing the RETRIEVE command, the segment type and level on which the position is established is
returned to the DIBSEGM and DIBSEGLYV fields in the DIB. The value in DIBKFBL is set to the actual length
of the concatenated key.

Example

EXEC DLI RETRIEVE USING PCB(2) KEYFEEDBACK(KEYAREA);

EXEC DLI RETRIEVE USING PCB(5) KEYFEEDBACK(KEYAREA);

Explanation

These RETRIEVE commands retrieve the concatenated key for the first and fourth DB PCBs. (The first
PCB in the list is the I/O PCB, so the first DB PCB is the second one in the list.) After issuing the first
RETRIEVE command, you can determine your position in the first DB PCB by examining the concatenated
key in KEYAREA, and the values returned in the DIBSEGM and DIBSEGLYV fields in the DIB. After issuing

Chapter 1. DL/I calls reference 187



the second RETRIEVE command, you can determine your position in the fourth DB PCB by examining the
same fields.

Restrictions
Restrictions for the RETRIEVE command:

 You cannot use this command in a CICS program.
 To use this command, you must first define an I/O PCB for your program.

ROLB command

The Rollback (ROLB) command is used to dynamically back out changes and return control to your
program. You cannot use this command in a CICS program.

Format

»— EXEC — DLI — ROLB -»«

Options

No options are allowed with the ROLB command.

Usage

When a batch or BMP program determines that some of its processing is invalid, two commands make
it possible for the program to remove the effects of its inaccurate processing. These are the rollback
commands, ROLL and ROLB.

The ROLB command is valid in batch programs when the system log is stored on direct access storage and
dynamic backout has been specified through the use of the BKO execution parameter.

Issuing the ROLB causes IMS DB to back out any changes your program has made to the database since
its last checkpoint, or since the beginning of the program if your program has not issued a checkpoint.
When you issue a ROLB command, IMS DB returns control to your program after backing out the changes,
so that your program can continue processing with the next statement after the ROLB command.

Example
EXEC DLI ROLB;

Explanation

This example shows how to dynamically back out changes and return control to your program with the
ROLB command.

Restrictions
Restrictions for the ROLB command:

 You cannot use this command in a CICS program.
« You must first define an I/O PCB for your program before you can use this command.
 You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

 You cannot use this command when the system log is stored on direct access storage and dynamic
backout has not been specified.

Related reference
“ROLL command” on page 189

188 IMS: Application Programming APIs



The Roll (ROLL) command is used to dynamically back out changes. You cannot use this command in a
CICS program;

ROLL command

The Roll (ROLL) command is used to dynamically back out changes. You cannot use this command in a
CICS program;

Format

»— EXEC — DLI — ROLL »«

Options

No options are allowed with the ROLL command.

Usage

When a batch program determines that some of its processing is invalid, two commands make it possible
for the program to remove the effects of its inaccurate processing. These are the rollback commands,
ROLL and ROLB.

You can use ROLL in batch programs.

Issuing the ROLL causes CICS and DL/I to back out any changes your program has made to the database
since its last checkpoint, or since the beginning of the program provided your program has not issued

a checkpoint. When you issue a ROLL command, DL/I terminates your program after backing out the
updates.

Example
EXEC DLI ROLL;

Explanation
This example shows how to dynamically back out changes with the ROLL command.

If you use the ROLL command, IMS terminates the program with user abend code U0778. This type of
abnormal termination does not produce a storage dump.

Restrictions
Restrictions for the ROLL command:

 You cannot use this command in a CICS program.
« You must first define an I/O PCB for your program before you can use this command.
« You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

 You cannot use this command when the system log is stored on direct access storage and dynamic
backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

Related reference
“ROLB command” on page 188

Chapter 1. DL/I calls reference 189



The Rollback (ROLB) command is used to dynamically back out changes and return control to your
program. You cannot use this command in a CICS program.

ROLS command

The Rollback to SETS or SETU (ROLS) command is used to back out to a processing point set by an earlier
SETS command.

Format

»— EXEC — DLI — ROLS T USING PCB( expression) j—n
TOKEN( foken) — AREA( data_area )

Options

USING PCB(expression)
Specifies the DB PCB you want to use. Its argument can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing a
number.

TOKEN(token)

A 4-byte token associated with the current processing point. If you specify both TOKEN and AREA, the
ROLS command backs out to the SETS or SETU you specified.

AREA(data_area)
The name of the area to be restored to the program when a ROLS command is issued. The first 2 bytes
of the data-area field contain the length of the data-area, including the length itself. The second 2
bytes must be set to X'0000'. If you specify both TOKEN and AREA, the ROLS command backs out to
the SETS you specified.

The ROLS call has two formats: with TOKEN and AREA (for IOPCB only) and without TOKEN and AREA (for
IOPCB or DBPCB).

Usage

Use the SETS and ROLS commands to define multiple points at which to preserve the state of DL/I full-
function databases and to return to these points later. (For example, you can use them so your program
can handle situations that can occur when PSB scheduling completes without all of the referenced DL/I
databases being available.)

Use of the SETS and ROLS commands apply only to DL/I full-function databases. This means that if a
logical unit of work (LUW) is updating types of recoverable resources other than full-function databases,
for example, VSAM files, the SETS and ROLS requests have no effect on the non-DL/I resources. The
backout points are not CICS commit points; they are intermediate backout points that apply only to
DBCTL resources. It is up to you to ensure the consistency of all the resources involved.

You can use the ROLS command to backout to the state all full-function databases were in before either a
specific SETS or SETU request or the most recent commit point.

Examples
Example 1

EXEC DLI ROLS TOKEN(tokenl) AREA(data_area)

Explanation: In this example (for IOPCB only), backout takes place to the corresponding TOKEN, as
specified by a prior SETS call, and control returns to the application.

Example 2

EXEC DLI ROLS USING PCB(PCB5)

190 IMS: Application Programming APIs



Explanation: In this example, for IOPCB or DBPCB, backout takes place to the prior sync point and the
application is pseudoabended with a U3033 status code. Control does not return to the application.

In this example, PCB5 is the number of a DB PCB that has received a 'data unavailable' status code.

This command results in the same action that would have occurred had the program not issued an
ACCEPT STATUSGROUPA command. (See the topic "Data Availability Enhancements" in IMS Version 15.3
Application Programming.)

Example 3

EXEC DLI ROLS

Explanation: In this example, for IOPCB or DBPCB, backout takes place to the prior sync point and
the application is pseudoabended with a U3033, provided the previous reference to that PCB gave an
unavailable status code. Control does not return to the application.

Restrictions
Restrictions for the ROLS command:

« To use this command you must first define an I/O PCB for your program.
« You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

 You cannot use this command when the system log is stored on direct access storage and dynamic
backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

SCHD command

The Schedule (SCHD) command is used to schedule a PSB in a CICS online program.
For information on the I/O PCB, see the topic "PCBs and PSB" in IMS Version 15.3 Application

Programming.
Format
»— EXEC — DLI 1SCHEDULE PSB(name) L J >
SCHD —J_ [ PSB(( area)) _J SYSSERVE
E NODHABEND j

Options

PSB(name)
Specifies the name of the PSB available to your application program that you want to schedule with
the SCHD command.

PSB((area))
Specifies an 8-byte data area in your program that contains the name of the PSB available to your
program that you want to schedule with the SCHD command.

SYSSERVE
Specifies that the application program can handle an I/O PCB and might issue a system service
request in the logical unit of work (LUW).

NODHABEND
Specifies that a CICS transaction does not fail with a DHxx abend.

Should a schedule fail under EXEC DLI, a status code might be returned in the DIB, causing a CICS
transaction to fail with a DHxx abend. This option prevents this. Following an unsuccessful SCHD

Chapter 1. DL/I calls reference 191



command, the control, as well as the status code in the DIB are passed back to the application
program, which can then take the appropriate action.

Usage

Before you can access DL/I databases from a CICS program, you must notify DL/I that your program
will be accessing a database by scheduling a PSB. Do this by issuing the SCHD command. When you no
longer plan to use a PSB, or you want to schedule a subsequent PSB (one or more), you must terminate
the previous PSB with the TERM command. (For more information on the I/O PCB and PSB, see the topic
"PCBs and PSB" in IMS Version 15.3 Application Programming)

The SCHD command can be specified two ways, as shown by the following code examples.

Example

EXEC DLI SCHD PSB(psbname)SYSSERVE;

EXEC DLI SCHD PSB((AREA));

Explanation

These examples show two ways to schedule a PSB in a CICS program.

SETS command

The Set a Backout Point (SETS) command is used to define points in your application at which to preserve
the state of the DL/I databases before initiating a set of DL/I requests to perform a function. Your
application can issue a ROLS command later if it cannot complete the function.

Format

»— EXEC — DLI — SETS >4
L TOKEN( mytoken) — AREA( data_area ) J

Options

TOKEN(mytoken)

A 4-byte token associated with the current processing point.

AREA(data_area)
The name of the area to be restored to the program when a SETS command is issued. The first 2 bytes
of the data-area field contain the length of the data-area, including the length itself. The second 2
bytes must be set to X'0000".

Usage

You can use the SETS command to define multiple points at which to preserve the state of the DL/I
databases and to return to these points later. For example, you can use the SETS command to allow your
program to handle situations that can occur when PSB scheduling completed without all of the referenced
DL/I databases being available.

The SETS command applies only to DL/I full-function databases. If a logical unit of work (LUW) is
updating types of recoverable resources other than full-function databases, for example VSAM files, the
SETS command has no effect on the non-DL/I resources. The backout points are not CICS commit points;
they are intermediate backout points that apply only to DBCTL resources. It is up to you to ensure the
consistency of all the resources involved.

192 IMS: Application Programming APIs



Example
EXEC DLI SETS TOKEN(mytoken) AREA(data_area)
Explanation

This example shows how to specify the SETS command.

Restrictions

Restrictions for the SETS command:

 To use this command you must first define an I/O PCB for your program.

 You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

« In batch, you can only use this command when the system log is stored on direct access storage and
dynamic backout has been specified. You must also specify BKO=Y in the parm field of your JCL when
you execute the program.

- Itis rejected when the PSB contains a DEDB or MSDB PCB, or when the call is made to a DB2 database.
« Itisvalid, but not functional, if unsupported PCBs exist in the PSB or if the program uses an external

subsystem.
SETU command

The Set a Backout Point Unconditionally (SETU) command is identical to the SETS command except that it
does not get rejected if unsupported PCBs are in the PSB or if the program uses an external subsystem.

Format

»— EXEC — DLI — SETU ><
L TOKEN( mytoken) — AREA( datg_area ) J

Options

TOKEN(mytoken)

A 4-byte token associated with the current processing point.

AREA(data_area)
The name of the area to be restored to the program when a SETU command is issued. The first 2 bytes
of the data-area field contain the length of the data-area, including the length itself. The second 2
bytes must be set to X'0000".

Usage

You can use the SETU command to define multiple points at which to preserve the state of the DL/I
databases and to return to these points later. For example, you can use the SETU command to allow your
program to handle situations that can occur when PSB scheduling completed without all of the referenced
DL/I databases being available.

The SETU command applies only to DL/I full-function data bases. If a logical unit of work (LUW) is
updating types of recoverable resources other than full-function databases, such as VSAM files, the SETU
command has no effect on the non-DL/I resources. The backout points are not CICS commit points;

they are intermediate backout points that apply only to DBCTL resources. It is up to you to ensure the
consistency of all the resources involved.

Example
EXEC DLI SETU TOKEN(mytoken) AREA(data_area)

Explanation

Chapter 1. DL/I calls reference 193



This example shows how to specify the SETU command.

Restrictions

Restrictions for the SETU command:

 You cannot use this command in a CICS program.

 To use this command you must first define an I/O PCB for your program.

« You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

 You cannot use this command when the system log is stored on direct access storage and dynamic
backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

STAT command

The Statistics (STAT) command is used to obtain IMS database statistics that you can use in debugging
your program.

This topic contains Product-sensitive Programming Interface information.

Format
»— EXEC — DLI STATISTICS L J INTO( area) —
t STAT _j USING PCB( expression)
VSAM FORMATTED j
L LENGTH( expression) —J L NONVSAM J UNFORMATTEﬂ
SUMMARY
Options

USING PCB(expression)
Specifies the DB PCB you want to use. Its argument can be any expression that converts to the integer
data type; you can specify either a number or a reference to a halfword in your program containing a
number.

INTO(area)
Specifies an area into which the data is read.

LENGTH(expression)
Specifies the length of an area.

VSAM/NONVSAM
Specifies database type.

FORMATTED/UNFORMATTED/SUMMARY
Specifies type of output.

Usage
The STAT command is described in IMS Version 15.3 Application Programming.

Example

For examples of the STAT command, see IMS Version 15.3 Application Programming.

194 IMS: Application Programming APIs



SYMCHKP command

The Symbolic Checkpoint (SYMCHKP) command is used to issue a symbolic checkpoint and to end a
logical unit of work.

Format

»w— EXEC — DLI — SYMCHKP T ID(chkpid) j—>
ID( literal *)

A

).

»
» >4

L AREA #(area#)LENGTH #(expression#) J

Options

ID(chkpid)
Is the name of an 8-byte area in your program containing the checkpoint ID. If you are using PL/I,
specify this parameter as a pointer to a major structure, an array, or a character string.

ID('literal')
Is the 8-byte checkpoint ID, enclosed in quotation marks.

AREA#(area#)
Specifies the areas in your program you want IMS to checkpoint. You do not need to specify any
area to checkpoint; however, you cannot specify more than seven areas. If you specify more than one
area, you must include all intervening areas. For example, if you specify AREA3, you must also specify
AREA1 and AREA2. The areas you specify using the SYMCHKP command must be the same and in the
areas specified in the XRST command.

LENGTH#(expression#)
Can be any expression in the host language that converts to the integer data type; you can specify
either a number or a reference to a halfword containing a number. For IBM COBOL for z/0S & VM
(or VS COBOL II), PL/I, or assembler language programs, LENGTH1 to LENGTH7 are optional. For
COBOL programs that are not compiled with the IBM COBOL for z/OS & VM (or VS COBOL II) compiler,
LENGTHx (where x is 1 to 7) is required for each AREAx (where x is 1 to 7) that you specify.

Usage

The two kinds of commands that allow you to make checkpoints are: the CHKP, or basic Checkpoint
command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the symbolic or the basic command.

Both checkpoint commands make it possible for you to commit your program's changes to the database
and to establish places from which the program can be restarted, should it terminate abnormally. You
must not use the CHKPT=EQV parameter on any DD statement to take an IMS checkpoint.

Refer to IMS Version 15.3 Application Programming for an explanation of when and why you should issue
checkpoints in your program. Both commands cause a loss of database position at the time the command
is issued. Position must be reestablished by a GU command or other method of establishing position.

In addition to committing your program's changes to the database and establishing places from which
your program can be restarted, the Symbolic Checkpoint command:

« Works with the Extended Restart (XRST) command to restart your program if it terminates abnormally.

« Can save as many as seven data areas in your program, which are restored when your program is
restarted. You can save variables, counters, and status information.

Chapter 1. DL/I calls reference 195



Example

EXEC DLI SYMCHKP
ID(chkpid)
AREA1(areal) LENGTH1(expressionl)

KREA7(aIea7) LENGTH7 (expression7)

Explanation

This example shows how to issue a symbolic checkpoint and to end a logical unit of work with a
SYMPCHKP command.

Restrictions
Restrictions for the SYMCHKP command:

« If you issue this command, you must also issue the XRST command.

 You cannot use this command in a CICS program.

« To use the SYMCHKP command you must first define an I/O PCB for your program.
 You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

« The areas you specify using the SYMCHKP command must be the same, and in the same order, as the
areas specified in the XRST command.

« If you specify more than one area, you must specify all intervening areas. For example, if you specify
AREA3, you must also specify AREAL and AREA2.

« When specifying expressionl with a COBOL program that is not compiled with the IBM COBOL for z/OS
& VM (or the VS COBOL II) compiler, LENGTHx (where x is 1 to 7) is required for each AREAx (where x is
1 to 7) that you specify.

TERM command

The Terminate (TERM) command is used to terminate a PSB in a CICS online program.

Format

»w— EXEC — DLI tTERMINATEj_N
TERM

Options

No options are allowed with the TERM command.

Usage

If you want to use a PSB other than the one already scheduled, use the TERM command to release the
PSB.

When you issue the TERM command, all database changes are committed and cannot be backed out.
Because returning to CICS also terminates the PSB and commits changes, you need not use the TERM
command unless you want to schedule another PSB, or commit database changes before returning to
CICS.

No options are allowed with the TERM command. If your program subsequently needs a PSB that has
terminated, it must reschedule that PSB by issuing another SCHD command.

In most applications, you do not need to use the TERM command.

196 IMS: Application Programming APIs



Example
EXEC DLI TERM

Explanation

This example shows how to terminate a PSB with the TERM command.

XRST command

The Extended Restart (XRST) command is used to issue an extended restart, and to perform a normal
start or an extended restart from a checkpoint ID or time/date stamp.

If you use Symbolic Checkpoint commands in your program, you must use the XRST command.

Format

»— EXEC — DLI — XRST

L MAXLENGTH( expression) J t ID( chkpid') j

ID(' literal ")

>4

A

A

L AREA #(area#)LENGTH #(expression#) —J

Options

MAXLENGTH(expression)
Specifies the length of an area from which a program is restarted. This parameter is the longest
segment in the PSB, or of all the segments in a path, if you use path commands in your program. It can
be any expression in the host language that converts to the integer data type. You can specify either a
number or a reference to a halfword containing a number. MAXLENGTH is not required, and defaults to
512 bytes.

ID(chkpid) ID('literal")
This parameter is either the name of a 30-byte area in your program or a 30-byte checkpoint ID,
enclosed in quotation marks. This parameter is optional; you can specify a checkpoint ID or a time/
date stamp in the parm field of your JCL instead. If you specify both, IMS uses the value in the parm
field of the EXEC statement. If you are starting your program normally, do not specify a checkpoint ID,
or ensure that the field pointed to by the chkpid contains blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC statement is not
used, then the rightmost bytes beyond the checkpoint ID being used in the I/O area must be set to
blanks.

You can issue a XRST command after supplying a time/date stamp of IIIIDDDHHMMSST, or from a
specific checkpoint in your program by supplying a checkpoint ID. IIIIDDD is the region ID and day;
HHMMSST is the actual time in hours, minutes, seconds, and tenths of seconds. The system message
DFS0540I supplies the checkpoint ID and time/date stamp.

If you are using PL/I, specify chkpid as a pointer to a major structure, an array, or a character string.

AREA#(area#)
Area# specifies the first area in your program you want to restore. You can specify up to seven areas.
You are not required to specify any areas; however, if you specify more than one area, you must
include all intervening areas. For example, if you specify AREA3, you must also specify AREAL, and
AREA2. The areas you specify on the XRST command must be the same—and in the same order—as
the areas you specify on the SYMCHKP command. When you restart the program, only the areas you
specified in the SYMCHKP command are restored.

Chapter 1. DL/I calls reference 197



LENGTH#(expression#)
Specifies the length of an area from which a program is restarted. Its argument can be any expression
in the host language that converts to the integer data type; you can specify either a number or a
reference to a halfword containing a number. For IBM COBOL for z/0S & VM (or VS COBOL II), PL/I, or
assembler language programs LENGTH1 to LENGTH?7 are optional. For COBOL programs that are not
complied with the IBM COBOL for z/OS & VM (or VS COBOL II) compiler, LENGTHx (where x is 1 to 7)
is required for each AREAx (where x is 1 to 7) that you specify. Each qualification statement consists
of:
« The name of a field in a segment
« The relational operator, which indicates how you want the two values compared

« The name of a data area in your program containing the value that is compared against the value of
the field

Usage

If your programs issues Symbolic Checkpoint commands it must also issue the Extended Restart (XRST)
command. The XRST is issued once, at the start of your program. You can use the XRST command to start
your program normally, or to extend restart it in case of an abnormal termination.

You can extend restart your program from a specific checkpoint ID, or a time/date stamp. Because the
XRST attempts to reposition the database, your program also needs to check for correct position.

After issuing the XRST command, you should test the DIBSEGM field in the DIB. After a normal start,
the DIBSEGM field should contain blanks. At the completion of an Extended Restart, the DIBSEGM field
will contain a checkpoint ID. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed by
4 blanks. If the 8-byte ID consists of all blanks, then XRST will return the 14-byte time-stamp ID. The
only successful status code for an XRST command is a blank status code. If DL/I detects any error while
processing the XRST command, your program abends.

Example

EXEC DLI XRST MAXLENGTH (expression)
ID(chkpid)
AREA1(areal) LENGTH1(expressionl)

KREA?(aIea?) LENGTH7 (expression7)

Explanation

This example shows how to specify the XRST command.

Restrictions
Restrictions for the XRST command:

 You cannot use this command in a CICS program.
 To use this command you must first define an I/O PCB for your program.
« You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

 You cannot use this command unless the system log is stored on direct access storage and dynamic
backout has been specified. You must also specify BKO=Y in the parm field of your JCL when you
execute the program.

Command code reference

Use the following reference information for the command codes.
Restriction: Command codes cannot be used by MSDB calls.

Restrictions: The following restrictions apply for Fast Path secondary index command code and multiple
SSA support:

198 IMS: Application Programming APIs



« The C command code cannot be specified in any SSA other than the first SSA. If specified, it will be
rejected with a status code of AJ.

« The Vcommand code for an ISRT call is ignored.

« A, G, and subset pointer related command codes (M, R, S, W, and Z) are not supported. They are
rejected with a status code of AJ.

Restrictions: The following restrictions apply for any DL/I call for a physical parent segment of the target
segment where target segment is not the root segment:

- The P, Q, U, and V command codes are ignored.

« The field name must be the sequence field name for the parent segment if the SSA contains a
qualification statement. If any field name other than the sequence field name is specified, it will be
rejected with a status code of AK.

Table 54. Summary of command codes

Command Description

code

A Clear positioning and start the call at the beginning of the database.

C Use the concatenated key of a segment to identify the segment.

D Retrieve or insert a sequence of segments in a hierarchic path using only one call,
instead of using a separate (path) call for each segment.

F Back up to the first occurrence of a segment under its parent when searching for a
particular segment occurrence. Disregarded for a root segment.

G Prevent randomization or the calling of the HALDB Partition Selection exit routine and
search the database sequentially.

L Retrieve the last occurrence of a segment under its parent.

M Move a subset pointer to the next segment occurrence after your current position.

(Used with DEDBs only.)

N Designate segments that you do not want replaced when replacing segments after a
Get Hold call. Typically used when replacing a path of segments.

0] Either field names or both segment position and lengths can be contained in the SSA
qualification for combine field position.

Set parentage at a higher level than what it usually is (the lowest-level SSA of the call).

Q Reserve a segment so that other programs cannot update it until you have finished
processing and updating it.

R Retrieve the first segment occurrence in a subset. (Used with DEDBs only.)

S Unconditionally set a subset pointer to the current position. (Used with DEDBs only.)

u Limit the search for a segment to the dependents of the segment occurrence on which
position is established.

Y Use the hierarchic level at the current position and higher as qualification for the
segment.

w Set a subset pointer to your current position, if the subset pointer is not already set.

(Used with DEDBs only.)

Z Set a subset pointer to 0, so it can be reused. (Used with DEDBs only.)

- Null. Use an SSA in command code format without specifying the command code. Can
be replaced during execution with the command codes that you want.

Chapter 1. DL/I calls reference 199



The following table shows the list of command codes with applicable calls.

Table 55. Command codes and related calls

Command Code GUGHU GNGHN GNP GHNP REPL ISRT DLET
A X
C X
D X
F X X X X
G X
L X
M X X X X X
N
0 X X X X
P X X X X
0 X X X X
R X X X X
S X X X X X
U X X X X
Vv X X X X
w X X X X X
y X X X X X X
- X X X X X X

A command code

You can use the A command code to cause position in the database to be cleared which will result in the
call starting at the beginning of the database.

If an application had been traversing through a database and not finding the requested data down a
certain path, it could issue a qualified GN or GHN call with command code A to reset position at the
beginning of the database and search a different path for the data.

C command code

You can use the C command code to indicate to IMS that (instead of supplying a qualification statement)
you are supplying the segment's concatenated key as a means of identifying it. You can use either the C
command code or a qualification statement, but not both.

You can use the C command code for all Get calls and for the ISRT call. When you code the concatenated
key, enclose it in parentheses following the *C, and place it in the same position that would otherwise
contain the qualification statement.

For example, suppose you wanted to satisfy this request:
Did Joan Carter visit the clinic on March 3, 2009? Her patient number is 07755.

The PATIENT segment's key field is the patient number, and the ILLNESS segment's key field is the date
field, so the concatenated key is 0775520090303. This number is comprised of four digits for the year,

200 IMS: Application Programming APIs



followed by two digits for both the month and the day. You issue a GU call with the following SSA to satisfy
the request:

GU ILLNESSb*C(0775520090303)

Using the C command code is sometimes more convenient than a qualification statement because it is
easier to use the concatenated key than to move each part of the qualification statement to the SSA area
during program execution. Using the segment's concatenated key is the equivalent of giving all the SSA in
the path to the segment qualified on their keys.

For example, suppose that you wanted to answer this request:
What treatment did Joan Carter, patient number 07755, receive on March 3, 2009?

Using qualification statements, you would specify the following SSA with a GU call:

GU PATIENTb (PATNObbbEQO7755)
ILLNESSb (ILLDATEbEQ20090303)
TREATMNTb

Using a C command code, you can satisfy the previous request by specifying the following SSA on a GU
call:

GU ILLNESSb*C(0775520090303)
TREATMNTb

If you need to qualify a segment by using a field other than the key field, use a qualification statement
instead of the C command code.

Only one SSA with a concatenated key is allowed for each call. To return segments to your program in
the path to the segment specified by the concatenated key, you can use unqualified SSA containing the D
command code.

For example, if you want to return the PATIENT segment for Joan Carter to your I/O area, in addition to
the ILLNESS segment, use the call:

GU PATIENTbDb
ILLNESSb*C(0775520090303)

You can use the C command code with the object segment for a Get call, but not for an ISRT call. The
object segment for an ISRT call must be unqualified.

D command code

You can use the D command code to retrieve or insert a sequence of segments in a hierarchic path with
one call rather than retrieving or inserting each segment with a separate call. A call that uses the D
command code is called a path call.

For your program to use the D command code, the P processing option must be specified in the PCB,
unless your program uses command code D when processing DEDBs.

Related reading: For more information on using the P processing option, see the description of PSB
generation in IMS Version 15.3 System Utilities.

Retrieving a sequence of segments

When you use the D command code with retrieval calls, IMS places the segments in your I/O area. The
segments in the I/O area are placed one after the other, left to right, starting with the first SSA you
supplied. To have IMS return each segment in the path, you must include the D command code in each
SSA. You can, however, include an intervening SSA without the D command code. You do not need to
include the D command code on the last segment in the path, because IMS always returns the last
segment in the path to your I/0 area.

Chapter 1. DL/I calls reference 201



The D command code has no effect on the IMS retrieval logic. The only thing it does is cause each
segment to be moved to your I/O area. The segment name in the PCB is the lowest-level segment that
is retrieved or the last level that is satisfied in the call in the case of a GE (not-found) status code.
Higher-level segments with the D command code are placed in the I/O area.

If IMS is unable to find the lowest segment your program has requested, it returns a GE (not-found) status
code, just as it does if your program does not use the D command code and IMS is unable to find the
segment your program has requested. This is true even if IMS reaches the end of the database before
finding the lowest segment your program requested. If IMS reaches the end of the database without
satisfying any levels of a path call, it returns a GB (end of database) status code. However, if IMS returns
one or more segments to your I/O area (new segments for which there was no current position at the start
of the current call), and if IMS is unable to find the lowest requested segment, IMS returns a GE status
code, even if it has reached the end of the database.

The advantages of using the D command code are significant even if your program is not sure that it will
need the dependent segment returned by D. For example, suppose that after examining the dependent
segment, your program still needs to use it. Using the D command, your program has the segment if you
need it, and your program is not required to issue another call for the segment.

For an example of the D command code, suppose your program has this request:

Compute the balance due for each of the clinic's patients by subtracting the payments received
from the amount billed; print bills to be mailed to each patient.

To process this request for each patient, your program needs to know the patient's name and address,
what the charges are for the patient, and the amount of payment the patient has made. Issue this call
until your program receives a GE status code indicating that no more patient segments exist:

GN PATIENTb*Db
BILLINGb*Db
PAYMENTbb

Each time you issue this call, your I/O area contains the patient segment, the billing segment, and the
payment segment for a particular person.

Inserting a sequence of segments

With ISRT calls, your program can use the D command code to insert a path of segments simultaneously.
Your program need not include D for each SSA in the path. Your program just specifies D on the first
segment that you want IMS to insert. IMS inserts the segments in the path that follow.

For example, suppose your program has this request:

Judy Jennison visited the clinic for the first time. Add a record that includes PATIENT, ILLNESS,
and TREATMNT segments.

After building the segments in your I/O area, issue an ISRT call with the following SSA:

ISRT PATIENTb*Db
ILLNESSbb
TREATMNTDH

Not only is the PATIENT segment added, but the segments following the PATIENT segment, ILLNESS and
TREATMNT, are also added to the database.

You cannot use the D command code to insert segments if a logical child segment in the path exists.

202 IMS: Application Programming APIs



F command code

You can use the F command code to start the search with the first occurrence of a certain segment type or
to insert a new segment as the first occurrence in a chain of segments.

Retrieving a segment as the first occurrence

You can use the F command code for GN and GNP calls. Using it with GU calls is redundant (and is
disregarded) because GU calls can already back up in the database. When you use F, you indicate that
you want the search to start with the first occurrence of the segment type you indicate under its parent in
attempting to satisfy this level of the call.

You can use the F command code for GN and GNP calls to back up in the database. You can back up to the
first occurrence of the segment type that has current position, or you can back up to a segment type that
is before the current position in the hierarchy.

Restriction: The parent of the segment that you are backing up from must be in the same hierarchic path
as the segment you are backing up to. IMS disregards F when you supply it at the root level or with a GU or
GHU.

The search must start with the first occurrence of the segment type that you indicate under the parent.
When the search at that level is satisfied, that level is treated as though a new occurrence of a segment
has satisfied the search. This is true even when the segment that satisfies an SSA where F command code
is specified as the same segment occurrence on which DL/I was positioned before the call was processed.

When a new segment occurrence satisfies an SSA, the position of all dependent segments is reset. New
searches for dependent segments then start with the first occurrence of that segment type under its
parent.

Inserting a segment as the first occurrence

When you use F with an ISRT call, you are indicating that you want IMS to insert the segment you have
supplied as the first segment occurrence of its segment type. Use F with segments that have either no key
at all or a non unique key, and that have HERE specified on the RULES operand of the SEGM statement

in the DBD. If you specify HERE in the DBD, the F command code overrides this, and IMS inserts the new
segment occurrence as the first occurrence of that segment type.

Using the F command code to override the RULES specification on the DBD applies only to the path (either
logical or physical) that you are using to access the segment for the ISRT call. For example, if you are
using the physical path to access the segment, the command code applies to the physical path but not to
the logical path. For clarification of using command codes with the RULES specification, ask the database
administrator at your installation.

For example, suppose that you specified RULES=HERE in the DBD for the TREATMNT segment. You want
to satisfy this request:

Mary Martin visited the clinic today and visited a number of different doctors. Add the
TREATMNT segment for Dr. Smith as the first TREATMNT segment for the most recent illness.

First you build a TREATMNT segment in your I/0 area:

19930302ESEDRIXbbb0040SMITHbbbbb

Then you issue an ISRT call with the following SSA. This adds a new occurrence of the TREATMNT
segment as the first occurrence of the TREATMNT segment type among those with equal keys.

ISRT PATIENTb (PATNObbb=b06439)
ILLNESSb*L
TREATMNT*F

This example applies to HDAM or PHDAM root segments and to dependent segments for any type of
database.

Chapter 1. DL/I calls reference 203



Related reference

“GU/GHU call” on page 16

The Get Unique (GU) call is used to directly retrieve segments and to establish a starting position in the
database for sequential processing. The Get Hold Unique (GHU) is the hold form for a GU call.

G command code

You can use the G command code to indicate to IMS to skip randomization or the calling of the partition
selection exit and search the database sequentially. While this command code can be used with other
database types, it will affect the access of only HDAM/PHDAM, DEDB, and PHIDAM databases.

When accessing an HDAM/PHDAM, DEDB, or PHIDAM database that is accessed using a HALDB Partition
Selection exit routine, and the records are not in sequence across partition boundaries, all keys in the
requested range of a multiple qualification SSA might not be returned. If the first call to the database or
command A is used, command code G can be used to sequentially read through the database until the
SSA is satisfied.

L command code

You can use the L command code to retrieve the last occurrence of a particular segment type or to insert a
segment as the last occurrence of a segment type.

Retrieving a segment as the last occurrence

The L command code indicates that you want to retrieve the last segment occurrence that satisfies the
SSA, or that you want to insert the segment occurrence you are supplying as the last occurrence of that
segment type. Like F, L simplifies your programming because you can go directly to the last occurrence
of a segment type without having to examine the previous occurrences with program logic, if you know
that it is the last segment occurrence that you want. L can be used with GU or GHU, because IMS normally
returns the first occurrence when you use a GU call. IMS disregards L at the root level.

Using L with GU, GN, and GNP indicates to IMS that you want the last occurrence of the segment type

that satisfies the qualification you have provided. The qualification is the segment type or the qualification
statement of the SSA. If you have supplied just the segment type (an unqualified SSA), IMS retrieves the
last occurrence of this segment type under its parent.

For example, suppose you have this request using the medical hierarchy:

What was the illness that brought Jennifer Thompson, patient number 10345, to the clinic most
recently?

In this example, assume that RULES=LAST is specified in the DBD for the database on ILLNESS. Issue this
call to retrieve this information:

GU PATIENTD (PATNObbb=b10345)
TLLNESSbxL

The first SSA gives IMS the number of the particular patient. The second SSA asks for the last occurrence
(in this case, the first occurrence chronologically) of the ILLNESS segment for this patient.

Inserting a segment as the last occurrence

Use L with ISRT only when the segment has no key or a non-unique key, and the insert rule for the
segment is either FIRST or HERE. Using the L command code overrides both FIRST and HERE for HDAM or
PHDAM root segments and dependent segments in any type of database.

Using the L command code to override the RULES specification on the DBD applies only to the path
(either logical or physical) that you are using to access the segment for the ISRT call. For example, if you
are using the physical path to access the segment, the command code applies to the physical path but
not to the logical path. For clarification of using command codes with the RULES specification, ask your
database administrator.

204 IMS: Application Programming APIs



N command code

The N command code prevents you from replacing a segment on a path call. If you use the N command
code with the D command code, the application program can process multiple segments by using one
call. The D command code alone retrieves a path of segments in your I/O area. However, you can
determine which segments that you want to replace by using the N command code with the D command
code.

For example, the following code only replaces the TREATMNT segment.

GHU PATIENT*D(PATNObbb=b06439)
ILLNESSb*D(ILLDATEb=19930301)
TREATMNT

REPL PATIENT*N(PATNObbb=b06439)
TILLNESSb*N(ILLDATEb=19930301)
TREATMNT

Restriction: If you use D and N command codes together, IMS retrieves the segment but does not replace
it.

The N command code applies only to REPL calls, and IMS ignores it if you include the code in any other
call.

O command code

You can use the O command code to specify a SSA qualification with the position and length of the target
data instead of a DBD-defined field name.

This command code is valid for full function database types (HDAM, HIDAM, PHIDAM, and PHDAM) and
Fast Path DEDBs.

This command code is supported for the following DL/I calls:

» GU SSA

« GHU SSA
« GN SSA

» GNP SSA
GHNP SSA
« ISRT SSA

When command code O is specified, the SSA qualification can contain either normal field names or the
starting offset and length of the data that you want to retrieve.

You must specify the offset and length as two 4-byte binary values in place of the usual 8-byte character
value that is used to specify a field name. The starting position for the offset is 1 and the offset is relative
to the physical start of the segment definition. The maximum length that is supported is the maximum
segment size for the database type. The minimum length is 1.

For example, a segment might have several fields defined in the DBD with the following offsets and

lengths:
Field Offset Length
Labname 1 5
Street 10 20
State 30 2

The application program has a COBOL copy book with the following map:

Field Offset Length

Labname 1 5
Type 6 3
Street 10 20
State 30 2

Chapter 1. DL/I calls reference 205



The database contains two records with the following data:

I 11111111122222222233
I 12345678901234567901235678901
I

Segment #1 I SVL DEV 555 BAILEY AVE CA
Segment #2 I ARC RSC 650 HARRY RD CA
I

You can specify a GU call with the O command code in the following format to retrieve data without
needing the fields to be specified in the DBD. The following example demonstrates how to specify the
offset and length values in a DFSDDLTO test application using hexadecimal edit mode:

00000000

GU IBMLABS*0 ('00010005'x=SVL )
00000000

GU IBMLABS*0 ('00010005'x=ARC )
00030000

GU IBMLABS*0 ('00000002'x=CA)
00000000

GU IBMLABS*0 ('000060003'x=DEV)

In the first GU call, the offset is 1 and the length of the target data is 5.

P command code

Ordinarily, IMS sets parentage at the level of the lowest segment that is accessed during a call. To set
parentage at a higher level, you can use the P command code in a GU, GN, or GNP call.

The parentage that you set with P works just like the parentage that IMS sets: it remains in effect for
subsequent GNP calls, and is not affected by ISRT, DLET, or REPL calls. It is only affected by GNP if you
use the P command code in the GNP call. Parentage is canceled by a subsequent GU, GHU, GN, or GHN.

Use the P command code at only one level of the call. If you mistakenly use P in multiple levels of a call,
IMS sets parentage at the lowest level of the call that includes P.

If IMS cannot fully satisfy the call that uses P (for example, IMS returns a GE status code), but the level
that includes P is satisfied, P is still valid. If IMS cannot fully satisfy the call including the level that
contains P, IMS does not set any parentage. You would receive a GP (no parentage established) if you then
issued a GNP.

If you use P with a GNP call, IMS processes the GNP call with the parentage that was already set by
preceding calls. IMS then resets parentage with the parentage you specified using P after processing the
GNP call.

For example, if you want to send a current bill to all of the patients seen during the month, the
determining value is in the ILLNESS segment. You want to look at only patients whose ILLNESS segments
have dates after the first of the month. For patients who have been to the clinic during the month, you
need to look at their addresses and the amount of charges in the BILLING segment so that you can

print a bill. For this example, assume the date is March 31, 1993. Issue these two calls to process this
information:

GN PATIENTb*PD
ILLNESSDH(ILLDATEDH>=19930301)
GNP BILLINGbD

After you locate a patient who has been to the clinic during the month, you issue the GNP call to retrieve
that patient's BILLING segment. Then you repeat the GN call to find each patient who has been to the
clinic during the month, until IMS returns a GB status code.

Q command code

Use the Q command code if you want to prevent another program from updating a segment until your
program reaches a commit point. The Q command code tells IMS that your application program needs to

206 IMS: Application Programming APIs



work with a segment and that no other tasks can be allowed to modify the segment until the program has
finished.

This means that you can retrieve segments using the Q command code, then retrieve them again later,
knowing that they have not been altered by another program. (You should be aware, however, that
reserving segments for the exclusive use of your program can affect system performance.)

You can use the Q command code in batch programs in a data-sharing environment and in CICS and IMS
online programs. IMS ignores Q in non-data sharing batch programs.

Limiting the number of database calls

For full function, before you use the Q command code in your program, you must specify a MAXQ value
during PSBGEN. This establishes the maximum number of database calls (with Q command codes) that
you can make between sync points.

Related reading: For information on PSBGEN, see IMS Version 15.3 System Utilities.

Fast Path does not support the MAXQ parameter. Consequently in Fast Path, you can issue as many
database calls with Q command codes as you want.

Using segment lock class

For full function, when you use the Q command code to retrieve a segment, you specify the letter Q
followed by a letter (A-J), designating the lock class of that segment (for example, QA). If the lock class is
not a letter (A-J), IMS returns the status code GL.

Fast Path supports the Q command code alone, without a letter designating the lock class. However, for
consistency between Fast Path and full function, Fast Path treats the Q command code as a 2-byte string,
where the second byte must be a letter (A-J). If the second byte is not a letter (A-J), IMS returns the
status code AJ.

For example, suppose a customer wants to place an order for items 1, 2, and 3, but only if 50 item 1's,
75 item 2's, and 100 item 3's are available. Before placing this order, the program must examine all three
item segments to determine whether an adequate number of each item is available. You do not want
other application programs to change any of the segments until your program has determined this and, if
possible, placed the order.

To process this request for full function, your program uses the Q command code when it issues the Get
calls for the item segments. When you use the Q command code in the SSA, you assign a lock class
immediately following the command code in the SSA.

GU PART X

ITEM 1 *0QA
GU PART X

ITEM 2 *0A
GU PART X

ITEM 3 *0A

Exception: For Fast Path, the second byte of the lock class is not interpreted as lock class 'A".

After retrieving the item segments, your program can examine them to determine whether an adequate
number of each item are on hand to place the order. Assume 100 of each item are on hand. Your program
then places the order and updates the database accordingly. To update the segment, your program issues
a GHU call for each segment and follows it immediately with a REPL call:

GHU ITEM 1
REPL ITEM 1 with the value 50
GHU ITEM 2
REPL ITEM 2 with the value 25
GHU ITEM 3
REPL ITEM 3 with the value 0

Chapter 1. DL/I calls reference 207



Using the DEQ call with the Q command code
When you use the Q command code and the DEQ call, you reserve and release segments.

For full function, to issue a DEQ call against an I/O PCB to release a segment, you place the letter
designating the segment's lock class in the first byte of an I/O area. Then, you issue the DEQ call with the
name of the I/O area that contains the letter.

A DEDB DEQ callis issued against a DEDB PCB. Because Fast Path does not support lock class, a DEDB
DEQ call does not require that a lock class be specified in the I/O area.

Restriction: The EXEC DL/I interface does not support DEDB DEQ calls, because EXEC DL/I disallows a
PCB for DEQ calls.

Retrieving segments with full-function DEQ calls
The DEQ call releases all segments that are retrieved using the Q command code, except:

« Segments modified by your program, until your program reaches a commit point

- Segments required to keep your position in the hierarchy, until your program moves to another database
record

« A class of segments that has been locked again as another class

If your program only reads segments, it can release them by issuing a DEQ call. If your program does not
issue a DEQ call, IMS releases the reserved segments when your program reaches a commit point. By
releasing them with a DEQ call before your program reaches a commit point, you make them available to
other programs more quickly.

Retrieving buffers with Fast Path DEQ calls
DEQ calls cause Fast Path to release a buffer that satisfies one of the conditions:

« The buffer has not been modified, or the buffer does not protect a valid root position.
« The buffer has been protected by a Q command code.

Fast Path returns an FW status code when no buffers can be released for a DEQ call.

Any CI locking or segment-level locking performed with a Q command code is protected from other
application programs until a DEQ call is issued or a commit point is reached.

Considerations for root and dependent segments (full function only)

If you use the Q command code on a root segment, other programs in which the PCB does not have
update capability can access the database record. Programs in which the PCB has update capability
cannot access any of the segments in that database record. If you use the Q command code on a
dependent segment, other programs can read the segment using one of the Get calls without the hold. If
your program accesses shared databases, and if any of the segments in that block are reserved with the
Q command code, application programs in other IMS systems cannot update anything in that block. The Q
command code does not hold segments from one step of a conversation to another.

Related Reading: For more information on the relationship between the Q command code and the DEQ
call, see the topic "Reserving Segments for the Exclusive Use of Your Program" in IMS Version 15.3
Application Programming.

U command code

As IMS satisfies each level in a retrieval or ISRT call, a position on the segment occurrence that satisfies
that level is established. The U command code prevents position from being moved from a segment
during a search of its hierarchic dependents.

If the segment has a unique sequence field, using this code is equivalent to qualifying the SSA so that it is
equal to the current value of the key field. When a call is being satisfied, if the position is moved above the

208 IMS: Application Programming APIs



level that the U code was issued at, the code has no effect for the segment type whose parent changed
position.

U is especially useful when unkeyed dependents or non-unique keyed segments are being processed. The
position on a specific occurrence of an unkeyed or non-unique keyed segment can be held by using this
code.

Example: Suppose you want to find out about the illness that brought a patient named Mary Warren to
the clinic most recently, and about the treatments she received for that illness. The following figure shows
the PATIENT, ILLNESS, and TREATMNT segments for Mary Warren.

PATIENT PATNO =
05810
|
ILLDATE =
19860412
ILLDATE =
ILLNESS 19860120
DATE =
19860418
DATE =
TREATMENT 18860412

Figure 2. U command code example

To retrieve this information, retrieve the first ILLNESS segment and the TREATMNT segments associated
with that ILLNESS segment. To retrieve the most recent ILLNESS segment, you can issue the following GU
call:

GU PATIENTb (PATNObbb=b05810
ILLNESSb*L

After this call, IMS establishes a position at the root level on the PATIENT segment with the key 05810
and on the last ILLNESS segment. Because other ILLNESS segments with the key 19860412 may exist,
you can think of this one as the most recent ILLNESS segment. You might want to retrieve the TREATMNT
segment occurrences that are associated with that ILLNESS segment. You can do this by issuing the GN
call below with the U command code:

GN PATIENTb*U
ILLNESSb*U
TREATMNT

In this example, the U command code indicates to IMS that you want only TREATMNT segments that

are dependents of the ILLNESS and PATIENT segments on which IMS has established position. Issuing
the above GN call the first time retrieves the TREATMNT segment with the key of 19860412. Issuing the
GN call the second time retrieves the TREATMNT segment with the key 19860418. If you issue the call

a third time, IMS returns a not-found status code. The U command code tells IMS that, if it does not

find a segment that satisfies the lower qualification under this parent, it cannot continue looking under
other parents. If the U command code was not in the PATIENT SSA, the third GN call causes IMS to move
forward at the root level in an attempt to satisfy the call. If you supply a U command code for a qualified
SSA, IMS ignores the U.

If used in conjunction with command code F or L, the U command code is disregarded at the level and all
lower levels of SSA for that call.

Chapter 1. DL/I calls reference 209



V command code

Using the V command code on an SSA is similar to using a U command code in that SSA and all preceding
SSA. Specifying the V. command code for a segment level tells IMS that you want to use the position that
is established at that level and above as a qualification for the call.

Using the V command code is analogous to qualifying your request with a qualified SSA that specifies the
current IMS position.

For example, suppose that you wanted to answer this request:
Did Joan Carter, patient number 07755, receive any treatment on March 3, 2009?

Using a qualified SSA, specify the following call:

GU PATIENTb (PATNObbb=b07755)
ILLNESSb (ILLDATEb=20090303)
TREATMNT

If you have position established on the PATIENT segment for patient number 07755 and on the ILLNESS
segment for March 3, 2009, you can use your position to retrieve the TREATMNT segments in which you
are interested. You do this by specifying the V command code as follows:

GN PATIENTbb
ILLNESSbb*V
TREATMNT

Using the V command code for a call is like establishing parentage and issuing a subsequent GNP call,
except that the V. command code sets the parentage for the call it is used with, not for subsequent calls.
For example, to satisfy the previous request, you could have set parentage at the ILLNESS segment level
and issued a GNP to retrieve any TREATMNT segments under that parent. With the V command code, you
specify that you want the ILLNESS segment to be used as parentage for that call.

You can specify the V. command code for any parent segment. If you use the V. command code with a
qualified SSA, it is ignored for that level and for any higher level that contains a qualified SSA.

NULL command code

The null command code (-) enables you to reserve one or more positions in a SSA in which a program can
store command codes, if they are needed during program execution.

For example, reserve position for two command codes as follows:

GU PATIENTb*-- (PATNObbb=b07755)
ILLNESSbILLDATEb=19930303)
TREATMNT

Using the null command code lets you use the same set of SSAs for more than one purpose. However,
dynamically modifying the SSA makes debugging more difficult.

DEDB command codes for DL/I
The M, R, S, W, and Z command codes are only used with a DEDB.

Sample application program

The following examples are based on one sample application program—the recording of banking
transactions for a passbook (savings account) account. The transactions are written to a database as
either posted or unposted, depending on whether they were posted to the customer's passbook.

For example, when Bob Emery does business with the bank but forgets to bring in his passbook, an
application program writes the transactions to the database as unposted. The application program sets
a subset pointer to the first unposted transaction, so it can be easily accessed later. The next time Bob
remembers to bring in his passbook, a program posts the transactions.

210 IMS: Application Programming APIs



The program can directly retrieve the first unposted transaction using the subset pointer that was
previously set. After the program has posted the transactions, it sets the subset pointer to 0. An
application program that updates the database later will be able to tell that no unposted transactions
exist. The following figure summarizes the processing that is performed when the passbook is unavailable
and when it is available.

P1 1. When the passbook is unavailable . . .

B7
B6

Bs

B4
B3
B2

B1

An application program adds the unposted fransactions to the database,
setting subset point 2 fo the first unposted transaction.

2. When the passbook is available . . .

P1=0

An application program adds the unposted

transactions to the database, setting subset point 2 B7

to the first unposted transaction.

When the passbook is available . . . B6 v

Bs
B4
B3
Key
B2
Posted:
B1

Unposted:

Figure 3. Processing for the passbook example

Chapter 1. DL/I calls reference 211



M command code

To move the subset pointer forward to the next segment after your current position, your program issues a
call with the M command code.

Using the passbook account example, suppose that you want to post some, but not all, of the
transactions, and that you want the subset pointer to be set to the first unposted transaction. The
following command sets subset pointer 1 to segment B6, as shown in the figure below.

GU Abbbbbbb (AKEYbbb
Bbbbbbbb*R1M1

If the current segment is the last in the chain, and you use an M command code, IMS sets the pointer to 0.

Before the call: P1
BY
B&
v BS
Ba
B3
B2
B
After the call: P1
B7
v BB
B5
B4
B3
B2
B1

Figure 4. Moving the subset pointer to the next segment after your current position

R command code

To retrieve the first segment occurrence in the subset, your program issues a Get call with the R command
code. The R command code does not set or move the pointer. It indicates to IMS that you want to
establish position on the first segment occurrence in the subset. The R command code is like the F

212 IMS: Application Programming APIs



command code, except that the R command code applies to the subset instead of to the entire segment
chain.

Using the passbook account example, suppose that Bob Emery visits the bank and brings his passbook;
you want to post all of the unposted transactions. Because subset pointer 1 was previously set to the first
unposted transaction, your program uses the following call to retrieve that transaction:

GU Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb*R1

As shown by the following figure, this call retrieves segment B5. To continue processing segments in the
chain, you can issue GN calls as you would if you were not using subset pointers.

If the subset does not exist (subset pointer 1 has been set to 0), IMS returns a GE status code, and your
position in the database will be immediately following the last segment in the chain. Using the passbook
example, the GE status code tells you that no unposted transactions exist.

P1

E7

Bg
B&

B4
Ba
Bz

B1

Figure 5. Retrieving the first segment in a chain of segments

You can specify only one R command code for each SSA. If you use more than one R in a SSA, IMS returns
an AJ status code to your program.

You can use R with other command codes, except F and Q. Other command codes in a SSA take effect
after the R command code has been processed, and after position has been successfully established

on the first segment in the subset. If you use the L and R command codes together, the last segment

in the segment chain is retrieved. (If the subset pointer that was specified with the R command code,

IMS returns a GE status code instead of the last segment in the segment chain.) Do not use the R and F
command codes together. If you do, you will receive an AJ status code. The R command code overrides all
insert rules, including LAST.

S command code

To set a subset pointer unconditionally, regardless of whether it is already set, your program issues a call
with the S command code.

When your program issues a call that includes the S command code, IMS sets the pointer to your current
position.

For example, to retrieve the first B segment occurrence in the subset defined by subset pointer 1 and to
reset pointer 1 at the next B segment occurrence, you would issue the following commands:

GU Abbbbbbb (AKEYbbb=bB1)
Bbbbbbbb*R1
GN Bbbbbbbb*S1

After you issue this call, instead of pointing to segment B5, subset pointer 1 points to segment B6, as
shown in the following figure.

Chapter 1. DL/I calls reference 213



Before the call: P
B7
B&
+ B5
B4
B3
B2
B1
After the call:
B7
v B6&
B5
B4
B3
B2
B1

Figure 6. Unconditionally setting the subset pointer to your current position

W command code

Like the S command code, the W command code sets the subset pointer conditionally. Unlike the S
command code, the W command code updates the subset pointer only if the subset pointer is not already
set to a segment.

For example, using the passbook example, suppose that Bob Emery visits the bank and forgets to bring
his passbook. You add the unposted transactions to the database. You want to set the pointer to the first
unposted transaction, so that later, when you post the transactions, you can immediately access the first
one. The following call sets the subset pointer to the transaction you are inserting if it is the first unposted
one.

ISRT Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb*W1

As shown by the following figure, this call sets subset pointer 1 to segment B5. If unposted transactions
already exist, the subset pointer is not changed.

214 IMS: Application Programming APIs



Before the call:

B4

B3

B2

B1

After the call:

B5
B4
B3
B2

B1

Figure 7. Conditionally setting the subset pointer to your current position

Z command code

The Z command code sets the value of the subset pointer to 0. After your program issues a call with the
Z command code, the pointer is no longer set to a segment, and the subset defined by that pointer no
longer exists.

IMS returns a status code of GE to your program if you try to use a subset pointer having a value of 0.

For example, using the passbook example, suppose that you used the R command code to retrieve

the first unposted transaction. You then process the chain of segments, posting the transactions. After
posting the transactions and inserting any new ones into the chain, use the Z command code to set the
subset pointer to 0 as shown in the following call:

ISRT Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb*Z1

After this call, subset pointer 1 is set to 0, which indicates to a program that subsequently updates the
database that no unposted transactions exist.

Chapter 1. DL/I calls reference 215



Relationship between calls, AIBs, and PCBs

The following table shows the relationship of calls to full function (FF), main storage database (MSDB),
data entry database (DEDB), I/O, and general sequential access method (GSAM) PCBs.

Table 56. Call relationship to PCBs

CALL AIB FF PCBs MSDB PCBs DEDB PCBs I/0 PCBs GSAM PCBs

APSB

CHKP

CIMS

CLSE

DEQ

DLET

DPSB

FLD

GHN

GHNP

X | X| X]| X
X | X| X]| X

GHU

GMSG

GN

GNP

GScD?

X | X| X]| X
X | X| X]| X
X | X| X X

GU

ICMD

INIT

INQY

ISRT

LOG

XX XXX XXX XX X|X]|X|X]|X]|X|X| X]| X|X]|] X|X

OPEN

PCB2

POS

RCMD

REPL

X | X| X]| X
>
>
>

ROLB

ROLL?

ROLS

x
>
>

SETS/SETU

>

SNAP3 X X X X X

216 IMS: Application Programming APIs



Table 56. Call relationship to PCBs (continued)

CALL AIB FF PCBs MSDB PCBs DEDB PCBs I/0 PCBs GSAM PCBs
STAT4 X X

SYNC X X

TERM?2

XRST X X

Note:

1. GSCD is a Product-sensitive Programming Interface.
2. The PCB, ROLL, and TERM calls do not have an associated PCB.
3. SNAP is a Product-sensitive Programming Interface.
4. STAT is a Product-sensitive Programming Interface.

DL/I test program (DFSDDLTO) reference

DFSDDLTO is an IMS application program test tool that issues calls to IMS based on control statement
information. You can use it to verify and debug DL/I calls independently of application programs. You
can run DFSDDLTO using any PSB, including those that use an IMS-supported language. You can also use
DFSDDLTO as a general-purpose database utility program.

The functions that DFSDDLTO provides include:

« Issuing any valid DL/I call against any database using:
— Any segment search argument (SSA) or PCB, or both

Important: Calls that use a PCB must have specified LIST=YES in the PSB.
— Any SSA or AIB, or both

« Comparing the results of a call to expected results. This includes the contents of selected PCB fields,
the data returned in the I/O area, or both.

- Printing the control statements, the results of calls, and the results of comparisons only when the
output is useful, such as after an unequal compare.

« Dumping DL/I control blocks, the I/0 buffer pool, or the entire batch region.

« Punching selected control statements into an output file to create new test data sets. This simplifies the
construction of new test cases.

« Merging multiple input data sets into a single input data set using a SYSIN2 DD statement in the JCL.
You can specify the final order of the merged statements in columns 73 to 80 of the DFSDDLTO control
statements.

« Sending messages to the z/0S system console (with or without a reply).
« Repeating each call up to 9,999 times.

Control statements

DFSDDLTO processes control statements to control the test environment. DFSDDLTO can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

When you are coding the DFSDDLTO control statements, keep these items in mind:

« You must fill in column 1 of each control statement. If column 1 is blank, the statement type defaults to
the prior statement type. DFSDDLTO attempts to use any remaining characters as it would for the prior
statement type.

« Use of reserved fields can produce invalid output and unpredictable results.

Chapter 1. DL/I calls reference 217



« Statement continuations are important, especially for the CALL statement.
« Sequence numbers are not required, but they can be very useful for some DFSDDLTO functions.

« All codes and fields in the DFSDDLTO statements must be left justified followed by blanks, unless
otherwise specified.

Control statement guidelines

The order of control statements is critical in constructing a successful call. To avoid unpredictable results,
follow these guidelines:

« If you are using STATUS and OPTION statements, place them somewhere before the calls that are to
use them.

« Both types of COMMENT statements are optional but, if present, must appear before the call they
document.

» You must code CALL FUNCTION statements and any required SSAs consecutively without interruption.

« CALL DATA statements must immediately follow the last continuation, if any, of the CALL FUNCTION
statements.

« COMPARE statements are optional but must follow the last CALL (FUNCTION or DATA) statement.

« When CALL FUNCTION statements, CALL DATA statements, COMPARE DATA statements, COMPARE
PCB statements, and COMPARE AIB statements are coded together, they form a call sequence. Do not
interrupt call sequences with other DFSDDLTO control statements.

Exception: IGNORE statements are the only exception to this rule.

« Use IGNORE statements (N or period (.)) to override any statement, regardless of its position in the
input stream. You can use IGNORE statements in either SYSIN or SYSIN2 input streams.

Related reference

“SYSIN DD statement” on page 257

The data set specified by the SYSIN DD statement is the normal input data set for DFSDDLTO. When
processing input data that is on direct-access or tape, you may want to override certain control
statements in the SYSIN input stream or to add other control statements to it. You do this with a SYSIN2
DD statement and the control statement sequence numbers.

“SYSIN2 DD statement” on page 258
DFSDDLTO does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLTO will read
and process the specified data sets.

“PUNCH CTL statement” on page 250

The PUNCH CTL statement allows you to produce an output data set consisting of COMPARE PCB
statements, COMPARE DATA statements, COMPARE AIB statements, other control statements, or
combinations of these statements.

ABEND statement
The ABEND statement causes IMS to issue an abend and terminate DFSDDLTO.

The following table shows the format of the ABEND statement.

Table 57. ABEND statement

Column Function Code Description

1-5 Identifies control ABEND Issues abend U252. (No dump is produced unless
statement you code DUMP on the OPTION statement.)

6-72 Reserved b

73-80 Sequence nnnnnnnn For SYSIN2 statement override.
indication

218 IMS: Application Programming APIs



Examples of ABEND statement

If you use ABEND in the input stream and want a dump, you must specify DUMP on the OPTION
statement. The default on the OPTION statement is NODUMP.

[---4+----1----4----2----+----3----4----L----4----5---oh b t----T----4----<
ABEND 22100010

Dump will be produced; OPTION statement provided requests dump.

|oootessflessotessc@eonoteoscfeonoteoocbleosotesocfeoooteooo@eoooteoocfeoooteoood
0 DUMP 22100010

No dump will be produced; OPTION statement provided requests NODUMP.

|costososllecasfascsBesaatasccBocaatascallosaaftascafosaaftascs@esaatacccPcanafaccad
0 NODUMP 22100010

CALL statement
The CALL control statement has two parts: CALL FUNCTION and CALL DATA.

« The CALL FUNCTION statement supplies the DL/I call function, the segment search arguments (SSAs),
and the number of times to repeat the call. SSAs are coded according to IMS standards.

« With the CALL DATA statement you provide any data (database segments, z/OS commands, checkpoint
IDs) required by the DL/I call specified in the CALL FUNCTION statement.

Examples of DFSDDLTO call functions
STAK/END Call: The following example shows the STAK and END call functions.

//BATCH.SYSIN DD * 10000700
I e R e e R e R e AR EE T Ee
0 SNAP= ,ABORT=0 10000800
S11111 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*

SKIP/START Call: The following example demonstrates the use of the SKIP and START call functions

in SYSIN2 to override and stop the processing of the STAK and END call functions in SYSIN. DFSDDLTO
executes the GU call function in SYSIN, skips the processing of STACK, WTO, T comment, GN, and END in
SYSIN, and goes to the COMMENT.

//BATCH.SYSIN DD * 10000700
I e B N S e - T e e
0 SNAP= ,ABORT=0 10000800
s11111 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*

//BATCH.SYSIN2 DD =
[---+----1----4----2----4----3----+----4----4----5--p---p----t----T----t----<
L SKIP 10001150
L START 10001450
U THIS COMMENT SHOULD REPLACE THE STAK COMMENT 10001500

Chapter 1. DL/I calls reference 219



U *%*x%x**x*THIS COMMENT SHOULD GET PRINTED BECAUSE OF SYSIN2k%**x*%*kx* 10001650
/*

CALL FUNCTION statement

The following table gives the format for CALL FUNCTION statements, including the column number,
function, code, and description.

This is the preferred format when you are not working with column-specific SSAs.

Table 58. CALL FUNCTION statement

Column Function Code Description

1 Identifies control statement L Issues an IMS call.

2 Reserved b

3 SSA level b SSA level
(optional).

n Range of
hexadecimal
characters allowed
is 1-F.

4 Reserved b
5-8 Repeat count b If blank, repeat

count defaults to 1.

nnnn 'nnnn' is the
number of times
to repeat this call.
Range is 1 to 9999,
right-justified, with
or without leading
Zeros.

9 Reserved b

10-13 Identifies DL/I call function b If blank, use
function from
previous CALL
statement.

XXXX 'xxxx'is a DL/I call
function.

220 IMS: Application Programming APIs



Table 58. CALL FUNCTION statement (continued)

Column

Function

Code

Description

Continue SSA

CONT

Continuation
indicator for SSAs
too long for a single
CALL FUNCTION
statement. Column
72 of the preceding
CALL FUNCTION
statement must
have an entry.

The next CALL
statement should
have CONT in
columns10-13
and the SSA should
continue in column
16.

14-15

Reserved

b

16-23 or

SSA name

XXXXXXXX

Must be left-
justified.

16-23 or

Token

XXXXXXXX

Token name (SETS/
ROLS).

16-23 or

MOD name

XXXXXXXX

Modname
(PURG+ISRT).

16-23 or

Subfunction

XXXXXXXX

nulls, DBQUERY,
FIND, ENVIRON,
ENVIRONZ2,
PROGRAM (INQY).

16-19 and

Statistics type

XXXX

DBAS/DBES-0OSAM
or VBAS/VBES-
VSAM (STAT).2

20 or

Statistics format

F - Formatted U-
Unformatted S -
Summary.

16-19

SETO ID?

SETx

Where xis 1, 2,
or 3. Specified on
SETO and CHNG
calls as defined in
Note.

Chapter 1. DL/I calls reference 221



Table 58. CALL FUNCTION statement (continued)

Column

Function

Code

Description

21-24

SETO IOAREA SIZE

nnnn

Value of 0000 to
8192.

If avalue

greater than 8192
is specified, it
defaults to 8192.

If novalue is
specified, the call is

made with no SETO
size specified.

24-71

Remainder of SSA

Unqualified SSAs
must be blank.
Qualified search
arguments should
have either an '*'
ora'("in column
24 and follow
IMS SSA coding
conventions.

72

Continuation column

No continuations
for this statement.

Alone, it indicates
multiple SSAs
each beginning
in column 16

of successive
statements. With
CONT in columns
10-13 of the
next statement,
indicates a
single SSA that
is continued
beginning in
column 16 of
the following
statement.

73-80

Sequence indication

nnnnnnnn

For SYSIN2
statement override.

25-32

OTMA descriptor name

XXXXXXXX

8-byte character
field (ICAL).

34-39

The wait time for the
synchronous call to be
processed

nnnnnn

6—-byte character
field with a range
from 1 t0 999999
(ICAL).

222 IMS: Application Programming APIs



Table 58. CALL FUNCTION statement (continued)

Column Function Code Description

41-45 The input message length nnnnn The length of
the input data in
the request area

(ICAL).
47-51 The response area length nnnnn The length of
the response area
for the output
message (ICAL).
Note:
1. SETO CALL:

The SETO ID (SET1, SET2, or SET3) is required on the SETO call if DFSDDLTO is to keep track of the text unit
address returned on the SETO call that would be passed on the CHNG call for option parameter TXTU.

If the SETO ID is omitted on the SETO call, DFSDDLTO does not keep track of the data returned and is unable
to reference it on a CHNG call.

CHNG CALL:

The SETO ID (SET4, SET2, or SET3) is required on the CHNG call if DFSDDLTO is to place the address of
the SETO ID I/O area returned on the SETO call. This is the SETO call of the text unit returned on the SETO
call with a matching SETO ID for this CHNG call into the “TXTU=ADDR” field of the option parameter in the
CHNG call.

When the SETO ID is specified on the CHNG call, DFSDDLTO moves the address of that text unit returned on
the SETO call using the same SETO ID.

Code the OPTION statement parameter TXTU as follows: TXTU=xxxx where xxxx is any valid non-blank
character. It cannot be a single quote character.

Suggested value for xxxx could be SET1, SET2, or SET3. This value is not used by DFSDDLTO.
2. STAT is a Product-sensitive Programming Interface.

This information applies to different types of continuations:

« Column 3, the SSA level, is usually blank. If it is blank, the first CALL FUNCTION statement fills SSA 1,
and each following CALL FUNCTION statement fills the next lower SSA. If column 3 is not blank, the
statement fills the SSA at that level, and the following CALL FUNCTION statement fills the next lower
one.

« Columns 5 through 8 are usually blank, but if used, must be right justified. The same call is repeated as
specified by the repeat call function.

« Columns 10 through 13 contain the DL/I call function. The call function is required only for the first CALL
FUNCTION statement when multiple SSAs are in a call. If left blank, the call function from the previous
CALL FUNCTION statement is used.

« Columns 16 through 23 contain the segment name if the call uses a SSA.

« If the DL/I call contains multiple SSAs, the statement must have a nonblank character in column 72,
and the next SSA must start in column 16 of the next statement. The data in columns 1 and 10 through
13 are blank for the second through last SSAs.

Restriction: On ISRT calls, the last SSA can have only the segment name with no qualification or
continuation.

- If a field value extends past column 71, put a nonblank character in column 72. (This character is
not read as part of the field value, only as a continuation character.) In the next statement insert the
keyword CONT in columns 10 through 13 and continue the field value starting at column 16.

Chapter 1. DL/I calls reference 223



- Maximum length for the field value is 256 bytes, maximum size for a SSA is 290 bytes, and the
maximum number of SSAs for this program is 15, which is the same as the IMS limit.

« If columns 5 through 8 in the CALL FUNCTION statement contain a repeat count for the call, the call will
terminate when reaching that count, unless it first encounters a GB status code.

Related reference

“CALL FUNCTION statement with column-specific SSAs” on page 224

In this format, the SSA has intervening blanks between fields. Columns 24, 34, and 37 must contain
blanks.

CALL FUNCTION statement with column-specific SSAs
In this format, the SSA has intervening blanks between fields. Columns 24, 34, and 37 must contain
blanks.

Command codes are not permitted. The following table gives the format for the CALL FUNCTION

statement with column-specific SSAs.

Table 59. CALL FUNCTION statement (column-specific SSAs)

Column  Function Code Description

1 Identifies control L Call statement (see columns 10-13).
statement

2 Reserved b

3 Reserved b

4 Reserved b

5-8 Repeat Count b If blank, repeat count defaults to 1.

nnnn ‘nnnn' is the number of times to repeat this call.
Range 1 to 9999, right-justified but need not
contain leading zeros.

10-13 Identifies DL/I call b If blank, use function from previous CALL
function statement.

XXXX 'xxxx'is a DL/I call function.

CONT Continuation indicator for SSAs too long for a
single CALL FUNCTION statement. Column 72 of
preceding CALL FUNCTION statement must contain
a nonblank character. The next CALL statement
should have CONT in columns 10 through 13 and
the SSA should continue in column 16.

14-15 Reserved b

16-23 SSA name s-name Required if call contains SSA.
24 Reserved b Separator field.

25 Start character for SSA ( Required if segment is qualified.
26-33 SSA field name f-name Required if segment is qualified.
34 Reserved b Separator field.

35-36 DL/I call operator(s) name Required if segment is qualified.
37 Reserved b Separator field.

224 IMS: Application Programming APIs



Table 59. CALL FUNCTION statement (column-specific SSAs) (continued)
Column  Function Code Description
38-nn Field value nnnnn Required if segment is qualified.

Note: Do not use '5D' or )" in field value.

nn+1 End character for SSA ) Required if segment is qualified.
72 Continuation column b No continuations for this statement.
X Alone, it indicates multiple SSAs each beginning in

column 16 of successive statements. With CONT in
columns 10-13 of the next statement, indicates a
single SSA that is continued beginning in column 16
of the following statement

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If a CALL FUNCTION statement contains multiple SSAs, the statement must have a nonblank character

in column 72 and the next SSA must start in column 16 of the next statement. If a field value extends

past column 71, put a nonblank character in column 72. In the next statement insert the keyword CONT in
columns 10 through 13 and continue the field value starting at column 16. Maximum length for field value
is 256 bytes, maximum size for a SSA is 290 bytes, and the maximum number of SSAs for this program is
15, which is the same as the IMS limit.

Related reference

“CALL FUNCTION statement” on page 220

The following table gives the format for CALL FUNCTION statements, including the column number,
function, code, and description.

CALL DATA statement

CALL DATA statements provide IMS with information normally supplied in the I/0 area for that type of call
function.

CALL DATA statements must follow the last CALL FUNCTION statement. You must enter an L in column

1, the keyword DATA in columns 10 through 13, and code the necessary data in columns 16 through 71.
You can continue data by entering a nonblank character in column 72. On the continuation statement,
columns 1 through 15 are blank and the data resumes in column 16. The following table shows the format
for a CALL DATA statement.

Table 60. CALL DATA statement

Column  Function Code Description

1 Identifies control L CALL DATA statement.
statement

2 Increase segment K Adds 2500 bytes to the length of data defined in
length columns 5 through 8.

3 Propagate remaining P Causes 50 bytes (columns 16 through 65) to be
I/O indicator propagated through remaining I/O area.

Note: This must be the last data statement and
cannot be continued.

Format options b Not a variable-length segment.

Chapter 1. DL/I calls reference 225



Table 60. CALL DATA statement (continued)

Column  Function Code Description

Vv For the first statement describing the only
variable-length segment or the first variable-
length segment of multiple variable-length
segments, LL field is added before the segment
data.

M For statements describing the second through
the last variable-length segments, LL field is
added before the segment data.

P For the first statement describing a fixed-length
segment in a path call.

z For message segment, LLZZ field is added
before the data.

u Undefined record format for GSAM records. The
length of segment for an ISRT is placed in the
DB PCB key feedback area.

5-8 Length of data in nnnn This value must be right justified but need not
segment contain leading zeros. If you do not specify a
length, DFSDDLTO will use the number of DATA
statements read multiplied by 56 to derive the
length.
9 Reserved b
10-13 Identifies CALL DATA  DATA Identifies this as a DATA statement.
statement
14-15 Reserved b
16-71 Data area XXXX Data that goes in the I/O area.
or
16-23 Checkpoint ID Checkpoint ID (SYNC).
or
16-23 Destination name Destination name (CHNG).
or
16 DEQ option DEQ options (A,B,C,D,E,F,G,H,I, or J).
72 Continuation column b If no more continuations for this segment.
X If more data for this segment or more segments.
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

When inserting variable-length segments or including variable-length data for a CHKP or LOG call:

* You must use aV or Min column 4 of the CALL DATA statement.

« Use Vif only one variable-length segment is being processed.
« You must enter the length of the data with leading zeros, right justified, in columns 5 through 8. The

226 IMS: Application Programming APIs

value is converted to binary and becomes the first 2 bytes of the segment data.



 You can continue a CALL DATA statement into the next CALL DATA statement by entering a nonblank
character in column 72. For subsequent statements, leave columns 1 through 15 blank, and start the
data in column 16.

If multiple variable-length segments are required (that is, concatenation of logical child and logical parent
segments, both of which are variable-length) for the first segment:

« You must entera Vin column 4.

« You must enter the length of the first segment in columns 5 through 8.

- If the first segment is longer than 56 bytes, continue the data as described for inserting variable-length
segments.
Exceptions:

— The last CALL DATA statement to contain data for this segment must have a nonblank character in
column 72.

— The next CALL DATA statement applies to the next variable-length statement and must contain an M
in column 4 and the length of the segment in columns 5 through 8.

You can concatenate any number of variable-length segments in this manner. Enter M or V and the length
(only in CALL DATA statements that begin data for a variable-length segment).

When a program is inserting or replacing through path calls:

- Enter a P in column 4 to specify that the length field is to be used as the length the segment will occupy
in the user I/O area.

 You only need to use P in the first statement of fixed-length-segment CALL DATA statements in path
calls that contain both variable- and fixed-length segments.

« You can use V, M, and P in successive CALL DATA statements.
For INIT, SETS, ROLS, and LOG calls:

« The format of the I/O area is
LLZZuser-data

where LL is the length of the data in the I/O area, including the length of the LLZZ portion.

- If you want the program to use this format for the I/O area, enter a Z in column 4 and the length of the
data in columns 5 through 8. The length in columns 5 through 8 is the length of the data, not including
the 4-byte length of LLZZ.

OPTION DATA statement
The OPTION DATA statement contains options as required for SETO and CHNG calls.

The following table shows the format for an OPTION DATA statement, including the column number,
function, code, and description.

Table 61. OPTION DATA statement

Column Function Code Description
1 Identifies control L OPTION statement.

statement
2-9 Reserved b
10-13 Identifies OPT Identifies this as OPTION statement.

CONT Identifies this as a continuation of an option input.

14-15 Reserved b
16-71 Option area XXXX Options as defined for SETO and CHNG call.

Chapter 1. DL/I calls reference 227



Table 61. OPTION DATA statement (continued)

Column Function Code Description
72 Continuation column b If no more continuations for options.

X If more option data exists in following statement.
73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

FEEDBACK DATA statement
The FEEDBACK DATA statement defines an area to contain feedback data.

The FEEDBACK DATA statement is optional. However, if the FEEDBACK DATA statement is used, an
OPTION DATA statement is required.

The following table shows the format for a FEEDBACK DATA statement, including the column number,
function, code, and description.

Table 62. FEEDBACK DATA statement

Column Function Code Description

1 Identifies control L FEEDBACK statement.
statement

2-3 Reserved b

4 Format option b Feedback area contains LLZZ.

Length of feedback area will be computed and the LLZZ will
be added to the feedback area.

5-8 Length of nnnn This value must be right justified but need not contain
feedback area leading zeros. If you do not specify a length, DFSDDLTO
uses the number of FDBK inputs read multiplied by 56 to
derive the length.

2-9 Reserved b
10-13  Identifies FDBK Identifies this as feedback statement and continuation of
feedback statement.
14-15  Reserved b
16-71  Feedback area XXXX Contains user pre-defined initialized area.
72 Continuation b If no more continuations for feedback.
column
X If more feedback data exists in following statement.
73-80  Sequence number nnnnnnnn For SYSIN2 statement override.

DL/I call functions

The following table shows the DL/I call functions supported in DFSDDLTO and which ones require data
statements.

Table 63. DL/I call functions

AlIB PCB Data Stmt
Call Support Support 1 Description
CHKP yes yes R Checkpoint.

228 IMS: Application Programming APIs



Table 63. DL/I call functions (continued)

AIB PCB Data Stmt

Call Support Support 1 Description

CHNG yes yes R Change alternate PCB.

R Contains the alternate PCB name option statement and
feedback statement optional.

CMD yes yes R Issue IMS command. This call defaults to I/O PCB.

DEQ yes yes R Dequeue segments locked with the Q command code. For
full function, this call defaults to the I/O PCB, provided a
DATA statement containing the class to dequeue immediately
follows the call. For Fast Path, the call is issued against a
DEDB PCB. Do not include a DATA statement immediately
following the DEQ call.

DLET yes yes 0] Delete. If the data statement is present, it is used. If not, the
call uses the data from the previous Get Hold Unique (GHU).

FLD yes yes R Field—for Fast Path MSDB calls using FSAs. This call
references MSDBs only. If there is more than one FSA, put
a nonblank character in column 34, and put the next FSA
in columns 16-34 of the next statement. A DATA statement
containing FSA is required.

GCMD yes yes N Get command response. This call defaults to I/O PCB.

GHN yes yes 02 Get Hold Next.

GHNP yes yes 02 Get Hold Next in Parent.

GHU yes yes 02 Get Hold Unique.

GMSG? yes no R Get Message is used in an automated operator (AO)
application program to retrieve a message from an AO exit
routine (DFSAOEOQO or another AOIE type user exit). The DATA
statement is required to allow for area in which to return
data. The area must be large enough to hold this returned
data.

GN yes yes 02 Get Next segment.

GNP yes yes 02 Get Next in Parent.

GU yes yes 02 Get Unique segment.

GUR yes no R Get Unique Record from the IMS catalog database.

Tip: Specify LCASE=C on the OPTION statement to make
the records, which are returned as XML instance documents,
more readable.

ICAL yes no R IMS Call enables an application program that runs in the IMS

TM environment to send a synchronous request for data or
services to a non-IMS application program or service that
runs in a z/OS or distributed environment.

Chapter 1. DL/I calls reference 229



Table 63. DL/I call functions (continued)

Call

AIB
Support

PCB
Support

Data Stmt
1

Description

ICMD3

yes

no

R

Issue Command enables an automated operator (AO)
application program to issue an IMS command and retrieve
the first command response segment. The DATA statement is
required to contain the input command and to allow for area
in which to return data. The area must be large enough to
hold this returned data.

INIT

yes

yes

Initialization This call defaults to I/O PCB. A DATA statement
is required. Use the LLZZ format.

INQY3

yes

no

Request environment information using the AIB and the
ENVIRON subfunction. The DATA statement is required to
allow for area in which to return data. The area must be large
enough to hold this returned data.

Request database information using the AIB and the
DBQUERY subfunction, which is equivalent to the INIT
DBQUERY call. The DATA statement is required to allow for
area in which to return data. The area must be large enough
to hold this returned data.

ISRT

yes

yes

Insert.

DB PCB, DATA statement required.

I/O PCB using I/0O area with MOD name, if any, in columns
16-23.

Alt PCB.

LOG

yes

yes

Log system request. This call defaults to I/O PCB. DATA
statement is required and can be specified in one of two
ways.

POS

yes

yes

Position - for DEDBs to determine a segment location. This
call references DEDBs only.

PURG

yes

yes

Purge.

This call defaults to use I/O PCB. If column 16 is not blank,
MOD (message output descriptor) name is used and a DATA
statement is required.

If column 16 is blank, the DATA statement is optional.

RCMD?3

yes

no

Retrieve Command enables an automated operator (AO)
application program to retrieve the second and subsequent
command response segments after an ICMD call. The DATA
statement is required to allow for area in which to return
data. The area must be large enough to hold this returned
data.

REPL

yes

yes

Replace—This call references DB PCBs only. The DATA
statement is required.

RLSE

yes

yes

Release all locks held by an application that are for
unmodified data.

ROLB

yes

yes

Roll Back call.

230 IMS: Application Programming APIs



Table 63. DL/I call functions (continued)

Call

AIB
Support

PCB
Support

Data Stmt
1

Description

ROLL

no

yes

o

Roll Back call and issue U778 abend.

ROLS

yes

yes

o

Back out updates and issue 3303 abend. Uses the I/0 PCB.
Can be used with the SETS call function. To issue a ROLS with
an I/0 area and token as the fourth parameter, specify the
4-byte token in column 16 of the CALL statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token. (To issue a ROLS using the current
DB PCB, use ROLX.)

ROLX

yes

yes

Roll call against the DB PCB (DFSDDLTO call function). This
call is used to request a Roll Back call to DB PCB, and is
changed to ROLS call when making the DL/I call.

SETO

yes

yes

Set options. OPTION statement required. FEEDBACK
statement optional.

SETS/SETU

yes

yes

Create or cancel intermediate backout points. Uses I/0 PCB.
To issue a SETS with an I/O area and token as the fourth
parameter, specify the four-byte token in column 16 of

the CALL statement and include a DATA statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token.

SNAP*

yes

yes

Sets the identification and destination for snap dumps. If a
SNAP call is issued without a CALL DATA statement, a snap
of the I/O buffer pools and control blocks will be taken and
sent to LOG if online and to PRINTDD DCB if batch. The SNAP
ID will default to SNAPxxxx where xxxx starts at 0000 and

is incremented by 1 for every SNAP call without a DATA
statement. The SNAP options default to YYYN. If a CALL
DATA statement is used, columns 16-23 specify the SNAP
destination, columns 24-31 specify the SNAP identification,
and columns 32-35 specify the SNAP options. SNAP options
are coded using ‘Y' to request a snap dump and ‘N' to prevent
it. Column 32 snaps the I/O buffer pools, columns 33 and

34 snap the IMS control blocks and column 35 snaps the
entire region. The SNAP call function is only supported for
full-function database PCB.

Chapter 1. DL/I calls reference 231



Table 63. DL/I call functions (continued)

AIB PCB Data Stmt
Call Support Support ! Description
STAT® yes yes 0 The STAT call retrieves statistics on the IMS system. This call
must reference only full-function DB PCBs. Statistics type is
coded in columns 16-19 of the CALL FUNCTION statement.
DBAS
For OSAM database buffer pool statistics.
VBAS
For VSAM database subpool statistics.
Statistics format is coded in column 20 of the CALL
FUNCTION statement.
F
For the full statistics to be formatted if F is specified, the
I/0 area must be at least 360 bytes.
u
For the full statistics to be unformatted if U is specified,
the I/O area must be at least 72 bytes.
S
For a summary of the statistics to be formatted if S is
specified, the I/O area must be at least 120 bytes.
SYNC yes yes R Synchronization.
XRST yes yes R Restart.

Notes:

1. R =required; O = optional; N = none

2. The data statement and I/0O area size is required on the AIB interface.
3. Valid only on the AIB interface.

4. SNAP is a Product-sensitive Programming Interface.

5. STAT is a Product-sensitive Programming Interface.

Examples of DL/I call functions
The following examples show how to use the DL/I call functions.

Basic CHKP Call: Use a CALL FUNCTION statement to contain the CHKP function and a CALL DATA
statement to contain the checkpoint ID.

|oootesscflessotesss@eonateoscfeoooteooableosotesscfeoooteooo@eoooteoocfeoooteoood
L CHKP 10101400
L DATA TESTCKPT

Symbolic CHKP Call with Two Data Areas to Checkpoint: Use a CALL FUNCTION statement to contain
the CHKP function, a CALL DATA statement to contain the checkpoint ID data, and two CALL DATA
statements to contain the data that you want to checkpoint.

You also need to use an XRST call when you use the symbolic CHKP call. Prior usage of an XRST call is
required when using the symbolic CHKP call, as the CHKP call keys on the XRST call for symbolic CHKP.

Recommendation: Issue an XRST call as the first call in the application program.

232 IMS: Application Programming APIs



CHKP

DATA TSTCHKP2 X
8 DATA STRING2- X

|l e e

16 DATA STRING2-STRING2-
U EIGHT BYTES OF DATA (STRING2-) IS CHECKPOINTED AND
U SIXTEEN BYTES OF DATA (STRING2-STRING2-) IS CHECKPOINTED ALSO

CHNG Call: Use a CALL FUNCTION statement to contain the CHNG function and a CALL DATA statement
to contain the new logical terminal name.

[---4+----1----4----2----+----3----4----L----t----5-- o t----T----4----<
L CHNG SET1

L OPT IAFP=A1M,PRTO=LLOPTION1,0PTION2,

L CONT OPTION4

L Z0023 DATA DESTNAME

LL is the hex value of the length of LLOPTION,......... OPTIONA4.

The following is an example of a CHNG statement using SETO ID SET2, OPTION statement, DATA
statement with MODNAME, and FDBK statement.

|oootesscflessotessc@eoooteoscfeonoteoocbleosotesocfeoootesoo@eoooteoocfooooteoood
L CHNG SET2

L OPT IAFP=A1M,TXTU=SET2

L Z0023 DATA DESTNAME

L Z0095 FDBK FEEDBACK AREA

CMD Call: Use a CALL FUNCTION statement to contain the CMD function and a CALL DATA statement to
contain the Command data.

L ZXXXX DATA COMMAND DATA
WHERE XXXX = THE LENGTH OF THE COMMAND DATA

DEQ Call: For full function, use a CALL FUNCTION statement to contain the DEQ function and a CALL
DATA statement to contain the DEQ value (A,B,C,D,E,F,G,H,I or J).

DLET Call: Use a CALL FUNCTION statement to contain the DLET function. The data statement is optional.
If there are intervening calls to other PCBs between the Get Hold call and the DLET call, you must use a
data statement to refresh the I/O area with the segment to be deleted.

FLD Call: Use a CALL FUNCTION statement to contain the FLD function and ROOTSSA, and a CALL DATA
statement to contain the FSAs.

|cosfososllecastascsBesaatasccBocaatascallosaatasccfosaaftascs@esaatacccPoanafaocad
L FLD ROOTA  (KEYA =RO0OTA)

L DATA 2222227 X

L DATA

GCMD Call: Use a CALL FUNCTION statement to contain the GCMD function; no CALL DATA statement is
required.

Chapter 1. DL/I calls reference 233



GHN Call: Use a CALL FUNCTION statement to contain the GHN function; no CALL DATA statement is
required.

|oootesssflessoteoss@eonoteoscfeonateoocbleosotesocfeoooteooo@eoooteoocfooooteoood
L GHN 10103210

GHNP Call: Use a CALL FUNCTION statement to contain the GHNP function; no CALL DATA statement is
required.

|cosfososilccsadasccBesoadoscc@ocoadascallocsadasccfosoadascc@eooadasccPccoadaccad
L GHNP 10103210

GHU Call with a Continued SSA: Use two CALL FUNCTION statements to contain the single SSA.

[---4+----1----4----2----+----3----4----L----t----5- - -t----T----4----<
L GHU  SEGG (FILLRG = G131G131G131G131G131G131G131G131G131G*
CONT 131G131G131G131G131G131G131

GMSG Call: Use a CALL FUNCTION statement to contain the GMSG function. Use a CALL DATA statement
to retrieve messages from AO exit routine.

[---+----1----4----2----+----3----4----L----4----5---op - t----T----4----<
L GMSG TOKEN111 WAITAOI
L Z0132 DATA
L GMSG
L Z0132 DATA

GN Call: Use a CALL FUNCTION statement to contain the GN function; no CALL DATA statement is
required.

|oootesssflessotessc@eonoteoscfeoooteoocbleosotesocfeoooteooo@eoooteoocfeoooteood
L GN 10103210

GNP Call: Use a CALL FUNCTION statement to contain the GNP function; no CALL DATA statement is
required.

|cosfososilccsadascc@esoadascc@ocoadascallossadasccfosoadascc@eooadasccPccoadaccad
L GNP 10103210

GU Call with a Single SSA and a Relational Operator: Use a CALL FUNCTION statement to contain the
GU function; no CALL DATA statement is required. The qualified SSA begins in column 24 and is contained
in parentheses.

[---4----1----4----2----+----3----4----L----t----5- b t----T----4----<
L GU SEGF (KEYF > F131xKEYF < F400)

GU Call with a Single SSA and a Relational Operator Extended Across Multiple Inputs with Boolean
Operators: Use a CALL FUNCTION statement to contain the GU function and three additional continuation
of CALL FUNCTION input to continue with Boolean operators. No CALL DATA statement is required. The
qualified SSA begins in column 24 and is contained in parentheses. This type of SSA can continue over
several statements.

|oootessflessotesss@eonoteoscfeonateoocbleosotesocfeoootesoo@eoooteoocfeoootesood
L GU  SEGG (FILLRG > G131G131G131G131G131G131G131G131G131G*

CONT 131G131G131G131G131G1316131 &FILLRG < G400GAO0GA*

CONT 00G400G400G400G400G400G400GA00G400G400G400G400GA00GA00 *

CONT )

GU Path Call: Use a CALL FUNCTION statement to contain the GU function and three additional
continuation of CALL function input to continue with two additional SSAs. No CALL DATA statement is

234 IMS: Application Programming APIs



required. The call uses command codes in columns 24 and 25 to construct the path call. This type of call
cannot be made with the column-specific SSA format.

[---4+----1----4----2----+----3----4----L----t----5- - t----T----4----<
L GU SEGA *D (KEYA = A200) *

SEGF *D (KEYF = F250) *

SEGG *D (KEYG = G251)

GUR Call: Use a CALL FUNCTION statement to contain the GUR function and a DATA statement to specify
the maximum size of the output area for the returned XML document.

|cosfososilccsadasccBesoadascc@ocoadascallocsadasccfosoadascc@eooadosccfccoadaccad

0 LCASE=C
S1111 1 1 1  1DFSCATGO AIB
L U0001 GUR HEADER (RHDRSEQ EQDBD DBOHIDKS5)

L 79999 DATA

The following table shows the key lines and elements in the example of the GUR call:

Table 64. Explanation of the example

Line in the example Explanation

0 LCASE=C Specifies that DFSDDLTO uses character representation and not
hexademcimal representation for the XML output. Without character
representation, you cannot read the returned XML document.

S1111 1 1 1 1DFSCATOO Specifies that DFSDDLTO uses the AIB interface and the DB PCB name is
AIB DFSCATO0O, which is the system-defined catalog.

L U001 GUR HEADER Specifies that IMS is to issue one GUR call. The SSA contains the key field
RHDRSEQ, which is used to find a DBD that is named DBOHIDKS5.

L Z9999 DATA Specifies that DFSDDLTO is to use the maximum data output area, which is
9999 bytes.

If the GUR call returns an XML document that is too large to fit into the output area that is specified by the
DATA statement, you must modify the GUR call so that it is repeated. You can repeat the GUR call in one of
two ways:

- Set the repeat count on the GUR call (columns 5-8) to the number of times to repeat the call, which is
the recommended way. In the following example, UBOO2 specifies that IMS is to issue two GUR calls:

|eostiocosflecootiococ@acootiacocfocootocooblecootiecocBecootococ@eoootcco=Pocootecoog
L U@PO2 GUR  HEADER (RHDRSEQ ==PSB BMP255 )
L 29999 DATA

« Use multiple GUR calls:

|csstecaclessotococ@ossaftosocBossadooccllessadooccfssoatoccc@scoatocccocoadaccad

L U0001 GUR HEADER (RHDRSEQ ==PSB BMP255 )
L Z9999 DATA
L U0001 GUR HEADER (RHDRSEQ ==PSB BMP255 )

L 79999 DATA

Either method produces the same results.

ICAL Call: Use a CALL FUNCTION statement to contain the ICAL function. Use a CALL DATA statement to
contain the message to pass from the IMS application to the program that is specified in the IMS OTMA
descriptor.

The following example demonstrates how to send a synchronous callout request message to a destination
named DESCRPTR with 45 bytes of request data and expect 100 bytes of response data to be returned in
a timeout value of 500 (or 5 seconds).

Chapter 1. DL/I calls reference 235



[---4+----1----4----2----+----3----4----B----4----5- - t----T----4----<
L ICAL SENDRECV DESCRPTR 000500 00045 00100
L DATA HELLO OUT THERE. THIS IS A MESSAGE FROM IMS.

ICMD Call: Use a CALL FUNCTION statement to contain the ICMD function. Use a CALL DATA statement to
contain the command.

L 70132 DATA /DIS ACTIVE

INIT Call: Use a CALL FUNCTION statement to contain the INIT call and a CALL DATA statement to
contain the INIT function DBQUERY, STATUS GROUPA, or STATUS GROUPB.

[---4+----1----4----2----+----3----4----L----4----5- - t----T----4----<
L INIT 10103210
L Z0011 DATA DBQUERY

INQY Call: Use a CALL FUNCTION statement to contain the INQY call and either the DBQUERY or
ENVIRON subfunction. The subfunctions are in the call input rather than the data input as in the INIT call.

[---+----1----4----2----+----3----4----L----t----5- - t----T----4----<

L INQY ENVIRON 10103210
L V0256 DATA 10103211
L 10103212

R N R e L Y e R I I Y e T

|

L INQY DBQUERY 10103210
L Vo088 DATA 10103211
L 10103212

ISRT Call: Use two CALL FUNCTION statements to contain the multiple SSAs and a CALL DATA statement
to contain the segment data.

|oootessflessotessc@eonoteoscfeonoteooableosotesocfeoootesoo@eoooteoocfeoooteoood

L ISRT STOCKSEG(NUMFIELD =20011) X10103210
ITEMSSEG 10103211
L V0018 DATA 3002222222222222 10103212

ISRT Containing Only One Fixed-Length Segment: Use a CALL FUNCTION statement to contain the ISRT
function and segment name, and two CALL DATA statements to contain the fixed-length segment. When
inserting only one fixed-length segment, leave columns 4 through 8 blank and put data in columns 16
through 71. To continue data, put a nonblank character in column 72, and the continued data in columns
16 through 71 of the next statement.

[---+----1----4----2----+----3----4----L----4----5---op - t----T----4----<

L ISRT JOKESSEG 10103210
L DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFOx10103211
XJUMPEDOVERTHELAZYDOGSIR 10103212

ISRT Containing Only One Variable-Length Segment: Use a CALL FUNCTION statement to contain
the ISRT function and segment name, and two CALL DATA statements to contain the variable-length
segment. When only one segment of variable-length is being processed, you must enter a V in column
4, and columns 5 through 8 must contain the length of the segment data. The length in columns 5
through 8 is converted to binary and becomes the first two bytes of the segment data. To continue data,
put a nonblank character in column 72, and the continued data in columns 16 through 71 of the next
statement.

|cosfososilccsadasccBessadascc@ocoadasoallossadasccfosoadascs@eooadasccPccoadaccad

L ISRT JOKESSEG 10103210
L Voo80 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFOx10103211
XJUMPEDOVERTHELAZYDOGSIR 10103212

ISRT Containing Multiple Variable-Length Segments: Use a CALL FUNCTION statement to contain
the ISRT function and segment name, and four CALL DATA statements to contain the variable-length

236 IMS: Application Programming APIs



segments. For the first segment, you must enter a V in column 4 and the length of the segment data in
columns 5 through 8. If the segment is longer than 56 bytes, put a nonblank character in column 72, and
continue data on the next statement. The last statement to contain data for this segment must have a
nonblank character in column 72.

The next DATA statement applies to the next variable-length segment and it must contain an M in column
4, the length of the new segment in columns 5 through 8, and data starting in column 16. Any number of
variable-length segments can be concatenated in this manner. If column 72 is blank, the next statement
must have the following;:

« AnLincolumnil
« AnMincolumn 4

The length of the new segment in columns 5 through 8
« The keyword DATA in columns 10 through 13
Data starting in column 16

|oootessflessoteosc@eonateoscfeonoteooableosotesocfeoootesoo@eoooteosocfeoooteoood
L ISRT AAAAASEG 10103210
L VO08® DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO%10103211
XJUMPEDOVERTHELAZYDOGSIR *10103212

MO107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103213
ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103214

ISRT Containing Multiple Segments in a PATH CALL: Use a CALL FUNCTION statement to contain the
ISRT function and segment name, and seven CALL DATA statements to contain the multiple segments in
the PATH CALL.

When DFSDDLTO is inserting or replacing segments through path calls, you can use Vand P in
successive statements. The same rules apply for coding multiple variable-length segments, but fixed-
length segments must have a P in column 4 of the DATA statement. This causes the length field in
columns 5 through 8 to be used as the length of the segment, and causes the data to be concatenated in
the I/O area without including the LL field.

Rules for continuing data in the same segment or starting a new segment in the next statement are the
same as those applied to the variable-length segment.

|oootessflessotessc@eoooteoscfeoooteoocbleosotesocfeoootesoo@eoootesocfeoooteoood

L ISRT LEVO1SEG*D *10103210
LEVO2SEG *10103211

LEVO3SEG *10103212

LEVOASEG 10103213

L Vo080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFOx10103214
XJUMPEDOVERTHELAZYDOGSIR *10103215

MO107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103216
ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY *10103217

L POO39 DATA THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSIR *10103218
L M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOWx10103219
ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103220

LOG Call Using an LLZZ Format: Use a CALL FUNCTION statement to contain the LOG function and a
CALL DATA statement to contain the LLZZ format of data to be logged.

When you put a Z in column 4, the first word of the record is not coded in the DATA statement. The
length specified in columns 5 through 8 must include the 4 bytes for the LLZZ field that is not in the DATA
statement.

[---4----1----4----2----+----3----4----L----4----5---op - -t----T----4----<
L LOG 10103210
L Z0016 DATA ASEGMENT ONE 10103211

The A in column 16 becomes the log record ID.

POS Call: Use a CALL FUNCTION statement to contain the POS function and SSA; CALL DATA statement is
optional.

Chapter 1. DL/I calls reference 237



[---4+----1----4----2----+----3----4----L----4----5- - -t----T----4----<
L POS SEGA (KEYA =A300)

PURG Call with MODNAME and Data: Use a CALL FUNCTION statement to contain the PURG function
and MOD name. Use the CALL DATA statement to contain the message data. If MOD name is provided, a
DATA statement is required.

|oootesscflessatessc@eonateoscfeoooteooableosotesscfeoooteoooeoooteoocfeoooteonod
L PURG MODNAME1
L DATA FIRST SEGMENT OF NEW MESSAGE

PURG Call with Data and no MODNAME: Use a CALL FUNCTION statement to contain the PURG function;
a DATA statement is optional.

DATA FIRST SEGMENT OF NEW MESSAGE

PURG Call without MODNAME or Data: Use a CALL FUNCTION statement to contain the PURG function;
CALL DATA statement is optional.

RCMD Call: Use a CALL FUNCTION statement to contain the RCMD function. Use a CALL DATA statement
to retrieve second and subsequent command response segments resulting from an ICMD call.

L Z0132 DATA

REPL Call: Use a CALL FUNCTION statement to contain the REPL function. Use a CALL DATA statement to
contain the replacement data.

L V0028 DATA THIS IS THE REPLACEMENT DATA

RLSE Call: Use a CALL FUNCTION statement to contain the RLSE function.

ROLB Call Requesting Return of First Segment of Current Message: Use a CALL FUNCTION statement
to contain the ROLB function. Use the CALL DATA statement to request first segment of current message.

[---4----1----4----2----+----3----4----L----t----5-- - t----T----4----<

L
L DATA THIS WILL BE OVERLAID WITH FIRST SEGMENT OF MESSAGE

ROLB Call Not Requesting Return of First Segment of Current Message: Use a CALL FUNCTION
statement to contain the ROLB function. The CALL DATA statement is optional.

ROLL Call: Use a CALL FUNCTION statement to contain the ROLL function. The CALL DATA statement is
optional.

ROLS Call with a Token: Use a CALL FUNCTION statement to contain the ROLS function and token, and
the CALL DATA statement to provide the data area that will be overlaid by the data from the SETS call.

238 IMS: Application Programming APIs



[---4+----1----4----2----+----3----4----B----4----5- - t----T----4----<
L ROLS TOKEN1

L Z0046 DATA THIS WILL BE OVERLAID WITH DATA FROM SETS

ROLS Call without a Token: Use a CALL FUNCTION statement to contain the ROLS function. The CALL
DATA statement is optional.

ROLX Call: Use a CALL FUNCTION statement to contain the ROLX function. The CALL DATA statement is
optional. The ROLX function is treated as a ROLS call with no token.

SETO Call: Use a CALL FUNCTION statement to contain the SETO function. The DATA statement is
optional; however, if an OPTION statement is passed on the call, the DATA statement is required. Also, if a
FEEDBACK statement is passed on the call, then both the DATA and OPTION statements are required. The
following is an example of a SETO statement using the OPTION statement and SETO token of SET1.

L SETO SET1 5000

L OPT  PRTO=110PTION1,0PTIONZ2,
L CONT OPTION3,

L CONT OPTION4

11 is the hex value of the length of 110PTION,......... OPTIONA4.
The following is an example of a SETO statement using the OPTION statement and SETO token of SET1.

|oootessflessotesss@eonoteoscfeonoteooableosotesocfeoooteooo@eoooteoocfeoooteoood
L SETO SET1 7000
L OPT  PRTO=110PTION1,OPTION2,0PTION3,OPTION4

11 is the hex value of the length of 110PTION,......... OPTIONA.

The following is an example of a SETO statement using the OPTION statement and SETO token of SET2
and FDBK statement.

|oootesscflessotessc@eonoteoscfeoooteooableosotesocfeoooteoooeoooteoocfeoooteonod
L SETO SET2 5500

L OPT  PRTO=110PTION1,OPTION2,0PTION3,OPTION4

L Z0099 FDBK OPTION ERROR FEEDBACK AREA

11 is the hex value of the length of 110PTION,......... OPTIONA.

SETS Call with a Token: Use a CALL FUNCTION statement to contain the SETS function and token; use
the CALL DATA statement to provide the data that is to be returned to ROLS call.

[---4+----1----4----2----+----3----4----B----4----5- - t----T----4----<
L SETS TOKEN1

L Z0033 DATA RETURN THIS DATA ON THE ROLS CALL

SETS Call without a Token: Use a CALL FUNCTION statement to contain the SETS function; CALL DATA
statement is optional.

This topic contains Product-sensitive Programming Interface information.

Chapter 1. DL/I calls reference 239



SNAP Call: Use a CALL FUNCTION statement to contain the SNAP function and a CALL DATA statement to
contain the SNAP data.

[---4+----1----4----2----+----3----4----L----4----5-- - t----T----4----<
L SNAP 10103210
L V0022 DATA PRINTDD 22222222 10103212

This topic contains Product-sensitive Programming Interface information.

STAT Call: OSAM statistics require only one STAT call. STAT calls for VSAM statistics retrieve only one
subpool at a time, starting with the smallest. See IMS Version 15.3 Application Programming for further
information about the statistics returned by STAT.

SYNC Call: Use a CALL FUNCTION statement to contain the SYNC function. The CALL DATA statement is
optional.

Initial XRST Call: Use a CALL FUNCTION statement to contain the XRST FUNCTION and a CALL DATA
statement that contains a checkpoint ID of blanks to indicate that you are normally starting a program
that uses symbolic checkpoints.

|oootessflessatesnc@eonoteoscfeoooteooableosotesocfeoooteoos@eoooteoocfeoooteoood
XRST 10101400

CKPT
DATA YOURIDO1

o

Basic XRST Call: Use a CALL FUNCTION statement to contain the XRST function and a CALL DATA
statement to contain the checkpoint ID.

|cosfmsosllocsafascsBecoatasccBocoatascallosoadasccfosoaftascs@eooatasccPcosadancad
L XRST 10101400
L DATA TESTCKPT

Symbolic XRST Call: Use a CALL FUNCTION statement to contain the XRST function, a CALL DATA
statement to contain the checkpoint ID data, and one or more CALL DATA statements where the data is to
be returned.

The XRST call is used with the symbolic CHKP call.

|cosfmsosllocsafascsBocoadtascc@ocoatascallosoadasccfosoaftascs@eooatasccPcosadancad

L XRST

L DATA TSTCHKP2 X
L 8 DATA OVERLAY2 X
L 16 DATA OVERLAY20VERLAY2

U EIGHT BYTES OF DATA (OVERLAY2) SHOULD BE OVERLAID WITH CHECKPOINTED DATA
U SIXTEEN BYTES OF DATA (OVERLAY20VERLAY2) IS OVERLAID ALSO

DFSDDLTO call functions

The DFSDDLTO call functions were created for DFSDDLTO. They do not represent "valid" IMS calls and are
not punched as output if DFSDDLTO encounters them while a CTL (PUNCH) statement is active.

The following table shows the special call functions of the CALL FUNCTION statement. Descriptions and
examples of these special functions follow.

240 IMS: Application Programming APIs



Table 65. CALL FUNCTION statement with DFSDDLTO call functions

Column Function Code Description
1 Identifies control L Call statement.
statement
2-4 Reserved b
5-8 Repeat count b If blank, repeat count defaults to 1.
nnnn 'nnnn' is the number of times to repeat this

call. Range is 1 to 9999, right-justified but
need not contain leading zeros.

9 Reserved b
10-15 Special call function STAKb Stack control statements for later execution.
ENDb Stop stacking and begin execution.
SKIPb Skip statements until START function is
encountered.
START Start processing statements again.
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

STAK/END (stacking) control statements

With the STAK statement, you repeat a series of statements that were read from SYSIN and held in
memory. All control statements between the STAK statement and the END statement are read and saved.
When DFSDDLTO encounters the END statement, it executes the series of calls as many times as specified
in columns 5 through 8 of the STAK statement. STAK calls imbedded within another STAK cause the outer
STAK call to be abnormally terminated.

SKIP/START (skipping) control statements

With the SKIP and START statements, you identify groups of statements that you do not want DFSDDLTO
to process. These functions are normally read from SYSIN2 and provide a temporary override to an
established SYSIN input stream. DFSDDLTO reads all control statements occurring between the SKIP and
START statements, but takes no action. When DFSDDLTO encounters the START statement, it reads and
processes the next statement normally.

Related reference

“PUNCH CTL statement” on page 250

The PUNCH CTL statement allows you to produce an output data set consisting of COMPARE PCB
statements, COMPARE DATA statements, COMPARE AIB statements, other control statements, or
combinations of these statements.

COMMENT statement
Use the COMMENT statement to print comments in the output data.

The two types of COMMENT statements, conditional and unconditional are described. The following table
shows the format of the COMMENT statement.

Table 66. COMMENT statement

Column Function Code Description
1 Identifies control statement T Conditional comment statement.
U Unconditional comment statement.

Chapter 1. DL/I calls reference 241



Table 66. COMMENT statement (continued)

Column Function Code Description
2-72 Comment data Any relevant comment.
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Conditional COMMENT statement

You can use up to five conditional COMMENT statements per call; no continuation mark is required

in column 72. Code the statements in the DFSDDLTO stream before the call they are to document.
Conditional COMMENTS are read and held until a CALL is read and executed. (If a COMPARE statement
follows the CALL, conditional COMMENTS are held until after the comparison is completed.) You control
whether the conditional comments are printed with column 3 of the STATUS statement. DFSDDLTO
prints the statements according to the STATUS statement in the following order: conditional COMMENTS,
the CALL, and the COMPARE(s). The time and date are also printed with each conditional COMMENT
statement.

Unconditional COMMENT statement

You can use any number of unconditional COMMENT statements. Code them in the DFSDDLTO stream
before the call they are to document. The time and date are printed with each unconditional COMMENT
statement. The previous table lists the column number, function, code, and description

Example of COMMENT statement

T/U Comment Calls: The following example shows the T and U comment calls.

//BATCH.SYSIN DD =* 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
0 SNAP= ,ABORT=0 10000800
S11111 10001000
L GU SEGB (KEYA =A400) 10001100
T THIS COMMENT IS A CONDITIONAL COMMENT FOR THE FIRST GN 10001300
L GN 10001400
U THIS COMMENT IS AN UNCONDITIONAL COMMENT FOR THE SECOND GN 10001500
L 0020 GN 10001600
/*
COMPARE statement

The COMPARE statement compares the actual results of a call with the expected results. The three types
of COMPARE statements are the COMPARE PCB, COMPARE DATA, and COMPARE AIB.

When you use the COMPARE PCB, COMPARE DATA, and COMPARE AIB statements you must:

« Code COMPARE statements in the DFSDDLTO stream immediately after either the last continuation, if
any, of the CALL DATA statement or another COMPARE statement.

« Specify the print option for the COMPARE statements in column 7 of the STATUS statement.
For all three COMPARE statements:
- The condition code returned for a COMPARE gives the total number of unequal comparisons.

- For single fixed-length segments, DFSDDLTO uses the comparison length to perform comparisons if you
provide a length. The length comparison option (column 3) is not applicable.

When you use the COMPARE PCB statement and you want a snap dump when there is an unequal
comparison, request it on the COMPARE PCB statement. A snap dump to a log with SNAP ID COMPxxxx is
issued along with the snap dump options specified in column 3 of the COMPARE PCB statement.

The numeric part of the SNAP ID is initially set to 0000 and is incremented by 1 for each SNAP resulting
from an unequal comparison.

242 IMS: Application Programming APIs



COMPARE AIB statement
The COMPARE AIB statement is optional. You can use it to compare values returned to the AIB by IMS.
The following table shows the format of the COMPARE AIB statement.

Table 67. COMPARE AIB statement

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Hold compare option H Hold COMPARE statement. See note for
COMPARE AIB Statement.

b Reset hold condition for a single

COMPARE statement.

3 Reserved b

4-6 AIB compare AIB Identifies an AIB compare.

7 Reserved b

8-11 Return code XXXX Allow specified return code only.

12 Reserved

13-16 Reason code XXXX Allow specified reason code only.

17-72 Reserved b b

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note for COMPARE AIB Statement: To execute the same COMPARE AIB after a series of calls, putan H
in column 2. When you specify an H, the COMPARE statement executes after each call. The H COMPARE
statement is particularly useful when comparing with the same status code on repeated calls. The H
COMPARE statement stays in effect until another COMPARE AIB statement is read.

COMPARE DATA statement

The COMPARE DATA statement is optional. It compares the segment returned by IMS to the data in the
statement to verify that the correct segment was retrieved.

The following table gives the format of the COMPARE DATA statement.

Table 68. COMPARE DATA statement

Column Function Code Description
1 Identifies control E COMPARE statement.
statement
2 Reserved
3 Length comparison option b For fixed-length segments or if the LL

field of the segment is not included in the
comparison; only the data is compared.

L The length in columns 5-8 is converted
to binary and compared against the LL
field of the segment.

4 Segment length option b

Chapter 1. DL/I calls reference 243



Table 68. COMPARE DATA statement (continued)

Column Function Code Description

Vv For a variable-length segment only, or
for the first variable-length segment of
multiple variable-length segments in a
path call, or for a concatenated logical-
child-logical-parent segment.

M For the second or subsequent variable-
length segment of a path call, or
for a concatenated logical-child-logical-
parent segment.

P For fixed-length segments in path calls.
Y4 For message segment.
5-8 Comparison length nnnn Length to be used for comparison.

(Required for length options V, M, and P if
L is coded in column 3.)

9 Reserved b
10-13 Identifies type of DATA Required for the first I/O COMPARE
statement statement and the first statement of a

new segment if data from previous I/O
COMPARE statement is not continued.

14-15 Reserved b

16-71 String of data Data against which the segment in the
I/O area is to be compared.

72 Continuation column b If blank, data is NOT continued.

X If not blank, data will be continued,
starting in columns 16-71 of the
subsequent statements for a maximum
of 3840 bytes.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.
Notes:

« If you code an L in column 3, the value in columns 5 through 8 is converted to binary and compared against
the LL field of the returned segment. If you leave column 3 blank and the segment is not in a path call, then
the value in columns 5 through 8 is used as the length of the comparison.

- If you code column 4 with a V, P, or M, you must enter a value in columns 5 through 8.

- If this is a path call comparison, code a P in column 4. The value in columns 5 through 8 must be the exact
length of the fixed segment used in the path call.

- If you specify the length of the segment, this length is used in the COMPARE and in the display. If you do not
specify a length, DFSDDLTO uses the shorter value for the length of the comparison and display of:

— The length of data supplied in the I/O area by IMS
— The number of DATA statements read times 56

244 IMS: Application Programming APIs



COMPARE PCB statement

The COMPARE PCB statement is optional. You can use it to compare values returned to the PCB by IMS or
to print blocks or buffer pool.

The following table shows the format of the COMPARE PCB statement.

Table 69. COMPARE PCB statement

Column Function Code Description

1 Identifies control E COMPARE statement.
statement

2 Hold compare option H Hold compare statement.

Reset hold condition for a single COMPARE

statement.
3 Snap dump options (if b Use default value. (You can change the default value
compare was unequal) or turn off the option by coding the value in an

OPTION statement.)

1 The complete I/0 buffer pool.

2 The entire region (batch regions only).

4 The DL/I blocks.

8 Terminate the job step on miscompare of DATA or
PCB.

S To SNAP subpools 0 through 127. Requests for
multiple SNAP dump options can be obtained by
summing their respective hexadecimal values. If
anything other than a blank, 1-9, A-F, or S is coded in
column 3, the SNAP dump option is ignored.

4 Extended SNAP® options b Ignore extended option.

P SNAP the complete buffer pool (batch).

SNAP subpools 0 through 127 (batch).
An area is never snapped twice. The SNAP option is a
combination of columns 3 (SNAP dump option) and 4
(extended SNAP option).

5-6 Segment level nn 'nn' is the segment level for COMPARE PCB. A leading
zero is required.

7 Reserved b

8-9 Status code b Allow blank status code only.

XX Allow specified status code only.

XX Do not check status code.

OK blank, GA, GC, or GK allowed.

10 Reserved b
11-18 XXXXXXXX Segment name for DB PCB compare.

Segment name
User Identification

Logical terminal for I/O.

Chapter 1. DL/I calls reference 245



Table 69. COMPARE PCB statement (continued)

Column Function Code Description
Destination for ALT PCB.
19 Reserved b
20-23 Length of key nnnn ‘nnnn' is length of the feedback key.
24-71 or Concatenated key Concatenated key feedback for DB PCB compare.
24-31 User ID User identification for TP PCB.
72 Continuation column b If blank, key feedback is not continued.
X If not blank, key feedback is continued, starting in
columns 16-71 of subsequent statements.
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.
Note:

1. SNAP is a Product-sensitive Programming Interface.

Blank fields are not compared to the corresponding field in the PCB, except for the status code field.
(Blanks represent a valid status code.) To accept the status codes blank, GA, GC, or GK as a group, put OK
in columns 8 and 9. To stop comparisons of status codes, put XX in columns 8 and 9.

To execute the same compare after a series of calls, put an H in column 2. This executes the COMPARE
statement after each call. This is particularly useful to compare to a blank status code only when loading a
database. The H COMPARE statement stays in effect until another COMPARE PCB statement is read.

Related reference
“OPTION statement” on page 249

Use the OPTION statement to override various default options.

Examples of COMPARE DATA and COMPARE PCB statements
The following examples show how COMPARE DATA and COMPARE PCB statements are used.

COMPARE PCB Statement for Blank Status Code

The COMPARE PCB statement is coded blank. It checks a blank status code for the GU.

|aocthcancflesnotoonc@eonotoonc@eonodooncbeonodooncfeonodoonc@oonotooncfoonotoonod

L
E

GU

10101100
10101200

COMPARE PCB Statement for SSA Level, Status Code, Segment Name, Concatenated Key Length, and
Concatenated Key

The COMPARE PCB statement is a request to compare the SSA level, a status code of OK (which includes
blank, GA, GC, and GK), segment name of SEGA, concatenated key length of 0004, and a concatenated
key of A100.

|oootessflessotessc@eonoteoscfeoooteoocbleosotesocfeoootesoo@eoooteoocfeoooteoood

L
E

GU

01 OK SEGA 0004A100

246 IMS: Application Programming APIs



COMPARE PCB Statement for SSA Level, Status Code, Segment Name, Concatenated Key Length, and
Concatenated Key

The COMPARE PCB statement causes the job step to terminate based on the 8 in column 3 when any of
the fields in the COMPARE PCB statement are not equal to the corresponding field in the PCB.

[---4+----1----4----2----+----3----4----L----4----5- - t----T----4----<
L GU 10105100

E 8 01 OK SEGK 0004A100 10105200

COMPARE PCB Statement for Status Code with Hold Compare

The COMPARE PCB statement is a request to compare the status code of OK (which includes blank, GA,
GC, and GK) and hold that compare until the next COMPARE PCB statement. The compare of OK is used
on GN following GU and is also used on a GN that has a request to be repeated six times.

|-=-4+----1----+----2----4----3----4----b----4----5-c -t -T - t----<

L GU SEGA (KEYA = A300) 20201100
L GN 20201300
EH OK 20201400
L 0006 GN 20201500

COMPARE DATA Statement for Fixed-Length Segment
The COMPARE DATA statement is a request to compare the data returned. 72 bytes of data are compared.

L
E DATA A100A100A100A100A100A100A100AI00ATIO00AI00ATIO00ATIO0ATIO00A1I00X10102200
E A100A100A100A100 10102300

COMPARE DATA Statement for Fixed-Length Data for 64 Bytes
The COMPARE DATA statement is a request to compare 64 bytes of the data against the data returned.

|---4+----1----+----2----4----3----4----b----4----5-c === -T - t----<

L GU 10101600
E 0064 DATA A100A100A100A100A100A100A100A1I00A100A1I00A100A100A100A100X10101700
E A100A100B111B111 10101800

COMPARE DATA Statement for Fixed-Length Data for 72 Bytes
The COMPARE DATA statement is a request to compare 72 bytes of the data against the data returned.

|cosfmsosilecsafasccBocoatascc@ocoatascallosoadasccfosoaftascs@eooatasccPoosadaccad

L GU 10103900
E LPOO72 DATA A100A100A100A100A100A100A100A100A100A1I00A100A100A100A100X10104000
E A100A100A100A100 10104100

COMPARE DATA Statement for Variable-Length Data of Multiple-Segments Data and Length Fields

The COMPARE DATA statement is a request to compare 36 bytes of the data against the data returned for
segment 1 and 16 bytes of data for segment 2. It compares the length fields of both segments.

I e R e L T et R LR STy SRR TS
L ISRT D (DSS = DSS01) X38005500
L DJ (D3Jss = DJSS01) X38005600
L QAJAXQAJ 38005700
L VOO36 DATA (QSSO2QASSO2QAISSOL1QAJASS97xIQAJA*x *38005800
L MOO16 DATA QAJSSOLIxIQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJss = DJSS01) X38006100

QAJAXQAJ (QAJASS = QAJASS97) 38006200
E LVOO36 DATA QSSO2QASS02QAISSOL1QAIJASS97*IQAJAX* *38006300
E LMOO16 DATA QAJSSO1*x2QAJ*xx 38006350

Chapter 1. DL/I calls reference 247



COMPARE DATA Statement for Variable-Length Data of Multiple Segments with no Length Field
COMPARE

The COMPARE DATA statement is a request to compare 36 bytes of the data against the data returned for
segment 1 and 16 bytes of data for segment 2 with no length field compares of either segment.

I e R e L A e e Lk TR LR Y ST RS
L ISRT D (DSS = DSSO1) X38005500
L DJ (DISS = DJSSe1) X38005600
L QAJAXQAJ 38005700
L V0036 DATA (0SS020ASS02QAISSOLQAIASSO7*IQAIAX* *38005800
L MOOL6 DATA QAJSSOLxIQAJx* 38005850
L GHU D (DSS = DSSO1) X38006000
D3J (DISS = DJSSO1) X38006100

QAJAXQAJ (QAJASS = 0QAJASS97) 38006200

E V0036 DATA (QSSO20ASSO20AISSOLQAIASSI7+IQAIA** *38006300
MOOL6 DATA QAJSSOL*20AJx* 38006350

COMPARE DATA Statement for Variable-Length Data of Multiple Segments and One Length Field
COMPARE

The COMPARE DATA statement is a request to compare 36 bytes of the data against the data returned for
segment 1 and 16 bytes of data for segment 2. It compares the length field of segment 1 only.

I e R e R T Rt e T A Rl
L ISRT D (DSS = DSS01) X38005500
L DJ (D3JsSs = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA (QSSO2QASSO2QAIJSSOL1QAJASS97xIQAJA*x *38005800
L MOO16 DATA QAJSSOLIxIQAJ*x* 38005850
L GHU D (DSS = DSS01) X38006000
DJ (DJss = DJSS01) X38006100

QAJAXQAJ (QAJASS = (QAJASS97) 38006200

E LVOO36 DATA QSS02QASS0O2QAISSOL1QAIJASS97*IQAJAX* *38006300
MOO16 DATA QAJSSO1*2QAJx* 38006350

IGNORE statement

DFSDDLTO ignores any statement with an N or a period (.) in column 1.

You can use the N or . (period) to comment out a statement in either the SYSIN or SYSIN2 input streams.
Using N or . (period) in a SYSIN2 input stream causes the SYSIN input stream to be ignored as well. The
following table gives the format of the IGNORE statement. An example of the statement follows.

Table 70. IGNORE statement

Column Function Code Description
1 Identifies control N or. IGNORE statement.
statement
2-72 Ignored
73-80 Sequence indication nnnnnNnn For SYSIN2 statement override.

Example of IGNORE statement using N or .

[---4+----1----4----2----+----3----4----L----4----5- - t----T----4----<
. NOTHING IN THIS AREA WILL BE PROCESSED. ONLY THE SEQUENCE NUMBER 67101010
N WILL BE USED IF READ FROM SYSIN2 OR SYSIN. 67101020

Related reference
“SYSIN2 DD statement” on page 258

248 IMS: Application Programming APIs



DFSDDLTO does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLTO will read

and process the specified data sets.

OPTION statement

Use the OPTION statement to override various default options.

Use multiple OPTION statements if you cannot fit all the options you want in one statement. No
continuation character is necessary. Once you set an option, it remains in effect until you specify another
OPTION statement to change the first parameter. The following table shows the format of the OPTION

statement. An example follows.

Table 71. OPTION statement

Column Function Code Description

1 Identifies control ] OPTION statement (free-form parameter
statement fields).

2 Reserved b b

3-72 Keyword parameters:

ABORT= -0 = Turns the ABORT parameter off.

« 1t09999 « Number of unequal compares before
aborting job. Initial default is 5.

LINECNT= 10 to 99 Number of lines printed per page. Must be
filled with zeros. Initial default 54.

SNAPL X SNAP option default, when results of
compare are unequal. To turn the SNAP
option off, code 'SNAP='. Initial default is 5
if this option is not coded. This causes the
I/0 buffer pool and the DL/I blocks to be
dumped with a SNAP call.

DUMP/NODUMP Produce/do not produce dump if job abends.
Default is NODUMP.

LCASE= « H » Hexadecimal representation for lower case

. C characters. This is the initial default.
« Character representation for lower case
characters.

STATCD/NOSTATCD Issue/do not issue an error message for the
internal, end-of-job stat call that does not
receive a blank or GA status code. NOSTATCD
is the default.

ABU249/NOABU249 Issue/do not issue a DFSDDLTO
ABENDUO0249 when an invalid status code
is returned for any of the internal end-of-job
stat calls in a batch environment. NOABU249
is the default.

73 -80 Sequence indication  nnnnnnnn For SYSIN2 statement override.
Note:

1. SNAP is a Product-sensitive Programming Interface.

Chapter 1. DL/I calls reference 249



OPTION statement parameters can be separated by commas.

Example of OPTION control statement

|-=-4+----1----+----2----4----3----4----b----4----5-c -t =T - t----<
0 ABORT=5,DUMP,LINECNT=54,SPA=4096,SNAP=5 67101010

Related reference

“COMPARE PCB statement” on page 245

The COMPARE PCB statement is optional. You can use it to compare values returned to the PCB by IMS or
to print blocks or buffer pool.

PUNCH CTL statement

The PUNCH CTL statement allows you to produce an output data set consisting of COMPARE PCB
statements, COMPARE DATA statements, COMPARE AIB statements, other control statements, or
combinations of these statements.

The following table shows the format and keyword parameters for the PUNCH CTL statement.

Table 72. PUNCH CTL statement

Column Function Code Description
1-3 Identifies control CTL PUNCH statement.
statement
4-9 Reserved b
10-13 Punch control PUNC Begin punching (no default
values).
NPUN Stop punching (default
value).
14-15 Reserved b
16-72 Keyword
parameters:
OTHER Reproduces all input control

statements except:

« CTL (PUNCH) statements.

« Nor.(IGNORE)
statements.

« COMPARE statements.

« CALL statements with
functions of SKIP and
START. Any control
statements that appear
between SKIP and START
CALLs are not punched.

« CALL statements with
functions of STAK and
END. Control statements
that appear between STAK
and END CALLS are saved
and then punched the
number of times indicated
in the STAK CALL.

250 IMS: Application Programming APIs



Table 72. PUNCH CTL statement (continued)

Column

Function Code

Description

DATAL

Create a full data
COMPARE using all of

the data returned to

the I/O area. Multiple
COMPARE statements and
continuations are produced
as needed.

DATAS

Create a single data
COMPARE statement using
only the first 56 bytes of
data returned to the I/O
area.

PCBL

Create a full PCB COMPARE
using the complete key
feedback area returned

in the PCB. Multiple
COMPARE statements and
continuations are produced
as needed.

PCBS

Create a single PCB
COMPARE statement using
only the first 48 bytes of the
key feedback area returned
in the PCB.

SYNC/NOSYNC

If a GB status code is
returned on a Fast Path call
while in STAK, but prior to
exiting STAK, this function
issues or does not issue
SYNC.

START=

00000001 to 99999999.

This is the starting
sequence number to be
used for the punched
statements. Eight numeric
bytes must be coded.

INCR=

110 9999.

Increment the sequence
number of each punched
statement by this value.
Leading zeros are not
required.

AIB

Create an AIB COMPARE
statement.

73-80

Sequence indication nnnnnnnn

For SYSIN2 statement
override.

Chapter 1. DL/I calls reference 251



To change the punch control options while processing a single DFSDDLTO input stream, always use
PUNCH CTL statements in pairs of PUNC and NPUN.

One way to use the PUNCH CTL statement is as follows:

1. Code only the CALL statements for a new test. Do not code the COMPARE statements.
2. Verify that each call was executed correctly.

3. Make another run using the PUNCH CTL statement to have DFSDDLTO merge the proper COMPARE
statements and produce a new output data set that can be used as input for subsequent regression
tests.

You can also use PUNCH CTL if segments in an existing database are changed. The control statement
causes DFSDDLTO to produce a new test data set that has the correct COMPARE statements rather than
you having to manually change the COMPARE statements.

Parameters in the CTL statement must be the same length as described in the previous table, and they
must be separated by commas.

Example of PUNCH CTL statement

[---+----1----4----2----+----3----4----L----4----5----f-- b -t----TF----4----<
CTL PUNC PCBS,DATAS,0THER,START=00000010, INCR=0010 33212010
CTL NPUN 33212020

The DD statement for the output data set is labeled PUNCHDD. The data sets are fixed block with
LRECL=80. Block size as specified on the DD statement is used. If not specified, the block size is set to 80.
If the program is unable to open PUNCHDD, DFSDDLTO issues abend 251.

Example of PUNCH CTL statement for all parameters

|cosfososilccsadascc@esoadascc@ocoadascallossadasccfosoadascc@eooadasccfccoadaccad
CTL PUNC OTHER,DATAL,PCBL,START=00000001, INCR=1000, AIB 33212010

Related reference
“DFSDDLTO call functions” on page 240

The DFSDDLTO call functions were created for DESDDLTO. They do not represent "valid" IMS calls and are
not punched as output if DFSDDLTO encounters them while a CTL (PUNCH) statement is active.

“Control statements” on page 217
DFSDDLTO processes control statements to control the test environment. DFSDDLTO can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

STATUS statement

With the STATUS statement, you establish print options and name the PCB that you want subsequent calls
to be issued against.

The following table shows the format of the STATUS statement.

Table 73. STATUS statement

Column Function Code Description
1 Identifies control S STATUS statement.
statement
2 Output device option b Use PRINTDD when in a DL/I region; use I/O

PCB in MPP region.

1 Use PRINTDD in MPP region if DD statement
is provided; otherwise, use I/O PCB.

252 IMS: Application Programming APIs



Table 73. STATUS statement (continued)

Column Function Code Description

A Same as if 1, and disregard all other fields in

this STATUS statement.

3 Print comment option b Do not print.

1 Print for each call.

2 Print only if compare done and unequal.
4 Print AIB option b Do not print.

1 Print for each call.

2 Print only if compare done and unequal.
5 Print call option b Do not print.

1 Print for each call.

2 Print only if compare done and unequal.
6 Reserved b
7 Print compare option b Do not print.

1 Print for each call.

2 Print only if compare done and unequal.
8 Reserved b
9 Print PCB option b Do not print.

1 Print for each call.

2 Print only if compare done and unequal.
10 Reserved b
11 Print segment option b Do not print.

1 Print for each call.

2 Print only if compare done and unequal.
12 Set task and real time b Do not time

1 Time each call.

2 Time each call if compare done and unequal.
13-14  Reserved b
15 PCB selection option 1 PCB name passed in columns 16-23 (use

option 1).

2 DBD name passed in columns 16-23 (use
option 2).

3 Relative DB PCB passed in columns 16-23
(use option 3).

4 Relative PCB passed in columns 16-23 (use

option 4).

Chapter 1. DL/I calls reference 253



Table 73. STATUS statement (continued)

Column Function

Code

Description

5

$LISTALL passed in columns 16-23 (use
option 5).

b

If column 15 is blank, DFSDDLTO selects
options 2 through 5 based on content of
columns 16-23.

Opt. 1
16-23

PCB selection
PCB name

alpha

These columns must contain the name of the
label on the PCB at PSBGEN, or the name
specified on the PCBNAME= operand for the
PCB at PSBGEN time.

Opt. 2
16-23

PCB selection
DBD name

alpha

The default PCB is the first database PCB in
the PSB. If columns 16-23 are blank, current
PCB is used. If DBD name is specified, this
must be the name of a database DBD in the
PSB.

Opt. 3
16-18
19-23

PCB selection
Relative position
of PCB in PSB

b

numeric

When columns 16 through 18 are blank,
columns (19-23) of this field are interpreted
as the relative number of the DB PCB in

the PSB. This number must be right-justified
to column 23, but need not contain leading
zeros.

Opt. 4
16-18
19-23

PCB selection
I/0 PCB
Relative position
of PCB in PSB

b

numeric

When columns 16 through 18 = 'TPb/,
columns (19-23) of this field are interpreted
as the relative number of the PCB from the
start of the PCB list. This number must be
right-justified to column 23, but need not
contain leading zeros. I/O PCB is always the
first PCB in the PCB list in this program.

Opt. 5
16-23

List all PCBs in the PSB

$LISTALL

Prints out all PCBs in the PSB for test script.

24

Print status option

Use print options to print this STATUS
statement.

Do not use print options in this statement;
print this STATUS statement.

Do not print this STATUS statement but use
print options in this statement.

Do not print this STATUS statement and do
not use print options in this statement.

25-28

PCB processing option

XXXX

This is optional and is only used when two
PCBs have the same name but different
processing options. If not blank, it is used

in addition to the PCB name in columns 16
through 23 to select which PCB in the PSB to
use.

29

Reserved

254 IMS: Application Programming APIs



Table 73. STATUS statement (continued)
Column Function Code Description
30-32 AIB interface AIB Indicates that the AIB interface is used and

the AIB is passed rather than passing the
PCB. (Passing the PCB is the default.)

Note: When the AIB interface is used,

the PCB must be defined at PSBGEN with
PCBNAME=name. IOPCB is the PCB name
used for all I/O PCBs. DFSDDLTO recognizes
that name when column 15 containsa 1 and
columns 16 through 23 contain IOPCB.

33 Reserved
37-72 Reserved
73-80  Sequence indication nnnnnnnn For SYSIN2 statement override.

If DFSDDLTO does not encounter a STATUS statement, all default print options (columns 3 through 12) are
2 and the default output device option (column 2) is 1. You can code a STATUS statement before any call
sequence in the input stream, changing either the PCB to be referenced or the print options.

The referenced PCB stays in effect until a subsequent STATUS statement selects another PCB. However, a
call that must be issued against an I/O PCB (such as LOG) uses the I/O PCB for that call. After the call, the
PCB changes back to the original PCB.

Examples of STATUS statement

To Print Each CALL Statement: The following STATUS statement tells DFSDDLTO to print these options:
COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA for all calls.

To Print Each CALL Statement, Select a PCB: The following STATUS statements tell DFSDDLTO to print
the COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA options for all calls, and select a PCB.

The 1 in column 15 is required for PCBNAME. If omitted, the PCBNAME is treated as a DBDNAME.

|cosfososilccsadasccBesoadascc@ocoadascablossadasccfosoadascc@eooadasccfcccadancad
S11111 1PCBNAME

|oootessflessatessc@eonateoscfeoooteooableosotesocfeoootesoo@eoooteoocfeoooteoood
S11111 1PCBNAME AIBb

To print each CALL statement, select PCB based on a DBD name: The following STATUS statements tell
DFSDDLTO to print the COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA options for all calls, and
select a PCB by a DBD name.

The 2 in column 15 is optional.

|cosfmsosllocsafascc@esoatascc@ocoatascallocoadasccfosoadascs@eooaftasccPoooadaccad
S11111 2DBDNAME

|oootessflessotesoc@eoooteoscfeoootesoableosotesocfeoootesoo@eoooteoocfeoooteoood
S11111 2DBDNAME AIBb

If you do not use the AIB interface, you do not need to change STATUS statement input to existing

streams; existing call functions will work just as they have in the past. However, if you want to use the AIB
interface, you must change the STATUS statement input to existing streams to include AIB in columns 30

Chapter 1. DL/I calls reference 255



through 32. The existing DBD name, Relative DB PCB, and Relative PCB will work if columns 30 through
32 contain AIB and the PCB has been defined at PSBGEN with PCBNAME=name.

WTO statement
The WTO (Write to Operator) statement sends a message to the z/OS console without waiting for a reply.

The following table shows the format for the WTO statement.

Table 74. WTO statement

Column Function Code Description
1-3 Identifies control WTO WTO statement.
statement
4 Reserved b
5-72 Message to send Message to be written to the system
console.
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTO statement

This WTO statement sends a message to the z/OS console and continues the test stream.

|cosfososilccsadasccBesoadascc@ocoadascallocsadasccfosoadascc@eooadosccfccoadaccad
WTO AT A "WTO" WITHIN TEST STREAM --WTO NUMBER 1-- TEST STARTED

WTOR statement

The WTOR (Write to Operator with Reply) statement sends a message to the z/OS system console and
waits for a reply.

The following table shows the format of the WTOR statement.

Table 75. WTOR statement

Column Function Code Description
1-4 Identifies control WTOR WTOR statement.
statement
5 Reserved b
6-72 Message to send Message to be written to the system
console.
73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTOR statement

This WTOR statement causes the test stream to hold until DFSDDLTO receives a response from the z/0S
console operator. Any response is valid.

|cosfososilccsadascc@esoadascc@ocoadascallossadasccfosoadascc@eooadacccPocoadaccad
WTOR AT A "WTOR" WITHIN TEST STREAM - ANY RESPONSE WILL CONTINUE

256 IMS: Application Programming APIs



JCL requirements for the DL/I test program (DFSDDLTO)
DFSDDLTO uses these DD statements.

Execution JCL depends on the installation data set naming standards as well as the IMS environment
(batch or online).

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8 330011060
//GET EXEC PGM=DFSRRCOO,PARM='DLI,DFSDDLTO,PSBNAME" 33001200
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR 33001300
//IMS DD DSN=IMS2.PSBLIB,DISP=(SHR,PASS) 33001400
// DD DSN=IMS2.DBDLIB,DISP=(SHR,PASS) 33001500
//DDCARD DD DSN=DATASET,DISP=(0LD,KEEP) 33001600
//IEFRDER DD DUMMY 33001700
//PRINTDD DD SYSOUT=A 33001800
//SYSUDUMP DD SYSOUT=A 33001900
//SYSIN DD * 33002000
I A R A e L T Rt e T A el
U THIS IS PART OF AN EXAMPLE 33002100
S11111 PCB-NAME 33002200
L GU 33002300
/*

//SYSIN2 DD *

I e R e R T Rt T e A RS
ABEND 33002300
/*

The following code example shows how to code JCL for DFSDDLTO in a BMP. Use of a procedure is
optional and is only shown here as an example.

Example JCL code for DFSDDLTO in a BMP

;;SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=A 00010047
//* BATCH DL/I JOB *

[ ] Fdkkdkokkdkok sk kok ok ke okok sk okok ok sk okok sk ook ok ke okok ok ook ok ok kok sk ok ok sk okok ok ok ok sk okok ok ok ok ke kok ok

//BMP EXEC IMSBATCH,MBR=DFSDDLTO,PSB=PSBNAME

//BMP.PRINTDD DD SYSOUT=A

//BMP.PUNCHDD DD SYSOUT=B

//BMP.SYSIN DD =*

U **x*THIS IS PART OF AN EXAMPLE OF SYSIN DATA 00010000

S11111 1 00030000
L GU 00040000
b 0099 GN 00050000
*

[---+----1----4----2----+----3----4----A----4----5----f-- b -t----TF----4----<
//BMP.SYSIN2 DD *

U x%*THIS IS PART OF AN EXAMPLE OF SYSIN2 DATA *kkkkkkkkkkkkkkkkkx 00020000
ABEND 00050000
/*

SYSIN DD statement

The data set specified by the SYSIN DD statement is the normal input data set for DFSDDLTO. When
processing input data that is on direct-access or tape, you may want to override certain control
statements in the SYSIN input stream or to add other control statements to it. You do this with a SYSIN2
DD statement and the control statement sequence numbers.

Sequence numbers in columns 73 to 80 for SYSIN data are optional unless a SYSIN2 override is used.

Related reference

“SYSIN2 DD statement” on page 258

DFSDDLTO does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLTO will read
and process the specified data sets.

“Control statements” on page 217

Chapter 1. DL/I calls reference 257



DFSDDLTO processes control statements to control the test environment. DFSDDLTO can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

SYSIN2 DD statement

DFSDDLTO does not require the SYSIN2 DD statement, but if it is present in the JCL, DFSDDLTO will read
and process the specified data sets.

When using SYSIN2:

« The SYSIN DD data set is the primary input. DFSDDLTO attempts to insert the SYSIN2 control
statements into the SYSIN DD data set.

« You must code the control groups and sequence numbers properly in columns 73 to 80 or the merging
process will not work.

« Columns 73 and 74 indicate the control group of the statement.
« Columns 75 to 80 indicate the sequence number of the statement.
« Sequence numbers must be in numeric order within their control group.

 Control groups in SYSIN2 must match the SYSIN control groups, although SYSIN2 does not have to use
all the control groups used in SYSIN. DFSDDLTO does not require that control groups be in numerical
order, but the control groups in SYSIN2 must be in the same order as those in SYSIN.

« When DFSDDLTO matches a control group in SYSIN and SYSIN2, it processes the statements by
sequence number. SYSIN2 statements falling before or after a SYSIN statement are merged accordingly.

- If the sequence number of a SYSIN2 statement matches the sequence number of a SYSIN statement in
its control group, the SYSIN2 overrides the SYSIN.

- If the program reaches the end of SYSIN before it reaches the end of SYSIN2, it processes the records
of SYSIN2 as if they were an extension of SYSIN.

« Replacement or merging occurs only during the current run. The original SYSIN data is not changed.

« During merge, if one of the control statements contains blanks in columns 73 through 80, DFSDDLTO
discards the statement containing blanks, sends a message to PRINTDD, and continues the merge until
end-of-file is reached.

Related reference

“SYSIN DD statement” on page 257

The data set specified by the SYSIN DD statement is the normal input data set for DFSDDLTO. When
processing input data that is on direct-access or tape, you may want to override certain control
statements in the SYSIN input stream or to add other control statements to it. You do this with a SYSIN2
DD statement and the control statement sequence numbers.

“Control statements” on page 217
DFSDDLTO processes control statements to control the test environment. DFSDDLTO can issue calls to
IMS full-function databases and Fast Path databases, as well as DC calls.

“IGNORE statement” on page 248
DFSDDLTO ignores any statement with an N or a period (.) in column 1.

PRINTDD DD statement

The PRINTDD DD statement defines output data set for DFSDDLTO, including displays of control blocks
using the SNAP call. It must conform to the z/OS SNAP data set requirements.

PUNCHDD DD statement

The DD statement for the output data set is labeled PUNCHDD.

The data sets are fixed block with LRECL=80. Block size as specified on the DD statement is used; if not
specified, the block size is set to 80. If the program is unable to open PUNCHDD, DFSDDLTO issues abend
251. Here is an example of the PUNCHDD DD statement.

258 IMS: Application Programming APIs



//PUNCHDD DD SYSOUT=B

Using the PREINIT parameter for DFSDDLTO input restart

You use the DFSDDLTO restart function to restart a DFSDDLTO input stream within the same dependent
region.

The PREINIT parameter in the EXEC statement invokes the restart function. Code the PREINIT parameter
of DFSMPR as PREINIT=xx, where xx is the two-character suffix of the DFSINTxx PROCLIB member.
(PREINIT=DL refers to the default PROCLIB member.)

The PREINIT process establishes a checkpoint field for each active IMS region. This field is updated with
the sequence number of each GU call to an I/O PCB as it is processed. For this reason, sequence numbers
are required for all such GU calls that are used. On a restart, if the checkpoint field contains a sequence
number, the DFSDDLTO stream starts at the next GU call to an I/O PCB following the sequence number in
the checkpoint field; otherwise the DFSDDLTO stream starts from the beginning.

The DFSDDLSI module and the default IMS.PROCLIB member, DFSINTDL, are shipped with IMS and are

installed as part of normal IMS installation.

The following code shows examples of SYSIN/SYSIN2 and PREINIT.

//TSTPGM JOB CARD
//DDLTTST EXEC DFSMPR,PREINIT=DL
//MPP.SYSIN DD *

|Soothcoocileonotoanc@eonoteonc@eoncdooncbeonctooocfeonodtoonc@oonotooncfoonodoonog

S11 1111 TP 1 01000000
OPTIONS SNAP= ,ABORT=9999 010600010
Uk kkkkkkkkhkkhkhhkhkkkkkhkkhhkhkkkkkkkhkhkkkkhkkkkkkkkkkkkkkkkkkxkkkxkxxx* 01000040
S11 1111 TP 1 01000050
L GU 01000060
E OK 01000070
S11 1111 DBPCBXXX 010600080
L GU 010600090
E DATA A INIT-LOAD UOW 01000100
E 01 ROOTSEG1 OGO8A 0004D 01000110
S11 1111 TP 1 010600120
L ISRT 01000130
L Z0080 DATA -SYNC INTERVAL 1 SEG 1 -MESSAGE 1 X01000140
L P DATA 111212112121212712127127127172722722721721212121212112112 010600150
L ISRT 01000160
L Z0G80 DATA -SYNC INTERVAL 1 SEG 2 -END EOM 1 X01000170
L P DATA 111212112121212712127127127172712272172121212121212112112 010600180
Uk kkkkkkkkkkhhkhhkhkkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkxkkkxkxxx* 01000190
Ux ENDING FIRST SYNC INTERVAL 01000200
Uk oke s sk e ok ke ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ook ook ok ok ok ok ook ook ok ok ok ok ok ok ok ok ok ok okeok ok ok ok ok ok ok ke ok 01000210
L GU 01000220
E QC 01000230
L GU 01000240
E OK 01000250
S117 1111 DBPCBXXX 01000260
WTO GETTING DATA BASE SEGMENT 1 FROM DBPCBXXX 01000270
L U GHU 01000280
E DATA INIT-LOAD UOW. 1 A.P. 1 01000290
E OK 01000300
L UGGO3 GN 01000310
E OK 01000320
S11 1111 TP 1 01000330
L ISRT 01000340
L Z0G80 DATA -SYNC INTERVAL 2 SEG 1 -MESSAGE 1 X01000350
L P DATA 22222222222222222222222222222222222222222222211 01000360
L ISRT 01000370
L Z00G80 DATA -SYNC INTERVAL 2 SEG 2 -END EOM 1 X01000380
L P DATA 22222222222222222222222222222222222222222222211 01000390
Uk kkkkkkkkkkhkkhkkhkkkkkkkkhkkhkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkxkkkxkxxx* 01000400
Ux ENDING SECOND SYNC INTERVAL 01000410
Uk ok s sk e sk ke ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ook ook ok ok ok ok ook ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok 01000420
L GU 01000430
E QC 01000440
L GU 01000450
E OK 01000460
S11 1111 DBPCBXXX 01000470
S11 1111 TP 1 01000480
L ISRT 01000490
L Z0080 DATA -SYNC INTERVAL 3 SEG 1 -MESSAGE 1 X01000500

Chapter 1. DL/I calls reference 259



L P DATA 33333333333333333333333333333333333333333333311 01000510
L ISRT 01000520
L Z0080 DATA -SYNC INTERVAL 3 SEG 2 -END EOM 1 X01000530
L P DATA 33333333333333333333333333333333333333333333311 01000580
Ukkkkkkkkkhhhkxkhhh kA XK *hh* A XK Kk KR AR A Kk KR XR I Kk KA XR*hhF AR KKk *F AR h kKKK Ak A 01000590
Ux  ENDING THIRD SYNC INTERVAL 01000600
Ukkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkhkkkkhkkhkkxkhkhkkkhkkhhkkxhkkhkkkxrkkkkxx 01000610
L GU 01000620
E QC 01000630

//MPP.SYSIN2 DD =
|cootocosilccsadasoc@esoadascc@ocoadascallossadasccfosoadascc@eooadasccPccoadaccad
ABEND 01000430

Notes for the SYSIN/SYSIN2 and PREINIT examples:

1. The PREINIT= parameter coded in the EXEC statement invokes the restart process.

2. When DFSDDLTO starts processing, it substitutes the SYSIN2 ABEND statement for the statement in
SYSIN with the same sequence number. (It is the GU call with sequence number 01000430.)

3. DFSDDLTO begins with statement 01000000 and processes until it encounters the ABEND statement
(statement number 01000430). The GU calls to the I/O PCB have already been tracked in the
checkpoint field (statements 021000060, 01000220, and 01000240).

4. When DFSDDLTO is rescheduled, it examines the checkpoint field and finds 02000240. DFSDDLTO
begins processing at the next GU call to the I/O PCB, statement 01000450.

If the statement currently numbered 01000240 did not have a sequence number, DFSDDLTO would
restart from statement 02000000 when it was rescheduled.

Execution of DFSDDLTO in IMS regions

DFSDDLTO is designed to operate in a DL/I or BMP region but can be executed in an IFP or MPP region. In
a BMP or DL/I region, the EXEC statement allows the program name to be different from the PSB name.
There is no problem executing calls against any database in a BMP or DL/I region.

In an MPP region, the program name must be the same as the PSB name. To execute a DFSDDLTO
program in an MPP region, you must give DFSDDLTO the PSB name or an alias of the PSB named in the
IMS definition. You can use a temporary step library.

In an MPP region or a BMP region with an input transaction code specified in the EXEC statement,
DFSDDLTO normally gets input by issuing a GU and GNs to the I/O PCB. DFSDDLTO issues GU and GN

calls until it receives the "No More Messages" status code, QC. If there is a SYSIN DD statement and

a PRINTDD DD statement in the dependent region, DFSDDLTO reads input from SYSIN and SYSIN2, if
present, and sends output to the PRINTDD. If the dependent region is an MPP region and the input stream
does not cause a GU to be issued to the I/O PCB before encountering end-of-file from SYSIN, the program
will implicitly do a GU to the I/O PCB to get the message that caused the program to be scheduled. If

the input stream causes a GU to the I/O PCB and a "No More Messages" status code is received, this is
treated as the end of file. When input is from the I/O PCB, you can send output to PRINTDD by coding a 1
oran Ain column 2 of the STATUS statement.

Because the input is in fixed form, it is difficult to key it from a terminal. To use DFSDDLTO to test DL/I in
a message region, execute another message program that reads control statements stored as a member
of a partitioned set. Insert these control statements to an input transaction queue. IMS then schedules
the program to process the transactions. This method allows you to use the same control statements to
execute in any region type.

Explanation of DFSDDLTO return codes

A non-zero return code from DFSDDLTO indicates the number of unequal comparisons that occurred
during that time.

A return code of 0 (zero) from DFSDDLTO does not necessarily mean that DFSDDLTO executed without
errors. There are several messages issued by DSFDDLTO that do not change the return code, but do
indicate some sort of error condition. This preserves the return code field for the unequal comparison
count.

260 IMS: Application Programming APIs



If an error message was issued during the run, a message ERRORS WERE DETECTED WITHIN THE
INPUT STREAM. REVIEW OUTPUT TO DETERMINE ERRORS. appears at the end of the DFSDDLTO
output. You must examine the output to ensure DFSDDLTO executed as expected.

DFSDDLTO operations

You can use DFSDDLTO to load a database, print, retrieve, replace, and delete segments; perform
regression testing; as a debugging aid; and to verify how a call is executed.

Load a database

Use DFSDDLTO for loading only very small databases because you must to provide all the calls and
data rather than have them generated. The following example shows CALL FUNCTION and CALL DATA
statements that are used to load a database.

0

S

L ISRT COURSE

L DATA FRENCH

L ISRT COURSE

L DATA COBOL

L ISRT CLASS

L DATA 12

L ISRT CLASS

L DATA 27

L ISRT STUDENT

L DATA SMITH THERESE
L ISRT STUDENT

L DATA GRABOWSKY MARION

Print the segments in a database
Use either of the following sequences of control statements to print the segments in a database.

R I R - L b ST LR Ty ST <
.%x Use PRINTDD, print call, compare, and PCB if compare unequal

. Do 1 Get Unique call

.*x Hold PCB compare, End step if status code is not blank, GA, GC, GK

.% Do 9,999 Get Next calls

S 2221 DBDNAME

L GU

EH8 0K

L 9999 GN
[---+----1----4----2----+----3----4----A----+----5- - f o b--- -t ---T -t <

.%x Use PRINTDD, print call, compare, and PCB if compare unequal
. Do 1 Get Unique call

.* Hold PCB compare, Halt GN calls when status code is GB.

.* Do 9,999 Get Next calls

S 2221 DBDNAME

L

EH

L

GU
0K
9999 GN

Both examples request the GN to be repeated 9999 times. Note that the first example uses a COMPARE
PCB of EH8 while the second uses a COMPARE PCB of EH.

The difference between these two examples is that the first halts the job step the first time the status
code is not blank, GA, GC, or GK. The second example halts repeating the GN and goes on to process any
remaining DFSDDLTO control statements when a GB status code is returned or the GN has been repeated
9999 times.

Retrieve and replace a segment

Use the following sequence of control statements to retrieve and replace a segment.

Chapter 1. DL/I calls reference 261



+
S11111 COURSEDB
L

GHU COURSE (TYPE =FRENCH) X
CLASS (WEEK =27) X
STUDENT (NAME =SMITH)
L REPL
DATA SMITH THERESE

Delete a segment

Use the following sequence of control statements to delete a segment.

|eeeedoncailoecadrenaocnadorscfocachonanblencotenacfrocadoaccfracafrencf/oenadannaPonas
S11111 4
L GHU  COURSE (TYPE =FRENCH) X

CLASS  *L X

INSTRUC (NUMBER =444)
L DLET

Do regression testing

DFSDDLTO is ideal for doing regression testing. By using a known database, DFSDDLTO can issue calls and
then compare the results of the call to expected results using COMPARE statements. The program then
can determine if DL/I calls are executed correctly. If you code all the print options as 2's (print only if
comparisons done and unequal), only the calls not properly satisfied are displayed.

Use as a debugging aid

When debugging a program, you usually need a print of the DL/I blocks. You can snap the blocks to a log
data set at appropriate times by using a COMPARE statement that has an unequal compare in it. You can
then print the blocks from the log. If you need the blocks even though the call executed correctly, such as
for the call before the failing call, insert a SNAP function in the CALL statement in the input stream.

Verify how a call is executed

Because it is very easy to execute a particular call, you can use DFSDDLTO to verify how a particular call is
handled. This can be of value if you suspect DL/I is not operating correctly in a specific situation. You can
issue the calls suspected of not executing properly and examine the results.

262 IMS: Application Programming APIs



Chapter 2. DRDA DDM command architecture
reference

IMS supports the distributed data management architecture (DDM) of the Distributed Relational Database
Architecture™ (DRDA). You can develop your own source DDM server that communicates with the IMS
target DDM server to provide access to databases managed by IMS DB in DBCTL and DB/TM IMS systems.

The IMS documentation for the DDM architecture includes only the DDM structures that are required to
connect to and communicate with IMS and the DDM structures that have been changed or defined by
IMS.

For the complete documentation of the DDM, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at www.opengroup.org.

The DDM architecture includes the following elements or terms:

« Commands

« Command objects
» Reply objects

« Reply messages

Each term, whether it is a command, command object, reply object, parameter, or message, is
represented by a codepoint, a hexadecimal value that represents and identifies the component in
communication between a source server and the target server. For example, the EXCSAT command is
represented by X'1041', the EXCSATRD reply object is represented by X'1443', the SRVNAM parameter is
represented by X'116D', and so on.

As an open standard, the DRDA specification requires that products that use the specification must
conform to the conventions, protocols, standards, and so on, of its architecture. However, the DDM
architecture that is a part of the DRDA specification allows products to create product-unique extensions,
in which a product, such as IMS, uses a subset of the existing DDM-defined commands, parameters,

and messages, as well as product-unique structures that are defined by the product. When creating a
product-unique extension that has product-unique structures, the product must conform to the DDM
architecture.

The product-unique extension for IMS conforms to both the DDM architecture and the DRDA specification.
IMS uses a subset of the existing DDM-defined commands, parameters, and messages, as well as a
variety of IMS-defined structures that conform to the DDM architecture, but are unique to IMS.

Related concepts

Programming with the IMS support for DRDA (Application Programming)

Overview of the syntax for DDM terms supported by IMS

IMS supports the general syntax of terms defined by the distributed data management (DDM)
architecture.

All DDM commands, reply messages, and chained objects begin with a 6-byte data stream structure
header (DSSHDR), followed in order by a 2-byte binary integer that defines the length of the term (LL), and
a 2-byte hexadecimal codepoint (CP) that uniquely identifies the DDM term, and data, if any.

Parameters of commands, messages, and objects start with LL, followed in order by CP and the data.
Parameters, which are also known as instance variables, do not include a DSSHDR.

Some data structures, such as the IMS product-unique data structures aibStream, dbpchStream, and
iopchStream, do not include DSSHDR, LL, or CP.

Related reference
“DEALLOCDB command (X'C801")” on page 271

© Copyright IBM Corp. 1974, 2022 263


http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_ddm_overview.htm#ims_ddm_overview

The distributed data management (DDM) DEALLOCDB command terminates all resources that are
associated with a PSB by deallocating the PSB named in the RDBNAM parameter.

DSSHDR syntax

DSSHDR is the 6-byte header that contains information about the data stream structure (DSS) of terms
defined by the distributed data management (DDM) architecture.

DSSHDR has the following format:

LL
A 2-byte specification of the length of the whole command, reply, or object, including the 6-byte DSS
HEADER. The minimum possible value is 6, and the maximum is 32,767.

DDMID
A 1-byte Systems Network Architecture (SNA) registered General Data Stream (GDS) identifier. The
DDMID field is always DO for a DDM command.

FORMAT ID
A 1-byte indicator of whether the DSS is chained to the next DSS and what to do when errors occur.
The byte contains the following bits, from 0 to 7, left to right:

Bit O
Unused.
Bit 1
Aflag. 1 indicates that the DSS structure is chained to the next structure. 0 indicates no chaining.
Bit 2
A flag. 1 indicates to continue when errors occur, and 0, otherwise.
Bit 3
A flag. 1 indicates that the next DSS has the same request correlator, and 0, otherwise. If bit 1 is 0,
bit 3 is also 0.

Bits 4 through 7
Indicate the DSS type:

« 1: a Request DSS.

« 2:aReply DSS.

« 3:an Object DSS.

 4:an Encrypted Object DSS.

RQSDRR
A generated 2-byte field that associates a request with its request data, the replies to the request, and
the data that is returned for the request.

DDM commit and rollback processing

The IMS implementation of the distributed data management (DDM) architecture includes support for
commit and rollback processing.

XA support and the processing of global transactions is controlled by the DDM commands SYNCCTL and
SYNCCRD.

The processing of local transactions is controlled by the DDM commands RDBCMM and RDBRLLBCK.
IMS does not extend these DDM commands beyond their original specification by DRDA.

Documentation for these commands can be found in DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture.

264 IMS: Application Programming APIs



DDM commands and command objects

IMS supports a subset of the distributed data management (DDM) architecture commands and command
objects and defines other IMS product-unique DDM commands.

ACCRDB command (X'2001")

The distributed data management (DDM) architecture ACCRDB command allocates a program
specification block (PSB) on behalf of the source server. The PSB represents a connection between the
DDM source server and an IMS database.

The PSB remains allocated until the database connection is closed and the communications conversation
is terminated.

Format

»— DSSHDR — LL — CP — RDBNAM — RDBACCCL — PRDID L _J TYPDEFNAM >«
PRDDTA

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'2001', the 2-byte codepoint of the ACCRDB command.

RDBNAM

A required parameter (X'2110") that contains the IMS PSB name that identifies the target database.
The PSB name is a character string up to 8 bytes long. RDBNAM can optionally include the alias name
of the IMS data store.

RDBACCCL
A required parameter that specifies the application manager that accesses the database. The
codepoint for RDBACCCL is X'210F'". The value of RDBACCCL is reserved and must be X'2407".

PRDID
A required parameter that specifies the release level of the source DDM server. The codepoint for
PRDID is X'112E".

PRDDTA
An optional parameter that specifies product-specific information that is passed to the target if the

SRVCLSNM of the target server is not known when the ACCRDB command is issued. The codepoint for
PRDDTA is X'2104". This parameter can be ignored by the target server.

TYPDEFNAM
A required parameter (X'002F') that specifies the name of the data type definition. TYPDEFNAM
consists of a 2-byte specification of length (LL), a 2-byte codepoint (CP), and the VALUE. The VALUE is
reserved and must be QTDSQL370, which is the general EBCDIC SQL type definition for machines that

use EBCDIC strings, IEEE floating-point numbers, and non-byte-reversed floating-point and integer
numbers.

Usage

If no errors occur during the processing of the ACCRDB command, the IMS target server returns the
ACCRDBRM reply message to indicate that the database has been allocated.

Chapter 2. DRDA DDM command architecture reference 265



Chained command objects

No command objects can be chained to the ACCRDB command.

Positive reply messages

In response to the ACCRDB command, the IMS target DDM server returns to the source server the
following positive reply messages:

ACCRDBRM
Access to database completed.

Codepoint: X'2201"

Specifies that the named database in the previous ACCRDB command is now available to the client for
processing.

Error reply messages

In response to the ACCRDB command, the IMS target DDM server can return to the source DDM server the
following error reply messages that are unique to the ACCRDB command:

Table 76. Possible error reply messages unique to the ACCRDB command

Codepoint of reply message Name of reply message Meaning of reply message
X'2203' RDBATHRM Not authorized to database.
X'2211" RDBNFNRM Database not found.

X'221A' RDBAFLRM RDB access failed reply message.

If the RDBNAM parameter

was specified on the ACCRDB
command, the RDBAFLRM reply
message indicates that the
database (RDB) failed the
attempted connection.

Related reference

“ACCRDBRM reply message (X'2201")” on page 309

The distributed data management (DDM) architecture ACCRDBRM (access to database completed) reply
message specifies that the named database in the previous ACCRDB command is available to the client
for processing.

“RDBNAM parameter (X'2110')” on page 344
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.

“RDBAFLRM reply message (X'221A")” on page 326
The distributed data management (DDM) architecture RDBAFLRM (database access failed) reply message
indicates that the database access failed.

“RDBATHRM reply message (X'2203")” on page 327
The distributed data management (DDM) architecture RDBATHRM (not authorized to database) reply
message indicates that the user is not authorized to access the database.

“RDBNACRM reply message (X'2204")” on page 328

266 IMS: Application Programming APIs



The distributed data management (DDM) architecture RDBNACRM (database not accessed) reply
message indicates that the access database command (ACCRDB) was not issued prior to a command
that requested the database services.

ACCSEC command (X'106D")

The ACCSEC DDM command is used to determine the type of security checking that is performed when an
application program on the source server connects to a database on the IMS target server.

The source server uses the ACCSEC command to negotiate with the IMS target server which type of
security mechanism, as defined by the DDM architecture, is used for identification and authentication.
IMS supports only the user ID and Password Security Mechanism (USRIDPWD) of the DDM architecture.
The ACCSEC command must always precede the SECCHK command when any of the valid security
mechanisms are active.

Format

»— DSSHDR — LL — CP — SECMEC L J )
RDBNAM

Parameters

DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'106D', the 2-byte codepoint of the ACCSEC command.

SECMEC
A required parameter that specifies the security mechanism that the source server uses when
interacting with the IMS target server. IMS supports only the USRIDPWD security mechanism of the
DDM architecture. To specify USRIDPWD enter a 2-byte binary number 3 in the SECMEC parameter.

RDBNAM
An optional parameter (X'2110') that contains the IMS PSB name that identifies the target database.

The PSB name is a character string up to 8 bytes long. RDBNAM can optionally include the alias name
of the IMS data store.

Usage

During the initial handshaking between the source and target DRDA servers, the source server must issue
the EXCSAT command chained to the ACCSEC command.

In a successful exchange, the IMS target server returns the ACCSECRD reply data object in response to
the ACCSEC command. The ACCSECRD reply object identifies the security mechanism that is used by the
IMS target server to the source server. In a successful exchange, the value returned in the ACCSECRD
reply object is the same as the value of the SECMEC parameter of the ACCSEC command.

If the IMS target server detects an error while processing the ACCSEC command, the ACCSECRD reply
object contains the SECCHKCD parameter. In the ACCSECRD reply object, the SECCHKCD parameter has
an implied severity code of ERROR. After an error, the ACCSEC command must be sent again before a
SECCHK command can be sent to authenticate the connection.

Chained command objects

No command objects can be chained to the ACCSEC command.

Chapter 2. DRDA DDM command architecture reference 267



Reply data objects

In response to the ACCSEC command, the IMS target DDM server can return to the source DDM server the
following reply data objects:

ACCSECRD (X'14AC")
Access security reply data.

Error reply messages

In response to the ACCSEC command, the IMS target DDM server can return to the source DDM server the
following reply messages:

Table 77. Possible reply messages for the ACCSEC command

Codepoint of reply message Name of reply message Meaning of reply message
X'121C! CMDATHRM Not Authorized to Command
X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached
X'123C' INVRQSRM Invalid request

X'124C' SYNTAXRM Data stream syntax error
X'1250' CMDNSPRM Command not supported
X'1251' PRMNSPRM Parameter not supported
X'1252' VALNSPRM Parameter value not supported
X'1254' CMDCHKRM Command check reply message
X'125F TRGNSPRM Target not supported

Related reference

“ACCSECRD reply object (X'14AC")” on page 311

The distributed data management (DDM) architecture ACCSECRD (access security reply data) reply object
contains the security information from the security manager of the target server. This information is
returned in response to the ACCSEC command.

“RDBNAM parameter (X'2110')” on page 344
The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.

CLSQRY command (X'2005')

The distributed data management (DDM) Architecture CLSQRY command closes a query that was opened
previously by an OPNQRY call.

Format

»— DSSHDR — LL — CP — PCBNAME >«

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

268 IMS: Application Programming APIs



CcP
X'2005', the 2-byte codepoint of the CLSQRY command.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSOQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907".

Usage
Use the DDM command CLSQRY (close a query) to close a query that was opened previously by an

OPNORY call.

Chained command objects

No command objects can be chained to the CLSQRY command.

Error reply messages

If errors occur during the processing of the CLSQRY command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 78. Possible error reply messages for the CLSQRY command

Codepoint of reply message Name of reply message Meaning of reply message
X'121C' CMDATHRM Not Authorized to Command
X'1232! AGNPRMRM Permanent agent error
X'1233' RSCLMTRM Resource limits reached
X'1245' PRCCNVRM Conversational protocol error
X'124C' SYNTAXRM Data stream syntax error
X'1250' CMDNSPRM Command not supported
X'1251' PRMNSPRM Parameter not supported
X'1252' VALNSPRM Parameter value not supported
X'1254' CMDCHKRM Command check reply message
X'125F TRGNSPRM Target not supported

CNTQRY command (X'2006")

The distributed data management (DDM) architecture CNTQRY command continues a query by resuming
the return of the result set data that was generated by a previous OPNQRY call.

Format

»— DSSHDR — LL — CP

PCBNAME — QRYBLKSZ >

L MAXBLKEXT J L QRYROWSET J B

Chapter 2. DRDA DDM command architecture reference 269



Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'2006', the 2-byte codepoint of the CNTQRY command.

MAXBLKEXT
An optional parameter that specifies the maximum number of extra blocks per result set that the
requester is capable of receiving as reply data in the response to the CNTQRY command. The number
is specified as a 2-byte binary number. A value of 0 indicates that the requester is not capable of
receiving extra query blocks of answer set data. A value of -1 indicates that the requester is capable of
receiving the entire result set. The codepoint for MAXBLKEXT is X'2141".

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSOQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907".

QRYBLKSZ
A required parameter that specifies the size of query blocks that is ideal for the source application
program. Query blocks are used by the target server to return answer set data. The target server
can override this parameter as needed. The query block size is specified as a 4-byte unsigned binary
number. The minimum size for a query block is 0.5 KB. The maximum size is 10 MB. The codepoint for
QRYBLKSIZ is X'2114".

QRYROWSET
An optional parameter that specifies the number of rows of data to return in one network reply. The
number of rows is specified as a 4-byte binary number. The minimum value for QRYROWSET is 0. The
maximum value is 32 767. The code point for the QRYROWSET parameter is X'2156".

The JDBC driver uses the following calculation to determine how many records can be placed into the
buffer that ODBM returns from the IMS DB through the DRDA protocol. Here is a brief description of
the variables used in the formula:

IOAREALENGTH: By leveraging the database metadata available in the catalog, the length for a given
path (record) call can be determined. This is the sum of the maximum possible length for all segments
in the path call. For example, if you specify SELECT * FROM SEGMA, SEGMB where SEGMB is a child
of SEGMA, then the length of the path call (record) being returned is the length of SEGMA + the length
of SEGMB. This length is referred to as IOAREALENGTH.

MAXRETURNDATA: ODBM has its own buffer that is used to collect data prior to sending it back to the
user. This buffer is referred to as MAXRETURNDATA and is set it to 1MB.

MAXROWNDATA: For each record that gets returned, there is some additional overhead that uses

the amount of usable buffer space for actual record data. The formula accounts for this additional
overhead. 44 bytes will be used for the keyfeedback of each row as well as bytes used to describe
the SSAList (equivalent of the WHERE clause from the SQL statement). The amount of space required
per row of data is referred to as MAXROWDATA.

Formula used to calculate QRYROWSET:

TOAREALENGTH = LENGTH_OF_YOUR_PATHCALL

MAXRETURNDATA = 1MB

MAXROWDATA = 44 + (NUM_OF_SEGMENT_LEVELS_IN_SSALIST * 256) + IOAREALENGTH
QRYROWSET = MAXRETURNDATA / MAXROWDATA

270 IMS: Application Programming APIs



Usage

The DDM command CNTQRY (continue a query) to resume the return of result set data generated by a
previous OPNQRY call.

Chained command objects

No command objects are chained to the CNTQRY command.

Reply data objects
The following reply data objects can be returned in response to the CNTQRY command:

QRYDTA (X'241B")
Query answer set data.

Error reply messages

If errors occur during the processing of the CNTQRY command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 79. Possible error reply messages for the CNTQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C! CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124cC' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1254' CMDCHKRM Command check reply message

X'125F TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220B' ENDQRYRM End of query

X'220D' ABNUOWRM Abnormal end of unit of work
condition

X'2213' SQLERRRM SQL error condition

X'2218' RDBUPDRM Database update reply message.

DEALLOCDB command (X'C801")

The distributed data management (DDM) DEALLOCDB command terminates all resources that are
associated with a PSB by deallocating the PSB named in the RDBNAM parameter.

Format

»— DSSHDR — LL — CP — RDBNAM >«

Chapter 2. DRDA DDM command architecture reference 271



Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'C801/, the 2-byte codepoint of the DEALLOCDB command.

RDBNAM

A required parameter (X'2110") that contains the IMS PSB name that identifies the target database.
The PSB name is a character string up to 8 bytes long. RDBNAM can optionally include the alias name
of the IMS data store.

Usage

If no errors occur during the processing of the DEALLOCDB command, the IMS target server returns the
DEALLOCDBRM reply message to indicate that the database has been successfully deallocated.

Chained command objects

No command objects can be chained to the DEALLOCDB command.

Positive reply messages

In response to the DEALLOCDB command, the IMS target DDM server returns to the source server the
following positive reply messages:

DEALLOCDBRM (X'CA01")
Deallocation of database complete.

Specifies that the named PSB is now deallocated.

Error reply messages

In response to the DEALLOCDB command, the IMS target DDM server can return to the source DDM server
the following error reply messages:

Table 80. Possible error reply messages for the DEALLOCDB command

Codepoint of reply message Name of reply message Meaning of reply message
X'1232! AGNPRMRM Permanent agent error
X'124cC! SYNTAXRM Data stream syntax error

Related reference

“RDBNAM parameter (X'2110")” on page 344

The distributed data management (DDM) architecture RDBNAM parameter identifies the target database
for a given interaction.

“DEALLOCDBRM reply message (X'CA01")” on page 314
The distributed data management (DDM) architecture DEALLOCDBRM (deallocate database completed)
reply message indicates that the named PSB is deallocated.

“Overview of the syntax for DDM terms supported by IMS” on page 263

272 IMS: Application Programming APIs



IMS supports the general syntax of terms defined by the distributed data management (DDM)
architecture.

DLIFUNC command object (X'CC05")

Use the distributed data management (DDM) architecture DLIFUNC (DL/I function) command object to
specify the DL/I function that is being called.

Format

»— DSSHDR — LL — CP — BYTSTRDR -»«

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'CCO5', the 2-hyte codepoint of the DLIFUNC command object.

BYTSTRDR
Byte String Data Representation, a required character string that contains the DL/I call to run on the
database. The following character string values can be specified in the DLIFUNC command object:

ISRT
Insert call

DLET
Delete call

REPL
Replace call

GHU
Get Hold Unique call

GU
Get Unique call

GHN
Get Hold Next call

GN
Get Next call

GHNP
Get Hold Next Within Parent call

GNP
Get Next Within Parent call

DELETE
Batch Delete call

UPDATE
Batch Replace call

RETRIEVE
Batch Retrieve call

Related reference
“EXCSQLIMM command (X'200A")” on page 276

Chapter 2. DRDA DDM command architecture reference 273



The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.

“OPNQRY command (X'200C")” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

DLIFUNCFLG command object (X'CC09")

Use the distributed data management (DDM) architecture DLIFUNCFLG (DL/I function flag) command
object to specify whether a DL/I batch processing operation starts with a GU or a GN call and which SSA
list is associated with each call.

Format
»— DSSHDR — LL — CP — FFFF <

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CP
X'CC09', the 2-byte codepoint of the DLIFUNCFLG command object.

FFFF
A required 4-byte flag value. Each byte in the flag specifies a different DL/I batch processing option:
First byte
X’00’
Begin batch processing with a GHN call.
X80’
Begin batch processing with a GHU call.
Second byte
The first four bits of the second byte indicate which SSAList is associated with the get position call.
The second four bits indicate which SSAList is associated with an optional REPL call that follows
the get position call:
B’0000’
No SSA
B’1000’
First SSAin list
B’0100’
Second SSA in list
B’0010’
Third SSA in list
B’0001’
Fourth SSA in list
Third byte

The third byte is specified in the same format as the second byte, but is used for subsequent GHN
and optional REPL calls that follow the initial get position call.

Fourth byte
Reserved.

274 IMS: Application Programming APIs



EXCSAT command (X'1041")

The distributed data management (DDM) architecture EXCSAT command initiates the exchange of
attributes between a source application server and an IMS target server to identify the server class names
and levels of DDM support of each server. The EXCSAT command must always be the first command sent
from a source server to the IMS target server.

Format
»— DSSHDR — LL — CP SRVCLSNM -«
L EXTNAM J L SRVNAM J L SRVRLSLV J
Parameters
DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).
LL
The length specified as a 2-byte binary integer. This length includes LL and CP.
CcP
X'1041', the 2-byte codepoint of the EXCSAT command.
EXTNAM

Optional. The variable-length name of the process or thread that is requesting access to an IMS
database. The specified name identifies the application thread for tracing and problem determination.
If the job name includes embedded blanks, the name must be enclosed in quotation marks. The
maximum length of EXTNAM is 255 bytes. The codepoint is X'115E".

SRVNAM
Optional. The variable-length name of the source DDM server. The specified name identifies
for tracing and problem determination purposes the hostname of the computer that the source
application program is running on. If the server name includes embedded blanks, the name must be
enclosed in quotation marks. The maximum length is 255 bytes. The codepoint is X'116D".

SRVCLSNM
Specifies the DDM server class name used by IMS: DFS. DFS is currently the only class name
supported by IMS. The SRVCLSNM enables the DRDA product-unique extension used by IMS.

The codepoint of SRVCLSNM is X'1147'. The variable-length DDM server class name is specified as a
character string.

Usage

The EXCSAT DDM command is used to initiate a request to access an IMS database and identify the
requestor, a DDM source server to the DDM target server of IMS.

During the initial handshaking between the source and target DRDA servers, the source server must issue
the EXCSAT command chained to the ACCSEC command.

In a successful exchange, the IMS target server returns the EXCSATRD reply data object in response to
the EXCSAT command. The EXCSATRD reply object identifies the IMS target server to the source server.

Chained command objects

No command objects are chained to the EXCSAT command.

Reply data objects

In response to the EXCSAT command, the IMS target DDM server can return to the source DDM server the
following reply data objects:

Chapter 2. DRDA DDM command architecture reference 275



EXCSATRD (X'1443")
Exchange server attributes.

Error reply messages

In response to the EXCSAT command, the IMS target DDM server can return to the source DDM server the
following error reply messages:

Table 81. Possible error reply messages for the EXCSAT command

Codepoint of reply message Name of reply message Meaning of reply message
X'1210' MGRLVLRM Manager-level conflict

X'124C! SYNTAXRM Data stream syntax error
X'1250' CMDNSPRM Command not supported
X'1251' PRMNSPRM Parameter not supported
X'1252' VALNSPRM Parameter value not supported
X'1254' CMDCHKRM Command check reply message
X'125F TRGNSPRM Target not supported

Related reference

“EXCSATRD reply object (X'1443")” on page 317

The EXCSATRD reply data object returns information about the IMS target DDM server, such as server
name or the product release level, to the source DDM server.

EXCSQLIMM command (X'200A")

The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.

Format
DLI Flow:

»— DSSHDR — LL — CP — PCBNAME — PKGNAMCSN L J RTNSETSTT —»«
RDBCMTOK

SQL Flow:

»— DSSHDR — LL — CP PKGNAMCSN >
L MONITOR J L PKGSN _J L QRYINSID J
] L RDBCMTOK J L RDBNAM J L RTNSETSTT J A

Parameters
DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CP
X'200A", the 2-byte code point of the EXCSQLIMM command.

276 IMS: Application Programming APIs



QRYINSID
An 8-byte query instance identifier.

Restriction: This parameter is required if the EXCSQLIMM command is operating on a positioned
delete/update SQL statement and more than one query instance exists for the section associated with
the query.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907".

PKGNAMCSN(X'2113")
Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. The PKGNAMCSN can have one of the following formats, depending
on the length of the RDBNAM, RDBCOLID, and PKGID contained therein:

- RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of the PKGNAMCSN is
identical to the sole format used before DDM Level 7, where the length is fixed at 68. The use of the
SCLDTALEN is disallowed with this format.

- At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This format of the PKGNAMCSN
requires the SCLDTALEN precedes each of the RDBNAM, RDBCOLID, and PKGID. With this format,
the PKGNAMCSN has a minimum length of 75 and a maximum length of 785.

Format:
»-LL—CP L J RDBNAM L J PKGID — PKGNAM —
SCLDTALEN SCLDTALEN
PKGCNSTKN RDBCOLID >«
PKGSN _j L SCLDTALEN J
Parameters:
RDBNAM

An 18- to 255-byte character field that represents the relational database name.
PKGID
An 18- to 255-byte character field that represents the relational database package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of a relational database
package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and the relational database
package are synchronized. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:

« RDB collection identifier (RDBCOLID)
« Relational database name (RDBNAM)
« RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the parameters listed is greater than
18 bytes.

Chapter 2. DRDA DDM command architecture reference 277



RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of objects that are contained
in a relational database. It is used for user-defined grouping.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18 bytes, the SCLDTALEN is
mandatory and must precede the RDBCOLID. Otherwise, the SCLDTALEN is disallowed.

RDBCMTOK
An optional parameter (X'2105") that specifies whether the database allows the processing of commit
and rollback operations. Set the value to X'F1' (TRUE), which indicates that the database does allow
commit and rollback processing.

Note: IMS Universal drivers always send a value of TRUE.

RTNSETSTT(X'210E")
If any special register setting was modified during command execution, the return SET statement
controls whether the target server must return one or more SQLSTT reply data objects upon
successful command processing. Each SQLSTT reply data object contains an SQL SET statement for a
special register whose setting was modified on the current connection.

If no special register setting was modified, no SQLSTT reply data object is returned, regardless of the
RTNSETSTT setting.

Format:

»— LL — CP — VALUE »«

Parameters:
VALUE
X'oo'
Target server must not return any SQL SET statements.
X'o1'
Target server must return one or more SQL SET statements for special registers whose
settings were modified.

Note: IMS always sends X'01' from the IMS Universal drivers.

MONITOR(X'1900')
»— LL — CP — FLAGS -»<

FLAGS
A 4-byte flag value.

Usage

The DDM command EXCSQLIMM (execute immediate SQL) executes a replace, insert, or delete operation
on an IMS database.

If no errors occur during the processing of the EXCSQLIMM command, the IMS target server returns the
database update reply message RDBUPDRM (X'2218").

Chained command objects
The following command objects can be chained to the EXCSQLIMM command:

INAIB (X'CC01")
Contains AIB data. If the DLIFUNC value is either DELETE or UPDATE, the AIB parameter is required.

278 IMS: Application Programming APIs



DLIFUNC (X'CCO05")

The DL/I call to execute on the database. The DL/I call is specified as a character string and defines
the action to perform on the database. For a description of the possible values for DLIFUNC, see the

description of DLIFUNC.
FLDENTRY (X'CC03'")

If DLIFUNC is set to ISRT, REPL, or UPDATE, the FLDENTRY parameter is required.

SSALIST (X'CC06')

Lists the segment search arguments. If DLIFUNC is set to UPDATE or DELETE, the SSALIST parameter
is required. If DLIFUNC is set to DLET, ISRT, or REPL, the SSALIST parameter is optional.

Positive reply messages

In response to the EXCSQLIMM command, the IMS target DDM server returns to the source server the

following positive reply message:

RDBUPDRM (X'2218'")

Database update reply message.

Reply data objects

No reply data objects are returned in response to the EXCSQLIMM command.

Error reply messages

In response to the EXCSQLIMM command, the IMS target DDM server can return to the source DDM
server the following error reply messages:

Table 82. Possible error reply messages for the EXCSQLIMM command

Code point of reply message

Name of reply message

Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124cC' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1253' OBINSPRM Object not supported

X'1254' CMDCHKRM Command check reply message

X'125F TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220D' ABNUOWRM Abnormal end of unit of work
condition

X'220E' DTAMCHRM Data Descriptor Mismatch

X'2213' SQLERRRM SQL error condition

X'2225' CMMRQSRM Commitment request

Chapter 2. DRDA DDM command architecture reference 279



EXCSQLIMM examples
The following example shows EXCSQLIMM that is part of the request to an OPNQRY call.

[ibm] [ims] [drda] [t4] SEND BUFFER: EXCSQLIMM (ASCII) (EBCDIC)

[ibm] [ims] [drda] [t4] 0000 0060DO510002005A 200A00442113E2C1 . '.Q...Z ..D!... .-%....l...... SA
[ibm] [ims] [dxrda] [t4] 0010  DAD7D3C540404040 4040404040404040 ....Q@EEEEEEEEEE@ MPLE

[ibm] [ims] [drda] [t4] 0020  D5E4D3D3C9C44040 4040404040404040 ...... @@EE@E@E@@@@ NULLID

[ibm] [ims] [drda] [t4] 0030  4040E2E8E2E2C8F2 FOF0404040404040 @@........ Q@eEee@ SYSSH200

[ibm] [ims] [dxrda] [t4] 0040  404040405359534C 564C303100410005 @EEESYSLVLO1.A.. 500%0%00c0000
[ibm] [ims] [drda] [t4] 0050 2105F10005210E01 0008190080000000 !....!.......... .. dlo o0 0000000000

Related reference

“DLIFUNC command object (X'CC05')” on page 273

Use the distributed data management (DDM) architecture DLIFUNC (DL/I function) command object to
specify the DL/I function that is being called.

“FLDENTRY command object (X'CC03')” on page 282
Use the distributed data management (DDM) architecture FLDENTRY (field entry) command object to
specify the field to insert or update.

“SSALIST command object (X'CC06')” on page 307
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.

“INAIB command object (X'CC01")” on page 284
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

“RDBUPDRM reply message (X'2218")” on page 330
The distributed data management (DDM) architecture RDBUPDRM (database update) reply message
indicates that the a DDM command resulted in an update at the target database.

EXCSQLSET command (X'2014")

The distributed data management (DDM) architecture Execute SQL SET command (EXCSQLSET) executes
one or more SET statements to establish the application environment.

Format

»— DSSHDR — LL — CP — PKGNAMCSN — RTNSETSTT — MONITOR -»«

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL
A 2-byte field that has the length of the EXCSQLSET command.

CP(X'2014")
The 2-byte codepoint of the EXCSQLSET command.

PKGNAMCSN(X'2113")
Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. The PKGNAMCSN can have one of the following formats, depending
on the length of the RDBNAM, RDBCOLID, and PKGID contained therein:

« RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of the PKGNAMCSN is
identical to the sole format used before DDM Level 7, where the length is fixed at 68. The use of the
SCLDTALEN is disallowed with this format.

280 IMS: Application Programming APIs



« At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This format of the PKGNAMCSN
requires the SCLDTALEN precedes each of the RDBNAM, RDBCOLID, and PKGID. With this format,
the PKGNAMCSN has a minimum length of 75 and a maximum length of 785.

Format:
»-LL—CP L J RDBNAM L J PKGID — PKGNAM —
SCLDTALEN SCLDTALEN
PKGCNSTKN L J RDBCOLID >«
PKGSN —J SCLDTALEN
Parameters:
RDBNAM

An 18- to 255-byte character field that represents the relational database name.
PKGID
An 18- to 255-byte character field that represents the relational database package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of a relational database
package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and the relational database
package are synchronized. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:

« RDB collection identifier (RDBCOLID)

« Relational database name (RDBNAM)

« RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the parameters listed is greater than
18 bytes.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of objects that are contained
in a relational database. It is used for user-defined grouping.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18 bytes, the SCLDTALEN is
mandatory and must precede the RDBCOLID. Otherwise, the SCLDTALEN is disallowed.

RTNSETSTT(X'210E")
Return SET statement controls whether the target server must return one or more SQLSTT reply data
objects, each containing an SQL SET statement for a special register whose setting has been modified
on the current connection, upon successful processing of the command, if any special register had
its setting modified during execution of the command. NO SQLSTT reply data object is returned if no
special register has had its setting modified, regardless of RTNSETSTT setting.

Format:

»— LL — CP — VALUE »«

Parameters:

VALUE
X'00' — Target server must not return any SQL SET statements.

Chapter 2. DRDA DDM command architecture reference 281



X'01' — Target server must return one or more SQL SET statements for special registers whose
settings have been modified.

Note: IMS will always send a 0x'01' from the Universal Driver.

MONITOR(X'1900")
»— LL — CP — FLAGS -»<

FLAGS
A 4-byte flag value.

EXCSQLSET examples

The following example shows EXCSQLSET that is part of the request to an OPNQRY call.
[ibm] [ims] [drda] [t4] SEND BUFFER: EXCSQLSET (ASCIT) (EBCDIC)
[ibm] [ims] [dxrda] [t4] 01234567 89ABCDEF 0123456789ABCDEF 0123456789ABCDEF
[ibm] [ims] [drda] [t4] 0060  OO4EDO5100010048 2014004421134BC9 .N.Q...H ..D!.K. .+}............ I
[ibm] [ims] [drda] [t4] 0010 DAE2F14040404040 4040404040404040 ...Q0EREEEEEEEE@ MS1
[ibm] [ims] [drda] [t4] 0020  D5E4D3D3C9C44040 4040404040404040 . ..... @@EEEEEEE@ NULLID
[ibm] [ims] [drda] [t4] 0030  4040E2ES8E2E2D5F2 FOFQ404040404040 @@........ @eeeee@ SYSSN200
[ibm][ims][drda][t4] 0040  404040405359534C 56430310041 @@@@SYSLVLO1.A RIS

Note: RTNSETSTT & MONITOR are not in the example.

FLDENTRY command object (X'CC03")

Use the distributed data management (DDM) architecture FLDENTRY (field entry) command object to
specify the field to insert or update.

Format

»— DSSHDR — LL — CP — RECOFF — FLDVAL >«

Parameters
DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).
LL
The length specified as a 2-byte binary integer. This length includes LL and CP.
CP
X'CC03', the 2-byte codepoint of the FLDENTRY command object.
RECOFF
A required, 4-byte signed integer that contains the offset of the field within the hierarchic path I/O
area.
FLDVAL

A required string that contains the byte array to place into the I/O area for the ISRT or REPL DL/I call
starting at position RECOFF.

Usage
Multiple FLDENTRY command objects might be chained to the EXCSQLIMM command.

Related reference
“EXCSQLIMM command (X'200A")” on page 276

282 IMS: Application Programming APIs



The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.

FLDENTRYREL command object (X'CCOC")

Use the distributed data management (DDM) architecture FLDENTRYREL (relative field entry) command
object to specify which field to insert or update.

Restriction: The FLDENTRYREL command object is supported only with an ODBM DDM level of 1, 2, 3 or
1, 3.

Format
»— DSSHDR — LL — CP — SEGMOFF — SEGMID — FLDVAL —»«

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'CCOC!, the 2-byte codepoint of the FLDENTRYREL command object.

SEGMOFF
A required, 4-byte, signed integer that specifies the relative offset of the target field from the start of
the parent segment.

SEGMID
A required, 1-byte, signed integer that specifies which segment in the SEGMLIST the field is
referenced from. This value is relative to 1 rather than 0.

FLDVAL
The value for the field that is being updated or inserted.

IMSCALL command (X'C803")

Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.

Format

»— DSSHDR — LL — CP — CALLNAME L J >4
IOAREA

Parameters
DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).
LL
The length specified as a 2-byte binary integer. This length includes LL and CP.
CP
X'C803/, the 2-byte codepoint of the IMSCALL command.
CALLNAME
A required character string (codepoint is X'C90C') that represents the type of the DL/I call that is
made.

Chapter 2. DRDA DDM command architecture reference 283



IOAREA
An optional parameter in byte array (codepoint is X'C90B') that specifies the input and output area.

Usage
The IMSCALL command issues DL/I calls for IMS DB system services in the following format:

»— call_name — INAIB — IOAREA -»«

Chained command objects

INAIB (X'CC01")
The AIB data to send from the source to the target server.

Positive reply messages

In response to the IMSCALL command, the IMS target DDM server returns to the source server the
following reply message:

IMSCALLRM (X'CA04")
Contains the results of the IMSCALL command. The results can indicate the success or failure of the
DL/I call for IMS DB system services.

Error reply messages

In response to the OPNQRY command, the IMS target DDM server can return to the source DDM server
the following error reply messages:

Table 83. Possible reply messages for the OPNQRY command

Codepoint of reply message Name of reply message Meaning of reply message
X'1232' AGNPRMRM Permanent agent error
X'124C' SYNTAXRM Data stream syntax error
X'1251' PRMNSPRM Parameter not supported
X'1252' VALNSPRM Parameter value not supported

Related reference

“IMSCALLRM reply message (X'CA04")” on page 318

The distributed data management (DDM) architecture IMSCALLRM (IMS call) reply message returns the
results of a DL/I call for IMS DB system services submitted by using the IMSCALL command.

“INAIB command object (X'CC01")” on page 284
Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

“DL/I calls for IMS DB system services” on page 30
Use these DL/I calls to obtain IMS DB system services.

INAIB command object (X'CC01')

Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

Format

284 IMS: Application Programming APIs



»— DSSHDR — LL — CP — AIBRSNM1

L AIBRSNM2 J L AIBSFUNC J ]
E AIBOALEN j

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CP
X'CCO1', the 2-byte codepoint of the INAIB command object.

AIBRSNM1
A required String that contains the resource (PCB) name. The string must be left-aligned and padded
with blanks, to a total of 8 bytes. The codepoint is X'C901".

AIBRSNM2
An optional String that contains a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is the
4-character ID. The codepoint is X'C902".

AIBSFUNC
An optional String that contains the sub-function code. The String must be left justified and padded
with blanks to a total of 8 bytes. The codepoint is X'C903".

AIBOALEN

An optional, 4-byte integer that specifies the maximum output length. This field is used for all calls
that return data. The codepoint is X'C904".

Usage

This AIB command object contains only the AIB data to send from the source to the target server. The
AIB and DBPCB data to send from the target to the source server is contained in the aibStream and
dbpcbStream data structures inside the OUTAIBDBPCB objects.

Related reference

“AIBOALEN parameter (X'C904")” on page 336
The AIBOALEN parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that identifies the maximum output length on all calls that return data.

“AIBRSNM1 parameter (X'C901")” on page 337
The AIBRSNM1 parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the PCB name.

“AIBRSNM2 parameter (X'C902')” on page 337

The AIBRSNM2 parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the identifier of the ODBA startup table.

“AIBSFUNC parameter (X'C903")” on page 338

The AIBSFUNC parameter is an IMS product-unique distributed data management (DDM) architecture
parameter that contains the sub-function code, if any, of a DL/I call.

“EXCSQLIMM command (X'200A")” on page 276

The distributed data management (DDM) architecture EXCSQLIMM command executes an insert, update,
or delete operation on an IMS database.

“IMSCALL command (X'C803")” on page 283

Chapter 2. DRDA DDM command architecture reference 285



Use the distributed data management (DDM) architecture IMSCALL command to issue DL/I calls for IMS
DB system services.

“OPNQRY command (X'200C")” on page 286
The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

MONITORRD command (X'1C00")

The distributed data management (DDM) architecture MONITORRD allows the target agent to return
monitoring data to the source agent. The value returned is used to determine the elapsed CPU time for a
database call.

Format

»— DSSHDR — LL — CP — ETIME »«

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL
A 2-byte field that has the length of the MONITORRD command.

CP(X'1C00")
The 2-byte codepoint of the MONITORRD command.

ETIME(X'1901")
The elapsed time is a 64-bit binary number that measures time in microseconds. Consists of two
bytes of length field (LL), and two bytes of the code point, followed by the data. The length is 12 bytes.

Format:
»— LL — CP — VALUE -+«

Parameters:

VALUE
An 8-byte field representing the elapsed time.

MONITORRD example

In the following example, the server time is calculated in the trace by aggregated all of the MONITORRD
ETIME values for a communication exchange.

[ibm] [ims] [dxda] [t4] RECEIVE BUFFER: MONITORRD (ASCII) (EBCDIC)
[ibm] [ims] [drda] [t4] 0000 0016D04300020010 1C00000C19010000 ...C............ .. Baoco00000000¢c
[ibm] [ims] [drda] [t4] 0010 ©0O0000036B39 k9 5000

[ibm] [ims] [dxda] [SystemMonitor:stop] core: 283.09152ms | network: 256.137805ms | server: 254.816ms

OPNQRY command (X'200C")

The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

Format

DLI Flow:

286 IMS: Application Programming APIs



»— DSSHDR — LL — CP —

] L MAXBLKEXT J

SQL Flow:

»— DSSHDR — LL — CP T PKGNAMCSN L J QRYBLKSZ —»«
PKGSN —J MONITOR

PCBNAME

QRYBLKSZ )

L QRYROWSET J -

L QRYBLKCTL J

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'200C', the 2-byte code point of the OPNQRY command.

MAXBLKEXT
An optional parameter that specifies the maximum number of extra blocks per result set that the
requester is capable of receiving as reply data in the response to an OPNQRY or CNTQRY command.
The number is specified as a 2-byte binary number. A value of 0 indicates that the requester is not
capable of receiving extra query blocks of answer set data. A value of -1 indicates that the requester is
capable of receiving the entire result set. The code point for MAXBLKEXT is X'2141".

MONITOR(X'1900’)
»— LL — CP — FLAGS -»«

FLAGS
A 4-byte flag value.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907".

PKGNAMCSN(X'2113")
Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

QRYBLKCTL
An optional parameter that specifies the type of query block protocol that is used when a query
is opened. IMS supports only the limited block query protocol of the DDM architecture. If the
QRYBLKCTL parameter is specified on the OPNQRY command, the 2-byte data portion of the
QRYBLKCTL parameter must specify the hexadecimal value of X'2417', the code point for the limited
block query protocol (LMTBLKPRC). If the QRYBLKCTL parameter is omitted from the OPNQRY
command, the IMS target server still uses the limited block query protocol. The code point for the
QRYBLKCTL parameter is X'2132".

QRYBLKSZ
A required parameter that specifies the size of query blocks that is ideal for the source application
program. Query blocks are used by the target server to return answer set data. The target server
can override this parameter as needed. The query block size is specified as a 4-byte unsigned binary

Chapter 2. DRDA DDM command architecture reference 287



number. The minimum size for a query block is 0.5 KB. The maximum size is 10 MB. The code point for
the QRYBLKSIZ parameter is X'2114".

QRYROWSET
An optional parameter that specifies the number of rows of data to return in one network reply. The
number of rows is specified as a 4-byte binary number. The minimum value for QRYROWSET is 0. The
maximum value is 32 767. The code point for the QRYROWSET parameter is X'2156".

The JDBC driver uses the following calculation to determine how many records can be placed into the
buffer that ODBM returns from the IMS DB through the DRDA protocol. Here is a brief description of
the variables used in the formula:

IOAREALENGTH: By leveraging the database metadata available in the catalog, the length for a given
path (record) call can be determined. This is the sum of the maximum possible length for all segments
in the path call. For example, if you specify SELECT * FROM SEGMA, SEGMB where SEGMB is a child
of SEGMA, then the length of the path call (record) being returned is the length of SEGMA + the length
of SEGMB. This length is referred to as IOAREALENGTH.

MAXRETURNDATA: ODBM has its own buffer that is used to collect data prior to sending it back to the
user. This buffer is referred to as MAXRETURNDATA and is set it to 1MB.

MAXROWNDATA: For each record that gets returned, there is some additional overhead that uses

the amount of usable buffer space for actual record data. The formula accounts for this additional
overhead. 44 bytes will be used for the keyfeedback of each row as well as bytes used to describe
the SSAList (equivalent of the WHERE clause from the SQL statement). The amount of space required
per row of data is referred to as MAXROWDATA.

Formula used to calculate QRYROWSET:

TOAREALENGTH = LENGTH_OF_YOUR_PATHCALL

MAXRETURNDATA = 1MB

MAXROWDATA = 44 + (NUM_OF_SEGMENT_LEVELS_IN_SSALIST % 256) + IOAREALENGTH
QRYROWSET = MAXRETURNDATA / MAXROWDATA

Usage

If no errors occur during processing of the OPNQRY, the IMS target server returns the OPNQRYRM reply
message to indicate that the query was successfully opened.

Command objects
The following command objects can be chained to the OPNQRY command:

INAIB (X'CC01")
A required command object that contains AIB data.

Note: The INAIB object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

DLIFUNC (X'CCO05")
A required command object that specifies the action to take on the database. The data field of
DLIFUNC is a database function that is specified as a character string. The valid values for DLIFUNC,
when it is chained to the OPNQRY command, are: RETRIEVE, GHU, GU, GHN, GN, GNP, or GHNP.

Note: The DLIFUNC object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

RTRVLFD (X'CC04")
An optional scalar data object representing a field that the client wants to retrieve. Multiple RTRVFLD
objects can be chained to the OPNQRY command. If an RTRVFLD object is not included on the
OPNQRY command, all fields in the retrieved segment are returned.

Note: The RTRVLFD object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

288 IMS: Application Programming APIs



SSALIST (X'CC06")
An optional chained object that lists the segment search arguments. If the SSALIST is not included
on the OPNQRY command, the IMS target server ignores any RTRVFLD chained objects and the query
results in an unqualified step through the IMS database.

Note: The SSALIST object in OPNQRY is not used in DRDA DDM command support for native SQL
implementations.

Positive reply messages

In response to the OPNQRY command, the IMS target DDM server returns to the source server the
following positive reply messages:

OPNQRYRM (X'2205")
Open query reply message.

Reply data objects
The following reply data objects can be returned in response to the CNTQRY command:

QRYDSC (X'241A")
Query answer set description.

QRYDTA (X'241B")
Query answer set data.

Error reply messages

In response to the OPNQRY command, the IMS target DDM server can return to the source DDM server
the following error reply messages:

Table 84. Possible reply messages for the OPNQRY command

Code point of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232! AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124cC' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not supported

X'1253' OBJINSPRM Object not supported

X'1254' CMDCHKRM Command check reply message

X'125F TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220A DSCINVRM Invalid description

X'220B' ENDQRYRM End of query

X'220D' ABNUOWRM Abnormal end of unit of work
condition

X'220E' DTAMCHRM Data descriptor mismatch

Chapter 2. DRDA DDM command architecture reference 289



Table 84. Possible reply messages for the OPNQRY command (continued)

Code point of reply message

Name of reply message

Meaning of reply message

X'220F! QRYPOPRM Query previously opened
X'2212' OPNQFLRM Open query failure
X'2218' RDBUPDRM Database update reply message
OPNQRY examples
OPNQRY only example:
[ibm] [ims] [dxda] [t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)
[ibm] [ims] [dxda] [t4] 0000 005BDOO100O30055 200C004421134BC9 .[..... U..D!'.K. .$%............ I
[ibm] [ims] [dxda] [t4] 0010 DAE2F14040404040 4040404040404040 ...QQREEEEEEEEEE@ MS1
[ibm] [ims] [dxda] [t4] 0020 D5E4D3D3C9C44040 4040404040404040 ...... @@@EEEEE@E@ NULLID
[ibm] [ims] [dxda] [t4] 0030 4040E2E8E2E2D5F2 FOF0404040404040 @@........ Qeeee@ SYSSN200
[ibm] [ims] [dxda] [t4] 0040 404040405359534C 564C303100010008 @E@E@E@SYSLVLOL.... R R
[ibm] [ims] [dxda] [t4] 0050 2114000000000005 215D01 L ).
OPNQRY complete chained request example for SQL SELECT:
[ibm] [ims] [dxda] [t4] SEND BUFFER: EXCSQLSET (ASCII) (EBCDIC)
[ibm] [ims] [dxda] [t4] 01234567 89ABCDEF 0123456789ABCDEF 0123456789ABCDEF
[ibm] [ims] [dxda] [t4] 0000 004EDO5100010048 2014004421134BC9 .N.Q...H ..D!.K. .+%}............ I
[ibm] [ims] [dxda] [t4] 0010 DAE2F14040404040 4040404040404040 ...QQREEEEEEEEEE@ MS1
[ibm] [ims] [dxda] [t4] 0020 D5E4D3D3C9C44040 4040404040404040 ...... @@@EEEEE@E@ NULLID
[ibm] [ims] [dxda] [t4] 0030 4040E2E8E2E2D5F2 FOF0404040404040 @@........ Qeeee@ SYSSN200
[ibm][ims] [dxda] [t4] 0040 404040405359534C 564C30310041 @@@@SYSLVLO1.A R S S
[ibm] [ims] [dxrda] [t4]
[ibm] [ims] [dxda] [t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims] [dxda] [t4] ©GEO 0031D0430001002B 2414002353455420 .1.C...+$..#SET  ..}.............
[ibm] [ims] [dxda] [t4] 0010 434C49454E542057 524B53544E4E414D CLIENT WRKSTNNAM S N ++. (
[ibm] [ims] [dxda] [t4] 0020 452027392E36352E 3137342E32352700 E '9.65.174.25'. .. ... . .........
[ibm][ims] [dxda] [t4] 0030 00 o
[ibm] [ims] [dxrda] [t4]
[ibm] [ims] [dxda] [t4] SEND BUFFER: PRPSQLSTT (ASCII) (EBCDIC)
[ibm][ims] [dxda] [t4] ©0EO 0058D05100020052 200D004421134BC9 .X.Q...R ..D!.K. ..%............ I
[ibm] [ims] [dxda] [t4] 0010 DAE2F14040404040 4040404040404040 ...QQQCREEEEEEEE@ MS1
[ibm] [ims] [dxda] [t4] 0020 D5E4D3D3C9C44040 4040404040404040 ...... @@@e@@@@E@@@ NULLID
[ibm][ims] [dxda] [t4] 0030 4040E2EBE2E2D5F2 FOFQ404040404040 @@........ @EEEEE SYSSN200
[ibm] [ims] [dxda] [t4] 0040 404040405359534C 564C303100010005 @E@EE@SYSLVLOL.... R R S
[ibm] [ims] [dxda] [t4] 0050 2116F10005214604 I || S R
[ibm] [ims] [dxrda] [t4]
[ibm] [ims] [dxda] [t4] SEND BUFFER: SQLATTR (ASCII) (EBCDIC)
[ibm] [ims] [dxda] [t4] 0000 001CDO5300020016 2450000E464F5220 ...S....$P..FOR U U I
[ibm][ims] [drda] [t4] 0010 52454144204F4EAC 59200000 READ ONLY .. ..... [+<. ...
[ibm] [ims] [dxrda] [t4]
[ibm] [ims] [dxda] [t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims] [dxda] [t4] ©0EO 0029D04300020023 2414001B53656C65 .).C...#$...Sele ..3}........... %.
[ibm] [ims] [dxda] [t4] 0010 6374202A2066726F 6D20504844414D56 ct * from PHDAMV ....... ?_.&... (
[ibm] [ims] [dxrda] [t4] 0020  41522E7761726400 00 AR.wazxd. . AR
[ibm] [ims] [dxrda] [t4]
[ibm] [ims] [dxda] [t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)
[ibm] [ims] [dxda] [t4] 0000 005BDOO100O30055 200C004421134BC9 .[..... U..D!'.K. .$%............ I
[ibm] [ims] [dxda] [t4] 0010 DAE2F14040404040 4040404040404040 ...QQREEEEEEEEEE@ MS1
[ibm] [ims] [dxda] [t4] 0020 D5E4D3D3C9C44040 4040404040404040 ...... @@EEEEEEE@E@ NULLID
[ibm] [ims] [dxda] [t4] 0030 4040E2E8E2E2D5F2 FOF0404040404040 @@........ Qeeee@ SYSSN200
[ibm][ims] [dxda] [t4] 0040 404040405359534C 564C303100010008 @E@EE@SYSLVLOL.... R R
[ibm] [ims] [dxda] [t4] 0050 2114000000000005 215D01 L ).

Related reference
“OPNQFLRM reply message (X'2212")” on page 320

The distributed data management (DDM) architecture OPNQFLRM (open query failure) reply message

indicates that the OPNQRY command failed to open the query.
“DLIFUNC command object (X'CC05'")” on page 273

Use the distributed data management (DDM) architecture DLIFUNC (DL/I function) command object to

specify the DL/I function that is being called.
“INAIB command object (X'CC01")” on page 284

290 IMS: Application Programming APIs



Use the distributed data management (DDM) architecture INAIB (input AIB) command object to contain
the AIB data to send from the source to the target server.

“RTRVFLD command object (X'CC04")” on page 294
Use the distributed data management (DDM) architecture RTRVFLD command object to specify the field
that the client wants to retrieve data from.

“SSALIST command object (X'CC06")” on page 307
Use the distributed data management (DDM) architecture SSALIST command object to contain the list of
segment search argument (SSA) objects to qualify the DL/I call.

“OPNQRYRM reply message (X'2205")” on page 321

The distributed data management (DDM) architecture OPNQRYRM (open query) reply message indicates
that the open query (OPNQRY) command or execute SQL statement (EXCSQLSTT) command completed
normally, and that a query process has been initiated.

“QRYPOPRM reply message (X'220F")” on page 324
The distributed data management (DDM) architecture QRYPOPRM (query previously opened) reply
message is returned when a command is issued for a query that is already open.

PRPSQLSTT command (X'200D")

The distributed data management (DDM) architecture Prepare SQL Statement command (PRPSQLSTT)
dynamically binds a SQL statement to a section in an existing database (RDB) package.

Format

»— DSSHDR — LL — CP — SQLSTTGRP -»«

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL
A 2-byte field that has the length of the PRPSQLSTT command.

CP(X'200D")
The 2-byte codepoint of the PRPSQLSTT command.

PKGNAMCSN(X'2113")
Specifies the fully qualified package name, consistency token, and section number within the package
that is used to execute the SQL. The PKGNAMCSN can have one of the following formats, depending
on the length of the RDBNAM, RDBCOLID, and PKGID contained therein:

« RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of the PKGNAMCSN is
identical to the sole format used before DDM Level 7, where the length is fixed at 68. The use of the
SCLDTALEN is disallowed with this format.

- At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This format of the PKGNAMCSN
requires the SCLDTALEN precedes each of the RDBNAM, RDBCOLID, and PKGID. With this format,
the PKGNAMCSN has a minimum length of 75 and a maximum length of 785.

Format:
» LL—CP L J RDBNAM L J PKGID — PKGNAM —»
SCLDTALEN SCLDTALEN
PKGCNSTKN RDBCOLID <«
PKGSN _j L SCLDTALEN J
Parameters:

Chapter 2. DRDA DDM command architecture reference 291



RDBNAM
An 18- to 255-byte character field that represents the relational database name.

PKGID
An 18- to 255-byte character field that represents the relational database package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of a relational database
package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and the relational database
package are synchronized. Mutually exclusive with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:
« RDB collection identifier (RDBCOLID)
« Relational database name (RDBNAM)
« RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the parameters listed is greater than
18 bytes.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18 bytes, the
SCLDTALEN is mandatory and must precede each of the three parameters RDBNAM, RDBCOLID,
and PKGID. Otherwise, the SCLDTALEN is disallowed.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of objects that are contained
in a relational database. It is used for user-defined grouping.

RTNSQLDA(X'2116")
Return SQL Descriptor Area controls whether to return an SQL descriptor area that applies to the SQL
statement this command identifies. The target SQLAM obtains the SQL descriptor area by performing
an SQL DESCRIBE function on the statement after the statement has been prepared.

»— LL — CP — VALUE »«

Parameters:

VALUE
TRUE (X'F1') — Indicates an SQLIMSDA is returned.

FALSE (X'F0') — Indicates an SQLIMSDA is not returned.
Note: IMS will always send a 0x'01' from the Universal Driver.

TYPSQLDA(X'2146")
Type of SQL Descriptor Area.

»— LL — CP — TYPE >«

Parameters:
TYPE
A single-byte signed number that specifies the type of SQLIMSDA to return for the command.

0
Standard output SQLIMSDA. This type is supported for ODBM.

1
Standard input SQLIMSDA. This type is supported for ODBM.

292 IMS: Application Programming APIs



Light output SQLIMSDA
3

Light input SQLIMSDA
4

Extended output SQLIMSDA
5

Extended input SQLIMSDA
MONITOR(X'1900')
»— LL — CP — FLAGS -»«

FLAGS

A 4-byte flag value.

PRPSQLSTT examples

The following example shows PRPSQLSTT that is part of the request to an OPNQRY call.
[ibm] [ims] [drda] [t4] SEND BUFFER: PRPSQLSTT (ASCII) (EBCDIC)
[ibm] [ims] [drda] [t4] 0060  0058D05100020052 200D004421134BC9 .X.Q...R ..D!.K. ..3}............ I
[ibm] [ims] [drda] [t4] 0016  DAE2F14040404040 4040404040404040 ...@EEEEEEEEEEEE@ MS1
[ibm] [ims] [drda] [t4] 0020  D5E4D3D3C9C44040 4040404040404040 ... ... @@@EEEE@@@ NULLID
[ibm][ims] [drda][t4] 0030  4040E2ES8E2E2D5F2 FOFQ404040404040 @Q@........ eeeeee SYSSN200
[ibm] [ims] [drda] [t4] 0040  404040405359534C 564C303100010005 @@EESYSLVLOL. ... I S,
[ibm] [ims] [drda] [t4] 0050  2116F10005214604 [ = B D
RLSE command (X'C802")

Use the distributed data management (DDM) architecture RLSE command to release any database locks
that are held by the application.

Format

»— DSSHDR — LL — CP — PCBNAME >«

Parameters

DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).

LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

CpP

X'C802/, the 2-byte codepoint of the RLSE command.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the query made by a DL/I
call. The PCB name is specified as a character string. The value is initially sent with the original
OPNQRY command. The same value must subsequently be sent in commands such as CNTQRY,
CLSOQRY, and RLSE for proper correlation with the original OPNQRY call. The codepoint for the
PCBNAME parameter is X'C907".

Chained command objects

No command objects are chained to the RLSE command.

Chapter 2. DRDA DDM command architecture reference 293



Positive reply messages

In response to the RLSE command, the IMS target DDM server returns to the source server the following
positive reply message:

RLSERM (X'CA03")
The Release Locks Reply Message indicates to the requester that an RLSE command has completed
normally.

Chained reply data objects

No reply data objects are returned in response to the RLSE command.

Error reply messages

In response to the RLSE command, the IMS target DDM server can return to the source DDM server the
following error reply messages:

Table 85. Possible error reply messages for the RLSE command

Codepoint of reply message Name of reply message Meaning of reply message
X'121C' CMDATHRM Not authorized to command
X'1232! AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached
X'124cC' SYNTAXRM Data stream syntax error
X'1250' CMDNSPRM Command not supported
X'1251' PRMNSPRM Parameter not supported
X'1252' VALNSPRM Parameter value not supported
X'1254' CMDCHKRM Command check reply message
X'125F TRGNSPRM Target not supported

Related reference

“RLSERM reply message (X'CA03")” on page 332

The distributed data management (DDM) architecture RLSERM (release locks) reply message indicates to
the requester that an RLSE command has completed normally.

RTRVFLD command object (X'CC04')

Use the distributed data management (DDM) architecture RTRVFLD command object to specify the field
that the client wants to retrieve data from.

Format

»— DSSHDR — LL — CP — RECOFF — FLDLEN —»«

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

294 IMS: Application Programming APIs



CcP
X'CC04', the 2-byte codepoint of the RTRVFLD command object.

RECOFF
A 4-byte signed integer that contains the offset of the field within the hierarchic path I/O area that is
to be returned from the DL/I call.

FLDLEN
A 4-byte signed integer that contains the length of the field.

Related reference

“OPNQRY command (X'200C")” on page 286

The distributed data management (DDM) architecture OPNQRY command opens a query to a database for
a read request.

RTRVFLDREL command object (X'CCOB')

Use the distributed data management (DDM) architecture FLDENTRYREL (relative retrieve field) command
object to specify which field the client wants to retrieve data from.

Restriction: The RTRVFLDREL command object is supported only with an ODBM DDM level of 1, 2, 3 or 1,
3.

Format
»— DSSHDR — LL — CP — SEGMOFF — FLDLEN — SEGMID -»«

Parameters
DSSHDR

The 6-byte header that contains information about the data stream structure (DSS).
LL

The length specified as a 2-byte binary integer. This length includes LL and CP.

CP
X'CCOB/, the 2-byte codepoint of the RTRVFLDREL command object.

SEGMOFF
A required, 4-byte, signed integer that specifies the relative offset of the target field from the start of
the parent segment.

SEGMID
A required, 1-byte, signed integer that specifies which segment in the SEGMLIST the field is
referenced from. This value is relative to 1 rather than 0.

FLDLEN
The length of the target field.

SECCHK command (X'106E")

The distributed data management (DDM) architecture SECCHK command passes the user information
from the source server to the target security manager of the IMS target server to authenticate the user
with RACF or another security product.

When security checking is active for the IMS target server, the SECCHK command must be preceded by
the ACCSEC command.
Format

»— DSSHDR — LL — CP — PASSWORD — SECMEC — USRID »«

Chapter 2. DRDA DDM command architecture reference 295



Parameters
DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).

LL
The length specified as a 2-byte binary integer. This length includes LL and CP.

CcP
X'106E', the 2-byte codepoint of the SECCHK command.

SECMEC
A required parameter that specifies the security mechanism agreed upon by the source server and the
target server. For IMS, specify USRIDPWD.

The security mechanism is negotiated between the source server and the target server by using the
ACCSEC command and the ACCSECRD reply object.

USRID
A required, variable-length parameter that specifies the user ID of the source application program as
a character string. The length can be from 1 to 255 characters.

PASSWORD
A required, variable-length parameter that specifies the password of the source application program
as a character string. The length can be from 1 to 255 characters.

If a RACF PassTicket is used to authenticate user access from an IMS Connect client to IMS DB, this
parameter specifies the PassTicket.

Usage

IMS uses a user ID and password to check security; therefore the value of the SECMEC parameter
specifies the DDM USRIDPWD security mechanism.

If no errors occur during the processing of the SECCHK command, the IMS target server returns the
SECCHKRM reply message to indicate the acceptability of the security information.

The SECCHK command must be preceded by the ACCSEC command.

Chained command objects

No command objects can be chained to the SECCHK command.

Positive reply messages

In response to the SECCHK command, the IMS target DDM server returns to the source server the
following positive reply message:

SECCHKRM (X'1219")
Security check reply message.

Error reply messages

In response to the SECCHK command, the IMS target DDM server can return to the source DDM server the
following error reply messages:

Table 86. Possible error reply messages for the SECCHK command

Codepoint of reply message Name of reply message Meaning of reply message
X'1218' MGRDEPRM Manager dependency error
X'121C! CMDATHRM Not authorized to command
X'1232' AGNPRMRM Permanent agent error

296 IMS: Application Programming APIs



Table 86. Possible error reply messages for the SECCHK command (continued)

Codepoint of reply message Name of reply message Meaning of reply message
X'1233' RSCLMTRM Resource limits reached
X'123C' INVRQSRM Invalid request

X'1245' PRCCNVRM Conversational protocol error
X'124C' SYNTAXRM Data stream syntax error
X'1250' CMDNSPRM Command not supported
X'1251' PRMNSPRM Parameter not supported
X'1252' VALNSPRM Parameter value not supported
X'1253' OBINSPRM Object not supported

X'1254' CMDCHKRM Command check reply message
X'125F TRGNSPRM Target not supported

SEGMLIST command object (X'CCOA')

Use the distributed data management (DDM) architecture SEGMLIST (Segment List) command object to
specify the minimum and maximum length of each segment being retrieved or updated.

Restriction: The SEGMLIST command object is supported only with an ODBM DDM level of 1,3 or 1, 2, 3.

Format
»— DSSHDR — LL — CP — COUNT EMINMDN
Parameters
DSSHDR
The 6-byte header that contains information about the data stream structure (DSS).
LL
The length specified as a 2-byte binary integer. This length includes LL and CP.
CcP
X'CCOA, the 2-byte codepoint of the SEGMLIST command object.
COUNT

A 1-byte, signed value that counts the number of segments in a record that is being retrieved or
updated. The total number of segments in a record is limited to 15. The value of the COUNT parameter
corresponds to the number of instances of the MINMAX parameter included in the command object.
This value is required.

MINMAX
An 8-byte field that is divided into two 4-byte signed integers. The first integer is the minimum
number of bytes in a segment and the second integer is the maximum number of bytes. If these
integers are equal, the segment is fixed length.

Chapter 2. DRDA DDM command architecture reference 297



SQLATTR command (X'2450")

The distributed data management (DDM) architecture SQL Statement Attributes command (SQLATTR)
specifies the SQL statement attributes being prepared.

Format

»— DSSHDR — LL — CP — SQLSTTGRP -»«

Parameters

DSSHDR
The six byte header field containing information about the DSS.

LL
A two byte field that has the length of the SQLATTR command.

CP(X'2450")
The 2-byte codepoint of the SQLATTR command.

SQLSTTGRP
SQL Statement Group Description.

Format:

»— SQLSTATEMENT_m — SQLSTATEMENT_s -»«

Parameters:
SQLSTATEMENT_m
A variable length string containing the SQL statement.

SQLSTATEMENT_s
A variable length string containing the SQL statement.

SQLATTR examples

The following example shows SQLATTR that is part of the request to an OPNQRY call.
[ibm] [ims] [dxrda] [t4] SEND BUFFER: SQLATTR (ASCII) (EBCDIC)
[ibm] [ims] [drda] [t4] 0060  001CDO5300020016 2450000E464F5220 ...S....$P..FOR  ..}...... & ...
[ibm] [ims][drda]l [t4] 0010  52454144204F4E4C 59200000 READ ONLY ..  ..... [+<. ...

SQLCARD command (X'2408')

The distributed data management (DDM) architecture SQL Descriptor Area Row Description with SQL
Communications Area command (SQLCARD) provides metadata information about the columns being
retrieved along with the communications area.

Format

»— DSSHDR — LL — CP — SQLCAGRP -»«

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL
A 2-byte field that has the length of the SQLCARD command.

298 IMS: Application Programming APIs



CP(X'2408")
The 2-byte code point of the SQLCARD command.

SQLCAGRP
SQL Communications Area Group Description.

Format:

»— FLAG — SQLCODE — SQLSTATE — SQLERRPROC — SQLCAXGRP — SQLDIAGGRP -»«

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAGRP is null. A null indicator is denoted
with the value X'FF".

SQLCODE
A 4-byte integer field that contains the return code that is sent by the database manager after
completion of each SQL statement.

SQLSTATE
A 5-byte character field that contains the outcome of the most recently executed SQL statement.

SQLERRPROC
An 8-byte character field that contains the name of the CSECT that detected the error reported by
the SQLIMSCODE.

SQLCAXGRP
SQL Communications Area Exceptions Group Description.

Format:

»— FLAG — SQLERRD — SQLWARN — SQLRDBNAME — SQLERRMSG_m — SQLERRMSG_s -»«

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAXGRP is null. A null indicator is
denoted with the value X'FF'.

SQLERRD
Six 1-byte integer fields whose values are used to diagnose error conditions

SQLWARN
Eleven 1-byte character fields that represents SQLIMSWARNO to SQLIMSWARNA.

SQLRDBNAME
A variable character string that shows the name of the remote database.

SQLERRMSG_m
A variable character string that contains one or more tokens, separated by X'FF', that are
substituted for variables in the descriptions of error conditions. It may contain truncated
tokens. A message length of 70 bytes indicates a possible truncation.

SQLERRMSG_s
A variable character string that contains one or more tokens, separated by X'FF', that are
substituted for variables in the descriptions of error conditions. It may contain truncated
tokens. A message length of 70 bytes indicates a possible truncation.

SQLDIAGGRP
SQL Descriptor Optional Group Description

Format:

»— FLAG — SQLDIAGSTT — SQLDIAGCI — SQLDIAGCN —»«

Parameters:

Chapter 2. DRDA DDM command architecture reference 299



FLAG
A 1-byte field that determines if the value for the SQLCAXGRP is null. A null indicator is
denoted with the value X'FF'.

SQLDIAGSTT

SQL Diagnostics Statement Group Description.
SQLDIAGCI

SQL Diagnostics Condition Information Array.

SQLDIAGCN
SQL Diagnostics Connection Array.

SQLCARD examples

The following example shows SQLCARD that is part of the request to an OPNQRY call.
[ibm] [ims] [dxrda] [t4] RECEIVE BUFFER: SQLCARD (ASCII) (EBCDIC)
[ibm] [ims] [drda] [t4] 0060  0059D05300030053 2408006400000030 .Y.S...S$..d...0 ..3.............
[ibm] [ims] [drda] [t4] 0010  3230303053514C52 4930314600010004 2000SQLRIOLIF.... ...... €ooo0o000000

[ibm] [ims] [dxda] [t4] 0020 8001000000000000 0000000000000000 . ...........ccvtt  tiiiininennennn.
[ibm] [ims] [dxrda] [t4] 0030 0000000000202020 2020202020202020 ..... L.
[ibm] [ims] [drda] [t4] 0040 001253414D504C45 2020202020202020 ..SAMPLE e (&<l
[ibm] [ims] [dxda]l [t4] 0050  2020202000000000 FF

SQLDARD command (X'2411")

The distributed data management (DDM) architecture SQL Descriptor Area Row Description with SQL
Communications Area command (SQLDARD) provides metadata information about the columns being
retrieved along with the communications area.

Format

»— DSSHDR — LL — CP — SQLCARD — SQLDHGRP — SQLNUMGRP — SQLDAGRP -»«

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL
A 2-byte field that has the length of the SQLDARD command.

CP(X'2411")
The 2-byte codepoint of the SQLDARD command.

SQLCARD
SQL Communications Area Row Description

SQLDHGRP
SQL Descriptor Header Group Description (column metadata that applies to all fields in the result set).

Format:
»— FLAG — SQLDHOLD — SQLDRETURN — SQLDSCROLL — SQLDSENSITIVE — SQLDFCODE —»

»— SQLDKEYTYPE — SQLDRDBNAM — SQLDSCHEMA_m — SQLDSCHEMA_s —»«

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is denoted
with the value X’FF.

300 IMS: Application Programming APIs



SQLDHOLD
A 2 byte short field. This field can have a value of 0 or 1. A value of 1 indicates this statement is
related to a cursor which is defined using the WITH HOLD clause. Otherwise, the value is 0.

SQLDRETURN
A 2-byte short field.

SQLDSCROLL
A 2-byte short field.

SQLDSENSITIVE
A 2-byte short field.

SQLDFCODE
A 2-byte short field.

SQLDKEYTYPE
A 2-byte short field.

SQLDRDBNAM
A variable character string that shows the name of the remote database.

SQLDSCHEMA_m
A variable character string that shows the name of the schema.

SQLDSCHEMA _s
A variable character string that shows the name of the schema.

SQLNUMBRP
SQL Number of Elements Group Descriptions.

Format:

»— Number of Columns —»«

Parameters:

Number of Columns
A 2-byte short that represents the number of columns being returned by the query.

SQLDAGRP
SQL Data Area Group Description (column metadata specific to each column).

Format:

»— SQLPRECISION — SQLSCALE — SQLLENGTH — SQLTYPE — SQLCCSID — SQLDOPTGRP -»«

Parameters:
SQLPRECISION

A 2-byte short field representing the precision for the column.
SQLSCALE

A 2-byte short field representing the scale for the column.
SQLLENGTH

An 8-byte field representing the length of the column in bytes.
SQLTYPE

A 2-byte short field representing the data type of the column.

SQLCCSID
A 2-byte short field representing the CCSID of the column.

SQLDOPTGRP
SQL Descriptor Optional Group Description

Format:

Chapter 2. DRDA DDM command architecture reference 301



»— FLAG — SQLUNNAMED — SQLNAME_m — SQLNAME_s — SQLLABEL_m — SQLLABEL_s —»
»— SQLCOMMENTS_m — SQLCOMMENTS_s — SQLUDTGRP — SQLDXGRP -«

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is denoted
with the value X'FF".

SQLUNNAMED
A 2-byte short field.
SQLNAME_m
A variable character string that shows the column name.

SQLNAME_s
A variable character string that shows the column name.

SQLLABEL_m
A variable character string

SQLLABEL_s
A variable character string

SQLCOMMENTS_m

A variable character string
SQLCOMMENTS_s

A variable character string

SQLUDTGRP:
SQL User-Defined Data Group Description

Format:

»— FLAG — SQLUDTXTYPE — SQLUDTRDB — SQLUDTSCHEMA_m — SQLUDTSCHEMA_s —»
»— SQLUDTNAME_m — SQLUDTNAME_s -»«

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is
denoted with the value X'FF".

SQLUDTXTYPE

A 4-byte integer field.
SQLUDTRDB

A variable character string.

SQLUDTSCHEMA_m
A variable character string.

SQLUDTSCHEMA_s
A variable character string.

SQLUDTNAME_m
A variable character string.

SQLUDTNAME_s
A variable character string.

SQLDXGRP
SQL Descriptor Extended Group Description.

Format:

302 IMS: Application Programming APIs



»— FLAG — SQLXKEYMEM — SQLXUPDATEABLE — SQLXGENERATED — SQLXPARMMODE —»
»— SQLXRDBNAM — SQLXCORNAME_m — SQLXCORNAME_s — SQLXBASENAME_m —»
»— SQLXBASENAME_s — SQLXSCHEMA_m — SQLXSCHEMA_s — SQLXNAME_m —»
»— SQLXNAME_s >«

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A null indicator is
denoted with the value X'FF".

SQLXKEYMEM
A 2-byte short field.

SQLXUPDATEABLE
A 2-byte short field.

SQLXGENERATED
A 2-byte short field.

SQLXPARMMODE
A 2-byte short field.

SQLXRDBNAM
A variable character string that shows the name of the remote database.

SQLXCORNAME_m
A variable character string that shows the name of the table.

SQLXCORNAME_s
A variable character string that shows the name of the table.

SQLXBASENAME_m
A variable character string that shows the name of the table.

SQLXBASENAME_s
A variable character string that shows the name of the table.

SQLXSCHEMA_m
A variable character string that shows the name of the schema.

SQLXSCHEMA _s
A variable character string that shows the name of the schema.

SQLXNAME_m
A variable character string that shows the name of the column.

SQLXNAME_s
A variable character string that shows the name of the column.

SQLDARD examples

The following example shows SQLDARD that is part of the request to an OPNQRY call.
[ibm] [ims] [drda] [t4] RECEIVE BUFFER: SQLDARD (ASCIT) (EBCDIC)
[ibm] [ims] [drda] [t4] 0060  ©0185D0530002017F 2411000000000030 ...S....$...... 0 .et...."........
[ibm] [ims] [drda] [t4] 0016  3030303053514C30 3930373000000000 0000SQLO9G70.... ...... v
[ibm] [ims] [dxda] [t4] 0020 0000000000010000 0040010000000000 ......... @.cvies e
[ibm] [ims] [drda] [t4] 0030  0000000000202020 20202020