
IMS
15.3.0

Application Programming
(2024-08-30 edition)

IBM

Note

Before you use this information and the product it supports, read the information in “Notices” on page
883.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.03.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.03.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this information... xvii
Prerequisite knowledge..xvii
How new and changed information is identified... xvii
How to read syntax diagrams... xvii
Accessibility features for IMS 15.3... xix
How to send your comments.. xix

Part 1. Application programming design...1

Chapter 1. Designing an application: Introductory concepts... 3
Storing and processing information in a database.. 3

Database hierarchy examples.. 5
Your program's view of the data... 9
Processing a database record.. 11

Tasks for developing an application...12

Chapter 2. Designing an application: Data and local views..15
An overview of application design... 15
Identifying application data... 17

Listing data elements..17
Naming data elements..19
Documenting application data... 20

Designing a local view.. 21
Analyzing data relationships.. 22
Local view examples...28

Chapter 3. Analyzing IMS application processing requirements... 35
Defining IMS application requirements... 35
Accessing databases with your IMS application program.. 36
Accessing data: the types of programs you can write for your IMS application................................ 39

DB batch processing... 39
TM batch processing...40
Processing messages: Message Processing Programs..40
Processing messages: IMS Fast Path Programs.. 41
Batch message processing: BMPs..42
Java message processing: JMPs.. 45
Java batch processing: JBPs.. 45

IMS programming integrity and recovery considerations... 45
How IMS protects data integrity: commit points... 45
Planning for program recovery: checkpoint and restart.. 48
Data availability considerations... 52
Use of STAE or ESTAE and SPIE in IMS programs... 53

Dynamic allocation for IMS databases.. 54

Chapter 4. Analyzing CICS application processing requirements..55
Defining CICS application requirements... 55
Accessing databases with your CICS application program...56
Writing a CICS program to access IMS databases.. 58

Writing a CICS online program... 58
Using data sharing for your CICS program.. 59

 iii

Scheduling and terminating a PSB (CICS online programs only)..59
Linking and passing control to other programs (CICS online programs only).................................... 60
How CICS distributed transactions access IMS.. 60
Maximizing the performance of your CICS system... 61
Programming integrity and database recovery considerations for your CICS program.....................61

How IMS protects data integrity for CICS online programs.. 61
Recovering databases accessed by batch and BMP programs... 62

Data availability considerations for your CICS program... 65
Unavailability of a database... 65
Unavailability of some data in a database... 66
The SETS or SETU and ROLS functions.. 67

Use of STAE or ESTAE and SPIE in IMS batch programs...67
Dynamic allocation for IMS databases.. 67

Chapter 5. Gathering requirements for database options..69
Analyzing data access.. 69

Direct access...70
Sequential access... 74
Accessing z/OS files through IMS: GSAM...75
Accessing IMS data through z/OS: SHSAM and SHISAM.. 75

Understanding how data structure conflicts are resolved.. 76
Using different fields: field-level sensitivity...76
Resolving processing conflicts in a hierarchy: secondary indexing.. 77
Creating a new hierarchy: logical relationships... 81

Providing data security...84
Keeping a program from accessing the data: data sensitivity...85
Preventing a program from updating data: processing options.. 87

Read without integrity.. 89

Chapter 6. Gathering requirements for message processing options..91
Identifying online security requirements.. 91
Analyzing screen and message formats.. 93

An overview of MFS...93
An overview of basic edit..94
Editing considerations in your application... 94

Gathering requirements for conversational processing..95
What happens in a conversation.. 95
Designing a conversation..95
Important points about the scratchpad area (SPA)...96
Recovery considerations in conversations...96

Identifying output message destinations..97
The originating terminal..97
To other programs and terminals... 98

Chapter 7. Designing an application for APPC..101
Overview of APPC and LU 6.2.. 101
Application program types...101
Application objectives..102
Conversation type.. 104
Conversation state... 104
Synchronization level... 104
Introduction to resource recovery...105
Summary of z/OS Resource Recovery Services support...108
Distributed sync point.. 109
Application programming interface for LU type 6.2..110
LU 6.2 partner program design.. 111

LU 6.2 flow diagrams.. 111
Integrity tables... 131

iv

DFSAPPC message switch..133

Chapter 8. Testing an IMS application program... 135
Recommendations for testing an IMS program.. 135
Testing DL/I call sequences (DFSDDLT0) before testing your IMS program....................................135
Using BTS to test your IMS program..136
Tracing DL/I calls with image capture for your IMS program... 136

Using image capture with DFSDDLT0...136
Restrictions on using image capture output.. 137
Running image capture online..137
Running image capture as a batch job... 138
Retrieving image capture data from the log data set.. 138

Requests for monitoring and debugging your IMS program...139
Retrieving database statistics: the STAT call... 139
Writing Information to the system log: the LOG request...151

What to do when your IMS program terminates abnormally..151

Chapter 9. Testing a CICS application program..155
Recommendations for testing a CICS program...155
Testing your CICS program.. 155

Tracing DL/I calls with image capture..156
Requests for monitoring and debugging your CICS program... 159
What to do when your CICS program terminates abnormally.. 159

Chapter 10. Documenting your application program... 163
Documentation for other programmers.. 163
Documentation for end users.. 163

Part 2. Application programming for IMS DB...165

Chapter 11. Writing your application programs for IMS DB... 167
Programming guidelines.. 167
Segment search arguments (SSAs)... 168

SSA guidelines.. 170
Multiple qualification statements.. 171
SSAs and command codes... 174

Considerations for coding DL/I calls and data areas.. 175
Preparing to run your CICS DL/I call program...176
Examples of how to code DL/I calls and data areas... 177

Coding a batch program in assembler language..177
Coding a CICS online program in assembler language..178
Coding a batch program in C language.. 180
Coding a batch program in COBOL...182
Coding a CICS online program in COBOL... 184
Coding a program in Java... 188
Coding a batch program in Pascal..188
Coding a batch program in PL/I..190
Coding a CICS online program in PL/I..192

Chapter 12. Defining application program elements for IMS DB...195
Formatting DL/I calls for language interfaces...195
Assembler language application programming.. 195
C language application programming..198
COBOL application programming.. 201
Java application programming for IMS... 203
Pascal application programming... 204
Application programming for PL/I... 206

 v

Specifying the I/O PCB mask... 208
Specifying the DB PCB mask..212
Specifying the AIB mask..214
Specifying the AIB mask for ODBA applications...216
Specifying the UIB (CICS online programs only)...219
Specifying the I/O areas...221
Formatting segment search arguments (SSAs)...222

SSA coding rules... 222
SSA coding formats.. 223

Data areas in GSAM databases..226
AIBTDLI interface.. 226
Language specific entry points.. 227
Program communication block (PCB) lists..230
The AERTDLI interface...231
Language environments...232
Special DL/I situations for IMS DB programming... 233
Application programming with the IMS catalog..234

Chapter 13. Database versioning and application programming...237

Chapter 14. Establishing a DL/I interface from COBOL or PL/I... 239

Chapter 15. Current position in the database after each call.. 241
Current position after successful calls.. 241

Position after retrieval calls..243
Position after DLET... 243
Position after REPL... 245
Position after ISRT..245

Current position after unsuccessful calls.. 246
Multiple processing.. 249

Advantages of using multiple positioning..253
Multiple DB PCBs..255

Chapter 16. Using IMS application program sync points... 257
Commit process... 257
Two-phase commit in the synchronization process..258

Unit of recovery...260
DBCTL single-phase commit.. 260

Sync-point log records... 261
Sync points with a data-propagation manager... 261

Chapter 17. Recovering databases and maintaining database integrity... 263
Issuing checkpoints... 263
Restarting your program from the latest checkpoint.. 263
Maintaining database integrity (IMS batch, BMP, and IMS online regions)......................................264

Backing out to a prior commit point: ROLL, ROLB, and ROLS... 264
Backing out to an intermediate backout point: SETS, SETU, and ROLS......................................267

Reserving segments for the exclusive use of your program... 270

Chapter 18. Secondary indexing and logical relationships.. 271
How secondary indexing affects your program...271

SSAs with secondary indexes...271
Multiple qualification statements with secondary indexes...272
DL/I returns with secondary indexes...274
Status codes for secondary indexes.. 274

Processing segments in logical relationships... 274
How logical relationships affect your programming..276
Status codes for logical relationships.. 277

vi

Chapter 19. HALDB selective partition processing...279

Chapter 20. Processing GSAM databases...283
Accessing GSAM databases...283

PCB masks for GSAM databases..283
Retrieving and inserting GSAM records... 285
Explicit open and close calls to GSAM... 287

GSAM record formats...287
GSAM I/O areas..288
GSAM status codes.. 288
Symbolic CHKP and XRST with GSAM... 289
GSAM coding considerations... 289
Origin of GSAM data set characteristics.. 290

DD statement DISP parameter for GSAM data sets.. 291
Extended checkpoint restart for GSAM data sets..292
Concatenated data sets used by GSAM... 293
Specifying GSAM data set attributes... 293
DLI, DBB, and BMP region types and GSAM.. 294

Chapter 21. Processing Fast Path databases... 295
Fast Path database calls.. 296
Main storage databases (MSDBs).. 297

Restrictions on using calls for MSDBs..297
Data entry databases (DEDBs).. 298
Updating segments: REPL, DLET, ISRT, and FLD...298

Checking the contents of a field: FLD/VERIFY...299
Changing the contents of a field: FLD/CHANGE...301
Example of using FLD/VERIFY and FLD/CHANGE... 302
Commit-point processing in MSDBs and DEDBs... 302

Processing DEDBs (IMS and CICS with DBCTL).. 304
Processing Fast Path DEDBs with subset pointer command codes..304
Processing DEDBs with a secondary index..308
Retrieving location with the POS call (for DEDB only)... 316
Commit-point processing in a DEDB.. 319
P processing option.. 319
H processing option..319

Calls with dependent segments for DEDBs...320
DEDB DL/I calls to extract DEDB information... 321

AL_LEN Call...325
DI_LEN Call...325
DS_LEN Call.. 325
AREALIST Call...326
DEDBINFO Call... 326
DEDSTR Call..327

Fast Path coding considerations..327

Chapter 22. Writing ODBA application programs... 329
General application program flow of ODBA application programs...329
Server program structure...332

Db2 for z/OS stored procedures use of ODBA... 333
Best practices for Db2 for z/OS stored procedures with ODBA..334

Design best practices for ODBA Db2 for z/OS stored procedures.. 334
Writing Db2 for z/OS stored procedures that use ODBA... 336
Stopping Db2 for z/OS stored procedure threads... 336

Testing an ODBA application program...337
Tracing DL/I calls with image capture to test your ODBA program.. 338
Using image capture with DFSDDLT0 to test your ODBA program... 338

 vii

Running image capture online..339
Retrieving image capture data from the log data set.. 339
Requests for monitoring and debugging your ODBA program.. 340

What to do when your ODBA program terminates abnormally.. 340
Recommended actions after an abnormal termination of an ODBA program............................ 340
Diagnosing an abnormal termination of an ODBA program.. 341

Chapter 23. Programming with the IMS support for DRDA..343
DDM commands for data operations with the IMS support for DRDA..344

Part 3. Application programming for IMS TM...347

Chapter 24. Defining application program elements for IMS TM...349
Formatting DL/I calls for language interfaces...349
Application programming for assembler language... 349
Application programming for C language.. 352
Application programming for COBOL.. 355
Java application programming for IMS... 357
Application programming for Pascal... 357
Application programming for PL/I... 360
Relationship of calls to PCB types... 362
Specifying the I/O PCB mask... 363
Specifying the alternate PCB mask... 367
Specifying the AIB mask..367
Specifying the I/O areas...370
AIBTDLI interface.. 370
Specifying language-specific entry points.. 371
Program communication block (PCB) lists..373
Language environments...374
Special DL/I situations for IMS TM programming... 375

Chapter 25. Message processing with IMS TM...377
How your program processes messages...377

Message types.. 377
When a message is processed... 380
Results of a message: I/O PCB...381

How IMS TM edits messages...381
Printing output messages...382
Using Basic Edit.. 382
Using Intersystem Communication Edit.. 383
Using Message Format Service.. 383
Using LU 6.2 User Edit exit routine (optional)..390

Message processing considerations for DB2.. 390
Sending messages to other terminals and programs... 391

Sending messages to other terminals..391
Sending messages to other IMS application programs...393
How the VTAM I/O facility affects your VTAM terminal... 395

Communicating with other IMS TM systems using Multiple Systems Coupling.............................. 395
Implications of MSC for program coding... 395
Receiving messages from other IMS TM systems... 396
Sending messages to alternate destinations in other IMS TM systems..................................... 397

IMS conversational processing..398
A conversational example.. 398
Conversational structure.. 399
Replying to the terminal... 403
Conversational processing using ROLB, ROLL, and ROLS... 403
Passing the conversation to another conversational program..404

viii

Message switching in APPC conversations..406
Processing conversations with APPC.. 407

Ending the APPC conversation... 408
Coding a conversational program.. 408
Standard IMS application programs.. 408
Modified IMS application programs... 409
CPI-C driven application programs.. 409

Processing conversations with OTMA... 410
Backing out to a prior commit point: ROLL, ROLB, and ROLS calls.. 410

Comparison of ROLB, ROLL, and ROLS.. 411
ROLL.. 412
ROLB... 412
ROLS..413

Backing out to an intermediate backout point: SETS/SETU and ROLS...414
Writing message-driven programs.. 416
Coding DC calls and data areas... 416

Before coding your program...417
MPP code examples... 417
Message processing considerations for DB2...423

Chapter 26. IMS Spool API..425
Managing the IMS Spool API overall design..425

IMS Spool API design... 425
Sending data to the JES spool data sets..425
IMS Spool API performance considerations..426
IMS Spool API application coding considerations...427

Understanding parsing errors.. 429
Diagnosis examples..430

Understanding allocation errors.. 432
Understanding dynamic output for print data sets... 433
Sample programs using the Spool API..434

Chapter 27. IMS Message Format Service..437
Advantages of using MFS... 437
MFS control blocks...438

MFS examples...438
Relationship between MFS control blocks and screen format..442

Overview of MFS components... 444
Devices and logical units that operate with MFS.. 444
Using distributed presentation management (DPM).. 446

Chapter 28. Callout requests for services or data.. 449
Callout request approaches...450
Resume tpipe protocol...452
Implementing the synchronous callout function.. 453
Control data in synchronous callout requests...456
Implementing the asynchronous callout function.. 457

Part 4. Application programming for EXEC DLI..459

Chapter 29. Writing your application programs for EXEC DLI..461
Programming guidelines.. 461

Coding a program in assembler language..462
Coding a program in COBOL... 465
Coding a program in PL/I..468
Coding a program in C.. 471

Preparing your EXEC DLI program for execution.. 475

 ix

Translator, compiler, and binder options required for EXEC DLI...476

Chapter 30. Defining application program elements... 477
Specifying an application interface block (AIB).. 477
Specifying the DL/I interface block (DIB)..477
Defining a key feedback area...480
Defining I/O areas.. 481

Chapter 31. EXEC DLI commands for an application program.. 483
PCBs and PSB...483

Chapter 32. Recovering databases and maintaining database integrity... 485
Issuing checkpoints in a batch or BMP program...485
Restarting your program and checking for position.. 486
Backing out database updates dynamically: the ROLL and ROLB commands.................................486
Using intermediate backout points: the SETS and ROLS commands...486

Chapter 33. Processing Fast Path databases... 487
Processing Fast Path DEDBs with subset pointer options.. 487

Preparing to use subset pointers... 489
Designating subset pointers...489
Subset pointer options... 489
Subset pointer status codes...496

The POS command...496
Locating a specific sequential dependent segment.. 497
Locating the last inserted sequential dependent segment...497
Identifying free space with the POS command... 498
The P processing option... 498

Chapter 34. Comparing command-level and call-level programs... 499
DL/I calls for IMS and CICS... 499
Comparing EXEC DLI commands and DL/I calls... 499
Comparing command codes and options..501

Chapter 35. Data availability enhancements..503

Part 5. Application programming for SQL..505

Chapter 36. SQL considerations and restrictions for COBOL... 507

Chapter 37. Writing application programs for SQL... 509
Coding SQL statements in application programs: General information... 509

Defining the items that your program can use to check whether an SQL statement executed
successfully... 509

Defining SQL descriptor areas..510
Declaring host variables and indicator variables...510
Using SQL statements in your application... 511
Checking the execution of SQL statements... 521

Coding SQL statements in COBOL application programs... 524
Defining the SQL communications area in COBOL.. 524
Defining SQL descriptor areas in COBOL... 524
Declaring host variables and indicator variables in COBOL.. 525
Equivalent SQL and COBOL data types.. 531
SQL statements in COBOL programs... 533
SQL aggregate functions supported for COBOL...536

Adding and modifying data.. 538
Inserting rows...538

x

Updating segment data.. 539
Deleting data from segments... 540

Accessing data... 541
Retrieving data by using the SELECT statement..541
Retrieving a set of rows by using a cursor..545

Commit or roll back data..548
Preparing an application to run on IMS... 548

Processing SQL statements..548

Part 6. Java application development for IMS...551

Chapter 38. IMS solutions for Java development overview...553

Chapter 39. Comparison of hierarchical and relational databases..555

Chapter 40. Programming with the IMS Universal drivers... 559
IMS Universal drivers overview... 559

Distributed and local connectivity with the IMS Universal drivers... 560
Configuring JAXB with JDK 9 or higher..563
Comparison of IMS Universal drivers programming approaches for accessing IMS..................564
Support for variable-length database segments with the IMS Universal drivers.......................565
Support for flattening complex structures...566
Generating the runtime Java metadata class..567
Hospital database example..568

Programming using the IMS Universal Database resource adapter...571
Overview of the IMS Universal Database resource adapter..571
Transaction types and programming interfaces supported by the IMS Universal Database

resource adapter... 571
Software configurations supported by the IMS Universal Database resource adapter............. 572
Connecting to IMS with the IMS Universal Database resource adapter.....................................573
Sample EJB application using the IMS Universal Database resource adapter CCI

programming interface..584
Accessing IMS data with the DLIInteractionSpec class.. 585
Accessing IMS data with the SQLInteractionSpec class.. 589
Accessing IMS data with the IMS Universal JCA/JDBC driver.. 592

Programming with the IMS Universal JDBC driver..594
Supported drivers for JDBC..594
Connecting to IMS using the IMS Universal JDBC driver.. 595
Sample application for the IMS Universal JDBC driver... 607
Using ByteBuffers with the IMS Universal JDBC Driver.. 608
Using the removeInvalidCaseFields property..609
Using the expandArrayResultSet property.. 611
Writing SQL queries to access an IMS database with the IMS Universal JDBC driver............... 613
Writing DL/I calls to access an IMS database with the IMS Universal JDBC driver................... 628
IMS Universal JDBC driver support for XML.. 631
Data transformation support for JDBC.. 635

Programming with the IMS Universal DL/I driver... 641
Basic steps in writing a IMS Universal DL/I driver application... 642
Java packages for IMS Universal DL/I driver support... 642
Connecting to an IMS database by using the IMS Universal DL/I driver.................................... 642
IMS Universal DL/I driver interfaces for executing DL/I operations...645
Inspecting the PCB status code and related information using the

com.ibm.ims.dli.AIB interface.. 664
Committing or rolling back DL/I transactions..665
Accessing dynamic arrays with the Universal Drivers using the DBArrayElementSet class...... 666

Configuring the IMS Universal drivers for SSL support... 668

 xi

Configuring the IMS Universal Database resource adapter for SSL support in a container-
managed environment.. 668

Configuring IMS Universal drivers for SSL support in a stand-alone environment.....................668
Tracing IMS Universal drivers applications... 669

Chapter 41. Programming Java dependent regions... 673
Overview of the IMS Java dependent regions...673
Programming with the IMS Java dependent region resource adapter...674

Developing JMP applications with the IMS Java dependent region resource adapter.............. 675
Developing JBP applications with the IMS Java dependent region resource adapter...............683
IMS Java dependent region resource adapter support for ICAL callout with control data........690
Programming with the Callout API...692
Program switching in JMP and JBP applications...694

IBM Enterprise PL/I for z/OS and Java language interoperability..701
IBM Enterprise COBOL for z/OS interoperability with JMP and JBP applications........................... 702

IBM Enterprise COBOL for z/OS backend applications in a JMP or JBP region..........................703
IBM Enterprise COBOL for z/OS frontend applications in a JMP or JBP region..........................703

Accessing Db2 for z/OS databases from JMP or JBP applications...703

Chapter 42. 31-bit COBOL and 64-bit Java interoperability.. 705

Part 7. PL/I top-down development for IMS Enterprise Suite SOAP Gateway
web services..711

Chapter 43. WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I
templates..713

Chapter 44. Sample of a generated PL/I application template..715

Chapter 45. Trace output for WSDL-to-PL/I segmentation APIs... 717

Chapter 46. Limitations and restrictions of the segmentation APIs..719

Part 8. IMS Transaction Manager Resource Adapter ... 721

Chapter 47. IMS Transaction Manager Resource Adapter overview... 723
Components of the IMS TM resource adapter.. 723
Runtime process of the IMS TM resource adapter ...724
IMS TM resource adapter features.. 724

New features in IMS TM Resource Adapter Version 15.. 725
Supported platforms.. 726
Supported software configurations... 726
Requirements for the IMS TM resource adapter...727
Restrictions for the IMS TM resource adapter.. 727
WebSphere Application Server platform configurations and communication protocol

considerations...728

Chapter 48. Installing the IMS TM resource adapter runtime component..731
Preparing to use the IMS TM resource adapter...731

Potential migration issues for the IMS TM resource adapter..732
Updating the IMS TM resource adapter... 732

Extracting the compressed file for installation on distributed platforms...733
Extracting the compressed file for installation on z/OS..734
Verifying file contents for the IMS TM resource adapter runtime component.................................734
Installing the resource adapter on WebSphere Application Server... 735

Creating a connection factory in WebSphere Application Server... 736
Installing the resource adapter on WebSphere Liberty servers... 737

xii

Configuring the connection factory for WebSphere Liberty servers... 738
Verifying installation by using the installation verification program...739

Prerequisites for running the IVP...739
Deploying the IVP EAR file in the Java EE application server... 740
Running the IMS TM resource adapter IVP..741

Running the IMS TM resource adapter callout IVP sample ... 742
Deploying the sample application on WebSphere Application Server to process callout

requests .. 743
Deploying the sample application on WebSphere Liberty servers to process callout requests 745
Running the IMS host callout IVP application... 746

Installing IMS TM resource adapter service and updates.. 747
Configuring for resource workload routing..748

Chapter 49. Developing an application for use with the IMS TM resource adapter.............................. 751
Interacting with the IMS Transaction Manager...751

Programming models... 752
Commit mode and sync level processing...782
Socket connections.. 783
IMSInteractionSpec property configuration..790
Submitting commands to IMS..791

Configuring IMS connection factories... 791
TCP/IP connections to IMS Connect.. 792
IMS connection factory.. 793

Input and output message formats...793
Measuring IMS TM resource adapter performance.. 797
Securing interactions with the IMS Transaction Manager.. 797

IMS TM resource adapter security... 797
Container-managed EIS signon... 799
Component-managed EIS signon.. 802
Secure Sockets Layer (SSL) support.. 804
Changing RACF passwords...808
Securing message retrieval from IMS hold queues...809
Enabling support for distributed network security credentials...810

IMS TM resource adapter timeouts... 814
Execution timeouts...815
Socket timeouts..817
Other types of timeouts..819

Conversational programs...820
Client-managed and IMS Connect-managed conversation state programming models........... 821
Orphaned IMS conversation...821
Business process choreography applications... 822
Enabling your Java client for IMS conversational transactions.. 822

Processing global transactions..824
Global transaction support with two-phase commit...824
Global transaction and two-phase commit support process..825
Global transaction support in client applications..826
Two-phase commit environment recommendations.. 827
Other transaction support.. 827

Common Client Interface (CCI)... 828
Sample CCI application code... 830

Samples and tutorials.. 831

Chapter 50. Running your application on a stand-alone WebSphere Application Server.....................833
Installing your EAR file on WebSphere servers...833

Chapter 51. Diagnosing problems...835
Diagnosing IVP failures.. 835
Diagnosing problems accessing IMS from Java applications...836

 xiii

Diagnosing problems with callout requests.. 837
Java exceptions that involve output messages...837
Logging and tracing IMS TM resource adapter information..838

Logging and tracing in WebSphere Application Server..838
Logging and tracing in WebSphere Liberty.. 839
Creating a stand-alone Logger with output sent to a file.. 839
Analyzing the trace data... 840

IMS TM resource adapter messages and exceptions... 842
Other exceptions and error messages...866

J2CA0056I..866
WLTC0017E.. 867
HWSP1445E... 867
HWSSSL00E.. 868

Chapter 52. Reference information...869
IMS connection factory properties.. 869

Client ID (clientID)..869
CM0 dedicated (CM0Dedicated).. 869
Data store name (dataStoreName).. 870
Group name (groupName)..870
Host name (hostName).. 870
Password (password)... 870
Password phrase (passwordPhrase)..870
Port number (portNumber).. 870
SSL enabled (SSLEnabled)... 870
SSL encryption type (SSLEncryptionType)... 870
SSL keystore name (SSLKeyStoreName)... 871
SSL keystore password (SSLKeyStorePassword).. 871
SSL truststore name (SSLTrustStoreName)... 872
SSL truststore password (SSLTrustStorePassword).. 872
SSL protocol (SSLProtocol)...872
User name (userName).. 872

IMS interaction specification properties... 872
Alternate client ID (altClientID)... 872
Async output available (asyncOutputAvailable).. 873
Callout request type (calloutRequestType)... 873
Conversation ended (convEnded).. 873
Conversation ID (convID)... 873
Commit mode (commitMode).. 874
CM0 response (CM0Response).. 874
Execution timeout (executionTimeout)..874
Ignore PURG call (ignorePURGCall)... 875
IMS request type (imsRequestType)..875
Interaction verb (interactionVerb)... 876
Lterm name (ltermName)...877
Map name (mapName)... 877
Purge async output (purgeAsyncOutput)...878
Reroute (reRoute)... 878
Reroute name (reRouteName)... 878
Resume tpipe network security credentials (resumeTpipeNSC).. 879
Socket timeout (socketTimeout)..879
Synchronous callout correlator token (syncCalloutCorrelatorToken)...879
Synchronous callout status code (syncCalloutStatusCode)..879
Sync level (syncLevel)...879
Transaction expiration (transExpiration)... 880
Transaction tracking ID (trckID)...880
Use conversation ID (useConvID).. 880

Java API specifications.. 881

xiv

Notices..883
Programming interface information..884
Trademarks.. 884
Terms and conditions for product documentation... 885
IBM Online Privacy Statement.. 885

Bibliography.. 887

Index.. 889

 xv

xvi

About this information

These topics provide guidance information for writing application programs that access IMS databases
or IMS transactions. The following topics describe how to gather and analyze program requirements,
and how to develop and debug IMS application programs. They also describe how to use different
programming languages to issue DL/I calls, and include information about the IMS solutions for SQL
and Java™ development. They also describe how to use different programming languages to issue
EXEC DL/I calls. Application programming interface (API) information is in IMS Version 15.3 Application
Programming APIs.

This information is available in IBM® Documentation.

Prerequisite knowledge
This information is a guide to IMS application programming for any of the following environments:

• IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)
• IMS Transaction Manager (IMS TM)
• CICS® EXEC DLI
• WebSphere® Application Server for z/OS®

• WebSphere Application Server for distributed platforms
• Java dependent regions (JMP and JBP)
• Any environment for stand-alone Java application development

This book provides guidance information for writing application programs that access IMS databases or
process IMS messages. It also describes how to use different programming languages to make DL/I,
EXEC DLI, or JDBC calls that interact with IMS. API (application programming interface) information is in
IMS Version 15.3 Application Programming APIs.

To learn about z/OS, see z/OS Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified
For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

• Only technical changes are marked; style and grammatical changes are not marked.
• If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,

the entire element is marked with revision markers, even though only part of the element might have
changed.

• If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:

© Copyright IBM Corp. 1974, 2022 xvii

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next line.
– The >--- symbol indicates that a syntax diagram is continued from the previous line.
– The --->< symbol indicates the end of a syntax diagram.

• Required items appear on the horizontal line (the main path).
required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

xviii About this information

• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_item

• In IMS, a b symbol indicates one blank position.
• Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled

exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

• Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

• Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

• Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.3
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including IMS 15.3. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.3 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.3 ISPF panels using TSO/E or ISPF, refer to the z/OS TSO/E
Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information
Online documentation for IMS 15.3 is available in IBM Documentation.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

About this information xix

http://www.ibm.com/able

• Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

• Send an email to imspubs@us.ibm.com. Be sure to include the book title.
• Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xx IMS: Application Programming

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

Part 1. Application programming design
To design an application program for IMS, you need to identify the application data and analyze
requirements for application processing. You may also need to perform other tasks, such as gathering
requirements for database and message processing options, and testing an application program.

© Copyright IBM Corp. 1974, 2022 1

2 IMS: Application Programming

Chapter 1. Designing an application: Introductory
concepts

This section provides an introduction to designing application programs. It explains some basic concepts
about processing a database, and gives an overview of the tasks covered in this information.

Storing and processing information in a database
The advantages of storing and processing data in a database are that all of the data needs to appear only
once and that each program must process only the data that it needs.

One way to understand this is to compare three ways of storing data: in separate files, in a combined file,
and in a database.

Storing data in separate files
If you keep separate files of data for each part of your organization, you can ensure that each program
uses only the data it needs, but you must store a lot of data in multiple places simultaneously. Problems
with keeping separate files are:

• Redundant data takes up space that could be put to better use
• Maintaining separate files can be difficult and complex

For example, suppose that a medical clinic keeps separate files for each of its departments, such as the
clinic department, the accounting department, and the ophthalmology department:

• The clinic department keeps data about each patient who visits the clinic, such as:

Identification number
Name
Address
Illnesses
Date of each illness
Date patient came to clinic for treatment
Treatment given for each illness
Doctor that prescribed treatment
Charge for treatment

• The accounting department also keeps information about each patient. The information that the
accounting department might keep for each patient is:

Identification number
Name
Address
Charge for treatment
Amount of payments

• The information that the ophthalmology department might keep for each patient is:

Identification number
Name
Address
Illnesses relating to ophthalmology
Date of each illness
Names of members in patient's household
Relationship between patient and each household member

© Copyright IBM Corp. 1974, 2022 3

If each of these departments keeps separate files, each department uses only the data that it needs, but
much of the data is redundant. For example, every department in the clinic uses at least the patient's
number, name, and address. Updating the data is also a problem, because if a department changes a
piece of data, the same data must be updated in each separate file. Therefore, it is difficult to keep the
data in each department's files current. Current data might exist in one file while defunct data remains in
another file.

Storing data in a combined file
Another way to store data is to combine all the files into one file for all departments to use. In the medical
example, the patient record that would be used by each department would contain these fields:

Identification number
Name
Address
Illnesses
Date of each illness
Date patient came to clinic for treatment
Treatment given for each illness
Doctor that prescribed treatment
Charge for treatment
Amount of payments
Names of members in patient's household
Relationship between patient and each household member

Using a combined file solves the updating problem, because all the data is in one place, but it creates a
new problem: the programs that process this data must access the entire file record to get to the part
that they need. For example, to process only the patient's number, charges, and payments, an accounting
program must access all of the other fields also. In addition, changing the format of any of the fields
within the patient's record affects all the application programs, not just the programs that use that field.

Using combined files can also involve security risks, because all of the programs have access to all of the
fields in a record.

Storing data in a database
Storing data in a database gives you the advantages of both separate files and combined files: all the data
appears only once, and each program has access to the data that it needs. This means that:

• When you update a field, you do it in one place only.
• Because you store each piece of information only in one place, you cannot have an updated version of

the information in one place and an out-of-date version in another place.
• Each program accesses only the data it needs.
• You can prevent programs from accessing private or secured information.

In addition, storing data in a database has two advantages that neither of the other ways has:

• If you change the format of part of a database record, the change does not affect the programs that do
not use the changed information.

• Programs are not affected by how the data is stored.

Because the program is independent of the physical data, a database can store all the data only once and
yet make it possible for each program to use only the data that it needs. In a database, what the data
looks like when it is stored is different from what it looks like to an application program.

4 IMS: Application Programming

Database hierarchy examples
In an IMS DB, a record is stored and accessed in a hierarchy. A hierarchy shows how each piece of data in
a record relates to other pieces of data in the record.

IMS connects the pieces of information in a database record by defining the relationships between the
pieces of information that relate to the same subject. The result is a database hierarchy.

Medical hierarchy example
The medical database shown in following figure contains information that a medical clinic keeps about its
patients. The hierarchies used in the medical hierarchy example are used with full-function databases and
Fast Path data entry databases (DEDBs).

Figure 1. Medical hierarchy

Each piece of data represented in the figure above is called a segment in the hierarchy. Each segment
contains one or more fields of information. The PATIENT segment, for example, contains all the
information that relates strictly to the patient: the patient's identification number, name, and address.

Definitions: A segment is the smallest unit of data that an application program can retrieve from the
database. A field is the smallest unit of a segment.

The PATIENT segment in the medical database is the root segment. The segments below the root
segment are the dependents, or children, of the root. For example, ILLNESS, BILLING, and HOUSHOLD
are all children of PATIENT. ILLNESS, BILLING, and HOUSHOLD are called direct dependents of PATIENT;
TREATMNT and PAYMENT are also dependents of PATIENT, but they are not direct dependents, because
they are at a lower level in the hierarchy.

A database record is a single root segment (root segment occurrence) and all of its dependents. In the
medical example, a database record is all of the information about one patient.

Definitions: A root segment is the highest-level segment. A dependent is a segment below a root
segment. A root segment occurrence is a database record and all of its dependents.

Each database record has only one root segment occurrence, but it might have several occurrences at
lower levels. For example, the database record for a patient contains only one occurrence of the PATIENT
segment type, but it might contain several ILLNESS and TREATMNT segment occurrences for that patient.

The tables that follow show the layouts of each segment in the hierarchy.

The segment’s field names are in the first row of each table. The number below each field name is the
length in bytes that has been defined for that field.

• PATIENT Segment

The following table shows the PATIENT segment.

It has three fields:

– The patient’s number (PATNO)
– The patient’s name (NAME)
– The patient's address (ADDR)

Chapter 1. Designing an application: Introductory concepts 5

PATIENT has a unique key field: PATNO. PATIENT segments are stored in ascending order based on the
patient number. The lowest patient number in the database is 00001 and the highest is 10500.

Table 1. PATIENT segment

Field name Field length

PATNO 10

NAME 5

ADDR 30

• ILLNESS Segment

The following figure shows the ILLNESS segment.

It has two fields:

– The date when the patient came to the clinic with the illness (ILLDATE)
– The name of the illness (ILLNAME)

The key field is ILLDATE. Because it is possible for a patient to come to the clinic with more than one
illness on the same date, this key field is non-unique, that is, there may be more than one ILLNESS
segment with the same (an equal) key field value.

Usually during installation, the database administrator (DBA) decides the order in which to place the
database segments with equal or no keys. The DBA can use the RULES keyword of the SEGM statement
of the DBD to specify the order of the segments.

For segments with equal keys or no keys, RULES determines where the segment is inserted. Where
RULES=LAST, ILLNESS segments that have equal keys are stored on a first-in-first-out basis among
those with equal keys. ILLNESS segments with unique keys are stored in ascending order on the date
field, regardless of RULES. ILLDATE is specified in the format YYYYMMDD.

Table 2. ILLNESS segment

Field name Field length

ILLDATE 8

ILLNAME 10

• TREATMNT Segment

The following table shows the TREATMNT segment.

It contains four fields:

– The date of the treatment (DATE)
– The medicine that was given to the patient (MEDICINE)
– The quantity of the medicine that the patient received (QUANTITY)
– The name of the doctor who prescribed the treatment (DOCTOR)

The TREATMNT segment’s key field is DATE. Because a patient may receive more than one treatment on
the same date, DATE is a non-unique key field. TREATMNT, like ILLNESS, has been specified as having
RULES=LAST. TREATMNT segments are also stored on a first-in-first-out basis. DATE is specified in the
same format as ILLDATE—YYYYMMDD.

Table 3. TREATMNT segment

Field name Field length

DATE 8

MEDICINE 10

6 IMS: Application Programming

Table 3. TREATMNT segment (continued)

Field name Field length

QUANTITY 4

DOCTOR 10

• BILLING Segment

The following table shows the BILLING segment. It has only one field: the amount of the current bill.
BILLING has no key field.

Table 4. BILLING segment

Field name Field length

BILLING 6

• PAYMENT Segment

The following table shows the PAYMENT segment. It has only one field: the amount of payments for the
month. The PAYMENT segment has no key field.

Table 5. PAYMENT segment

Field name Field length

PAYMENT 6

• HOUSHOLD Segment

The following table shows the HOUSHOLD segment.

It contains two fields:

– The names of the members of the patient's household (RELNAME)
– How each member of the household is related to the patient (RELATN)

The HOUSHOLD segment’s key field is RELNAME.

Table 6. HOUSHOLD segment

Field name Field length

RELNAME 10

RELATN 8

Bank account hierarchy example
The bank account hierarchy is an example of an application program that is used with main storage
databases (MSDBs). In the medical hierarchy example, the database record for a particular patient
comprises the PATIENT segment and all of the segments underneath the PATIENT segment. In an MSDB,
such as the one in the bank account example, the segment is the whole database record. The database
record contains only the fields that the segment contains.

The two types of MSDBs are related and nonrelated. In related MSDBs, each segment is "owned" by one
logical terminal. The "owned" segment can only be updated by the terminal that owns it. In nonrelated
MSDBs, the segments are not owned by logical terminals. The following examples of a related MSDB and
a nonrelated MSDB illustrate the differences between the two types of databases.

Related MSDBs

Related MSDBs can be fixed or dynamic. In a fixed related MSDB, you can store summary data about a
particular teller at a bank. For example, you can have an identification code for the teller's terminal. Then

Chapter 1. Designing an application: Introductory concepts 7

you can keep a count of that teller's transactions and balance for the day. This type of application requires
a segment with three fields:
TELLERID

A two-character code that identifies the teller
TRANCNT

The number of transactions the teller has processed
TELLBAL

The balance for the teller

The following table shows what the segment for this type of application program looks like.

Table 7. Teller segment in a fixed related MSDB

TELLERID TRANCNT TELLBAL

Some of the characteristics of fixed related MSDBs include:

• You can only read and replace segments. You cannot delete or insert segments. In the bank teller
example, the teller can change the number of transactions processed, but you cannot add or delete any
segments. You never need to add or delete segments.

• Each segment is assigned to one logical terminal. Only the owning terminal can change a segment, but
other terminals can read the segment. In the bank teller example, you do not want tellers to update the
information about other tellers, but you allow the tellers to view each other’s information. Tellers are
responsible for their own transactions.

• The name of the logical terminal that owns the segment is the segment's key. Unlike non-MSDB
segments, the MSDB key is not a field of the segment. It is used as a means of storing and accessing
segments.

• A logical terminal can only own one segment in any one MSDB.

In a dynamic related MSDB, you can store data summarizing the activity of all bank tellers at a single
branch. For example, this segment contains:
BRANCHNO

The identification number for the branch
TOTAL

The bank branch's current balance
TRANCNT

The number of transactions for the branch on that day
DEPBAL

The deposit balance, giving the total dollar amount of deposits for the branch
WTHBAL

The withdrawal balance, giving the dollar amount of the withdrawals for the branch

The following table shows what the branch summary segment looks like in a dynamic related MSDB.

Table 8. Branch summary segment in a dynamic related MSDB

BRANCHNO TOTAL TRANCNT DEPBAL WTHBAL

How dynamic related MSDBs differ from fixed related MSDBs:

• The owning logical terminal can delete and insert segments in a dynamic related MSDB.
• The MSDB can have a pool of unassigned segments. This kind of segment is assigned to a logical

terminal when the logical terminal inserts it, and is returned to the pool when the logical terminal
deletes it.

Nonrelated MSDBs

8 IMS: Application Programming

A nonrelated MSDB is used to store data that is updated by several terminals during the same time period.
For example, you might store data about an individuals' bank accounts in a nonrelated MSDB segment, so
that the information can be updated by a teller at any terminal. Your program might need to access the
data in the following segment fields:
ACCNTNO

The account number
BRANCH

The name of the branch where the account is
TRANCNT

The number of transactions for this account this month
BALANCE

The current balance

The following table shows what the account segment in a nonrelated MSDB application program looks
like.

Table 9. Account segment in a nonrelated MSDB

ACCNTNO BRANCH TRANCNT BALANCE

The characteristics of nonrelated MSDBs include:

• Segments are not owned by terminals as they are in related MSDBs. Therefore, IMS programs and Fast
Path programs can update these segments. Updating segments is not restricted to the owning logical
terminal.

• Your program cannot delete or insert segments.
• Segment keys can be the name of a logical terminal. A nonrelated MSDB exists with terminal-related

keys. The segments are not owned by the logical terminals, and the logical terminal name is used to
identify the segment.

• If the key is not the name of a logical terminal, it can be any value, and it is in the first field of the
segment. Segments are loaded in key sequence.

Your program's view of the data
IMS uses two kinds of control blocks to enable application programs to be independent of your method of
storing data in the database, the database description (DBD), and the database program communication
block (DB PCB).

Database Description (DBD)
A database description (DBD) is physical structure of the database. The DBD also defines the appearance
and contents, or fields, that make up each of the segment types in the database.

For example, the DBD for the medical database hierarchy shown in "Medical hierarchy example"
describes the physical structure of the hierarchy and each of the six segment types in the hierarchy:
PATIENT, ILLNESS, TREATMNT, BILLING, PAYMENT, and HOUSHOLD.

Related Reading: For more information on generating DBDs, see IMS Version 15.3 Database Utilities.

Database Program Communication Block (DB PCB)
A database program communication block (DB PCB) is a control block that defines an application
program's view of the database. An application program often needs to process only some of the
segments in a database. A PCB defines which of the segments in the database the program is allowed to
access—which segments the program is sensitive to.

Chapter 1. Designing an application: Introductory concepts 9

The data structures that are available to the program contain only segments that the program is sensitive
to. The PCB also defines how the application program is allowed to process the segments in the data
structure: whether the program can only read the segments, or whether it can also update them.

To obtain the highest level of data availability, your PCBs should request the fewest number of sensitive
segments and the least capability needed to complete the task.

All the DB PCBs for a single application program are contained in a program specification block (PSB). A
program might use only one DB PCB (if it processes only one data structure) or it might use several DB
PCBs, one for each data structure.

Related Reading: For more information on generating PSBs, see IMS Version 15.3 Database Utilities.

The following figure illustrates the concept of defining a view for an application program. An accounting
program that calculates and prints bills for the clinic's patients would need only the PATIENT, BILLING,
and PAYMENT segments. You could define the data structure shown in the following figure in a DB PCB for
this program.

Figure 2. Accounting program's view of the database

A program that updates the database with information on patients' illnesses and treatments, in contrast,
would need to process the PATIENT, ILLNESS, and TREATMNT segments. You could define the data
structure shown in the following figure in a DB PCB for this program.

10 IMS: Application Programming

Figure 3. Patient illness program's view of the database

Sometimes a program needs to process all of the segments in the database. When this is true, the
program's view of the database as defined in the DB PCB is the same as the database hierarchy that is
defined in the DBD.

An application program processes only the segments in a database that it requires; therefore, if you
change the format of a segment that is not processed, you do not change the program. A program is
affected only by the segments that it accesses. In addition to being sensitive to only certain segments
in a database, a program can also be sensitive to only certain fields within a segment. If you change a
segment or field that the program is not sensitive to, it does not affect the program. You define segment
and field-level sensitivity during PSBGEN.

Definition: Field-level sensitivity is when a program is sensitive to only certain fields within a segment.

Related Reading: For more information, see IMS Version 15.3 Database Administration.

Processing a database record
To process the information in the database, your application program communicates with IMS in three
ways: by passing control, by communicating processing requests, and by exchanging information using
DL/I calls.

• Passing control—IMS passes control to your application program through an entry statement in your
program. Your program returns control to IMS when it has finished its processing.

When you are running a CICS online program, CICS passes control to your application program, and
your program schedules a PSB to make IMS requests. Your program returns control to CICS. If you are
running a batch or BMP program, IMS passes control to your program with an existing PSB scheduled.

• Communicating processing requests—You communicate processing requests to IMS in one of two ways:

– In IMS, you issue DL/I calls to process the database.
– In CICS, you can issue either DL/I calls or EXEC DLI commands. EXEC DLI commands more closely

resemble a higher-level language than do DL/I calls.
• Exchanging information using DL/I calls—Your program exchanges information in two areas:

– A DL/I call reports the results of your request in a control block and the AIB communication block
when using one of the AIB interfaces. For programs written using DL/I calls, this control block is
the DB PCB. For programs written using EXEC DLI commands, this control block is the DLI interface
block (DIB). The contents of the DIB reflect the status of the last DL/I command executed in the
program. Your program includes a mask of the appropriate control block and uses this mask to check
the results of the request.

Chapter 1. Designing an application: Introductory concepts 11

– When you request a segment from the database, IMS returns the segment to your I/O area. When you
want to update a segment in the database, you place the new value of the segment in the I/O area.

An application program can read and update a database. When you update a database, you can replace,
delete, or add segments. In IMS, you indicate in the DL/I call the segment you want to process, and
whether you want to read or update it. In CICS, you can indicate what you want using either a DL/I call or
an EXEC DLI command.

Tasks for developing an application
The following tasks are involved in developing an IMS application, and the programs that are part of the
application.

Designing the application
Application program design varies from place to place, and from one application to another.

Therefore, this information does not try to cover the early tasks that are part of designing an application
program. Instead, it covers only the tasks that you are concerned with after the early specifications for the
application have been developed. The tasks for designing the application are:

• Analyzing Application Data Requirements

Two important parts of application design are defining the data that each of the business processes in
the application requires and designing a local view for each of the business processes.

• Analyzing Application Processing Requirements

When you understand the business processes that are part of the application, you can analyze the
requirements of each business process in terms of the processing that is available with different types
of application programs.

• Gathering Requirements for Database Options

You then need to look at the database options that can most efficiently meet the requirements, and
gather information about your application's data requirements that relates to each of the options.

• Gathering Requirements for Message Processing Options

If your application communicates with terminals and other application programs, look at the message
processing options and the requirements they satisfy.

For more information about designing a CICS application, see CICS Transaction Server for z/OS CICS
Application Programming Guide.

Developing specifications
Developing specifications involves defining what your application will do, and how it will be done. The
task of developing specifications is not described in this information because it depends entirely on the
specific application and your standards.

Implementing the design
When the specifications for each of the programs in the application are developed, you can structure and
code the programs according to those specifications. The tasks of implementing the design are:

• Writing the Database Processing Part of the Program

When the program design is complete, you can structure and code your requests and data areas based
on the programming specifications that have been developed.

• Writing the Message Processing Part of the Program

If you are writing a program that communicates with terminals and other programs, you need to
structure and code the message processing part of the program.

12 IMS: Application Programming

• Analyzing APPC/IMS Requirements

The LU 6.2 feature of IMS TM enables your application to be distributed throughout the network.
• Testing an Application Program

When you finish coding your program, test it by itself and then as part of a system.
• Documenting an Application Program

Documenting a program continues throughout the project and is most effective when done
incrementally. When the program is completely tested, information must be suppled to those who use
and maintain your program.

Chapter 1. Designing an application: Introductory concepts 13

14 IMS: Application Programming

Chapter 2. Designing an application: Data and local
views

Designing an application that meets the requirements of end users involves a variety of tasks and,
usually, people from several departments. Application design begins when a department or business area
communicates a need for some type of processing. Application design ends when each of the parts of
the application system—for example, the programs, the databases, the display screens, and the message
formats—have been designed.

An overview of application design
The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

The purpose of this overview is to give you a frame of reference so that you can understand where the
techniques and guidelines explained in this section fit into the process. The order in which you perform
the tasks described here, and the importance you give to each one, depend on your settings. Also, the
individuals involved in each task, and their titles, might differ depending on the site. The tasks are as
follows:

• Establish your standards

Throughout the design process, be aware of your established standards. Some of the areas that
standards are usually established for are:

– Naming conventions (for example, for databases and terminals)
– Formats for screens and messages
– Control of and access to the database
– Programming and conventions (for common routines and macros)

Setting up standards in these areas is usually an ongoing task that is the responsibility of database and
system administrators.

• Follow your security standards

Security protects your resources from unauthorized access and use. As with defining standards,
designing an adequate security system is often an ongoing task. As an application is modified or
expanded, often the security must be changed in some way also. Security is an important consideration
in the initial stages of application design.

Establishing security standards and requirements is usually the responsibility of system administration.
These standards are based on the requirements of your applications.

Some security concerns are:

– Access to and use of the databases
– Access to terminals
– Distribution of application output
– Control of program modification
– Transaction and command entry

• Define application data

Identifying the data that an application requires is a major part of application design. One of the tasks
of data definition is learning from end users what information will be required to perform the required
processing.

• Provide input for database design

© Copyright IBM Corp. 1974, 2022 15

To design a database that meets the requirements of all the applications that will process it, the
database administrator (DBA) needs information about the data requirements of each application. One
way to gather and supply this information is to design a local view for each of the business processes in
your application. A local view is a description of the data that a particular business process requires.

• Design application programs

When the overall application flow and system externals have been defined, you define the programs
that will perform the required processing. Some of the most important considerations involved in this
task are: standards, security requirements, privacy requirements, and performance requirements. The
specifications you develop for the programs should include:

– Security requirements
– Input and output data formats and volumes
– Data verification and validation requirements
– Logic specifications
– Performance requirements
– Recovery requirements
– Linkage requirements and conventions
– Data availability considerations

In addition, you might be asked to provide some information about your application to the people
responsible for network and user interface design.

• Document the application design process

Recording information about the application design process is valuable to others who work with the
application now and in the future. One kind of information that is helpful is information about why you
designed the application the way you did. This information can be helpful to people who are responsible
for the database, your IMS system, and the programs in the application—especially if any part of the
application must be changed in the future. Documenting application design is done most thoroughly
when it is done during the design process, instead of at the end of it.

• Convert an existing application

One of the main aspects in converting an existing application to IMS is to know what already exists.
Before starting to convert the existing system, find out everything you can about the way it works
currently. For example, the following information can be of help to you when you begin the conversion:

– Record layouts of all records used by the application
– Number of data element occurrences for each data element
– Structure of any existing related databases

Related concepts
“Providing data security” on page 84
You can control the security of data accessed by your IMS application programs through data sensitivity
and processing options.
“Identifying online security requirements” on page 91
Security in an online system means protecting the data from unauthorized use through terminals. It also
means preventing unauthorized use of both the IMS system and the application programs that access the
database. For example, you do not want a program that processes paychecks to be available to everyone
who can access the system.
“Identifying application data” on page 17
Two important aspects of application design are identifying the application data and describing the data
that a particular business process requires.
“Designing a local view” on page 21

16 IMS: Application Programming

A local view is a description of the data that an individual business process requires.

Identifying application data
Two important aspects of application design are identifying the application data and describing the data
that a particular business process requires.

One of the steps of identifying application data is to thoroughly understand the processing the user wants
performed. You need to understand the input data and the required output data in order to define the data
requirements of the application. You also need to understand the business processes that are involved in
the user's processing needs. Three of the tasks involved in identifying application data are:

• Listing the data required by the business process
• Naming the data
• Documenting the data

When analyzing the required application data, you can categorize the data as either an entity or a data
element.

Definitions: An entity is anything about which information can be stored. A data element is the smallest
named unit of data pertaining to an entity. It is information that describes the entity.

Example: In an education application, "students" and "courses" are both entities; these are two subjects
about which you collect and process data. The following table shows some data elements that relate to
the student and course entities. The entity is listed with its related data elements.

Table 10. Entities and data elements

Entity Data elements

Student Student Name

Student Number

Course Course Name

Course Number

Course Length

When you store this data in an IMS database, groups of data elements are potential segments in the
hierarchy. Each data element is a potential field in that segment.

Related concepts
“An overview of application design” on page 15
The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Listing data elements
To identify application data, you list its data elements.

For example, to identify application data, consider a company that provides technical education to its
customers. The education company has one headquarters office, called Headquarters, and several local
education centers, called Ed Centers.

A class is a single offering of a course on a specific date at a particular Ed Center. One course might have
several offerings at different Ed Centers; each of these is a separate class. Headquarters is responsible for
developing all the courses that will be offered, and each Ed Center is responsible for scheduling classes
and enrolling students for its classes.

Suppose that one of the education company's requirements is for each Ed Center to print weekly current
rosters for all classes at the Ed Center. The current roster is to give information about the class and the

Chapter 2. Designing an application: Data and local views 17

students enrolled in the class. Headquarters wants the current rosters to be in the format shown in the
following figure.

CHICAGO 01/04/04

 TRANSISTOR THEORY 41837
 10 DAYS
 INSTRUCTOR(S): BENSON, R.J. DATE: 01/14/04

 STUDENT CUST LOCATION STATUS ABSENT GRADE
 1.ADAMS, J.W. XYZ SOUTH BEND, IND CONF
 2.BAKER, R.T. ACME BENTON HARBOR, MICH WAIT
 3.DRAKE, R.A. XYZ SOUTH BEND, IND CANC
 .
 .
 .
33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF

 CONFIRMED = 30
 WAIT—LISTED = 1
 CANCELED = 2

Figure 4. Current roster for technical education example

To list the data elements for a particular business process, look at the required output. The current roster
shown in the previous figure is the roster for the class, "Transistor Theory" to be given in the Chicago Ed
Center, starting on January 14, 2004, for ten days. Each course has a course code associated with it—in
this case, 41837. The code for a particular course is always the same. For example, if Transistor Theory is
also offered in New York, the course code is still 41837. The roster also gives the names of the instructors
who are teaching the course. Although the example only shows one instructor, a course might require
more than one instructor.

For each student, the roster keeps the following information: a sequence number for each student, the
student's name, the student's company (CUST), the company's location, the student's status in the class,
and the student's absences and grade. All the above information on the course and the students is input
information.

The current date (the date that the roster is printed) is displayed in the upper right corner (01/04/04). The
current date is an example of data that is output only data; it is generated by the operating system and is
not stored in the database.

The bottom-left corner gives a summary of the class status. This data is not included in the input data.
These values are determined by the program during processing.

When you list the data elements, abbreviating them is helpful, because you will be referring to them
frequently when you design the local view.

The data elements list for current roster is:
EDCNTR

Name of Ed Center giving class
DATE

Date class starts
CRSNAME

Name of course
CRSCODE

Course code
LENGTH

Length of course
INSTRS

Names of instructors teaching class
STUSEQ#

Student's sequence number

18 IMS: Application Programming

STUNAME
Student's name

CUST
Name of student's company

LOCTN
Location of student's company

STATUS
Student's status in class—confirmed, wait list, or cancelled

ABSENCE
Number of days student was absent

GRADE
Student's grade for the course

After you have listed the data elements, choose the major entity that these elements describe. In
this case, the major entity is class. Although a lot of information exists about each student and some
information exists about the course in general, together all this information relates to a specific class. If
the information about each student (for example, status, absence, and grade) is not related to a particular
class, the information is meaningless. This holds true for the data elements at the top of the list as well:
The Ed Center, the date the class starts, and the instructor mean nothing unless you know what class they
describe.

Naming data elements
Some of the data elements your application uses might already exist and be named. After you have listed
the data elements, find out if any of them exist by checking with your database administrator (DBA).

Before you begin naming data elements, be aware of the naming standards that you are subject to.
When you name data elements, use the most descriptive names possible. Remember that, because other
applications probably use at least some of the same data, the names should mean the same thing to
everyone. Try not to limit the name's meaning only to your application.

Recommendation: Use global names rather than local names. A global name is a name whose meaning is
clear outside of any particular application. A local name is a name that, to be understood, must be seen in
the context of a particular application.

One of the problems with using local names is that you can develop synonyms, two names for the same
data element.

For example, in the current roster example, suppose the student's company was referred to simply as
"company" instead of "customer". But suppose the accounting department for the education company
used the same piece of data in a billing application—the name of the student's company—and referred
to it as "customer". This would mean that two business processes were using two different names for
the same piece of data. At worst, this could lead to redundant data if no one realized that "customer"
and "company" contained the same data. To solve this, use a global name that is recognized by both
departments using this data element. In this case, "customer" is more easily recognized and the better
choice. This name uniquely identifies the data element and has a specific meaning within the education
company.

When you choose data element names, use qualifiers so that each name can mean only one thing.

For example, suppose Headquarters, for each course that is taught, assigns a number to the course as
it is developed and calls this number the "sequence number". The Ed Centers, as they receive student
enrollments for a particular class, assign a number to each student as a means of identification within the
class. The Ed Centers call this number the "sequence number". Thus Headquarters and the Ed Centers
are using the same name for two separate data elements. This is called a homonym. You can solve the
homonym problem by qualifying the names. The number that Headquarters assigns to each course can
be called "course code" (CRSCODE), and the number that the Ed Centers assign to their students can be
called "student sequence number" (STUSEQ#).

Chapter 2. Designing an application: Data and local views 19

Homonym
One word for two different things.

Choose data element names that identify the element and describe it precisely. Make your data element
names:
Unique

The name is clearly distinguishable from other names.
Self-explanatory

The name is easily understood and recognized.
Concise

The name is descriptive in a few words.
Universal

The name means the same thing to everyone.

Documenting application data
After you have determined what data elements a business process requires, record as much information
about each of the data elements as possible.

This information is useful to the DBA. Be aware of any standards that you are subject to regarding data
documentation. Many places have standards concerning what information should be recorded about data
and how and where that information should be recorded. The amount and type of this information varies
from place to place. The following list is the type of information that is often recorded.
The descriptive name of the data element

Data element names should be precise, yet they should be meaningful to people who are familiar and
also to those who are unfamiliar with the application.

The length of the data element
The length of the data element determines segment size and segment format.

The character format
The programmer needs to know if the data is alphanumeric, hexadecimal, packed decimal, or binary.

The range of possible values for the element
The range of possible values for the element is important for validity checking.

The default value
The programmer also needs the default value.

The number of data element occurrences
The number of data element occurrences helps the DBA to determine the required space for this data,
and it affects performance considerations.

How the business process affects the data element
Whether the data element is read or updated determines the processing option that is coded in the
PSB for the application program.

You should also record control information about the data. Such information should address the following
questions:

• What action should the program take when the data it attempts to access is not available?
• If the format of a particular data element changes, which business processes does that affect? For

example, if an education database has as one of its data elements a five-digit code for each course, and
the code is changed to six digits, which business processes does this affect?

• Where is the data now? Know the sources of the data elements required by the application.
• Which business processes make changes to a particular data element?
• Are there security requirements about the data in your application? For example, you would not want

information such as employees' salaries available to everyone?
• Which department owns and controls the data?

20 IMS: Application Programming

One way to gather and record this information is to use a form similar to the one shown in the following
table. The amount and type of data that you record depends on the standards that you are subject to. For
example, the following table lists the ID number, data element name, length, the character format, the
allowed, null, default values, and the number of occurrences.

Table 11. Example of data elements information form

ID #

Data
element
name Length

Char.
format Allowed values

Null
values

Default
value Number of occurrences

5 Course
Code

5 bytes Hexa-
decimal

0010090000 00000 N/A There are 200 courses
in the curriculum. An
average of 10 are new
or revised per year. An
average of 5 are dropped
per year.

25 Status 4 bytes Alpha-
numeric

CONF WAIT
CANC

blanks WAIT 1 per student

36 Student
Name

20 bytes Alpha-
numeric

Alpha only blanks N/A There are 3 to 100
students per class with
an average of 40 per
class.

A data dictionary is a good place to record the facts about the application's data. When you are analyzing
data, a dictionary can help you find out whether a particular data element already exists, and if it does,
its characteristics. With the IBM OS/VS DB/DC Data Dictionary, you can determine online what segments
exist in a particular database and what fields those segments contain. You can use either tool to create
reports involving the same information.

Designing a local view
A local view is a description of the data that an individual business process requires.

It includes the following:

• A list of the data elements
• A conceptual data structure that shows how you have grouped data elements by the entities that they

describe
• The relationships between each of the groups of data elements

Definitions: A data aggregate is a group of data elements. When you have grouped data elements
by the entity they describe, you can determine the relationships between the data aggregates. These
relationships are called mappings. Based on the mappings, you can design a conceptual data structure for
the business process. You should document this process as well.

Related concepts
“An overview of application design” on page 15

Chapter 2. Designing an application: Data and local views 21

The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Analyzing data relationships
When you analyze data relationships, you are developing conceptual data structures for the business
processes in your application.

This process, called data structuring, is a way to analyze the relationships among the data elements a
business process requires, not a way to design a database. The decisions about segment formats and
contents belong to the DBA. The information you develop is input for designing a database.

Data structuring can be done in many different ways.

Grouping data elements into hierarchies
The data elements that describe a data aggregate, the student, might be represented by the descriptive
names STUSEQ#, STUNAME, CUST, LOCTN, STATUS, ABSENCE, and GRADE. We call this group of data
elements the student data aggregate.

Data elements have values and names. In the student data elements example, the values are a particular
student's sequence number, the student's name, company, company location, the student's status in the
class, the student's absences, and grade. The names of the data aggregate are not unique—they describe
all the students in the class in the same terms. The combined values, however, of a data aggregate
occurrence are unique. No two students can have the same values in each of these fields.

As you group data elements into data aggregates and data structures, look at the data elements that
make up each group and choose one or more data elements that uniquely identify that group. This is the
data aggregate's controlling key, which is the data element or group of data elements in the aggregate that
uniquely identifies the aggregate. Sometimes you must use more than one data element for the key in
order to uniquely identify the aggregate.

By following the three steps explained in this section, you can develop a conceptual data structure for a
business process's data. However, you are not developing the logical data structure for the program that
performs the business process. The three steps are:

1. Separate repeating data elements in a single occurrence of the data aggregate.
2. Separate duplicate values in multiple occurrences of the data aggregate.
3. Group each data element with its controlling keys.

Step 1. separating repeating data elements
Look at a single occurrence of the data aggregate. The following table shows what this looks like for the
class aggregate; the data element is listed with the class aggregate occurrence.

Table 12. Single occurrence of class aggregate

Data element Class aggregate occurrence

EDCNTR CHICAGO

DATE(START) 1/14/96

CRSNAME TRANSISTOR THEORY

CRS CODE 41837

LENGTH 10 DAYS

INSTRS multiple

STUSEQ# multiple

22 IMS: Application Programming

Table 12. Single occurrence of class aggregate (continued)

Data element Class aggregate occurrence

STUNAME multiple

CUST multiple

LOCTN multiple

STATUS multiple

ABSENCE multiple

GRADE multiple

The data elements defined as multiple are the elements that repeat. Separate the repeating data
elements by shifting them to a lower level. Keep data elements with their controlling keys.

The data elements that repeat for a single class are: STUSEQ#, STUNAME, CUST, LOCTN, STATUS,
ABSENCE, and GRADE. INSTRS is also a repeating data element, because some classes require two
instructors, although this class requires only one.

When you separate repeating data elements into groups, you have the structure shown in the following
figure.

In the following figure, the data elements in each box form an aggregate. The entire figure depicts a data
structure. The data elements include the Course aggregate, the Student aggregate, and the Instructor
aggregate.

The following figure shows these aggregates with the keys indicated with leading asterisks (*).

Figure 5. Current roster after step 1

The keys for the data aggregates are shown in the following table.

Table 13. Data aggregates and keys for current roster after step 1

Data aggregate Keys

Course aggregate EDCNTR, DATE, CRSCODE

Chapter 2. Designing an application: Data and local views 23

Table 13. Data aggregates and keys for current roster after step 1 (continued)

Data aggregate Keys

Student aggregate EDCNTR, DATE, CRSCODE, STUSEQ#

Instructor aggregate EDCNTR, DATE, CRSCODE, INSTRS

The asterisks in the previous figure identify the key data elements. For the Class aggregate, it takes
multiple data elements to identify the course, so you need multiple data elements to make up the key.
The data elements that comprise the Class aggregate are:

• Controlling key element, STUSEQ#
• STUNAME
• CUST
• LOCTN
• STATUS
• ABSENCE
• GRADE

The data elements that comprise the Instructor aggregate are:

• Key element, INSTRS

The Course aggregate and the Instructor aggregate inherit the following keys from the root segment,
Course aggregate:

• EDCNTR
• DATE
• CRSCODE

After you have shifted repeating data elements, make sure that each element is in the same group as its
controlling key. INSTRS is separated from the group of data elements describing a student because the
information about instructors is unrelated to the information about the students. The student sequence
number does not control who the instructor is.

In the example shown in the previous figure, the Student aggregate and Instructor aggregate are both
dependents of the Course aggregate. A dependent aggregate's key includes the concatenated keys of all
the aggregates above the dependent aggregate. This is because a dependent's controlling key does not
mean anything if you do not know the keys of the higher aggregates. For example, if you knew that a
student's sequence number was 4, you would be able to find out all the information about the student
associated with that number. This number would be meaningless, however, if it were not associated with
a particular course. But, because the key for the Student aggregate is made up of Ed Center, date, and
course code, you can deduce which class the student is in.

Step 2. isolating duplicate aggregate values
Look at multiple occurrences of the aggregate—in this case, the values you might have for two classes.
The following table shows multiple occurrences (2) of the same data elements. As you look at this table,
check for duplicate values. Remember that both occurrences describe one course.

Table 14. Multiple occurrences of class aggregate

Data element list Occurrence 1 Occurrence 2

EDCNTR CHICAGO NEW YORK

DATE(START) 1/14/96 3/10/96

CRSNAME TRANS THEORY TRANS THEORY

24 IMS: Application Programming

Table 14. Multiple occurrences of class aggregate (continued)

Data element list Occurrence 1 Occurrence 2

CRSCODE 41837 41837

LENGTH 10 DAYS 10 DAYS

INSTRS multiple multiple

STUSEQ# multiple multiple

STUNAME multiple multiple

CUST multiple multiple

LOCTN multiple multiple

STATUS multiple multiple

ABSENCE multiple multiple

GRADE multiple multiple

The data elements defined as multiple are the data elements that repeat. The values in these elements
are not the same. The aggregate is always unique for a particular class.

In this step, compare the two occurrences and shift the fields with duplicate values (TRANS THEORY and
so on) to a higher level. If you need to, choose a controlling key for aggregates that do not yet have keys.

In the previous table, CRSNAME, CRSCODE, and LENGTH are the fields that have duplicate values. Much
of this process is intuitive. Student status and grade, although they can have duplicate values, should not
be separated because they are not meaningful values by themselves. These values would not be used
to identify a particular student. This becomes clear when you remember to keep data elements with
their controlling keys. When you separate duplicate values, you have the structure shown in the following
figure.

Chapter 2. Designing an application: Data and local views 25

Figure 6. Current roster after step 2

Step 3. grouping data elements with their controlling keys
This step is often a check on the first two steps. (Sometimes the first two steps have already done what
this step instructs you to do.)

At this stage, make sure that each data element is in the group that contains its controlling key. The data
element should depend on the full key. If the data element depends only on part of the key, separate the
data element along with the partial (controlling) key on which it depends.

In this example, CUST and LOCTN do not depend on the STUSEQ#. They are related to the student, but
they do not depend on the student. They identify the company and company address of the student.

CUST and LOCTN are not dependent on the course, the Ed Center, or the date, either. They are separate
from all of these things. Because a student is only associated with one CUST and LOCTN, but a CUST and
LOCTN can have many students attending classes, the CUST and LOCTN aggregate should be above the
student aggregate.

The following figure shows these aggregates and keys indicated with leading asterisks (*) and shows what
the structure looks like when you separate CUST and LOCTN.

26 IMS: Application Programming

Figure 7. Current roster after step 3

The keys for the data aggregates are shown in the following table.

Table 15. Data aggregates and keys for current roster after step 3

Data aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

Customer aggregate CUST, LOCTN

Student aggregate (when viewed from the customer aggregate in "Current
roster after step 3"instead of from the course aggregate,
in "Current roster after step 2") CUST, LOCTN, STUSEQ,
CRSCODE, EDCNTR, DATE

Instructor aggregate CRSCODE, EDCNTR, DATE, INSTRS

Deciding on the arrangement of the customer and location information is part of designing a database.
Data structuring should separate any inconsistent data elements from the rest of the data elements.

Determining mappings
When you have arranged the data aggregates into a conceptual data structure, you can examine the
relationships between the data aggregates. A mapping between two data aggregates is the quantitative
relationship between the two.

The reason you record mappings is that they reflect relationships between segments in the data structure
that you have developed. If you store this information in an IMS database, the DBA can construct a
database hierarchy that satisfies all the local views, based on the mappings. In determining mappings, it
is easier to refer to the data aggregates by their keys, rather than by their collected data elements.

The two possible relationships between any two data aggregates are:

Chapter 2. Designing an application: Data and local views 27

• One-to-many

For each segment A, one or more occurrences of segment B exist. For example, each class maps to one
or more students.

Mapping notation shows this in the following way:

Class ◄────────►► Student
• Many-to-many

Segment B has many A segments associated with it and segment A has many B segments associated
with it. In a hierarchic data structure, a parent can have one or more children, but each child can be
associated with only one parent. The many-to-many association does not fit into a hierarchy, because in
a many-to-many association each child can be associated with more than one parent.

Related Reading: For more information about analyzing data requirements, see IMS Version 15.3
Database Administration.

Many-to-many relationships occur between segments in two business processes. A many-to-many
relationship indicates a conflict in the way that two business processes need to process those data
aggregates. If you use the IMS full-function database, you can solve this kind of processing conflict by
using secondary indexing or logical relationships.

The mappings for the current roster are:

• Course ◄────────►► Class

For each course, there might be several classes scheduled, but a class is associated with only one
course.

• Class ◄────────►► Student

A class has many students enrolled in it, but a student might be in only one class offering of this course.
• Class ◄────────►► Instructor

A class might have more than one instructor, but an instructor only teaches one class at a time.
• Customer/location ◄────────►► Student

A customer might have several students attending a particular class, but each student is only associated
with one customer and location.

Related concepts
“Understanding how data structure conflicts are resolved” on page 76
The order in which application programs need to process fields and segments within hierarchies is
frequently not the same for each application. When the DBA finds a conflict in the way that two or more
programs need to access the data, three options are available to solve these problems. Each of the
following options solves a different kind of conflict.

Local view examples
The following examples show how to design local views including the schedule of courses, the instructor
skills report, and the instructor schedules.

Each example shows the following parts of designing a local view:

1. Gather the data. For each example, the data elements are listed and two occurrences of the data
aggregate are shown. Two occurrences are shown because you need to look at both occurrences when
you look for repeating fields and duplicate values.

2. Analyze the data relationships. First, group the data elements into a conceptual data structure using
these three steps:

a. Separate repeating data elements in a single occurrence of the data aggregate by shifting them to a
lower level. Keep data elements with their keys.

28 IMS: Application Programming

b. Separate duplicating values in two occurrences of the data aggregate by shifting those data
elements to a higher level. Again, keep data elements with their keys.

c. Group data elements with their keys. Make sure that all the data elements within one aggregate
have the same key. Separate any that do not.

3. Determine the mappings between the data aggregates in the data structure you have developed.

Example 1: schedule of courses
Headquarters keeps a schedule of all the courses given each quarter and distributes it monthly.
Headquarters wants the schedule to be sorted by course code and printed in the format shown in the
following figure.

 COURSE SCHEDULE

 COURSE: TRANSISTOR THEORY COURSE CODE: 418737
 LENGTH: 10 DAYS PRICE: $280

 DATE LOCATION

 APRIL 14 BOSTON
 APIRL 21 CHICAGO
 .
 .
 .
 NOVEMBER 18 LOS ANGELES

Figure 8. Schedule of courses

1. Gather the data. The following table lists the data elements and two occurrences of the data
aggregate.

Table 16. Course schedule data elements

Data elements Occurrence 1 Occurrence 2

CRSNAME TRANS THEORY MICRO PROG

CRSCODE 41837 41840

LENGTH 10 DAYS 5 DAYS

PRICE $280 $150

DATE multiple multiple

EDCNTR multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by shifting them to a
lower level, as shown in the following table

Chapter 2. Designing an application: Data and local views 29

Figure 9. Course schedule after step 1
b. Next, separate duplicate values in two occurrences of the data aggregate by shifting the data

elements to a higher level.

This data aggregate does not contain duplicate values.
c. Group data elements with their controlling keys.

Data elements are grouped with their keys in the present structure. No changes are necessary for
this step.

The keys for the data aggregates are shown in the following table.

Table 17. Data aggregates and keys for course schedule after step 1

Data aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

3. When you have developed a conceptual data structure, determine the mappings for the data
aggregates.

The mapping for this local view is: Course ◄────────►► Class

Example 2: instructor skills report
Each Ed Center needs to print a report showing the courses that its instructors are qualified to teach. The
report format is shown in the following figure.

 INSTRUCTOR SKILLS REPORT

 INSTRUCTOR COURSE CODE COURSE NAME

 BENSON, R. J. 41837 TRANS THEORY
 MORRIS, S. R. 41837 TRANS THEORY
 41850 CIRCUIT DESIGN
 41852 LOGIC THEORY
 .
 .
 .
 REYNOLDS, P. W. 41840 MICRO PROG
 41850 CIRCUIT DESIGN

Figure 10. Instructor skills report

30 IMS: Application Programming

1. Gather the data. The following table lists the data elements and two occurrences of the data
aggregate.

Table 18. Instructor skills data elements

Data elements Occurrence 1 Occurrence 2

INSTR REYNOLDS, P.W. MORRIS, S. R.

CRSCODE multiple multiple

CRSNAME multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by shifting to a higher
level as shown in the following figure.

Figure 11. Instructor skills after step 1
b. Separate any duplicate values in the two occurrences of the data aggregate.

No duplicate values exist in this data aggregate.
c. Group data elements with their keys.

All data elements are grouped with their keys in the current data structure. There are no changes to
this data structure.

3. Determine the mappings for the data aggregates.

The mapping for this local view is: Instructor ◄────────►► Course

Example 3: instructor schedules
Headquarters wants to produce a report showing the schedules for all the instructors. The following figure
shows the report format.

 INSTRUCTOR SCHEDULES

INSTRUCTOR COURSE CODE ED CENTER DATE

BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/14/96
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 3/10/96
 LOGIC THEORY 41852 BOSTON 3/27/96
 CIRCUIT DES 41840 CHICAGO 4/21/96
REYNOLDS, B. H. MICRO PROG 41850 NEW YORK 2/25/96
 CIRCUIT DES 41850 LOS ANGELES 3/10.96

Figure 12. Instructor schedules

1. Gather the data. The following table lists the data elements and two occurrences of the data
aggregate.

Chapter 2. Designing an application: Data and local views 31

Table 19. Instructor schedules data elements

Data elements Occurrence 1 Occurrence 2

INSTR BENSON, R. J. MORRIS, S. R.

CRSNAME multiple multiple

CRSCODE multiple multiple

EDCNTR multiple multiple

DATE(START) multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by shifting data
elements to a lower level as shown in the following figure.

Figure 13. Instructor schedules step 1
b. Separate duplicate values in two occurrences of the data aggregate by shifting data elements to a

higher level as shown in the following figure.

In this example, CRSNAME and CRSCODE can be duplicated for one instructor or for many
instructors, for example, 41837 for Benson and 41850 for Morris and Reynolds.

Figure 14. Instructor schedules step 2
c. Group data elements with their keys.

32 IMS: Application Programming

All data elements are grouped with their controlling keys in the current data structure. No changes
to the current data structure are required.

3. Determine the mappings for the data aggregates.

The mappings for this local view are: Instructor ◄────────►► Course Course ◄────────►► Class

An analysis of data requirements is necessary to combine the requirements of the three examples
presented in this section and to design a hierarchic structure for the database based on these
requirements.

Related Reading: For more information on analyzing data requirements, see IMS Version 15.3
Database Administration.

Chapter 2. Designing an application: Data and local views 33

34 IMS: Application Programming

Chapter 3. Analyzing IMS application processing
requirements

Use the following information to plan for writing application programs for IMS environments.

Defining IMS application requirements
One of the steps of application design is to decide how the business processes, or tasks, that the end
user wants performed can be best grouped into a set of programs that efficiently performs the required
processing.

To analyze processing requirements, consider:

• When the task must be performed

– Will the task be scheduled unpredictably (for example, on terminal demand) or periodically (for
example, weekly)?

• How the program that performs the task is executed

– Will the program be executed online, where response time is crucial, or by batch job submission,
where a slower response time is acceptable?

• The consistency of the processing components

– Does the action the program is to perform involve more than one type of program logic? For example,
does it involve mostly retrievals and only one or two updates? If so, you should consider separating
the updates into a separate program.

– Does this action involve several large groups of data? If it does, it might be more efficient to separate
the programs by the data they access.

• Any special requirements about the data or processing
Security

Should access to the program be restricted?
Recovery

Are there special recovery considerations in the program's processing?
Availability

Does your application require high data availability?
Integrity

Do other departments use the same data?

Answers to questions like these can help you decide on the number of application programs that the
processing will require, and on the types of programs that perform the processing most efficiently.
Although rules dealing with how many programs can most efficiently do the required processing do not
exist, here are some suggestions:

• As you look at each programming task, examine the data and processing that each task involves. If
a task requires different types of processing and has different time limitations (for example, daily as
opposed to different times throughout the month), that task might be more efficiently performed by
several programs.

• As you define each program, it is a good idea for maintenance and recovery reasons to keep it as simple
as possible. The simpler a program is—the less it does—the easier it is to maintain, and to restart after
a program or system failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available. The more limited the access requested, the more likely the data is
to be available.

© Copyright IBM Corp. 1974, 2022 35

Similarly, if the data that the application requires is physically in one place, it might be more efficient to
have one program do more of the processing than usual. These are considerations that depend upon the
processing and the data of each application.

• Documenting each of the user tasks is helpful during the design process, and in the future when others
will work with your application. Be sure you are aware of standards in this area. The kind of information
that is typically kept is when the action is to be executed, a functional description, and requirements for
maintenance, security, and recovery.

For example, for the current roster process described previously, you might record the information
shown in the following form. How frequently the program is run is determined by the number of classes
(20) needed by the Education Center each week.

Documenting user task descriptions: current roster example
USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
 number sequence for each class offered at the Education Center.

MAINTENANCE:Included in Education DB maintenance.

SECURITY: None.

RECOVERY:After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your IMS application program
When designing your program, consider the type of database it must access. The type of database
depends on the operating environment.

The program types you can run and the different types of databases you can access in a DB batch, TM
batch, DB/DC, DBCTL, or DCCTL environment are shown in the following table.

36 IMS: Application Programming

Table 20. Program and database options in IMS environments

Environment
Type of program you
can run Type of database that can be accessed

DB/DC BMP Db2 for z/OS
DEDB and MSDB
Full function
z/OS files

IFP Db2 for z/OS
DEDB
Full function

JBP Db2 for z/OS
DEDB
Full function

JMP Db2 for z/OS
DEDB
Full function

MPP Db2 for z/OS
DEDB and MSDB
Full function

DB Batch DB Batch Db2 for z/OS
Full function
GSAM
z/OS files

DBCTL BMP (Batch-oriented) Db2 for z/OS
DEDB
Full function
GSAM
z/OS files

JBP Db2 for z/OS
DEDB
Full function

DCCTL BMP Db2 for z/OS
GSAM
z/OS files

IFP Db2 for z/OS

JMP Db2 for z/OS

MPP Db2 for z/OS

Chapter 3. Analyzing IMS application processing requirements 37

Table 20. Program and database options in IMS environments (continued)

Environment
Type of program you
can run Type of database that can be accessed

TM Batch TM Batch Db2 for z/OS
GSAM
z/OS files

The types of databases that can be accessed are:

• IMS Databases

There are two types of IMS databases: full-function and Fast Path.

– Full-function databases

Full-function databases are hierarchic databases that are accessed through Data Language I (DL/I)
call interface and can be processed by these types of application programs: IFP, JMP, JBP, MPP, BMP,
and DB batch. DL/I calls make it possible for IMS application programs to retrieve, replace, delete,
and add segments to full-function databases.

JMP and JBP applications use JDBC to access full-function databases in addition to DL/I.

If you use data sharing, online programs and batch programs can access the same full-function
database concurrently.

Full-function database types include: HDAM, HIDAM, HSAM, HISAM, PHDAM, PHIDAM, SHSAM, and
SHISAM.

– Fast Path databases

Fast Path databases are of two types: MSDBs and DEDBs.

- Main storage databases (MSDBs) are root-segment-only databases that reside in virtual storage
during execution.

- Data entry databases (DEDBs) are hierarchic databases that provide a high level of availability for,
and efficient access to, large volumes of detailed data.

MPP, BMP, and IFP programs can access Fast Path databases. In the DBCTL environment, BMP
programs can access DEDBs but not MSDBs. JMP and JBP programs can access DEDBs but not
MSDBs.

• Db2 for z/OS databases

Db2 for z/OS databases are relational databases that can be processed by IMS batch, BMP, IFP, JBP,
JMP, and MPP programs. An IMS application program might access only DL/I databases, both DL/I
and Db2 for z/OS databases, or only Db2 for z/OS databases. Relational databases are represented to
application programs and users as tables, and are processed using a relational data language called
Structured Query Language (SQL).

Note: Programs running in 64bit JMP and JBP regions cannot access Db2 for z/OS databases.

Related Reading: For information on processing Db2 for z/OS databases, see DB2® for z/OS Application
Programming and SQL Guide.

• z/OS Files

BMPs (in DB/DC, DBCTL, and DCCTL environments) are the only type of online application program that
can access z/OS files for their input or output. Batch programs can also access z/OS files.

• GSAM Databases (Generalized Sequential Access Method)

Generalized Sequential Access Method (GSAM) is an access method that makes it possible for BMPs
and batch programs to access a sequential z/OS data set as a simple database. A GSAM database can
be accessed by z/OS or by IMS.

38 IMS: Application Programming

Accessing data: the types of programs you can write for your IMS
application

You must decide what type of program to use: batch programs, message processing programs (MPPs),
IMS Fast Path (IFP) applications, batch message processing (BMP) applications, Java Message Processing
(JMP) applications, or Java Batch Processing (JBP) applications. The types of programs you can use
depend on whether you are running in the batch, DB/DC, or DBCTL environment.

DB batch processing
These topics describe DB batch processing and can help you decide if this batch program is appropriate
for your application.

Data that a DB batch program can access
A DB batch program can access full-function databases, Db2 for z/OS databases, GSAM databases, and
z/OS files. A DB batch program cannot access DEDBs or MSDBs.

Using DB batch processing
Batch programs are typically longer-running programs than online programs. You use a batch program
when you have a large number of database updates to do or a report to print. Because a batch program
runs by itself—it does not compete with any other programs for resources like databases—it can run
independently of the control region. If you use data sharing, DB batch programs and online programs can
access full-function databases concurrently. Batch programs:

• Typically produce a large amount of output, such as reports.
• Are not executed by another program or user. They are usually scheduled at specific time intervals (for

example, weekly) and are started with JCL.
• Produce output that is not needed right away. The turnaround time for batch output is not crucial, as it

usually is for online programs.

Recovering a DB batch program
Include checkpoints in your batch program to restart it in case of failure.

Issuing checkpoints

Issue checkpoints in a batch program to commit database changes and provide places from which to
restart your program. Issuing checkpoints in a batch program is important, because commit points do not
occur automatically, as they do in MPPs, transaction-oriented BMPs, and IFPs.

Issuing checkpoints is particularly important in a batch program that participates in data sharing with
your online system. Checkpoints free up resources for use by online programs. You should initially include
checkpoints in all batch programs that you write. Even though the checkpoint support might not be
needed then, it is easier to incorporate checkpoints initially than to try to fit them in later. And it is
possible that you might want to convert your batch program to a BMP or participate in data sharing.

To issue checkpoints (or other system service calls), you must specify an I/O PCB for your program. To
obtain an I/O PCB, use the compatibility option by specifying CMPAT=YES in the PSBGEN statement in
your program's PSB.

GSAM DB's are not backed out but are repositioned during the BMP's restart process through the XRST
call. The XRST call repositions the dataset pointers to the checkpoint ID specified in the call. When the
application starts-up, it will pick-up from that point and go forward. The checkpoint ID specified in the
XRST call should be the same one that the non-GSAM DBs would have been backed out to, through either
dynamic or batch backout.

Recommendation: For PSBs used by DB batch programs, always specify CMPAT=YES.

Chapter 3. Analyzing IMS application processing requirements 39

Backing out database changes

The type of storage medium for the system log determines what happens when a DB batch program
terminates abnormally. You can specify that the system log be stored on either DASD (direct access
storage device) or tape.

System log on DASD

If the system log is stored on DASD, using the BKO execution parameter you can specify that IMS is to
dynamically back out the changes that the program has made to the database since its last commit point.

Related Reading: For information on using the BKO execution parameter, see IMS Version 15.3 System
Definition.

Dynamically backing out database changes has the following advantages:

• Data accessed by the program that failed is available to other programs immediately. If batch backout
is used, other programs cannot access the data until the IMS Batch Backout utility has been run to back
out the database changes.

• If data sharing is being used and two programs are deadlocked, one of the programs can continue
processing. Otherwise, if batch backout is used, both programs fail.

IMS performs dynamic backout for a batch program when an IMS-detected failure occurs, for example,
when a deadlock is detected. Logging to DASD makes it possible for batch programs to issue the SETS,
ROLB, and ROLS system service calls. These calls cause IMS to dynamically back out changes that the
program has made.

Related Reading: For information on the SETS, ROLB, and ROLS calls, see the information about
recovering databases and maintaining database integrity in IMS Version 15.3 Database Administration.

System log on tape

If a batch application program terminates abnormally and the batch system log is stored on tape, you
must use the IMS Batch Backout utility to back out the program's changes to the database.

Related concepts
“When to use checkpoint calls” on page 49
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

TM batch processing
A TM batch program acts like a DB batch program with the following differences.

• It cannot access full-function databases, but it can access Db2 for z/OS databases, GSAM databases,
and z/OS files.

• To issue checkpoints for recovery, you need not specify CMPAT=YES in your program's PSB. (The CMPAT
parameter is ignored in TM batch.) The I/O PCB is always the first PCB in the list.

• You cannot dynamically back out a database because IMS does not own the databases.

The IEFRDER log DD statement is required in order to enable log synchronization with other external
subsystems, such as DB2 for z/OS.

Processing messages: Message Processing Programs
A Message Processing Program (MPP) is an online program that can access full-function databases,
DEDBs, MSDBs, and Db2 for z/OS databases. Unlike BMPs and batch programs, MPPs cannot access
GSAM databases. MPPs can only run in DB/DC and DCCTL environments.

Using an MPP
The primary purpose of an MPP is to process requests from users at terminals and from other application
programs. Ideally, MPPs are very small, and the processing they perform is tailored to respond to
requests quickly. They process messages as their input, and send messages as responses.

40 IMS: Application Programming

Message
Data that is transmitted between any two terminals, application programs, or IMS systems. Each
message has one or more segments.

MPPs are executed through transaction codes. When you define an MPP, you associate it with one or
more transaction codes. Each transaction code represents a transaction the MPP is to process. To process
a transaction, a user at a terminal enters a code for that transaction. IMS then schedules the MPP
associated with that code, and the MPP processes the transaction. The MPP might need to access the
database to do this. Generally, an MPP goes through these five steps to process a transaction:

1. Retrieve a message from IMS.
2. Process the message and access the database as necessary.
3. Respond to the message.
4. Repeat the process until no messages are forthcoming.
5. Terminate.

When an MPP is defined, a system administrator makes decisions about the program's scheduling and
processing. For each MPP, a system administrator specifies:

• The transaction's priority
• The number of messages for a particular transaction code that the MPP can process in a single

scheduling
• The amount of time (in seconds) in which the MPP is allowed to process a single transaction

Defining priorities and processing limits gives system administration some control over load balancing and
processing.

Although the primary purpose of an MPP is to process and reply to messages quickly, it is flexible in how
it processes a transaction and where it can send output messages. For example, an MPP can send output
messages to other terminals and application programs.

Related concepts
“Gathering requirements for database options” on page 69
After designing hierarchies for the databases that your application will access, the DBA evaluates
database options in terms of which options will best meet application requirements. Whether these
options are used depends on the collected requirements of the applications. To design an efficient
database, the DBA needs information about the individual applications.

Processing messages: IMS Fast Path Programs
An IMS Fast Path Program (IFP) is similar to an MPP: Its main purpose is to quickly process and reply to
messages from terminals. Like an MPP, an IFP can access full-function databases, DEDBs, MSDBs, and
Db2 for z/OS databases. IFPs can only be run in DB/DC and DCCTL environments.

Using an IFP
You should use an IFP if you need quick processing and can accept the characteristics and constraints
associated with IFPs.

The main differences between IFPs and MPPs are as follows:

• Messages processed by IFPs must consist of only one segment. Messages that are processed by MPPs
can consist of several segments.

• IFPs bypass IMS queuing, allowing for more efficient processing. Transactions that are processed by
Fast Path's EMH (expedited message handler) are on a first-in, first-out basis.

IFPs also have the following characteristics:

• They run in transaction response mode. This means that they must respond to the terminal that sent
the message before the terminal can enter any more requests.

Chapter 3. Analyzing IMS application processing requirements 41

• They process only wait-for-input transactions. When you define a program as processing wait-for-
input transactions, the program remains in virtual storage, even when no additional messages are
available for it to process.

Restrictions:

• An IMS program cannot send messages to an IFP transaction unless it is in another IMS system that is
connected using Intersystem Communication (ISC).

• MPPs cannot pass conversations to an IFP transaction.

Recovering an IFP
IFPs must be defined as single mode. This means that a commit point occurs each time the program
retrieves a message. Because of this, you do not need to issue checkpoint calls.

Batch message processing: BMPs
BMPs are application programs that can perform batch-type processing online and access the IMS
message queues for their input and output. Because of this and because of the data available to them,
BMPs are the most flexible of the IMS application programs. The two types of BMPs are: batch-oriented
and transaction-oriented.

Batch processing online: batch-oriented BMPs
A batch-oriented BMP performs batch-type processing in any online environment. When run in the DB/DC
or DCCTL environment, a batch-oriented BMP can send its output to the IMS message queue to be
processed later by another application program. Unlike a transaction-oriented BMP, a batch-oriented BMP
cannot access the IMS message queue for input.

Data a batch-oriented BMP can access
In the DBCTL environment, a batch-oriented BMP can access full-function databases, Db2 for z/OS
databases, DEDBs, z/OS files, and GSAM databases. In the DB/DC environment, a batch-oriented BMP
can access all of these types of databases, as well as Fast Path MSDBs. In the DCCTL environment, this
program can access Db2 for z/OS databases, z/OS files, and GSAM databases.

Using a batch-oriented BMP
A batch-oriented BMP can be simply a batch program that runs online. (Online requests are processed
by the IMS DB/DC, DBCTL, or DCCTL system rather than by a batch system.) You can even run the same
program as a BMP or as a batch program.

Recommendation: If the program performs a large number of database updates without issuing
checkpoints, consider running it as a batch program so that it does not degrade the performance of
the online system.

To use batch-oriented BMPs most efficiently, avoid a large amount of batch-type processing online. If
you have a BMP that performs time-consuming processing such as report writing and database scanning,
schedule it during non-peak hours of processing. This will prevent it from degrading the response time of
MPPs.

Because BMPs can degrade response times, your response time requirements should be the main
consideration in deciding the extent to which you will use batch message processing. Therefore, use
BMPs accordingly.

Recovering a batch-oriented BMP
Issuing checkpoint calls is an important part of batch-oriented BMP processing, because commit points
do not occur automatically, as they do in MPPs, transaction-oriented BMPs, and IFPs. Unlike most batch
programs, a BMP shares resources with MPPs. In addition to committing database changes and providing

42 IMS: Application Programming

places from which to restart (as for a batch program), checkpoints release resources that are locked for
the program.

If a batch-oriented BMP fails, IMS and Db2 for z/OS back out the database updates the program has made
since the last commit point. You then restart the program with JCL. If the BMP processes z/OS files, you
must provide your own method of taking checkpoints and restarting.

Converting a batch program to a batch-oriented BMP
If you have IMS TM or are running in the DBCTL environment, you can convert a batch program to a
batch-oriented BMP.

• If you have IMS TM, you might want to convert your programs for these reasons:

– BMPs can send output to the message queues.
– BMPs can access DEDBs and MSDBs.
– BMPs simplify program recovery because logging goes to a single system log. If you use DASD for the

system log in batch, you can specify that you want dynamic backout for the program. In that case,
batch recovery is similar to BMP recovery, except, of course, with batch you need to manage multiple
logs.

– Restart can be done automatically from the last checkpoint without changing the JCL.
• If you are using DBCTL, you might want to convert your programs for these reasons:

– BMPs can access DEDBs.
– BMPs simplify program recovery because logging goes to a single system log. If you use DASD for the

system log in batch, you can specify that you want dynamic backout for the program. In that case,
batch recovery is similar to BMP recovery, except, of course, with batch you need to manage multiple
logs.

• If you are running sysplex data sharing and you either have IMS TM or are using DBCTL, you might want
to convert your program. This is because using batch-oriented BMPs helps you stay within the sysplex
data-sharing limit of 32 connections for each OSAM or VSAM structure.

If you use data sharing, you can run batch programs concurrently with online programs. If you do not
use data sharing, converting a batch program to a BMP makes it possible to run the program with BMPs
and other online programs.

Also, if you plan to run your batch programs offline, converting them to BMPs enables you to run them
with the online system, instead of waiting until the online system is not running. Running a batch
program as a BMP can also keep the data more current.

• If you have IMS TM or are using DBCTL, you can have a program that runs as either a batch program or a
BMP.

Recommendation: Code your checkpoints in a way that makes them easy to modify. Converting a
batch program to a BMP or converting a batch program to use data sharing requires more frequent
checkpoints. Also, if a program fails while running in a batch region, you must restart it in a batch region.
If a program fails in a BMP region, you must restart it in a BMP region.

The requirements for converting a batch program to a BMP are:

• The program must have an I/O PCB. You can obtain an I/O PCB in batch by specifying the compatibility
(CMPAT) option in the program specification block (PSB) for the program.

Related Reading: For more information on the CMPAT option in the PSB, see IMS Version 15.3 System
Utilities.

• BMPs must issue checkpoint calls more frequently than batch programs.

Related concepts
“When to use checkpoint calls” on page 49

Chapter 3. Analyzing IMS application processing requirements 43

Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

Batch message processing: transaction-oriented BMPs
Transaction-oriented BMPs can access z/OS files, GSAM databases, Db2 for z/OS databases, full-function
databases, DEDBs, and MSDBs.

Data a transaction-oriented BMP can access
Unlike a batch-oriented BMP, a transaction-oriented BMP can access the IMS message queue for input
and output, and it can only run in the DB/DC and DCCTL environments.

Using a transaction-oriented BMP
Unlike MPPs, transaction-oriented BMPs are not scheduled by IMS. You schedule them as needed and
start them with JCL. For example, an MPP, as it processes each message, might send an output message
giving details of the transaction to the message queue. A transaction-oriented BMP could then access the
message queue to produce a daily activity report.

Typically, you use a transaction-oriented BMP to simulate direct update online: Instead of updating
the database while processing its transactions, an MPP sends its updates to the message queue. A
transaction-oriented BMP then performs the updates for the MPP. You can run the BMP as needed,
depending on the number of updates. This improves response time for the MPP, and it keeps the data
current. This can be more efficient than having the MPP process its transactions if the response time of
the MPP is very important. One disadvantage in doing this, however, is that it splits the transaction into
two parts which is not necessary.

If you have a BMP perform an update for an MPP, design the BMP so that, if the BMP terminates
abnormally, you can reenter the last message as input for the BMP when you restart it. For example,
suppose an MPP gathers database updates for three BMPs to process, and one of the BMPs terminates
abnormally. You would need to reenter the message that the terminating BMP was processing to one of
the other BMPs for reprocessing.

BMPs can process transactions defined as wait-for-input (WFI). This means that IMS allows the BMP to
remain in virtual storage after it has processed the available input messages. IMS returns a QC status
code, indicating that the program should terminate when one of the following occurs:

• The program reaches its time limit.
• The master terminal operator enters a command to stop processing.
• IMS is terminated with a checkpoint shutdown.

You specify WFI for a transaction on the WFI parameter of the TRANSACT macro during IMS system
definition.

A batch message processing region (BMP) scheduled against WFI transactions returns a QC status code
(no more messages) only for the following commands: /PSTOP REGION, /DBD, /DBR, or /STA.

Like MPPs, BMPs can send output messages to several destinations, including other application programs.

Recovering a transaction-oriented BMP
Like MPPs, with transaction-oriented BMPs, you can choose where commit points occur in the program.
You can specify that a transaction-oriented BMP be single or multiple mode, just as you can with an MPP.
If the BMP is single mode, issuing checkpoint calls is not as critical as in a multiple mode BMP. In a single
mode BMP, a commit point occurs each time the program retrieves a message.

Related concepts
“Identifying output message destinations” on page 97
An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB

44 IMS: Application Programming

and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.
“When to use checkpoint calls” on page 49
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

Java message processing: JMPs
A JMP application program is similar to an MPP application program, except that JMP applications must
be written in Java or object-oriented COBOL. Like an MPP application, a JMP application is started when
there is a message in the message queue for the JMP application and IMS schedules the message for
processing.

JMP applications can access IMS data or Db2 for z/OS data using JDBC. JMP applications run in JMP
regions which have JVMs (Java Virtual Machines).

Related concepts
“Overview of the IMS Java dependent regions” on page 673
The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.

Java batch processing: JBPs
A JBP application program is similar to a non-message-driven BMP application program, except that JBP
applications must be written in Java, object-oriented COBOL, or object-oriented PL/I.

JBP applications can access IMS data or Db2 for z/OS data using JDBC. JBP applications run in JBP
regions which have JVMs.

Related concepts
“Overview of the IMS Java dependent regions” on page 673
The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.

IMS programming integrity and recovery considerations
IMS provides support for protecting data integrity for application programs.

How IMS protects data integrity: commit points
When an online program accesses the database, it is not necessarily the only program doing so. IMS and
Db2 for z/OS make it possible for more than one application program to access the data concurrently
without endangering the integrity of the data.

To access data concurrently while protecting data integrity, IMS and Db2 for z/OS prevent other
application programs from accessing segments that your program deletes, replaces, or inserts, until your
program reaches a commit point. A commit point is the place in the program's processing at which it
completes a unit of work. When a unit of work is completed, IMS and Db2 for z/OS commit the changes
that your program made to the database. Those changes are now permanent and the changed data is now
available to other application programs.

What happens at a commit point
When an application program finishes processing one distinct unit of work, IMS and Db2 for z/OS consider
that processing to be valid, even if the program later encounters problems. For example, an application
program that is retrieving, processing, and responding to a message from a terminal constitutes a unit of
work. If the program encounters problems while processing the next input message, the processing it has
done on the first input message is not affected. These input messages are separate pieces of processing.

Chapter 3. Analyzing IMS application processing requirements 45

A commit point indicates to IMS that a program has finished a unit of work, and that the processing it has
done is accurate. At that time:

• IMS releases segments it has locked for the program since the last commit point. Those segments are
then available to other application programs.

• IMS and Db2 for z/OS make the program's changes to the database permanent.
• The current position in all databases except GSAM is reset to the start of the database.

If the program terminates abnormally before reaching the commit point:

• IMS and Db2 for z/OS back out all of the changes the program has made to the database since the last
commit point. (This does not apply to batch programs that write their log to tape.)

• IMS discards any output messages that the program has produced since the last commit point.

Until the program reaches a commit point, IMS holds the program's output messages so that, if the
program terminates abnormally, users at terminals and other application programs do not receive
inaccurate information from the abnormally terminating application program.

If the program is processing an input message and terminates abnormally, the input message is not
discarded if both of the following conditions exist:

1. You are not using the Non-Discardable Messages (NDM) exit routine.
2. IMS terminates the program with one of the following abend codes: U0777, U2478, U2479, U3303.

The input message is saved and processed later.

Exception: The input message is discarded if it is not terminated by one of the abend codes
previously referenced. When the program is restarted, IMS gives the program the next message.

If the program is processing an input message when it terminates abnormally, and you use the NDM exit
routine, the input message might be discarded from the system regardless of the abend. Whether the
input message is discarded from the system depends on how you have written the NDM exit routine.

Related Reading: For more information about the NDM exit routine, see IMS Version 15.3 Exit Routines.
• IMS notifies the MTO that the program terminated abnormally.
• IMS and Db2 for z/OS release any locks that the program has held on data it has updated since the last

commit point. This makes the data available to other application programs and users.

Where commit points occur
A commit point can occur in a program for any of the following reasons:

• The program terminates normally. Except for a program that accesses Fast Path resources, normal
program termination is always a commit point. A program that accesses Fast Path resources must reach
a commit point before terminating.

• The program issues a checkpoint call. Checkpoint calls are a program's means of explicitly indicating to
IMS that it has reached a commit point in its processing.

• If a program processes messages as its input, a commit point might occur when the program retrieves a
new message. IMS considers this commit point the start of a new unit of work in the program. Retrieving
a new message is not always a commit point. This depends on whether the program has been defined
as single mode or multiple mode.

– If you specify single mode, a commit point occurs each time the program issues a call to retrieve a
new message. Specifying single mode can simplify recovery, because you can restart the program
from the most recent call for a new message if the program terminates abnormally. When IMS
restarts the program, the program begins by processing the next message.

– If you specify multiple mode, a commit point occurs when the program issues a checkpoint call
or when it terminates normally. At those times, IMS sends the program's output messages to
their destinations. Because multiple-mode programs contain fewer commit points than do single
mode programs, multiple mode programs might offer slightly better performance than single-mode
programs. When a multiple mode program terminates abnormally, IMS can only restart it from a

46 IMS: Application Programming

checkpoint. Instead of reprocessing only the most recent message, a program might have several
messages to reprocess, depending on when the program issued the last checkpoint call.

The following table lists the modes in which the programs can run. Because processing mode is not
applicable to batch programs and batch-oriented BMPs, they are not listed in the table. The program type
is listed, and the table indicates which mode is supported.

Table 21. Processing modes

Program type Single mode only Multiple mode only Either mode

MPP X

IFP X

Transaction-oriented BMP X

You specify single or multiple mode on the MODE parameter of the TRANSACT macro.

Related Reading: For information on the TRANSACT macro, see IMS Version 15.3 System Definition.

See the following figure for an illustration of the difference between single-mode and multiple-mode
programs. A single-mode program gets and processes messages, sends output, looks for more messages,
and terminates if there are no more. A multiple-mode program gets and processes messages, sends
output, but has a checkpoint before looking for more messages and terminating. For a single-mode
program, the commit points are when the message is obtained and the program terminates. For multiple-
mode, the commit point is at the checkpoint and when the program terminates.

Figure 15. Single mode and multiple mode

Db2 for z/OS does some processing with multiple- and single-mode programs that IMS does not. When a
multiple-mode program issues a call to retrieve a new message, Db2 for z/OS performs an authorization
check. If the authorization check is successful, Db2 for z/OS closes any SQL cursors that are open. This
affects the design of your program.

The Db2 for z/OS SQL COMMIT statement causes Db2 for z/OS to make permanent changes to the
database. However, this statement is valid only in TSO application programs. If an IMS application
program issues this statement, it receives a negative SQL return code.

Chapter 3. Analyzing IMS application processing requirements 47

Planning for program recovery: checkpoint and restart
Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Db2 for z/OS handles recovery of Db2 for z/OS data.
Related concepts
“Introducing checkpoint calls” on page 48
Checkpoint calls indicate to IMS that the program has reached a commit point. They also establish places
in the program from which the program can be restarted. IMS has symbolic checkpoint calls and basic
checkpoint calls.
“When to use checkpoint calls” on page 49
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.
“Specifying checkpoint frequency” on page 51
You should specify checkpoint frequency in your program so that you can easily modify it when the
frequency needs to be adjusted.

Introducing checkpoint calls
Checkpoint calls indicate to IMS that the program has reached a commit point. They also establish places
in the program from which the program can be restarted. IMS has symbolic checkpoint calls and basic
checkpoint calls.

A program might issue only one type of checkpoint call.

• MPPs and IFPs must use basic checkpoint calls.
• BMP, JMP, and batch programs can use either symbolic checkpoint calls or basic checkpoint calls.

Programs that issue symbolic checkpoint calls can specify as many as seven data areas in the program to
be checkpointed. When IMS restarts the program, the Restart call restores these areas to the condition
they were in when the program issued the symbolic checkpoint call. Because symbolic checkpoint calls
do not support z/OS files, if your program accesses z/OS files, you must supply your own method of
establishing checkpoints.

You can use symbolic checkpoint for either Normal Start or Extended Restart (XRST).

For example, typical calls for a Normal start would be as follows:

• XRST (I/O area is blank)
• CHKP (I/O area has checkpoint ID)
• Database Calls (including checkpoints)
• CHKP (final checkpoint)

For example, typical calls for an Extended Restart (XRST) would be as follows:

• XRST (I/O area has checkpoint ID)
• CHKP (I/O area has new checkpoint ID)
• Database Calls (including checkpoints)
• CHKP (final checkpoint)

The restart call, which you must use with symbolic checkpoint calls, provides a way of restarting a
program after an abnormal termination. It restores the program's data areas to the way they were when
the program issued the symbolic checkpoint call. It also restarts the program from the last checkpoint the
program established before terminating abnormally.

All programs can use basic checkpoint calls. Because you cannot use the restart call with the basic
checkpoint call, you must provide program restart. Basic checkpoint calls do not support either z/OS or
GSAM files. IMS programs cannot use z/OS checkpoint and restart. If you access z/OS files, you must
supply your own method of establishing checkpoints and restarting.

In addition to the actions that occur at a commit point, issuing a checkpoint call causes IMS to:

48 IMS: Application Programming

• Inform Db2 for z/OS that the changes your program has made to the database can be made permanent.
Db2 for z/OS makes the changes to Db2 for z/OS data permanent, and IMS makes the changes to IMS
data permanent.

• Write a log record containing the checkpoint identification given in the call to the system log, but only
if the PSB contains a DB PCB. You can print checkpoint log records by using the IMS File Select and
Formatting Print program (DFSERA10). With this utility, you can select and print log records based on
their type, the data they contain, or their sequential positions in the data set. Checkpoint records are
X'18' log records.

Related Reading: For more information about the DFSERA10 program, see IMS Version 15.3 System
Utilities.

• Send a message containing the checkpoint identification that was given in the call to the system console
operator and to the IMS master terminal operator.

• Return the next input message to the program's I/O area, if the program processes input messages. In
MPPs and transaction-oriented BMPs, a checkpoint call acts like a call for a new message.

Restriction: Do not specify CHKPT=EOV on any DD statement in order to take an IMS checkpoint because
of unpredictable results.

Related concepts
“Planning for program recovery: checkpoint and restart” on page 48
Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Db2 for z/OS handles recovery of Db2 for z/OS data.

When to use checkpoint calls
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

The decision about whether your program should issue checkpoints, and if so, how often, depends on
your program. Generally, these programs should issue checkpoint calls:

• Multiple-mode programs
• Batch-oriented BMPs (which can issue either SYNC or CHKP calls)
• Most batch programs
• Programs that run in a data sharing environment
• JMP applications

You do not need to issue checkpoint calls in:

• Single-mode BMP or MPP programs
• Database load programs
• Programs that access the database in read-only mode, as defined with the PROCOPT=GO option (during

a PSBGEN), and are short enough to restart from the beginning
• Programs that have exclusive use of the database

Checkpoints in MPPs and transaction-oriented BMPs
The mode type of the program is specified on the MODE keyword of the TRANSACT macro during IMS
system generation. The modes are single and multiple.

• In single-mode programs

In single mode programs (MODE=SNGL was specified on the TRANSACT macro during IMS system
definition), a Get Unique to the message queue causes an implicit commit to be performed.

• In multiple-mode programs

In multiple-mode BMPs and MPPs, the only commit points are those that result from the checkpoint
calls that the program issues and from normal program termination. If the program terminates
abnormally and it has not issued checkpoint calls, IMS backs out the program's database updates

Chapter 3. Analyzing IMS application processing requirements 49

and cancels the messages it created since the beginning of the program. If the program has issued
checkpoint calls, IMS backs out the program's changes and cancels the output messages it has created
since the most recent checkpoint.

Consider the following when issuing checkpoint calls in multiple-mode programs:

– How long it would take to back out and recover that unit of processing. The program should issue
checkpoints frequently enough to make the program easy to back out and recover.

– How you want the output messages grouped. checkpoint calls establish how a multiple-mode
program's output messages are grouped. Programs should issue checkpoint calls frequently enough
to avoid building up too many output messages.

Depending on the database organization, issuing a checkpoint call might reset your position in the
database.

Related Reading: For more information about losing your position when a checkpoint is issued, see IMS
Version 15.3 Database Administration.

Checkpoints in batch-oriented BMPs
Issuing checkpoint calls in a batch-oriented BMP is important for several reasons:

• In addition to committing changes to the database and establishing places from which the program can
be restarted, checkpoint calls release resources that IMS has locked for the program.

• A batch-oriented BMP that uses DEDBs or MSDBs might terminate with abend U1008 if a SYNC or CHKP
call is not issued before the application program terminates.

• If a batch-oriented BMP does not issue checkpoints frequently enough, it can be abnormally
terminated, or it can cause another application program to be abnormally terminated by IMS for any of
these reasons:

– If a BMP retrieves and updates many database records between checkpoint calls, it can tie up large
portions of the databases and cause long waits for other programs needing those segments.

Exception: For a BMP with a processing option of GO or exclusive, IMS does not lock segments for
programs. Issuing checkpoint calls releases the segments that the BMP has locked and makes them
available to other programs.

– The space needed to maintain lock information about the segments that the program has read and
updated exceeds what has been defined for the IMS system. If a BMP locks too many segments, the
amount of storage needed for the locked segments can exceed the amount of available storage. If
this happens, IMS terminates the program abnormally. You must increase the program's checkpoint
frequency before rerunning the program. The available storage is specified during IMS system
definition.

Related Reading: For more information on specifying storage, see IMS Version 15.3 System
Definition.

You can limit the number of locks for the BMP by using the LOCKMAX=n parameter on the PSBGEN
statement. For example, a specification of LOCKMAX=5 means the application cannot obtain more
than 5000 locks at any time. The value of n must be between 0 and 255. When a maximum lock limit
does not exist, 0 is the default. If the BMP tries to acquire more than the specified number of locks,
IMS terminates the application with abend U3301.

Related Reading: For more information about this abend, see IMS Version 15.3 Messages and Codes,
Volume 3: IMS Abend Codes.

Checkpoints in batch programs
Batch programs that update databases should issue checkpoint calls. The main consideration in deciding
how often to take checkpoints in a batch program is the time required to back out and reprocess the
program after a failure. A general recommendation is to issue one checkpoint call every 10 or 15 minutes.

50 IMS: Application Programming

If you might need to back out the entire batch program, the program should issue the checkpoint call at
the beginning of the program. IMS backs out the program to the checkpoint you specify, or to the most
recent checkpoint, if you do not specify a checkpoint. If the database is updated after the beginning of the
program and before the first checkpoint, IMS is not able to back out these database updates.

For a batch program to issue checkpoint calls, it must specify the compatibility option in its PSB
(CMPAT=YES). This generates an I/O PCB for the program, which IMS uses as an I/O PCB in the
checkpoint call.

Another important reason for issuing checkpoint calls in batch programs is that, although they may
currently run in an IMS batch region, they might later need to access online databases. This would
require converting them to BMPs. Issuing checkpoint calls in a BMP is important for reasons other than
recovery—for example, to release database resources for other programs. So, you should initially include
checkpoints in all batch programs that you write. Although the checkpoint support might not be needed
then, it is easier to incorporate checkpoint calls initially than to try to fit them in later.

To free database resources for other programs, batch programs that run in a data-sharing environment
should issue checkpoint calls more frequently than those that do not run in a data-sharing environment.

Related concepts
“DB batch processing” on page 39
These topics describe DB batch processing and can help you decide if this batch program is appropriate
for your application.
“Batch processing online: batch-oriented BMPs” on page 42
A batch-oriented BMP performs batch-type processing in any online environment. When run in the DB/DC
or DCCTL environment, a batch-oriented BMP can send its output to the IMS message queue to be
processed later by another application program. Unlike a transaction-oriented BMP, a batch-oriented BMP
cannot access the IMS message queue for input.
“Batch message processing: transaction-oriented BMPs” on page 44
Transaction-oriented BMPs can access z/OS files, GSAM databases, Db2 for z/OS databases, full-function
databases, DEDBs, and MSDBs.
“Planning for program recovery: checkpoint and restart” on page 48
Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Db2 for z/OS handles recovery of Db2 for z/OS data.

Specifying checkpoint frequency
You should specify checkpoint frequency in your program so that you can easily modify it when the
frequency needs to be adjusted.

You can do this by:

• Using a counter in your program to keep track of elapsed time, and issuing a checkpoint call after a
certain time interval.

• Using a counter to keep track of the number of root segments your program accesses, and issuing a
checkpoint call after a certain number of root segments.

• Using a counter to keep track of the number of updates your program performs, and issuing a
checkpoint call after a certain number of updates.

Related concepts
“Planning for program recovery: checkpoint and restart” on page 48

Chapter 3. Analyzing IMS application processing requirements 51

Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Db2 for z/OS handles recovery of Db2 for z/OS data.

Data availability considerations
The following information describes the conditions that could cause data to become unavailable in a full-
function database and the program calls that allow your program to manage data under these conditions.

Dealing with unavailable data
The conditions that make the database unavailable for both read and update are:

• The /LOCK command for a database was issued.
• The /STOP command for a database was issued.
• The /DBRECOVERY command was issued.
• Authorization for a database failed.

The conditions that make the database available only for read and not for update are:

• The /DBDUMP command has been issued.
• Database ACCESS value is RD (read).

In addition to unavailability of an entire database, other situations involving unavailability of a limited
amount of data can also inhibit program access. One such example would be a failure situation involving
data sharing. The active IMS system knows which locks were held by a sharing IMS system at the time
the sharing IMS system failed. Although the active IMS system continues to use the database, it must
reject access to the data which the failed IMS system locked upon failure. This situation occurs for both
full-function and DEDB databases.

The two situations where the program might encounter unavailable data are:

• The program makes a call requiring access to a database that was unavailable at the time the program
was scheduled.

• The database was available when the program was scheduled, but limited amounts of data are
unavailable. The current call has attempted to access the unavailable data.

Regardless of the condition causing the data to be unavailable, the program has two possible approaches
when dealing with unavailable data. The program can be insensitive or sensitive to data unavailability.

• When the program is insensitive, IMS takes appropriate action when the program attempts to access
unavailable data.

• When the program is sensitive, IMS informs the program that the data it is attempting to access is not
available.

If the program is insensitive to data unavailability, and attempts to access unavailable data, IMS aborts
the program (3303 pseudo-abend), and backs out any updates the program has made. The input message
that the program was processing is suspended, and the program is scheduled to process the input
message when the data becomes available. However, if the database is unavailable because dynamic
allocation failed, a call results in an AI (unable to open) status code.

If the program is sensitive to data unavailability and attempts to access unavailable data, IMS returns a
status code indicating that it could not process the call. The program then takes the appropriate action.
A facility exists for the program to initiate the same action that IMS would have taken if the program had
been insensitive to unavailable data.

IMS does not schedule batch programs if the data that the program can access is unavailable. If the batch
program is using block-level data sharing, it might encounter unavailable data if the sharing system fails
and the batch system attempts to access data that was updated but not committed by the failed system.

The following conditions alone do not cause a batch program to fail during initialization:

• A PCB refers to a HALDB.

52 IMS: Application Programming

• The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not allowed. If the program is
sensitive to unavailable data, such a call results in the status code BA; otherwise, such a call results in
message DFS3303I, followed by ABENDU3303.

Scheduling and accessing unavailable databases
By using the INIT, INQY, SETS, SETU, and ROLS calls, the program can manage a data environment
where the program is scheduled with unavailable databases.

The INIT call informs IMS that the program is sensitive to unavailable data and can accept the status
codes that are issued when the program attempts to access such data. The INIT call can also be used to
determine the data availability for each PCB.

The INQY call is operable in both batch and online IMS environments. IMS application programs can use
the INQY call to request information regarding output destination, session status, the current execution
environment, the availability of databases, and the PCB address based on the PCBNAME. The INQY call
is only supported by way of the AIB interface (AIBTDLI or CEETDLI using the AIB rather than the PCB
address).

The SETS, SETU, and ROLS calls enable the application to define multiple points at which to preserve
the state of full-function (except HSAM) databases and message activity. The application can then return
to these points at a later time. By issuing a SETS or SETU call before initiating a set of DL/I calls to
perform a function, the program can later issue the ROLS call if it cannot complete a function due to data
unavailability.

The ROLS call allows the program to roll back its IMS full-function database activity to the state that it
was in prior to a SETS or SETU call being issued. If the PSB contains an MSDB or a DEDB, the SETS and
ROLS (with token) calls are invalid. Use the SETU call instead of the SETS call if the PSB contains a DEDB,
MSDB, or GSAM PCB.

The ROLS call can also be used to undo all update activity (database and messages) since the last commit
point and to place the current input message on the suspend queue for later processing. This action is
initiated by issuing the ROLS call without a token or I/O area.

Restriction: With Db2 for z/OS, you cannot use ROLS (with a token) or SETS.

Related information
3303 (Messages and Codes)

Use of STAE or ESTAE and SPIE in IMS programs
IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP, BMP) regions, and the
batch regions. In the control region, STAE or ESTAE routines ensure that database logging and various
resource cleanup functions are complete.

In the dependent region, STAE or ESTAE routines are used to notify the control region of any abnormal
termination of the application program or the dependent region itself. If the control region is not
notified of the dependent region termination, resources are not properly released and normal checkpoint
shutdown might be prevented.

In the batch region, STAE or ESTAE routines ensure that database logging and various resource cleanup
functions are complete. If the batch region is not notified of the application program termination,
resources might not be properly released.

Two important aspects of the STAE or ESTAE facility are that:

• IMS relies on its STAE or ESTAE facility to ensure database integrity and resource control.
• The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship between the program and
the STAE or ESTAE facility.

Chapter 3. Analyzing IMS application processing requirements 53

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/msgs/3303.htm#imsabend3303

Generally, do not use the STAE or ESTAE facility in your application program. However, if you believe that
the STAE or ESTAE facility is required, you must observe the following basic rules:

• When the environment supports STAE or ESTAE processing, the application program STAE or ESTAE
routines always get control before the IMS STAE or ESTAE routines. Therefore, you must ensure that
the IMS STAE or ESTAE exit routines receive control by observing the following procedures in your
application program:

– Establish the STAE or ESTAE routine only once and always before the first DL/I call.
– When using the STAE or ESTAE facility, the application program should not alter the IMS abend code.
– Do not use the RETRY option when exiting from the STAE or ESTAE routine. Instead, return a

CONTINUE-WITH-TERMINATION indicator at the end of the STAE or ESTAE processing. If your
application program specifies the RETRY option, be aware that IMS STAE or ESTAE exit routines will
not get control to perform cleanup. Therefore, system and database integrity might be compromised.

• The application program STAE or ESTAE exit routine must not issue DL/I calls (DB or TM) because the
original abend might have been caused by a problem between the application and IMS. A problem
between the application and IMS could result in recursive entry to STAE or ESTAE with potential loss of
database integrity, or in problems taking a checkpoint. This also could result in a hang condition or an
ABENDU0069 during termination.

Related concepts
“What to do when your IMS program terminates abnormally” on page 151
When your program terminates abnormally, you can take the following actions to simplify the task of
finding and fixing the problem.

Dynamic allocation for IMS databases
Use the dynamic allocation function to specify the JCL information for IMS databases in a library instead
of in the JCL of each batch or online job.

If you use dynamic allocation, do not include JCL DD statements for any database data sets that have
been defined for dynamic allocation. Check with the DBA or comparable specialist to determine which
databases have been defined for dynamic allocation.

Related Reading: For additional information on the definitions for dynamic allocation, see the description
of the DFSMDA macro in IMS Version 15.3 System Definition.

54 IMS: Application Programming

Chapter 4. Analyzing CICS application processing
requirements

IMS supports application programs running in a CICS environment

Defining CICS application requirements
One of the steps of application design is to decide how the business processes, or tasks can be best
grouped into a set of programs that will efficiently perform the required processing.

Some of the considerations in analyzing processing requirements are:

• When the task must be performed

– Will it be scheduled unpredictably (for example on terminal demand) or periodically (for example,
weekly)?

• How the program that performs the task is executed

– Will it be executed online, where response time is more important, or by batch job submission, where
a slower response time is acceptable?

• The consistency of the processing components

– Does this action the program is to perform involve more than one type of program logic? For example,
does it involve mostly retrievals, and only one or two updates? If so, you should consider separating
the updates into a separate program.

– Does this action involve several large groups of data? If it does, it might be more efficient to separate
the programs by the data they access.

• Any special requirements about the data or processing
Security

Should access to the program be restricted?
Recovery

Are there special recovery considerations in the program's processing?
Integrity

Do other departments use the same data?

Answers to questions like these can help you decide on the number of application programs that the
processing will require, and on the types of programs that perform the processing most efficiently.
Although rules dealing with how many programs can most efficiently do the required processing do not
exist, here are some suggestions:

• As you look at each programming task, examine the data and processing that each task involves. If a
task requires different types of processing and has different time limitations (for example, weekly as
opposed to monthly), that task may be more efficiently performed by several programs.

• As you define each program, it is a good idea for maintenance and recovery reasons to keep programs
as simple as possible. The simpler a program is—the less it does—the easier it is to maintain, and to
restart after a program or system failure. The same is true with data availability—the less data that is
accessed, the more likely the data is to be available; the more limited the data accessed, the more likely
the data is to be available.

Similarly, if the data that the application requires is physically in one place, it might be more efficient to
have one program do more of the processing than usual. These are considerations that depend on the
processing and the data of each application.

• Documenting each of the user tasks is helpful during the design process, and in the future when
others will work with your application. Be sure you are aware of the standards in this area. The kind

© Copyright IBM Corp. 1974, 2022 55

of information that is typically kept is when the task is to be executed, a functional description, and
requirements for maintenance, security, and recovery.

For example, for the Current Roster process described previously, you might record the information
shown in the following form. How frequently the program is run is determined by the number of classes
(20) for which the Ed Center will print current rosters each week.

Example: Current roster task description

 USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
 number sequence for each class offered at the Education Center.

MAINTENANCE: Included in Education DB maintenance.

SECURITY: None.

RECOVERY: After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your CICS application program
When designing your program, consider the type of data it must access. The type of data depends on the
operating environment.

The data from IMS and Db2 for z/OS databases, and z/OS files, that is available to CICS online and IMS
batch programs is shown in the following table.

Table 22. The data that your CICS program can access

Type of program IMS databases
Db2 for z/OS
databases z/OS files

CICS online Yes1 Yes2 Yes3

DB batch Yes Yes3 Yes

Notes:

1. Except for Generalized Sequential Access Method (GSAM) databases. GSAM enables batch programs
to access a sequential z/OS data set as a simple database.

2. IMS does not participate in the call process.
3. Access through CICS file control or transient data services.

Also, consider the type of database your program must access. As shown in the following table, the type
of program you can write and database that can be accessed depends on the operating environment.

56 IMS: Application Programming

Table 23. Program and database options in the CICS environments

Environment1
Type of program you
can write Type of database that can be accessed

DB batch DB batch Db2 for z/OS2

DL/I Full-function
GSAM
z/OS files

DBCTL BMP Db2 for z/OS
DEDBs
Full-function
GSAM
z/OS files

CICS online Db2 for z/OS2

DEDBs
Full-function
z/OS files (access through CICS file control or
transient data services)

Notes:

1. A CICS environment, or CICS remote DL/I environment also exists and is also referred to as function
shipping. In this environment, a CICS system supports applications that issue DL/I calls but the CICS
system does not service the requests itself. The CICS environment "function ships" the DL/I calls to
another CICS system that is using DBCTL. For more information on remote DL/I, see CICS Transaction
Server for z/OS IMS Database Control Guide.

2. IMS does not participate in the call process.

The types of databases that can be accessed are:

• Full-Function Databases

Full-function databases are hierarchic databases that are accessed through Data Language I (DL/I).
DL/I calls enable application programs to retrieve, replace, delete, and add segments to full-function
databases. CICS online and BMP programs can access the same database concurrently (if participating
in IMS data sharing); an IMS batch program must have exclusive access to the database (if not
participating in IMS data sharing).

All types of programs (batch, BMPs, and online) can access full-function databases.
• Fast Path DEDBs

Data entry databases (DEDBs) are hierarchic databases for, and efficient access to, large volumes of
detailed data. In the DBCTL environment, CICS online and BMP programs can access DEDBs.

• Db2 for z/OS Databases

Db2 for z/OS databases are relational databases. Relational databases are represented to application
programs and users as tables and are processed using a relational data language called Structured
Query Language (SQL). Db2 for z/OS databases can be processed by CICS online transactions, and by
IMS batch and BMP programs.

Related Reading: For information on processing Db2 for z/OS databases, see DB2 for z/OS Application
Programming and SQL Guide.

• GSAM Databases

Chapter 4. Analyzing CICS application processing requirements 57

Generalized Sequential Access Method (GSAM) is an access method that enables BMPs and batch
programs to access a "flat" sequential z/OS data set as a simple database. A GSAM database can be
accessed by z/OS or CICS.

• z/OS Files

CICS online and IMS batch programs can access z/OS files for their input, processing, or output. Batch
programs can access z/OS files directly; online programs must access them through CICS file control or
transient data services.

Related concepts
“Using data sharing for your CICS program” on page 59
If you use data sharing, your programs can participate in IMS data sharing. Under data sharing, CICS
online and BMP programs can access the same DL/I database concurrently.

Writing a CICS program to access IMS databases
The types of programs you can use depend on whether you are running in the DBCTL environment. Within
the different environments, the type of program you write depends on the processing your application
requires. Each type of program answers different application requirements.
Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Writing a CICS online program
Use the following information to decide if an online program is appropriate for your application.

Data that a CICS online program can access
CICS online programs run in the DBCTL environment and can access IMS full-function databases, Fast
Path DEDBs, Db2 for z/OS databases, and z/OS files.

Online programs that access IMS databases are executed in the same way as other CICS programs.

Using a CICS online program
An online program runs under the control of CICS, and it accesses resources concurrently with other
online programs. Some of the application requirements online programs can answer are:

• Information in the database must be available to many users.
• Program needs to communicate with terminals and other programs.
• Programs must be available to users at remote terminals.
• Response time is important.

The structure of an online program, and the way it receives status information, depend on whether it is a
call- or command-level program. However, both command- and call-level online programs:

• Schedule a PSB (for CICS online programs). A PSB is automatically scheduled for batch or BMP
programs.

• Issue either commands or calls to access the database. Online programs cannot mix commands and
calls in one logical unit of work (LUW).

• Optionally, terminate a PSB for CICS online programs.
• Issue an EXEC CICS RETURN statement when they have finished their processing. This statement

returns control to the linking program. When the highest-level program issues the RETURN statement,
CICS regains control and terminates the PSB if it has not yet been terminated.

Because an online application program can be used concurrently by several tasks, it must be quasi-
reentrant.

58 IMS: Application Programming

An online program in the DBCTL environment can use many IMS system service requests.

DL/I database or system service requests must refer to one of the program communication blocks (PCBs)
from the list of PCBs passed to your program by IMS. The PCB that must be used for making system
service requests is called the I/O PCB. When present, it is the first PCB in the list of PCBs.

For an online program in the DBCTL environment, the I/O PCB is optional. To use the I/O PCB, you must
indicate this in the application program when it schedules the PSB.

Before you run your program, the program specification blocks (PSBs) and database descriptions (DBDs)
the program uses must be converted to internal control block format using the IMS ACBGEN utility. PSBs
specify the characteristics of an application program. DBDs specify the physical and logical characteristics
of IMS databases.

Related Reading: For more information on performing an ACBGEN and a PSBGEN, see IMS Version 15.3
System Utilities.

Because an online program shares a database with other online programs, it may affect the performance
of your online system.

Related concepts
“Maximizing the performance of your CICS system” on page 61
When you write programs that share data with other programs (for example, a program that will
participate in IMS data sharing or a BMP), be aware of how your program affects the performance of
the online system.
“Distributed and local connectivity with the IMS Universal drivers” on page 560
The IMS Universal drivers support distributed (type-4) and local (type-2) connectivity to IMS databases.

Using data sharing for your CICS program
If you use data sharing, your programs can participate in IMS data sharing. Under data sharing, CICS
online and BMP programs can access the same DL/I database concurrently.

Batch programs in a data-sharing environment can access databases used by other batch programs, and
by CICS and IMS online programs. With data sharing, you can share data directly and your program's
requests need not go through a mirror transaction.

Related Reading: For more information on sharing a database with an IMS system, see IMS Version 15.3
System Administration.

Related concepts
“Accessing databases with your CICS application program” on page 56
When designing your program, consider the type of data it must access. The type of data depends on the
operating environment.

Scheduling and terminating a PSB (CICS online programs only)
Before your online program issues any DL/I calls, it must indicate to IMS its intent to use a particular PSB
by issuing either a PCB call or a SCHD command. In addition to indicating which PSB your program will
use, the PCB call obtains the address of the PCBs in the PSB. When you no longer need a PSB, you can
terminate it using the TERM request.

In a CICS online program, you use a PCB call or SCHD command (for command-level programs) to obtain
the PSB for your program. Because CICS releases the PSB your program uses when the transaction ends,
your program need not explicitly terminate the PSB. Only use a terminate request if you want to:

• Use a different PSB
• Commit all the database updates and establish a logical unit of work for backing out updates
• Free IMS resources for use by other CICS tasks

A terminate request causes a CICS sync point, and a CICS sync point terminates the PSB. For more
information about CICS recovery concepts, see the appropriate CICS publication.

Chapter 4. Analyzing CICS application processing requirements 59

Do not use terminate requests for other reasons because:

• A terminate request forces a CICS sync point. This sync point releases all recoverable resources and
IMS database resources that were enqueued for this task.

If the program continues to update other CICS resources after the terminate request and then
terminates abnormally, only those resources that were updated after the terminate request are backed
out. Any IMS changes made by the program are not backed out.

• IMS lock management detects deadlocks that occur if two transactions are waiting for segments held by
the other.

When a deadlock is detected, one transaction is abnormally terminated. Database changes are backed
out to the last TERM request. If a TERM request or CICS sync point was issued prior to the deadlock,
CICS does not restart the transaction.

Related Reading: For a complete description of transaction restart considerations, see CICS
Transaction Server for z/OS Recovery and Restart Guide.

• Issuing a terminate request causes additional logging.
• If the terminal output requests are issued after a terminate request and the transaction fails at this

point, the terminal operator does not receive the message.

The terminal operator may assume that the entire transaction failed, and reenter the input, thus
repeating the updates that were made before the terminate request. These updates were not backed
out.

Linking and passing control to other programs (CICS online
programs only)

Use CICS to link your program to other programs without losing access to the facilities acquired in the
linking program.

For example:

• You could schedule a PSB and then link to another program using a LINK command. On return from that
program, the PSB is still scheduled.

• Similarly, you could pass control to another program using the XCTL command, and the PSB remains
scheduled until that program issues an EXEC CICS RETURN statement. However, when you pass control
to another program using XCTL, the working storage of the program passing control is lost. If you want
to retain the working storage for use by the program being linked to, you must pass the information in
the COMMAREA.

Recommendation: To simplify your work, instead of linking to another program, you can issue all DL/I
requests from one program module. This helps to keep the programming simple and easy to maintain.

Terminating a PSB or issuing a sync point affects the linking program. For example, a terminate request or
sync point that is issued in the program that was linked causes the release of CICS resources enqueued in
the linking program.

How CICS distributed transactions access IMS
CICS can divide a single, logical unit of work into separate CICS transactions and coordinate the sync
point globally. If such CICS transactions access DBCTL, locking and buffer management issues might
occur.

To IMS, the transactions are separate units of work, on different DBCTL threads, and they do not share
locks or buffers. For example, if a global transaction runs, obtains a database lock, and reaches the
commit point, CICS does not process the synchronization point until the other transactions in the CICS
unit of recovery (UOR) are ready to commit. If a second transaction in the same CICS UOR requests the
same lock as that held by the first transaction, the second transaction is held in a lock wait state. The first
transaction cannot complete the sync point and release the lock until the second transaction also reaches

60 IMS: Application Programming

the commit point, but this cannot happen because the second transaction is in a lock wait state. You must
ensure that this type of collision does not occur with CICS distributed transactions that access IMS.

Maximizing the performance of your CICS system
When you write programs that share data with other programs (for example, a program that will
participate in IMS data sharing or a BMP), be aware of how your program affects the performance of
the online system.

A BMP program, in particular, can affect the performance of the CICS online transactions. This is because
BMP programs usually make a larger number of database updates than CICS online transactions, and
a BMP program is more likely to hold segments that CICS online programs need. Limit the number of
segments held by a BMP program, so CICS online programs need not wait to acquire them.

One way to limit the number of segments held by a BMP or batch program that participates in IMS
data sharing is to issue checkpoint requests in your program to commit database changes and release
segments held by the program. When deciding how often to issue checkpoint requests, you can use one
or more of the following techniques:

• Divide the program into small logical units of work, and issue a checkpoint call at the end of each unit.
• Issue a checkpoint call after a certain number of DL/I requests have been issued, or after a certain

number of transactions are processed.

In CICS online programs, release segments for use by other transactions to maximize the performance of
your online system. (Ordinarily, database changes are committed and segments are released only when
control is returned to CICS.) To more quickly free resources for use by other transactions, you can issue
a TERM request to terminate the PSB. However, less processing overhead generally occurs if the PSB is
terminated when control is returned to CICS.

Related concepts
“Writing a CICS online program” on page 58
Use the following information to decide if an online program is appropriate for your application.
“Taking checkpoints in batch and BMP programs” on page 62
You can take checkpoints in batch and BMP programs. Checkpoints are important for recovery and for
integrity.

Programming integrity and database recovery considerations for
your CICS program

IMS provides support for protecting data integrity for CICS online programs

How IMS protects data integrity for CICS online programs
IMS can protect the data integrity for CICS online programs.

IMS protects the integrity of the database for programs that share data by:

• Preventing other application programs with update capability from accessing any segments in the
database record your program is processing, until your program finishes with that record and moves to a
new database record in the same database.

• Preventing other application programs from accessing segments that your program deletes, replaces, or
inserts, until your program reaches a sync point. When your program reaches a sync point, the changes
your program has made to the database become permanent, and the changed data becomes available
to other application programs.

Exception: If PROCOPT=GO has been defined during PSBGEN for your program, your program can
access segments that have been updated but not committed by another program.

• Backing out database updates made by an application program that terminates abnormally.

Chapter 4. Analyzing CICS application processing requirements 61

You may also want to protect the data your program accesses by retaining segments for the sole use
of your program until your program reaches a sync point—even if you do not update the segments.
(Ordinarily, if you do not update the segments, IMS releases them when your program moves to a new
database record.) You can use the Q command code to reserve segments for the exclusive use of your
program. You should use this option only when necessary because it makes data unavailable to other
programs and can have an impact on performance.

Recovering databases accessed by batch and BMP programs
You can plan for recovering databases accessed by batch or BMP programs.

CICS recovers databases accessed by CICS online programs in the same way it handles other recoverable
CICS resources. For example, if an IMS transaction terminates abnormally, CICS and IMS back out all
database updates to the last sync point.

For batch or BMP programs, do the following:

• Take checkpoints in your program to commit database changes and provide places from which your
program can be restarted.

• Provide the code for or issue a request to restart your program.

You may also want to back out the database changes that have been made by a batch program that has
not yet committed these changes.

To perform these tasks, you use system service calls, described in more detail in the appropriate
application programming information for your environment.

Requesting an I/O PCB in batch programs
For your program to successfully issue any system service request, an I/O PCB must have been previously
requested.

Related concepts
“Developing JBP applications with the IMS Java dependent region resource adapter” on page 683
JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Taking checkpoints in batch and BMP programs
You can take checkpoints in batch and BMP programs. Checkpoints are important for recovery and for
integrity.

Taking checkpoints in batch and BMP programs is important for two reasons:

• Recovery: Checkpoints establish places in your program from which your program could be restarted,
in the event of a program or system failure. If your program abnormally terminates after issuing a
checkpoint request, database changes will be backed out to the point at which the checkpoint request
was issued.

• Integrity: Checkpoints also commit the changes that your program has made to the database.

In addition to providing places from which to restart your program and committing database changes,
issuing checkpoint calls in a BMP program or in a program participating in IMS data sharing releases
database segments for use by other programs.

When a batch or BMP program issues a checkpoint request, IMS writes a record containing a checkpoint
ID to the IMS system log.

When your application program reaches a point during its execution where you want to make sure that
all changes made to that point have been physically entered in the database, issue a checkpoint request.
If some condition causes your program to fail before its execution is complete, the database must be
restored to its original state. The changes made to the database must be backed out so that the database
is not left in a partially updated condition for access by other application programs.

62 IMS: Application Programming

If your program runs a long time, you can reduce the number of changes that must be backed out by
taking checkpoints in your program. Then, if your program terminates abnormally, only the database
updates that occurred after the checkpoint must be backed out. You can also restart the program from the
point at which you issued the checkpoint request, instead of having to restart it from the beginning.

Issuing a checkpoint call cancels your position in the database.

Issue a checkpoint call just before issuing a Get Unique call, which reestablishes your position in the
database record after the checkpoint is taken.

Types of checkpoints
The two types of checkpoint calls are basic and symbolic. Both types commit your program's changes to
the database and establish places from which your program can be restarted:

Batch and BMP programs can issue basic checkpoint calls using the CHKP call. When you use basic
checkpoint calls, you must provide the code for restarting the program after an abnormal termination.

Batch and BMP programs can also issue symbolic checkpoint calls. You can issue a symbolic checkpoint
call by using the CHKP call. Like the basic checkpoint call, the symbolic checkpoint call commits changes
to the database and establishes places from which the program can be restarted. In addition, the
symbolic checkpoint call:

• Works with the Extended Restart call to simplify program restart and recovery.
• Lets you specify as many as seven data areas in the program to be checkpointed. When you restart

the program, the restart call restores these areas to the way they were when the program terminated
abnormally.

Specifying a checkpoint ID
Each checkpoint call your program issues must have an identification, or ID. Checkpoint IDs must be 8
bytes in length and contain printable EBCDIC characters.

When you want to restart your program, you can supply the ID of the checkpoint from which you want
the program to be started. This ID is important because when your program is restarted, IMS searches
for checkpoint information with an ID matching the one you have supplied. The first matching ID that IMS
finds becomes the restart point for your program. This means that checkpoint IDs must be unique both
within each application program and among application programs. If checkpoint IDs are not unique, you
cannot be sure that IMS will restart your program from the checkpoint you specified.

One way to make sure that checkpoint IDs are unique within and among programs is to construct IDs in
the following order:

• Three bytes of information that uniquely identifies your program.
• Five bytes of information that serves as the ID within the program, for example, a value that is increased

by 1 for each checkpoint command or call, or a portion of the system time obtained at program start by
issuing the TIME macro.

Specifying checkpoint frequency
To determine the frequency of checkpoint requests, you must consider the type of program and its
performance characteristics.

In batch programs

When deciding how often to issue checkpoint requests in a batch program, you should consider the time
required to back out and reprocess the program after a failure. For example, if you anticipate that the
processing your program performs will take a long time to back out, you should establish checkpoints
more frequently.

If you might back out of the entire program, issue the checkpoint request at the very beginning of the
program. IMS backs out the database updates to the checkpoint you specify. If the database is updated

Chapter 4. Analyzing CICS application processing requirements 63

after the beginning of the program and before the first checkpoint, IMS is not able to back out these
database updates.

In a data-sharing environment, also consider the impact of sharing resources with other programs on your
online system. You should issue checkpoint calls more frequently in a batch program that shares data
with online programs, to minimize resource contention.

It is a good idea to design all batch programs with checkpoint and restart in mind. Although the
checkpoint support may not be needed initially, it is easier to incorporate checkpoint calls initially than to
try to fit them in later. If the checkpoint calls are incorporated, it is easier to convert batch programs to
BMP programs or to batch programs that use data sharing.

In BMP programs

When deciding how often to issue checkpoint requests in a BMP program, consider the performance of
your CICS online system. Because these programs share resources with CICS online transactions, issue
checkpoint requests to release segments so CICS online programs need not wait to acquire them.

Printing checkpoint log records
You can print checkpoint log records by using the IMS File Select and Formatting Print Program
(DFSERA10). With this utility, you can select and print log records based on their type, the data they
contain, or their sequential positions in the data set. Checkpoint records are type 18 log records. IMS
Version 15.3 System Utilities describes this program.

Related concepts
“Maximizing the performance of your CICS system” on page 61
When you write programs that share data with other programs (for example, a program that will
participate in IMS data sharing or a BMP), be aware of how your program affects the performance of
the online system.

Backing out database changes
If your program terminates abnormally, the database must be restored to its previous state and
uncommitted changes must be backed out. Changes made by a BMP or CICS online program are
automatically backed out. Database changes made by a batch program might or might not be backed
out, depending on whether your system log is on DASD.

For a batch program
What happens when a batch program terminates abnormally and how you recover the database depend
on the storage medium for the system log. You can specify that the system log is to be stored on either
DASD or on tape.

• When the system log is on DASD

You can specify that IMS is to dynamically back out the changes that a batch program has made to the
database since its last commit point by coding BKO=Y in the JCL. IMS performs dynamic backout for a
batch program when an IMS-detected failure occurs, such as when a deadlock is detected (for batch
programs that share data).

DASD logging also makes it possible for batch programs to issue the rollback (ROLB) system service
request, in addition to ROLL. The ROLB request causes IMS to dynamically back out the changes the
program has made to the database since its last commit point, and then to return control to the
application program.

Dynamically backing out database changes has the following advantages:

– Data accessed by the program that failed is immediately available to other programs. Otherwise, if
batch backout is not used, data is not available to other programs until the IMS Batch Backout utility
has been run to back out the database changes.

64 IMS: Application Programming

– If two programs are deadlocked, one of the programs can continue processing. Otherwise, if batch
backout is not used, both programs will fail. (This applies only to batch programs that share data.)

Instead of using dynamic backout, you can run the IMS Batch Backout utility to back out changes.
• When the system log is on tape

If a batch application program terminates abnormally and the system log is stored on tape, you must
use the IMS Batch Backout utility to back out the program's changes to the database.

Related Reading: For more information, see IMS Version 15.3 Database Utilities.

For BMP programs
If your program terminates abnormally, the changes the program has made since the last commit point
are backed out. If a system failure occurs, or if the CICS control region or DBCTL terminates abnormally,
DBCTL emergency restart backs out all changes made by the program since the last commit point. You
need not use the IMS Batch Backout utility because DBCTL backs out the changes. If you need to back out
all changes, you can use the ROLL system service call to dynamically back out database changes.

Restarting your program
If you issue symbolic checkpoint calls (for batch and BMP programs), you can use the Extended Restart
system service request (XRST) to restart your program after an abnormal termination.

The XRST call restores the program's data areas to the way they were when the program terminated
abnormally, and it restarts the program from the last checkpoint request the program issued before
terminating abnormally.

If you use basic checkpoint calls (for batch and BMP programs), you must provide the necessary code to
restart the program from the latest checkpoint in the event that it terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning data in an HDAM
database. Your program writes a database record containing repositioning information to the HDAM
database. It updates this record at intervals. When the program terminates, the database record is
deleted. At the completion of the XRST call, the I/O area always contains a checkpoint ID used by the
restart. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed by 4 blanks. If the 8-byte
ID consists of all blanks, then XRST will return the 14-byte time-stamp ID. Also, check the status code in
the PCB. The only successful status code for an XRST call is a row of blanks.

Related concepts
“Developing JBP applications with the IMS Java dependent region resource adapter” on page 683
JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Data availability considerations for your CICS program
The data that a program needs to access may sometimes be unavailable. Use the following functions
when data is not available.

Unavailability of a database
The conditions that make an entire database unavailable for both read and update are the following.

• A STOP command has been issued for the database.
• A DBRECOVERY (DBR) command has been issued for the database.
• DBRC authorization for the database has failed.

The conditions that make a database available for read but not for update are:

• A DBDUMP command has been issued for the database.

Chapter 4. Analyzing CICS application processing requirements 65

• The database access value is RD (read).

In a data-sharing environment, the command or error that created any of these conditions may have
originated on the other system which is sharing data.

Whether a program is scheduled or whether an executing program can schedule a PSB when the database
is unavailable depends on the type of program and the environment:

• A batch program

IMS does not schedule a batch program when one of the databases that the program can access is not
available.

In a non-data sharing environment, DBRC authorization for a database may fail because the database
is currently authorized to a DB/DC environment. In a data-sharing environment, a CICS or a DBCTL
master terminal global command to recover a database or to dump a database may make the database
unavailable to a batch program.

The following conditions alone do not cause a batch program to fail during initialization:

– A PCB refers to a HALDB.
– The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not allowed. If the program is
sensitive to unavailable data, such a call results in the status code BA; otherwise, such a call results in
message DFS3303I, followed by ABENDU3303.

• An online or BMP program in the DBCTL environment.

When a program executing in this environment attempts to schedule with a PSB containing one or more
full-function databases that are unavailable, the scheduling is allowed. If the program does not attempt
to access the unavailable database, it can function normally. If it does attempt to access the database,
the result is the same as when the database is available but some of the data in it is not available.

Unavailability of some data in a database
In addition to the situation where the entire database is unavailable, there are other situations where a
limited amount of data is unavailable. One example is a failure situation involving data sharing where the
IMS system knows which locks were held by a sharing IMS at the time the sharing IMS system failed. This
IMS system continues to use the database but rejects access to the data that the failed IMS system held
locked at the time of failure.

A batch program, an online program, or a BMP program can be operating in the DBCTL environment. If
so, the online or BMP programs may have been scheduled when an entire database was not available.
The following options apply to these programs when they attempt to access data and either the entire
database is unavailable or only some of the data in the database is unavailable.

Programs executing in these environments have an option of being sensitive or insensitive to data
unavailability.

• When the program is insensitive to data unavailability and attempts to access unavailable data, the
program fails with a 3303 abend. For online programs, this is a pseudo-abend. For batch programs, it is
a real abend. However, if the database is unavailable because dynamic allocation failed, a call results in
an AI (unable to open) status code.

• When the program is sensitive to data unavailability and attempts to access unavailable data, IMS
returns a status code indicating that it could not process the request. The program can then take the
appropriate action. A facility exists for the program to then initiate the same action that IMS would have
taken if the program had been insensitive to unavailable data.

The program issues the INIT call or ACCEPT STATUS GROUP A command to inform IMS that it is
sensitive to unavailable data and can accept the status codes issued when the program attempts to
access such data. The INIT request can also be used to determine data availability for each PCB in the
PSB.

66 IMS: Application Programming

The SETS or SETU and ROLS functions
The SETS or SETU and ROLS requests allow an application to define multiple points at which to preserve
the state of full-function databases.

The application can then return to these points at a later time. By issuing a SETS or SETU request before
initiating a set of DL/I requests to perform a function, the program can later issue the ROLS request if it
cannot complete the function due possibly to data unavailability.

ROLS allows the program to roll back its IMS activity to the state prior to the SETS or SETU call.

Restriction: SETS or SETU and ROLS only roll back the IMS updates. They do not roll back the updates
made using CICS file control or transient data.

Additionally, you can use the ROLS call or command to undo all database update activity since the last
checkpoint.

Use of STAE or ESTAE and SPIE in IMS batch programs
IMS uses STAE or ESTAE routines in the IMS batch regions to ensure that database logging and various
resource cleanup functions are completed.

Two important aspects of the STAE or ESTAE facility are that:

• IMS relies on its STAE or ESTAE facility to ensure database integrity and resource control.
• The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship between the program and
the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your batch application program. However, if you believe
that the STAE or ESTAE facility is required, you must observe the following basic rules:

• When the environment supports STAE or ESTAE processing, the application program STAE or ESTAE
routines always get control before the IMS STAE or ESTAE routines. Therefore, you must ensure that
the IMS STAE or ESTAE exit routines receive control by observing the following procedures in your
application program:

– Establish the STAE or ESTAE routine only once and always before the first DL/I call.
– When using the STAE or ESTAE facility, the application program must not alter the IMS abend code.
– Do not use the RETRY option when exiting from the STAE or ESTAE routine. Instead, return a

CONTINUE-WITH-TERMINATION indicator at the end of the STAE or ESTAE processing. If your
application program does specify the RETRY option, be aware that IMS STAE or ESTAE exit
routines will not get control to perform cleanup. Therefore, system and database integrity may be
compromised.

• The application program STAE/ESTAE exit routine must not issue DL/I calls because the original abend
may have been caused by a problem between the application and IMS. This would result in recursive
entry to STAE/ESTAE with potential loss of database integrity or in problems taking a checkpoint.

Dynamic allocation for IMS databases
Use the dynamic allocation function to specify the JCL information for IMS databases in a library instead
of in the JCL of each batch job or in the JCL for DBCTL.

If you use dynamic allocation, do not include JCL DD statements for any database data sets that
have been defined for dynamic allocation. Check with the database administrator (DBA) or comparable
specialist at to determine which databases have been defined for dynamic allocation.

Related Reading: For more information on the definitions for dynamic allocation, see the DFSMDA macro
in IMS Version 15.3 System Definition.

Chapter 4. Analyzing CICS application processing requirements 67

68 IMS: Application Programming

Chapter 5. Gathering requirements for database
options

After designing hierarchies for the databases that your application will access, the DBA evaluates
database options in terms of which options will best meet application requirements. Whether these
options are used depends on the collected requirements of the applications. To design an efficient
database, the DBA needs information about the individual applications.
Related concepts
“Processing messages: Message Processing Programs” on page 40
A Message Processing Program (MPP) is an online program that can access full-function databases,
DEDBs, MSDBs, and Db2 for z/OS databases. Unlike BMPs and batch programs, MPPs cannot access
GSAM databases. MPPs can only run in DB/DC and DCCTL environments.

Analyzing data access
The DBA chooses a type of database, based on how the majority of programs that use the database will
access the data.

IMS databases are categorized according to the access method used. The types of databases that can be
defined are as follows:

• Hierarchical Direct Access Method (HDAM)
• Partitioned Hierarchical Direct Access Method (PHDAM)
• Hierarchical Indexed Direct Access Method (HIDAM)
• Partitioned Hierarchical Indexed Direct Access Method (PHIDAM)
• Main Storage Database (MSDB)
• Data Entry Database (DEDB)
• Hierarchical Sequential Access Method (HSAM)
• Hierarchical Indexed Sequential Access Method (HISAM)
• Generalized Sequential Access Method (GSAM)
• Simple Hierarchical Sequential Access Method (SHSAM)
• Simple Hierarchical Indexed Sequential Access Method (SHISAM)

Important: PHDAM and PHIDAM are the partitioned versions of the HDAM and HIDAM database types,
respectively. The corresponding descriptions of the HDAM and HIDAM database types therefore apply to
PHDAM and PHIDAM.

Some of the information that you can gather to help the DBA to decide the type of database to set up are
as follows:

• To access a database record, a program must first access the root of the record. How will each program
access root segments?

Is it:

– Directly
– Sequentially
– Both

• The segments within the database record are the dependents of the root segment. How will each
program access the segments within each database record?

Is it:

– Directly

© Copyright IBM Corp. 1974, 2022 69

– Sequentially
– Both

It is important to note the distinction between accessing a database record and accessing segments
within the record. A program might access database records sequentially, but after the program is
within a record, the program might access the segments directly. These are different, and can influence
the choice of the access method to use.

• To what extent will the program update the database?

Is it:

– By adding new database records?
– By adding new segments to existing database records?
– By deleting segments or database records?

Again, note the difference between updating a database record and updating a segment within the
database record.

Direct access
The advantage of direct access processing is that you can get good results for both direct and sequential
processing. Direct access means that by using a randomizing routine or an index, IMS can find any
database record that you want, regardless of the sequence of database records in the database.

IMS full function has four direct access methods.

• HDAM and PHDAM process data directly by using a randomizing routine to store and locate root
segments.

• HIDAM and PHIDAM use an index to help them provide direct processing of root segments.

The direct access methods use pointers to maintain the hierarchic relationships between segments of a
database record. By following pointers, IMS can access a path of segments without passing through all
the segments in the preceding paths.

Some of the requirements that direct access satisfies are:

• Fast direct processing of roots using an index or a randomizing routine
• Sequential processing of database records with HIDAM and PHIDAM using the index
• Fast access to a path of segments using pointers

In addition, when you delete data from a direct-access database, the new space is available almost
immediately. This gives you efficient space utilization; therefore, reorganization of the database is often
unnecessary. Direct access methods internally maintain their own pointers and addresses.

A disadvantage of direct access is that you have a larger IMS overhead because of the pointers. But if
direct access fulfills your data access requirements, it is more efficient than using a sequential access
method.

Primarily direct processing: HDAM
HDAM is efficient for a database that is usually accessed directly but sometimes sequentially. HDAM
uses a randomizing routine to locate its root segments and then chains dependent segments together
according to the pointer options chosen. The z/OS access methods that HDAM can use are Virtual Storage
Access Method (VSAM) and Overflow Storage Access Method (OSAM).

Important: PHDAM is the partitioned version of the HDAM database type. The corresponding descriptions
of the HDAM database type therefore apply to PHDAM.

The requirements that HDAM satisfies are:

• Direct access of roots by root keys because HDAM uses a randomizing routine to locate root segments
• Direct access of paths of dependents

70 IMS: Application Programming

• Adding new database records and new segments because the new data goes into the nearest available
space

• Deleting database records and segments because the space created by a deletion can be used by any
new segment

HDAM characteristics
An HDAM database:

• Can store root segments anywhere. Root segments do not need to be in sequence because the
randomizing routine locates them.

• Uses a randomizing routine to locate the relative block number and root anchor point (RAP) within the
block that points to the root segment.

• Accesses the RAPs from which the roots are chained in physical sequence. Then the root segments that
are chained from the root anchors are returned. Therefore, sequential retrieval of root segments from
HDAM is not based on the results of the randomizing routine and is not in key sequence unless the
randomizing routine put them into key sequence.

• May not give the desired result for some calls unless the randomizing module causes the physical
sequence of root segments to be in the key sequence. For example, a GU call for a root segment that is
qualified as less than or equal to a root key value would scan in physical sequence for the first RAP of
the first block. This may result in a not-found condition, even though segments meeting the qualification
do exist.

For dependent segments, an HDAM database:

• Can store them anywhere
• Chains all segments of one database record together with pointers

An Overview of how HDAM works
This topic contains Diagnosis, Modification, and Tuning information.

When a database record is stored in an HDAM database, HDAM keeps one or more RAPs at the beginning
of each physical block. The RAP points to a root segment. HDAM also keeps a pointer at the beginning of
each physical block that points to any free space in the block. When you insert a segment, HDAM uses
this pointer to locate free space in the physical block. To locate a root segment in an HDAM database, you
give HDAM the root key. The randomizing routine gives it the relative physical block number and the RAP
that points to the root segment. The specified RAP number gives HDAM the location of the root within a
physical block.

Although HDAM can place roots and dependents anywhere in the database, it is better to choose HDAM
options that keep roots and dependents close together.

HDAM performance depends largely on the randomizing routine you use. Performance can be very good,
but it also depends on other factors such as:

• The block size you use
• The number of RAPs per block
• The pattern for chaining together different segments. You can chain segments of a database record in

two ways:

– In hierarchic sequence, starting with the root
– In parent-to-dependent sequence, with parents having pointers to each of their paths of dependents

To use HDAM for sequential access of database records by root key, you need to use a secondary index or
a randomizing routine that stores roots in physical key sequence.

Chapter 5. Gathering requirements for database options 71

Direct and sequential processing: HIDAM
HIDAM is the access method that is most efficient for an approximately equal amount of direct and
sequential processing.

Important: PHIDAM is the partitioned version of the HIDAM database type. The corresponding
descriptions of the HIDAM database type therefore apply to PHIDAM.

The z/OS access methods it can use are VSAM and OSAM. The specific requirements that HIDAM satisfies
are:

• Direct and sequential access of records by their root keys
• Direct access of paths of dependents
• Adding new database records and new segments because the new data goes into the nearest available

space
• Deleting database records and segments because the space created by a deletion can be used by any

new segment

HIDAM can satisfy most processing requirements that involve an even mixture of direct and sequential
processing. However, HIDAM is not very efficient with sequential access of dependents.

HIDAM characteristics
For root segments, a HIDAM database:

• Initially loads them in key sequence
• Can store new root segments wherever space is available
• Uses an index to locate a root that you request and identify by supplying the root's key value

For dependent segments, a HIDAM database:

• Can store segments anywhere, preferably fairly close together
• Chains all segments of a database record together with pointers

An overview of how HIDAM works
This topic contains Diagnosis, Modification, and Tuning information.

HIDAM uses two databases. The primary database holds the data. An index database contains entries for
all of the root segments in order by their key fields. For each key entry, the index database contains the
address of that root segment in the primary database.

When you access a root, you supply the key to the root. HIDAM looks up the key in the index to find the
address of the root and then goes to the primary database to find the root.

HIDAM chains dependent segments together so that when you access a dependent segment, HIDAM uses
the pointer in one segment to locate the next segment in the hierarchy.

When you process database records directly, HIDAM locates the root through the index and then locates
the segments from the root. HIDAM locates dependents through pointers.

If you plan to process database records sequentially, you can specify special pointers in the DBD for the
database so that IMS does not need to go to the index to locate the next root segment. These pointers
chain the roots together. If you do not chain roots together, HIDAM always goes to the index to locate a
root segment. When you process database records sequentially, HIDAM accesses roots in key sequence
in the index. This only applies to sequential processing; if you want to access a root segment directly,
HIDAM uses the index, and not pointers in other root segments, to find the root segment you have
requested.

72 IMS: Application Programming

Main storage database: MSDB
Use MSDBs to store the most frequently-accessed data. MSDBs are suitable for applications such as
general ledger applications in the banking industry.

Recommendation: Use DEDBs instead of MSDBs when you develop new Fast Path databases. Terminal-
related MSDBs and non-terminal-related MSDBs with terminal-related keys are no longer supported.
Although non-terminal-related MSDBs with non-terminal-related-keys are still supported, you should
consider converting any existing MSDBs to DEDBs. You can use the MSDB-to-DEDB Conversion utility.

MSDB characteristics
MSDBs reside in virtual storage, enabling application programs to avoid the I/O activity that is required to
access them. The two kinds of MSDBs are terminal-related and non-terminal-related.

In a terminal-related MSDB, each segment is owned by one terminal, and each terminal owns only one
segment. One use for this type of MSDB is an application in which each segment contains data associated
with a logical terminal. In this type of application, the program can read the data (perhaps for reporting
purposes), but cannot update it. A non-terminal-related MSDB stores data that is needed by many users
during the same time period. It can be updated and read from all terminals (for example, a real time
inventory control application, where reduction of inventory can be noted from many cash registers).

An overview of how MSDBs work
This topic contains Diagnosis, Modification, and Tuning information.

MSDB segments are stored as root segments only. Only one type of pointer, the forward chain pointer, is
used. This pointer connects the segment records in the database.

Data entry database: DEDB
DEDBs are designed to provide access to and efficient storage for large volumes of data. The primary
requirement a DEDB satisfies is a high level of data availability.

DEDB characteristics
DEDBs are hierarchic databases that can have as many as 15 hierarchic levels, and as many as
127 segment types. They can contain both direct and sequential dependent segments. Because the
sequential dependent segments are stored in chronological order as they are committed to the database,
they are useful in journaling applications.

DEDBs support a subset of functions and options that are available for a HIDAM or HDAM database. For
example, a DEDB does not support logically related segments or access with primary indexes. Access with
secondary indexes is supported.

An overview of how DEDBs work
This topic contains Diagnosis, Modification, and Tuning information.

A DEDB can be partitioned into multiple areas, with each area containing a different collection of database
records. The data in a DEDB area is stored in a VSAM data set. Root segments are stored in the root-
addressable part of an area, with direct dependents stored close to the roots for fast access. Direct
dependents that cannot be stored close to their roots are stored in the independent overflow portion of
the area. Sequential dependents are stored in the sequential dependent portion at the end of the area so
that they can be quickly inserted. Each area data set can have up to seven copies, making the data easily
available to application programs.

Chapter 5. Gathering requirements for database options 73

Sequential access
When you use a sequential access method, the segments in the database are stored in hierarchic
sequence, one after another, with no pointers.

IMS full-function has two sequential access methods. Like the direct access methods, one has an index
and the other does not:

• HSAM only processes root segments and dependent segments sequentially.
• HISAM processes data sequentially but has an index so that you can access records directly. HISAM is

primarily for sequentially processing dependents, and directly processing database records.

Some of the general requirements that sequential access satisfies are:

• Fast sequential processing
• Direct processing of database records with HISAM
• Small IMS overhead on storage because sequential access methods relate segments by adjacency

rather than with pointers

The three disadvantages of using sequential access methods are:

• Sequential access methods give slower access to the right-most segments in the hierarchy, because
HSAM and HISAM must read through all other segments to get to them.

• HISAM requires frequent reorganization to reclaim space from deleted segments and to keep the logical
records of a database record physically adjoined.

• You cannot update HSAM databases. You must create a new database to change any of the data.

Sequential processing only: HSAM
HSAM is a hierarchic access method that can handle only sequential processing. You can retrieve data
from HSAM databases, but you cannot update any of the data. The z/OS access methods that HSAM can
use are QSAM and BSAM.

HSAM is ideal for the following situations:

• You are using the database to collect (but not update) data or statistics.
• You only plan to process the data sequentially.

HSAM characteristics
HSAM stores database records in the sequence in which you submit them. You can only process records
and dependent segments sequentially, which means the order in which you have loaded them. HSAM
stores dependent segments in hierarchic sequence.

An overview of how HSAM works
This topic contains Diagnosis, Modification, and Tuning information.

HSAM databases are very simple databases. The data is stored in hierarchic sequence, one segment after
the other, and no pointers or indexes are used.

Primarily sequential processing: HISAM
HISAM is an access method that stores segments in hierarchic sequence with an index to locate root
segments. It also has an overflow data set. Store segments in a logical record until you reach the end
of the logical record. When you run out of space on the logical record, but you still have more segments
belonging to the database record, you store the remaining segments in an overflow data set. The access
methods that HISAM can use are VSAM and OSAM.

HISAM is well-suited for:

74 IMS: Application Programming

• Direct access of record by root keys
• Sequential access of records
• Sequential access of dependent segments

The situations in which your processing has some of these characteristics but where HISAM is not
necessarily a good choice, occur when:

• You must access dependents directly.
• You have a high number of inserts and deletes.
• Many of the database records exceed average size and must use the overflow data set. The segments

that overflow into the overflow data set require additional I/O.

HISAM characteristics
For database records, HISAM databases:

• Store records in key sequence
• Can locate a particular record with a key value by using the index

For dependent segments, HISAM databases:

• Start each HISAM database record in a new logical record in the primary data set
• Store the remaining segments in one or more logical records in the overflow data set if the database

record does not fit in the primary data set

An overview of how HISAM works
This topic contains Diagnosis, Modification, and Tuning information.

HISAM does not immediately reuse space. When you insert a new segment, HISAM databases shift
data to make room for the new segment, and this leaves unused space after deletions. HISAM space is
reclaimed when you reorganize a HISAM database.

Accessing z/OS files through IMS: GSAM
GSAM enables IMS batch application programs and BMPs to access a sequential z/OS data set as a simple
database. The z/OS access methods that GSAM can use are BSAM and VSAM. A GSAM database is a z/OS
data set record that is defined as a database record. The record is handled as one unit; it contains no
segments or fields and the structure is not hierarchic. GSAM databases can be accessed by z/OS, IMS,
and CICS.

In a CICS environment, an application program can access a GSAM database from either a Call DL/I (or
EXEC DLI) batch or batch-oriented BMP program. A CICS application cannot, however, use EXEC DLI to
process GSAM databases; it must use IMS calls.

You commonly use GSAM to send input to and receive output from batch-oriented BMPs or batch
programs. To process a GSAM database, an application program issues calls similar to the ones it issues
to process a full-function database. The program can read data sequentially from a GSAM database, and it
can send output to a GSAM database.

GSAM is a sequential access method. You can only add records to an output database sequentially.

Accessing IMS data through z/OS: SHSAM and SHISAM
Two database access methods give you simple hierarchic databases that z/OS can use as data sets,
SHSAM and SHISAM.

These access methods can be particularly helpful when you are converting data from z/OS files to an IMS
database. SHISAM is indexed and SHSAM is not.

Chapter 5. Gathering requirements for database options 75

When you use these access methods, you define an entire database record as one segment. The segment
does not contain any IMS control information or pointers; the data format is the same as it is in z/OS data
sets. The z/OS access methods that SHSAM can use are BSAM and QSAM. SHISAM uses VSAM.

SHSAM and SHISAM databases can be accessed by z/OS access methods without IMS, which is useful
during transitions.

Understanding how data structure conflicts are resolved
The order in which application programs need to process fields and segments within hierarchies is
frequently not the same for each application. When the DBA finds a conflict in the way that two or more
programs need to access the data, three options are available to solve these problems. Each of the
following options solves a different kind of conflict.

• When an application program does not need access to all the fields in a segment, or if the program
needs to access them in a different order, the DBA can use field level sensitivity for that program.
Field-level sensitivity makes it possible for an application program to access only a subset of the fields
that a segment contains, or for an application program to process a segment's fields in an order that is
different from their order in the segment.

• When an application program needs to access a particular segment by a field other than the segment's
key field, the DBA can use a secondary index for that database.

• When the application program needs to relate segments from different hierarchies, the DBA can use
logical relationships. Using logical relationships can give the application program a logical hierarchy
that includes segments from several hierarchies.

Related concepts
“Determining mappings” on page 27
When you have arranged the data aggregates into a conceptual data structure, you can examine the
relationships between the data aggregates. A mapping between two data aggregates is the quantitative
relationship between the two.

Using different fields: field-level sensitivity
Field-level sensitivity applies the same kind of security for fields within a segment that segment
sensitivity does for segments within a hierarchy: An application program can access only those fields
within a segment, and those segments within a hierarchy to which it is sensitive.

Field-level sensitivity also makes it possible for an application program to use a subset of the fields that
make up a segment, or to use all the fields in the segment but in a different order. If a segment contains
fields that the application program does not need to process, using field-level sensitivity enables the
program not to process them.

Example of field-level sensitivity
Suppose that a segment containing data about an employee contains the fields shown in the following
table. These fields are:

• Employee number: EMPNO
• Employee name: EMPNAME
• Birthdate: BIRTHDAY
• Salary: SALARY
• Address: ADDRESS

Table 24. Physical employee segment

Employee Number Employee Name Birthdate Salary Address

EMPNO EMPNAME BIRTHDAY SALARY ADDRESS

76 IMS: Application Programming

A program that printed mailing labels for employees' checks each week would not need all the data in the
segment. If the DBA decided to use field-level sensitivity for that application, the program would receive
only the fields it needed in its I/O area. The I/O area would contain the EMPNAME and ADDRESS fields.
The following table shows what the program's I/O area would contain.

Table 25. Employee segment with field-level sensitivity

Employee Name Address

EMPNAME ADDRESS

Field-level sensitivity makes it possible for a program to receive a subset of the fields that make up a
segment, the same fields but in a different order, or both.

Another situation in which field-level sensitivity is very useful is when new uses of the database involve
adding new fields of data to an existing segment. In this situation, you want to avoid re-coding programs
that use the current segment. By using field-level sensitivity, the old programs can see only the fields that
were in the original segment. The new program can see both the old and the new fields.

Specifying field-level sensitivity
You specify field-level sensitivity in the PSB for the application program by using a sensitive field
(SENFLD) statement for each field to which you want the application program to be sensitive.

Related reference
SENFLD statement (System Utilities)

Resolving processing conflicts in a hierarchy: secondary indexing
Sometimes a database hierarchy does not meet all the processing requirements of the application
programs that will process it.

Secondary indexing can be used to solve two kinds of processing conflicts:

• When an application program needs to retrieve a segment in a sequence other than the one that has
been defined by the segment's key field

• When an application program needs to retrieve a segment based on a condition that is found in a
dependent of that segment

To understand these conflicts and how secondary indexing can resolve them, consider the examples of
two application programs that process the patient hierarchy, shown in the following figure. Three segment
types in this hierarchy are:

• PATIENT contains three fields: the patient's identification number, name, and address. The patient
number field is the key field.

• ILLNESS contains two fields: the date of the illness and the name of the illness. The date of the illness is
the key field.

• TREATMNT contains four fields: the date the medication was given; the name of the medication; the
quantity of the medication that was given; and the name of the doctor who prescribed the medication.
The date that the medication was given is the key field.

Chapter 5. Gathering requirements for database options 77

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgensenfldstmt.htm#ims_psbgensenfldstmt

Figure 16. Patient hierarchy

Retrieving segments based on a different key
When an application program retrieves a segment from the database, the program identifies the segment
by the segment's key field. But sometimes an application program needs to retrieve a segment in a
sequence other than the one that has been defined by the segment's key field. Secondary indexing makes
this possible.

Note: A new database type, the Partitioned Secondary Index (PSINDEX), is supported by the High
Availability Large Database (HALDB). PSINDEX is the partitioned version of the secondary index database
type. The corresponding descriptions of the secondary index database type therefore apply to PSINDEX.

For example, suppose you have an online application program that processes requests about whether an
individual has ever been to the clinic. If you are not sure whether the person has ever been to the clinic,
you will not be able to supply the identification number for the person. But the key field of the PATIENT
segment is the patient's identification number.

Segment occurrences of a segment type (for example, the segments for each of the patients) are stored
in a database in order of their keys (in this case, by their patient identification numbers). If you issue
a request for a PATIENT segment and identify the segment you want by the patient's name instead of
the patient's identification number, IMS must search through all of the PATIENT segments to find the
PATIENT segment you have requested. IMS does not know where a particular PATIENT segment is just by
having the patient's name.

To make it possible for this application program to retrieve PATIENT segments in the sequence of
patients' names (rather than in the sequence of patients' identification numbers), you can index the
PATIENT segment on the patient name field and store the index entries in a separate database. The
separate database is called a secondary index database.

Then, if you indicate to IMS that it is to process the PATIENT segments in the patient hierarchy in the
sequence of the index entries in the secondary index database, IMS can locate a PATIENT segment if
you supply the patient's name. IMS goes directly to the secondary index and locates the PATIENT index
entry with the name you have supplied; the PATIENT index entries are in alphabetical order of the patient
names. The index entry is a pointer to the PATIENT segment in the patient hierarchy. IMS can determine
whether a PATIENT segment for the name you have supplied exists, and then it can return the segment to
the application program if the segment exists. If the requested segment does not exist, IMS indicates this
to the application program by returning a not-found status code.

Related reading: For more information on HALDB, see IMS Version 15.3 Database Administration.

Three terms involved in secondary indexing are:

78 IMS: Application Programming

Pointer segment
The index entry in the secondary index database that IMS uses to find the segment you have
requested. In the previous example, the pointer segment is the index entry in the secondary index
database that points to the PATIENT segment in the patient hierarchy.

Source segment
The segment that contains the field that you are indexing. In the previous example, the source
segment is the PATIENT segment in the patient hierarchy, because you are indexing on the name field
in the PATIENT segment.

Target segment
The segment in the database that you are processing to which the secondary index points; it is the
segment that you want to retrieve.

In the previous example, the target segment and the source segment are the same segment—the
PATIENT segment in the patient hierarchy. When the source segment and the target segment are different
segments, secondary indexing solves the processing conflict.

The PATIENT segment that IMS returns to the application program's I/O area looks the same as it would if
secondary indexing had not been used.

The key feedback area is different. When IMS retrieves a segment without using a secondary index, IMS
places the concatenated key of the retrieved segment in the key feedback area. The concatenated key
contains all the keys of the segment's parents, in order of their positions in the hierarchy. The key of the
root segment is first, followed by the key of the segment on the second level in the hierarchy, then the
third, and so on—with the key of the retrieved segment last.

But when you retrieve a segment from an indexed database, the contents of the key feedback area after
the request are a little different. Instead of placing the key of the root segment in the left-most bytes of
the key feedback area, DL/I places the key of the pointer segment there. Note that the term "key of the
pointer segment," as used here, refers to the key as perceived by the application program—that is, the key
does not include subsequence fields.

For example, suppose index segment A shown in the following figure is indexed on a field in segment C.
Segment A is the target segment, and segment C is the source segment.

Figure 17. Indexing a root segment

When you use the secondary index to retrieve one of the segments in this hierarchy, the key feedback
area contains one of the following:

• If you retrieve segment A, the key feedback area contains the key of the pointer segment from the
secondary index.

• If you retrieve segment B, the key feedback area contains the key of the pointer segment, concatenated
with the key of segment B.

• If you retrieve segment C, the key of the pointer segment, the key of segment B, and the key of segment
C are concatenated in the key feedback area.

Chapter 5. Gathering requirements for database options 79

Although this example creates a secondary index for the root segment, you can index dependent
segments as well. If you do this, you create an inverted structure: the segment you index becomes the
root segment, and its parent becomes a dependent.

For example, suppose you index segment B on a field in segment C. In this case, segment B is the target
segment, and segment C is the source field. The following figure shows the physical database structure
and the structure that is created by the secondary index.

Figure 18. Indexing a dependent segment

When you retrieve the segments in the secondary index data structure on the right, IMS returns the
following to the key feedback area:

• If you retrieve segment B, the key feedback area contains the key of the pointer segment in the
secondary index database.

• If you retrieve segment A, the key feedback area contains the key of the pointer segment, concatenated
with the key of segment A.

• If you retrieve segment C, the key feedback area contains the key of the pointer segment, concatenated
with the key of segment C.

Retrieving segments based on the qualification of a dependent segment
Sometimes an application program needs to retrieve a segment, but only if one of the dependents of the
segment meet certain qualifications.

For example, suppose that the medical clinic wants to print a monthly report of the patients who have
visited the clinic during that month. If the application program that processes this request does not use
a secondary index, the program has to retrieve each PATIENT segment, and then retrieve the ILLNESS
segment for each PATIENT segment. The program tests the date in the ILLNESS segment to determine
whether the patient has visited the clinic during the current month, and prints the patient's name if the
answer is yes. The program continues retrieving PATIENT segments and ILLNESS segments until it has
retrieved all the PATIENT segments.

But with a secondary index, you can make the processing of the program simpler. To do this, you index the
PATIENT segment on the date field in the ILLNESS segment. When you define the PATIENT segment in the
DBD, you give IMS the name of the field on which you are indexing the PATIENT segment, and the name of
the segment that contains the index field. The application program can then request a PATIENT segment
and qualify the request with the date in the ILLNESS segment. The PATIENT segment that is returned to
the application program looks just as it would if you were not using a secondary index.

In this example, the PATIENT segment is the target segment; it is the segment that you want to retrieve.
The ILLNESS segment is the source segment; it contains the information that you want to use to
qualify your request for PATIENT segments. The index segment in the secondary database is the pointer
segment. It points to the PATIENT segments.

80 IMS: Application Programming

Creating a new hierarchy: logical relationships
When an application program needs to associate segments from different hierarchies, logical
relationships can make that possible.

Logical relationships can solve the following conflicts:

• When two application programs need to process the same segment, but they need to access the
segment through different hierarchies

• When a segment's parent in one application program's hierarchy acts as that segment's child in another
application program

Accessing a segment through different paths
Sometimes an application program needs to process the data in a different order than the way it is
arranged in the hierarchy.

For example, an application program that processes data in a purchasing database also requires access to
a segment in a patient database:

• Program A processes information in the patient database about the patients at a medical clinic: the
patients' illnesses and their treatments.

• Program B is an inventory program that processes information in the purchasing database about
the medications that the clinic uses: the item, the vendor, information about each shipment, and
information about when and under what circumstances each medication is given.

The following figure shows the hierarchies that Program A and Program B require for their processing.
Their processing requirements conflict: they both need to have access to the information that is contained
in the TREATMNT segment in the patient database. This information is:

• The date that a particular medication was given
• The name of the medication
• The quantity of the medication given
• The doctor that prescribed the medication

To Program B this is not information about a patient's treatment; it is information about the disbursement
of a medication. To the purchasing database, this is the disbursement segment (DISBURSE).

The following figure shows the hierarchies for Program A and Program B. Program A needs the PATIENT
segment, the ILLNESS segment, and the TREATMNT segment. Program B needs the ITEM segment, the
VENDOR segment, the SHIPMENT segment, and the DISBURSE segment. The TREATMNT segment and
the DISBURSE segment contain the same information.

Chapter 5. Gathering requirements for database options 81

Figure 19. Patient and inventory hierarchies

Instead of storing this information in both hierarchies, you can use a logical relationship. A logical
relationship solves the problem by storing a pointer from where the segment is needed in one hierarchy
to where the segment exists in the other hierarchy. In this case, you can have a pointer in the
DISBURSE segment to the TREATMNT segment in the medical database. When IMS receives a request
for information in a DISBURSE segment in the purchasing database, IMS goes to the TREATMNT segment
in the medical database that is pointed to by the DISBURSE segment. The following figure shows the
physical hierarchy that Program A would process and the logical hierarchy that Program B would process.
DISBURSE is a pointer segment to the TREATMNT segment in Program A's hierarchy.

82 IMS: Application Programming

Figure 20. Logical relationships example

To define a logical relationship between segments in different hierarchies, you use a logical DBD. A logical
DBD defines a hierarchy that does not exist in storage, but can be processed as though it does. Program B
would use the logical structure shown in the previous figure as though it were a physical structure.

Inverting a parent-child relationship
Another type of conflict that logical relationships can resolve occurs when a segment's parent in one
application program acts as that segment's child in another application program.

• The inventory program, Program B, needs to process information about medications using the
medication as the root segment.

• A purchasing application program, Program C, processes information about which vendors have sold
which medications. Program C needs to process this information using the vendor as the root segment.

The following figure shows the hierarchies for each of these application programs.

Chapter 5. Gathering requirements for database options 83

Figure 21. Supplies and purchasing hierarchies

Logical relationships can solve this problem by using pointers. Using pointers in this example would mean
that the ITEM segment in the purchasing database would contain a pointer to the actual data stored in
the ITEM segment in the supplies database. The VENDOR segment, however, would actually be stored
in the purchasing database. The VENDOR segment in the supplies database would point to the VENDOR
segment that is stored in the purchasing database.

The following figure shows the hierarchies of these two programs.

Figure 22. Program B and program C hierarchies

If you did not use logical relationships in this situation, you would:

• Keep the same data in both paths, which means that you would be keeping redundant data.
• Have the same disadvantages as separate files of data:

– You would need to update multiple segments each time one piece of data changed.
– You would need more storage.

Providing data security
You can control the security of data accessed by your IMS application programs through data sensitivity
and processing options.
Data sensitivity

Controls what data a particular program can access.
Processing options

Controls how a particular program can process data that it can access.

84 IMS: Application Programming

Providing data availability
Specifying segment sensitivity and processing options also affects data availability. You should set
the specifications so that the PCBs request the fewest SENSEGS and limit the possible processing
options. With data availability, a program can continue to access and update segments in the database
successfully, even though some parts of the database are unavailable.

The SENSEG statement defines a segment type in the database to which the application program is
sensitive. A separate SENSEG statement must exist for each segment type. The segments can physically
exist in one database or they can be derived from several physical databases. If an application program is
sensitive to a segment that is below the root segment, it must also be sensitive to all segments in the path
from the root segment to the sensitive segment.

Related Reading: For more information on using field-level sensitivity for data security and using the
SENSEG statement to limit the scope of the PCBs, see IMS Version 15.3 Database Administration.

Related concepts
“An overview of application design” on page 15
The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Keeping a program from accessing the data: data sensitivity
An IMS program can only access data to which it is sensitive.

You can control the data to which your program is sensitive on three levels:

• Segment sensitivity can prevent an application program from accessing all the segments in a particular
hierarchy. Segment sensitivity tells IMS which segments in a hierarchy the program is allowed to access.

• Field-level sensitivity can keep a program from accessing all the fields that make up a particular
segment. Field-level sensitivity tells IMS which fields within a particular segment a program is allowed
to access.

• Key sensitivity means that the program can access segments below a particular segment, but it cannot
access the particular segment. IMS returns only the key of this type of segment to the program.

You define each of these levels of sensitivity in the PSB for the application program. Key sensitivity is
defined in the processing option for the segment. Processing options indicate to IMS exactly what a
particular program may or may not do to the data. You specify a processing option for each hierarchy that
the application program processes; you do this in the DB PCB that represents each hierarchy. You can
specify one processing option for all the segments in the hierarchy, or you can specify different processing
options for different segments within the hierarchy.

Segment sensitivity and field-level sensitivity are defined using special statements in the PSB.

Segment sensitivity
You define what segments an application program is sensitive to in the DB PCB for the hierarchy that
contains those segments.

For example, suppose that the patient hierarchy shown in the following figures. The patient hierarchy is
like a subset of the medical database.

Chapter 5. Gathering requirements for database options 85

Figure 23. Medical database hierarchy

PATIENT is the root segment and the parent of the three segments below it: ILLNESS, BILLING, and
HOUSHOLD. Below ILLNESS is TREATMNT. Below BILLING is PAYMENT.

To make it possible for an application program to view only the segments PATIENT, ILLNESS, and
TREATMNT from the medical database, you specify in the DB PCB that the hierarchy you are defining
has these three segment types, and that they are from the medical database. You define the database
hierarchy in the DBD; you define the application program's view of the database hierarchy in the DB PCB.

Field-level sensitivity
In addition to providing data independence for an application program, field-level sensitivity can also act
as a security mechanism for the data that the program uses.

If a program needs to access some of the fields in a segment, but one or two of the fields that the program
does not need to access are confidential, you can use field-level sensitivity. If you define that segment for
the application program as containing only the fields that are not confidential, you prevent the program
from accessing the confidential fields. Field-level sensitivity acts as a mask for the fields to which you
want to restrict access.

Key sensitivity
To access a segment, an application program must be sensitive to all segments at a higher level in the
segment's path. In other words, in the following figure, a program must be sensitive to segment B in order
to access segment C.

For example, suppose that an application program needs segment C to do its processing. But if segment
B contains confidential information (such as an employee's salary), the program is not able to access that
segment. Using key sensitivity lets you withhold segment B from the application program while giving the
program access to the dependents of segment B.

When a sensitive segment statement has a processing option of K specified for it, the program
cannot access that segment, but the program can pass beyond that segment to access the segment's
dependents. When the program does access the segment's dependents, IMS does not return that
segment; IMS returns only the segment's key with the keys of the other segments that are accessed.

86 IMS: Application Programming

Figure 24. Sample hierarchy for key sensitivity example

Preventing a program from updating data: processing options
During PCB generation, you can use five options of the PROCOPT parameter (in the DATABASE macro) to
indicate to IMS whether your program can read segments in the hierarchy, or whether it can also update
segments.

From most restrictive to least restrictive, these options are:
G

Your program can read segments.
R

Your program can read and replace segments.
I

Your program can insert segments.
D

Your program can read and delete segments.
A

Your program can perform all the processing options. It is equivalent to specifying G, R, I, and D.

Related Reading: For a thorough description of the processing options see, IMS Version 15.3 System
Utilities.

Processing options provide data security because they limit what a program can do to the hierarchy or to a
particular segment. Specifying only the processing options the program requires ensures that the program
cannot update any data it is not supposed to. For example, if a program does not need to delete segments
from a database, the D option need not be specified.

When an application program retrieves a segment and has any of the just-described processing options,
IMS locks the database record for that application. If PROCOPT=G is specified, other programs with
the option can concurrently access the database record. If an update processing option (R, I, D, or A)
is specified, no other program can concurrently access the same database record. If no updates are
performed, the lock is released when the application moves to another database record or, in the case of
HDAM, to another anchor point.

The following locking protocol allows IMS to make this determination. If the root segment is updated,
the root lock is held at update level until commit. If a dependent segment is updated, it is locked at
update level. When exiting the database record, the root segment is demoted to read level. When a
program enters the database record and obtains the lock at either read or update level, the lock manager

Chapter 5. Gathering requirements for database options 87

provides feedback indicating whether or not another program has the lock at read level. This determines
if dependent segments will be locked when they are accessed. For HISAM, the primary logical record is
treated as the root, and the overflow logical records are treated as dependent segments.

When using block-level or database-level data sharing for online and batch programs, you can use
additional processing options.

Related Reading:

• For a special case involving HISAM delete byte with parameter ERASE=YES see, IMS Version 15.3
Database Administration.

• For more information on database and block-level data sharing, see IMS Version 15.3 System
Administration.

E option
With the E option, your program has exclusive access to the hierarchy or to the segment you use it with.
The E option is used in conjunction with the options G, I, D, R, and A. While the E program is running, other
programs cannot access that data, but may be able to access segments that are not in the E program's
PCB. No dynamic enqueue by program isolation is done, but dynamic logging of database updates will be
done.

GO option
When your program retrieves a segment with the GO option, IMS does not lock the segment. While the
read without integrity program reads the segment, it remains available to other programs. This is because
your program can only read the data (termed read-only); it is not allowed to update the database. No
dynamic enqueue is done by program isolation for calls against this database. Serialization between the
program with PROCOPT=GO and any other update program does not occur; updates to the same data
occur simultaneously.

If a segment has been deleted and another segment of the same type has been inserted in the same
location, the segment data and all subsequent data that is returned to the application may be from a
different database record.

A read-without-integrity program can also retrieve a segment even if another program is updating the
segment. This means that the program need not wait for segments that other programs are accessing.
If a read-without-integrity program reads data that is being updated by another program, and that
program terminates abnormally before reaching the next commit point, the updated segments might
contain invalid pointers. If an invalid pointer is detected, the read-without-integrity program terminates
abnormally, unless the N or T options were specified with GO. Pointers are updated during insert, delete
and backout functions.

N option
When you use the N option with GO to access a full-function database or a DEDB, and the segment you
are retrieving contains an invalid pointer, IMS returns a GG status code to your program. Your program can
then terminate processing, continue processing by reading a different segment, or access the data using a
different path. The N option must be specified as PROCOPT=GON, GON, or GONP.

T option
When you use the T option with GO and the segment you are retrieving contains an invalid pointer, the
response from an application program depends on whether the program is accessing a full-function or
Fast Path database.

For calls to full-function databases, the T option causes DL/I to automatically retry the operation. You can
retrieve the updated segment, but only if the updating program has reached a commit point or has had
its updates backed out since you last tried to retrieve the segment. If the retry fails, a GG status code is
returned to your program.

88 IMS: Application Programming

For calls to Fast Path DEDBs, option T does not cause DL/I to retry the operation. A GG status code is
returned. The T option must be specified as PROCOPT=GOT, GOT, or GOTP.

GOx and data integrity
For a very small set of applications and data, PROCOPT=GOx offers some performance and parallelism
benefits. However, it does not offer application data integrity. For example, using PROCOPT=GOT in an
online environment on a full-function database can cause performance degradation. The T option forces
a re-read from DASD, negating the advantage of very large buffer pools and VSAM hiperspace for all
currently running applications and shared data. For more information on the GOx processing option for
DEDBs, see IMS Version 15.3 System Utilities.

Related concepts
“Read without integrity” on page 89
Database-level sharing of IMS databases provides for sharing of databases between a single update-
capable batch or online IMS system and any number of other IMS systems that are reading data that are
without integrity.

Read without integrity
Database-level sharing of IMS databases provides for sharing of databases between a single update-
capable batch or online IMS system and any number of other IMS systems that are reading data that are
without integrity.

A GE status code might be returned to a program using PROCOPT=GOx for a segment that exists in a
HIDAM database during control interval (CI) splits.

In IMS, programs that use database-level sharing include PROCOPT=GOx in their DBPCBs for that data.
For batch jobs, the DBPCB PROCOPTs establish the batch job's access level for the database. That is,
a batch job uses the highest declared intent for a database as the access level for DBRC database
authorization. In an online IMS environment, database ACCESS is specified on the DATABASE macro
during IMS system definition, and it can be changed using the /START DB ACCESS=RO command. Online
IMS systems schedule programs with data availability determined by the PROCOPTs within those program
PSBs being scheduled. That data availability is therefore limited by the online system's database access.

The PROCOPT=GON and GOT options provide certain limited PCB status code retry for some recognizable
pointer errors, within the data that is being read without integrity. In some cases, dependent segment
updates, occurring asynchronously to the read-without-integrity IMS instance, do not interfere with the
program that is reading that data without integrity. However, update activity to an average database does
not always allow a read-without-integrity IMS system to recognize a data problem.

What read without integrity means
Each IMS batch or online instance has OSAM and VSAM buffer pools defined for it. Without locking to
serialize concurrent updates that are occurring in another IMS instance, a read without integrity from a
database data set fetches a copy of a block or CI into the buffer pool in storage. Blocks or CIs in the buffer
pool can remain there a long time. Subsequent read without integrity of other blocks or CIs can then fetch
more recent data. Data hierarchies and other data relationships between these different blocks or CIs can
be inconsistent.

For example, consider an index database (VSAM KSDS), which has an index component and a data
component. The index component contains only hierarchic control information, relating to the data
component CI where a given keyed record is located. Think of this as the way that the index component CI
maintains the high key in each data component CI. Inserting a keyed record into a KSDS data component
CI that is already full causes a CI split. That is, some portion of the records in the existing CI are moved to
a new CI, and the index component is adjusted to point to the new CI.

For example, suppose the index CI shows the high key in the first data CI as KEY100, and a split occurs.
The split moves keys KEY051 through KEY100 to a new CI; the index CI now shows the high key in the
first data CI as KEY050, and another entry shows the high key in the new CI as KEY100.

Chapter 5. Gathering requirements for database options 89

A program that is reading is without integrity, which already read the "old" index component CI into
its buffer pool (high key KEY100), does not point to the newly created data CI and does not attempt
to access it. More specifically, keyed records that exist in a KSDS at the time a read-without-integrity
program starts might never be seen. In this example, KEY051 through KEY100 are no longer in the first
data CI even though the "old" copy of the index CI in the buffer pool still indicates that any existing keys
up to KEY100 are in the first data CI.

Hypothetical cases also exist where the deletion of a dependent segment and the insertion of that same
segment type under a different root, placed in the same physical location as the deleted segment, can
cause simple Get Next processing to give the appearance of only one root in the database. For example,
accessing the segments under the first root in the database down to a level-06 segment (which had been
deleted from the first root and is now logically under the last root) would then reflect data from the other
root. The next and subsequent Get Next calls retrieve segments from the other root.

Read-only (PROCOPT=GO) processing does not provide data integrity.

Data set extensions
IMS instances with database-level sharing can open a database for read without integrity.

After the database is opened, another program that is updating that database can make changes to the
data. These changes might result in logical and physical extensions to the database data set. Because
the read-without-integrity program is not aware of these extensions, problems with the RBA (beyond
end-of-data) can occur.

Related concepts
“Preventing a program from updating data: processing options” on page 87
During PCB generation, you can use five options of the PROCOPT parameter (in the DATABASE macro) to
indicate to IMS whether your program can read segments in the hierarchy, or whether it can also update
segments.

90 IMS: Application Programming

Chapter 6. Gathering requirements for message
processing options

One of the tasks of application design is providing information about your application's requirements to
the people in charge of designing and administering your IMS system.

Restriction: This information applies to DB/DC and DCCTL environments only.

Related concepts
“Programming with the IMS Java dependent region resource adapter” on page 674
IMS provides a set of Java APIs called the IMS Java dependent region resource adapter to develop Java
applications to run on the IMS Java dependent regions.

Identifying online security requirements
Security in an online system means protecting the data from unauthorized use through terminals. It also
means preventing unauthorized use of both the IMS system and the application programs that access the
database. For example, you do not want a program that processes paychecks to be available to everyone
who can access the system.

The security mechanisms that IMS provides are signon, terminal, and password security.

Related reading: For an explanation of how to establish these types of security, see IMS Version 15.3
System Administration.

Limiting access to specific individuals: signon security
Signon security is available through Resource Access Control Facility (RACF®) or a user-written security
exit routine. With signon security, individuals who want to use IMS must be defined to RACF or its
equivalent before they are allowed access.

When a person signs on to IMS, RACF or security exits verify that the person is authorized to use IMS
before access to IMS-controlled resources is allowed. This signon security is provided by the /SIGN ON
command. You can also limit the transaction codes and commands that individuals are allowed to enter.
You do this by associating an individual's user identification (USERID) with the transaction codes and
commands.

LU 6.2 transactions contain the USERID.

Related reading: For more information on security, see IMS Version 15.3 Communications and
Connections.

Limiting access for specific terminals: terminal security
Use terminal security to limit the entry of a transaction code to a particular terminal or group of terminals
in the system. How you do this depends on how many programs you want to protect.

To protect a particular program, you can either authorize a transaction code to be entered from a list of
logical terminals, or you can associate each logical terminal with a list of the transaction codes that a user
can enter from that logical terminal. For example, you could protect the paycheck application program
by defining the transaction code associated with it as valid only when entered from the terminals in the
payroll department. If you wanted to restrict access to this application even more, you could associate the
paycheck transaction code with only one logical terminal. To enter that transaction code, a user needs to
be at a physical terminal that is associated with that logical terminal.

Restriction: If you are using the shared-queues option, static control blocks representing the resources
needed for the security check need to be available in the IMS system where the security check is being
made. Otherwise, the security check is bypassed.

© Copyright IBM Corp. 1974, 2022 91

Related reading: For more information on shared queues, see IMS Version 15.3 System Administration.

Limiting access to the program: password security
Another way you can protect the application program is to require a password when a person enters the
transaction code that is associated with the application program you want to protect. If you use only
password security, the person entering a particular transaction code must also enter the password of the
transaction before IMS processes the transaction.

If you use password security with terminal security, you can restrict access to the program even more.
In the paycheck example, using password security and terminal security means that you can restrict
unauthorized individuals within the payroll department from executing the program.

Restriction: Password security for transactions is only supported if the transactions that are needed for
the security check are defined in the IMS system where the security check is being made. Otherwise, the
security check is bypassed.

Allowing access to security data: authorization security
RACF has a data set that you can use to store user-unique information. The AUTH call gives application
programs access to the RACF data set security data, and a way to control access to application-defined
resources. Thus, application programs can obtain the security information about a particular user.

How IMS security relates to Db2 for z/OS security
An important part of Db2 for z/OS security is the authorization ID. The authorization ID that IMS uses for a
program or a user at a terminal depends on the kind of security that is used and the kind of program that
is running.

For MPPs, IFPs, and transaction-oriented BMPs, the authorization ID depends on the type of IMS security:

• If signon is required, IMS passes the USERID and group name that are signed-on to Db2 for z/OS.
• If signon is not required, Db2 for z/OS uses the name of the originating logical terminal as the

authorization ID.

For batch-oriented BMPs, the authorization ID is dependent on the value specified for the BMPUSID=
keyword in the DFSDCxxx PROCLIB member:

• If BMPUSID=USERID is specified, the value from the USER= keyword on the JOB statement is used.
• If USER= is not specified on the JOB statement, the program's PSB name is used.
• If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the program's PSB name is

used. If PSBNAME is not defined to RACF, the Userid of the current Address Space will be used; this
will be the Home Dependent Region one, or the Control Region one if LSO=Y or if PARDLI=1 has been
specified for the BMP. Userid of the current Address Space will be used also if DFSBSEX0 has returned
RC08.

Supplying security information
When you evaluate your application in terms of its security requirements, you need to look at each
program individually. When you have done this, you can supply the following information to your security
personnel.

• For programs that require signon security:

– List the individuals who should be able to access IMS.
• For programs that require terminal security:

– List the transaction codes that must be secured.
– List the terminals that should be allowed to enter each of these transaction codes. If the terminals

you are listing are already installed and being used, identify the terminals by their logical terminal

92 IMS: Application Programming

names. If not, identify them by the department that will use them (for example, the accounting
department).

• For programs that require password security:

– List the transaction codes that require passwords.
• For commands that require security:

– List the commands that require signon or password security.

Related concepts
“An overview of application design” on page 15
The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Analyzing screen and message formats
When an application program communicates with a terminal, an editing procedure translates messages
from the way they are entered at the terminal to the way the program expects to receive and process
them.

The decisions about how IMS will edit your program's messages are based on how your data should be
presented to the person at the terminal and to the application program. You need to describe how you
want data from the program to appear on the terminal screen, and how you want data from the terminal
to appear in the application program's I/O area. (The I/O area contains the segments being processed by
the application program.)

To supply information that will be helpful in these decisions, you should be familiar with how IMS edits
messages. IMS has two editing procedures:

• Message Format Service (MFS) uses control blocks that define what a message should look like to the
person at the terminal and to the application program.

• Basic edit is available to all IMS application programs. Basic edit removes control characters from input
messages and inserts the control characters you specify in output messages to the terminal.

Related reading: For information on defining IMS editing procedures and on other design considerations
for IMS networks, see IMS Version 15.3 Communications and Connections.

An overview of MFS
MFS uses four kinds of control blocks to format messages between an application program and a
terminal. The information you gather about how you want the data formatted when it is passed between
the application program and the terminal is contained in these control blocks.

The two control blocks that describe input messages to IMS are:

• The device input format (DIF) describes to IMS what the input message is to look like when it is entered
at the terminal.

• The message input descriptor (MID) tells IMS how the application program expects to receive the input
message in its I/O area.

By using the DIF and the MID, IMS can translate the input message from the way that it is entered at the
terminal to the way it should appear in the program's I/O area.

The two control blocks that describe output messages to IMS are:

• The message output descriptor (MOD) tells IMS what the output message is to look like in the program's
I/O area.

• The device output format (DOF) tells IMS how the message should appear on the terminal.

To define the MFS control blocks for an application program, you need to know how you want the data to
appear at the terminal and in the application program's I/O area for both input and output.

Chapter 6. Gathering requirements for message processing options 93

An overview of basic edit
Basic edit removes the control characters from an input message before the application program receives
it, and inserts the control characters you specify when the application program sends a message back to
the terminal.

To format output messages at a terminal using basic edit, you need to supply the necessary control
characters for the terminal you are using.

If your application will use basic edit, you should describe how you want the data to be presented at the
terminal, and what it is to look like in the program's I/O area.

Editing considerations in your application
Before you describe the editing requirements of your application, be sure that you are aware of your
standards concerning screen design. Make sure that the requirements that you describe comply with
those standards.

Provide the following information about your program's editing requirements:

• How you want the screen to be presented to the person at the terminal for the person to enter the input
data. For example, if an airline agent wants to reserve seats on a particular flight, the screen that asks
for this information might look like this:

FLIGHT#:
NAME:
NO. IN PARTY:

• What the data should look like when the person at the terminal enters the input message.
• What the input message should look like in the program's I/O area.
• What the data should look like when the program builds the output message in its I/O area.
• How the output message should be formatted at the terminal.
• The length and type of data that your program and the terminal will be exchanging.

The type of data you are processing is only one consideration when you analyze how you want the data
presented at the terminal. In addition, you should weigh the needs of the person at the terminal (the
human factors aspects in your application) against the effect of the screen design on the efficiency of
the application program (the performance factors in the application program). Unfortunately, sometimes
a trade-off between human factors and performance factors exists. A screen design that is easily
understood and used by the person at the terminal may not be the design that gives the application
program its best performance. Your first concern should be that you are following whatever are your
established screen standards.

A terminal screen that has been designed with human factors in mind is one that puts the person at the
terminal first; it is one that makes it as easy as possible for that person to interact with IMS. Some of
the things you can do to make it easy for the person at the terminal to understand and respond to your
application program are:

• Display a small amount of data at one time.
• Use a format that is clear and uncluttered.
• Provide clear and simple instructions.
• Display one idea at a time.
• Require short responses from the person at the terminal.
• Provide some means for help and ease of correction for the person at the terminal.

At the same time, you do not want the way in which a screen is designed to have a negative effect on
the application program's response time, or on the system's performance. When you design a screen with
performance first in mind, you want to reduce the processing that IMS must do with each message. To
do this, the person at the terminal should be able to send a lot of data to the application program in one

94 IMS: Application Programming

screen so that IMS does not have to process additional messages. And the program should not require
two screens to give the person at the terminal information that it could give on one screen.

When describing how the program should receive the data from the terminal, you need to consider the
program logic and the type of data you are working with.

Gathering requirements for conversational processing
When you use conversational processing, the person at the terminal enters some information, and an
application program processes the information and responds to the terminal. The person at the terminal
then enters more information for an application program to process. Each of these interactions between
the person at the terminal and the program is called a step in the conversation. Only MPPs can be
conversational programs; Fast Path programs and BMPs cannot be conversational.

Definition: Conversational processing means that the person at the terminal can communicate with the
application program.

What happens in a conversation
A conversation is defined as a dialog between a user at a terminal and IMS through a scratchpad area
(SPA) and one or more application programs.

During a conversation, the user at the terminal enters a request, receives the information from IMS,
and enters another request. Although it is not apparent to the user, a conversation can be processed by
several application programs or by one application program.

To continue a conversation, the program must have the necessary information to continue processing.
IMS stores data from one step of the conversation to the next in a SPA. When the same program or
a different program continues the conversation, IMS gives the program the SPA for the conversation
associated with that terminal.

In the preceding airline example, the first program might save the flight number and the names of the
people traveling, and then pass control to another application program to reserve seats for those people
on that flight. The first program saves this information in the SPA. If the second application program did
not have the flight number and names of the people traveling, it would not be able to do its processing.

Designing a conversation
The first part of designing a conversation is to design the flow of the conversation. If the requests from the
person at the terminal are to be processed by only one application program, you need only to design that
program. If the conversation should be processed by several application programs, you need to decide
which steps of the conversation each program is to process, and what each program is to do when it has
finished processing its step of the conversation.

When a person at a terminal enters a transaction code that has been defined as conversational, IMS
schedules the conversational program (for example, Program A) associated with that transaction code.
When Program A issues its first call to the message queue, IMS returns the SPA that is defined for that
transaction code to Program A's I/O area. The person at the terminal must enter the transaction code
(and password, if one exists) only on the first input screen; the transaction code need not be entered
during each step of the conversation. IMS treats data in subsequent screens as a continuation of the
conversation started on the first screen.

After the program has retrieved the SPA, Program A can retrieve the input message from the terminal.
After it has processed the message, Program A can either continue the conversation, or end it.

To continue the conversation, Program A can do any of the following:

• Reply to the terminal that sent the message.
• Reply to the terminal and pass the conversation to another conversational program, for example

Program B. This is called a deferred program switch.

Chapter 6. Gathering requirements for message processing options 95

Definition: A deferred program switch means that Program A responds to the terminal and then passes
control to another conversational program, Program B. After passing control to Program B, Program A
is no longer part of the conversation. The next input message that the person at the terminal enters
goes to Program B, although the person at the terminal is unaware that this message is being sent to a
second program.

Restriction: A deferred program switch is disallowed if the application is involved in an inbound
protected conversation. The application will receive an X6 status code if it attempts to perform a
deferred program switch in this environment.

• Pass control of the conversation to another conversational program without first responding to the
originating terminal. This is called an immediate program switch.

Definition: An immediate program switch lets you pass control directly to another conversational
program without having to respond to the originating terminal. When you do this, the program that you
pass the conversation to must respond to the person at the terminal. To continue the conversation,
Program B then has the same choices as Program A did: It can respond to the originating terminal and
keep control, or it can pass control in a deferred or immediate program switch.

Restriction: An immediate program switch is disallowed if the application is involved in an inbound
protected conversation. The application will be abended with a U711 if it attempts to perform an
immediate program switch in this environment.

To end the conversation, Program A can do either of the following:

• Move a blank to the first byte of the transaction code area of the SPA and then return the SPA to IMS.
• Respond to the terminal and pass control to a nonconversational program. This is also called a deferred

program switch, but Program A ends the conversation before passing control to another application
program. The second application program can be an MPP or a transaction-oriented BMP that processes
transactions from the conversational program.

Important points about the scratchpad area (SPA)
When program A passes control of a conversation to program B, program B needs to have the data that
program A saved in the SPA in order to continue the conversation. IMS gives the SPA for the transaction to
program B when program B issues its first message call.

The SPA is kept with the message. When the truncated data option is on, the size of the retained SPA is
the largest SPA of any transaction in the conversation.

For example, if the conversation starts with TRANA (SPA=100), and the program switches to a TRANB
(SPA=50), the input message for TRANB will contain a SPA segment of 100 bytes. IMS adjusts the size of
the SPA so that TRANB receives only the first 50 bytes.

Recovery considerations in conversations
Because a conversation involves several steps and can involve several application programs, consider the
following items.

• One way you can make recovery easier is to design the conversation so that all the database updates
are done in the last step of the conversation. This way, if the conversation terminates abnormally, IMS
can back out all the updates because they were all made during the same step of the conversation.
Updating the database during the last step of the conversation is also a good idea, because the input
from each step of the conversation is available.

• Although a conversation can terminate abnormally during any step of the conversation, IMS backs out
only the database updates and output messages resulting during the last step of the conversation. IMS
does not back out database updates or cancel output messages for previous steps, even though some
of that processing might be inaccurate as a result of the abnormal termination.

• Certain IMS system service calls can be helpful if the program determines that some of its processing
was invalid. These calls include ROLB, SETS, SETU, and ROLS. The Roll Back call (ROLB) backs out all
of the changes that the program has made to the database. ROLB also cancels the output messages

96 IMS: Application Programming

that the program has created (except those sent with an express PCB) since the program's last commit
point.

The SETS, or SETU, and ROLS (with a token) calls work together to allow the application program to set
intermediate backout points within the call processing of the program. The application program can set
up to nine intermediate backout points. Your program needs to use the SETS or SETU call to specify a
token for each point. A subsequent ROLS call, using the same token, can back out all database changes
and discard all nonexpress messages processed since that SETS or SETU call.

Definition: A token is a 4-byte identifier.
• The program can use an express PCB to send a message to the person at the terminal and to the

master terminal operator. When the application program inserts messages using an express PCB, IMS
waits until it has the complete message, rather than for the occurrence of a commit point, to transmit
the message to its destination. (In this context, "insert" refers to a situation in which the application
program sends the message and it is received by IMS; "transmit" refers to a situation in which IMS
begins sending the message to its destination.) Therefore, when IMS has the complete message, it will
be transmitted even if the program abnormally terminates. Messages sent with an express PCB are sent
to their final destinations even if the program terminates abnormally or issues a ROLB call.

• To verify the accuracy of the previous processing, and to correct the processing that is determined to be
inaccurate, you can use the Conversational Abnormal termination routine, DFSCONE0.

Related reading: For more information on DFSCONE0, see IMS Version 15.3 Exit Routines.
• You can write an MPP to examine the SPA, send a message notifying the person at the terminal of the

abnormal termination, make any necessary database calls, and use a user-written or system-provided
exit routine to schedule it.

Related concepts
“To other programs and terminals” on page 98
When you want to send an output message to a terminal other than, or in addition to, the terminal that
sent the input message, you use an alternate PCB. You can set the alternate PCB for a specific logical
terminal when the program's PSB is generated, or you can define the alternate PCB as being modifiable.
A program can change the destination of a modifiable alternate PCB while the program is running, so you
can send output messages to several alternate destinations.

Identifying output message destinations
An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB
and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

Definition: An alternate PCB is a data communication program communication block (DCPCB) that you
define to describe output message destinations other than the terminal that originated the input message.

Related concepts
“Batch message processing: transaction-oriented BMPs” on page 44
Transaction-oriented BMPs can access z/OS files, GSAM databases, Db2 for z/OS databases, full-function
databases, DEDBs, and MSDBs.

The originating terminal
To send a message to the logical terminal that sent the input message, the program uses an I/O PCB. IMS
puts the name of the logical terminal that sent the message in the I/O PCB when the program receives the
message.

As a result, the program need not do anything to the I/O PCB before sending the message. If a program
receives a message from a batch-oriented BMP or CPI Communications driven program, no logical
terminal name is available to put into the I/O PCB. In these cases, the logical terminal name field contains
blanks.

Chapter 6. Gathering requirements for message processing options 97

Related concepts
“Identifying output message destinations” on page 97
An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB
and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

To other programs and terminals
When you want to send an output message to a terminal other than, or in addition to, the terminal that
sent the input message, you use an alternate PCB. You can set the alternate PCB for a specific logical
terminal when the program's PSB is generated, or you can define the alternate PCB as being modifiable.
A program can change the destination of a modifiable alternate PCB while the program is running, so you
can send output messages to several alternate destinations.

The application program might need to respond to the originating terminal before the person at the
originating terminal can send any more messages. This might occur when a terminal is in response mode
or in conversational mode:

• Response mode can apply to a communication line, a terminal, or a transaction. When response mode
is in effect, IMS does not accept any input from the communication line or terminal until the program
has sent a response to the previous input message. The originating terminal is unusable (for example,
the keyboard locks) until the program has processed the transaction and sent the reply back to the
terminal.

If a response-mode transaction is processed, including Fast Path transactions, and the application does
not insert a response back to the terminal through either the I/O PCB or alternate I/O PCB, but inserts
a message to an alternate PCB (program-to-program switch), the second or subsequent application
program must respond to the originating terminal and satisfy the response. IMS will not take the
terminal out of response mode.

If an application program terminates normally and does not issue an ISRT call to the I/O PCB, alternate
I/O PCB, or alternate PCB, IMS sends system message DFS2082I to the originating terminal to satisfy
the response for all response-mode transactions, including Fast Path transactions.

You can define communication lines and terminals as operating in response mode, not operating in
response mode, or operating in response mode only if processing a transaction that is been defined
as response mode. You specify response mode for communication lines and terminals on the TYPE
and TERMINAL macros, respectively, at IMS system definition. You can define any transaction as a
response-mode transaction; you do this on the TRANSACT macro at IMS system definition. Response
mode is in effect if:

– The communication line has been defined as being in response mode.
– The terminal has been defined as being in response mode.
– The transaction code has been defined as response mode.

• Conversational mode applies to a transaction. When a program is processing a conversational
transaction, the program must respond to the originating terminal after each input message it receives
from the terminal.

In these processing modes, the program must respond to the originating terminal. But sometimes the
originating terminal is a physical terminal that is made up of two components—for example, a printer and
a display. If the physical terminal is made up of two components, each component has a different logical
terminal name. To send an output message to the printer part of the terminal, the program must use a
different logical terminal name than the one associated with the input message; it must send the output
message to an alternate destination. A special kind of alternate PCB is available to programs in these
situations; it is called an alternate response PCB.

Definition: An alternate response PCB lets you send messages when exclusive, response, or
conversational mode is in effect. See the next section for more information.

98 IMS: Application Programming

Alternate response PCB
The destination of an alternate response PCB must be a logical terminal—you cannot use an alternate
response PCB to represent another application program. When you use an alternate response PCB during
response mode or conversational mode, the logical terminal represented by the alternate response PCB
must represent the same physical terminal as the originating logical terminal.

In these processing modes, after receiving the message, the application program must respond by issuing
an ISRT call to one of the following:

• The I/O PCB.
• An alternate response PCB.
• An alternate PCB whose destination is another application program, that is, a program-to-program

switch.
• An alternate PCB whose destination is an ISC link. This is allowed only for front-end switch messages.

Related reading: For more information on front-end switch messages, see IMS Version 15.3 Exit
Routines.

If one of these criteria is not met, message DFS2082I is sent to the terminal.

Express PCB
Consider specifying an alternate PCB as an express PCB. The express designation relates to whether a
message that the application program inserted is actually transmitted to the destination if the program
abnormally terminates or issues a ROLL, ROLB, or ROLS call. For all PCBs, when a program abnormally
terminates or issues a ROLL, ROLB, or ROLS call, messages that were inserted but not made available
for transmission are cancelled while messages that were made available for transmission are never
cancelled.

Definition: An express PCB is an alternate response PCB that allows your program to transmit the
message to the destination terminal earlier than when you use a nonexpress PCB.

For a nonexpress PCB, the message is not made available for transmission to its destination until the
program reaches a commit point. The commit point occurs when the program terminates, issues a CHKP
call, or requests the next input message and when the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS has the complete message, it makes the message available for
transmission to the destination. In addition to occurring at a commit point, it also occurs when the
application program issues a PURG call using that PCB or when it requests the next input message.

You should provide the answers to the following questions to the data communications administrator to
help in meeting your application's message processing requirements:

• Will the program be required to respond to the terminal before the terminal can enter another message?
• Will the program be responding only to the terminal that sends input messages?
• If the program needs to send messages to other terminals or programs as well, is there only one

alternate destination?
• What are the other terminals to which the program must send output messages?
• Should the program be able to send an output message before it terminates abnormally?

Related concepts
“Recovery considerations in conversations” on page 96
Because a conversation involves several steps and can involve several application programs, consider the
following items.
“Identifying output message destinations” on page 97
An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB
and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

Chapter 6. Gathering requirements for message processing options 99

100 IMS: Application Programming

Chapter 7. Designing an application for APPC
Advanced Program-to-Program Communication (APPC) is IBM's preferred protocol for program-to-
program communication. Application programs can be distributed throughout the network and
communicate with each other in many hardware architectures and software environments.

Related Reading: For more information on APPC, see:

• IMS Version 15.3 Communications and Connections, which includes an overview of APPC for LU 6.2
devices and CPI Communications concepts.

Overview of APPC and LU 6.2
APPC allows application programs using APPC protocols to enter IMS transactions from LU 6.2 devices.
The LU 6.2 application program runs on an LU 6.2 device supporting APPC.

APPC creates an environment that allows:

• Remote LU 6.2 devices to enter IMS local and remote transactions
• IMS application programs to insert transaction output to LU 6.2 devices with no coding changes to

existing application programs
• New application programs to make full use of LU 6.2 device facilities
• Data integrity provided by IMS and in LU 6.2 environments that do not have a distributed sync-point

function

Application program types
APPC/IMS is part of IMS TM that uses the CPI communications interface to communicate with application
programs.

APPC/IMS supports the following types of application programs for LU 6.2 processing:

• Standard DL/I
• Modified standard DL/I
• CPI Communications driven

Standard DL/I application program
A standard DL/I application program does not issue any CPI Communications calls or establish any
CPI-C conversations. This application program can communicate with LU 6.2 products that replace other
LU-type terminals using the IMS API. A standard DL/I application program does not need to be modified,
recompiled, or bound, and it executes as it currently does.

Modified standard DL/I application program
A modified standard DL/I application program is a standard DL/I online IMS TM application program
that uses both DL/I calls and CPI Communications calls. It can be an MPP, BMP, or IFP that can access
full-function databases, DEDBs, MSDBs, and Db2 for z/OS databases.

A modified standard DL/I application program uses CPI Communications (CPI-C) calls to provide support
for an LU 6.2 and non-LU 6.2 mixed network. The same application program can be a standard DL/I on
one execution, when the CPI Communications ALLOCATE verb is not issued, and a modified standard DL/I
on a different execution when the CPI Communications ALLOCATE verb is issued.

A modified standard DL/I application program receives its messages using DL/I GU calls to the I/O
PCB and issues output responses using DL/I ISRT calls. CPI Communications calls can also be used to
allocate new conversations and to send and receive data for them.

© Copyright IBM Corp. 1974, 2022 101

Related Reading: For a list of the CPI Communications calls, see CPI Communications Reference.

Use a modified standard DL/I application program when you want to use an existing standard DL/I
application program to establish a conversation with another LU 6.2 device or the same network
destination. The standard DL/I application program is optionally modified and uses new functions,
new application and transaction definitions, and modified DL/I calls to initiate LU 6.2 application
programs. Program calls and parameters are available to use the IMS-provided implicit API and the CPI
Communications explicit API.

CPI Communications driven program
A CPI Communications driven application program uses Commit and Backout calls, and CPI
Communications interface calls or LU 6.2 verbs for input and output message processing. This application
program uses the CPI Communications explicit API, and can access full-function databases, DEDBs,
MSDBs, and Db2 for z/OS databases. An LU 6.2 device can activate a CPI Communications driven
application program only by allocating a conversation.

Unlike a standard DL/I or modified standard DL/I application program, input and output message
processing for a CPI Communications driven program uses APPC/MVS™ buffers and bypasses IMS
message queueing. Because these application programs do not use the IMS message queue, they can
control their own execution with the partner LU 6.2 system. An IMS APSB call enables you to allocate a
PSB for accessing IMS databases and alternate PCBs.

The application program uses the Common Programming Interface Resource Recovery (CPI-RR) SRRCMIT
verb to initiate an IMS sync point and the CPI-RR SRRBACK verb for backout. CPI Communications
driven application programs use the CPI-RR calls to initiate IMS sync point processing prior to program
termination.

A CPI Communications driven application program is able to:

• Access any type of database
• Receive and send large messages like the standard DL/I and modified standard DL/I application

programs
• Control the flow of input and output with CPI Communications calls
• Allocate multiple conversations with partner LU 6.2 devices
• Cause synchronization with conversation partners
• Use the IMS implicit API (for example, IMS queue services)
• Use IMS services (for example, sync point at program termination) regardless of the API that is used

Application objectives
Each application type has a different purpose, and its ease-of-use varies depending on whether the
program is a standard DL/I, modified standard DL/I, or a CPI Communications driven application program.

The following table lists the purpose and ease-of-use for each application type (standard DL/I, modified
standard DL/I, and PI-C driven). This information must be balanced with IMS resource use.

Table 26. Using application programs in APPC

Purpose of application
program

Ease of use

Standard DL/I program Modified standard DL/I
program

PI-C driven program

Inquiry Easy Neutral Very Difficult

Data Entry Easy Easy Difficult

Bulk Transfer Easy Easy Neutral

Cooperative Difficult Difficult Desirable

102 IMS: Application Programming

Table 26. Using application programs in APPC (continued)

Purpose of application
program

Ease of use

Standard DL/I program Modified standard DL/I
program

PI-C driven program

Distributed Difficult Neutral Desirable

High Integrity Neutral Neutral Desirable

Client Server Easy Neutral Very Difficult

Choosing conversation attributes
The LU 6.2 transaction program indicates how the transaction is to be processed by IMS. Two processing
modes are available: synchronous and asynchronous.

Synchronous conversation
A conversation is synchronous if the partner waits for the response on the same conversation used to
send the input data.

Synchronous processing is requested by issuing the RECEIVE_AND_WAIT verb after the SEND_DATA verb.
Use this mode for IMS response-mode transactions and IMS conversational-mode transactions.

Example:

MC_ALLOCATE TPN(MYTXN)
MC_SEND_DATA 'THIS CAN BE A RESPONSE MODE'
MC_SEND_DATA 'OR CONVERSATIONAL MODE'
MC_SEND_DATA 'IMS TRANSACTION'
MC_RECEIVE_AND_WAIT

Asynchronous conversation
A conversation is asynchronous if the partner program normally deallocates a conversation after sending
the input data. Output is sent to the TP name of DFSASYNC.

Asynchronous processing is requested by issuing the DEALLOCATE verb after the SEND_DATA verb. Use
asynchronous processing for IMS commands, message switches, and non-response, non-conversational
transactions.

Example:

MC_ALLOCATE TPN(OTHERTXN)
MC_SEND_DATA 'THIS MUST BE A MESSAGE SWITCH, IMS COMMAND'
MC_SEND_DATA 'OR A NON-RESP NON-CONV TRANSACTION'
MC_DEALLOCATE

Asynchronous output delivery
Asynchronous output is held on the IMS message queue for delivery. When the output is enqueued, IMS
attempts to allocate a conversation to send this output. If this fails, IMS holds the output for later delivery.
This delivery can be initiated by an operator command (/ALLOC), or by the enqueue of a new message for
this LU 6.2 destination.

MSC synchronous and asynchronous conversation
MSC remote application messages from both synchronous and asynchronous APPC conversations can be
queued on the multiple systems coupling (MSC) link. These messages can then be sent across the MSC
link to a remote IMS for processing.

Chapter 7. Designing an application for APPC 103

Related concepts
“LU 6.2 flow diagrams” on page 111
The following diagrams show the flows for transactions that are sent from an LU 6.2 device.

Conversation type
The APPC conversation type defines how data is passed on and retrieved from APPC verbs.

It is similar in concept to file blocking and affects both ends of the conversation.

APPC supports two types of conversations:
Basic conversation

This low-conversation allows programs to exchange data in a standardized format. This format is a
stream of data containing 2-byte length fields (referred to as LLs) that specify the amount of data to
follow before the next length field. The typical data pattern is:

LL, data, LL, data

Each grouping of LL, data is referred to as a logical record. A basic conversation is used to send
multiple segments with one verb and to receive maximum data with one verb.

Mapped conversation
This high-conversation allows programs to exchange arbitrary data records in data formats approved
by application programmers. One send verb results in one receive verb, and z/OS and VTAM® handle
the buffering.

Related Reading: For more information on basic and mapped conversations, see

• Systems Network Architecture: LU 6.2 Reference: Peer Protocols and
• Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2

Conversation state
CPI Communications uses conversation state to determine what the next set of actions will be.

Examples of conversation states are:
RESET

The initial state before communications begin.
SEND

The program can send or optionally receive.
RECEIVE

The program must receive or abort.
CONFIRM

The program must respond to a partner.

The basic rules for APPC verbs are:

• The program that initiates the conversation speaks first.
• Only one APPC verb can be outstanding at time.
• Programs take turns sending and receiving.
• The state of the conversation determines the verbs a program can issue.

Synchronization level
The APPC synchronization level defines the protocol that is used when changing conversation states.

APPC and IMS support the following synchronization level values:

104 IMS: Application Programming

SYNCLVL=NONE
Specifies that the programs do not issue calls or recognize returned parameters relating to
synchronization.

SYNCLVL=CONFIRM
Specifies that the programs can perform confirmation processing on the conversation.

SYNCLVL=SYNCPT
Specifies that the programs participate in coordinated commit processing on resources that are
updated during the conversation under the z/OS Resource Recovery Services (RRS) recovery platform.
A conversation with this level is also called a protected conversation.

Additionally, either IMS or RRS can be specified as the synchronization point manager.

RRS=Y
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or CONFIRM are processed with IMS
as the synchronization point manager.

If AOS=B or AOS=Y, transactions with SYNCLVL=SYNCPT are processed with RRS as the
synchronization point manager.

In a shared message queue environment where the front-end IMS system is also the back-end IMS
system, transactions with SYNCLVL=SYNCPT are processed with RRS as the synchronization point
manager.

In a non-shared message queue environment, transactions with SYNCLVL=SYNCPT are processed
with RRS as the synchronization point manager.

Restriction: The AOS= setting is applicable to shared message queue environment only.

RRS=N
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or CONFIRM are processed with IMS
as the synchronization point manager.

If the back-end IMS system has RRS=N specified, transactions with SYNCLVL=SYNCPT are processed
only at the front-end IMS system. However, if the front-end IMS system also has RRS=N specified,
transactions with SYNCLVL=SYNCPT are not processed at all.

Allocating a conversation with SYNCLVL=SYNCPT requires the RRS as the synchronization point manager.
RRS controls the commitment of protected resources by coordinating the commit or backout request with
the participating owners of the updated resources, the resource managers. IMS is the resource manager
for DL/I, Fast Path data, and the IMS message queues. The application program decides whether the
data is to be committed or aborted and communicates this decision to the synchronization point manager.
The synchronization point manager then coordinates the actions in support of this decision among the
resource managers.

Related concepts
Activating protected conversations (Communications and Connections)

Introduction to resource recovery
Most customers maintain computer resources that are essential to the survival of their businesses. When
these resources are updated in a controlled and synchronized manner, they are said to be protected
resources or recoverable resources. These resources can all reside locally (on the same system) or be
distributed (across nodes in the network). The protocols and mechanisms for regulating the updating of
multiple protected resources in a consistent manner is provided in z/OS with z/OS Resource Recovery
Services (RRS).

Participants in resource recovery
As shown in the following figure, the Resource Recovery environment is composed of three participants:

• Sync-point manager
• Resource managers

Chapter 7. Designing an application for APPC 105

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_cpic_dsp_pcv_activatepcv.htm#ims_cpic_dsp_pcv_activatepcv

• Application program

RRS is the sync-point manager, also known as the coordinator. The sync-point manager controls the
commitment of protected resources by coordinating the commit request (or backout request) with the
resource managers, the participating owners of the updated resources. These resource managers are
known as participants in the sync-point process. IMS participates as a resource manager for DL/I, Fast
Path, and Db2 for z/OS data if this data has been updated in such an environment.

The final participant in this resource recovery protocol is the application program, the program accessing
and updating protected resources. The application program decides whether the data is to be committed
or aborted and relates this decision to the sync-point manager. The sync-point manager then coordinates
the actions in support of this decision among the resource managers.

Figure 25. Participants in resource recovery

Two-phase commit protocol
As shown in the following figure, the two-phase commit protocol is a process involving the sync-point
manager and the resource manager participants to ensure that of the updates made to a set of resources
by a third participant, the application program, either all updates occur or none. In simple terms, the
application program decides to commit its changes to some resources; this commit is made to the
sync-point manager that then polls all of the resource managers as to the feasibility of the commit call.
This is the prepare phase, often called phase one. Each resource manager votes yes or no to the commit.

After the sync-point manager has gathered all the votes, phase two begins. If all votes are to commit
the changes, then the phase two action is commit. Otherwise, phase two becomes a backout. System
failures, communication failures, resource manager failures, or application failures are not barriers to the
completion of the two-phase commit process.

The work done by various resource managers is called a unit of recovery (UOR) and spans the time from
one consistent point of the work to another consistent point, usually from one commit point to another. It
is the unit of recovery that is the object of the two-phase commit process.

106 IMS: Application Programming

Figure 26. Two-phase commit process with one resource manager

Notes:

1. The application and IMS make a connection.
2. IMS expresses protected interest in the work started by the application. This tells RRS that IMS will

participate in the 2-phase commit process.
3. The application makes a read request to an IMS resource.
4. Control is returned to the application following its read request.
5. The application updates a protected resource.
6. Control is returned to the application following its update request.
7. The application requests that the update be made permanent by way of the SRRCMIT call.
8. RRS calls IMS to do the prepare (phase 1) process.
9. IMS returns to RRS with its vote to commit.

10. RRS calls IMS to do the commit (phase 2) process.
11. IMS informs RRS that it has completed phase 2.
12. Control is returned to the application following its commit request.

Local versus distributed
The residence of the participants involved in the recovery process determines whether that recovery
is considered local or distributed. In a local recovery scenario, all the participants reside on the
same single system. In a distributed recovery scenario, the participants are scattered over multiple
systems. The following figure shows the communication between Resource Manager participants in a
distributed resource recovery. There is no conceptual difference between a local and distributed recovery
in the functions provided by RRS. However, to distribute the original sync-point manager's function to

Chapter 7. Designing an application for APPC 107

involve remote sync-point managers, a special resource manager is required. The APPC communications
resource manager provides this support in the distributed environment.

Figure 27. Distributed resource recovery

Summary of z/OS Resource Recovery Services support
z/OS Resource Recovery Services (RRS) provides a system resource recovery platform so that
applications running on z/OS can access local and distributed resources and have system coordinated
recovery management of these resources.

The support includes:

• A synchronization point manager to coordinate the two-phase commit process
• Implementation of the SAA Commit and Backout callable services for use by application programs
• A mechanism to associate resources with an application instance
• Services for resource manager registration and participation in the two-phase commit process with RRS
• Services to allow resource managers to express interest in an application instance and be informed of

commit and backout requests
• Services to enable resource managers to obtain system data to restore their resources to consistent

state

108 IMS: Application Programming

• A communications resource manager (called APPC/PC for APPC/Protected Conversations) so that
distributed applications can coordinate their recovery with participating local resource managers

Restrictions:

• Extended Recovery Facility (XRF)

Running protected conversations in an IMS-XRF environment does not guarantee that the alternate
system can resume and resolve any unfinished work started by the active system. This process is not
guaranteed because a failed resource manager must re-register with its original RRS system if the
RRS is still available when the resource manager restarts. Only if the RRS on the active system is not
available can an XRF alternate can register with another RRS in the sysplex and obtain the incomplete
unit of recovery data of the failing active.

Recommendation: Because IMS retains indoubt units-of-recovery indefinitely until they are resolved,
switch back to the original active system as soon as possible to pick up unit-of -recovery information to
resolve and complete all the work of the resource managers involved. If this is not possible, the indoubt
units-of-recovery can be resolved using commands.

• Batch and non-message-driven BMPs in a DBCTL Environment

Distributed Sync Point does not support the IMS batch environment. In a DBCTL environment, inbound
protected conversations are not possible. However, a BMP in a DBCTL environment can allocate an
outbound protected conversation, which will be supported by Distributed Sync Point and RRS.

Distributed sync point
The Distributed Sync Point support enables IMS and remote application programs (APPC or OTMA) to
participate in protected conversations with coordinated resource updates and recoveries. Before this
support, IMS acted as the sync-point manager. In this new scenario, z/OS manages the sync-point
process on behalf of the conversation participants: the application program and IMS (now acting as a
resource manager).

z/OS implements a system resource recovery platform, the z/OS Resource Recovery Services (RRS).
RRS supports the Common Programming Interface - Resource Recovery (CPI-RR), an element of the
SAA Common Programming Interface that defines resource recovery and provides for the coordinated
management of resource recovery for both local and distributed resources. In addition to RRS,
a communications resource manager (called APPC/PC for APPC/Protected Conversations) provides
distribution of the recovery.

In the APPC environment, a protected conversation is initiated when the application program allocates
an APPC conversation with SYNC_LEVEL=SYNCPT. Both IMS and APPC are resource managers in this
scenario. In the OTMA environment, some additional code is required because OTMA is not a resource
manager. The additional code needed is an OTMA adapter, IBM supplied or equivalent. This adapter
indicates to IMS (in the OTMA message prefix) that this message is part of a protected conversation, and
thus IMS and the adapter are participants in the coordinated commit process as managed by RRS.

Application programmers can now develop APPC application programs (local and remote) and remote
OTMA application programs that use RRS as the sync-point manager, rather than IMS. This enhancement
enables resources across multiple platforms to be updated and recovered in a coordinated manner.

Distributed sync point concepts
The Distributed Sync Point support entails:

• Changes in IMS that allow it to function as a resource manager under RRS
• Changes to the application program environment that support using applications in protected

conversations
• Changes to some commands that aid the user

Chapter 7. Designing an application for APPC 109

Impact on the network
Network traffic will increase as a result of the conversation participants and the sync-point manager
communicating with each other.

Application programming interface for LU type 6.2
IMS application programs can use the IMS implicit LU 6.2 API to access LU 6.2 devices. This API provides
compatibility with non-LU 6.2 device types so that the same application program can be used from both
LU 6.2 and non-LU 6.2 devices.

The API adds to the APPC interface by supplying IMS-provided processing for the application program.
You can use the explicit CPI Communications interface for APPC functions and facilities for new or
rewritten IMS application programs.

Implicit API
The implicit API accesses an APPC conversation indirectly. This API uses the standard DL/I calls (GU,
ISRT, PURG) to send and receive data. It allows application programs that are not specific to LU 6.2
protocols to use LU 6.2 devices.

The API uses new and changed DL/I calls (CHNG, INQY, SETO) to utilize LU 6.2. Using the existing IMS
application programming base, you can write specific applications for LU 6.2 using this API and not using
the CPI Communications calls. Although the implicit API uses only some of the LU 6.2 capabilities, it can
be a useful simplification for many applications. The implicit API also provides function outside of LU 6.2,
like message queueing and automatic asynchronous message delivery.

IMS generates all CPI Communications calls under the implicit API. The application interaction is strictly
with the IMS message queue.

The remote LU 6.2 system must be able to handle the LU 6.2 flows. APPC/MVS generates these flows
from the CPI Communications calls issued by the IMS application program using the implicit API. An IMS
application program can use the explicit API to issue the CPI Communications directly. This is useful with
remote LU 6.2 systems that have incomplete LU 6.2 implementations, or that are incompatible with the
IMS implicit API support.

The existing API is extended so that:

• Asynchronous LU 6.2 output is created by using alternate PCBs that reference LU 6.2 destinations. The
DL/I CHNG call can supply parameters to specify an LU 6.2 destination. Default values are used for
omitted parameters.

• An application program can retrieve the current conversation attributes such as the conversation type
(basic or mapped), the sync_level (NONE, CONFIRM, or SYNCPT), and asynchronous or synchronous
conversation.

• A terminal message switch can be used to and from LU 6.2 devices.

Explicit API
The explicit API (the CPI Communications API) can be used by any IMS application program to access an
APPC conversation directly.

IMS resources are available to the CPI Communications driven application program only if the application
issues the APSB (Allocate PSB) call. The CPI Communications driven application program must use the
CPI-RR SRRCMIT and SRRBACK verbs to initiate an IMS sync point or backout, or if SYNCLVL=SYNCPT
is specified, to communicate the sync point decision to the z/OS Resource Recovery Services sync point
manager.

Related Reading: For a description of the SRRCMIT and SRRBACK verbs, see SAA CPI Resource Recovery
Reference.

110 IMS: Application Programming

LU 6.2 partner program design
The flow of a transaction that is sent from an LU 6.2 device differs, depending on the conversation
attributes and synchronization levels. Different results occur, and the partner system takes actions
accordingly.

LU 6.2 flow diagrams
The following diagrams show the flows for transactions that are sent from an LU 6.2 device.

The following figures show:

• The flow between a synchronous or asynchronous LU 6.2 application program and an IMS application
program in a single (local) IMS system

• The flow between a synchronous or asynchronous LU 6.2 application program in a single (local) IMS
system and an IMS application program in a remote IMS system across a multiple systems coupling
(MSC) link

• A backout scenario with SYNC_LEVEL=SYNCPT

Differences in buffering and encapsulation of control data with user data may cause variations in
the flows. The control data are the 3 returned fields from the Receive APPC verb: Status_received,
Data_received, and Request_to_send_received. Any variations based on these differences will not affect
the function or use of the flows.

Chapter 7. Designing an application for APPC 111

Figure 28. Flow of a local IMS synchronous transaction when Sync_level=None

Figure 29 on page 113 shows the flow of a local synchronous transaction when Sync_level is Confirm.

112 IMS: Application Programming

Figure 29. Flow of a local IMS synchronous transaction when Sync_level=Confirm

Figure 30 on page 114 shows the flow of a local asynchronous transaction when Sync_level is None.

Chapter 7. Designing an application for APPC 113

Figure 30. Flow of a local IMS asynchronous transaction when Sync_level=None

Figure 31 on page 115 shows the flow of a local asynchronous transaction when Sync_level is Confirm.

114 IMS: Application Programming

Figure 31. Flow of a local IMS asynchronous transaction when Sync_level=Confirm

The following figure shows the flow of a local conversational transaction When Sync_level is None.

Chapter 7. Designing an application for APPC 115

Figure 32. Flow of a local IMS conversational transaction when Sync_level=None

The following figure shows the flow of a local IMS command when Sync_level is None.

116 IMS: Application Programming

Figure 33. Flow of a local IMS command when Sync_level=None

The following figure shows the flow of a local asynchronous command when Sync_level is Confirm.

Chapter 7. Designing an application for APPC 117

Figure 34. Flow of a local IMS asynchronous command when Sync_level=Confirm

The following figure shows the flow of a message switch When Sync_level is None.

118 IMS: Application Programming

Figure 35. Flow of a message switch when Sync_level=None

Synchronous is used to verify that no error has occurred while processing DFSAPPC. If an error occurred,
the error message returns before DEALLOCATE.

The following figure shows the flow of a CPI-C driven program when Sync_level is None.

Chapter 7. Designing an application for APPC 119

Figure 36. Flow of a local CPI communications driven program when Sync_level=None

The following figure shows the flow of a remote synchronous transaction when Sync_level is None.

120 IMS: Application Programming

Figure 37. Flow of a remote IMS synchronous transaction when Sync_level=None

The following figure shows the flow of a remote asynchronous transaction when Sync_level is None.

Chapter 7. Designing an application for APPC 121

Figure 38. Flow of a remote IMS asynchronous transaction when Sync_level=None

The following figure shows the flow of a remote asynchronous transaction when Sync_level is Confirm.

122 IMS: Application Programming

Figure 39. Flow of a remote IMS asynchronous transaction when Sync_level=Confirm

The following figure shows the flow of a remote synchronous transaction when Sync_level is Confirm.

Chapter 7. Designing an application for APPC 123

Figure 40. Flow of a remote IMS synchronous transaction when Sync_level=Confirm

The scenarios shown in the following figure provide examples of the two-phase process for the supported
application program types. The LU 6.2 verbs are used to illustrate supported functions and interfaces
between the components. Only parameters pertinent to the examples are included. This does not imply
that other parameters are not supported.

The following figure shows a standard DL/I program commit scenario when Sync_Level=Syncpt.

124 IMS: Application Programming

Figure 41. Standard DL/I program commit scenario when Sync_Level=Syncpt

Notes:

 1 Sync_Level=Syncpt triggers a protected resource update.
 2 This application program inserts output for the remote application to the IMS message queue.
 3 The GU initiates the transfer of the output.
 4 The remote application sends a Confirmed after receiving data (output).
 5 IMS issues ATRCMIT (equivalent to SRRCMIT) to start the two-phase process.

The following figure shows a CPI-C driven commit scenario when Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 125

Figure 42. CPI-C driven commit scenario when Sync_Level=Syncpt

Notes:

 1 Sync_Level=Syncpt triggers a protected resource update.
 2 The programs send and receive data.
 3 The remote application decides to commit the updates.
 4 The CPI-C program issues SRRCMIT to commit the changes.
 5 The commit return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when Sync_Level=Syncpt.

126 IMS: Application Programming

Figure 43. Standard DL/I program U119 backout scenario when Sync_Level=Syncpt

Notes:

 1 Sync_Level=Syncpt triggers a protected-resource update.
 2 This application program inserts output for the remote application to the IMS message queue.
 3 The GU initiates the transfer of the output.
 4 The remote application decides to back out any updates.
 5 IMS abends the application with a U119 to back out the application.
 6 The backout return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 127

Figure 44. Standard DL/I program U0711 backout scenario when Sync_Level=Syncpt

Notes:

 1 Sync_Level=Syncpt triggers a protected-resource update.
 2 This application program inserts output for the remote application to the IMS message queue.
 3 The GU initiates the transfer of the output.
 4 The remote application sends a Confirmed after receiving data (output).
 5 IMS issues ATBRCVW on behalf of the DL/I application to wait for a commit or
backout.
 6 The remote application decides to back out any updates.
 7 IMS abends the application with U0711 to back out the application.
 8 The backout return code is returned to the remote application.

The following figure shows a standard DL/I program ROLB scenario when Sync_Level=Syncpt.

128 IMS: Application Programming

Figure 45. Standard DL/I program ROLB scenario when Sync_Level=Syncpt

Notes:

 1 Sync_Level=Syncpt triggers a protected-resource update.
 2 This application program inserts output for the remote application to the IMS message queue.

The following figure shows multiple transactions in the same commit when Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 129

Figure 46. Multiple transactions in same commit when Sync_Level=Syncpt

Notes:

 1 An allocate with Sync_Level=Syncpt triggers a protected resource update with Conversation 1.
 2 The first transaction provides the output for Conversation 1.
 3 An allocate with Sync_Level=Syncpt triggers a protected resource update with Conversation 2.
 4 The second transaction provides the output for Conversation 2.
 5 The remote application issues SRRCMIT to commit both transactions.
 6 IMS issues ATRCMIT to start the two-phase process on behalf of each DL/I application.

Related concepts
“Application objectives” on page 102

130 IMS: Application Programming

Each application type has a different purpose, and its ease-of-use varies depending on whether the
program is a standard DL/I, modified standard DL/I, or a CPI Communications driven application program.

Integrity tables
The following tables show the message integrity of conversations, results of processing when integrity is
compromised, and how IMS recovers APPC messages.

The following table shows the results, from the viewpoint of the IMS partner system, of normal
conversation completion, abnormal conversation completion due to a session failure, and abnormal
conversation completion due to non-session failures. These results apply to asynchronous and
synchronous conversations and both input and output. This table also shows the outcome of the message,
and the action that the partner system takes when it detects the failure. An example of an action, under
"LU 6.2 Session Failure," is a programmable work station (PWS) resend.

Table 27. Message integrity of conversations

Conversation attributes Normal LU 6.2 session failure1 Other failure2

Synchronous
Sync_level=NONE

Input: Reliable
Output: Reliable

Input: PWS resend
Output: PWS resend

Input: Reliable
Output: Reliable

Synchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Synchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=NONE

Input: Ambiguous
Output: Reliable

Input: Undetectable
Output: Reliable

Input: Undetectable
Output: Reliable

Asynchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Notes:

1. A session failure is a network-connectivity breakage.
2. A non-session failure is any other kind of failure, such as invalid security authorization.
3. IMS resends asynchronous output if CONFIRM is lost; therefore, the PWS must tolerate duplicate output.

The following table shows the specifics of the processing windows when integrity is compromised (the
message is either lost or its state is ambiguous). The table indicates the relative probability of an
occurrence of each window and whether output is lost or duplicated.

A Sync_level value of NONE does not apply to asynchronous output, because IMS always uses
Sync_level=CONFIRM for such output.

Chapter 7. Designing an application for APPC 131

Table 28. Results of processing when integrity is compromised

Conversation attributes

State of window1
before accepting
transaction

Probability of
window state

Possible action
while sending
response

Probability of
action while
sending response

Synchronous
Sync_level=NONE

ALLOCATE to
PREPARE_TO_
RECEIVE return

Medium Can lose or send
duplicate output.

Medium

Synchronous
Sync_level=CONFIRM

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small CONFIRM to IMS
receipt. Can cause
duplicate output.

Small

Synchronous
Sync_level=SYNCPT

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small CONFIRM to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=NONE

Allocate to
Deallocate

High CONFIRMED to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=CONFIRM

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small2 CONFIRMED to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=SYNCPT

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small2 CONFIRMED to IMS
receipt. Can cause
duplicate output.

Notes:

1. The term window refers to a period of time when certain events can occur, such as the consequences
described in this table.

2. Can be recoverable.

The following table indicates how IMS recovers APPC transactions across IMS warm starts, XRF
takeovers, APPC session failures, and MSC link failures.

Table 29. Recovering APPC messages

Message type
IMS warm start
(NRE or ERE) XRF takeover

APPC (LU 6.2)
session fail

MSC LINK
failure

Local Recoverable Tran., Non
Resp., Non Conversation - APPC
Sync. Conv. Mode - APPC Async.
Conv. Mode

Discarded (2)
Recovered

Discarded (4)
Recovered

Discarded (6)
Recovered (1)

N/A (9)
N/A (9)

Local Recoverable Tran., Conv.
or Resp. mode - APPC Sync.
Conv. Mode - APPC Async. Conv.
Mode

Discarded (2)
N/A (8)

Discarded (4)
N/A (8)

Discarded (6)
N/A (8)

N/A (9)
N/A (8,9)

Local Non Recoverable Tran., -
APPC Sync. Conv. Mode - APPC
Async. Conv. Mode

Discarded (2)
Discarded (2) Discarded (4)

Discarded (6)
Recovered (1)

N/A (9)
N/A (9)

132 IMS: Application Programming

Table 29. Recovering APPC messages (continued)

Message type
IMS warm start
(NRE or ERE) XRF takeover

APPC (LU 6.2)
session fail

MSC LINK
failure

Remote Recoverable Tran., Non
Resp., Non Conv. - APPC Sync.
Conv. Mode - APPC Async. Conv.
Mode

Discarded (2,5)
Recovered

Discarded (3,5)
Recovered

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Remote Recoverable Tran.,
Conv. or Resp. mode - APPC
Sync. Conv. Mode - APPC Async.
Conv. Mode

Discarded (2,5)
N/A (8)

Discarded (3,5)
N/A (8)

Recovered (1)
N/A (8)

Recovered (7)
N/A (8)

Remote Non Recoverable Tran.,
- APPC Sync. Conv. Mode -
APPC Async. Conv. Mode

Discarded (2,5)
Discarded (2,5)

Discarded (3,5)
Discarded (3,5)

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Note:

1. This recovery scenario assumes the message was enqueued before failure; otherwise, the message is
discarded.

2. The message is discarded during IMS warm-start processing.
3. The message is discarded when the MSC link is restarted and when the message is taken off the queue (for

sending across the link).
4. The message is discarded when the message region is started and when the message is taken off the queue

(for processing by the application program).
5. For all remote MSC APPC transactions, if the message has already been sent across the MSC link to the

remote system when the failure occurs in the local IMS, the message is processed. After the message is
processed by the remote application program and a response message is sent back to the local system,
it is enqueued to the DFSASYNC TP name of the LU 6.2 device or program that submitted the original
transaction.

6. At sync point, the User Message Control Error exit routine (DFSCMUX0) can prevent the transaction from
being aborted and the output message can be rerouted (recovered).

For more information about this exit routine, see IMS Version 15.3 Exit Routines.
7. The standard MSC Link recovery protocol recovers all messages that are queued or are in the process of

being sent across the MSC link when the link fails.
8. IMS conversational-mode and response-mode transactions cannot be submitted from APPC asynchronous

conversation sessions. APPC synchronous conversation-mode must be used.
9. MSC link failures do not affect local transactions.

DFSAPPC message switch
DFSAPPC is an LU 6.2 descriptor that provides an IMS system service.

It allows LU 6.2 application programs to send messages to the following:

• Application programs (transactions)
• IMS-managed local or remote LTERMs (message switches)
• LU name and TP name

Messages sent with the LTERM= option are directed to IMS-managed local or remote LTERMs. Messages
sent without the LTERM= option are sent to the appropriate LU 6.2 application or IMS application
program.

Chapter 7. Designing an application for APPC 133

Because the LTERM can be an LU 6.2 descriptor name, the message is sent to the LU 6.2 application
program as if an LU 6.2 device had been explicitly selected.

With DFSAPPC, message delivery is asynchronous. If a message is allocated and the allocate fails, the
message is held on the IMS message queue until it can be successfully delivered.

Example: In the LU 6.2 conversation example, an IMS application issues a DFSAPPC message switch to
its partner with the LU name FRED and TPN name REPORT. REPI is the user data.

DFSAPPC (TPN=REPORT LU=FRED) REP1

You can use a 17-byte network-qualified name in the LU= field.

Restriction: LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG call in an LU 6.2
conversation. The LU 6.2 conversation can only be associated with the IOPCB. The application sends
a message on the existing LU 6.2 conversation (synchronous) or has IMS create a new conversation
(asynchronous) using the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation, only
the IOPCB represents the original LU 6.2 conversation.

Related Reading: For more information about DFSAPPC, see IMS Version 15.3 Communications and
Connections.

134 IMS: Application Programming

Chapter 8. Testing an IMS application program
You should perform a program unit test on your IMS application program to ensure that the program
correctly handles its input data, processing, and output data. The amount and type of testing you do
depends on the individual program.

Recommendations for testing an IMS program
Before you start testing your program, be aware of your established test procedures.

To start testing, you need the following three items:

• Test JCL.
• A test database. Never test a program using a production database because the program, if faulty, might

damage valid data.
• Test input data. The input data that you use need not be current, but it should be valid. You cannot be

sure that your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly handle all the
situations that it might encounter. To thoroughly test the program, try to test as many of the paths that the
program can take as possible.

Recommendations:

• Test each path in the program by using input data that forces the program to execute each of its
branches.

• Be sure that your program tests its error routines. Again, use input data that will force the program to
test as many error conditions as possible.

• Test the editing routines your program uses. Give the program as many different data combinations as
possible to make sure it correctly edits its input data.

Testing DL/I call sequences (DFSDDLT0) before testing your IMS
program

The DL/I test program, DFSDDLT0, is an IMS application program that executes the DL/I calls you specify
against any database.

Restriction: DFSDDLT0 does not work if you are using a coordinator controller (CCTL).

An advantage of using DFSDDLT0 is that you can test the DL/I call sequence you will use prior to coding
your program. Testing the DL/I call sequence before you test the program makes debugging easier,
because by the time you test the program, you know that the DL/I calls are correct. When you test the
program, and it does not execute correctly, you know that the DL/I calls are not part of the problem if you
have already tested them using DFSDDLT0.

For each DL/I call that you want to test, you give DFSDDLT0 the call and any SSAs that you are using
with the call. DFSDDLT0 then executes and gives you the results of the call. After each call, DFSDDLT0
shows you the contents of the DB PCB mask and the I/O area. This means that for each call, DFSDDLT0
checks the access path you have defined for the segment, and the effect of the call. DFSDDLT0 is helpful
in debugging because it can display IMS application control blocks.

To indicate to DFSDDLT0 the call you want executed, you use four types of control statements:

Status statements establish print options for DFSDDLT0's output and select the DB PCB to use for the
calls you specify.
Comment statements let you choose whether you want to supply comments.
Call statements indicate to DFSDDLT0 the call you want to execute, any SSAs you want used with the
call, and how many times you want the call executed.

© Copyright IBM Corp. 1974, 2022 135

Compare statements tell DFSDDLT0 that you want it to compare its results after executing the call
with the results you supply.

In addition to testing call sequences to see if they work, you can also use DFSDDLT0 to check the
performance of call sequences.

Using BTS to test your IMS program
IMS Batch Terminal Simulator for z/OS (BTS) is a valuable tool for testing programs because you can use
it to test call sequences. The documentation that BTS produces is helpful in debugging. You can also test
online application programs without actually running them online.

Restriction: BTS does not work if you are using a CCTL or running under DBCTL.

Related reading: For information about how to use BTS, see IMS Batch Terminal Simulator for z/OS User's
Guide.

Tracing DL/I calls with image capture for your IMS program
The DL/I image capture program (DFSDLTR0) is a trace program that can trace and record DL/I calls
issued by all types of IMS application programs.

Restriction: The image capture program does not trace calls to Fast Path databases.

You can run the image capture program in a DB/DC or a batch environment to:

• Test your program

If the image capture program detects an error in a call it traces, it reproduces as much of the call as
possible, although it cannot document where the error occurred, and cannot always reproduce the full
SSA.

• Produce input for DFSDDLT0

You can use the output produced by the image capture program as input to DFSDDLT0. The image
capture program produces status statements, comment statements, call statements, and compare
statements for DFSDDLT0.

• Debug your program

When your program terminates abnormally, you can rerun the program using the image capture
program, which can then reproduce and document the conditions that led to the program failure.
You can use the information in the report produced by the image capture program to find and fix the
problem.

Using image capture with DFSDDLT0
The image capture program produces the following control statements that you can use as input to
DFSDDLT0.

• Status statements

When you invoke the image capture program, it produces the status statement. The status statement it
produces:

– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I calls, and the results of all
comparisons.

– Determines the new relative PCB number each time a PCB change occurs while the application
program is executing.

• Comments statement

The image capture program also produces a comments statement when you invoke it. The comments
statements give:

– The time and date IMS started the trace

136 IMS: Application Programming

– The name of the PSB being traced

The image capture program also produces a comments statement preceding any call in which IMS finds
an error.

• Call statements

The image capture program produces a call statement for each DL/I call the application program issues.
It also generates a CHKP call when it starts the trace and after each commit point or CHKP request.

• Compare statements

The image capture program produces data and PCB comparison statements if you specify COMP on the
TRACE command (if you run the image capture program online), or on the DLITRACE control statement
(if you run the image capture program as a batch job).

Restrictions on using image capture output
The status statement of the image capture call is based on relative PCB position.

When the PCB parameter LIST=NO has been specified, the status statement may need to be changed to
select the PCB as follows:

• If all PCBs have the parameter LIST=YES, the status statement does not need to be changed.
• If all PCBs have the parameter LIST=NO, the status statement needs to be changed from the relative

PCB number to the correct PCB name.
• If some PCBs have the parameter LIST=YES and some have the parameter LIST=NO, the status

statement needs to be changed as follows:

– The PCB relative position is based on all PCBs as if LIST=YES.
– For PCBs that have a PCB name, the status statement can be changed to use the PCB name based on

a relative PCB number.
– For PCBs that have LIST=YES and no PCB name, change the relative PCB number to refer to the

relative PCB number in the user list by looking at the PCB list using LIST=YES and LIST=NO.

Running image capture online
When you run the image capture program online, the trace output goes to the IMS log data set. To run the
image capture program online, you issue the IMS TRACE command from the IMS master terminal.

If you trace a BMP or an MPP and you want to use the trace results with DFSDDLT0, the BMP or MPP
must have exclusive write access to the databases it processes. If the application program does not have
exclusive access, the results of DFSDDLT0 may differ from the results of the application program. When
you trace a BMP that accesses GSAM databases, you must include an //IMSERR DD statement to get a
formatted dump of the GSAM control blocks.

The following diagram shows the TRACE command format:

⁄ TRACE SET

ON

OFF PSB psbname

NOCOMP

COMP

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one PSB at the same time
by issuing a separate TRACE command for each PSB.

Chapter 8. Testing an IMS application program 137

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and PCB compare statements
to be used as input to DFSDDLT0.

Running image capture as a batch job
To run the image capture program as a batch job, you use the DLITRACE control statement in the
DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:

• Whether you want to trace all of the DL/I calls the program issues or trace only a certain group of calls.
• Whether you want the trace output to go to:

A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart information may not
be directly reproducible when you use the trace output with DFSDDLT0.

When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace output, the results are the same
as the application program's results, but only if the database has not been altered.

For information on the format of the DLITRACE control statement in the DFSVSAMP DD data set, see the
topic "Defining DL/I call image trace" in IMS Version 15.3 System Definition.

Retrieving image capture data from the log data set
If the trace output is sent to the IMS log data set, you can retrieve it by using utility DFSERA10 and a DL/I
call trace exit routine, DFSERA50. DFSERA50 deblocks, formats, and numbers the image capture program
records that are to be retrieved.

To use DFSERA50, you must insert a DD statement defining a sequential output data set in the DFSERA10
input stream. The default ddname for this DD statement is TRCPUNCH. The statement must specify
BLKSIZE=80.

For example, you can use the following examples of DFSERA10 input control statements in the SYSIN
data set to retrieve the image capture program data from the log data set:

• Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

• Print selected image capture program records by PSB name:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,
 VALUE=psbname, COND=E

• Format image capture program records (in a format that can be used as input to DFSDDLT0):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C
 VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

Remember: The DDNAME= parameter names the DD statement to be used by DFSERA50. The data set
that is defined on the OUTDDN DD statement is used instead of the default TRCPUNCH DD statement. For
this example, the DD is:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

138 IMS: Application Programming

Requests for monitoring and debugging your IMS program
You can use the STAT and LOG requests to help you in debugging your program.

• The Statistics (STAT) call retrieves database statistics.
• The Log (LOG) call makes it possible for the application program to write a record on the system log.

The enhanced OSAM and VSAM STAT calls provide additional information for monitoring performance and
fine tuning of the system for specific needs.

When the enhanced STAT call is issued, the following information is returned:

• OSAM statistics for each defined subpool
• VSAM statistics that also include hiperspace statistics
• OSAM and VSAM count fields that have been expanded to 10 digits

Retrieving database statistics: the STAT call
The STAT call is helpful in debugging a program because it retrieves IMS database statistics. It is also
helpful in monitoring and fine tuning for performance. The STAT call retrieves OSAM database buffer pool
statistics and VSAM database buffer subpool statistics.

This topic contains Product-sensitive Programming Interface information.

When you issue the STAT call, you indicate:

• An I/O area into which the statistics are to be returned.
• A statistics function, which is the name of a 9-byte area whose contents describe the type and format of

the statistics you want returned. The contents of the area are defined as follows:

– The first 4 bytes define the type of statistics desired (OSAM or VSAM).
– The 5th byte defines the format to be returned (formatted, unformatted, or summary).
– The remaining 4 bytes are defined as follows:

- The normal or enhanced STAT call contains 4 bytes of blanks.
- The extended STAT call contains the 4-byte parameter ' E1 ' (a 1-byte blank, followed by a 2-byte

character string, and then another 1-byte blank).

Related reference
STAT call (Application Programming APIs)

Format of OSAM buffer pool statistics
For OSAM buffer pool statistics, the values are possible for the stat-function parameter and for the format
of the data that is returned to the application program. If no OSAM buffer pool is present, a GE status
code is returned to the program.

DBASF
This function value provides the full OSAM database buffer pool statistics in a formatted form. The
application program I/O area must be at least 360 bytes. Three 120-byte records (formatted for printing)
are provided as two heading lines and one line of statistics. The following diagram shows the data format.

 BLOCK FOUND READS BUFF OSAM BLOCKS NEW CHAIN
 REQ IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES
nnnnnnn nnnnnnn nnnnn nnnnnnn nnnnnnn nnnnnnn nnnnn nnnnn

WRITTEN LOGICAL PURGE RELEASE
 AS NEW CYL REQ REQ ERRORS
 FORMAT
nnnnnnn nnnnnnn nnnnnnn nnnnnnn nn/nn

Chapter 8. Testing an IMS application program 139

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_statcall.htm#ims_statcall

BLOCK REQ
Number of block requests received.

FOUND IN POOL
Number of times the block requested was found in the buffer pool.

READS ISSUED
Number of OSAM reads issued.

BUFF ALTS
Number of buffers altered in the pool.

OSAM WRITES
Number of OSAM writes issued.

BLOCKS WRITTEN
Number of blocks written from the pool.

NEW BLOCKS
Number of new blocks created in the pool.

CHAIN WRITES
Number of chained OSAM writes issued.

WRITTEN AS NEW
Number of blocks created.

LOGICAL CYL FORMAT
Number of format logical cylinder requests issued.

PURGE REQ
Number of purge user requests.

RELEASE REQ
Number of release ownership requests.

ERRORS
Number of write error buffers currently in the pool or the largest number of errors in the pool during
this execution.

DBASU
This function value provides the full OSAM database buffer pool statistics in an unformatted form. The
application program I/O area must be at least 72 bytes. Eighteen fullwords of binary data are provided:
Word

Contents
1

A count of the number of words that follow.
2-18

The statistic values in the same sequence as presented by the DBASF function value.

DBASS
This function value provides a summary of the OSAM database buffer pool statistics in a formatted form.
The application program I/O area must be at least 180 bytes. Three 60-byte records (formatted for
printing) are provided. The following diagram shows the data format.

DATA BASE BUFFER POOL: SIZE nnnnnnn
 REQ1 nnnnn REQ2 nnnnn READ nnnnn WRITES nnnnn LCYL nnnnn
 PURG nnnnn OWNRR nnnnn ERRORS nn/nn

SIZE
Buffer pool size.

REQ1
Number of block requests.

140 IMS: Application Programming

REQ2
Number of block requests satisfied in the pool plus new blocks created.

READ
Number of read requests issued.

WRITES
Number of OSAM writes issued.

LCYL
Number of format logical cylinder requests.

PURG
Number of purge user requests.

OWNRR
Number of release ownership requests.

ERRORS
Number of permanent errors now in the pool or the largest number of permanent errors during this
execution.

Format of VSAM buffer subpool statistics
Because there might be several buffer subpools for VSAM databases, the STAT call is iterative when
requesting these statistics. If more than one VSAM local shared resource pool is defined, statistics are
retrieved for all VSAM local shared resource pools in the order in which they are defined. For each local
shared resource pool, statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest buffer size are provided.
For each succeeding call (without intervening use of the PCB), the statistics for the subpool with the
next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool statistics always follow
statistics of the data subpools. Index subpool statistics are also retrieved in ascending order based on the
buffer size.

The final call for the series returns a GA status code in the PCB. The statistics returned are totals for all
subpools in all local shared resource pools. If no VSAM buffer subpools are present, a GE status code is
returned to the program.

VBASF
This function value provides the full VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 360 bytes. Three 120-byte records (formatted for printing)
are provided as two heading lines and one line of statistics. Each successive call returns the statistics for
the next data subpool. If present, statistics for index subpools follow the statistics for data subpools.

The following diagram shows the data format.

 BUFFER HANDLER STATISTICS
BSIZ NBUF RET RBA RET KEY ISRT ES ISRT KS BFR ALT BGWRT SYN PTS
nnnK nnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn

 VSAM STATISTICS POOLID: xxxx
 GETS SCHBFR FOUND READS USR WTS NUR WTS ERRORS
nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nn/nn

POOLID
ID of the local shared resource pool.

BSIZ
Size of the buffers in this VSAM subpool. In the final call, this field is set to ALL.

NBUF
Number of buffers in this subpool. In the final call, this is the number of buffers in all subpools.

Chapter 8. Testing an IMS application program 141

RET RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RET KEY
Number of retrieve-by-key calls received by the buffer handler.

ISRT ES
Number of logical records inserted into ESDSs.

ISRT KS
Number of logical records inserted into KSDSs.

BFR ALT
Number of logical records altered in this subpool. Delete calls that result in erasing records from a
KSDS are not counted.

BGWRT
Number of times the background-write function was executed by the buffer handler.

SYN PTS
Number of Synchronization calls received by the buffer handler.

GETS
Number of VSAM GET calls issued by the buffer handler.

SCHBFR
Number of VSAM SCHBFR calls issued by the buffer handler.

FOUND
Number of times VSAM found the control interval already in the subpool.

READS
Number of times VSAM read a control interval from external storage.

USR WTS
Number of VSAM writes initiated by IMS.

NUR WTS
Number of VSAM writes initiated to make space in the subpool.

ERRORS
Number of write error buffers currently in the subpool or the largest number of write errors in the
subpool during this execution.

VBASU
This function value provides the full VSAM database subpool statistics in a unformatted form. The
application program I/O area must be at least 72 bytes. Eighteen fullwords of binary data are provided for
each subpool:
Word

Contents
1

A count of the number of words that follow.
2-18

The statistic values in the same sequence as presented by the VBASF function value, except for
POOLID, which is not included in this unformatted form.

VBASS
This function value provides a summary of the VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 180 bytes. Three 60-byte records (formatted for printing)
are provided.

142 IMS: Application Programming

The following diagram shows the data format.

DATA BASE BUFFER POOL: BSIZE nnnnnnn POOLID xxxx Type x
 RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SYN PTS nnnnn
 NMBUFS nnn VRDS nnnnn FOUND nnnnn VWTS nnnnn ERRORS nn/nn

BSIZE
Size of the buffers in this VSAM subpool.

POOLID
ID of the local shared resource pool.

TYPE
Indicates a data (D) subpool or an index (I) subpool.

RRBA
Number of retrieve-by-RBA requests.

RKEY
Number of retrieve-by-key requests.

BFALT
Number of logical records altered.

NREC
Number of new VSAM logical records created.

SYN PTS
Number of sync point requests.

NMBUFS
Number of buffers in this VSAM subpool.

VRDS
Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the subpool.

VWTS
Number of VSAM control interval writes.

ERRORS
Number of permanent write errors now in the subpool or the largest number of errors in this
execution.

Format of enhanced/extended OSAM buffer subpool statistics
The enhanced OSAM buffer pool statistics provide additional information generated for each defined
subpool. Because there might be several buffer subpools for OSAM databases, the enhanced STAT call
repeatedly requests these statistics. The first time the call is issued, the statistics for the subpool with
the smallest buffer size is provided. For each succeeding call (without intervening use of the PCB), the
statistics for the subpool with the next-larger buffer size is provided.

The final call for the series returns a GA status code in the PCB. The statistics returned are the totals for
all subpools. If no OSAM buffer subpools are present, a GE status code is returned.

Extended OSAM buffer pool statistics can be retrieved by including the 4-byte parameter 'bE1b' following
the enhanced call function. The extended STAT call returns all of the statistics returned with the
enhanced call, plus the statistics on the coupling facility buffer invalidates, OSAM caching, and sequential
buffering IMMED/SYNC read counts.

Restriction: The extended format parameter is supported by the DBESO, DBESU, and DBESF functions
only.

Chapter 8. Testing an IMS application program 143

DBESF
This function value provides the full OSAM subpool statistics in a formatted form. The application program
I/O area must be at least 600 characters. For OSAM subpools, five 120-byte records (formatted for
printing) are provided. Three of the records are heading lines and two of the records are lines of subpool
statistics.

The following example shows the enhanced stat call format:

 B U F F E R H A N D L E R O S A M S T A T I S T I C S FIXOPT=X/X POOLID: xxxx
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT
 PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nn1K nnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnn/nnnnnnn

The following example shows the extended stat call format:

 B U F F E R H A N D L E R O S A M S T A T I S T I C S STG CLS= FIXOPT=N/N POOLID:
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT
 PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nn1K nnnnnnn5 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnn/nnnnnnn
 CF-READS EXPCTD-NF CFWRT-PRI CFWRT-CHG STGCLS-FULL XI-CNT VECTR-XI SB-SEQRD SB-ANTICIP
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer prefix and data buffers are
fixed.

POOLID
ID of the local shared resource pool.

BSIZ
Size of the buffers in this subpool. Set to ALL for total line. For the summary totals (BSIZ=ALL), the
FIXOPT and POOLID fields are replaced by an OSM= field. This field is the total size of the OSAM
subpool.

NBUFS
Number of buffers in this subpool. This is the total number of buffers in the pool for the ALL line.

LOCATE-REQ
Number of LOCATE-type calls.

NEW-BLOCKS
Number of requests to create new blocks.

ALTER-REQ
Number of buffer alter calls. This count includes NEW BLOCK and BYTALT calls.

PURGE-REQ
Number of PURGE calls.

FND-IN-POOL
Number of LOCATE-type calls for this subpool where data is already in the OSAM pool.

BUFRS-SRCH
Number of buffers searched by all LOCATE-type calls.

READ-REQS
Number of READ I/O requests.

BUFSTL-WRT
Number of single block writes initiated by buffer steal routine.

PURGE-WRTS
Number of blocks for this subpool written by purge.

WT-BUSY-ID
Number of LOCATE calls that waited due to busy ID.

WT-BUSY-WR
Number of LOCATE calls that waited due to buffer busy writing.

144 IMS: Application Programming

WT-BUSY-RD
Number of LOCATE calls that waited due to buffer busy reading.

WT-RLSEOWN
Number of buffer steal or purge requests that waited for ownership to be released.

WT-NO-BFRS
Number of buffer steal requests that waited because no buffers are available to be stolen.

ERRORS
Total number of I/O errors for this subpool or the number of buffers locked in pool due to write errors.

CF-READS
Number of blocks read from CF.

EXPCTD-NF
Number of blocks expected but not read.

CFWRT-PRI
Number of blocks written to CF (prime).

CFWRT-CHG
Number of blocks written to CF (changed).

STGGLS-FULL
Number of blocks not written (STG CLS full).

XI-CNTL
Number of XI buffer invalidate calls.

VECTR-XI
Number of buffers found invalidated by XI on VECTOR call.

SB-SEQRD
Number of immediate (SYNC) sequential reads (SB stat).

SB-ANTICIP
Number of anticipatory reads (SB stat).

DBESU
This function value provides full OSAM statistics in an unformatted form. The application program I/O
area must be at least 84 bytes. Twenty-one fullwords of binary data are provided for each subpool:
Word

Contents
1

A count of the number of words that follow.
2-19

The statistics provided in the same sequence as presented by the DBESF function value.
20

The POOLID provided at subpool definition time.
21

The second byte contains the following fix options for this subpool:

• X'04' = DATA BUFFER PREFIX fixed
• X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL), for word 21, contain the total size of the OSAM pool.

22-30
Extended stat data in same sequence as on DBESF call.

Chapter 8. Testing an IMS application program 145

DBESS
This function value provides a summary of the OSAM database buffer pool statistics in a formatted form.
The application program I/O area must be at least 360 bytes. Six 60-byte records (formatted for printing)
are provided. This STAT call is a restructured DBASF STAT call that allows for 10-digit count fields. In
addition, the subpool header blocks give a total of the number of OSAM buffers in the pool.

The following shows the data format:

DATA BASE BUFFER POOL: NSUBPL nnnnnn NBUFS nnnnnnnn
 BLKREQ nnnnnnnnnn INPOOL nnnnnnnnnn READS nnnnnnnnnn
 BUFALT nnnnnnnnnn WRITES nnnnnnnnnn BLKWRT nnnnnnnnnn
 NEWBLK nnnnnnnnnn CHNWRT nnnnnnnnnn WRTNEW nnnnnnnnnn
 LCYLFM nnnnnnnnnn PURGRQ nnnnnnnnnn RLSERQ nnnnnnnnnn
 FRCWRT nnnnnnnnnn ERRORS nnnnnnnn/nnnnnnnn

NSUBPL
Number of subpools defined for the OSAM buffer pool.

NBUFS
Total number of buffers defined in the OSAM buffer pool.

BLKREQ
Number of block requests received.

INPOOL
Number of times the block requested is found in the buffer pool.

READS
Number of OSAM reads issued.

BUFALT
Number of buffers altered in the pool.

WRITES
Number of OSAM writes issued.

BLKWRT
Number of blocks written from the pool.

NEWBLK
Number of blocks created in the pool.

CHNWRT
Number of chained OSAM writes issued.

WRTNEW
Number of blocks created.

LCYLFM
Number of format logical cylinder requests issued.

PURGRQ
Number of purge user requests.

RLSERQ
Number of release ownership requests.

FRCWRT
Number of forced write calls.

ERRORS
Number of write error buffers currently in the pool or the largest number of errors in the pool during
this execution.

DBESO
This function value provides the full OSAM database subpool statistics in a formatted form for online
statistics that are returned as a result of a /DIS POOL command. This call can also be a user-application

146 IMS: Application Programming

STAT call. When issued as an application DL/I STAT call, the program I/O area must be at least 360 bytes.
Six 60-byte records (formatted for printing) are provided.

Example: The following shows the enhanced stat call format:

OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
 LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
 PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
 RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
 WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
 WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn

Example: The following shows the extended stat call format:

OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
 LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
 PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
 RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
 WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
 WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn
 CFREAD nnnnnnnnnn CFEXPC nnnnnnnnnn CFWRPR nnnnn/nnnnn
 CFWRCH nnnnnnnnnn STGCLF nnnnnnnnnn XIINV nnnnn/nnnnn
 XICLCT nnnnnnnnnn SBSEQR nnnnnnnnnn SBANTR nnnnn/nnnnn

POOLID
ID of the local shared resource pool.

BSIZE
Size of the buffers in this subpool. Set to ALL for summary total line. For the summary totals
(BSIZE=ALL), the FX= field is replaced by the OSAM= field. This field is the total size of the OSAM
buffer pool. The POOLID is not shown. For the summary totals (BSIZE=ALL), the FX= field is replaced
by the OSAM= field. This field is the total size of the OSAM buffer pool. The POOLID is not shown.

NBUF
Number of buffers in this subpool. Total number of buffers in the pool for the ALL line.

FX=
Fixed options for this subpool. Y or N indicates whether the data buffer prefix and data buffers are
fixed.

LCTREQ
Number of LOCATE-type calls.

NEWBLK
Number of requests to create new blocks.

ALTREQ
Number of buffer alter calls. This count includes NEW BLOCK and BYTALT calls.

PURGRQ
Number of PURGE calls.

FNDIPL
Number of LOCATE-type calls for this subpool where data is already in the OSAM pool.

BFSRCH
Number of buffers searched by all LOCATE-type calls.

RDREQ
Number of READ I/O requests.

BFSTLW
Number of single-block writes initiated by buffer-steal routine.

PURGWR
Number of buffers written by purge.

WBSYID
Number of LOCATE calls that waited due to busy ID.

WBSYWR
Number of LOCATE calls that waited due to buffer busy writing.

Chapter 8. Testing an IMS application program 147

WBSYRD
Number of LOCATE calls that waited due to buffer busy reading.

WRLSEO
Number of buffer steal or purge requests that waited for ownership to be released.

WNOBRF
Number of buffer steal requests that waited because no buffers are available to be stolen.

ERRORS
Total number of I/O errors for this subpool or the number of buffers locked in pool due to write errors.

CFREAD
Number of blocks read from CF.

CFEXPC
Number of blocks expected but not read.

CFWRPR
Number of blocks written to CF (prime).

CFWRCH
Number of blocks written to CF (changed).

STGCLF
Number of blocks not written (STG CLS full).

XIINV
Number of XI buffer invalidate calls.

XICLCT
Number of buffers found invalidated by XI on VECTOR call.

SBSEQR
Number of immediate (SYNC) sequential reads (SB stat).

SBANTR
Number of anticipatory reads (SB stat).

Format of enhanced VSAM buffer subpool statistics
The enhanced VSAM buffer subpool statistics provide information on the total size of VSAM subpools in
virtual storage and in hiperspace. All count fields are 10 digits.

Because there might be several buffer subpools for VSAM databases, the enhanced STAT call repeatedly
requests these statistics. If more than one VSAM local shared resource pool is defined, statistics are
retrieved for all VSAM local shared resource pools in the order in which they are defined. For each local
shared resource pool, statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest buffer size are provided.
For each succeeding call (without intervening use of the PCB), the statistics for the subpool with the
next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool statistics always follow
the data subpools statistics. Index subpool statistics are also retrieved in ascending order based on the
buffer size.

The final call for the series returns a GA status code in the PCB. The statistics returned are totals for all
subpools in all local shared resource pools. If no VSAM buffer subpools are present, a GE status code is
returned to the program.

VBESF
This function value provides the full VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 600 bytes. For each shared resource pool ID, the first
call returns five 120-byte records (formatted for printing). Three of the records are heading lines and two
of the records are lines of subpool statistics.

148 IMS: Application Programming

The following shows the data format:

 B U F F E R H A N D L E R S T A T I S T I C S / V S A M S T A T I S T I C S FIXOPT=X/X/X POOLID: xxxx
BSIZ NBUFFRS HS-NBUF RETURN-RBA RETURN-KEY ESDS-INSRT KSDS-INSRT BUFFRS-ALT BKGRND-WRT SYNC-POINT ERRORS
 VSAM-GETS SCHED-BUFR VSAM-FOUND VSAM-READS USER-WRITS VSAM-WRITS HSRDS-SUCC HSWRT-SUCC HSR/W-FAIL
nn1K nnnnnn nnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnn/nnnnnn
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnn/nnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer prefix, the index buffers, and
the data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ
Size of the buffers in this subpool. Set to ALL for total line. For the summary totals (BSIZ=ALL), the
FIXOPT and POOLID fields are replaced by a VS= field and a HS= field. The VS= field is the total size of
the VSAM subpool in virtual storage. The HS= field is the total size of the VSAM subpool in hiperspace.

NBUFFRS
Number of buffers in this subpool. Total number of buffers in the VSAM pool that appears in the ALL
line.

HS-NBUF
Number of hiperspace buffers defined for this subpool.

RETURN-RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RETURN-KEY
Number of retrieve-by-key calls received by the buffer handler.

ESDS-INSRT
Number of logical records inserted into ESDSs.

KSDS-INSRT
Number of logical records inserted into KSDSs.

BUFFRS-ALT
Number of logical records altered in this subpool. Delete calls that result in erasing records from a
KSDS are not counted.

BKGRND-WRT
Number of times the background write function was executed by the buffer handler.

SYNC-POINT
Number of Synchronization calls received by the buffer handler.

ERRORS
Number of write error buffers currently in the subpool or the largest number of write errors in the
subpool during this execution.

VSAM-GETS
Number of VSAM Get calls issued by the buffer handler.

SCHED-BUFR
Number of VSAM Scheduled-Buffer calls issued by the buffer handler

VSAM-FOUND
Number of times VSAM found the control interval in the buffer pool.

VSAM-READS
Number of times VSAM read a control interval from external storage.

USER-WRITS
Number of VSAM writes initiated by IMS.

VSAM-WRITS
Number of VSAM writes initiated to make space in the subpool.

HSRDS-SUCC
Number of successful VSAM reads from hiperspace buffers.

Chapter 8. Testing an IMS application program 149

HSWRT-SUCC
Number of successful VSAM writes from hiperspace buffers.

HSR/W-FAIL
Number of failed VSAM reads from hiperspace buffers/number of failed VSAM writes to hiperspace
buffers. This indicates the number of times a VSAM READ/WRITE request from or to hiperspace
resulted in DASD I/O.

VBESU
This function value provides full VSAM statistics in an unformatted form. The application program I/O area
must be at least 104 bytes. Twenty-five fullwords of binary data are provided for each subpool.
Word

Contents
1

A count of the number of words that follow.
2-23

The statistics provided in the same sequence as presented by the VBESF function value.
24

The POOLID provided at the time the subpool is defined.
25

The first byte contains the subpool type, and the third byte contains the following fixed options for this
subpool:

• X'08' = INDEX BUFFERS fixed
• X'04' = DATA BUFFER PREFIX fixed
• X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL) for word 25 and word 26 contain the virtual and hiperspace pool
sizes.

VBESS
This function value provides a summary of the VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 360 bytes. For each shared resource pool ID, the first call
provides six 60-byte records (formatted for printing).

The following shows the data format:

VSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnnK TYPE x FX=X/X/X
 RRBA nnnnnnnnnn RKEY nnnnnnnnnn BFALT nnnnnnnnnn
 NREC nnnnnnnnnn SYNC PT nnnnnnnnnn NBUFS nnnnnnnnnn
 VRDS nnnnnnnnnn FOUND nnnnnnnnnn VWTS nnnnnnnnnn
 HSR-S nnnnnnnnnn HSW-S nnnnnnnnnn HS NBUFS nnnnnnnn
 HS-R/W-FAIL nnnnn/nnnnn ERRORS nnnnnn/nnnnnn

POOLID
ID of the local shared resource pool.

BSIZE
Size of the buffers in this VSAM subpool.

TYPE
Indicates a data (D) subpool or an index (I) subpool.

FX
Fixed options for this subpool. Y or N indicates whether the data buffer prefix, the index buffers, and
the data buffers are fixed.

RRBA
Number of retrieve-by-RBA calls received by the buffer handler.

150 IMS: Application Programming

RKEY
Number of retrieve-by-key calls received by the buffer handler.

BFALT
Number of logical records altered.

NREC
Number of new VSAM logical records created.

SYNC PT
Number of sync point requests.

NBUFS
Number of buffers in this VSAM subpool.

VRDS
Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the subpool.

VWTS
Number of VSAM control interval writes.

HSR-S
Number of successful VSAM reads from hiperspace buffers.

HSW-S
Number of successful VSAM writes to hiperspace buffers.

HS NBUFS
Number of VSAM hiperspace buffers defined for this subpool.

HS-R/W-FAIL
Number of failed VSAM reads from hiperspace buffers and number of failed VSAM writes to
hiperspace buffers. This indicates the number of times a VSAM READ/WRITE request to or from
hiperspace resulted in DASD I/O.

ERRORS
Number of permanent write errors now in the subpool or the largest number of errors in this
execution.

Writing Information to the system log: the LOG request
An application program can write a record to the system log by issuing the LOG call.

When you issue the LOG request, you specify the I/O area that contains the record you want written to the
system log. You can write any information to the log that you want, and you can use different log codes to
distinguish between different types of information.

Related Reading: For information about coding the LOG request, see the appropriate application
programming reference information.

What to do when your IMS program terminates abnormally
When your program terminates abnormally, you can take the following actions to simplify the task of
finding and fixing the problem.

• Record as much information as possible about the circumstances under which the program terminated
abnormally.

• Check for certain initialization and execution errors.

Recommended actions after an abnormal termination of an IMS program
Many places have guidelines on what you should do if your program terminates abnormally. The
suggestions given here are common guidelines:

Chapter 8. Testing an IMS application program 151

• Document the error situation to help in investigating and correcting it. The following information can be
helpful:

– The program's PSB name
– The transaction code that the program was processing (online programs only)
– The text of the input message being processed (online programs only)
– The call function
– The name of the originating logical terminal (online programs only)
– The contents of the PCB that was referenced in the call that was executing
– The contents of the I/O area when the problem occurred
– If a database call was executing, the SSAs, if any, that the call used
– The date and time of day

• When your program encounters an error, it can pass all the required error information to a standard
error routine. You should not use STAE or ESTAE routines in your program; IMS uses STAE or ESTAE
routines to notify the control region of any abnormal termination of the application program. If you call
your own STAE or ESTAE routines, IMS may not get control if an abnormal termination occurs.

• Online programs might want to send a message to the originating logical terminal to inform the person
at the terminal that an error has occurred. Unless you are using a CCTL, your program can get the logical
terminal name from the I/O PCB, place it in an express PCB, and issue one or more ISRT calls to send
the message.

• An online program might also want to send a message to the master terminal operator giving
information about the program's termination. To do this, the program places the logical terminal name
of the master terminal in an express PCB and issues one or more ISRT calls. (This is not applicable if
you are using a CCTL.)

• You might also want to send a message to a printer so that you will have a hard-copy record of the error.
• You can send a message to the system log by issuing a LOG request.
• Some places run a BMP at the end of the day to list all the errors that have occurred during the day. If

your shop does this, you can send a message using an express PCB that has its destination set for that
BMP. (This is not applicable if you are using a CCTL.)

Diagnosing an abnormal termination of an IMS program
If your program does not run correctly when you are testing it or when it is executing, you need to isolate
the problem. The problem might be anything from a programming error (for example, an error in the way
you coded one of your requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run, terminates abnormally,
or gives incorrect results.

IMS program initialization errors
Before your program receives control, IMS must have correctly loaded and initialized the PSB and
DBDs used by your application program. Often, when the problem is in this area, you need a system
programmer or DBA (or your equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that they generate.

IMS program execution errors
If you do not have any initialization errors, check:

1. The output from the compiler. Make sure that all error messages have been resolved.
2. The output from the binder:

• Are all external references resolved?
• Have all necessary modules been included?

152 IMS: Application Programming

• Was the language interface module correctly included?
• Is the correct entry point specified?

3. Your JCL:

• Is the information that described the files that contain the databases correct? If not, check with your
DBA.

• Have you included the DL/I parameter statement in the correct format?
• Have you included the region size parameter in the EXEC statement? Does it specify a region or

partition large enough for the storage required for IMS and your program?
• Have you declared the fields in the PCB masks correctly?
• If your program is an assembler language program, have you saved and restored registers correctly?

Did you save the list of PCB addresses at entry? Does register 1 point to a parameter list of fullwords
before issuing any DL/I calls?

• For COBOL for z/OS and PL/I for MVS and VM, are the literals you are using for arguments in DL/I
calls producing the results you expect? For example, in PL/I for MVS and VM, is the parameter count
being generated as a half-word instead of a fullword, and is the function code producing the required
4-byte field?

• Use the PCB as much as possible to determine what in your program is producing incorrect results.

Related concepts
“Use of STAE or ESTAE and SPIE in IMS programs” on page 53
IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP, BMP) regions, and the
batch regions. In the control region, STAE or ESTAE routines ensure that database logging and various
resource cleanup functions are complete.

Chapter 8. Testing an IMS application program 153

154 IMS: Application Programming

Chapter 9. Testing a CICS application program
You should perform a program unit test on your CICS application program to ensure that the program
correctly handles its input data, processing, and output data. The amount and type of testing you do
depends on the individual program.

Recommendations for testing a CICS program
When you are ready to test your program, be aware of your established test procedures before you start.

To start testing, you need the following three items:

• Test JCL.
• A test database. When you are testing a program, do not execute it against a production database

because the program, if faulty, might damage valid data.
• Test input data. The input data that you use need not be current, but it should be valid data. You cannot

be sure that your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly handle all the
situations that it might encounter.

To thoroughly test the program, try to test as many of the paths that the program can take as possible. For
example:

• Test each path in the program by using input data that forces the program to execute each of its
branches.

• Be sure that your program tests its error routines. Again, use input data that will force the program to
test as many error conditions as possible.

• Test the editing routines your program uses. Give the program as many different data combinations as
possible to make sure it correctly edits its input data.

Testing your CICS program
You can use different tools to test a CICS program, depending on the type of program.

The following table summarizes the tools that are available for online DBCTL, batch, and BMP programs.

Table 30. Tools you can use for testing your program

Tool Online (DBCTL) Batch BMP

Execution Diagnostic Facility (EDF) Yes1 No No

CICS dump control Yes No No

CICS trace control Yes Yes No

DFSDDLT0 No Yes2 Yes2

DL/I image capture program Yes Yes Yes

Notes:

1. For online, command-level programs only.
2. For call-level programs only. (For a command-level batch program, you can use DL/I image capture

program first, to produce calls for DFSDDLT0.)

© Copyright IBM Corp. 1974, 2022 155

Using the Execution Diagnostic Facility (command-level only)
You can use the Execution Diagnostic Facility (EDF) to test command-level programs online. EDF can
display EXEC CICS and EXEC DLI commands in online programs; it cannot intercept DL/I calls.

With EDF you can:

• Display and modify working storage; you can change values in the DIB.
• Display and modify a command before it is executed. You can modify the value of any argument, and

then execute the command.
• Modify the return codes after the execution of the command. After the command has been executed,

but before control is returned to the application program, the command is intercepted to show the
response and any argument values set by CICS.

You can run EDF on the same terminal as the program you are testing.

Related Reading: For more information about using EDF, see "Execution (Command-Level) Diagnostic
Facility" in CICS Transaction Server for z/OS CICS Application Programming Reference.

Using CICS dump control
You can use the CICS dump control facility to dump virtual storage areas, CICS tables, and task-related
storage areas. For more information about using the CICS dump control facility, see the CICS application
programming reference manual that applies to your version of CICS.

Using CICS trace control
You can use the trace control facility to help debug and monitor your online programs in the DBCTL
environment. You can use trace control requests to record entries in a trace table. The trace table can be
located either in virtual storage or on auxiliary storage. If it is in virtual storage, you can gain access to it
by investigating a dump; if it is on auxiliary storage, you can print the trace table. For more information
about the control statements you can use to produce trace entries, see the information about trace
control in the application programming reference manual that applies to your version of CICS.

Tracing DL/I calls with image capture
DL/I image capture program (DFSDLTR0) is a trace program that can trace and record DL/I calls issued by
batch, BMP, and online (DBCTL environment) programs. You can also use the image capture program with
command-level programs, and you can produce calls for use as input to DFSDDLT0.

You can use the image capture program to:

• Test your program

If the image capture program detects an error in a call it traces, it reproduces as much of the call as
possible, although it cannot document where the error occurred, and cannot always reproduce the full
SSA.

• Produce input for DFSDDLT0 (DL/I test program)

You can use the output produced by the image capture program as input to DFSDDLT0. The image
capture program produces status statements, comment statements, call statements, and compare
statements for DFSDDLT0. For example, you can use the image capture program with a command-level
program, to produce calls for DFSDDLT0.

• Debug your program

When your program terminates abnormally, you can rerun the program using the image capture
program. The image capture program can then reproduce and document the conditions that led to
the program failure. You can use the information in the report produced by the image capture program
to find and fix the problem.

156 IMS: Application Programming

Using image capture with DFSDDLT0
The image capture program produces the following control statements that you can use as input to
DFSDDLT0:

• Status statements

When you invoke the image capture program, it produces the status statement. The status statement it
produces:

– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I calls, and the results of all
comparisons.

– Determines the new relative PCB number each time a PCB change occurs while the application
program is executing.

• Comments statement

The image capture program also produces a comments statement when you invoke it. The comments
statements give:

– The time and date IMS started the trace
– The name of the PSB being traced

The image capture program also produces a comments statement preceding any call in which IMS finds
an error.

• Call statements

The image capture program produces a call statement for each DL/I call or EXEC DLI command the
application program issues. It also generates a CHKP call when it starts the trace and after each commit
point or CHKP request.

• Compare statements

If you specify COMP on the DLITRACE control statement, the image capture program produces data and
PCB comparison statements.

Running image capture online
When you run the image capture program online, the trace output goes to the IMS log data set. To run the
image capture program online, you issue the IMS TRACE command from the z/OS console.

If you trace a BMP and you want to use the trace results with DFSDDLT0, the BMP must have exclusive
write access to the databases it processes. If the application program does not have exclusive access, the
results of DFSDDLT0 may differ from the results of the application program.

The following diagram shows TRACE command format:

⁄ TRACE SET

ON

OFF PSB psbname

NOCOMP

COMP

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one PSB at the same time,
by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and PCB compare statements
to be used with DFSDDLT0.

Chapter 9. Testing a CICS application program 157

Running image capture as a batch job
To run the image capture program as a batch job, you use the DLITRACE control statement in the
DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:

• Whether you want to trace all of the DL/I calls the program issues or trace only a certain group of calls.
• Whether you want the trace output to go to:

A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart information may not
be directly reproducible when you use the trace output with DFSDDLT0.

When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace output, the results are the same
as the application program's results, but only if the database has not been altered.

For information on the format of the DLITRACE control statement in the DFSVSAMP DD data set, see the
topic "Defining DL/I call image trace" in IMS Version 15.3 System Definition.

Example of DLITRACE

This example shows a DLITRACE control statement that traces the first 14 DL/I calls or commands that
the program issues, sends the output to the IMS log data set, and produces data and PCB comparison
statements for DFSDDLT0.

//DFSVSAMP DD *
DLITRACE LOG=YES,STOP=14,COMP
/*

Special JCL requirements
The following are special JCL requirements:
//IEFRDER DD

If you want log data set output, this DD statement is required to define the IMS log data set.
//DFSTROUT DD|anyname

If you want sequential data set output, this DD statement is required to define that data set. If you
want to specify an alternate DDNAME (anyname), it must be specified using the DDNAME parameter
on the DLITRACE control statement.

The DCB parameters on the JCL statement are not required. The data set characteristics are:

• RECFM=F
• LRECL=80

Notes on using image capture
• If the program being traced issues CHKP and XRST calls, the checkpoint and restart information may not

be directly reproducible when you use the trace output with the DFSDDLT0.
• When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace output, the results are the same

as the application program's results provided the database has not been altered.

Retrieving image capture data from the log data set
If the trace output is sent to the IMS log data set, you can retrieve it by using utility DFSERA10 and a DL/I
call trace exit routine, DFSERA50. DFSERA50 deblocks, formats, and numbers the image capture program
records to be retrieved. To use DFSERA50, you must insert a DD statement defining a sequential output

158 IMS: Application Programming

data set in the DFSERA10 input stream. The default ddname for this DD statement is TRCPUNCH. The
card must specify BLKSIZE=80.

For example, you can use the following examples of DFSERA10 input control statements in the SYSIN
data set to retrieve the image capture program data from the log data set:

• Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

• Print selected image capture program records by PSB name:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,
 VALUE=psbname, COND=E

• Format image capture program records (in a format that can be used as input to DFSDDLT0):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C
 VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

The DDNAME= parameter is used to name the DD statement used by DFSERA50. The data set defined on
the OUTDDN DD statement is used instead of the default TRCPUNCH DD statement. For this example, the
DD appears as:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your CICS program
You can use the STAT and LOG requests to help you in debugging your program.

• The statistics (STAT) request retrieves database statistics. STAT can be issued from both call- and
command-level programs.

• The log (LOG) request makes it possible for the application program to write a record on the system log.
You can issue LOG as a command or call in a batch program; in this case, the record is written to the
IMS log. You can issue LOG as a call or command in an online program in the DBCTL environment; in this
case, the record is written to the DBCTL log.

What to do when your CICS program terminates abnormally
Whenever your program terminates abnormally, you can take some actions to simplify the task of finding
and fixing the problem.

First, you can record as much information as possible about the circumstances under which the program
terminated abnormally; and second, you can check for certain initialization and execution errors.

Recommended actions after an abnormal termination of CICS
Many places have guidelines on what you should do if your program terminates abnormally. The
suggestions given here are some common guidelines:

• Document the error situation to help in investigating and correcting it. Some of the information that can
be helpful is:

– The program's PSB name
– The transaction code that the program was processing (online programs only)
– The text of the input screen being processed (online programs only)
– The call function

Chapter 9. Testing a CICS application program 159

– The terminal ID (online programs only)
– The contents of the PCB or the DIB
– The contents of the I/O area when the problem occurred
– If a database request was executing, the SSAs or SEGMENT and WHERE options, if any, the request

used
– The date and time of day

• When your program encounters an error, it can pass all the required error information to a standard
error routine.

• An online program might also want to send a message to the master terminal destination (CSMT) and
application terminal operator, giving information about the program's termination.

• You can send a message to the system log by issuing a LOG request.

Diagnosing an abnormal termination of CICS
If your program does not run correctly when you are testing it or when it is executing, you need to isolate
the problem. The problem might be anything from a programming error (for example, an error in the way
you coded one of your requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run, terminates abnormally,
or gives incorrect results.

CICS initialization errors
Before your program receives control, IMS must have correctly loaded and initialized the PSB and
DBDs used by your application program. Often, when the problem is in this area, you need a system
programmer or DBA (or your equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that they generate.

CICS execution errors
If you do not have any initialization errors, check the following in your program:

1. The output from the compiler. Make sure that all error messages have been resolved.
2. The output from the binder:

• Are all external references resolved?
• Have all necessary modules been included?
• Was the language interface module correctly included?
• Is the correct entry point specified (for batch programs only)?

3. Your JCL:

• Is the information that described the files that contain the databases correct? If not, check with your
DBA.

• Have you included the DL/I parameter statement in the correct format (for batch programs only)?
• Have you included the region size parameter in the EXEC statement? Does it specify a region or

partition large enough for the storage required for IMS and your program (for batch programs only)?
4. Your call-level program:

• Have you declared the fields in the PCB masks correctly?
• If your program is an assembler language program, have you saved and restored registers correctly?

Did you save the list of PCB addresses at entry? Does register 1 point to a parameter list of full words
before issuing any DL/I calls?

• For COBOL for z/OS and PL/I for MVS and VM, are the literals you are using for arguments in DL/I
calls producing the results you expect? For example, in PL/I for MVS and VM, is the parameter count

160 IMS: Application Programming

being generated as a half word instead of a fullword, and is the function code producing the required
4-byte field?

• Use the PCB as much as possible to determine what in your program is producing incorrect results.
5. Your command-level program:

• Did you use the FROM option with your ISRT or REPL command? If not, data will not be transferred to
the database.

• Check translator messages for errors.

Chapter 9. Testing a CICS application program 161

162 IMS: Application Programming

Chapter 10. Documenting your application program
Many places establish standards for program documentation; make sure you are aware of your
established standards.

Documentation for other programmers
Documenting a program is not something you do at the end of the project; your documentation will be
much more complete, and more useful to others, if you record information about the program as you
structure and code it. Include any information that might be useful to someone else who must work with
your program.

The reason you record this information is so that people who maintain your program know why you
chose certain commands, options, call structures, and command codes. For example, if the DBA were
considering reorganizing the database in some way, information about why your program accesses the
data the way it does would be helpful.

Information you can include for other programmers includes:

• Flowcharts and pseudocode for the program
• Comments about the program from code inspections
• A written description of the program flow
• Information about why you chose the call sequence you did, such as:

– Did you test the call sequence using DFSDDLT0?
– In cases where more than one combination of calls would have had the same results, why did you

choose the sequence you did?
– What was the other sequence? Did you test it using DFSDDLT0?

• Any problems you encountered in structuring or coding the program
• Any problems you had when you tested the program
• Warnings about what should not be changed in the program

All this information relates to structuring and coding the program. In addition, you should include the
documentation for end users with the documentation for programmers.

Ultimately, you must determine the level of detail necessary and the most suitable form for documenting
the program. These documentation guidelines are provided as suggestions.

Documentation for end users
In addition to documenting the design of the application, you should record information about how the
program is used.

The amount of information that users need and how much of it you should supply depends upon whom
the users of the program are and what type of program it is.

At a minimum, include the following information for those who use your program:

• What one needs in order to use the program, for example:

– For online programs, is there a password?
– For batch programs, what is the required JCL?

• The input that one needs to supply to the program, for example:

– For an MPP, what is the MOD name that must be entered to initially format the screen?
– For a CICS online program, what is the CICS transaction code that must be entered? What terminal

input is expected?

© Copyright IBM Corp. 1974, 2022 163

– For a batch program, is the input in the form of a tape, or a disk data set? Is the input originally output
from a previous job?

• The content and form of the program's output, for example:

– If it is a report, show the format or include a sample listing.
– For an online application program, show what the screen will look like.

• For online programs, if decisions must be made, explain what is involved in each decision. Present the
choices and the defaults.

If the people that will be using your program are unfamiliar with terminals, they will need a user's guide
also. This guide should give explicit instructions on how to use the terminal and what a user can expect
from the program. The guide should contain discussions of what should be done if the task or program
abends, whether the program should be restarted, or if the database requires recovery. Although you
may not be responsible for providing this kind of information, you should provide any information that is
unique to your application to whomever is responsible for this kind of information.

164 IMS: Application Programming

Part 2. Application programming for IMS DB
IMS provides support for writing application programs to access the IMS database.

© Copyright IBM Corp. 1974, 2022 165

166 IMS: Application Programming

Chapter 11. Writing your application programs for
IMS DB

You can write application programs in High Level Assembler language, C language, COBOL, Java, Pascal,
and PL/I to access data in the IMS DB.
Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Programming guidelines
The number, type, and sequence of the IMS requests your program issues affects the efficiency of your
program. A program that is poorly designed can still run if it is coded correctly. IMS will not find design
errors for you. The suggestions that follow will help you develop the most efficient design possible for
your application program.

When you have a general sequence of calls mapped out for your program, look over the guidelines on
sequence to see if you can improve it. An efficient sequence of requests results in efficient internal
IMS processing. As you write your program, keep in mind the guidelines explained in this section. The
following list offers programming guidelines that will help you write efficient and error-free programs.

• Use the most simple call. Qualify your requests to narrow the search for IMS.
• Use the request or sequence of requests that will give IMS the shortest path to the segment you want.
• Use as few requests as possible. Each DL/I call your program issues uses system time and resources.

You may be able to eliminate unnecessary calls by:

– Using path requests when you are replacing, retrieving, or inserting more than one segment in the
same path. If you are using more than one request to do this, you are issuing unnecessary requests.

– Changing the sequence so that your program saves the segment in a separate I/O area, and then gets
it from that I/O area the subsequent times it needs the segment. If your program retrieves the same
segment more than once during program execution, you are issuing unnecessary requests.

– Anticipating and eliminating needless and nonproductive requests, such as requests that result in GB,
GE, and II status codes. For example, if you are issuing GN calls for a particular segment type, and
you know how many occurrences of that segment type exist, do not issue the GN that results in a GE
status code. Keep track of the number of occurrences your program retrieves, and then continue with
other processing when you know you have retrieved all the occurrences of that segment type.

– Issuing an insert request with a qualification for each parent, rather than issuing Get requests for the
parents to make sure that they exist. If IMS returns a GE status code, at least one of the parents does
not exist. When you are inserting segments, you cannot insert dependent segments unless the parent
segments exist.

• Commit your updates regularly. IMS limits full-function databases so that only 300 databases at a
time can have uncommitted updates. Logically related databases, secondary indexes, and HALDB
partitions are counted towards this limit. The number of partitions in HALDB databases is the most
common reason for approaching the 300 database limit for uncommitted updates. If the PROCOPT
values allow a BMP application to insert, replace, or delete segments in the databases, ensure that the
BMP application does not update a combined total of more than 300 databases and HALDB partitions
without committing the changes.

• Keep the main section of the program logic together. For example, branch to conditional routines, such
as error and print routines in other parts of the program, instead of branching around them to continue
normal processing.

• Use call sequences that make good use of the physical placement of the data. Access segments in
hierarchic sequence as often as possible, and avoid moving backward in the hierarchy.

© Copyright IBM Corp. 1974, 2022 167

• Process database records in order of the key field of the root segments. (For HDAM and PHDAM
databases, this order depends on the randomizing routine that is used. Check with your DBA for this
information.)

• Avoid constructing the logic of the program and the structure of commands or calls in a way that
depends heavily on the database structure. Depending on the current structure of the hierarchy reduces
the program's flexibility.

• Minimize the number of segments your program locks. You may need to take checkpoints to release
the locks on updated segments and the lock on the current database record for each PCB your program
uses. Each PCB used by your program has the current database record locked at share or update level.
If this lock is no longer required, issuing the GU call, qualified at the root level with a greater-than
operator for a key of X'FF' (high values), releases the current lock without acquiring a new lock.

Do not use the minimization technique if you use a randomizer that puts high values at the end of the
database and you use secondary indexes. If there is another root beyond the supposed high value key,
IMS returns a GE to allow the application to determine the next step. A secondary index might not work
because the hierarchical structure is inverted, and although the key is past the last root in the index, it
might not be past the last root in the database.

Using PCBs with a processing option of get (G) results in locks for the PCB at share level. This allows
other programs that use the get processing option to concurrently access the same database record.
Using a PCB with a processing option that allows updates (I, R, or D) results in locks for the PCB at
update level. This does not allow any other program to concurrently access the same database record.

Related concepts
“Reserving segments for the exclusive use of your program” on page 270
You may want to reserve a segment and prohibit other programs from updating the segment while you are
using it. To some extent, IMS does this for you through resource lock management. The Q command code
lets you reserve segments in a different way.

Segment search arguments (SSAs)
Segment search arguments (SSAs) specify information for IMS to use in processing a DL/I call. Regardless
of the datatype for the field specified in a SSA, the SSA treats the field as a binary type and does a binary
comparison.

A DL/I call with one or more SSAs is a qualified call, and a DL/I call without SSAs is an unqualified call.

Unqualified SSAs
Contains only a segment name.

Qualified SSAs
Includes one or more qualification statements that name a segment occurrence. The C command and
a segment occurrence's concatenated key can be substituted for a qualification statement.

You can use SSA to select segments by name and to specify search criteria for specific segments. Specific
segments are described by adding qualification statements to the DL/I call. You can further qualify your
calls by using command codes.

Unqualified SSAs
An unqualified SSA gives the name of the segment type that you want to access. In an unqualified SSA,
the segment name field is 8 bytes and must be followed by a 1-byte blank. If the actual segment name
is fewer than 8 bytes long, it must be padded to the right with blanks. An example of an unqualified SSA
follows:

PATIENTbb

168 IMS: Application Programming

Qualified SSAs
To qualify an SSA, you can use either a field or the sequence field of a virtual child. A qualified SSA
describes the segment occurrence that you want to access. This description is called a qualification
statement and has three parts. The following table shows the structure of a qualified SSA.

Table 31. Qualified SSA structure

SSA Component Field Length

Segment name 8

(1

Field name 8

Relative operator 2

Field value Variable

) 1

Using a qualification statement enables you to give IMS information about the particular segment
occurrence that you are looking for. You do this by giving IMS the name of a field within the segment and
the value of the field you are looking for. The field and the value are connected by a relational operator
(R.O. in the previous table) which tells IMS how you want the two compared. For example, to access the
PATIENT segment with the value 10460 in the PATNO field, you could use this SSA:

PATIENTb(PATNObb=b10460)

Alternatively, if the DL/I call uses command code O, you can use a 4-byte starting offset position and
4-byte data length instead of an 8-byte field name. The starting offset is relative to the physical segment
definition and starts with 1. The maximum length that can be retrieved is the maximum segment size
for the database type, and the minimum length is 1. The two fields are specified in the following format:
'oooollll'. oooo is the offset position and llll is the length of the data that you want to retrieve. You can
use this approach to search for and retrieve data without a field definition.

The qualification statement is enclosed in parentheses. The first field contains the name of the field (Fld
Name in the previous table) that you want IMS to use in searching for the segment. The second field
contains a relational operator. The relational operator can be any one of the following:

• Equal, represented as

=b
b=
EQ

• Greater than, represented as

>b
b>
GT

• Less than, represented as

<b
b<
LT

• Greater than or equal to, represented as

>=
=>
GE

• Less than or equal to, represented as

Chapter 11. Writing your application programs for IMS DB 169

<=
=<
LE

• Not equal to, represented as

¬=
=¬
NE

The third field (Fld Value in the previous table) contains the value that you want IMS to use as the
comparative value. The length of Fld Value must be the same length as the field specified by Fld
Name.

You can use more than one qualification statement in an SSA. Special cases exist, such as in a virtual
logical child segment when the sequence field consists of multiple fields.

Sequence fields of a virtual logical child

As a general rule, a segment can have only one sequence field. However, in the case of the virtual
logical-child segment type, multiple FIELD statements can be used to define a noncontiguous sequence
field.

When specifying the sequence field for a virtual logical child segment, if the field is not contiguous, the
length of the field named in the SSA is the concatenated length of the specified field plus all succeeding
sequence fields. The following figure shows a segment with a noncontiguous sequence field.

Figure 47. Segment with a noncontiguous sequence field

If the first sequence field is not included in a "scattered" sequence field in an SSA, IMS treats the
argument as a data field specification, rather than as a sequence field.

Related reading: For more information on the virtual logical child segment, refer to IMS Version 15.3
Database Administration.

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

SSA guidelines
Using SSAs can simplify your programming, because the more information you can give IMS to do the
searching for you, the less program logic you need to analyze and compare segments in your program.

Using SSAs does not necessarily reduce system overhead, such as internal logic and I/Os, required to
obtain a specific segment. To locate a particular segment without using SSAs, you can issue DL/I calls
and include program logic to examine key fields until you find the segment you want. By using SSAs in
your DL/I calls, you can reduce the number of DL/I calls that are issued and the program logic needed to
examine key fields. When you use SSAs, IMS does this work for you.

Recommendations:

• Use qualified calls with qualified SSAs whenever possible. SSAs act as filters, returning only the
segments your program requires. This reduces the number of calls your program makes, which
provides better performance. It also provides better documentation of your program. Qualified SSAs

170 IMS: Application Programming

are particularly useful when adding segments with insert calls. They ensure that the segments are
inserted where you want them to go.

• For the root segment, specify the key field and an equal relational operator, if possible. Using a key
field with an equal-to, equal-to-or-greater-than, or greater-than operator lets IMS go directly to the root
segment.

• For dependent segments, it is desirable to use the key field in the SSA, although it is not as important as
at the root level. Using the key field and an equal-to operator lets IMS stop the search at that level when
a higher key value is encountered. Otherwise IMS must search through all occurrences of the segment
type under its established parent in order to determine whether a particular segment exists.

• If you often must search for a segment using a field other than the key field, consider putting a
secondary index on the field.

For example, suppose you want to find the record for a patient by the name of "Ellen Carter". As a
reminder, the patient segment in the examples contains three fields: the patient number, which is the key
field; the patient name; and the patient address. The fact that patient number is the key field means that
IMS stores the patient segments in order of their patient numbers. The best way to get the record for
"Ellen Carter" is to supply her patient number in the SSA. If her number is 09000, your program uses this
call and SSA:

GUbbbbbbPATIENTb(PATNObbb=b09000)

If your program supplies an invalid number, or if someone has deleted Ellen Carter's record from the
database, IMS does not need to search through all the PATIENT occurrences to determine that the
segment does not exist.

However, if your program does not have the number and must give the name instead, IMS must search
through all the patient segments and read each patient name field until it finds "Ellen Carter" or until it
reaches the end of the patient segments.

Related concepts
“Secondary indexing and logical relationships” on page 271
Secondary indexing and logical relationships are techniques that can change your application program's
view of the data. The DBA makes the decision about whether to use these options.

Multiple qualification statements
When you use a qualification statement, you can do more than give IMS a field value with which to
compare the fields of segments in the database. You can give several field values to establish limits for
the fields you want IMS to compare.

You can use a maximum of 1024 qualification statements on a call.

Connect the qualification statements with one of the Boolean operators. You can indicate to IMS that you
are looking for a value that, for example, is greater than A and less than B, or you can indicate that you are
looking for a value that is equal to A or greater than B. The Boolean operators are:
Logical AND

For a segment to satisfy this request, the segment must satisfy both qualification statements that are
connected with the logical AND (coded * or &).

Logical OR
For a segment to satisfy this request, the segment can satisfy either of the qualification statements
that are connected with the logical OR (coded + or |).

One more Boolean operator exists and is called the independent AND. Use it only with secondary indexes.

For a segment to satisfy multiple qualification statements, the segment must satisfy a set of qualification
statements. A set is a number of qualification statements that are joined by an AND. To satisfy a set, a
segment must satisfy each of the qualification statements within that set. Each OR starts a new set of
qualification statements. When processing multiple qualification statements, IMS reads them left to right
and processes them in that order.

Chapter 11. Writing your application programs for IMS DB 171

When you include multiple qualification statements for a root segment, the fields you name in the
qualification statements affect the range of roots that IMS examines to satisfy the call. DL/I examines the
qualification statements to determine the minimum acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on the key field with an
operator of equal-to, greater-than, or equal-to-or-greater-than, IMS starts at the first root of the database
and searches for a root that meets the qualification.

If each set contains at least one statement that is qualified on the key field with an equal-to, greater-
than, or equal-to-or-greater-than operator, IMS uses the lowest of these keys as the starting place for
its search. After establishing the starting position for the search, IMS processes the call by searching
forward sequentially in the database, similar to the way it processes GN calls. IMS examines each root it
encounters to determine whether the root satisfies a set of qualification statements. IMS also examines
the qualification statements to determine the maximum acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on the key field with
an operator of equal-to, less-than-or-equal-to, or less-than, IMS determines that no maximum key value
exists. If each set contains at least one statement that is qualified on the key field with an equal-to,
less-than, or equal-to-or-less-than operator, IMS uses the maximum of these keys to determine when the
search stops.

IMS continues the search until it satisfies the call, encounters the end of the database, or finds a key value
that exceeds the maximum. If no maximum key value is found, the search continues until IMS satisfies
the call or encounters the end of the database.

Examples: Shown below are cases of SSAs used at the root level:

ROOTKEYb
=b10&FIELDBb
b=XYZ+ROOTKEYb
=10&FIELDBb
b
=ABC

In this case, the minimum and maximum key is 10. This means that IMS starts searching with key 10 and
stops when it encounters the first key greater than 10. To satisfy the SSA, the ROOTKEY field must be
equal to 10, and FIELDB must be equal to either ABC or XYZ.

ROOTKEYb
=>10&ROOTKEYb
<20

In this case, the minimum key is 10 and the maximum key is 20. Keys in the range of 10 to 20 satisfy the
SSA. IMS stops the search when it encounters the first key greater than 20.

ROOTKEYb
10&ROOTKEYb
=<20+ROOTKEYb
=>110&ROOTKEYb
=<120

In this case, the minimum key is 10 and the maximum key is 120. Keys in the range of 10 to 20 and 110 to
120 satisfy the call. IMS stops the search when it encounters the first key greater than 120. IMS does not
scan from 20 to 110 but skips forward (using the index for HIDAM or PHIDAM) from 20 to 110. Because of
this, you can use ranges for more efficient program operation.

When you use multiple qualification statement segments that are part of logical relationships, additional
considerations exist.

Related concepts
“Multiple qualification statements with secondary indexes” on page 272

172 IMS: Application Programming

When you qualify a call using the name of an indexed field, you can include multiple qualification
statements.

Example of how to use multiple qualification statements
The following example shows how you can use multiple qualification statements.

Given the sample Medical database, we want to answer the following question:

Did we see patient number 04120 during 1992?

To find the answer to this question, you need to give IMS more than the patient’s name; you want IMS to
search through the ILLNESS segments for that patient, read each one, and return any that have a date in
1992. The call you would issue to do this is:

GU PATIENTb(PATNObbbEQ04120)
 ILLNESSb(ILLDATEb>=19920101&ILLDATEb<=19921231)

In other words, you want IMS to return any ILLNESS segment occurrences under patient number 04120
that have a date on or after January 1, 1992, and on or before December 31, 1992, joined with an AND
connector. Suppose you wanted to answer the following request:

Did we see Judy Jennison during January of 1992 or during July of 1992? Her patient number is
05682.

You could issue a GU call with the following SSAs:

GU PATIENTb(PATNObEQ05682)
 ILLNESSb(ILLDATEb>=19920101&ILLDATEb<=19920131|ILLDATEb>=19920701&ILLDATEb<=19920731)

To satisfy this request, the value for ILLDATE must satisfy either of the two sets. IMS returns any ILLNESS
segment occurrences for the month of January 1992, or for the month of July 1992.

Multiple qualification statements for HDAM, PHDAM, or DEDB
For HDAM (Hierarchical Direct Access Method), PHDAM (partitioned HDAM), or data entry database
(DEDB) organizations, a randomizing exit routine usually does not store the root keys in ascending key
sequence. For these organizations, IMS determines the minimum and maximum key values. The minimum
key value is passed to the randomizing exit routine, which determines the starting anchor point.

The first root off this anchor is the starting point for the search. When IMS encounters a key that exceeds
the maximum key value, IMS terminates the search with a GE status code. If the randomizing routine
randomized so that the keys are stored in ascending key sequence, a call for a range of keys will return all
of the keys in the range. However, if the randomizing routine did not randomize into key sequence, the call
does not return all keys in the requested range. Therefore, use calls for a range of key values only when
the keys are in ascending sequence (when the organization is HDAM, PHDAM, or DEDB).

Recommendations:

• When the organization is HDAM, PHDAM, or DEDB, use calls for a range of key values only when the keys
are in ascending sequence.

• When the organization is HDAM, PHDAM or DEDB, do not use calls that allow a range of values at the
root level.

While not recommended, a sequential search of the database can be accomplished with the use of
command codes A and G when making GN/GHN database calls. Command code A will clear positioning
and cause the call to start at the beginning of the database. Command code G will prevent randomization
and cause a sequential search of the database when used with SSAs that specify a range of values
at the root level. The returned segments may not be in sequential order depending on how they were
randomized.

To search the database sequentially, you can use the use the following segment search argument (SSA)
together with SSAs that specify a range of values at the root level.

Chapter 11. Writing your application programs for IMS DB 173

 key field > hex zeros & key field < all f's key

The returned segments may not be in sequential order depending on how they were randomized.

For more details about HDAM or PHDAM databases, see IMS Version 15.3 Database Administration.

SSAs and command codes
SSAs can also include one or more command codes, which can change and extend the functions of DL/I
calls.

For information on command codes, see the topic "General Command Codes for DL/I Calls" in IMS Version
15.3 Application Programming APIs.

IMS always returns the lowest segment in the path to your I/O area. If your program codes a D command
code in an SSA, IMS also returns the segment described by that SSA. A call that uses the D command
code is called a path call.

For example, suppose your program codes a D command code on a GU call that retrieves segment F and
all segments in the path to F in the hierarchy shown in the following figure.

Figure 48. D command code example

The call function and the SSAs for the call look like this:

GU Abbbbbbb
 *D
 Cbbbbbbb
 *D
 Ebbbbbbb
 Fbbbbbbb

A command code consists of one letter. Code the command codes in the SSA after the segment name
field. Separate the segment name field and the command code with an asterisk, as shown in the following
table.

Table 32. Unqualified SSA with command code

SSA Component Field Length

Seg Name 8

* 1

Cmd Code Variable

b 1

174 IMS: Application Programming

Your program can use command codes in both qualified and unqualified SSAs. However, command codes
cannot be used by MSDB calls. If the command codes are not followed by qualification statements, they
must each be followed by a 1-byte blank. If the command codes are followed by qualification statements,
do not use the blank. The left parenthesis of the qualification statement follows the command code
instead, as indicated in the following table.

Table 33. Qualified SSA with command code

SSA Component Field Length

Seg Name 8

* 1

Cmd Code Variable

(1

Field name or, if the O cmd code is specified,
either the field name or the field position and length

8

Relational Operator (R.O.) 2

Field Value Variable

) 1

By giving IMS the field position within the segment and the value of the field you are looking for, the field
position and the value are connected by a relational operator which tells IMS how you want the two to be
compared. The field position can be either a searchable field name as defined in the DBD or a position and
length when using command code O.

If your program uses command codes to manage subset pointers in a DEDB, enter the number of the
subset pointer immediately after the command code. Subset pointers are a means of dividing a chain of
segment occurrences under the same parent into two or more groups or subsets. Your program can define
as many as eight subset pointers for any segment type. Using an application program, your program can
then manage these subset pointers.

Related concepts
“Processing Fast Path DEDBs with subset pointer command codes” on page 304
Subset pointers and the command codes you use with them are optimization tools that significantly
improve the efficiency of your program when you need to process long segment chains.

Considerations for coding DL/I calls and data areas
If you have made all the design decisions about your program, coding the program is a matter of
implementing the decisions that you have made. In addition to knowing the design and processing
logic for your program, you need to know about the data that your program is processing, the PCBs it
references, and the segment formats in the hierarchies your program processes.

You can use the following list as a checklist to make sure you are not missing any information. If you are
missing information about data, IMS options being used in the application program, or segment layouts
and the application program's data structures, obtain this information from the DBA or the equivalent
specialist at your installation. Be aware of the programming standards and conventions that have been
established at your installation.

Program design considerations:

• The sequence of calls for your program.
• The format of each call:

– Does the call include any SSAs?
– If so, are they qualified or unqualified?

Chapter 11. Writing your application programs for IMS DB 175

– Does the call contain any command codes?
• The processing logic for the program.
• The routine the program uses to check the status code after each call.
• The error routine the program uses.

Checkpoint considerations:

• The type of checkpoint call to use (basic or symbolic).
• The identification to assign to each checkpoint call, regardless of whether the Checkpoint call is basic or

symbolic.
• If you are going to use the symbolic checkpoint call, which areas of your program to checkpoint.

Segment considerations:

• Whether the segment is fixed length or variable length.
• The length of the segment (the maximum length, if the segment is variable length).
• The names of the fields that each segment contains.
• Whether the segment has a key field. If it does, is the key field unique or non-unique? If it does not,

what sequencing rule has been defined for it? (A segment's key field is defined in the SEQ keyword of
the FIELD statement in the DBD. The sequencing rule is defined in the RULES keyword of the SEGM
statement in the DBD.)

• The segment's field layouts:

– The byte location of each field.
– The length of each field.
– The format of each field.

Data structure considerations:

• Each data structure your program processes has been defined in a DB PCB. All of the PCBs your
program references are part of a PSB for your application program. You need to know the order in which
the PCBs are defined in the PSB.

• The layout of each of the data structures your program processes.
• Whether multiple or single positioning has been specified for each data structure. This is specified in the
POS keyword of the PCB statement during PSB generation.

• Whether any data structures use multiple DB PCBs.

Preparing to run your CICS DL/I call program
You must perform several steps before you run your CICS DL/I call program.

Refer to the appropriate CICS reference information:

• For information on translating, compiling, and binding your CICS online program, see the description of
installing application programs in CICS Transaction Server for z/OS CICS System Definition Guide.

• For information on which compiler options should be used for a CICS online program, as well as for CICS
considerations when converting a CICS online COBOL program with DL/I calls to Enterprise COBOL, see
CICS Transaction Server for z/OS CICS Application Programming Guide.

176 IMS: Application Programming

Examples of how to code DL/I calls and data areas
You can code DL/I calls and data areas in assembler language, C, COBOL, Pascal, Java, and PL/I.

Coding a batch program in assembler language
The following code example shows how to write an IMS program to access the IMS database in assembler
language.

The numbers to the right of the program refer to the notes that follow the program. This kind of program
can run as a batch program or as a batch-oriented BMP.

Sample assembler language program

PGMSTART CSECT NOTES
* EQUATE REGISTERS 1
* USEAGE OF REGISTERS
R1 EQU 1 ORIGINAL PCBLIST ADDRESS
R2 EQU 2 PCBLIST ADDRESS1
R5 EQU 5 PCB ADDRESSS
R12 EQU 12 BASE ADDRESS
R13 EQU 13 SAVE AREA ADDRESS
R14 EQU 14
R15 EQU 15
*
 USING PGMSTART,R12 BASE REGISTER ESTABLISHED 2
 SAVE (14,12) SAVE REGISTERS
 LR 12,15 LOAD REGISTERS
 ST R13,SAVEAREA+4 SAVE AREA CHAINING
 LA R13,SAVEAREA NEW SAVE AREA
 USING PCBLIST,R2 MAP INPUT PARAMETER LIST
 USING PCBNAME,R5 MAP DB PCB
 LR R2,R1 SAVE INPUT PCB LIST IN REG 2
 L R5,PCBDETA LOAD DETAIL PCB ADDRESS
 LA R5,0(R5) REMOVE HIGH ORDER END OF LIST FLAG 3
 CALL ASMTDLI,(GU,(R5),DETSEGIO,SSANAME),VL 4
*
*
 L R5,PCBMSTA LOAD MASTER PCB ADDRESS
 CALL ASMTDLI,(GHU,(R5),MSTSEGIO,SSAU),VL 5
*
*
 CALL ASMTDLI,(GHN,(R5),MSTSEGIO),VL 6
*
*
 CALL ASMTDLI,(REPL,(R5),MSTSEGIO),VL
*
*
 L R13,4(R13) RESTORE SAVE AREA
 RETURN (14,12) RETURN BACK 7
*
* FUNCTION CODES USED
*
GU DC CL4'GU'
GHU DC CL4'GHU'
GHN DC CL4'GHN'
REPL DC CL4'REPL' 8
*
* SSAS
*
SSANAME DS 0C
 DC CL8'ROOTDET'
 DC CL1'('
 DC CL8'KEYDET' 9
 DC CL2' ='
NAME DC CL5' '
 DC C')'
*
SSAU DC CL9'ROOTMST'*
MSTSEGIO DC CL100' '
DETSEGIO DC CL100' '
SAVEAREA DC 18F'0'
* 10
PCBLIST DSECT
PCBIO DS A ADDRESS OF I/O PCB
PCBMSTA DS A ADDRESS OF MASTER PCB

Chapter 11. Writing your application programs for IMS DB 177

PCBDETA DS A ADDRESS OF DETAIL PCB 11
*
PCBNAME DSECT
DBPCBDBD DS CL8 DBD NAME
DBPCBLEV DS CL2 LEVEL FEEDBACK
DBPCBSTC DS CL2 STATUS CODES
DBPCBPRO DS CL4 PROC OPTIONS
DBPCBRSV DS F RESERVED
DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK
DBPCBMKL DS F LENGTH OF KEY FEEDBACK
DBPCBNSS DS F NUMBER OF SENSITIVE SEGMENTS IN PCB
DBPCBKFD DS C KEY FEEDBACK AREA
 END PGMSTART

Note:

1. The entry point to an assembler language program can have any name. Also, you can substitute
CBLTDLI for ASMTDLI in any of the calls.

2. When IMS passes control to the application program, register 1 contains the address of a variable-
length fullword parameter list. Each word in this list contains the address of a PCB that the
application program must save. The high-order byte of the last word in the parameter list has the
0 bit set to a value of 1 which indicates the end of the list. The application program subsequently
uses these addresses when it executes DL/I calls.

3. The program loads the address of the DETAIL DB PCB.
4. The program issues a GU call to the DETAIL database using a qualified SSA (SSANAME).
5. The program loads the address of the HALDB master PCB.
6. The next three calls that the program issues are to the HALDB master. The first is a GHU call that

uses an unqualified SSA. The second is an unqualified GHN call. The REPL call replaces the segment
retrieved using the GHN call with the segment in the MSTSEGIO area.

You can use the parmcount parameter in DL/I calls in assembler language instead of the VL
parameter, except for in the call to the sample status-code error routine.

7. The RETURN statement loads IMS registers and returns control to IMS.
8. The call functions are defined as four-character constants.
9. The program defines each part of the SSA separately so that it can modify the SSA's fields.

10. The program must define an I/O area that is large enough to contain the largest segment it is to
retrieve or insert (or the largest path of segments if the program uses the D command code). This
program's I/O areas are 100 bytes each.

11. A fullword must be defined for each PCB. The assembler language program can access status codes
after a DL/I call by using the DB PCB base addresses.

This example assumes that an I/O PCB was passed to the application program. If the program is a
batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so that the I/O
PCB is included. Because the I/O PCB is required for a batch program to make system service calls,
CMPAT=YES should always be specified.

Restriction: The IMS language interface module (DFSLI000) must be bound to the compiled assembler
language program.

Coding a CICS online program in assembler language
The following code example in assembler language shows how you define and establish addressability to
the UIB.

The numbers to the right of the program refer to the notes that follow the program. This program can run
in a CICS environment using DBCTL.

Sample call-level assembler language program (CICS online)

PGMSTART DSECT NOTES
UIBPTR DS F

178 IMS: Application Programming

IOAREA DS 0CL40 1
AREA1 DS CL3
AREA2 DS CL37
 DLIUIB
 USING UIB,8 2
PCBPTRS DSECT
* PSB ADDRESS LIST
PCB1PTR DS F
PCB1 DSECT
 USING PCB1,6 3
DBPC1DBD DS CL8
DBPC1LEV DS CL2
DBPC1STC DS CL2
DBPC1PRO DS CL4
DBPC1RSV DS F
DBPC1SFD DS CL8
DBPC1MKL DS F
DBPC1NSS DS F
DBPC1KFD DS 0CL256
DBPC1NM DS 0CL12
DBPC1NMA DS 0CL14
DBPC1NMP DS CL17
ASMUIB CSECT
 B SKIP
PSBNAME DC CL8'ASMPSB'
PCBFUN DC CL4'PCB'
REPLFUN DC CL4'REPL'
TERMFUN DC CL4'TERM'
GHUFUN DC CL4'GHU'
SSA1 DC CL9'AAAA4444'
GOODRC DC XL1'00'
GOODSC DC CL2' '
SKIP DS 0H 4
* SCHEDULE PSB AND OBTAIN PCB ADDRESSES
 CALLDLI ASMTDLI,(PCBFUN,PSBNAME,UIBPTR)
 L 8,UIBPTR 5
 CLC UIBFCTR,X'00'
 BNE ERROR1
* GET PSB ADDRESS LIST
 L 4,UIBPCBAL
 USING PCBPTRS,4
* GET ADDRESS OF FIRST PCB IN LIST
 L 6,PCB1PTR
* ISSUE DL/I CALL: GET A UNIQUE SEGMENT
 CALLDLI ASMTDLI,(GHUFUN,PCB1,IOAREA,SSA1) 6
 CLC UIBFCTR,GOODRC
 BNE ERROR2
 CLC DBPC1STC,GOODSC
 BNE ERROR3 7
* PERFORM SEGMENT UPDATE ACTIVITY
 MVC AREA1,.......
 MVC AREA2,.......
* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION
 CALLDLI ASMTDLI,(REPLFUN,PCB1,IOAREA,SSA1) 8
 CLC UIBFCTR,GOODRC
 BNE ERROR4
 CLC DBPC1STC,GOODSC
 B TERM
ERROR1 DS 0H
* INSERT ERROR DIAGNOSTIC CODE
 B TERM
ERROR2 DS 0H
* INSERT ERROR DIAGNOSTIC CODE
 B TERM
ERROR3 DS 0H
* INSERT ERROR DIAGNOSTIC CODE
 B TERM
ERROR4 DS 0H
* INSERT ERROR DIAGNOSTIC CODE
ERROR5 DS 0H
* INSERT ERROR DIAGNOSTIC CODE
 B TERM
TERM DS 0H
* RELEASE THE PSB
 CALLDLI ASMDLI, (TERMFUN)
 EXEC CICS RETURN
 END ASMUIB 9,10

Note:

Chapter 11. Writing your application programs for IMS DB 179

1. The program must define an I/O area that is large enough to contain the largest segment it is to
retrieve or insert (or the largest path of segments if the program uses the D command code).

2. The DLIUIB statement copies the UIB DSECT.
3. A fullword must be defined for each DB PCB. The assembler language program can access status

codes after a DL/I call by using the DB PCB base addresses.
4. This is an unqualified SSA. For qualified SSA, define each part of the SSA separately so that the

program can modify the fields of the SSA.
5. This call schedules the PSB and obtains the PSB address.
6. This call retrieves a segment from the database.

CICS online assembler language programs use the CALLDLI macro, instead of the call statement, to
access DL/I databases. This macro is similar to the call statement. It looks like this:

CALLDLI ASMTDLI,(function,PCB-name,ioarea, SSA1,...SSAn),VL

7. CICS online programs must check the return code in the UIB before checking the status code in the
DB PCB.

8. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call.
The data is replaced by the contents of the I/O area referenced in the call.

9. This call releases the PSB.
10. The RETURN statement loads IMS registers and returns control to IMS.

Related reading: For more information on installing CICS application programs, see CICS Transaction
Server for z/OS CICS Application Programming Reference.

Related reference
“Specifying the UIB (CICS online programs only)” on page 219
The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Coding a batch program in C language
The following code example shows how to write an IMS program to access the IMS database in C
language.

The numbers to the right of the program refer to the notes that follow the program.

Sample C language program

#pragma runopts(env(IMS),plist(IMS)) NOTES
#include <ims.h>
#include <stdio.h> 1
main() { 2
/* */
/* descriptive statements */
/* */
 IO_PCB_TYPE *IO_PCB = (IO_PCB_TYPE*)PCBLIST[0];
 struct {PCB_STRUCT(10)} *mast_PCB = __pcblist[1];
struct {PCB_STRUCT(20)} *detail_PCB = __pcblist[2]; 3
const static char func_GU[4] = "GU ";
const static char func_GN[4] = "GN ";
const static char func_GHU[4] = "GHU ";
const static char func_GHN[4] = "GHN ";
const static char func_GNP[4] = "GNP "; 4
const static char func_GHNP[4] = "GHNP";
const static char func_ISRT[4] = "ISRT";
const static char func_REPL[4] = "REPL";
const static char func_DLET[4] = "DLET";
char qual_ssa[8+1+8+2+6+1+1]; /* initialized by sprintf 5
 /*below. See the */
 /*explanation for */
 /*sprintf in note 7 for the */
 /*meanings of 8,1,8,2,6,1 ——*/
 /*the final 1 is for the */

180 IMS: Application Programming

 /*trailing '\0' of string */
static const char unqual_ssa[]= "NAME ");
 /* 12345678_ */
struct {
 ———
 ———
 ———
 } mast_seg_io_area;

struct {
 ———
 ——— 6
 ———
 } det_seg_io_area;
/* */
/* Initialize the qualifier */
/* */

 sprintf(qual_ssa,
 "8.8s(8.8s6.6s)",
 "ROOT", "KEY", "=", "vvvvv"); 7
/* */
/* Main part of C batch program */
/* */
 ctdli(func_GU, detail_PCB,
 &det_seg_io_area,qual_ssa); 8

 ctdli(func_GHU, mast_PCB,
 &mast_seg_io_area,qual_ssa); 9

 ctdli(func_GHN, mast_PCB,
 &mast_seg_io_area); 10

 ctdli(func_REPL, mast_PCB,
 &mast_seg_io_area; 11
} 12

Note:

1. The env(IMS) establishes the correct operating environment and the plist(IMS) establishes the
correct parameter list when invoked under IMS. The ims.h header file contains declarations for PCB
layouts, __pcblist, and the ctdli routine. The PCB layouts define masks for the PCBs that the program
uses as structures. These definitions make it possible for the program to check fields in the PCBs.

The stdio.h header file contains declarations for sprintf (used to build up the SSA).
2. After IMS has loaded the application program's PSB, IMS gives control to the application program

through this entry point.
3. The C run-time sets up the __pcblist values. The order in which you refer to the PCBs must be the

same order in which they have been defined in the PSB. (Values other than "10" and "20" can be
used, according to the actual key lengths needed.) These declarations can be done using macros,
such as:

#define IO_PCB (IO_PCB_TYPE *) (__pcblist[0])
#define mast_PCB (__pcblist[1])
#define detail_PCB (__pcblist[2])

This example assumes that an I/O PCB was passed to the application program. When the program is
a batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so that the I/O
PCB is included. Because the I/O PCB is required for a batch program to make system service calls,
CMPAT=YES should always be specified for batch programs.

4. Each of these areas defines one of the call functions used by the batch program. Each character
string is defined as four alphanumeric characters, with a value assigned for each function. (If the
[4]s had been left out, 5 bytes would have been reserved for each constant.) You can define other
constants in the same way. Also, you can store standard definitions in a source library and include
them by using a #include directive.

Instead, you can define these by macros, although each string would have a trailing null ('\0').
5. The SSA is put into a string (see note 7). You can define a structure, as in COBOL, PL/I, or Pascal, but

using sprintf is more convenient. (Remember that C strings have trailing nulls that cannot be passed

Chapter 11. Writing your application programs for IMS DB 181

to IMS.) Note that the string is 1 byte longer than required by IMS to contain the trailing null, which is
ignored by IMS. Note also that the numbers in brackets assume that six fields in the SSA are equal to
these lengths.

6. The I/O areas that will be used to pass segments to and from the database are defined as structures.
7. The sprintf function is used to fill in the SSA. The "%-8.8s" format means "a left-justified string of

exactly eight positions". The "%2.2s" format means "a right-justified string of exactly two positions".

Because the ROOT and KEY parts do not change, this can also be coded:

sprintf(qual_ssa,
 "ROOT (KEY =%-6.6s)", "vvvvv");
 /* 12345678 12345678 */

8. This call retrieves data from the database. It contains a qualified SSA. Before you can issue a call
that uses a qualified SSA, initialize the data field of the SSA. Before you can issue a call that uses
an unqualified SSA, initialize the segment name field. Unlike the COBOL, PL/I, and Pascal interface
routines, ctdli also returns the status code as its result. (Blank is translated to 0.) So, you can code:

switch (ctdli(....)) {
 case 0: ... /* everything ok */

 break;
 case 'AB':

 break;
 case 'IX': ...

 break;
 default:
}

You can pass only the PCB pointer for DL/I calls in a C program.
9. This is another call with a qualified SSA.

10. This call is an unqualified call that retrieves data from the database. Because it is a Get Hold call, it
can be followed by REPL or DLET.

11. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call.
The data is replaced by the contents of the I/O area that is referenced in the call.

12. The end of the main routine (which can be done by a return statement or exit call) returns control to
IMS.

Restriction: IMS provides a language interface module (DFSLI000) that is an interface between IMS and
the C language. This module must be made available to the application program at bind time.

Coding a batch program in COBOL
The following code example shows how to write an IMS program to access the IMS database in COBOL.

The numbers to the right of the program refer to the notes that follow the program. This kind of program
can run as a batch program or as a batch-oriented BMP.

Sample COBOL program

 Identification Division.
 Program-ID. BATCOBOL.
 Environment Division.
 Data Division.
 Working-Storage Section.
 01 Func-Codes.
 05 Func-GU Picture XXXX Value 'GU '.
 05 Func-GHU Picture XXXX Value 'GHU '.
 05 Func-GN Picture XXXX Value 'GHN '.
 05 Func-GHN Picture XXXX Value 'GHN '.
 05 Func-GNP Picture XXXX Value 'GNP '.
 05 Func-GHNP Picture XXXX Value 'GHNP'.
 05 Func-REPL Picture XXXX Value 'REPL'.
 05 Func-ISRT Picture XXXX Value 'ISRT'.

182 IMS: Application Programming

 05 Func-DLET Picture XXXX Value 'DLET'.
 05 Parmcount Picture S9(5) Value +4 Comp-5.
 01 Unqual-SSA.
 05 Seg-Name Picture X(08) Value ' '.
 05 Filler Picture X Value ' '.
 01 Qual-SSA-Mast.
 05 Seg-Name-M Picture X(08) Value 'ROOTMast'.
 05 Begin-Paren-M Picture X Value '('.
 05 Key-Name-M Picture X(08) Value 'KeyMast '.
 05 Kel-Oper-M Picture X(05) Value ' ='.
 05 Key-Value-M Picture X(06) Value 'VVVVVV'.
 05 End-Paren-M Picture X Value ')'.
 01 Qual-SSA-Det.
 05 Seg-Name-D Picture X(08) Value 'ROOTDET '.
 05 Begin-Paren-D Picture X Value '('.
 05 Key-Name-D Picture X(08) Value 'KEYDET '.
 05 Rel-Oper-D Picture X(05) Value ' ='.
 05 Key-Value-D Picture X(06) Value 'VVVVVV'.
 05 End-Paren-D Picture X Value ')'.
 01 Det-Seg-In.
 05 Data1 Picture X.
 05 Data2 Picture X.
 01 Mast-Seg-In.
 05 Data1 Picture X.
 05 Data2 Picture X.
 linkage section.
 01 IO-PCB.
 05 Filler Picture X(10).
 05 IO-Status-Code Picture XX.
 05 Filler Picture X(20).
 01 DB-PCB-Mast.
 05 Mast-Dbd-Name Picture X(8).
 05 Mast-Seg-Level Picture XX.
 05 Mast-Status-Code Picture XX.
 05 Mast-Proc-Opt Picture XXXX.
 05 Filler Picture S9(5) Comp-5.
 05 Mast-Seg-Name Picture X(8).
 05 Mast-Len-KFB Picture S9(5) Comp-5.
 05 Mast-Nu-Senseg Picture S9(5) Comp-5.
 05 Mast-Key-FB Picture X(256).
 01 DB-PCB-Detail.
 05 Det-Dbd-Name Picture X(8).
 05 Det-Seg-Level Picture XX.
 05 Det-Status-Code Picture XX.
 05 Det-Proc-Opt Picture XXXX.
 05 Filler Picture S9(5) Comp-5.
 05 Det-Seg-Name Picture X(8).
 05 Det-Len-KFB Picture S9(5) Comp-5.
 05 Det-Nu-Senseg Picture S9(5) Comp-5.
 05 Det-Key-FB Picture X(256).

 Procedure Division using IO-PCB DB-PCB-Mast DB-PCB-Detail.
 Call 'CBLTDLI' using Func-GU DB-PCB-Detail
 Det-seg-in Qual-SSA-Det.
 .
 .
 Call 'CBLTDLI' using Parmcount Func-ghu DB-PCB-Mast
 Mast-seg-in Qual-SSA-Mast.
 .
 .
 Call 'CBLTDLI' using Func-GHN DB-PCB-Mast
 Mast-seg-in.
 .
 .
 Call 'CBLTDLI' using Func-REPL DB-PCB-Mast
 Mast-seg-in.
 .
 .
 Goback.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or 01-level working
storage entry. Each picture clause is defined as four alphanumeric characters and has a value
assigned for each function. If you want to include the optional parmcount field, you can initialize
count values for each type of call. You can also use a COBOL COPY statement to include these
standard descriptions in the program.

Chapter 11. Writing your application programs for IMS DB 183

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a call that requires an
unqualified SSA, it moves the segment name to this area. If a call requires two or more SSAs, you may
need to define additional areas.

3. A 01-level working storage entry defines each qualified SSA that the application program uses.
Qualified SSAs must be defined separately, because the values of the fields are different.

4. A 01-level working storage entry defines I/O areas that are used for passing segments to and from
the database. You can further define I/O areas with sub-entries under the 01-level. You can use
separate I/O areas for each segment type, or you can define one I/O area that you use for all
segments.

5. A 01-level linkage section entry defines a mask for each of the PCBs that the program requires. The
DB PCBs represent both input and output databases. After issuing each DL/I call, the program checks
the status code through this linkage. You define each field in the DB PCB so that you can reference it
in the program.

6. This is the standard procedure division statement of a batch program. After IMS has loaded the PSB
for the program, IMS passes control to the application program. The PSB contains all the PCBs that
are defined in the PSB. The coding of USING on the procedure division statement references each of
the PCBs by the names that the program has used to define the PCB masks in the linkage section. The
PCBs must be listed in the order in which they are defined in the PSB.

The previous code example assumes that an I/O PCB was passed to the application program. When
the program is a batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN
so that the I/O PCB is included. Because the I/O PCB is required for a batch program to make system
service calls, CMPAT=YES should always be specified for batch programs.

The entry DLITCBL statement is only used in the main program. Do not use it in called programs.
7. This call retrieves data from the database by using a qualified SSA. Before issuing the call, the

program must initialize the key or data value of the SSA so that it specifies the particular segment to
be retrieved. The program should test the status code in the DB PCB that was referenced in the call
immediately after issuing the call. You can include the parmcount parameter in DL/I calls in COBOL
programs, except in the call to the sample status-code error routine. It is never required in COBOL.

8. This is another retrieval call that contains a qualified SSA.
9. This is an unqualified retrieval call.

10. The REPL call replaces the segment that was retrieved in the most recent Get Hold call. The segment
is replaced with the contents of the I/O area that is referenced in the call (MAST-SEG-IN).

11. The program issues the GOBACK statement when it has finished processing.

Related reading: For information on how to use these procedures, see IMS Version 15.3 System
Definition.

Binding COBOL code to the IMS language interface module
IMS supplies a language interface module (DFSLI000). This module must be bound to the batch program
after the program has been compiled. It gives a common interface to IMS.

If you use the IMS-supplied procedures (IMSCOBOL or IMSCOBGO), IMS binds the language interface
with the application program. IMSCOBOL is a two-step procedure that compiles and binds your program.
IMSCOBGO is a three-step procedure that compiles, binds, and executes your program in an IMS batch
region.

Coding a CICS online program in COBOL
The following code examples are skeleton online programs in Enterprise COBOL. They show examples of
how to define and set up addressability to the UIB.

The numbers to the right of the programs refer to the notes that follow them. This kind of program can run
in a CICS environment using DBCTL.

184 IMS: Application Programming

Sample COBOL program that can run in CICS

 Identification Division.
 Program-ID. CBLUIB.
 Environment Division.
 Data Division.
 Working-Storage Section.
 01 Func-Codes.
 05 Psb-Name Picture X(8) Value 'CBLPSB '.
 05 Func-PCB Picture X(4) Value 'PCB '.
 05 Func-TERM Picture X(4) Value 'TERM'. 1
 05 Func-GHU Picture X(4) Value 'GHU '.
 05 Func-REPL Picture X(4) Value 'REPL'.
 05 SSA1 Picture X(9) Value 'AAAA4444 '.
 05 Success-Message Picture X(40).
 05 Good-Status-Code Picture XX Value ' '. 2
 05 good-return-code Picture X Value low-Value.
 01 Message0.
 05 Message1 Picture X(38). 3
 05 Message2 Picture XX.
 01 Dli-IO-Area.
 05 Area1 Picture X(3).
 05 Area2 Picture X(37).
 Procedure Division.
 * Schedule the psb and address the uib
 Call 'CBLTDli' using Func-PCB Psb-Name 4
 address of Dliuib.
 If Uibfctr is not equal low-Values then
 * Insert error diagnostic code
 Exec CICS return end-exec
 End-if.
 Set address of pcb-addresses to pcbaddr.
 * Issue DL/I Call: get a unique segment
 Set address of pcb1 to pcb-address-list(1).
 Call 'CBLTDli' using Func-GHU Pcb1 5
 Dli-io-area ssa1.
 If uibfctr is not equal good-return-code then
 * Insert error diagnostic code 6
 Exec CICS return end-Exec
 End-if.
 If pcb1-status-code is not equal good-status-code then
 * Insert error diagnostic code
 Exec CICS return end-Exec
 End-if.
 * Perform segment update activity
 Move 'aaa' to area1.
 Move 'bbb' to area2.
 * Issue DL/I Call: replace segment at current position 7
 Call 'CBLTDli' using Func-REPL Pcb1
 Dli-io-area ssa1
 If uibfctr is not equal good-return-code then
 * Insert error diagnostic code
 Exec CICS return end-Exec
 End-if.
 If pcb1-status-code is not equal good-status-code then
 * Insert error diagnostic code
 Exec CICS return end-Exec
 End-if.
 * Release the psb
 Call 'CBLTDli' using Func-TERM.
 * Other application Function 8,9
 Exec CICS return end-Exec.
 Goback.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or 01-level working storage
entry. Each picture clause is defined as four alphanumeric characters and has a value assigned for
each function. If you want to include the optional parmcount field, initialize count values for each type
of call. You can also use the COBOL COPY statement to include these standard descriptions in the
program.

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a call that requires an
unqualified SSA, it can either initialize this area with the segment name or move the segment name to
this area. If a call requires two or more SSAs, you may need to define additional areas.

Chapter 11. Writing your application programs for IMS DB 185

3. An 01-level working storage entry defines I/O areas that are used for passing segments to and
from the database. You can further define I/O areas with sub-entries under the 01-level. You can
use separate I/O areas for each segment type, or you can define one I/O area that you use for all
segments.

4. One PCB layout is defined in the linkage section. The PCB-ADDRESS-LIST occurs n times, where n is
greater than or equal to the number of PCBs in the PSB.

5. The PCB call schedules a PSB for your program to use. The address of the DLIUIB parameter returns
the address of DLIUIB.

6. This unqualified GHU call retrieves a segment from the database and places it in the I/O area that is
referenced by the call. Before issuing the call, the program must initialize the key or data value of the
SSA so that it specifies the particular segment to be retrieved.

7. CICS online programs should test the return code in the UIB before testing the status code in the DB
PCB.

8. The REPL call replaces the segment that was retrieved in the most recent Get Hold call with the data
that the program has placed in the I/O area.

9. The TERM call terminates the PSB the program scheduled earlier. This call is optional and is only issued
if a sync point is desired prior to continued processing. The program issues the EXEC CICS RETURN
statement when it has finished its processing. If this is a RETURN from the highest-level CICS program,
a TERM call and sync point are internally generated by CICS.

Sample call-level OS/VS COBOL program for CICS online (obsolete with Enterprise COBOL)

 Identification Division. NOTES
 Program-ID. CBLUIB.
 Environment Division.
 Data Division.
 Working-Storage Section.
 01 Func-Codes.
 05 Psb-Name Picture X(8) Value 'CBLPSB '. 1
 05 Func-PCB Picture X(4) Value 'PCB '.
 05 Func-TERM Picture X(4) Value 'TERM'.
 05 Func-GHU Picture X(4) Value 'GHU '.
 05 Func-REPL Picture X(4) Value 'REPL'.
 05 SSA1 Picture X(9) Value 'AAAA4444 '. 2
 05 Success-Message Picture X(40).
 05 Good-Status-Code Picture XX Value ' '.
 05 Good-Return-Code Picture X Value low-Value.
 01 Message0.
 05 Message1 Picture X(38).
 05 Message2 Picture XX.
 01 Dli-IO-Area. 3
 05 Area1 Picture X(3).
 05 Area2 Picture X(37).
 Linkage Section. 4
 01 BllCells.
 05 FIller Picture S9(8) Comp-5.
 05 Uib-Ptr Picture S9(8) Comp-5.
 05 B-Pcb-Ptrs Picture S9(8) Comp-5.
 05 Pcb1-Ptr Picture S9(8) Comp-5.
 Copy DliUib. 5,6
 01 Overlay-Dliuib Redefines Dliuib.
 05 Pcbaddr usage is pointer.
 05 Filler Picture XX.
 01 Pcb-Ptrs.
 05 B-Pcb1-Ptr Picture 9(8) Comp-5.
 01 Pcb1. 7
 05 Pcb1-Dbd-Name Picture X(8).
 05 Pcb1-Seg-Level Picture XX.
 05 Pcb1-Status-Code Picture XX.
 05 Pcb1-PROC-OPT Picture XXXX.
 05 FIller Picture S9(5) Comp-5.
 05 Pcb1-Seg-Name Picture X(8).
 05 Pcb1-Len-KFB Picture S9(5) Comp-5.
 05 Pcb1-NU-ENSeg Picture S9(5) Comp-5.
 05 Pcb1-KEY-FB Picture X(256).
 Procedure Division. 8
 Call 'CBLTDLI' using Func-PCB Psb-Name Uib-ptr.
 If Uibfctr is not equal low-values then
 * Insert error diagnostic Code

186 IMS: Application Programming

 Exec CICS Return end-Exec
 End-if.
 Move Uibpcbal to B-Pcb-Ptrs.
 Move B-Pcb1-Ptr to Pcb1-Ptr.

 * Issue DL/I Call: get a unique segment 9
 Call 'CBLTDLI' using Func-GHU Pcb1
 Dli-io-area ssa1.
 Service reload Uib-ptr
 If Uibfctr is not equal Good-Return-Code then 10
 * Insert error diagnostic Code
 Exec CICS Return end-Exec
 End-if.

 If Pcb1-Status-Code is not equal Good-Status-Code then
 * Insert error diagnostic Code
 Exec CICS Return end-Exec
 End-if.

 * Perform segment update activity
 Move 'aaa' to area1.
 Move 'bbb' to area2.
 * Issue DL/I Call: replace segment at current position 11
 Call 'CBLTDLI' using Func-REPL Pcb1
 Dli-io-area ssa1.
 If Uibfctr is not equal Good-Return-Code then
 * Insert error diagnostic Code
 Exec CICS Return end-Exec
 End-if.

 If Pcb1-Status-Code is not equal Good-Status-Code then
 * Insert error diagnostic Code
 Exec CICS Return end-Exec
 End-if.

 * Release the PSB
 Call 'CBLTDLI' using Func-TERM. 12,13
 Exec CICS Return end-Exec.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or 01-level working
storage entry. Each picture clause is defined as four alphanumeric characters and has a value
assigned for each function. If you want to include the optional parmcount field, you can initialize
count values for each type of call. You can also use the COBOL COPY statement to include these
standard descriptions in the program.

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a call that requires an
unqualified SSA, it can either initialize this area with the segment name or move the segment name to
this area. If a call requires two or more SSAs, you may need to define additional areas.

3. An 01-level working storage entry defines I/O areas that are used for passing segments to and from
the database. You can further define I/O areas with 02-level entries. You can use separate I/O areas
for each segment type, or you can define one I/O area to use for all segments.

4. The linkage section must start with a definition of this type to provide addressability to a parameter
list that will contain the addresses of storage that is outside the working storage of the application
program. The first 02-level definition is used by CICS to provide addressability to the other fields in
the list. A one-to-one correspondence exists between the other 02-level names and the 01-level data
definitions in the linkage section.

5. The COPY DLIUIB statement will be expanded.
6. The UIB returns the address of an area that contains the PCB addresses. The definition of PCB

pointers is necessary to obtain the actual PCB addresses. Do not alter the addresses in the area.
7. The PCBs are defined in the linkage section.
8. The PCB call schedules a PSB for your program to use.
9. This unqualified GHU call retrieves a segment from the database and places it in the I/O area that is

referenced by the call. Before issuing the call, the program must initialize the key or data value of the
SSA so that it specifies the particular segment to be retrieved.

Chapter 11. Writing your application programs for IMS DB 187

10. CICS online programs should test the return code in the UIB before testing the status code in the DB
PCB.

11. The REPL call replaces the segment that was retrieved in the most recent Get Hold call with the data
that the program has placed in the I/O area.

12. The TERM call terminates the PSB that the program scheduled earlier. This call is optional and is only
issued if a sync point is desired prior to continued processing.

13. The program issues the EXEC CICS RETURN statement when it has finished its processing. If this is
a return from the highest-level CICS program, a TERM call and sync point are internally generated by
CICS.

Related reading: For more information about installing application programs, see CICS Transaction Server
for z/OS CICS Application Programming Guide.

Related reference
“Specifying the UIB (CICS online programs only)” on page 219
The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Coding a program in Java
IMS provides support for developing applications using the Java programming language.

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Coding a batch program in Pascal
The following code sample is a skeleton batch program in Pascal. It shows you how the parts of an IMS
program that is written in Pascal fit together. The numbers to the right of the program refer to the notes
that follow the program.

Restriction: Pascal is not supported by CICS.

segment PASCIMS; NOTES
 1
 type 2
 CHAR2 = packed array [1..2] of CHAR;
 CHAR4 = packed array [1..4] of CHAR;
 CHAR6 = packed array [1..6] of CHAR;
 CHARn = packed array [1..n] of CHAR;
 DB_PCB_TYPE = record 3
 DB_NAME : ALFA;
 DB_SEG_LEVEL : CHAR2;
 DB_STAT_CODE : CHAR2;
 DB_PROC_OPT : CHAR4;
 FILLER : INTEGER;
 DB_SEG_NAME : ALFA;
 DB_LEN_KFB : INTEGER;
 DB_NO_SENSEG : INTEGER;
 DB_KEY_FB : CHARn;
 end;
 procedure PASCIMS (var SAVE: INTEGER; 4
 var DB_PCB_MAST: DB_PCB_TYPE;
 var DB_PCB_DETAIL : DB_PCB_TYPE);
 REENTRANT;
 procedure PASCIMS;
 type 5
 QUAL_SSA_TYPE = record
 SEG_NAME : ALFA;
 SEQ_QUAL : CHAR;
 SEG_KEY_NAME : ALFA;
 SEG_OPR : CHAR2;

188 IMS: Application Programming

 SEG_KEY_VALUE: CHAR6;
 SEG_END_CHAR : CHAR;
 end;
 MAST_SEG_IO_AREA_TYPE = record
 (* Field declarations *)
 end;
 DET_SEG_IO_AREA_TYPE = record
 (* Field declarations *)
 end;
 var 6
 MAST_SEG_IO_AREA : MAST_SEG_IO_AREA_TYPE;
 DET_SEG_IO_AREA : DET_SEG_IO_AREA_TYPE;
 const 7
 GU = 'GU ';
 GN = 'GN ';
 GHU = 'GHU ';
 GHN = 'GHN ';
 GHNP = 'GHNP';
 ISRT = 'ISRT';
 REPL = 'REPL';
 DLET = 'DLET';
 QUAL_SSA = QUAL_SSA_TYPE('ROOT','(','KEY',' =',
 'vvvvv',')');
 UNQUAL_SSA = 'NAME ';
 procedure PASTDLI; GENERIC; 8
 begin
 PASTDLI(const GU, 9
 var DB_PCB_DETAIL;
 var DET_SEG_IO_AREA;
 const QUAL_SSA);
 PASTDLI(const GHU, 10
 var DB_PCB_MAST,
 var MAST_SEG_IO_AREA,
 const QUAL_SSA);
 PASTDLI(const GHN, 11
 var DB_PCB_MAST,
 var MAST_SEG_IO_AREA);
 PASTDLI(const REPL, 12
 var DB_PCB_MAST,
 var MAST_SEG_IO_AREA);
 end;
 13

Note:

1. Define the name of the Pascal compile unit.
2. Define the data types that are needed for the PCBs used in your program.
3. Define the PCB data type that is used in your program.
4. Declare the procedure heading for the REENTRANT procedure that is called by IMS. The first word

in the parameter list should be an INTEGER, which is reserved for VS Pascal's usage. The rest of the
parameters are the addresses of the PCBs that are received from IMS.

5. Define the data types that are needed for the SSAs and I/O areas.
6. Declare the variables used for the I/O areas.
7. Define the constants, such as function codes and SSAs that are used in the PASTDLI DL/I calls.
8. Declare the IMS interface routine by using the GENERIC directive. GENERIC identifies external

routines that allow multiple parameter list formats. A GENERIC routine's parameters are "declared"
only when the routine is called.

9. This call retrieves data from the database. It contains a qualified SSA. Before you can issue a call that
uses a qualified SSA, you must initialize the data field of the SSA. Before you can issue a call that uses
an unqualified SSA, you must initialize the segment name field.

10. This is another call that has a qualified SSA.
11. This call is an unqualified call that retrieves data from the database. Because it is a Get Hold call, it

can be followed by a REPL or DLET call.
12. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call;

the data is replaced by the contents of the I/O area that is referenced in the call.

Chapter 11. Writing your application programs for IMS DB 189

13. You return control to IMS by exiting from the PASCIMS procedure. You can also code a RETURN
statement to exit at another point.

Restriction: You must bind your program to the IMS language interface module (DFSLI000) after
compiling your program.

Coding a batch program in PL/I
The following code example is a skeleton batch program in PL/I. It shows you how the parts of an IMS
program that is written in PL/I fit together.

The numbers to the right of the program refer to the notes that follow. This kind of program can run as a
batch program or as a batch-oriented BMP.

Restriction: IMS application programs cannot use PL/I multitasking. This is because all tasks operate as
subtasks of a PL/I control task when you use multitasking.

Sample PL/I program

/* */ NOTES
/* ENTRY POINT */
/* */
DLITPLI: PROCEDURE (IO_PTR_PCB,DB_PTR_MAST,DB_PTR_DETAIL) 1
 OPTIONS (MAIN);
/* */
/* DESCRIPTIVE STATEMENTS */
/* */
DCL IO_PTR_PCB POINTER;
DCL DB_PTR_MAST POINTER;
DCL DB_PTR_DETAIL POINTER;
DCL FUNC_GU CHAR(4) INIT('GU '); 2
DCL FUNC_GN CHAR(4) INIT('GN ');
DCL FUNC_GHU CHAR(4) INIT('GHU ');
DCL FUNC_GHN CHAR(4) INIT('GHN ');
DCL FUNC_GNP CHAR(4) INIT('GNP ');
DCL FUNC_GHNP CHAR(4) INIT('GHNP');
DCL FUNC_ISRT CHAR(4) INIT('ISRT');
DCL FUNC_REPL CHAR(4) INIT('REPL');
DCL FUNC_DLET CHAR(4) INIT('DLET');
DCL 1 QUAL_SSA STATIC UNALIGNED, 3
 2 SEG_NAME CHAR(8) INIT('ROOT '),
 2 SEG_QUAL CHAR(1) INIT('('),
 2 SEG_KEY_NAME CHAR(8) INIT('KEY '),
 2 SEG_OPR CHAR(2) INIT(' ='),
 2 SEG_KEY_VALUE CHAR(6) INIT('vvvvv'),
 2 SEG_END_CHAR CHAR(1) INIT(')');
DCL 1 UNQUAL SSA STATIC UNALIGNED,
 2 SEG_NAME_U CHAR(8) INIT('NAME '),
 2 BLANK CHAR(1) INIT(' ');
DCL 1 MAST_SEG_IO_AREA, 4
 2 ———
 2 ———
 2 ———
DCL 1 DET_SEG_IO_AREA,
 2 ———
 2 ———
 2 ———
DCL 1 IO_PCB BASED (IO_PTR_PCB), 5
 2 FILLER CHAR(10),
 2 STAT CHAR(2);
DCL 1 DB_PCB_MAST BASED (DB_PTR_MAST),
 2 MAST_DB_NAME CHAR(8),
 2 MAST_SEG_LEVEL CHAR(2),
 2 MAST_STAT_CODE CHAR(2),
 2 MAST_PROC_OPT CHAR(4),
 2 FILLER FIXED BINARY (31,0),
 2 MAST_SEG_NAME CHAR(8),
 2 MAST_LEN_KFB FIXED BINARY (31,0),
 2 MAST_NO_SENSEG FIXED BINARY (31,0),
 2 MAST_KEY_FB CHAR(*);
DCL 1 DB_PCB_DETAIL BASE (DB_PTR_DETAIL),
 2 DET_DB_NAME CHAR(8),
 2 DET_SEG_LEVEL CHAR(2),
 2 DET_STAT_CODE CHAR(2),
 2 DET_PROC_OPT CHAR(4),
 2 FILLER FIXED BINARY (31,0),

190 IMS: Application Programming

 2 DET_SEG_NAME CHAR(8),
 2 DET_LEN_KFB FIXED BINARY (31,0),
 2 DET_NO_SENSEG FIXED BINARY (31,0),
 2 DET_KEY_FB CHAR(*);
DCL THREE FIXED BINARY (31,0) INITIAL(3); 6
DCL FOUR FIXED BINARY (31,0) INITIAL(4);
DCL FIVE FIXED BINARY (31,0) INITIAL(5);
DCL SIX FIXED BINARY (31,0) INITIAL(6);
/* */
/* MAIN PART OF PL/I BATCH PROGRAM */
/* */
CALL PLITDLI (FOUR,FUNC_GU,DB_PCB_DETAIL,DET_SEG_IO_AREA, QUAL_SSA); 7
 IF DET_STAT_CODE = GOOD_STATUS_CODE THEN DO;
 CALL PLITDLI (FOUR,FUNC_GHU,DB_PCB_MAST,MAST_SEG_IO_AREA,QUAL_SSA); 8
 IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;
 CALL PLITDLI (THREE,FUNC_GHN,DB_PCB_MAST,MAST_SEG_IO_AREA); 9
 IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;
 CALL PLITDLI (THREE,FUNC_REPL,DB_PCB_MAST,MAST_SEG_IO_AREA); 10
 IF MAST_STAT_CODE ^= GOOD_STATUS_CODE THEN DO;
 /* INSERT REPLACE DIAGNOSTIC MESSAGE */
 END;
 END;
 ELSE DO;
 /* INSERT GHN DIAGNOSTIC MESSAGE */
 END;
 END;
 ELSE DO;
 /* INSERT GHU DIAGNOSTIC MESSAGE */
 END;
END;
ELSE DO;
 /* INSERT GU DIAGNOSTIC MESSAGE */
END;
RETURN; 11
END DLITPLI;

Note:

1. After IMS has loaded the PSB of the application program, IMS gives control to the application
program through this entry point. PL/I programs must pass the pointers to the PCBs, not the names,
in the entry statement. The entry statement lists the PCBs that the program uses by the names that
it has assigned to the definitions for the PCB masks. The order in which you refer to the PCBs in the
entry statement must be the same order in which they have been defined in the PSB.

The code example assumes that an I/O PCB was passed to the application program. When the
program is a batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so
that the I/O PCB is included. Because the I/O PCB is required for a batch program to make system
service calls, CMPAT=YES should always be specified for batch programs.

2. Each of these areas defines one of the call functions used by the batch program. Each character
string is defined as four alphanumeric characters, with a value assigned for each function. You can
define other constants in the same way. Also, you can store standard definitions in a source library
and include them by using a %INCLUDE statement.

3. A structure definition defines each SSA the program uses. The unaligned attribute is required for
SSAs. The SSA character string must reside contiguously in storage. You should define a separate
structure for each qualified SSA, because the value of the data field for each SSA is different.

4. The I/O areas that are used to pass segments to and from the database are defined as structures.
5. Level-01 declaratives define masks for the PCBs that the program uses as structures. These

definitions make it possible for the program to check fields in the PCBs.
6. This statement defines the parmcount that is required in DL/I calls that are issued from PL/I

programs (except for the call to the sample status-code error routine, where it is not allowed). The
parmcount is the address of a 4-byte field that contains the number of subsequent parameters in the
call. The parmcount is required only in PL/I programs. It is optional in the other languages. The value
in parmcount is binary. This example shows how you can code the parmcount parameter when three
parameters follow in the call:

DCL THREE FIXED BINARY (31,0) INITIAL(3);

Chapter 11. Writing your application programs for IMS DB 191

7. This call retrieves data from the database. It contains a qualified SSA. Before you can issue a call
that uses a qualified SSA, initialize the data field of the SSA. Before you can issue a call that uses an
unqualified SSA, initialize the segment name field. Check the status code after each DL/I call that you
issue.

Although you must declare the PCB parameters that are listed in the entry statement to a PL/I
program as POINTER data types, you can pass either the PCB name or the PCB pointer in DL/I calls in
a PL/I program.

8. This is another call that has a qualified SSA.
9. This is an unqualified call that retrieves data from the database. Because it is a Get Hold call, it can be

followed by REPL or DLET.
10. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call;

the data is replaced by the contents of the I/O area referenced in the call.
11. The RETURN statement returns control to IMS.

Binding PL/I code to the IMS language interface module
IMS provides a language interface module (DFSLI000) which gives a common interface to IMS. This
module must be bound to the program.

If you use the IMS-supplied procedures (IMSPLI or IMSPLIGO), IMS binds the language interface module
to the application program. IMSPLI is a two-step procedure that compiles and binds your program.
IMSPLIGO is a three-step procedure that compiles, binds, and executes your program in a DL/I batch
region. For information on how to use these procedures, see IMS Version 15.3 System Definition.

Coding a CICS online program in PL/I
The following code example is a skeleton CICS online program in PL/I. It shows you how to define and
establish addressability to the UIB.

The numbers to the right of the program refer to the notes that follow. This kind of program can run in a
CICS environment using DBCTL.

Sample call-level PL/I program (CICS online)

 PLIUIB: PROC OPTIONS(MAIN); NOTES
 DCL PSB_NAME CHAR(8) STATIC INIT('PLIPSB '); 1
 DCL PCB_FUNCTION CHAR(4) STATIC INIT('PCB ');
 DCL TERM_FUNCTION CHAR(4) STATIC INIT('TERM');
 DCL GHU_FUNCTION CHAR(4) STATIC INIT('GHU ');
 DCL REPL_FUNCTION CHAR(4) STATIC INIT('REPL');
 DCL SSA1 CHAR(9) STATIC INIT('AAAA4444 '); 2
 DCL PARM_CT_1 FIXED BIN(31) STATIC INIT(1);
 DCL PARM_CT_3 FIXED BIN(31) STATIC INIT(3);
 DCL PARM_CT_4 FIXED BIN(31) STATIC INIT(4);
 DCL GOOD_RETURN_CODE BIT(8) STATIC INIT('0'B);
 DCL GOOD_STATUS_CODE CHAR(2) STATIC INIT(' ');
 %INCLUDE DLIUIB; 3
 DCL 1 PCB_POINTERS BASED(UIBPCBAL), 4
 2 PCB1_PTR POINTER;
 DCL 1 DLI_IO_AREA, 5
 2 AREA1 CHAR(3),
 2 AREA2 CHAR(37);
 DCL 1 PCB1 BASED(PCB1_PTR), 6
 2 PCB1_DBD_NAME CHAR(8),
 2 PCB1_SEG_LEVEL CHAR(2),
 2 PCB1_STATUS_CODE CHAR(2),
 2 PCB1_PROC_OPTIONS CHAR(4),
 2 PCB1_RESERVE_DLI FIXED BIN (31,0),
 2 PCB1_SEGNAME_FB CHAR(8),
 2 PCB1_LENGTH_FB_KEY FIXED BIN(31,0),
 2 PCB1_NUMB_SENS_SEGS FIXED BIN(31,0),
 2 PCB1_KEY_FB_AREA CHAR(17);
 /* SCHEDULE PSB AND OBTAIN PCB ADDRESSES */
CALL PLITDLI (PARM_CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR); 7
IF UIBFCTR = GOOD RETURN CODE THEN DO;
 /* ISSUE DL/I CALL: GET A UNIQUE SEGMENT */
 CALL PLITDLI (PARM_CT_4,GHU_FUNCTION,PCB1,DLI_IO_AREA,SSA1); 8

192 IMS: Application Programming

 IF UIBFCTR = GOOD_RETURN_CODE& PCB1_STATUS_CODE = GOOD_STATUS_CODE THEN DO; 9
 /* PERFORM SEGMENT UPDATE ACTIVITY */
 AREA1 =;
 AREA2 =;
 /* ISSUE DL/I: REPLACE SEGMENT AT CURRENT POSITION */
 PLITDLI (PARM_CT_3,REPL_FUNCTION,PCB1,DLI_IO_AREA); 10
 IF UIBFCTR ^= GOOD_RETURN_CODE
 | PCB1_STATUS_CODE ^= GOOD_STATUS_CODE THEN DO;
 /* INSERT REPL ERROR DIAGNOSTIC CODE */
 END;
 END;
 ELSE DO;
 /* INSERT GHU ERROR DIAGNOSTIC CODE */
 END;
END;
ELSE DO;
 /* ANALYZE UIB PROBLEM */
 /* ISSUE UIB DIAGNOSTIC MESSAGE */
END;
/* RELEASE THE PSB */
CALL PLITDLI(PARM_CT_1,TERM_FUNCTION); 11
EXEC CICS RETURN; 12
END PLIUIB;

Note:

1. Each of these areas defines the DL/I call functions the program uses. Each character string is defined
as four alphanumeric characters and has a value assigned for each function. You can define other
constants in the same way. You can store standard definitions in a source library and include them by
using a %INCLUDE statement.

2. A structure definition defines each SSA the program uses. The unaligned attribute is required for SSA.
The SSA character string must reside contiguously in storage. If a call requires two or more SSA, you
may need to define additional areas.

3. The %INCLUDE DLIUIB statement will be expanded.
4. The UIB returns the address of an area containing the PCB addresses. The definition of PCB pointers

is necessary to obtain the actual PCB addresses. Do not alter the addresses in the area.
5. The I/O areas that are used to pass segments to and from the database are defined as structures.
6. The PCBs are defined based on the addresses that are passed in the UIB.
7. The PCB call schedules a PSB for your program to use.
8. This unqualified GHU call retrieves a segment from the database. The segment is placed in the I/O

area that is referenced in the call. Before issuing the call, the program must initialize the key or data
value of the SSA so that it specifies the particular segment to be retrieved.

9. CICS online programs must test the return code in the UIB before testing the status code in the DB
PCB.

10. The REPL call replaces the segment that was retrieved in the most recent Get Hold call. The I/O area
that is referenced in the call contains the segment to be replaced.

11. The TERM call terminates the PSB that the program scheduled earlier.
12. The program issues the EXEC CICS RETURN statement when it has finished processing.

Related reading: For more information about installing application programs, see CICS Transaction Server
for z/OS CICS Application Programming Guide.

Related reference
“Specifying the UIB (CICS online programs only)” on page 219
The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Chapter 11. Writing your application programs for IMS DB 193

194 IMS: Application Programming

Chapter 12. Defining application program elements
for IMS DB

Use these specific parameters and formats for making DL/I calls through the language interfaces for your
applications program written in assembler language, C language, COBOL, Pascal, and PL/I.

Formatting DL/I calls for language interfaces
When you use DL/I calls in assembler language, C language, COBOL, Pascal, or PL/I, you must call the
DL/I language interface to initiate the functions specified with the DL/I calls.

IMS offers several interfaces for DL/I calls:

• A language-independent interface for any programs that are Language Environment® conforming
(CEETDLI)

• Language-specific interfaces for all supported languages (xxxTDLI)
• A non-language-specific interface for all supported languages (AIBTDLI)

Java makes use of the all three DL/I language interfaces, but the usage is internal and no calls are
necessary to initiate the functions specified with the DL/I calls.

Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Assembler language application programming
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with IMS databases.

In assembler language programs, all DL/I call parameters that are passed as addresses can be passed in
a register, which, if used, must be enclosed in parentheses.

Format
CALL ASMTDLI,(

parmcount ,

function

, db pcb A

, tp pcb

A

B

C

AIBTDLI,(

parmcount ,

function , aib

A

B

)

,VL

A

© Copyright IBM Corp. 1974, 2022 195

, i/o area
,

, ssa

, token

, stat function

, rsa

, rootssa

B
, i/o area length , i/o area

,

, area length , area

C
, psb name , uibptr

, sysserve

Notes:

Parameters
parmcount

Specifies the address of a 4-byte field in user-defined storage that contains the number of parameters
in the parameter list that follows parmcount. Assembler language application programs must use
either parmcount or VL.

function
Specifies the address of a 4-byte field in user-defined storage that contains the call function. The call
function must be left-justified and padded with blanks (such as GUbb).

db pcb
Specifies the address of the database PCB to be used for the call. The PCB address must be one of the
PCB addresses passed on entry to the application program in the PCB list.

tp pcb
Specifies the address of the I/O PCB or alternate PCB to be used for the call. The PCB address must
be one of the PCB addresses passed on entry to the application program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined storage.

i/o area
Specifies the address of the I/O area in user-defined storage that is used for the call. The I/O area
must be large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the I/O area length
(specified in binary).

area length
Specifies the address of a 4-byte field in user-defined storage that contains the length (specified in
binary) of the area immediately following it in the parameter list. Up to seven area lengths or area
pairs can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed. Up to seven area lengths
or area pairs can be specified.

196 IMS: Application Programming

token
Specifies the address of a 4-byte field in user-defined storage that contains a user token.

stat function
Specifies the address of a 9-byte field in user-defined storage that contains the stat function to be
performed.

ssa
Specifies the address in user-defined storage that contains the SSAs to be used for the call. Up to 15
SSAs can be specified, one of which is rootssa.

rootssa
Specifies the address of a root segment search argument in user-defined storage.

rsa
Specifies the address of the area in user-defined storage that contains the record search argument.

psb name
Specifies the address in user-defined storage of an 8-byte PSB name to be used for the call.

uibptr
Specifies the address in user-defined storage of the user interface block (UIB).

sysserve
Specifies the address of an 8-byte field in user-defined storage to be used for the call.

VL
Signifies the end of the parameter list. Assembler language programs must use either parmcount or
VL.

Example of a DL/I call format
Using the DL/I AIBTDLI interface:

CALL AIBTDLI,(function,aib,i/o area,ssa1),VL

Using the DL/I language-specific interface:

CALL ASMTDLI,(function,db pcb,i/o area,ssa1),VL

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Chapter 12. Defining application program elements for IMS DB 197

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

C language application programming
Application programs in C use the following format, parameters, and DL/I calls to communicate with IMS
databases.

Format
1

rc=CTDLI(

parmcount ,

function

, db pcb A

, tp pcb

A

B

C

rc=AIBTDLI(parmcount , function , aib

A

B

CEETDLI(

parmcount ,

function

, db pcb A

, i/o pcb

A

B

, aib
A

B

);

A
, i/o area

,

, ssa

, token

, stat function

, rsa

, rootssa

B
, i/o area length , i/o area

,

, area length , area

C
, psb name , uibptr

, sysserve

Notes:
1 For AIBTDLI, parmcount is required for C applications.

198 IMS: Application Programming

Parameters
rc

This parameter receives the DL/I status or return code. It is a two-character field shifted into the 2
low-order bytes of an integer variable (int). If the status code is two blanks, 0 is placed in the field.
You can test the rc parameter with an if statement. For example, if (rc == 'IX'). You can also
use rc in a switch statement. You can choose to ignore the value placed in rc and use the status
code returned in the PCB instead.

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the number of
parameters in the parameter list that follows parmcount.

function
Specifies the name of a character (4) variable, left justified in user-defined storage, that contains the
call function to be used. The call function must be left-justified and padded with blanks (such as
GUbb)

db pcb
Specifies the name of a pointer variable that contains the address of the database to be used for the
call. The PCB address must be one of the PCB addresses passed on entry to the application program
in the PCB list.

tp pcb
Specifies the name of a pointer variable that contains the address of the I/O PCB or alternate PCB
to be used for the call. The PCB address must be one of the PCB addressed passed on entry to the
application program in the PCB list.

aib
Specifies the name of the pointer variable that contains the address of the structure that defines the
application interface block (AIB) in user-defined storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character string that defines the
I/O area in user-defined storage used for the call. The I/O area must be large enough to contain all of
the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the length of
the area immediately following it in the parameter list. Up to seven area lengths or area pairs can be
specified.

area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage to be checkpointed. Up to seven area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that contains the stat function to
be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains the SSAs to be used
for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search argument in user-
defined storage.

Chapter 12. Defining application program elements for IMS DB 199

rsa
Specifies the name of a character variable that contains the record search argument for a GU call or
where IMS should return the rsa for an ISRT or GN call.

psb name
Specifies the name of a character (8) variable containing the PSB name to be used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the structure that defines the
user interface block (UIB) that is used in user-defined storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to be used for the call.

I/O area
In C, the I/O area can be of any type, including structures or arrays. The ctdli declarations in ims.h do not
have any prototype information, so no type checking of the parameters is done. The area may be auto,
static, or allocated (with malloc or calloc). You need to give special consideration to C-strings because
DL/I does not recognize the C convention of terminating strings with nulls ('\0') Instead of the usual
strcpy and strcmp functions, you may want to use memcpy and memcmp.

Example of a DL/I call format
Using the DL/I CEETDLI interface:

#include <leawi.h>
⋮
CEETDLI (function,db pcb,i/o area,ssa1);

Using the DL/I AIBTDLI interface:

int rc;
⋮
rc=AIBTDLI (parmcount,function,aib,i/o area,ssa1);

Using the DL/I language-specific interface:

#include <ims.h>
int rc;
⋮
rc=CTDLI (function,db pcb,i/o area,ssa1);

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

200 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

COBOL application programming
Application programs in COBOL use the following format, parameters, and DL/I calls to communicate with
IMS databases.

Format
CALL

'CBLTDLI' USING

parmcount

function

db pcb A

tp pcb

A

B

C

'AIBTDLI' USING

parmcount

function aib

A

B

'CEETDLI' USING

parmcount

function

db pcb A

tp pcb

A

B

aib

A

B

.

A
i/o area

,

ssa

token

stat function

rsa

rootssa

B
i/o area length i/o area

,

area length area

C
psb name uibptr

sysserve

Note: All apostrophes (') can be replaced by quotation marks (") and can be done regardless of the
APOST/QUOTE compiler (or CICS translator) option.

Chapter 12. Defining application program elements for IMS DB 201

Parameters
parmcount

Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount. If you define this field as COMP-5
rather than COMP, COMP-4, or BINARY, then it can contain the maximum possible values regardless of
the COBOL TRUNC compiler option setting.

function
Specifies the identifier of a usage display (4) byte data item, left justified in user-defined storage that
contains the call function to be used. The call function must be left-justified and padded with blanks
(such as GUbb).

db pcb
Specifies the identifier of the database PCB group item from the PCB list that is passed to the
application program on entry. This identifier will be used for the call.

tp pcb
Specifies the identifier of the I/O PCB or alternate PCB group item from the PCB list that is passed to
the application program on entry. This identifier will be used for the call.

aib
Specifies the identifier of the group item that defines the application interface block (AIB) in user-
defined storage.

i/o area
Specifies the identifier of a major group item, table, or usage display data item that defines the I/O
area length in user-defined storage used for the call. The I/O area must be large enough to contain all
of the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
I/O area length (specified in binary). If you define this field as COMP-5 rather than COMP, COMP-4, or
BINARY, then it can contain the maximum possible values regardless of the COBOL TRUNC compiler
option setting.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
length (specified in binary) of the area immediately following it in the parameter list. Up to seven
area lengths or area pairs can be specified. If you define this field as COMP-5 rather than COMP,
COMP-4, or BINARY, then it can contain the maximum possible values regardless of the COBOL
TRUNC compiler option setting.

area
Specifies the identifier of the group item that defines the user-defined storage to be checkpointed. Up
to seven area lengths or area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item in user-defined storage that contains a
user token.

stat function
Specifies the identifier of a usage display (9) byte data item in user-defined storage that contains the
stat function to be performed.

ssa
Specifies the identifier of a usage display data item in user-defined storage that contains the SSAs to
be used for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the identifier of a usage display data item that defines the root segment search argument in
user-defined storage.

rsa
Specifies the identifier of a usage display data item that contains the record search argument.

202 IMS: Application Programming

psb name
Specifies the identifier of a usage display (8) byte data item containing the PSB name to be used for
the call.

uibptr
Specifies the identifier of the group item that defines the user interface block (UIB) that is used in
user-defined storage.

sysserve
Specifies the identifier of a usage display (8) byte data item in user-defined storage to be used for the
call.

Example of a DL/I call format
Using the DL/I CEETDLI interface:

CALL 'CEETDLI' USING function,db pcb,i/o area,ssa1.

Using the DL/I AIBTDLI interface:

CALL 'AIBTDLI' USING function,aib,i/o area,ssa1.

Using the DL/I language-specific interface:

CALL 'CBLTDLI' USING function,db pcb,i/o area,ssa1.

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Java application programming for IMS
IMS provides support for developing applications using the Java programming language.

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Related concepts
“IMS solutions for Java development overview” on page 553

Chapter 12. Defining application program elements for IMS DB 203

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Pascal application programming
Application programs in Pascal use the following format, parameters, and DL/I calls to communicate with
IMS databases.

Format
PASTDLI (A

,VAR db pcb B

,VAR tp pcb

B

C

D

AIBTDLI (A , VAR aib,

B

C

);

A

CONST parmcount ,

CONST function

B
,VAR  i/o area

,

,VAR  ssa

,CONST  token

,CONST  stat function

,VAR  rsa

,VAR  rootssa

C
,VAR  i/o area length , VAR  i/o area

,

,VAR  area length ,VAR  area

D
,VAR  psb name , VAR  uibptr

,VAR  sysserve

Parameters
parmcount

Specifies the name of a fixed binary (31) variable in user-defined storage that contains the number of
parameters in the parameter list that follows parmcount.

204 IMS: Application Programming

function
Specifies the name of a character (4) variable, left justified in user-defined storage, that contains the
call function to be used. The call function must be left-justified and padded with blanks (such as
GUbb).

db pcb
Specifies the name of a pointer variable that contains the address of the database PCB defined in the
call procedure statement.

tp pcb
Specifies the name of a pointer variable that contains the address of the I/O PCB or alternate PCB
defined in the call procedure statement.

aib
Specifies the name of the pointer variable that contains the address of the structure that defines the
application interface block (AIB) in user-defined storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character string that defines the
I/O area in user-defined storage used for the call. The I/O area must be large enough to contain all of
the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the length of
the area immediately following it in the parameter list. Up to seven area lengths or area pairs can be
specified.

area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage to be checkpointed. Up to seven area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that contains the stat function to
be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains the SSAs to be used
for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search argument in user-
defined storage.

rsa
Specifies the name of a character variable that contains the record search argument.

psb name
Specifies the name of a character (8) variable containing the PSB name to be used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the structure that defines the
user interface block (UIB) that is used in user-defined storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to be used for the call.

Chapter 12. Defining application program elements for IMS DB 205

Example of a DL/I call format
Using the DL/I AIBTDLI interface:

AIBTDLI(CONST function,
 VAR aib,
 VAR i/o area,
 VAR ssa1);

Using the DL/I language-specific interface:

PASTDLI(CONST function,
 VAR db pcb,
 VAR i/o area,
 VAR ssa1);

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Application programming for PL/I
Application programs in PL/I use the following format, parameters, and DL/I calls to communicate with
IMS databases.

Restriction: For the PLITDLI interface, all parameters except parmcount are indirect pointers; for the
AIBTDLI interface, all parameters are direct pointers.

Format
CALL PLITDLI (parmcount , function

, db pcb A

, tp pcb

A

B

C

AIBTDLI (parmcount , function , aib

A

B

CEETDLI (parmcount , function

, db pcb A

, tp pcb

A

B

, aib
A

B

);

A

206 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

, i/o area
,

, ssa

, token

, stat function

, rsa

, rootssa

B
, i/o area length , i/o area

,

, area length , area

C
, psb name , uibptr

, sysserve

Parameters
parmcount

Specifies the name of a fixed binary (31-bit) variable that contains the number of arguments that
follow parmcount.

function
Specifies the name of a fixed-character (4-byte) variable left-justified, blank padded character string
containing the call function to be used (such as GUbb).

db pcb
Specifies the structure associated with the database PCB to be used for the call. This structure is
based on a PCB address that must be one of the PCB addresses passed on entry to the application
program.

tp pcb
Specifies the structure associated with the I/O PCB or alternate PCB to be used for the call.

aib
Specifies the name of the structure that defines the AIB in your application program.

i/o area
Specifies the name of the I/O area used for the call. The I/O area must be large enough to contain all
the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable that contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable that contains the length of the area immediately
following it in the parameter list. Up to seven area lengths or area pairs can be specified.

area
Specifies the name of the area to be checkpointed. Up to seven area lengths or area pairs can be
specified.

token
Specifies the name of a character (4) variable that contains a user token.

stat function
Specifies the name of a character (9) variable string containing the stat function to be performed.

Chapter 12. Defining application program elements for IMS DB 207

ssa
Specifies the name of a character variable that contains the SSAs to be used for the call. Up to 15
SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that contains a root segment search argument.

rsa
Specifies the name of a character variable that contains the record search argument.

psb name
Specifies the name of a character (8) containing the PSB name to be used for the call.

uibptr
Specifies the name of the user interface block (UIB).

sysserve
Specifies the name of a character (8) variable character string to be used for the call.

Example of a DL/I call format
Using the DL/I CEETDLI interface:

CALL CEETDLI (parmcount,function,db pcb,i/o area,ssa1);

Using the DL/I AIBTDLI interface:

CALL AIBTDLI (parmcount,function,aib,i/o area,ssa1);

Using the DL/I language-specific interface:

%INCLUDE CEEIBMAW;
CALL PLITDLI (parmcount,function,db pcb,i/o area,ssa1);

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Specifying the I/O PCB mask
After your program issues a call with the I/O Program Communications Block (I/O PCB), IMS returns
information about the results of the call to the I/O PCB. To determine the results of the call, your program
must check the information that IMS returns.

Issuing a system service call requires an I/O PCB. Because the I/O PCB resides outside your program, you
must define a mask of the PCB in your program to check the results of IMS calls. The mask must contain
the same fields, in the same order, as the I/O PCB. Your program can then refer to the fields in the PCB
through the PCB mask.

The following table shows the fields that the I/O PCB contains, their lengths, and the applicable
environment for each field.

Table 34. I/O PCB mask

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

Logical terminal name 1 8 X X

Reserved for IMS 2 2 X X

Status code 3 2 X X X X X

208 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Table 34. I/O PCB mask (continued)

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

8-Byte Local date and
time 4

Date 4 X X

Time 4 X X

Input message sequence
number 5

4 X X

Message output descriptor
name 6

8 X X

Userid 7 8 X X

Group name 8 8 X X

12-Byte Time Stamp 9

Date 4 X X

Time 6 X X

UTC Offset 2 X X

Userid Indicator10 1 X X

Reserved for IMS2 3

Note:

1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your program retrieves an
input message, IMS places the name of the logical terminal that sent the message in this field. When
you want to send a message back to this terminal, you refer to the I/O PCB when you issue the ISRT
call, and IMS takes the name of the logical terminal from the I/O PCB as the destination.

2. Reserved for IMS

These fields are reserved.
3. Status Code

IMS places the status code describing the result of the DL/I call in this field. IMS updates the status
code after each DL/I call that the program issues. Your program should always test the status code
after issuing a DL/I call.

The three status code categories are:

• Successful status codes or status codes with exceptional but valid conditions. This category does
not contain errors. If the call was completely successful, this field contains blanks. Many of the
codes in this category are for information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program receives this status
code, it should terminate.

• Programming errors. The errors in this category are usually ones that you can correct. For example,
an AD status code indicates an invalid function code.

• I/O or system errors.

Chapter 12. Defining application program elements for IMS DB 209

For the second and third categories, your program should have an error routine that prints
information about the last call that was issued program termination. Most installations have a
standard error routine that all application programs at the installation use.

4. Local Date and Time

The current local date and time are in the prefix of all input messages except those originating from
non-message-driven BMPs. The local date is a packed-decimal, right-aligned date, in the format
yyddd. The local time is a packed-decimal time in the format hhmmsst. The current local date and
time indicate when IMS received the entire message and enqueued it as input for the program,
rather than the time that the application program received the message. To obtain the application
processing time, you must use the time facility of the programming language you are using.

For a conversation, for an input message originating from a program or for a message received using
Multiple System Coupling (MSC), the time and date indicate when the original message was received
from the terminal.

Note: Be careful when comparing the local date and time in the I/O PCB with the current time
returned by the operating system. The I/O PCB date and time may not be consistent with the current
time. It may even be greater than the current time for the following reasons:

• The time stamp in the I/O PCB is the local time that the message was received by IMS. If the local
time was changed after the message arrived, it is possible for the current time to appear to be
earlier than the I/O PCB time. This effect would be likely to occur in the hour immediately after the
fall time change, when the clock is set back by one hour.

• The time stamp in the I/O PCB is derived from an internal IMS time stamp stored with the message.
This internal time stamp is in Coordinated Universal Time (UTC), and contains the time zone offset
that was in effect at the time the message was enqueued. This time zone offset is added to the
UTC time to obtain the local time that is placed in the I/O PCB. However, the time zone offset that
is stored is only fifteen minutes. If the real time zone offset was not an integer multiple of fifteen
minutes, the local time passed back in the I/O PCB will differ from the actual time by plus or minus
7.5 minutes. This could cause the I/O PCB time to be later than the current time. See IMS Version
15.3 Operations and Automation for further explanation.

Concerns about the value in the local time stamp in the I/O PCB can be reduced by using the
extended time stamp introduced in IMS V6. The system administrator can choose the format of the
extended time stamp to be either local time or UTC. In some situations, it may be advantageous for
the application to request the time in UTC from the operating system and compare it to the UTC form
of the extended time stamp. This is an option available in installations where there is no ETR to keep
the IMS UTC offset in sync with the z/OS UTC offset over changes in local time.

5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages except those originating
from non-message-driven BMPs. This field contains the sequence number IMS assigned to the input
message. The number is binary. IMS assigns sequence numbers by physical terminal, which are
continuous since the time of the most recent IMS startup.

6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a message output descriptor
(MOD), IMS places its name in this area. If your program encounters an error, it can change the
format of the screen and send an error message to the terminal by using this field. To do this, the
program must change the MOD name by including the MOD name parameter on an ISRT or PURG call.

Although MFS does not support APPC, LU 6.2 programs can use an interface to emulate MFS. For
example, the application program can use the MOD name to communicate with IMS to specify how an
error message is to be formatted.

Related reading: For more information on the MOD name and the LTERM interface, see IMS Version
15.3 Communications and Connections.

7. Userid

210 IMS: Application Programming

The use of this field is connected with RACF signon security. If signon is not active in the system, this
field contains blanks.

If signon is active in the system, the field contains one of the following:

• The user's identification from the source terminal.
• The LTERM name of the source terminal if signon is not active for that terminal.
• The authorization ID. For batch-oriented BMPs, the authorization ID is dependent on the value
specified for the BMPUSID= keyword in the DFSDCxxx PROCLIB member:

– If BMPUSID=USERID is specified, the value from the USER= keyword on the JOB statement is
used.

– If USER= is not specified on the JOB statement, the program's PSB name is used.
– If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the program's PSB

name is used. If PSBNAME is not defined to RACF, the Userid of the current Address Space will
be used; this will be the Home Dependent Region one, or the Control Region one if LSO=Y or if
PARDLI=1 has been specified for the BMP. Userid of the current Address Space will be used also
if DFSBSEX0 has returned RC08.

Related Reading: For more information about authorizing resource use in a dependent region,
see IMS Version 15.3 System Administration.

8. Group Name

The group name, which is used by DB2 to provide security for SQL calls, is created through IMS
transactions.

Three instances that apply to the group name are:

• If you use RACF and signon on your IMS system, the RACROUTE SAF (extract) call returns an
eight-character group name.

• If you use your own security package on your IMS system, the RACROUTE SAF call returns any
eight-character name from the package and treats it as a group name. If the RACROUTE SAF call
returns a return code of 4 or 8, a group name was not returned, and IMS blanks out the group name
field.

• If you use LU 6.2, the transaction header can contain a group name.

Related reading: See IMS Version 15.3 Communications and Connections for more information on
LU 6.2.

9. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal packed-decimal format.
The time stamp has the following parts:
Date

yyyydddf

This packed-decimal date contains the year (yyyy), day of the year (ddd), and a valid packed-
decimal + sign such as (f).

Time
hhmmssthmiju

This packed-decimal time consists of hours, minutes, and seconds (hhmmss) and fractions of the
second to the microsecond (thmiju). No packed-decimal sign is affixed to this part of the time
stamp.

UTC Offset
aqq$

The packed-decimal UTC offset is prefixed by 4 bits of attributes (a). If the 4th bit of (a) is 0,
the time stamp is UTC; otherwise, the time stamp is local time. The control region parameter,

Chapter 12. Defining application program elements for IMS DB 211

TSR=(U/L), specified in the DFSPBxxx PROCLIB member, controls the representation of the time
stamp with respect to local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to be added to UTC or local time to
convert to local or UTC time respectively.

The offset sign ($) follows the convention for a packed-decimal plus or minus sign.

Field 4 on the I/O PCB Mask always contains the local date and time. For a description of field 4,
see the notes for the previous table.

Related reading: For a more detailed description of the internal packed-decimal time-format, see
IMS Version 15.3 System Utilities.

10. Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the INQY call. The Userid
Indicator contains one of the following:

• U - The user's identification from the source terminal during signon
• L - The LTERM name of the source terminal if signon is not active
• P - The PSBNAME of the source BMP or transaction
• O - Other name

The value contained in the Userid Indicator field indicates the contents of the userid field.

Specifying the DB PCB mask
IMS describes the results of the calls your program issues in the DB PCB that is referenced in the call. To
determine the success or failure of the DL/I call, the application program includes a mask of the DB PCB
and then references the fields of the DB PCB through the mask.

A DB PCB mask must contain the fields shown in the following table. (Your program can look at, but not
change, the fields in the DB PCB.) The fields in your DB PCB mask must be defined in the same order and
with the same length as the fields shown here. When you code the DB PCB mask, you also give it a name,
but the name is not part of the mask. You use the name (or the pointer, for PL/I) when you reference each
of the PCBs your program processes. A GSAM DB PCB mask is slightly different from other DB PCB masks.

Of the nine fields, only five are important to you as you construct the program. These are the fields that
give information about the results of the call. They are the segment level number, status code, segment
name, length of the key feedback area, and key feedback area. The status code is the field your program
uses most often to find out whether the call was successful. The key feedback area contains the data from
the segments you have specified; the level number and segment name help you determine the segment
type you retrieved after an unqualified GN or GNP call, or they help you determine your position in the
database after an error or unsuccessful call.

Table 35. DB PCB mask

Descriptor Byte Length DB/DC DBCTL DCCTL DB Batch TM Batch

Database name 1 8 X X X

Segment level number 2 2 X X X

Status code 3 2 X X X

Processing options 4 4 X X X

Reserved for IMS 5 4 X X X

Segment name 6 8 X X X

Length of key
feedback area 7

4 X X X

212 IMS: Application Programming

Table 35. DB PCB mask (continued)

Descriptor Byte Length DB/DC DBCTL DCCTL DB Batch TM Batch

Number of sensitive
segments 8

4 X X X

Key feedback area 9 var length X X X

Note:

1. This contains the name of the database. This field is 8 bytes long and contains character data.
2. Segment Level Number

This field contains numeric character data. It is 2 bytes long and right-justified. When IMS retrieves
the segment you have requested, IMS places the level number of that segment in this field. If you
are retrieving several segments in a hierarchic path with one call, IMS places the number of the
lowest-level segment retrieved. If IMS is unable to find the segment that you request, it gives you the
level number of the last segment it encounters that satisfied your call.

3. Status Code

After each DL/I call, this field contains the two-character status code that describes the results of the
DL/I call. IMS updates this field after each call and does not clear it between calls. The application
program should test this field after each call to find out whether the call was successful.

When the program is initially scheduled, this field contains a data-availability status code, which
indicates any possible access constraint based on segment sensitivity and processing options.

Related Reading: For more information on these status codes, see the topic "INIT Call" in IMS Version
15.3 Application Programming APIs.

During normal processing, four categories of status codes exist:

• Successful or exceptional but valid conditions. If the call was completely successful, this field
contains blanks. Many of the codes in this category are for information only. For example, GB means
that IMS has reached the end of the database without satisfying the call. This situation is expected in
sequential processing and is not usually the result of an error.

• Errors in the program. For example, AK means that you have included an invalid field name in a
segment search argument (SSA). Your program should have error routines available for these status
codes. If IMS returns an error status code to your program, your program should terminate. You can
then find the problem, correct it, and restart your program.

• I/O or system error. For example, an AO status code means that there has been an I/O error
concerning OSAM, BSAM, or VSAM. If your program encounters a status code in this category,
it should terminate immediately. This type of error cannot normally be fixed without a system
programmer, database administrator, or system administrator.

• Data-availability status codes. These are returned only if your program has issued the INIT call
indicating that it is prepared to handle such status codes. "Status Code Explanations" in IMS
Version 15.3 Messages and Codes, Volume 4: IMS Component Codes describes possible causes and
corrections in more detail.

4. Processing Options

This is a 4-byte field containing a code that tells IMS what type of calls this program can issue. It is
a security mechanism in that it can prevent a particular program from updating the database, even
though the program can read the database. This value is coded in the PROCOPT parameter of the PCB
statement when the PSB for the application program is generated. The value does not change.

5. Reserved for IMS

This 4-byte field is used by IMS for internal linkage. It is not used by the application program.
6. Segment Name

Chapter 12. Defining application program elements for IMS DB 213

After each successful call, IMS places in this field the name of the last segment that satisfied the call.
When a retrieval is successful, this field contains the name of the retrieved segment. When a retrieval
is unsuccessful, this field contains the last segment along the path to the requested segment that
would satisfy the call. The segment name field is 8 bytes long.

When a program is initially scheduled, the name of the database type is put in the SEGNAME field. For
example, the field contains DEDB when the database type is DEDB; GSAM when the database type is
GSAM; HDAM, or PHDAM when the database type is HDAM or PHDAM.

7. Length of Key Feedback Area

This is a 4-byte binary field that gives the current length of the key feedback area. Because the key
feedback area is not usually cleared between calls, the program needs to use this length to determine
the length of the relevant current concatenated key in the key feedback area.

8. Number of Sensitive Segments

This is a 4-byte binary field that contains the number of segment types in the database to which the
application program is sensitive.

9. Key Feedback Area

At the completion of a retrieval or ISRT call, IMS places the concatenated key of the retrieved segment
in this field. The length of the key for this request is given in the 4-byte field. If IMS is unable to satisfy
the call, the key feedback area contains the key of the segment at the last level that was satisfied. A
segment's concatenated key is made up of the keys of each of its parents and its own key. Keys are
positioned left to right, starting with the key of the root segment and following the hierarchic path.
IMS does not normally clear the key feedback area. IMS sets this length of the key feedback area to
indicate the portion of the area that is valid at the completion of each call. Your program should not
use the content of the key feedback area that is not included in the key feedback area length.

Related concepts
“Data areas in GSAM databases” on page 226
Generalized Sequential Access Method (GSAM) databases are available only to application programs
that can run as batch programs, batch-oriented BMPs, transaction-oriented BMPS, or JBPs. The program
communication block (PCB) mask and the record search argument (RSA) that you use in a GSAM database
call have special formats.

Specifying the AIB mask
The application interface block (AIB) is used by your program to communicate with IMS, when your
application does not have a PCB address or the call function does not use a PCB.

The application program can use the returned PCB address, when available, to inspect the status code in
the PCB and to obtain any other information needed by the application program. The AIB mask enables
your program to interpret the control block defined. The AIB structure must be defined in working storage,
on a fullword boundary, and initialized according to the order and byte length of the fields as shown in the
following table. The table’s notes describe the contents of each field.

Table 36. AIB fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

AIB identifier 1 8 X X X X X

DFSAIB allocated length 2 4 X X X X X

Subfunction code 3 8 X X X X X

Resource name 1 4 8 X X X X X

Resource name 2 5 8 X X X X X

Reserved 6 8

214 IMS: Application Programming

Table 36. AIB fields (continued)

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Maximum output area length
7

4 X X X X X

Output area length used 8 4 X X X X X

Resource field 9 4 X X X X X

Optional area length 10 4 X X X X X

Reserved 11 4 X X X X X

Return code 12 4 X X X X X

Reason code 13 4 X X X X X

Error code extension 14 4 X X X

Resource address 1 15 4 X X X X X

Resource address 2 16 4 X X X X X

Resource address 3 17 4 X X X X X

User defined token 18 16 X X X X X

Return token 19 8 X X X

Reserved 20 16

AIB Identifier (AIBID)
This 8-byte field contains the AIB identifier. You must initialize AIBID in your application program to
the value DFSAIBbb before you issue DL/I calls. This field is required. When the call is completed, the
information returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your program. You must initialize
AIBLEN in your application program before you issue DL/I calls. The minimum length required is 128
bytes. When the call is completed, the information returned in this field is unchanged. This field is
required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a subfunction. You must
initialize AIBSFUNC in your application program before you issue DL/I calls. When the call is
completed, the information returned in this field is unchanged.

Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies depending on the call. You
must initialize AIBRSNM1 in your application program before you issue DL/I calls. When the call is
complete, the information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of passing the PCB address
in the call list, this field contains the PCB name. The PCB name for the I/O PCB is IOPCBbb. The PCB
name for other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name 2 (AIBRSNM2)
This 8-byte field contains the name of a resource. The resource varies depending on the call. You must
initialize AIBRSNM2 in your application program before you issue DL/I calls.

Reserved
This 8-byte field is reserved.

Chapter 12. Defining application program elements for IMS DB 215

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was specified in the call list. You
must initialize AIBOALEN in your application program for all calls that return data to the output area.
When the call is completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all calls that return data to the
output area. When the call is completed this field contains the length of the I/O area used for this call.

Resource Field (AIBRSFLD)
This 4-byte field contains a resource. The resource varies depending on the call. You must initialize
AIBRSFLD in your application program before you issue DL/I calls.

Optional Area Length (AIBOPLEN)
This 4-byte field contains a resource. The resource varies depending on the call. You must initialize
AIBOPLEN in your application program before you issue DL/I calls.

Reserved
This 4-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the return code in AIBRETRN and
the reason code in AIBREASN.

Resource Address 1 (AIBRSA1)
When the call is completed, this 4-byte field contains call-specific information. For PCB related calls
where the AIB is used to pass the PCB name instead of passing the PCB address in the call list, this
field returns the PCB address.

Resource Address 2 (AIBRSA2)
When the call is completed, this 4-byte field contains call-specific information.

Resource Address 3 (AIBRSA3)
When the call is completed, this 4-byte field contains call-specific information.

User Defined Token (AIBUTKN)
This 16-byte field contains a user defined token. The token varies depending on the call.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I call. The usage is specific to the
DL/I call for which the token was returned.

Reserved

This 16-byte field is reserved.

Specifying the AIB mask for ODBA applications
The following table describes the fields for specifying the application interface block (AIB) mask for ODBA
applications.

The notes that follow describe the contents of each field.

Table 37. AIB fields for use of ODBA applications

AIB Fields Byte
Length

DB/DC IMS DB DCCTL DB Batch TM Batch

AIB identifier 8 X X X X X

DFSAIB allocated length 4 X X X X X

Subfunction code 8 X X X X X

216 IMS: Application Programming

Table 37. AIB fields for use of ODBA applications (continued)

AIB Fields Byte
Length

DB/DC IMS DB DCCTL DB Batch TM Batch

Resource name #1 8 X X X X X

Resource name #2 8

Reserved 1 8 X

Maximum output area length 4 X X X X X

Output area length used 4 X X X X X

Reserved 2 12

Return code 4 X X X X X

Reason code 4 X X X X X

Error code extension 4 X

Resource address #1 4 X X X X X

Resource address #2 4

Resource address #3 4

AIB return token 8 X X X

Reserved 3 32

Reserved for ODBA 136

AIB Identifier (AIBID)
This 8-byte field contains the AIB identifier. You must initialize AIBID in your application program to
the value DFSAIBbb before you issue DL/I calls. This field is required. When the call is completed, the
information returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your program. You must initialize
AIBLEN in your application program before you issue DL/I calls. The minimum length required is 264
bytes for ODBA. When the call is completed, the information returned in this field is unchanged. This
field is required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a subfunction. You must
initialize AIBSFUNC in your application program before you issue DL/I calls. When the call is
completed, the information returned in this field is unchanged.

Resource Name (AIBRSNM1) #1

This 8-byte field contains the name of a resource. The resource varies depending on the call. You
must initialize AIBRSNM1 in your application program before you issue DL/I calls. When the call is
complete, the information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of passing the PCB address
in the call list, this field contains the PCB name. The PCB name for the I/O PCB is IOPCBbb. The PCB
name for other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name (AIBRSNM2) #2
Specify a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is a 4-character ID.

Reserved 1
This 8-byte field is reserved.

Chapter 12. Defining application program elements for IMS DB 217

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was specified in the call list. You
must initialize AIBOALEN in your application program for all calls that return data to the output area.
When the call is completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all calls that return data to the
output area. When the call is completed this field contains the length of the I/O area used for this call.

Reserved 2
This 12-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the return code in AIBRETRN and
the reason code in AIBREASN.

Resource Address (AIBRSA1) #1
When the call is completed, this 4-byte field contains call-specific information. For PCB related calls
where the AIB is used to pass the PCB name instead of passing the PCB address in the call list, this
field returns the PCB address.

Resource Address (AIBRSA2) #2
This 4-byte field is reserved for ODBA.

Resource Address (AIBRSA3) #3
This 4-byte token, returned on the APSB call, is required for subsequent DLI calls and the DPSB call
related to this thread.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I call. The usage is specific to the
DL/I call for which the token was returned.

Reserved 3

This 32-byte field is reserved.

Reserved for ODBA
This 136-byte field is reserved for ODBA.

The application program can use the returned PCB address, when available, to inspect the status code in
the PCB and to obtain any other information needed by the application program.

COBOL AIB Mask Example

 01 AIB.
 02 AIBRID PIC x(8).
 02 AIBRLEN PIC 9(9) USAGE BINARY.
 02 AIBRSFUNC PIC x(8).
 02 AIBRSNM1 PIC x(8).
 02 AIBRSNM2 PIC x(8).
 02 AIBRSNM3 PIC x(8).
 02 AIBOALEN PIC 9(9) USAGE BINARY.
 02 AIBOAUSE PIC 9(9) USAGE BINARY.
 02 AIBRESV2 PIC x(12).
 02 AIBRETRN PIC 9(9) USAGE BINARY.
 02 AIBREASN PIC 9(9) USAGE BINARY.
 02 AIBERRXT PIC 9(9) USAGE BINARY.
 02 AIBRESA1 USAGE POINTER.
 02 AIBRESA2 USAGE POINTER.
 02 AIBRESA3 USAGE POINTER.
 02 AIBRESV4 PIC x(40).
 02 AIBRSAVE OCCURS 18 TIMES USAGE POINTER.
 02 AIBRTOKN OCCURS 6 TIMES USAGE POINTER.
 02 AIBRTOKC PIC x(16).

218 IMS: Application Programming

 02 AIBRTOKV PIC x(16).
 02 AIBRTOKA OCCURS 2 TIMES PIC 9(9) USAGE BINARY.

Assembler AIB Mask Example

 DFSAIB DSECT
 AIBID DS CL8'DFSAIB'
 AIBLEN DS F
 AIBSFUNC DS CL8
 AIBRSNM1 DS CL8
 AIBRSVM2 DS CL8
 AIBRSNM3 DS CL8
 DS 2F
 AIBOALEN DS F
 AIBOAUSE DS F
 DS 2F
 DS H
 DS H
 AIBRETRN DS F
 AIBREASN DS F
 AIBRRXT DS F
 AIBRSA1 DS A
 AIBRSA2 DS A
 AIBRSA3 DS A
 DS 10F
 AIBLL EQU *-DFSAIB
 AIBSAVE DS 18F
 AIBTOKN DS 6F
 AIBTOKC DS CL16
 AIBTOKV DS XL16
 AIBTOKA DS 2F
 AIBAERL EQU *-DFSAIB

Specifying the UIB (CICS online programs only)
The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

When you issue the PCB call to obtain a PSB for your program, a UIB is created for your program. As with
any area outside your program, you must include a definition of the UIB and establish addressability to it.
CICS provides a definition of the UIB for all programming languages:

• In COBOL programs, use the COPY DLIUIB statement.
• In PL/I programs, use a %INCLUDE DLIUIB statement.
• In assembler language programs, use the DLIUIB macro.

Three fields in the UIB are important to your program: UIBPCBAL, UIBFCTR, and UIBDLTR. UIBPCBAL
contains the address of the PCB address list. Through it you can obtain the address of the PCB you want
to use. Your program must check the return code in UIBFCTR (and possibly UIBDLTR) before checking the
status code in the DB PCB. If the contents of UIBFCTR and UIBDLTR are not null, the content of the status
code field in the DB PCB is not meaningful. The return codes are described in the topic "CICS-DL/I user
interface block return codes" in IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes.

Immediately after the statement that defines the UIB in your program, you must define the PCB address
list and the PCB mask.

The following code example shows how to use the COPY DLIUIB statement in a VS COBOL II program:

Defining the UIB, PCB address list, and the PCB mask for VS COBOL II

LINKAGE SECTION.

 COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.
 02 PCBADDR USAGE IS POINTER.
 02 FILLER PIC XX.

01 PCB-ADDRESSES.

Chapter 12. Defining application program elements for IMS DB 219

 02 PCB-ADDRESS-LIST
 USAGE IS POINTER OCCURS 10 TIMES.
01 PCB1.
 02 PCB1-DBD-NAME PIC X(8).
 02 PCB1-SEG-LEVEL PIC XX.
 .
 .
 .

The COBOL COPY DLIUIB copybook

01 DLIUIB.
* Address of the PCB addr list
 02 UIBPCBAL PIC S9(8) COMP.
* DL/I return codes
 02 UIBRCODE.
* Return codes
 03 UIBFCTR PIC X.
 88 FCNORESP VALUE ' '.
 88 FCNOTOPEN VALUE ' '.
 88 FCINVREQ VALUE ' '.
 88 FCINVPCB VALUE ' '.
* Additional information
 03 UIBDLTR PIC X.
 88 DLPSBNF VALUE ' '.
 88 DLTASKNA VALUE ' '.
 88 DLPSBSCH VALUE ' '.
 88 DLLANGCON VALUE ' '.
 88 DLPSBFAIL VALUE ' '.
 88 DLPSBNA VALUE ' '.
 88 DLTERMNS VALUE ' '.
 88 DLFUNCNS VALUE ' '.
 88 DLINA VALUE ' '.

The values placed in level 88 entries are not printable. They are described in the topic "CICS-DL/I User
Interface Block Return Codes" in IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes.
The meanings of the field names and their hexadecimal values are shown below:

FCNORESP
Normal response Value X'00'

FCNOTOPEN
Not open Value X'0C'

FCINVREQ
Invalid request Value X'08'

FCINVPCB
Invalid PCB Value X'10'

DLPSBNF
PSB not found Value X'01'

DLTASKNA
Task not authorized Value X'02'

DLPSBSCH
PSB already scheduled Value X'03'

DLLANGCON
Language conflict Value X'04'

DLPSBFAIL
PSB initialization failed Value X'05'

DLPSBNA
PSB not authorized Value X'06'

DLTERMNS
Termination not successful Value X'07'

DLFUNCNS
Function unscheduled Value X'08'

220 IMS: Application Programming

DLINA
DL/I not active Value X'FF'

The following code example shows how to define the UIB, PCB address list, and PCB mask for PL/I.

Defining the UIB, PCB address list, and the PCB mask for PL/I

DCL UIBPTR PTR; /* POINTER TO UIB */
DCL 1 DLIUIB UNALIGNED BASED(UIBPTR),
 /* EXTENDED CALL USER INTFC BLK*/
 2 UIBPCBAL PTR, /* PCB ADDRESS LIST */
 2 UIBRCODE, /* DL/I RETURN CODES */
 3 UIBFCTR BIT(8) ALIGNED, /* RETURN CODES */
 3 UIBDLTR BIT(8) ALIGNED; /* ADDITIONAL INFORMATION */

The following code example shows how to define the UIB, PCB address list, and PCB mask for assembler
language.

Defining the UIB, PCB address list, and the PCB mask for assembler language

DLIUIB DSECT
UIB DS 0F EXTENDED CALL USER INTFC BLK
UIBPCBAL DS A PCB ADDRESS LIST
UIBRCODE DS 0XL2 DL/I RETURN CODES
UIBFCTR DS X RETURN CODE
UIBDLTR DS X ADDITIONAL INFORMATION
 DS 2X RESERVED
 DS 0F LENGTH IS FULLWORD MULTIPLE
UIBLEN EQU *-UIB LENGTH OF UIB

Related reference
“Coding a CICS online program in COBOL” on page 184
The following code examples are skeleton online programs in Enterprise COBOL. They show examples of
how to define and set up addressability to the UIB.
“Coding a CICS online program in PL/I” on page 192
The following code example is a skeleton CICS online program in PL/I. It shows you how to define and
establish addressability to the UIB.
“Coding a CICS online program in assembler language” on page 178
The following code example in assembler language shows how you define and establish addressability to
the UIB.
“Language specific entry points” on page 227
In your application program written in assembler language, C, COBOL, Pascal, or PL/I, control is passed
from IMS through an entry point.

Specifying the I/O areas
Use an I/O area to pass segments between the application program and IMS.

What the I/O area contains depends on the type of call you are issuing:

• When you retrieve a segment, IMS places the segment you requested in the I/O area.
• When you add a new segment, you first build the new segment in the I/O area.
• Before modifying a segment, your program must first retrieve it. When you retrieve the segment, IMS

places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can be fixed length
or variable length. Only one difference is important to the application program: a message segment
containing a 2-byte length field (or 4 bytes for the PLITDLI interface) at the beginning of the data area of
the segment.

The I/O area for IMS calls must be large enough to hold the largest segment your program retrieves from
or sends to IMS.

Chapter 12. Defining application program elements for IMS DB 221

If your program issues any Get or ISRT calls that use the D command code, the I/O area must be large
enough to hold the largest path of segments that the program retrieves or inserts.

Formatting segment search arguments (SSAs)
Segment search arguments in your assembler language, C language, COBOL, Java, Pascal, and PL/I
application programs must be coded according to the following rules and formats.

SSA coding rules
Use the following rules for coding a segment search argument.

• Define the SSA in the data area of your program.
• The segment name field must:

– Be 8 bytes long. If the name of the segment you are specifying is less than 8 bytes long, it should be
left justified and padded on the right with blanks.

– Contain a segment name that has been defined in the DBD that your application program uses. In
other words, make sure you use the exact segment name, or your SSA will be invalid.

– Or, if the DL/I call uses command code O, the segment field name is the starting offset and length
of the data that you want to retrieve. The starting offset is relative to the physical segment definition
and starts with 1. The maximum length that can be retrieved is the maximum segment size for the
database type, and the minimum length is 1. The two fields are specified instead of a standard field
name in the following format: 'oooollll'. oooo is the offset position and llll is the length of the data
that you want to retrieve.

• If the SSA contains only the segment name, byte 9 must contain a blank.
• If the SSA contains one or more command codes:

– Byte 9 must contain an asterisk (*).
– The last command code must be followed by a blank unless the SSA contains a qualification

statement. If the SSA contains a qualification statement, the command code must be followed by
the left parenthesis of the qualification statement.

• If the SSA contains a qualification statement:

– The qualification statement must begin with a left parenthesis and end with a right parenthesis.
– There must not be any blanks between the segment name or command codes, if used, and the left

parenthesis.
– The field name must be 8 bytes long. If the field name is less than 8 bytes, it must be left justified and

padded on the right with blanks. The field name must have been defined for the specified segment
type in the DBD the application program is using.

– The relational operator follows the field name. It must be 2 bytes long and can be represented
alphabetically or symbolically. The following table lists the relational operators.

Table 38. Relational operators

Symbolic Alphabetic Meaning

=b= EQ Equal to

>= or => GE Greater than or equal to

<= or =< LE Less than or equal to

>b> GT Greater than

<b< LT Less than

¬= or =¬ NE Not equal to

222 IMS: Application Programming

– The comparative value follows the relational operator. The length of this value must be equal to
the length of the field that you specified in the field name. This length is defined in the DBD. The
comparative value must include leading zeros for numeric values or trailing blanks for alphabetic
values as necessary. The comparative value cannot include any parenthesis.

• If you are using multiple qualification statements within one SSA (Boolean qualification statements), the
qualification statements must be separated by one of these symbols:
* or &

Dependent AND
+ or |

Logical OR
#

Independent AND

One of these symbols must appear between the qualification statements that the symbol connects.
• The last qualification statement must be followed by a right parenthesis.

An SSA created by the application program must not exceed the space allocated for the SSA in the PSB.

Related reading: For additional information about defining the PSB SSA size, see the explanation of the
PSBGEN statement in IMS Version 15.3 Database Utilities.

SSA coding formats
Use the following formats to code segment search arguments in assembler language, C language, COBOL,
Pascal, and PL/I.

Assembler language SSA definition examples
The following code example shows how you would define a qualified SSA without command codes. If you
want to use command codes with this SSA, code the asterisk (*) and command codes between the 8-byte
segment name field and the left parenthesis that begins the qualification statement.

* CONSTANT AREA
⋮
SSANAME DS 0CL26
ROOT DC CL8'ROOT '
 DC CL1'('
 DC CL8'KEY '
 DC CL2' ='
NAME DC CLn'vv...v'
 DC CL1')'

This SSA looks like this:

ROOTbbbb(KEYbbbbbb=vv...v)

C language SSA definition examples
An unqualified SSA that does not use command codes looks like this in C:

 const struct {
 char seg_name_u[8];
 char blank[1];
} unqual_ssa = {"NAME ", " "};

You can use an SSA that is coded like this for each DL/I call that needs an unqualified SSA by supplying
the name of the segment type you want during program execution. Note that the string size declarations
are such that the C null terminators do not appear within the structure.

You can, of course, declare this as a single string:

const char unqual_ssa[] = "NAME "; /* 8 chars + 1 blank */

Chapter 12. Defining application program elements for IMS DB 223

DL/I ignores the trailing null characters.

You can define SSAs in any of the ways explained for the I/O area.

The easiest way to create a qualified SSA is using the sprintf function. However, you can also define it
using a method similar to that used by COBOL or PL/I.

The following is an example of a qualified SSA without command codes. To use command codes with
this SSA, code the asterisk (*) and command codes between the 8-byte segment name field and the left
parenthesis that begins the qualification statement.

struct {
 seg_name char[8];
 seg_qual char[1];
 seg_key_name char[8];
 seg_opr char[2];
 seg_key_value char[n];
 seg_end_char char[1];
} qual_ssa = {"ROOT ", "(", "KEY ", " =", "vv...vv", ")"};

Another way is to define the SSA as a string, using sprintf. Remember to use the preprocessor directive
#include <stdio.h>.

char qual_ssa[8+1+8+2+6+1+1]; /* the final 1 is for the */
 /* trailing '\0' of string */
sprintf(qual_ssa,
 ",
 "ROOT", "KEY", "=", "vvvvv");

Alternatively, if only the value were changing, the sprintf call can be:

sprintf(qual_ssa,
 "ROOT (KEY =, "vvvvv");
 /* 12345678 12345678 */

In both cases, the SSA looks like this:

ROOTbbbb(KEYbbbbbb=vv…v)

COBOL SSA definition examples
An unqualified SSA that does not use command codes looks like this in COBOL:

DATA DIVISION.
WORKING-STORAGE SECTION.
⋮
01 UNQUAL-SSA.
 02 SEG-NAME PICTURE X(08) VALUE '........'.
 02 FILLER PICTURE X VALUE ' '.

By supplying the name of the segment type you want during program execution, you can use an SSA
coded like the one in this example for each DL/I call that needs an unqualified SSA.

Use a 01 level working storage entry to define each SSA that the program is to use. Then use the name
you have given the SSA as the parameter in the DL/I call, in this case:

UNQUAL-SSA,

The following SSA is an example of a qualified SSA that does not use command codes. If you use
command codes in this SSA, code the asterisk (*) and the command code between the 8-byte segment
name field and the left parenthesis that begins the qualification statement.

DATA DIVISION.
WORKING-STORAGE SECTION.
⋮
01 QUAL-SSA-MAST.
 02 SEG-NAME-M PICTURE X(08) VALUE 'ROOT '.
 02 BEGIN-PAREN-M PICTURE X VALUE '('.
 02 KEY-NAME-M PICTURE X(08) VALUE 'KEY '.

224 IMS: Application Programming

 02 REL-OPER-M PICTURE X(02) VALUE ' ='.
 02 KEY-VALUE-M PICTURE X(n) VALUE 'vv...v'.
 02 END-PAREN-M PICTURE X VALUE ')'.

The SSA looks like this:

ROOTbbbb(KEYbbbbbb=vv...v)

Pascal SSA definition examples
An unqualified SSA that does not use command codes looks like this in Pascal:

type
 STRUCT = record
 SEG_NAME : ALFA;
 BLANK : CHAR;
 end;
const
 UNQUAL_SSA = STRUCT('NAME',' ');

You can also declare this SSA as a single string:

const
 UNQUAL_SSA = 'NAME ';

The SSA shown in the following example is a qualified SSA that does not use command codes. If you use
command codes in this SSA, code the asterisk (*) and the command code between the 8-byte segment
name field and the left parenthesis that begins the qualification statement.

type
 STRUCT = record
 SEG_NAME : ALFA;
 SEG_QUAL : CHAR;
 SEG_KEY_NAME : ALFA;
 SEG_OPR : CHAR;
 SEG_KEY_VALUE : packed array[1..n] of CHAR;
 SEG_END_CHAR : CHAR;
 end;
const
 QUAL_SSA = STRUCT('ROOT','(','KEY',' =','vv...v',')');

This SSA looks like this:

ROOTbbbb(KEYbbbbbb=vv...v)

PL/I SSA definition examples
An unqualified SSA that does not use command codes looks like this in PL/I:

DCL 1 UNQUAL_SSA STATIC UNALIGNED,
 2 SEG_NAME_U CHAR(8) INIT('NAME '),
 2 BLANK CHAR(1) INIT(' ');

You can use a SSA that is coded like this for each DL/I call that needs an unqualified SSA by supplying the
name of the segment type you want during program execution.

In PL/I you define SSAs in structure declarations. The unaligned attribute is required for SSA data
interchange with IMS. The SSA character string must reside contiguously in storage. For example,
assignment of variable key values might cause IMS to construct an invalid SSA if the key value has
changed the aligned attribute.

A separate SSA structure is required for each segment type that the program accesses because the value
of the key fields differs among segment types. After you have initialized the fields (other than the key
values), the SSA should not need to be changed again. You can define SSAs in any of the ways explained
for the I/O area.

Chapter 12. Defining application program elements for IMS DB 225

The following is an example of a qualified SSA without command codes. If you use command codes in
this SSA, code the asterisk (*) and command codes between the 8-byte segment name field and the left
parenthesis that begins the qualification statement.

DCL 1 QUAL_SSA STATIC UNALIGNED,
 2 SEG_NAME CHAR(8) INIT('ROOT '),
 2 SEG_QUAL CHAR(1) INIT('('),
 2 SEG_KEY_NAME CHAR(8) INIT('KEY '),
 2 SEG_OPR CHAR(2) INIT(' ='),
 2 SEG_KEY_VALUE CHAR(n) INIT('vv...v'),
 2 SEG_END_CHAR CHAR(1) INIT(')');

This SSA looks like this:

ROOTbbbb(KEYbbbbbb=vv...v)

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Data areas in GSAM databases
Generalized Sequential Access Method (GSAM) databases are available only to application programs
that can run as batch programs, batch-oriented BMPs, transaction-oriented BMPS, or JBPs. The program
communication block (PCB) mask and the record search argument (RSA) that you use in a GSAM database
call have special formats.

GSAM DB PCB masks are slightly different from other DB PCB masks. The fields that are different are the
length of the key feedback area and the key feedback area. Also, an additional field exists that gives the
length of the record being retrieved or inserted when using undefined-length records.

The RSA is an 8-byte token for basic format data sets or 12-byte token for large format data sets that can
be returned on GN and ISRT calls. The application program can save the RSA for use in a subsequent GU
call.

Related concepts
“Processing GSAM databases” on page 283
GSAM databases are available to application programs that can run online in IMS batch message
processing (BMP) regions (message-driven or non-message-driven) or Java batch processing (JBP)
regions or standalone in DLIBATCH regions.
Related reference
“Specifying the DB PCB mask” on page 212
IMS describes the results of the calls your program issues in the DB PCB that is referenced in the call. To
determine the success or failure of the DL/I call, the application program includes a mask of the DB PCB
and then references the fields of the DB PCB through the mask.

AIBTDLI interface
Use AIBTDLI as the interface between your application program and IMS.

Restriction: No fields in the application interface block (AIB) can be used by the application program
except as defined by IMS.

When you use the AIBTDLI interface, you specify the program communication block (PCB) requested for
the call by placing the PCB name (as defined by PSBGEN) in the resource name field of the AIB. You
do not specify the PCB address. Because the AIB contains the PCB name, your application program can
refer to the PCB name rather than the PCB address. Your application program does not need to know
the relative PCB position in the PCB list. At completion of the call, the AIB returns the PCB address that
corresponds to the PCB name passed by the application program.

226 IMS: Application Programming

The names of DB PCBs and alternate PCBs are defined by the user during PSBGEN. All I/O PCBs are
generated with the PCB name bbb. For a generated program specification block (GPSB), the I/O PCB is
generated with the PCB name IOPCBbbb, and the modifiable alternate PCB is generated with the PCB
name TPPCB1bb.

The ability to pass the PCB name means that you do not need to know the relative PCB number in the
PCB list. In addition, the AIBTDLI interface enables your application program to make calls on PCBs that
do not reside in the PCB list. The LIST= keyword, which is defined in the PCB macro during PSBGEN,
controls whether the PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use the AIBTDLI
interface. Upon call completion, IMS updates the AIB. Allocate at least 128 bytes of storage for the AIB.

Related concepts
“PCB masks for GSAM databases” on page 283
For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.
Related reference
“Application programming for PL/I” on page 360
Application programs in PL/I use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.
“Application programming for Pascal” on page 357
Application programs in Pascal use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.
“Application programming for C language” on page 352
Application programs in C use the following format, parameters, and DL/I calls to communicate with the
IMS Transaction Manager.
“Application programming for assembler language” on page 349
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with the IMS Transaction Manager.
“Assembler language application programming” on page 195
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with IMS databases.

Language specific entry points
In your application program written in assembler language, C, COBOL, Pascal, or PL/I, control is passed
from IMS through an entry point.

Your entry point must refer to the PCBs in the order in which they have been defined in the PSB. When
you code each DL/I call, you must provide the PCB you want to use for that call. In all cases except CICS
online, the list of PCBs that the program can access is passed to the program at its entry point. For CICS
online, you must first schedule a PSB as described in the topic "System Service Call: PCB" in IMS Version
15.3 Application Programming APIs.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI), such as Java application
interfaces, use the PCB name rather than the PCB structure and do not require the PCB list to be passed
at entry to the application.

In a CICS online program, you do not obtain the address of the PCBs through an entry statement, but
through the user interface block (UIB).

Leave the value blank if the application has been enabled for the IBM Language Environment® for z/OS &
VM.

Chapter 12. Defining application program elements for IMS DB 227

Assembler language entry point
You can use any name for the entry statement to an assembler language DL/I program. When IMS passes
control to the application program, register 1 contains the address of a variable-length fullword parameter
list. Each word in the list contains the address of a PCB. Save the content of register 1 before you
overwrite it. IMS sets the high-order byte of the last fullword in the list to X'80' to indicate the end of the
list. Use standard z/OS linkage conventions with forward and backward chaining.

C language entry point
When IMS passes control to your program, it passes the addresses, in the form of pointers, for each of the
PCBs that your program uses. The usual argc and argv arguments are not available to a program that is
invoked by IMS. The IMS parameter list is made accessible by using the __pcblist macro. You can directly
reference the PCBs by __pcblist[0], __pcblist[1], or you can define macros to give these more meaningful
names. Note that I/O PCBs must be cast to get the proper type:

(IO_PCB_TYPE *)(__pcblist[0])

The entry statement for a C language program is the main statement.

#pragma runopts(env(IMS),plist(IMS))
#include <ims.h>

main()
{
⋮
}

The env option specifies the operating environment in which your C language program is to run. For
example, if your C language program is invoked under IMS and uses IMS facilities, specify env(IMS). The
plist option specifies the format of the invocation parameters that is received by your C language program
when it is invoked. When your program is invoked by a system support services program, the format of the
parameters passed to your main program must be converted into the C language format: argv, argc, and
envp. To do this conversion, you must specify the format of the parameter list that is received by your C
language program. The ims.h include file contains declarations for PCB masks.

You can finish in three ways:

• End the main procedure without an explicit return statement.
• Execute a return statement from main.
• Execute an exit or an abort call from anywhere, or alternatively issue a longjmp back to main, and then

do a normal return.

One C language program can pass control to another by using the system function. The normal rules for
passing parameters apply; in this case, the argc and argv arguments can be used to pass information. The
initial __pcblist is made available to the invoked program.

COBOL entry point
The procedure statement must refer to the I/O PCB first, then to any alternate PCB it uses, and finally
to the DB PCBs it uses. The alternate PCBs and DB PCBs must be listed in the order in which they are
defined in the PSB.

PROCEDURE DIVISION USING PCB-NAME-1 [,...,PCB-NAME-N]

In previous versions of IMS, USING might be coded on the entry statement to reference PCBs. However,
IMS continues to accept such coding on the entry statement.

Recommendation: Use the procedure statement rather than the entry statement to reference the PCBs.

228 IMS: Application Programming

Pascal entry point
The entry point must be declared as a REENTRANT procedure. When IMS passes control to a Pascal
procedure, the first address in the parameter list is reserved for Pascal's use, and the other addresses
are the PCBs the program uses. The PCB types must be defined before this entry statement. The IMS
interface routine PASTDLI must be declared with the GENERIC directive.

procedure ANYNAME(var SAVE: INTEGER;
 var pcb1-name: pcb1-name-type[;
 ...
 var pcbn-name: pcbn-name-type]); REENTRANT;
procedure ANYNAME;
(* Any local declarations *)
 procedure PASTDLI; GENERIC;
begin
 (* Code for ANYNAME *)
end;

PL/I entry point

The entry statement must appear as the first executable statement in the program. When IMS passes
control to your program, it passes the addresses of each of the PCBs your program uses in the form of
pointers. When you code the entry statement, make sure you code the parameters of this statement as
pointers to the PCBs, and not the PCB names.

anyname: PROCEDURE (pcb1_ptr [,..., pcbn_ptr]) OPTIONS (MAIN);
⋮
RETURN;

The entry statement can be any valid PL/I name.

CEETDLI, AIBTDLI, and AERTDLI interface considerations
The following considerations apply for CEETDLI, AIBTDLI, and AERTDLI.

The considerations for CEETDLI are:

• For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW include file. Alternatively,
you can declare it yourself, but it must be declared as an assembler language entry (DCL CEETDLI
OPTIONS(ASM);).

• For C language application programs, you must specify env(IMS) and plist(IMS); these specifications
enable the application program to accept the PCB list of arguments. The CEETDLI function is defined in
<leawi.h>; the CTDLI function is defined in <ims.h>.

The considerations for AIBTDLI are:

• When using the AIBTDLI interface for C/MVS, Enterprise COBOL, or PL/I language application programs,
the language run-time options for suppressing abend interception (that is, NOSPIE and NOSTAE) must
be specified. However, for Language Environment-conforming application programs, the NOSPIE and
NOSTAE restriction is removed.

• The AIBTDLI entry point for PL/I programs must be declared as an assembler language entry (DCL
AIBTDLI OPTIONS(ASM);).

• For C language applications, you must specify env(IMS) and plist(IMS); these specifications enable the
application program to accept the PCB list of arguments.

The considerations for AERTDLI are:

• When using the AERTDLI interface for C/MVS, COBOL, or PL/I language application programs, the
language run-time options for suppressing abend interception (that is, NOSPIE and NOSTAE) must
be specified. However, for Language Environment-conforming application programs, the NOSPIE and
NOSTAE restriction is removed.

• The AERTDLI entry point for PL/I programs must be declared as an assembler language entry (DCL
AERTDLI OPTIONS(ASM);).

Chapter 12. Defining application program elements for IMS DB 229

• For C language applications, you must specify env(IMS) and plis(IMS). These specifications enable the
application program to accept the PCB list of arguments.

• AERTDLI must receive control with 31 bit addressability.

Related reference
“Specifying the UIB (CICS online programs only)” on page 219
The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Program communication block (PCB) lists
In your application program, code your PCB or GPSB list in the following format.

PCB list format
The following example shows the general format of a PCB list.

[IOPCB]
[Alternate PCB ... Alternate PCB]
[DB PCB ... DB PCB]
[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB is required for most system service calls. An I/O PCB
or alternate PCB is required for transaction management calls. (Alternate PCBs can exist in IMS TM.) DB
PCBs for DL/I databases are used only with the IMS Database Manager under DBCTL. GSAM PCBs can be
used with DCCTL.

Format of a GPSB PCB list
A generated program specification block (GPSB) takes this format:

[IOPCB]
[Alternate PCB]

A GPSB contains only an I/O PCB and one modifiable alternate PCB. (A modifiable alternate PCB enables
you to change the destination of the alternate PCB while the program is running.) A GPSB can be used by
all transaction management application programs, and permits access to the specified PCBs without the
need for a specific PSB for the application program.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is IOPCB. The name of the
alternate PCB is TPPCB1bb. The minimum size of the I/O work area that IMS generates for GPSBs in a
DBCTL environment is 600 bytes.

PCB summary
If you intend to issue system service requests, be aware of the differences between I/O PCBs and
alternate PCBs in various types of application programs.
DB Batch Programs

If CMPAT=Y is specified in PSBGEN, the I/O PCB is present in the PCB list; otherwise, the I/O PCB is
not present, and the program cannot issue system service calls. Alternate PCBs are always included in
the list of PCBs that IMS supplies to the program.

BMPs, MPPs, and IFPs
The I/O PCB and alternate PCBs are always passed to BMPs, MPPs, and IFPs.

The PCB list always contains the address of the I/O PCB, followed by the addresses of any alternate
PCBs, followed by the addresses of the DB PCBs.

230 IMS: Application Programming

CICS Online Programs with DBCTL
If you specify the IOPCB option on the PCB call, the first PCB address in your PCB list is the I/O PCB,
followed by any alternate PCBs, followed by the addresses of the DB PCBs.

If you do not specify the I/O PCB option, the first PCB address in your PCB list points to the first DB
PCB.

The following table summarizes the I/O PCB and alternate PCB information.

Table 39. I/O PCB and alternate PCB information summary

Environment
CALL DL/I

I/O PCB address in PCB list Alternate PCB address in PCB
list

MPP Yes Yes

IFP Yes Yes

BMP Yes Yes

DB Batch1 No Yes

DB Batch2 Yes Yes

TM Batch3 Yes Yes

CICS DBCTL4 No No

CICS DBCTL5 Yes Yes

Notes:

1. CMPAT = N specified.
2. CMPAT = Y specified.
3. CMPAT = Option. Default is always to Y, even when CMPAT = N is specified.
4. SCHD request issued without the IOPCB or SYSSERVE option.
5. SCHD request issued with the IOPCB or SYSSERVE for a CICS DBCTL request or for a function-shipped

request which is satisfied by a CICS system using DBCTL.

The AERTDLI interface
You can make database calls with AIBs in your ODBA applications using the AERTDLI interface.

Requirement: Allocate 264 bytes of storage for the AIB.

When you use the AERTDLI interface, the AIB used for database calls must be the same AIB as used
for the APSB call. Specify the PCB that is requested for the call by placing the PCB name (as defined
by PSBGEN) in the resource name field of the AIB. You do not specify the PCB address. Because the
AIB contains the PCB name, your application can refer to the PCB name rather than to the PCB address.
The AERTDLI call allows you to select PCBs directly by name rather than by a pointer to the PCB. At
completion of the call, the AIB returns the PCB address that corresponds to the PCB name that is passed
by the application program.

For PCBs to be used in a AERTDLI call, you must assign a name in PSBGEN, either with PCBNAME= or
with the name as a label on the PCB statement. PCBs that have assigned names are also included in the
positional pointer list, unless you specify LIST=NO. During PSBGEN, you define the names of the DB PCBs
and alternate PCBs. All I/O PCBs are generated with the PCB name IOPCBbbb.

Because you pass the PCB name, you do not need to know the relative PCB number in the PCB list.
In addition, the AERTDLI interface enables your application program to make calls on PCBs that do not
reside in the PCB list. The LIST= keyword, which is defined in the PCB macro during PSBGEN, controls
whether the PCB is included in the PCB list.

Chapter 12. Defining application program elements for IMS DB 231

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use the AERTDLI
interface. When the call is completed, the AIB is updated by IMS. Because some of the fields in the AIB
are used internally by IMS, the same APSB AIB must be used for all subsequent calls for that PSB.

Language environments
IBM Language Environment provides the strategic execution environment for running your application
programs written in one or more high level languages.

It provides not only language-specific run-time support, but also cross-language run-time services for
your applications, such as support for initialization, termination, message handling, condition handling,
storage management, and National Language Support. Many of Language Environment's services
are accessible explicitly through a set of Language Environment interfaces that are common across
programming languages; these services are accessible from any Language Environment-conforming
program.

Language Environment-conforming programs can be compiled with the following compilers:

• IBM C++/MVS
• IBM COBOL
• IBM PL/I

By default, the Language Environment infrastructure uses the 31-bit addressing mode. By specifying
JVM=64, the Language Environment is changed to use the 64-bit addressing mode. By specifying
JVM=3164, the dependent region will initialize a 31-bit Language Environment and a secondary 64-bit
Language Environment to support 31-bit COBOL and 64-bit Java interoperability.

Language Environment supports C, C++, and assembly language interoperability in a 64-bit addressing
mode, but does not support COBOL and PL/I interoperability in a 64-bit addressing mode. Do not switch
to JVM=64 if your Java application invokes either COBOL or PL/I. If the regions are switched to use
JVM=64 inadvertently, and incompatible interoperable applications are running, the application might
receive system or user abends.

The CEETDLI interface to IMS
The language-independent CEETDLI interface to IMS is provided by Language Environment. It is the only
IMS interface that supports the advanced error handling capabilities provided by Language Environment.
The CEETDLI interface supports the same functionality as the other IMS application interfaces, and it has
the following characteristics:

• The parmcount variable is optional.
• Length fields are 2 bytes long.
• Direct pointers are used.

Related reading: For more information about Language Environment, see z/OS Language Environment
Programming Guide.

LANG= option on PSBGEN for PL/I compatibility
For IMS PL/I applications running in a compatibility mode that uses the PLICALLA entry point, you must
specify LANG=PLI on the PSBGEN. Your other option is to change the entry point and add SYSTEM(IMS)
to the EXEC PARM of the compile step so that you can specify LANG=blank or LANG=PLI on the PSBGEN.
The following table summarizes when you can use LANG=blank and LANG=PLI.

Table 40. Using LANG= option in a Language Environment for PL/I compatibility

Compile exec statement is
PARM=(...,SYSTEM(IMS)...

Entry point name is PLICALLA
Valid LANG= value

Yes Yes LANG=PLI

232 IMS: Application Programming

Table 40. Using LANG= option in a Language Environment for PL/I compatibility (continued)

Compile exec statement is
PARM=(...,SYSTEM(IMS)...

Entry point name is PLICALLA
Valid LANG= value

Yes No LANG=blank or LANG=PLI

No No Note: Not valid for IMS PL/I
applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility with Language Environment. If a PL/I application using
PLICALLA entry at bind time is bound using Language Environment with the PLICALLA entry, the bind will
work; however, you must specify LANG=PLI in the PSB. If the application is re-compiled using PL/I for
z/OS & VM Version 1 Release 1 or later, and then bound using Language Environment Version 1 Release 2
or later, the bind will fail. You must remove the PLICALLA entry statement from the bind.

Special DL/I situations for IMS DB programming
Special cases during application programming for IMS DB include usage of the GUR call, program
scheduling against HALDBs, mixed language programming, using the extended addressing capabilities
of z/OS, and setting COBOL compiler options for preloaded programs.

GUR call
The get unique record (GUR) DL/I call is a special case because it always accesses the IMS catalog
database. When the catalog is enabled, IMS dynamically attaches the catalog PCB on behalf of your
application program. Your application program can use the GUR call to get catalog data in the form of a
single XML instance document for a particular catalog record. You can also issue other DL/I read calls to
process the catalog database in the same way as any other database. The GUR call is provided to reduce
the number of processing steps required to retrieve a complete catalog record for a DBD or PSB.

Restriction: The use of SSA command codes is not allowed.

Application program scheduling against HALDBs
Application programs are scheduled against HALDBs the same way they are against non-HALDBs.
Scheduling is based on the availability status of the HALDB master and is not affected by individual
partition access and status.

The application programmer needs to be aware of changes to the handling of unavailable data for
HALDBs. The feedback on data availability at PSB schedule time shows the availability of the HALDB
master, not of the partitions. However, the error settings for data unavailability of a partition at the first
reference to the partition during the processing of a DL/I call are the same as those of a non-HALDB,
namely status code BA or pseudo ABENDU3303.

For example, if you issue the IMS /DBR command to half of the partitions to take them offline, the
remaining partitions are available to the programs.

When an application program accesses a partition, that partition is considered to be in use by the
application for the duration of that instance of the application. DBDUMP, DBRECOVERY, and START
commands can operate against a partition currently not in use. The command is not processed for any
partition that is being accessed by a BMP. A DFS0565I message is issued for partitions that are in use
by a BMP. An exception to this rule is a partition where the accessing BMP issued a CHKP call and has
not issued any subsequent DL/I calls. If an application attempts to access data from a stopped partition,
a pseudo abend ABENDU3303 results or the application receives a BA status code. If the partition is
started with the STA DB command before the application attempts to access data in that partition again,
the DL/I call is processed successfully.

Chapter 12. Defining application program elements for IMS DB 233

Mixed-language programming
When an application program uses the Language Environment language-independent interface, CEETDLI,
IMS does not need to know the language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS determines the language
of the calling program according to the entry name that is specified in the CALL statement. That is, IMS
assumes that the program is:

• Assembler language when the application program uses CALL ASMTDLI
• C language when the application program uses rc=CTDLI
• COBOL when the application program uses CALL CBLTDLI
• Pascal when the application program uses CALL PASTDLI
• PL/I when the application program uses CALL PLITDLI

For example, if a PL/I program calls an assembler language subroutine and the assembler language
subroutine makes DL/I calls by using CALL ASMTDLI, the assembler language subroutine should use the
assembler language calling convention, not the PL/I convention.

In this situation, where the I/O area uses the LLZZ format, LL is a halfword, not the fullword that is used
for PL/I.

Extended addressing capabilities of z/OS
The two modes in z/OS with extended addressing capabilities are: the addressing mode (AMODE) and
the residency mode (RMODE). IMS places no constraints on the RMODE and AMODE of an application
program. The program can reside in the extended virtual storage area. The parameters that are
referenced in the call can also be in the extended virtual storage area.

COBOL compiler options for preloaded programs
If you compile your COBOL program with the VS COBOL II compiler and preload it, you must use the
COBOL compiler options RES and RENT.

Application programming with the IMS catalog
The IMS catalog database is accessible to standard IMS DB application programs when it is enabled for
your IMS system.

Information in the IMS catalog
The IMS catalog database stores application and database metadata in a format that is accessible
to standard IMS DB application programs. This information includes database definitions, program
specifications, and user comments. Any application program can read this information, but the catalog
database is write-protected and can be updated only by authorized system utilities such as the IMS
catalog populate utility (DFS3PU00).

By default, the IMS catalog is named DFSCD000. The DFSC prefix is replaced with an alias prefix if one is
defined to IMS.

Information in the IMS catalog secondary index
The IMS catalog secondary index contains a single segment type, DBDPSB. It is logically linked to the
DBDXREF segment type in the IMS catalog database, which is included in all catalog records for IMS
PSBs. You can use the catalog secondary index to determine which IMS programs reference a specific
user database without processing the entire IMS catalog.

By default, the IMS catalog is named DFSCX000. The DFSC prefix is replaced with an alias prefix if one is
defined to IMS.

234 IMS: Application Programming

IMS catalog PSBs and PCBs for application programs
IMS does not require user PSBs to contain a PCB for the IMS catalog database or secondary index.
The catalog PSBs DFSCP000, DFSCP002, and DFSCP003 are dynamically attached to any user PSB that
makes a DL/I call to the catalog database or issues an INIT DB QUERY call. Each PSB is intended for use
by a different type of application program:

DFSCP000
High-level assembler and COBOL applications

DFSCP002
PL/I applications

DFSCP003
PASCAL applications

Restriction: The IMS catalog PSBs are not dynamically attached to generated PSBs or GSAM-only PSBs.

The following PCBs are included to support different catalog processing models:

DFSCAT00
The primary PCB to access all data in the DFSCD000 (IMS catalog) database. Use this PCB to perform
standard catalog processing.

DFSCATSX
This PCB provides a SENSEG for the DBDXREF segment type in catalog PSB records and uses
PROCSEQ=DFSCX000. Use this PCB to perform faster processing of the catalog database via the
catalog secondary index.

DFSCATX0
This PCB provides a SENSEG for the DBDPSB segment type in catalog secondary index records. Use
this PCB to process the catalog secondary index directly.

All catalog PCBs are resident. All catalog processing is performed with PROCOPT=GP.

IMS automatically increases the space allocated for the user PSB to attach the catalog PSBs. 96 bytes
of additional space are allocated for each user PSB in the PSB CSA storage pool. The catalog PSB itself
occupies 12kb in the DLIPSB pool and 500 bytes CSAPSB pool for each user PSB that is using the catalog
PSBs. You might need to increase the size of your storage pools, up to the maximum size of the catalog
PSB in each pool multiplied by the number of user PSBs that concurrently access the catalog.

GUR call
Your application program can use the Get Unique Record (GUR) DL/I call to get catalog data in the form
of a single XML instance document for a particular catalog record. You can also issue other DL/I read calls
to process the catalog database in the same way as any other IMS database. The GUR call is provided to
reduce the number of processing steps required to retrieve a complete catalog record for a DBD or PSB.

Restriction: The use of SSA command codes is not allowed.

Related concepts
Format of records in the IMS catalog database (Database Administration)
IMS catalog secondary index (Database Administration)
Related reference
“Special DL/I situations for IMS DB programming” on page 233
Special cases during application programming for IMS DB include usage of the GUR call, program
scheduling against HALDBs, mixed language programming, using the extended addressing capabilities
of z/OS, and setting COBOL compiler options for preloaded programs.
GUR call (Application Programming APIs)

Chapter 12. Defining application program elements for IMS DB 235

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_format.htm#formatofrecordsintheimscatalog
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_sx.htm#ims_cat_db_sx
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gurcall.htm#ims_gurcall

236 IMS: Application Programming

Chapter 13. Database versioning and application
programming

When database versioning is enabled in an IMS system, IMS can maintain multiple versions of the
structural definition of a database so that existing application programs can continue to access a
database after the database is modified to support new application programs.

When a new version of a database is defined, the database administrator specifies a version number for
the new database definition. The version number is then used to request access to that version of the
database.

When multiple version of a database are available, if a specific database version is not specified for an
application program, IMS provides access to the current version of the database by default. The current
version of a database has the highest version number and contains the latest changes to the database.
This IMS system default can be changed so that IMS provides access to version 0 of the database instead.

The IMS system default can be overridden at the program specification block (PSB) level by specifying the
DBLEVEL parameter in the PSBGEN statement during PSB generation.

If an application program requires a specific database version, that version number can be specified
explicitly either on the DBVER parameter of a PCB statement when the PCB is defined or at runtime by
issuing the DL/I INIT VERSION call.

If the requested version of a database definition cannot be found or if database versioning is not
enabled when a version is requested, IMS terminates the program with abend 3303 and issues message
DFS3303I, which contains details regarding the cause of the abend. Optionally, application programs can
issue the INIT STATUS GROUPA call to receive a BA status code instead of abend 3303.

Attention: When a new version of a database is created, before application programs update the
new version of the database, confirm that the prior versions of the database can still be accessed.

Database versioning supports only certain changes to a database definition. If unsupported
changes are made to a database, application programs will not be able to access the prior versions
of the database. Only the current version of the database is accessible.

For most database types, the unsupported changes are not detected until an application program
that uses a prior version of the database is scheduled. However, if the HALDB alter function is used
to apply the structural changes to a HALDB database, IMS detects unsupported database changes
during alter processing.

If a new version of a database contains unsupported changes, either all application programs need
to be updated to use the database structure of the new version or the database definition needs to
be changed to remove the unsupported structure change.

Batch application programs and database versioning
You can enable database versioning for offline DL/I batch application programs that run in DLIBATCH or
DBBBATCH regions by specifying DBVERSION=Y in a DFSDFxxx member in the IMS.PROCLIB data set.

The DLIBATCH or DBBBATCH application programs reference the DFSDFxxx member by specifying the
DFSDF=xxx parameter in the EXEC statement of their JCL. For example:

//STEP1 EXEC PGM=DFSRRC00,REGION=0M,
// PARM=(DLI,DFSDDLT0,PSBCJK03,,01,,,,,,,BCH1,,Y,Y,,,,,,,,,,,,,,,,,,,,,
// ,,,,,'DFSDF=C35')

Important: DLIBATCH application programs use PSB and DBD libraries instead of an ACB library. When
using database versioning, DLIBATCH application programs must use the DBD library that contains the
DBD member that matches the current physical database structure.

© Copyright IBM Corp. 1974, 2022 237

Related concepts
Database versioning (Database Administration)
Related tasks
Altering the definition of an online HALDB database (Database Administration)
Related reference
INIT call (Application Programming APIs)
PSBGEN statement (System Utilities)

238 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_db_versioning.htm#ims_database_versioning
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_db_alter.htm#ims_dbalter
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_hinitcall.htm#ims_hinitcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgenpsbgenstmt.htm#ims_psbgenpsbgenstmt

Chapter 14. Establishing a DL/I interface from COBOL
or PL/I

To establish a DL/I interface from COBOL or PL/I, use either the CBLTDLI procedure or the PLITDLI
procedure.

CBLTDLI

The following control statements are necessary to establish a COBOL to DL/I interface. The block size of
the following members must be less than or equal to 3200.

 LIBRARY SDFSRESL(CBLTDLI) DL/I LANGUAGE INTERFACE
 LIBRARY SDFSRESL(DFHEI01) HLPI LANGUAGE INTERFACE
 LIBRARY SDFSRESL(DFHEI1) HLPI LANGUAGE INTERFACE

PLITDLI

The following control statements are necessary to establish a PL/I to DL/I interface. The blocksize of the
following members must be less than or equal to 3200.

 LIBRARY SDFSRESL(PLITDLI) DL/I LANGUAGE INTERFACE
 LIBRARY SDFSRESL(DFHEI01) HLPI LANGUAGE INTERFACE
 LIBRARY SDFSRESL(DFHEI1) HLPI LANGUAGE INTERFACE
 ENTRY PLICALLA

PLITDLI is valid when using the PL/I Optimizing Compiler.

© Copyright IBM Corp. 1974, 2022 239

240 IMS: Application Programming

Chapter 15. Current position in the database after
each call

Positioning means that DL/I tracks your place in the database after each call that you issue. By tracking
your position in the database, DL/I enables you to process the database sequentially.

Current position after successful calls
Position is important when you process the database sequentially by issuing GN, GNP, GHN, and GHNP
calls.

Current position is where IMS starts its search for the segments that you specify in the calls.

This section explains current position for successful calls. Current position is also affected by an
unsuccessful retrieval or ISRT call.

Before you issue the first call to the database, the current position is the place immediately before the
first root segment occurrence in the database. This means that if you issue an unqualified GN call, IMS
retrieves the first root segment occurrence. It is the next segment occurrence in the hierarchy that is
defined by the DB PCB that you referenced.

Certain calls cancel your position in the database. You can reestablish this position with the GU call.
Because the CHKP and SYNC (commit point) calls cancel position, follow either of these calls with a GU
call. The ROLS and ROLB calls also cancel your position in the database.

When you issue a GU call, your current position in the database does not affect the way that you code
the GU call or the SSA you use. If you issue the same GU call at different points during program execution
(when you have different positions established), you will receive the same results each time you issue the
call. If you have coded the call correctly, IMS returns the segment occurrence you requested regardless of
whether the segment is before or after the current position.

Exception: If a GU call does not have SSAs for each level in the call, it is possible for IMS to return a
different segment at different points in your program. This is based on the position at each level.

For example, suppose you issue the following call against the data structure shown in the following figure.

GU Abbbbbbb(AKEYbbbbbA1)
 Bbbbbbbb(BKEYbbbb=bB11)
 Dbbbbbbb(DKEYbbbbbD111)

The structure in the figure contains six segment types: A, B, C, D, E, and F. Figure 49 on page 242 shows
one database record, the root of which is A1.

© Copyright IBM Corp. 1974, 2022 241

Figure 49. Current position hierarchy

When you issue this call, IMS returns the D segment with the key D111, regardless of where your position
is when you issue the call. If this is the first call your program issues (and if this is the first database
record in the database), current position before you issue the call is immediately before the first segment
occurrence in the database—just before the A segment with the key of A1. Even if current position is past
segment D111 when you issue the call (for example, just before segment F111), IMS still returns the
segment D111 to your program. This is also true if the current position is in a different database record.

When you issue GN and GNP calls, current position in the database affects the way that you code the call
and the SSA. That is because when IMS searches for a segment described in a GN or GNP call, it starts
the search from current position and can only search forward in the database. IMS cannot look behind
that segment occurrence to satisfy a GN or GNP. These calls can only move forward in the database when
trying to satisfy your call, unless you use the F command code, the use of which is described in the topic
"F Command Code" in IMS Version 15.3 Application Programming APIs.

If you issue a GN call for a segment occurrence that you have already passed, IMS starts searching at the
current position and stops searching when it reaches the end of the database (resulting in a GB status
code), or when it determines from your SSA that it cannot find the segment you have requested (GE status
code).

Current position affects ISRT calls when you do not supply qualified SSAs for the parents of the segment
occurrence that you are inserting. If you supply only the unqualified SSA for the segment occurrence, you
must be sure that your position in the database is where you want the segment occurrence to be inserted.

Related concepts
A command code (Application Programming APIs)
G command code (Application Programming APIs)
“Current position after unsuccessful calls” on page 246
IMS establishes another kind of position when you issue retrieval and ISRT calls. This is position on
one segment occurrence at each hierarchic level in the path to the segment that you are retrieving or
inserting. Not every DL/I call that your program issues will be completely successful. When a call is
unsuccessful, you should understand how to determine your position in the database after that call.

242 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_acmdcode.htm#ims_acmdcode
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_gcmdcode.htm#ims_gcmdcode

Position after retrieval calls
After you issue any kind of successful retrieval call, position immediately follows the segment occurrence
you just retrieved or the lowest segment occurrence in the path if you retrieved several segment
occurrences using the D command code. When you use the D command code in a retrieval call, a
successful call is one that IMS completely satisfies.

For example, if you issue the following call against the database shown in the previous figure, IMS returns
the C segment occurrence with the key of C111. Current position is immediately after C111. If you then
issue an unqualified GN call, IMS returns the C112 segment to your program.

GU Abbbbbbb(AKEYbbbbEQA1)
 Bbbbbbbb(BKEYbbbbEQB11)
 Cbbbbbbb(CKEYbbbbEQC111)

Your current position is the same after retrieving segment C111, whether you retrieve it with GU, GN, GNP,
or any of the Get Hold calls.

If you retrieve several segment occurrences by issuing a Get call with the D command code, current
position is immediately after the lowest segment occurrence that you retrieved. If you issue the GU call
as shown in the example above, but include the D command code in the SSA for segments A and B, the
current position is still immediately after segment C111. C111 is the last segment that IMS retrieves for
this call. With the D command code, the call looks like this:

GU Abbbbbbb(AKEYbbbbEQA1)
 Bbbbbbbb(BKEYbbbbEQB11)
 Cbbbbbbb*D(CKEYbbbbEQC111)

You do not need the D command code on the SSA for the C segment because IMS always returns to your
I/O area the segment occurrence that is described in the last SSA.

Position after DLET
After a successful DLET call, position immediately follows the segment occurrence you deleted. This is
true when you delete a segment occurrence with or without dependents.

For example, if you issue the call shown in the following code example to delete segment C111, current
position is immediately after segment C111. Then, if you issue an unqualified GN call, IMS returns
segment C112.

GHU Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb(BKEYbbbb=bB11)
 Cbbbbbbb(CKEYbbbb=bC111)
DLET

The following figure shows what the hierarchy looks like after this call. The successful DLET call has
deleted segment C111.

Chapter 15. Current position in the database after each call 243

Figure 50. Hierarchy after deleting a segment

When you issue a successful DLET call for a segment occurrence that has dependents, IMS deletes
the dependents, and the segment occurrence. Current position still immediately follows the segment
occurrence you deleted. An unqualified GN call returns the segment occurrence that followed the segment
you deleted.

For example, if you delete segment B11 in the hierarchy shown in the previous figure, IMS deletes its
dependent segments, C112 and D111, as well. Current position immediately follows segment B11, just
before segment B12. If you then issue an unqualified GN call, IMS returns segment B12. The following
figure shows what the hierarchy looks like after you issued this call.

Figure 51. Hierarchy after deleting a segment and dependents

244 IMS: Application Programming

Because IMS deletes the segment's dependents, you can think of current position immediately following
the last (lowest, right-most) dependent. In the example in the first figure, this immediately follows
segment D111. But if you then issue an unqualified GN call, IMS still returns segment B12. You can think
of position in either place—the results are the same either way. An exception to this can occur for a DLET
that follows a GU path call, which returned a GE status code.

Related concepts
“Current position after unsuccessful calls” on page 246
IMS establishes another kind of position when you issue retrieval and ISRT calls. This is position on
one segment occurrence at each hierarchic level in the path to the segment that you are retrieving or
inserting. Not every DL/I call that your program issues will be completely successful. When a call is
unsuccessful, you should understand how to determine your position in the database after that call.

Position after REPL
A successful REPL call does not change your position in the database. Current position is just where it was
before you issued the REPL call.

It immediately follows the lowest segment that is retrieved by the Get Hold call that you issued before the
REPL call.

For example, if you retrieve segment B13 in the previous figure using a GHU instead of a GU call, change
the segment in the I/O area, and then issue a REPL call, current position immediately follows segment
B13.

Position after ISRT
After you add a new segment occurrence to the database, current position immediately follows the new
segment occurrence.

For example, in the following figure, if you issue the following call to add segment C113 to the database,
current position immediately follows segment C113. An unqualified call would retrieve segment D111.

ISRT Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb(BKEYbbbb=bB11)
 Cbbbbbbb

If you are inserting a segment that has a unique key, IMS places the new segment in key sequence. If
you are inserting a segment that has either a non-unique key or no key at all, IMS places the segment
according to the rules parameter of the SEGM statement of the DBD for the database. the topic "ISRT
Call" in IMS Version 15.3 Application Programming APIs explains these rules.

If you insert several segment occurrences using the D command code, current position immediately
follows the lowest segment occurrence that is inserted.

For example, suppose you insert a new segment B (this would be B14), and a new C segment occurrence
(C141), which is a dependent of B14. The following figure shows what the hierarchy looks like after these
segment occurrences are inserted. The call to do this looks like this:

ISRT Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb
*D
 Cbbbbbbbb

You do not need the D command code in the SSA for the C segment. On ISRT calls, you must include the
D command code in the SSA for the only first segment you are inserting. After you issue this call, position
immediately follows the C segment occurrence with the key of C141. Then, if you issue an unqualified GN
call, IMS returns segment E11.

If your program receives an II status code as a result of an ISRT call (which means that the segment you
tried to insert already exists in the database), current position is just before the duplicate of the segment
that you tried to insert.

Chapter 15. Current position in the database after each call 245

Figure 52. Hierarchy after adding new segments and dependents

Current position after unsuccessful calls
IMS establishes another kind of position when you issue retrieval and ISRT calls. This is position on
one segment occurrence at each hierarchic level in the path to the segment that you are retrieving or
inserting. Not every DL/I call that your program issues will be completely successful. When a call is
unsuccessful, you should understand how to determine your position in the database after that call.

You need to know how IMS establishes this position to understand the U and V command codes described
in the topic "General Command Codes for DL/I Calls" in IMS Version 15.3 Application Programming APIs.
Also, you need to understand where your position in the database is when IMS returns a not-found status
code to a retrieval or ISRT call.

Position after an unsuccessful DLET or REPL call
DLET and REPL calls do not affect current position. Your position in the database is the same as it
was before you issued the call. However, an unsuccessful Get call or ISRT call does affect your current
position.

To understand where your position is in the database when IMS cannot find the segment you have
requested, you need to understand how DL/I determines that it cannot find your segment.

In addition to establishing current position after the lowest segment that is retrieved or inserted, IMS
maintains a second type of position on one segment occurrence at each hierarchic level in the path to the
segment you are retrieving or inserting.

For example, in the following figure, if you had just successfully issued the GU call with the SSA shown
below, IMS has a position established at each hierarchic level.

GU Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb(BKEYbbbbbbB11)
 Cbbbbbbb(CKEYbbbb=bC111)

Now DL/I has three positions, one on each hierarchic level in the call:

• One on the A segment with the key A1

246 IMS: Application Programming

• One on the B segment with the key B11
• One on the C segment with the key C111

Figure 53. DL/I positions

When IMS searches for a segment occurrence, it accepts the first segment occurrence it encounters that
satisfies the call. As it does so, IMS stores the key of that segment occurrence in the key feedback area.

Position after an unsuccessful retrieval or ISRT call
Current position after a retrieval or ISRT call that receives a GE status code depends on how far IMS
got in trying to satisfy the SSA in the call. When IMS processes an ISRT call, it checks for each of the
parents of the segment occurrence you are inserting. An ISRT call is similar to a retrieval call, because
IMS processes the call level by level, trying to find segment occurrences to satisfy each level of the call.
When IMS returns a GE status code on a retrieval call, it means that IMS was unable to find a segment
occurrence to satisfy one of the levels in the call. When IMS returns a GE status code on an ISRT call, it
means that IMS was unable to find one of the parents of the segment occurrence you are inserting. These
are called not-found calls.

When IMS processes retrieval and ISRT calls, it tries to satisfy your call until it determines that it cannot.
When IMS first tries to find a segment matching the description you have given in the SSA and none exists
under the first parent, IMS tries to search for your segment under another parent. How you code the SSA
in the call determines whether IMS can move forward and try again under another parent.

For example, suppose you issue the following GN call to retrieve the C segment with the key of C113 in the
hierarchy shown in the previous figure.

 Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb(BKEYbbbb=bB11)
 Cbbbbbbb(CKEYbbbb=bC113)

When IMS processes this call, it searches for a C segment with the key equal to C113. IMS can only look
at C segments whose parents meet the qualifications for the A and B segments. The B segment that is
part of the path must have a key equal to B11, and the A segment that is part of the path must have a key
equal to A1. IMS then looks at the first C segment. Its key is C111. The next C segment has a key of C112.

Chapter 15. Current position in the database after each call 247

IMS looks for a third C segment occurrence under the B11 segment occurrence. No more C segment
occurrences exist under B11.

Because you have specified in the SSA that the A and B segment occurrences in C's path must be equal
to certain values, IMS cannot look for a C segment occurrence with a key of C113 under any other A or B
segment occurrence. No more C segment occurrences exist under the parent B11; the parent of C must
be B11, and the parent of B11 must be A1. IMS determines that the segment you have specified does not
exist and returns a not-found (GE) status code.

When you receive the GE status code on this call, you can determine where your position is from the key
feedback area, which reflects the positions that IMS has at the levels it was able to satisfy, in this case, A1
and B11.

After this call, current position immediately follows the last segment occurrence that IMS examined in
trying to satisfy your call, in this case, C112. Then, if you issue an unqualified GN call, IMS returns D111.

The current position after this call is different if A and B have non-unique keys. Suppose A's key is unique
and B's is non-unique. After IMS searches for a C113 segment under B11 and is unable to find one, IMS
moves forward from B11 to look for another B segment with a key of B11. When IMS does not find one,
DL/I returns a GE status code. Current position is further in the database than it was when both keys were
unique. Current position immediately follows segment B11. An unqualified GN call would return B12.

If B is an unkeyed segment, there can be no position at B level. Position is set after the highest segment
matching SSA qualification, in this case, A1.

If A and B both have non-unique keys, current position after the previous call immediately follows
segment A1. Assuming no more segment A1s exist, an unqualified GN call would return segment A2. If
other A1s exist, IMS tries to find a segment C113 under the other A1s.

But suppose you issue the same call with a greater-than-or-equal-to relational operator in the SSA for
segment B:

GU Abbbbbbb(AKEYbbbb=>bA1)
 Bbbbbbbb(BKEYbbbb=>B11)
 Cbbbbbbb(CKEYbbbb=>bC113)

IMS establishes position on segment A1 and segment B11. Because A1 and B11 satisfy the first two
SSAs in the call, IMS stores their keys in the key feedback area. IMS searches for a segment C113 under
segment B11. None is found. But this time, IMS can continue searching, because the key of the B parent
can be greater than or equal to B11. The next segment is B12. Because B12 satisfies the qualification for
segment B, IMS places B12's key in the key feedback area. IMS then looks for a C113 under B12 and does
not find one. The same thing happens for B13: IMS places the key of B13 in the key feedback area and
looks for a C113 under B13.

When IMS finds no more B segments under A1, it again tries to move forward to look for B and C
segments that satisfy the call under another A parent. But this time it cannot; the SSA for the A segment
specifies that the A segment must be equal to A1. (If the keys were non-unique, IMS could look for
another A1 segment.) IMS then knows that it cannot find a C113 under the parents you have specified
and returns a GE status code to your program.

In this example, you have not limited the search for segment C113 to only one B segment, because you
have used the greater-than-or-equal-to operator. The position is further than you might have expected,
but you can tell what the position is from the key feedback area. The last key in the key feedback area is
the key of segment B13. The current position of IMS immediately follows segment B13. If you then issue
an unqualified GN call, IMS returns segment E11.

Each of the B segments that IMS examines for this call satisfies the SSA for the B segment, so IMS places
the key of each in the key feedback area. But if one or more of the segments IMS examines does not
satisfy the call, IMS does not place the key of that segment in the key feedback area. This means that
the position in the database might be further than the position reflected by the key feedback area. For
example, suppose you issue the same call, but you qualify segment B on a data field in addition to the key
field. To do this, you use multiple qualification statements for segment B.

248 IMS: Application Programming

Assume the data field you are qualifying the call on is called BDATA. Assume the value you want is 14, but
that only one of the segments, B11, contains a value in BDATA of 14:

GN Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb(BKEYbbbb>=B11*BDATAbbb=b14)
 Cbbbbbbb(CKEYbbbb=bC113)

After you issue this call, the key feedback area contains the key for segment B11. If you continue issuing
this call until you receive a GE status code, the current position immediately follows segment B13, but the
key feedback area still contains only the key for segment B11. Of the B segments IMS examines, only one
of them (B11) satisfies the SSA in the call.

When you use a greater-than or greater-than-or-equal-to relational operator, you do not limit the search.
If you get a GE status code on this kind of call, and if one or more of the segments IMS examines does
not satisfy an SSA, the position in the database may be further than the position reflected in the key
feedback area. If, when you issue the next GN or GNP call, you want IMS to start searching from the
position reflected in the key feedback area instead of from its real position, you can either:

• Issue a fully qualified GU call to reestablish position to where you want it.
• Issue a GN or GNP call with the U command code. Including a U command code on an SSA tells IMS

to use the first position it established at that level as qualification for the call. This is like supplying an
equal-to relational operator for the segment occurrence that IMS has positioned on at that level.

For example, suppose that you first issue the GU call with the greater-than-or-equal-to relational operator
in the SSA for segment B, and then you issue this GN call:

GN Abbbbbbb*U
 Bbbbbbbb*U
 Cbbbbbbbb

The U command code tells IMS to use segment A1 as the A parent, and segment B11 as the B parent. IMS
returns segment C111. But if you issue the same call without the U command code, IMS starts searching
from segment B13 and moves forward to the next database record until it encounters a B segment. IMS
returns the first B segment it encounters.

Related concepts
“Position after DLET” on page 243
After a successful DLET call, position immediately follows the segment occurrence you deleted. This is
true when you delete a segment occurrence with or without dependents.

Multiple processing
The order in which an application program accesses segments in a hierarchy depends on the purpose of
the application program. Some programs access segments directly, others sequentially. Some application
programs require that the program process segments in different hierarchic paths, or in different
database records, in parallel.

If your program must process segments from different hierarchic paths or from different database
records in parallel, using multiple positioning or multiple PCBs can simplify the program's processing.
For example:

• Suppose your program must retrieve segments from different hierarchic paths alternately: for
example, in the following figure, it might retrieve B11, then C11, then B12, then C12, and so on. If
your program uses multiple positioning, IMS maintains positions in both hierarchic paths. Then the
program is not required to issue GU calls to reset position each time it needs to retrieve a segment from
a different path.

• Suppose your program must retrieve segments from different database records alternately: for
example, it might retrieve a B segment under A1, and then a B segment under another A root segment.
If your program uses multiple PCBs, IMS maintains positions in both database records. Then the
program does not have to issue GU calls to reset position each time it needs to access a different
database record.

Chapter 15. Current position in the database after each call 249

Figure 54. Multiple processing

Multiple positioning
When you define the PSB for your application program, you have a choice about the kind of positioning
you want to use: single or multiple. All of the examples used so far, and the explanations about current
position, have used single positioning.

Specify the kind of position you want to use for each PCB on the PCB statement when you define the PSB.
The POS operand for a DEDB is disregarded. DEDBs support multiple positioning only.

Single positioning
IMS maintains position in one hierarchic path for the hierarchy that is defined by that PCB. When you
retrieve a segment, IMS clears position for all dependents and all segments on the same level.

Multiple positioning
IMS maintains position in each hierarchic path in the database record that is being accessed. When
you retrieve a segment, IMS clears position for all dependents but keeps position for segments at the
same level. You can process different segment types under the same parent in parallel.

For example, suppose you issue these two calls using the hierarchy shown in the following figure:

GU Abbbbbbb(AKEYbbbb=bA1)
 Bbbbbbbb(BKEYYbbbb=bB11)
 Cbbbbbbb(CKEYYbbbb=bC111)
GN Ebbbbbbb(EKEYYbbbb=bE11)

250 IMS: Application Programming

Figure 55. Multiple positioning hierarchy

After issuing the first call with single positioning, IMS has three positions established: one on A1, one on
B11, and one on C111. After issuing the second call, the positions on B11 and C111 are canceled. Then
IMS establishes positions on A1 and E11.

After issuing the first call with single and multiple positioning, IMS has three positions established: one
on A1, one on B11, and one on C111. However, after issuing the second call, single positioning cancels
positions on B11 and C111 while multiple positioning retains positions on B11 and C111. IMS then
establishes positions on segments A1 and E11 for both single and multiple positioning.

After issuing the first call with multiple positioning, IMS has three positions established (just as with
single positioning): one on A1, one on B11, and one on C111. But after issuing the second call, the
positions on B11 and C111 are retained. In addition to these positions, IMS establishes position on
segments A1 and E11.

Figure 56. Single and multiple positioning hierarchy

Chapter 15. Current position in the database after each call 251

The examples that follow compare the results of single and multiple positioning using the hierarchy in the
following figure.

Table 41. Results of single and multiple positioning with DL/I calls

 Sequence
Result of Single
Positioning

Result of Multiple
Positioning

Example 1

GU (where AKEY equals A1) A1 A1

GNP B B11 B11

GNP C C11 C11

GNP B Not found B12

GNP C C12 C12

GNP B Not found B13

GNP C C13 C13

GNP B Not found Not found

GNP C Not found Not found

Example 2

GU A (where AKEY equals A1) A1 A1

GN B B11 B11

GN C C11 C11

GN B B21 B12

GN C C21 C12

Example 3

GU A (where AKEY equals A1) A1 A1

GN C C11 C11

GN B B21 B11

GN B B22 B12

GN C C21 C12

Example 4

GU A (where AKEY equals A1) A1 A1

GN B B11 B11

GN C C11 C11

GN D D111 D111

GN E E111 E111

GN B B21 B12

GN D D221 D112

GN C C under next A C12

GN E E under next A E121

252 IMS: Application Programming

Multiple positioning is useful when you want to examine or compare segments in two hierarchic paths. It
lets you process different segment types under the same parent in parallel. Without multiple positioning,
you would have to issue GU calls to reestablish position in each path.

Advantages of using multiple positioning
The advantages of using multiple positioning include the following:

• You might be able to design your program with greater data independence than you would using single
positioning. You can write application programs that use GN and GNP calls, and GU and ISRT calls with
missing levels in their SSAs, independent of the relative order of the segment types being processed.
If you improve your program's performance by changing the relative order of segment types and all of
the application programs that access those segment types use multiple positioning, you could make
the change without affecting existing application programs. To do this without multiple positioning, the
program would have to use GN and GNP calls, and GU and ISRT calls with incompletely specified SSAs.

• Your program can process dependent segment types in parallel (it can switch back and forth between
hierarchic paths without reissuing GU calls to reset position) more efficiently than is possible with single
positioning. You indicate to IMS the hierarchic path that contains the segments you want in your SSAs in
the call. IMS uses the position established in that hierarchic path to satisfy your call. The control blocks
that IMS builds for each kind of positioning are the same. Multiple positioning does not require more
storage, nor does it have a big impact on performance.

Remember: Multiple positioning might use more processor time than single positioning, and that multiple
positioning cannot be used with HSAM databases.

How multiple positioning affects your program

Multiple positioning affects the order and structure of your DL/I calls.

GU and ISRT

The only time multiple positioning affects GU and ISRT calls is when you issue these calls with missing
SSAs in the hierarchic path. When you issue a GU or ISRT call that does not contain an SSA for each level
in the hierarchic path, IMS builds the SSA for the missing levels according to the current position:

• If IMS has a position established at the missing level, the qualification IMS uses is derived from that
position, as reflected in the DB PCB.

• If no position is established at the missing level, IMS assumes a segment type for that level.
• If IMS moves forward from a position that is established at a higher level, it assumes a segment type for

that level.

Because IMS builds the missing qualification based on current position, multiple positioning makes it
possible for IMS to complete the qualification independent of current positions that are established for
other segment types under the same parent occurrence.

DLET and REPL with multiple positioning

Multiple positioning does not affect DLET or REPL calls; it only affects the Get Hold calls that precede
them.

Qualified GN and GNP calls

When your program issues a GN or GNP call, IMS tries to satisfy the call by moving forward from current
position. When you use multiple positioning, more than one current position exist: IMS maintains a
position at each level in all hierarchic paths, instead of at each level in one hierarchic path. To satisfy GN
and GNP calls with multiple positioning, IMS moves forward from the current position in the path that is
referred to in the SSA.

Mixing qualified and unqualified GN and GNP calls

Chapter 15. Current position in the database after each call 253

Although multiple positioning is intended to be used with qualified calls for parallel processing and
data independence, you may occasionally want to use unqualified calls with multiple positioning. For
example, you may want to sequentially retrieve all of the segment occurrences in a hierarchy, regardless
of segment type.

Tip: Limit unqualified calls to GNP calls in order to avoid inconsistent results. Mixing qualified and
unqualified SSAs may be valid for parallel processing, but doing so might also decrease the program's
data independence.

The following rules apply to mixing qualified and unqualified GN and GNP calls:

1. When you issue an unqualified GN or GNP, IMS uses the position that is established by the preceding
call to satisfy the GN or GNP call. For example:

Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN B B11

GN E E11

GN F111

When your program issues the unqualified GN call, IMS uses the position that is established by the last
call, the call for the E segment, to satisfy the unqualified call.

2. After you successfully retrieve a segment with an unqualified GN or GNP, IMS establishes position in
only one hierarchic path: the path containing the segment just retrieved. IMS cancels positions in other
hierarchic paths. IMS establishes current position on the segment that is retrieved and sets parentage
on the parent of the segment that is retrieved. If you issue a qualified call for a segment in a different
hierarchic path after issuing an unqualified call, the results are unpredictable. For example:

Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN B B11

GN E E11

GN F111

GN B unpredictable

When you issue the unqualified GN call, IMS no longer maintains a position in the other hierarchic path,
so the results of the GN call for the B segment are unpredictable.

3. If you issue an unqualified GN or GNP call and IMS has a position established on a segment that the
unqualified call might encounter, the results of the call are unpredictable. Also, when you issue an
unqualified call and you have established position on the segment that the call "should" retrieve, the
results are unpredictable.

For example:

Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN E E11

GN D D111

GN B B12

GN B B13

254 IMS: Application Programming

Your program issues these calls: DL/I returns these segments:

GN E11 (The only position IMS has is the one
established by the GN call.)

In this example, IMS has a position established on E11. An unqualified GN call moves forward from the
position that is established by the previous call. Multiple positions are lost; the only position IMS has is
the position that is established by the GN call.

To summarize these rules:

1. To satisfy an unqualified GN or GNP call, IMS uses the position established in the last call for that PCB.
2. If an unqualified GN or GNP call is successful, IMS cancels positions in all other hierarchic paths.

Position is maintained only within the path of the segment retrieved.

Resetting position with multiple positioning

To reset position, your program issues a GU call for a root segment. If you want to reset position in the
database record you are currently processing, you can issue a GU call for that root segment, but the GU
call cannot be a path call.

Example: Suppose you have positions established on segments B11 and E11. Your program can issue
one of the calls below to reset position on the next database record.

Issuing this call causes IMS to cancel all positions in database record A1:

GU AbbbbbbbAKEYbbbb=bA2)

Or, if you wanted to continue processing segments in record A1, you issue this call to cancel all positions
in record A1:

GU AbbbbbbbAKEYbbbb=bA1)

Issuing this call as a path call does not cancel position.

Multiple DB PCBs
When a program has multiple PCBs, it usually means that you are defining views of several databases,
but this also can mean that you need several positions in one database record. Defining multiple PCBs for
the same hierarchic view of a database is another way to maintain more than one position in a database
record.

Using multiple PCBs also extends what multiple positioning does, because with multiple PCBs you can
maintain positions in two or more database records and within two or more hierarchic paths in the same
record.

For example, suppose you were processing the database record for Patient A. Then you wanted to look at
the record for Patient B and also be able to come back to your position for Patient A. If your program uses
multiple PCBs for the medical hierarchy, you issue the first call for Patient A using PCB1 and then issue
the next call, for Patient B, using PCB2. To return to Patient A's record, you issue the next call using PCB1,
and you are back where you left off in that database record.

Using multiple PCBs can decrease the number of Get calls required to maintain position and can
sometimes improve performance. Multiple PCBs are particularly useful when you want to compare
information from segments in two or more database records. However, the internal control block
requirements increase with each PCB that you define.

You can use the AIBTDLI interface with multiple PCBs by assigning different PCBNAMEs to the PCBs
during PSB generation. Just as multiple PCBs must have different addresses in the PSB PCBLIST, multiple
PCBs must have different PCBNAMEs when using the AIBTDLI interface. For example, if your application
program issues DL/I calls against two different PCBs in a list that identifies the same database, you

Chapter 15. Current position in the database after each call 255

achieve the same effect with the AIBTDLI interface by using different PCBNAMEs on the two PCBs at PSB
generation time.

256 IMS: Application Programming

Chapter 16. Using IMS application program sync
points

IMS application programs can (and should) take checkpoints. These checkpoints and system sync points
can affect IMS operations.

Commit process
During the synchronization point (sync point) processing for an application, IMS creates a log record to
establish commitment of database changes and availability of output messages. The commit process
is not complete until IMS physically writes this log record to the OLDS because an incomplete set of
database change and message records exist on the log for system restart.

The commit processes work differently for full-function and Fast Path applications. For full-function, IMS
makes database changes in the buffer pool at the time of a DL/I call, and can write the changes to disk
before the commit point. If you restart the system, IMS backs out these uncommitted changes by using
the log. IMS stores inserted message segments in the message queue and must similarly discard them.

For Fast Path, IMS keeps all changes in memory until it physically logs the commit record. Only then does
IMS write database changes to DASD and send output messages. Because no changes appear on external
storage (except for the log) until the commit record is written, IMS does not perform backout processing
for the database. IMS discards the updates in memory. With Fast Path, system restart ensures that IMS
writes committed updates to DASD and sends output messages.

Relationship between checkpoints and sync points
IMS tracks all checkpoints and sync points. IMS usually uses a sync point during recovery, but returns to
the checkpoint in the following situations: In the following figure, for example, if a system-wide failure
occurs in the DB/DC environment just after the MTO takes a system checkpoint but just before program B
commits (assuming that program A has not made any updates since its last commit), IMS must return to
the system checkpoint before Beta started.

• For a full recovery in the DB/DC environment, IMS returns to the earliest of either the checkpoint before
the current checkpoint or the checkpoint before the first uncommitted application program update.

• For a full recovery in the DBCTL environment, IMS always returns to the checkpoint before the first
uncommitted application program update.

• For a full recovery in the DCCTL environment, IMS always returns to the checkpoint before the latest
system checkpoint.

• In the DB/DC or DCCTL environments, if a BUILDQ is requested on the restart, IMS returns to the last
SNAPQ or DUMPQ checkpoint. IMS returns to this checkpoint even if it is older than the checkpoint
normally needed for the restart.

© Copyright IBM Corp. 1974, 2022 257

Figure 57. Independence of system checkpoints and application sync points

Synchronization point processing in CPI Communications-driven programs
For CPI Communications-driven programs running under Advanced Program-to-Program
Communications for IMS (APPC/IMS), the application programs control their own sync point processing.
An application program can issue certain CPI Resource Recovery calls: SRRCMIT calls to commit data and
SRRBACK calls to back out data. The protected resources managed by IMS (local) include:

• IMS TM message-queue messages
• IMS DB databases
• Db2 for z/OS databases

The highest level of synchronization supported for a conversation is SYNCPT, so CPI Communications-
driven applications can have protected conversations.

Sync point and resource manager
IMS can be either the sync point manager or the resource manager, depending on the setting of the sync
point level. For SYNCLVL=NONE or CONFIRM and AOS=B, S, or X, IMS is the sync point manager and the
resource manager, but for RRS=Y and SYNCLVL=SYNCPT, z/OS Resource Recovery Services (RRS) is the
sync point manager and IMS is the resource manager. For RRS=N, IMS is the sync point manager.

Two-phase commit in the synchronization process
Application programs in a DBCTL, DCCTL, DB/DC, APPC/IMS, or OTMA environment can be involved in a
two-phase commit process to record a sync point. At the completion of a two-phase commit, the resource
manager commits database and message changes.

The two phases are:

1. Phase 1, in which the sync-point coordinator directs sync point preparation and asks the connected
resource managers whether updates to connected databases can be committed.

The sync-point coordinator can be:

• An IMS DB/DC subsystem for its resource managers and attached databases.
• An IMS DCCTL subsystem for attached databases.
• A Coordinator Controller (CCTL) subsystem for units of work associated with the CCTL region. IMS DB

acts as a resource manager when connected to a CCTL and also when accessed by ODBA application
programs through the Open Database Access (ODBA) interface.

258 IMS: Application Programming

• z/OS Resource Recovery Services (RRS) for its protected conversations with APPC/IMS applications
programs or OTMA clients. IMS acts as a resource manager when connected to RRS.

2. Phase 2, in which the sync-point coordinator directs commit or abort processing and states that the
resources must either be committed or aborted.

In the DBCTL environment, if an application program makes no update DL/I calls or makes only
inquiry-type DL/I calls, the CCTL requests a "forget" response to Phase 1 (if forget processing has
been enabled). This means that only a limited Phase 2 occurs for that application program because no
database resources have been altered. See IMS Version 15.3 Exit Routines for details on how to enable
forget processing.

The sync-point coordinator can request an abort without a Phase 1.

The following figure shows the two phases of the sync-point cycle for an IMS DBCTL environment and
describes the activities taking place.

Notes:

1. If the resource manager indicates that it cannot commit the updates, the sync-point coordinator
should abort the unit of recovery, and the rest of this figure does not apply.

2. If the sync-point coordinator tells the resource manager to commit the updates, then it must commit.

Figure 58. Two-phase commit process

Chapter 16. Using IMS application program sync points 259

Unit of recovery
A unit of recovery (UOR) is the work done by a thread (connection between a resource-manager control
region and a sync-point coordinator) during a sync-point interval, that is between two sync points.

In-flight unit of recovery
The unit of recovery is said to be in-flight from its creation or its last sync point until the resource manager
logs the end of Phase 1. If a resource manager fails before or during Phase 1 and is subsequently
restarted, IMS aborts all database updates.

In-doubt unit of recovery for DBCTL connected to CCTL
From the time that the resource manager issues its response to the PREPARE request (the completion of
Phase 1), to the time it receives a COMMIT or ABORT request from the CCTL, units of recovery are said to
be in-doubt. When the resource manager is restarted after a failure, it tells the CCTL which in-doubt UORs
exist, if any. The CCTL then takes action to resolve these in-doubt UORs. This is called resolve in-doubt
processing, or resynchronization. If a CCTL cannot resolve all in-doubt UORs, you can use IMS or CCTL
commands to display the units of recovery and take appropriate actions for committing or aborting them.

Recovery tokens for DBCTL connected to CCTL
A recovery token is a 16-byte identifier for each unit of recovery. The resource manager validates the
recovery token to protect against duplication of units of recovery. In the DBCTL environment, you can
display the recovery token using the IMS /DISPLAY CCTL command. The recovery token is the primary
identifier used by DBRC, which performs unit-of-recovery management. DBRC keeps track of backouts
that are appropriate for the Batch Backout utility to perform.

Recoverable in-doubt structure
An IMS DBCTL subsystem builds a recoverable in-doubt structure (RIS) for each in-doubt UOR when any
of the following occurs:

• A CCTL fails
• A CCTL thread fails
• A resource manager fails

The resource manager uses a recoverable in-doubt structure during reconnecting to the CCTL if in-doubt
UORs existed when either the CCTL or the resource manager failed. IMS logs all recoverable in-doubt
structures during system checkpoints.

A recoverable in-doubt structure contains the following information:

• The recovery token in a residual recovery element (RRE)
• Changed data records in an in-doubt extended error queue element (IEEQE)
• An indication of data that is inaccessible because of unresolved in-doubt UORs
• Links to other recoverable in-doubt structures using extended error queue element (EEQE) queue

elements (EQELs)

DBCTL single-phase commit
A CCTL communicating with just one resource manager (IMS DBCTL subsystem) can request a sync point
using just a single phase. If the CCTL communicates with more than one resource manager, it must use
the two-phase commit process.

When the CCTL decides to commit a UOR, it can request a single-phase sync point. Single-phase commit
can affect the recoverability of in-doubt data. A transaction is only in-doubt for the short time between
the sync-point request and DBCTL’s commit. IMS can recover in-doubt data after a thread failure during
single-phase commit, but cannot recover in-doubt data after a subsystem failure.

260 IMS: Application Programming

Sync-point log records
During the two-phase commit process, IMS creates log records to establish the commitment of database
changes. All these log records can be used by the IMS Change Accumulation and recovery utilities.

All online log records involving the sync-point cycle contain a recovery token. This token ensures that IMS
can recover and restart each unit of recovery. The sequence of log records for a unit of recovery reveals
the sync-point cycle that it followed.

IMS logs the following records during the sync-point process:
Log record

Description
X'08'

Schedule record
X'07'

Unschedule (terminate) record
X'0A08'

CPI Communications-driven application program schedule record
X'0A07'

CPI Communications-driven application program unschedule (terminate) record
X'5945'

Fast Path 64-bit buffer usage
X'5937'

Fast Path start commit
X'5938'

Fast Path start abort
X'5610'

Start of Phase 1
X'5611'

End of Phase 1
X'3730'

Start of Phase 2 Commit
X'5612'

End of Phase 2 Commit
X'3801'

Start of abort
X'4C01'

End of abort
X'5607'

Start unit of recovery
X'5613'

Recoverable in-doubt structure created
X'5614'

Recoverable in-doubt structure deleted

Sync points with a data-propagation manager
When using a data-propagation manager (such as the IMS DataPropagator) to update Db2 for z/OS
databases synchronously with IMS DL/I databases, the updates to the Db2 for z/OS databases are
committed (or aborted) at the same time as the IMS updates. This provides consistency between the
database management subsystems. IMS DB/DC, DCCTL, and DBCTL (BMP regions only) support the IMS
Data Capture exit routine.

Chapter 16. Using IMS application program sync points 261

Restriction: In an IMS DBCTL environment, the data-propagation manager is available only for BMP
regions.

For more information about the IMS DataPropagator, go to the following web URL: http://www.ibm.com/
software/data/db2imstools/imstools/imsdprop.html

262 IMS: Application Programming

Chapter 17. Recovering databases and maintaining
database integrity

You can issue checkpoints, restart programs, and maintain database integrity in your application
programs.

Java applications running in Java batch processing (JBP) regions can issue symbolic checkpoint and
restart calls by using the IMS Java dependent region resource adapter.

Related concepts
“Developing JBP applications with the IMS Java dependent region resource adapter” on page 683
JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Issuing checkpoints
Two kinds of checkpoint (CHKP) calls exist: the basic CHKP and the symbolic CHKP. All IMS programs and
CICS shared database programs can issue the basic CHKP call; only BMPs and batch programs can use
either call.

IMS Version 15.3 Application Programming APIs explains when and why you should issue checkpoints in
your program. Both checkpoint calls cause a loss of database position when the call is issued, so you
must reestablish position with a GU call or some other method. You cannot reestablish position in the
middle of non-unique keys or nonkeyed segments.

Restriction: You must not specify CHKPT=EOV on any DD statement to take an IMS checkpoint.

Some differences exist if you issue the same call sequence against a full-function database or a DEDB,
and an MSDB.

Depending on the database organization, a CHKP call can result in the database position for the PCB being
reset. When the CHKP call is issued, the locks held by the program are released. Therefore, if locks are
necessary for maintaining your database position, the position is reset by the CHKP call. Position is reset
in all cases except those in which the organization is either GSAM (locks are not used) or DEDB, and the
CHKP call is issued after a GC status code. For a DEDB, the position is maintained at the unit-of-work
boundary.

Issuing a CHKP resets the destination of the modifiable alternate PCB.

Related Reading: For more information on CHKP calls, see the topic "CHKP (Basic) Call" and the topic
"CHKP (Symbolic) Call" in IMS Version 15.3 Application Programming APIs .

Related concepts
“Commit-point processing in MSDBs and DEDBs” on page 302
Your existing application programs can use either the MSDB commit view or the default DEDB commit
view.

Restarting your program from the latest checkpoint
If you use basic checkpoints instead of symbolic checkpoints, provide the necessary code to restart the
program from the latest checkpoint if the program terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning information in a HDAM
or PHDAM database. With this method, your program writes a database record containing repositioning
information to the database each time a checkpoint is issued. Before your program terminates, it should
delete the database record.

© Copyright IBM Corp. 1974, 2022 263

For more information on the XRST call, see the topic "XRST Call" in IMS Version 15.3 Application
Programming APIs.

Maintaining database integrity (IMS batch, BMP, and IMS online
regions)

IMS uses these DL/I calls to back out database updates: ROLB, ROLL, ROLS, SETS, and SETU.

The ROLB and ROLS calls can back out the database updates or cancel the output messages that the
program has created since the program's most recent commit point. A ROLL call backs out the database
updates and cancels any non-express output messages the program has created since the last commit
point. It also deletes the current input message. SETS allows multiple intermediate backout points to be
noted during application program processing. SETU operates like SETS except that it is not rejected by
unsupported PCBs in the PSB. If your program issues a subsequent ROLS call specifying one of these
points, database updates and message activity performed since that point are backed out.

CICS online programs with DBCTL can use the ROLS and SETS or SETU DL/I calls to back out database
changes to a previous commit point or to an intermediate backout point.

Backing out to a prior commit point: ROLL, ROLB, and ROLS
When a program determines that some of its processing is invalid, some calls enable the program to
remove the effects of its incorrect processing. These are the Roll Back calls: ROLL, ROLS using a DB PCB
(or ROLS without an I/O area or token), and ROLB.

When you issue one of these calls, IMS:

• Backs out the database updates that the program has made since the program's most recent commit
point.

• Cancels the non-express output messages that the program has created since the program's most
recent commit point.

The main difference between these calls is that ROLB returns control to the application program after
backing out updates and canceling output messages, ROLS does not return control to the application
program, and ROLL terminates the program with an abend code of U0778. ROLB can return the first
message segment to the program since the most recent commit point, but ROLL and ROLS cannot.

The ROLL and ROLB calls, and the ROLS call without a specified token, are valid when the PSB contains
PCBs for GSAM data sets. However, segments inserted in the GSAM data sets since the last commit point
are not backed out by these calls. An extended checkpoint-restart can be used to reposition the GSAM
data sets when restarting.

You can use a ROLS call either to back out to the prior commit point or to back out to an intermediate
backout point that was established by a prior SETS call. This section refers only to the form of the ROLS
call that backs out to the prior commit point. For information about the other form of ROLS, see 'Backing
out to an intermediate backout point: SETS, SETU, and ROLS'.

The table below summarizes the similarities and the differences between the ROLB, ROLL, and ROLS
calls.

Table 42. Comparison of ROLB, ROLL, and ROLS

Actions Taken: ROLB ROLL ROLS

Back out database updates since the last commit point. X X X

Cancel output messages created since the last commit point. X1 X1 X1

Delete from the queue the message in process. Previous messages (if
any) processed since the last commit point are returned to the queue to
be reprocessed.

X

264 IMS: Application Programming

Table 42. Comparison of ROLB, ROLL, and ROLS (continued)

Actions Taken: ROLB ROLL ROLS

Return the first segment of the first input message issued since the most
recent commit point.

X2

U3303 abnormal termination. Returns the processed input messages to
the message queue.

X3

U0778 abnormal termination. No dump. X

No abend. Program continues processing. X

Notes:

1. ROLB, ROLL, or ROLS calls cancel output messages that are sent with an express PCB unless the
program issued a PURG. For example, if the program issues the call sequence that follows, MSG1
would be sent to its destination because PURG tells IMS that MSG1 is complete and the I/O area
now contains the first segment of the next message (which in this example is MSG2). MSG2, however,
would be canceled.

ISRT EXPRESS PCB, MSG1
PURG EXPRESS PCB, MSG2
ROLB I/O PCB

Because IMS has the complete message (MSG1) and because an express PCB is being used, the
message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call parameters.
3. The transaction is suspended and requeued for subsequent processing.

ROLL call
A ROLL call backs out the database updates and cancels any non-express output messages the program
has created since the last commit point. It also deletes the current input message. Any other input
messages that were processed since the last commit point are returned to the queue to be reprocessed.
IMS then terminates the program with an abend code U0778. This type of abnormal termination
terminates the program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function, ROLL.

You can use the ROLL call in a batch program. If your system log is on DASD, and if dynamic backout has
been specified through the use of the BKO execution parameter, database changes made since the last
commit point will be backed out; otherwise they will not. One reason for issuing ROLL in a batch program
is for compatibility.

After backout is complete, the original transaction is discarded if it can be, and it is not re-executed.
IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying the TPI to notify remote transaction
programs. Issuing the APPC/MVS verb causes all active conversations (including any that are spawned by
the application program) to be DEALLOCATED TYP(ABEND_SVC).

ROLB call
The advantage of using a ROLB call is that IMS returns control to the program after executing a ROLB call,
so the program can continue processing. The parameters for the ROLB call are:

• The call function, ROLB
• The name of the I/O PCB or AIB

The total effect of the ROLB call depends on the type of IMS application program that issued it.

• For current IMS application programs:

Chapter 17. Recovering databases and maintaining database integrity 265

After IMS backout is complete, the original transaction is represented to the IMS application program.
Any resources that cannot be rolled back by IMS are ignored; for example, output that is sent to an
express alternate PCB and a PURG call that is issued before the ROLB call.

• For modified IMS application programs:

The same consideration for the current IMS application program applies. The application program must
notify any spawned conversations that a ROLB was issued.

• For CPI-C driven IMS application programs:

Only IMS resources are affected. All database changes are backed out. Any messages that are inserted
to non-express alternate PCBs are discarded. Also, any messages that are inserted to express PCBs that
have not had a PURG call are discarded. The application program must notify the originating remote
program and any spawned conversations that a ROLB call was issued.

MPPs and transaction-oriented BMPs
If the program supplies the address of an I/O area as one of the ROLB parameters, the ROLB call acts
as a message retrieval call and returns the first segment of the first input message issued since the most
recent commit point. This is true only if the program has issued a GU call to the message queue since the
last commit point; it if has not, it was not processing a message when it issued the ROLB call.

If the program issues GN call to the message queue after issuing a ROLB call, IMS returns the next
segment of the message that was being processed when the ROLB call was issued. If no more segments
exist for that message, IMS returns a QD status code.

If the program issues a GU call to the message queue after the ROLB call, IMS returns the first segment
of the next message to the application program. If no more messages exist on the message queue for the
program to process, IMS returns a QC status code.

If you include the I/O area parameter, but you have not issued a successful GU call to the message queue
since the last commit point, IMS returns a QE status code to your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the same thing for you. If the
program has issued a successful GU call in the commit interval and then issues a GN call, IMS returns a
QD status code. If the program issues a GU call after the ROLB call, IMS returns the first segment of the
next message or a QC status code, if no more messages exist for the program.

If you have not issued a successful GU call since the last commit point, and you do not include an I/O area
parameter on the ROLB call, IMS backs out the database updates and cancels the output messages that
were created since the last commit point.

Batch programs
If your system log is on DASD, and if dynamic backout has been specified through the use of the BKO
execution parameter, you can use the ROLB call in a batch program. The ROLB call does not process
messages as it does for MPPs; it backs out the database updates made since the last commit point and
returns control to your program. You cannot specify the address of an I/O area as one of the parameters
on the call; if you do, an AD status code is returned to your program. You must, however, have an I/O
PCB for your program. Specify CMPAT=YES on the CMPAT keyword in the PSBGEN statement for your
program's PSB.

ROLS call

You can use the ROLS call in two ways to back out to the prior commit point and return the processed
input messages to IMS for later reprocessing:

• Have your program issue the ROLS call using the I/O PCB but without an I/O area or token in the call.
The parameters for this form of the ROLS call are:

The call function, ROLS

266 IMS: Application Programming

The name of the I/O PCB or AIB
• Have your program issue the ROLS call using a database PCB that has received one of the data-

unavailable status codes. This has the same result as if unavailable data were encountered and the INIT
call was not issued. A ROLS call must be the next call for that PCB. Intervening calls using other PCBs
are permitted.

On a ROLS call with a TOKEN, message queue repositioning can occur for all non-express messages,
including all messages processed by IMS. The processing uses APPC/MVS calls, and includes the initial
message segments. The original input transaction can be represented to the IMS application program.
Input and output positioning is determined by the SETS call. This positioning applies to current and
modified IMS application programs but does not apply to CPI-C driven IMS programs. The IMS application
program must notify all remote transaction programs of the ROLS.

On a ROLS call without a TOKEN, IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying
the TPI. Issuing this verb causes all conversations associated with the application program to be
DEALLOCATED TYPE(ABEND_SVC). If the original transaction is entered from an LU 6.2 device and IMS
receives the message from APPC/MVS, a discardable transaction is discarded rather than being placed on
the suspend queue like a non-discardable transaction.

The parameters for this form of the ROLS call are:

• The call function, ROLS
• The name of the DB PCB that received the BA or BB status code

In both of the these parameters, the ROLS call causes a U3303 abnormal termination and does not return
control to the application program. IMS keeps the input message for future processing.

Related concepts
Administering APPC/IMS and LU 6.2 devices (Communications and Connections)
Related reference
Program Specification Block (PSB) Generation utility (System Utilities)
ROLB call (Application Programming APIs)

Backing out to an intermediate backout point: SETS, SETU, and ROLS
You can use a ROLS call either to back out to an intermediate backout point that was established by a
prior SETS or SETU call, or to back out to the prior commit point.

The ROLS call that backs out to an intermediate point backs out only DL/I changes. This version of the
ROLS call does not affect CICS changes that use CICS file control or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing of the application
program and then backout database changes to any of these points. Up to nine intermediate backout
points can be set. The SETS call specifies a token for each point. IMS then associates this token with the
current processing point. A subsequent ROLS call using the same token backs out all database changes
and discards all non-express messages that were performed after the SETS call with the same token. The
following figure shows how the SETS and ROLS calls work together.

In addition, to assist the application program in managing other variables that it may want to reestablish
after a ROLS call, user data can be included in the I/O area of the SETS call. This data is then returned
when the ROLS call is issued with the same token.

Chapter 17. Recovering databases and maintaining database integrity 267

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_rolbcall.htm#ims_rolbcall

Figure 59. SETS and ROLS calls working together

SETS and SETU calls
The SETS call sets up to nine intermediate backout points or cancels all existing backout points. With
the SETS call, you can back out pieces of work. If the necessary data to complete one piece of work is
unavailable, you can complete a different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB, and include an I/O area and a
token. The I/O area has the format LLZZuser-data, where LL is the length of the data in the I/O area
including the length of the LLZZ portion. The ZZ field must contain binary zeros. The data in the I/O area is
returned to the application program on the related ROLS call. If you do not want to save some of the data
that is to be returned on the ROLS call, set the LL that defines the length of the I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword, as it is for the other
languages. The content of the LL field for PLITDLI is consistent with the I/O area for other calls using the
LLZZ format. The content is the total length of the area, including the length of the 4-byte LL field, minus
2.

A 4-byte token associated with the current processing point is also required. This token can be a new
token for this program execution, or it can match a token that was issued by a preceding SETS call. If the
token is new, no preceding SETS calls are canceled. If the token matches the token of a preceding SETS
call, the current SETS call assumes that position. In this case, all SETS calls that were issued subsequent
to the SETS call with the matching token are canceled.

The parameters for this form of the SETS call are:

• The call function, SETS
• The name of the I/O PCB or AIB
• The name of the I/O area containing the user data
• The name of an area containing the token

For the SETS call format, see the topic "SETS/SETU Call" in IMS Version 15.3 Application Programming
APIs.

To cancel all previous backout points, the call is issued using the I/O PCB but does not include an I/O area
or a token. When an I/O area is not included in the call, all intermediate backout points that were set by
prior SETS calls are canceled.

268 IMS: Application Programming

The parameters for this form of the SETS call are:

• The call function, SETS
• The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit-point processing causes all outstanding
SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the program accesses an attached
subsystem, a partial backout is not possible. In that case, the SETS call is rejected with an SC status code.
If the SETU call is used instead, it is not rejected because of unsupported PCBs, but will return an SC
status code as a warning that the PSB contains unsupported PCBs and that the function is not applicable
to these unsupported PCBs.

Related reading: For status codes that are returned after the SETS call and the explanations of those
status codes and the response required, see IMS Version 15.3 Application Programming APIs.

ROLS
The ROLS call backs out database changes to a processing point set by a previous SETS or SETU call, or to
the prior commit point. The ROLS call then returns the processed input messages to the message queue.

To back out database changes and message activity that have occurred since a prior SETS call, issue the
ROLS call using the I/O PCB, and specify an I/O area and token in the call. If the token does not match a
token that was set by a preceding SETS call, an error status is returned. If the token matches the token
of a preceding SETS call, the database updates made since this corresponding SETS call are backed out,
and all non-express messages that were inserted since the corresponding SETS are discarded. SETS that
are issued as part of processing that was backed out are canceled. The existing database positions for all
supported PCBs are reset.

If a ROLS call is in response to a SETU call, and if there are unsupported PCBs (DEDB, MSDB, or GSAM)
in the PSB, the position of the PCBs is not affected. The token specified by the ROLS call can be set by
either a SETS or SETU call. If no unsupported PCBs exist in the PSB, and if the program has not used an
attached subsystem, the function of the ROLS call is the same regardless of whether the token was set by
a SETS or SETU call.

If the ROLS call is in response to a SETS call, and if unsupported PCBs exist in the PSB or the program
used an attached subsystem when the preceding SETS call was issued, the SETS call is rejected with
an SC status code. The subsequent ROLS call is either rejected with an RC status code, indicating
unsupported options, or it is rejected with an RA status code, indicating that a matching token that was
set by a preceding successful SETS call does not exist.

If the ROLS call is in response to a SETU call, the call is not rejected because of unsupported options.
If unsupported PCBs exist in the PSB, this is not reflected with a status code on the ROLS call. If the
program is using an attached subsystem, the ROLS call is processed, but an RC status is returned as a
warning indicating that if changes were made using the attached subsystem, those changes were not
backed out.

The parameters for this form of the ROLS call are:

• The call function, ROLS
• The name of the I/O PCB or AIB
• The name of the I/O area to receive the user data
• The name of an area containing the 4-byte token

Related reading: For status codes that are returned after the ROLS call and the explanations of those
status codes and the response require, see IMS Version 15.3 Messages and Codes, Volume 4: IMS
Component Codes.

Related concepts
“Backing out to a prior commit point: ROLL, ROLB, and ROLS calls” on page 410

Chapter 17. Recovering databases and maintaining database integrity 269

When a program determines that some of its processing is invalid, you can use these calls to remove the
effects of its incorrect processing: Roll Back calls ROLL, ROLS using a database PCB, ROLS with no I/O
area or token, and ROLB.

Reserving segments for the exclusive use of your program
You may want to reserve a segment and prohibit other programs from updating the segment while you are
using it. To some extent, IMS does this for you through resource lock management. The Q command code
lets you reserve segments in a different way.

Restriction: The Q command code is not supported for MSDB organizations or for a secondary index that
is processed as a database.

Resource lock management and the Q command code both reserve segments for your program's use,
but they work differently and are independent of each other. To understand how and when to use the Q
command code and the DEQ call, you must understand resource lock management.

The function of resource lock management is to prevent one program from accessing data that another
program has altered until the altering program reaches a commit point. Therefore, you know that if you
have altered a segment, no other program (except those using the GO processing option) can access
that segment until your program reaches a commit point. For database organizations that support the Q
command code, if the PCB processing option allows updates and the PCB holds position in a database
record, no other program can access the database record.

The Q command code allows you to prevent other programs from updating a segment that you have
accessed, even when the PCB that accessed the segment moves to another database record.

Related reading: For more information on the Q command code, see the topic "Q command code" in IMS
Version 15.3 Application Programming APIs.

270 IMS: Application Programming

Chapter 18. Secondary indexing and logical
relationships

Secondary indexing and logical relationships are techniques that can change your application program's
view of the data. The DBA makes the decision about whether to use these options.

Examples of when you use these techniques are:

• If an application program must access a segment type in a sequence other than the sequence specified
by the key field, secondary indexing can be used. Secondary indexing also can change the application
program's access to or view of the data based on a condition in a dependent segment.

• If an application program requires a logical structure that contains segments from different databases,
logical relationships are used.

Related concepts
“SSA guidelines” on page 170
Using SSAs can simplify your programming, because the more information you can give IMS to do the
searching for you, the less program logic you need to analyze and compare segments in your program.

How secondary indexing affects your program
One instance of using a secondary index occurs when an application program needs to select database
records in a sequence other than that defined by the root key.

IMS stores root segments in the sequence of their key fields. A program that accesses root segments out
of the order of their key fields cannot operate efficiently.

You can index any field in a segment by defining an XDFLD statement for the field in the DBD for the
database. If the Get call is not qualified on the key but uses some other field, IMS must search all the
database records to find the correct record. With secondary indexing, IMS can go directly to a record
based on a field value that is not in the key field.

For more information about secondary indexes and examples, see IMS Version 15.3 Database
Administration.

SSAs with secondary indexes
If your program uses a secondary index, you can use the name of an indexed field in your SSAs. When you
do this, IMS goes directly to the secondary index and finds the pointer segment with the value you specify.
Then IMS locates the segment that the index segment points to in the primary database and returns the
segment to your program.

To use an indexed field name in the SSA, follow these guidelines:

• Define the indexed field, using the XDFLD statement, in the DBD for the primary database during DBD
generation.

• Use the name that was given on the XDFLD statement as the field name in the qualification statement.
• Specify the secondary index as the processing sequence during PSB generation. Do this by specifying

the name of the secondary index database on the PROCSEQ parameter for a full-function secondary
index database or the PROCSEQD parameter for a Fast Path secondary index database on the PCB
during PSB generation.

If you modify the XDFLD of the indexed segment (using the REPL call), you lose any parentage that you
had established before issuing the REPL call. The key feedback area is no longer valid after a successful
REPL call.

For example, to index the PATIENT segment on the NAME field, the segment must have been defined on
the XDFLD statement in the DBD for the medical database. If the name of the secondary index database is

© Copyright IBM Corp. 1974, 2022 271

INDEX, you specify PROCSEQ=INDEX in the PCB. To issue a qualification that identifies a PATIENT by the
NAME field instead of by PATNO, use the name that you specified on the XDFLD statement. If the name of
the XDFLD is XNAME, use XNAME in the SSA, as follows:
In the DBD:

XDFLD NAME=XNAME
In the PSB:

PROCSEQ=INDEX for full-function secondary index databases or PROCSEQD=INDEX for Fast Path
secondary index databases

In the program:
GU PATIENTb(XNAMEbbb=bJBBROKEbbb)

A qualified GU/GN segment name with SSA using the primary key field for target=root segment is
supported when a primary DEDB database is accessed through its secondary index using a PCB with
the PROCSEQD= parameter.

A qualified GU/GN segment name with SSA using the primary key field for target=dependent segment is
not supported. An AC status code is returned for the qualified Get call when a primary DEDB database is
accessed through its secondary index using a PCB with the PROCSEQD= parameter.

Multiple qualification statements with secondary indexes
When you qualify a call using the name of an indexed field, you can include multiple qualification
statements.

You can use two AND operators to connect the qualification statements:
* or &

When used with secondary indexing, this AND is called the dependent AND. To satisfy the call,
IMS scans the index once and searches for one pointer segment in the index that satisfies both
qualification statements.

#
This is called the independent AND. You use it only with secondary indexing. When you use the
independent AND to satisfy the call, IMS scans the index twice and searches for two or more different
pointer segments in the index that point to the same target segment.

The distinction between the two ANDs applies only when the indexed field (the one defined as XDFLD in
the DBD) is used in all qualifications. If one of the qualification statements uses another field, both ANDs
work like the dependent AND.

The next two sections give examples of the dependent and independent AND. Although the examples
show only two qualification statements in the SSA, you can use more than two. No set limit exists for the
number of qualification statements you can include in an SSA, but a limit on the maximum size of the SSA
does exist. You specify this size on the SSASIZE parameter of the PSBGEN statement. For information on
this parameter, see IMS Version 15.3 System Utilities.

The dependent AND
When you use the dependent AND, IMS scans the index only once. To satisfy the call, it must find one
pointer segment that satisfies both qualification statements.

For example, suppose you want to list patients whose bills are between $500 and $1000. To do this, you
index the PATIENT segment on the BILLING segment, and specify that you want IMS to use the secondary
index as the processing sequence. The following figure shows the three secondary indexing segments.

272 IMS: Application Programming

Figure 60. Example of using the dependent AND

You then use this call:

GU PATIENT (XBILLING>=00500*XBILLING<=01000)

To satisfy this call, IMS searches for one pointer segment with a value between 500 and 1000. IMS
returns the PATIENT segment that is pointed to by that segment.

The independent AND
For example, suppose you want a list of the patients who have had both tonsillitis and strep throat. To
get this information, you index the PATIENT segment on the ILLNAME field in the ILLNESS segment,
and specify that you want IMS to use the secondary index as the processing sequence. In this example,
you retrieve the PARENT segments based on a dependent's (the ILLNESS segment's) qualification. The
following figure shows the four secondary indexing segments.

Figure 61. Example of using the independent AND

You want IMS to find two pointer segments in the index that point to the same PATIENT segment, one
with ILLNAME equal to TONSILLITIS and one with ILLNAME equal to STREPTHRT. Use this call:

GU PATIENTb(XILLNAME=TONSILITIS#XILLNAME=bSTREPTHRT)

This call retrieves the first PATIENT segment with ILLNESS segments of strep throat and tonsillitis. When
you issue the call, IMS searches for an index entry for tonsillitis. Then it searches for an index entry for
strep throat that points to the same PATIENT segment.

Chapter 18. Secondary indexing and logical relationships 273

When you use the independent AND with GN and GNP calls, a special situation can occur. If you repeat a
GN or a GNP call using the same qualification, it is possible for IMS to return the same segment to your
program more than once. You can check to find out whether IMS has already returned a segment to you
by checking the key feedback area.

If you continue issuing a GN call until you receive a not-found (GE) status code, IMS returns a segment
occurrence once for each independent AND group. When IMS returns a segment that is identical to one
that was already returned, the PCB key feedback area is different.

Related concepts
“Multiple qualification statements” on page 171
When you use a qualification statement, you can do more than give IMS a field value with which to
compare the fields of segments in the database. You can give several field values to establish limits for
the fields you want IMS to compare.

DL/I returns with secondary indexes
The term "key of the pointer segment" refers to the key as perceived by the application program. That is,
the key does not include subsequent fields. IMS places this key in the position where the root key would
be located if you had not used a secondary index—in the left-most bytes of the key feedback area.

The PATIENT segment that IMS returns to the application program's I/O area looks just as it would if
you had not used secondary indexing. The key feedback area, however, contains something different. The
concatenated key that IMS returns is the same, except that, instead of giving you the key for the segment
you requested (the key for the PATIENT segment), IMS gives you the search portion of the key of the
secondary index (the key for the segment in the INDEX database).

If you try to insert or replace a segment that contains a secondary index source field that is a duplicate of
one that is already reflected in the secondary index, IMS returns an NI status code. An NI status code is
returned only for batch programs that log to direct-access storage. Otherwise, the application program is
abnormally terminated. You can avoid having your program terminated by making sure a duplicate index
source field does not exist. Before inserting a segment, try to retrieve the segment using the secondary
index source field as qualification.

Status codes for secondary indexes
If a secondary index is defined for a segment and if the definition specifies a unique key for the secondary
index (most secondary indexes allow duplicate keys), your application program might receive the NI
status code in addition to regular status codes.

This status code can be received for a PCB that either uses or does not use the secondary index as a
processing sequence. See IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes for
additional information about the NI status code.

Processing segments in logical relationships
Sometimes an application program needs to process a hierarchy that is made up of segments that already
exist in two or more separate database hierarchies. Logical relationships make it possible to establish
hierarchic relationships between these segments. When you use logical relationships, the result is a new
hierarchy—one that does not exist in physical storage but that can be processed by application programs
as though it does exist. This type of hierarchy is called a logical structure.

One advantage of using logical relationships is that programs can access the data as though it exists in
more than one hierarchy, even though it is only stored in one place. When two application programs need
to access the same segment through different paths, an alternative to using logical relationships is to
store the segment in both hierarchies. The problem with this approach is that you must update the data in
two places to keep it current.

Processing segments in logical relationships is not very different from processing other segments. The
following examples are taken from a scenario for an inventory application program that processes data in
a purchasing database, but which also needs access to a segment in a patient database.

274 IMS: Application Programming

For example, the hierarchy that an inventory application program needs to process contains four segment
types:

• An ITEM segment containing the name and an identification number of a medication that is used at a
medical clinic

• A VENDOR segment that contains the name and address of the vendor who supplies the item
• A SHIPMENT segment that contains information such as quantity and date for each shipment of the

item that the clinic receives
• A DISBURSE segment that contains information about the disbursement of the item at the clinic, such

as the quantity, the date, and the doctor who prescribed it

The TREATMNT segment in the medical database contains the same information that the inventory
application program needs to process in the DISBURSE segment. Rather than store this information
in both hierarchies, you can store the information in the TREATMNT segment, and define a logical
relationship between the DISBURSE segment in the item hierarchy and the TREATMNT segment in the
patient hierarchy. Doing this makes it possible to process the TREATMNT segment through the item
hierarchy as though it is a child of SHIPMENT. DISBURSE then has two parents: SHIPMENT is DISBURSE's
physical parent, and TREATMNT is DISBURSE's logical parent.

Three segments are involved in this logical relationship: DISBURSE, SHIPMENT, and TREATMNT. The
following figure shows the item hierarchy on the right. The DISBURSE segment points to the TREATMNT
segment in the patient hierarchy shown on the left. (The patient hierarchy is part of the medical
database.)

Figure 62. Patient and item hierarchies

Three types of segments are found in a logical relationship:

• TREATMNT is called the logical parent segment. It is a physical dependent of ILLNESS, but it can
be processed through the item hierarchy because a path is established by the logical child segment
DISBURSE. The logical parent segment can be accessed through both hierarchies, but it is stored in only
one place.

• SHIPMENT is called a physical parent segment. The physical parent is the parent of the logical child in
the physical database hierarchy.

• DISBURSE is called a logical child segment. It establishes a path to the TREATMNT segment in the
PATIENT hierarchy from the SHIPMENT segment in the ITEM hierarchy.

Because a logical child segment points to its logical parent, two paths exist through which a program can
access the logical parent segment:

• When a program accesses the logical parent segment through the physical path, it reaches this logical
parent segment through the segment's physical parent. Accessing the TREATMNT segment through
ILLNESS is accessing the logical parent segment through its physical path.

• When a program accesses the logical parent segment through the logical path, it reaches this logical
parent segment through the segment's logical child. Accessing the TREATMNT segment through
SHIPMENT is accessing the logical parent segment through its logical path.

Chapter 18. Secondary indexing and logical relationships 275

When a logical parent segment is accessed through the logical child, the logical child is concatenated with
both the data from its logical parent segment and any data the user has chosen to associate with this
pairing (intersection data) in a single segment I/O area, like this:

Figure 63. Concatenated segment

LL is the length field of the logical parent if this segment is a variable-length segment.

How logical relationships affect your programming
The calls you issue to process segments in logical relationships are the same calls that you use to process
other segments. However, the processing is different depending on how the logical segment looks in your
I/O area, what the DB PCB mask contains after a retrieve call, and how you can replace, delete, and insert
physical and logical parent segments.

Because it is possible to access segments in logical relationships through the logical path or the physical
path, the segments must be protected from being updated by unauthorized programs.

When DBAs define logical relationships, they define a set of rules that determine how the segments can
be deleted, replaced, and inserted. Defining these rules is a database design decision. If your program
processes segments in logical relationships, the DBA (or the person at your installation responsible for
database design) should tell you:

• What segments look like in your I/O area when you retrieve them
• Whether your program is allowed to update and insert segments
• What to do if you receive a DX, IX, or RX status code

The requirements for inserting a logical child segment are:

• In load mode, the logical child can be inserted only under its physical parent. You do not supply the
logical parent in the I/O area.

• In update mode, the format of the logical child is different, depending on whether it is accessed from its
physical parent or from its logical parent.

– If accessed from its physical parent, the logical child's format is the concatenated key of the logical
parent followed by intersection data.

– If accessed from its logical parent, the logical child's format is the concatenated key of the physical
parent, followed by intersection data.

• The logical child can be inserted or replaced, depending on the insert rule for the logical or physical
parent. Unless the insert rule of the logical or physical parent is PHYSICAL, the logical or physical parent
must be supplied in the I/O area following the logical child.

Related concepts
“Multiple qualification statements” on page 171

276 IMS: Application Programming

When you use a qualification statement, you can do more than give IMS a field value with which to
compare the fields of segments in the database. You can give several field values to establish limits for
the fields you want IMS to compare.

Status codes for logical relationships
These status codes apply specifically to segments that are involved in logical relationships.

These are not all of the status codes that you can receive when processing a logical child segment or
a physical or logical parent. If you receive one of these status codes, it means that you are trying to
update the database in a way that you are not allowed to. Check with the DBA or person responsible for
implementing logical relationships at your installation to find out what the problem is.
DX

IMS did not delete the segment because the physical delete rule was violated. If the segment is a
logical parent, it still has active logical children. If the segment is a logical child, it has not been
deleted through its logical path.

IX
You tried to insert either a logical child segment or a concatenated segment. If it was a logical
child segment, the corresponding logical or physical parent segment does not exist. If it was a
concatenated segment, either the insert rule was physical and the logical or physical parent does not
exist, or the insert rule is virtual and the key of the logical or physical parent in the I/O area does not
match the concatenated key of the logical or physical parent.

RX
The physical replace rule has been violated. The physical replace rule was specified for the
destination parent, and an attempt was made to change its data. When a destination parent has
the physical replace rule, it can be replaced only through the physical path.

Chapter 18. Secondary indexing and logical relationships 277

278 IMS: Application Programming

Chapter 19. HALDB selective partition processing
You can restrict the processing of DL/I calls to a single HALDB partition or a range of HALDB partitions
by using a DD statement with the ddname DFSHALDB to pass control statements. DFS HALDB must be
provided in the JCL of the batch job, the BMP (Batch Message Processing dependent online region), or the
JBP (Java Batch Processing dependent online region).

Control Statements for HALDB selective partition processing
HALDB PCB= (nnnn

dddddddd

,  ppppppp
NUM= yyy

)

Each HALDB control statement must have a PCB keyword that contains the required parameters. The
required parameters for an individual control statement must be on one line; no continuation is allowed.
The input can consist of multiple HALDB control statements. There should be no duplication of DB PCB
numbers. In the event of a duplication, the control statement that has been read the most recently
overrides the previous statement.

Any HALDB control statement that is syntactically correct results in an entry within a table. The maximum
number of entries in the table is 20. All subsequent statements that are read, even though syntactically
correct, are ignored and result in a U0201 abend, unless a statement is a duplicate of an entry that is
already in the table.

Parameter descriptions for HALDB selective partition processing
nnnn

The DB PCB number as the relative number of the DB PCB defined in the PSB.
dddddddd

The DB PCB label or name.
ppppppp

The partition name. This parameter is required.
NUM=yyy

The range of consecutive partitions that this PCB is restricted to using, starting with the named
partition. The range of consecutive partitions is defined as the partition selection order, which is the
next partition selected starting from the target partition named in the DFSHALDB statement. The
next partition is determined using either the high keys defined for the HALDB or the processing order
defined by the partition selection exit. This parameter is optional.

The following examples show how to use HALDB selective partition processing statements.

DFSHALDB for single partition restriction

HALDB PCB=(4,POHIDKA)
HALDB PCB=(PCBNUM2,POHIDJA)

DFSHALDB for range partition restriction

HALDB PCB=(3,PVHDJ5A,NUM=4)
HALDB PCB=(PCBNUM7,PVHDJ5B,NUM=3)

Report generated for HALDB selective partition processing
When you use HALDB selective partition processing, a report called “HALDB Selective Partition
Processing” is generated in the SYSHALDB data set. This report shows the control statements that have
been issued and the reason for accepting or rejecting each statement. Control statements that have

© Copyright IBM Corp. 1974, 2022 279

been validated and accepted are shown as “Syntactically correct.” Other messages that might appear for
syntactically correct statements, and their accompanying messages, are shown in the following table:

Table 43. Messages provided in the report generated for HALDB selective partition processing

Message Explanation

Duplicate, overrides previous statement A HALDB statement for the same PCB was
already found. The current statement overrides the
previous HALDB statement.

Ignored, number of valid statements exceeds 20 More than 20 HALDB statements were provided,
but only 20 statements are allowed. Reduce the
number of HALDB statements to 20 or fewer, and
run the job again. This message results in an abend
U0201.

NUM parameter must be non-zero numeric The partition range specified in the NUM keyword
must be a non-zero value from 1 to 999.

NUM value exceeds three digits The partition range specified in the NUM keyword
must be a non-zero value from 1 to 999.

An equal sign must follow NUM keyword An equal sign must follow the NUM keyword in the
HALDB statement. Add an equal sign to the HALDB
statement.

The NUM keyword is missing A comma was found after the partition name, but
the NUM keyword was not present. Either verify the
syntax of the positional parameters in the HALDB
statement, or add the NUM keyword and the range
of partitions for the restriction.

NUM parameter is missing The NUM keyword was found, but the NUM
parameter value was not present. Either verify the
syntax of the positional parameters in the HALDB
statement, or add the NUM keyword and the range
of partitions for the restriction.

For HALDB control statements that are not syntactically correct (statements that are processed and
rejected), the messages and explanations that are issued are shown in the following table:

Table 44. Messages provided in the report generated for syntactically incorrect HALDB statements

Message Explanation

No HALDB statement type The DFSHALDB data set did not contain a HALDB
statement. Add a HALDB statement to prevent this
error.

A space must follow HALDB statement type The HALDB statement requires a space after
HALDB and before the PCB keyword.

PCB keyword missing The required keyword PCB was not found. The PCB
keyword must be present to process the HALDB
statement successfully.

Equal sign must follow PCB keyword An equal sign did not follow the PCB keyword. The
equal sign must follow the PCB keyword to process
the HALDB statement successfully.

280 IMS: Application Programming

Table 44. Messages provided in the report generated for syntactically incorrect HALDB statements
(continued)

Message Explanation

Open parenthesis must follow equal sign An open parenthesis did not follow PCB=. The open
parenthesis must follow the PCB= to process the
HALDB statement successfully.

Second parameter may be missing The HALDB partition must be provided. Either add
the partition name, or verify that the syntax of the
positional parameters is correct.

First parameter exceeds four digits The DB PCB number cannot exceed a four-digit
value. Change the DB PCB number to the correct
DB PCB number.

Delimiter is not a comma A comma is missing between parameter values.
The comma is used as a delimiter for the positional
parameters. Either add the comma, or verify that
the syntax of the positional parameters is correct.

Partition name must start with an alpha The HALDB partition name must begin with a
alphabetic character. Add the partition name or
verify the syntax of the positional parameters is
correct.

Delimiter is not a close parenthesis A closing parenthesis is missing from the HALDB
statement. Add a closing parenthesis around the
PCB parameters.

Partition name exceeds seven characters The HALDB partition name must be seven or fewer
characters. Either add the partition name, or verify
that the syntax of the positional parameters is
correct.

Invalid character in partition name The HALDB partition name contains an invalid
character. Either add the partition name, or verify
that the syntax of the positional parameters is
correct.

Statement contains all spaces The HALDB statement is missing. Add a valid
HALDB statement.

Invalid statement input A HALDB statement was found, but it does not
appear to be complete. Verify the syntax of the
HALDB statement and the positional parameters
specified.

Space must follow close parenthesis A space must follow the closing parenthesis. Add a
space after the closing parenthesis.

First parameter missing The PCB number or label is missing. Either add the
PCB name or label, or verify that the syntax of the
positional parameters is correct.

Comma and part name missing Only the PCB number or label was provided in
the HALDB statement. Either add the partition
name, or verify that the syntax of the positional
parameters is correct.

Chapter 19. HALDB selective partition processing 281

Table 44. Messages provided in the report generated for syntactically incorrect HALDB statements
(continued)

Message Explanation

Partition name is missing The HALDB partition name must be provided in
the HALDB statement. Either add the partition
name, or verify that the syntax of the positional
parameters is correct.

Partition name starts with numeric The HALDB partition name must begin with an
alphabetic character. Either add the partition
name, or verify that the syntax of the positional
parameters is correct.

First parameter must not be zero The PCB number must be a non-zero number. Add
a non-zero number for the DB PCB number.

Comment statement An asterisk was found in column one of the
HALDB statement. This statement was skipped and
considered a comment.

After all of the statements are validated, the job abnormally terminates with an abend code of U0201.

282 IMS: Application Programming

Chapter 20. Processing GSAM databases
GSAM databases are available to application programs that can run online in IMS batch message
processing (BMP) regions (message-driven or non-message-driven) or Java batch processing (JBP)
regions or standalone in DLIBATCH regions.

If your application program accesses GSAM databases, as you design your program consider that:

• An IMS program can retrieve records and add records to the end of the GSAM database, but the
program cannot delete or replace records in the database.

• You use separate calls to access GSAM databases. (Additional checkpoint and restart considerations are
involved in using GSAM.)

• Your program must use symbolic CHKP and XRST calls if it uses GSAM. Basic CHKP calls cannot
checkpoint GSAM databases.

• When an IMS program uses a GSAM database, the program treats it like a sequential file. The physical
z/OS access methods that GSAM databases support are BSAM on direct access and tape devices and
VSAM on direct-access storage devices (DASD). VSAM data sets must be non-keyed and non-indexed
entry-sequenced (ESDS). GSAM does not support temporary, SYSIN, or SYSOUT files.

• Because GSAM is a sequential non-hierarchic database, it has no segments, keys, or parentage.

Java application programs running in JBP regions can access GSAM databases by using the IMS Java
dependent region resource adapter.

Related concepts
“Data areas in GSAM databases” on page 226
Generalized Sequential Access Method (GSAM) databases are available only to application programs
that can run as batch programs, batch-oriented BMPs, transaction-oriented BMPS, or JBPs. The program
communication block (PCB) mask and the record search argument (RSA) that you use in a GSAM database
call have special formats.
Related reference
“Accessing GSAM data from a JBP application” on page 686
GSAM data are frequently referred to as z/OS data sets or as flat files. This kind of data is non-hierarchical
in structure. You can access data from GSAM databases from a JBP application.

Accessing GSAM databases
The calls you use to access Generalized Sequential Access Method (GSAM) databases are different from
those you use to access other IMS databases, and you can use GSAM databases for input and output.

For example, your program can read input from a GSAM database sequentially and then load another
GSAM database with the output data. Programs that retrieve input from a GSAM database usually retrieve
GSAM records sequentially and then process them. Applications that send output to a GSAM database
must add output records to the end of the database as the program processes the records. You cannot
delete or replace records in a GSAM database, and any records that you add must go at the end of the
database.

PCB masks for GSAM databases
For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.

Calls to GSAM databases can use either the AIBTDLI or the PCB interface.

The DB PCB mask for a GSAM database serves the same purpose as it does for other IMS databases. The
program references the fields of the DB PCB through the GSAM DB PCB mask. The GSAM DB PCB mask
must contain the same fields as the GSAM DB PCB and must be of the same length.

© Copyright IBM Corp. 1974, 2022 283

Some differences exist between a DB PCB for a GSAM database and one for other IMS databases. Some
of the fields are different, and the GSAM DB PCB has one field that the other PCBs do not. Because GSAM
is not a hierarchical database, some fields in a PCB mask for other IMS databases do not have meanings
in a GSAM PCB mask. The fields that are not used when you access GSAM databases are:

• The second field: segment level number
• The sixth field: segment name
• The eighth field: number of sensitive segments

Even though GSAM does not use these fields, you must define them in the order and length shown in the
following table in the GSAM DB PCB mask.

When you code the fields in a DB PCB mask, name the area that contains all the fields as you do for a DB
PCB. The entry statement associates each DB PCB mask in your program with a DB PCB in your program's
PSB based on the order of the PCBs in the PSB. The entry statement refers to the DB PCB mask in your
program by the name of the mask or by a pointer.

When you code the entry statement in:

• COBOL, Java, Pascal, C, and assembler language programs, the entry statement must list the names of
the DB PCB masks in your program.

• PL/I programs, the entry statement must list the pointers to the DB PCB masks in your program.

The first PCB name or pointer in the entry statement corresponds to the first PCB. The second name or
pointer in the entry statement corresponds to the second PCB, and so on.

Table 45. GSAM DB PCB mask

Descriptor Byte length DB/DC DBCTL DCCTL DB batch TM batch

Database name1 8 X X X X X

Segment level number2 2 N/A N/A N/A N/A N/A

Status code3 2 X X X X X

Processing options4 4 X X X X X

Reserved for IMS5 4 X X X X X

Segment name6 8 N/A N/A N/A N/A N/A

Length of key feedback
area and undefined-length
records area7

4 X X X X X

Number of sensitive
segments8

4 N/A N/A N/A N/A N/A

Key feedback area9 8 or 12 for
large data
sets.

X X X X X

Length of undefined-length
records10

4 X X X X X

Note:

1. Database Name. The name of the GSAM DBD. This field is 8 bytes and contains character data.
2. Segment Level Number. Not used by GSAM, but you must code it. It is 2 bytes.
3. Status Code. IMS places a two-character status code in this field after each call to a GSAM database.

This code describes the results of the call. IMS updates this field after each call and does not clear
it between calls. The application program should test this field after each call to find out whether the
call was successful. If the call was completed successfully, this field contains blanks.

284 IMS: Application Programming

4. Processing Options. This is a 4-byte field containing a code that tells IMS the types of calls this
program can issue. It is a security mechanism in that it can prevent a particular program from
updating the database, even though the program can read the database. This value is coded in the
PROCOPT parameter of the PCB statement when generating the PSB for the application program. The
value does not change. For GSAM, the values are G, GS, L, or LS.

5. Reserved for IMS. This 4-byte field is used by IMS for internal linkage. It is not used by the
application program.

6. Segment Name. This field is not used by GSAM, but it must be coded as part of the GSAM DB PCB
mask. It is 8 bytes.

7. Length of Key Feedback Area and Undefined-Length Records Area. This is a 4-byte field that
contains the decimal value of 12 (or 16 for large format data sets). This is the sum of the lengths of
the Key Feedback Area and Undefined-Length Records Area.

8. Number of Sensitive Segments. This field is not used by GSAM, but it should be coded as part of the
GSAM DB PCB mask. This field is 4 bytes.

9. Key Feedback Area. After a successful retrieval call, GSAM places the address of the record that is
returned to your program in this field. This is called a record search argument (RSA). You can use it
later if you want to retrieve that record directly by including it as one of the parameters on a GU call.
This field is 8 bytes for basic format data sets or 12 bytes for large format data sets.

10. Undefined-Length Records Area. If you use undefined-length records (RECFM=U), the length in
binary of the record you are processing is passed between your program and GSAM in this field. This
field is 4 bytes long. When you issue a GU or GN call, GSAM places the binary length of the retrieved
record in this field. When you issue an ISRT call, put the binary length of the record you are inserting
in this field before issuing the ISRT call.

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
“GSAM record formats” on page 287
GSAM records are nonkeyed. For variable-length records you must include the record length as the first
2 bytes of the record. Undefined-length records, like fixed-length records, contain only data (and control
characters, if needed).

Retrieving and inserting GSAM records
GSAM records can be retrieved sequentially or directly. You can also add GSAM records to a new data set
or add new records to the end of an existing data set in the database.

To retrieve GSAM records sequentially, use the GN call. The only required parameters are the GSAM PCB
and the I/O area for the segment. To process the whole database, issue the GN call until you get a GB
status code in the GSAM PCB. This status code means that you have reached the end of the database.
GSAM automatically closes the database when you reach the end of it. To add records to a new data set or
to add new records to the end of an existing data set in the database, use the ISRT call. GSAM adds the
records sequentially in the order in which you supply them.

You can retrieve records directly from a GSAM database by supplying a record search argument (RSA) to
the GSAM database. An RSA is like a segment search argument (SSA), but it contains the exact address of
the record that you want to retrieve. The specific contents and format of the RSA depend on the access
method that GSAM is using. For BSAM tape data sets and VSAM data sets, the RSA contains the relative
byte address (RBA). For BSAM disk data sets, the RSA contains the disk address and uses the relative
track and record format.

You can change your application programs to accommodate for extra 4 bytes when retrieving a record for
a large format data set by using the INIT call with an I/O area containing the character string of RSA12.
The INIT RSA12 call is coded in a GSAM application program before any calls to the GSAM database are
coded. When a GSAM application issues the INIT RSA12 call, it tells IMS that the program can accept a
12-byte RSA when retrieving a record for large format data sets. The INIT RSA12 call must be issued by
any application that uses large format data sets. Failure to issue the INIT RSA12 call for large format data

Chapter 20. Processing GSAM databases 285

sets might cause an unexpected result. In the absence of an INIT RSA12 call, IMS continues to pass back
an 8-byte RSA when retrieving a record for a basic format data set.

The following table provides more details about the format of the RSA for basic format data sets:

Table 46. Format of the RSA for basic format data sets

Position Address

Positions 1-4 • BSAM (DASD) relative track and record (TTRZ) for
the block in the buffer.

• BSAM RBA.
• VSAM RBA.

Position 5 Relative data set of the concatenated data set. The
first data set number is 1.

Position 6 Relative volume of the data set. The first volume of
data set is 1.

Positions 7 and 8 The current displacement.

The following table provides more details about the format of the RSA for large format data sets:

Table 47. Format of the RSA for large format data sets

Position Address

Positions 1-4 • BSAM (DASD) relative track and record (TTTR) for
the block in the buffer.

• BSAM RBA.

Position 5 Zone byte

Position 6 Relative data set of the concatenated data set. The
first data set number is 1.

Position 7 Relative volume of the data set. The first volume of
data set is 1.

Positions 8-10 Null bytes. Not used.

Positions 11-12 The current displacement.

Before you can supply an RSA in a GU call to a GSAM database, that RSA must have previously been
returned to you as a result of a GN or ISRT call. For GSAM to return an RSA, the GN or ISRT call must be
issued with a fourth parameter that points to an 8-byte (basic format data set) or 12-byte (large format
data set) RSA save area in your program. Save this RSA until you want to retrieve that particular record.

To retrieve that particular record, issue a GU call for the record and specify the address of its RSA as a
fourth parameter of the GU call. GSAM returns the record to the I/O area that you named as one of the call
parameters.

Restriction: Retrieve records directly from a GSAM database on DASD only. When using buffered I/O,
buffer definitions for the output PCB may affect performance.

Resetting the position in a GSAM Database
You can use the GU call to reset the position in the GSAM database.

You can reset the position to the start of the GSAM database or to a specific record in the GSAM database:

286 IMS: Application Programming

• To reset the position to the start of the GSAM database using basic format data sets, issue a GU call with
an RSA that consists of a fullword with a binary value of 1, followed by a fullword with a binary value of
0.

• To reset the position to the start of the GSAM database using large format data sets, issue a GU call with
an RSA that consists of a fullword with a binary value of 1, followed by two fullwords with a binary value
of 0.

• To reset the position to a specific record in the GSAM database, issue a GU call with an RSA that contains
the saved RSA value from a prior ISRT or GN call for that record.

Related reference
“GSAM coding considerations” on page 289
The calls your program uses to access GSAM databases are not the same as the DL/I calls. The system
service calls that you use with GSAM are symbolic CHKP and XRST.
INIT call (Application Programming APIs)

Explicit open and close calls to GSAM
IMS opens the GSAM data set when the first call is made and closes the data set when the application
program terminates. Therefore, the application program does not usually need to make explicit open or
close calls to GSAM.

However, explicit OPEN and CLSE calls are useful if:

• the application program loads a GSAM data set, and then in the same step reads the data set using
GSAM (for example, to sort the data set). The application program should issue the GSAM CLSE call
after the load is complete.

• the GSAM data set is an output data set, and it is possible that when the program executes it does not
make GSAM ISRT calls. A data set is not created. Subsequent attempts to read the nonexistent data set
(using GSAM or not) will likely result in an error. To avoid this situation, explicitly open the data set. DL/I
closes the data set when the step terminates. Closing the data set prevents the possibility of attempting
to read an empty data set.

• the GSAM data set is an output data set, and data exists beyond the EOF address in the dataset control
block (DSCB). The previous job/step may have ended abnormally before the DSCB could be updated. If
the program is restarted, but does not make GSAM ISRT calls, the EOF will not be updated at job/step
termination when DL/I closes the data set. This could strand any data that exists past the EOF address.
To avoid this situation, explicitly open the data set so that the DSCB can be updated with the correct
EOF address.

The explicit OPEN or CLSE call need not include an I/O area parameter. Depending on the processing
option of the PCB, the data set is opened for input or output. You can specify that an output data
set contain either ASA or machine control characters. Including an I/O area parameter in the call and
specifying OUTA in the I/O area indicates ASA control characters. Specifying OUTM specifies machine
control characters.

GSAM record formats
GSAM records are nonkeyed. For variable-length records you must include the record length as the first
2 bytes of the record. Undefined-length records, like fixed-length records, contain only data (and control
characters, if needed).

If you use undefined-length records, record length is passed between your program and GSAM in the
4-byte field that follows the key feedback area of the GSAM DB PCB. It is called the undefined-length
records area. When you issue an ISRT call, supply the length. When you issue a GN or GU call, GSAM
places the length of the returned record in this field. The advantage of using undefined-length records is
that you do not need to include the record length at the beginning of the record, and records do not need
to be of fixed length. The length of any record must be less than or equal to the block size (BLKSIZE) and
greater than 11 bytes (an z/OS convention).

Chapter 20. Processing GSAM databases 287

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_hinitcall.htm#ims_hinitcall

If you are using VSAM, you can use blocked or unblocked fixed-length or variable-length records. If you
are using BSAM, you can use blocked or unblocked fixed-length, variable-length, or undefined-length
records. Whichever you use, be sure to specify this on the RECFM keyword in the DATASET statement of
the GSAM DBD. You can override this in the RECFM statement of the DCB parameter in the JCL. You can
also include carriage control characters in the JCL for all formats.

Related concepts
“PCB masks for GSAM databases” on page 283
For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.
“Origin of GSAM data set characteristics” on page 290
For an input data set, the record format (RECFM), logical record length (LRECL), and block size (BLKSIZE)
are based on the input data set label.

GSAM I/O areas
If you provide an optional I/O area, it must contain one of these values.

• INP for an input data set
• OUT for an output data set
• OUTA for an output data set with ASA control characters
• OUTM for an output data set with machine control characters

For GN, ISRT, and GU calls, the format of the I/O area depends on whether the record is fixed-length,
undefined-length (valid only for BSAM), or variable-length. For each kind of record, you have the option of
using control characters.

The formats of an I/O area for fixed-length or undefined-length records are:

• With no control characters, the I/O area contains only data. The data begins in byte 0.
• With control characters, the control characters are in byte 0 and the data begins in byte 1.

If you are using undefined-length records, the record length is passed between your program and GSAM
in the PCB field that follows the key feedback area. When you are issuing an ISRT call, supply the length.
When you are issuing a GN or GU call, GSAM places the length of the returned record in this field. This
length field is 4 bytes long.

The formats for variable-length records differ because variable-length records include a length field,
which other records do not have. The length field is 2 bytes. Variable-length I/O areas, like fixed-length
and undefined-length I/O areas, can have control characters.

• Without control characters, bytes 0 and 1 contain the 2-byte length field, and the data begins in byte 2.
• With control characters, bytes 0 and 1 still contain the length field, but byte 2 contains the control

characters, and the data starts in byte 3.

GSAM status codes
Your program should test for status codes after each GSAM call, just as it does after each DL/I or system
service call.

If, you find that you have an error and terminate your program after checking the status codes, be sure to
note the PCB in error before you terminate. The GSAM PCB address is helpful in determining problems.
When a program that uses GSAM terminates abnormally, GSAM issues PURGE and CLSE calls internally,
which changes the PCB information.

Status codes that have specific meanings for GSAM are:
AF

GSAM detected a BSAM variable-length record with an invalid format. Terminate your program.

288 IMS: Application Programming

AH
You have not supplied an RSA for a GU call.

AI
There has been a data management OPEN error.

AJ
One of the parameters on the RSA that you supplied is invalid.

AM
You have issued an invalid request against a GSAM database.

AO
An I/O error occurred when the data set was accessed or closed.

GB
You reached the end of the database, and GSAM has closed the database. The next position is the
beginning of the database.

IX
You issued an ISRT call after receiving an AI or AO status code. Terminate your program.

Symbolic CHKP and XRST with GSAM
To checkpoint GSAM databases, use symbolic CHKP and XRST calls.

By using GSAM to read or write the data set, symbolic CHKP and XRST calls can be used to reposition the
data set at the time of restart, enabling you to make your program restartable. When you use an XRST
call, IMS repositions GSAM databases for processing. CHKP and XRST calls are available to application
programs that can run as batch programs, batch-oriented BMPs, or transaction-oriented BMPs.

Restriction: When restarting GSAM databases:

• You cannot use temporary data sets with a symbolic CHKP or XRST call.
• A SYSOUT data set at restart time may give duplicate output data.
• You cannot restart a program that is loading a GSAM or VSAM database.
• The GSAM database data set must have the same data set format (BASIC or LARGE) as when the

symbolic CHKP call was issued.

When IMS restores the data areas specified in the XRST call, it also repositions any GSAM databases
that your program was using when it issued the symbolic CHKP call. If your program was loading GSAM
databases when the symbolic CHKP call was issued, IMS repositions them (if they are accessed by BSAM).
If you make a copy of the GSAM data set for use as input to the restart process, ensure that the short
blocks are written to the new data set as short blocks, for example, using IEBGENER with RECFM=U for
SYSUT1. You can also do the restart using the original GSAM data set.

During GSAM XRST processing, a check is made to determine if the GSAM output data set to be
repositioned is empty, and if the abending job had previously inserted records into the data set.

GSAM coding considerations
The calls your program uses to access GSAM databases are not the same as the DL/I calls. The system
service calls that you use with GSAM are symbolic CHKP and XRST.

The following table summarizes GSAM database calls. The five calls you can use to process GSAM
databases are:

• CLSE
• GN
• GU
• ISRT
• OPEN

Chapter 20. Processing GSAM databases 289

The COBOL, PL/I, Pascal, C, and assembler language call formats and parameters for these calls are the
same and are described in the following table. GSAM calls do not differ significantly from DL/I calls, but
GSAM calls must reference the GSAM PCB, and they do not use SSAs.

Java application programs running in Java batch processing (JBP) regions can access GSAM databases by
using the IMS Java dependent region resource adapter.

Table 48. Summary of GSAM calls

Call Formats Meaning Use Options Parameters

CLSE Close Explicitly closes GSAM
database

None function, gsam pcb

GNbb Get Next Retrieves next sequential
record

Can supply
address for RSA
to be returned

function, gsam pcb, i/o
area [,rsa name]

GUbb Get Unique Establishes position in
database or retrieves a
unique record

None function, gsam pcb, i/o
area, rsa name

ISRT Insert Adds new record at end of
database

Can supply
address for RSA
to be returned

function, gsam pcb, i/o
area [,rsa name]

OPEN Open Explicitly opens GSAM
database

Can specify
printer or punch
control
characters

function, gsam pcb [, open
option]

Related reference
“Accessing GSAM data from a JBP application” on page 686
GSAM data are frequently referred to as z/OS data sets or as flat files. This kind of data is non-hierarchical
in structure. You can access data from GSAM databases from a JBP application.

Origin of GSAM data set characteristics
For an input data set, the record format (RECFM), logical record length (LRECL), and block size (BLKSIZE)
are based on the input data set label.

If this information is not provided by a data set label, the DD statement or the DBD specifications are
used. The DD statement has priority.

An output data set can have the following characteristics:

• Record format
• Logical record length
• Block size
• Other JCL DCB parameters
• DNS type

Specify the record format on the DATASET statement of the GSAM DBD. The options are:

• V for variable
• VB for variable blocked
• F for fixed
• FB for fixed blocked
• U for undefined

290 IMS: Application Programming

The V, F, or U definition applies and is not overridden by the DCB=RECFM= specification on the DD
statement. However, if the DD RECFM indicates blocked and the DBD does not, RECFM is set to blocked. If
the DD RECFM of A or M control character is specified, it applies as well.

Unless an undefined record format is used, specify the logical record using the RECORD= parameter of
the DATASET statement of DBDGEN, or use DCB=LRECL=xxx on the DD statement. If the logical record
is specified on both, the DD statement has priority. Refer to the following table for the maximum record
length

Table 49. BSAM and VSAM logical record lengths for GSAM data sets by record format

Record Format BSAM logical record length VSAM logical record length

Fixed/Fixed Block 32760 bytes 32760 bytes

Variable/Variable Blocked 32756 bytes 32756 bytes

Undefined 32760 bytes not supported

Specify block size using the BLOCK= or SIZE= parameter of the DATASET statement of DBDGEN, or use
DCB=BLKSIZE=xxx on the DD statement. If block size is specified on both, the DD statement has priority.
If the block size is not specified by the DBD or the DD statement, the system determines the size based on
the device type, unless the undefined record format is used.

The other JCL DCB parameters that can be used, include:

• CODE
• DEN
• DNSTYPE
• TRTCH
• MODE
• STACK
• PRTSP, which can be used if RECFM does not include A or M
• DCB=BUFNO=X, which, when used, causes GSAM to use X number of buffers

Restriction: Do not use BFALN, BUFL, BUFOFF, FUNC, NCP, and KEYLEN.

Related concepts
“GSAM record formats” on page 287
GSAM records are nonkeyed. For variable-length records you must include the record length as the first
2 bytes of the record. Undefined-length records, like fixed-length records, contain only data (and control
characters, if needed).

DD statement DISP parameter for GSAM data sets
The DD statement DISP parameter varies, depending on whether you are creating input or output data
sets and how you plan to use the data sets.

Attention: Specifying the DISP=OLD or DISP=SHR parameter for a normal start with non-empty
data sets will overwrite the existing records from the beginning of the data set.

• For input data sets, use the DISP=OLD parameter.
• For output data sets, consider the following options:

– To create an output data set allocated by the DD statement, set DISP=NEW.
– To add new records to an empty data set when performing normal start or a restart after failure, set

DISP=MOD, DISP=SHR, or DISP=OLD.
– When restarting the step, set DISP=OLD for existing data sets and DISP=MOD for empty data sets.

Chapter 20. Processing GSAM databases 291

– To add new records to an existing non-empty data set when performing a restart after failure, set
DISP=MOD, DISP=SHR, or DISP=OLD. These parameters add new records from the restart point on
the existing data set.

– To add new records to the end of an existing non-empty data set when performing normal start, set
DISP=MOD.

Extended checkpoint restart for GSAM data sets
If you are using extended checkpoint restart for GSAM data sets, these recommendations may apply.

• Do not use passed data sets.
• Do not use backward references to data sets in previous steps.
• Do not use DISP=MOD to add records to an existing tape data set.
• Do not use DISP=DELETE or DISP=UNCATLG.
• Use DFSMS striped data sets under the following conditions:

– When the data sets is managed by SMS.
– When the data sets are likely to exceed the system extent limit for volumes.

• Additionally, keep in mind that:

– No attempt is made to reposition a SYSIN, SYSOUT, or temporary data set.
– No attempt is made to reposition any of the concatenated data sets for a concatenated DD statement

if any of the data sets are a SYSIN or SYSOUT.
– If you are using concatenated data sets, specify the same number and sequence of data sets at

restart time and checkpoint time.
– GSAM/VSAM load mode restrictions apply to both non-striped and striped data sets.
– If the PSB contains an open GSAM VSAM output data set when the symbolic checkpoint call is issued,

the system returns an AM status code in the database PCB as a warning. This means that the data set
is not repositioned at restart and the checkpoint has completed normally.

– If an ISRT call is issued after a CLSE call and the GSAM data set is defined as DISP=OLD, all CHKP
calls made prior to the CLSE call will contain invalid reposition information. Ensure a CHKP call is
issued after a CLSE all when using DISP=OLD to avoid an abend U0271 after an extended restart
(XRST).

Copying GSAM data sets between checkpoint and restart
To position GSAM data sets when restarting non-striped GSAM DASD data sets, use the relative track and
record format (TTRZ or TTTRZ for large format data sets).

GSAM uses the TTRZ or TTTRZ on the volume to position non-striped GSAM DASD data sets when
restarting. For a tape data set, the relative record on the volume is used. The relative record on the tape
volume cannot be changed.

To copy non-striped DASD data sets between checkpoint and restart:

• Copy the data set to the same device type.
• Avoid any reblocking by using the undefined record format (RECFM=U) for both the input and the output

data set.

Each copied volume contains the same number of records as the original volumes.

Note: GSAM uses the relative block number (RBN) to reposition striped DASD data sets. When data sets
that are managed by SMS are used with GSAM databases, you cannot control how each volume is copied.
After the data set is copied, unlike with non-striped DASD data sets, you do not need to ensure that the
TTRZ or the TTTRZ of the restart record is unchanged.

292 IMS: Application Programming

Converting data sets from non-striped data sets to striped data sets
Convert GSAM/BSAM non-striped data sets to striped data sets before you must perform an extended
restart when a system allocation limit is exceeded or a system X'37' error condition occurs. Non-striped
data sets that are not managed by SMS extend beyond their initial primary or secondary allocation only
by volume, but with non-striped GSAM/BSAM multiple volume data sets that are managed by SMS, the
resulting new space allocation takes effect for all of the volumes in the data set.

If you copy non-striped data sets that are managed by SMS after you change the space allocation values,
the number of records in the new volumes will be different from the number of records in the old volume.
The new primary and secondary allocation values are used with non-striped data sets. As the data is
copied, all of the space that is allocated on the new volume is used before the data is copied to the next
volume.

If an error condition (system X'37' or system allocation limit exceeded) occurs during the processing of
a GSAM/BSAM non-striped data set, and the data set is converted to a striped data set after the error
occurs, a restart after failure will not complete successfully. Because the issued checkpoint saved a TTRZ
or a TTTRZ value in the log record for repositioning, the log record for striped data sets will be used by
GSAM restart after failure, which requires a relative block number (RBN) to perform the repositioning.

Concatenated data sets used by GSAM
GSAM can use concatenated data sets, which may be on unlike device types, such as DASD and tape, or
on different DASD devices. Logical record lengths and block sizes can differ, and it is not required that the
data set with the largest block size be concatenated first.

The maximum number of concatenated data sets for a single DD statement is 255. The number of buffers
determined for the first of the concatenated data sets is used for all succeeding data sets. Generation
data groups can result in concatenated data sets.

Specifying GSAM data set attributes
When specifying GSAM data set attributes, the following settings are recommended.

• On the DBD, specify RECFM. (It is required.)
• On the DATASET statement, specify the logical record length using RECORD=. If the data set can

become larger than 65535 tracks on a DASD volume and you want the data set to not span multiple
volumes, specify the DSNTYPE=LARGE parameter.

• On the DD statement, do not specify LRECL, RECFM, or BLKSIZE. The system determines block size,
with the exception of RECFM=U. The system determines logical record length from the DBD.

• For the PSB, specify PROCOPT=LS for output and GS for input. If you include S, GSAM uses multiple
buffers instead of a single buffer for improved performance.

IMS will add 2 bytes to the record length value specified in the DBD in order to accommodate the ZZ field
that is needed to make up the BSAM RDW. Whenever the database is GSAM or BSAM and the records are
variable (V or VB), IMS will add 2 bytes to the record length value in the GSAM records passed by the
application. Such addition allows IMS to accommodate the ZZ field that makes up the BSAM RDW (Record
Descriptor Word).

Example of GSAM or BSAM where the records are variable

 //IDASD DD DUMMY
//ODASD DD UNIT=SYSDA,VOL=SER=000000,DISP=(,KEEP),
// SPACE=(TRK,(5,1)),DSN=GSAM.VARIABLE1,
// DCB=(RECFM=VB,BLKSIZE=32760,LRECL=32756)
//SYSIN DD *,DCB=BLKSIZE=80
S 1 1 1 1 1 DBDNAME
L ISRT
L V8187 DATA 1ST RECORD LOADED TO GSAM <---RDW
L ISRT
L V8187 DATA 2ND RECORD LOADED TO GSAM
L ISRT
L V8187 DATA 3RD RECORD LOADED TO GSAM

Chapter 20. Processing GSAM databases 293

L ISRT
L V8187 DATA 4TH RECORD LOADED TO GSAM

In the above example, four GSAM records (IMS segment) can be contained in one 32756 byte (MVS)
record.

DLI, DBB, and BMP region types and GSAM
To access GSAM databases, IMS builds its DLI control blocks using PSB and DBD information from
PSBLIB, DBDLIB and ACBLIB. The source of the PSB and DBD information depends on the region type.

For DLI offline batch regions, IMS obtains PSB and DBD information from PSBLIB and DBDLIB. For
DBB offline batch regions, IMS database management obtains PSB and DBD information from ACBLIB.
For online batch regions (BMPs), IMS builds its DLI control blocks with information from ACBLIB. If an
application is scheduled in a BMP region and the PSB associated with the application contains one or
more GSAM PCBs, IMS scheduling obtains PSB information from ACBLIB and PSBLIB. In this case, the
PSB in ACBLIB and PSBLIB must be the same. GSAM database management does not obtain PSB and
DBD information from ACBLIB. Instead, GSAM database management obtains PSB and DBD information
from PSBLIB and DBDLIB.

When you initialize a DLI, DBB or BMP region using GSAM, you must include an //IMS DD and GSAM
DD statements. When DBB or BMP regions are not using GSAM, //IMS DD statements do not need to
be included. To load PSBs and DBDs and build GSAM control blocks, you must include an //IMS DD
statement. In the following figure, an example of the //IMS DD statement with data sets that are larger
than 65535 tracks is shown.

Figure 64. //IMS DD statement example

//STEP EXEC PGM=DFSRRC00,PARM=[BMP|DBB|DLI],...'
//STEPLIB DD DSN=executionlibrary-name,DISP=SHR
// DD DSN=pgmlib-name,DISP=SHR
//IMS DD DSN=psblib-name,DISP=SHR
// DD DSN=dbdlib-name,DISP=SHR
//IMSACB DD DSN=acblib-name,disp=shr (required for DBB)
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//ddnamex DD (add DD statements for required GSAM databases)
//ddnamex DD (add DD statements for non-GSAM IMS databases
 for DLI/DBB)
//ddnamex DD DSNTYPE=LARGE,...
 .
 .
 .
/*

294 IMS: Application Programming

Chapter 21. Processing Fast Path databases
You can write application programs to access Fast Path databases, including main storage databases and
data entry databases.

The two kinds of Fast Path databases are:

• Main storage databases (MSDBs), which are available in a DB/DC environment, and contain only root
segments in which you store data that you access most frequently.

• Data entry databases (DEDBs) are hierarchic databases that can have as many as 15 hierarchic levels
and as many as 127 segment types. DEDBs are available to both IMS users and CICS users with DBCTL.

Restriction: This DEDB information applies to CICS users with DBCTL. CICS users can access MSDBs in
DBCTL in read mode, but update mode is not supported.

VSO considerations
VSO is transparent to the processing of an application. Where the data resides is immaterial to the
application.

Data locking for MSDBs and DEDBs
All MSDB calls, including the FLD call, can lock the data at the segment level. The lock is acquired at the
time the call is processed and is released at the end of the call. All DEDB calls, with the exception of HSSP
calls, are locked at the VSAM CI level. For single-segment, root-only, fixed-length VSO areas, if you specify
PROCOPT R or G, the application program can obtain segment-level locks for all calls. If you specify any
other PROCOPT, the application program obtains VSAM CI locks.

Segment-level locking (SLL) provides a two-tier locking scheme. First, a share (SHR) lock is obtained
for the entire CI. Then, an exclusive (EXCL) segment lock is obtained for the requested segment. This
scheme allows for contention detection between SLL users of the CI and EXCL requestors of the CI. When
contention occurs between an existing EXCL CI lock user and a SHR CI lock requestor, the SHR CI lock
is upgraded to an EXCL CI lock. During the time that this EXCL CI lock is held, subsequent SHR CI lock
requests must wait until the EXCL CI is released at the next commit point.

DEDB FLD calls are not locked at call time. Instead, the lock is acquired at a commit point.

During sync-point processing, the lock is re-acquired (if not already held), and the changes are verified.
Verification failure results in the message being reprocessed (for message-driven applications) or an FE
status code (for non-message-driven applications). Verification can fail if the segment used by the FLD
call has been deleted or replaced before a sync-point.

Segment retrieval for a FLD call is the same as for a GU call. An unqualified FLD call returns the first
segment in the current area, just as an unqualified GU call does. After the FLD call is processed, all locks
for the current CI are released if the current CI is unmodified by any previous call.

When a compression routine is defined on the root segment of a DEDB with a root-only structure, and
when that root segment is a fixed-length segment, its length becomes variable after being compressed.
To replace a compressed segment, you must perform a delete and an insert. In this case, segment level
control and locking will not be available.

Related concepts
Data entry databases (Database Administration)
Main storage databases (MSDBs) (Database Administration)
High-speed sequential processing (HSSP) (Database Administration)

© Copyright IBM Corp. 1974, 2022 295

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_dataentrydbs.htm#ims_dataentrydbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_mainstoragedbs.htm#ims_mainstoragedbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_hssp.htm#ims_hssp

Fast Path database calls
Use Fast Path database calls in your application programs to access Fast Path databases.

The following table summarizes the database calls you can use with Fast Path databases.

Table 50. Summary of Fast Path database calls

Function Code

Types of MSDBs:

DEDBs
Nonterminal-

Related
Terminal-

Related Fixed

Terminal-
Related
Dynamic

DEQ X

FLD X X X X

GU, GHU X X X X

GN, GHN X X X X

GNP, GHNP DLET X X

ISRT X X

POS X

REPL X X X X

RLSE X

DL/I calls to DEDBs can include the same number of SSAs as existing levels in the hierarchy (a maximum
of 15). They can also include command codes and multiple qualification statements.

Restriction:

• Fast Path ignores command codes that are used with sequential dependent segments.
• If you use a command code that does not apply to the call you are using, Fast Path ignores the

command code.
• If you use F or L in an SSA for a level greater than the established parent, Fast Path ignores the F or L

command code.
• DL/I calls to DEDBs cannot include the independent AND, which is used only with secondary indexing.

Calls to DEDBs can use all command codes. Only calls to DEDBs that use subset pointers can use the R,
S, Z, W, and M command codes. The following table shows which calls you can use with these command
codes.

Table 51. Subset pointer command codes and calls

Command
Code

DLET GU GHU GN GHN GNP GHNP ISRT REPL

M X X X X X

R X X X X

S X X X X X

W X X X X X

X X X X X X X

296 IMS: Application Programming

Main storage databases (MSDBs)
MSDBs contain only root segments. Each segment is like a database record, because the segment
contains all of the information about a particular subject.

In a DL/I hierarchy, a database record is made up of a root segment and all its dependents. For example,
in the medical hierarchy, a particular PATIENT segment and all the segments underneath that PATIENT
segment comprise the database record for that patient. In an MSDB, the segment is the whole database
record. The database record contains only the fields that the segment contains. MSDB segments are fixed
length.

The two kinds of MSDBs are terminal related and non-terminal related. In terminal-related MSDBs, each
segment is owned by one logical terminal. The segment that is owned can be updated only by that
terminal. Related MSDBs can be fixed or dynamic. You can add segments to and delete segments from
dynamic related MSDBs. You cannot add segments to or delete segments from fixed related MSDBs.

In the second kind of MSDB, called non-terminal related (or nonrelated) MSDBs, the segments are not
owned by logical terminals.

Restrictions on using calls for MSDBs
To retrieve segments from an MSDB, you can issue Get calls just as you do to retrieve segments from
other IMS databases. Because MSDBs contain only root segments, you only use GU and GN calls (and
GHU and GHN calls when you plan to update a segment). If the segment name field in the SSA contains
*MYLTERM, the GU, GHU, and FLD calls return the LTERM-owned segment, and the remainder of the SSA is
ignored.

When you are processing MSDBs, you should consider the following differences between calls to MSDBs
and to other IMS databases:

• You can use only one SSA in a call to an MSDB.
• MSDB calls cannot use command codes.
• MSDB calls cannot use multiple qualification statements (Boolean operators).
• The maximum length for an MSDB segment key is 240 bytes (not 255 bytes, as in other IMS databases).
• If the SSA names an arithmetic field (types P, H, or F) as specified in the database description (DBD), the

database search is performed using arithmetic comparisons (rather than the logical comparisons that
are used for DL/I calls).

• If a hexadecimal field is specified, each byte in the database field is represented in the SSA by its
two-character hexadecimal representation. This representation makes the search argument twice as
long as the database field.

Characters in hexadecimal-type SSA qualification statements are tested for validity before translation to
the database format. Only numerals 0 through 9 and letters A through F are accepted.

• Terminal-related and non-terminal-related LTERM-keyed MSDBs are not supported for ETO or LU 6.2
terminals. Attempted access results in no data being retrieved and an AM status code. See IMS Version
15.3 Communications and Connections for more information on ETO and LU 6.2.

• MSDBs cannot be shared among IMS subsystems in a sysplex group. When using the Fast Path
Expedited Message Handler (EMH), terminal related and non-terminal related with terminal key
MSDBs can only be accessed by static terminals. These static terminals run transactions with Sysplex
Processing Code (SPC) of Locals Only as specified in DBFHAGU0 (Input Edit Router exit routine).

The restrictions above do not apply to CICS users.

Chapter 21. Processing Fast Path databases 297

Data entry databases (DEDBs)
A DEDB contains a root segment and as many as 127 dependent segment types. One of these can be a
sequential dependent; the other 126 are direct dependents. Sequential dependent segments are stored
in chronological order. Direct dependent segments are stored hierarchically.

Restriction: IMS does not support inserting SDEP segments into the same DEDB area from multiple
distributed IMS PSTs or UORs, as a global UOR, instanced from a non-IMS resource manager.

This restriction applies to ODBA users, ODBM users, CCTL DRA users such as CICS, and Db2 stored
procedures that access IMS using ODBA.

DEDBs can provide high data availability. Each DEDB can be partitioned, or divided into multiple areas.
Each area contains a different collection of database records. In addition, you can make as many as seven
copies of each area data set. If an error exists in one copy of an area, application programs continue
to access the data by using another copy of that area. Use of the copy of an area is transparent to the
application program. When an error occurs to data in a DEDB, IMS does not stop the database. IMS makes
the data in error unavailable but continues to schedule and process application programs. Programs that
do not need the data in error are unaffected.

DEDBs can be shared among application programs in separate IMS systems. Sharing DEDBs is virtually
the same as sharing full-function databases, and most of the same rules apply. IMS systems can share
DEDBs at the area level (instead of at the database level as with full-function databases), or at the block
level.

Restriction: IMS does not support inserting SDEP segments into the same DEDB area from multiple
distributed IMS PST or UORs as a global UR, instanced from a non-IMS resource manager.

This restriction applies to users of:

• ODBA
• ODBM
• CCTL DR, such as CICS
• Db2 stored procedures that access IMS using ODBA

Related reading: For more information on DEDB data sharing, see the explanation of administering IMS
systems that share data in IMS Version 15.3 System Administration.

Updating segments: REPL, DLET, ISRT, and FLD
You can use REPL, DLET, ISRT, and Field (FLD) calls to update a Data entry database (DEDB) or a Main
storage database (MSDB). A single FLD call does what a Get Hold call and a REPL call do in two calls. FLD
calls are unique to DEDBs and MSDBs.

You can issue REPL, DLET, and ISRT calls to non-terminal-related MSDBs (without terminal-related keys)
or DEDBs. You can issue REPL calls to related or nonrelated MSDBs. Before issuing these calls, you must
issue a Get Hold call for the segment that you want to update.

Alternatively, you can use a FLD call to access and change field contents within a segment.

The FLD call has two types. FLD/VERIFY compares a target segment field value to the value that you
supply in a field search argument (FSA). FLD/CHANGE changes the target segment field value to your
specifications in the FSA. A FLD/CHANGE call succeeds only if the previous FLD/VERIFY call succeeds.

FLD calls can simplify some operations. For example, consider how to address the following scenario,
which is based on the ACCOUNT segment that is described in Database hierarchy examples (Application
Programming). A bank must perform the following process to determine whether a customer can
withdraw a requested amount from their account:

1. Retrieve the customer's account segment.
2. Verify that the customer's account balance is greater than the requested withdrawal amount.

298 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dbhierarchyexample.htm#ims_dbhierarchyexample
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_dbhierarchyexample.htm#ims_dbhierarchyexample

3. Update the balance to reflect the withdrawal if the starting balance is greater than the requested
withdrawal amount.

If you do not use FLD calls, you must write a program to issue a GU call to retrieve the segment, verify its
contents with program logic, and then issue a REPL call to update the balance to reflect the withdrawal.

If you issue FLD calls with a root segment search argument (SSA), you can retrieve, compare, and
change the customer segment. Use a FLD/VERIFY call to compare the BALANCE field with the requested
withdrawal amount. If the comparison is satisfactory, use a FLD/CHANGE call to update the BALANCE
field.

The FLD call SSA has the same format as SSAs for other calls. If no SSA exists, the first segment in the
DEDB or MSDB is retrieved.

The segment retrieved by a FLD call is the same as the segment that can be retrieved by a GHU call. After
the FLD call, the position is lost. An unqualified GN call after a FLD call returns the next segment in the
current area.

Note: A FLD call cannot change the length of a compressed segment, even if the segment is variable
length. To make changes, you must issue a REPL call.

Sync point processing (SYNC call) will fail if a FLD call that changes segment length is issued to a DEDB
segment type that has a compression routine specified. If the FLD call is issued from a BMP region, the
SYNC call fails with status code FV. If the FLD call is issued from an MPP or IFP region, the SYNC call will
ABEND U799 with RC 3.

Restriction: Do not concurrently delete or replace a call with length change in the following
circumstances:

• FLD call to any DEDB AREA
• GU call with VIEW=MSDB or VIEW=MSDBL to Root Only DEDB AREA

The application will ABEND U1026 or some segments may be skipped on a GN call.

Related reference
FLD call (Application Programming APIs)

Checking the contents of a field: FLD/VERIFY
A FLD/VERIFY call compares the contents of a specified field in a segment to the value that you supply.
The way that a FLD/VERIFY call compares the two depends on the operator you supply.

When you supply the name of a field and a value for comparison, you can determine if the value in the
field is:

• Equal to the value you have supplied
• Greater than the value you have supplied
• Greater than or equal to the value you have supplied
• Less than the value you have supplied
• Less than or equal to the value you have supplied
• Not equal to the value you have supplied

After IMS performs the comparison that you have asked for, it returns a status code (in addition to the
status code in the PCB) to tell you the results of the comparison.

If failures occur during processing of the FLD call, IMS reprocesses the call only if the failures are caused
by deadlocks or verification errors. For other types of failures, abend U0819 is issued.

You specify the name of the field and the value that you want its value compared to in a field search
argument, or FSA. The FSA is also where IMS returns the status code. You place the FSA in an I/O area
before you issue a FLD call, and then you reference that I/O area in the call—just as you do for an SSA in
a DL/I call. An FSA is similar to an SSA in that you use it to give information to IMS about the information

Chapter 21. Processing Fast Path databases 299

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_fldcall.htm#ims_fldcall

you want to retrieve from the database. An FSA, however, contains more information than an SSA. The
table below shows the structure and format of an FSA.

Table 52. FSA structure

FSA Component Field Length

FLD NAME 8

SC 1

OP 1

FLD VALUE Variable

CON 1

The five fields in an FSA are:
Field Name (FLD Name)

This is the name of the field that you want to update. The field must be defined in the DBD.
Status Code (SC)

This is where IMS returns the status code for this FSA. If IMS successfully processes the FSA, it
returns a blank status code. If IMS fails to process the FSA, it returns a FE status code to the PCB to
indicate a nonblank status code in the FSA and returns a nonblank FSA status code. The FSA status
codes that IMS might return to you on a FLD/VERIFY call are:
B

The length of the data supplied in the field value is invalid, or the segment length of the data in the
database is too small to contain the field length specified in the DBD.

D
The verify check is unsuccessful. In other words, the answer to your query is no.

E
The field value contains invalid data. The data you supplied in this field is not the same type of
data that is defined for this field in the DBD.

H
The requested field is not found in the segment.

Operator (OP)
This tells IMS how you want the two values compared. For a FLD/VERIFY call, you can specify:
E

Verify that the value in the field is equal to the value you have supplied in the FSA.
G

Verify that the value in the field is greater than the value you have supplied in the FSA.
H

Verify that the value in the field is greater than or equal to the value you have supplied in the FSA.
L

Verify that the value in the field is less than the value you have supplied in the FSA.
M

Verify that the value in the field is less than or equal to the value you have supplied in the FSA.
N

Verify that the value in the field is not equal to the value you have supplied in the FSA.
Field Value (FLD Value)

This area contains the value that you want IMS to compare to the value in the segment field. The data
that you supply in this area must be the same type of data in the field you have named in the first field
of the FSA. The five types of data are: hexadecimal, packed decimal, alphanumeric (or a combination
of data types), binary fullword, and binary halfword. The length of the data in this area must be the
same as the length that is defined for this field in the DBD.

300 IMS: Application Programming

Exceptions:

• If you are processing hexadecimal data, the data in the FSA must be in hexadecimal. This means
that the length of the data in the FSA is twice the length of the data in the field in the database. IMS
checks the characters in hexadecimal fields for validity before that data is translated to database
format. (Only 0 to 9 and A to F are valid characters.)

• For packed-decimal data, you do not need to supply the leading zeros in the field value. This means
that the number of digits in the FSA might be less than the number of digits in the corresponding
database field. The data that you supply in this field must be in a valid packed-decimal format and
must end in a sign digit.

When IMS processes the FSA, it does logical comparisons for alphanumeric and hexadecimal fields; it
does arithmetic comparisons for packed decimal and binary fields.

Connector (CON)
If this is the only or last FSA in this call, this area contains a blank. If another FSA follows this one,
this area contains an asterisk (*). You can include several FSAs in one FLD call, if all the fields that
the FSAs reference are in the same segment. If you get an error status code for a FLD call, check the
status codes for each of the FSAs in the FLD call to determine where the error is.

When you have verified the contents of a field in the database, you can change the contents of that field in
the same call. To do this, supply an FSA that specifies a change operation for that field.

Changing the contents of a field: FLD/CHANGE
To indicate to IMS that you want to change the contents of a particular field, use an FSA, just as you do in
a FLD/VERIFY call.

The difference is in the operators that you can specify and the FSA status codes that IMS can return to
you after the call. To use FLD/CHANGE:

• You specify the name of the field that you want to change in the first field of the FSA (Field Name).
• You specify an operator in the third field of the FSA (Operator), which indicates to IMS how you want to

change that field.
• You specify the value that IMS must use to change the field in the last area of the FSA (Field Value).

By specifying different operators in a FLD/CHANGE call, you change the field in the database in these
ways:

• Add the value supplied in the FSA to the value in the field.
• Subtract the value supplied in the FSA from the value in the field.
• Set the value in the database field to the value supplied in the FSA.

You code these operators in the FSA with these symbols:

• To add: +
• To subtract: -
• To set the field equal to the new value: =

You can add and subtract values only when the field in the database contains arithmetic (packed-decimal,
binary-fullword, or binary-halfword) data.

The status codes you can receive in a FLD/CHANGE FSA are:
A

Invalid operation; for example, you specified the + operator for a field that contains character data.
B

Invalid data length. The data you supplied in the FSA is not the length that is defined for that field in
the DBD.

C
You attempted to change the key field in the segment. Changing the key field is not allowed.

Chapter 21. Processing Fast Path databases 301

E
Invalid data in the FSA. The data that you supplied in the FSA is not the type of data that is defined for
this field in the DBD.

F
You tried to change an unowned segment. This status code applies only to related MSDBs.

G
An arithmetic overflow occurred when you changed the data field.

H
The requested field was not found in the segment.

If failures occur during processing of the FLD call, IMS reprocesses the call only if the failures are caused
by deadlocks or verification errors. For other types of failures, abend U0819 is issued.

Example of using FLD/VERIFY and FLD/CHANGE
Using the bank account segment from the "Bank Account Example" database, assume that a customer
wants to withdraw $100 from a checking account. The checking account number is 24056772. To find
out whether the customer can withdraw this amount, you must check the current balance. If the current
balance is greater than $100, you want to subtract $100 from the balance, and add 1 to the transaction
count in the segment.

You can do all of this processing by using one FLD call and three FSAs. The three FSAs are described:

1. Verify that the value in the BALANCE field is greater than or equal to $100. For this verification, you
specify the BALANCE field, the H operator for greater than or equal to, and the amount. The amount
is specified without a decimal point. Field names less than eight characters long must be padded with
trailing blanks to equal eight characters. You also have to leave a blank between the field name and
the operator for the FSA status code. This FSA looks like this:

BALANCEbb
H10000*

The last character in the FSA is an asterisk, because this FSA will be followed by other FSAs.
2. Subtract $100 from the value in the BALANCE field if the first FSA is successful. If the first FSA is

unsuccessful, IMS does not continue processing. To subtract the amount of the withdrawal from the
amount of the balance, you use this FSA:

BALANCEbb
-10000*

Again, the last character in the FSA is an asterisk, because this FSA is followed by a third FSA.
3. Add 1 to the transaction count for the account. To do this, use this FSA:

TRANCNTbb
001b

In this FSA, the last character is a blank (b), because this is the last FSA for this call.

When you issue the FLD call, you do not reference each FSA individually; you reference the I/O area
that contains all of them.

Commit-point processing in MSDBs and DEDBs
Your existing application programs can use either the MSDB commit view or the default DEDB commit
view.

MSDB commit view
When you update a segment in an MSDB, IMS does not apply your updates immediately. Updates do not
go into effect until your program reaches a commit point.

302 IMS: Application Programming

As a result of the way updates are handled, you can receive different results if you issue the same call
sequence against a full-function database or a DEDB and an MSDB. For example, if you issue GHU and
REPL calls for a segment in an MSDB, and then issue another Get call for the same segment in the same
commit interval, the segment that IMS returns to you is the "old" value, not the updated one. If, however,
you issue the same call sequence for a segment in a full-function database or DEDB, the second Get call
returns the updated segment.

When the program reaches a commit point, IMS also reprocesses the FLD VERIFY/CHANGE call. If the
VERIFY test passes, the change is applied to the database. If the VERIFY test fails, the changes made
since the previous commit point are undone, and the transaction is reprocessed.

DEDBs with MSDB commit view
To use the MSDB commit view for DEDBs, specify VIEW=MSDB on the PCB statement; if you do not specify
VIEW=MSDB, the DEDB uses the default DEDB commit view. So no changes to any existing application
programs are required in order to migrate your MSDBs to DEDBs.

Assume that you specify VIEW=MSDB in the PCB and an application program issues GHU and REPL calls to
a DEDB followed by another GHU call for the segment in the same commit interval. Then the application
program receives the old value of the data and not the new value from the REPL call. If you do not specify
VIEW=MSDB, your application program receives the new updated values of the data, just as you expect for
a DEDB or other DL/I database.

You can specify VIEW=MSDB for any DEDB PCB. If it is specified for a non-DEDB database, you receive
message DFS0904 during ACBGEN.

If you issue a REPL call with a PCB that specifies VIEW=MSDB, the segment must have a key. This
requirement applies to any segment in a path if command code 'D' is specified. Otherwise, the AM
status code is returned. See IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes for
information about that status code.

The following code shows an example of a PCB that specifies the VIEW option.

Sample PCB specifying View=MSDB

 PCB , *00000100
 TYPE=DB, *00000200
 NAME=DEDBJN21, *00000300
 PROCOPT=A, *00000400
 KEYLEN=30, *00000500
 VIEW=MSDB, *00000600
 POS=M 00000700

Related reference
“Issuing checkpoints” on page 263
Two kinds of checkpoint (CHKP) calls exist: the basic CHKP and the symbolic CHKP. All IMS programs and
CICS shared database programs can issue the basic CHKP call; only BMPs and batch programs can use
either call.
“Commit-point processing in a DEDB” on page 319

Chapter 21. Processing Fast Path databases 303

IMS retains database updates in processor storage until the program reaches a commit point. IMS saves
updates to a DEDB in Fast Path buffers. The database updates are not applied to the DEDB until after the
program has successfully completed commit-point processing.

Processing DEDBs (IMS and CICS with DBCTL)
You can use subset pointers, secondary indexes, the POS call, data locking, and the P and H processing
options in your application program to process DEDBs.

Processing Fast Path DEDBs with subset pointer command codes
Subset pointers and the command codes you use with them are optimization tools that significantly
improve the efficiency of your program when you need to process long segment chains.

Subset pointers are a means of dividing a chain of segment occurrences under the same parent into two
or more groups or subsets. You can define as many as eight subset pointers for any segment type. You
then define the subset pointers from within an application program. Each subset pointer points to the
start of a new subset. For example, in the following topic, suppose you define one subset pointer that
divides the last three segment occurrences from the first four. Your program can then refer to that subset
pointer through command codes and directly retrieve the last three segment occurrences.

Figure 65. Processing a long chain of segment occurrences with subset pointers

You can use subset pointers at any level of the database hierarchy, except at the root level. If you try to
use subset pointers at the root level, they are ignored.

The following figures show some of the ways you can set subset pointers. Subset pointers are
independent of one another, which means that you can set one or more pointers to any segment in
the chain. For example, you can set more than one subset pointer to a segment, as shown in the following
figure.

304 IMS: Application Programming

Figure 66. Examples of setting subset pointers

You can also define a one-to-one relationship between the pointers and the segments, as shown in the
following figure.

Figure 67. Additional examples of setting subset pointers

The following figure shows how the use of subset pointers divides a chain of segment occurrences under
the same parent into subsets. Each subset ends with the last segment in the entire chain. For example,
the last segment in the subset that is defined by subset pointer 1 is B7.

Chapter 21. Processing Fast Path databases 305

Figure 68. How subset pointers divide a chain into subsets

Before you use subset pointers
For your program to use subset pointers, the pointers must be defined in the DBD for the DEDB and in
your program's PSB:

• In the DBD, you specify the number of pointers for a segment chain. You can specify as many as eight
pointers for any segment chain.

• In the PSB, you specify which pointers your program is to use. Define this on the SENSEG statement.
(Each pointer is defined as an integer from 1 to 8.) Also, indicate on the SENSEG statement whether
your program can set the pointers it uses. If your program has read sensitivity, it cannot set pointers
but can only retrieve segments using subset pointers that are already set. If your program has update
sensitivity, it can also update subset pointers by using the S, W, M, and Z command codes.

After the pointers are defined in the DBD and the PSB, an application program can set the pointers to
segments in a chain. When an application program finishes executing, the subset pointers used by that
program remain as they were set by the program; they are not reset.

Designating subset pointers
To use subset pointers in your program, you must know the numbers for the pointers as they were defined
in the PSB. When you use the subset pointer command codes, specify the number of each subset pointer
you want to use followed by the command code. For example, you use R3 to indicate that you want to
retrieve the first segment occurrence in the subset defined by subset pointer 3. No default exists, so if you
do not include a number between 1 and 8, IMS considers your SSA invalid and returns an AJ status code.

Subset pointer command codes
To take advantage of subsets, application programs use five command codes. The R command code
retrieves the first segment in a subset. The following 4 command codes, which are explained in the topic
"DEDB command codes for DL/I" in IMS Version 15.3 Application Programming APIs, redefine subsets by
modifying the subset pointers:
Z

Sets a subset pointer to 0.
M

Sets a subset pointer to the segment following the current segment.
S

Unconditionally sets a subset pointer to the current segment.

306 IMS: Application Programming

W
Conditionally sets a subset pointer to the current segment.

Before your program can set a subset pointer, it must establish a position in the database. A call must
be fully satisfied before a subset pointer is set. The segment a pointer is set to depends on your current
position at the completion of the call. If a call to retrieve a segment is not completely satisfied and a
position is not established, the subset pointers remain as they were before the call was made. You can
use subset pointer command codes in either an unqualified SSA or a qualified SSA. To use a command
code in a call with an unqualified SSA, use the command code along with the number of the subset
pointer you want, after the segment name. This is shown in the following figure.

Table 53. Unqualified SSA with subset pointer command code

Seg Name * Cmd Code Ssptr. b

8 1 Variable Variable 1

To use a subset pointer command code with a qualified SSA, use the command code and subset pointer
number immediately before the left parenthesis of the qualification statement, as shown in the following
figure.

Table 54. Qualified SSA with subset pointer command code

Seg Name * Cmd Code Ssptr. (Fld Name R.O. Fld Value)

8 1 Variable Variable 1 8 2 Variable 1

Inserting segments in a subset

When you use the R command code to insert an unkeyed segment in a subset, the new segment
is inserted before the first segment occurrence in the subset. However, the subset pointer is not
automatically set to the new segment occurrence.

For example, the following call inserts a new B segment occurrence in front of segment B5, but does not
set subset pointer 1 to point to the new B segment occurrence:

ISRT Abbbbbbb
(Akeybbbb=bA1)
Bbbbbbbb
*R1

To set subset pointer 1 to the new segment, you use the S command code along with the R command
code, as shown in the following example:

ISRT Abbbbbbb
(Akeybbbb=bA1)
 Bbbbbbbb
*R1S1

If the subset does not exist (subset pointer 1 is set to 0), the segment is added to the end of the segment
chain.

Deleting the segment pointed to by a subset pointer

If you delete the segment pointed to by a subset pointer, the subset pointer points to the next segment
occurrence in the chain. If the segment you delete is the last segment in the chain, the subset pointer is
set to 0.

Combining command codes

You can use the S, M, and W command codes with other command codes, and you can combine subset
pointer command codes with each other, as long as they do not conflict. For example, you can use R and S
together, but you cannot use S and Z together because their functions conflict. If you combine command
codes that conflict, IMS returns an AJ status code to your program.

Chapter 21. Processing Fast Path databases 307

You can use one R command code for each SSA and one update command code (Z, M, S, or W) for each
subset pointer.

Related concepts
“SSAs and command codes” on page 174
SSAs can also include one or more command codes, which can change and extend the functions of DL/I
calls.
“Calls with dependent segments for DEDBs” on page 320
You can issue DL/I calls against direct and sequential dependent segments for DEDBs.

Subset pointer status codes
If you make an error in an SSA that contains subset pointer command codes, IMS can return either of
these status codes to your program.

AJ
The SSA used an R, S, Z, W, or M command code for a segment that does not have subset pointers
defined in the DBD.

The subset command codes included in the SSA are in conflict. For example, if one SSA contains an S
command code and a Z command code for the same subset pointer, IMS returns an AJ status code.
S indicates that you want to set the pointer to current position; Z indicates that you want to set the
pointer to 0. You cannot use these command codes in one SSA.

The SSA includes more than one R command code.

The pointer number following a subset pointer command code is invalid. You either did not include
a number, or you included an invalid character. The number following the command code must be
between 1 and 8.

AM
The subset pointer referenced in the SSA is not specified in the program's PSB. For example, if your
program's PSB specifies that your program can use subset pointers 1 and 4, and your SSA references
subset pointer 5, IMS returns an AM status code.

Your program tried to use a command code that updates the pointer (S, W, or M), but the program's
PSB did not specify pointer-update sensitivity.

Your program attempted to open a GSAM database without specifying an IOAREA.

Processing DEDBs with a secondary index
Application programs can process a secondary index for DEDB databases of either HISAM or SHISAM
database structures.

A HISAM secondary index database or a SHISAM secondary index database offers sequential key
secondary index support.

A DEDB database with sequential dependent (SDEP) segments can have a secondary index database.
SDEP segments cannot be used as an index field. Therefore, a SDEP segment cannot have LCHILD or
XDFLD statements defined under its SEGM statement. Because SDEP segments are transient data and
they are deleted using SDEP SCAN and SDEP DELETE utilities, Fast Path secondary index support for
SDEP segments is restricted; that is, a SDEP segment cannot be a target segment or a source segment for
a secondary index database. When the target segment is a root segment, SDEP segments can be returned
for a DEDB database that is accessed through its alternate sequence.

Fast Path secondary indexing supports both unique and non-unique keys. A HISAM secondary index
database offers unique and non-unique key support, and a SHISAM secondary index offers unique key
support only.

A HISAM secondary index database supports both unique and non-unique keys. For a HISAM secondary
index database, the non-unique key support is provided using an ESDS overflow data set. Duplicate keys

308 IMS: Application Programming

are stored in Last-In First-Out (LIFO) order. The first inserted duplicate key is stored in the KSDS data set
and the remaining duplicate keys are stored in the ESDS overflow data set in LIFO order.

The target segment is in the primary DEDB database. The target segment is the segment that an
application program needs to retrieve. The target segment can be at any one of the 15 levels in a primary
DEDB database. SDEP segments cannot be a target segment or a source segment for a secondary index
database.

There are a maximum of 32 secondary indexes per segment and 255 secondary indexes per DEDB
database.

A Fast Path secondary index database can be accessed as:

• Its own database.
• A secondary index to its primary DEDB database, with an option to have single (the default) or multiple

(by DEDB implementation only) secondary index segments.
• Fast Path secondary index user partitions.
• An option to suppress index maintenance for BMP applications.
• An option to access Fast Path secondary index user partition databases as one logical separate

database.

Fast Path secondary indexes provide support for boolean qualification that are similar to full-function DL/I
calls. The boolean operators supported are:

• Logical AND (coded * or &)
• Logical OR (coded + or |)

Restrictions
The restrictions that apply to processing DEDBs with a secondary index are:

• A DEDB database with sequential dependent (SDEP) segments can have a secondary index database,
but SDEP segments cannot be used as an index field. Therefore, a SDEP segment cannot have LCHILD
or XDFLD statements defined under its SEGM statement. Because SDEP segments are transient data
and they are deleted using SDEP SCAN and SDEP DELETE utilities, Fast Path secondary index support
for SDEP segments is restricted; that is, a SDEP segment cannot be a target segment or a source
segment for a secondary index database.

• Fast Path secondary indexing does not support shared secondary indexes. Multiple secondary index
segments support is only for DEDB implementation, and is not the same as shared secondary indexes
support.

• A Fast Path secondary index database supports only symbolic pointers. There is no direct pointer
support. Using symbolic pointers for indexed segments, a Fast Path secondary index database is not
impacted when its primary DEDB database is reorganized.

• A qualified GU/GN segment name with SSA using the primary key field for target=root segment is
supported when a primary DEDB database is accessed through its secondary index using a PCB with the
PROCSEQD= parameter.

• A qualified GU/GN segment name with SSA using the primary key field for target=dependent segment is
not supported. An AC status code is returned for the qualified Get call when a primary DEDB database is
accessed through its secondary index using a PCB with the PROCSEQD= parameter.

• The independent AND (#) boolean operator is not supported.
• No boolean support is provided for SSAs with XDFLD and fields from the target segment. Boolean

support is only for XDFLDs.

Example 1 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access COURSE segment on a primary DEDB database through its secondary index using GU
and GN DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

Chapter 21. Processing Fast Path databases 309

PCB2NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, NAMESXDB. The COURSE segment is the target segment and it is a root segment. The source
segment is the same as the target segment.

PCB2NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,
 PROCSEQD=NAMESXDB
 SENSEG NAME=COURSE,PARENT=0 <<- (target seg=root)
 SENSEG NAME=CLASS,PARENT=COURSE
 SENSEG NAME=INSTRUCT,PARENT=CLASS
 SENSEG NAME=STUDENT,PARENT=CLASS
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END
PCB PCB2NDX
GU COURSE(NAMEINDX=CHEMISTRY)
GN COURSE

GU COURSE returns the COURSE segment for CHEMISTRY in the primary DEDB database using the
secondary index key NAMEINDX=CHEMISTRY.

The key of the pointer segment, CHEMISTRY, is returned in the key feedback area.

GN COURSE returns the COURSE segment in the primary DEDB database that is pointed by the next
pointer segment after segment CHEMISTRY in the Fast Path secondary index database, NAMESXDB.

The key of the next pointer segment after CHEMISTRY (the next sequential key after the secondary index
key CHEMISTRY) in the Fast Path secondary index database, NAMESXDB, is returned in the key feedback
area.

Example 2 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access COURSE segment on a primary DEDB database through its secondary index using GU
and GN DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

PCB2NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, NAMESXDB. The COURSE segment is the target segment and it is a root segment. The source
segment is the same as the target segment.

PCB PCB2NDX
GU COURSE(NAMEINDX=CHEMISTRY)
GN 1st GN
GN 2nd GN
GN 3rd GN
GN 4th GN

GU COURSE returns the COURSE segment for CHEMISTRY in the primary DEDB database using the
secondary index key NAMEINDX=CHEMISTRY.

The key of the pointer segment, CHEMISTRY, is returned in the key feedback area.

The first GN call returns the segment of the DEDB inverted structure of the CHEMISTRY COURSE segment
in the primary DEDB database. Because the COURSE segment is the target segment and it is a root
segment, all segments in the physical structure are accessible as defined in PCB PCB2INDX. GN returns
the CLASS segment in the database record under the CHEMISTRY COURSE segment that was retrieved by
the GU call in the primary DEDB database.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the CLASS segment under the
CHEMISTRY COURSE segment, is returned in the key feedback area.

The second GN call returns the INSTRUCT segment in the database record under the CHEMISTRY
COURSE segment

The key of the pointer segment, CHEMISTRY, concatenated with the key of the CLASS segment and the
key of the INSTRUCT segment under the CHEMISTRY COURSE segment, is returned in the key feedback
area.

310 IMS: Application Programming

The third GN call returns the STUDENT segment in the database record under the CHEMISTRY COURSE
segment.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the CLASS segment and the
key of the STUDENT segment under the CHEMISTRY COURSE segment, is returned in the key feedback
area.

Because the STUDENT segment is the last segment in the COURSE database record in the primary DEDB
database, the fourth GN call returns the COURSE segment in the primary DEDB database using the next
secondary index key after the CHEMISTRY segment in the secondary index database, NAMESXDB.

The key of the next pointer segment after CHEMISTRY (the next sequential key after the secondary index
key CHEMISTRY) in the Fast Path secondary index database, NAMESXDB, is returned in the key feedback
area.

Example 3 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access COURSE segment on a primary DEDB database through its secondary index using GU
and GNP DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

PCB2NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, NAMESXDB. The COURSE segment is the target segment and it is a root segment. The source
segment is the same as the target segment.

PCB PCB2NDX
GU COURSE(NAMEINDX=CHEMISTRY)
GNP 1st GNP
GNP 2nd GNP
GNP 3rd GNP
GNP 4th GNP

GU COURSE returns the COURSE segment for CHEMISTRY in the primary DEDB database using the
secondary index key NAMEINDX=CHEMISTRY.

The key of the pointer segment, CHEMISTRY, is returned in the key feedback area.

The first GNP call returns the first segment under the DEDB inverted structure of the CHEMISTRY COURSE
segment in the primary DEDB database. Because the COURSE segment is the target segment and it is a
root segment, all segments in the physical structure are accessible as defined in PCB2INDX. GNP returns
the CLASS segment in the database record under the CHEMISTRY COURSE segment that was retrieved by
the GU call in the primary DEDB database.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the CLASS segment under the
CHEMISTRY COURSE segment, is returned in the key feedback area.

The second GNP call returns the INSTRUCT segment in the database record under the CHEMISTRY
COURSE segment.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the CLASS segment and the
key of the INSTRUCT segment under the CHEMISTRY COURSE segment, is returned in the key feedback
area.

The third GNP call returns the STUDENT segment in the database record under the CHEMISTRY COURSE
segment.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the CLASS segment and the
key of the STUDENT segment under the CHEMISTRY COURSE segment, is returned in the key feedback
area.

Since the STUDENT segment is the last segment in the COURSE database record in the primary DEDB
database, the fourth GNP call returns a GE status code.

Chapter 21. Processing Fast Path databases 311

Example 4 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access INSTRUCT segment on a primary DEDB database through its secondary index using
GU and GN DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

PCB3NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, INSTSXDB. The CLASS segment is the target segment and it is not a root segment. The source
segment (INSTRUCT segment) is not the same as the target segment (CLASS segment).

Although there are multiple LCHILD/XDFLD pairs in the CLASS SEGM statement, only one is used in this
example.

DBDGEN excerpt for CLASS and INSTRUCT SEGM statements in the EDUCDB DEDB DBD:

SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7
FIELD NAME=CLASNAME,BYTES=10,START=15

LCHILD NAME=(CLASXSEG,CLASSCDB),PTR=SYMB
XDFLD NAME=CLASINDX,SRCH=CLASNAME

LCHILD NAME=(INSTXSEG,INSTSXDB),PTR=SYMB
XDFLD NAME=INSTINDX,SEGMENT=INSTRUCT,SRCH=INSTNAME
SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
FIELD NAME=INSTPHNO,BYTES=10,START=11
FIELD NAME=INSTNAME,BYTES=20,START=21

…

PSBGEN Definition for PCB3NDX:

When the target segment is not a root segment, all direct parents of the target segment from the root
segment must be defined in the PCB with the PROCSEQD parameter. Only the direct parents segments
along the physical path from the root segment to the target segment and all child segments of the target
segment are accessible when the target segment is not a root segment. All sibling segments of CLASS are
not accessible. The coding sequence of the mandatory SENSEGs must be in the sequence of the physical
path of the segments (for example, from the physical root to the target) even though the segments are
retrieved always in logical sequence (for example, from the target or logical root to the physical root).

PCB3NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,
 PROCSEQD=INSTSXDB
 SENSEG NAME=COURSE,PARENT=0 <<- mandatory SENSEG
 SENSEG NAME=CLASS,PARENT=COURSE <<- mandatory SENSEG (target seg)
 SENSEG NAME=INSTRUCT,PARENT=CLASS <<- optional SENSEG
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END

 PCB PCB3NDX
 GU CLASS (INSTINDX=TOMJONES)
 GN 1st GN
 GN 2nd GN
 GN 3rd GN

GU CLASS returns the CLASS segment for the instructor teaching the class, in the primary DEDB database
using the secondary index key INSTINDX=TOMJONES.

The key of the pointer segment, TOMJONES, is returned in the key feedback area.

The first GU call returns the target segment of the primary DEDB database. Because the target segment
(CLASS) is not a root segment, the subsequent GN returns the next segment in the DEDB inverted
structure of the CLASS segment retrieved by the GU call in the primary DEDB database. For example,
GN returns the COURSE segment which is a direct physical parent and also a logical child of the CLASS
segment teaching the CHEMISTRY COURSE segment in the DEDB inverted structure.

The key of the pointer segment, TOMJONES, concatenated with the key of the COURSE segment, is
returned in the key feedback area.

312 IMS: Application Programming

The second GN call returns the INSTRUCT segment in the database record, which is a logical child of the
CLASS segment and a logical sibling of the COURSE segment in the DEDB inverted structure.

The key of the pointer segment, TOMJONES, concatenated with the key of the INSTRUCT segment is
returned in the key feedback area.

Because no child or sibling segment is defined for the INSTRUCT segment in PCB PCB3NDX, the third GN
call returns the CLASS segment in the primary DEDB database using the next segment in the secondary
index database after INSTINDX=TOMJONES.

The key of the next pointer segment after TOMJONES (the next sequential key after the secondary index
key TOMJONES) in the Fast Path secondary index database, INSTSXDB, is returned in the key feedback
area.

Example 5 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access INSTRUCT segment on a primary DEDB database through its secondary index using
GU and GNP DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

PCB3NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, INSTSXDB. The CLASS segment is the target segment and it is not a root segment. The source
segment (INSTRUCT segment) is not the same as the target segment (CLASS segment).

Although there are multiple LCHILD/XDFLD pairs in the CLASS SEGM statement, only one is used in this
example.

DBDGEN excerpt for CLASS and INSTRUCT SEGM statements in the EDUCDB DEDB DBD:

…
SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7)
FIELD NAME=CLASNAME,BYTES=10,START=15

LCHILD NAME=(CLASXSEG,CLASSXDB),PTR=SYMB
XDFLD NAME=CLASINDX,SRCH=CLASNAME

LCHILD NAME=(INSTXSEG,INSTSXDB),PTR=SYMB
XDFLD NAME=INSTINDX,SEGMENT=INSTRUCT,SRCH=INSTNAME

SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
FIELD NAME=INSTPHNO,BYTES=10,START=11
FIELD NAME=INSTNAME,BYTES=20,START=21

…

PSBGEN Definition for PCB3NDX:

When the target segment is not a root segment, all direct parents of the target segment from the root
segment must be defined in the PCB with the PROCSEQD parameter. Only the direct parents segments
along the physical path from the root segment to the target segment and all child segments of the target
segment are accessible when the target segment is not a root segment.

PCB3NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,
 PROCSEQD=INSTSXDB
 SENSEG NAME=COURSE,PARENT=0
 SENSEG NAME=CLASS,PARENT=COURSE <<-- Target segment
 SENSEG NAME=INSTRUCT,PARENT=CLASS
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END

 PCB PCB3NDX
 GU CLASS(INSTINDX=TOMJONES)
 GNP 1st GNP
 GNP 2nd GNP
 GNP 3rd GNP

Chapter 21. Processing Fast Path databases 313

GU CLASS returns the CLASS segment for the instructor teaching the particular class in the primary DEDB
database using the secondary index key INSTINDX=TOMJONES.

The key of the pointer segment, TOMJONES, is returned in the key feedback area.

The first GU call returns the CLASS segment of the DEDB. Because the target segment (CLASS) is not a
root segment, the first GNP returns the next segment in the DEDB inverted structure. For example, the
first GNP returns the COURSE segment which is a direct physical parent, but a direct logical child, of the
CLASS segment in the DEDB inverted structure.

The key of the pointer segment, TOMJONES, concatenated with the key of the COURSE segment, is
returned in the key feedback area.

The second GNP call returns the INSTRUCT segment in the database record, which is a logical child of
CLASS and a logical sibling of the COURSE segment in the inverted DEDB structure hierarchy.

The key of the pointer segment, TOMJONES, concatenated with the key of the INSTRUCT segment is
returned in the key feedback area.

Because there is no child or sibling segment defined for the INSTRUCT segment in PCB PCB3NDX, the
third GNP call under the CLASS segment with the secondary index key of TOMJONES returns a GE status
code.

Example 6 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access CLASS segment on a primary DEDB database through its secondary index using GU
and GN DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, CLASSXDB. The CLASS segment is the target segment and it is not a root segment. The source
segment is the same as the target segment.

PSBGEN Definition for PCB4NDX:

When the target segment is not a root segment, all direct parents of the target segment from the root
segment must be defined in the PCB with the PROCSEQD parameter. Only the direct parents segments
along the physical path from the root segment to the target segment and all child segments of the target
segment are accessible when the target segment is not a root segment.

PCB4NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,
 PROCSEQD=CLASSXDB
 SENSEG NAME=COURSE,PARENT=0
 SENSEG NAME=CLASS,PARENT=COURSE <<-- Target segment
 SENSEG NAME=INSTRUCT,PARENT=CLASS
 SENSEG NAME=STUDENT,PARENT=CLASS
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END

 PCB PCB4NDX
 GU CLASS(CLASINDX=CHEM1A)
 GN 1st GN
 GN 2nd GN
 GN 3rd GN
 GN 4th GN

GU CLASS returns the CLASS segment for the class name, CHEM1A, in the primary DEDB database using
the secondary index key INSTINDX=CHEM1A.

The key of the pointer segment, CHEM1A, is returned in the key feedback area.

The first GN call returns the COURSE segment of the DEDB inverted structure of the CHEM1A CLASS
segment in the primary DEDB database. Because the CLASS segment is the target segment and it is
not a root segment, GN returns the next segment in the DEDB inverted structure of the CLASS segment
retrieved by the GU call in the primary DEDB database. GN returns the COURSE segment for CHEMISTRY
which is a direct parent of the CHEM1A CLASS segment in the DEDB inverted structure.

314 IMS: Application Programming

The key of the pointer segment, CHEM1A, concatenated with the primary key of the COURSE segment, is
returned in the key feedback area.

The second GN call returns the INSTRUCT segment in the database record under CHEM1A CLASS
segment.

The key of the pointer segment, CHEM1A, concatenated with the key of the INSTRUCT segment under the
CHEM1A CLASS segment, is returned in the key feedback area.

The third GN call returns the STUDENT segment in the database record under CHEM1A CLASS segment.

The key of the pointer segment, CHEM1A, concatenated with the key of the STUDENT segment under the
CHEM1A CLASS segment, is returned in the key feedback area.

Because the STUDENT segment is the last segment for the CLASS segment in the database record, the
fourth GN call returns the CLASS segment in the primary DEDB database using the next secondary index
key after the CHEM1A segment in the secondary index database, CLASINDX.

The key of the next pointer segment after CHEM1A (the next sequential key after the secondary index key
CHEM1A) in the Fast Path secondary index database, CLASSXDB, is returned in the key feedback area.

Example 7 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access class name on a primary DEDB database through its secondary index using GU
and GN DL/I calls. For simplicity, assume that there is only one segment instance for each dependent
segment.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, CLASSXDB. The CLASS segment is the target segment and it is a not root segment. The source
segment is the same as the target segment.

PCB PCB4NDX
GU CLASS(CLASINDX=CHEM1A)
GN CLASS

GU CLASS returns the CLASS segment for CHEM1A in the primary DEDB database using the secondary
index key NAMEINDX=CHEM1A.

The key of the pointer segment, CHEM1A, is returned in the key feedback area.

GN CLASS returns the CLASS segment in the primary DEDB database that is pointed to by the next pointer
segment after segment CHEM1A in the Fast Path secondary index database, CLASSXDB.

The key of the next pointer segment after CHEM1A (the next sequential key after the secondary index key
CHEM1A) in the Fast Path secondary index database, CLASSXDB, is returned in the key feedback area.

Example 8 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I calls to access the class name on a primary DEDB database through its secondary index using GU
and GN DL/I calls and C command code. For simplicity, assume that there is only one segment instance
for each dependent segment.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, CLASSXDB. The CLASS segment is the target segment and it is a not root segment. The source
segment is the same as the target segment.

PCB PCB4NDX
GU INSTRUCT *C (CHEM1AI12345)
GN 1st GN
GN 2nd GN

GU INSTRUCT returns the INSTRUCT segment for instructor number, I12345, under the CLASS segment
for class name, CHEM1A.

The key of the pointer segment, CHEM1A, concatenated with the key of INSTRUCT segment, I12345, is
returned in the key feedback area.

Chapter 21. Processing Fast Path databases 315

The first GN call returns the STUDENT segment of the DEDB inverted structure of the CHEM1A CLASS
segment in the primary DEDB database. Because the CLASS segment is the target segment and it is not
a root segment, GN returns the next segment in the DEDB inverted structure of the INSTRUCT segment
retrieved by the GU call in the primary DEDB database. GN returns the STUDENT segment which is a child
segment of the CHEM1A CLASS segment in the DEDB inverted structure.

The key of the pointer segment, CHEM1A, concatenated with the key of the STUDENT segment, is
returned in the key feedback area.

Because the STUDENT segment is the last segment for the CLASS segment in the database record, the
second GN call returns the CLASS segment in the primary DEDB database using the next secondary index
key after the CHEM1A segment in the secondary index database, CLASINDX.

The key of the next pointer segment after CHEM1A (the next sequential key after the secondary index key
CHEM1A) in the Fast Path secondary index database, CLASSXDB, is returned in the key feedback area.

Example 9 of accessing a primary DEDB database that uses a Fast Path secondary index

DL/I call to insert an INSTRUCT segment on a primary DEDB database through its secondary index for the
CLASS segment with a secondary index key of CHEM1A.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast Path secondary index
database, CLASSXDB. The CLASS segment is the target segment and it is a not root segment. The source
segment is the same as the target segment.

PCB4INDX
ISRT CLASS(CLASINDX = CHEM1A)
 INSTRUCT I23456 JOHN SMITH

The ISRT call inserts an INSTRUCT segment with the key of I23456 under the CLASS segment with a
secondary index key of CHEM1A

The key of the pointer segment, CHEM1A, concatenated with the key of the INSTRUCT segment, I23456,
is returned in the key feedback area.

Related concepts
Creating secondary indexes (Database Administration)
Related tasks
Adding a secondary index to a DEDB (Database Administration)

Retrieving location with the POS call (for DEDB only)
Use the POS (Position) call to retrieve the location of a specific sequential dependent segment; retrieve
the location of the last-inserted sequential dependent segment, its time stamp, and the IMS ID; or
retrieve the time stamp of a sequential dependent or Logical Begin. You can also use the POS call to tell
the amount of unused space within each DEDB area. For example, you can use the information that IMS
returns for a POS call to scan or delete the sequential dependent segments for a particular time period.

The topic "POS Call" in IMS Version 15.3 Application Programming APIs explains how you code the POS
call and what the I/O area for the POS call looks like. If the area that the POS call specifies is unavailable,
the I/O area is unchanged, and the FH status code is returned.

Locating a specific sequential dependent
When you have position on a particular root segment, you can retrieve the position information and
the area name of a specific sequential dependent of that root. If you have a position established on a
sequential dependent segment, the search starts from that position. IMS returns the position information
for the first sequential dependent segment that satisfies the call. To retrieve this information, issue a POS
call with a qualified or unqualified SSA containing the segment name of the sequential dependent. Current
position after this kind of POS call is the same place that it would be after a GNP call.

After a successful POS call, the I/O area contains:

316 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_secindexes.htm#ims_secindexes
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_addsecindex_existingdedb.htm#ims_addsecindex_existingdedb

LL

A 2-byte or 4 byte field giving the total length of the data in the I/O area. When the number of DEDB
areas is 2048 or fewer, the LL is 2-byte field. When the number of DEDB areas is greater than 2048,
the LL is 4-byte field.

Area Name
An 8-byte field giving the ddname from the AREA statement.

Position
An 8-byte field containing the position information for the requested segment.

Exception: If the sequential dependent segment that is the target of the POS call is inserted in the
same synchronization interval, no position information is returned. Bytes 11-18 contain X'FF'. Other
fields contain normal data.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent overflow part.

Locating the last inserted sequential dependent segment
You can also retrieve the position information for the most recently inserted sequential dependent
segment of a given root segment. To do this, you issue a POS call with an unqualified or qualified SSA
containing the root segment as the segment name. Current position after this type of call follows the same
rules as position after a GU call.

You can also retrieve the position of the SDEP, its time stamp, and the ID of the IMS that owns the
segment. To do this, you issue a POS call with a qualified SSA and provide the keyword PCSEGTSP in
position one of the I/O area as input to the POS call. The keyword requests the POS call to return the
position of the SDEP, its time stamp, and the ID of the IMS that owns the segment.

Requirement: The I/O area must be increased in size to 42 bytes to allow for the added data being
returned. The I/O area includes a 2-byte LL field that is not shown in the following table. This LL field is
described after the following table.

Table 55. Qualified POS call: keywords and map of I/O area returned

Keyword word 0 word 1 word 2 word 3 word 4 word 5 word 6 word 7 word 8 word 9

<null> Field 1 Field 2 Field 3 Field 4 N/A N/A

PCSEGTSP Field 1 Field 2 Field 5 Field 6 Field 7

Field 1
Area name

Field 2
Sequential dependent location from qualified SSA

Field 3
Unused CIs in sequential dependent part

Field 4
Unused CIs in independent overflow part

Field 5
Committed sequential dependent segment time stamp

Field 6
IMS ID

Field 7
Pad

Chapter 21. Processing Fast Path databases 317

After a successful POS call, the I/O area contains:
LL

(Not shown in table) A 2-byte field, in binary, containing the total length of the data in the I/O area.
(Field 1)

Area Name
An 8-byte field giving the ddname from the AREA statement.

(Field 2)
Position

An 8-byte field containing the position information for the most recently inserted sequential
dependent segment. This field contains zeros if no sequential dependent exists for this root.

Sequential dependent location from qualified SSA
IMS places two pieces of data in this 8-byte field after a successful POS call. The first 4 bytes
contain the cycle count, and the second 4 bytes contain the VSAM RBA.

If the sequential dependent segment that is the target of the POS call is inserted in the same
synchronization interval, no position information is returned. Bytes 11-18 contain X'FF'. Other
fields contain normal data.

(Field 3)
Unused CIs in sequential dependent part

A 4-byte field containing the number of unused control intervals in the sequential dependent part.
(Field 4)

Unused CIs in independent overflow part
A 4-byte field containing the number of unused control intervals in the independent overflow part.

(Field 5)
Committed Sequential Dependent Segment Time Stamp

An 8-byte field containing the time stamp that corresponds to the SDEP segment located by the
qualified POS call.

(Field 6)
IMS ID

Identifies the IMS that owns the CI where the SDEP segment was located.
(Field 7)

Pad
An 8-byte pad area to align the I/O area on a double word boundary. No data is returned to this
field.

Identifying free space
To retrieve the area name and the next available position within the sequential dependent part from all
online areas, you can issue an unqualified POS call. This type of call also retrieves the unused space in the
independent overflow and sequential dependent parts.

After a unsuccessful unqualified POS call, the I/O area contains the length (LL), followed by the same
number of entries as existing areas within the database. Each entry contains the fields shown below:
Area Name

An 8-byte field giving the ddname from the AREA.
Position

An 8-byte field with binary zeros.
Unused SDEP CIs

A 4-byte field with binary zeros.
Unused IOV CIs

A 4-byte field with two binary zeros followed by a bad status code.

318 IMS: Application Programming

Commit-point processing in a DEDB
IMS retains database updates in processor storage until the program reaches a commit point. IMS saves
updates to a DEDB in Fast Path buffers. The database updates are not applied to the DEDB until after the
program has successfully completed commit-point processing.

Unlike Get calls to an MSDB, however, a Get call to an updated segment in a DEDB returns the updated
value, even if a commit point has not occurred.

When a BMP is processing DEDBs, it must issue a CHKP or SYNC call to do commit-point processing before
it terminates. Otherwise, the BMP abnormally terminates with abend U1008.

Related concepts
“Commit-point processing in MSDBs and DEDBs” on page 302
Your existing application programs can use either the MSDB commit view or the default DEDB commit
view.

P processing option
If the P processing option is specified in the PCB for your program, a GC status code is returned to your
program whenever a call to retrieve or insert a segment causes a unit of work (UOW) boundary to be
crossed.

Related reading: For more information on the UOW for DEDBs, see IMS Version 15.3 Database
Administration.

Although crossing the UOW boundary probably has no particular significance for your program, the GC
status code indicates that this is a good time to issue either a SYNC or CHKP call. The advantages of
issuing a SYNC or CHKP call after your program receives a GC status code are:

• Your position in the database is retained. Issuing a SYNC or CHKP call normally causes position in
the database to be lost, and the application program must reestablish position before it can resume
processing.

• Commit points occur at regular intervals.

When a GC status code is returned, no data is retrieved or inserted. In your program, you can either:

• Issue a SYNC or CHKP call, and resume database processing by reissuing the call that caused the GC
status code.

• Ignore the GC status code, and resume database processing by reissuing the call that caused the status
code.

Related concepts
“Calls with dependent segments for DEDBs” on page 320
You can issue DL/I calls against direct and sequential dependent segments for DEDBs.

H processing option
If the H processing option has been specified in the PCB for your call program, a GC status code is
returned whenever a call to retrieve or insert a segment causes a unit of work (UOW) or an area boundary
to be crossed. The program must cause a commit process before any other calls can be issued to that
PCB.

If a commit process is not caused, an FR status code results (total buffer allocation exceeded), and all
database changes for this synchronization interval are "washed" (sync-point failure).

A GC status code is returned when crossing the area boundary so that the application program can issue
a SYNC or CHKP call to force cleanup of resources (such as buffers) that were obtained in processing the
previous area. This cleanup might cause successive returns of a GC status code for a GN or GHN call, even
if a SYNC or CHKP call is issued appropriately for the previous GC status code.

When an application is running HSSP and proceeding through the DEDB AREA sequentially, a buffer
shortage condition may occur due to large IOV chains. In this case, a FW status code is returned to

Chapter 21. Processing Fast Path databases 319

the application. Usually, the application issues a commit request and position is set to the next UOW.
However, this does not allow the previous UOW to finish processing. In order to finish processing the
previous UOW, you can issue a commit request after the FW status code is received and set the position
to remain in the same UOW. You must also reposition the application to the position that gave the FW
status code. The following shows an example of the command sequence and corresponding application
responses.

 GN root1
 GN root2
 GN root3
 GN root4 /*FW status code received*/
 CHKP
 GN SSA=(root4) root4 /*User reposition prior to CHKP*/
 GN root5

Calls with dependent segments for DEDBs
You can issue DL/I calls against direct and sequential dependent segments for DEDBs.

The DL/I calls that you can issue against a root segment are: GU, GN (GNP has no meaning for a root
segment), DLET, ISRT, and REPL. You can issue all DL/I calls against a direct dependent segment, and
you can issue Get and ISRT calls against sequential dependents segments.

Direct dependent segments
DL/I calls to direct dependents include the same number of SSAs as existing levels in the hierarchy (a
maximum of 15). They can also include command codes and multiple qualification statements. The same
rules apply to using command codes on DL/I calls to DEDBs as to full-function databases.

If you use the D command code in a call to a DEDB, the P processing option need not be specified in the
PCB for the program. The P processing option has a different meaning for DEDBs than for full-function
databases.

Some special command codes can be used only with DEDBs that use subset pointers. Your program uses
these command codes to read and update the subset pointers.

Sequential dependent segments
Because sequential dependents are stored in chronological order, they are useful in journaling, data
collection, and auditing application programs. You can access sequential dependents directly. However,
sequential dependents are normally retrieved sequentially using the Database Scan utility.

Restriction: When processing sequential dependent segments:

• You can only use the F command code with sequential dependents; IMS ignores all other command
codes.

• You cannot use Boolean operators in calls to sequential dependents.

Related reading: For more information about the utility, see IMS Version 15.3 Database Utilities.

Related concepts
“Processing Fast Path DEDBs with subset pointer command codes” on page 304
Subset pointers and the command codes you use with them are optimization tools that significantly
improve the efficiency of your program when you need to process long segment chains.
Related reference
“P processing option” on page 319

320 IMS: Application Programming

If the P processing option is specified in the PCB for your program, a GC status code is returned to your
program whenever a call to retrieve or insert a segment causes a unit of work (UOW) boundary to be
crossed.

DEDB DL/I calls to extract DEDB information
DL/I calls can be issued to obtain structural information about Data Entry Databases (DEDBs). Any
application that can issue DL/I calls can take advantage of these DL/I calls.

There are two basic call types:

• The first type returns the minimum I/O area length required for a specific type '2' DL/I call.
• The second type returns specific information about the specified DEDB.

Each of these DL/I calls uses a call interface block called the Input Output Input Area (IOAI), a
telecommunication program PCB (TP PCB), and specific calls that require an I/O area. Some required
initialization of the IOAI is common for all calls and some initialization is specific to an individual call. The
IOAI and the I/O area must be obtained in key 8 storage.

The following table describes the DL/I calls to extract DEDB information.

Table 56. DEDB DL/I Calls

DL/I Call Description

AL_LEN Returns the minimum length of the I/O area that is
required for an AREALIST call.

DI_LEN Returns the minimum length of the I/O area that is
required for an DEDBINFO call.

DS_LEN Returns the minimum length of the I/O area
required for a DEDBSTR call.

AREALIST Returns a list of areas that are part of the specified
DEDB, with each area mapped by DBFCDAL1.

DEDBINFO Returns DEDB information from the DMCB,
mapped by DBFCDDI1.

DEDBSTR Returns a list of segments and a segment data for
DEDB with each segment mapped by DBFCDDS1.

The DL/I call that use the standard interface with register 1 must point to IOAI_CA.

The following figure shows the IOAI structure.

 starting
 offset note
IOAI_START DS 0F
IOAI_NAME DC CL4'IOAI' 0 *1
IOAI_#FPU DC CL4'#FPU' 4 *1
IOAI_#FPI DC CL8'#FPUCDPI' 8 *1
IOAI_SUBC DC CL8' ' 10 *1
*
IOAI_BLEN DC A(0) 18 *1
IOAI_ILEN DC A(0) 1C *1
IOAI_IOAREA DC A(0) 20 *1
*
IOAI_CALL DC A(0) 24 *1
IOAI_PCBI DC A(0) 28 *1
IOAI_IOAI DC A(0) 2C *1
*
IOAI_DLEN DC A(0) 30 *2
IOAI_STATUS DC CL2' ' 34 *2
IOAI_B_LEVEL DC XL2'0' 36 *2
IOAI_STATUS_RC DC A(0) 38 *2
IOAI_USERVER DC A(0) 3C *1
IOAI_IMSVER DC A(0) 40 *2

Chapter 21. Processing Fast Path databases 321

*
IOAI_IMSLEVEL DC A(0) 44 *2
*
IOAI_APPL_NAME DC CL8' ' 48 *1
IOAI_USERDATA DC CL8' ' 50 *1
IOAI_TIMESTAMP DC CL8' ' 58 *2
* input words.
IOAI_IN0 DC A(0) 60 *3
IOAI_IN1 DC A(0) 64 *3
IOAI_IN2 DC A(0) 68 *3
IOAI_IN3 DC A(0) 6C *3
IOAI_IN4 DC A(0) 70 *3
* feedback words
IOAI_FDBK0 DC A(0) 74 *2
IOAI_FDBK1 DC A(0) 78 *2
IOAI_FDBK2 DC A(0) 7C *2
IOAI_FDBK3 DC A(0) 80 *2
IOAI_FDBK4 DC A(0) 84 *2
* workareas.
IOAI_WA0 DC A(0) 88 *4
IOAI_WA1 DC A(0) 8C *4
IOAI_WA2 DC A(0) 90 *4
IOAI_WA3 DC A(0) 94 *4
IOAI_WA4 DC A(0) 98 *4
*
 DS 20F'0' 9C for future expansion
IOAI_END_CHAR DC CL4'IEND' EC *1
IOAI_LEN len(DBFIOAI) = x'F0' bytes

Note:

1. The user is responsible for initializing these fields.
2. IMS uses these fields to return data to the caller. Which fields contain returned data depends on the

DL/I call and are documented in the section on the specific call types.
3. May be used to pass additional data on the DL/I call, as documented under each DL/I call.
4. These fields are unchanged, and can be used as work areas by the application.

The fields in the following table must be initialized for all of the following DL/I calls.

Table 57. Field initialization for DEDB DL/I calls

Field Description

IOAI_NAME The characters 'IOAI' identifying this block.

IOAI_#FPU The characters '#FPU' Indicating this is a #FPU
call.

IOAI_#FPI The characters '#FPUCDPI' indicating this is a
subset call.

IOAI_SUBC The DL/I call: AL_LEN, AREALIST, DS_LEN,
DEDBSTR, DI_LEN or DEDBINFO.

IOAI_BLEN The total length of the IOAI (x'F0').

IOAI_CALL Address of IOAI_#FPU.

IOAI_PCBI Address of the TPCB.

IOAI_IOAI Address of this block. The user must set the high
order bit on to indicate the end of the DL/I list.

IOAI_USERVER Call version number. Defaults to one. This is the
version number of a specific call. This field will be
updated in the future if a specific call is altered
such that the application must be sensitive to the
changes.

IOAI_END_CHAR The chars 'IEND' identifying the end of block.

322 IMS: Application Programming

The following fields are initialized for specific DL/I calls. If a specific call does not need an I/O area, these
fields are ignored.

Table 58. Fields initialized for specific DEDB DL/I calls

Field Description

IOAI_ILEN The total length of the I/O area, including prefix
and suffix.

IOAI_IOAREA Address of the I/O area.

I/O Area 1st word: The I/O area length (same as
IOAI_ILEN). Last word: X'FFFFFFFF', which is an
'end of I/O area' marker.

IOAI_IN0 -> IOAI_IN4 Five input words that might be required.

The following fields are updated by IMS for all the DEDB DL/I call types.

Table 59. Fields updated by IMS for all DL/I call types

Field Description

IOAI_DLEN The length of the output data that is returned by
IMS. This field is informational only.

IOAI_STATUS A 2-byte status code.

IOAI_STATUS_RC A return code if needed.

IOAI_IMSVER The maximum version of this call.

IOAI_IMSLEVEL The IMS level.

The following fields might be updated by specific DL/I calls.

Table 60. Fields updated by specific DL/I calls

Field Description

I/O Area 1st word: unchanged. Data: see specific call types.
Last word: potentially changed.

IOAI_FDBK0 -> IOAI_FDBK4 Five output words which may return data as
documented by specific calls.

DBFCDAL1 mapping: offset
CDAL_START DS 0F
CDAL_ARNM DS CL8 00 Area name
CDAL_FLGS DS 0XL4 08 Flag Bytes
CDAL_FLG1 DS XL1 08 Flags for area status:
CDAL_F1OP EQU X'01' - Area is opened
CDAL_F1BK EQU X'02' - Temporary bit for backout
CDAL_F1UT EQU X'04' - Utility active on this area
CDAL_F1ER EQU X'08' - Error recovery needed
CDAL_F1AF EQU X'80' - Sequential dep. part full
CDAL_F1EP EQU X'40' - I/O error
CDAL_F1ST EQU X'20' - Area stop request
CDAL_F1RE EQU X'10' - Area restart request
CDAL_FLG2 DS XL1 09 Reserved for Flag Byte #2
CDAL_FLG3 DS XL1 0A Reserved for Flag Byte #3
CDAL_FLG4 DS XL1 0B Reserved for Flag Byte #4
 DS 1F 0C for growth
CDAL_LEND DS 0F End of area list entry
CDAL_LEN EQU *-&AA._START; Len of area list entry

DBFCDDI0 mapping: offset
CDDI_START DS 0D

Chapter 21. Processing Fast Path databases 323

CDDI_DBNM DS CL8 00 Database name
CDDI_ANR DS H 08 Number of areas defined
CDDI_HSLV DS H 0A Max SEGM level in the DB
CDDI_SGNR DS H 0C Highest valid SEGM code
CDDI_SEGL DS H 0E Maximum IOA length
CDDI_HBLK DS F 10 Number of anchor blocks
CDDI_RMNM DS CL8 14 Randomizing module name
CDDI_RMEP DS F 1C Randomizing module entry point
 DS 8F 20 Reserved
 DS 0D Align on double word boundary
CDDI_LEN EQU *-&AA._START; Length of this area (x'40')

DBFCDDS1 mapping: offset
CDDS_START DS 0F
CDDS_GNAM DS CL8 00 SEGMENT NAME
CDDS_GDOF DS H 08 OFFSET FROM START SEQ TO DATA
CDDS_MAX DS H 0A MAX SEG LEN
CDDS_MIN DS H 0C MIN SEG LEN
CDDS_DBOF DS H 0E OFFSET TO SEG ENTRIES
CDDS_NRFLD DS FL1 10 NUMBER OF FIELDS IN SEG
CDDS_SC DS FL1 11 SEGMENT CODE
CDDS_PREF DS H 12 POINTER OFFSET IN PARENT PREF
CDDS_FLG1 DS X 14 FLAG BYTE
CDDS_FL1K EQU X'80' KEY SEGMENT
CDDS_FL1S EQU X'40' SEQUENTIAL DEP SEGMENT
CDDS_FL1P EQU X'20' PCL POINTER TO PARENT
CDDS_FISRT DS X 15 INSERT RULES
CDDS_PARA DS H 16 OFFSET TO PARENT SEGMENT
CDDS_SBLP DS F 18 SIBLING POINTER
CDDS_LEVL DS XL1 1C SEGMENT LEVEL
CDDS_KEYL DS XL1 1D KEY LENGTH - 1
CDDS_KDOF DS H 1E OFFSET TO KEY FIELD IN SEGMENT
CDDS_RSRVE DS XL4 20 FOR USE IN UMDR0 | RESERVED
CDDS_CMPC DS A 24 A(CMPC)
CDDS_FLG2 DS XL1 28 FLAG BYTE 2 (fixed length)
 DS XL3 29 FOR GROWTH
 DS 5F 2C for growth
CDDS_END DS 0F END
CDDS_LEN EQU *-&AA._START; len of SDB entry

The following status codes are specific to these new DL/I calls.

Table 61. Status codes for specific DEDB DL/I calls

Status Code Description

AA Invalid #FPU/#FPUCDPI call.

AB Getmain error.

AC DEDB name not found.

AD The I/O area was not long enough to contain the
data.

AE IOAI_LEN was zeros. It must be filled by the caller.

AF The I/O area address was not passed in by
IOAI_IOAREA.

AG The IOAI does not point to itself, IOAI_IOAI.

AH The IOAI did not contain 'IOAI'.

AI The I/O area length in the I/O area does not match
IOAI.

AJ The I/O area did not contain the end-of-list marker.

AK The IOAI did not have end-of-block marker 'IEND'.

AL IOAI_BLEN is not correct.

324 IMS: Application Programming

Table 61. Status codes for specific DEDB DL/I calls (continued)

Status Code Description

AM DEDB not passed in via the IOAI on the #FPUCDPI
call.

FX The IOAREA of a POS call has a 4-byte LL field.

AL_LEN Call
The AL_LEN call returns the minimum length of the I/O area required for an AREALIST call.

Input
IOAI

Formatted and filled out as documented above.
IOAI_IN0

Points to storage containing the DEB name.

Output
IOAI_STATUS

Call status, ' ' means successful.
IOAI_FDBK0

The minimum length of the I/O area.
IOAI_FDBK1

The number of AREAS in this DEDB.

DI_LEN Call
Return the minimum length of the I/O area required for an DEDBINFO call.

Input
IOAI

Formatted and filled out as documented above.
IOAI_IN0

Points to storage containing the DEB name.

Output
IOAI_STATUS

Call status, ' ' means successful.
IOAI_FDBK0

The minimum length of the I/O area.

DS_LEN Call
Return the minimum length of the I/O area required for a DEDBSTR call.

Input
IOAI

Formatted and filled out as documented above.
IOAI_IN0

Points to storage containing the DEB name.

Chapter 21. Processing Fast Path databases 325

Output
IOAI_STATUS

Call status, ' ' means successful.
IOAI_FDBK0

The minimum length of the I/O area.
IOAI_FDBK1

The number of SEGMENTS in this DEDB.

AREALIST Call
The AREALIST call returns a list of areas that are part of the specified DEDB, with each area mapped by
DBFCDAL1.

Input
IOAI

Formatted and filled out as documented above.
IOAI_IN0

Points to storage containing the DEB name.
I/O Area

Formatted as documented above.

Output
IOAI_STATUS

Call status, ' ' means successful.
IOAI_FDBK0

The minimum length of the I/O area.
IOAI_FDBK1

The number of AREAS in this DEDB.
The I/O Area

0 4 8 C 14 len-4
 ______________________________________//_____________________
I/O	offset	data	DEDB	area list	end of data
area	to	length	name	using DBFCDAL1	marker
len	data			control blocks	x'EEEEEEEE'
 ______________________________________//_____________________

len:4 4 4 8 variable 4

DEDBINFO Call
Return DEDB information from the DMCB, mapped by DBFCDDI1.

Input
IOAI

Formatted and filled out as documented above.
IOAI_IN0

Points to storage containing the DEB name.
I/O Area

Formatted with length in the first word, and 'FFFFFFFF' as an end of I/O area marker.

326 IMS: Application Programming

Output
IOAI_FDBK0

The minimum length of the I/O area.
IOAI_FDBK1

The minimum I/O area for the DEDBSTR call.
IOAI_FDBK2

The minimum I/O area for the AREALIST call.
The I/O Area

0 4 8 C 14 len-4

I/O	offset	data	DEDB	the DEDB info	end of data
area	to	length	name	using DBFCDDI1	marker
len	data			control block	x'EEEEEEEE'

len:4 4 4 8 len(DBFCDDI1) 4

DEDSTR Call
Return a list of segments and segment data for a DEDB with each segment mapped by DBFCDDS1.

Input
IOAI

Formatted and filled out as documented above.
IOAI_IN0

Points to storage containing the DEB name.
I/O Area

Formatted with length in the first word, and 'FFFFFFFF' as an end of I/O area marker.

Output
IOAI_STATUS

The minimum length of the I/O area.
IOAI_FDBK0

The minimum I/O area for the DEDBSTR call.
IOAI_FDBK1

The minimum I/O area for the SEGMENTS call.
The I/O Area

0 4 8 C 14 len-4
 ______________________________________//_____________________
I/O	offset	data	DEDB	segments	end of data
area	to	length	name	in DBFCDDS1	marker
len	data			control blocks	x'EEEEEEEE'
 ______________________________________//_____________________

len:4 4 4 8 variable 4

Fast Path coding considerations
You can use DL/I calls to access Fast Path databases. You can also use two additional calls: FLD and POS.
The type of Fast Path database that you are processing determines when you can use each of these calls.

To process MSDBs, you can use these calls:

• For nonterminal-related MSDBs:

FLD

Chapter 21. Processing Fast Path databases 327

GU and GHU
GN and GHN
REPL

• For terminal-related, fixed MSDBs:

FLD
GU and GHU
GN and GHN
REPL

• For terminal-related, dynamic MSDBs:

DLET
FLD
GU and GHU
GN and GHN
ISRT
REPL

You can use these calls to process a DEDB:

• DEQ
• DLET
• FLD
• GU and GHU
• GN and GHN
• GNP and GHNP
• ISRT
• POS
• REPL
• RLSE

328 IMS: Application Programming

Chapter 22. Writing ODBA application programs
By using the ODBA interface, IMS DB databases can be accessed from environments that are outside the
scope of control for IMS, such as Db2 for z/OS stored procedures.

The ODBA interface is not needed within IMS-controlled regions, such as MPRs, BMPs, or IFPs, for calls to
locally controlled databases.

The z/OS application programs (hereafter called the ODBA application programs) run in a separate z/OS
address space that IMS regards as a separate region from the control region. The separate z/OS address
space hereafter is called the z/OS application region.

The ODBA interface gains access to IMS DB through the Database Resource Adapter (DRA). The ODBA
application programs (which can access any address space within the z/OS they are running in) gain
access to IMS DB databases through the ODBA interface. The following figure illustrates this concept and
shows the relationship between the components of this environment.

Figure 69. z/OS application region's connection to IMS DB

One z/OS application region can connect to multiple IMS DBs and multiple z/OS application regions can
connect to a single IMS DB. The connection is similar to that of CICS to DBCTL.

General application program flow of ODBA application programs
An ODBA application program issues calls, including DL/I calls, using the AERTDLI interface of an
application interface block (AIB).

Several conditions must be met for the AIB call to succeed:

1. If an AIB is not passed in the call, a U261 abend is issued.
2. If the AIB that is passed is not valid, a U476 abend is issued.
3. If the AIB that is passed is not large enough (264 bytes), the AIB return and reason codes are set to

X'104' and X'228'.
4. If the AIB that is passed is not on a fullword boundary, the z/OS system will return an abend S201.
5. If there are other internal problems with the call, other return and reason codes are passed back to

the z/OS application program. See IMS Version 15.3 Messages and Codes, Volume 4: IMS Component
Codes for a complete list of these return and reason codes.

The ODBA application program must link edit with a language module (DFSCDLI0) or this module can be
loaded into the z/OS application region. The entry point for DFSCDLI0 is AERTDLI.

Restriction: The ODBA interface does not support calls into batch DL/I regions.

© Copyright IBM Corp. 1974, 2022 329

The basic program flow for an ODBA application program is:

1. Establish the application execution environment.
The application execution environment must be initialized in the z/OS application region.

To initialize the environment, use either the CIMS INIT call or, if you need to establish connections to
multiple IMS systems, the CIMS CONNECT call.

If you use the INIT subfunction of CIMS you can include a startup table ID in the optional AIBRSNM2
field of the AIB to connect to the IMS DB system listed in the startup table. If the AIBRSNM2 field is
blank, connect to the IMS DB when you allocate a PSB.

The form of the connection call is:

CALL AERTDLI parmcount, CIMS, AIB

Where:
CIMS

Is the required call function.
AIB

Has the following fields:
AIBSFUNC

The subfunction is either INIT or CONNECT. This field is mandatory.
AIBRSNM1

An optional field that provides an eye catcher identifier of the application server that is
associated with the AIB. This field is 8 bytes.

AIBRSNM2
An optional field for the INIT subfunction in which you can specify an optional 4-byte startup
table ID. The ID is optional if the call is issued as preconditioning only. If the ID is given, the
z/OS application region connects to the IMS DB specified in the DBCTLID parameter of the
selected startup table. The AIBRSNM2 field is not supported with the CONNECT subfunction.

The characteristics of the connection are determined from the DRA startup table. The startup table
name is DFSxxxx0, where xxxx is the startup table ID that is used in the CIMS and APSB calls. Each
startup table defines a combination of connection attributes, one of which is a subsystem ID of the
IMS DB.

If you use the CONNECT subfunction, the calling application program can optionally supply its own
connection properties table by specifying the address of the table in an entry in the ODBA data store
connection table used by the CONNECT subfunction. The connection properties table is mapped by the
DFSPRP macro.

Related Reading: For more information about building a DRA startup table, see IMS Version 15.3
System Definition.

2. Allocate a PSB.
The APSB call, introduced for CPIC-driven programs, is used with the ODBA interface to allocate a PSB
for the z/OS application region.

Security is checked before the call can succeed. For more information, see "Accessing IMS databases
through the ODBA interface" in IMS Version 15.3 Communications and Connections.

The APSB call is in the following form:

CALL AERTDLI parmcount, APSB, AIB

Where:
APSB

Is the required call function.
AIB

Is the name of the application interface block. The fields in the AIB must be filled in:

330 IMS: Application Programming

AIBRSNM1
Is the 8-character PSB name.

AIBRSNM2
Is the 4-byte IMS alias name that is used as the startup table ID.

Several conditions must be met for the allocation request to succeed.

• The PSB must exist and security checking through RACF must succeed.
• An ODBA environment must have been established by either a CIMS INIT call or a CIMS CONNECT

call.
• z/OS Resource Recovery Services (RRS) must be active when the APSB call is made.

Multiple PSBs can be active at the same time, which is typical for server environments. No token is
specifically provided to identify which PSB is to be used for a given call to a given IMS DB, so the
same AIB must be used for all calls to the same PSB instance (APSB, DB calls, DPSB). This enables
multiple instances of the same PSB to be in use for the same IMS DB at the same time. The parallelism
is controlled by the thread count specified in the startup table. The maximum number of threads and
dependent regions supported by an IMS DB instance is 999.

3. Perform DB calls.
All DL/I calls, with a few exceptions, are supported through the AIB. The unsupported calls entail
message handling (the IOPCB is available only for system calls), CKPT, ROLL, ROLB, and INQY
PROGRAM. Alternate destination PCBs cannot be used. Both full-function databases and DEDBs are
available.

4. Commit the changes.
Synchronization is performed by issuing the distributed commit calls, SRRCMIT or ATRCMIT, or
possibly their rollback forms of SRRBACK or ATRBACK. IMS sync-point calls are not allowed. Commit is
effective for all RRS controlled resources in the z/OS task.

5. Deallocate the PSB.

The DPSB call is used when the work unit is complete. In the default case, a commit call must be
issued before a DPSB call can be issued. No DL/I call, including system service calls, can be made
between the commit and the DPSB call.

The DPSB call is in the following form:

CALL AERTDLI parmcount, DPSB, AIB

Where:
DPSB

Is the required call function.
AIB

Is the name of the application interface block. The following fields in the AIB must be filled in:
AIBRSNM1

Is the 8-character PSB name.
AIBSFUNC

Is an optional field. Set it to 'PREPbbbb' when you want to deallocate the PSB before
initialization of commit processing and when the commit processing is provided from outside
the application.

IMS performs phase 1 commit processing and returns control to the requestor, but holds the
in-doubt work until RRS (the commit manager) requests full commit processing. An example is
in DB2 UDB for z/OS Stored Procedures, whereDb2 for z/OS initializes commit processing on
behalf of the procedure. See Db2 for z/OS for a discussion of this scenario.

6. Terminate the connection.

The termination call is in the following form:

Chapter 22. Writing ODBA application programs 331

CALL AERTDLI parmcount, CIMS, AIB

Where:
CIMS

Is the required call function.
AIB

Is the name of the application interface block. The following fields in the AIB must be filled in:
AIBSFUNC

Is a mandatory field whose value is TERM or TALL. Use TERM to sever a single IMS DB
connection. Use TALL to sever all connections for this z/OS application region and remove the
DRA from the address space.

AIBRSNM1
Is an optional field that provides an eye catcher identifier of the application server associated
with the AIB. This field is 8 bytes in length.

AIBRSNM2
When subfunction equals TERM, provides the 4-byte startup table ID used in a previous APSB
call. This field is not needed when the subfunction equals TALL.

Server program structure
The commit scope within the z/OS application environment is all the work under the TCB from which the
commit request is made to z/OS Resource Recovery Services (RRS). Server environments, therefore, need
a separate TCB under which the individual client requests will be managed. Each TCB will map to a PST
for thread handling.

The following figure shows an example TCB structure for a server environment.

Figure 70. DRA uses one TCB per thread

Each connection to an IMS DB uses a thread under the TCB. When the APSB call is processed, a context
is established and tied to the TCB. At commit time, all contexts for this TCB are committed or aborted by
RRS.

Loading DFSCDLI0 rather than link editing is attractive when the z/OS application region is a server
supporting many clients with many instances of threads connected with the IMS DBs.

332 IMS: Application Programming

Db2 for z/OS stored procedures use of ODBA
Db2 for z/OS stored procedures connecting to ODBA must run in a z/OS Workload Manager-managed
(WLM-managed) stored procedures address space.

Db2 for z/OS establishes the ODBA environment by specifying either the INIT subfunction or the
CONNECT subfunction of the CIMS call for the stored procedure address space. If the CIMS INIT call
is issued, the connection to a specific IMS DB occurs when the APSB call is issued. If the CIMS CONNECT
call is used, the connection to one or more IMS DB systems can optionally occur either when the CIMS
CONNECT call is issued or when the APSB call is issued.

Each stored procedure running in the stored procedure address space runs under its own TCB that is
established by Db2 for z/OS when the stored procedure is initialized. Db2 for z/OS issues the commit call
on behalf of the stored procedure when control is returned to Db2 for z/OS. Only the PREP subfunction of
the DPSB call should be issued by the stored procedures.

Restriction: If stored procedures are nested under a single WLM stored procedure address space and call
IMS ODBA, the ODBA threads will hang.

The following figure illustrates the connection from a Db2 for z/OS stored procedures address space to
an IMS DB subsystem. This connection allows DL/I data to be presented through an SQL interface, either
locally to this Db2 for z/OS or to DRDA connected Db2 for z/OS databases.

Figure 71. Db2 for z/OS stored procedures connection to IMS DB

The following figure illustrates the general relationships involved with using Db2 for z/OS stored
procedures and IMS DB together.

Chapter 22. Writing ODBA application programs 333

Figure 72. Db2 for z/OS stored procedures relationships

Best practices for Db2 for z/OS stored procedures with ODBA
In a z/OS application runtime environments for Db2 for z/OS stored procedures that use the ODBA
subsystem, you can make certain key changes to improve performance, reduce hung threads, cut down on
the overhead caused by recycling addressed spaces, and increase stability.

In addition to following existing guidance for designing stored procedures, consider the following
recommendations:

• Use the Open Database Manager (ODBM) component of the IMS Common Service Layer (CSL) to protect
IMS from unexpected terminations of Db2 for z/OS stored procedures.

• Do not design stored procedures that use parameters that can cause problems with ODBA, such as the
Db2 for z/OS ASUTIME value.

• Fast-running stored procedures that do not hold unnecessary database locks or issue more than one
APSB call at a time within a DB2 thread improve performance and reduce the frequency of hung
threads.

• Adjust the values of IMS system parameters, such as the MINTHRD= and MAXTHRD=, in the IMS
DFSPRP macro.

• Configure your system to improve serviceability and activate key diagnostic data collection facilities to
quickly collect all of the relevant diagnostic information and reduce the amount of time you need to
troubleshoot ODBA problems.

Design best practices for ODBA Db2 for z/OS stored procedures
If you follow certain recommendations when you design Db2 for z/OS stored procedures that use ODBA,
the stored procedures are less likely to encounter problems.

Use the Open Database Manager (ODBM) to protect IMS from unexpected
termination of Db2 for z/OS stored procedures
ODBM uses the ODBA interface to communicate with IMS. Many of the parameters in the ODBM
CSLDCxxx configuration PROCLIB member are the same as those used by ODBA in the DFSxxxx0 startup
table that is built from the DFSPRP macro parameters.

Because ODBM uses ODBA, ODBA application servers, such as Db2 for z/OS or WebSphere Application
Server for z/OS can be configured to connect to IMS through ODBM instead of through ODBA. Connecting
through ODBM prevents a U0113 abend from occurring if a DB2 stored procedure or WebSphere
Application Server application program terminates unexpectedly during DL/I processing.

334 IMS: Application Programming

Configuring an ODBA application server to use ODBM does not require any changes to existing application
programs that run under the ODBA application server.

To use ODBM, you must also enable the Structured Call Interface (SCI) and Operations Manager (OM)
components of CSL. For more information, see Configuring ODBA application servers to use ODBM
(System Administration).

Design short-running stored procedures
When you write a stored procedure for ODBA, design it so that the total running time between each APSB
call and DPSB call is relatively short – approximately one second or less. This recommendation is similar
to the recommendation for MPP stored procedures.

An ODBA stored procedure holds database locks while it is running. Until the stored procedure ends and
releases the locks, IMS /DBR commands for the database cannot complete and other IMS functionality
can also be lost as a consequence. By minimizing the running time between APSB and DPSB calls, you
also minimize the possibility of delaying a /DBR command and losing IMS function.

Another way to prevent this problem is to stop all ODBA stored procedures before you issue the /DBR
command.

Do not use the ASUTIME statement in Db2 for z/OS stored procedures that interact
with ODBA
The Db2 for z/OS ASUTIME parameter defines a limit on the amount of processor time that a Db2 for z/OS
stored procedure is allowed to run before Db2 for z/OS cancels the procedure.

Recommendation: Do not use the ASUTIME statement in Db2 for z/OS stored procedures that interact
with ODBA.

When the ASUTIME limit is reached, Db2 for z/OS issues a CIMS FTHD call to ODBA, giving ODBA six
seconds before Db2 for z/OS ends the TCB. Depending on the environment, if ODBA is unable to complete
preparations before the TCB to goes away, threads can hang or other problems can occur.

Use only one APSB call at a time per Db2 for z/OS thread
Use only one APSB at a time per Db2 for z/OS thread. If you have more than one APSB active at a time,
various timing problems can occur if the application abends.

You can avoid the timing problems if, after every APSB call, you make a DPSB call before the next APSB
call, as shown in the following example:

APSB
(Other application calls)
DPSB
APSB

Use the same value on the IMS MINTHRD= and MAXTHRD= parameters in the DRA
startup table
Frequently creating and tearing down threads while your application program is running can cause timing-
related errors.

When the MINTHRD= and MAXTHRD= parameters are equal, ODBA creates the requested number of
threads during initialization and does not tear them down until termination. In between, threads are not
created or destroyed.

Recommendation: Set MINTHRD= equal to MAXTHRD= in your DRA startup parameters. These
parameters are different from the Db2 for z/OS NUMTCB parameter. NUMTCB controls the number of
threads that can run simultaneously under a single Db2 for z/OS address space, but there can be multiple
Db2 for z/OS address spaces. Therefore, do not assume that the total number of Db2 for z/OS tasks in the
system is limited by the NUMTCB setting.

Chapter 22. Writing ODBA application programs 335

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_odbm_odbaserver_config.htm#ims_odbm_odbaserver_config
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_odbm_odbaserver_config.htm#ims_odbm_odbaserver_config

Related tasks
Configuring ODBA application servers to use ODBM (System Administration)
Related reference
CSLDCxxx member of the IMS PROCLIB data set (System Definition)
DRA startup table (System Programming APIs)

Writing Db2 for z/OS stored procedures that use ODBA
When you are writing application programs to run in an ODBA environment, you can avoid errors by
following a general pattern of ODBA calls.

Recommendation: Use only one APSB call at a time per Db2 for z/OS thread. If you have more than one
APSB active at a time and the application abends, various timing problems can occur.

If your ODBA application includes multiple APSB calls, avoid undetectable deadlocks at the PST level by
using one of the following methods:

• Before issuing each subsequent APSB call, issue DPSB and SRRCMIT calls after each set of updates.
• Use single threads in ODBA regions.
• Impose a standard sequence for accessing and updating databases across all ODBA applications.

The call pattern you follow differs depending on when the RRS-sync call is initiated.

• If the RRS-sync call is initiated from within the ODBA application, use the following call pattern:
a) Begin with an Allocate PSB (APSB) call to allocate a PSB for the ODBA application.
b) After the APSB call, write the main body of your application program, which will include statements

such as DLI calls.
c) Code the RRS-sync.
d) Code the Deallocate PSB (DPSB) call. This deallocates the PSB which was allocated by the APSB

call.
• If the RRS-sync call is initiated from outside of the ODBA application, use the following call pattern:

a) Begin with an Allocate PSB (APSB) call to allocate a PSB for the ODBA application.
b) After the APSB call, write the main body of your application program, which will include statements

such as DLI calls.
c) Code a DPSB PREP call. This action ends the ability of the application to access the ODBA thread.

IMS resources, including database buffers and database locks obtained as part of the DL/I calls, are
not released until RRS Sync is performed.

d) Return to the application deployer.
e) Deploy the DB2 application to update DB2 resources.
f) RRS-sync.

Stopping Db2 for z/OS stored procedure threads
You have several options for stopping an ODBA stored procedure thread. Some are better than others due
to the potential for hung threads or other availability issues.

The methods in the following list are presented in the order in which you should try them.

1. “Db2 for z/OS -STOP PROCEDURE command” on page 337
2. “Cancel the thread in Db2 for z/OS” on page 337
3. “IMS STOP REGION commands” on page 337
4. “The REFRESH option of the z/OS MVS command VARY WLM” on page 337
5. “Recycle IMS” on page 337

336 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_odbm_odbaserver_config.htm#ims_odbm_odbaserver_config
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_csldcxxx_proclib.htm#ims_csldcxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.spr/ims_dra_startuptable.htm#ims_dra_startuptable

Db2 for z/OS -STOP PROCEDURE command
The Db2 for z/OS -STOP PROCEDURE command is the best way to stop a thread because it has the fewest
potential negative side effects. The -STOP PROCEDURE command prevents Db2 for z/OS from accepting
SQL CALL statements for one or more stored procedures.

For example, the following command stops stored procedures USERPRC1 and USERPRC3. While the
-STOP PROCEDURE command is in effect, attempts to execute these stored procedure are queued.

-STOP PROCEDURE(USERPRC1,USERPRC3)

Cancel the thread in Db2 for z/OS
Use Db2 for z/OS -DISPLAY THREAD and -CANCEL THREAD commands to display threads and locks
held, and then cancel the threads from Db2 for z/OS.

-DISPLAY THREAD(*) TYPE(PROC)

-CANCEL THREAD(token)

IMS STOP REGION commands
Use IMS commands to display the hung threads and then use one of the following commands to stop
them.

• /STOP REGION reg# | job
• /STOP REGION reg# | job ABDUMP tran

The REFRESH option of the z/OS MVS command VARY WLM
You can use the REFRESH option of the z/OS MVS VARY WLM command to refresh the WLM environment;
that is, it recycles the WLM environment.

Refreshing the WLM environment is problematic for ODBA because it terminates the stored procedures
without using the IMS AIB DPSB or TALL calls to terminate the ODBA threads. Normally, when ODBA
receives a TERM or TALL request, connections to IMS wait for active threads to return to the DRA before
terminating. VARY REFRESH does not allow this, which can result in hung threads.

The following example shows the VARY command syntax.

VARY WLM,APPLENV=xxxx,REFRESH

Recycle IMS
As a last resort, you can recycle the IMS address space to stop an ODBA thread if the previously described
methods do not work.

Testing an ODBA application program
You should perform a program unit test on your ODBA application program to ensure that the program
correctly handles its input data, processing, and output data. The amount and type of testing you do
depends on the individual program.

Be aware of your established test procedures before you start to test your program. To begin testing, you
need the following items:

• A test JCL statement
• A test database

Chapter 22. Writing ODBA application programs 337

Always begin testing programs against test-only databases. Do not test programs against production
databases. If the program is faulty it might damage or delete critical data.

• Test input data

The input data that you use need not be current, but it should be valid data. You cannot be sure that
your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly handle all the
situations that it might encounter. To thoroughly test the program, try to test as many of the paths that the
program can take as possible. For example:

Test each path in the program by using input data that forces the program to execute each of its branches.
Be sure that your program tests its error routines. Again, use input data that will force the program to test
as many error conditions as possible. Test the editing routines your program uses. Give the program as
many different data combinations as possible to make sure it correctly edits its input data. The following
table lists the tools you can use to test Online (IMSDB), Batch, and BMP programs.

Table 62. Tools you can use for testing your program

Tool Online (IMS DB) Batch BMP

DFSDDLT0 No Yes¹ Yes

DL/I image capture
program

Yes Yes Yes

Note: 1. For call-level programs only. (For a command-level batch program, you can use DL/I image
capture program first, to produce calls for DFSDDLT0).

Tracing DL/I calls with image capture to test your ODBA program
The DL/I image capture program (DFSDLTR0) is a trace program that can trace and record DL/I calls
issued by batch, BMP, and online (IMS DB environment) programs. You can produce calls for use as input
to DFSDDLT0.

You can use the image capture program to:

• Test your program

If the image capture program detects an error in a call it traces, it reproduces as much of the call as
possible, although it cannot document where the error occurred, and cannot always reproduce the full
SSA.

• Produce input for DFSDDLT0 (DL/I test program)

You can use the output produced by the image capture program as input to DFSDDLT0. The image
capture program produces status statements, comment statements, call statements, and compare
statements for DFSDDLT0. For example, you can use the image capture program with a ODBA
application, to produce calls for DFSDDLT0.

• Debug your program

When your program terminates abnormally, you can rerun the program using the image capture
program. The image capture program can then reproduce and document the conditions that led to
the program failure. You can use the information in the report produced by the image capture program
to find and fix the problem.

Using image capture with DFSDDLT0 to test your ODBA program
The image capture program produces the following control statements that you can use as input to
DFSDDLT0.

• Status statements

338 IMS: Application Programming

When you invoke the image capture program, it produces the status statement. The status statement it
produces:

– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I calls, and the results of all
comparisons

– Determines the new relative PCB number each time a PCB change occurs while the application
program is running

• Comments statement

The image capture program also produces a comments statement when you run it. The comments
statements give:

The time and date IMS started the trace
The name of the PSB being traced

The image capture program also produces a comments statement preceding any call in which IMS finds
an error.

• Call statements

The image capture program produces a call statement for each DL/I call.
• Compare statements

If you specify COMP on the DLITRACE control statement, the image capture program produces data and
PCB comparison statements.

Running image capture online
When you run the image capture program online, the trace output goes to the IMS log data set. To run the
image capture program online, you issue the IMS TRACE command from the z/OS console.

If you trace a BMP and you want to use the trace results with DFSDDLT0, the BMP must have exclusive
write access to the databases it processes. If the application program does not have exclusive access, the
results of DFSDDLT0 may differ from the results of the application program.

The following diagram shows TRACE command format:

⁄ TRACE SET

ON

OFF PSB psbname

NOCOMP

COMP

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one PSB at the same time
by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and PCB compare statements
to be used with DFSDDLT0.

Retrieving image capture data from the log data set
If the trace output is sent to the IMS log data set, you can retrieve it by using utility DFSERA10 and a DL/I
call trace exit routine, DFSERA50.

DFSERA50 deblocks, formats, and numbers the image capture program records to be retrieved. To use
DFSERA50, you must insert a DD statement defining a sequential output data set in the DFSERA10 input
stream. The default ddname for this DD statement is TRCPUNCH. The card must specify BLKSIZE=80.

Chapter 22. Writing ODBA application programs 339

Examples: You can use the following examples of DFSERA10 input control statements in the SYSIN data
set to retrieve the image capture program data from the log data set:

• Print all image capture program records:

 Column 1 Column 10
 OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

• Print selected image capture program records by PSB name:

 Column 1 Column 10
 OPTION PRINT OFFSET=5,VALUE=5F,COND=M
 OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,
 VALUE=psbname, COND=E

• Format image capture program records (in a format that can be used as input to DFSDDLT0):

 Column 1 Column 10
 OPTION PRINT OFFSET=5,VALUE=5F,COND=M
 OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C
 VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

The DDNAME= parameter is used to name the DD statement used by DFSERA50. The data set defined
on the OUTDDN DD statement is used instead of the default TRCPUNCH DD statement. For this
example, the DD appears as:

 //OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your ODBA program
To debug your ODBA program, you can issue the statistics (STAT) or log (LOG) request.

You can use the following two requests to help you in debugging your program:

• The statistics (STAT) request retrieves database statistics. STAT can be issued from both call- and
command-level programs.

• The log (LOG) request makes it possible for the application program to write a record on the system log.
You can issue LOG as a command or call in a batch program; in this case, the record is written to the IMS
log. You can issue LOG as a call or command in an online program in the IMS DB environment; in this
case, the record is written to the IMS DB log.

What to do when your ODBA program terminates abnormally
Whenever your program terminates abnormally, you can take some actions to simplify the task of finding
and fixing the problem. ODBA does not issue any return or reason codes. Most non-terminating errors
for ODBA application programs are communicated in AIB return and reason codes. You can record as
much information as possible about the circumstances under which the program terminated abnormally.
In addition, you can check for certain initialization and execution errors.

Recommended actions after an abnormal termination of an ODBA program
The suggestions given here are some common guidelines on what you should do if your program
terminates abnormally.

• Document the error situation to help in investigating and correcting it. Some of the information that can
be helpful include:

– The program's PSB name
– The call function
– The terminal ID (online programs only)
– The contents of the AIB or the PCB
– The contents of the I/O area when the problem occurred

340 IMS: Application Programming

– If a database request was executing, the SSAs or SEGMENT and WHERE options, if any, the request
used

– The date and time of day
• When your program encounters an error, it can pass all the required error information to a standard

error routine.
• You can send a message to the system log by issuing a LOG request.

Diagnosing an abnormal termination of an ODBA program
If your program does not run correctly when you are testing it or when it is running, you need to isolate
the problem. The problem might be anything from a programming error (for example, an error in the way
you coded one of your requests) to a system problem.

You can check for the following errors when your program fails to run, terminates abnormally, or gives
incorrect results.

ODBA initialization errors
Before your program receives control, IMS must have correctly loaded and initialized the PSB and
DBDs used by your application program. Often, when the problem is in this area, you need a system
programmer or DBA (or your equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that they generate.

ODBA running errors
If you do not have any initialization errors, check the following in your program:

1. The output from the compiler. Make sure that all error messages have been resolved.
2. The output from the binder:

• Are all external references resolved?
• Have all necessary modules been included?
• Was the language interface module correctly included?

3. Your JCL. Is the information that described the files that contain the databases correct? If not, check
with your DBA.

Chapter 22. Writing ODBA application programs 341

342 IMS: Application Programming

Chapter 23. Programming with the IMS support for
DRDA

IMS provides an implementation of the Distributed Relational Database Architecture™ (DRDA) protocol
that you can use to write your own IMS Connect TCP/IP client applications.

DRDA is an open architecture that enables communication between applications and database systems
on disparate platforms. Details about using the DRDA protocol to perform database access operations are
in the open specifications for DRDA. The following information describes only the IMS-specific extensions
provided by the IMS support for DRDA.

To use the IMS support for DRDA, you must create the DRDA client driver (DRDA source server). No
additional software needs to be installed or configured on the client system. The DRDA target server
consists of IMS Connect and the Open Database Manager (ODBM) running with IMS in z/OS.

The IMS support for DRDA includes support for both application-directed transaction demarcation (local)
and XA-enabled (global) transactions.

IMS does not support the following DRDA functions:

• Multi-row input
• Client reroute
• Security plugin

The IMS support for DRDA is based on the DRDA Version 4 technical standard. The DRDA specification is
documented by the Open Group Consortium at www.opengroup.org.

Server compatibility checking
All communication between a source and target DRDA server begins with initialization and security. In
the initialization flow, the DRDA client issues the EXCSAT command and an EXCSATRD data object is sent
back from the DRDA target server.

In the IMS support for DRDA implementation, the EXCSATRD reply data object includes a Server Release
Level (SRVRLSLV) parameter. The SRVRLSLV parameter is a string that specifies the version number of
the distributed database management (DDM) language recognized by the IMS Connect and ODBM server
components. This string is used by the client to perform server compatibility checking to ensure that both
IMS Connect and ODBM understand any codepoints that the client sends. The DDM version numbering
is specific to the IMS support for DRDA. All compatibility checking for the IMS support for DRDA is done
based on the SRVRLSLVL parameter.

Important: The SRVRLSLV parameter value sent back from the target server in response to the EXCSAT
command is OD-ICON 1 OD-ODBM 1.

Updating the source server with the latest maintenance release of IMS without applying the same
maintenance release to all your IMS Connect or ODBM installations may cause the source server to be out
of synchronization with the target server. To prevent this possibility, the server compatibility check allows
the connection to be made only if the IMS support for DRDA target server recognizes the DDM version
level that is used by the source server.

How IMS data is mapped to the DRDA protocol
In a database query operation with the IMS support for DRDA, a row is defined as the concatenation of an
instance of the aibdbpcbStream data structure plus all of the requested fields within an IMS hierarchic
path. An aibdbpcbStream instance is a concatenation of an instance of the aibStream data structure
followed by an instance of the dbpcbStream data structure. The requested fields are represented by the
RTRVFLD objects sent with an OPNQRY command. The concatenation of the aibdbpcbStream instance
and data fields represents a single row in a query row set.

© Copyright IBM Corp. 1974, 2022 343

The IMS support for DRDA supports only flexible blocking, where each query block can be a different
size, depending on the size of the row or result set being returned. The specified query block size is used
as an initial size, and the query block can expand beyond that size, if necessary, to complete the fetch
operation.

In the IMS support for DRDA implementation, data is returned from the DRDA target server in byte stream
format, and the client is responsible for data type processing.

Related concepts
Overview of the CSL Open Database Manager (System Administration)
IMS Connect support for access to IMS DB (Communications and Connections)
Related reference
DRDA DDM command architecture reference (Application Programming APIs)

DDM commands for data operations with the IMS support for DRDA
Use the distributed database management (DDM) commands provided by the IMS support for DRDA for
singleton and batch data operations.

Before accessing the database, you need to first establish a database connection by issuing an ACCRDB
command from your DRDA client application and successfully receive an ACCRDBRM data object back from
the DRDA target server.

After the connection is established, you can issue DDM commands to access data from your DRDA client
application.

• To retrieve data, issue an OPNQRY command.
• To insert, update, or delete data, issue an EXCSQLIMM command.

Data operations can be in singleton or batch operations. Specify the type of data operation by setting the
Byte String Data Representation (BYTSTRDR) parameter in the DLIFUNC command object that is chained
to the DDM command.

The following table shows the DDM commands that the DRDA client issues for data operations with the
IMS support for DRDA.

Table 63. DDM commands for data operations with the IMS support for DRDA

Data operation DDM command
BYTSTRDR parameter value for
DLIFUNC command object

Insert data EXCSQLIMM ISRT

Retrieve data - DL/I Get Hold
Unique

OPNQRY GHU

Retrieve data - DL/I Get Unique OPNQRY GU

Retrieve data - DL/I Get Hold
Next

OPNQRY GHN

Retrieve data - DL/I Get Next OPNQRY GN

Retrieve data - DL/I Get Hold
Next Within Parent

OPNQRY GHNP

Retrieve data - DL/I Get Next
Within Parent

OPNQRY GNP

Update data EXCSQLIMM REPL

Delete data EXCSQLIMM DLET

344 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_intro/ims_odbmoverview.htm#ims_ie0c1om1001260
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_ct_odb_support.htm#ims_connect_odb_support
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_ddm_architecture.htm#drdaddmcommands

The following table shows the DDM commands that the DRDA client issues for batch data operations with
the IMS support for DRDA.

Table 64. DDM commands for batch data operations with the IMS support for DRDA

Batch data operation DDM command
BYTSTRDR parameter value for
DLIFUNC command object

Retrieve data OPNQRY RETRIEVE

Update data EXCSQLIMM UPDATE

Delete data EXCSQLIMM DELETE

Related reference
DRDA DDM command architecture reference (Application Programming APIs)

Chapter 23. Programming with the IMS support for DRDA 345

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_ddm_architecture.htm#drdaddmcommands

346 IMS: Application Programming

Part 3. Application programming for IMS TM
IMS provides support for writing application programs to access IMS transactions.

© Copyright IBM Corp. 1974, 2022 347

348 IMS: Application Programming

Chapter 24. Defining application program elements
for IMS TM

You can write application programs to communicate with the IMS Transaction Manager using DL/I calls in
assembler language, C, COBOL, Java, Pascal, or PL/I.

Formatting DL/I calls for language interfaces
When you use DL/I calls in assembler language, C language, COBOL, Pascal, or PL/I, you must call the
DL/I language interface to initiate the functions specified with the DL/I calls.

IMS offers several interfaces for DL/I calls:

• A language-independent interface for any programs that are Language Environment conforming
(CEETDLI)

• Language-specific interfaces for all supported languages (xxxTDLI)
• A non-language-specific interface for all supported languages (AIBTDLI)

Java makes use of the all three DL/I language interfaces, but the usage is internal and no calls are
necessary to initiate the functions specified with the DL/I calls.

Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Application programming for assembler language
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with the IMS Transaction Manager.

In assembler language programs, all DL/I call parameters that are passed as addresses can be passed in
a register, which, if used, must be enclosed in parentheses.

Format
1

CALL

ASMTDLI,(

parmcount ,

function

, i/o_pcb A

B

, alternate_pcb
A

C

)

AIBTDLI,(

parmcount ,

function , aib
A

B

C

)

,

VL

A

© Copyright IBM Corp. 1974, 2022 349

, i/o_area

, mod_name

, token

, options_list

, feedback area

B
, i/o_area_ length , i/o_area

, area_length , area

C
, destination_name

,  options_list

, feedback_area

Notes:
1 Assembler language programs must use either parmcount or VL.

Parameters
parmcount

Specifies the address of a 4-byte field in user-defined storage that contains the number of parameters
in the parameter list that follows parmcount. Assembler language application programs must use
either parmcount or VL.

function
Specifies the address of a 4-byte field in user-defined storage that contains the call function to be
used. The call function must be left-justified and padded with blanks. For example, (GUbb) is a call
function.

i/o pcb
Specifies the address of the I/O program communication block (PCB). The I/O PCB address is the first
address passed on entry to the application program in the PCB list, given the following circumstances:

• A program executing in DLI or database management batch (DBB) regions where CMPAT=YES is
coded on the PSB.

• Any program executing in batch message processing program (BMP), message processing program
(MPP), or IMS Fast Path (IFP) regions regardless of the CMPAT= value.

alternate pcb
Specifies the address of the alternate PCB to be used for the call. The PCB address must be one of the
PCB addresses passed on entry to the application program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined storage.

i/o area
Specifies the address of the I/O area in user-defined storage used for the call. The I/O area must be
large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the I/O area length
(specified in binary).

350 IMS: Application Programming

area length
Specifies the address of a 4-byte field in user-defined storage that contains the length (specified in
binary) of the area immediately following it in the parameter list. Up to seven area length/area pairs
can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed. Up to seven area length/
area pairs can be specified.

token
Specifies the address of a 4-byte field in user-defined storage that contains a user token.

options list
Specifies the address of the options list in user-defined storage that contains processing options used
with the call.

feedback area
Specifies the address of the feedback area in user-defined storage that receives information about
options list processing errors.

mod name
Specifies the address of an 8-byte area in user-defined storage that contains the user-defined MOD
name used with the call. The mod name parameter is used only with MFS.

destination name
Specifies the address of an 8-byte field in user-defined storage that contains the name of the logical
terminal or transaction code to which messages resulting from the call are sent.

VL
Signifies the end of the parameter list. Assembler language programs must use either parmcount or
VL.

Example DL/I call formats
DL/I AIBTDLI interface:

 CALL AIBTDLI,(function,aib,i/o area),VL

DL/I language-specific interface:

 CALL ASMTDLI,(function,i/o pcb,i/o area),VL

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
Related reference
DL/I calls for transaction management (Application Programming APIs)
DL/I calls for IMS TM system services (Application Programming APIs)

Chapter 24. Defining application program elements for IMS TM 351

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

Application programming for C language
Application programs in C use the following format, parameters, and DL/I calls to communicate with the
IMS Transaction Manager.

Format
rc=CTDLI(

parmcount ,

 function

, i/o_pcb
A

B

, alt_pcb
A

C

);

rc=AIBTDLI( parmcount , function , aib
A

B

C

);

D

A
, i/o_area

, mod_name

, token

, options_list

, feedback_area

B

, i/o_area_length , i/o_area

, area_length , area

C
, destination_name

,  options_list

, feedback_area

D

352 IMS: Application Programming

CEETDLI(

parmcount ,

 function

, i/o_pcb
A

B

, alt_pcb
A

C

, aib
A

B

C

);

Notes:

Parameters
rr

Receives the DL/I status or return code. It is a 2-character field shifted into the 2 lower bytes of an
integer variable (int). If the status or return code is two blanks, 0 is placed in the field. You can test the
rc parameter with an if statement; for example, if (rc == 'IX'). You can also use rc in a switch
statement. You can choose to ignore the value placed in rc and use the status code returned in the
program communication block (PCB) instead.

parmcount
Specifies the name of a fixed-binary (31) variable in user-defined storage that is a pointer to the
number of parameters in the parameter list that follows parmcount. The parmcount field is a pointer
to long.

function
Specifies the name of a character (4) variable, left-justified, in user-defined storage, which contains
the call function to be used. The call function must be padded with blanks. For example, (GUbb) is a
call function.

i/o pcb
Specifies the address of the I/O PCB. The I/O PCB address is the first address passed on entry to the
application program in the PCB list, given the following circumstances:

• A program executing in DLI or database management batch (DBB) regions where CMPAT=YES is
coded on the PSB.

• Any program executing in batch message processing program (BMP), message processing program
(MPP), or IMS Fast Path (IFP) regions regardless of the CMPAT= value.

alternate pcb
Specifies the name of a pointer variable that contains the address of the I/O PCB or alternate PCB
to be used for the call. The PCB address must be one of the PCB addresses passed on entry to the
application program in the PCB list.

aib
Specifies the name of the pointer variable that contains the address of the structure that defines the
application interface block (AIB) in user-defined storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character string that defines the
I/O area in user-defined storage to be used for the call. The I/O area must be large enough to contain
the returned data.

i/o area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that contains the I/O area
length.

Chapter 24. Defining application program elements for IMS TM 353

area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that contains the length
of the area immediately following it in the parameter list. Up to seven area length/area pairs can be
specified.

area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage to be checkpointed. Up to seven area length/area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that contains a user token.

options list
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage that contains processing options used with the call.

feedback area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage that receives information about options list processing errors.

mod name
Specifies the name of a character (8) variable in user-defined storage that contains the user-defined
MOD name used with the call. The mod name parameter is used only with MFS.

destination name
Specifies the name of a character (8) variable in user-defined storage that contains the name of the
logical or terminal transaction code to which messages resulting from the call are sent.

I/O area
In C language, the I/O area can be of any type, including structure or array. The ceetdli declarations in
leawi.h and the ctdli declarations in ims.h do not have any prototype information, so no type checking of
the parameters is done. The I/O area can be auto, static, or allocated (with malloc or calloc). Give special
consideration to C-strings because DL/I does not recognize the C convention of terminating strings with
nulls ('\0'). Instead of using the strcpy and strcmp functions, you might want to use the memcpy and
memcmp functions.

Example DL/I call formats
DL/I CEEDTLI interface:

#include <leawi.h>
ceetdli(function,aib,i/o_area)

DL/I AIBTDLI interface:

int rc;
⋮
rc = aibtdli(parmcount,function,aib,i/o_area)

DL/I language-specific interface:

#include <ims.h>
int rc;
⋮
rc = ctdli(function,i/o_pcb,i/o_area)

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
Related reference
DL/I calls for transaction management (Application Programming APIs)
DL/I calls for IMS TM system services (Application Programming APIs)

354 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

Application programming for COBOL
Application programs in COBOL use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.

Format
CALL

'CBLTDLI'USING

parmcount ,

 function

, i/o_pcb
A

B

, alt_pcb
A

C

'AIBTDLI'USING

parmcount ,

function , aib

A

B

C

'CEETDLI'USING

parmcount ,

 function

, i/o_pcb
A

B

, alt_pcb
A

C

, aib
A

B

C

.

A
, i/o area

, mod_name

, token

, options_list

, feedback_area

B

, i/o_area_length , i/o_area

, area_length , area

C

Chapter 24. Defining application program elements for IMS TM 355

, destination_name

,  options_list

, feedback_area

Parameters
parmcount

Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount.

function
Specifies the identifier of a usage display (4) byte data item, left-justified, in user-defined storage,
which contains the call function to be used. The call function must be padded with blanks. For
example, (GUbb) is a call function.

i/o pcb
Specifies the address of the I/O program communication block (PCB). The I/O PCB address is the first
address passed on entry to the application program in the PCB list, given the following circumstances:

• A program executing in DLI or database management batch (DBB) regions where CMPAT=YES is
coded on the PSB.

• Any program executing in batch message processing program (BMP), message processing program
(MPP), or IMS Fast Path (IFP) regions regardless of the CMPAT= value.

alternate pcb
Specifies the identifier of the I/O PCB or alternate PCB group item from the PCB list that is passed to
the application program on entry. This identifier is used for the call.

aib
Specifies the identifier of the group item that defines the application interface block (AIB) in user-
defined storage.

i/o area
Specifies the identifier of a group item, table, or usage display data item that defines the I/O area to
be used for the call. The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
I/O area length.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
length of the area immediately following it in the parameter list. Up to seven area length/area pairs
can be specified.

area
Specifies the identifier of the group item that defines the area to be checkpointed. Up to seven area
length/area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item that contains a user token.

options list
Specifies the identifier of the group item that defines the user-defined storage that contains
processing options used with the call.

feedback area
Specifies the identifier of the group item that defines the user-defined storage that receives
information about options list processing errors.

mod name
Specifies the identifier of a usage display (8) byte data item in user-defined storage that contains the
user-defined MOD name used with the call.

356 IMS: Application Programming

destination name
Specifies the identifier of a usage display (8) byte data item that contains the name of the logical
terminal or transaction code to which messages resulting from the call are sent.

Example DL/I call formats
DL/I CEETDLI interface:

CALL 'CEETDLI' USING function, aib,i/o area.

DL/I AIBTDLI interface:

CALL 'AIBTDLI' USING function, aib,i/o area.

DL/I language-specific interface:

CALL 'CBLTDLI' USING function, i/o pcb, i/o area.

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
Related reference
DL/I calls for transaction management (Application Programming APIs)
DL/I calls for IMS TM system services (Application Programming APIs)

Java application programming for IMS
IMS provides support for developing applications using the Java programming language.

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Application programming for Pascal
Application programs in Pascal use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.

Format
1

PASTDLI (A

, VAR i/o_pcb

B

C

, VAR alt_pcb

B

D

AIBTDLI (A , VAR aib ,

B

C

D

) ;

Chapter 24. Defining application program elements for IMS TM 357

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

A

CONST parmcount ,

CONST function

B
, VAR i/o_area

, VAR mod_name

, CONST token

, VAR options_list

, VAR feedback_area

C
, VAR i/o_area_length , VAR i/o_area

, VAR area_length , area

D
, VAR destination_name

, VAR options_list

, VAR feedback_area

Notes:
1 For AIBTDLI, parmcount is required for applications.

Parameters
parmcount

specifies the address of a fixed-binary (31) variable in user-defined storage that contains the number
of parameters in the parameter list that follows parmcount.

function
Specifies the name of a character (4) variable, left-justified, in user-defined storage, which contains
the call function to be used. The call function must be padded with blanks. For example, (GUbb) is a
call function.

i/o pcb
Specifies the address of the program communication block (I/O PCB). The I/O PCB address is the first
address passed on entry to the application program in the PCB list, given the following circumstances:

• A program executing in DLI or database management batch (DBB) regions where CMPAT=YES is
coded on the PSB.

• Any program executing in batch message processing program (BMP), message processing program
(MPP), or IMS Fast Path (IFP) regions regardless of the CMPAT= value.

alternate pcb
Specifies the name of a pointer variable that contains the address of the I/O PCB defined in the call
procedure statement.

aib
Specifies the name of a pointer variable that contains the address of the structure that defines the
application interface block (AIB) in user-defined storage.

358 IMS: Application Programming

i/o area
Specifies the name of a pointer variable to a major structure, array, or character string that defines the
I/O area in user-defined storage to be used for the call. The I/O area must be large enough to contain
the returned data.

i/o area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the length
(specified in binary) of the area immediately following it in the parameter list. Up to seven area length/
area pairs can be specified.

area
Specifies the name of a pointer variable that contains the address of the structure that defines the
area in user-defined storage to be checkpointed. Up to seven area length/area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that contains a user token.

options list
Specifies the name of a pointer variable that contains the address of the structure that defines the
user-defined storage that contains processing options used with the call.

feedback area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage that receives information about options list processing errors.

mod name
Specifies the name of a character (8) variable in user-defined storage that contains the user-defined
MOD name used with the call.

destination name
Specifies the name of a character (8) variable in user-defined storage that contains the name of the
logical terminal or transaction code to which messages resulting from the call are sent.

Example DL/I call formats
DL/I AIBTDLI interface:

AIBTDLI(CONST function,
 VAR aib,
 VAR I/O area);

DL/I language-specific interface:

PASTDLI(CONST function,
area VAR I/O PCB
 VAR I/O area);

Related concepts
“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.
Related reference
DL/I calls for transaction management (Application Programming APIs)
DL/I calls for IMS TM system services (Application Programming APIs)

Chapter 24. Defining application program elements for IMS TM 359

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

Application programming for PL/I
Application programs in PL/I use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.

Format

CALL PLITDLI (parmcount , function

, i/o_pcb

A

B

, alt pcb

A

C

AIBTDLI (parmcount , function , aib

A

B

C

CEETDLI (parmcount , function

, i/o_pcb

A

B

, alt_pcb

A

C

, aib

A

B

C

) ;

A
, i/o_area

, mod_name

, token

, options_list

, feedback_area

B
, i/o_area_length , i/o_area

, area_length , area

C

360 IMS: Application Programming

, destination_name

, options_list

, feedback_area

Parameters
parmcount

Specifies the name of a fixed-binary (31-byte) variable that contains the number of arguments that
follow parmcount.

function
Specifies the name of a character (4-byte) variable, left justified, blank padded character string that
contains the call function to be used. For example, (GUbb) is a call function.

i/o pcb
Specifies the address of the program communication block (I/O PCB). The I/O PCB address is the first
address passed on entry to the application program in the PCB list, given the following circumstances:

• A program executing in DLI or DBB regions where CMPAT=YES is coded on the PSB.
• Any program executing in batch message processing program (BMP), message processing program

(MPP), or IMS Fast Path (IFP) regions regardless of the CMPAT= value.

alternate pcb
Specifies the structure associated with the I/O PCB or alternate PCB to be used for the call. This
structure is based on a PCB address that must be one of the PCB addresses passed on entry to the
application program.

aib
Specifies the name of the structure that defines the application interface block (AIB).

i/o area
Specifies the name of the I/O area used for the call. The I/O area must be large enough to contain the
returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the I/O area
length (specified in binary).

area length
Specifies the name of a fixed binary (31) variable that contains the length (specified in binary) of
the area immediately following it in the parameter list. Up to seven area length/area pairs can be
specified.

area
Specifies the name of the area to be checkpointed. Up to seven area length/area pairs can be
specified.

token
Specifies the name of a character (4) variable that contains a user token.

options list
Specifies the name of a structure that contains processing options used with the call.

feedback area
Specifies the name of a structure that receives information about options list processing errors.

mod name
Specifies the name of a character (8) variable character string containing the user-defined MOD name
used with the call.

destination name
Specifies the name of a character (8) variable character string containing the logical terminal or
transaction code to which messages resulting from the call are sent.

Chapter 24. Defining application program elements for IMS TM 361

Example DL/I call formats
DL/I CEETDLI interface:

 %INCLUDE CEEIBMAW;
 CALL CEETDLI (function, i/o pcb, i/o area);

DL/I AIBTDLI interface:

 CALL AIBTDLI (parmcount, function, aib, i/o area);

DL/I language-specific interface:

 CALL PLITDLI (parmcount, function, i/o pcb, i/o area);

Relationship of calls to PCB types
The following table shows the relationship of DL/I calls to I/O and alternate program communication
blocks (PCBs).

The PCB can be specified as a parameter in the call list, or in the AIB, depending on which xxxTDLI
interface is used:

Table 65. Call relationship to PCBs and AIBs

Call I/O PCBs ALT PCBs

APSB 1

AUTH X

CHKP (basic) X

CHKP (symbolic) X

CHNG 2 X

CMD X

DPSB 1

GCMD X

GN X

GSCD X

GU X

INIT X

INQY X X

ISRT X X

LOG X

PURG X X

ROLB X

ROLS X

ROLL 1

SETO X X

SETS X

362 IMS: Application Programming

Table 65. Call relationship to PCBs and AIBs (continued)

Call I/O PCBs ALT PCBs

SETU X

SYNC X

XRST X

Notes:

1. This call is not associated with a PCB.
2. The alternate PCB used by this call must be modifiable.

Specifying the I/O PCB mask
After your program issues a call with the I/O program communications block (PCB), IMS returns
information about the results of the call to the I/O PCB. To determine the results of the call, your program
must check the information that IMS returns.

Issuing a system service call requires an I/O PCB. Because the I/O PCB resides outside your program, you
must define a mask of the PCB in your program to check the results of IMS calls. The mask must contain
the same fields, in the same order, as the I/O PCB. Your program can then refer to the fields in the PCB
through the PCB mask.

An I/O PCB contains the fields listed in the following table. The table describes these fields, their lengths,
and which environments are applicable for each field.

Table 66. I/O PCB mask

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

Logical terminal name 1 8 X X

Reserved for IMS 2 2 X X

Status code 3 2 X X X X X

8-Byte Local date and
time 4

Date 4 X X

Time 4 X X

Input message sequence
number 5

4 X X

Message output descriptor
name 6

8 X X

Userid 7 8 X X

Group name 8 8 X X

12-Byte Time Stamp 9

Date 4 X X

Time 6 X X

UTC Offset 2 X X

Chapter 24. Defining application program elements for IMS TM 363

Table 66. I/O PCB mask (continued)

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

Userid Indicator10 1 X X

Reserved for IMS2 3

Note:

1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your program retrieves an
input message, IMS places the name of the logical terminal that sent the message in this field. When
you want to send a message back to this terminal, you refer to the I/O PCB when you issue the ISRT
call, and IMS takes the name of the logical terminal from the I/O PCB as the destination.

2. Reserved for IMS

These fields are reserved.
3. Status Code

IMS places the status code describing the result of the DL/I call in this field. IMS updates the status
code after each DL/I call that the program issues. Your program should always test the status code
after issuing a DL/I call.

The three status code categories are:

• Successful status codes or status codes with exceptional but valid conditions. This category does
not contain errors. If the call was completely successful, this field contains blanks. Many of the
codes in this category are for information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program receives this status
code, it should terminate.

• Programming errors. The errors in this category are usually ones that you can correct. For example,
an AD status code indicates an invalid function code.

• I/O or system errors.

For the second and third categories, your program should have an error routine that prints
information about the last call that was issued program termination. Most installations have a
standard error routine that all application programs at the installation use.

4. Local Date and Time

The current local date and time are in the prefix of all input messages except those originating from
non-message-driven BMPs. The local date is a packed-decimal, right-aligned date, in the format
yyddd. The local time is a packed-decimal time in the format hhmmsst. The current local date and
time indicate when IMS received the entire message and enqueued it as input for the program,
rather than the time that the application program received the message. To obtain the application
processing time, you must use the time facility of the programming language you are using.

For a conversation, for an input message originating from a program or for a message received using
Multiple System Coupling (MSC), the time and date indicate when the original message was received
from the terminal.

Note: Be careful when comparing the local date and time in the I/O PCB with the current time
returned by the operating system. The I/O PCB date and time may not be consistent with the current
time. It may even be greater than the current time for the following reasons:

• The time stamp in the I/O PCB is the local time that the message was received by IMS. If the local
time was changed after the message arrived, it is possible for the current time to appear to be
earlier than the I/O PCB time. This effect would be likely to occur in the hour immediately after the
fall time change, when the clock is set back by one hour.

364 IMS: Application Programming

• The time stamp in the I/O PCB is derived from an internal IMS time stamp stored with the message.
This internal time stamp is in Coordinated Universal Time (UTC), and contains the time zone offset
that was in effect at the time the message was enqueued. This time zone offset is added to the
UTC time to obtain the local time that is placed in the I/O PCB. However, the time zone offset that
is stored is only fifteen minutes. If the real time zone offset was not an integer multiple of fifteen
minutes, the local time passed back in the I/O PCB will differ from the actual time by plus or minus
7.5 minutes. This could cause the I/O PCB time to be later than the current time. See IMS Version
15.3 Operations and Automation for further explanation.

Concerns about the value in the local time stamp in the I/O PCB can be reduced by using the
extended time stamp introduced in IMS V6. The system administrator can choose the format of the
extended time stamp to be either local time or UTC. In some situations, it may be advantageous for
the application to request the time in UTC from the operating system and compare it to the UTC form
of the extended time stamp. This is an option available in installations where there is no ETR to keep
the IMS UTC offset in sync with the z/OS UTC offset over changes in local time.

5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages except those originating
from non-message-driven BMPs. This field contains the sequence number IMS assigned to the input
message. The number is binary. IMS assigns sequence numbers by physical terminal, which are
continuous since the time of the most recent IMS startup.

6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a message output descriptor
(MOD), IMS places its name in this area. If your program encounters an error, it can change the
format of the screen and send an error message to the terminal by using this field. To do this, the
program must change the MOD name by including the MOD name parameter on an ISRT or PURG call.

Although MFS does not support APPC, LU 6.2 programs can use an interface to emulate MFS. For
example, the application program can use the MOD name to communicate with IMS to specify how an
error message is to be formatted.

Related reading: For more information on the MOD name and the LTERM interface, see IMS Version
15.3 Communications and Connections.

7. Userid

The use of this field is connected with RACF signon security. If signon is not active in the system, this
field contains blanks.

If signon is active in the system, the field contains one of the following:

• The user's identification from the source terminal.
• The LTERM name of the source terminal if signon is not active for that terminal.
• The authorization ID. For batch-oriented BMPs, the authorization ID is dependent on the value
specified for the BMPUSID= keyword in the DFSDCxxx PROCLIB member:

– If BMPUSID=USERID is specified, the value from the USER= keyword on the JOB statement is
used.

– If USER= is not specified on the JOB statement, the program's PSB name is used.
– If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the program's PSB

name is used. If PSBNAME is not defined to RACF, the Userid of the current Address Space will
be used; this will be the Home Dependent Region one, or the Control Region one if LSO=Y or if
PARDLI=1 has been specified for the BMP. Userid of the current Address Space will be used also
if DFSBSEX0 has returned RC08.

Related Reading: For more information about authorizing resource use in a dependent region,
see IMS Version 15.3 System Administration.

8. Group Name

Chapter 24. Defining application program elements for IMS TM 365

The group name, which is used by DB2 to provide security for SQL calls, is created through IMS
transactions.

Three instances that apply to the group name are:

• If you use RACF and signon on your IMS system, the RACROUTE SAF (extract) call returns an
eight-character group name.

• If you use your own security package on your IMS system, the RACROUTE SAF call returns any
eight-character name from the package and treats it as a group name. If the RACROUTE SAF call
returns a return code of 4 or 8, a group name was not returned, and IMS blanks out the group name
field.

• If you use LU 6.2, the transaction header can contain a group name.

Related reading: See IMS Version 15.3 Communications and Connections for more information on
LU 6.2.

9. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal packed-decimal format.
The time stamp has the following parts:
Date

yyyydddf

This packed-decimal date contains the year (yyyy), day of the year (ddd), and a valid packed-
decimal + sign such as (f).

Time
hhmmssthmiju

This packed-decimal time consists of hours, minutes, and seconds (hhmmss) and fractions of the
second to the microsecond (thmiju). No packed-decimal sign is affixed to this part of the time
stamp.

UTC Offset
aqq$

The packed-decimal UTC offset is prefixed by 4 bits of attributes (a). If the 4th bit of (a) is 0,
the time stamp is UTC; otherwise, the time stamp is local time. The control region parameter,
TSR=(U/L), specified in the DFSPBxxx PROCLIB member, controls the representation of the time
stamp with respect to local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to be added to UTC or local time to
convert to local or UTC time respectively.

The offset sign ($) follows the convention for a packed-decimal plus or minus sign.

Field 4 on the I/O PCB Mask always contains the local date and time. For a description of field 4,
see the notes for the previous table.

Related reading: For a more detailed description of the internal packed-decimal time-format, see
IMS Version 15.3 System Utilities.

10. Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the INQY call. The Userid
Indicator contains one of the following:

• U - The user's identification from the source terminal during signon
• L - The LTERM name of the source terminal if signon is not active
• P - The PSBNAME of the source BMP or transaction
• O - Other name

The value contained in the Userid Indicator field indicates the contents of the userid field.

366 IMS: Application Programming

Related concepts
“Results of a message: I/O PCB” on page 381
After your program issues a call, IMS TM returns information about the results of the call in the I/O PCB.
To find out about the results of the call, your application program must check the information that IMS TM
returns to the I/O PCB.

Specifying the alternate PCB mask
An alternate program communication block (PCB) mask contains three fields.

The following table describes these fields, the field length, and in which environment the field applies.

Table 67. Alternate PCB mask

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Logical terminal name 1 8 bytes X X

Reserved for IMS 2 2 bytes X X

Status code 3 2 bytes X X

Note:

1. Logical Terminal Name

This field contains the name of the logical terminal, LU 6.2 descriptor or the transaction code to which
you want to send the message.

Related reading: For more information on LU 6.2, see IMS Version 15.3 Communications and
Connections.

2. Reserved for IMS

This 2-byte field is reserved.
3. Status Code

This field contains the 2-byte status code that describes the results of the call that used this PCB most
recently.

Related concepts
“Sending messages to other terminals and programs” on page 391
When an application program processes a message from a terminal, it usually sends the response to
the terminal that sent the input message. But sometimes you might want to send output messages to a
terminal other than the originating terminal, or to other terminals in addition to the originating terminal.
You might also want to send messages to other application programs.

Specifying the AIB mask
The AIB is used by your program to communicate with IMS, when your application does not have a
program communication block (PCB) address or the call function does not use a PCB.

The application program can use the returned PCB address, when available, to inspect the status code in
the PCB and to obtain any other information needed by the application program. The AIB mask enables
your program to interpret the control block defined. The AIB structure must be defined in working storage,
on a fullword boundary, and initialized according to the order and byte length of the fields as shown in the
following table. For a description of the contents of each field, see the list that follows the table.

Chapter 24. Defining application program elements for IMS TM 367

Table 68. AIB fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

AIB identifier 1 8 X X X X X

DFSAIB allocated length 2 4 X X X X X

Subfunction code 3 8 X X X X X

Resource name 1 4 8 X X X X X

Resource name 2 5 8 X X X X X

Reserved 6 8

Maximum output area length
7

4 X X X X X

Output area length used 8 4 X X X X X

Resource field 9 4 X X X X X

Optional area length 10 4 X X X X X

Reserved 11 4 X X X X X

Return code 12 4 X X X X X

Reason code 13 4 X X X X X

Error code extension 14 4 X X X

Resource address 1 15 4 X X X X X

Resource address 2 16 4 X X X X X

Resource address 3 17 4 X X X X X

User defined token 18 16 X X X X X

Return token 19 8 X X X

Reserved 20 16

AIB Identifier (AIBID)
This 8-byte field contains the AIB identifier. You must initialize AIBID in your application program to
the value DFSAIBbb before you issue DL/I calls. This field is required. When the call is completed, the
information returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your program. You must initialize
AIBLEN in your application program before you issue DL/I calls. The minimum length required is 128
bytes. When the call is completed, the information returned in this field is unchanged. This field is
required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a subfunction. You must
initialize AIBSFUNC in your application program before you issue DL/I calls. When the call is
completed, the information returned in this field is unchanged.

Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies depending on the call. You
must initialize AIBRSNM1 in your application program before you issue DL/I calls. When the call is
complete, the information returned in this field is unchanged. This field is required.

368 IMS: Application Programming

For PCB related calls where the AIB is used to pass the PCB name instead of passing the PCB address
in the call list, this field contains the PCB name. The PCB name for the I/O PCB is IOPCBbb. The PCB
name for other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name 2 (AIBRSNM2)
This 8-byte field contains the name of a resource. The resource varies depending on the call. You must
initialize AIBRSNM2 in your application program before you issue DL/I calls.

Reserved
This 8-byte field is reserved.

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was specified in the call list. You
must initialize AIBOALEN in your application program for all calls that return data to the output area.
When the call is completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all calls that return data to the
output area. When the call is completed this field contains the length of the I/O area used for this call.

Resource Field (AIBRSFLD)
This 4-byte field contains a resource. The resource varies depending on the call. You must initialize
AIBRSFLD in your application program before you issue DL/I calls.

Optional Area Length (AIBOPLEN)
This 4-byte field contains a resource. The resource varies depending on the call. You must initialize
AIBOPLEN in your application program before you issue DL/I calls.

Reserved
This 4-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the return code in AIBRETRN and
the reason code in AIBREASN.

Resource Address 1 (AIBRSA1)
When the call is completed, this 4-byte field contains call-specific information. For PCB related calls
where the AIB is used to pass the PCB name instead of passing the PCB address in the call list, this
field returns the PCB address.

Resource Address 2 (AIBRSA2)
When the call is completed, this 4-byte field contains call-specific information.

Resource Address 3 (AIBRSA3)
When the call is completed, this 4-byte field contains call-specific information.

User Defined Token (AIBUTKN)
This 16-byte field contains a user defined token. The token varies depending on the call.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I call. The usage is specific to the
DL/I call for which the token was returned.

Reserved

This 16-byte field is reserved.

Related reference
DL/I calls for transaction management (Application Programming APIs)
DL/I calls for database management (Application Programming APIs)

Chapter 24. Defining application program elements for IMS TM 369

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2

Specifying the I/O areas
Use an I/O area to pass segments between the application program and IMS.

What the I/O area contains depends on the type of call you are issuing:

• When you retrieve a segment, IMS places the segment you requested in the I/O area.
• When you add a new segment, you first build the new segment in the I/O area.
• Before modifying a segment, your program must first retrieve it. When you retrieve the segment, IMS

places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can be fixed length
or variable length. Only one difference is important to the application program: a message segment
containing a 2-byte length field (or 4 bytes for the PLITDLI interface) at the beginning of the data area of
the segment.

The I/O area for IMS calls must be large enough to hold the largest segment your program retrieves from
or sends to IMS.

If your program issues any Get or ISRT calls that use the D command code, the I/O area must be large
enough to hold the largest path of segments that the program retrieves or inserts.

AIBTDLI interface
Use AIBTDLI as the interface between your application program and IMS.

Restriction: No fields in the application interface block (AIB) can be used by the application program
except as defined by IMS.

When you use the AIBTDLI interface, you specify the program communication block (PCB) requested for
the call by placing the PCB name (as defined by PSBGEN) in the resource name field of the AIB. You
do not specify the PCB address. Because the AIB contains the PCB name, your application program can
refer to the PCB name rather than the PCB address. Your application program does not need to know
the relative PCB position in the PCB list. At completion of the call, the AIB returns the PCB address that
corresponds to the PCB name passed by the application program.

The names of DB PCBs and alternate PCBs are defined by the user during PSBGEN. All I/O PCBs are
generated with the PCB name bbb. For a generated program specification block (GPSB), the I/O PCB is
generated with the PCB name IOPCBbbb, and the modifiable alternate PCB is generated with the PCB
name TPPCB1bb.

The ability to pass the PCB name means that you do not need to know the relative PCB number in the
PCB list. In addition, the AIBTDLI interface enables your application program to make calls on PCBs that
do not reside in the PCB list. The LIST= keyword, which is defined in the PCB macro during PSBGEN,
controls whether the PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use the AIBTDLI
interface. Upon call completion, IMS updates the AIB. Allocate at least 128 bytes of storage for the AIB.

Related concepts
“PCB masks for GSAM databases” on page 283
For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.
Related reference
“Application programming for PL/I” on page 360
Application programs in PL/I use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.
“Application programming for Pascal” on page 357

370 IMS: Application Programming

Application programs in Pascal use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.
“Application programming for C language” on page 352
Application programs in C use the following format, parameters, and DL/I calls to communicate with the
IMS Transaction Manager.
“Application programming for assembler language” on page 349
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with the IMS Transaction Manager.
“Assembler language application programming” on page 195
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with IMS databases.

Specifying language-specific entry points
IMS gives control to an application program through an entry point. Use the correct format for coding
entry statements in assembler language, C language, COBOL, Java, Pascal, and PL/I.

Your entry point must refer to the program communication blocks (PCBs) in the order in which they are
defined in the PSB.

IMS passes the PCB pointers to a PL/I program differently than it passes them to an assembler language,
C language, COBOL, Java, or Pascal program. In addition, Pascal requires that IMS pass an integer before
passing the PCB pointers. IMS uses the LANG keyword or the PSBGEN statement of PSBGEN to determine
the type of program to which it is passing control. Therefore, you must be sure that the language specified
during PSBGEN is consistent with the language of the program.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI) use the PCB name rather than the
PCB structure and do not require the PCB list to be passed at entry to the application program.

When you code each DL/I call, you must provide the PCB you want to use for that call. For all IMS TM
application programs, the list of PCBs the program can access is passed to the program at its entry point.

Assembler language
You can use any name for the entry statement to an assembler language DL/I program. When IMS passes
control to the application program, register 1 contains the address of a variable-length fullword parameter
list. Each word in the list contains the address of a PCB. Save the parameter list address before you
overwrite the contents of register 1. IMS sets the high-order byte of the last fullword in the list to X'80' to
indicate the end of the list. Use standard z/OS linkage conventions with forward and backward chaining.

C language
When IMS passes control to your program, it passes the addresses, in the form of pointers, for each of the
PCBs your program uses. The usual argc and argv arguments are not available to a program invoked by
IMS. The IMS parameter list is made accessible by using the __pcblist macro. You can directly reference
the PCBs by __pcblist[0], __pcblist[1], or you can define macros to give these more meaningful names.
I/O PCBs must be cast to get the proper type:

(IO_PCB_TYPE *)(__pcblist[0])

The entry statement for a C language program is the main statement.

#pragma runopts(env(IMS),plist(IMS))
#include <ims.h>

main()
{
⋮
}

Chapter 24. Defining application program elements for IMS TM 371

The env option specifies the operating environment in which your C language program is to run. For
example, if your C language program is invoked under IMS and uses IMS facilities, specify env(IMS). The
plist option specifies the format of the invocation parameters received by your C language program when
it is invoked. When your program is invoked by a system support services program such as IMS, the
format of the parameters passed to your main program must be converted into the C language format:
argv, argc, and envp. To do this conversion, you must specify the format of the parameter list received by
your C language program. The ims.h include file contains declarations for PCB masks.

You can finish program execution in three ways:

• End the main procedure without an explicit return statement.
• Execute a return statement from main.
• Execute an exit or an abort call from anywhere, or alternately issue a longjmp back to main, and then do

a normal return.

One C language program can pass control to another by using the system function. The normal rules for
passing parameters apply. For example, when using the system function, the argc and argv arguments can
be used to pass information. The initial __pcblist is made available to the invoked program.

COBOL
The procedure statement must refer to the I/O PCB first, then to any alternate PCB it uses, and finally
to the DB PCBs it uses. The alternate PCBs and DB PCBs must be listed in the order in which they are
defined in the PSB.

Procedure division using the PCB-NAME-1 [,...,PCB-NAME-N]

On previous versions of IMS, the using keyword might be coded on the entry statement to reference
PCBs. However, IMS continues to accept such coding on the entry statement.

Recommendation: Use the procedure statement rather than the entry statement to reference the PCBs.

Java
The entry into a Java program is the main (String args[]) method. When IMS passes control to your main
program, it does not pass the PCB list, and the main (String args[]) method is always called with a String
array with 0 elements. Java programs are different in this regard as they use the AIBTDLI interface
which addresses the PCB by a PCB name or PCB label coded in the PSB rather than a PCB pointer, to
communicate with IMS. For more information, see: “AIBTDLI interface” on page 226

The entry into a Java program is the main()method.
public class HelloWorldJmp {
 public static void main(String[] args) {
...
 System.out.println("Hello. I am running in a JMP");
 }
}

Pascal
The entry point must be declared as a REENTRANT procedure. When IMS passes control to a Pascal
procedure, the first address in the parameter list is reserved for Pascal’s use and the other addresses
are the PCBs the program uses. The PCB types must be defined before this entry statement. The IMS
interface routine PASTDLI must be declared with the GENERIC directive.

procedure ANYNAME(var SAVE: INTEGER;
 var pcb1-name: pcb1-name-type[;
 ...
 var pcbn-name: pcbn-name-type]); REENTRANT;
procedure ANYNAME;
(* Any local declarations *)
 procedure PASTDLI; GENERIC;
begin

372 IMS: Application Programming

 (* Code for ANYNAME *)
end;

PL/I

The entry statement can be any valid PL/I name and must appear as the first executable statement in
the program. When IMS passes control to your program, it passes the addresses of each of the PCBs
your program uses in the form of pointers. When you code the entry statement, make sure you code the
parameters of this statement as pointers to the PCBs, and not the PCB names.

anyname: PROCEDURE (pcb1_ptr [,..., pcbn_ptr]) OPTIONS (MAIN);
⋮
RETURN;

CCETDLI and AIBTDLI interface considerations
The CCETDLI considerations are:

• For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW include file. Alternatively,
you can declare it yourself. But it must be declared as an assembler language entry (DCL CEETDLI
OPTIONS(ASM);).

• For C language applications, you must specify env(IMS) and plist(IMS); these specifications enable the
application to accept the PCB list of arguments. The CEETDLI function is defined in <leawi.h>; the CTDLI
function is defined in <ims.h>.

The AIBTDLI considerations are:

• When using the AIBTDLI interface for C/MVS, COBOL, or PL/I language applications, the language
run-time options for suppressing abend interception (that is, NOSPIE and NOSTAE) must be specified.
However, for Language Environment-conforming applications, the NOSPIE and NOSTAE restriction is
removed.

• The AIBTDLI entry point for PL/I programs must be declared as an assembler language entry (DCL
AIBTDLI OPTIONS(ASM);).

• For C language applications, you must specify env(IMS) and plist(IMS); these specifications enable the
application to accept the PCB list of arguments.

Program communication block (PCB) lists
Use the correct format of program communication block (PCB) lists and generated program specification
block (GPSB) PCB lists in your application program.

PCB list format
This is the format of a PCB:

[IOPCB]
[Alternate PCB ... Alternate PCB]
[DB PCB ... DB PCB]
[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB or alternate PCB is required for transaction
management calls, and an I/O PCB is required for most system service calls. DB PCBs for DL/I databases
are used only with the IMS Database Manager, but can be present even though your program is running
under DCCTL or TM Batch. (A DB PCB can be a full-function PCB, a DEDB PCB, or an MSDB PCB.) GSAM
PCBs can be used with DCCTL or TM batch.

Format of a GPSB PCB list
A generated program specification block (GPSB) has the following format:

Chapter 24. Defining application program elements for IMS TM 373

[IOPCB]
[Alternate PCB]

A GPSB contains only an I/O PCB and one modifiable alternate PCB. It can be used by all transaction
management application programs, and permits access to the PCBs specified without the need for
PSBGEN.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is IOPCBbb. The name of the
alternate PCB is TPPCB1bb.

PCB summary
I/O PCBs and alternate PCBs can be used in various types of application programs.
TM Batch Programs

Alternate PCBs are always included in the list of PCBs supplied to the program by IMS TM. The I/O
PCB is always present in the PCB list regardless of the CMPAT options specified in PSBGEN.

BMPs, MPPs, and IFPs
The I/O PCB is always present in the PCB list and is always the first address in the list, regardless
of the CMPAT options specified in the PSB. The PCB list always contains the address of the I/O PCB
followed by the addresses of any alternate PCBs, followed by the addresses of the DB PCBs.

Language environments
IBM Language Environment provides the strategic execution environment for running your application
programs written in one or more high level languages.

It provides not only language-specific run-time support, but also cross-language run-time services for
your applications, such as support for initialization, termination, message handling, condition handling,
storage management, and National Language Support. Many of Language Environment's services
are accessible explicitly through a set of Language Environment interfaces that are common across
programming languages; these services are accessible from any Language Environment-conforming
program.

Language Environment-conforming programs can be compiled with the following compilers:

• IBM C++/MVS
• IBM COBOL
• IBM PL/I

By default, the Language Environment infrastructure uses the 31-bit addressing mode. By specifying
JVM=64, the Language Environment is changed to use the 64-bit addressing mode. By specifying
JVM=3164, the dependent region will initialize a 31-bit Language Environment and a secondary 64-bit
Language Environment to support 31-bit COBOL and 64-bit Java interoperability.

Language Environment supports C, C++, and assembly language interoperability in a 64-bit addressing
mode, but does not support COBOL and PL/I interoperability in a 64-bit addressing mode. Do not switch
to JVM=64 if your Java application invokes either COBOL or PL/I. If the regions are switched to use
JVM=64 inadvertently, and incompatible interoperable applications are running, the application might
receive system or user abends.

The CEETDLI interface to IMS
The language-independent CEETDLI interface to IMS is provided by Language Environment. It is the only
IMS interface that supports the advanced error handling capabilities provided by Language Environment.
The CEETDLI interface supports the same functionality as the other IMS application interfaces, and it has
the following characteristics:

• The parmcount variable is optional.
• Length fields are 2 bytes long.

374 IMS: Application Programming

• Direct pointers are used.

Related reading: For more information about Language Environment, see z/OS Language Environment
Programming Guide.

LANG= option on PSBGEN for PL/I compatibility
For IMS PL/I applications running in a compatibility mode that uses the PLICALLA entry point, you must
specify LANG=PLI on the PSBGEN. Your other option is to change the entry point and add SYSTEM(IMS)
to the EXEC PARM of the compile step so that you can specify LANG=blank or LANG=PLI on the PSBGEN.
The following table summarizes when you can use LANG=blank and LANG=PLI.

Table 69. Using LANG= option in a Language Environment for PL/I compatibility

Compile exec statement is
PARM=(...,SYSTEM(IMS)...

Entry point name is PLICALLA
Valid LANG= value

Yes Yes LANG=PLI

Yes No LANG=blank or LANG=PLI

No No Note: Not valid for IMS PL/I
applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility with Language Environment. If a PL/I application using
PLICALLA entry at bind time is bound using Language Environment with the PLICALLA entry, the bind will
work; however, you must specify LANG=PLI in the PSB. If the application is re-compiled using PL/I for
z/OS & VM Version 1 Release 1 or later, and then bound using Language Environment Version 1 Release 2
or later, the bind will fail. You must remove the PLICALLA entry statement from the bind.

Special DL/I situations for IMS TM programming
Special considerations during application programming for IMS Transaction Manager include mixed-
language programming, using the extended addressing capabilities of z/OS, COBOL compiler options for
preloaded programs, and considerations for the DCCTL environment.

Mixed-language programming
When an application program uses the Language Environment language-independent interface, CEETDLI,
IMS does not need to know the language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS determines the language
of the calling program according to the entry name specified in the CALL statement:

• CALL CBLTDLI indicates the program is in COBOL.
• CALL PLITDLI indicates the program is in PL/I.
• CALL PASTDLI indicates the program is in Pascal.
• ctdli(…) indicates the program is in C language.
• CALL ASMTDLI indicates the program is in assembler language.

If a PL/I program calls an assembler language subroutine and the assembler language subroutine
makes DL/I calls by using CALL ASMTDLI, the assembler language subroutine should use the assembler
language calling convention, not the PL/I convention.

In this situation, where the I/O area uses the LLZZ format, the LL is a halfword, not the fullword that is
used for PLITDLI.

Chapter 24. Defining application program elements for IMS TM 375

Using Language Environment routine retention
If you run programs in an IMS TM dependent region that requires Language Environment (such as an
IMS message processing region), you can improve performance if you use Language Environment library
routine retention along with the existing PREINIT feature of IMS TM.

Related reading: For more information about Language Environment, see z/OS Language Environment
Programming Guide.

Using the extended addressing capabilities of z/OS
The two modes inz/OS with extended addressing capabilities are: the addressing mode (AMODE) and the
residency mode (RMODE).

IMS places no constraints on the RMODE and AMODE of an application program. The program can reside
in the extended virtual storage area. The parameters referenced in the call can also be in the extended
virtual storage area.

Related reading: For more information about Language Environment, see z/OS MVS Programming:
Assembler Services Guide.

COBOL compiler options for preloaded programs
If you compile your COBOL program with the COBOL for z/OS & VM compiler and preload it, you must use
the COBOL compiler option RENT. Alternatively, if you compile your COBOL program with the VS COBOL II
compiler and preload it, you must use the COBOL compiler options RES and RENT.

DCCTL
In a DCCTL environment, the application can only reference the address of an I/O PCB, alternate PCB, or
GSAM PCB. An application program can use a PSB that contains PCBs referencing databases; however,
these PCBs cannot be used during processing. Entry statements for COBOL, PL/I, C, and Pascal must refer
to all PCBs included in the PSB, including PCBs which you might not be able to process, as PCBs must be
included in the order in which they are listed in the PSB. This includes all PCBs prior to the last referenced
PCB and can include DB PCBs. If you used a GSAM PCB, all PCBs ahead of it must be referenced.

376 IMS: Application Programming

Chapter 25. Message processing with IMS TM
IMS Transaction Manager application programs can be written in assembler language, C language,
COBOL, Pascal, and PL/I to process messages.

How your program processes messages
To retrieve and send messages, an IMS TM application program issues calls to IMS TM. When your
program issues a call to retrieve a message, IMS TM places the input message in the I/O area you name in
the call. Before you issue a call to send a message, you must build the output message in an I/O area in
your program.

Message types
An operator at a terminal can send four kinds of messages to IMS TM.

The destination of an IMS TM message identifies which kind of message is being sent:

• Another terminal. A logical terminal name in the first 8 bytes means that this is a message switch
destined for another terminal. For a user at a logical terminal to send a message to another logical
terminal, the user enters the name of the receiving logical terminal followed by the message. The IMS
TM control region routes the message to the specified logical terminal. This kind of message does not
result in the scheduling of any activity in a message processing program (MPP).

• An application program. A transaction code in the first 8 bytes means that the message is destined for
an application program. IMS TM uses a transaction code to identify MPPs and transaction-oriented
batch message processing programs (BMPs). To use a particular application program to process
requests, the user enters the transaction code for that application program.

• IMS TM. A "/" (slash) in the first byte means that the message is a command destined for IMS TM.
• Message switch service. A system service DFSAPPC request is destined for the message switch

service.

An application program can send three kinds of messages:

• Commands. A "⁄" in the first byte of the message text means that the message is a command for IMS
TM. Programmers design applications to issue commands when they want a program to perform tasks
that an operator at a terminal usually performs. This is called automated operator interface (AOI) and is
described in IMS Version 15.3 Communications and Connections and IMS Version 15.3 Operations and
Automation.

Use the CMD call to issue commands. Do not use the ISRT call for issuing commands, because a
message created with ISRT can contain a slash in the first byte without being a command.

• Messages to logical terminals by specifying a logical terminal name.
• Program-to-program switches using a transaction code.

The messages that your program receives and sends are made up of segments. Use a GU call to retrieve
the first segment of a new message, and use GN calls to retrieve the remaining segments of the message.
The following figure shows three messages. Message A contains one segment, message B contains two
segments, and message C contains three segments.

Figure 73. Message segments

© Copyright IBM Corp. 1974, 2022 377

To retrieve message A, you only have to issue a GU call. To retrieve messages B and C, issue one GU call
to retrieve the first segment, then a GN call for each remaining segment. This assumes that you know how
many segments each message contains. If you do not know this, issue GN calls until IMS TM returns a QD
status code, indicating that all of the segments for that message have been retrieved.

If you inadvertently issues a GU call after retrieving the first segment of the multi-segment messages,
IMS TM returns a QC status code. This status indicates that no more messages are present, without
your program retrieving the additional segments associated with the message. Data would have been lost
without any indication that it happened.

Input message format and contents
The input message that an application program receives from a terminal or another program is in most
case containing these fields: the length field, the ZZ field, the transaction code field, and the text field.

However, if the input message is the result of a Change (CHNG) call that sets the destination of a
modifiable alternate PCB to the logical terminal, LU 6.2 descriptor, or transaction code that you specify,
then the transaction code field could be absent.

The tables that follow show the message input layouts. The input message field names are in the first
row of each table. The number below each field name is the length in bytes that has been defined for
that field. The following table shows the format of an input message for the AIBTDLI, ASMTDLI, CBLTDLI,
CEETDLI, CTDLI, and PASTDLI interfaces. The message is slightly different for the PLITDLI interface.

Table 70. Input message format

Field Name Field Length

LL 2

ZZ 2

TRANCODE 8

Text Variable

Table 71. Input message format for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

TRANCODE 8

Text Variable

The contents of the input message fields are:
LL or LLLL

The length field contains the length of the input message segment in binary, including LL (or LLLL) and
ZZ. IMS TM supplies this number in the length field when you retrieve the input message.

For the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces, define the LL field as 2
bytes long.

For the PLITDLI interface, define the LLLL field as 4 bytes long. The value in the LLLL field is the input
message length minus 2 bytes. For example, if the text is 12 bytes, then the fullword LLLL contains a
value of 24 bytes. This value is the total of LLLL (4 bytes) + ZZ (2 bytes) + TRANCODE (8 bytes) + text
(12 bytes) - 2 bytes.

ZZ
The ZZ field is a 2-byte field that is reserved for IMS TM. Your program does not modify this field.

378 IMS: Application Programming

TRANCODE
The TRANCODE is the transaction code for the incoming message.

Text
This field contains the message text sent from the terminal to the application program. The first
segment of a message can also contain the transaction code associated with the program in the
beginning of the text portion of the message. Input messages do not have to include the transaction
code, but you can provide it for consistency.

The text field’s contents in the input message and the formatting of the contents when your program
receives the message depends on the editing routine your program uses.

Output message format and contents
The format of the output message that you build to send back to a terminal or to another program is
similar to the format of the input message, but the fields contain different information.

Output messages contain four fields: the length field, the Z1 field, the Z2 field, and the text field. The
following tables show the message output layouts. The output message field names are in the first row of
each table. The number below each field name is the length in bytes that has been defined for that field.
The following table shows the format of an output message for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI,
CTDLI, and PASTDLI interfaces. The format for PLITDLI is slightly different.

Table 72. Output message format

Field Name Field Length

LL 2

Z1 1

Z2 1

Text Variable

Table 73. Output message format for PLITDLI

Field Name Field Length

LLLL 4

Z1 1

Z2 1

Text Variable

The contents of the output message fields are:
LL or LLLL

The field length contains the length of the message in binary, including the LL (or LLLL), Z1, and Z2
fields. For output message segments, supply this length when you are ready to send the message
segment.

For the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces, the LL field must be 2
bytes long. For the PLITDLI interface, the LLLL field must be 4 bytes long and contain the length of the
message segment, minus 2 bytes.

Z1
The Z1 field is a 1-byte field that must contain binary zeros. It is reserved for IMS TM.

Z2
The Z2 field is a 1-byte field that can contain special device-dependent instructions (such as
instructions to ring the alarm bell, instructions to disconnect a switched line, or paging instructions) or
device-dependent information (such as information about structured field data or bypassing MFS).

Chapter 25. Message processing with IMS TM 379

If you do not use any of these instructions, the Z2 field must contain binary zeros. For MFS, this field
contains the number of the option that is being used for this message.

Text
The text portion of the message segment contains the data that you want to send to the logical
terminal or to an application program. (Text messages are typically EBCDIC characters.) The length of
the text depends on the data that you want to send.

When a message is processed
A program’s response to a message will depend on the type of message the program receives. A
transaction code associates a request for information from a terminal with the application program that
can process and respond to that request. IMS TM schedules an MPP when there are messages to be
processed that contain the transaction code associated with that MPP.

Example: Suppose you have an MPP that processes the transaction code "INVINQ" for inventory inquiry.
The MPP receives a request from a user at a terminal for information on the inventory of parts. When the
user enters the transaction code for that application program, IMS TM schedules the application program
that can process the request.

When you enter INVINQ and one or more part numbers, the MPP sends your program the quantity of each
part on hand and the quantity on order.

When you enter INVINQ at the terminal, IMS TM puts the message on the message queue for the MPP
that processes INVINQ. Then, after IMS TM has scheduled the MPP, the MPP issues GU and GN calls to
retrieve the message. To retrieve the messages from LTERM1, the application program issues a GU for
the first segment of a message, then issues GN calls until IMS TM returns a QD status code. This means
that the program has retrieved all of the segments of that message. The program then processes the
request, and sends the output message to the queue for your logical terminal. (The logical terminal name
is in the I/O PCB.) When the MPP sends the output message, IMS TM sends it to the queue for that
logical terminal, and the message goes to the physical terminal. The following figure shows the flow of a
message between the terminal and the MPP.

Figure 74. Transaction message flow

The following example shows the calls you use, the status codes, and what the input and output for the
inventory inquiry would look like. To show you how to use GU and GN to retrieve messages, and how you
insert multiple-segment messages, this example shows messages containing three segments. If input
and output messages in this example were single segment messages, the program would issue only a GU
to retrieve the entire message, and only one ISRT to send the message.

The message formats shown are examples; not all messages are in this format. When the program
receives the input message in the I/O area, the first field of each segment contains the length of that
segment. This is the LL field in the figure. For clarity, the figure shows this length in decimal; in the input
message, however, it is in binary. The second field (ZZ) is reserved for IMS TM; it is 2 bytes long. The text
of the message follows the reserved 2 bytes. The first message segment contains the transaction code in
the 8 bytes following the ZZ field. These are the first 8 bytes of the text portion of the message.

The format of the output messages is the same. You do not need to include the name of the logical
terminal, because it is in the first 8 bytes of the I/O PCB.

380 IMS: Application Programming

PART, QTY, and ON ORDER in the example are headings. These are values that you can define as
constants that you want to appear on the terminal screen. To include headings in MFS output messages,
define them as literals.

Figure 75. Inventory inquiry MPP example

Results of a message: I/O PCB
After your program issues a call, IMS TM returns information about the results of the call in the I/O PCB.
To find out about the results of the call, your application program must check the information that IMS TM
returns to the I/O PCB.

When your application program retrieves a message, IMS TM returns this information about the message
to the I/O PCB:

• The name of the terminal that sent the message.
• A 2-character status code describing the results of the call. If the program receives a status code of QC

after issuing a call to retrieve a message, no more messages are available for the program to process.
• The current date, time, and sequence number for the message.
• The user ID of the person at the terminal or the transaction code for the program that sent the message.

Because the I/O PCB resides in storage outside of your program, you define a mask of the PCB in your
program based at this address to check the results of IMS TM calls. The mask contains the same fields in
the same order as the I/O PCB.

Related reference
“Specifying the I/O PCB mask” on page 363
After your program issues a call with the I/O program communications block (PCB), IMS returns
information about the results of the call to the I/O PCB. To determine the results of the call, your program
must check the information that IMS returns.

How IMS TM edits messages
When an application program passes messages to and from a terminal, IMS TM edits the messages before
the program receives the message from the terminal and before the terminal receives the message from
the application program.

IMS TM gives you many choices about how you want your messages to appear both on the terminal
screen and in the program's I/O area. You need to know which editing routines have been specified for
your program and how they affect your programming.

The three editing routines available to non-LU 6.2 terminals in IMS TM are:

Chapter 25. Message processing with IMS TM 381

Basic Edit
Performs basic edit functions if you do not use MFS and if the message does not originate at an LU 6.1
device. You must provide control characters for some formatting functions.

Intersystem Communication (ISC) Edit
Provides the default edit for messages that originate from an LU 6.1 device. You can enter binary data
in addition to text.

Message Format Service (MFS)
Formats messages through control blocks. You define the way the messages look with the control
blocks.

For LU 6.2 devices, use the LU 6.2 Edit exit routine to edit input and output messages.

Related reading: For more information on LU 6.2, see IMS Version 15.3 Communications and
Connections. For more information on LU 6.2 Edit exit routine, see IMS Version 15.3 Exit Routines.

Printing output messages
To print output messages, you must provide the horizontal and vertical control characters that are
necessary to format your output messages.

To print your output at a printer terminal, include these control characters where necessary within the
text of the message:
X'05'

Skip to the tab stop, but stay on the same line.
X'15'

Start a new line at the left margin.
X'25'

Skip to a new line, but stay at the same place horizontally.

If you want to skip multiple lines, you can start a new line (X'15'), then skip as many lines as necessary
(X'25').

Using Basic Edit
If you do not use MFS or an LU 6.1 device, IMS TM does some editing automatically. The editing IMS TM
does to the first message segment is different from the editing IMS TM does for subsequent message
segments.

See IMS Version 15.3 Communications and Connections for a complete description of Basic Edit.

Editing input messages
When IMS TM receives the first segment of an input message for your application program, IMS TM:

• Removes leading and trailing control characters.
• Removes leading blanks.
• Removes backspaces (from a printer terminal).
• Translates to uppercase, if this is specified with the EDIT=UC specification on the system definition

TRANSACT macro.

If the message segment contains a password, IMS TM edits the segment by:

• Removing the password and inserting a blank in place of the password.
• Removing the password if the first character of the text is a blank. IMS TM does not insert the blank.
• Left-justifying the text of the segment.

For subsequent input message segments, IMS TM does not remove leading blanks from the text of the
message. The other formatting features are the same.

382 IMS: Application Programming

Editing output messages
For output messages, Basic Edit:

• Changes nongraphic characters in the output message before the data goes to the output device.
• Inserts any necessary idle characters after new line, line feed, and tab characters.
• Adds line control characters for the operation of the communication line.

Using Intersystem Communication Edit
Intersystem Communication (ISC) Edit is the default edit for messages from LU 6.1 devices. It is not valid
for any other device types. One advantage of using ISC edit is that IMS TM does not edit the text of a
message, allowing you to enter binary data.

Editing input messages
The editing IMS TM does to input messages depends on whether the Function Management (FM) header
contains the SNA-defined primary resource name (PRN) parameter. In either case, IMS TM removes the
FM header before the input message is received by the application program.

If the FM header does not contain the PRN parameter:

• IMS TM removes leading control characters and blanks when it receives the first segment of an input
message for your application program.

• If the message segment contains a password, IMS TM removes the password and inserts a blank where
the password was.

• IMS TM does not edit the text of the message (the data following the password).

If the FM header contains the PRN parameter:

• The PRN is treated as the transaction code and is received by your application program as the first field
in the message segment.

• The message segment is not edited by IMS TM.

Editing output messages
ISC edit does not edit output messages.

Using Message Format Service
Format the messages that you send to MPP using the Message Format Service (MFS). You define the
format in control blocks.

The MFS control blocks indicate to IMS TM how you want your input and output messages arranged:

• For input messages, MFS control blocks define how the message that the terminal sends to your MPP is
arranged in the I/O area.

• For output messages, MFS control blocks define how the message that your MPP sends to the terminal
is arranged on the screen or at the printer. You can also define words or other data that appear on the
screen (headings, for example) but do not appear in the program's I/O area. This data, called a literal,
can be a field in the output message from the application program or a field in the input message from
the terminal.

Terminals and MFS
Whether your program uses MFS depends on the types of terminals and secondary logical units (SLUs)
your network uses. You can bypass MFS formatting of an output message for a 3270 device or for SLU
Type 2 devices. When MFS is bypassed, you construct the entire 3270 data stream from within your
program.

Restriction: MFS cannot be used with LU 6.2 devices (APPC).

Chapter 25. Message processing with IMS TM 383

Related reading: For more information on LU 6.2 and APPC, see IMS Version 15.3 Communications and
Connections.

Using MFS involves high-level design decisions that are separate from the tasks of application design and
application programming; many installations that use MFS have a specialist who designs MFS screens and
message formats for all applications that use MFS.

MFS makes it possible for an MPP to communicate with different types of terminals without having to
change the way it reads and builds messages. When the MPP receives a message from a terminal, the
message's format in the MPP I/O area depends on the MFS options specified and not on what kind of
terminal sent it. MFS shields the MPP from the physical device that is sending the message in the same
way that a DB PCB shields the program from what the data in the database actually looks like and how it is
stored.

MFS input message formats
You define a message to MFS in fields just as you would define fields within a database segment.

When you define the fields that make up a message segment, you give MFS information such as:

• The field length
• The fill character used when the length of the input data is less than the length defined for the field
• Whether the data in the field is left-justified or right-justified
• If the field is truncated, whether it is truncated on the left or right

The order and length of these fields within the message segment depends on the MFS option that your
program is using. You specify the MFS option in the MID. The decision of which option to use for an
application program is based on:

• How complex the input data is
• How much the input data varies
• The language the application program is written in
• The complexity of the application program
• Performance factors

The Z2 field in MFS messages contains the MFS formatting option being used to format the messages to
and from your program. If something is wrong in the way that IMS TM returns the messages to your I/O
area, and you suspect that the problem might be with the MFS option used, you can check this field to see
if IMS TM is using the correct option. A X'00' in this field means that MFS did not format the message at
all.

One way to understand how each of the MFS options formats your input and output messages is to look at
examples of each option.

Example: Suppose that you have defined the four message segments shown in the following table. Each
of the segments contains a 2-byte length field and a 2-byte ZZ field. The first segment contains the
transaction code that the person at the terminal entered to invoke the application program. The number
of bytes defined for each field appears below the name of the field in the figure.

When you use the PLITDLI interface, you must define the length field as a binary fullword, LLLL. When you
use the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, or PASTDLI interfaces, you must define the length
field as a halfword, LL. The value provided by the PL/I application program must represent the actual
segment length minus 2 bytes. For example, if the output text is 10 bytes, then the value of the fullword
LLLL is 14 and is the sum of the length of LLLL (4 bytes - 2 bytes) + Z1 (1 byte) + Z2 (1 byte) + TEXT (10
bytes).

384 IMS: Application Programming

Table 74. Four-segment message

Segment Number Field Name Field Length Field Value

1

LL 2 0027

ZZ 2 XXXX

TRANCODE 8 YYYY

Text 5 PATIENT#

Text 10 NAME

2

LL 2 0054

ZZ 2 XXXX

Text 50 ADDRESAF

3

LL 2 0016

ZZ 2 XXXX

Text 6 CHARGES

Text 6 PAYMENTS

4

LL 2 0024

ZZ 2 XXXX

Text 10 TREATMENT

Text 10 DOCTOR

For these examples, assume that:

• The transaction code is defined in the MID as a literal.
• All of the fields are left-justified.
• The fill character is defined as a blank. When the length of the data in a field is less than the length that

has been defined for that field, MFS pads the field with fill characters. Fill characters can be:

– Blanks
– An EBCDIC character
– An EBCDIC graphic character
– A null, specified as X'3F'

When you specify that the fill character is to be a null, MFS compresses the field to the length of the
data if that length is less than the field length.

The fields for segment 4 of the message in the previous table are arranged on the terminal screen in the
format shown in the following figure.

Example: Assume the person enters the name of a patient, and the charges and payments associated
with that patient.

Chapter 25. Message processing with IMS TM 385

 PATIENT#: NAME: MC ROSS

 ADDRESAF:

 CHARGES: 106.50 PAYMENTS: 90.00

 TREATMENT:

 DOCTOR:

Figure 76. Terminal screen for MFS example

MFS provides three options for message formatting.

MFS option 1
Use this option when the program receives and transmits most of the fields in the message segments. The
way that option 1 formats messages depends on whether you have defined a null as the fill character for
any of the fields in the segment.

If none of the fields in the message were defined as having a fill character of null:

• The program receives all the segments in the message.
• Each segment is the length that was specified for it in the MID.
• Each segment contains all its fields.
• Each field contains data, data and fill characters, or all fill characters.

The following table shows the Option 1 Format of segments received by the application program.

Table 75. MFS option 1 message format

Segment Number Field Name Field Length Field Value

1

LL 2 0027

Z1 1 XX

Z2 1 01

TRANCODE 8 YYYY

Text 5 blanks

Text 10 MCROSSbbbb

2

LL 2 0054

Z1 1 XX

Z2 1 01

Text 50 blanks

3

LL 2 0016

Z1 1 XX

Z2 1 01

Text 6 010650

Text 6 009000

386 IMS: Application Programming

Table 75. MFS option 1 message format (continued)

Segment Number Field Name Field Length Field Value

4

LL 2 0024

Z1 1 XX

Z2 1 01

Text 10 blanks

Text 10 blanks

The message format for option 1 output messages is the same as the input message format. The program
builds output messages in an I/O area in the format shown for segment 4 in the previous figure. The
program can truncate or omit fields in one of two ways:

• Inserting a short segment
• Placing a null character in the field

If one or more of the fields are defined as having a null fill character, the message is different. In this case,
the message has these characteristics:

• If a field has been defined as having a fill character of null and the terminal offers not data, the field is
eliminated from the message segment.

• If all of the fields in a segment have a null fill character and none of the fields contains any literals, the
segment is eliminated from the message.

• If only some of the fields in a segment have a null fill character, any field containing nulls is eliminated
from the segment. The relative positions of the fields remaining within the segments are changed.

• When the length of the data that is received from the originating terminal is less than the length that is
been defined for the field, the field is truncated to the length of the data.

MFS option 2
Use this option when the program processes multisegment messages where most of the fields are
transmitted but some of the segments are omitted. Option 2 formats messages in the same way that
option 1 does, unless the segment contains no input data from the terminal after IMS TM has removed the
literals. If this is true, and if no additional segments in the message contain input data from the terminal,
IMS TM ends the message. The last segment that the program receives is the last segment that contains
input data from the terminal.

Sometimes a segment that does not have any input data from the terminal is followed by segments that
do contain input data from the terminal. When this happens, MFS gives the program the length field and
the Z fields for the segment, followed by a 1-byte field containing X'3F'. This indicates to the program that
this is a null segment.

If the message segments shown in Table 74 on page 385 are formatted by option 2, they appear in the
format shown in the table below.

Chapter 25. Message processing with IMS TM 387

Table 76. MFS option 2 message format

Segment Number Field Name Field Length Field Value

1

LL 2 0027

Z1 1 XX

Z2 1 02

TRANCODE 8 YYYY

Text 5 blanks

Text 10 MCROSSbbbb

2

LL 2 0005

Z1 1 XX

Z2 1 02

Text 1 X'3F'

3

LL 2 0016

Z1 1 XX

Z2 1 02

Text 6 010650

Text 6 009000

Segment 2 in the previous table contains only a X'3F' because that segment is null, but Segment 3
contains data. This message does not contain a segment 4 because it is null.

MFS option 3
Use this option when the program receives and transmits only a few of the fields within a segment. When
you use option 3, the program receives only those fields that have been received from the terminal. The
program receives only segments that contain fields received from the originating terminal. Segments and
fields can be of variable length if you have defined option 3 as having a null fill character.

A segment in an option 3 message is identified by its relative segment number—in other words, what
position in the message it occupies. The fields within a segment are identified by their offset count within
the segment.

Example: The NAME field in segment 1 is (MCROSSbbbb). The value 17 is the sum of the lengths of the
fields preceding the NAME field and includes an 8-byte transaction code and a 5-byte field of blanks.
It does not include the 2-byte relative segment number field (field A in the following table), the 2-byte
length field (field B), or the 2-byte relative offset field (field C).

Option 3 messages do not contain literals defined in the MID. This means that the transaction code
is removed from the message, except during a conversation. If the transaction that the program is
processing is a conversational transaction, the transaction code is not removed from the message. The
transaction code still appears in the scratchpad area (SPA).

Each segment the program receives contains the relative number of this segment in the message (field A
in the following table). In addition, each data field within the segment is preceded by two fields:

• A 2-byte length field (B). Including the length field itself, the 2-byte relative field offset, and the data in
the field.

• A 2-byte relative field offset (C), giving the field's position in the segment as defined in the MID.

388 IMS: Application Programming

These two fields are followed by the data field. MFS includes these fields for each field that is returned to
the application program.

If the message segments shown in Table 74 on page 385 are formatted by option 3, they appear in the
format shown in the following table. The notes for the tables explain the letters A, B, C, and D, which are in
the first row of segment 1 and segment 3.

Table 77. MFS option 3 message format

Segment Number Field Name Field Length Field Value

1

LL 2 0020

Z1 1 XX

Z2 1 03

A 2 0001

B 2 0014

C 2 0017

D 10 MCROSSbbbb

2

LL 2 0000

Z1 1 XX

Z2 1 03

A 2 0003

B 2 0010

C 2 0004

D 6 010650

B 2 0010

C 2 0010

D 6 009000

Notes to the previous table:

• The fields marked A contain the relative segment number. This number gives the segment's position
within the message.

• The fields marked B contain the field length. This length is the sum of the lengths of B field (2 bytes) + C
field (2 bytes) + D field (the length of the data).

• The fields marked C contain the relative field offset. This gives each field's position within the segment.
• The fields marked D contain the data from the terminal. In this example, the fill character was defined

as blank, so the data field is always its defined length. IMS TM does not truncate it. If you define the
fill character as null, the lengths of the data fields can differ from the lengths defined for them in the
segment. With a null fill character, if the length of the data from the terminal is less than the length
defined for the field, IMS TM truncates the field to the length of the data. Using a null fill with option 3
reduces the space required for the message even further.

Chapter 25. Message processing with IMS TM 389

MFS output message formats
The output message format is used to define what segments and fields MFS will receive from the
application program.

If using option 1 or option 2, the output message format is the same as it is for input messages. Present
all fields and segments to MFS. You can present null segments. All fields in output messages are fixed
length and fixed position. Output messages do not contain option numbers.

Option 3 output messages are similar to input messages, except that they do not contain option numbers.
The program submits the fields as required in their segments with the position information.

Using LU 6.2 User Edit exit routine (optional)
This exit routine edits input and output messages from LU 6.2 devices when the implicit application
program interface support is used.

If it is not provided, then messages are presented without modification. IMS does not invoke the exit
for CPI-C driven transactions because IMS does not participate in the data flows when the application
program uses the CPI directly.

The LU 6.2 User Edit exit routine is called once for each message segment or inbound control flow. You
can call the exit routine for data messages and use it to:

• Examine the contents of a message segment.
• Change the contents of a message segment.
• Expand or compact the contents of a message segment.
• Discard a message segment and process subsequent segments, if any.
• Use the Deallocate_Abend command to end the conversation.

For more information on LU 6.2 User Edit exit routine, seeIMS Version 15.3 Communications and
Connections and IMS Version 15.3 Operations and Automation.

Message processing considerations for DB2
For the most part, the message processing function of a dependent region that accesses DB2 databases is
similar to that of a dependent region that accesses only DL/I databases.

The method each program uses to retrieve and send messages and back out database changes is the
same. The differences are:

• DL/I statements are coded differently from SQL (structured query language) statements.
• When an IMS TM application program receives control from IMS TM, IMS has already acquired the

resources the program is able to access. IMS TM schedules the program, although some of the
databases are not available. DB2 does not allocate resources for the program until the program issues
its first SQL statement. If DB2 cannot allocate the resources your program needs, your program can
optionally receive an initialization error when it issues its first SQL call.

• When an application issues a successful checkpoint call or a successful message GU call, DB2 closes
any cursors that the program is using. This means that your program should issue its OPEN CURSOR
statement after a checkpoint call or a message GU.

IMS TM and DB2 work together to keep data integrity in these ways:

• When your program reaches a commit point, IMS TM makes any changes that the program has made to
DL/I databases permanent, releases output messages for their destinations, and notifies DB2 that the
program has reached a commit point. DB2 then makes permanent any changes that the program has
made to DB2 databases.

• When your program terminates abnormally or issues one of the IMS TM rollback calls (ROLB, ROLS
without a token, or ROLL), IMS TM cancels any output messages your program has produced, backs out
changes your program has made to DL/I databases since the last commit point, and notifies DB2. DB2
backs out the changes that the program has made to DB2 databases since the last commit point.

390 IMS: Application Programming

Through the Automated Operator Interface (AOI), IMS TM application programs can issue DB2 commands
and IMS TM commands. To issue DB2 commands, the program issues the IMS TM /SSR command
followed by the DB2 command. The output of the /SSR command is routed to the master terminal
operator (MTO).

Sending messages to other terminals and programs
When an application program processes a message from a terminal, it usually sends the response to
the terminal that sent the input message. But sometimes you might want to send output messages to a
terminal other than the originating terminal, or to other terminals in addition to the originating terminal.
You might also want to send messages to other application programs.

When you use an alternate PCB:

• If you want to send output messages to one alternate destination, define the alternate PCB for that
destination.

• If you want to send output messages to more than one alternate destination, and you want to be able
to change the destination of the alternate PCB, define the alternate PCB as modifiable during program
specification block (PSB) generation. Then, before you issue the ISRT call, you issue a CHNG call to set
the destination of the alternate modifiable PCB for the destination program or terminal.

The express alternate PCB is a special kind of alternate PCB that is defined during PSB generation, by
specifying EXPRESS=YES.

When you use an express alternate PCB, messages you send using that PCB are sent to their final
destinations immediately. Messages sent with other PCBs are sent to temporary destinations until
the program reaches a commit point. Messages sent with express PCBs are sent if the program
subsequently terminates abnormally, or issues one of the rollback calls: ROLL, ROLB, or ROLS. Using
an express alternate PCB in this kind of situation is a way to ensure that the program can notify the
person at the terminal, even if abnormal termination occurs. For all PCBs, when a program abnormally
terminates or issues a ROLL, ROLB, or ROLS call, messages inserted but not made available for
transmission are cancelled, while messages made available for transmission are never cancelled.

For a nonexpress PCB, the message is not made available for transmission to its destination until the
program reaches a commit point. The commit point occurs when the program terminates, issues a CHKP
call, or requests the next input message and the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS TM knows that it has the complete message, it makes the message
available for transmission to the destination. In addition to occurring at a commit point, this also occurs
when the application program issues a PURG call using that PCB or requests the next input message.

A PSBGEN can also specify an alternate PCB as an alternate response PCB defined during PSB
generation.

• If you want to send a message to an LU 6.2 device, you can specify the LU 6.2 descriptor name that is
associated with that device. IMS internally performs the uppercase translation of the destination name
(CNT or SMB).

Related reference
“Specifying the alternate PCB mask” on page 367
An alternate program communication block (PCB) mask contains three fields.

Sending messages to other terminals
To reply to a different terminal, also use the ISRT call, but use an alternate program communication block
(PCB) instead of the TP PCB.

Just as the TP PCB represents the terminal that sent the message, an alternate PCB represents the
terminal to which you want to send the message.

Chapter 25. Message processing with IMS TM 391

Single alternate terminal
If you are going to send messages to only one alternate terminal, you can define the alternate PCB for that
terminal during PSB generation. When you define an alternate PCB for a particular destination, you cannot
change that destination during program execution. Each time you issue an ISRT call that references that
PCB, the message goes to the logical terminal whose name was specified for the alternate PCB. To send
a message to that terminal, place one message segment at a time in the I/O area, and issue an ISRT call
referring to the alternate PCB, instead of the TP PCB.

Several alternate terminals
To send messages to several terminals, you can define the alternate PCB as modifiable during PSB
generation. Therefore, the alternate PCB represents more than one alternate terminal. You can change
the destination while your program is running.

Before you can set or change the destination of an alternate PCB, you must indicate to IMS TM that the
message you have been building so far with that PCB is finished. To do this, issue a PURG call.

PURG allows you to send multiple output messages while processing one input message. When you do not
use PURG, IMS TM groups message segments into a message and sends them when the program issues a
GU for a new message, terminates, or reaches a commit point. A PURG call tells IMS TM that the message
built against this TP PCB or alternate PCB (by issuing one ISRT call per message segment) is complete.
IMS TM collects the message segments that you have inserted into one PCB as one message and sends it
to the destination represented by the alternate PCB you have referenced.

A PURG call that does not contain the address of an I/O area indicates to IMS TM that this message is
complete. If you include an I/O area in the call, PURG acts as an ISRT call as well. IMS TM treats the data
in the I/O area as the first segment of a new message. When you include an I/O area on a PURG call, you
can also include a MOD name to change the format of the screen for this message. Although specifying
the MOD name is optional, when you use it, you can specify it only once per message or in only the first
ISRT or PURG that begins the message.

To set the destination of a modifiable alternate PCB during program execution, you use a CHNG call.
When you issue the CHNG call you supply the name of the logical terminal to which you want to send
the message. The alternate PCB you use then remains set with that destination until you do one of the
following:

• Issue another CHNG call to reset the destination.
• Issue another GU to the message queue to start processing a new message. In this case, the name still

appears in the alternate PCB, even though it is no longer valid.
• Terminate your program. When you do this, IMS TM resets the destination to blanks.

The first 8 bytes of the alternate PCB contain the name of the logical terminal to which you want to send
the message.

When you issue a CHNG call, give IMS TM the address of the alternate PCB you are using and the
destination name you want set for that alternate PCB.

When you use the PURG call, you give IMS TM only the address of the alternate PCB. IMS TM sends the
message you have built using that PCB.

To indicate an error situation, you can send a message by issuing an ISRT call followed by a PURG call
against an express PCB. These calls send the message to its final destination immediately.

Example: The program could go through these steps:

1. The program issues a GU call (and GN calls, if necessary) to retrieve an input message.
2. While processing the message, the program encounters an abnormal situation.
3. The program issues a PURG call to indicate to IMS TM the start of a new message.
4. The program issues a CHNG call to set the destination of an express PCB to the name of the originating

logical terminal. The program can get this name from the first 8 bytes of the I/O PCB.

392 IMS: Application Programming

5. The program issues ISRT calls as necessary to send message segments. The ISRT calls reference the
express PCB.

6. The program issues a PURG call referencing the express PCB. IMS TM then sends the message to its
final destination.

7. The program can then terminate abnormally, or it can issue a ROLL, ROLB, or ROLS call to back out its
database updates and cancel the output messages it has created since the last commit point.

If your output messages contained three segments, and you used the PURG call to indicate the end of a
message (and not to send the next message segment), you could use this call sequence:

CHNG ALTPCB1, LTERMA
ISRT ALTPCB1, SEG1
ISRT ALTPCB1, SEG2
ISRT ALTPCB1, SEG3
PURG ALTPCB1
CHNG ALTPCB1, LTERMB
ISRT ALTPCB1, SEG4
ISRT ALTPCB1, SEG5
ISRT ALTPCB1, SEG6

Sending messages to other IMS application programs
A program-to-program switch occurs when an IMS application running in an IMS dependent region sends
a message to another IMS application running in an IMS dependent region.

To send a request to another IMS transaction and receive the response in the same unit of work, use
the DL/I ICAL request. For more information, see Synchronous program switch requests (Communications
and Connections).

You can issue a program-to-program switch to send and receive messages with any of the following types
of IMS applications:

• message processing program (MPP)
• batch message processing (BMP) program
• Java message processing (JMP) program
• Java batch processing (JBP) program

To send a message to another online program, use an alternate program communication block (PCB)
in a similar way as when sending messages to alternate terminals. If you send messages to only one
application program, then you can define the alternate PCB with the transaction code for that application
program during PSB generation. If you send messages to more than one application program, you can
define the alternate PCB as modifiable.

If you use an alternate modifiable PCB, IMS TM makes a security check when you issue the CHNG call to
set the destination of the alternate modifiable PCB. The terminal that enters the transaction code that
causes the message switch must be authorized to enter the transaction code that the CHNG call places in
the alternate modifiable PCB. IMS TM does not check for security when you issue the ISRT call.

When an IMS TM application program issues a CHNG call, the Resource Access Control Facility (RACF)
is invoked and a check is made to determine whether the originating terminal is authorized for the
transaction code that was issued. If, instead of using the CHNG call, the program issues an ISRT call
against a preset alternate PCB, no security check is made, regardless of the environment.

When you issue a program-to-program message switch, you have the same considerations as when you
communicate with a logical terminal. Keep in mind the following points:

• Create an I/O area large enough to hold the largest segment that you are sending.
• Use an alternate PCB, not the TP PCB, to send the message.
• Issue a CHNG call before the ISRT call to place the transaction code of the program in the first field of

the alternate PCB. If the alternate PCB was set to this transaction code in the PSBGEN, issue the ISRT
call.

• IMS TM must know the transaction code. Define it at system definition.

Chapter 25. Message processing with IMS TM 393

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_syncswitch.htm#ims_otma_admin_syncswitch
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_syncswitch.htm#ims_otma_admin_syncswitch

• A nonconversational program can do a program-to-program message switch to another
nonconversational program, but not to a conversational program.

• A conversational program can do a program-to-program message switch to either another
conversational program or a nonconversational program.

Open Transaction Manager Access (OTMA) program-to-program switching has the following restrictions:

• In a shared queues environment that has both synchronous APPC/OTMA support (AOS=Y on the
DFSDCxxx PROCLIB member) and RRS support (RRS=Y on the startup procedure) enabled, an
application program running on a back-end IMS system that initiates an outbound APPC protected
conversation with another IMS system is restricted to a single program-to-program switch.

• If an application program performs multiple program-to-program switches after allocating an APPC
outbound protected conversation on another IMS system, the results are unpredictable and can include
a WAIT-RRS/PC condition in the message processing region (MPR).

A message switch to another conversational program transfers the scratchpad area (SPA) and the
responsibility to respond to the originating terminal to the new application program. A message switch
to a nonconversational program does not change the responsibilities of the conversational program. The
conversational program must still return the SPA to IMS TM (if the SPA has been modified) and must
respond to the originating terminal. The following tables show the format for an output message to an
application program.

Table 78. Message Format for program-to-program message switch for AIBTDLI, ASMTDLI, CBLTDLI,
CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

Z1 1

Z2 1

Text Variable

Table 79. Message format for program-to-program message switch for the PLITDLI interface

Field Name Field Length

LLLL 4

Z1 1

Z2 1

Text Variable

The format is the same as for output messages to terminals. Z1 and Z2 are fields that must contain binary
zeros. These fields are reserved for IMS. The text field contains the message segment that you want to
send to the application program.

If the program that is processing the message expects the transaction code, include the transaction code
of the recipient program as part of the message text of the first segment of the message, because IMS TM
does not automatically include the transaction code in the first segment of a switched message. Including
the transaction code in the message text of the first segment keeps the first segments of all messages in
the same format, regardless of whether they are sent from terminals or other programs.

Related concepts
“Passing the conversation to another conversational program” on page 404

394 IMS: Application Programming

A conversational program can pass the conversation to another conversational program in by performing
a deferred switch or a immediate switch.
Related tasks
“Program switching in JMP and JBP applications” on page 694
IMS allows you to switch programs in JMP and JBP applications. You can perform immediate program
switches in JMP and JBP applications, and you can also make a deferred program switch in a
conversational JMP application.

How the VTAM I/O facility affects your VTAM terminal
VTAM terminals can fail to respond to requests sent by IMS. The master terminal operator or an
automated operator interface application program can optionally activate a "timeout" facility. This allows
a message stating a specific amount of time has passed to be sent to the master terminal operator.

IMS TM can be set up to do one of the following:

• Do nothing, which means that your terminal remains inactive. This is the default.
• Send a message to the master terminal operator stating that the specified period of time has passed.

The operator can then determine what action, if any, should be taken.
• Send a message to the master terminal operator stating that the specified period of time has passed.

IMS TM then issues the VTAM VARY NET, INACT command followed by a VTAM VARY NET, ACT
command. If the terminal is defined to IMS TM as non-shared and operable, and if IMS TM is not
shutting down, IMS TM issues an OPNDST for the terminal.

Restriction: This option does not apply to ISC terminals. If your installation chooses this option and an
ISC terminal times out, a message is sent to the master terminal stating that the specified period of
time has passed. The operator can determine what action, if any, should be taken.

Communicating with other IMS TM systems using Multiple Systems
Coupling

In addition to communicating with programs and terminals in your IMS TM system, your program can
communicate with terminals and programs in other IMS TM systems through Multiple Systems Coupling
(MSC).

MSC makes this possible by establishing links between two or more separate IMS TM systems. The
terminals and transaction codes within each IMS TM system are defined as belonging to that system.
Terminals and transaction codes within your system are called "local," and terminals and transaction
codes defined in other IMS TM systems connected by MSC links are called "remote."

Related reading: For an overview of MSC, see IMS Version 15.3 Communications and Connections.

Implications of MSC for program coding
For the most part, communicating with a remote terminal or program does not affect how you code your
program. MSC handles the message routing between systems.

For example, if you receive an input message from a remote terminal, and you want to reply to that
terminal, you issue an ISRT call against the I/O PCB—just as you would reply to a terminal in your system.

In the following two situations, MSC might affect your programming:

• When your program needs to know whether an input message is from a remote terminal or a local
terminal. For example, if two terminals in separate IMS TM systems had the same logical terminal
name, your program's processing might be affected by knowing which system sent the message.

• When you want to send a message to an alternate destination in another IMS TM system.

Restriction: If a transaction allocated by an LU 6.2 device is destined to a remote system through MSC
links, IMS rejects the transaction with the message TP_NOT_Avail_No_Retry.

Chapter 25. Message processing with IMS TM 395

Directed routing makes it possible for your program to find out whether an input message is from your
system or from a remote system, and to set the destination of an output message for an alternate
destination in another IMS TM system. With directed routing, you can send a message to an alternate
destination in another IMS TM system, even if that destination is not defined in your system as remote.

Restriction: MSC directed routing does not support a program-to-program switch between conversational
transactions.

Related Reading: For more information about LU 6.2 and about MSC directed routing, see IMS Version
15.3 Communications and Connections.

Receiving messages from other IMS TM systems
When an application program retrieves an input message, the program can determine whether the input
message is from a terminal or program in its IMS TM system, or from a terminal or program in another
IMS TM system. There might be situations in which the application program's processing is changed if the
input message is from a remote terminal, rather than from a local terminal.

For example, suppose that your IMS TM system is system A, and that it is linked to another IMS TM
system called system B. MSC links are one-way links. The link from system A to system B is called LINK1,
and the link from system B to system A is called LINK2. The application program named MPP1 runs in
system A. The logical terminal name of the master terminals in both systems is MASTER. The following
figure shows systems A and B.

Figure 77. MSC example

If the MASTER terminal in system B sends a message indicating that the system is shutting down to MPP1
in system A, MPP1 needs to know that the message is from MASTER in system B and not MASTER in
system A.

If you have specified ROUTING=YES on the TRANSACT macro during IMS TM system definition, IMS TM
does two things to indicate to the program that the message is from a terminal in another IMS TM system.

First, instead of placing the logical terminal name in the first field of the I/O PCB, IMS TM places the name
of the MSC logical link in this field. In the example, this is LINK1. This is the logical link name that was
specified on the MSNAME macro at system definition. However, if the message is subsequently sent back
to the originating system, the originating LTERM name is reinstated in the first field of the I/O PCB.

Second, IMS TM turns on a bit in the field of the I/O PCB that is reserved for IMS. This is the second bit
in the first byte of the 2-byte field. The following figure shows the location of this bit within the reserved
field.

396 IMS: Application Programming

Figure 78. Directed routing bit in I/O PCB

MPP1 tests this bit to determine if the message is from MASTER in system A. If it is, MPP1 should
terminate immediately. However, if the message is from MASTER in system B, MPP1 could perform some
local processing and send transactions for system B to a message queue so that those transactions could
be processed later on, when system B is up.

Sending messages to alternate destinations in other IMS TM systems
To send an output message to an alternate terminal in another IMS TM system, your system must have an
MSC link with the system to which you want to send the message.

To do this, issue a CHNG call against an alternate PCB and supply the name of the MSC link (in the example
this is LINK1) that connects the two IMS TM systems.

For example, if you were sending a message to TERMINAL 1 in system B after you received a message
from some other terminal, you would first issue this CHNG call:

CHNG altpcb, LINK1

Then issue an ISRT call (or calls) to send the message just as you would send a message to a local
terminal. The following tables show the format of the Direct Routing Output Message.

Table 80. Directed routing output message format for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and
PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

DESTNAME 1 - 8

b 1

Text Variable

Table 81. Directed routing output message format for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

DESTNAME 1 - 8

b 1

Text Variable

The field formats in a directed routing output message are listed below:

Chapter 25. Message processing with IMS TM 397

• The LL and ZZ fields are 2 bytes each (For the PLITDLI interface, use the 4-byte field LLLL). LL (or LLLL)
contains the total length of the message. This is the sum of all of the fields in the message, including the
LL field (and in PL/I, LLLL contains the total length minus 2). ZZ is reserved for IMS.

• The destination name, DESTNAME, is the name of the logical terminal to which you are sending the
message. This field is from 1 to 8 bytes long and it must be followed by a blank.

If the destination in the other system is a terminal, IMS TM removes the DESTNAME from the message.
If the destination in the other system is a program, IMS TM does not remove the DESTNAME.

• The TEXT field contains the text of the message. Its length depends on the message you are sending.

If your message contains a security violation, MSC detects it in the receiving system (in this case, system
B), and reports it to the person at the originating terminal (system A).

IMS conversational processing
You can write conversational programs to perform conversational processing with IMS Transaction
Manager.

The difference between a conversational and nonconversational program is:
Conversational program

A message processing program (MPP) that processes transactions made up of several steps. It does
not process the entire transaction at the same time. A conversational program divides processing
into a connected series of terminal-to-program-to-terminal interactions. You use conversational
processing when one transaction contains several parts.

Nonconversational program
A message processing program that receives a message from a terminal, processes the request, and
sends a message back to the terminal. A conversational program receives a message from a terminal,
and replies to the terminal, but saves the data from the transaction in a scratchpad area (SPA). Then,
when the person at the terminal enters more data, the program has the data it saved from the last
message in the SPA, so it can continue processing the request without the person at the terminal
having to enter the data again.

A conversational example
The following example shows how to use conversational processing to find out if a customer can qualify
for a car loan.

This inquiry contains two parts. First, you give the name and address of the person requesting the loan
and the number of years for which the person wants the loan. After you provide this information, IMS TM
asks you for the information on the car: model, year, and cost. You enter this information, IMS TM invokes
the program that processes this information, and the program tells you whether the loan can be granted.

If you use MFS, the process involves these steps:

1. Enter the format command (/FORMAT) and the MOD name. This tells IMS to format the screen in the
way defined by this message output descriptor (MOD).

If the MOD name is CL, the command is:

/FORMAT CL

IMS TM then takes that MOD from the MFS library and formats your screen in the way defined by the
MOD. When the MOD for the car loan application formats your screen, it looks like this:

CARLOAN
NAME:
ADDRESS:
YEARS:

398 IMS: Application Programming

The word "CARLOAN" is the transaction code for this application. Each transaction code is associated
with an application program, so when IMS TM receives the transaction code "CARLOAN", IMS TM
knows what application program to schedule for this request.

2. Enter the customer's name and address, and the length of the loan. When you enter this information,
your screen looks like this:

CARLOAN
NAME: JOHN EDWARDS
ADDRESS: 463 PINEWOOD
YEARS: 5

3. IMS TM reads the transaction code, CARLOAN, and invokes the program that handles that transaction
code. MFS formats the information from the screen for the MPP's I/O area by using the DIF and the
MID.

When the MPP issues its first call, which is usually a GU for the SPA, IMS TM clears the SPA to binary
zeros and passes it to the application program.

4. Next, the MPP processes the input data from the terminal and does two things. It moves the data that
it will need to save to the SPA, and it builds the output message for the terminal in the I/O area. The
information that the MPP saves in the SPA is the information the MPP will need when the second part
of the request comes in from the terminal. You do not save information in the SPA that you can get
from the database. In this example, you save the name of the customer applying for the loan, because
if the customer is granted the loan, the program uses the customer name to locate the information to
be updated in the database.

The program then issues an ISRT call to return the SPA to IMS, and another ISRT call to send the
output message to the terminal.

The response that the MPP sends to the terminal gives IMS TM the name of the MOD to format the
screen for the next cycle of the conversation. In that cycle, you need to supply the model, year, and
cost of the car that John Edwards wants to buy. Your screen looks like this:

MODEL:
YEAR:
COST:

5. IMS TM again uses the device input format (DIF) and message input descriptor (MID) associated with
the transaction code, and sends the information back to the MPP. The MPP has not been running
all this time. when IMS TM receives the terminal input with the transaction code CARLOAN, IMS TM
invokes the MPP that processes that transaction again for this cycle of the conversation.

6. IMS TM returns the updated SPA to the MPP when the MPP issues a GU, then returns the message to
the MPP when the MPP issues a GN. The MPP does the required processing (in this case, determining
whether the loan can be granted and updating the database if necessary), and is then ready to end the
conversation. To do this, the MPP blanks out the transaction code in the SPA, inserts it back to IMS,
then sends a message to the terminal saying whether the loan can be granted.

Conversational structure
Structuring your conversational program depends on the interactions between your program and the
person at the terminal.

Before structuring your program, you need to know:

• What should the program do in an error situation?

When a program in a conversation terminates abnormally, IMS TM backs out only the last cycle of the
conversation. A cycle in a conversation is one terminal/program interaction. Because the conversation
can terminate abnormally during any cycle, you should be aware of some things you can do to simplify
recovery of the conversation:

– The ROLB or ROLS call can be used in conversational programs to back out database updates that the
program has made since the last commit point. ROLL can also be used in conversational programs,
but terminates the conversation.

Chapter 25. Message processing with IMS TM 399

– If possible, updating the database should be part of the last cycle of the conversation so that you do
not have different levels of database updates resulting from the conversation.

– If your program encounters an error situation and it has to terminate, it can use an express alternate
(program communication block) PCB to send a message to the originating terminal, and, if desired, to
the master terminal operator.

To do this, the program issues a CHNG call against the express alternate PCB and supplies the name
of the logical terminal from the TP PCB, then an ISRT call that references that PCB and the I/O area
that contains the message. The program can then issue another CHNG call to set the destination of
the express alternate PCB for the master terminal, and another ISRT call that references that PCB,
and the I/O area that contains the output message.

• Does your application program process each cycle of the conversation?

A conversation can be processed by one or several application programs. If your program processes
each stage of the conversation (in other words, your program processes each input message from the
terminal), the program has to know what stage of the conversation it is processing when it receives each
input message.

When the person at the terminal enters the transaction code that starts the conversation, IMS TM clears
the SPA to binary zeros and passes the SPA to the program when the program issues a GU call. On
subsequent passes, however, the program has to be able to tell which stage of the conversation it is on
so that it can branch to the section of the program that handles that processing.

One technique that the program can use to determine which cycle of the conversation it is processing
is to keep a counter in the SPA. The program increments this counter at each stage of the conversation.
Then, each time the program begins a new cycle of the conversation (by issuing a GU call to retrieve
the SPA), the program can check the counter in the SPA to determine which cycle it is processing, then
branch to the appropriate section.

• How can your program pass control of the conversation to another conversation program?

Sometimes it is more efficient to use several application programs to process a conversation. This does
not affect the person at the terminal. It depends on the processing that is required.

In the car loan example, one MPP could process the first part of the conversation (processing the name,
address, and number of years), and another MPP could process the second part of the conversation
(processing the data about the car and responding with the status of the loan).

A conversational program can perform two types of program switching:

Deferred program switch
Responds to the originating terminal but causes the next input from the terminal to go to another
conversational program.

Immediate program switch
Passes the conversation directly to another conversational program. The program passes the SPA
(and, optionally, a message) to another conversational program without responding to the terminal.
In this case, it is the next program's responsibility to respond to the originating terminal.

A conversational program must:

1. Retrieve the SPA and the message using GU and GN calls.

If your MPP is starting this conversation, test the variable area of the SPA for zeros to determine if
this is the beginning of the conversation. If the SPA does not contain zeros, it means that you started
the conversation earlier and that you are now at a later stage in the conversation. If this is true, you
would branch to the part of your program that processes this stage of the conversation to continue
the conversation.

If another MPP has passed control to your MPP to continue the conversation, the SPA contains the
data you need to process the message, so you do not have to test it for zeros. Start processing the
message immediately.

2. Process the message, including handling any necessary database access.

400 IMS: Application Programming

3. Send the output message to the terminal by using an ISRT call against the I/O PCB. This step can
follow step 4.

4. Store the data (that your program, or the program that you pass control to, needs to continue
processing) in the SPA using an ISRT call to the I/O PCB. (This step can precede step 3.) IMS TM
determines which segment is the SPA by examining the ZZZZ field of the segment shown in the
tables below.

To end the conversation, move blanks to the area of the SPA that contains the transaction code, and
then insert the SPA back to IMS TM by issuing an ISRT call and referencing the I/O PCB.

If your MPP passes the conversation to another conversational program, the steps after the program
processes the message are somewhat different.

Also, your program should be designed to handle the situation that occurs when the first GU call to the
I/O PCB does not return a message to the application program. This can happen if the person at the
terminal cancels the conversation by entering the /EXIT command before the program issues a GU call.
(This happens if the message from this terminal was the only message in the message queue for the
program.)

The contents of SPA
The SPA that IMS TM gives your program when you issue a GU contains the four parts shown in the
following tables.

Table 82. SPA format for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

ZZZZ 4

TRANCODE 8

User Work Area Variable

Table 83. SPA format for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZZZ 4

TRANCODE 8

User Work Area Variable

The SPA format fields are:
LL or LLLL

A length field that gives the total length of the SPA. This length includes 2 bytes for the LL field. (For
the PLITDLI interface, use a 4-byte field. Its contents include 4 bytes for LLLL, minus 2.)

ZZZZ
A 4-byte field reserved for IMS TM that your program must not modify.

TRANCODE
The 8-byte transaction code for this conversation.

User Work Area
A work area that you use to save the information that you need to continue the conversation. The
length of this area depends on the length of the data you want to save. This length is defined at
system definition.

Chapter 25. Message processing with IMS TM 401

When your program retrieves the SPA with a GU to start the conversation, IMS TM removes the transaction
code from the message. In your first message segment, you receive only the data from the message that
the person at the terminal entered.

The following list indicates the ways that an application program processes the SPA. The program must:

• Not modify the first 6 bytes of the SPA (LL and ZZZZ). IMS TM uses these fields to identify the SPA.

If the program modifies the SPA, the program must return the SPA to IMS TM (or, for a program switch,
to the other program).

• Not return the SPA to IMS TM more than once during one cycle of the conversation.
• Not insert the SPA to an alternate PCB that represents a nonconversational transaction code or a logical

terminal. The program can use an alternate response PCB if it represents that same physical terminal as
the originating logical terminal.

Restriction: If you are using MFS, the IMS TM does not always remove the transaction code.

The appearance of messages in a conversation
Because the first segment contains the SPA, conversational input messages are made up of at least two
segments. The input message starts in the second message segment.

The input message segment in a conversation contains only the data from the terminal. During the first
step in the conversation, IMS TM removes the transaction code from the input message and places it in
the SPA. When the program issues the first GU, IMS TM returns the SPA. To retrieve the first message
segment, the program must issue a GN.

The format for the output messages that you send to the terminal is no different than the format for
output messages in nonconversational programs.

Saving information in the SPA
After you have processed the message and are ready to reply to the terminal, you can save the necessary
data in the SPA. The part of the SPA in which you save data is the work area portion. Use the ISRT call to
save data to the work area. This is a special use of the ISRT call, because you are not sending the SPA to a
terminal, but rather saving it for future use.

If your program processes each stage of the conversation, you just issue an ISRT call to the I/O PCB and
give the name of the I/O area that contains the SPA. For example:

ISRT I/O PCB, I/O AREA

This returns the updated SPA to IMS TM so that IMS TM can pass it to your program at the next cycle of
the conversation.

If you do not modify the SPA, you do not need to return it to IMS. However, the SPA will be passed by IMS
TM to your program at the next cycle of the conversation.

Related concepts
“Conversational processing using ROLB, ROLL, and ROLS” on page 403
Issuing a ROLB or ROLS in a conversational program causes IMS TM to back out the messages that the
application program has sent.
“Passing the conversation to another conversational program” on page 404

402 IMS: Application Programming

A conversational program can pass the conversation to another conversational program in by performing
a deferred switch or a immediate switch.

Replying to the terminal
For a conversation to continue, the originating terminal must receive a response to each of its input
messages. The person at the terminal cannot enter any more data to be processed (except IMS TM
commands) until the response has been received at the terminal.

To continue the conversation, the program must respond to the originating terminal by issuing the
required ISRT calls to send the output message to the terminal. To send a message to the originating
terminal, the ISRT calls must reference either the TP PCB or an alternate response PCB. Use an alternate
response PCB in a conversation when the terminal you are responding to has two components—for
example, a printer and a punch—and you want to send the output message to a component that is
separate from the component that sent the input message. If the program references an alternate
response PCB, the PCB must be defined for the same physical terminal as the logical terminal that sent
the input message.

The program can send only one output message to the terminal for each input message. Output messages
can contain multiple segments, but the program cannot use the PURG call to send multiple output
messages. If a conversational program issues a PURG call, IMS TM returns an AZ status code to the
application program and does not process the call.

Conversational processing using ROLB, ROLL, and ROLS
Issuing a ROLB or ROLS in a conversational program causes IMS TM to back out the messages that the
application program has sent.

If the application program issues a ROLB or ROLS and then reaches a commit point without sending
the required response to the originating terminal, IMS TM terminates the conversation and sends the
message DFS2171I NO RESPONSE CONVERSATION TERMINATED to the originating terminal.

If you issue ROLL during a conversation, IMS TM backs out the updates and cancels output messages, but
it also terminates the conversation.

Conversational processing for modified message-driven IMS applications
The following processing considerations apply to modified message-driven IMS applications issuing the
IMS ROLB call that can receive protected input messages from OTMA or APPC/MVS and issue outbound
protected work to other z/OS Resource Recovery Services (RRS) resource managers:

• If a modified message-driven IMS application program with protected input issues a ROLB call, the
ROLB call is isolated to the IMS application without affecting the entire protected unit of work. After
the ROLB call is issued, the protected input message remains in process for the IMS application until a
commit point is reached.

• If a modified message-driven IMS application program issues an outbound protected conversation,
the outbound protected conversation is not included in the ROLB processing (that is, the outbound
protected conversation is not backed out as part of the ROLB call). The modified message-driven IMS
application program is responsible for explicitly cleaning up any outbound protected work to be backed
out.

Related concepts
“Conversational structure” on page 399

Chapter 25. Message processing with IMS TM 403

Structuring your conversational program depends on the interactions between your program and the
person at the terminal.

Passing the conversation to another conversational program
A conversational program can pass the conversation to another conversational program in by performing
a deferred switch or a immediate switch.

A conversational program can pass the conversation to another conversational program in two ways:

• A deferred switch.

The program can respond to the terminal but cause the next input from the terminal to go to another
conversational program by:

– Issuing an ISRT call against the I/O PCB to respond to the terminal
– Placing the transaction code for the new conversational program in the SPA
– Issuing an ISRT call referencing the I/O PCB and the SPA to return the SPA to IMS TM

IMS TM then routes the next input message from the terminal to the program associated with the
transaction code that was specified in the SPA. Other conversational programs can continue to make
program switches by changing the transaction code in the SPA.

• An immediate switch.

The program can pass the conversation directly to another conversational program by issuing an ISRT
call against the alternate PCB that has its destination set to the other conversational program.

The first ISRT call must send the SPA to the other program, but the program passing control can issue
subsequent ISRT calls to send a message to the new program. If the program does this, in addition to
routing the SPA to the other conversational program, IMS TM updates the SPA as if the program had
returned the SPA to IMS. If the program does an immediate switch, the program cannot also return the
SPA to IMS TM or respond to the original terminal.

Restrictions on passing the conversation
These are restrictions that apply to passing the conversation to another conversational program:

• When an immediate program switch occurs and the MPP receives an XE status code, the program
attempts to insert the SPA to an alternate express PCB. Remove the EXPRESS=YES option from the PCB
or define and use another PCB that is not express. This restriction prevents the second transaction from
continuing the conversation if the first transaction abends after inserting the SPA.

The person at the terminal can issue the /SET CONV XX command, where XX is the program that is to
be scheduled in order to process the next step of the conversation.

• APPC or OTMA protected transactions do not allow immediate program or deferred program switches. If
either of these switches occur, the MPP receives an X6 status code.

Defining the SPA size
Define the SPA size with the TRANSACT macro. An option to capture truncated data is also defined with
the TRANSACT macro. The format is:

TRANSACT SPA=(size,STRUNC|RTRUNC)

The default is to support truncated data (STRUNC). When a conversation is initially started, and on each
program switch, the truncated data option is checked and set or reset as specified. When the truncated
data option is set, it remains set for the life of the conversation, or until a program switch occurs to a
transaction that specifies that the option be reset.

For example, assume you have three transactions defined as follows:

TRANA SPA=100

404 IMS: Application Programming

TRANB SPA=050
TRANC SPA=150

For TRANC to receive the truncated data (which is the second 50 bytes from TRANA that TRANB does not
receive) from TRANA, one of the following sets of specifications can be used:

• TRANA - STRUNC or none, TRANB - STRUNC or none, TRANC - STRUNC or none
• TRANA - RTRUNC, TRANB - STRUNC, TRANC - STRUNC or none

Conversational processing and MSC
If your installation has two or more IMS TM systems, and they are linked to each other through MSC, a
program in one system can process a conversation that originated in another system.

• If a conversational program in system A issues an ISRT call that references a response alternate PCB
in system B, system B does the necessary verification. This is because the destination is implicit in the
input system. The verification that system B does includes determining whether the logical terminal
that is represented by the response alternate PCB is assigned to the same physical terminal as the
logical terminal that sent the input message. If it is not, system B (the originating system) terminates
the conversation abnormally without issuing a status code to the application program.

• Suppose program A processes a conversation that originates from a terminal in system B. Program
A passes the conversation to another conversational program by changing the transaction code in
the SPA. If the transaction code that program A supplies is invalid, system B (the originating system)
terminates the conversation abnormally without returning a status code to the application program.

Ending the conversation
To end the conversation, a program blanks out the transaction code in the SPA and returns it to IMS TM by
issuing an ISRT call and referencing the I/O PCB and the SPA. This terminates the conversation as soon
as the terminal has received the response.

The program can also end the conversation by placing a nonconversational transaction code in the
transaction field of the SPA and returning the SPA to IMS. This causes the conversation to remain active
until the person at the terminal has entered the next message. The transaction code will be inserted from
the SPA into the first segment of the input message. IMS TM then routes this message from the terminal
to the MPP or BMP that processes the transaction code that was specified in the SPA.

In addition to being ended by the program, a conversation can be ended by the person at the originating
terminal, the master terminal operator, and IMS.

• The person at the originating terminal can end the conversation by issuing one of several commands:
/EXIT

The person at the terminal can enter the /EXIT command by itself, or the /EXIT command
followed by the conversational identification number assigned by the IMS TM system.

/HOLD
The /HOLD command stops the conversation temporarily to allow the person at the terminal to
enter other transactions while IMS TM holds the conversation. When IMS TM responds to the /HOLD
command, it supplies an identifier that the person at the terminal can later use to reactivate the
conversation. The /RELEASE command followed by this identifier reactivates the conversation.

• /START LINE. The master terminal operator can end the conversation by entering a /START LINE
command (without specifying a PTERM) or /START NODE command for the terminal in the conversation
or a /START USER command for a signed-off dynamic user in conversation.

• IMS TM ends a conversation if, after the program successfully issues a GU call or an ISRT call to return
the SPA, the program does not send a response to the terminal. In this situation, IMS TM sends the
message DFS2171I NO RESPONSE, CONVERSATION TERMINATED to the terminal. IMS TM then
terminates the conversation and performs commit point processing for the application program.

Related concepts
“Sending messages to other IMS application programs” on page 393

Chapter 25. Message processing with IMS TM 405

A program-to-program switch occurs when an IMS application running in an IMS dependent region sends
a message to another IMS application running in an IMS dependent region.
“Conversational structure” on page 399
Structuring your conversational program depends on the interactions between your program and the
person at the terminal.
Related tasks
“Deferred program switching for conversational JMP applications” on page 696
You can make a deferred program switch in a conversational JMP application. A deferred program switch
changes the transaction code in the scratchpad area (SPA) before the SPA is returned to IMS. When
an application makes a deferred program switch, the application replies to the terminal and passes the
conversation to another conversational application.
“Immediate program switching for JMP and JBP applications” on page 694
The IMS Java dependent region resource adapter supports immediate program switching in JMP and JBP
applications. An immediate program switch passes the conversation directly to another conversational
program that is specified by an alternate PCB.

Message switching in APPC conversations
With the system service DFSAPPC, you can transfer messages between separate LU 6.2 devices and
between an LU 6.2 device and another terminal supported by IMS TM. Message delivery with DFSAPPC is
asynchronous, so messages are held on the IMS TM message queue until they can be delivered.

To send a message with DFSAPPC, specify the logical terminal name of an IMS TM terminal or the
Transaction Program (TP) name of an LU 6.2 device.

DFSAPPC format
The message format for DFSAPPC is as follows:

DFSAPPC (options)user_data

DFSAPPC can be coded as follows:

DFSAPPCb (LTERM=  value
,

LU= value

MODE= value

TYPE= B

N

SIDE= value

SYNC= N

C

TPN= valueb

)

A blank (b) is required between DFSAPPC and the specified options.

Blanks are valid within the specified options except within keywords or values. Either commas or blanks
can be used as delimiters between options, but because the use of commas is valid, the TP name must be
followed by at least one blank.

If an LU 6.2 conversation has not been established from other sources (for example, during a CPI-C driven
application program), DFSAPPC is used to establish the conversation with a partner LU 6.2 device. If no
options are specified with DFSAPPC, IMS TM default options are used.

406 IMS: Application Programming

Option keywords
LTERM=

Specifies the LTERM name of an IMS TM logical terminal. An LTERM name can contain up to eight
alphanumeric or national (@, $, #) characters. If you specify LTERM, you cannot specify the other
option keywords.

LU=
Specifies the LU name of the partner in an LU 6.2 conversation. The LU name can contain up to eight
alphanumeric or national characters, but the first character must be a letter or a national character. If
both LU and SIDE options are specified, LU overrides the LU name contained in the side information
entry but does not change that LU name.

If the LU name is a network-qualified name, it can be up to 17 characters long and consist
of the network ID of the originating system, followed by a '.', and the LU name (for example,
netwrkid.luname). The LU name and the network ID can be up to eight characters long.

MODE=
Specifies the MODE name of the partner in an LU 6.2 conversation. The MODE name can contain up
to eight alphanumeric or national characters, but the first character must be a letter or a national
character. If both MODE and SIDE option keywords are specified, MODE overrides the MODE name
contained in the side information entry but does not change that MODE name.

TPN=
Specifies the transaction program (TP) name of the partner in an LU 6.2 conversation. The TP name
can contain up to 64 characters from the 00640 character set. Because the character set allows
commas, at least one blank must follow the TP name. If both TPN and SIDE option keywords are
specified, TPN overrides the TP name contained in the side information entry but does not change
that name.

Related Reading: The CPI Communications Specification describes the 00640 character set, which
contains all alphanumeric and national characters and 20 special characters.

SIDE=
Specifies the name of the side information entry for the partner in an LU 6.2 conversation. The side
information entry name can contain up to eight characters from the 01134 character set. If the SIDE
option keyword is specified, it can be overridden with LU, MODE, and TPN option keywords.

Related Reading: The CPI Communications Specification describes the 01134 character set, which
contains the uppercase alphabet and the digits, 0-9.

SYNC=N|C
Specifies the synchronization level of the LU 6.2 conversation. N selects none as the synchronization
level, and C selects confirm as the synchronization level.

TYPE=B|M
Specifies the conversation type for the LU 6.2 conversation. B selects a basic conversation type, and M
selects a mapped conversation type.

Processing conversations with APPC
APPC/IMS supports standard, modified, and CPI Communications driven application programs.

The three types of application programs supported by APPC/IMS

• Standard: No explicit use of CPI Communications facilities.
• Modified: Uses the I/O PCB to communicate with the original input terminal. Uses CPI Communications

calls to allocate new conversations and to send and receive data.
• CPI Communications driven: Uses CPI Communications calls to receive the incoming message and

to send a reply on the same conversation. Uses the DL/I APSB call to allocate a PSB to access IMS
databases and alternate PCBs.

In the modified or CPI Communications driven application programs, if an APPC conversation is allocated
with SYNCLVL=SYNCPT, z/OS manages the sync-point process for the APPC conversation participants: the

Chapter 25. Message processing with IMS TM 407

application program and IMS. Transaction rollback and rescheduling is possible, because IMS issues the
SRRCMIT or SRRBACK calls on behalf of the modified IMS APPC application program. If the CPI-C driven
program is linked with the IMS stub code (DFSCPIR0) as required in previous releases, IMS also issues
the SRRCMIT or SRRBACK calls. If the program is not linked with the stub code, then IMS is driven by the
z/OS sync point manager when the application issues these calls. With z/OS as the sync point manager,
failures can also be backed out.

You can schedule your standard and modified application programs locally and remotely using MSC or
APPC/MVS. The logic flow for local scheduling differs from the logic flow for remote scheduling.

Scheduling programs remotely through MSC is not supported if an APPC/MVS conversation with
SYNCLVL=SYNCPT is specified.

Ending the APPC conversation
You can end a conversation using LU 6.2 devices by issuing the CPI-C verb, DEALLOCATE, or by inserting a
blank transaction code into the SPA for IMS conversational transactions.

Restriction: You cannot use the /EXIT command for LU 6.2 conversations.

Several error conditions can exist at the end of an LU 6.2 conversation:

• If your application program sends data to the LU 6.2 device just before deallocating conversation,
IMS TM issues a SENDERROR and SENDDATA of the DFS1966 error message. This indicates that the
transaction ended, but that the last message could not be delivered. For SENDERROR to be activated,
specify a synchronization level of CONFIRM.

• If IMS TM encounters an error sending output from an IMS TM conversational transaction to the LU 6.2
device, the output is discarded, and the conversation is terminated for both IMS TM and LU 6.2.

• If an IMS TM conversational application program abends during an LU 6.2 conversation, a DFS555 error
message is sent to the originating LU 6.2 device, and the conversation is terminated for both IMS TM
and LU 6.2.

Coding a conversational program
Before coding a conversational program, you need to obtain the following information.

• The transaction code to use for a program to which you pass control
• The data that you should save in the SPA
• The maximum length of that data

A SPA contains four fields:

• The 2-byte length field.
• The 4-byte field that is reserved for IMS TM.
• The 8-byte transaction code.
• The work area where you store the conversation data. The length of this field is defined at system
definition.

Standard IMS application programs
Standard IMS application programs use the existing IMS call interface. Application programs that use the
IMS standard API can take advantage of the LU 6.2 protocols.

Standard IMS application programs use a DL/I GU call to get the incoming transaction. These standard
IMS application programs also use DL/I ISRT calls to generate output messages to the same or different
terminals, regardless of whether LU 6.2 is used. The identical program can work correctly for both LU 6.2
and non-LU 6.2 terminal types. IMS generates the appropriate calls to APPC/MVS services.

A non-message-driven BMP is considered a standard IMS application program when it does not use the
explicit API.

408 IMS: Application Programming

When an advanced program-to-program communication (APPC) application program enters an IMS
transaction that executes on a remote IMS, an LU 6.2 conversation is established between the APPC
application program and the local IMS system. The local IMS is considered the partner LU of the LU 6.2
conversation. The transaction is then queued on the remote transaction queue of the local IMS system.
From this point on, the transaction goes through normal MSC processing. After the remote IMS system
executes the transaction, the output is returned to the local IMS system and is then delivered to the
originating LU 6.2 application program.

Modified IMS application programs
Modified IMS application programs use a DL/I GU call to get the incoming transaction. These modified
IMS application programs also use DL/I ISRT calls to generate output messages to the same or different
terminals, regardless of whether LU 6.2 is used.

A non-message-driven BMP is considered a modified standard IMS application program when it uses
the explicit API. Unlike standard IMS application programs, modified IMS application programs use CPI
Communications calls to allocate new conversations, and to send and receive data. IMS has no direct
control of these CPI Communications conversations.

Modified IMS transactions are indistinguishable from standard IMS transactions until program execution.
In fact, the same application program can be a standard IMS application on one execution, and a modified
IMS application on a different execution. The distinction is simply whether the application program uses
CPI Communications resources.

Modified IMS programs are scheduled by IMS TM, and the DL/I calls are processed by the DL/I
language interface. The conversation, however, is maintained by APPC/MVS, and any failures that involve
APPC/MVS are not backed out by IMS TM. The general format of a modified IMS application program is
shown in the following code example.

• GU IOPCB

ALLOCATE
SEND
RECEIVE
DEALLOCATE

• ISRT IOPCB

Figure 79. General format of a modified DL/I application program

Restriction: The APPC conversation cannot span sync points. If the conversation is not deallocated
before a sync point is reached, IMS causes the conversation to be terminated by issuing a clean TP call
(ATBCMTP). A new APPC conversation can be allocated after each sync point.

When an APPC program enters an IMS transaction that executes on a remote IMS system, an LU 6.2
conversation is established between the APPC program and the local IMS system. The local IMS system
is considered the partner LU of the LU 6.2 conversation. The transaction is then queued on the local
IMS system's remote transaction queue. From this point on, the transaction goes through normal MSC
processing. After the remote IMS system executes the transaction, the output is returned to the local IMS
and is then delivered to the originating LU 6.2 program.

Related Reading: For more information on failure recovery and modified DL/I application program
design, see IMS Version 15.3 Application Programming APIs.

CPI-C driven application programs
CPI Communications driven application programs are defined only in the APPC/MVS TP_Profile data
set; they are not defined to IMS. Their definition is dynamically built by IMS when a transaction is
presented for scheduling by APPC/MVS, based on the APPC/MVS TP_Profile definition after IMS restart.
The definition is keyed by TP name. APPC/MVS manages the TP_Profile information.

Chapter 25. Message processing with IMS TM 409

When a CPI Communications driven transaction program requests a PSB, the PSB must already be
defined to IMS through the APPLCTN macro for system definition and through PSBGEN or ACBGEN when
APPLCTN PSB= is specified. When APPLCTN GPSB= is specified, a PSBGEN or ACBGEN is not required.

CPI-C driven application programs must begin with the CPI-C verbs, ACCEPT and RECEIVE, to initiate
the LU 6.2 conversation. You can then issue the APSB call to allocate a PSB for use by the application
program. After the APSB call is issued, you can issue additional DL/I calls using the PCBs that were
allocated. You then issue the SRRCMIT verb to commit changes or the SRRBACK verb to back out
changes. To use SRRCMIT and SRRBACK, your application program must be linked with DFSCPIR0.

Restriction: The I/O PCB cannot be used for message processing calls by CPI-C driven application
programs. See the description of each call for specific CPI restrictions.

To deallocate the PSB in use, issue the DPSB call. You can then issue another APSB call, or use the CPI-C
verb, DEALLOCATE, to end the conversation.

CPI-C driven application programs are considered discardable (unless they are allocated with a
SYNCLVL=SYNCPT) by IMS TM and are therefore not recovered automatically at system failure. If they
are allocated with a SYNCLVL=SYNCPT, a two-phase commit process is used to recover from any failures.
The general format of a CPI-C driven application program is shown in the following code example.

• ACCEPT
• RECEIVE

– APSB

GU DBPCB
REPL DBPCB
SRRCMIT

– DPSB
• DEALLOCATE

Figure 80. General format of a CPI-C driven application program

Related concepts
CPI-C driven application programs (Communications and Connections)

Processing conversations with OTMA
You can run IMS conversational transactions through OTMA.

Refer to IMS Version 15.3 Communications and Connections.

Backing out to a prior commit point: ROLL, ROLB, and ROLS calls
When a program determines that some of its processing is invalid, you can use these calls to remove the
effects of its incorrect processing: Roll Back calls ROLL, ROLS using a database PCB, ROLS with no I/O
area or token, and ROLB.

When you issue one of these calls, IMS does the following:

• Backs out the database updates that the program has made since the program’s most recent commit
point.

• Cancels the non-express output messages that the program has created since the program’s most
recent commit point.

The main difference among these calls is that ROLB returns control to the application program after
backing out updates and canceling output messages, ROLS does not return control to the application
program, and ROLL terminates the program with a user abend code of 0778. ROLB can return to the
program the first message segment since the most recent commit point, but ROLL and ROLS cannot.

410 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_cpic_apps.htm#ims_cpic_apps

The ROLL and ROLB calls, and the ROLS call without a token specified, are valid when the PSB contains
PCBs for Generalized Sequential Access Method (GSAM) data sets. However, segments inserted in the
GSAM data sets since the last commit point are not backed out by these calls. An extended checkpoint-
restart can be used to reposition the GSAM data sets when restarting.

You can use a ROLS call either to back out to the prior commit point or to back out to an intermediate
backout point established by a prior SETS call. This section refers only to the form of ROLS that backs out
to the prior commit point.

Related concepts
“Backing out to an intermediate backout point: SETS, SETU, and ROLS” on page 267
You can use a ROLS call either to back out to an intermediate backout point that was established by a
prior SETS or SETU call, or to back out to the prior commit point.

Comparison of ROLB, ROLL, and ROLS
The following table provides a comparison of the ROLB, ROLL, and ROLS calls.

Table 84. Comparison of ROLB, ROLL, and ROLS

Actions taken ROLB ROLL ROLS

Back out database updates since the last commit
point.

X X X

Cancel output messages created since the last commit
point.

X1 X1 X1

Delete the message in process from the queue.
Previous messages (if any) processed since the last
commit point are returned to the queue to be
reprocessed.

X

Return the first segment of the first input message
since the most recent commit point.

X2

3303 abnormal termination and returns the processed
input messages to the message queue.

X3

778 abnormal termination, no dump. X

No abend; program continues processing. X

Notes:

1. ROLB, ROLL, or ROLS cancel output messages sent with an express PCB unless the program issued a
PURG.

For example, if the program issues the following call sequence, MSG1 would be sent to its destination
because the PURG tells IMS that MSG1 is complete and the I/O area now contains the first segment of
the next message (which in this example is MSG2). MSG2, however, would be canceled:

ISRT EXPRESS PCB, MSG1
PURG EXPRESS PCB, MSG2
ROLB I/O PCB

Because IMS has the complete message (MSG1) and because an express PCB is being used, the
message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call parameters.
3. The transaction is suspended and requeued for subsequent processing.

Chapter 25. Message processing with IMS TM 411

ROLL
A ROLL call backs out the database updates and cancels any non-express output messages the program
has created since the last commit point. It also deletes the current input message. Any other input
messages processed since the last commit point are returned to the queue to be reprocessed. IMS then
terminates the program with a user abend code 0778. This type of abnormal termination terminates the
program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function, ROLL.

You can use the ROLL call in a batch program. If your system log is on direct access storage, and if
dynamic backout has been specified through the use of the BKO execution parameter, database changes
since the last commit point will be backed out. Otherwise they will not be backed out. One reason for
issuing ROLL in a batch program is for compatibility.

After backout is complete, the original transaction is discarded if it is discardable, and it is not re-
executed. IMS issues the APPC/MVS verb ATBCMTP TYPE(ABEND) specifying the TPI to notify remote
transaction programs. Issuing the APPC/MVS verb causes all active conversations (including any spawned
by the application program) to be DEALLOCATED TYP(ABEND_SVC).

ROLB
The advantage of using ROLB is that IMS returns control to the program after executing ROLB, so the
program can continue processing.

The parameters for ROL are:

• The call function ROLB
• The name of the I/O PCB or AIB

The total effect of the ROLB call depends on the type of IMS application that issued it.

• For current IMS application programs:

After IMS backout is complete, the original transaction is represented to the IMS application program.
Any resources that cannot be rolled back by IMS are ignored. For example, output sent to an express
alternate PCB and a PURG call is issued before the ROLB.

• For modified IMS application programs:

The same consideration for the current IMS application programs applies. It is the responsibility of the
application program to notify any spawned conversations that a ROLB was issued.

• For CPI-C driven IMS application programs:

Only IMS resources are affected. All database changes are backed out. Any messages inserted to
nonexpress alternate PCBs are discarded. Also, any messages inserted to express PCBs that have
not had a PURGE call are discarded. It is the responsibility of the application program to notify the
originating remote program and any spawned conversations that a ROLB call was issued.

In MPPs and transaction-oriented BMPs
If the program supplies the address of an I/O area as one of the ROLB parameters, the ROLB call acts as
a message retrieval call and returns the first segment of the first input message since the most recent
commit point. This is true only if the program has issued a GU call to the message queue since the last
commit point; it if has not, it was not processing a message when it issued the ROLB call.

If the program issues a GN to the message queue after issuing the ROLB, IMS returns the next segment
of the message that was being processed when ROLB was issued. If there are no more segments for that
message, IMS returns a QD status code.

If the program issues a GU to the message queue after the ROLB call, IMS returns the first segment of the
next message to the application program. If there are no more messages on the message queue for the
program to process, IMS returns a QC status code to the program.

412 IMS: Application Programming

If you include the I/O area parameter, but you have not issued a successful GU call to the message queue
since the last commit point, IMS returns a QE status code to your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the same things for you. If the
program has issued a successful GU in the commit travel, and then issues a GN, IMS returns a QD status
code. If the program issues a GU after the ROLB, IMS returns the first segment of the next message, or a
QC status code if there are no more messages for the program.

If you have not issued a successful GU since the last commit point, and you do not include an I/O area
parameter on the ROLB call, IMS backs out the database updates and cancels the output messages
created since the last commit point.

In batch programs
If your system log is on direct access storage, and if dynamic backout has been specified through the use
of the BKO execution parameter, you can use the ROLB call in a batch program. The ROLB call does not
process messages as it does for message processing programs (MPPs); it backs out the database updates
since the last commit point and returns control to your program. You cannot specify the address of an
I/O area as one of the parameters on the call; if you do, an AD status code is returned to your program.
You must, however, have an I/O PCB for your program. Specify CMPAT=YES on the CMPAT keyword in the
PSBGEN statement for your program’s PSB.

Related Reading: For more information on using the CMPAT keyword, see IMS Version 15.3 System
Utilities. For information on coding the ROLB call, see the topic "ROLB Call" in IMS Version 15.3
Application Programming APIs.

ROLS
You can use the ROLS call to back out to the prior commit point and return the processed input messages
to IMS for later reprocessing.

In your program, you can either:

• Issue the ROLS call using the I/O PCB but without an I/O area or token in the call. The parameters for
this form of the ROLS call are:

– The call function ROLS
– The name of the I/O PCB or AIB

• Issue the ROLS call using a database PCB that has received one of the data-unavailable status codes.
This has the same result as if unavailable data were encountered, and the INIT call was not issued.
ROLS must be the next call for that PCB. Intervening calls using other PCBs are permitted.

On a ROLS with a token, message queue repositioning can occur for all non-express messages including
all messages processed by IMS. This processing using APPC/MVS calls and includes the initial message
segments. The original input transaction can be represented to the IMS application program. Input and
output positioning is determined by the SETS call. This positioning applies to current and modified IMS
application programs but does not apply to CPI-C driven IMS programs. The IMS application program
must notify all remote transaction programs of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying the TPI.
Issuing this verb causes all conversations associated with the application program to be DEALLOCATED
TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device and IMS received the
message from APPC/MVS, a discardable transaction is discarded rather than being placed on the suspend
queue like a non-discardable transaction.

Related Reading: For more information on LU 6.2, see IMS Version 15.3 Communications and
Connections.

The parameters for this form of the ROLS call are:

• The call function, ROLS
• The name of the DB PCB that received the BA or BB status code

Chapter 25. Message processing with IMS TM 413

In both of the ways to use ROLS calls, the ROLS call causes a 3303 abnormal termination and does not
return control to the application program. IMS keeps the input message for future processing.

Backing out to an intermediate backout point: SETS/SETU and
ROLS

You can use a ROLS call either to back out to an intermediate backout point established by a prior SETS or
SETU call or to back out to the prior commit point.

This section refers only to the form of ROLS that backs out to the intermediate backout point. For
information about the other form of ROLS, see 'Backing out to a prior commit point: ROLL, ROLB, and
ROLS calls'.

The ROLS call that backs out to an intermediate point backs out only DL/I changes. This version of the
ROLS call does not affect CICS changes using CICS file control or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing of the application
program and then backout database changes to any of these points. Up to nine intermediate backout
points can be set. The SETS call specifies a token for each point. IMS then associates this token with the
current processing point. A subsequent ROLS call, using the same token, backs out all database changes
and discards all non-express messages that were performed following the SETS call with the same token.
The figure below shows how the SETS and ROLS calls work together.

In addition, to assist the application program in reestablishing other variables following a ROLS call, user
data can be included in the I/O area of the SETS call. This data is then returned when the ROLS call with
the same token is issued.

Figure 81. SETS and ROLS calls working together

414 IMS: Application Programming

SETS/SETU
The SETS call sets up to nine intermediate backout points or cancels all existing backout points. By using
the SETS call, you can back out pieces of work. If the necessary data to complete one piece of work is
unavailable, you can complete a different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB and include an I/O area and a
token. The I/O area has the format LLZZ user-data, where LL is the length of the data in the I/O area
including the length of the LLZZ portion. The ZZ field must contain binary zeros. The data in the I/O area is
returned to the application program on the related ROLS call. If you do not want to save some data to be
returned on the ROLS call, you must set the LL that defines the length of the I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword as it is for the other
languages. The content of the LL field for PLITDLI is consistent with the I/O area for other calls using the
LLZZ format; that is, the content is the total length of the area including the length of the 4-byte LL field
minus 2.

A 4-byte token associated with the current processing point is also required. This token can be a new
token for this program execution or match a token issued by a preceding SETS call. If the token is new, no
preceding SETS calls are canceled. If the token matches the token of a preceding SETS call, the current
SETS call assumes that position. In this case, all SETS calls that were issued subsequent to the SETS call
with the matching token are canceled.

The parameters for this form of the SETS call are:

• The call function SETS
• The name of the I/O PCB or AIB
• The name of the I/O area containing the user data
• The name of an area containing the token

For the SETS call format, see the topic 'SETS/SETU Call' in IMS Version 15.3 Application Programming
APIs.

To cancel all previous backout points, the call is issued using the I/O PCB but does not include an I/O area
or a token. When no I/O area is included in the call, all intermediate backout points set by prior SETS calls
are canceled.

The parameters for this form of the SETS call are:

• The call function SETS
• The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit point processing causes all outstanding
SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the program accesses an attached
subsystem, a partial backout is not possible. In that case, the SETS call is rejected with an SC status code.
If the SETU call is used instead, it is not rejected because of unsupported PCBs, but returns an SC status
code as a warning that the PSB contains unsupported PCBs and the function is not applicable to these
unsupported PCBs.

Related Reading: For the status codes that are returned after the SETS call and the explanation of those
status codes and the response required, see IMS Version 15.3 Application Programming APIs.

ROLS
The ROLS call backs out database changes to a processing point set by a previous SETS or SETU call, or to
the prior commit point and returns the processed input messages to the message queue.

To back out database changes and message activity that have occurred since a prior SETS call, you issue
the ROLS call using the I/O PCB and specifying an I/O area and token in the call. If the token does not
match a token set by a preceding SETS call, an error status is returned. If the token does match the
token of a preceding SETS call, the database updates made since this corresponding SETS call are backed

Chapter 25. Message processing with IMS TM 415

out, and all non-express messages inserted since the corresponding SETS are discarded. The ROLS call
returns blanks if the call is processed, and returns a status code if an error or warning occurs. If you are
using SETU with ROLS and have an external subsystem, the ROLS call will not be rejected, but an RC
status code will be returned as a warning. All SETS points that were issued as part of the processing that
was backed out are then canceled, and the existing database position for all supported PCBs is reset. For
the ROLS call format, see the topic "ROLB Call" in IMS Version 15.3 Application Programming APIs.

The parameters for this form of the ROLS call are:

• The call function ROLS
• The name of the I/O PCB or AIB
• The name of the I/O area to receive the user data
• The name of an area containing the 4-byte token

Related reading: For the status codes that are returned after the ROLS call and the explanations of
those status codes and the response required, see IMS Version 15.3 Messages and Codes, Volume 4: IMS
Component Codes.

Writing message-driven programs
A message-driven program is similar to an MPP: it retrieves messages and processes them, and it can
read and update MSDBs, DEDBs, and full-function databases.

Message-driven programs can send messages to these destinations:

• The logical terminal that sent the input message, by issuing an ISRT call referencing the I/O PCB
• A different component of the physical terminal that sent the input message, by issuing an ISRT call

referencing an alternate response PCB
• A different physical terminal from the one that sent the input message, by issuing an ISRT call

referencing an alternate PCB

The message processing functions available to a message-driven program have some restrictions. These
restrictions apply only to messages received or sent by the I/O PCB. The input message for a message-
driven program must be a single segment message. Therefore, GU is the only call you can use to obtain the
input message. The response message sent by the I/O PCB also must be a single segment message.

The transactions are in the response mode. This means that you must respond before the next message
can be sent. You cannot use SPAs because a message-driven program cannot be a conversational
program.

Not all of the system service calls are available. These system service calls are valid in a message-driven
region:

CHKP (basic)
DEQ
INIT
LOG
SETS
ROLB
ROLS

However, other conditions might restrict their function in this environment. The options or calls issued
using alternate terminal PCBs have no constraints.

Coding DC calls and data areas
The way you code DC calls and data areas depends on the application programming language you use.

416 IMS: Application Programming

Before coding your program
In addition to the information you need about the database processing that your program does, you need
to know about message processing. Before you start to code, be sure you are not missing any of this
information. Also, be aware of the standards at your installation that affect your program.

Information you need about your program's design:

• The names of the logical terminals that your program will communicate with
• The transaction codes, if any, for the application program's MPP skeleton to which your program will

send messages
• The DC call structure for your program
• The destination for each output message that you send
• The names of any alternate destinations to which your program sends messages

Information you need about input messages:

• The size and layout of the input messages your program will receive (if possible)
• The format in which your program will receive the input messages
• The editing routine your program uses
• The range of valid data in input messages
• The type of data that input messages will contain
• The maximum and minimum length of input message segments
• The number of segments in a message

Information you need about output messages:

• The format in which IMS expects to receive output from your application program MPP skeleton
• The destination for the output messages
• The maximum and minimum length of output message segments

MPP code examples
Your MPP application can be written in assembler language, COBOL, C, Pascal, and PL/I.

In the following code examples, the programs do not have all the processing logic that a typical MPP has.
The purpose of providing these programs is to show you the basic MPP structure in assembler language,
COBOL, C language, Pascal, and PL/I. All the programs follow these steps:

1. The program retrieves an input message segment from a terminal by issuing a GU call to the I/O
PCB. This retrieves the first segment of the message. Unless this message contains only one segment,
your program issues GN calls to the I/O PCB to retrieve the remaining segments of the message. IMS
places the input message segment in the I/O area that you specify in the call. In each of skeleton MPP
examples, this is the MSG-SEG-IO-AREA.

2. The program retrieves a segment from the database by issuing a GU call to the DB PCB. This call
specifies an SSA, SSA-NAME, to qualify the request. IMS places the database segment in the I/O area
specified in the call. In this case, the I/O area is called DB-SEG-IO-AREA.

3. The program sends an output message to an alternate destination by issuing an ISRT call to the
alternate PCB. Before issuing the ISRT call, the program must build the output message segment in
an I/O area, and then the program specifies the I/O area in the ISRT call. The I/O area for this call is
ALT-MSG-SEG-OUT.

The sample program is simplified for demonstration purposes; for example, the call to initiate sync point
is not shown in the sample program. Include other IMS calls in a complete application program.

Chapter 25. Message processing with IMS TM 417

Coding your MPP program in assembler language
The coding conventions of an assembler language MPP are the same as those for a DL/I assembler
program.

An assembler language MPP receives a PCB parameter list address in register 1 when it executes its entry
statement. The first address in this list is a pointer to the TP PCB; the addresses of any alternate PCBs
that the program uses come after the I/O PCB address, and the addresses of the database PCBs that the
program uses follow. Bit 0 of the last address parameter is set to 1.

Coding your MPP program in C language
The program shown below is a skeleton MPP written in C language.

The numbers to the right of the program refer to the notes that follow the program. All storage areas that
are referenced in the parameter list of your C language application program call to IMS can reside in the
extended virtual storage area.

Skeleton MPP written in C

 NOTES
#pragma runopts(env(IMS),plist(IMS)) 1
 #include <ims.h>
 #include <stdio.h>
 /* */
 /* ENTRY POINT */
 /* */
 main() { 2
 static const char func_GU[4] = "GU "; 3
 static const char func_ISRT[4] = "ISRT";
 .
 #define io_pcb ((IO_PCB_TYPE *)(_pcblist[0])
4
 #define alt_pcb (_pcblist[1])
 #define db_pcb (_pcblist[2])
 .
 int rc;
5
 .
 #define io_pcb ((IO_PCB_TYPE *)(_pcblist[0])
6
 #define alt_pcb (_pcblist[1])
 #define db_pcb (_pcblist[2])
 .
 rc = ctdli(func_GU, io_pcb, msg_seg_io_area);
7
 .
 rc = ctdli(func_GU, db_pcb, db_seg_io_area, ssa_name);
8
 .
 rc = ctdli(func_ISRT, alt_pcb, alt_msg_seg_out);
9
 .
 }
10
C language interface
11

Note:

1. The env(IMS) establishes the correct operating environment and the plist(IMS) establishes the
correct parameter list, when invoked under IMS. The ims.h header file contains declarations for
PCB layouts, __pcblist, and the ctdli routine. The PCB layouts define masks for the DB PCBs that the
program uses as structures. These definitions make it possible for the program to check fields in the
DB PCBs.

The stdio.h header file contains declarations for sprintf, which is useful for building SSAs.
2. After IMS has loaded the application program's PSB, IMS passes control to the application program

through this entry point.
3. These are convenient definitions for the function codes and could be in one of your include files.

418 IMS: Application Programming

4. These could be structures, with no loss of efficiency.
5. The return code (status value) from DL/I calls can be returned and used separately.
6. The C language run-time sets up the __pcblist values. The order in which you refer to the PCBs must

be the same order in which they have been defined in the PSB: first the TP PCB, then any alternate
PCBs that your program uses, and finally the database PCBs that your program uses.

7. The program issues a GU call to the I/O PCB to retrieve the first message segment. You can leave out
the rc =, and check the status in some other way.

8. The program issues a GU call to the DB PCB to retrieve a database segment. The function codes for
these two calls are identical; the way that IMS identifies them is by the PCB to which each call refers.

9. The program then sends an output message to an alternate destination by issuing an ISRT call to an
alternate PCB.

10. When there are no more messages for the program to process, the program returns control to IMS by
returning from main or by calling exit().

11. IMS provides a language interface module (DFSLI000) that gives a common interface to IMS. This
module must be made available to the application program at bind time.

Coding your MPP program in COBOL
The program shown below is a skeleton MPP in COBOL that shows the main elements of an MPP.

The numbers to the right of each part of the program refer to the notes that follow the program. If
you plan to preload your IBM COBOL for z/OS & VM program, you must use the compiler option RENT.
Alternatively, if you plan to preload your VS COBOL II program, you must use the compiler options RES
and RENT. Enterprise COBOL programs version 4.2 or later must be compiled with the RENT compiler
option to generate reentrant code. For more information about the RENT option, see Compiling and linking
COBOL programs for running under IMS.

If you want to use the IBM COBOL for z/OS & VM compiler to compile a program that is to execute in
AMODE(31) on z/OS, you must use the compiler option RENT. Alternatively, if you want to use the VS
COBOL II compiler to compile a program that is to execute in AMODE(31) on z/OS, you must use the
compiler options RES and RENT. All storage areas that are referenced in the parameter lists of your calls
to IMS can optionally reside in the extended virtual storage area.

IBM COBOL for z/OS & VM and VS COBOL II programs can coexist in the same application.

Important:

Skeleton MPP written in COBOL

 NOTES:
 ENVIRONMENT DIVISION.
 .
 .
 .
 DATA DIVISION.
 WORKING-STORAGE SECTION. 1
 77 GU-CALL PICTURE XXXX VALUE 'GU '.
 77 ISRT-CALL PICTURE XXXX VALUE 'ISRT'.
 77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4.
 01 SSA-NAME.
 .
 01 MSG-SEG-IO-AREA. 2
 .
 01 DB-SEG-IO-AREA.
 .
 01 ALT-MSG-SEG-OUT.
 .
 LINKAGE SECTION.
 01 IO-PCB. 3
 .
 01 ALT-PCB.
 .
 01 DB-PCB.
 .
 PROCEDURE DIVISION USING IO-PCB, ALT-PCB, DB-PCB 4

Chapter 25. Message processing with IMS TM 419

https://www.ibm.com/docs/en/cobol-zos/6.4?topic=ims-compiling-linking-cobol-programs-running-under
https://www.ibm.com/docs/en/cobol-zos/6.4?topic=ims-compiling-linking-cobol-programs-running-under

 .
 CALL 'CBLTDLI' USING GU-CALL, IO-PCB, 5
 MSG-SEG-IO-AREA.
 .
 CALL 'CBLTDLI' USING GU-CALL, DB-PCB, 6
 DB-SEG-IO-AREA, SSA-NAME.
 .
 CALL 'CBLTDLI' USING ISRT-CALL, ALT-PCB, 7
 ALT-MSG-SEG-OUT.
 .
 GOBACK. 8
COBOL LANGUAGE INTERFACE 9

Note:

1. To define each of the call functions that your program uses, use a 77 or 01 level working-storage
statement. Assign the value to the call function in a picture clause defined as four alphanumeric
characters.

2. Use a 01 level working-storage statement for each I/O area that you will use for message segments.
3. In the linkage section of the program, use a 01 level entry for each PCB that your program uses. You

can list the PCBs in the order that you list them in the entry statement, but this is not a requirement.
4. On the procedure statement, list the PCBs that your program uses in the order they are defined in

the program's PSB: first the TP PCB, then any alternate PCBs, and finally the database PCBs that your
program uses.

5. The program issues a GU call to the I/O PCB to retrieve the first segment of an input message.
6. The program issues a GU call to the DB PCB to retrieve the segment that would be described in the

SSA-NAME area.
7. The program sends an output message segment to an alternate destination by using an alternate PCB.
8. When no more messages are available for your MPP to process, you return control to IMS by issuing

the GOBACK statement.

If you compile all of your COBOL programs in the task with VS COBOL II, you can use the GOBACK
statement with its normal COBOL-defined semantics.

Attention: The STOP RUN and EXIT PROGRAM statements are not supported. Using these
statements might cause unpredictable results or abends.

9. If the COBOL compiler option NODYNAM is specified, you must link edit the language interface
module, DFSLI000, with your compiled COBOL application program. If the COBOL compiler option
DYNAM is specified, do not link edit DFSLI000 with your compiled COBOL program.

Coding your MPP program in Pascal
The program shown below is a skeleton MPP written in Pascal.

The numbers to the right of the program refer to the notes that follow the program. All storage areas that
are referenced in the parameter list of your Pascal application program's call to IMS can reside in the
extended virtual storage area.

Skeleton MPP written in Pascal

 NOTES:
 segment PASCIMS; 1
 type
 CHAR4 = packed array [1..4] of CHAR;2
 CHARn = packed array [1..n] of CHAR;
 IOPCBTYPE = record 3
 (* Field declarations *)
 end;
 ALTPCBTYPE = record
 (* Field declarations *)
 end;
 DBPCBTYPE = record
 (* Field declarations *)
 end;

420 IMS: Application Programming

 procedure PASCIMS (var SAVE: INTEGER; 4
 var IOPCB: IOPCBTYPE;
 var ALTPCB: ALTPCBTYPE;
 var DBPCB: DBPCBTYPE); REENTRANT;
 procedure PASCIMS;
 type 5
 SSATYPE = record
 (* Field declarations *)
 end;

 MSG_SEG_IO_AREA_TYPE = record
 (* Field declarations *)
 end;

 DB_SEG_IO_AREA_TYPE = record
 (* Field declarations *)
 end;

 ALT_MSG_SEG_OUT_TYPE = record
 (* Field declarations *)
 end;
 var 6
 MSG_SEG_IO_AREA : MSG_SEG_IO_AREA_TYPE;
 DB_SEG_IO_AREA : DB_SEG_IO_AREA_TYPE;
 ALT_MSG_SEG_OUT : ALT_MSG_SEG_OUT_TYPE;
 const 7
 GU = 'GU ';
 ISRT = 'ISRT';
 SSANAME = SSATYPE(...);
 procedure PASTDLI; GENERIC; 8
 begin
 PASTDLI(const GU, 9
 var IOPCB,
 var MSG_SEG_IO_AREA);
 PASTDLI(const GU, 10
 var DBPCB,
 var DB_SEG_IO_AREA,
 const SSANAME);
 PASTDLI(const ISRT, 11
 var ALTPCB,
 var ALT_MSG_SEG_OUT);
end; 12
Pascal language interface 13

Note:

1. Define the name of the Pascal compile unit.
2. Define the data types needed for the PCBs used in your program.
3. Define the PCB data types used in your program.
4. Declare the procedure heading for the REENTRANT procedure called by IMS. The first word in the

parameter list should be an INTEGER, which is reserved for VS Pascal's use, and the rest of the
parameters will be the addresses of the PCBs received from IMS.

5. Define the data types needed for the SSAs and I/O areas.
6. Declare the variables used for the SSAs and I/O areas.
7. Define the constants (function codes, SSAs, and so forth) used in the PASTDLI DL/I calls.
8. Declare the IMS interface routine with the GENERIC Directive. GENERIC identifies external routines

that allow multiple parameter list formats. A GENERIC routine's parameters are "declared" only when
the routine is called.

9. The program issues a GU call to the I/O PCB to retrieve the first segment of an input message. The
declaration of the parameters in your program might differ from this example.

10. The program can issue a GU call to a DB PCB to retrieve a database segment. The function codes for
these two calls are identical; the way that IMS distinguishes between them is by the PCB to which
each call refers. The declaration of the parameters in your program might differ from this example.

11. The program sends an output message segment to an alternate destination by issuing an ISRT call to
an alternate PCB. The declaration of the parameters in your program might differ from this example.

12. When there are no more messages for your MPP to process, you return control to IMS by exiting the
PASCIMS procedure. You can also code a RETURN statement to leave at another point.

Chapter 25. Message processing with IMS TM 421

13. You must bind your program to the IMS language interface module, DFSLI000, after you have
compiled your program.

Coding your MPP program in PL/I
The following program is a skeleton MPP written in PL/I.

The numbers to the right of the program refer to the notes for the program. All storage areas that are
referenced in the parameter list of your PL/I application program call to IMS can optionally reside in the
extended virtual storage area.

If you plan to execute PL/I programs in 31-bit addressing mode, see Enterprise PL/I for z/OS
Programming Guide.

Skeleton MPP written in PL/I

 NOTES
 /* */
 /* ENTRY POINT */
 /* */
 UPDMAST: PROCEDURE (IO_PTR, ALT_PTR, DB_PTR) 1
 OPTIONS (MAIN);
 DCL FUNC_GU CHAR(4) INIT('GU '); 2
 DCL FUNC_ISRT CHAR(4) INIT('ISRT');
 .
 DCL SSA_NAME...;
 .
 DCL MSG_SEG_IO_AREA CHAR(n); 3
 DCL DB_SEG_IO_AREA CHAR(n);
 DCL ALT_MSG_SEG_OUT CHAR(n);
 .
 DCL 1 IO_PCB BASED (IO_PTR),...; 4
 DCL 1 ALT_PCB BASED (ALT_PTR),...;
 DCL 1 DB_PCB BASED (DB_PTR),...;
 .
 DCL THREE FIXED BINARY(31) INIT(3); 5
 DCL FOUR FIXED BINARY(31) INIT(4);
 DCL PLITDLI ENTRY EXTERNAL;
 .
 CALL PLITDLI (THREE, FUNC_GU, IO_PTR, MSG_SEG_IO_AREA); 6
 .
 CALL PLITDLI (FOUR, FUNC_GU, DB_PTR, DB_SEG_IO_AREA, 7
 SSA_NAME);
 .
 CALL PLITDLI (THREE, FUNC_ISRT, ALT_PTR, ALT_MSG_SEG_OUT); 8
 .
 END UPDMAST; 9
 PL/I LANGUAGE INTERFACE 10

Note:

1. This is the standard entry point to a PL/I Optimizing Compiler MPP. This statement includes a pointer
for each PCB that the MPP uses. You must refer to the PCBs in the same order as they are listed in the
PSB: first the TP PCB, then any alternate PCBs that your program uses, and finally the database PCBs
that your program uses.

2. The program defines each call function that it uses in its data area. In PL/I, you define the function
codes as character strings and assign the appropriate values to them.

3. Define PCB Masks as major structures based on the addresses passed in the PROCEDURE statement.
Although not shown in the example, you will code the appropriate additional fields in the structure,
depending on the type of PCB to which the mask is associated.

4. To define your PCBs, use major structure declarations.
5. PL/I calls have a parameter that is not required in COBOL programs or assembler language programs.

This is the parmcount, and it is always the first parameter. You define the values that your program
will need for the parmcount in each of its calls. The parmcount gives the number of parameters that
follow parmcount itself.

6. The program issues a GU call to the I/O PCB to retrieve the first message segment.

422 IMS: Application Programming

7. The program can issue a GU call to a DB PCB to retrieve a database segment. The function codes for
these two calls are identical; the way that IMS distinguishes between them is by the PCB to which
each call refers.

8. The program then sends an output message to an alternate destination by issuing an ISRT call to an
alternate PCB.

9. When there are no more messages for the program to process, the program returns control to IMS by
issuing the END statement or the RETURN statement.

10. You must bind your program to the IMS language interface module, DFSLI000, after you have
compiled your program.

Message processing considerations for DB2
For the most part, the message processing function of a dependent region that accesses DB2 databases is
similar to that of a dependent region that accesses only DL/I databases. The method each program uses
to retrieve and send messages and back out database changes is the same.

The differences are:

• DL/I statements are coded differently from SQL (structured query language) statements.
• When an IMS TM application program receives control from IMS TM, IMS has already acquired the

resources the program is able to access. IMS TM schedules the program, although some of the
databases are not available. DB2 does not allocate resources for the program until the program issues
its first SQL statement. If DB2 cannot allocate the resources your program needs, your program can
optionally receive an initialization error when it issues its first SQL call.

• When an application issues a successful checkpoint call or a successful message GU call, DB2 closes
any cursors that the program is using. This means that your program should issue its OPEN CURSOR
statement after a checkpoint call or a message GU.

IMS TM and DB2 work together to keep data integrity in these ways:

• When your program reaches a commit point, IMS TM makes any changes that the program has made to
DL/I databases permanent, releases output messages for their destinations, and notifies DB2 that the
program has reached a commit point. DB2 then makes permanent any changes that the program has
made to DB2 databases.

• When your program terminates abnormally or issues one of the IMS TM rollback calls (ROLB, ROLS
without a token, or ROLL), IMS TM cancels any output messages your program has produced, backs out
changes your program has made to DL/I databases since the last commit point, and notifies DB2. DB2
backs out the changes that the program has made to DB2 databases since the last commit point.

Through the Automated Operator Interface (AOI), IMS TM application programs can issue DB2 commands
and IMS TM commands. To issue DB2 commands, the program issues the IMS TM /SSR command
followed by the DB2 command. The output of the /SSR command is routed to the master terminal
operator (MTO).

Chapter 25. Message processing with IMS TM 423

424 IMS: Application Programming

Chapter 26. IMS Spool API
The IMS Spool API support provides feedback to the application program when IMS detects errors in the
print data set options of the CHNG and SETO calls.

For convenience, your application program can display these errors by sending a message to an IMS
printer or by performing another action that lets you examine the parameter lists and feedback area
without looking at a dump listing. This information applies only to the calls as they are used with Spool
API support.

Managing the IMS Spool API overall design
The IMS Spool API (application programming interface) is an expansion of the IMS application program
interface that allows applications to interface directly to JES and create print data sets on the job entry
subsystem (JES) spool. These print data sets can then be made available to print managers and spool
servers to serve the needs of the application.

IMS Spool API design
The IMS Spool API design provides the application program with the ability to create print data sets on
the JES spool using the standard DL/I call interface.

The functions provided are:

Definition of the data set output characteristics
Allocation of the data set
Insertion of lines of print into the data set
Closing and deallocation of the data set
Backout of uncommitted data within the limits of the JES interface
Assistance in controlling an in-doubt print data set

The IMS Spool API support uses existing DL/I calls to provide data set allocation information and to place
data into the print data set. These calls are:

• The CHNG call. This call is expanded so that print data set characteristics can be specified for the print
data set that will be allocated. The process uses the alternate PCB as the interface block associated
with the print data set.

• The ISRT call. This call is expanded to perform dynamic allocation of the print data set on the first
insert, and to write data to the data set. The data set is considered in-doubt until the unit of work (UOW)
terminates. If possible, the sync point process deletes all in-doubt data sets for abending units of work
and closes and deallocates data sets for normally terminating units of work.

• The SETO call. This is a call, SETO (Set Options), introduced by this support. Use this call to create
dynamic output text units to be used with the subsequent CHNG call. If the same output descriptor is
used for many print data sets, the overhead can be reduced by using the SETO call to prebuild the text
units necessary for the dynamic output process.

Sending data to the JES spool data sets
Application programs can send data to the JES spool data sets using the same method that is used to
send output to an alternate terminal. Use the DL/I call to change the output destination to a JES spool
data set.

Use the DL/I ISRT or PURG call to insert a message.

The options list parameter on the CHNG and SETO calls contains the data set printer processing options.
These options direct the output to the appropriate IMS Spool API data set. These options are validated for
the DL/I call by the MVSScheduler JCL Facility (SJF). If the options are invalid, error codes are returned to
the application. To receive the error information, the application program specifies a feedback area in the

© Copyright IBM Corp. 1974, 2022 425

CHNG or SETO DL/I call parameter list. If the feedback area is present, information about the options list
error is returned directly to the application.

IMS Spool API performance considerations
The IMS Spool API interface uses z/OS services within an IMS application while minimizing the
performance impact of the z/OS services on the other IMS transactions and services.

For this reason, the IMS Spool API support places the print data directly on the JES spool at insert
time instead of using the IMS message queue for intermediate storage. The processing of IMS Spool
API requests is performed under the TCB of the dependent region to ensure maximum usage of N-way
processors. This design reduces the error recovery and JES job orientation problems.

JES initiator considerations
Because the dependent regions are normally long-running jobs, some of the initiator or job specifications
might must be changed if the dependent region is using the IMS Spool API.

You might need to limit the amount of JES spool space used by the dependent region to contain the
dynamic allocation and deallocation messages. For example, you can use the JOB statement MSGLEVEL
to eliminate the dynamic allocation messages from the job log for the dependent region. You might be
able to eliminate these messages for dependent regions executing as z/OS started tasks.

Another initiator consideration is the use of the JES job journal for the dependent region. If the job step
has a journal associated with it, the information for z/OS checkpoint restart is recorded in the journal.
Because IMS dependent regions cannot use z/OS checkpoint restart, specify JOURNAL=NO for the JES2
initiator procedure and the JES3 class associated with the dependent regions execution class. You can
also specify the JOURNAL= on the JES3 //*MAIN statement for dependent regions executing as jobs.

Application managed text units
The application can manage the dynamic descriptor text units instead of IMS. If the application manages
the text units, overhead for parsing and text unit build can be reduced.

Use the SETO call to have IMS build dynamic descriptor text units. After they are built, these text units can
be used with subsequent CHNG calls to define the print characteristics for a data set.

To reduce overhead by managing the text units, the text units should be used with several change calls.
An example of this is a wait-for-input (WFI) transaction. The same data set attributes can be used for all
print data sets. For the first message processed, the application uses the SETO call to build the text units
for dynamic descriptors and a subsequent CHNG call with the TXTU= parameter referencing the prebuilt
text units. For all subsequent messages, only a CHNG call using the prebuilt text units is necessary.

Note: No testing has been done to determine the amount of overhead that might be saved using prebuilt
text units.

BSAM I/O area
The I/O area for spool messages can be very large. It is not uncommon for the area to be 32 KB in length.
To reduce the overhead incurred with moving large buffers, IMS attempts to write to the spool data set
from the application's I/O area.

BSAM does not support I/O areas in 31-bit storage for SYSOUT files. If IMS finds that the application's I/O
area is in 31-bit storage:

• A work area is obtained from 24-bit storage.
• The application's I/O area is moved to the work area.
• The spool data set is written from the work area.

If the application's I/O area can easily be placed in 24-bit storage, the need to move the I/O area can be
avoided and possible performance improvements achieved.

Note: No testing has been done to determine the amount of performance improvement possible.

426 IMS: Application Programming

Since a record can be written by BSAM directly from the application's I/O area, the area must be in the
format expected by BSAM. The format must contain:

• Variable length records
• A Block Descriptor Word (BDW)
• A Record Descriptor Word (RDW)

IMS Spool API application coding considerations
Your application can send data to a JES Spool or Print server using a print data set. You can set options for
message integrity and recovering data when failures occur.

Print data formats
The IMS Spool API attempts to provide a transparent interface for the application to insert data to the JES
spool. The data can be in line, page, IPDS, AFPDS, or any format that can be handled by a JES Spool or
Print server that processes the print data set. The IMS Spool API does not translate or otherwise modify
the data inserted to the JES spool.

Message integrity options
The IMS Spool API provides support for message integrity.

This is necessary because IMS cannot properly control the disposition of a print data set when:

• IMS abnormal termination does not execute because of a hardware or software problem.
• A dynamic deallocation error exists for a print data set.
• Logic errors are in the IMS code.

In these conditions, IMS might not be able to stop the JES subsystem from printing partial print data sets.
Also, the JES subsystems do not support a two-phase sync point.

Print disposition
The most common applications using Advanced Function Printing (AFP) are TSO users and batch jobs. If
any of these applications are creating print data sets when a failure occurs, the partial print data sets will
probably print and be handled in a manual fashion. Many IMS applications creating print data sets can
manage partial print data sets in the same manner. For those applications that need more control over
the automatic printing by JES of partial print data sets, the IMS Spool API provides the following integrity
options. However, these options alone might not guarantee the proper disposition of partial print data
sets. These options are the b variable following the IAFP keyword used with the CHNG call.
b=0

Indicates no data set protection

This is probably the most common option. When this option is selected, IMS does not do any special
handling during allocation or deallocation of the print data set. If this option is selected, and any
condition occurs that prevents IMS from properly disposing the print data set, the partial data set
probably prints and must be controlled manually.

b=1
Indicates SYSOUT HOLD protection

This option ensures that a partial print data set is not released for printing without a JES operator
taking direct action. When the data set is allocated, the allocation request indicates to JES that this
print data set be placed in SYSOUT HOLD status. The SYSOUT HOLD status is maintained for this data
set if IMS cannot deallocate the data set for any reason. Because the print data set is in HOLD status,
a JES operator must identify the partial data set and issue the JES commands to delete or print this
data set.

If the print data set cannot be deleted or printed:

Chapter 26. IMS Spool API 427

• Message DFS0012I is issued when a print data set cannot be deallocated.
• Message DFS0014I is issued during IMS emergency restart when an in-doubt print data set is

found. The message provides information to help the JES operator find the proper print data set and
effect the proper print disposition.

Some of the information includes:

– JOBNAME
– DSNAME
– DDNAME
– A recommendation on what IMS believes to be the proper disposition for the data set (for

example, printing or deleting).

By using the Spool Display and Search Facility (SDSF), you can display the held data sets, identify the
in-doubt print data set by DDNAME and DSNAME, and issue the proper JES command to either delete
or release the print data set.

b=2
Indicates a non-selectable destination

This option prevents the automatic printing of partial print data sets. The IMS Spool API function
requests a remote destination of IMSTEMP for the data set when the data set is allocated. The JES
system must have a remote destination of IMSTEMP defined so that JES does not attempt to print any
data sets that are sent to the destination.

If b=2, the name of the remote destination for the print data set must be specified in the destination
name field of the call parameter list when the CHNG call is issued. When IMS deallocates the data set
at sync point, and the data set prints, IMS requests that the data set be transferred to the requested
final remote destination.

If the remote destination is not defined to the JES system, a dynamic allocation failure occurs.
Because this remote destination is defined as non-selectable, and if IMS is unable to deallocate the
print data set and control its proper disposition, the print data set remains associated with remote
destination IMSTEMP when deallocated by z/OS.

When an deallocation error occurs, message DFS0012I is issued to provide details of the deallocation
error and help identify the print data set that requires operator action. When partial print data sets are
left on this special remote destination, the JES operator can display all the print data sets associated
with this JES destination to locate the data set that requires action. The b=2 option simplifies the
operator's task of locating partial print data sets.

Message options
The third option on the IAPF keyword controls informational messages issued by the IMS Spool API
support. These messages inform the JES operator of in-doubt data sets that need action.
c=0

Indicates that no DFS0012I or DFS0014I messages are issued for the print data set. You can specify
c=0 only if b=0 is specified.

c=m
Indicates that DFS0012I and DFS0014I messages are issued if necessary. You can specify c=m or if
b=1 or if b=2, it is the default.

Option c does not affect issuing message DFS0013E.

IMS emergency restart

When IMS emergency restart is performed, DFS0014I messages might be issued if IMS finds that the
proper disposition of a print data set is in-doubt, as a result of the restart. This message is only issued if
the message option for the print data set was requested or c=m on the IAFP variable. When a DFS0014I
message is received, a JES operator might need to find and properly dispose of the print data set. The
DFS0014I message provides a recommended disposition (that is, deletion or printing).

428 IMS: Application Programming

Destination name (LTERM) usage
The standard CHNG call parameter list contains a destination name field. For traditional message calls,
this field contains the LTERM or transaction code that becomes the destination of messages sent using
this alternate PCB. When ISRT calls are issued against the PCB, the data is sent to the LTERM or
transaction.

However, the destination name field has no meaning to the IMS Spool API function unless b=2 is specified
following the IAFP keyword.

When b=2 is specified:

• The name must be a valid remote destination supported by the JES system that receives the print data
sets.

• If the name is not a valid remote destination, an error occurs during dynamic deallocation.

If any option other than 2 is selected, the name is not used by IMS.

The LTERM name appears in error messages and log records. Use a name that identifies the routine
creating the print data set. This information can aid in debugging application program errors.

Understanding parsing errors
When you are diagnosing multiple parsing error return codes, the first code returned is usually the most
informative.

Keywords
The CHNG and SETO calls have two types of keywords. The type of keyword determines what type of
keyword validation IMS should perform. The keyword types are:

• Keywords valid for the calls (for example, IAFP, PRTO, TXTU, and OUTN)
• Keywords valid as operands of the PRTO keyword (for example CLASS and FORMS).

Incorrectly specified length fields can cause errors when IMS checks for valid keywords. When IMS is
checking the validity of keywords on the CHNG and SETO calls, one set of keywords is valid. When IMS is
checking the validity of keywords on the PRTO keyword, another set of keywords is valid. For this reason,
incorrectly specified length fields can cause a scan to terminate prematurely, and keywords that appear
to be valid are actually invalid because of where they occur in the call list. IMS might report that a valid
keyword is invalid if it detects a keyword with an incorrect length field or a keyword that occurs in the
wrong place in the call list.

Status codes
The status code returned for the call can also suggest the location of the error. Although exceptions exist,
generally, an AR status code is returned when the keyword is invalid for the call. An AS status code is
returned when the keyword is invalid as a PRTO option.

Error codes
This topic contains information on Spool API error codes that your application program can receive. The
topic "Diagnosis examples" contains examples of errors and the resulting error codes provided to the
application program.
Error Code

Reason
(0002)

Unrecognized option keyword.

Possible reasons for this error are:

• The keyword is misspelled.

Chapter 26. IMS Spool API 429

• The keyword is spelled correctly but is followed by an invalid delimiter.
• The length specified field representing the PRTO is shorter than the actual length of the options.
• A keyword is not valid for the indicated call.

(0004)
Either too few or too many characters were specified in the option variable. An option variable
following a keyword in the options list for the call is not within the length limits for the option.

(0006)
The length field (LL) in the option variable is too large to be contained in the options list. The options
list length field (LL) indicates that the options list ends before the end of the specified option variable.

(0008)
The option variable contains an invalid character or does not begin with an alphabetic character.

(000A)
A required option keyword was not specified.

Possible reasons for this error are:

• One or more additional keywords are required because one or more keywords were specified in the
options list.

• The specified length of the options list is more than zero but the list does not contain any options.

(000C)
The specified combination of option keywords is invalid. Possible causes for this error are:

• The keyword is not allowed because of other keywords specified in the options list.
• The option keyword is specified more than once.

(000E)
IMS found an error in one or more operands while it was parsing the print data set descriptors.
IMS usually uses z/OS services (SJF) to validate the print descriptors (PRTO= option variable). When
IMS calls SJF, it requests the same validation as for the TSO OUTDES command. Therefore, IMS
is insensitive to changes in output descriptors. Valid descriptors for your system are a function of
the MVS release level. For a list of valid descriptors and proper syntax, use the TSO HELP OUTDES
command.

IMS must first establish that the format of the PRTO options is in a format that allows the use of SJF
services. If it is not, IMS returns the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the error.

Related reading: For more information on SJF return and reason codes, see z/OS MVS Programming:
Authorized Assembler Services Guide .

The range of some variables is controlled by the initialization parameters. Values for the maximum
number of copies, allowable remote destination, classes, and form names are examples of variables
influenced by the initialization parameters.

Diagnosis examples
The following examples illustrate mistakes that can generate the various spool API error codes, and
diagnosis of the problems.

Some length fields are omitted when they are not necessary to illustrate the example. The feedback and
options lists that are shown on multiple lines are contiguous.

Error code (0002)
Two examples of the error code 0002 are shown in this section.

430 IMS: Application Programming

For the first example the options list contains both the keywords PRTO and TXTU. The keyword, TXTU, is
invalid for the SETO call.

CALL = SETO
 OPTIONS LIST = PRTO=04DEST(018),CLASS(A),TXTU=SET1
 FEEDBACK = TXTU(0002)
 STATUS CODE = AR

For the second example, the length field of the PRTO options is too short to contain all of the options. This
means that IMS finds the COPIES and FORMS keywords outside the PRTO options list area and indicates
that they are invalid on the CHNG call.

CALL = CHNG
 OPTIONS LIST = IAFP=N0M,PRTO=0FDEST(018),LINECT(200),CLASS(A),
 COPIES(80),FORMS(ANS)
 FEEDBACK = COPIES(0002),FORMS(0002)
 STATUS CODE = AR

Error code (0004)
For this example, the operand for the OUTN keyword is 9 bytes long and exceeds the maximum value for
the OUTPUT JCL statement.

CALL = CHNG
 OPTIONS LIST = IAFP=N0M,OUTN=OUTPUTDD1
 FEEDBACK = OUTN(0004)
 STATUS CODE = AR

Error code (0006)
The length of the options list for this call is too short to contain all of the operands of the PRTO keyword.

This example shows an options list that is X'48' bytes long and is the correct length. The length field of the
PRTO keyword incorrectly indicates a length of X'5A'. The length of the PRTO options exceeds the length
of the entire options list so IMS ignores the PRTO keyword and scans the rest of the options list for valid
keywords. The feedback area contains the PRTO(0006) code (indicating a length error) and the (0002)
code (indicating that the PRTO keywords are in error). This is because the keywords beyond the first PRTO
keyword, up to the length specified in the options list length field, have been scanned in search of valid
keywords for the call. The status code of AR indicates that the keywords are considered invalid for the call
and not the PRTO keyword.

CALL = CHNG
 0400 05
 OPTIONS LIST = 0800IAFP=N0M,PRTO=0ADEST(018),LINECT(200),CLASS(A),
 COPIES(3),FORMS(ANS)
 FEEDBACK = PRTO(0006),LINECT(0002),CLASS(0002),COPIES(0002),
 FORMS(0002)
 STATUS CODE = AR

Error code (0008)
In this example, the message option of the IAFP keyword is incorrectly specified as "Z".

CALL = CHNG
 00
 OPTIONS LIST = IAFP=N0Z,PRTO=0BDEST(018)
 FEEDBACK = IAFP(0008) INVALID VARIABLE
 STATUS CODE = AR

Chapter 26. IMS Spool API 431

Error code (000A)
In this example, the valid keyword TXTU is specified, but the call also requires that the IAFP keyword be
specified if the TXTU keyword is used.

CALL = CHNG
 OPTIONS LIST = TXTU=SET1
 FEEDBACK = TXTU(000A)
 STATUS CODE = AR

Error code (000C)
The AR status code is returned with the (000C) error code. This implies that the problem is with the call
options and not with the PRTO options.

The call options list contains the PRTO and TXTU keywords. These options cannot be used in the same
options call list.

CALL = CHNG
 00
 OPTIONS LIST = IAFP=A00,PRTO=0BCOPIES(3),TXTU=SET1
 FEEDBACK = TXTU(000C)
 STATUS CODE = AR

Error code (000E)
In this example, the COPIES parameter has the incorrect value "RG" specified as one of its operands. The
error message indicates that the values for these operands must be numeric.

CALL = CHNG
 01
 OPTIONS LIST = IAFP=A00,PRTO=0BCOPIES((3),(8,RG,18,80))
 FEEDBACK = PRTO(000E) (R.C.=0004,REAS.=00000204) COPIES/RG VALUE
 MUST BE NUMERIC CHARACTERS
 STATUS CODE = AS

This example includes an invalid PRTO operand. The resulting reason code of X'000000D0' indicates that
the XYZ operand is invalid.

CALL = CHNG
 00
 OPTIONS LIST = IAFP=A00,PRTO=0AXYZ(018)
 FEEDBACK = PRTO(000E) (R.C.=0004,REAS.=000000D0) XYZ
 STATUS CODE = AS

Understanding allocation errors
The IMS Spool API interface defers dynamic allocation of the print data set until data is actually inserted
into the data set. Incorrect data set print options on the CHNG or SETO call can cause errors during
dynamic allocation. The print data set options can be parsed during the processing of the CHNG and SETO
calls but some things, for example the destination name parameter, can be validated only during dynamic
allocation.

If one of the print options is incorrect and dynamic allocation fails when the IMS performs the first insert
for the data set, IMS returns a AX status code to the ISRT call. IMA also issues message DFS0013E
and writes a diagnostic log record (67D0) that you can use to evaluate the problem. The format of the
error message indicates the type of service that was invoked and the return and reason codes that were
responsible for the error. The error message can indicate these services:
DYN

MVS dynamic allocation (SVC99)
OPN

MVS data set open

432 IMS: Application Programming

OUT
MVS dynamic output descriptors build (SVC109)

UNA
MVS dynamic unallocation (SVC99)

WRT
MVS BSAM write

If the DFS0013E message indicates an error return code from any of these services, you should
consult the corresponding MVS documentation for more information on the error code. If the service
is for dynamic allocation, dynamic unallocation, or dynamic output descriptor build, see z/OS MVS
Programming: Authorized Assembler Services Guide for the appropriate return and reason codes.

One common mistake is the use of an invalid destination or selection of integrity option 2 (non-selectable
destination) when the destination of IMSTEMP has not been defined to JES. If you specify an invalid
destination in the destination name parameter, the call will result in a dynamic unallocation error
when IMS unallocates the print data set.

Understanding dynamic output for print data sets
IMS can use the z/OS services for Dynamic Output (SVC109) for print data sets. IMS uses this service to
specify the attributes provided by the application for the print data sets being created. The service can be
used on the CHNG call with the PRTO, TXTU, and OUTN options.

Related reading: For more information, see z/OS MVS Programming: Assembler Services Guide.

CHNG call with PRTO option
When you use the CHNG call and PRTO option, IMS activates SJF to verify the print options to call z/OS
services for Dynamic Output. This creates the output descriptors that are used when the print data set is
allocated. This is the simplest way for the application to provide print data set characteristics. However, it
also uses the most overhead because parsing must occur for each CHNG call. If your application is WFI or
creates multiple data sets with the same print options, use another option to reduce the parsing impact.
You must specify the IAFP option keyword with this option.

CHNG call with TXTU option
If your application can manage the text units necessary for Dynamic Output, then you can avoid parsing
for many of the print data sets. You can do this in one of two ways:

• The application can build the text unit in the necessary format within the application area and pass
these text units to IMS with the CHNG call and TXTU option.

• The application can provide the print options to IMS with a SETO call and provide a work area for
the construction of the text units. After z/OS has finished parsing and text construction, the work
area passed will contain the text units necessary for Dynamic Output after a successful SETO call.
The application must not relocate this work area because the work area contains address sensitive
information.

Regardless of the method the application uses to manage the text units, applications that can reuse the
text units can often achieve better performance by using the TXTU option on the CHNG call.

You must specify the IAFP option keyword with this option.

CHNG call with OUTN option
The dependent region JCL can contain OUTPUT JCL statements. If your application can use this method,
you can use the CHNG call and OUTN option to reference OUTPUT JCL statements. When you use the
OUTN option, IMS will reference the OUTPUT JCL statements at dynamic allocation. JES will obtain the
print data set characteristics from the OUTPUT JCL statement. You must specify the IAFP option keyword
with this option.

Chapter 26. IMS Spool API 433

Sample programs using the Spool API
The Spool API provides functions that allow an application program to write data to the IMS Spool using
the same techniques for sending data to native IMS printers.

The Spool API provides functions such as error checking for invalid OUTDES parameters. Error checking
makes application programs more complex. To simplify these application programs, develop a common
routine to manage error information, then make the diagnostic information from the Spool API available
for problem determination.

The sample programs in this section shows how DL/I calls can be coded to send data to the IMS Spool.
Only the parts of the application program necessary to understand the DL/I call formats are included. The
examples are in assembler language.

Application PCB structure
The application PCBs are as follows:

I/O PCB
ALTPCB1
ALTPCB2
ALTPCB3
ALTPCB4

GU call to I/O PCB
IMS application programs begin with initialization and a call to the I/O PCB to obtain the input message.
The following code example shows how to issue a GU call to the I/O PCB.

After completing the GU call to the I/O PCB, the application program prepares output data for the IMS
Spool.

Issuing a GU call to the I/O PCB

* ISSUE GU ON IOPCB *

 L 9,IOPCB I/O PCB ADDRESS
 LA 9,0(9)
 MVC FUNC,=CL4'GU' GU FUNCTION
 CALL ASMTDLI,(FUNC,(9),IOA1),VL
 BAL 10,STATUS CHECK STATUS
* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4' '
IOA1 DC AL2(IOA1LEN),AL2(0)
TRAN DS CL8 TRANSACTION CODE AREA
DATA DS CL5 DATA STARTS HERE
 DC 20F'0'
IOA1LEN EQU *-IOA1

CHNG call to alternate PCB
In the same way that other programs specify the destination of the output using the CHNG call, this
program specifies the IMS Spool as the output destination. For a native IMS printer, the DEST NAME
parameter identifies the output LTERM name. When a CHNG call is issued that contains the IAFP=
keyword, the DEST NAME parameter is used only if integrity option '2' is specified. If option '2' is not
specified, the DEST NAME parameter can be used by the application program to identify something else,
such as the routine producing the change call. The destination for the print data set is established using a
combination of initialization parameters or OUTDES parameters.

The following code example shows how to issue a CHNG call to the alternate modifiable PCB.

After the CHNG call is issued, the application program creates the print data set by issuing ISRT calls.

434 IMS: Application Programming

Issuing a CHNG call to the alternate modifiable PCB

* ISSUE CHNG ON ALTPCB4 *

 L 9,ALTPCB4 ALT MODIFIABLE PCB
 LA 9,0(9) CLEAR HIGH BYTE/BIT
 MVC FUNC,=CL4'CHNG' CHNG FUNCTION
 CALL ASMTDLI,(FUNC,(9),DEST2,OPT1,FBA1),VL
 BAL 10,STATUS CHECK STATUS OF CALL
* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4' '
DEST2 DC CL8'IAFP1' LTERM NAME
*
 DC C'OPT1' OPTIONS LIST AREA
OPT1 DC AL2(OPT1LEN),AL2(0)
 DC C'IAFP='
OCC DC C'M' DEFAULT TO MACHINE CHAR
OOPT DC C'1' DEFAULT TO HOLD
OMSG DC C'M' DEFAULT TO ISSUE MSG
 DC C','
 DC C'PRTO='
PRTO1 EQU *
 DC AL2(PRTO1LEN)
 DC C'COPIES(2),CLASS(T),DEST(RMT003)'
PRTO1LEN EQU *-PRTO1
 DC C' '
OPT1LEN EQU *-OPT1
*
FBA1 DC AL2(FBA1LEN),AL2(0)
 DC CL40' '
FBA1LEN EQU *-FBA1

ISRT call to alternate PCB
Once the IMS Spool is specified as the destination of the PCB, ISRT calls can be issued against the
alternate PCB.

The following code example shows how to issue the ISRT call to the alternate modifiable PCB.

The print data streams can be stored in databases or generated by the application, depending on the
requirements of the application program and the type of data set being created.

Issuing an ISRT call to the alternate modifiable PCB

* ISSUE ISRT TO ALTPCB4 *

 L 9,ALTPCB4 ALT MODIFIABLE PCB
 LA 9,0(9) CLEAR HIGH BYTE/BIT
 MVC FUNC,=CL4'ISRT' ISRT FUNCTION
 CALL ASMTDLI,(FUNC,(9),IOA2),VL
 BAL 10,STATUS CHECK STATUS OF CALL
* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4' '
IOA2 DC AL2(IOA2LEN),AL2(0)
IOA21 DC AL2(MSG2LEN),AL2(0)
 DC C' ' CONTROL CHARACTER
 DC C'MESSAGE TO SEND TO IMS SPOOL'
MSG2LEN EQU *-IOA21
IOA2LEN EQU *-IOA2

Program termination
After the calls are issued, the program sends a message back to originating terminal, issues a GU call to
the I/O PCB, or terminates normally.

Chapter 26. IMS Spool API 435

436 IMS: Application Programming

Chapter 27. IMS Message Format Service
The IMS Message Format Service (MFS) is a facility of the IMS Transaction Manager environment that
formats messages to and from terminal devices, so that IMS application programs do not deal with
device-specific characteristics in input or output messages.

In addition, MFS formats messages to and from user-written programs in remote controllers and
subsystems, so that application programs do not deal with transmission-specific characteristics of the
remote controller.

MFS uses control blocks you specify to indicate to IMS how input and output messages are arranged.

• For input messages, MFS control blocks define how the message sent by the device to the application
program is arranged in the program's I/O area.

• For output messages, MFS control blocks define how the message sent by the application program to
the device is arranged on the screen or at the printer. Data that appears on the screen but not in the
program's I/O area, such as a literal, can also be defined.

In IMS Transaction Manager systems, data passing between the application program and terminals or
remote programs can be edited by MFS or basic edit. Whether an application program uses MFS depends
on the type of terminals or secondary logical units (SLUs) your network uses.

Restriction: MFS does not support message formatting for LU 6.2 devices.

Advantages of using MFS
By using MFS, you can simplify the developing and maintaining of terminal-oriented applications, and
improve online performance by using control blocks for online processing.

Simplify development and maintenance
To simplify IMS application development and maintenance, MFS performs many common application
program functions and gives application programs a high degree of independence from specific devices or
remote programs.

With the device independence offered by MFS, one application program can process data to and from
multiple device types while still using their different capabilities. Thus, MFS can minimize the number of
required changes in application programs when new terminal types are added.

MFS makes it possible for an application program to communicate with different types of terminals
without having to change the way it reads and builds messages. When the application receives a message
from a terminal, how the message appears in the program's I/O area is independent of what kind of
terminal sent it; it depends on the MFS options specified for the program. If the next message the
application receives is from a different type of terminal, you do not need to do anything to the application.
MFS shields the application from the physical device that is sending the message in the same way that a
DB program communication block (PCB) shields a program from what the data in the database actually
looks like and how it is stored.

Other common functions performed by MFS include left or right justification of data, padding, exits
for validity checking, time and date stamping, page and message numbering, and data sequencing
and segmenting. When MFS assumes these functions, the application program handles only the actual
processing of the message data.

The following figure shows how MFS can make an application program device-independent by formatting
input data from the device or remote program for presentation to IMS, and formatting the application
program data for presentation to the output device or remote program.

© Copyright IBM Corp. 1974, 2022 437

Figure 82. Message formatting using MFS

Improve online performance of a terminal
MFS also improves online performance of a terminal-oriented IMS by using control blocks designed
for online processing. The MFS control blocks are compiled offline, when the IMS Transaction Manager
system is not being executed, from source language definitions. MFS can check their validity and make
many decisions offline to reduce online processing. In addition, during online processing, MFS uses
look-aside buffering of the MFS control blocks to reduce CPU and channel costs of input/output activity.

Because MFS control blocks are reentrant and can be used for multiple applications, online storage
requirements are reduced. Optional real storage indexing and anticipatory fetching of the control blocks
can also reduce response time. Further performance improvements can be gained when IMS is generated
for z/OS, since multiple I/O operations can execute concurrently to load the format blocks from the MFS
format library.

In addition, MFS uses z/OS paging services; this helps to reduce page faults by the IMS control region
task.

MFS can reduce use of communication lines by compressing data and transmitting only required data.
This reduces line load and improves both response time and device performance.

MFS control blocks
There are four types of MFS control blocks that you specify to format input and output for the application
program and the terminal or remote program.

The four types are:
Message Output Descriptors (MODs)

Define the layout of messages MFS receives from the application program.
Device Output Formats (DOFs)

Describe how MFS formats messages for each of the devices the program communicates with.
Device Input Formats (DIFs)

Describe the formats of messages MFS receives from each of the devices the program communicates
with.

Message Input Descriptors (MIDs)
Describe how MFS further formats messages so that the application program can process them.

Throughout this information, the term "message descriptors" refers to both MIDs and MODs. The term
"device formats" refers to both DIFs and DOFs.

Each MOD, DOF, DIF and MID deals with a specific message. There must be a MOD and DOF for each
unique message a program sends, and a DIF and MID for each unique message a program receives.

MFS examples
One way to understand the relationship between the MFS control blocks is to look at a message from the
time a user enters it at the terminal to the time the application program processes the message and sends
a reply back to the terminal. Though MFS can be used with both display terminals and printer devices, for
clarity in this example, a display terminal is being used.

The following figure shows the relationships between the MFS control blocks.

438 IMS: Application Programming

Figure 83. MFS control block relationships

Looking at payroll records
Suppose your installation has a message processing program used to view employee payroll records.
From a display terminal, issue the IMS format command (/FORMAT), and the MOD name. This formats
the screen in the way defined by the MOD written by the MFS programmer. When you enter the MOD
name, the screen contains only literals and no output data from the application program. At this stage, no
application program is involved. (For more information about /FORMAT, see IMS Version 15.3 Commands,
Volume 1: IMS Commands A-M.)

In this example, suppose the name of the MOD that formats the screen for this application is PAYDAY.
Enter this command:

/FORMAT PAYDAY

IMS locates the MFS MOD control block with the name PAYDAY and arranges the screen in the format
defined by the DOF.

The following figure shows how this screen looks.

 EMPLOYEE PAYROLL

 FIRST NAME: LAST NAME:
 EMPLOYEE NO:

 INPUT:

Figure 84. PAYDAY screen, formatted by DOF

The DOF defines a terminal format that asks you to give the employee's name and employee number.
PAYUP is the transaction code associated with the application that processes this information. When you
enter the MOD name, the transaction code is included in the first screen format displayed. This means
that you do not need to know the name of the program that processes the data; you only need the name
of the MOD that formats the screen.

Chapter 27. IMS Message Format Service 439

After the screen format is displayed, you can enter the information. There are four stages to sending a
message to the program and receiving the reply:

1. Enter the information at the terminal. For this example, enter the prompted information.

The following figure shows how this screen looks after information is entered.

 EMPLOYEE PAYROLL

 FIRST NAME: Joe LAST NAME: Blutzen
 EMPLOYEE NO: 60249

 INPUT:

Figure 85. PAYDAY screen, with filled input fields
2. When IMS receives this data, MFS uses the DIF and the MID control blocks to translate the data from

the way it was entered on the terminal screen to the way that the application program is expecting to
receive it. The DIF control block tells MFS the format of the data to come in from the terminal. The MID
control block tells MFS how the application program expects to receive the data. When the application
program issues a message call, IMS places the "translated" message in the program's I/O area.

When the application receives the message in its I/O area, the message looks like this:

PAYUP JOE BLUTZEN 60249

"PAYUP" is the transaction code. The name of the logical terminal does not appear in the message
itself; IMS places it in the first field of the I/O PCB.

3. The application program processes the message, including any required database access, and builds
the output message in the application program's I/O area. After retrieving the information from the
database, the program builds the output message segment for the employee, with social security and
rate of pay information. The application program's I/O area contains:

LLZZJOE BLUTZEN 60249532596381150.00

The LL is a 2-byte field in MFS messages that indicates the length of the field. How the LL field
is defined depends on what programming language used to write the application program. For the
AIBTDLI, ASMTDLI, CEETDLI, or PASTDLI interfaces, the LL field must be defined as a binary half word.
For the PLITDLI interface, the LL field must be defined as a binary fullword. The value provided in the
PLITDLI interface must represent the actual segment length minus 2 bytes.

The ZZ is a 2-byte length field in MFS messages that contains the MFS formatting option that is
being used to format the messages to and from the application program. MFS options are discussed
in further detail in the topic "Input Message Formatting Options" in IMS Version 15.3 Application
Programming APIs.

4. When the application program sends the message back to the terminal, MFS translates the message
again, this time from the application program format to the format in which the terminal expects the
data.

The MOD tells MFS the format that the message will be in when it comes from the application
program's I/O area. The DOF tells MFS how the message is supposed to look on the terminal screen.
MFS translates the message and IMS displays the translated message on the terminal screen.

The following figure shows how the screen looks.

440 IMS: Application Programming

 EMPLOYEE PAYROLL

 FIRST NAME: Joe LAST NAME: Blutzen
 EMPLOYEE NO: 60249
 SOC SEC NO: 532-59-6381
 RATE OF PAY: $150.00

 INPUT:

Figure 86. PAYDAY screen, output formatted by DOF and displayed

Listing a subset of employees

Suppose you have an MPP that answers this request:

List the employees who have the skill "ENGINEER" with a skill level of "3." List only those
employees who have been with the firm for at least 4 years.

To enter the request from a display terminal, issue the format command (/FORMAT) and the MOD name.
This formats the screen in the way defined by the MOD you supply. When you enter the MOD name, the
screen contains only literals and no output data from an application program. At this stage, an MPP is
not involved. Suppose the name of the MOD that formats the screen for this request is LE, for "locate
employee." Enter this:

/FORMAT LE

IMS locates the MFS MOD control block with the name LE and arranges your screen in the format defined
by the DOF. Your screen then looks like this:

SKILL
LEVEL
YEARS
 LOCEMP

The DOF defines a terminal format that asks you to qualify your request for an employee by giving the
skill, level, and number of years of service of the employee you want. LOCEMP is the transaction code that
is associated with the MPP that can process this request. When you enter the MOD name, the transaction
code is included in the first screen format that is displayed for you. This means that you do not need the
name of the program that processes your request; you only need the name of the MOD that formats the
screen.

After the screen format is displayed, you can enter your request. There are four stages in sending a
message to the program and receiving the reply.

1. Enter the information at the terminal. In this example, enter the values of the qualifications that IMS
has given you on the screen: the skill is "eng" (engineer), the skill level is "3," and the number of years
with the firm is "4".

After you enter your request, your screen contains this data:

SKILL ENG
LEVEL 3
YEARS 4
 LOCEMP

2. When IMS receives this data, MFS uses the DIF and the MID control blocks to translate the data from
the way you entered it on the terminal screen to the way that the application program is expecting
to receive it. The DIF control block tells MFS how the data is going to come in from the terminal.
The MID control block tells MFS how the application program is expecting to receive the data. When

Chapter 27. IMS Message Format Service 441

the application program issues a GU call to the I/O PCB, IMS places the "translated" message in the
program's I/O area.

When the MPP receives the message in its I/O area, the message looks like this:

LOCEMP ENG0304

"LOCEMP" is the transaction code. The name of the logical terminal does not appear in the message
itself; IMS places it in the first field of the I/O PCB.

3. The MPP processes the message, including any required database access, and builds the output
message in the MPP's I/O area.

Suppose more than one employee meets these qualifications. The MPP can use one message segment
for each employee. After retrieving the information from the database, the program builds the output
message segment for the first employee. The program's I/O area contains:

LLZZJONES,CE 3294

When the program sends the second segment, the I/O area contains:

LLZZBAKER,KT 4105

4. When the application program sends the message back to the terminal, MFS translates the message
again, this time from the application program format to the format in which the terminal expects the
data.

The MOD tells MFS the format that the message will be in when it comes from the application
program's I/O area. The DOF tells MFS how the message is supposed to look on the terminal screen.
MFS translates the message and IMS displays the translated message on the terminal screen. The
screen then contains the following data:

SKILL ENG
NAME NO
JONES,CE 3294
BAKER,KT 4105

Related concepts
“Relationship between MFS control blocks and screen format” on page 442
Use the control blocks in the MFS source language to define the formats that you see at the device.

Relationship between MFS control blocks and screen format
Use the control blocks in the MFS source language to define the formats that you see at the device.

The standard way for an end-user or operator to receive an initial format is to request it with a /FORMAT
command, specifying the name of a MOD. In the following code example, the label on the MOD is PAYDAY.
This MOD contains the parameter SOR=PAYF, which points to a device output format, or DOF, with the
same label.

The initial DOF also becomes the format for device input. Therefore, if you specify DIV TYPE=INOUT in
the DOF, a device input format (DIF) is also generated. In the sample code, PAYF is both a DOF and a
DIF, since it also describes the format of the next input. The final output message can be displayed with a
format that is specified for output only and no DIF is generated.

Both the MOD and the MID point to the same DOF, thus establishing the relationship between device-
related and message-related control blocks.

For output, MFS moves fields defined in a MOD to fields on the screen defined by a DOF. When a field
definition is coded (MFLD) in a MOD, it is given a label. The same label is used in the coding of the device
field (DFLD) in the DOF, defining where the field appears on the screen.

MFS moves data fields from output messages to screen fields; this is referred to as mapping. For input,
MFS moves modified screen fields to data fields in the input message for the program by mapping
identically labeled fields in the DIF and MID.

442 IMS: Application Programming

For more detailed information on specifying these control blocks, see IMS Version 15.3 Database Utilities.

The MFS control blocks are generated from the source statements like those in the following code
example during execution of the MFS Language utility. The control blocks are stored in the various MFS
libraries.

The sample code is designed for a 3270 display.

Sample MFS control block coding

DOF/DIF

PAYF FMT
 DEV TYPE=(3270,2),FEAT=IGNORE,DSCA=X'00A0'
 DIV TYPE=INOUT
 DPAGE CURSOR=((5,15))
 DFLD '**********************',POS=(1,21)
 DFLD '* EMPLOYEE PAYROLL *',POS=(2,21)
 DFLD '**********************',POS=(3,21)
 DFLD 'FIRST NAME:',POS=(5,2)
FNAME DFLD POS=(5,15),LTH=16
 DFLD 'LAST NAME:',POS=(5,36)
LNAME DFLD POS=(5,48),LTH=16
 DFLD 'EMPLOYEE NO:',POS=(7,2)
EMPNO DFLD POS=(7,16),LTH=6
 DFLD 'SOC SEC NO:',POS=(9,2)
SSN DFLD POS=(9,15),LTH=11
 DFLD 'RATE OF PAY: $',POS=(11,2)
RATE DFLD POS=(11,17),LTH=9
 DFLD 'INPUT:',POS=(16,2)
INPUT DFLD POS=(16,10),LTH=30
 FMTEND

MID

PAYIN MSG TYPE:INPUT,SOR=(PAYF,IGNORE)
 SEG
 MFLD 'PAYUP ' SUPPLIES TRANCODE
 MFLD LNAME,LTH=16
 MFLD FNAME,LTH=16
 MFLD EMPNO,LTH=6
 MFLD SSN,LTH=11
 MFLD RATE,LTH=9
 MFLD INPUT,LTH=30,JUST=R,FILL=C'0'
 MSGEND

MOD

PAYDAY MSG TYPE:OUTPUT,SOR=(PAYF,IGNORE)
 SEG
 MFLD LNAME,LTH=16
 MFLD FNAME,LTH=16
 MFLD EMPNO,LTH=6
 MFLD SSN,LTH=11
 MFLD RATE,LTH=9
 MFLD INPUT,LTH=30,JUST=R,FILL=C'0'
 MSGEND

Related reference
“MFS examples” on page 438
One way to understand the relationship between the MFS control blocks is to look at a message from the
time a user enters it at the terminal to the time the application program processes the message and sends
a reply back to the terminal. Though MFS can be used with both display terminals and printer devices, for
clarity in this example, a display terminal is being used.

Chapter 27. IMS Message Format Service 443

Overview of MFS components
IMS Message Format Service (MFS) components include three utilities, a message editor, and two pool
managers.

MFS utilities
You can use the MFS utilities for multiple service and generation purposes:

• MFS Device Characteristics Table utility (DFSUTB00): Define new screen sizes in a descriptor member of
the IMS.PROCLIB library without completing an IMS system definition.

• MFS Language utility (DFSUPAA0): Create and store the MFS control blocks.
• MFS Service utility (DFSUTSA0): Control and maintain MFS intermediate text blocks and control blocks

after they are processed and stored by the MFS Language utility (DFSUPAA0).

In addition to the using the MFS utilities to update MFS libraries, you can also use the IMS online change
function. You can modify control block libraries while the IMS control region is executing.

MFS message editor
Use the MFS message editor to formats messages according to the control block specifications generated
by the MFS Language utility from control statement definitions that you enter.

MFS pool managers
You can customize the functions of the following MFS pool managers:

• MFS pool manager: MFS tries to minimize I/O to the format library by keeping referenced blocks in
storage. This storage is managed by the MFS pool manager. You can use the INDEX function of the MFS
Service utility to customize this function by constructing a list of the directory addresses for specified
format blocks. This list eliminates the need for IMS to read the data set directory before it fetches a
block.

• MFSTEST pool manager: If you use the MFSTEST facility, MFS control blocks are managed by the
MFSTEST pool manager. The communication line buffer pool space allowed for MFS testing is specified
during system definition, but the space can be changed when the IMS control region is initialized. This
space value is the maximum amount used for MFSTEST blocks at any one time. The space value is not a
reserved portion of the pool.

Related concepts
The online change function (System Administration)
MFS components (Communications and Connections)
Use of the message format buffer pool (System Definition)
Related reference
MFS Language utility (DFSUPAA0) (System Utilities)
MFS Service utility (DFSUTSA0) (System Utilities)
MFS Device Characteristics Table utility (DFSUTB00) (System Utilities)

Devices and logical units that operate with MFS
In addition to 3270 devices, MFS operates with the 3600 and 4700 Finance Communication System
(FIN), the 3770 Data Communication System, the 3790 Communication System, and with Secondary
Logical Unit (SLU) types 1, 2, 6, and P. Network Terminal Option (NTO) devices are supported as
secondary logical unit type 1 consoles.

The following table shows which devices or logical units can be defined for MFS operation in the IMS
system by their number (3270, for example), and which can be defined by the type of logical unit to which
they are assigned (SLU 1, for example).

444 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_olc_overt.htm#ims_olc_overt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_msgedtfmt_mfscomps.htm#ims_msgedtfmt_mfscomps
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_ie0i2mfs1000587.htm#ie0i2mfs1000587
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_mfslang.htm#ims_mfslang
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dfsutsa0.htm#ims_dfsutsa0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dfsutb00.htm#ims_dfsutb00

Although the 3600 devices are included in the FIN series, you can specify them with their 36xx
designations; MFS messages use the FIxx designations regardless of which form of designation you
specify. In general, however, application designers and programmers using this information need to know
only how the devices they are defining control blocks for have been defined to the IMS system in their
installation.

Table 85. Terminal devices that operate with MFS

Device Devices
defined by
number1

NTO
devices2

SLU 1 SLU 2 SLU P LU 6.1

3180 X 3 X 3

3270 X 3 X 3

3290 X 3 X 3

5550 X 3 TYPE: 3270-
An 3270-

Ann

3270 printers; 5553,
5557

X 3 COMPTn=
MFS-SCS1

3730 X

3767 COMPTn=
MFS-SCS1

3770 console, printers,
print data set

COMPTn=
MFS-SCS1

X

3770 readers, punches,
transmit data set

COMPTn=
MFS-SCS2

X

3790 print data set
(bulk)

COMPTn=
MFS-SCS1

COMPTn=
MFS-SCS1

DPM-An

3790 transmit data set COMPTn=
MFS-SCS2

3790 attached 3270 X 3

6670

8100 X

8100 attached 3270 X X 3

8100 attached Series/1 X

8100 attached S/32 X

8100 attached S/34 X

8100 attached S/38 X

Finance X COMPTn=
MFS-SCS1

DPM-An

TTY X

3101 X

Chapter 27. IMS Message Format Service 445

Table 85. Terminal devices that operate with MFS (continued)

Device Devices
defined by
number1

NTO
devices2

SLU 1 SLU 2 SLU P LU 6.1

Other systems (IMS to
IMS or IMS to other)

COMPTn=
DPM=Bn

Notes:

1. With options= (...,MFS,...) in the TERMINAL or TYPE macro.
2. Defined with UNITYPE= on the TYPE macro and PU= on the TERMINAL macro.
3. Defaults to operate with MFS.

Logical units are defined by logical unit type or logical unit type with COMPTn= or TYPE= in the TERMINAL
macro or ETO logon descriptor. The LU 6.1 definition refers to ISC subsystems.

The definition for SLU 1 can specify an MFS operation with SNA character strings (SCS) 1 or 2. SCS1
designates that messages are sent to a printer or the print data set or received from a keyboard in
the 3770 Programmable or 3790 controller disk storage; SCS2 designates that messages are sent to or
received from card I/O or a transmit data set.

Terminals defined as SLU 2 have characteristics like the 3270, and like the 3270, can be defined to
operate with MFS. In general, a 3290 terminal operates like a 3270 terminal, and references to 3270
terminals in this information are applicable to 3290 devices. However, 3290 partitioning and scrolling
support is provided only for 3290 devices defined to IMS as SLU 2.

Generally, the 3180 and 5550 terminals operate like a 3270 terminal, and references to 3270 terminals
also apply to these devices. Likewise, the 5553 and 5557 printer devices operate like a 3270P.

Restriction: 5550 Kanji support is provided only for the 5550 terminal defined as an SLU 2 and for the
5553 and 5557 defined as SCS1 printers.

If IMS is to communicate with the user-written remote program in a 3790 or an FIN controller, the device
must be defined as an SLU P. Definitions for SLU P must specify MFS operation as either MFS-SCS1 or
DPM-An, where DPM means distributed presentation management and An is a user-assigned number (A1
through A15).

Most of the MFS formatting functions currently available to other devices, except specific device
formatting, are available to the user-written program. Under user control, these formatting functions
(such as paging) can be divided between MFS and the remote program.

Using distributed presentation management (DPM)
With distributed presentation management (DPM), formatting functions usually performed by MFS are
distributed between MFS and a user-written program for SLU P devices or ISC nodes. If the 3790 or FIN
controller has previously been defined to IMS by unit number, some changes must be made to convert to
DPM.

With DPM, the physical terminal characteristics of the secondary logical unit do not have to be defined to
MFS. MFS has to format only the messages for transmission to the user program in the remote controller
or ISC node, which must assume responsibility for completing the device formatting, if necessary, and
present the data to the physical device it selects.

For remote programs using DPM, the data stream passing between MFS and the remote programs can
be device independent. The messages from the IMS application program can include some device control
characters. If so, the IMS application program and the data stream to the remote program might lose their
device independence.

If IMS is to communicate with other subsystems (such as IMS, CICS or user-written), the other subsystem
must be defined as an ISC subsystem. Definitions for ISC must:

446 IMS: Application Programming

• Specify MFS operation as DPM-Bn, where Bn is a user-assigned number (B1 through B15).
• Define TYPE:LUTYPE6 on the TERMINAL macro during system definition.

DPM with ISC provides:

• Output paging on demand that allows paging to be distributed between IMS and another system
• Automatically paged output that allows MFS pages to be transmitted to another system without

intervening paging requests
• Transaction routing that allows application programs to view the routing information when it is provided

in the input message

Chapter 27. IMS Message Format Service 447

448 IMS: Application Programming

Chapter 28. Callout requests for services or data
IMS applications can issue callout requests for services or data, and optionally receive responses back in
the same or a different transaction, through IMS Connect and OTMA. The request for services or data is a
callout request.

If the IMS application, after issuing the request, waits for a response in the dependent region, the
request is a synchronous callout request. If the IMS application terminates after the request is issued and
does not wait for a response in the dependent region, the request is an asynchronous callout request.
IMS applications can also issue synchronous callout requests to an IMS transaction with a synchronous
program switch request.

Each type of request is processed as follows:

Synchronous callout request
An IMS application program that runs in an IMS dependent region issues a DL/I ICAL call and waits in
the dependent region to process the response. The application program can use the optional control
data area of the DL/I ICAL call to pass routing, security, or other data to IMS Connect and its clients.
When the DL/I ICAL call is issued, IMS generates a correlation token for synchronous callout requests.
This correlation token is included with the callout request and must be returned to IMS with the
response to route the response back to the requesting IMS application program.

Asynchronous callout request
An IMS application program that runs in an IMS dependent region inserts the callout request to
an ALTPCB queue (the ISRT ALTPCB call) and then terminates to free the dependent region. IMS
does not generate a correlation token for asynchronous callout requests. If a response to the callout
request is required, the correlation of the response to the callout request must be managed by the
IMS application program. When IMS receives a response to an asynchronous callout request, IMS
processes the response as a new transaction.

Synchronous program switch request
A synchronous program switch uses the ICAL call, but the request is routed to an IMS transaction
rather than an external server. Synchronous program switch requests do not use a correlation token
because IMS automatically correlates the response back to the waiting application program.

The following table summarizes the differences among synchronous callout requests, asynchronous
callout requests, and synchronous program switch requests.

Table 86. Comparison of synchronous and asynchronous callout requests

Callout process
Synchronous callout
request

Asynchronous callout
request

Synchronous program
switch request

Placing the request in the
OTMA hold queue

The requesting IMS
application issues an ICAL
call with or without control
data.

The requesting IMS
application issues an ISRT
ALTPCB call.

The requesting IMS
application issues an ICAL
call.

Status of the IMS
application after the
request is issued

The application waits in
the dependent region for
the response. Dependent
regions are blocked.

The application
terminates.

The application waits in
the dependent region for
the response. Dependent
regions are blocked.

Message processing
handling

The message processing is
handled by IMS OTMA.

The message processing
is handled by the IMS
message queue.

The message processing
is handled by the IMS
message queue.

© Copyright IBM Corp. 1974, 2022 449

Table 86. Comparison of synchronous and asynchronous callout requests (continued)

Callout process
Synchronous callout
request

Asynchronous callout
request

Synchronous program
switch request

Response handling The response is correlated
back to the requesting
IMS application, based
on the correlation token,
during the same unit of
work.

If there is a response, the
requesting or a different
IMS application must be
coded to handle the
response that is returned
in a different transaction.
The unit of work for the
transaction has to commit
for the asynchronous
output to flow.

The response is returned
to the requesting IMS
application in the same
unit of work. However,
the target transaction
executes in a separate
unit of work, so it is
not eligible for two-phase
commit and it is not
part of the RRS commit
scope for the original
application.

Related reference
ICAL call (Application Programming APIs)

Callout request approaches
You can issue a callout request to IMS Enterprise Suite SOAP Gateway, IMS TM Resource Adapter, IBM
MQ, to your own user-supplied IMS Connect client applications, or to another IMS application program.

For synchronous callout requests, you can optionally include control data in a callout message. By using
control data, you can pass the URL for the port, UUID, user token, security information, or any other
information to the IMS Connect and its client.

Using SOAP Gateway
Use SOAP Gateway to issue callout requests from IMS applications to any generic web service.

SOAP Gateway enables IMS applications as either web service providers or consumers. SOAP Gateway
supports both asynchronous and synchronous callout approaches for IMS applications as web service
consumers. Tooling support for SOAP Gateway is available in IBM Developer for System z® for generating
the required web service artifacts based on connection and interaction information for communicating
with IMS Connect, and the language structure of the IMS applications. SOAP Gateway also provides a
deployment utility to support the deployment of IMS applications as either providers or consumers of web
services.

For SOAP Gateway messages, you can specify an XML converter name in the control data by using
the tags <DFSCNVTR>CONVERTER_NAME</DFSCNVTR>. The converter name and the tags must be in
uppercase EBCDIC. If the converter name is present, it overrides the current converter name that IMS
Connect would have used to process the message. As soon as the converter name is extracted, no further
scanning of the tags will take place for that message. The tags that contain the XML converter name are
not removed from the control data and are sent to SOAP Gateway with any other tags that are present in
the control data.

The following example illustrates control data area with two control data items:

Total Length = 4 + 10 + 8 + 11 + 4 + 9 + 25 + 10 = 81 = X'51'

AIBOPLEN = X'00000051'

Control Data = X'00000021' <DFSCNVTR>CONVERT1</DFSCNVTR> X'00000030'
<USERTAG>USER DATA CAN BE ANYTHING</USERTAG>

For more information about enabling IMS application callout through SOAP Gateway, see Enabling an IMS
application as a web service consumer.

450 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_icalcalltm.htm#ims_icalcalltm
http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.soap32.doc/sgw_serviceconsumer.htm
http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.soap32.doc/sgw_serviceconsumer.htm

Using IMS TM Resource Adapter
Use IMS TM Resource Adapter Version 10 or later to issue synchronous or asynchronous callout requests
from IMS applications to any message-driven bean (MDB), Enterprise JavaBeans (EJB) component, Java
EE (previously known as J2EE) application, or web service.

IMS TM Resource Adapter enables Java EE applications to access IMS transactions over the Internet,
as well as to issue callout requests to external Java EE applications from IMS applications that run in
IMS dependent regions. The IMS TM Resource Adapter includes a runtime component for WebSphere
Application Server. Tooling support for the IMS TM Resource Adapter is available in IBM Rational®
Application Developer for WebSphere Software, as well as various Rational and WebSphere integrated
development environments (IDEs) that include the J2EE Connector (J2C) wizard.

For more information about callout support in IMS TM Resource Adapter, see Callout programming
models (TM Resource Adapter).

Using IBM MQ
You can write applications that make asynchronous callout requests to other applications via IBM MQ.
You must configure the IBM MQ to IMS bridge.

You must also create a destination descriptor for IBM MQ with TYPE=MQSERIES. You can either add the
descriptor to the DFSYDTx member of the IMS PROCLIB data set, or add it with the CREATE OTMADESC
command. The OTMA routing exits (DFSYPRX0 and DFSYDRU0) are not required.

The destination descriptor type for IBM MQ includes parameters that you can use to customize the fields
of the MQMD data structure. The MQMD structure controls how IBM MQ processes messages that use the
descriptor.

Using a user-written IMS Connect TCP/IP application
You can write your own IMS Connect TCP/IP applications or use a vendor-supplied solution that uses
TCP/IP and the IMS Connect protocol to retrieve callout requests. Your custom IMS Connect client
application must issue a RESUME TPIPE call to an OTMA routing destination, also known as a transaction
pipe (tpipe), that is defined in an OTMA destination descriptor. This tpipe holds the callout requests. Your
custom IMS Connect TCP/IP application must poll the tpipe to retrieve the callout requests.

Using IMS synchronous program switch requests
You can use the ICAL call to send a request to another IMS application by creating a destination
descriptor with TYPE=IMSTRAN. This type of callout request is a synchronous program switch.

The IMSTRAN descriptor type specifies the destination transaction, and can also be used to create a late
response message queue. You can either add the descriptor to the DFSYDTx member of the IMS PROCLIB
data set, or add it with the CREATE OTMADESC command. Multiple synchronous program switch requests
can be chained together if the destination application also issues an ICAL call for synchronous program
switch.

OTMA is not required to use the ICAL call for synchronous program switching. You must define an OTMA
destination descriptor for the destination transaction, but IMS schedules the transaction whether or not
OTMA is active.

Control data is not supported for synchronous program switch requests.

Using the Java dependent region resource adapter
The Java dependent region resource adapter supports the Java Message Service (JMS) interface that can
be used by Java applications for the same functionality in Java dependent regions.

IMS™ provides a set of Java™ APIs called the IMS Java dependent region resource adapter to develop
Java applications to run on the IMS Java dependent regions.

Chapter 28. Callout requests for services or data 451

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.tmra/topics/cimscallout.htm#callout
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.tmra/topics/cimscallout.htm#callout

The IMS Java dependent region resource adapter provides Java application programs running in JMP or
JBP regions with similar DL/I functionality to that provided in message processing program (MPP) and
non-message driven BMP regions, such as:

• Accessing IMS message queues to read and write messages
• Performing program switches
• Commit and rollback processing
• Accessing GSAM databases
• Database recovery (CHKP/XRST)

IMS transactions written in Java and leveraging the IMS Universal Java dependent region (JDR) resource
adapter can issue ICAL calls that include control data. The JDR resource adapter invokes the Universal
Drivers C library (DFSCLIBU) through Java Native Interface (JNI) calls to issue the calls from C to the
AIBTDLI interface with the ICAL information.

Use the IMS Java dependent region resource adapter together with the type-2 IMS Universal JDBC driver
or type-2 IMS Universal DL/I driver to perform database operations, including GSAM database access.

Related concepts
Callout requests from IMS application programs (Communications and Connections)
OTMA destination descriptors (Communications and Connections)
Related reference
DFSYDTx member of the IMS PROCLIB data set (System Definition)
ICAL call (Application Programming APIs)

Resume tpipe protocol
The resume tpipe protocol retrieves asynchronous and synchronous callout messages from IMS.

An IMS Connect client signals how long to wait for output from IMS by specifying an IRM timeout value
with the IRM_TIMER field. The IRM timeout value affects the RESUME TPIPE call that is sent to IMS
Connect and the ACK or NAK response message that is sent to IMS Connect.

When you use IMS TM Resource Adapter or IMS Enterprise Suite SOAP Gateway to handle the callout
request from your IMS application, the communication with IMS Connect is handled for you.

Both the IMS TM Resource Adapter and SOAP Gateway listen for synchronous callout requests by
continuously issuing the RESUME TPIPE call to IMS Connect. If a callout request message is on the tpipe
queue, OTMA sends the callout request to IMS Connect, IMS Connect processes the message, converting
the message to XML if necessary (for SOAP Gateway if using the IMS Connect XML adapter function), and
then sends the message to the IMS TM Resource Adapter or SOAP Gateway.

If you have a custom IMS Connect client, you must code the client to issue a RESUME TPIPE call to
retrieve the callout messages

Resume tpipe security
You can protect callout messages from unauthorized use of the RESUME TPIPE call by using either the
Resource Access Control Facility (RACF), the OTMA Resume TPIPE Security user exit (OTMARTUX), or
both.

When security is enabled, the user ID that issues the RESUME TPIPE call must be authorized to access
the tpipe name that is contained in the RESUME TPIPE call message before any messages are sent to an
OTMA client.

The security checking performed by RACF and the security checking performed by the OTMARTUX user
exit are optional. If both RACF and the OTMARTUX are used, RACF is called first before giving control to
the OTMARTUX user exit, in which case, the OTMARTUX user exit can override RACF, depending on your
needs.

452 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_callout_config_overview.htm#ims_otma_callout_config_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsydtx_proclib.htm#ims_dfsydtx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_icalcalltm.htm#ims_icalcalltm

Implementing the synchronous callout function
To issue a synchronous callout request from your IMS application, issue the ICAL call and specify the
OTMA descriptor name.

The ICAL call can also be issued through a REXXTDLI call, or from a Java application that runs in a JMP or
JBP region. Optionally, you can also specify a timeout value (the maximum time to wait for the response
to return).

Input and output messages from IMS can be 32 KB or larger per segment for a synchronous callout
request. However, the maximum segment size is 32 KB for a synchronous program switch request.

The following diagram shows the message flow of the synchronous callout function. The request starts
with an IMS application that issues an ICAL call. The response is returned to the requesting IMS
application.

Chapter 28. Callout requests for services or data 453

Figure 87. Message flow of the synchronous callout function

You can make concurrent ICAL calls from your IMS applications that are routed to the same or different
IMS Connect destinations. By using the RESUME TPIPE call and the send-only protocol, the synchronous
callout function allows the requests to be sent and the responses to be received in different connections
and threads. You can have one connection for retrieving the callout requests and use other connections to
return the response messages simultaneously.

A correlation token is created by IMS to correlate the response message back to the correct IMS
transaction instance. The capability of having different threads and connections for pulling callout
requests and for returning response messages provides maximum concurrency.

Correlation tokens are not used for synchronous program switch requests.

Your application can make an ICAL call with the RECEIVE subfunction code to get the complete
response data for a previously incomplete ICAL call with the SENDRECV subfunction code. However,

454 IMS: Application Programming

your application cannot retrieve the complete response data with a RECEIVE subfunction call after issuing
a subsequent call with the SENDRECV subfunction. Issuing a subsequent ICAL call with the SENDRECV
subfunction code clears the ICAL response buffer in the IMS control region for the previous ICAL call.

The following high-level steps provide an overview of implementing and deploying your synchronous
callout application and function.

1. Create or modify an IMS application for the ICAL call.
2. Define the OTMA destination descriptor for one of the following callout request approaches:

• Send the callout request to an external application viaIMS Enterprise SuiteIMS TM Resource
Adapter.

• Send the callout request to an external application viaIMS Enterprise Suite SOAP Gateway.
• Send the callout request to a user-written IMS Connect client application.
• Send a synchronous program switch request to another IMS application.

The destination descriptor can be defined in the DFSYDTx member of the IMS.PROCLIB data set, or
with the CREATE OTMADESC command.

3. Restart IMS for the newly defined OTMA descriptor.
This step is not required if the descriptor was dynamically added with the CREATE OTMADESC
command.

4. Run the IMS application that was created or modified in step 1 to issue the synchronous callout
request.

The IMS application receives the response message from the synchronous callout target. If the response
message does not fit in the allocated response area, the application can expand the available response
data area and then issue an ICAL call with the RECEIVE subfunction code to get the complete response.

Example COBOL program implementation of the synchronous callout function

To issue the ICAL call in a COBOL program, use the CALL statement.

CALL 'AIBTDLI' USING ICAL, AIB, CA-REQUEST, SCA-RESPONSE.

The following example demonstrates the required AIB field declaration for the ICAL call in the COBOL
program. A complete COBOL example (with part name DFSSSCBL) is provided with the callout IVP sample
in the SDFSSMPL sample library.

01 AIB.
 02 AIBRID PIC x(8) VALUE 'DFSAIB '.
 02 AIBRLEN PIC 9(9) USAGE BINARY.
 02 AIBSFUNC PIC x(8) VALUE 'SENDRECV'.
 02 AIBRSNM1 PIC x(8) VALUE 'OTMDEST1'.
 02 AIBRSNM2 PIC x(8).
 02 AIBRESV1 PIC x(8).
 02 AIBOALEN PIC 9(9) USAGE BINARY VALUE 28.
 02 AIBOAUSE PIC 9(9) USAGE BINARY VALUE 30.
 02 AIBRSFLD PIC 9(9) USAGE BINARY VALUE 5000.
 02 AIBRESV2 PIC x(8).
 02 AIBRETRN PIC 9(9) USAGE BINARY.
 02 AIBREASN PIC 9(9) USAGE BINARY.
 02 AIBERRXT PIC 9(9) USAGE BINARY.
 ...

The following example shows the CA-REQUEST and SCA-RESPONSE declarations in the COBOL program.

* ICAL Request Area
 01 CA-REQUEST.
 02 CA-MESSAGE PIC X(45) VALUE SPACES.

* ICAL Response Area
 01 SCA-RESPONSE.
 02 SCA-MESSAGE PIC X(100) VALUE SPACES.

Chapter 28. Callout requests for services or data 455

Related concepts
OTMA destination descriptors (Communications and Connections)
Callout programming models (TM Resource Adapter)
Related tasks
Modifying an IMS application for callout requests
Related reference
ICAL call (Application Programming APIs)
Examples of DL/I call functions (Application Programming APIs)
“Programming with the Callout API” on page 692
Use the IMSCallout API to issue IMS synchronous callout requests from JMP or JBP applications that
are running in a Java dependent region. Another option is to use the Java Message Service (JMS) API,
which provides limited support.

Control data in synchronous callout requests
When the DL/I ICAL call is used for synchronous callout requests, IMS application programs can specify
the endpoint information or other routing specification for the callout message in the control data area of
the ICAL call during run time when they issue the call.

IMS application programs can make a synchronous callout request by using the ICAL DL/I call. The ICAL
call sends a callout request to an IMS Connect client application and receives a response. The routing
specification of a callout message is defined in the message’s application interface block (AIB) and an
OTMA destination descriptor. You can define up to 4095 destination descriptors in a DFSYDTx member
of the IMS PROCLIB data set. When there are thousands of callout end points for the messages, using
a limited number of OTMA destination descriptor entries for routing specification creates a challenge.
Additionally, there is no easy way to include multiple Universally Unique Identifiers (UUID), SOAP
headers, security token, or even user-provided routing information in the callout message.

To solve this problem, the ICAL call format accepts optional control data, which can be the URL for a
port, UUID, user token, security information, or any other information. By using the control data field, IMS
application programs can specify the routing information or other control data at run time when they issue
the ICAL call.

The control data can consist of 1 to many control data items so that a number of services or operations
can be specified on the same synchronous callout call. Each control data item starts with 4 bytes length
field followed by a tag, data, and an end tag.

The ICAL control data can consist of one to many control data items so that a number of services or
operations can be specified on the same ICAL call. Each control data item starts with a 4-byte length field
followed by a tag, data, and the end tag. Tags can be of any length. The start tag consists of a less than
sign (<), the tag name, and a greater than sign (>). The end tag consists of a less than sign (<), a slash (/),
the tag name that matches the start tag), and a greater than sign (>).

The format of a control data item in ICAL control data is as follows:

LLLL <tag1> data1 </tag1> { LLLL <tag2> data2 </tag2> ... }

An IBM-initiated control data item starts with DFS in the tag, such as <DFSCNVTR>.

The tag name and data contents are treated as binary data and passed "as is" to the target client. The <, /,
and > signs, and IBM-initiated control data tag names, which begin with DFS, must be EBCDIC.

OTMA does the “well-form” checking for the control data to make sure that it follows the supported
format with the correct length. The total length of the control data with control data items needs to be
specified in the AIBOPLEN field in the AIB. OTMA puts the control data in front of the application data and
update the OTMA prefix to indicate the number of segments of control data in the application data section
for a callout message. The OTMA resume tpipe protocol command supports the callout with control data
option.

456 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.tmra/topics/cimscallout.htm#callout
http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.soap32.doc/sgw_modifyimsapp.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_icalcalltm.htm#ims_icalcalltm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallfunctionsexmp.htm#ims_dlicallfunctionsexmp

The IMS Connect user message exits look for a flag in the IRM that indicates whether the client supports
control data. If a flag is set, an appropriate flag is set in the state data section of the OTMA headers for the
resume tpipe. Upon receiving the message that contains control data from IMS, the user message exits
extract the control data from the application data section of the message and build a segment similar to
the callout correlation token segment. This is done for messages other than IMS TM Resource Adapter
messages for IMS Connect. The resulting message from the user message exit will then be transmitted to
the client by IMS Connect.

If you are using SOAP Gateway, you can use control data to specify the name of the XML converter you
would like to use to process the request. In the control data, use the <DFSCNVTR> tags to specify an XML
converter name.

The IMS Java dependent region (JDR) support provides an API for control data of the ICAL call.

The control data is designed for a callout request for an outbound message. The control data in a
response message is not supported.

Implementing the asynchronous callout function
To issue an asynchronous callout request from your IMS application, issue the ISRT ALTPCB call and
specify the OTMA destination descriptor name or the DFSYPRX0 and DFSYDRU0 routing exit routines.

Any response to the callout request that is returned to IMS is handled as a new incoming transaction. If
there is a response, the requesting application or a different IMS application must be coded to handle the
response that is returned in a separate transaction.

Unlike synchronous callout requests, asynchronous callout requests do not require the IMS application
program that issues the request to wait for a response in the dependent region. After it issues an
asynchronous callout request, the application program can terminate and free the dependent region. Any
response to the callout request that is returned to IMS is handled as a new incoming transaction and IMS
schedules a new application program instance to process it.

If an asynchronous callout request generates a response, however, the benefit gained by freeing
dependent regions might be offset by the additional complexity of managing the response. For
asynchronous callout responses, your installation is responsible for developing the method for correlating
the response to the original request. For synchronous callout requests, IMS manages that correlation.

The following high-level steps provide an overview of implementing and deploying your asynchronous
callout application and function.

1. Plan for the correlation of asynchronous callout responses.
2. Create or modify an IMS application to issue an ISRT ALTPCB call for asynchronous callout requests.
3. Define the callout routing information. There are two options to define the required information:

• Define an OTMA routing descriptor.
• Code the DFSYPRX0 and DFSYDRU0 exit routines.

You can use either the routing descriptor, the exit routines, or a combination of both to specify how the
callout request is routed.

4. Optional: Restart IMS for the newly defined OTMA descriptor.
A restart is required only if you create or modify an OTMA routing descriptor in the DFSYDTx member
of the IMS.PROCLIB data set. You do not need to restart IMS if you use the CREATE OTMADESC or
UPDATE OTMADESC commands.

5. Run the IMS application that issues the callout request.
The IMS application is usually triggered through an initiating client, such as a terminal, or an IMS
Connect or OTMA client.

Related concepts
Asynchronous callout request (Communications and Connections)
OTMA destination descriptors (Communications and Connections)

Chapter 28. Callout requests for services or data 457

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_asynchcallout.htm#ims_otma_asynchcallout
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006

Related reference
OTMA User Data Formatting exit routine (DFSYDRU0) (Exit Routines)
OTMA Destination Resolution user exit (DFSYPRX0 and other OTMAYPRX type exits) (Exit Routines)

458 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsydru0.htm#ims_dfsydru0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsyprx0.htm#ims_dfsyprx0

Part 4. Application programming for EXEC DLI
IMS provides support for writing applications to access IMS resources using EXEC DLI.

© Copyright IBM Corp. 1974, 2022 459

460 IMS: Application Programming

Chapter 29. Writing your application programs for
EXEC DLI

You can write programs in assembler language, COBOL, PL/I, C, and C++ that execute EXEC DLI
commands to access IMS.

Programming guidelines
Use the following guidelines to write efficient and error-free EXEC DL/I programs.

The number, type, and sequence of the DL/I requests your program issues affect the efficiency of your
program. A program that is poorly designed runs if it is coded correctly. The suggestions that follow
can help you develop the most efficient design possible for your application program. Inefficiently
designed programs can adversely affect performance and are hard to change. Being aware of how certain
combinations of commands or calls affects performance helps you to avoid these problems and design a
more efficient program.

After you have a general sequence of calls mapped out for your program, use these guidelines to improve
the sequence. Usually an efficient sequence of requests causes efficient internal DL/I processing.

• Use the simplest call. Qualify your requests to narrow the search for DL/I, but do not use more
qualification than required.

• Use the request or sequence of requests that gives DL/I the shortest path to the segment you want.
• Use the fewest number of requests possible in your program. Each DL/I request your program issues

uses system time and resources. You may be able to eliminate unnecessary calls by:

– Using path requests if you are replacing, retrieving, or inserting more than one segment in the same
path. If you are using more than one request to do this, you are issuing unnecessary requests.

– Changing the sequence so that your program saves the segment in a separate I/O area, and then
gets it from that I/O area the second time it needs the segment. If your program retrieves the same
segment more than once during program execution, you are issuing an unnecessary request.

– Anticipating and eliminating needless and nonproductive requests, such as requests that result in
GB, GE, and II status codes. For example, if you are issuing GNs for a particular segment type and
you know how many occurrences of that segment type exist, do not issue the GN that results in
a GE status code. You can keep track of the number of occurrences your program retrieves, and
then continue with other processing when you know you have retrieved all the occurrences of that
segment type.

– Issuing an insert request with a qualification for each parent instead of issuing Get requests for the
parents to make sure that they exist. When you are inserting segments, you cannot insert dependents
unless the parents exist. If DL/I returns a GE status code, at least one of the parents does not exist.

• Keep the main section of the program logic together. For example, branch to conditional routines, such
as error and print routines, in other parts of the program, instead of having to branch around them to
continue normal processing.

• Use call sequences that make good use of the physical placement of the data. Access segments in
hierarchical sequence as much as possible. Avoid moving backward in the hierarchy.

• Process database records in order of the key field of the root segments. (For HDAM databases, this
order depends on the randomizing routine that is used. Check with your DBA for this information.)

• Try to avoid constructing the logic of the program and the structure of commands or calls in a way that
depends heavily on the database structure. Depending on the current structure of the hierarchy reduces
the program's flexibility.

© Copyright IBM Corp. 1974, 2022 461

Coding a program in assembler language
The following sample assembler language program shows how the different parts of a command-level
program fit together, and how the EXEC DLI commands are coded in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS programs. Any differences are
highlighted in the notes for the sample assembler code. The numbering on the right of the sample code
references these notes.

*ASM XOPTS(CICS,DLI)
* 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R11 EQU 11
R12 EQU 12
R13 EQU 13
DFHEISTG DSECT
SEGKEYA DS CL4
SEGKEYB DS CL4 2
SEGKEYC DS CL4
SEGKEY1 DS CL4
SEGKEY2 DS CL4
CONKEYB DS CL8
SEGNAME DS CL8
SEGLEN DS H
PCBNUM DS H
AREAA DS CL80
AREAB DS CL80 3
AREAC DS CL80
AREAG DS CL250
AREASTAT DS CL360
* COPY MAPSET
*

* INITIALIZATION
* HANDLE ERROR CONDITIONS IN ERROR ROUTINE 4
* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
* RECEIVE INPUT MESSAGE

*
SAMPLE DFHEIENT CODEREG=(R2,R3),DATAREG=(R13,R12),EIBREG=R11 5
*
 EXEC CICS HANDLE CONDITION ERROR(ERRORS) 6
*
 EXEC CICS HANDLE ABEND LABEL(ABENDS) 6
*
 EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET') 6
* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
*

* SCHEDULE PSB NAMED 'SAMPLE1'

*
 EXEC DLI SCHD PSB(SAMPLE1) 7
 BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS

*
 MVC SEGKEYA,=C'A300' 8
 EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA) X
 SEGLENGTH(80) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4)
 BAL R4,TESTDIB CHECK STATUS
GNPLOOP EQU *
 EXEC DLI GNP USING PCB(1) INTO(AREAG) SEGLENGTH(250)
 CLC DIBSTAT,=C'GE' LOOK FOR END 9
 BE LOOPDONE DONE AT 'GE'
 BAL R4,TESTDIB CHECK STATUS
 B GNPLOOP
LOOPDONE EQU *
*

* INSERT NEW ROOT SEGMENT

*
 MVC AREAA,=CL80'DATA FOR NEW SEGMENT INCLUDING KEY'
 EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA) X

462 IMS: Application Programming

 SEGLENGTH(80)
 BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM

*
 MVC SEGKEYA,=C'A200'
 MVC SEGKEYB,=C'B240'
 MVC SEGKEYC,=C'C241'
 EXEC DLI GU USING PCB(1) X
 SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) X 10
 FIELDLENGTH(4) X
 INTO(AREAA) X
 SEGLENGTH(80) X
 SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4) X
 INTO(AREAB) X
 SEGLENGTH(80) X
 SEGMENT(SEGC) WHERE(KEYC=SEGKEYC) FIELDLENGTH(4) X
 INTO(AREAC) X
 SEGLENGTH(80)
 BAL R4,TESTDIB
* UPDATE FIELDS IN THE 3 SEGMENTS
 EXEC DLI REPL USING PCB(1) X
 SEGMENT(SEGA) FROM(AREAA) SEGLENGTH(80) X
 SEGMENT(SEGB) FROM(AREAB) SEGLENGTH(80) X
 SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)
 BAL R4,TESTDIB CHECK STATUS
*

* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT

*
 MVC AREAC,=CL80'DATA FOR NEW SEGMENT INCLUDING KEY'
 MVC CONKEYB,=C'A200B240'
 EXEC DLI ISRT USING PCB(1) X
 SEGMENT(SEGB) KEYS(CONKEYB) KEYLENGTH(8) X
 SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)
 BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
* AND THEN DELETE IT AND ITS DEPENDENTS

*
 MVC CONKEYB,=C'A200B230'
 EXEC DLI GU USING PCB(1) X
 SEGMENT(SEGB) X
 KEYS(CONKEYB) KEYLENGTH(8) X
 INTO(AREAB) SEGLENGTH(80)
 BAL R4,TESTDIB CHECK STATUS
 EXEC DLI DLET USING PCB(1) X
 SEGMENT(SEGB) SEGLENGTH(80) FROM(AREAB)
 BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
* OBJECT SEGMENT WITH WHERE OPTION USING A LITERAL,
* AND THEN SET PARENTAGE
*
* USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH

*
 MVC CONKEYB,=C'A200B230'
 MVC SEGNAME,=CL8'SEGA'
 MVC SEGLEN,=H'80'
 MVC PCBNUM,=H'1'
 EXEC DLI GU USING PCB(PCBNUM) X
 SEGMENT((SEGNAME)) X
 KEYS(CONKEYB) KEYLENGTH(8) SETPARENT X
 SEGMENT(SEGC) INTO(AREAC) SEGLENGTH(SEGLEN) X
 WHERE(KEYC='C520')
 BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE DATABASE STATISTICS

*
 EXEC DLI STAT USING PCB(1) INTO(AREASTAT) X
 VSAM FORMATTED LENGTH(360)
 BAL R4,TESTDIB CHECK STATUS
*

Chapter 29. Writing your application programs for EXEC DLI 463

* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS

*
 MVC SEGKEY1,=C'A050'
 MVC SEGKEY2,=C'A150'
 EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA) X
 SEGLENGTH(80) FIELDLENGTH(4,4,4,4) X
 WHERE(KEYA > SEGKEY1 AND KEYA < SEGKEY2
 KEYA > 'A275' AND KEYA < 'A350')
 BAL R4,TESTDIB CHECK STATUS
*

* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED

*
 EXEC DLI TERM 11
*

* SEND OUTPUT MESSAGE

*
 EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET') 6
 EXEC CICS WAIT TERMINAL
*

* COMPLETE TRANSACTION AND RETURN TO CICS

*
 EXEC CICS RETURN 12
*

* CHECK STATUS IN DIB

*
TESTDIB EQU *
 CLC DIBSTAT,=C' ' IS STATUS BLANK 13
 BER R4 YES - RETURN
* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS
*
 BR R4 RETURN
ERRORS EQU *
* HANDLE ERROR CONDITIONS
*
ABENDS EQU *
* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES
*
 END

Notes for the sample assembler code:

 1 For a CICS online program containing EXEC DLI commands, you must specify the DLI and CICS
options. For a batch or BMP program containing EXEC DLI, you must specify only the DLI option.
 2 For reentry, define each of the areas the program uses—I/O areas, key feedback areas, and segment
name areas in DFHEISTG.
 3 Define an I/O area for each segment you retrieve, add, or replace (in a single command).
 4 For a batch or BMP program containing EXEC DLI, you must save registers on entry and restore
registers on exit according to z/OS register-saving conventions.
 5 In a batch or BMP program, aDFHEIRET with an optional DFHEIENT saves the registers on entry. Do
not specify the EIBREG parameter in a batch program.
 6 Do not code EXEC CICS commands in a batch or BMP program.
 7 In a CICS online program, use the SCHD PSB command to obtain a PSB for the use of your program.
Do not schedule a PSB in a batch or BMP program.
 8 This GU command retrieves the first occurrence of SEGA with a key of A300. You do not have to
provide the KEYLENGTH or SEGLENGTH options in an assembler language program.
 9 This GNP command retrieves all dependents under segment SEGA. The GE status code indicates
that no more dependents exist.
 10 This GU command is an example of a path command. Use a separate I/O area for each segment you
retrieve.
 11 In a CICS online program, the TERM command terminates the PSB scheduled earlier. You do not
terminate the PSB in a batch or BMP program.

464 IMS: Application Programming

 12 For a batch or BMP program, code RCREG parameter instead of EXEC CICS RETURN. The RCREG
parameter identifies a register containing the return code.
 13 After issuing each command, you should check the status code in the DIB.

Coding a program in COBOL
The following sample COBOL program shows how the different parts of a command-level program fit
together, and how the EXEC DLI commands are coded in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS programs. Any differences
are highlighted in the notes for the sample COBOL code. The numbering on the right of the sample code
references the notes.

CBL LIB,APOST,XOPTS(CICS,DLI) IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE. 1
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
.* SOURCE-COMPUTER. IBM-370.
.* OBJECT-COMPUTER. IBM-370.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 SEGKEYA PIC X(4).
 77 SEGKEYB PIC X(4). 2
 77 SEGKEYC PIC X(4).
 77 SEGKEY1 PIC X(4).
 77 SEGKEY2 PIC X(4).
 77 SEGKEY3 PIC X(4).
 77 SEGKEY4 PIC X(4).
 77 CONKEYB PIC X(8).
 77 SEGNAME PIC X(8).
 77 SEGLEN COMP PIC S9(4).
 77 PCBNUM COMP PIC S9(4).
 01 AREAA PIC X(80).
 * DEFINE SEGMENT I/O AREA
 01 AREAB PIC X(80).
 01 AREAC PIC X(80). 3
 01 AREAG PIC X(250).
 01 AREASTAT PIC X(360).
 * COPY MAPSET.
 PROCEDURE DIVISION.
 *
 * ***
 * INITIALIZATION
 * HANDLE ERROR CONDITIONS IN ERROR ROUTINE
 * HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
 * RECEIVE INPUT MESSAGE
 * ***
 *
 EXEC CICS HANDLE CONDITION ERROR(ERRORS) END-EXEC. 4
 *
 EXEC CICS HANDLE ABEND LABEL(ABENDS) END-EXEC. 4
 *
 EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET') END-EXEC. 4
 * ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
 *
 * ***
 * SCHEDULE PSB NAMED 'SAMPLE1'
 * ***
 *
 EXEC DLI SCHD PSB(SAMPLE1) END-EXEC.
 PERFORM TEST-DIB THRU OK. 5
 *
 * ***
 * RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS
 * ***
 *
 MOVE 'A300' TO SEGKEYA.
 EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
 SEGLENGTH(80) WHERE(KEYA=SEGKEYA) 6
 FIELDLENGTH(4)
 END-EXEC.
 PERFORM TEST-DIB THRU OK.
 GNPLOOP.
 EXEC DLI GNP USING PCB(1) INTO(AREAG) SEGLENGTH(250)
 END-EXEC.
 IF DIBSTAT EQUAL TO 'GE' THEN GO TO LOOPDONE.
 PERFORM TEST-DIB THRU OK.

Chapter 29. Writing your application programs for EXEC DLI 465

 GO TO GNPLOOP.
 LOOPDONE.
 *
 * ***
 * INSERT NEW ROOT SEGMENT
 * ***
 *
 MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAA.
 EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA)
 SEGLENGTH(80) END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM
 * ***
 *
 MOVE 'A200' TO SEGKEYA.
 MOVE 'B240' TO SEGKEYB.
 MOVE 'C241' TO SEGKEYC.
 EXEC DLI GU USING PCB(1)
 SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4) 7
 INTO(AREAA)
 SEGLENGTH(80)
 SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4)
 INTO(AREAB)
 SEGLENGTH(80)
 SEGMENT(SEGC) WHERE(KEYC=SEGKEYC) FIELDLENGTH(4)
 INTO(AREAC)
 SEGLENGTH(80)
 END-EXEC.
 PERFORM TEST-DIB THRU OK.
 * UPDATE FIELDS IN THE 3 SEGMENTS
 EXEC DLI REPL USING PCB(1)
 SEGMENT(SEGA) FROM(AREAA) SEGLENGTH(80)
 SEGMENT(SEGB) FROM(AREAB) SEGLENGTH(80)
 SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)
 END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT
 * ***
 *
 MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAC.
 MOVE 'A200B240' TO CONKEYB.
 EXEC DLI ISRT USING PCB(1)
 SEGMENT(SEGB) KEYS(CONKEYB) KEYLENGTH(8)
 SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)
 END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
 * AND THEN DELETE IT AND ITS DEPENDENTS
 * ***
 *
 MOVE 'A200B230' TO CONKEYB.
 EXEC DLI GU USING PCB(1)
 SEGMENT(SEGB)
 KEYS(CONKEYB) KEYLENGTH(8)
 INTO(AREAB) SEGLENGTH(80)
 END-EXEC.
 PERFORM TEST-DIB THRU OK.
 EXEC DLI DLET USING PCB(1)
 SEGMENT(SEGB) SEGLENGTH(80) FROM(AREAB) END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
 * OBJECT SEGMENT WITH WHERE OPTION,
 * AND THEN SET PARENTAGE
 *
 * USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH
 * ***
 *
 MOVE 'A200B230' TO CONKEYB.
 MOVE 'C520' TO SEGKEYC.
 MOVE 'SEGA' TO SEGNAME.
 MOVE 80 TO SEGLEN.
 MOVE 1 TO PCBNUM.
 EXEC DLI GU USING PCB(PCBNUM)
 SEGMENT((SEGNAME))

466 IMS: Application Programming

 KEYS(CONKEYB) KEYLENGTH(8) SETPARENT
 SEGMENT(SEGC) INTO(AREAC) SEGLENGTH(SEGLEN)
 WHERE(KEYC=SEGKEYC) FIELDLENGTH(4) END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * RETRIEVE DATABASE STATISTICS
 * ***
 *
 EXEC DLI STAT USING PCB(1) INTO(AREASTAT)
 VSAM FORMATTED LENGTH(360) END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS
 * ***
 *
 MOVE 'A050' TO SEGKEY1.
 MOVE 'A150' TO SEGKEY2.
 MOVE 'A275' TO SEGKEY3.
 MOVE 'A350' TO SEGKEY4.
 EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
 SEGLENGTH(80) FIELDLENGTH(4,4,4,4)
 WHERE(KEYA > SEGKEY1 AND KEYA < SEGKEY2 OR
 KEYA > SEGKEY3 AND KEYA < SEGKEY4)
 END-EXEC.
 PERFORM TEST-DIB THRU OK.
 *
 * ***
 * TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED
 * ***
 *
 EXEC DLI TERM END-EXEC. 8
 *
 * ***
 * ***
 * SEND OUTPUT MESSAGE
 * ***
 *
 EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET') END-EXEC.
 EXEC CICS WAIT TERMINAL END-EXEC.
 *
 * ***
 * COMPLETE TRANSACTION AND RETURN TO CICS
 * ***
 *
 EXEC CICS RETURN END-EXEC.
 *
 * ***
 * CHECK STATUS IN DIB
 * ***
 *
 TEST-DIB.
 IF DIBSTAT EQUAL TO ' ' THEN GO TO OK.
 OK. 9
 ERRORS.
 * HANDLE ERROR CONDITIONS
 ABENDS.
 * HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES

Notes for the sample COBOL code:

 1 For a CICS online program containing EXEC DLI commands, you must specify the DLI and CICS
options. For a batch or BMP program containing EXEC DLI, you must specify only the DLI option.
 2 Define each of the areas the program uses—I/O areas, key feedback areas, and segment name
areas—as 77- or 01-level working storage entries.
 3 Define an I/O area for each segment you retrieve, add, or replace (in a single command).
 4 Do not code EXEC CICS commands in a batch or BMP program.
 5 For CICS online programs, you use a SCHD PSB command to obtain a PSB. You do not schedule a
PSB in a batch or BMP program.
 6 This GU command retrieves the first occurrence of SEGA with a key of A300. KEYLENGTH and
SEGLENGTH are optional for IBM COBOL for z/OS & VM (and VS COBOL II). For COBOL V4 and OS/VS
COBOL, KEYLENGTH and SEGLENGTH are required.
 7 This GU command is an example of a path command. You must use a separate I/O area for each
segment you retrieve.

Chapter 29. Writing your application programs for EXEC DLI 467

 8 For a CICS online program, the TERM command terminates the PSB scheduled earlier. You do not
terminate the PSB in a batch or BMP program.
 9 After issuing each command, you should check the status code in the DIB.

Coding a program in PL/I
The following sample PL/I program shows how the different parts of a command-level program fit
together, and how the EXEC DLI commands are coded in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS programs. Any differences
are highlighted in the notes for the sample PL/I code. The numbering on the right of the sample code
references those notes.

*PROCESS INCLUDE,GN,XOPTS(CICS,DLI); 1
 SAMPLE: PROCEDURE OPTIONS(MAIN);
 DCL SEGKEYA CHAR (4);
 DCL SEGKEYB CHAR (4); 2
 DCL SEGKEYC CHAR (4);
 DCL SEGKEY1 CHAR (4);
 DCL SEGKEY2 CHAR (4);
 DCL SEGKEY3 CHAR (4);
 DCL SEGKEY4 CHAR (4);
 DCL CONKEYB CHAR (8);
 DCL SEGNAME CHAR (8);
 DCL PCBNUM FIXED BIN (15);
 DCL AREAA CHAR (80);
 /* DEFINE SEGMENT I/O AREA */
 DCL AREAB CHAR (80);
 DCL AREAC CHAR (80); 3
 DCL AREAG CHAR (250);
 DCL AREASTAT CHAR (360);
 %INCLUDE MAPSET
 /* */
 /* */
 /* ** */
 /* INITIALIZATION */
 /* HANDLE ERROR CONDITIONS IN ERROR ROUTINE */
 /* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND PROGRAM */
 /* RECEIVE INPUT MESSAGE */
 /* ** */
 /* */
 EXEC CICS HANDLE CONDITION ERROR(ERRORS); 4
 /* */
 EXEC CICS HANDLE ABEND PROGRAM('ABENDS'); 4
 /* */
 EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET'); 4
 /* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING */
 /* */
 /* ** */
 /* SCHEDULE PSB NAMED 'SAMPLE1' */
 /* ** */
 /* */
 EXEC DLI SCHD PSB(SAMPLE1);
 CALL TEST_DIB; 5

 /* *** */
 /* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS */
 /* *** */
 /* */
 SEGKEYA = 'A300';
 EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
 WHERE(KEYA=SEGKEYA); 6
 CALL TEST_DIB;
GNPLOOP:
 EXEC DLI GNP USING PCB(1) INTO(AREAG); 7
 IF DIBSTAT = 'GE' THEN GO TO LOOPDONE;
 CALL TEST_DIB;
 GO TO GNPLOOP;
 LOOPDONE:
 /* */
 /* ** */
 /* INSERT NEW ROOT SEGMENT */
 /* ** */
 /* */
 AREAA = 'DATA FOR NEW SEGMENT INCLUDING KEY';
 EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA);
 CALL TEST_DIB;

468 IMS: Application Programming

 /* */
 /* *** */
 /* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM */
 /* *** */
 /* */
 SEGKEYA = 'A200';
 SEGKEYB = 'B240';
 SEGKEYC = 'C241';
 EXEC DLI GU USING PCB(1)
 SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) 8
 INTO(AREAA)
 SEGMENT(SEGB) WHERE(KEYB=SEGKEYB)
 INTO(AREAB)
 SEGMENT(SEGC) WHERE(KEYC=SEGKEYC)
 INTO(AREAC);
 CALL TEST_DIB;
 /* UPDATE FIELDS IN THE 3 SEGMENTS */
 EXEC DLI REPL USING PCB(1)
 SEGMENT(SEGA) FROM(AREAA)
 SEGMENT(SEGB) FROM(AREAB)
 SEGMENT(SEGC) FROM(AREAC);
 CALL TEST_DIB;
 /* */
 /* *** */
 /* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT */
 /* *** */
 /* */
 AREAC = 'DATA FOR NEW SEGMENT INCLUDING KEY';
 CONKEYB = 'A200B240';
 EXEC DLI ISRT USING PCB(1)
 SEGMENT(SEGB) KEYS(CONKEYB)
 SEGMENT(SEGC) FROM(AREAC);
 CALL TEST_DIB;
 /* */
 /* ** */
 /* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY */
 /* AND THEN DELETE IT AND ITS DEPENDENTS */
 /* ** */
 /* */
 CONKEYB = 'A200B230';
 EXEC DLI GU USING PCB(1)
 SEGMENT(SEGB)
 KEYS(CONKEYB)
 INTO(AREAB);
 CALL TEST_DIB;
 EXEC DLI DLET USING PCB(1)
 SEGMENT(SEGB) FROM(AREAB);
 CALL TEST_DIB;
 /* */
 /* *** */
 /* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY, */
 /* OBJECT SEGMENT WITH WHERE OPTION */
 /* AND THEN SET PARENTAGE */
 /* */
 /* USE VARIABLES FOR PCB INDEX, SEGMENT NAME */
 /* *** */
 /* */
 CONKEYB = 'A200B230';
 SEGNAME = 'SEGA';
 SEGKEYC = 'C520';
 PCBNUM = 1;
 EXEC DLI GU USING PCB(PCBNUM)
 SEGMENT((SEGNAME))
 KEYS(CONKEYB) SETPARENT
 SEGMENT(SEGC) INTO(AREAC)
 WHERE(KEYC=SEGKEYC);
 CALL TEST_DIB;
 /* */
 /* *** */
 /* RETRIEVE DATABASE STATISTICS */
 /* *** */
 /* */
 EXEC DLI STAT USING PCB(1) INTO(AREASTAT) VSAM FORMATTED;
 CALL TEST_DIB;
 /* */
 /* ** */
 /* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS */
 /* ** */
 /* */
 SEGKEY1 = 'A050';
 SEGKEY2 = 'A150';
 SEGKEY3 = 'A275';

Chapter 29. Writing your application programs for EXEC DLI 469

 SEGKEY4 = 'A350';
 EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
 WHERE(KEYA &Ar; SEGKEY1 AND KEYA &Al; SEGKEY2 OR
 KEYA &Ar; SEGKEY3 AND KEYA &Al; SEGKEY4);
 CALL TEST_DIB;
 /* */
 /* *** */
 /* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED */
 /* *** */
 /* */

 EXEC DLI TERM;
 9

 /* */
 /* *** */
 /* SEND OUTPUT MESSAGE */
 /* *** */
 /* */
 EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET'); 4
 EXEC CICS WAIT TERMINAL;
 /* */
 /* *** */
 /* COMPLETE TRANSACTION AND RETURN TO CICS */
 /* *** */
 /* */
 EXEC CICS RETURN; 4
 /* */
 /* ** */
 /* CHECK STATUS IN DIB */
 /* ** */
 /* */
 TEST_DIB: PROCEDURE;
 IF DIBSTAT = ' ' RETURN; 10

 /* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS */
 /* */
 OK:
 END TEST_DB;
 ERRORS:
 /* HANDLE ERROR CONDITIONS */
 /* */
 END SAMPLE;

Notes to the sample PL/I code:

 1 For a CICS online program containing EXEC DLI commands, you must specify the DLI and CICS
options. For a batch or BMP program containing EXEC DLI, you must specify only the DLI option.
 2 Define, in automatic storage, each of the areas; I/O areas, key feedback areas, and segment name
areas.
 3 Define an I/O area for each segment you retrieve, add, or replace in a single command.
 4 Do not code EXEC CICS commands in a batch or BMP program.
 5 For CICS online programs, you use a SCHD PSB command to obtain a PSB. You do not schedule a
PSB in a batch or BMP program.
 6 This GU command retrieves the first occurrence of SEGA with a key of A300. Notice that you do not
need to include the KEYLENGTH and SEGLENGTH options.
 7 This GNP command retrieves all dependents under segment SEGA. TheGE status code indicates that
no more dependents exist.
 8 This GU command is an example of a path command. You must use a separate I/O area for each
segment you retrieve.
 9 For a CICS online program, the TERM command terminates the PSB scheduled earlier. You do not
terminate the PSB in a batch or BMP program.
 10 After issuing each command, you should check the status code in the DIB.

470 IMS: Application Programming

Coding a program in C
the following sample C program shows how the different parts of a command-level program fit together,
and how the EXEC DLI commands are coded in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS programs. Any differences are
highlighted in the notes for the sample C code. The numbering on the right of the sample code references
those notes.

#include < string.h> 1
#include < stdio.h > 2

 char DIVIDER[120] = "---\
 --";
 char BLANK[120] = " \
 \0";
 char BLAN2[110] = " \
 \0";
 char SCHED[120] = "Schedule PSB(PC3COCHD) " 3
 char GN1[120] = "GN using PCB(2) Segment(SE2ORDER) check dibstat \
is blank";
 char GNP1[120] = "GNP using PCB(2) check dibstat = GK or blank \
(or GE for last GNP)";
 char GU1[120] = "GU using PCB(2) Segment(SE2ORDER) where(\
FE2OGREF=000000'') check dibstat blank";
 char GU2[120] = "GU using PCB(2) Segment(SE2ORDER) where(\
FE2OGREF=000999'') check dibstat blank";
 char REP1[120] = "REPLACE using PCB(2) Segment(SE2ORDER) check \
dibstat is blank";
 char DEL1[120] = "DELETE using PCB(2) Segment(SE2ORDER) check \
dibstat is blank";
 char INS1[120] = "INSERT using PCB(2) Segment(SE2ORDER) where\
(FE2OGREF=''000999'') check dibstat is blank";
 char TERM[120] = "TERM - check dibstat is blank";
 char STAT[120] = "STAT USING PCB(2) VSAM FORMATTED";
 char DATAB[6] = "000999";
 char DATAC[114] = " REGRUN TEST INSERT NO1.";
 char START[120] = "PROGXIV STARTING";
 char OKMSG[120] = "PROGXIV COMPLETE";
 int TLINE = 120;
 int L11 = 11;
 int L360 = 11;
 struct {
 char NEWSEGB[6];
 char NEWSEGC[54];
 } NEWSEG;
 char OUTLINE[120]; 4
 struct {
 char OUTLINA[9];
 char OUTLINB[111];
 } OUTLIN2;
 struct {
 char OUTLINX[9];
 char OUTLINY[6];
 char OUTLINZ[105];
 } OUTLIN3;
 char GUIOA[60];
 char GNIOA[60];
 struct {
 char ISRT1[6];
 char ISRT2[54];
 } ISRTIOA;
 struct {
 char REPLIO1[6];
 char REPLIO2[54];
 } REPLIOA;
 struct {
 char DLET1[6];
 char DLET2[54];
 } DLETIOA;
 struct {
 char STATA1[120];
 char STATA2[120];
 char STATA3[120];
 } STATAREA;
 struct {
 char DHPART[2];
 char RETCODE[2]
 } DHABCODE;

Chapter 29. Writing your application programs for EXEC DLI 471

main()
{
 EXEC CICS ADDRESS EIB(dfheiptr); 5
 strcpy(OUTLINE,DIVIDER);
 SENDLINE();
 strcpy(OUTLINE,START);
 SENDLINE();
 /* */
 /* SCHEDULE PSB */
 /* */
 strcpy(OUTLINE,SCHED);
 SENDLINE();
 EXEC DLI SCHEDULE PSB(PC3COCHD); 6
 SENDSTAT();
 TESTDIB();
 /* */
 /* ISSUE GU REQUEST */
 /* */
 strcpy(OUTLINE,GU1);
 SENDLINE();
 EXEC DLI GET UNIQUE USING PCB(2) 7
 SEGMENT(SE2ORDER)
 WHERE(FE2OGREF>="000000")
 INTO(&GUIOA) SEGLENGTH(60);
 strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
 strcpy(OUTLIN2.OUTLINB,GUIOA);
 SENDLIN2();
 SENDSTAT();
 TESTDIB();
 /* */
 /* ISSUE GNP REQUEST */
 /* */
 do {
 strcpy(OUTLINE,GNP1);
 SENDLINE();
 EXEC DLI GET NEXT IN PARENT USING PCB(2) 8
 INTO(&GNIOA) SEGLENGTH(60);
 strcpy(OUTLIN2.OUTLINA,"SEGMENT=");
 strcpy(OUTLIN2.OUTLINB,GNIOA);
 SENDLIN2();
 SENDSTAT();
 if (strncmp(dibptr->dibstat,"GE",2) != 0) 9
 TESTDIB();
 } while (strncmp(dibptr->dibstat,"GE",2) != 0);
 /* */
 /* ISSUE GN REQUEST */
 /* */
 strcpy(OUTLINE,GN1);
 SENDLINE();
 EXEC DLI GET NEXT USING PCB(2)
 SEGMENT(SE2ORDER) 10
 INTO(&GNIOA) SEGLENGTH(60);
 strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
 strcpy(OUTLIN2.OUTLINB,GNIOA);
 SENDLIN2();
 SENDSTAT();
 TESTDIB();
 /* */
 /* INSERT SEGMENT */
 /* */
 strcpy(OUTLINE,INS1);
 SENDLINE();
 strcpy(NEWSEG.NEWSEGB,DATAB); 11
 strcpy(NEWSEG.NEWSEGC,DATAC);
 strcpy(ISRTIOA.ISRT1,NEWSEG.NEWSEGB);
 strcpy(ISRTIOA.ISRT2,NEWSEG.NEWSEGC);
 strcpy(OUTLIN3.OUTLINX,"ISRT SEG=");
 strcpy(OUTLIN3.OUTLINY,ISRTIOA.ISRT1);
 strcpy(OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);
 SENDLIN3();
 EXEC DLI ISRT USING PCB(2)
 SEGMENT(SE2ORDER)
 FROM(&ISRTIOA) SEGLENGTH(60);
 SENDSTAT();
 if (strncmp(dibptr->dibstat,"II",2) == 0)
 strncpy(dibptr->dibstat," ",2);
 TESTDIB();
 /* */
 /* ISSUE GN REQUEST */
 /* */
 strcpy(OUTLINE,GN1);

472 IMS: Application Programming

 SENDLINE();
 EXEC DLI GET NEXT USING PCB(2) 12
 SEGMENT(SE2ORDER)
 INTO(&GNIOA) SEGLENGTH(60);
 strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
 strcpy(OUTLIN2.OUTLINB,GNIOA);
 SENDLIN2();
 SENDSTAT();
 TESTDIB();
 /* */
 /* GET INSERTED SEGMENT TO BE REPLACED */
 /* */
 strcpy(OUTLINE,GU2);
 SENDLINE();
 EXEC DLI GET UNIQUE USING PCB(2) 13
 SEGMENT(SE2ORDER)
 WHERE(FE2OGREF="000999")
 INTO(&ISRTIOA) SEGLENGTH(60);
 strcpy(OUTLIN3.OUTLINX,"ISRT SEG=");
 strcpy(OUTLIN3.OUTLINY,ISRTIOA.ISRT1);
 strcpy(OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);
 SENDLIN3();
 SENDSTAT();
 TESTDIB();
 /* */
 /* REPLACE SEGMENT */
 /* */
 strcpy(OUTLINE,REP1);
 SENDLINE();
 strcpy(REPLIOA.REPLIO1,DATAB); 14
 strcpy(REPLIOA.REPLIO2,"REGRUN REPLACED SEGMENT NO1.");
 strcpy(OUTLIN3.OUTLINX,"REPL SEG=");
 strcpy(OUTLIN3.OUTLINY,REPLIOA.REPLIO1);
 strcpy(OUTLIN3.OUTLINZ,REPLIOA.REPLIO2);
 SENDLIN3();
 EXEC DLI REPLACE USING PCB(2)
 SEGMENT(SE2ORDER)
 FROM(&REPLIOA) SEGLENGTH(60);
 SENDSTAT();
 TESTDIB();
 /* */
 /* ISSUE GN REQUEST */
 /* */
 strcpy(OUTLINE,GN1);
 SENDLINE();
 EXEC DLI GET NEXT USING PCB(2) 15
 SEGMENT(SE2ORDER)
 INTO(&GNIOA) SEGLENGTH(60);
 strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
 strcpy(OUTLIN2.OUTLINB,GNIOA);
 SENDLIN2();
 SENDSTAT();
 TESTDIB();
 /* */
 /* GET REPLACED SEGMENT */
 /* */
 strcpy(OUTLINE,GU2);
 SENDLINE();
 EXEC DLI GET UNIQUE USING PCB(2) 16
 SEGMENT(SE2ORDER)
 WHERE(FE2OGREF="000999")
 INTO(&REPLIOA) SEGLENGTH(60);
 strcpy(OUTLIN3.OUTLINX,"REPL SEG=");
 strcpy(OUTLIN3.OUTLINY,REPLIOA.REPLIO1);
 strcpy(OUTLIN3.OUTLINZ,REPLIOA.REPLIO2);
 SENDLIN3();
 SENDSTAT();
 TESTDIB();
 /* */
 /* ISSUE DELETE REQUEST */
 /* */
 strcpy(OUTLINE,DEL1);
 SENDLINE();
 strcpy(DLETIOA.DLET1,REPLIOA.REPLIO1); 17
 strcpy(DLETIOA.DLET2,REPLIOA.REPLIO2);
 strcpy(OUTLIN3.OUTLINX,"DLET SEG=");
 strcpy(OUTLIN3.OUTLINY,DLETIOA.DLET1);
 strcpy(OUTLIN3.OUTLINZ,DLETIOA.DLET2);
 SENDLIN3();
 EXEC DLI DELETE USING PCB(2)
 SEGMENT(SE2ORDER)
 FROM(&DLETIOA) SEGLENGTH(60);

Chapter 29. Writing your application programs for EXEC DLI 473

 SENDSTAT();
 TESTDIB();
 /* */
 /* ISSUE STAT REQUEST */
 /* */
 strcpy(OUTLINE,STAT);
 SENDLINE();
 EXEC DLI STAT USING PCB(2) 18
 VSAM FORMATTED
 INTO(&STATAREA);
 SENDSTT2();
 TESTDIB();
 /* */
 /* ISSUE TERM REQUEST */
 /* */
 strcpy(OUTLINE,TERM);
 SENDLINE();
 EXEC DLI TERM; 19
 SENDSTAT();
 TESTDIB();
 strcpy(OUTLINE,DIVIDER);
 SENDLINE();
 SENDOK();
 /* */
 /* RETURN TO CICS */
 /* */
 EXEC CICS RETURN;
}
 /* */
 /* */
 /* */
 SENDLINE()
 {
 EXEC CICS SEND FROM(OUTLINE) LENGTH(120); 20
 EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLINE) LENGTH(TLINE);
 strcpy(OUTLINE,BLANK);
 return;
 }

 SENDLIN2()
{
 EXEC CICS SEND FROM(OUTLIN2) LENGTH(120);
 EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN2) LENGTH(TLINE);
 strcpy(OUTLIN2.OUTLINA,BLANK,9);
 strcpy(OUTLIN2.OUTLINB,BLANK,111);
 return;
 }

 SENDLIN3()
{
 EXEC CICS SEND FROM(OUTLIN3) LENGTH(120);
 EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN3) LENGTH(TLINE);
 strcpy(OUTLIN3.OUTLINX,BLANK,9);
 strcpy(OUTLIN3.OUTLINY,BLANK,6);
 strcpy(OUTLIN3.OUTLINZ,BLANK,105);
 return;
 }

SENDSTAT()
{
 strncpy(OUTLIN2.OUTLINA,BLANK,9);
 strncpy(OUTLIN2.OUTLINB,BLAN2,110);
 strcpy(OUTLIN2.OUTLINA," DIBSTAT=");
 strcpy(OUTLIN2.OUTLINB,dibptr->dibstat);
 EXEC CICS SEND FROM(OUTLIN2) LENGTH(11);
 EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN2) LENGTH(L11);
 strcpy(OUTLINE,DIVIDER);
 SENDLINE();
 return;
 }

SENDSTT2()
{
 strncpy(OUTLIN2.OUTLINA,BLANK,9);
 strncpy(OUTLIN2.OUTLINB,BLAN2,110);
 strcpy(OUTLIN2.OUTLINA," DIBSTAT=");
 strcpy(OUTLIN2.OUTLINB,dibptr->dibstat);
 EXEC CICS SEND FROM(STATAREA) LENGTH(360);
 EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(STATAREA)
 LENGTH(L360);
 return;
 }

474 IMS: Application Programming

SENDOK()
{
 EXEC CICS SEND FROM(OKMSG) LENGTH(120);
 EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OKMSG) LENGTH(TLINE);
 return;
 }

TESTDIB() 21
{
 if (strncmp(dibptr->dibstat," ",2) == 0)
 return;
 else if (strncmp(dibptr->dibstat,"GK",2) == 0)
 return;
 else if (strncmp(dibptr->dibstat,"GB",2) == 0)
 return;
 else if (strncmp(dibptr->dibstat,"GE",2) == 0)
 return;
 else
 {
 EXEC CICS ABEND ABCODE("PETE"); 22
 EXEC CICS RETURN;
 }
 return;
 }

Notes for the sample C code:

 1 You must include a standard header file string.h to gain access to string manipulation facilities.
 2 You must include standard header file stdio.h to access the standard I/O library.
 3 Define DL/I messages.
 4 Define the I/O areas.
 5 Program start.
 6 Define PSB PC3COCHD.
 7 Issue the first command. Retrieves the first occurrence of segment SE2ORDER and puts it into array
OUTLIN2.
 8 Issue the GNP command to get the next segment and put it into array OUTLIN2.
 9 GE status codes indicate no more segments to get.
 10 Get next segment SE2ORDER and put it into the array OUTLIN2.
 11 Insert segment into array OUTLIN3.
 12 Issue GN to retrieve next segment and put it into array OUTLIN2.
 13 Get next segment that will be replaced and put it into OUTLIN3.
 14 Replace the segment and put it into array OUTLIN3.
 15 Get next segment and put it into array OUTLIN2.
 16 Get the replaced segment and put it into array OUTLIN3.
 17 Issue DELETE command after putting content of segment into array OUTLIN3.
 18 Issue STAT REQUEST command.
 19 Issue TERM command.
 20 Output processing.
 21 Check return code.
 22 Do not code EXEC CICS commands in a batch or BMP program.

Preparing your EXEC DLI program for execution
You must translate, compile, and bind your EXEC DLI program before it can be executed.

You can use CICS-supplied procedures to translate, compile, and bind your program. The procedure you
use depends on the type of program (batch, BMP, or CICS online) and the language it is written in (COBOL,
PL/I, or assembler language).

The steps for preparing your program for execution are as follows:

Chapter 29. Writing your application programs for EXEC DLI 475

1. Run the CICS command language translator to translate the EXEC DLI and EXEC CICS commands.
COBOL, PL/I, and assembler language programs have separate translators.

2. Compile your program.
3. Bind:

• An online program with the appropriate CICS interface module
• A batch or BMP program with the IMS interface module.

Translator, compiler, and binder options required for EXEC DLI
To execute your EXEC DLI program, you must set the required translator, compile, and binder options.

Translator options required for EXEC DLI
Even when you use the CICS-supplied procedures for preparing your program, you must supply certain
translator options.

For a CICS online program containing EXEC DLI commands, you must specify the DLI and CICS options.
For a batch or BMP program containing EXEC DLI commands, you must specify the DLI option.

You can also specify the options on the EXEC job control statement that invokes the translator; if you
use both methods, the CBL and *PROCESS statement overrides those in the EXEC statement. For more
information on the translator options, see CICS Transaction Server for z/OS CICS Application Programming
Guide.

You must ensure that the translator options you use in a COBOL program do not conflict with the COBOL
compiler options.

Compiler options required for EXEC DLI
To compile your batch COBOL program, you may have to use different compiler options, depending on
which COBOL compiler was chosen. For information on which compiler options should be used for a CICS
program, see CICS Transaction Server for z/OS CICS Application Programming Guide.

Binder options required for EXEC DLI
If the compiler being used supports it, you can link a program written with EXEC commands as
AMODE(31) RMODE(ANY).

476 IMS: Application Programming

Chapter 30. Defining application program elements
Define application program elements by using the EXEC DLI commands with the application interface
block (AIB) and DL/I interface block (DIB), and by defining feedback and I/O areas.

Specifying an application interface block (AIB)
EXEC DLI commands can use the AIB interface.

For example, using the AIB interface, the format for the GU command would be EXEC DLI GU
AIB(aib), instead of EXEC DLI GU USING PCB(n) using the PCB format.

With IBM CICS Transaction Server for z/OS, the EXEC DLI commands are supported in the AIB format (as
well as the PCB format). The AIB-only commands ICMD, RCMD, and GMSG are supported by using the
EXEC DLI interface.

The CICS EDF (Execution Diagnostic Facility) debugging transaction supports AIB EXEC DLI requests, just
as it handles PCB type requests.

AIB mask
The AIB mask must be supplied by the application and referenced in the EXEC call instead of the PCB
number (for example, EXEC DLI GU AIB(aib)).

The DIBSTAT field is set with a valid STATUS code when AIBRETRN = X'00000000' or X'00000900'.
Applications should test AIBRETRN for any other values and respond accordingly.

CICS restrictions with AIB support
Restrictions due to function shipping include:

• The AIBLEN field must be between 128 and 256 bytes. 128 bytes is recommended.
• LIST=NO must not be specified on any PCBs in the PSB.

Related reference
“EXEC DLI commands for an application program” on page 483
The EXEC DLI commands in your application program is used together with a program specification block
(PSB) and different kinds of program communication blocks (PCBs).

Specifying the DL/I interface block (DIB)
Each time your program executes a DL/I command, DL/I returns a status code and other information to
your program through the DL/I interface block (DIB), which is a subset of IMS PCB. Your program should
check the status code to make sure the command executed successfully.

Each program's working storage contains its own DIB. The contents of the DIB reflect the status of the
last DL/I command executed in that program. If the information in your program's DIB is required by
another program used by your transaction, you must pass the information to that program.

To access fields in the DIB, use labels that are automatically generated in your program by the translator.

Restriction: These labels are reserved; you must not redefine them.

In your COBOL, PL/I, assembler language, and C programs, some variable names are mandatory.

For a COBOL program:

DIBVER PICTURE X(2)
DIBSTAT PICTURE X(2)
DIBSEGM PICTURE X(8)
DIBSEGLV PICTURE X(2)
DIBKFBL PICTURE S9(4) COMPUTATIONAL

© Copyright IBM Corp. 1974, 2022 477

DIBDBDNM PICTURE X(8)
DIBDBORG PICTURE X(8)

DIBVER CHAR(2)
DIBSTAT CHAR(2)
DIBSEGM CHAR(8)
DIBSEGLV CHAR(2)
DIBKFBL FIXED BINARY (15,0)
DIBDBDNM CHAR(8)
DIBDBORG CHAR(8)

For an assembler language program:

DIBVER CL2
DIBSTAT CL2
DIBSEGM CL8
DIBSEGLV CL2
DIBKFBL H
DIBDBDNM CL8
DIBDBORG CL8

For a C program:

unsigned char dibver {2} ;
unsigned char dibstat {2} ;
unsigned char dibsegm {8} ;
unsigned char dibfic01 ;
unsigned char dibfic02 ;
unsigned char dibseglv {2} ;
signed short int dibkfbl ;
unsigned char dibdbdnm {8} ;
unsigned char dibdborg {8} ;
unsigned char dibfic03 {6} ;

The following notes explain the contents of each variable name. The name in parenthesis is the label used
to access the contents.

1. Translator Version (DIBVER)

This is the version of the DIB format your program is using. (DIBVER is used for documentation and
problem determination.)

2. Status Codes (DIBSTAT)

DL/I places a 2-character status code in this field after executing each DL/I command. This code
describes the results of the command.

After processing a DL/I command, DL/I returns control to your program at the next sequential
instruction following the command. The first thing your program should do after each command is
to test the status code field and take appropriate action. If the command was completely successful,
this field contains blanks.

The status codes that can be returned to this field (they are the only status codes returned to your
program) are:
bb

(Blanks) The command was completely successful.
BA

For GU, GN, GNP, DLET, REPL, and ISRT commands. Data was unavailable.
BC

For DLET, REPL, and ISRT commands. A deadlock was detected.
FH

For GU, GN, GNP, DLET, REPL, ISRT, POS, CHKP, and SYMCHKP commands. The DEDB was
inaccessible.

FW
For GU, GN, GNP, DLET, REPL, ISRT, and POS commands. More buffer space is required than
normally allowed.

478 IMS: Application Programming

GA
For unqualified GN and GNP commands. DL/I returned a segment, but the segment is at a higher
level in the hierarchy than the last segment that was returned.

GB
For GN commands. DL/I reached the end of the database trying to satisfy your GN command and
did not return a segment to your program's I/O area.

GD
For ISRT commands. The program issued an ISRT command that did not have SEGMENT options
for all levels above that of the segment being inserted.

GE
For GU, GN, GNP, ISRT, and STAT commands. DL/I was unable to find the segment you requested,
or one or more of the parents of the segment you are trying to insert.

GG
For Get commands. DL/I returns a GG status code to a program with a processing option of GOT or
GON when the segment that the program is trying to retrieve contains an invalid pointer.

GK
For unqualified GN and GNP commands. DL/I returned a segment that satisfies an unqualified GN or
GNP request, but the segment is of a different segment type (but at the same level) than the last
segment returned.

II
For ISRT commands. The segment you are trying to insert already exists in the database. This
code can also be returned if you have not established a path for the segment before trying to
insert it. The segment you are trying to insert might match a segment with the same key in another
hierarchy or database record.

LB
For load programs only after issuing a LOAD command. The segment you are trying to load already
exists in the database. DL/I returns this status code only for segments with key fields.

NI
For ISRT and REPL commands. The segment you are trying to insert or replace requires a
duplicate entry to be inserted in a secondary index that does not allow duplicate entries. This
status code is returned for batch programs that write log records to direct access storage. If a
CICS program that does not log to disk encounters this condition, the program (transaction) is
abnormally terminated.

TG
For TERM commands. The program tried to terminate a PSB when one was not scheduled.

The listed status codes (DIBSTAT) indicate exceptional conditions, and are the only status codes
returned to your program. All other status codes indicate error conditions and cause your transaction
or batch program to abnormally terminate. If you want to pass control to an error routine from your
CICS program, you can use the CICS HANDLE ABEND command; the last 2 bytes of the abend code
are the IMS status code that caused the abnormal termination. For more information on the HANDLE
ABEND command, see the application programming reference manual for your version of CICS. Batch
BMP programs abend with abend 1041.

3. Segment Name (DIBSEGM)

This is the name of the lowest-level segment successfully accessed. When a retrieval is successful,
this field contains the name of the retrieved segment. If the retrieval is unsuccessful, this field contains
the last segment, along the path to the requested segment, that satisfies the command.

After issuing an XRST command, this field is either set to blanks (indicating a successful normal start),
or a checkpoint ID (indicating the checkpoint ID from which the program was restarted).

You should test this field after issuing any of the following commands:

• GN
• GNP

Chapter 30. Defining application program elements 479

• GU
• ISRT
• LOAD
• RETRIEVE
• XRST

4. Segment Level Number (DIBSEGLV)

This is the hierarchic level of the lowest-level segment retrieved. When IMS DB retrieves the segment
you have requested, IMS DB places, in character format, the level number of that segment in this field.
If you are issuing a path command, IMS DB places the number of the lowest-level segment retrieved.
If IMS DB is unable to find the segment you have requested, it gives the level number of the last
segment it encountered that satisfied your command. This is the lowest segment on the last path that
IMS DB encountered while searching for the segment you requested.

You should test this field after issuing any of the listed commands:

• GN
• GNP
• GU
• ISRT
• LOAD
• RETRIEVE

5. Key Feedback Length (DIBKFBL)

This is a halfword field that contains the length of the concatenated key when you use the
KEYFEEDBACK option with get commands. If your key feedback area is not long enough to contain
the concatenated key, the key is truncated, and this area indicates the actual length of the full
concatenated key.

6. Database Description Name (DIBDBDNM)

This is the fullword field that contains the name of the DBD. The DBD is the DL/I control block that
contains all information used to describe a database. The DIBDBDNM field is returned only on a QUERY
command.

7. Database Organization (DIBDBORG)

This is the fullword field that names the type of database organization (HDAM, HIDAM, HISAM, HSAM,
GSAM, SHSAM, INDEX, or DEDB) padded to the right with blanks. The DIBDBORG field is returned only
on a QUERY command.

Defining a key feedback area
To retrieve the concatenated key of a segment, you must define an area into which the key is placed.

The concatenated key returned is that of the lowest-level segment retrieved. (The segment retrieved is
indicated in the DIB by the DIBSEGM and DIBSEGLV fields.)

Specify the name of the area using the KEYFEEDBACK option on a GET command.

A concatenated key is made up of the key of a segment, plus the keys for all of its parents. For example,
say you requested the concatenated key of the ILLNESS segment for January 2, 1988, for patient number
05142. 0514219880102 would be returned to your key feedback field. This number includes the key field
of the ILLNESS segment, ILLDATE, concatenated to the key field of the PATIENT segment, PATNO.

If you define an area that is not long enough to contain the entire concatenated key, the key is truncated.

480 IMS: Application Programming

Defining I/O areas
Use I/O areas to pass segments back and forth between your program and the database.

The contents of an I/O area depends on the kind of command you are issuing:

• When you retrieve a segment, DL/I places the segment you requested in the I/O area.
• When you add a new segment, you build the new segment in the I/O area before issuing an ISRT

command.
• Before you modify a segment, you first retrieve the segment into the I/O area then issue the DLET or
REPL command.

Restriction: The I/O area must be long enough to contain the longest segment you retrieve from or
add to the database. (Otherwise, you might experience storage overlap.) If you are retrieving, adding, or
replacing multiple segments in one command, you must define an I/O area for each segment.

As an example of what a segment looks like in your I/O area, say that you retrieved the ILLNESS segment
for Robert James, who came to the clinic on March 3, 1988. He was treated for strep throat. The data
returned to your I/O area would look like this:

19880303STREPTHROA

COBOL I/O area
The I/O area in a COBOL program should be defined as a 01 level working storage entry. You can further
define the area with 02 entries.

IDENTIFICATION DIVISION.
⋮
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-AREA.
 02 KEY PICTURE X(6).
 02 FIELD PICTURE X(84).

PL/I I/O area
In PL/I, the name for the I/O area used in the DL/I call can be the name of a fixed-length character string,
a major structure, a connected array, or an adjustable character string.

Restriction: The PL/I I/O area cannot be the name of a minor structure or a character string with the
attribute VARYING. If you want to define it as a minor structure, you can use a pointer to the minor
structure as the parameter.

Your program should define the I/O area as a fixed-length character string and pass the name of that
string, or define it in one of the other ways described previously and then pass the pointer variable that
points to that definition. If you want to use substructures or elements of an array, use the DEFINED or
BASED attribute.

DECLARE 1 INPUT_AREA,
 2 KEY CHAR(6),
 2 FIELD CHAR(84);

Assembler language I/O area
The I/O area in an assembler language program is formatted as follows:

IOAREA DS 0CL90
KEY DS CL6
FIELD DS CL84

Chapter 30. Defining application program elements 481

482 IMS: Application Programming

Chapter 31. EXEC DLI commands for an application
program

The EXEC DLI commands in your application program is used together with a program specification block
(PSB) and different kinds of program communication blocks (PCBs).
Related reference
“Specifying an application interface block (AIB)” on page 477
EXEC DLI commands can use the AIB interface.

PCBs and PSB
A program specification block (PSB) used in a DBCTL environment can contain I/O PCBs, alternate PCBs,
database PCBs (DB PCB), or GSAM PCBs.

I/O PCB
In a DBCTL environment, an I/O PCB is needed to issue DBCTL service requests. Unlike the other types of
PCB, it is not defined with PSB generation, but if the application program is using an I/O PCB, this has to
be indicated in the PSB scheduling request.

Alternate PCB
An alternate PCB defines a logical terminal and can be used instead of the I/O PCB when it is necessary
to direct a response to a terminal. Alternate PCBs appear in PSBs used in a CICS-DBCTL environment,
but are used only in an IMS DC environment. CICS applications using DBCTL cannot successfully issue
commands that specify an alternate PCB, an MSDB PCB, or a GSAM PCB. However, a PSB that contains
PCBs of these types can be scheduled successfully in a CICS-DBCTL environment.

Alternate PCBs are included in the PCB address list returned to a call level application program. In an
EXEC DLI application program, the existence of alternate PCBs in the PSB affects the PCB number used in
the PCB keyword.

DB PCB
A DB PCB is the PCB that defines an application program's interface to a database. One DB PCB is needed
for each database view used by the application program. It can be a full-function PCB, a DEDB PCB, or an
MSDB PCB.

GSAM PCB
A GSAM PCB defines an application program's interface for GSAM operations.

When using DBCTL, a CICS program receives, by default, a DB PCB as the first PCB in the parameter
list passed to it after scheduling. However, when your application program can handle an I/O PCB, you
indicate this using the SYSSERVE keyword on the SCHD command. The I/O PCB is then the first PCB in the
parameter address list passed back to your application program.

I/O PCBs and alternate PCBs in various types of application programs
DB batch programs

Alternate PCBs are always included in the list of PCBs supplied to the program by DL/I irrespective of
whether you have specified CMPAT=Y. The I/O PCB is returned depending on the CMPAT option.

If you specify CMPAT=Y, the PCB list contains the address of the I/O PCB, followed by the addresses of
any alternate PCBs, followed by the addresses of any DB PCBs.

© Copyright IBM Corp. 1974, 2022 483

If you do not specify CMPAT=Y, the PCB list contains the addresses of any alternate PCBs followed by the
addresses of the DB PCBs.

BMP programs, MPPs, and IFPs

I/O PCBs and alternate PCBs are always passed to BMP programs. I/O PCBs and alternate PCBs are also
always passed to MPPs and to IFP application programs.

The PCB list contains the address of the I/O PCB, followed by the addresses of any alternate PCBs,
followed by the addresses of the DB PCBs.

CICS programs with DBCTL

The first PCB always refers to the first DB PCB whether you specify the SYSSERVE keyword.

The following table summarizes the I/O PCB and alternate PCB information. The first column lists
different DB environments, the second and third column specify if the I/O PCB or alternate PCB,
respectively, is valid in the specified environment.

Table 87. Summary of PCB information

Environment
EXEC DLI: I/O PCB count
included in PCB(n)

EXEC DLI: Alternate PCB count
included in PCB(n)

CICS DBCTL1 No No

CICS DBCTL2 No No

BMP Yes Yes

Batch3 No Yes

Batch4 Yes Yes

Notes:

1. SCHD command issued without the SYSSERVE option.
2. SCHD command issued with the SYSSERVE option for a CICS DBCTL command or for a function-

shipped command which is satisfied by a remote CICS system using DBCTL.
3. CMPAT=N specified on the PSBGEN statement.
4. CMPAT=Y specified on the PSBGEN statement.

Format of a PSB
The following is the format of a PSB.

[IOPCB]
[Alternate PCB ... Alternate PCB]
[DBPCB ... DBPCB]
[GSAMPCB ... GSAMPCB]

Each PSB must contain at least one PCB. The I/O PCB must be addressable in order to issue a system
service command. An alternate PCB is used only for IMS online programs, which can run only with the
Transaction Manager. Alternate PCBs can be present even though your program does not run under the
Transaction Manager. A DB PCB can be a full-function PCB, a DEDB PCB, or an MSDB PCB.

484 IMS: Application Programming

Chapter 32. Recovering databases and maintaining
database integrity

You can issue these commands to recover data accessed by your program and maintain data integrity.

• The Basic Checkpoint command, CHKP, which you can use to issue checkpoints from a batch or BMP
program

• The Symbolic Checkpoint command, SYMCHKP, which you can use to issue checkpoints from a batch or
BMP program and to specify data areas that can be restored when you restart your program

• The Extended Restart command, XRST, which you can use along with symbolic checkpoints to start or
restart your batch or BMP program

• The rollback commands, ROLL and ROLB, which you can use to dynamically back out database changes
from a batch or BMP program

• The managing-backout-points commands, SETS and ROLS, which you can use to set multiple backout
points and then return to these points later

• The Dequeue command, DEQ, which releases previously reserved segments

To use any of the commands, you must have defined an I/O PCB for your program, except for the DEDB
DEQ calls, which are issued against a DEDB PCB.

Issuing checkpoints in a batch or BMP program
The two kinds of commands that allow you to make checkpoints are: the CHKP, or Basic Checkpoint
command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the Symbolic Checkpoint or the Basic Checkpoint command.

Both checkpoint commands make it possible for you to commit your program's changes to the database
and to establish places from which the batch or BMP program can be restarted, in cases of abnormal
termination.

Requirement: You must not use the CHKPT=EOV parameter on any DD statement to take an IMS
checkpoint.

Because both checkpoint commands cause a loss of database position at the time the command is
issued, you must reestablish position with a GU command or other methods.

You cannot reestablish position in the midst of nonunique keys or nonkeyed segments.

Issuing the CHKP command
When you issue a CHKP command, you must provide the code for restarting your program and you must
specify the ID for the checkpoint. You can supply either the name of a data area in your program that
contains the ID, or you can supply the actual ID, enclosed in single quotation marks. For example, either
of the following commands is valid:

EXEC DLI CHKP ID(chkpid);

EXEC DLI CHKP ID('CHKP0007');

Issuing the SYMCHKP command
The SYMCHKP command in batch and BMP programs:

• Works with the Extended Restart (XRST) command to restart your program if it terminates abnormally.

© Copyright IBM Corp. 1974, 2022 485

• Can save as many as seven program data areas, which are restored when your program is restarted. You
can save variables, counters, and status information.

For examples of how to specify the SYMCHKP command, see the topic "SYMCHKP Command" in IMS
Version 15.3 Application Programming APIs.

Restarting your program and checking for position
Programs that issue Symbolic Checkpoint commands must also issue the Extended Restart (XRST)
command. You must issue XRST once, as the first command in the program. You can use the XRST
command to start your program normally, or to restart it in case of an abnormal termination.

You can restart your program from one of the following:

• A specific checkpoint ID
• A time/date stamp

Because the XRST command attempts to reposition the database, your program also needs to check for
correct position.

Backing out database updates dynamically: the ROLL and ROLB
commands

When a batch program determines that some of its processing is invalid, the ROLL and ROLB commands
make it possible for the program to remove the effects of its inaccurate processing.

You can use both ROLL and ROLB in batch programs. You can only use the ROLB command in batch
programs if the system log is stored on direct access storage and if you have specified BKO=Y in the parm
field of your JCL.

Issuing either of these commands causes DL/I to back out any changes your program has made to the
database since its last checkpoint, or since the beginning of the program if your program has not issued a
checkpoint.

Using intermediate backout points: the SETS and ROLS commands
Use the SETS and ROLS commands to define multiple points at which to preserve the state of DL/I
full-function databases and to return to these points later. For example, you can use them to allow your
program to handle situations that can occur when PSB scheduling complete without all of the referenced
DL/I databases being available.

The SETS and ROLS commands apply only to DL/I full-function databases. Therefore, if a logical unit
of work (LUW) is updating recoverable resources other than full-function databases (VSAM files, for
example), the SETS and ROLS requests have no effect on the non-DL/I resources. The backout points are
not CICS commit points; they are intermediate backout points that apply only to DBCTL resources. Your
program must ensure the consistency of all the resources involved.

Before initiating a set of DL/I requests to perform a function, you can use a SETS command to define
points in your application at which to preserve the state of DL/I databases. Your application can issue
a ROLS command later if it cannot complete the function. You can use the ROLS command to back out
to the state all full-function databases were in before either a specific SETS request or the most recent
commit point.

486 IMS: Application Programming

Chapter 33. Processing Fast Path databases
Using EXEC DLI commands under DBCTL, a CICS program or a batch-oriented BMP program can access
DEDBs. Parameters allow your program to use facilities of the DEDBs such as subset pointers.

A DEDB contains a root segment and as many as 127 types of dependent segment. One of these types
can be a sequential dependent; the other 126 are direct dependents. Sequential dependent segments are
stored in chronological order. Direct dependent segments are stored hierarchically.

DEDBs provide high data availability. Each DEDB can be partitioned, or divided into multiple areas. Each
area contains a different set of database records. In addition, you can make up to seven copies of each
area data set. If an error exists in one copy of an area, application programs can access the data by using
another copy of that area. This is transparent to the application program. When an error occurs to data in
a DEDB, IMS does not stop the database. It makes the data in error unavailable, but continues to schedule
and process application programs. Programs that do not need the data in error are unaffected.

DEDBs can be shared among application programs in separate IMS systems. Sharing DEDBs is virtually
the same as sharing full-function databases, and most of the same rules apply. IMS systems can share
DEDBs at the area level (instead of at the database level as with full-function databases), or at the block
level.

Processing Fast Path DEDBs with subset pointer options
Subset pointers and the options you use with them are optimization tools that significantly improve the
efficiency of your program when you need to process long segment chains.

Subset pointers divide a chain of segment occurrences under the same parent into two or more groups,
or subsets. You can define as many as eight subset pointers for any segment type. You then define the
subset pointers from within an application program. Each subset pointer points to the start of a new
subset. For example, in the following figure, suppose you defined one subset pointer that divided the last
three segment occurrences from the first four. Your program can then refer to that subset pointer through
options, and directly retrieve the last three segment occurrences.

Figure 88. Processing a long chain of segment occurrences with subset pointers

You can use subset pointers at any level of the database hierarchy, except at the root level. Subset
pointers used for the root level are ignored.

The next two figures show some of the ways you can set subset pointers. Subset pointers are
independent of one another, which means that you can set one or more pointers to any segment in

© Copyright IBM Corp. 1974, 2022 487

the chain. For example, you can set more than one subset pointer to a segment, as shown in the following
figure.

Figure 89. Examples of setting multiple subset pointers

Alternatively, you can define a one-to-one relationship between the pointers and the segments, as shown
in Figure 90 on page 488 where each segment occurrence has one subset pointer.

Figure 90. More examples of setting subset pointers

The following figure shows how the use of subset pointers divides a chain of segment occurrences under
the same parent into subsets. Each subset ends with the last segment in the entire chain. For example,
the last segment in the subset defined by subset pointer 1 is B7.

488 IMS: Application Programming

Figure 91. How subset pointers divide a chain into subsets

Preparing to use subset pointers
For your program to use subset pointers, the pointers must be defined in the DBD for the DEDB, and in
your program's PSB.

In the DBD, you specify the number of pointers for a segment chain. You can specify as many as eight
pointers for any segment chain.

In the PSB, you specify which pointers your program uses; you define this on the SENSEG statement.
(Each pointer is defined as an integer from 1 to 8.) You also specify on the SENSEG statement whether
your program can set the pointers it uses. If your program has read-only sensitivity, it cannot set pointers,
but can only retrieve segments using subset pointers already set. If your program has update sensitivity, it
can update subset pointers by using the SET, SETCOND, MOVENEXT, and SETZERO options.

After the pointers are defined in the DBD and the PSB, an application program can set the pointers to
segments in a chain. When an application program finishes executing, the subset pointers used by that
program remain as they were set by the program and are not reset.

Designating subset pointers
To use subset pointers in your program, you must know the numbers for the pointers as they were defined
in the PSB.

Then, when you use the subset pointer options, you specify the number for each subset pointer you want
to use immediately after the option; for example, you would use P3 to indicate that you want to retrieve
the first segment occurrence in the subset defined by subset pointer 3. No default exists, so if you do not
include a number between 1 and 8, IMS considers your qualification statement invalid and returns an AJ
status code to your program.

Subset pointer options
To take advantage of subsets, application programs use five different options.

The options are:
GETFIRST

Allows you to retrieve the first segment in a subset.
SETZERO

Sets a subset pointer to zero.

Chapter 33. Processing Fast Path databases 489

MOVENEXT
Sets a subset pointer to the segment following the current segment. Current position is at the current
segment.

SET
Unconditionally sets a subset pointer to the current segment. Current position is at the current
segment.

SETCOND
Conditionally sets a subset pointer to the current segment. Current position is at the current segment.

Banking transaction application example
The examples in this chapter are based on a sample application, the recording of banking transactions for
a passbook account. The transactions are written to a database as either posted or unposted, depending
on whether they were posted to the customer's passbook. For example, when Bob Emery does business
with the bank, but forgets to bring in his passbook, an application program writes the transactions to the
database as unposted. The application program sets a subset pointer to the first unposted transaction,
so it can be easily accessed later. The next time Bob remembers to bring in his passbook, a program
posts the transactions. The program can directly retrieve the first unposted transaction using the subset
pointer that was previously set. After the program has posted the transactions, it sets the subset pointer
to zero; an application program that subsequently updates the database can determine that no unposted
transactions exist. The following figure summarizes the processing performed when the passbook is
unavailable.

Figure 92. Processing performed for the sample passbook example when the passbook is unavailable

When the passbook is available, an application program adds the unposted transactions to the database,
setting subset pointer 1 to the first unposted transaction. The following figure summarizes the processing
performed when the passbook is available.

490 IMS: Application Programming

Figure 93. Processing performed for the sample passbook example when the passbook is available

When the passbook is available, an application program retrieves the first unposted transaction using the
program, then posts all unposted transactions, setting subset pointer 1 to zero.

GETFIRST option: retrieving the first segment of a subset
To retrieve the first segment occurrence in the subset, your program issues a Get command with the
GETFIRST option. The GETFIRST option does not set or move the pointer, but indicates to IMS that you
want to establish position on the first segment occurrence in the subset. The GETFIRST option is like the
FIRST option, except that the GETFIRST option applies to the subset instead of to the entire segment
chain.

Using the previous example, imagine that Bob Emery visits the bank with his passbook and you want to
post all of the unposted transactions. Because subset pointer 1 was previously set to the first unposted
transaction, your program can use the following command to retrieve that transaction:

EXEC DLI GU SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) INTO(BAREA) GETFIRST('1');

As shown in following figure, this command retrieves segment B5. To continue processing segments in the
chain, you can issue Get Next commands, as you would if you were not using subset pointers.

Figure 94. Retrieving the first segment in a chain of segments

Chapter 33. Processing Fast Path databases 491

If the subset does not exist (subset pointer 1 has been set to zero), IMS returns a GE status code, and
your position in the database immediately follows the last segment in the chain. Using the passbook
example, the GE status code indicates that no unposted transactions exist.

You can specify only one GETFIRST option per qualification statement; if you use more than one
GETFIRST in a qualification statement, IMS returns an AJ status code to your program. The rules for
using the GETFIRST option are:

1. You can use GETFIRST with all options except:

• FIRST
• LOCKCLASS
• LOCKED

2. Other options take effect after the GETFIRST option has, and position has been established on the first
segment in the subset.

3. If you use GETFIRST with LAST, the last segment in the segment chain is retrieved.
4. If the subset pointer specified with GETFIRST is not set, IMS returns a GE status code, not the last

segment in the segment chain.
5. Do not use GETFIRST with FIRST. This causes you to receive an AJ status code.
6. GETFIRST overrides all insert rules, including LAST.

SETZERO, MOVENEXT, SET, and SETCOND options: setting the subset pointers
The SETZERO, MOVENEXT, SET, and SETCOND options allow you to redefine subsets by modifying the
subset pointers. Before your program can set a subset pointer, it must establish a position in the
database. A command must be fully satisfied before a subset pointer is set. The segment a pointer is
set to depends on your current position at the completion of the command. If a command to retrieve a
segment is not completely satisfied, and a position is not established, the subset pointers remain as they
were before the command was issued.

• Setting the subset pointer to zero: SETZERO

The SETZERO option sets the value of the subset pointer to zero. After your program issues a command
with the SETZERO option, the pointer is no longer set to a segment; the subset defined by that pointer
no longer exists. (IMS returns a status code of GE to your program if you try to use a subset pointer
having a value of zero.)

Using the previous example, say that you used the GETFIRST option to retrieve the first unposted
transaction. You would then process the chain of segments, posting the transactions. After posting the
transactions and inserting any new ones into the chain, you would use the SETZERO option to set the
subset pointer to zero as shown in the following command:

EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) FROM(BAREA) SETZERO('1');

After this command, subset pointer 1 would be set to zero, indicating to a program updating the
database later on that no unposted transactions exist.

• Moving the subset pointer forward to the next segment after your current position: MOVENEXT

To move the subset pointer forward to the next segment after your current position, your program
issues a command with the MOVENEXT option. Using the previous example, say that you wanted to
post some of the transactions, but not all, and that you wanted the subset pointer to be set to the first
unposted transaction. The following command sets subset pointer 1 to segment B6.

EXEC DLI GU SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) INTO(BAREA) GETFIRST('1') MOVENEXT('1');

The process of moving the subset pointer with this command is shown in the following figure. If the
current segment is the last in the chain, and you use a MOVENEXT option, IMS sets the pointer to zero.

492 IMS: Application Programming

Figure 95. Moving the subset pointer to the next segment after your current position
• Setting the subset pointer unconditionally: SET

You use the SET option to set a subset pointer. The SET option sets a subset pointer unconditionally,
regardless of whether or not it is already set. When your program issues a command that includes the
SET option, IMS sets the pointer to your current position.

For example, to retrieve the first B segment occurrence in the subset defined by subset pointer 1, and to
reset pointer 1 at the next B segment occurrence, you would issue the following commands:

EXEC DLI GU SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) INTO(BAREA) GETFIRST('1');
EXEC DLI GN SEGMENT(B) INTO(BAREA) SET('1');

After you have issued these commands, instead of pointing to segment B5, subset pointer 1 points to
segment B6, as shown in the following figure.

Chapter 33. Processing Fast Path databases 493

Figure 96. Unconditionally setting the subset pointer to your current position
• Setting the subset pointer conditionally: SETCOND

Your program uses the SETCOND option to conditionally set the subset pointer. The SETCOND option is
similar to the SET option; the only difference is that, with the SETCOND option, IMS updates the subset
pointer only if the subset pointer is not already set to a segment.

Using the passbook example, say that Bob Emery visits the bank and forgets to bring his passbook;
you add the unposted transactions to the database. You want to set the pointer to the first unposted
transaction so that when you post the transactions later, you can immediately access the first one. The
following command sets the subset pointer to the transaction you are inserting, if it is the first unposted
one:

EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) FROM(BAREA) SETCOND('1');

As shown by the following figure, this command sets subset pointer 1 to segment B5. If unposted
transactions already existed, the subset pointer is not changed.

494 IMS: Application Programming

Figure 97. Conditionally setting the subset pointer to your current position

Inserting segments in a subset
When you use the GETFIRST option to insert an unkeyed segment in a subset, the new segment
is inserted before the first segment occurrence in the subset. However, the subset pointer is not
automatically set to the new segment occurrence. For example, the following command inserts a new
B segment occurrence in front of segment B5, but does not set subset pointer 1 to point to the new B
segment occurrence:

EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) FROM(BAREA) GETFIRST('1');

To set subset pointer 1 to the new segment, you use the SET option along with the GETFIRST option, as
shown in the following example:

EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = 'A1')
 SEGMENT(B) FROM(BAREA) GETFIRST('1') SET ('1');

If the subset does not exist (subset pointer 1 has been set to zero), the segment is added to the end of the
segment chain.

Chapter 33. Processing Fast Path databases 495

Deleting the segment pointed to by a subset pointer
If you delete the segment pointed to by a subset pointer, the subset pointer points to the next segment
occurrence in the chain. If the segment you delete is the last in the chain, the subset pointer is set to zero.

Combining options
You can use the SET, MOVENEXT, and SETCOND options with other options, and you can combine subset
pointer options with each other, provided they do not conflict. For example, you can use GETFIRST and
SET together, but you cannot use SET and SETZERO together because their functions conflict. If you
combine options that conflict, IMS returns an AJ status code to your program.

You can use one GETFIRST option per qualification statement, and one update option (SETZERO,
MOVENEXT, SET, or SETCOND) for each subset pointer.

Subset pointer status codes
If you make an error in a qualification statement that contains subset pointer options, IMS can return
these status codes to your program.

AJ
The qualification statement used a GETFIRST, SET, SETZERO, SETCOND, or MOVENEXT option for a
segment for which there are no subset pointers defined in the DBD.

The subset options included in the qualification statement are in conflict; for example, if one
qualification statement contained a SET option and a SETZERO option for the same subset pointer,
IMS would return an AJ status code. S means to set the pointer to current position; Z means to set the
pointer to zero. You cannot use these options together in one qualification statement.

The qualification statement included more than one GETFIRST option.

The pointer number following a subset pointer option is invalid. You either did not include a number,
or included an invalid character. The number following the option must be between 1 and 8, inclusive.

AM
The subset pointer referenced in the qualification statement was not specified in the program's PSB.
For example, if your program's PSB specifies that your program can use subset pointers 1 and 4, and
your qualification statement referenced subset pointer 5, IMS would return an AM status code to your
program.

Your program tried to use an option that updates the pointer (SET, SETCOND, or MOVENEXT) but the
program's PSB did not specify pointer update sensitivity.

Your program attempted to open a GSAM database without specifying an IOAREA.

The POS command
You can use the Position (POS) command (only with DEDBs) to perform the following functions.

• Retrieve the location of a specific sequential dependent segment, or retrieves the location of the last
inserted sequential dependent segment.

• Tell you the amount of unused space within each DEDB area. For example, you can use the position
information that IMS returns for a POS command to scan or delete the sequential dependent segments
for a particular time period.

For the syntax of the POS command, see the topic "POS Command" in IMS Version 15.3 Application
Programming APIs.

If the area the POS command specifies is unavailable, the I/O area is unchanged and the status code FH is
returned.

Related reference
POS command (Application Programming APIs)

496 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_poscmd.htm#ims_poscmd

Locating a specific sequential dependent segment
When you have position on a particular root segment, you can retrieve the position information and the
area name of a specific sequential dependent segment of that root.

If you have a position established on a sequential dependent segment, the search starts from that
position. IMS returns the position information for the first sequential dependent segment that satisfies
the command.

To retrieve this information, you issue a POS command with a qualification statement containing the
segment name of the sequential dependent. The current position after this kind of POS command is in the
same place that it is after a GNP command.

After a successful POS command, the I/O area contains:
LL

A 2-byte field giving the total length of the data in the I/O area, in binary.
Area Name

An 8-byte field giving the ddname from the AREA statement.
Position

An 8-byte field containing the position information for the requested segment.

If the sequential dependent segment that is the target of the POS command is inserted in the same
synchronization interval, no position information is returned. Bytes 11-18 contain X'FF'; other fields
contain normal data.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent overflow part.

Locating the last inserted sequential dependent segment
You can also retrieve the position information for the most recently inserted sequential dependent
segment of a given root segment.

To do this, you issue a POS command with a qualification statement containing the root segment as the
segment name. The current position after this type of command follows the same rules as position after a
GU.

After a successful command, the I/O area contains:
LL

A 2-byte field containing the total length of the data in the I/O area, in binary.
Area Name

An 8-byte field giving the ddname from the AREA statement.
Position

An 8-byte field containing the position information for the most recently inserted sequential
dependent segment. This field contains zeros provided no sequential dependent for this root exist.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent overflow part.

Chapter 33. Processing Fast Path databases 497

Identifying free space with the POS command
To retrieve the area name and the next available position within the sequential dependent part from all
online areas, you can issue an unqualified POS command. This type of command also retrieves the free
space in the independent overflow and sequential dependent parts.

After a successful unqualified POS command, the I/O area contains the length (LL) followed by the same
number of entries as areas within the database. Each entry contains field two through five shown below:
LL

A 2-byte field containing the total length of the data in the I/O area, in binary. The length includes the
2 bytes for the LL field, plus 24 bytes for each entry.

Area Name
An 8-byte field giving the ddname from the AREA statement.

Position
An 8-byte field giving the next available position within the sequential dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent overflow part.

The P processing option
If the P processing option has been specified (with the PROCOPT parameter) in the PCB for your program,
a GC status code is returned to your program whenever a command to retrieve or insert a segment causes
a Unit of Work (UOW) boundary to be crossed.

Although crossing the UOW boundary probably has no particular significance for your program, the GC
status code indicates that this is a good time to issue a CHKP command. The advantages of doing this are:

• Your position in the database is kept. Issuing a CHKP normally causes position in the database to be
lost, and the application program has to reestablish position before it can resume processing.

• Commit points occur at regular intervals.

When a GC status code is returned, no data is retrieved or inserted. In your program, you can either:

• Issue a CHKP command, and resume database processing by reissuing the command that caused the
GC status code.

• Ignore the GC status code and resume database processing by reissuing the command that caused the
status code.

498 IMS: Application Programming

Chapter 34. Comparing command-level and call-level
programs

Call-level and command-level programs exhibit different behavior.

DL/I calls for IMS and CICS
The following table provides a reference for using DL/I calls in a batch, batch-oriented BMP, or CICS with
DBCTL environment.

Table 88. DL/I calls available to IMS and CICS command-level application programs

Request type Batch Batch-oriented BMP CICS with DBCTL1

CHKP call (symbolic) Yes Yes No

CHKP call (basic) Yes Yes No

GSCD call2 Yes No No

INIT call Yes Yes Yes

ISRT call (initial load) Yes No No

ISRT call Yes Yes Yes

LOG call Yes Yes Yes

SCHD call No No Yes

ROLB call Yes Yes No

ROLL call Yes Yes No

ROLS call (Roll Back to
SETS)3

Yes Yes Yes

ROLS call (Roll Back to
Commit)

Yes Yes Yes

SETS call3 Yes Yes Yes

STAT call4 Yes Yes Yes

TERM call No No Yes

XRST call Yes Yes No

1. In a CICS remote DL/I environment, CALLs in the CICS-DBCTL column are supported if you are
shipping a function to a remote CICS that uses DBCTL.

2. GSCD is a Product-sensitive Programming Interface.
3. SETS and ROLS calls are not valid when the PSB contains a DEDB.
4. STAT is a Product-sensitive Programming Interface.

Comparing EXEC DLI commands and DL/I calls
Use the appropriate EXEC DLI commands and DL/I calls in your program.

The following table compares EXEC DLI commands with DL/I calls. For example, in a command-level
program, you use the LOAD command instead of the ISRT call to initially load a database.

© Copyright IBM Corp. 1974, 2022 499

Table 89. Comparing call-level and command-level programs: commands and calls

Call-level Command-level Purpose

INIT call ACCEPT command Initialize for data availability status codes.

CHKP call (basic) CHKP command Issue a basic checkpoint.

DEQ call DEQ command Release segments retrieved using LOCKCLASS option or Q
command code.

DLET call DLET command Delete segments from a database.

GU, GN, and GNP
calls

GU, GN, and GNP
commands1

Retrieve segments from a database.

GHU, GHN, and
GHNP calls1

GU, GN, and GNP
commands1

Retrieve segments from a database for updating.

GSCD call GSCD call2 Retrieve system addresses.

ISRT call ISRT command Add segments to a database.

ISRT call LOAD command Initially load a database.

LOG call LOG command Write a message to the system log.

POS call POS command Retrieve positioning or space usage or positioning and space
usage in a DEDB area.

INIT call ACCEPT command Initialize for data availability status.

INIT call QUERY command Obtain information of initial data availability.

INIT call REFRESH command Availability information after using a PCB.

REPL call REPL command Replace segments in a database.

XRST call RETRIEVE command Issue an extended restart.

ROLL or ROLB call ROLL or ROLB
command

Dynamically back out changes.

ROLS call ROLS command Back out to a previously set backout point.

PCB call SCHD command Schedule a PSB.

SETS call SETS command Set a backout point.

SETU call SETU command Set a backout point even if unsupported PCBs (like DEDBs or
MSDBs) are present.

STAT call3 STAT command Obtain system and buffer pool statistics.

CHKP call
(extended)

SYMCHKP command Issue a symbolic checkpoint.

TERM call TERM command Terminate a PSB.

XRST call XRST command Issue an extended restart.

Notes:

1. Get commands are just like Get Hold calls, and the performance of Get commands and Get calls is the
same.

2. You can use the GSCD call in a batch command-level program. GSCD is a Product-sensitive
Programming Interface.

3. STAT is a Product-sensitive Programming Interface.

500 IMS: Application Programming

Comparing command codes and options
The following table compares the options you use with EXEC DLI commands with the command codes you
use with DL/I calls. For example, the LOCKED option performs the same function as a Q command code.

Table 90. Comparing call-level and command-level programs: command codes and options

Call- Level Command-Level Allows You to . . .

C KEYS option Use the concatenated key of a segment to identify the segment.

D INTO or FROM specified
on segment level to be
retrieved or inserted.

Retrieve or insert a sequence of segments in a hierarchic path using
only one request, instead of having to use a separate request for
each segment. (Path call or command).

F FIRST option Back up to the first occurrence of a segment under its parent when
searching for a particular segment occurrence. Disregarded for a root
segment.

L LAST option Retrieve the last occurrence of a segment under its parent.

M MOVENEXT option Set a subset pointer to the segment following the current segment.

N Leave out the SEGMENT
option for segments you
do not want replaced.

Designate segments you do not want replaced, when replacing
segments after a get hold request. Usually used when replacing a
path of segments.

P SETPARENT Set parentage at a higher level than what it usually is (the lowest
hierarchic level of the request).

Q LOCKCLASS, LOCKED Reserve a segment so that other programs are not able to update it
until you have finished processing it.

R GETFIRST option Retrieve the first segment in a subset.

S SET option Unconditionally set a subset pointer to the current segment.

U No equivalent for
command level programs.

Limit the search for a segment to the dependents of the segment
occurrence on which position is established.

V CURRENT option Use the hierarchic level of and levels above the current position as
qualifications for the segment.

W SETCOND option Conditionally set a subset pointer to the current segment.

Z SETZERO option Set a subset pointer to zero.

– No command-level
equivalent.

Null. Use an SSA in command code format without specifying
the command code. Can be replaced during execution with the
command codes you want.

Chapter 34. Comparing command-level and call-level programs 501

502 IMS: Application Programming

Chapter 35. Data availability enhancements
Your program might fail when it receives a status code indicating that a DL/I full-function database
is unavailable. To avoid this, you can use these data availability enhancements. After a PSB has been
scheduled in DBCTL, your application program can issue requests to indicate to IMS that the program can
handle data availability status codes and to obtain information about the availability of each database.

Accepting database availability status codes
These status codes occur because PSB scheduling was completed without all of the referenced databases
being available. Use the ACCEPT command to tell DBCTL to return a status code instead of abending the
program:

EXEC DLI ACCEPT STATUSGROUP('A');

Obtaining information about database availability
You can put data availability status codes into each of the DB PCBs if:

• In a CICS DBCTL environment, by using the PSB scheduling request command, SCHD.
• In a Batch or BMP environment, at initialization time.

You can obtain the data availability status codes within the DL/I interface block (DIB) by using the
following QUERY command:

EXEC DLI QUERY USING PCB(n);

n specifies the PCB.

The QUERY command is used after scheduling the PSB but before making the first database call. If the
program has already issued a call using a DB PCB, then the QUERY command must follow the REFRESH
command:

EXEC DLI REFRESH DBQUERY

The REFRESH command updates the information in the DIB. You can only issue this command one time.

For full-function databases, the DIBSTAT should contain NA, NU, TH, or blanks. For MSDBs and DEDBs,
the DIBSTAT always contains blanks.

If a CICS command language translator has been used to translate the EXEC DLI commands, then, in
addition to data availability status, the DBDNAME will be returned in the DIB field DIBDBDNM. Also, the
name of the database organization will be returned in the DIB field DIBDBORG.

© Copyright IBM Corp. 1974, 2022 503

504 IMS: Application Programming

Part 5. Application programming for SQL
These topics provide detailed information about developing IMS application programs in Structured Query
Language (SQL).

These topics also provide detailed information about using SQL queries to retrieve and modify IMS data.
This information is intended for IMS application developers who are familiar with SQL and who know one
or more programming languages that IMS supports.

© Copyright IBM Corp. 1974, 2022 505

506 IMS: Application Programming

Chapter 36. SQL considerations and restrictions for
COBOL

SQL support for COBOL has the several considerations and restrictions with the current implementation.

• A subset of SQL keywords is supported. There are SQL keywords that are currently supported by the
IMS Universal JDBC driver but not supported when the SQL keyword is used in a COBOL application. For
example:

– XML is not supported by COBOL SQL in SELECT statements.
– SQL COMMIT and ROLLBACK keywords are not supported. You should use IMS DB system services

call to commit or roll back your database changes

For information about the supported SQL statement and keywords, see SQL statements (Application
Programming APIs).

• SQL statements are supported for COBOL applications that are running in a BMP, IFP, and MPR for the
IMS TM/DB environment and BMP is supported for the DBCTL environment. Batch and DB Batch are not
supported. Also, the use of the EXEC SQLIMS API from IBM CICS Transaction Server for z/OS and Db2
for z/OS stored procedures to IMS is not supported. The DL/I API should be used instead of the EXEC
SQLIMS API.

• You can access Db2 for z/OS data using DB2 SQL support in the same COBOL application. IMS must
connect to DB2 by using the SSM parameter, and the DFSLI000 module must be included.

• The IMS catalog must be enabled to use SQL support for COBOL. Make sure that you load the database
metadata that would be needed by the COBOL SQL application into the IMS catalog.

• Ensure that you have sufficient storage for your IMS dependent region in your COBOL SQL applications.
Specify at least 12MB for your IMS dependent region size for running a COBOL SQL application. You
would encounter an 878 or other storage related abends if you run out of storage.

• Only one cursor and SQL statement can be active at a time in the application. If you must execute
multiple SQL statements in the same application, you must first close the cursor for the previous
statement and then open a new cursor or prepare a new statement.

• The set of SQL keywords that are supported in COBOL is only for database access calls. For IMS
database services, GSAM, IMS TM, and message processing services, continue to use DL/I API.

• Dynamic SQL statement is supported. Static SQL is not supported currently.
• Only EBCDIC CCSID 37 and 1140 codepages for the COBOL CODEPAGE option are supported.
• The qualifiers for type Zoned Decimal or Packed Decimal can only be combined with other qualifiers by

using the logical operator OR in a query
• For the predicate in a WHERE clause, when the data type is integer, no more than 10 consecutive AND

statements are allowed due to potential extensive memory consumption. You can have more than 10
statements if the WHERE clause also contains one or more OR predicates, but not 10 consecutive AND
statements.

• When you write a WHERE clause for an SQL statement and specify virtual foreign keys in the
qualification statements, the following limitations apply when access to the database is random:

– The virtual foreign key must be for one of the first child segments of the root segment (level 2). You
cannot specify virtual foreign keys for segments that are at lower levels in the hierarchy.

– The OR operator must be used to combine multiple qualification statements that use the virtual
foreign key.

– Only virtual foreign keys can be specified. You cannot specify other columns from the same segment
or another segment.

For example, assume that the HOSPITAL table is the root segment and the HOSPCODE column is the
unique key. The WARD table is a first child segment of HOSPITAL and HOSPITAL_HOSPCODE is the

© Copyright IBM Corp. 1974, 2022 507

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_statementsintro.htm#ims_sql_statementsintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_statementsintro.htm#ims_sql_statementsintro

virtual foreign key that references the HOSPCODE column in the HOSPITAL table. The WHERE clause in
the following SELECT statement is valid:

SELECT WARD.WARDNAME, WARD.PATCOUNT FROM PCB01.WARD
 WHERE HOSPITAL_HOSPCODE='ARS100100D' OR HOSPITAL_HOSPCODE='ARS100100D'

The WHERE clause in the following SELECT statement will fail:

SELECT WARD.WARDNAME, WARD.PATCOUNT FROM PCB01.WARD
 WHERE HOSPITAL_HOSPCODE='ARS100100D' AND XINTEGER > '5'

508 IMS: Application Programming

Chapter 37. Writing application programs for SQL
Applications that interact with IMS must first connect to IMS. They can then read, add, or modify data or
manipulate IMS databases.

Coding SQL statements in application programs: General
information

IMS provides a way to issue SQL statements directly in a COBOL application to access your IMS data. IMS
uses the same SQL coding techniques as Db2 for z/OS when programming IMS SQL for COBOL.

To include a SQL statement in an application program:
1. Choose one of the following methods for communicating with IMS:

• Embedded dynamic SQL
• JDBC application support

If you are writing your applications in Java, you can use JDBC application support to access IMS.

If you are writing your applications for COBOL, use embedded dynamic SQL.
2. Define an SQL communications area (SQLIMSCA) that for your COBOL program can use to check

whether an SQL statement executed successfully.
3. Define at least one SQL descriptor area (SQLIMSDA).
4. Declare any of the following data items for passing data between IMS and COBOL:

• host variables
• host structures

Ensure that you use the appropriate data types.
5. Code SQL statements to access IMS data.

If you are using a SELECT statement to query IMS data, use cursors to select a set of rows and then
process one row at a time.

6. Check the execution of the SQL statements.
7. Handle any SQL error codes.

Related concepts
“Dynamic SQL” on page 511
Dynamic SQL statements are prepared and executed while the program is running. Use dynamic SQL
when you do not know what SQL statements your application needs to execute before run time.
“Programming with the IMS Universal JDBC driver” on page 594
IMS provides a Java Database Connectivity (JDBC) driver for SQL-based database connectivity to access
IMS databases over TCP/IP with the IMS Universal JDBC driver that is included in the IMS Universal
drivers. The IMS Universal JDBC driver is based on the JDBC 4.0 standard.
Related tasks
“Retrieving a set of rows by using a cursor” on page 545
In an application program, you can retrieve a set of rows from IMS.

Defining the items that your program can use to check whether an SQL
statement executed successfully

If your program contains SQL statements, the program should include an SQL communications area
(SQLIMSCA), which contains SQLIMSCODE, SQLIMSSTATE, and SQLIMSERRMT variables, so that it can
check whether the statements executed successfully.

© Copyright IBM Corp. 1974, 2022 509

Related tasks
“Defining the SQL communications area in COBOL” on page 524
COBOL programs that contain SQL statements can include an SQL communications area (SQLIMSCA) to
check whether an SQL statement executed successfully.
Related reference
Description of SQLIMSCA fields (Application Programming APIs)
INCLUDE (Application Programming APIs)

Defining SQL descriptor areas
If your program includes certain SQL statements, you must include an SQL descriptor area (SQLIMSDA).
Depending on the context in which it is used, the SQLIMSDA stores information about prepared SQL
statements or host variables. This information can then be read by either the application program or IMS.

If your program includes any of the following statements, you must include an SQLIMSDA in your
program:

• DESCRIBE statement-name INTO descriptor-name
• FETCH … INTO DESCRIPTOR descriptor-name

Related tasks
“Defining SQL descriptor areas in COBOL” on page 524
If your program includes certain SQL statements such as DESCRIBE, you must define at least one
SQL descriptor area (SQLIMSDA). Depending on the context in which it is used, the SQLIMSDA stores
information about prepared SQL statements or host variables. This information can then be read by either
the application program or IMS.
Related reference
Description of SQLIMSCA fields (Application Programming APIs)
SQL descriptor area (SQLIMSDA) (Application Programming APIs)

Declaring host variables and indicator variables
You can use host variables in SQL statements in your program to pass data between IMS and your
application.

Use the techniques that are appropriate for COBOL.

Host variables
Use host variables to pass a single data item between IMS and your application.

A host variable is a single data item that is declared in the host language to be used within an SQL
statement. You can use host variables in application programs that are written in COBOL to perform the
following actions:

• Retrieve data into the host variable for your application program's use
• Use the data in the dynamic SQL statement host variables that have parameter marker during the

EXECUTE, PREPARE, and OPEN calls

Related concepts
“Rules for host variables in an SQL statement” on page 513
Use host variables in embedded SQL statements to represent a single value. Host variables are useful for
storing retrieved data or for passing values that are to be assigned or used for comparisons.
Related reference
“Host variables in COBOL” on page 525

510 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_descriptionofsqlcafields.htm#ims_descriptionofsqlcafields
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_include.htm#ims_sql_include
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_descriptionofsqlcafields.htm#ims_descriptionofsqlcafields
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sqldescriptorareaintro.htm#ims_sqldescriptorareaintro

In COBOL programs, you can specify numeric and character host variables.

Host structures
Use host structures to pass a group of host variables between IMS and your application.

A host structure is a group of host variables that can be referenced with a single name. You define host
structures with statements in the host language. You can refer to a host structure in any context where
you want to refer to the list of host variables in the structure. A host structure reference is equivalent to
a reference to each of the host variables within the structure in the order in which they are defined in the
structure declaration. You can also use indicator variables (or indicator structures) with host structures.

Related reference
“Host structures in COBOL” on page 529
A COBOL host structure is a named set of host variables that are defined in your program's WORKING-
STORAGE SECTION or LINKAGE SECTION.

Indicator variables, arrays, and structures
An indicator variable is associated with a particular host variable. Each indicator variable contains a small
integer value that indicates some information about the associated host variable. Indicator structures
serve the same purpose for host variable structures.

You can use indicator variables to perform the following actions:

• Determine whether the value of an associated output host variable is null
• Determine the original length of a character string that was truncated when it was assigned to a host

variable

You can use indicator structures to perform these same actions for individual items in host data
structures.

If you provide an indicator variable for a nullable field of a variable-length segment, a negative value (-1)
is set for the indicator variable when the field is null. Your program should check the indicator variable
before using the field to determine whether the field is truly null. If the indicator variable contains a
positive integer, the retrieved character string value is truncated, and the integer is the original length of
the string.

An indicator structure is an array of halfword integer variables that supports a specified host structure. If
the field values that your program retrieves into a host structure can be null, you can attach an indicator
structure name to the host structure name. This name enables IMS to notify your program about each null
value it returns to a host variable in the host structure.

Using SQL statements in your application
You can code SQL statements in a COBOL program using dynamic SQL.
Related concepts
“SQL statements in COBOL programs” on page 533
You can code SQL statements in certain COBOL program sections.

Dynamic SQL
Dynamic SQL statements are prepared and executed while the program is running. Use dynamic SQL
when you do not know what SQL statements your application needs to execute before run time.

Dynamic SQL prepares and executes the SQL statements within a program, while the program is running.
Two types of dynamic SQL are:

• Interactive SQL

A user enters SQL statements through IMS Explorer for Development. IMS prepares and executes those
statements as dynamic SQL statements.

Chapter 37. Writing application programs for SQL 511

• Embedded dynamic SQL

Your application puts the SQL source in host variables and includes PREPARE and EXECUTE statements
that tell IMS to prepare and run the contents of those host variables at run time. You must precompile
and bind programs that include embedded dynamic SQL.

Dynamic SQL processing
A program that provides for dynamic SQL accepts as input, or generates, an SQL statement in the form
of a character string. You can simplify the programming if you know a known number of values of known
types. In the most general case, in which you do not know in advance about the SQL statements that will
execute, the program typically takes these steps:

1. Translates the input data, including any parameter markers, into an SQL statement
2. Prepares the SQL statement to execute and acquires a description of the result segment
3. Obtains, for SELECT statements, enough main storage to contain retrieved data
4. Executes the statement or fetches the rows of data
5. Processes the information returned
6. Handles SQL return codes.

Dynamically executing SQL for fixed-list SELECT statements
A fixed-list SELECT statement returns rows that contain a known number of values of a known type. When
you use this type of statement, you can specify a list of host variables to contains the filed values.

The term "fixed-list" does not imply that you must know in advance how many rows of data will be
returned. However, you must know the number of fields and the data types of those fields. A fixed-list
SELECT statement returns a result segment that can contain any number of rows; your program looks at
those rows one at a time, using the FETCH statement. Each successive fetch returns the same number of
values as the last, and the values have the same data types each time.

To execute a fixed-list SELECT statement dynamically, your program must:
1. Include an SQLIMSCA.
2. Load the input SQL statement into a data area.

The preceding two steps are exactly the same including dynamic SQL for non-SELECT statements in
your program.

3. Declare a cursor for the statement name.
4. Prepare the statement.
5. Open the cursor.
6. Fetch rows from the result segment.
7. Close the cursor.
8. Handle any resulting errors. This step is the same as for static SQL, except for the number and types of

errors that can result.

Example: Suppose that your program retrieves hospital names and codes by dynamically executing
SELECT statements of this form:

SELECT HOSPNAME, HOSPCODE FROM PCB01.HOSPITAL

Declaring a cursor for the statement name:

Use a cursor to put the results into host variables for a SELECT statement.

Example: When you declare the cursor, use the statement name (call it STMT), and give the cursor itself a
name (for example, C1):

EXEC SQLIMS DECLARE C1 CURSOR FOR STMT
END-EXEC.

512 IMS: Application Programming

Preparing the statement:

Prepare a statement (STMT) from STMTSTR.

Example: This is one possible PREPARE statement:

EXEC SQLIMS PREPARE STMT FROM :STMTSTR
END-EXEC.

To execute STMT, your program must open the cursor, fetch rows from the result segment, and close the
cursor.

Opening the cursor:

The OPEN statement evaluates the SELECT statement named STMT.

Example:

EXEC SQLIMS OPEN C1
END-EXEC.

Fetching rows from the result table:

Example: Your program could repeatedly execute a statement such as this:

EXEC SQLIMS FETCH C1 INTO :HOSPNAME, :HOSPCODE
END-EXEC.

The key feature of this statement is the use of a list of host variables to receive the values returned by
FETCH. The list has a known number of items (in this case, two items, :HOSPNAME and :HOSPCODE) of
known data types (both are character strings, of lengths 15 and 4, respectively).

You can use this list in the FETCH statement only because you planned the program to use only fixed-list
SELECTs. Every row that cursor C1 points to must contain exactly two character values of appropriate
length. If the program is to handle anything else, it must use the techniques for including dynamic SQL for
varying-list SELECT statements in your program.

Closing the cursor:

Example: Close the cursor when your program is finished running the FETCH statement:

EXEC SQLIMS CLOSE C1
END-EXEC.

Related concepts
“SQL statements in COBOL programs” on page 533
You can code SQL statements in certain COBOL program sections.
Related tasks
“Dynamically executing SQL for non-SELECT statements” on page 518
The easiest way to use dynamic SQL is to use non-SELECT statements such as the INSERT, UPDATE, or
DELETE statement.
“Dynamically executing SQL for varying-list SELECT statements” on page 514
A varying-list SELECT statement returns rows that contain an unknown number of values of unknown
type. When you use this type of statement, you do not know in advance exactly what kinds of host
variables you need to declare for storing the results.

Rules for host variables in an SQL statement
Use host variables in embedded SQL statements to represent a single value. Host variables are useful for
storing retrieved data or for passing values that are to be assigned or used for comparisons.

When you use host variables, adhere to the following requirements:

• You must declare the name of the host variable in the host program before you use it. Host variables
follow the naming conventions of the host language.

Chapter 37. Writing application programs for SQL 513

• You can use a host variable to represent a data value, but you cannot use it to represent a segment,
view, or field name. You can specify segment or field names at run time by using dynamic SQL.

• To use a host variable in an SQL statement, you can specify any valid host variable name that is declared
according to the rules of the host language.

• A colon (:) must precede host variables that are used in SQL statements so that IMS can distinguish
a variable name from a field name. When host variables are used outside of SQL statements, do not
precede them with a colon.

• To optimize performance, make sure that the host language declaration maps as closely as possible to
the data type of the associated data in the database.

• For assignments and comparisons between an IMS field and a host variable of a different data type or
length, expect conversions to occur.

Related concepts
“Dynamic SQL” on page 511
Dynamic SQL statements are prepared and executed while the program is running. Use dynamic SQL
when you do not know what SQL statements your application needs to execute before run time.
Assignment and comparison (Application Programming APIs)

Dynamically executing SQL for varying-list SELECT statements
A varying-list SELECT statement returns rows that contain an unknown number of values of unknown
type. When you use this type of statement, you do not know in advance exactly what kinds of host
variables you need to declare for storing the results.

What your application program must do for varying-list SELECT statements: To execute a varying-list
SELECT statement dynamically, your program must follow these steps:

1. Include an SQLIMSCA.
2. Load the input SQL statement into a data area.
3. Prepare and execute the statement. This step is more complex than for fixed-list SELECTs. It involves

the following steps:

a. Include an SQLIMSDA (SQL descriptor area).
b. Declare a cursor and prepare the statement.
c. Obtain information about each field of the result segment.
d. Determine the main storage needed to hold a row of retrieved data.
e. Put storage addresses in the SQLIMSDA to tell where each item of retrieved data should be stored.
f. Open the cursor.

g. Fetch a row.
h. Eventually close the cursor and free main storage.

4. Handle any errors that might result.

Preparing a varying-list SELECT statement:

Suppose that your program dynamically executes SQL statements.

Your program puts the statements into a varying-length character variable; call it STMTSTR. Your program
goes on to prepare a statement from the variable and then give the statement a name; call it S1.

If the statement is a SELECT statement, the program must find out how many values are in each row, and
what their data types are. The information comes from an SQL descriptor area (SQLIMSDA).

An SQL descriptor area:

The SQLIMSDA is a structure that is used to communicate with your program, and storage for it is usually
allocated dynamically at run time.

514 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison

For COBOL, use:

EXEC SQLIMS INCLUDE SQLIMSDA END-EXEC.

Obtaining information about the SQL statement:

An SQLIMSDA can contain a variable number of occurrences of SQLIMSVAR, each of which is a set of
five fields that describe one field in the result segment of a SELECT statement. The included SQLIMSDA
contains a maximum of 750 occurrences of SQLVARs, which means it can hold up to 750 of resulting
columns.

Declaring a cursor for the statement:

As before, you need a cursor for the dynamic SELECT. For example, write:

EXEC SQLIMS
 DECLARE C1 CURSOR FOR S1

Preparing the statement using the minimum SQLIMSDA:

To prepare a statement from the character string in STMTSTR and also enter its description into
SQLIMSDA, write this:

EXEC SQLIMS PREPARE STMT FROM :STMTSTR END-EXEC.
EXEC SQLIMS DESCRIBE STMT INTO :SQLIMSDA END-EXEC.

The following figure shows the contents of the minimum SQLIMSDA in use.

Figure 98. The minimum SQLIMSDA structure

SQLIMSN determines what SQLVAR gets:

The SQLIMSN field, which you must set before using DESCRIBE (or PREPARE INTO), tells how many
occurrences of SQLIMSVAR the SQLIMSDA is allocated for.

• Base SQLIMSVAR information includes:

– Data type code
– Length attribute
– Column name or label
– Host variable address
– Indicator variable address

Whenever you execute DESCRIBE, IMS returns the following values, which you can use to build an
SQLIMSDA of the correct size:

• SQLIMSD is 0 if the SQL statement is not a SELECT. Otherwise, SQLIMSD is the number of fields in the
result segment.

If the statement is not a SELECT:

To find out if the statement is a SELECT, your program can query the SQLIMSD field in SQLIMSDA after
the DESCRIBE statement. If the field contains 0, the statement is not a SELECT, the statement is already
prepared, and your program can execute it. You can use:

EXEC SQLIMS EXECUTE STMT END-EXEC.

If the statement is a SELECT:

After the DESCRIBE statement executes, each occurrence of SQLIMSVAR contains a description of one
field of the result segment in five fields.

Chapter 37. Writing application programs for SQL 515

The following table describes the values in the descriptor area.

Table 91. Values inserted in the SQLIMSDA

Value Field Description

SQLIMSDA SQLIMSDAID An "eye-catcher"

750 SQLIMSN The number of occurrences of SQLIMSVAR, set by the
program

2 SQLIMSD The number of occurrences of SQLIMSVAR actually used by
the DESCRIBE statement

452 SQLIMSTYPE The value of SQLIMSTYPE in the first occurrence of
SQLIMSVAR. It indicates that the first field contains fixed-
length character strings, and does not allow nulls.

3 SQLIMSLEN The length attribute of the column

Undefined SQLIMSIND

8 SQLIMSNAME The number of characters in the field name

HOSPCODE SQLIMSNAME+2 The field name of the first column

The following figure shows an SQLIMSDA that describes two fields.

Figure 99. Contents of SQLIMSDA after executing DESCRIBE

The first SQLIMSVAR pertains to the first field of the result segment (the HOSPCODE column).
SQLIMSVAR element 1 contains fixed-length character strings and does not allow null values
(SQLIMSTYPE=452); the length attribute is 3.

Acquiring storage to hold a row:

Before fetching rows of the result segment, your program must:

1. Analyze each SQLIMSVAR description to determine how much space you need for the field value.
2. Derive the address of some storage area of the required size.
3. Put this address in the SQLIMSDATA field.

If the SQLIMSTYPE field indicates that the value can be null, the program must also put the address of
an indicator variable in the SQLIMSIND field. The following figures show the SQL descriptor area after you
take certain actions.

Putting storage addresses in the SQLIMSDA:

After analyzing the description of each column, your program must replace the content of each
SQLIMSDATA field with the address of a storage area large enough to hold values from that column.
Similarly, for every field that allows nulls, the program must replace the content of the SQLIMSIND field.
The content must be the address of a halfword that you can use as an indicator variable for the column.
The program can acquire storage for this purpose, of course, but the storage areas used do not have to be
contiguous.

The following figure shows the SQLIMSDA after your program acquires storage for the field values and
their indicators, and puts the addresses in the SQLIMSDATA fields of the SQLIMSDA. It shows the content

516 IMS: Application Programming

of the descriptor area before the program obtains any rows of the result table. Addresses of fields and
indicator variables are already in the SQLIMSVAR.

Figure 100. SQL descriptor area after analyzing descriptions and acquiring storage

Executing a varying-list SELECT statement dynamically:

You can easily retrieve rows of the result table using a varying-list SELECT statement. The statements
differ only a little from those for the fixed-list example.

Open the cursor: If the SELECT statement contains no parameter marker, this step is simple enough. For
example:

EXEC SQLIMS OPEN C1 END-EXEC.

Fetch rows from the result table: This statement differs from the corresponding one for the case of a
fixed-list select. Write:

EXEC SQLIMS
 FETCH C1 USING DESCRIPTOR :SQLIMSDA END-EXEC.

The key feature of this statement is the clause USING DESCRIPTOR :SQLIMSDA. That clause names an
SQL descriptor area in which the occurrences of SQLIMSVAR point to other areas. Those other areas
receive the values that FETCH returns. It is possible to use that clause only because you previously set up
SQLIMSDA to look like Figure 99 on page 516.

The following figure shows the result of the FETCH. The data areas identified in the SQLIMSVAR fields
receive the values from a single row of the result table.

Figure 101. SQL descriptor area after executing FETCH

Successive executions of the same FETCH statement put values from successive rows of the result table
into these same areas.

Chapter 37. Writing application programs for SQL 517

Close the cursor: This step is the same as for the fixed-list case. When no more rows need to be
processed, execute the following statement:

EXEC SQLIMS CLOSE C1 END-EXEC.

Related concepts
“SQL statements in COBOL programs” on page 533
You can code SQL statements in certain COBOL program sections.
Related reference
DESCRIBE OUTPUT (Application Programming APIs)
SQL descriptor area (SQLIMSDA) (Application Programming APIs)
SQLIMSTYPE and SQLIMSLEN (Application Programming APIs)
The SQLIMSDA header (Application Programming APIs)

Dynamically executing SQL for non-SELECT statements
The easiest way to use dynamic SQL is to use non-SELECT statements such as the INSERT, UPDATE, or
DELETE statement.

Your program must take the following steps:
1. Include an SQLIMSCA.
2. Load the input SQL statement into a data area.
3. Execute the statement.

• PREPARE and EXECUTE
4. Handle any errors that might result. The return code from the most recently executed SQL statement

appears in the host variables SQLIMSCODE and SQLIMSSTATE or corresponding fields of the
SQLIMSCA.

5. Check SQLIMSERRD(3) for the number of rows being changed.

Example:

Suppose that your program updates the hospital name by dynamically executing the UPDATE statement
of this form:

UPDATE HOSPITAL SET HOSPNAME = 'MISSION CREEK'
WHERE HOSPITAL.HOSPCODE = 'H001007'

In this example, the UPDATE statement is stored in a host variable STMTSTR.

Declare the statement:

EXEC SQLIMS
 DELCARE STMT STATEMENT
END-EXEC.

Declaring a varying-length character host variable: Before you prepare and execute an SQL statement,
you have to assign it into a host variable. Declare varying-length character host variable for the SQL
statement. The first two bytes must contain the length of the SQL statement. The maximum length of the
SQL statement is 32K. For example:

01 STMTSTR.
 49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
 49 STMTSTR-TXT PIC X(180) VALUE SPACES.

Preparing the statement:

Prepare a statement (STMT) from the STMTSTR host variable.

EXEC SQLIMS
PREPARE STMT FROM :STMTSTR
END-EXEC.

518 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_describeoutput.htm#ims_sql_describeoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sqldescriptorareaintro.htm#ims_sqldescriptorareaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sqltypeandsqlleninsqlda.htm#ims_sqltypeandsqlleninsqlda
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_thesqldaheader.htm#ims_thesqldaheader

Executing the statement:

To execute STMT, your program use the EXECUTE call.

EXEC SQLIMS
 EXECUTE STMT
END-EXEC.

Related concepts
“SQL statements in COBOL programs” on page 533
You can code SQL statements in certain COBOL program sections.
Related tasks
“Checking the execution of SQL statements” on page 521
After executing an SQL statement, your program should check for any error codes before you commit the
data and handle the errors that they represent.

Dynamically executing a SELECT SQL statement with parameter markers
Use the SELECT statements with parameter markers.

Suppose that you want to execute SELECT statements repeatedly using a list of hospital numbers.
Suppose further that users enter a list of hospital numbers to be retrieved. You must construct and
execute the entire statement dynamically. Your program can:

• Use parameter markers instead of constant values in the SQL statement
• Use OPEN statement with the USING clause to set values for parameter markers
• Use FETCH to retrieve data

Statements with parameter markers:

Dynamic SQL statements cannot use host variables. Therefore, you cannot dynamically execute an SQL
statement that contains host variables. Instead, use parameter marker. A parameter marker is a question
mark (?) that represents a position in a dynamic SQL statement where the application will provide a value.

Example using parameter markers:

SELECT HOSPNAME FROM PCB01.HOSPITAL WHERE HOSPCODE = ?;

You associate the host variable HOSPCODE with the parameter marker when you fetch data with the
prepared statement.

Declaring a varying-length character host variable: Before you prepare and execute an SQL statement,
you have to assign it into a host variable. Declare varying-length character host variable for the SQL
statement. The first two bytes must contain the length of the SQL statement. The maximum length of the
SQL statement is 32K. For example:

01 STMTSTR.
 49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
 49 STMTSTR-TXT PIC X(180) VALUE SPACES.

Declaring the CURSOR:

Declare a cursor to put the results for a SELECT statement.

When you declare the cursor, use the statement name (call it S1), and give the cursor itself a name (for
example, C1):

EXEC SQLIMS DECLARE C1 CURSOR FOR S1
END-EXEC.

Using the PREPARE statement:

Chapter 37. Writing application programs for SQL 519

Assume that the character host variable :STMTSTR has the value SELECT HOSPNAME FROM
PCB01.HOSPITAL WHERE HOSPCODE = ?. To prepare an SQL statement from that string and assign
it the name S1, write:

EXEC SQLIMS PREPARE S1 FROM :STMTSTR;

The prepared statement still contains a parameter marker, for which you must supply a value when the
statement executes. After the statement is prepared, the parameter marker enables you to execute the
same statement many times with different values of the hospital code.

To execute STMT, your program must open the cursor, fetch rows from the result segment, and close the
cursor.

Using the OPEN statement:

The OPEN statement open a cursor for the prepared SQL statement. If the SQL statement contains
parameter markers, you must use the USING clause of OPEN to provide values for all of the parameter
markers. The USING clause of the OPEN statement names a list of one or more host variables or a host
structure. This list supplies values for all of the parameter markers. Suppose that C1 is the cursor and the
parameter value is contained in the host variable HOSPCODE, write:

OPEN C1 USING :HOSPCODE

The OPEN statement can be executed using different values for HOSPCODE.

Using more than one parameter marker: The prepared statement (S1 in the example) can contain more
than one parameter marker. If it does, the USING clause of EXECUTE specifies a list of variables or a
host structure. The variables must contain values that match the number and data types of parameters in
S1 in the proper order. You must know the number and types of parameters in advance and declare the
variables in your program.

For example, OPEN C1 USING :PARM1, :PARM2

Fetching rows from the result table:

This example shows you how to fetch data into host variables:

EXEC SQLIMS FETCH C1 INTO :HOSPNAME, :HOSPCODE
END-EXEC.

Closing the cursor:

Close the cursor when your program is finished running the FETCH statement:

EXEC SQLIMS CLOSE C1
END-EXEC.

Related concepts
“SQL statements in COBOL programs” on page 533
You can code SQL statements in certain COBOL program sections.
Related reference
PREPARE (Application Programming APIs)

Dynamically executing a non-select SQL statement with parameter markers
Use PREPARE and EXECUTE for non-SELECT statements like INSERT, UPDATE, and DELETE with
parameter markers.

Suppose that you want to execute UPDATE statements repeatedly using a list of hospital numbers.
Suppose further that users enter a list of hospital numbers to update. You must construct and execute the
entire statement dynamically. Your program must now do these things differently:

• Use parameter markers instead of host variables

520 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_prepare.htm#ims_sql_prepare

• Use the PREPARE and EXECUTE statement

Parameter markers with PREPARE and EXECUTE: Dynamic SQL statements cannot use host variables.
Therefore, you cannot dynamically execute an SQL statement that contains host variables. Instead, use
parameter marker. A parameter marker is a question mark (?) that represents a position in a dynamic SQL
statement where the application will provide a value.

Example using parameter markers:

DELETE FROM PCB01.HOSPITAL WHERE HOSPCODE = ?;

You associate the host variable HOSPCODE with the parameter marker when you execute the prepared
statement.

Declaring a varying-length character host variable: Before you prepare and execute an SQL statement,
you have to assign it into a host variable. Declare varying-length character host variable for the SQL
statement. The first two bytes must contain the length of the SQL statement. The maximum length of the
SQL statement is 32K. For example:

01 STMTSTR.
 49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
 49 STMTSTR-TXT PIC X(180) VALUE SPACES.

Using the PREPARE statement: Assume that the character host variable :STMTSTR has the value DELETE
FROM PCB01.HOSPITAL WHERE HOSPCODE = ?. To prepare an SQL statement from that string and
assign it the name S1, write:

EXEC SQLIMS PREPARE S1 FROM :STMTSTR;

The prepared statement still contains a parameter marker, for which you must supply a value when the
statement executes. After the statement is prepared, the parameter marker enables you to execute the
same statement many times with different values of the hospital code.

Using the EXECUTE statement: The EXECUTE statement executes a prepared SQL statement by naming
a list of one or more host variables or a host structure. This list supplies values for all of the parameter
markers. Suppose that S1 is the prepared statement and the parameter value is contained in the host
variable HOSPCODE, write:

EXECUTE S1 USING :HOSPCODE

The EXECUTE statement can be executed using different values for HOSPCODE.

Using more than one parameter marker: The prepared statement (S1 in the example) can contain more
than one parameter marker. If it does, the USING clause of EXECUTE specifies a list of variables or a
host structure. The variables must contain values that match the number and data types of parameters in
S1 in the proper order. You must know the number and types of parameters in advance and declare the
variables in your program.

Example:

If two parameter markers are in STMT, you need the following statement:

EXEC SQLIMS
 EXECUTE STMT USING :PARM1, :PARM2
END-EXEC.

Checking the execution of SQL statements
After executing an SQL statement, your program should check for any error codes before you commit the
data and handle the errors that they represent.

You can check the execution of SQL statements in one of the following ways:

• By displaying specific fields in the SQLIMSCA.

Chapter 37. Writing application programs for SQL 521

• By testing SQLIMSCODE or SQLIMSSTATE for specific values.
• By using the WHENEVER statement in your application program.
• By testing indicator variables to detect numeric errors.

Related tasks
“Defining the SQL communications area in COBOL” on page 524
COBOL programs that contain SQL statements can include an SQL communications area (SQLIMSCA) to
check whether an SQL statement executed successfully.

Checking the execution of SQL statements by using the SQLIMSCA
One way to check whether an SQL statement executed successfully is to use the SQL communication area
(SQLIMSCA). This area is set apart for communication with IMS.

If you use the SQLIMSCA, include the necessary instructions to display information that is contained in
the SQLIMSCA in your application program.

• When IMS processes an SQL statement, it places return codes that indicate the success or failure of the
statement execution in SQLIMSCODE and SQLIMSSTATE.

• When IMS processes a FETCH statement, and the FETCH is successful, the contents of SQLIMSERRD(3)
in the SQLIMSCA is set to the number of returned rows.

• When IMS processes a FETCH statement, the contents of SQLIMSCODE is set to +100 if the last row in
the segment has been returned with the set of rows.

• When IMS processes an UPDATE, INSERT, or DELETE statement, and the statement execution is
successful, the contents of SQLIMSERRD(3) in the SQLIMSCA is set to the number of rows that are
updated, inserted, or deleted.

Related tasks
“Checking the execution of SQL statements by using SQLIMSCODE and SQLIMSSTATE” on page 522
Whenever an SQL statement executes, the SQLIMSCODE and SQLIMSSTATE fields of the SQLIMSCA
receive a return code. The SQLIMSERRMT field of the SQLIMSCA will contain message text that describes
the error.
“Defining the SQL communications area in COBOL” on page 524
COBOL programs that contain SQL statements can include an SQL communications area (SQLIMSCA) to
check whether an SQL statement executed successfully.
Related reference
Description of SQLIMSCA fields (Application Programming APIs)

Checking the execution of SQL statements by using SQLIMSCODE and
SQLIMSSTATE
Whenever an SQL statement executes, the SQLIMSCODE and SQLIMSSTATE fields of the SQLIMSCA
receive a return code. The SQLIMSERRMT field of the SQLIMSCA will contain message text that describes
the error.

SQLIMSCODE:

IMS returns the following codes in SQLIMSCODE:

• If SQLIMSCODE = 0, execution was successful.
• If SQLIMSCODE > 0, execution was successful with a warning.
• If SQLIMSCODE < 0, execution was not successful.

SQLIMSCODE 100 indicates that no data was found.

SQLIMSSTATE: SQLIMSSTATE enables an application program to check for errors in the same way for
different IBM database management systems.

522 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_descriptionofsqlcafields.htm#ims_descriptionofsqlcafields

Related tasks
“Defining the SQL communications area in COBOL” on page 524
COBOL programs that contain SQL statements can include an SQL communications area (SQLIMSCA) to
check whether an SQL statement executed successfully.
Related reference
SQL codes (Messages and Codes)

Checking the execution of SQL statements by using the WHENEVER
statement
The WHENEVER statement causes IMS to check the SQLIMSCA and continue processing your program.
If an error, exception, or warning occurs, IMS branches to another area in your program. The condition
handling area of your program can then examine the SQLIMSCODE or SQLIMSSTATE to react specifically
to the error or exception.

The WHENEVER statement enables you to specify what to do if a general condition is true. You can specify
more than one WHENEVER statement in your program. When you do this, the first WHENEVER statement
applies to all subsequent SQL statements in the source program until the next WHENEVER statement.

The WHENEVER statement looks like this:

EXEC SQLIMS
 WHENEVER condition action
END-EXEC

The condition of the WHENEVER statement is one of these three values:

SQLWARNING
Indicates what to do when SQLIMSWARN0 = W or SQLIMSCODE contains a positive value other than
100. IMS can set SQLIMSWARN0 for several reasons—for example, if a field value is truncated when
moved into a host variable. Your program might not regard this as an error.

SQLERROR
Indicates what to do when IMS returns an error code as the result of an SQL statement (SQLIMSCODE
< 0).

NOT FOUND
Indicates what to do when IMS cannot find a row to satisfy your SQL statement or when there are no
more rows to fetch (SQLIMSCODE = 100).

The action of the WHENEVER statement is one of these two values:

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single token, preceded by
an optional colon. The form of the token depends on the host language. In COBOL, for example, it can
be section-name or an unqualified paragraph-name.

The WHENEVER statement must precede the first SQL statement it is to affect. However, if your program
checks SQLIMSCODE directly, you must check SQLIMSCODE after each SQL statement.

Related reference
WHENEVER (Application Programming APIs)

Chapter 37. Writing application programs for SQL 523

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_sqlcodes.htm#ims_sqlcodes
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_whenever.htm#ims_sql_whenever

Coding SQL statements in COBOL application programs
When you code SQL statements in COBOL application programs, you should follow certain guidelines.

Defining the SQL communications area in COBOL
COBOL programs that contain SQL statements can include an SQL communications area (SQLIMSCA) to
check whether an SQL statement executed successfully.

Use the following SQL INCLUDE statement to request a standard SQLIMSCA declaration:

EXEC SQLIMS INCLUDE SQLIMSCA

You can specify INCLUDE SQLIMSCA or a declaration for SQLIMSCODE wherever you can specify a 77
level or a record description entry in the WORKING-STORAGE SECTION.

IMS sets the SQLIMSCODE, SQLIMSSTATE, and SQLIMSERRMT values in the SQLIMSCA after each SQL
statement executes. Your application should check these values to determine whether the last SQL
statement was successful.

Related tasks
“Checking the execution of SQL statements” on page 521
After executing an SQL statement, your program should check for any error codes before you commit the
data and handle the errors that they represent.
“Checking the execution of SQL statements by using the SQLIMSCA” on page 522
One way to check whether an SQL statement executed successfully is to use the SQL communication area
(SQLIMSCA). This area is set apart for communication with IMS.
“Checking the execution of SQL statements by using SQLIMSCODE and SQLIMSSTATE” on page 522
Whenever an SQL statement executes, the SQLIMSCODE and SQLIMSSTATE fields of the SQLIMSCA
receive a return code. The SQLIMSERRMT field of the SQLIMSCA will contain message text that describes
the error.
“Defining the items that your program can use to check whether an SQL statement executed successfully”
on page 509
If your program contains SQL statements, the program should include an SQL communications area
(SQLIMSCA), which contains SQLIMSCODE, SQLIMSSTATE, and SQLIMSERRMT variables, so that it can
check whether the statements executed successfully.

Defining SQL descriptor areas in COBOL
If your program includes certain SQL statements such as DESCRIBE, you must define at least one
SQL descriptor area (SQLIMSDA). Depending on the context in which it is used, the SQLIMSDA stores
information about prepared SQL statements or host variables. This information can then be read by either
the application program or IMS.

To define SQL descriptor areas:
1. Use the following SQL INCLUDE statement to request a standard SQLIMSDA declaration:

EXEC SQLIMS INCLUDE SQLIMSDA

2. You must place SQLIMSDA declarations in the WORKING-STORAGE SECTION, LINKAGE SECTION or
LOCAL-STORAGE SECTION of your program, wherever you can specify a record description entry in
that section. You must place SQLIMSDA declarations before the first SQL statement that references
the data descriptor.

Related tasks
“Defining SQL descriptor areas” on page 510

524 IMS: Application Programming

If your program includes certain SQL statements, you must include an SQL descriptor area (SQLIMSDA).
Depending on the context in which it is used, the SQLIMSDA stores information about prepared SQL
statements or host variables. This information can then be read by either the application program or IMS.

Declaring host variables and indicator variables in COBOL
You can use host variables and host structures in SQL statements in your program to pass data between
IMS and your application.

To declare host variables and host structures:
1. Declare the variables according to the following rules and guidelines:

• You must explicitly declare all host variables that are used in SQL statements in the WORKING-
STORAGE SECTION or LINKAGE SECTION of your program's DATA DIVISION.

• You must explicitly declare each host variable before using them in an SQL statement.
• You cannot implicitly declare any host variables through default typing or by using the IMPLICIT

statement.
• Ensure that any SQL statement that uses a host variable is within the scope of the statement that

declares that variable.
2. Optional: Define any associated indicator variables, arrays, and structures.

Related tasks
“Declaring host variables and indicator variables” on page 510
You can use host variables in SQL statements in your program to pass data between IMS and your
application.

Host variables in COBOL
In COBOL programs, you can specify numeric and character host variables.

Restrictions:

• Only some of the valid COBOL declarations are valid host variable declarations. If the declaration for
a variable is not valid, any SQL statement that references the variable might result in the message
UNDECLARED HOST VARIABLE.

• One or more REDEFINES entries can follow any level 77 data description entry. However, you cannot
use the names in these entries in SQL statements. Entries with the name FILLER are ignored.

Recommendations:

• Be careful of overflow. For example, suppose that you retrieve an INTEGER field value into a PICTURE
S9(4) host variable and the field value is larger than 32767 or smaller than -32768. You get an overflow
warning or an error, depending on whether you specify an indicator variable.

• Be careful of truncation. For example, if you retrieve an 80-character CHAR field value into a PICTURE
X(70) host variable, the rightmost 10 characters of the retrieved string are truncated. Retrieving a
double precision floating-point or decimal field value into a PIC S9(8) COMP host variable removes any
fractional part of the value. Similarly, retrieving a field value with DECIMAL data type into a COBOL
decimal variable with a lower precision might truncate the value.

Numeric host variables
You can specify the following forms of numeric host variables:

• Floating-point numbers
• Integers and small integers
• Decimal numbers

The following diagram shows the syntax for declaring floating-point or real host variables.

Chapter 37. Writing application programs for SQL 525

01

77

level-1
1

variable-name

USAGE
IS

COMPUTATIONAL-1
2

COMP-1

COMPUTATIONAL-2
3

COMP-2

VALUE
IS

numeric-constant

 .

Notes:
1 level-1 indicates a COBOL level between 2 and 48.
2 COMPUTATIONAL-1 and COMP-1 are equivalent.
3 COMPUTATIONAL-2 and COMP-2 are equivalent.

The following diagram shows the syntax for declaring integer. small integer, and big integer host variables.

01

77

level-1
1

variable-name PICTURE

PIC

IS
S9(4)

S9999

S9(9)

S999999999

S9(18)

USAGE
IS

BINARY
2

COMPUTATIONAL-4

COMP-4

COMPUTATIONAL-5
3

COMP-5

COMPUTATIONAL

COMP

VALUE
IS

numeric-constant

 .
4

Notes:
1 level-1 indicates a COBOL level between 2 and 48.
2 The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP, COMPUTATIONAL-4, and
COMP-4 are equivalent.
3 COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary integer data types if you
compile the other data types with TRUNC(BIN).
4 Any specification for scale is ignored.

The following diagram shows the syntax for declaring decimal host variables.

526 IMS: Application Programming

01

77

level-1
1

variable-name PICTURE

PIC

IS
picture-string

2

USAGE
IS

PACKED-DECIMAL
3

COMPUTATIONAL-3

COMP-3

DISPLAY

NATIONAL

SIGN
IS

LEADING SEPARATE
CHARACTER

VALUE
IS

numeric-constant

 .

Notes:
1 level-1 indicates a COBOL level between 2 and 48.
2 The picture-string that is associated with SIGN LEADING SEPARATE must have the form S9(i)V9(d)
(or S9...9V9...9, with i and d instances of 9 or S9...9V with i instances of 9).
3 PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The picture-string that is that is
associated with these types must have the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9)
or S9(i)V.

In COBOL, you declare the SMALLINT and INTEGER data types as a number of decimal digits. IMS uses
the full size of the integers (in a way that is similar to processing with the TRUNC(BIN) compiler option)
and can place larger values in the host variable than would be allowed in the specified number of digits in
the COBOL declaration. If you compile with TRUNC(OPT) or TRUNC(STD), ensure that the size of numbers
in your application is within the declared number of digits.

For small integers that can exceed 9999, use S9(4) COMP-5 or compile with TRUNC(BIN). For large
integers that can exceed 999 999 999, use S9(10) COMP-3 to obtain the decimal data type. If you use
COBOL for integers that exceed the COBOL PICTURE, specify the field as decimal to ensure that the data
types match and perform well.

If you are using a COBOL compiler that does not support decimal numbers of more than 18 digits, use one
of the following data types to hold values of greater than 18 digits:

• A decimal variable with a precision less than or equal to 18, if the actual data values fit. If you retrieve a
decimal value into a decimal variable with a scale that is less than the source field in the database, the
fractional part of the value might be truncated.

• An integer or a floating-point variable, which converts the value. If you use an integer variable, you lose
the fractional part of the number. If the decimal number might exceed the maximum value for an integer
or if you want to preserve a fractional value, use a floating-point variable. Floating-point numbers are
approximations of real numbers. Therefore, when you assign a decimal number to a floating-point
variable, the result might be different from the original number.

Character host variables
You can specify the following forms of character host variables:

• Fixed-length strings

Chapter 37. Writing application programs for SQL 527

The following diagram shows the syntax for declaring fixed-length character host variables.

01

77

level-1
1

variable-name PICTURE

PIC

IS
picture-string

2

USAGE
IS

DISPLAY

VALUE
IS

character-constant

 .

Notes:
1 level-1 indicates a COBOL level between 2 and 48.
2 The picture-string that is associated with these forms must be X(m) (or XX…X, with m instances of X),
where m is up to COBOL's limitation.

The following diagrams show the syntax for declaring varying-length character host variables.

01

level-1
1

variable-name .

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

49
1

var-1
2

PICTURE

PIC

IS
S9(4)

3

S9999

USAGE
IS

BINARY

COMPUTATIONAL-4

COMP-4

COMPUTATIONAL-5

COMP-5

COMPUTATIONAL

COMP

VALUE
IS

numeric-constant

 .

Notes:
1 You cannot use an intervening REDEFINE at level 49.
2 You cannot directly reference var-1 as a host variable.
3 IMS uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

528 IMS: Application Programming

49
1

var-2
2

PICTURE

PIC

IS
picture-string

3

USAGE
IS

DISPLAY

VALUE
IS

character-constant

 .

Notes:
1 You cannot use an intervening REDEFINE at level 49.
2 You cannot directly reference var-2 as a host variable.
3 For fixed-length strings, the picture-string must be X(m) (or XX, with m instances of X), where mis up
to COBOL's limitation.

Related concepts
“Host variables” on page 510
Use host variables to pass a single data item between IMS and your application.
Related tasks
“Using SQL statements in your application” on page 511
You can code SQL statements in a COBOL program using dynamic SQL.

Host structures in COBOL
A COBOL host structure is a named set of host variables that are defined in your program's WORKING-
STORAGE SECTION or LINKAGE SECTION.

Requirements: Host structure declarations in COBOL must satisfy the following requirements:

• COBOL host structures can have a maximum of two levels, even though the host structure might occur
within a structure with multiple levels.

• A host structure name can be a group name whose subordinate levels name elementary data items.
• If you are using the IMS coprocessor, do not declare host variables or host structures on any

subordinate levels after one of the following items:

– A COBOL item that begins in area A
– Any SQL statement (except SQL INCLUDE)
– Any SQL statement within an included member

When the IMS precompiler encounters one of the preceding items in a host structure, it considers the
structure to be complete.

When you write an SQL statement that contains a qualified host variable name (perhaps to identify a field
within a structure), use the name of the structure followed by a period and the name of the field. For
example, for structure B that contains field C1, specify B.C1 rather than C1 OF B or C1 IN B.

Host structures
The following diagram shows the syntax for declaring host structures.

level-1
1

variable-name . level-2
2 3

var-1 A
4

Chapter 37. Writing application programs for SQL 529

A
numeric-usage .

PICTURE

PIC

IS

picture-string

integer-decimal-usage .

char-inner-variable .

SQL TYPE IS TABLE LIKE table-name AS LOCATOR .

Notes:
1 level-1 indicates a COBOL level between 1 and 47.
2 level-2 indicates a COBOL level between 2 and 48.
3 For elements within a structure, use any level 02 through 48 (rather than 01 or 77), up to a maximum of two
levels.
4 Using a FILLER or optional FILLER item within a host structure declaration can invalidate the whole
structure.

Numeric usage items
The following diagram shows the syntax for numeric-usage items that are used within declarations of host
structures.

USAGE
IS

COMPUTATIONAL-1

COMP-1

COMPUTATIONAL-2

COMP-2

VALUE
IS

constant

Integer and decimal usage items
The following diagram shows the syntax for integer and decimal usage items that are used within
declarations of host structures.

530 IMS: Application Programming

USAGE
IS

BINARY

COMPUTATIONAL-4

COMP-4

COMPUTATIONAL-5

COMP-5

COMPUTATIONAL

COMP

PACKED-DECIMAL

COMPUTATIONAL-3

COMP-3

DISPLAY SIGN
IS

LEADING SEPARATE

CHARACTER

VALUE
IS

constant

CHAR inner variables
The following diagram shows the syntax for CHAR inner variables that are used within declarations of host
structures.

PICTURE

PIC

IS
picture-string

USAGE
IS

DISPLAY
VALUE

IS
constant

Related concepts
“Host structures” on page 511
Use host structures to pass a group of host variables between IMS and your application.

Equivalent SQL and COBOL data types
When you declare host variables in your COBOL programs, the precompiler uses equivalent SQL data
types. When you retrieve data of a particular SQL data type into a host variable, you need to ensure that
the host variable is of an equivalent data type.

The following table describes the SQL data type and the base SQLIMSTYPE and SQLIMSLEN values that
the precompiler uses for host variables in SQL statements.

Chapter 37. Writing application programs for SQL 531

Table 92. SQL data types, SQLIMSLEN values, and SQLIMSTYPE values that the precompiler uses for host
variables in COBOL programs

COBOL host variable data
type

SQLIMSTYPE of
host variable1

SQLIMSLEN of host
variable SQL data type

COMP-2 480 8 DOUBLE PRECISION, or
FLOAT(n) 22<=n<=53

S9(i)V9(d) COMP-3 or
S9(i)V9(d) PACKED-DECIMAL

484 i+d in byte 1, d in byte 2 DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(i)V9(d) DISPLAY SIGN
LEADING SEPARATE

504 i+d in byte 1, d in byte 2 No exact equivalent.
Use DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(4) COMP-4, S9(4) COMP-5,
S9(4) COMP, or S9(4) BINARY

500 2 SMALLINT

S9(9) COMP-4, S9(9) COMP-5,
S9(9) COMP, or S9(9) BINARY

496 4 INTEGER

S9(18) COMP-4, S9(18)
COMP-5, S9(18) COMP, or
S9(18) BINARY

492 8 BIGINT

Fixed-length character data 452 n CHAR(n)

SQL TYPE is BINARY(n),
1<=n<=255

912 n BINARY(n)

Notes:

1. If a host variable includes an indicator variable, the SQLIMSTYPE value is the base SQLIMSTYPE value
plus 1.

The following table shows equivalent COBOL host variables for each SQL data type. Use this table to
determine the COBOL data type for host variables that you define to receive output from the database. For
example, if you retrieve TIMESTAMP data, you can define a fixed-length character string variable of length
n

This table shows direct conversions between SQL data types and COBOL data types. However, a number
of SQL data types are compatible. When you do assignments or comparisons of data that have compatible
data types, IMS converts those compatible data types.

Table 93. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type COBOL host variable equivalent Notes

SMALLINT
S9(4) COMP-4,
S9(4) COMP-5,
S9(4) COMP,
or S9(4) BINARY

INTEGER S9(9) COMP-4,
S9(9) COMP-5,
S9(9) COMP,
or S9(9) BINARY

DECIMAL(p,s) S9(p-s)V9(s) COMP-3 or
S9(p-s)V9(s)
 PACKED-DECIMAL
 DISPLAY SIGN
 LEADING SEPARATE

p is precision; s is scale. 0<=s<=p<=31.
If s=0, use S9(p)V or S9(p). If s=p, use
SV9(s). If the COBOL compiler does not
support 31–digit decimal numbers, no
exact equivalent exists. Use COMP-2.

532 IMS: Application Programming

Table 93. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data type
(continued)

SQL data type COBOL host variable equivalent Notes

DOUBLE PRECISION,
DOUBLE or FLOAT (n) COMP-2

22<=n<=53

BIGINT
S9(18) COMP-4,
S9(18) COMP-5,
S9(18) COMP,
or S9(18) BINARY

CHAR(n) Fixed-length character string. For
example,

01 VAR-NAME PIC X(n).

1<=n<=255

BINARY(n) SQL TYPE IS BINARY(n) 1<=n<=255

DATE Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

TIME Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

TIMESTAMP Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

n must be at least 19. To include
microseconds, n must be 26; if n is
less than 26, truncation occurs on the
microseconds part.

SQL statements in COBOL programs
You can code SQL statements in certain COBOL program sections.

The allowable sections are shown in the following table.

Table 94. Allowable SQL statements for COBOL program sections

SQL statement Program section

INCLUDE SQLIMSCA WORKING-STORAGE SECTION1 or LINKAGE SECTION

INCLUDE text-file-name PROCEDURE DIVISION or DATA DIVISION2

DECLARE CURSOR DATA DIVISION or PROCEDURE DIVISION

Other PROCEDURE DIVISION

Notes:

1. If you use the IMS coprocessor, you can use the LOCAL-STORAGE SECTION wherever WORKING-
STORAGE SECTION is listed in the table.

2. When including host variable declarations, the INCLUDE statement must be in the WORKING-
STORAGE SECTION or the LINKAGE SECTION.

You cannot put SQL statements in the DECLARATIVES section of a COBOL program.

Chapter 37. Writing application programs for SQL 533

Each SQL statement in a COBOL program must begin with EXEC SQLIMS and end with END-EXEC. The
EXEC and SQLIMS keywords can be on different lines. Do not include any tokens between the two
keywords EXEC and SQL except for COBOL comments, including debugging lines. Do not include SQL
comments between the keywords EXEC and SQLIMS.

If the SQL statement appears between two COBOL statements, the period after END-EXEC is optional and
might not be appropriate. If the statement appears in an IF…THEN set of COBOL statements, omit the
ending period to avoid inadvertently ending the IF statement.

Comments: You can include COBOL comment lines (* in field 7) in SQL statements wherever you can
use a blank. You cannot include COBOL comment lines between the keywords EXEC and SQLIMS. The
IMS coprocessor treats the debugging lines based on the COBOL rules, which depend on the WITH
DEBUGGING mode setting.

For an SQL INCLUDE statement, the IMS coprocessor treats this text as part of the COBOL program
syntax.

In addition, you can include SQL comments ('--') in any embedded SQL statement.

Debugging lines: The IMS coprocessor follows the COBOL language rules regarding debugging lines.

Continuation for SQL statements: The rules for continuing a character string constant from one line to
the next in an SQL statement embedded in a COBOL program are the same as those for continuing a
non-numeric literal in COBOL. However, you can use either a quote or an apostrophe as the first nonblank
character in area B of the continuation line. The same rule applies for the continuation of delimited
identifiers and does not depend on the string delimiter option.

To conform with SQL standard, delimit a character string constant with an apostrophe, and use a quote as
the first nonblank character in area B of the continuation line for a character string constant.

Continued lines of an SQL statement can be in fields 12 through 72 when using the IMS coprocessor.

Declaring segments: Your COBOL program should include the statement DECLARE TABLE to describe
each segment and view the program accesses. You can use the IMS declarations generator to generate
the DECLARE TABLE statements. You should include the generated members in the DATA DIVISION.

Dynamic SQL in a COBOL program: In general, COBOL programs can easily handle dynamic SQL
statements. COBOL programs can handle SELECT statements if the data types and the number of fields
returned are fixed. If you want to use variable-list SELECT statements, use an SQLIMSDA.

Including code: To include SQL statements or COBOL host variable declarations from a member of a
partitioned data set, use the following SQL statement in the source code where you want to include the
statements:

EXEC SQLIMS INCLUDE member-name END-EXEC.

Use the 'EXEC SQLIMS' and 'END-EXEC' keyword pair to include SQL statements only. COBOL statements,
such as COPY or REPLACE, are not allowed.

Margins: You must code SQL statements that begin with EXEC SQLIMS in fields 12 through 72.

Names: You can use any valid COBOL name for a host variable. Do not use entry names that begin with
DFS or DQF, and do not use host variable names that begin with 'SQL' or 'SQLIMS'. These names are
reserved for IMS.

Sequence numbers: The source statements that the IMS coprocessor generates do not include sequence
numbers.

Statement labels: You can precede executable SQL statements in the PROCEDURE DIVISION with a
paragraph name, if you wish.

WHENEVER statement: The target for the GOTO clause in an SQL statement WHENEVER must be a
section name or unqualified paragraph name in the PROCEDURE DIVISION.

Special COBOL considerations: The following considerations apply to programs written in COBOL:

534 IMS: Application Programming

• In a COBOL program that uses elements in a multi-level structure as host variable names, the IMS
coprocessor generates the lowest two-level names.

• To avoid truncating numeric values, use either of the following methods:

– Use the COMP-5 data type for binary integer host variables.
– Specify the COBOL compiler option:

- TRUNC(OPT) if you are certain that the data being moved to each binary variable by the application
does not have a larger precision than is defined in the PICTURE clause of the binary variable.

- TRUNC(BIN) if the precision of data being moved to each binary variable might exceed the value in
the PICTURE clause.

IMS assigns values to binary integer host variables as if you had specified the COBOL compiler option
TRUNC(BIN) or used the COMP-5 data type.

• Do not use COBOL figurative constants (such as ZERO and SPACE), symbolic characters, reference
modification, and subscripts within SQL statements.

• Observe the rules for naming SQL identifiers. However, for COBOL only, the names of SQL identifiers can
follow the rules for naming COBOL words, if the names do not exceed the allowable length for the IMS
object. For example, the name 1ST-TIME is a valid cursor name because it is a valid COBOL word, but
the name 1_TIME is not valid because it is not a valid SQL identifier or a valid COBOL word.

• Observe these rules for hyphens:

– Surround hyphens used as subtraction operators with spaces. IMS usually interprets a hyphen with
no spaces around it as part of a host variable name.

• If you include an SQL statement in a COBOL PERFORM … THRU paragraph and also specify the SQL
statement WHENEVER … GO, the COBOL compiler returns the warning message IGYOP3094. That
message might indicate a problem. This usage is not recommended.

Related concepts
SQL identifiers (Application Programming APIs)
Related tasks
“Using SQL statements in your application” on page 511
You can code SQL statements in a COBOL program using dynamic SQL.
“Defining SQL descriptor areas” on page 510
If your program includes certain SQL statements, you must include an SQL descriptor area (SQLIMSDA).
Depending on the context in which it is used, the SQLIMSDA stores information about prepared SQL
statements or host variables. This information can then be read by either the application program or IMS.

Delimiters in SQL statements in COBOL programs
You must delimit SQL statements in your COBOL program so that IMS knows when a particular SQL
statement ends.

Delimit an SQL statement in your COBOL program with the beginning keyword EXEC SQLIMS and an
END-EXEC.

Example

Use EXEC SQLIMS and END-EXEC. to delimit an SQL statement in a COBOL program:

EXEC SQLIMS
 an SQL statement
END-EXEC.

Chapter 37. Writing application programs for SQL 535

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sqlidentifiers.htm#ims_sqlidentifiers

SQL aggregate functions supported for COBOL
SQL aggregate functions are supported for COBOL and .NET applications (by using IMS Enterprise Suite
IMS Data Provider for Microsoft .NET).

• AVG
• COUNT
• MAX
• MIN
• SUM

These functions work with the ORDER BY clause, as well as GROUP BY:

• ORDER BY

– ASC
– DESC

• GROUP BY

Restriction: The supported SQL aggregate functions accept only a single field name in a segment as the
argument (the DISTINCT keyword is not allowed).

The following table shows the data types of the fields that are accepted by the aggregate functions, along
with the resulting data type in the ResultSet.

Table 95. Supported SQL aggregate functions and their supported data types

Function Argument types Results and result types

AVG All supported numeric data
types for SQL statements in
COBOL programs are supported,
including TINYINT, SMALLINT,
INTEGER, BIGINT, Zoned
Decimal, and Packed Decimal

• The function is applied to the set of
values derived from the argument values
by excluding null values.

• For INTEGER, the fractional part of the
average is discarded. The result can be
null.

• For non-DECIMAL data types, the result
data type is always LONG.

• If the data type of the argument value is
DECIMAL, the result is packed decimal.
The scale of the result is the same as
the scale of the argument value, and the
precision of the result is 31.

• If the function is applied to an empty set,
the result is the null value.

• The averaged value must be within the
range of the data type of the result.

COUNT Any supported data type • NULL values are not counted when the
total number of values in a given column
is counted (COUNT(column)).

• NULL values are counted when the
number of rows in a table is counted
(COUNT(*)).

• COUNT(*) of an empty table returns one
row with a value of 0.

536 IMS: Application Programming

Table 95. Supported SQL aggregate functions and their supported data types (continued)

Function Argument types Results and result types

MAX TINYINT, INTEGER, BIGINT,
Zoned Decimal, Packed Decimal,
CHAR, BINARY, DATE, TIME, and
TIMESTAMP

• Character string arguments and binary
string arguments cannot have a length
attribute greater than 32704.

• The data type of the result and its other
attributes (for example, the length and
CCSID of a string or a datetime value) are
the same as the data type and attributes
of the argument values.

• The result can be null.
• The function is applied to the set of

values derived from the argument values
by the elimination of null values.

• If the function is applied to an empty set,
the result is the null value.

MIN TINYINT, INTEGER, BIGINT,
Zoned Decimal, Packed Decimal,
CHAR, BINARY, DATE, TIME, and
TIMESTAMP

• The data type of the result and its other
attributes (for example, the length and
CCSID of a string or a datetime value) are
the same as the data type and attributes
of the argument values.

• The result can be null.
• The function is applied to the set of

values derived from the argument values
by the elimination of null values.

• If the function is applied to an empty set,
the result is the null value.

SUM All supported numeric data
types for SQL statements in
COBOL programs are supported,
including TINYINT, SMALLINT,
INTEGER, BIGINT, Zoned
Decimal and Packed Decimal

• The sum must be within the range of the
data type of the result.

• The function is applied to the set of
values from the argument values by
eliminating null values.

• If the function is applied to an empty set,
the result is the null value.

• The order in which the summation
is performed is undefined, but every
intermediate result must be within the
range of the result data type.

• If the data type of the argument value is
DECIMAL, the result is packed decimal.
The scale of the result is the same as
the scale of the argument value, and the
precision of the result is 31.

Column names generated by aggregate functions
The generated column name from an aggregate function is a combination of the aggregate function
name and the field name, separated by an underscore character (_). For example, the statement SELECT
MAX(age) results in a column name MAX_age.

Chapter 37. Writing application programs for SQL 537

If the aggregate function argument field is table-qualified, the generated column name is the
combination of the aggregate function name, the table name, and the column name, separated by
underscore characters (_). For example, SELECT MAX(Employee.age) results in a column name
MAX_Employee_age.

The aggregate function is executed first, and then the required number of rows of result are fetched from
the result set.

Using the ORDER BY and GROUP BY clauses
The field names that are specified in a GROUP BY or ORDER BY clause must match exactly the field name
that is specified in the SELECT statement. In order to GROUP BY properly, the fields specified in SELECT
list must also be specified in the GROUP BY list.

SELECT HOSPNAME, COUNT(PATNAME) FROM PCB01.HOSPITAL, PATIENT GROUP BY HOSPNAME
 ORDER BY HOSPNAME

Restriction: Aggregate functions cannot be used in the GROUP BY or ORDER BY statements. For example,
GROUP BY COUNT(PATNAME) or ORDER BY AVG(COST) is not supported.

Related reference
SELECT (Application Programming APIs)

Adding and modifying data
Your application program can query, modify, or delete data in any IMS segment for which you have the
appropriate level of access.

Inserting rows
You can insert data into segments using the SQL INSERT statement.

Use an INSERT statement to add new rows to a segment or view. Using an INSERT statement, you can
specify the field values to insert a single row. You can specify constants or parameter markers, by using
the VALUES clause.

For every row that you insert, you must provide a value for every key field. If you do not specify a value in
the INSERT call, IMS sets a value of 0.

Inserting a single row:

You can use the VALUES clause of the INSERT statement to insert a single row of field values into a
segment. You can either name all of the fields for which you are providing values, or you can omit the list
of field names. If you omit the field name list, you must specify values for all of the fields. The fields are
ordered first by their field position within the IMS catalog and then by their length.

When inserting a record in a table at a non-root level, you must specify values for all the foreign key fields
of the table. Foreign key fields properly position the new record (or segment instance) to be inserted in
the hierarchic path using standard SQL processing, similar to foreign keys in a relational database.

Recommendation: For INSERT statements, name all of the fields for which you are providing values for
the following reasons:

• Your INSERT statement is independent of the segment format. (For example, you do not need to change
the statement when a field is added to the segment.)

• You can verify that you are specifying the values in order.
• Your source statements are more self-descriptive.

When you list the field names, you must specify their corresponding values in the same order as in the list
of field names.

Example: The following statement inserts information about a new hospital into the HOSPITAL segment.

538 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_select.htm#ims_sql_select

INSERT INTO PCB01.HOSPITAL (HOSPCODE, HOSPNAME)
 VALUES ('R1210050000A', 'MALLEY CLINIC')

After inserting a new hospital into your HOSPITAL segment, you can use a SELECT statement to see what
you have loaded into the segment. The following SQL statement shows you all of the new department
rows that you have inserted:

SELECT HOSPCODE, HOSPNAME
 FROM PCB01.HOSPITAL

The result segment looks similar to the following output:

+------------+-----------------+
|HOSPCODE |HOSPNAME |
+------------+-----------------+
R1210010000A	ALEXANDRIA
R1210020000A	SANTA TERESA
R1210030000A	SANTA CLARA
R1210040000A	NEW ENGLAND
R1210050000A	MALLEY CLINIC

Example: The following statement inserts a new WARD record under a specific HOSPITAL table. In this
example, the WARD table has the foreign key HOSPITAL_HOSPCODE. The new record will be inserted if
and only if there is a HOSPCODE in the HOSPITAL table with the value of 'R1210050000A'

INSERT INTO PCB01.WARD
 WARDNO, HOSPITAL_HOSPCODE, WARDNAME)
 VALUES ('0001', 'R1210050000A', 'EMGY')

Example: The following statement also inserts a row into the HOSPITAL segment without specifying the
column names. All the columns values must be specified in the VALUES clause.

INSERT INTO PCB01.HOSPITAL
 VALUES (900, 'R1210050000A', 'MALLEY CLINIC');

Updating segment data
You can change a field value to another value or remove the field value altogether.

To change the data in a segment, use the UPDATE statement. You can also use the UPDATE statement to
remove a value from a field (without removing the row) by changing the field value to an empty string.

Example: The following statement updates the hospital name to 'MISSION CREEK' for hospital
'H001007'.

UPDATE HOSPITAL SET HOSPNAME = 'MISSION CREEK'
WHERE HOSPITAL.HOSPCODE = 'H001007'

The SET clause names the fields that you want to update and provides the values that you want to assign
to those fields. You can replace a field value in the SET clause with any of the following items:

• An expression, which can be any of the following items:

– A constant
– A parameter marker

Next, identify the rows to update:

• To update a single row, use a WHERE clause that locates one, and only one, row.
• To update several rows, use a WHERE clause that locates only the rows that you want to update.

If you omit the WHERE clause, IMS updates every row in the segment with the values that you supply. If
IMS cannot find the row you want to identify, a SQLIMSCODE of100 will be returned to the application.

Chapter 37. Writing application programs for SQL 539

If the UPDATE is successful, SQLIMSERRD(3) in the SQLIMSCA contains the number of updated rows.
This number includes only the number of updated rows in the segment that is specified in the UPDATE
statement.

Update rules:
Update values must satisfy the following rules. If they do not, or if other errors occur during the
execution of the UPDATE statement, no rows are updated and the position of the cursors are not
changed.

• Assignment. Update values are assigned to columns using the assignment rules described in
Language elements.

• When updating a record in a table at a non-root level, you must specify values for all the foreign key
fields of the table to identify the exact record (or segment instance) to update.

• Making an UPDATE on a foreign key field is invalid.

If IMS finds an error while executing your UPDATE statement (for example, an update value that is too
large for the field), it returns an error. Upon receiving the error, the application will have to decide on how
to manage the rows that were already changed. It can either commit or rollback the changes.

The following statement updates a WARD record under a specific HOSPITAL. In this example, the WARD
table has the virtual foreign key HOSPITAL_HOSPCODE. The record will be updated if and only if there is a
HOSPCODE in the HOSPITAL table with the value of 'H5140070000H'.

UPDATE WARD SET WARDNAME = 'EMGY',
 DOCCOUNT = '2', NURCOUNT = '4'
WHERE HOSPITAL_HOSPCODE = 'H5140070000H'
 AND WARDNO = '01'

Deleting data from segments
You can delete data from a segment by deleting one or more rows from the segment, by deleting all rows
from the segment, or by dropping fields from the segment.

To delete one or more rows in a segment:
• Use the DELETE statement with a WHERE clause to specify a search condition.

The DELETE statement removes zero or more rows of a segment, depending on how many rows satisfy
the search condition that you specify in the WHERE clause.

The following DELETE statement deletes each row in the HOSPITAL segment that has Hospital named
ALEXANDRIA and SANTA TERESA.

DELETE FROM PCB01.HOSPITAL WHERE HOSPNAME = 'ALEXANDRIA' OR HOSPNAME = 'SANTA TERESA';

When this statement executes, IMS deletes any row from the HOSPITAL segment that meets the
search condition.

If IMS finds an error while executing your DELETE statement, the application commits and rollbacks
the changes and returns error codes in the SQLIMSCODE and SQLIMSSTATE variables in the
SQLIMSCA. (The data in the segment does not change.)

If the DELETE is successful, SQLIMSERRD(3) in the SQLIMSCA contains the number of deleted rows.
This number includes only the number of deleted rows in the segment that is specified in the DELETE
statement.

To delete every row in a segment:
• Use the DELETE statement without specifying a WHERE clause.

The following DELETE statement deletes every row in the HOSPITAL segment:

DELETE FROM HOSPITAL;

540 IMS: Application Programming

If the statement executes, the segment continues to exist (that is, you can insert rows into it), but it is
empty.

Related concepts
SQL communication area (SQLIMSCA) (Application Programming APIs)

Accessing data
Your program can read data from any IMS segments for which you have read access using SQL SELECT
statements.
Related concepts
Writing SQL queries to access an IMS database with the IMS Universal JDBC driver (Application
Programming)

Retrieving data by using the SELECT statement
The simplest way to retrieve data is to use the SQL SELECT statement to specify a result segment. You can
specify the fields and rows that you want to retrieve.

You do not need to know the field names to select IMS data. Use an asterisk (*) in the SELECT clause to
indicate that you want to retrieve all fields of each selected row of the named segment. To view the values
of these fields, you must specify the field name.

The fields in a SELECT * statement are ordered first by their field position within the IMS catalog and then
by their length.

Example: SELECT *: The following statement retrieves all fields for the PATIENT segment:

SELECT *
 FROM PCB01.HOSPITAL;

The result segment looks similar to the following output:

+------------+-----------------+
|HOSPCODE |HOSPNAME |
+------------+-----------------+
R1210010000A	ALEXANDRIA
R1210020000A	SANTA TERESA
R1210030000A	SANTA CLARA
R1210040000A	NEW ENGLAND

Because the example does not specify a WHERE clause, the statement retrieves data from all rows.

SELECT * is not recommended when fetching into a static host structure because of host variable
compatibility and performance reasons.

Note:

• Suppose that you add a field to the segment to which SELECT * refers. If you have not defined a
receiving host variable for that field, an error occurs.

• If you list the field names in an SELECT statement instead of using an asterisk, you can avoid the
problem that sometimes occurs with SELECT *. You can also see the relationship between the receiving
host variables and the fields in the result segment.

Selecting some fields: SELECT field-name:

Select the field or fields you want to retrieve by naming each field. All fields appear in the order you
specify, not in their order in the segment.

Example: SELECT field-name: The following statement retrieves the ward names and patient names
from the WARD and PATIENT tables, respectively:

SELECT HOSPNAME FROM PCB01.HOSPITAL

Chapter 37. Writing application programs for SQL 541

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sqlcommunicationsareaintro.htm#ims_sqlcommunicationsareaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbc_writingsqlqueries.htm#ims_odbjdbc_writingsqlqueries
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbc_writingsqlqueries.htm#ims_odbjdbc_writingsqlqueries

The result segment looks similar to the following output:

+-----------------+
|HOSPNAME |
+-----------------+
|ALEXANDRIA |
|SANTA TERESA |
|SANTA CLARA |
|NEW ENGLAND |

With a single SELECT statement, you can select data from one field or as many as 750 fields.

Selecting rows using search conditions: WHERE:

Use a WHERE clause to select the rows that meet certain conditions. A WHERE clause specifies a search
condition. A search condition consists of one or more predicates. A predicate specifies a test that you
want IMS to apply to each segment row.

IMS evaluates a predicate for each row as true, false, or unknown. Results are unknown only if an operand
is null.

The following segment lists the type of comparison, the comparison operators, and an example of each
type of comparison that you can use in a predicate in a WHERE clause.

Table 96. Comparison operators used in conditions

Type of comparison Comparison operator Example

Equal to = HOSPCODE = 'R1210010000A'

Not equal to <> HOSPCODE <> 'R1210020000A'

Less than < SALARY < 30000

Less than or equal to <= AGE <= 25

Not less than >= AGE >= 21

Greater than > WARDNO > '0001'

Greater than or equal to >= WARDNO >= '0003'

Not greater than <= PATNUM <= '0010'

At least one of two
conditions

OR HOSPCODE >= 'R1210010000A' OR
HOSPCODE < 'R1210050000A'

Both of two conditions AND HOSPCODE = 'R1210050000A' AND
HOSPNAME = 'SANTA TERESA'

Both of these forms of the predicate create an expression for which one value is equal to another value or
both values are equal to null.

Related concepts
“Host variables” on page 510
Use host variables to pass a single data item between IMS and your application.
Predicates (Application Programming APIs)

542 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_predicatesoverview.htm#ims_predicatesoverview

Formatting the result segment
An SQL statement returns data in a segment called a result segment. You can specify certain attributes
of the result segment, such as the field names, how the rows are ordered, and whether the rows are
numbered.

Result segments
The data that is retrieved by an SQL statement is always in the form of a segment, which is called a result
segment. Like the segments from which you retrieve the data, a result segment has rows and fields. A
program fetches this data one row at a time.

Example result segment: Assume that you issue the following SELECT statement, which retrieves the
hospital code and name from the HOSPITAL segment and order the result with the name of the hospital in
ascending order:

SELECT HOSPCODE, HOSPNAME
 FROM PCB01.HOSPITAL
 ORDER BY HOSPNAME

The result segment looks similar to the following output:

+------------+-----------------+
|HOSPCODE |HOSPNAME |
+------------+-----------------+
R1210010000A	ALEXANDRIA
R1210040000A	NEW ENGLAND
R1210030000A	SANTA CLARA
R1210020000A	SANTA TERESA

Ordering the result segment rows
If you want to guarantee that the rows in your result segment are ordered in a particular way, you must
specify the order in the SELECT statement. Otherwise, IMS can return the rows in any order.

To retrieve rows in a specific order, use the ORDER BY clause. Using ORDER BY is the only way to
guarantee that your rows are ordered as you want them. The following topics show you how to use the
ORDER BY clause.

Specifying the sort key in the ORDER BY clause:

The order of the selected rows depends on the sort keys that you identify in the ORDER BY clause. A sort
key is a field name of the segment. IMS orders the rows by the first sort key, followed by the second sort
key, and so on.

You can list the rows in ascending or descending order. Null values appear last in an ascending sort and
first in a descending sort.

Example: ORDER BY clause with a field name as the sort key: The following statement retrieves all
hospital names, sorted in alphabetical order:

SELECT HOSPITAL.HOSPNAME
 FROM PCB01.HOSPITAL
 ORDER BY HOSPITAL.HOSPNAME ASC

Optimizing retrieval for a small set of rows
When you need only a few of the thousands of rows that satisfy a query, you can tell IMS to return only a
specified number of rows.

Question: How can I tell IMS that I want only a few of the thousands of rows that satisfy a query?

Answer: Use or FETCH FIRST n ROWS ONLY.

If you want to retrieve only the first few rows. For example, to retrieve the first 50 rows, code:

SELECT * FROM PCB01.HOSPITAL
FETCH FIRST 50 ROWS ONLY

Chapter 37. Writing application programs for SQL 543

Use FETCH FIRST n ROWS ONLY to limit the number of rows in the result segment to n rows. FETCH FIRST
n ROWS ONLY has the following benefits:

• When you use FETCH statements to retrieve data from a result segment, FETCH FIRST n ROWS ONLY
causes IMS to retrieve only the number of rows that you need. This can have performance benefits,
especially in distributed applications. If you try to execute a FETCH statement to retrieve the n+1st row,
IMS returns a +100 SQLCODE.

Implications of using SELECT *
Generally, you should use SELECT * only when you want to select all fields. Otherwise, specify the specific
fields that you want to view.

Question: What are the implications of using SELECT * ?

Answer: Generally, you should select only the fields you need because IMS is sensitive to the number of
fields selected. Use SELECT * only when you are sure you want to select all fields, except hidden fields.

Support for variable-length database segments
SQL language conventions assume that the target database is relational. Relational database managers
do not use the concept of "variable-length" data structures that are managed by an external application
program.

Because IMS is a hierarchical database, IMS translates SQL statements into DL/I calls that can be
interpreted by the IMS Database Manager. When using the IMS Database Manager, applications must
manage the length of individual variable-length segment instances with the LL field for the segment.
Applications that use the IMS Universal DL/I driver or SQL support for COBOL are responsible for
managing the LL field.

For application programs that use the IMS Universal database resource adapter or the IMS Universal
JDBC driver driver treat IMS databases as standard JDBC data sources. The IMS Universal Database
resource adapter and IMS Universal JDBC driver internally manage the LL field on behalf of the
application, so that the application program does not need to manage the segment length or the size of
the I/O area. For read operations, the IMS Universal Database resource adapter and IMS Universal JDBC
driver handle the offsets and lengths of all the segments and fields returned. By default, the SQL result
set contains the LL field information. For update or insert operations, each instance of a variable-length
segment is automatically expanded to contain the largest field (determined by the field length and offset)
in the segment instance.

For SQL support for COBOL, COBOL applications are responsible for managing the LL field.

In a variable-length segment, some fields might be nullable. In IMS, a nullable field is a field that has
a starting offset or combined offset and length larger than the minimum length of the segment. You can
determine if a nullable field exists for a particular segment instance by comparing the LL value for the
instance to the combined offset and length for the nullable field. If the LL value is less than the combined
offset and length of the field, the field is null. For example, if a segment definition includes a field that
starts at offset 50 and is length 5, it is nullable if the minimum length of the segment is less than 55. It is
null for a particular segment instance if the LL value for that instance is less than 55.

You can also use the null indicator variable for COBOL or java.sql.ResultSet.wasNull method for
IMS Universal Database resource adapter and IMS Universal JDBC driver to determine whether a nullable
field exists in an instance of a variable-length segment without examining the LL data.

Using the LL field with the IMS Universal Database resource adapter and IMS
Universal JDBC driver
By default, the LL field for a variable length segment is returned as a visible column for SQL queries, and
the IMS Universal database resource adapter or IMS Universal JDBC driver manages the LL field on behalf
of your application program. If you use this option, you can make LL field data inaccessible to any query
type (including SELECT *) by setting the connection property to false.

544 IMS: Application Programming

Alternatively, you can use your application program to set and control the LL field. To do so, set the
llField property to true through the standard properties list of either of the following interfaces:

java.sql.DriverManager.getConnection(String url, Properties properties)

com.ibm.ims.jdbc.IMSDataSource.setProperties(Properties properties)

When the llField=true property is set, the LL field is exposed as a normal column in the standard
SQL result set for all operations. You can read, insert, or update the LL field data directly. Deleting the LL
field data also deletes the rest of the associated database record. To set a field to the null state, set the
length of the segment (the value of the LL field column) to be smaller than the offset of the field within the
segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT data.

Using the LL field with COBOL
The LL field is treated as a normal column in the standard SQL result set for all operations. You can read,
insert, or update the LL field data directly. Deleting the LL field data also deletes the rest of the associated
database record. To set a field to the null state, set the length of the segment (the value of the LL field
column) to be smaller than the offset of the field within the segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT data.

Checking for null field instances with the IMS Universal DL/I driver
Applications that use the IMS Universal DL/I driver always receive the LL field data for a variable-length
segment. You can determine if a field is null in a segment instance in one of two ways: either compare the
LL field data to the offset of the field, or use the com.ibm.ims.dli.Path.wasNull() method.

The com.ibm.ims.dli.Path.wasNull() method returns a boolean value for the null state of the last
field that was read. The returned value is true if the field is null. You must attempt to read a field before
calling the wasNull() method to determine whether the field is null.

Checking for null field instances in COBOL
Applications that use the SQL for COBOL always receive the LL field data for a variable-length segment.
You can determine if a field is null in a segment instance in one of two ways: either compare the LL field
data to the offset of the field, or use the null indicator variable.

Related concepts
Variable-length segments (Database Administration)
Related tasks
“Declaring host variables and indicator variables” on page 510
You can use host variables in SQL statements in your program to pass data between IMS and your
application.
“Declaring host variables and indicator variables in COBOL” on page 525
You can use host variables and host structures in SQL statements in your program to pass data between
IMS and your application.

Retrieving a set of rows by using a cursor
In an application program, you can retrieve a set of rows from IMS.

Use the following type of cursors to retrieve rows from a result segment:

• A row-positioned cursor retrieves at most a single row at a time from the result segment into host
variables. At any point in time, the cursor is positioned on at most a single row. For information about
how to use a row-positioned cursor, see “Accessing data by using a row-positioned cursor” on page
546.

Chapter 37. Writing application programs for SQL 545

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_varlengthseg.htm#ims_varlengthseg

Cursors
A cursor is a mechanism that points to one row in a set of rows from the segment. Your application
program can use a cursor to retrieve rows from a segment.

Types of cursors
You can declare row-positioned non-scrollable cursor to retrieve data from the result table.

Using a non-scrollable cursor:

The simplest type of cursor is a non-scrollable cursor. A row-positioned non-scrollable cursor moves
forward through its result segment one row at a time.

Accessing data by using a row-positioned cursor
A row-positioned cursor points to a single row and retrieves at most a single row at a time from the result
segment. You can specify a fetch request to specify which rows to retrieve, relative to the current cursor
position.

To access data by using a row-positioned cursor:
1. Execute a DECLARE CURSOR statement to define the result segment on which the cursor operates.

See “Declaring a row cursor” on page 546.
2. Execute an OPEN CURSOR to make the cursor available to the application. See “Opening a row cursor”

on page 546.
3. Specify what the program is to do when all rows have been retrieved. See “Specifying the action that

the row cursor is to take when it reaches the end of the data” on page 547.
4. Execute the SQL statements to retrieve data from the segment. See “Executing SQL statements by

using a row cursor” on page 547.
5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the application. See “Closing a

row cursor” on page 548.

Your program can have several cursors, each of which performs the previous steps.

Declaring a row cursor
Before you can use a row-positioned cursor to retrieve rows, you must declare the cursor. When you
declare a cursor, you identify a set of rows that are to be accessed with the cursor.

To declare a row cursor, issue a DECLARE CURSOR statement. The DECLARE CURSOR statement names
a cursor and specifies a prepared SELECT statement. The SELECT statement defines the criteria for the
rows that are to make up the result segment.

The following example shows a cursor named C1 that is declared using a simple form of the DECLARE
CURSOR statement for a prepared statement STMT.

EXEC SQLIMS
 DECLARE C1 CURSOR FOR STMT
END-EXEC.

Related reference
DECLARE CURSOR (Application Programming APIs)
SELECT (Application Programming APIs)

Opening a row cursor
After you declare a row cursor, you must tell IMS that you are ready to process the first row of the result
segment. This action is called opening the cursor.

To open a row cursor, execute the OPEN statement in your program. IMS then uses the SELECT statement
within DECLARE CURSOR to identify a set of rows. If you use parameter markers in the search condition
of that SELECT statement, you must specify the values for the parameter makers with the USING clause.
IMS uses the current value of the variables to select the rows. The result segment that satisfies the
search condition might contain zero, one, or many rows.

546 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_declarecursor.htm#ims_sql_declarecursor
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_select.htm#ims_sql_select

An example of an OPEN statement is:

EXEC SQLIMS
 OPEN C1
END-EXEC.

An example of an OPEN statement when the prepared SELECT statement has parameter markers.
Assume that the prepared SELECT statement has a parameter marker in the WHERE clause:

SELECT HOSPCODE, HOSPAME FROM PCB01.HOSPITAL
WHERE HOSPNAME = ?

Use the OPEN statement with the USING clause to set the value of the parameter marker from host
variable PARM1:

EXEC SQLIMS
OPEN C1 USING :PARM1
END-EXEC.

Specifying the action that the row cursor is to take when it reaches the end of the data
Your program must be coded to recognize and handle an end-of-data condition whenever you use a row
cursor to fetch a row.

To determine whether the program has retrieved the last row of data, test the SQLIMSCODE field for a
value of 100 or the SQLIMSSTATE field for a value of '02000'. These codes occur when a FETCH statement
has retrieved the last row in the result segment and your program issues a subsequent FETCH. For
example:

IF SQLIMSCODE = 100 GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER NOT FOUND statement. The WHENEVER NOT
FOUND statement causes your program to branch to another part that then issues a CLOSE statement. For
example, to branch to label DATA-NOT-FOUND when the FETCH statement does not return a row, use this
statement:

EXEC SQLIMS
 WHENEVER NOT FOUND GO TO DATA-NOT-FOUND
END-EXEC.

For more information about the WHENEVER NOT FOUND statement, see “Checking the execution of SQL
statements” on page 521.

Executing SQL statements by using a row cursor
You can use row cursors to execute FETCH statements.

Execute a FETCH statement to copy data from a row of the result segment into one or more host variables.

The following example shows a FETCH statement that retrieves selected fields from the hospital segment:

EXEC SQLIMS
 FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME
END-EXEC.

When your program executes the FETCH statement, IMS positions the cursor on a row in the result
segment. That row is called the current row. IMS then copies the current row contents into the program
host variables that you specify on the INTO clause of FETCH. This sequence repeats each time you issue
FETCH, until you process all rows in the result segment.

Chapter 37. Writing application programs for SQL 547

Closing a row cursor
Close a row cursor when it finishes processing rows if you want to free the resources or if you want to use
the cursor again. Otherwise, you can let IMS automatically close the cursor when the current transaction
terminates or when your program terminates.

To free the resources that are held by the cursor, close the cursor explicitly by issuing the CLOSE
statement.

If you want to use the rowset cursor again, reopen it.

Issue a CLOSE statement.
An example of a CLOSE statement looks like this:

EXEC SQLIMS
 CLOSE C1
END-EXEC.

Commit or roll back data
After your application issues SQL statements to modify data in your IMS database, your application might
want to commit or roll back database changes. To commit or roll back IMS database changes, use IMS DB
system services DL/I calls.

For example, you might issue a ROLB to roll back the changes and issue a CHKP to commit the changes.

The SQL keyword COMMIT and ROLLBACK are currently not supported.

Related reference
“Recovering databases and maintaining database integrity” on page 263
You can issue checkpoints, restart programs, and maintain database integrity in your application
programs.

Preparing an application to run on IMS
To prepare and run applications that contain SQL statements, you must coprocess, compile, and link-edit
them.

Tip: To avoid rework, first test your SQL statements using IMS Enterprise Suite Explorer for Development.
Then compile your program with SQL statements, and resolve all compiler errors. Finally, proceed with
the deployment and compile your COBOL program using the IMS coprocessor to translate the SQL
statements.

Processing SQL statements
The first step in preparing an SQL application to run is to process the SQL statements in the program. To
process the statements, use the IMS coprocessor. During this step, the SQL statements are replaced with
calls to IMS language interface module (DFSLI000).

For COBOL applications, you can use one of the following techniques to process SQL statements:

• Invoke the IMS coprocessor for the host language that you are using as you compile your program. You
can use the IMS coprocessor with COBOL host compilers. To invoke the IMS coprocessor, specify the
SQLIMS compiler option followed by its suboptions.

– For COBOL, you need Enterprise COBOL for z/OS Version 5 Release 1 or later to use this technique.
For more information about the COBOL IMS coprocessor, see Enterprise COBOL for z/OS Programming
Guide.

The IMS coprocessor performs precompiler functions at compile time. When you use the IMS
coprocessor, the compiler scans the program and returns the modified source code.

548 IMS: Application Programming

Processing SQL statements by using the IMS coprocessor
The IMS coprocessor processes SQL statements at compile time.

To process SQL statements by using the IMS coprocessor, perform the following action:

• Submit a JCL job to process the IMS application that contains SQL statement. Include the following
information:

– Specify the SQLIMS compiler option when you compile your program:

The SQLIMS compiler option indicates that you want the compiler to invoke the IMS coprocessor. To
use IMS co-processor and use the default options, specify just SQLIMS.

For example:

//COBOL1 EXEC PGM=IGYCRCTL,
// PARM='LIST,XREF,CP(37),SQLIMS'

The following derault option values will be used by the IMS coprocessor:

PERIOD
Period (.) will be recognized as the decimal point indicator in decimal or floating point literals
within the SQL statement.

APOSTSQL
Apostrophe (') as the string delimiter and the double quotation mark (") as the SQL escape
character within SQL statements.

In addition, the COBOL CODEPAGE option will be used to determine what CCSID the source program
is written. Currently, only EBCDIC CCSID 37 and 1140 are supported.

– Include DD statements for the following data sets in the JCL for your compile step:

- IMS load library (IGYV5R10.SQGYCOMP)

The IMS coprocessor calls IMS modules to process the SQL statements. You therefore need to
include the name of the IMS load library data set in the STEPLIB concatenation for the compile
step.

- Library for SQL INCLUDE statements

If your program contains SQL INCLUDE member-name statements that specify secondary input to
the source program, you need to also specify the data set for member-name. Include the name of
the data set that contains member-name in the SYSLIB concatenation for the compile step.

Chapter 37. Writing application programs for SQL 549

550 IMS: Application Programming

Part 6. Java application development for IMS
IMS provides support for developing applications using the Java programming language.

© Copyright IBM Corp. 1974, 2022 551

552 IMS: Application Programming

Chapter 38. IMS solutions for Java development
overview

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

The IMS solutions for Java development include the IMS Universal drivers, the IMS Java dependent
region resource adapter, and the IMS Transaction Manager Resource Adapter (IMS TM Resource Adapter).
These solutions are provided through the Java On Demand feature FMID. For solutions that can also run
on distributed platforms, you can download them from the IMS download site at IMS Transaction Manager
(TM) Resource Adapter Version 14.

For developing Java applications that run in IMS, see the Java in IMS solution adoption kit (System
Definition) for end-to-end guidance, including tasks for system programmers to set up the environment.

IMS Universal drivers
The IMS Universal drivers are a set of Java drivers and resource adapters that enable access to IMS
from z/OS and distributed (non-z/OS) platforms. The IMS Universal drivers are built on industry standards
and open specifications. Two types of connectivity are supported by the IMS Universal drivers: local
connectivity to IMS databases on the same LPAR (type-2 connectivity) and distributed connectivity
through TCP/IP (type-4 connectivity). Java applications that use the type-2 IMS Universal drivers must
reside on the same logical partition (LPAR) as the IMS subsystem. Java applications that use the type-4
IMS Universal drivers can reside on the same logical partition (LPAR) or on a different LPAR from the IMS
subsystem.

The IMS Universal drivers enable access to IMS from multiple environments, including:

• WebSphere Application Server for z/OS
• CICS Transaction Server for z/OS
• IMS on the host in Java batch processing (JBP) and Java message processing (JMP) regions

The IMS Universal drivers include:

• IMS Universal Database resource adapter: A Java EE Connector Architecture (JCA) 1.6-compliant
resource adapter

• IMS Universal JDBC driver: A Java Database Connectivity (JDBC) driver that implements the JDBC 4.0
API

• IMS Universal DL/I driver: A Java API for making calls with traditional DL/I programming semantics

IMS Java dependent region resource adapter
The IMS Java dependent region resource adapter is a set of Java classes and interfaces that support
IMS database access and IMS message queue processing within JBP and JMP regions. The IMS Java
dependent region resource adapter provides Java application programs running in JMP or JBP regions
with similar DL/I functionality to that provided in message processing program (MPP) and non-message-
driven BMP regions, such as:

• Accessing IMS message queues to read and write messages
• Performing program switches
• Commit and rollback processing
• Accessing IMS databases in an IMS DB/TM environment
• Accessing GSAM databases in IMS DB/TM and DCCTL environments
• Database recovery (CHKP/XRST)

© Copyright IBM Corp. 1974, 2022 553

https://www.ibm.com/support/pages/ims-transaction-manager-tm-resource-adapter-version-14
https://www.ibm.com/support/pages/ims-transaction-manager-tm-resource-adapter-version-14
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sk/ims_apmdovr.htm#ims_apmdovr
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sk/ims_apmdovr.htm#ims_apmdovr

IMS TM Resource Adapter
Generic Java EE 1.7 or later certified application servers, including WebSphere Application Server Liberty
Profile , are supported if the IMS TM resource adapter installation verification program (IVP) can run
successfully. Only a subset of IMS TM resource adapter functions are supported. See the restrictions
topic for usage restrictions. For generic Java EE 1.7 or later certified application servers, IBM support is
provided for specific functions if:

• The problem can be recreated in the supported versions of WebSphere Application Server or
WebSphere Application Server Liberty Profile.

• The problem is confirmed to be caused by the IMS TM resource adapter through diagnostic traces.

While the IMS Universal drivers and the IMS Java dependent region resource adapter provide the
interfaces and classes for accessing IMS data through a Java or Java EE application, the IMS TM resource
adapter, as its name suggests, is primarily for interacting with IMS transactions through a Java EE
application.

Related concepts
“Programming with the IMS Universal drivers” on page 559
Use these topics to design, write, and maintain application programs for IMS 15.3 using the IMS Universal
drivers.
“Programming Java dependent regions” on page 673
Use these topics to design, write, and maintain application programs for running in the Java dependent
regions.
Related tasks
Configuring external Java environment connections (Communications and Connections)

554 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_java_ext_environ_config.htm#ims_java_ext_environ_config

Chapter 39. Comparison of hierarchical and relational
databases

The following information describes the differences between the hierarchical model for IMS databases
and the standard relational database model.

A database segment definition defines the fields for a set of segment instances similar to the way a
relational table defines columns for a set of rows in a table. In this way, segments relate to relational
tables, and fields in a segment relate to columns in a relational table.

The name of an IMS segment becomes the table name in an SQL query, and the name of a field becomes
the column name in the SQL query.

A fundamental difference between segments in a hierarchical database and tables in a relational
database is that, in a hierarchical database, segments are implicitly joined with each other. In a relational
database, you must explicitly join two tables. A segment instance in a hierarchical database is already
joined with its parent segment and its child segments, which are all along the same hierarchical path. In a
relational database, this relationship between tables is captured by foreign keys and primary keys.

This section compares the Dealership sample database, to a relational representation of the database.
The Dealership sample DBDs are available with the IMS Enterprise Suite Explorer for Development, in the
<installation location>\IMS Explorer samples directory.

Important: This information provides only a comparison between relational and hierarchical databases.

The Dealership sample database contains five segment types, which are shown in the following figure.
The root segment is the Dealer segment. Under the Dealer segment is its child segment, the Model
segment. Under the Model segment are its children: the segments Order, Sales, and Stock.

The following figure shows the structure and each segment of the Dealership sample database.

Figure 102. Segments of the Dealership sample database

The Dealer segment identifies a dealer that sells cars. The segment contains a dealer name in the field
DLRNAME, and a unique dealer number in the field DLRNO.

Dealers carry car types, each of which has a corresponding Model segment. A Model segment contains a
type code in the field MODTYPE.

© Copyright IBM Corp. 1974, 2022 555

Each car that is ordered for the dealership has an Order segment. A Stock segment is created for each car
that is available for sale in the dealer's inventory. When the car is sold, a Sales segment is created.

The following figure shows a relational representation of the IMS database record shown in Figure 102 on
page 555.

Figure 103. Relational representation of the Dealership sample database

If a segment does not have a unique key, which is similar to a primary key in relational databases, view
the corresponding relational table as having a generated primary key added to its column (field) list.
An example of a generated primary key is in the Model table (segment) of the figure above. Similar to
referential integrity in relational databases, you cannot insert, for example, an Order (child) segment to
the database without it being a child of a specific Model (parent) segment.

Also note that the field (column) names have been renamed. You can rename segments and fields to
more meaningful names by using the IMS Explorer for Development.

556 IMS: Application Programming

An occurrence of a segment in a hierarchical database corresponds to a row (or tuple) of a table in a
relational database.

The following figure shows three Dealership database records.

Figure 104. Segment occurrences in the Dealership sample database

The Dealer segment occurrences have dependent Model segment occurrences.

The following figure shows the relational representation of the dependent model segment occurrences.

Figure 105. Relational representation of segment occurrences in the Dealership database

In the following example that shows the SELECT statement of an SQL call, Model is a segment name that
is used as a table name in the query:

SELECT * FROM Model

The following example, ModelTypeCode is the name of a field that is contained in the Model segment and
it is used in the SQL query as a column name:

SELECT * FROM Model WHERE ModelTypeCode = '062579'

In the two preceding examples, Model and ModelTypeCode are alias names that are assigned with
the EXTERNALNAME parameter of the SEGM and FIELD statements in the DBD, respectively. The
EXTERNALNAME parameter is an optional parameter that specifies an external alias name for client
applications to use when referencing the field or segment, and does not need to conform to the

Chapter 39. Comparison of hierarchical and relational databases 557

8-character limit for host resource names. External alias names are only used when the IMS catalog
is active. If the IMS catalog is active but no alias name is specified on the EXTERNALNAME parameter for
a segment or field, use the 8-character IMS name for the resource instead.

558 IMS: Application Programming

Chapter 40. Programming with the IMS Universal
drivers

Use these topics to design, write, and maintain application programs for IMS 15.3 using the IMS Universal
drivers.
Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.
“Overview of the IMS Java dependent regions” on page 673
The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.
Related reference
Software requirements for Java application programs that use the IMS Universal drivers or JDR resource
adapter (Release Planning)

IMS Universal drivers overview
The IMS Universal drivers are software components that provide Java applications with connectivity
and access to IMS databases from z/OS and distributed environments through TCP/IP. Java applications
that use the type-2 IMS Universal drivers must reside on the same logical partition (LPAR) as the IMS
subsystem. Java applications that use the type-4 IMS Universal drivers can reside on the same logical
partition (LPAR) or on a different LPAR from the IMS subsystem.

Programming approaches
The IMS Universal drivers provide an application programming framework that offers multiple options for
access to IMS data. These programming options include:

IMS Universal Database resource adapter
Provides connectivity to IMS databases from a Java Platform, Enterprise Edition (Java EE)
environment, and access to IMS data using the Common Client Interface (CCI) and Java Database
Connectivity (JDBC) interfaces.

IMS Universal JDBC driver
Provides a stand-alone JDBC 4.0 driver for making SQL-based database calls to IMS databases.

IMS Universal DL/I driver
Provides a stand-alone Java API for writing granular queries to IMS databases using programming
semantics similar to traditional DL/I calls.

Open standards
The IMS Universal drivers are built on the following industry open standards and interfaces:

Java EE Connector Architecture (JCA)
JCA is the Java standard for connecting Enterprise Information Systems (EISs) such as IMS into the
Java EE framework. Using JCA, you can simplify application development and take advantage of the
services that can be provided by a Java EE application server, such as connection management,
transaction management, and security management. The Common Client Interface (CCI) is the
interface in JCA that provides access from Java EE clients, such as Enterprise JavaBeans (EJB)
applications, JavaServer Pages (JSP), and Java servlets, to backend IMS subsystems.

© Copyright IBM Corp. 1974, 2022 559

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs

Java Database Connectivity (JDBC)
JDBC is the SQL-based standard interface for database access. It is the industry standard for
database-independent connectivity between the Java programming language and any database that
has implemented the JDBC interface.

Distributed Relational Database Architecture (DRDA) specification
DRDA is an open architecture that enables communication between applications and database
systems on disparate platforms. These applications and database systems can be provided by
different vendors and the platforms can be different hardware and software architectures. DRDA
provides distributed database access with built-in support for distributed, two-phase commit
transactions.

Related reference
DRDA DDM command architecture reference (Application Programming APIs)
Software requirements for Java application programs that use the IMS Universal drivers or JDR resource
adapter (Release Planning)

Distributed and local connectivity with the IMS Universal drivers
The IMS Universal drivers support distributed (type-4) and local (type-2) connectivity to IMS databases.

Distributed connectivity with the type-4 IMS Universal drivers
With type-4 connectivity, the IMS Universal drivers can run on any platform that supports TCP/IP and a
Java Virtual Machine (JVM), including z/OS. To access IMS databases, the type-4 IMS Universal drivers
first establish a TCP/IP-based socket connection to IMS Connect. IMS Connect is responsible for routing
the request to the IMS databases by using the Open Database Manager (ODBM), and sending the
response back to the client application. The DRDA protocol is used internally in the implementation of the
type-4 IMS Universal drivers. You do not need to know DRDA to use the type-4 IMS Universal drivers.

The type-4 IMS Universal drivers support two-phase commit (XA) transactions. IMS Connect builds the
necessary z/OS Resource Recovery Services (RRS) structure to support the two-phase commit protocol. If
two-phase commit transactions are not used, RRS is not required.

To establish a connection to IMS, the driverType connection property must be set to indicate
distributed (type-4) connectivity to IMS

After successful authentication, the IMS Universal drivers send other socket connection information, such
as program specification block (PSB) name and IMS database subsystem, to IMS Connect and ODBM to
allocate the PSB to connect to the database.

A connection to an IMS database is established only when a program specification block (PSB) is
allocated. Authorization for a particular PSB is done by the ODBM component during the allocation of
a PSB.

The type-4 IMS Universal drivers support connection pooling, which limits the time that is needed for
allocation and deallocation of TCP/IP socket connections. To maximize connection reuse, only the socket
attributes of a connection are pooled. These attributes include the IP address and port number that the
host IMS Connect is listening on. As a result, the physical socket connection can be reused and additional
attributes can be sent on this socket to connect to an IMS database. When a client application of the
type-4 IMS Universal drivers makes a connection to IMS, this means:

• A one-to-one relationship is established between a client socket and an allocated PSB that contains one
or more IMS databases.

• A one-to-many relationship is established between IMS Connect and the possible number of database
connections it can handle at one time.

• IMS Connect does the user authentication.
• ODBM ensures that the authenticated user is authorized to access the given PSB.

The following figure shows how the type-4 IMS Universal drivers route communications between your
Java client applications that are running in a distributed environment and an IMS subsystem.

560 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_ddm_architecture.htm#drdaddmcommands
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs

Figure 106. Distributed connectivity with the type-4 IMS Universal drivers

You can also use the type-4 IMS Universal drivers if your Java clients are running in a z/OS environment
but are on a separate logical partition from the IMS subsystem. Use type-4 connectivity from a z/OS
environment if you want to isolate the application runtime environment from the IMS subsystem
environment.

Local connectivity with the type-2 IMS Universal drivers
Local connectivity with the type-2 IMS Universal drivers is targeted for the z/OS platform and runtime
environments. Use type-2 connectivity to connect to IMS subsystems in the same logical partition (LPAR).

The following table shows the z/OS runtime environments that support client applications of the type-2
IMS Universal drivers.

Table 97. z/OS runtime environment support for the type-2 IMS Universal drivers

z/OS runtime environment Type-2 IMS Universal drivers supported

WebSphere Application Server for z/OS or
WebSphere Application Server Liberty

• IMS Universal Database resource adapter

IMS Java dependent regions (BMP, JMP, JBP, IFP,
and MPR regions); CICS

• IMS Universal DL/I driver
• IMS Universal JDBC driver

CICS OSGi JVM server • IMS Universal DL/I driver
• IMS Universal JDBC driver

Chapter 40. Programming with the IMS Universal drivers 561

Table 97. z/OS runtime environment support for the type-2 IMS Universal drivers (continued)

z/OS runtime environment Type-2 IMS Universal drivers supported

CICS Liberty JVM server • Not supported

Db2 Java Stored Procedures • Not supported

z/OS batch • Not supported

Because it runs on the same LPAR as the IMS subsystem, during connection time, a client application
of the type-2 IMS Universal drivers does not need to supply an IP address, port number, user ID, or
password. The driverType property must be set to indicate local (type-2) connectivity to IMS.

The following figure shows how the type-2 IMS Universal drivers route communications between your
Java client applications that are running in an LPAR inside a z/OS mainframe environment and an IMS
subsystem that is located in the same LPAR.

Figure 107. Local connectivity with the type-2 IMS Universal drivers

RRSLocalOption connectivity type
In addition to type-4 and type-2 connectivity, the RRSLocalOption connectivity type is supported by
the IMS Universal Database resource adapter running on WebSphere Application Server for z/OS. With
RRSLocalOption connectivity, applications using the IMS Universal Database resource adapter do not
issue commit or rollback calls. Instead, transaction processing is managed by WebSphere Application
Server for z/OS. Two-phase commit (XA) transaction processing is not supported with RRSLocalOption
connectivity type.

Related concepts
IMS Connect support for access to IMS DB (Communications and Connections)
CSL ODBM administration (System Administration)

562 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_ct_odb_support.htm#ims_connect_odb_support
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_odbm_admin.htm#csl_odbm_admin

Configuring JAXB with JDK 9 or higher
The IMS Universal drivers leverage JAXB, part of the java.se.ee.module for XML parsing. If you are using
JDK 9 or higher, add JAXB to the classpath to enable full functionality of IMS Universal drivers.

JAXB is an XML to Java binding technology that supports transformation between schema and Java
objects and between XML instance documents and Java object instances. JAXB consists of a runtime
application programming interface (API) and accompanying tools that simplify access to XML documents.
JAXB also helps to build XML documents that both conform and validate to the XML schema. Java API
for XML-Based Web Services (JAX-WS) leverages the JAXB API and tools as the binding technology for
mappings between Java objects and XML documents. JAX-WS tooling relies on JAXB tooling for default
data binding for two-way mappings between Java objects and XML documents.

JAXB is required by the IMS Universal drivers for processing the XML metadata obtained locally or from
IMS Catalog.

Attention: If you are using JDK 9 or higher, add JAXB to the classpath to enable the full
functionality of IMS Universal drivers.

If you are configuring JAXB using JDK 9 or later, please note that the Java EE and CORBA modules are
deprecated in JDK 9 and 10, and are removed completely in JDK 11 and later. Enabling any deprecated
modules within the JDK itself is not recommended.

Adding JAXB in a Java Project in Eclipse

All applications leveraging IMS Universal drivers need the following JARS added to their classpath:

• https://mvnrepository.com/artifact/javax.activation/activation/1.1.1
• https://mvnrepository.com/artifact/javax.xml.bind/jaxb-api/2.3.1
• https://mvnrepository.com/artifact/com.sun.xml.bind/jaxb-osgi/2.3.1

Attention: A more recent version of the JAXB libraries mentioned above might be available. Check
for the newer versions of JAXB 2.x.x.

Adding JAXB in a Maven project

The following dependencies are required if you are using a Maven project:

 <dependency>
 <groupId>org.glassfish.jaxb</groupId>
 <artifactId>jaxb-runtime</artifactId>
 <version>2.3.1</version>
 </dependency>
 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.1</version>
 </dependency>
 <dependency>
 <groupId>javax.activation</groupId>
 <artifactId>activation</artifactId>
 <version>1.1.1</version>
 </dependency>

The following JVM argument is required both in the case of Eclipse and Maven:

-Djavax.xml.bind.context.factory=com.sun.xml.bind.v2.ContextFactory

Chapter 40. Programming with the IMS Universal drivers 563

https://mvnrepository.com/artifact/javax.activation/activation/1.1.1
https://mvnrepository.com/artifact/javax.xml.bind/jaxb-api/2.3.1
https://mvnrepository.com/artifact/com.sun.xml.bind/jaxb-osgi/2.3.1

Comparison of IMS Universal drivers programming approaches for accessing
IMS

Depending on your IT infrastructure, solution architecture, and application design, choose the IMS
Universal drivers programming approach that is best for your development scenario.

The following table lists the recommended IMS Universal drivers programming approach to use, based
on the application programmer's choice of application platform, data access method, and transaction
processing option.

Table 98. Comparison of programming approaches for accessing IMS

Application platform Data access method
Transaction processing
required

Recommended
approach

WebSphere Application
Server for distributed
platforms or WebSphere
Application Server for
z/OSor WebSphere
Application Server
Liberty

CCI programming
interface to perform SQL
or DL/I data operations.

Local transaction
processing only.

Use the IMS Universal
Database resource
adapter with local
transaction support
(imsudbLocal.rar), and
make SQL calls with the
SQLInteractionSpec
class or DL/I
calls with the
DLIInteractionSpec
class.

CCI programming
interface to perform SQL
or DL/I data operations.

Two-phase (XA) commit
processing1 or local
transaction processing.

Use the IMS Universal
Database resource
adapter with XA
transaction support
(imsudbXA.rar), and
make SQL calls with the
SQLInteractionSpec
class or DL/I
calls with the
DLIInteractionSpec
class.

JDBC programming
interface to perform SQL
data operations.

Local transaction
processing only.

Use the IMS Universal
JCA/JDBC driver version
of the IMS Universal
Database resource
adapter with local
transaction support
(imsudbJLocal.rar), and
make SQL calls with the
JDBC API.

JDBC programming
interface to perform SQL
data operations.

Two-phase (XA) commit
processing1 or local
transaction processing.

Use the IMS Universal
JCA/JDBC driver version
of the IMS Universal
Database resource
adapter with XA
transaction support
(imsudbJXA.rar), and
make SQL calls with the
JDBC API.

564 IMS: Application Programming

Table 98. Comparison of programming approaches for accessing IMS (continued)

Application platform Data access method
Transaction processing
required

Recommended
approach

Standalone Java
application (outside a
Java EE application
server) that resides on a
distributed platform or a
z/OS platform

JDBC programming
interface to perform SQL
data operations.

Two-phase (XA) commit
processing2 or local
transaction processing.

Use the IMS
Universal JDBC driver
(imsudb.jar3), and make
SQL calls with the JDBC
API.

Traditional DL/I
programming semantics
to perform data
operations.

Two-phase (XA) commit
processing2 or local
transaction processing.

Use the IMS Universal
DL/I driver (imsudb.jar3),
and make DL/I calls with
the PCB class.

Standalone non-Java
application that resides
on a distributed platform
or a z/OS platform

Data access using DRDA
protocol.

Two-phase (XA) commit
processing or local
transaction processing.

Use a programming
language of your choice
to issue DDM commands
to IMS Connect. The
application programmer
is responsible for
implementing the
two-phase commit
mechanism.

Note:

1. XA transaction support is available only with type-4 connectivity.
2. The driver is enabled for local and XA transactions, but the application programmer is responsible for

implementing the two-phase commit mechanism. XA transaction support is available only with type-4
connectivity.

3. The JDBC driver and the DL/I driver are provided in the same .jar file because the SQL calls made
through the JDBC driver are converted into DL/I calls by using the methods and classes in the DL/I
driver.

Support for variable-length database segments with the IMS Universal
drivers

The IMS Universal database resource adapter and the IMS Universal JDBC driver manage variable-length
segments on behalf of client application programs by default. Application programs that use the IMS
Universal DL/I driver must manage the LL field data for variable-length segments.

Using the LL field with the IMS Universal database resource adapter or IMS
Universal JDBC driver
By default, the LL field for a variable length segment is returned as a visible column for SQL queries, and
the IMS Universal database resource adapter or IMS Universal JDBC driver manages the LL field on behalf
of your application program. If you use this option, you can make LL field data inaccessible to any query
type (including SELECT *) by setting the connection property to false.

Alternatively, you can use your application program to set and control the LL field. To do so, set the
llField property to true through the standard properties list of either of the following interfaces:

java.sql.DriverManager.getConnection(String url, Properties properties)

com.ibm.ims.jdbc.IMSDataSource.setProperties(Properties properties)

Chapter 40. Programming with the IMS Universal drivers 565

When the llField=true property is set, the LL field is exposed as a normal column in the standard
SQL result set for all operations. You can read, insert, or update the LL field data directly. Deleting the LL
field data also deletes the rest of the associated database record. To set a field to the null state, set the
length of the segment (the value of the LL field column) to be smaller than the offset of the field within the
segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT data.

You can also use the java.sql.ResultSet.wasNull method to determine whether a nullable field
exists in an instance of a variable-length segment without examining the LL data.

Checking for null field instances with the IMS Universal DL/I driver
Applications that use the IMS Universal DL/I driver always receive the LL field data for a variable-length
segment. You can determine if a field is null in a segment instance in one of two ways: either compare the
LL field data to the offset of the field, or use the com.ibm.ims.dli.Path.wasNull() method.

The com.ibm.ims.dli.Path.wasNull() method returns a boolean value for the null state of the last
field that was read. The returned value is true if the field is null. You must attempt to read a field before
calling the wasNull() method to determine whether the field is null.

Related concepts
Variable-length segments (Database Administration)
Related tasks
How to specify variable-length segments (Database Administration)

Support for flattening complex structures
The flattenTables connection property produces a flattened view of a database table. Although the
copybook structure in the IMS catalog is unchanged, the information about the structure of the table
is altered for that particular connection. Enabling the flattenTables connection property can simplify the
process of querying a database table.

Complex structures that are displayed according to the flattenTables connection property are formatted
according to these naming conventions:

• Static arrays are referenced by the name of the array, index of the array, and name of the field.

An example of this convention is CLASSES_2_INST, where CLASSES is the name of the array, 2 is the
index of the array, and INST is the name of the field.

• Only the sub-elements of structures are displayed in the flattened structure view (not the names of the
structures themselves).

Restriction: The flattenTables connection property supports static arrays and structures only. Dynamic
arrays are not altered.

The following view displays a copybook structure with the flattenTables connection property disabled.

01 SEGM.
 05 CLASSES OCCURS 4 TIMES.
 10 INST PIC X(15).
 10 GRADE PIC X(1).
 10 BOOKS OCCURS 2 TIMES.
 15 AUTHOR.
 20 FIRSTNAME PIC X(10).
 20 LASTNAME PIC X(15).
 15 TITLE PIC X(20).

The following view displays the same copybook structure as in the previous example, but with the
flattenTables connection property enabled.

01 SEGM.
 05 CLASSES_1_INST PIC X(15).
 05 CLASSES_1_GRADE PIC X(1).

566 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_varlengthseg.htm#ims_varlengthseg
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_howspecvarseg.htm#ims_howspecvarseg

 05 CLASSES_1_BOOKS_1_FIRSTNAME PIC X(10).
 05 CLASSES_1_BOOKS_1_LASTNAME PIC X(15).
 05 CLASSES_1_BOOKS_1_TITLE PIC X(20).
 05 CLASSES_1_BOOKS_2_FIRSTNAME PIC X(10).
 05 CLASSES_1_BOOKS_2_LASTNAME PIC X(15).
 05 CLASSES_1_BOOKS_2_TITLE PIC X(20).
 05 CLASSES_2_INST PIC X(15).
 05 CLASSES_2_GRADE PIC X(1).
 05 CLASSES_2_BOOKS_1_FIRSTNAME PIC X(10).
 05 CLASSES_2_BOOKS_1_LASTNAME PIC X(15).
 05 CLASSES_2_BOOKS_1_TITLE PIC X(20).
 05 CLASSES_2_BOOKS_2_FIRSTNAME PIC X(10).
 05 CLASSES_2_BOOKS_2_LASTNAME PIC X(15).
 05 CLASSES_2_BOOKS_2_TITLE PIC X(20).
 05 CLASSES_3_INST PIC X(15).
 05 CLASSES_3_GRADE PIC X(1).
 05 CLASSES_3_BOOKS_1_FIRSTNAME PIC X(10).
 05 CLASSES_3_BOOKS_1_LASTNAME PIC X(15).
 05 CLASSES_3_BOOKS_1_TITLE PIC X(20).
 05 CLASSES_3_BOOKS_2_FIRSTNAME PIC X(10).
 05 CLASSES_3_BOOKS_2_LASTNAME PIC X(15).
 05 CLASSES_3_BOOKS_2_TITLE PIC X(20).
 05 CLASSES_4_INST PIC X(15).
 05 CLASSES_4_GRADE PIC X(1).
 05 CLASSES_4_BOOKS_1_FIRSTNAME PIC X(10).
 05 CLASSES_4_BOOKS_1_LASTNAME PIC X(15).
 05 CLASSES_4_BOOKS_1_TITLE PIC X(20).
 05 CLASSES_4_BOOKS_2_FIRSTNAME PIC X(10).
 05 CLASSES_4_BOOKS_2_LASTNAME PIC X(15).
 05 CLASSES_4_BOOKS_2_TITLE PIC X(20).

Related tasks
“Connecting using the IMS Universal Database resource adapter in a managed environment” on page
573
In a managed (or three-tier) environment, your Java EE application interacts with a Java EE application
server, such as WebSphere Application Server, and the IMS Universal Database resource adapter to
communicate with an IMS database.
“Connecting using the IMS Universal JCA/JDBC driver in a managed environment” on page 579
To access IMS databases using a JDBC programming interface in a managed (or three-tier) environment,
you need to deploy the IMS Universal JCA/JDBC driver on your Java EE application server and configure
the connection properties.
“Connecting to an IMS database using the JDBC DataSource interface” on page 595
Using the DataSource interface is the preferred way to connect to IMS from your IMS Universal JDBC
driver application.
“Connecting to an IMS database by using the JDBC DriverManager interface” on page 601
A JDBC application can establish a connection to a data source using the JDBC DriverManager
interface, which is part of the java.sql package.

Generating the runtime Java metadata class
To connect to an IMS database using the IMS Universal drivers, you need to include on your Java
classpath the Java metadata class that provides the database view.

Note: If you are using the IMS catalog, an IMS Universal drivers application program can obtain the
necessary metadata directly from the catalog database without a Java metadata class file.

The Java metadata class represents the application view information specified by a program specification
block (PSB) and its related Program Control Blocks (PCBs). The Java metadata class provides a one-to-
one mapping to the segments and fields defined in the PSB.

The Java metadata class must be compiled and made available through the classpath for any Java
application attempting to access IMS data using that PSB.

During database connection setup, pass the name of this metadata class to the resource adapter or JDBC
driver. The Java metadata class is used at runtime by the IMS Universal drivers to process both SQL and
Java-based DL/I calls.

Chapter 40. Programming with the IMS Universal drivers 567

The default segment encoding of the database metadata class produced by the IMS
Explorer for Development is cp1047. To change the segment encoding, use the
com.ibm.ims.base.DLIBaseSegment.setDefaultEncoding method.

Related concepts
IMS Explorer for Development overview

Hospital database example
The code examples for the IMS Universal drivers application programming topics use the Hospital
database.

The following figure shows the hierarchical structure of the segments in the Hospital database.

Figure 108. Segments of the Hospital database

Each node in the figure represents a segment:

• The HOSPITAL segment is the root segment in the database.
• PAYMENTS and WARD are child segments of the HOSPITAL segment.
• WARD has a direct descendent segment named PATIENT.
• ILLNESS and BILLING are the child segments of the PATIENT.
• ILLNESS has a child segment named TREATMENT that stores details about patient treatment.
• The child segment of ILLNESS, DOCTOR, is the lowest level segment in the database hierarchy.

568 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.3.0/com.ibm.ims.explorer33.doc/wb_overview.htm

The tables that follow show the layouts of each segment in the Hospital database.

HOSPITAL segment
The following table shows the HOSPITAL segment, which has two fields:

• The hospital code (HOSPCODE)
• The hospital name (HOSPNAME)

HOSPCODE is a unique key field.

Field name Field length (in bytes)

HOSPCODE 12

HOSPNAME 17

PAYMENTS segment
The following table shows the PAYMENTS segment, which has two fields:

• The patient number (PATNUM)
• The payment amount (AMOUNT)

Field name Field length (in bytes)

PATNUM 4

AMOUNT 8

WARD segment
The following table shows the WARD segment, which has five fields:

• The ward number (WARDNO)
• The ward name (WARDNAME)
• The patient count (PATCOUNT)
• The nurse count (NURCOUNT)
• The doctor count (DOCCOUNT)

WARDNO is a unique key field.

Field name Field length (in bytes)

WARDNO 2

WARDNAME 4

PATCOUNT 8

NURCOUNT 4

DOCCOUNT 2

PATIENT segment
The following table shows the PATIENT segment, which has two fields:

• The patient number (PATNUM)
• The patient name (PATNAME)

PATNUM is a unique key field.

Chapter 40. Programming with the IMS Universal drivers 569

Field name Field length (in bytes)

PATNUM 12

PATNAME 17

ILLNESS segment
The following table shows the ILLNESS segment, which has one field:

• The illness name (ILLNAME)

Field name Field length (in bytes)

ILLNAME 15

TREATMNT segment
The following table shows the TREATMNT segment, which has three fields:

• The day of treatment (TREATDAY)
• The type of treatment (TREATMNT)
• The treatment comments (COMMENTS)

Field name Field length (in bytes)

TREATDAY 8

TREATMNT 15

COMMENTS 10

DOCTOR segment
The following table shows the DOCTOR segment, which has two fields:

• The doctor number (DOCTNO)
• The doctor name (DOCNAME)

Field name Field length (in bytes)

DOCTNO 4

DOCNAME 20

BILLING segment
The following table shows the BILLING segment, which has two fields:

• The bill amount (AMOUNT)
• The bill comments (COMMENTS)

Field name Field length (in bytes)

AMOUNT 8

COMMENTS 20

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646

570 IMS: Application Programming

The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Programming using the IMS Universal Database resource adapter
This information describes how to write programs with the IMS Universal Database resource adapter to
access IMS databases.

Overview of the IMS Universal Database resource adapter
The IMS Universal Database resource adapter is based on the Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA) 1.6 standard. The purpose of the JCA is to connect Enterprise Information
Systems (EISs), such as IMS, into the Java EE platform. JCA provides a number of services that are
managed by a Java EE application server. These services include security credential management,
connection pooling, and transaction management.

These services are provided by means of system level contracts between the IMS Universal Database
resource adapter and the Java EE application server, without the need for additional coding by the
application programmer.

The JCA specification defines a programming interface called the Common Client Interface (CCI). This
interface is used to communicate with any EIS. The IMS Universal Database resource adapter implements
the CCI for interactions with IMS databases. The CCI interfaces for the IMS Universal Database resource
adapter are in the com.ibm.ims.db.cci package. The CCI implementation provided by IMS allows
applications to make either SQL or DL/I calls to access the IMS database.

In addition to the CCI interface provided by the IMS Universal Database resource adapter, you can also
write JDBC applications to access your IMS data from a managed environment, while leveraging the Java
EE services provided by the application server. This capability is provided by the IMS Universal JCA/JDBC
driver version of the IMS Universal Database resource adapter. The IMS Universal JCA/JDBC driver is
based on the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) 1.6 and Java
Database Connectivity (JDBC) 4.0 standard.

The IMS Universal Database resource adapter communicates with IMS Connect as the TCP/IP endpoint to
access IMS.

Preparing to write a Java application with the IMS Universal drivers
Java application programs that use the IMS Universal drivers require the Java Development Kit (JDK)
7.0. Java programs that run in JMP and JBP regions require JDK 7.0 or later. Java application programs
that use the IMS Universal drivers must have access to database metadata in order to interact with
IMS databases. This metadata can either be accessed directly in the IMS catalog database or it can be
generated as a Java metadata class with the IMS Enterprise Suite Explorer for Development.

Transaction types and programming interfaces supported by the IMS
Universal Database resource adapter

The IMS Universal Database resource adapter provides four types of support for optimized transaction
management and performance.

The types of transaction support provided by the IMS Universal Database resource adapter are:

IMS Universal Database resource adapter with local transaction support (imsudbLocal.rar)
This resource adapter provides a CCI programming interface and LocalTransaction support when
deployed on any supported Java EE application server.

IMS Universal Database resource adapter with XA transaction support (imsudbXA.rar)
This resource adapter provides a CCI programming interface and both XATransaction and
LocalTransaction support when deployed on any supported Java EE application server.

Chapter 40. Programming with the IMS Universal drivers 571

IMS Universal JCA/JDBC driver with local transaction support (imsudbJLocal.rar)
This resource adapter provides a JDBC programming interface and LocalTransaction support when
deployed on any supported Java EE application server.

IMS Universal JCA/JDBC driver with XA transaction support (imsudbJXA.rar)
This resource adapter provides a JDBC programming interface and both XATransaction and
LocalTransaction support when deployed on any supported Java EE application server.

Restriction: XA transaction support is available only with type-4 connectivity.

For global or two-phase commit transaction processing, use the IMS Universal Database resource
adapters with XA transaction support. For single-phase commit functionality, use either the IMS Universal
Database resource adapters with XA transaction support or with local transaction support.

In order to provide for different transactional qualities of service for Java EE applications, it is possible to
deploy two or more separate types of IMS Universal Database resource adapters into the same Java EE
application server.

When carrying out multiple interactions with IMS databases using the IMS Universal Database resource
adapter, you might want to group all actions together to ensure that they either all succeed or all fail. This
can be done using container-managed or bean-managed transaction demarcation.

In container-managed transactions, all work performed in an EJB method invocation is part of one unit of
work, and no explicit demarcation by the application is required. Transactional integrity is managed by the
Java EE application server.

In bean-managed transactions, you must use the javax.resource.cci.LocalTransaction or
javax.transaction.UserTransaction interface to programmatically demarcate units of work
explicitly. Bean-managed transactions that use the LocalTransaction interface can group work
performed only through the resource adapter; the UserTransaction interface allows all transactional
resources within the application to be grouped. Use a bean-managed EJB if you need to have multiple
units of works within the same EJB method invocation.

When using the type-2 IMS Universal Database resource adapter, if you specify a driverType connection
property of 2, you can use javax.resource.cci.LocalTransaction for bean-managed transactions or the
JDBC Connection interface. If you specify a driverType connection property of 2_CTX, you can use the
javax.transaction.UserTransaction for application programs that issue explicit commit and rollback calls.

Software configurations supported by the IMS Universal Database resource
adapter

The IMS Universal Database resource adapter has some requirements and restrictions on the supported
software configurations.

The following table lists the supported software configurations.

Table 99. Supported software configurations for IMS Universal Database resource adapter

Version of the IMS Universal
Database resource adapter

Supported version of IBM
WebSphere Application Server

Non-IBM Java EE application
servers

Version 14 • Version 8.5 or later
• Version 8.5 or later for IBM

WebSphere Liberty servers

Any generic Java EE 1.4 or later
certified application servers“1” on
page 573“2” on page 573

Version 13 Version 7.0.1 or later Any generic Java EE 1.4 or later
certified application servers“1” on
page 573“2” on page 573

Version 12 Version 6.1 or later Any generic Java EE 1.4 or later
certified application servers“1” on
page 573“2” on page 573

572 IMS: Application Programming

1. For generic Java EE application servers, IBM support for the IMS Universal Database resource adapter
is limited to specific features that meet one of the following criteria:

• The problem can be recreated in the supported versions of WebSphere Application Server or
WebSphere Application Server Liberty Profile.

• The problem is confirmed to be caused by the IMS Universal Database resource adapter through
diagnostic traces.

2. For generic Java EE application servers, the following features are not supported:

• Two-phase (XA) commit processing.
• Generic Java EE application servers on z/OS.
• Other database resource adapters other than the IMS Universal Database resource adapter for local

transactions with the JDBC programming interface (imsudbJLocal.rar).

Connecting to IMS with the IMS Universal Database resource adapter
The IMS Universal Database resource adapter provides connectivity to IMS databases from a Java EE-
managed environment.

The Common Client Interface (CCI) provides ConnectionFactory and Connection interfaces to
establish a connection with an Enterprise Information System (EIS). When using the CCI programming
interface with the IMS Universal Database resource adapter, your Java application component looks up
a ConnectionFactory instance using the Java Naming and Directory Interface (JNDI) and uses the
ConnectionFactory instance to get a connection to an IMS database.

Similarly, when using the JDBC programming interface with the IMS Universal JCA/JDBC driver, your Java
application component looks up a DataSource instance using JNDI, and uses the DataSource instance
to obtain a Connection object

RRSLocalOption connectivity type
In addition to type-4 and type-2 connectivity, the RRSLocalOption connectivity type is supported by
the IMS Universal Database resource adapter running on WebSphere Application Server for z/OS. With
RRSLocalOption connectivity, applications using the IMS Universal Database resource adapter do not
issue commit or rollback calls. Instead, transaction processing is managed by WebSphere Application
Server for z/OS. Two-phase commit (XA) transaction processing is not supported with RRSLocalOption
connectivity type.

Connecting using the IMS Universal Database resource adapter in a managed
environment
In a managed (or three-tier) environment, your Java EE application interacts with a Java EE application
server, such as WebSphere Application Server, and the IMS Universal Database resource adapter to
communicate with an IMS database.

To configure and use a CCI Connection object in WebSphere Application Server to access an IMS
database:

1. Deploy the IMS Universal Database resource adapter in WebSphere Application Server using the
administrative console.

2. Create a connection factory for use with the IMS Universal Database resource adapter in WebSphere
Application Server through the administrative console.
a) Specify a name for the connection factory and a Java Naming and Directory Interface (JNDI) name.
b) Set the following custom connection properties for the IMS Universal Database resource adapter:

DatastoreName

The name of the IMS data store to access.

Chapter 40. Programming with the IMS Universal drivers 573

When using type-4 connectivity, the DatastoreName property must match either the
name of the data store defined to ODBM or be blank. The data store name is defined
in the ODBM CSLDCxxx PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter. If an alias is specified,
you must specify the aliasname as the value of the datastoreName property. If the
DatastoreName value is left blank (or not supplied), IMS Connect connects to any available
instance of ODBM as it is assumed that data sharing is enabled between all datastores defined
to ODBM.

When using type-2 connectivity, set the DatastoreName property to the IMS subsystem alias.
This is not required to be set for the Java Dependent Region run time.

DatabaseName

The location of the database metadata representing the target IMS database.

The DatabaseName property can be specified in one of two ways, depending on whether the
metadata is stored in the IMS catalog or as a static metadata class generated by the IMS
Enterprise Suite Explorer for Development.

If your IMS system uses the IMS catalog, the DatabaseName property is the name of the PSB
that your application uses to access the target IMS database.

If you are using the IMS Explorer for Development, the databaseName property is
the fully qualified name of the Java metadata class generated by the IMS Explorer
for Development. The URL must be prefixed with class:// (for example, class://
com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property can be overridden for
an individual connection without affecting the default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java metadata class generated by
the IMS Enterprise Suite Explorer for Development. The URL must be prefixed with class://
(for example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

PortNumber

The TCP/IP server port number to be used to communicate with IMS Connect. The port number
is defined using the DRDAPORT parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888. Do not set this property
when using type-2 connectivity.

DatastoreServer

The name or IP address of the data store server (IMS Connect). You can provide either the host
name (for example, dev123.svl.ibm.com) or the IP address (for example, 192.166.0.2). Do not
set this property when using type-2 connectivity.

DriverType

The type of driver connectivity to use. The DriverType value must be "4" for type-4
connectivity or "2" for type-2 connectivity. If the driver is running on WebSphere Application
Server for z/OS, you can also set the DriverType value to "2_CTX" for RRSLocalOption
connectivity.

user

The user name for the connection to IMS Connect provided by your RACF administrator. Do not
set this property when using type-2 connectivity.

574 IMS: Application Programming

password

The password for the connection to IMS Connect provided by your RACF administrator. Do not
set this property when using type-2 connectivity.

allMetadata

Optional. When this property is set to true, the DatabaseMetadata interface returns
information for all resources in the IMS catalog. When the property is set to false, the
DatabaseMetadata interface returns information for the allocated PSB. The default value for
this property is false.

signedCompare

Optional. When this property is set to "true", special SSAs are generated to support ranged
queries over signed data types. If the property is set to "false", standard binary comparisons
are performed based on the binary representation of the data type value. Setting the value to
"false" can increase performance but might result in incorrect results. The default value for this
property is "true".

flattenTables

Optional. Indicates whether to produce a flattened view of the database tables. A value of true
exposes the sub-elements of a STRUCT or an ARRAY as additional columns of the table. The
default value is false.

IMS Explorer flattens the copybook structures when you import the copybook. Although the
copybook itself remains unchanged in the IMS catalog, the information about the structure of
each table is altered for that particular connection.

The the flattenTables property allows you to query the fields in complex structures directly. For
more information about support for flattening complex structures, see “Support for flattening
complex structures” on page 566.

Restriction: The flattenTables connection property supports static arrays and structures only.
Dynamic arrays are not altered.

initStatusGroup

Optional. When a connection is made and the PSB is allocated, this property will indicate that
the driver should automatically issue an INIT STATUS GROUPA or INIT STATUS GROUPB if a
value of 'A' or 'B' is provided. The default will not issue an INIT STATUS GROUP call.

sslKeyStoreType

Optional. Specifies the format of the file that contains cryptographic objects needed to
establish a secure socket connection. The valid values are "JKS" and "PKCS12". This value
is only used when sslConnection is set to "true" and sslKeyStoreType is not specified.
The sslKeyStoreType parameter defaults to "JKS".

sslSecureSocketProtocol

Optional. Specifies the cryptographic communication protocol for the new connection.
Specify a protocol that is supported by the server and provides the highest level of
security. The valid values are "SSL", "SSLv3", "TLSv1.1", and "TLSv1.2". This value is only
used when sslConnection is set to "true". If sslConnection is set to "true" and
sslSecureSocketProtocol is not specified, a default protocol will be determined at runtime
by the JRE and the server.

t2OutputBufferSize

Optional. The size of the output buffer in bytes for the results from a SELECT operation for a
type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any value less than 500000 is set, this
property value will be adjusted to 500000. There is no maximum bound. The default value is
1280000.

Chapter 40. Programming with the IMS Universal drivers 575

treatInvalidDecimalAsNull

Optional. Indicates whether to interpret certain Decimal values that appear invalid in Java
applications (such as PACKEDDECIMAL and ZONEDDECIMAL with invalid sign bits) as null.
By default, this property is "false", and a conversion exception is thrown when the Java
applications are processing invalid values.

removeInvalidCaseFields

Optional. If you use SELECT * to access a map case, the JDBC Universal Driver returns the set
of all map case segment fields. When this property is set to true, the results contain only map
case fields that satisfy a WHERE clause with a DEPENDINGON field condition. To learn more,
see “Using the removeInvalidCaseFields property” on page 609.

currentSchema

Optional. Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements.

dbViewLocation

Optional. Specifies the fully qualified path to a databaseView metadata class. You can use this
property to include a metadata class that is not located in your project path.

dpsbOnCommit

Optional. Set this property to true to deallocate the PSB when a commit occurs.

Recommendation: Do not set this property to true except in a managed environment with
integrated connection pooling.

fetchSize

Optional. Gives the client a hint about the number of rows to get from the database when more
rows are needed. The number specified for this property only affects data retrieved with the
current connection. If the value specified is 0, all of the applicable rows are returned.

The default value for this property is 0 for both managed and unmanaged connections.

llField

Optional. The default value for this property is true. You can modify the LL field value to
change the length of a variable length segment instance. Set this property to false to hide the
LL field data from the column list in the result set.

maxRows

Optional. Specifies the maximum number of rows to return in a query result set. The default
value is 0, which returns all of the applicable rows in the result set.

expandArrayResultSet

Optional. This property enables IMS Universal JDBC driver to create an ArrayResultSet
with the array elements as the actual fields in the ResultSet instead of a Struct object
containing those elements as the only entry into that ResultSet. To learn more, see “Using
the expandArrayResultSet property” on page 611.

ssaOptimization

Optional. When set to true, the SSA is optimized to a fully qualified key if subfields of that key
are provided. To learn more, see Optimizing SQL statements to promote partial key subfields in
the WHERE Clause (Application Programming).

traceFile

Optional. Specifies the name of the trace file for the connection.

576 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty

traceFileAppend

Optional. If the specified trace file exists, setting this property to true specifies that the trace
data for the new connection must be appended to the existing trace file instead of overwriting
it.

This property is ignored if no value is specified for traceFile.

traceDirectory

Optional. Specifies the file system directory where the trace file is located. By default, this path
is the directory where the application is executed.

This property is ignored if no value is specified for traceFile.

traceLevel

Optional. Specifies which traces are enabled for the connection. The valid values for this
property are defined in the Java API documentation for the IMSDataSource class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.

Trace level traceLevel package value traceLevel
constant field in
IMSDataSource

traceLevel
demical value

All com.ibm.ims.db.opendb.* TRACE_ALL -1

DL/I com.ibm.ims.db.opendb.dli.* TRACE_DLI 28

DRDA com.ibm.ims.db.opendb.drda.* TRACE_DRDA 1

JDBC com.ibm.ims.db.opendb.jdbc.* TRACE_JDBC 32

Java EE com.ibm.ims.opendb.spi.*
com.ibm.ims.db.opendb.cci.*

TRACE_JEE 192

3. To use the connection factory that is created in WebSphere Application Server in the previous step, use
one of the following approaches:

• For Java EE 6 or later applications, you can use resource injection to get a handle to the connection
factory object. Below is an example:

// When using imsudbLocal.rar or imsudbXA.rar the connection
// information is returned as a javax.resource.cci.ConnectionFactory object
@Resource(name=”imsdblocal”)
private javax.resource.cci.ConnectionFactory cf;

// When using imsudbJLocal.rar or imsudbJXA.rar the connection
// information is returned as a javax.sql.DataSource object
@Resource(name=”imsdblocal”)
private javax.sql.DataSource ds;

• For earlier Java EE applications or other applications, you can use a lookup facility to look up the
connection factory object programmatically. Below is an example:

// When using imsudbLocal.rar or imsudbXA.rar the connection
// information is returned as a javax.resource.cci.ConnectionFactory object
Context initctx = new InitialContext();
javax.resource.cci.ConnectionFactory cf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup
 ("java:comp/env/imsdblocal");

// When using imsudbJLocal.rar or imsudbJXA.rar the connection
// information is returned as a javax.sql.DataSource object
Context initctx = new InitialContext();
javax.resource.cci.ConnectionFactory cf =
 (javax.sql.DataSource)initctx.lookup
 ("java:comp/env/imsdblocal");

Chapter 40. Programming with the IMS Universal drivers 577

4. Invoke the getConnection() method to get the connection to an IMS database from the connection
factory (cf) or data source (ds) object.
Follow one of the following methods:

• If the application does not need to override any connection properties that are set in the connection
factory deployment, call the getConnection() method:

// When using imsudbLocal.rar or imsudbXA.rar
javax.resource.cci.Connection conn = cf.getConnection();

// When using imsudbJLocal.rar or imsudbJXA.rar
javax.sql.Connection conn = ds.getConnection();

• If the application needs to override certain connection properties such as user, password,
databaseName, or metadataURL, provide an additional IMSConnetionSpec object with the
override values. Take the new IMSConnectionSpec object as the argument when you call the
getConnection() method. Here is an example of overriding user and the password:

// specify connection properties to override user and password
IMSConnectionSpec connSpec = new IMSConnectionSpec();
connSpec.setUser(yourUser);
connSpec.setPassword(yourPassword);

// When using imsudbLocal.rar or imsudbXA.rar
javax.resource.cci.Connection conn = ((com.ibm.ims.db.cci.
ConnectionFactoryImpl)cf).getConnection(connSpec);

// When using imsudbJLocal.rar or imsudbJXA.rar
javax.sql.Connection conn =
((com.ibm.ims.db.hybrid.IMSHybridDataSource)ds).getConnection(connSpec);

Note: Overriding the connection property values in this way does not alter the default values or
require any modifications to the J2C connection factory parameters.

5. Use the connection that you established in the previous steps to access the IMS database.

• For examples on accessing IMS data with the IMS Universal JCA/JDBC driver, see “Accessing IMS
data with the IMS Universal JCA/JDBC driver” on page 592.

• For more examples on accessing IMS data with other Java classes, see “Accessing IMS data with the
DLIInteractionSpec class” on page 585 or “Accessing IMS data with the SQLInteractionSpec class”
on page 589.

6. After your Java EE application is finished with the connection, close the connection with the close()
method on the Connection interface:

conn.close();

Example code for connecting to an IMS database using the IMS Universal Database resource adapter
in a managed environment

The following code sample shows the flow for connecting to an IMS database using the IMS Universal
Database resource adapter from an Java EE application:

In this example, the JNDI facility is used to look up the ConnectionFactory object and overrode
connection properties user and password:

//obtain the initial JNDI Naming context
Context initctx = new InitialContext();

//perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:comp/env/imsdblocal");

//specify connection properties
IMSConnectionSpec connSpec = new IMSConnectionSpec();
connSpec.setUser("user");
connSpec.setPassword("password");

//create CCI connection

578 IMS: Application Programming

javax.resource.cci.Connection conn = ((com.ibm.ims.db.cci.
ConnectionFactoryImpl)cf).getConnection(connSpec);

Related tasks
“Configuring the IMS Universal drivers for SSL support” on page 668
With type-4 connectivity, the IMS Universal drivers provide support for the Secure Sockets Layer (SSL)
through the Java Secure Socket Extension (JSSE).
Related reference
IMS Universal drivers support for the Common Client Interface (Application Programming APIs)

Connecting using the IMS Universal JCA/JDBC driver in a managed
environment
To access IMS databases using a JDBC programming interface in a managed (or three-tier) environment,
you need to deploy the IMS Universal JCA/JDBC driver on your Java EE application server and configure
the connection properties.

To configure and use the IMS Universal JCA/JDBC driver to access an IMS database:

1. Deploy the IMS Universal JCA/JDBC driver in WebSphere Application Server using the administrative
console.

2. Create a connection factory for use with the IMS Universal JCA/JDBC driver in WebSphere Application
Server through the administrative console.
a) Specify a name for the connection factory and a Java Naming and Directory Interface (JNDI) name.

Set the connection factory interface as javax.sql.DataSource.
b) Set the following custom connection properties for the IMS Universal JCA/JDBC driver connection

factory:
DatastoreName

The name of the IMS data store to access.

When using type-4 connectivity, the DatastoreName property must match either the
name of the data store defined to ODBM or be blank. The data store name is defined
in the ODBM CSLDCxxx PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter. If an alias is specified,
you must specify the aliasname as the value of the datastoreName property. If the
DatastoreName value is left blank (or not supplied), IMS Connect connects to any available
instance of ODBM as it is assumed that data sharing is enabled between all datastores defined
to ODBM.

When using type-2 connectivity, set the DatastoreName property to the IMS subsystem alias.
This is not required to be set for the Java Dependent Region run time.

DatabaseName

The location of the database metadata representing the target IMS database.

The DatabaseName property can be specified in one of two ways, depending on whether the
metadata is stored in the IMS catalog or as a static metadata class generated by the IMS
Enterprise Suite Explorer for Development.

If your IMS system uses the IMS catalog, the DatabaseName property is the name of the PSB
that your application uses to access the target IMS database.

If you are using the IMS Explorer for Development, the databaseName property is
the fully qualified name of the Java metadata class generated by the IMS Explorer
for Development. The URL must be prefixed with class:// (for example, class://
com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property can be overridden for
an individual connection without affecting the default value specified for the resource adapter.

Chapter 40. Programming with the IMS Universal drivers 579

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci

MetadataURL

The location of the database metadata representing the target IMS database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java metadata class generated by
the IMS Enterprise Suite Explorer for Development. The URL must be prefixed with class://
(for example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

PortNumber

The TCP/IP server port number to be used to communicate with IMS Connect. The port number
is defined using the DRDAPORT parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888. Do not set this property
when using type-2 connectivity.

DatastoreServer

The name or IP address of the data store server (IMS Connect). You can provide either the host
name (for example, dev123.svl.ibm.com) or the IP address (for example, 192.166.0.2). Do not
set this property when using type-2 connectivity.

DriverType

The type of driver connectivity to use. The DriverType value must be "4" for type-4
connectivity or "2" for type-2 connectivity. If the driver is running on WebSphere Application
Server for z/OS, you can also set the DriverType value to "2_CTX" for RRSLocalOption
connectivity.

sslConnection

Optional. Indicates if this connection uses Secure Sockets Layer (SSL) for data encryption. Set
this property to "true" to enable SSL, or to "false" otherwise. Do not set this property when
using type-2 connectivity.

sslKeyStoreType

Optional. Specifies the format of the file that contains cryptographic objects needed to
establish a secure socket connection. The valid values are "JKS" and "PKCS12". This value
is only used when sslConnection is set to "true" and sslKeyStoreType is not specified.
The sslKeyStoreType parameter defaults to "JKS".

sslSecureSocketProtocol

Optional. Specifies the cryptographic communication protocol for the new connection.
Specify a protocol that is supported by the server and provides the highest level of
security. The valid values are "SSL", "SSLv3", "TLSv1.1", and "TLSv1.2". This value is only
used when sslConnection is set to "true". If sslConnection is set to "true" and
sslSecureSocketProtocol is not specified, a default protocol will be determined at
runtime by the JRE and the server.

sslTrustStoreLocation

Optional. Specifies the location of the cryptographic trust store file for the new connection.
This value is only used when sslConnection is set to true.

sslTrustStorePassword

Optional. Specifies the password to access the cryptographic trust store file. This value is
only used when sslConnection is set to true.

sslKeyStoreLocation

Optional. Specifies the location of the cryptographic key store file for the new connection.
This value is only used when sslConnection is set to true.

580 IMS: Application Programming

sslKeyStorePassword

Optional. Specifies the password to access the cryptographic key store file. This value is
only used when sslConnection is set to true.

initStatusGroup

Optional. When a connection is made and the PSB is allocated, this property will indicate that
the driver should automatically issue an INIT STATUS GROUPA or INIT STATUS GROUPB if a
value of 'A' or 'B' is provided. The default will not issue an INIT STATUS GROUP call.

loginTimeout

Optional. Specifies the number of seconds that the driver waits for a response from the
server before timing out a connection initialization or server request. Set this property to a
non-negative integer for the number of seconds. Set this property to 0 for an infinite timeout
length. Do not set this property when using type-2 connectivity.

user

The user name for the connection to IMS Connect provided by your RACF administrator. Do not
set this property when using type-2 connectivity.

password

The password for the connection to IMS Connect provided by your RACF administrator. Do not
set this property when using type-2 connectivity.

signedCompare

Optional. When this property is set to "true", special SSAs are generated to support ranged
queries over signed data types. If the property is set to "false", standard binary comparisons
are performed based on the binary representation of the data type value. Setting the value to
"false" can increase performance but might result in incorrect results. The default value for this
property is "true".

flattenTables

Optional. Indicates whether to produce a flattened view of the database tables. A value of true
exposes the sub-elements of a STRUCT or an ARRAY as additional columns of the table. The
default value is false.

IMS Explorer flattens the copybook structures when you import the copybook. Although the
copybook itself remains unchanged in the IMS catalog, the information about the structure of
each table is altered for that particular connection.

The the flattenTables property allows you to query the fields in complex structures directly. For
more information about support for flattening complex structures, see “Support for flattening
complex structures” on page 566.

Restriction: The flattenTables connection property supports static arrays and structures only.
Dynamic arrays are not altered.

t2OutputBufferSize

Optional. The size of the output buffer in bytes for the results from a SELECT operation for a
type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any value less than 500000 is set, this
property value will be adjusted to 500000. There is no maximum bound. The default value is
1280000.

treatInvalidDecimalAsNull

Optional. Indicates whether to interpret certain Decimal values that appear invalid in Java
applications (such as PACKEDDECIMAL and ZONEDDECIMAL with invalid sign bits) as null.
By default, this property is "false", and a conversion exception is thrown when the Java
applications are processing invalid values.

Chapter 40. Programming with the IMS Universal drivers 581

removeInvalidCaseFields

Optional. If you use SELECT * to access a map case, the JDBC Universal Driver returns the set
of all map case segment fields. When this property is set to true, the results contain only map
case fields that satisfy a WHERE clause with a DEPENDINGON field condition. To learn more,
see “Using the removeInvalidCaseFields property” on page 609.

currentSchema

Optional. Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements.

dbViewLocation

Optional. Specifies the fully qualified path to a databaseView metadata class. You can use this
property to include a metadata class that is not located in your project path.

dpsbOnCommit

Optional. Set this property to true to deallocate the PSB when a commit occurs.

Recommendation: Do not set this property to true except in a managed environment with
integrated connection pooling.

fetchSize

Optional. Gives the client a hint about the number of rows to get from the database when more
rows are needed. The number specified for this property only affects data retrieved with the
current connection. If the value specified is 0, all of the applicable rows are returned.

The default value for this property is 0 for both managed and unmanaged connections.

llField

Optional. The default value for this property is true. You can modify the LL field value to
change the length of a variable length segment instance. Set this property to false to hide the
LL field data from the column list in the result set.

maxRows

Optional. Specifies the maximum number of rows to return in a query result set. The default
value is 0, which returns all of the applicable rows in the result set.

expandArrayResultSet

Optional. This property enables IMS Universal JDBC driver to create an ArrayResultSet
with the array elements as the actual fields in the ResultSet instead of a Struct object
containing those elements as the only entry into that ResultSet. To learn more, see “Using
the expandArrayResultSet property” on page 611.

ssaOptimization

Optional. When set to true, the SSA is optimized to a fully qualified key if subfields of that key
are provided. To learn more, see Optimizing SQL statements to promote partial key subfields in
the WHERE Clause (Application Programming).

traceFile

Optional. Specifies the name of the trace file for the connection.

traceFileAppend

Optional. If the specified trace file exists, setting this property to true specifies that the trace
data for the new connection must be appended to the existing trace file instead of overwriting
it.

This property is ignored if no value is specified for traceFile.

582 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty

traceDirectory

Optional. Specifies the file system directory where the trace file is located. By default, this path
is the directory where the application is executed.

This property is ignored if no value is specified for traceFile.

traceLevel

Optional. Specifies which traces are enabled for the connection. The valid values for this
property are defined in the Java API documentation for the IMSDataSource class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.

Trace level traceLevel package value traceLevel
constant field in
IMSDataSource

traceLevel
demical value

All com.ibm.ims.db.opendb.* TRACE_ALL -1

DL/I com.ibm.ims.db.opendb.dli.* TRACE_DLI 28

DRDA com.ibm.ims.db.opendb.drda.* TRACE_DRDA 1

JDBC com.ibm.ims.db.opendb.jdbc.* TRACE_JDBC 32

Java EE com.ibm.ims.opendb.spi.*
com.ibm.ims.db.opendb.cci.*

TRACE_JEE 192

3. In the deployment descriptor for your Java EE application, add a resource reference for the connection
factory that was created in the previous step.
Set the name of the resource reference to the JNDI name of the connection factory and set the type to
javax.resource.cci.ConnectionFactory.

4. In your Java EE application, create an initial JNDI naming context and get a javax.sql.DataSource
instance for the IMS Universal JCA/JDBC hybrid driver using JNDI lookup.
The following code sample shows how to perform the JNDI lookup to obtain a DataSource instance,
where the connection factory has the JNDI name "imsdblocal":

InitialContext ic = new InitialContext();
javax.sql.DataSource ds =
 (DataSource)ic.lookup("java:comp/env/imsdblocal");

5. Use the getConnection method on the DataSource instance to obtain a java.sql.Connection
instance, as shown by the following code sample:

Connection con = ds.getConnection();

6. After your Java EE application has finished with the connection, close the connection using the close
method on the Connection interface.

Example code for connecting to an IMS database using the IMS Universal JCA/JDBC driver
The following code sample shows the flow for connecting to an IMS database using the IMS Universal
JCA/JDBC driver from an Java EE application:

//obtain the initial JNDI Naming context
InitialContext ic = new InitialContext();

//perform JNDI lookup to obtain the data source
javax.sql.DataSource ds =
 (DataSource)ic.lookup("java:comp/env/imsdblocal");

//specify connection properties
ds.setUser("myUserID");
ds.setPassword("myPassword");
props.put("sslConnection", "true");

Chapter 40. Programming with the IMS Universal drivers 583

props.put("loginTimeout", "10");

//create JDBC connection
java.sql.Connection con = ds.getConnection();

Related tasks
“Configuring the IMS Universal drivers for SSL support” on page 668
With type-4 connectivity, the IMS Universal drivers provide support for the Secure Sockets Layer (SSL)
through the Java Secure Socket Extension (JSSE).
Related reference
javax.sql.DataSource methods supported (Application Programming APIs)

Sample EJB application using the IMS Universal Database resource adapter
CCI programming interface

The following sample EJB bean demonstrates the basic programming flow for a JCA application using the
IMS Universal Database resource adapter in a managed environment.

package client;

import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;
import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
 * Bean implementation class for Enterprise Bean: StatefulBeanManaged
 */
public class BeanManagedSampleBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 public void execute() throws Exception {
 InitialContext ic = new InitialContext();
 ConnectionFactory cf =
 (ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
 Connection conn = null;
 UserTransaction ut = null;

 try {
 ut = this.mySessionCtx.getUserTransaction();
 ut.begin();

 conn = cf.getConnection();
 Interaction ix = conn.createInteraction();
 SQLInteractionSpec iSpec = new SQLInteractionSpec();

 // This query will return information for each person
 // in the phonebook with the last name WATSON
 iSpec.setSQL("SELECT * FROM " +
 "PCB01.PHONEBOOK WHERE LASTNAME='WATSON'");

 ResultSet rs = (ResultSet) ix.execute(iSpec, null);

 // Print out the first name of every person in the
 // phonebook with the last name WATSON
 while (rs.next()) {
 System.out.println(rs.getString("FIRSTNAME"));
 }

 rs.close();
 ix.close();
 ut.commit();
 conn.close();
 } catch (ResourceException e) {
 ut.rollback();
 conn.close();
 } catch (SQLException e) {
 ut.rollback();

584 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_odbjdbcdatasourcemethodssupported.htm#ims_odbjdbcdatasourcemethodssupported

 conn.close();
 }
 }

 /**
 * getSessionContext
 */
 public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
 }

 /**
 * setSessionContext
 */
 public void setSessionContext(javax.ejb.SessionContext ctx) {
 mySessionCtx = ctx;
 }

 /**
 * ejbCreate
 */
 public void ejbCreate() throws javax.ejb.CreateException {
 }

 /**
 * ejbActivate
 */
 public void ejbActivate() {
 }

 /**
 * ejbPassivate
 */
 public void ejbPassivate() {
 }

 /**
 * ejbRemove
 */
 public void ejbRemove() {
 }
}

Accessing IMS data with the DLIInteractionSpec class
Use the DLIInteractionSpec class to retrieve, insert, update, and delete data from an IMS database
using DL/I-like programming semantics with the IMS Universal Database resource adapter.

Before your application component can retrieve, insert, update, or delete data from an IMS database,
you need to obtain a javax.resource.cci.Connection instance for the physical connection to the
database.

To retrieve, insert, update, or delete data using the DLIInteractionSpec class:

1. In your application component, create a new javax.resource.cci.Interaction instance using
the Connection.createInteraction method.
For example, in the following code sample, con is a javax.resource.cci.Connection instance for
an IMS database:

Interaction ix = con.createInteraction();

2. Create a new com.ibm.ims.db.cci.DLIInteractionSpec instance.

DLIInteractionSpec iSpec = new DLIInteractionSpec();

3. Set the function to perform using the DLIInteractionSpec.setFunctionName method, and
specifying the function constant value listed in the table below as the input parameter.
Data operation to perform setFunctionName value

Data retrieval DLIInteractionSpec.RETRIEVE

Data insertion DLIInteractionSpec.CREATE

Chapter 40. Programming with the IMS Universal drivers 585

Data operation to perform setFunctionName value

Data update DLIInteractionSpec.UPDATE

Data deletion DLIInteractionSpec.DELETE

For example, the following code sample specifies a data retrieval operation:

iSpec.setFunctionName(DLIInteractionSpec.RETRIEVE);

4. Set the PCB name using the DLIInteractionSpec.setPCBName method.
For example, the following code sample specifies the PCB to be used for this interaction as "PCB01":

iSpec.setPCBName("PCB01");

5. Set the segment search argument (SSA) list using the DLIInteractionSpec.setSSAList method.
The setSSAList method allows you to specify an SSA in a syntax similar to traditional DL/I.

• You can manually provide the SSA qualification statement as a string in the argument. The syntax is
as follows:
Syntax for segment search argument qualification statement in the setSSAList method

segName

* cmdCode (fldName relOp value

boolOp fldName relOp value

)

segName
The name of the segment as defined in the Java metadata class generated by the IMS
Enterprise Suite Explorer for Development.

cmdCode (optional)
All DL/I command codes except Q and C are supported.

fldName
The name of the field.

relOp
The SSA qualification statement's relational operator. Supported values are:
=

Equals
!=

Not equal
>

Greater than
>=

Greater than or equals
<

Less than
<=

Less than or equals
value

A string representation of the field value. If the value is character-based, the string has to
be enclosed in quotation marks. If the value is numeric, it does not need to be enclosed in
quotation marks. If the character-based value has quotation marks, use a single quote as an
escape for the quote in the value. For example, if the value is "O'brian", you would enter it as
"O''brian".

boolOp
Boolean operators for adding additional field-level qualifications. The supported Boolean
operators are:

586 IMS: Application Programming

– logical AND (specified * or &)
– logical OR (specified + or |)
– independent AND (specified #)

The following code example shows how to set the segment search argument list to return the last
patient admitted to all wards with more than five doctors and less than three nurses in hospital
"ALEXANDRIA". The *L command means "last occurrence".

String ssaList =
"Hospital(HospName='ALEXANDRIA') Ward(Doccount>5 | Nurcount<3) Patient *L";
iSpec.setSSAList(ssaList);

• Instead of providing the string manually, you can use the
com.ibm.ims.db.cci.SSAListHelper class to generate the string.

The following code example shows how to set the SSA qualification statement string using the
SSAListHelper:

SSAListHelper sh = new SSAListHelper();
sh.addInitialQualification
 ("Hospital","HospName",SSAListHelper.EQUALS, "ALEXANDRIA");
sh.addInitialQualification("Ward","Doccount",
 SSAListHelper.GREATER_THAN, 5);
sh.appendQualification("Ward",SSAListHelper.OR, "Nurcount",
 SSAListHelper.LESS_THAN, 3);
sh.addCommandCode("Patient",SSAListHelper.CC_L);
iSpec.setSSA(sh.toString());

6. Create a javax.resource.cci.RecordFactory instance using the
ConnectionFactory.getRecordFactory method.
For example, the following code sample creates a ConnectionFactory instance rf:

RecordFactory rf = cf.getRecordFactory();

This step is not needed for a DELETE operation.
7. Create a javax.resource.cci.MappedRecord instance using the
RecordFactory.getMappedRecord method. For a RETRIEVE operation, pass the name of the
record you want to create as an argument to this method. For a CREATE or UPDATE operation, the
argument is the name of the segment to insert or update.
For example, in the following code sample for a RETRIEVE operation, rf is a
javax.resource.cci.RecordFactory instance:

MappedRecord input = rf.createMappedRecord("myHospitalRecord");

This step is not needed for a DELETE operation because the MappedRecord is not used.
8. Specify the field to target for the data operation using the MappedRecord.put method. Pass the

name of the field as the first argument to this method. For a CREATE or UPDATE operation, the
MappedRecord is used to specify the field to insert or update as well as its values. Pass in the
value of the field as the second argument. For a RETRIEVE operation, the MappedRecord is used
to specify the field that the application is interested in retrieving as a result of the call, and the
second argument in the put method call is ignored (you can pass in a null). If you do not specify
any fields, the RETRIEVE operation will return all the fields of the leaf segment for that record, along
with all the fields in segments which have SSAs specified with a *D command. For CREATE, UPDATE,
and RETRIEVE operations, you can specify multiple fields by making multiple MappedRecord.put
method calls.
For example, in the following code sample, input is a javax.resource.cci.MappedRecord
instance and "HospCode" is the name of the field we want to retrieve:

input.put("HospCode", null);

This step is not needed for a DELETE operation as the MappedRecord is not used.

Chapter 40. Programming with the IMS Universal drivers 587

9. Execute the query by calling the Interaction.execute method. Pass the DLIInteractionSpec object
and the MappedRecord object as arguments.
If the query is successful, the method returns a Record object with the query results. You
can cast the Record instance to javax.resource.cci.ResultSet and process the results as
tabular data in your application component. For example, in the following code sample, results
is a javax.resource.cci.ResultSet instance, ix is a javax.resource.cci.Interaction
instance, iSpec is a com.ibm.ims.db.cci.DLIInteractionSpec instance, and input is a
javax.resource.cci.MappedRecord instance:

results = (ResultSet)ix.execute(iSpec, input);

Example code for IMS data operations using the DLIInteraction interface

The following complete code example shows how to use the DLIInteraction interface to retrieve fields
from a WARD segment.

package client;

import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;
import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
 * Bean implementation class for Enterprise Bean: StatefulBeanManaged
 */
public class BeanManagedSampleDLIBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 public void execute() throws Exception {
 InitialContext ic = new InitialContext();
 ConnectionFactory cf =
 (ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
 Connection conn = null;
 UserTransaction ut = null;

 try {
 ut = this.mySessionCtx.getUserTransaction();
 ut.begin();

 conn = cf.getConnection();
 Interaction ix = conn.createInteraction();

 DLIInteractionSpec iSpec = new DLIInteractionSpec();
 iSpec.setFunctionName("RETRIEVE");
 iSpec.setPCBName("PCB09");

 // This query will return the WARDNAME, PATCOUNT, DOCCOUNT,
 // and NURCOUNT fields for all WARDs with WARNNO = 51
 iSpec.setSSAList("WARD (WARDNO = '51')");

 // Create RecordFactory
 RecordFactory rf = cf.getRecordFactory();

 // Create Record
 MappedRecord input = rf.createMappedRecord("WARD");
 // Specify the fields to retrieve
 input.put("WARDNAME", null);
 input.put("PATCOUNT", null);
 input.put("DOCCOUNT", null);
 input.put("NURCOUNT", null);

 ResultSet results = (ResultSet) ix.execute(iSpec, input);
 while (results.next()) {
 System.out.println(results.getString("WARDNAME"));
 System.out.println(results.getString("PATCOUNT"));
 System.out.println(results.getString("DOCCOUNT"));
 System.out.println(results.getString("NURCOUNT"));

588 IMS: Application Programming

 }

 rs.close();
 ix.close();
 ut.commit();
 conn.close();
 } catch (ResourceException e) {
 ut.rollback();
 conn.close();
 } catch (SQLException e) {
 ut.rollback();
 conn.close();
 }
 }

 /**
 * getSessionContext
 */
 public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
 }

 /**
 * setSessionContext
 */
 public void setSessionContext(javax.ejb.SessionContext ctx) {
 mySessionCtx = ctx;
 }

 /**
 * ejbCreate
 */
 public void ejbCreate() throws javax.ejb.CreateException {
 }

 /**
 * ejbActivate
 */
 public void ejbActivate() {
 }

 /**
 * ejbPassivate
 */
 public void ejbPassivate() {
 }

 /**
 * ejbRemove
 */
 public void ejbRemove() {
 }
}

Related concepts
“Connecting to IMS with the IMS Universal Database resource adapter” on page 573
The IMS Universal Database resource adapter provides connectivity to IMS databases from a Java EE-
managed environment.
Related reference
IMS Universal drivers support for the Common Client Interface (Application Programming APIs)

Accessing IMS data with the SQLInteractionSpec class
Use the SQLInteractionSpec class to retrieve, insert, update, and delete data from an IMS database
using SQL queries with the IMS Universal Database resource adapter. The IMS Universal Database
resource adapter supports the same SQL statement syntax and usage as the IMS Universal JDBC driver
and has the same restrictions.

Before your application component can retrieve, insert, update, or delete data from an IMS database,
you need to obtain a javax.resource.cci.Connection instance for the physical connection to the
database.

To retrieve, insert, update, or delete data using the SQLInteractionSpec class:

Chapter 40. Programming with the IMS Universal drivers 589

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci

1. In your application component, create a new javax.resource.cci.Interaction instance using
the Connection.createInteraction method.
For example, in the following code sample, con is a javax.resource.cci.Connection instance for
an IMS database:

Interaction ix = con.createInteraction();

2. Create a new com.ibm.ims.db.cci.SQLInteractionSpec instance.

SQLInteractionSpec iSpec = new SQLInteractionSpec();

3. Set the SQL query string using the SQLInteractionSpec.setSQL method.
In the query, you can specify the qualification column values in the WHERE clause with a ? parameter
marker, meaning that the values will provided later (similar to a PreparedStatement in JDBC).

• The following example shows how to specify the SELECT statement without using parameter
markers, where iSpec is an instance of SQLInteractionSpec:

iSpec.setQuery("SELECT PATIENT.PATNAME, ILLNESS.ILLNAME "+
 "FROM pcb01.HOSPITAL, pcb01.PATIENT, pcb01.ILLNESS " +
 "WHERE HOSPITAL.HOSPNAME='SANTA TERESA'");

• The following example shows how to perform the SELECT statement with parameter markers,
where iSpec is an instance of SQLInteractionSpec:

iSpec.setQuery("SELECT PATIENT.PatName, WARD.WardName "+
 "FROM pcb01.HOSPITAL, pcb01.PATIENT, pcb01.WARD " +
 "WHERE HOSPITAL.HospName=? AND WARD.DocCount>?");

4. Create a javax.resource.cci.RecordFactory instance using the
ConnectionFactory.getRecordFactory method.
Creating a RecordFactory is not needed for SQL queries without parameter markers.

5. Create a javax.resource.cci.IndexedRecord instance using the
RecordFactory.getIndexedRecord method. Pass the name of the record you want to create as an
argument to this method.
For example, in the following code sample, rf is a javax.resource.cci.RecordFactory instance:

IndexedRecord input = rf.createIndexedRecord("myPatientRecord");

Creating a IndexedRecord is not needed for SQL queries without parameter markers.
6. If your query string uses parameter markers, use the IndexedRecord.add method to qualify the

WHERE clause.
For example, using the same query string with parameter markers as in step 5, where input is an
instance of IndexedRecord:

input.add(1, "Santa Teresa"); //HospName value is "Santa Teresa"
input.add(2, 5); //DocCount value is greater than 5

7. Execute the query by calling the Interaction.execute method. Pass the SQLInteractionSpec
object and the IndexedRecord object as arguments.
If your SQL query does not use parameter markers, the second argument in the
execute method call is ignored (you can pass in a null). If the query is successful,
the method returns a Record object with the query results. You can cast the Record
instance to javax.resource.cci.ResultSet and process the results as tabular data
in your application component. For example, in the following code sample, results is
a javax.resource.cci.ResultSet instance, ix is a javax.resource.cci.Interaction
instance, iSpec is a com.ibm.ims.db.cci.SQLInteractionSpec instance, and input is a
javax.resource.cci.IndexedRecord instance:

results = (ResultSet)ix.execute(iSpec, input);

590 IMS: Application Programming

Example code for IMS data operations using the SQLInteractionSpec class

The following code example shows how to use the SQLInteractionSpec class to retrieve patient
names from PATIENT records.

package client;

import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;
import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
 * Bean implementation class for Enterprise Bean: StatefulBeanManaged
 */
public class BeanManagedSampleSQLBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 public void execute() throws Exception {
 InitialContext ic = new InitialContext();
 ConnectionFactory cf =
 (ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
 Connection conn = null;
 UserTransaction ut = null;

 try {
 ut = this.mySessionCtx.getUserTransaction();
 ut.begin();

 conn = cf.getConnection();
 Interaction ix = conn.createInteraction();
 SQLInteractionSpec iSpec = new SQLInteractionSpec();

 // This query will return the WARDNAME, PATCOUNT, DOCCOUNT,
 // and NURCOUNT fields for the WARD with WARDNO = 51
 iSpec.setSQL("SELECT WARDNAME, PATCOUNT, DOCCOUNT, " +
 "NURCOUNT FROM PCB09.WARD WHERE WARDNO='51'");

 ResultSet rs = (ResultSet) ix.execute(iSpec, null);

 while (rs.next()) {
 System.out.println(rs.getString("WARDNAME"));
 System.out.println(rs.getString("PATCOUNT"));
 System.out.println(rs.getString("DOCCOUNT"));
 System.out.println(rs.getString("NURCOUNT"));
 }

 rs.close();
 ix.close();
 ut.commit();
 conn.close();
 } catch (ResourceException e) {
 ut.rollback();
 conn.close();
 } catch (SQLException e) {
 ut.rollback();
 conn.close();
 }
 }

 /**
 * getSessionContext
 */
 public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
 }

 /**
 * setSessionContext
 */
 public void setSessionContext(javax.ejb.SessionContext ctx) {
 mySessionCtx = ctx;
 }

Chapter 40. Programming with the IMS Universal drivers 591

 /**
 * ejbCreate
 */
 public void ejbCreate() throws javax.ejb.CreateException {
 }

 /**
 * ejbActivate
 */
 public void ejbActivate() {
 }

 /**
 * ejbPassivate
 */
 public void ejbPassivate() {
 }

 /**
 * ejbRemove
 */
 public void ejbRemove() {
 }
}

Related concepts
“Connecting to IMS with the IMS Universal Database resource adapter” on page 573
The IMS Universal Database resource adapter provides connectivity to IMS databases from a Java EE-
managed environment.
Related reference
IMS Universal drivers support for the Common Client Interface (Application Programming APIs)
“SQL statement usage with the IMS Universal JDBC driver” on page 619
The following usage rules apply to SQL statements passed to IMS with the IMS Universal JDBC driver.

Accessing IMS data with the IMS Universal JCA/JDBC driver
Use the IMS Universal JCA/JDBC driver if you require full use of the IMS Universal JDBC driver within a
Java EE runtime environment.

Before your Java EE application component can retrieve, insert, update, or delete data from an IMS
database, you need to obtain a java.sql.Connection instance for the physical connection to the
database.

In your Java EE application component, code the application logic for the data operations you want to
perform in the same way as for a JDBC application. The IMS Universal JCA/JDBC driver has the same SQL
statement syntax support and usage restrictions as the IMS Universal JDBC driver.

Example EJB application using the IMS Universal JCA/JDBC driver

The following code sample shows a bean-managed EJB application that connects to an IMS database,
retrieves a list of patient names using a SQL SELECT query, and modifies the patient information using a
SQL UPDATE query.

package client;
import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;

import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
 * Bean implementation class for Enterprise Bean: StatefulBeanManaged
 */
public class JDBCBeanManagedSampleSQLBean {

 private javax.ejb.SessionContext mySessionCtx;

592 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci

 public void execute() throws Exception {
 InitialContext ic = new InitialContext();
 DataSource ds =
 (DataSource) ic.lookup("java:comp/env/MyMCF");
 Connection conn = null;
 UserTransaction ut = null;

 try {
 ut = this.mySessionCtx.getUserTransaction();
 ut.begin();

 conn = ds.getConnection();

 Statement st = conn.createStatement();

 // List all of the patient names in the
 // SURG ward in the ALEXANDRIA hospital
 ResultSet rs = st.executeQuery("SELECT patname from " +
 "pcb01.hospital, ward, patient " +
 "where hospital.hospname = 'ALEXANDRIA' " +
 "and ward.wardname = 'SURG'");
 while (rs.next()) {
 System.out.println(rs.getString("patname"));
 }

 // Update the name of the patient with patient
 // number 0222 in ward 04 in the hospital
 // with code R1210010000A
 int updatedRecords = st.executeUpdate("UPDATE PCB01.PATIENT " +
 "SET PATNAME='UPDATED NAME' WHERE PATNUM='0222' " +
 "AND HOSPITAL_HOSPCODE='R121001000A' AND WARD_WARDNO='04'");
 System.out.println("Updated " + updatedRecords + " Record(s)");

 rs.close();
 ut.commit();
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 ut.rollback();
 conn.close();
 }
 }

 /**
 * getSessionContext
 */
 public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
 }

 /**
 * setSessionContext
 */
 public void setSessionContext(javax.ejb.SessionContext ctx) {
 mySessionCtx = ctx;
 }

 /**
 * ejbCreate
 */
 public void ejbCreate() throws javax.ejb.CreateException {
 }

 /**
 * ejbActivate
 */
 public void ejbActivate() {
 }

 /**
 * ejbPassivate
 */
 public void ejbPassivate() {
 }

 /**
 * ejbRemove
 */
 public void ejbRemove() {

Chapter 40. Programming with the IMS Universal drivers 593

 }
}

Related reference
“SQL statement usage with the IMS Universal JDBC driver” on page 619
The following usage rules apply to SQL statements passed to IMS with the IMS Universal JDBC driver.

Programming with the IMS Universal JDBC driver
IMS provides a Java Database Connectivity (JDBC) driver for SQL-based database connectivity to access
IMS databases over TCP/IP with the IMS Universal JDBC driver that is included in the IMS Universal
drivers. The IMS Universal JDBC driver is based on the JDBC 4.0 standard.

JDBC is an application programming interface (API) that Java applications use to access relational
databases or tabular data sources. The JDBC API is the industry standard for database-independent
connectivity between the Java programming language and any database that has implemented the JDBC
interface. The client uses the interface to query and update data in a database. It is the responsibility
of the JDBC driver itself to implement the underlying (specific) access protocol for the specific database
the driver is implemented for. Drivers are client-side adapters (they are installed in the client machine,
not in the server) that convert requests from Java programs to a protocol that the database management
system (DBMS) can understand.

IMS support for JDBC lets you write Java applications that can issue dynamic SQL calls to access IMS
data and process the result set that is returned in tabular format. The IMS Universal JDBC driver is
designed to support a subset of the SQL syntax with functionality that is limited to what the IMS database
management system can process natively. Its DBMS-centric design allows the IMS Universal JDBC driver
to fully leverage the high performance capabilities of IMS. The IMS Universal JDBC driver also provides
aggregate function support, and ORDER BY and GROUP BY support.

Preparing to write a Java application with the IMS Universal drivers
Java application programs that use the IMS Universal drivers require the Java Development Kit (JDK)
7.0. Java programs that run in JMP and JBP regions require JDK 7.0 or later. Java application programs
that use the IMS Universal drivers must have access to database metadata in order to interact with
IMS databases. This metadata can either be accessed directly in the IMS catalog database or it can be
generated as a Java metadata class with the IMS Enterprise Suite Explorer for Development.

Related reference
IBM Java development kits on the developerWorks website

Supported drivers for JDBC
The IMS Universal JDBC driver supports the type-2 and type-4 JDBC architectures.

The table below lists the IMS support available for the four types of JDBC driver architectures:

Table 100. JDBC driver architectures supported by IMS

JDBC driver architecture Description IMS support

Type-1 Drivers that implement the JDBC
API as a mapping to another
data access API, such as Open
Database Connectivity (ODBC).
Drivers of this type are generally
dependent on a native library,
which limits their portability.

IMS does not support a type-1
driver.

594 IMS: Application Programming

http://www.ibm.com/developerworks/java/jdk/index.html

Table 100. JDBC driver architectures supported by IMS (continued)

JDBC driver architecture Description IMS support

Type-2 Drivers that are written partly in
the Java programming language
and partly in native code. The
drivers use a native client library
specific to the data source to
which they connect. Because of
the native code, their portability
is limited. Java programs with
type 2 JDBC connectivity can
run on the same z/OS system or
zSeries logical partition (LPAR) as
the target IMS subsystem.

Use the IMS Universal JDBC
driver with type-2 connectivity
to access IMS from WebSphere
Application Server for z/OS, IMS
Java Dependent Regions (JDRs),
and CICS.

Type-3 Drivers that use a pure Java
client and communicate with
a server using a database-
independent protocol. The server
then communicates the client's
requests to the data source.

IMS does not support a type-3
driver.

Type-4 Drivers that are pure Java and
implement the network protocol
for a specific data source. The
client connects directly to the
data source.

Use the IMS Universal JDBC
driver with type-4 connectivity to
access the IMS subsystem via a
TCP/IP network connection.

Connecting to IMS using the IMS Universal JDBC driver
You must first establish a connection to an IMS database before you can start sending queries and
receiving results in your JDBC program.

Connecting to an IMS database using the JDBC DataSource interface
Using the DataSource interface is the preferred way to connect to IMS from your IMS Universal JDBC
driver application.

Use the following procedure to create and use a DataSource interface in your IMS Universal JDBC driver
application.

1. Create an instance of the com.ibm.ims.jdbc.IMSDataSource class.

This class is the IMS Universal JDBC driver implementation of the DataSource interface.
2. Set the following connection properties of the DataSource instance.

DatastoreName

The name of the IMS data store to access.

When using type-4 connectivity, the DatastoreName property must match either the name of the
data store defined to ODBM or be blank. The data store name is defined in the ODBM CSLDCxxx
PROCLIB member using either the DATASTORE(NAME=name) or DATASTORE(NAME=name,
ALIAS(NAME=aliasname)) parameter. If an alias is specified, you must specify the aliasname as
the value of the datastoreName property. If the DatastoreName value is left blank (or not
supplied), IMS Connect connects to any available instance of ODBM as it is assumed that data
sharing is enabled between all datastores defined to ODBM.

When using type-2 connectivity, set the DatastoreName property to the IMS subsystem alias.
This is not required to be set for the Java Dependent Region run time.

Chapter 40. Programming with the IMS Universal drivers 595

DatabaseName

The location of the database metadata representing the target IMS database.

The DatabaseName property can be specified in one of two ways, depending on whether the
metadata is stored in the IMS catalog or as a static metadata class generated by the IMS
Enterprise Suite Explorer for Development.

If your IMS system uses the IMS catalog, the DatabaseName property is the name of the PSB that
your application uses to access the target IMS database.

If you are using the IMS Explorer for Development, the databaseName property is the fully
qualified name of the Java metadata class generated by the IMS Explorer for Development. The
URL must be prefixed with class:// (for example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java metadata class generated by
the IMS Enterprise Suite Explorer for Development. The URL must be prefixed with class:// (for
example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

PortNumber

The TCP/IP server port number to be used to communicate with IMS Connect. The port number
is defined using the DRDAPORT parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888. Do not set this property when
using type-2 connectivity.

DatastoreServer

The name or IP address of the data store server (IMS Connect). You can provide either the host
name (for example, dev123.svl.ibm.com) or the IP address (for example, 192.166.0.2). Do not set
this property when using type-2 connectivity.

DriverType

The type of driver connectivity to use (value must be IMSDataSource.DRIVER_TYPE_4 for
type-4 connectivity or IMSDataSource.DRIVER_TYPE_2 for type-2 connectivity).

user

The user name for the connection to IMS Connect provided by your RACF administrator. Do not set
this property when using type-2 connectivity.

password

The password for the connection to IMS Connect provided by your RACF administrator. Do not set
this property when using type-2 connectivity.

allMetadata

Optional. When this property is set to true, the DatabaseMetadata interface returns information
for all resources in the IMS catalog. When the property is set to false, the DatabaseMetadata
interface returns information for the allocated PSB. The default value for this property is false.

initStatusGroup
Optional. When a connection is made and the PSB is allocated, this property will indicate that the
driver should automatically issue an INIT STATUS GROUPA or INIT STATUS GROUPB if a value
of 'A' or 'B' is provided. The default will not issue an INIT STATUS GROUP call.

596 IMS: Application Programming

sslConnection

Optional. Indicates if this connection uses Secure Sockets Layer (SSL) for data encryption. Set
this property to "true" to enable SSL, or to "false" otherwise. Do not set this property when using
type-2 connectivity.

sslKeyStoreType

Optional. Specifies the format of the file that contains cryptographic objects needed to
establish a secure socket connection. The valid values are "JKS" and "PKCS12". This value
is only used when sslConnection is set to "true" and sslKeyStoreType is not specified.
The sslKeyStoreType parameter defaults to "JKS".

sslSecureSocketProtocol

Optional. Specifies the cryptographic communication protocol for the new connection.
Specify a protocol that is supported by the server and provides the highest level of
security. The valid values are "SSL", "SSLv3", "TLSv1.1", and "TLSv1.2". This value is only
used when sslConnection is set to "true". If sslConnection is set to "true" and
sslSecureSocketProtocol is not specified, a default protocol will be determined at
runtime by the JRE and the server.

sslTrustStoreLocation

Optional. Specifies the location of the cryptographic trust store file for the new connection.
This value is only used when sslConnection is set to true.

sslTrustStorePassword

Optional. Specifies the password to access the cryptographic trust store file. This value is only
used when sslConnection is set to true.

sslKeyStoreLocation

Optional. Specifies the location of the cryptographic key store file for the new connection. This
value is only used when sslConnection is set to true.

sslKeyStorePassword

Optional. Specifies the password to access the cryptographic key store file. This value is only
used when sslConnection is set to true.

loginTimeout

Optional. Specifies the number of seconds that the driver waits for a response from the server
before timing out a connection initialization or server request. Set this property to a non-negative
integer for the number of seconds. Set this property to 0 for an infinite timeout length. Do not set
this property when using type-2 connectivity.

signedCompare

Optional. When this property is set to "true", special SSAs are generated to support ranged queries
over signed data types. If the property is set to "false", standard binary comparisons are performed
based on the binary representation of the data type value. Setting the value to "false" can increase
performance but might result in incorrect results. The default value for this property is "true".

flattenTables

Optional. Indicates whether to produce a flattened view of the database tables. A value of true
exposes the sub-elements of a STRUCT or an ARRAY as additional columns of the table. The
default value is false.

IMS Explorer flattens the copybook structures when you import the copybook. Although the
copybook itself remains unchanged in the IMS catalog, the information about the structure of
each table is altered for that particular connection.

Chapter 40. Programming with the IMS Universal drivers 597

The the flattenTables property allows you to query the fields in complex structures directly. For
more information about support for flattening complex structures, see “Support for flattening
complex structures” on page 566.

Restriction: The flattenTables connection property supports static arrays and structures only.
Dynamic arrays are not altered.

t2OutputBufferSize

Optional. The size of the output buffer in bytes for the results from a SELECT operation for a type-2
connection.

The minimum value for t2OutputBufferSize is 500000. If any value less than 500000 is set, this
property value will be adjusted to 500000. There is no maximum bound. The default value is
1280000.

treatInvalidDecimalAsNull

Optional. Indicates whether to interpret certain Decimal values that appear invalid in Java
applications (such as PACKEDDECIMAL and ZONEDDECIMAL with invalid sign bits) as null. By
default, this property is "false", and a conversion exception is thrown when the Java applications
are processing invalid values.

removeInvalidCaseFields

Optional. If you use SELECT * to access a map case, the JDBC Universal Driver returns the set of all
map case segment fields. When this property is set to true, the results contain only map case fields
that satisfy a WHERE clause with a DEPENDINGON field condition. To learn more, see “Using the
removeInvalidCaseFields property” on page 609.

3. Optional: Set additional connection properties with the setProperties method of the
IMSDataSource object.
currentSchema

Optional. Specifies the default schema name that is used to qualify unqualified database objects in
dynamically prepared SQL statements.

dbViewLocation

Optional. Specifies the fully qualified path to a databaseView metadata class. You can use this
property to include a metadata class that is not located in your project path.

dpsbOnCommit

Optional. Set this property to true to deallocate the PSB when a commit occurs.

Recommendation: Do not set this property to true except in a managed environment with
integrated connection pooling.

fetchSize

Optional. Gives the client a hint about the number of rows to get from the database when more
rows are needed. The number specified for this property only affects data retrieved with the
current connection. If the value specified is 0, all of the applicable rows are returned.

The default value for this property is 0 for both managed and unmanaged connections.

llField

Optional. The default value for this property is true. You can modify the LL field value to change
the length of a variable length segment instance. Set this property to false to hide the LL field
data from the column list in the result set.

maxRows

Optional. Specifies the maximum number of rows to return in a query result set. The default value
is 0, which returns all of the applicable rows in the result set.

598 IMS: Application Programming

expandArrayResultSet

Optional. This property enables IMS Universal JDBC driver to create an ArrayResultSet
with the array elements as the actual fields in the ResultSet instead of a Struct object
containing those elements as the only entry into that ResultSet. To learn more, see “Using the
expandArrayResultSet property” on page 611.

ssaOptimization

Optional. When set to true, the SSA is optimized to a fully qualified key if subfields of that key are
provided. To learn more, see Optimizing SQL statements to promote partial key subfields in the
WHERE Clause (Application Programming).

traceFile

Optional. Specifies the name of the trace file for the connection.

traceFileAppend

Optional. If the specified trace file exists, setting this property to true specifies that the trace data
for the new connection must be appended to the existing trace file instead of overwriting it.

This property is ignored if no value is specified for traceFile.

traceDirectory

Optional. Specifies the file system directory where the trace file is located. By default, this path is
the directory where the application is executed.

This property is ignored if no value is specified for traceFile.

traceLevel

Optional. Specifies which traces are enabled for the connection. The valid values for this property
are defined in the Java API documentation for the IMSDataSource class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.

Trace level traceLevel package value traceLevel
constant field in
IMSDataSource

traceLevel
demical value

All com.ibm.ims.db.opendb.* TRACE_ALL -1

DL/I com.ibm.ims.db.opendb.dli.* TRACE_DLI 28

DRDA com.ibm.ims.db.opendb.drda.* TRACE_DRDA 1

JDBC com.ibm.ims.db.opendb.jdbc.* TRACE_JDBC 32

Java EE com.ibm.ims.opendb.spi.*
com.ibm.ims.db.opendb.cci.*

TRACE_JEE 192

4. Establish a connection to the data source by calling the getConnection method on the DataSource
object.

5. After your application has finished with the connection, close the connection using the close method
on the Connection interface.

The following code example shows how to create a type-4 connection to an IMS database from your IMS
Universal JDBC driver application using the DataSource interface:

import java.sql.*;
import javax.sql.*;
import com.ibm.ims.jdbc.*;

Connection conn = null;

// Create an instance of DataSource

Chapter 40. Programming with the IMS Universal drivers 599

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty

IMSDataSource ds = new com.ibm.ims.jdbc.IMSDataSource();

// Set the URL of the fully qualified name of the Java metadata class
ds.setDatabaseName("class://BMP255.BMP255DatabaseView");

// Set the data store name
ds.setDatastoreName("IMS1");

// Set the data store server
ds.setDatastoreServer("ecdev47.svl.ibm.com");

// Set the port number
ds.setPortNumber(5555);

// Set the JDBC connectivity driver typ
ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);

// Enable SSL for connection
ds.setSSLConnection("true");

// Set timeout for connection
ds.setLoginTimeout("10");

// Set user ID for connection
ds.setUser("myUserID");

// Set password for connection
ds.setPassword("myPassword");

// Create JDBC connection
conn = ds.getConnection();

Alternatively, you can set all of the connection properties as key value pairs in a Properties object and
then set them simultaneously with the IMSDataSource.setProperties method:

Properties props = new Properties();
props.put("user", "myUserID");
props.put("password", "MyPassword");

IMSDataSource ds = new com.ibm.ims.jdbc.IMSDataSource();
ds.setProperties(props);

The typical usage of a DataSource object is for your system administrator to create and manage it
separately. The program that creates and manages a DataSource object also uses the Java Naming and
Directory Interface (JNDI) to assign a logical name to the DataSource object. The JDBC application that
uses the DataSource object can then refer to the object by its logical name, and does not need any
information about the underlying data source. In addition, your system administrator can modify the data
source attributes, and you do not need to change your application program.

Recommendation: For maximum portability, use only the DataSource interface to obtain connections.

To obtain a connection using a DataSource object, given that the system administrator has already
created the object and assigned a logical name to it:

1. From your system administrator, obtain the logical name of the data source to which you need to
connect.

2. Create a Context object to use in the next step. The Context interface is part of the Java Naming and
Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is associated with the logical
data source name.

4. Use the getConnection method on the DataSource instance to obtain the connection.

The following code shows an example of the code that you need in your application program to obtain
a connection using a DataSource object. In this example, the logical name of the data source that you
need to connect to is "jdbc/sampledb".

import java.sql.*;
import javax.naming.*;
import javax.sql.*;
…
Context ctx = new InitialContext();

600 IMS: Application Programming

DataSource ds = (DataSource)ctx.lookup("jdbc/sampledb");
Connection con = ds.getConnection();

Related tasks
“Configuring the IMS Universal drivers for SSL support” on page 668
With type-4 connectivity, the IMS Universal drivers provide support for the Secure Sockets Layer (SSL)
through the Java Secure Socket Extension (JSSE).
Related reference
javax.sql.DataSource methods supported (Application Programming APIs)

Connecting to an IMS database by using the JDBC DriverManager interface
A JDBC application can establish a connection to a data source using the JDBC DriverManager
interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName method.
After the application loads the driver, it connects to a database server by invoking the
DriverManager.getConnection method. For example:

Connection conn = DriverManager.getConnection(url);

To connect to an IMS database by using the DriverManager interface in your IMS Universal JDBC driver
application:

1. Load the IMS Universal JDBC driver with the DriverManager interface by invoking the
Class.forName method with the argument com.ibm.ims.jdbc.IMSDriver.

2. Connect to the IMS database by invoking the DriverManager.getConnection method. The URL
represents a data source, and indicates what type of JDBC connectivity you are using.

• For type-4 connectivity, specify the URL in the following form:

jdbc:ims: // DatastoreServer

: PortNumber

/ DatabaseName

: property = value ;

• For type-2 connectivity, specify the URL in the following form:

jdbc:ims: DatabaseName

: property = value ;

The parts of the URL have the following meaning:

jdbc:ims:
Indicates that the connection is to an IMS database.

PortNumber

The TCP/IP server port number to be used to communicate with IMS Connect. The port number
is defined using the DRDAPORT parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888. Do not set this property when
using type-2 connectivity.

MetadataURL

The location of the database metadata representing the target IMS database.

Chapter 40. Programming with the IMS Universal drivers 601

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_odbjdbcdatasourcemethodssupported.htm#ims_odbjdbcdatasourcemethodssupported

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java metadata class generated by
the IMS Enterprise Suite Explorer for Development. The URL must be prefixed with class:// (for
example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

DatabaseName

The location of the database metadata representing the target IMS database.

The DatabaseName property can be specified in one of two ways, depending on whether the
metadata is stored in the IMS catalog or as a static metadata class generated by the IMS
Enterprise Suite Explorer for Development.

If your IMS system uses the IMS catalog, the DatabaseName property is the name of the PSB that
your application uses to access the target IMS database.

If you are using the IMS Explorer for Development, the databaseName property is the fully
qualified name of the Java metadata class generated by the IMS Explorer for Development. The
URL must be prefixed with class:// (for example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

DatastoreServer

The name or IP address of the data store server (IMS Connect). You can provide either the host
name (for example, dev123.svl.ibm.com) or the IP address (for example, 192.166.0.2). Do not set
this property when using type-2 connectivity.

property
One of the following connection properties:
applName

Optional. Specifies the 1- to 8-character application name that is defined to RACF in the
PTKTDATA class for JDBC applications that connect to IMS DB by using the SQL Batch utility.
The value that is specified on this parameter is used by the SQL Batch utility to generate a
RACF PassTicket to authenticate the user of the JDBC application to access IMS DB.

This parameter is valid only for the SQL Batch utility.

allMetadata

Optional. When this property is set to true, the DatabaseMetadata interface returns
information for all resources in the IMS catalog. When the property is set to false, the
DatabaseMetadata interface returns information for the allocated PSB. The default value for
this property is false.

datastoreName

Optional. The name of the IMS data store to access.

When using type-4 connectivity, the DatastoreName property must match either the
name of the data store defined to ODBM or be blank. The data store name is defined
in the ODBM CSLDCxxx PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter. If an alias is specified,
you must specify the aliasname as the value of the datastoreName property. If the
DatastoreName value is left blank (or not supplied), IMS Connect connects to any available
instance of ODBM as it is assumed that data sharing is enabled among all datastores defined to
ODBM.

When using type-2 connectivity, set the DatastoreName property to the IMS subsystem alias.
This is not required to be set for the Java Dependent Region run time.

602 IMS: Application Programming

initStatusGroup
Optional. When a connection is made and the PSB is allocated, this property will indicate that
the driver should automatically issue an INIT STATUS GROUPA or INIT STATUS GROUPB if
a value of 'A' or 'B' is provided. The default will not issue an INIT STATUS GROUP call.

loginTimeout

Optional. Specifies the number of seconds that the driver waits for a response from the
server before timing out a connection initialization or server request. Set this property to a
non-negative integer for the number of seconds. Set this property to 0 for an infinite timeout
length. Do not set this property when using type-2 connectivity.

password

The password for the connection to IMS Connect provided by your RACF administrator. Do not
set this property when using type-2 connectivity.

sslConnection

Optional. Indicates if this connection uses Secure Sockets Layer (SSL) for data encryption. Set
this property to "true" to enable SSL, or to "false" otherwise. Do not set this property when
using type-2 connectivity.

sslKeyStoreType

Optional. Specifies the format of the file that contains cryptographic objects needed to
establish a secure socket connection. The valid values are "JKS" and "PKCS12". This
value is only used when sslConnection is set to "true" and sslKeyStoreType is not
specified. The sslKeyStoreType parameter defaults to "JKS".

sslSecureSocketProtocol

Optional. Specifies the cryptographic communication protocol for the new connection.
Specify a protocol that is supported by the server and provides the highest level of
security. The valid values are "SSL", "SSLv3", "TLSv1.1", and "TLSv1.2". This value is only
used when sslConnection is set to "true". If sslConnection is set to "true" and
sslSecureSocketProtocol is not specified, a default protocol will be determined at
runtime by the JRE and the server.

sslTrustStoreLocation

Optional. Specifies the location of the cryptographic trust store file for the new connection.
This value is only used when sslConnection is set to true.

sslTrustStorePassword

Optional. Specifies the password to access the cryptographic trust store file. This value is
only used when sslConnection is set to true.

sslKeyStoreLocation

Optional. Specifies the location of the cryptographic key store file for the new connection.
This value is only used when sslConnection is set to true.

sslKeyStorePassword

Optional. Specifies the password to access the cryptographic key store file. This value is
only used when sslConnection is set to true.

user

The user name for the connection to IMS Connect provided by your RACF administrator. Do not
set this property when using type-2 connectivity.

signedCompare

Optional. When this property is set to "true", special SSAs are generated to support ranged
queries over signed data types. If the property is set to "false", standard binary comparisons
are performed based on the binary representation of the data type value. Setting the value to

Chapter 40. Programming with the IMS Universal drivers 603

"false" can increase performance but might result in incorrect results. The default value for this
property is "true".

flattenTables

Optional. Indicates whether to produce a flattened view of the database tables. A value of true
exposes the sub-elements of a STRUCT or an ARRAY as additional columns of the table. The
default value is false.

IMS Explorer flattens the copybook structures when you import the copybook. Although the
copybook itself remains unchanged in the IMS catalog, the information about the structure of
each table is altered for that particular connection.

The the flattenTables property allows you to query the fields in complex structures directly. For
more information about support for flattening complex structures, see “Support for flattening
complex structures” on page 566.

Restriction: The flattenTables connection property supports static arrays and structures only.
Dynamic arrays are not altered.

t2OutputBufferSize

Optional. The size of the output buffer in bytes for the results from a SELECT operation for a
type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any value less than 500000 is set,
this property value will be adjusted to 500000. There is no maximum bound. The default value
is 1280000.

treatInvalidDecimalAsNull

Optional. Indicates whether to interpret certain Decimal values that appear invalid in Java
applications (such as PACKEDDECIMAL and ZONEDDECIMAL with invalid sign bits) as null.
By default, this property is "false", and a conversion exception is thrown when the Java
applications are processing invalid values.

removeInvalidCaseFields

Optional. If you use SELECT * to access a map case, the JDBC Universal Driver returns the set
of all map case segment fields. When this property is set to true, the results contain only map
case fields that satisfy a WHERE clause with a DEPENDINGON field condition. To learn more,
see “Using the removeInvalidCaseFields property” on page 609.

currentSchema

Optional. Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements.

dbViewLocation

Optional. Specifies the fully qualified path to a databaseView metadata class. You can use this
property to include a metadata class that is not located in your project path.

dpsbOnCommit

Optional. Set this property to true to deallocate the PSB when a commit occurs.

Recommendation: Do not set this property to true except in a managed environment with
integrated connection pooling.

fetchSize

Optional. Gives the client a hint about the number of rows to get from the database when more
rows are needed. The number specified for this property only affects data retrieved with the
current connection. If the value specified is 0, all of the applicable rows are returned.

The default value for this property is 0 for both managed and unmanaged connections.

604 IMS: Application Programming

llField

Optional. The default value for this property is true. You can modify the LL field value to
change the length of a variable length segment instance. Set this property to false to hide the
LL field data from the column list in the result set.

maxRows

Optional. Specifies the maximum number of rows to return in a query result set. The default
value is 0, which returns all of the applicable rows in the result set.

expandArrayResultSet

Optional. This property enables IMS Universal JDBC driver to create an ArrayResultSet
with the array elements as the actual fields in the ResultSet instead of a Struct object
containing those elements as the only entry into that ResultSet. To learn more, see “Using
the expandArrayResultSet property” on page 611.

ssaOptimization

Optional. When set to true, the SSA is optimized to a fully qualified key if subfields of that key
are provided. To learn more, see Optimizing SQL statements to promote partial key subfields in
the WHERE Clause (Application Programming).

traceFile

Optional. Specifies the name of the trace file for the connection.

traceFileAppend

Optional. If the specified trace file exists, setting this property to true specifies that the trace
data for the new connection must be appended to the existing trace file instead of overwriting
it.

This property is ignored if no value is specified for traceFile.

traceDirectory

Optional. Specifies the file system directory where the trace file is located. By default, this path
is the directory where the application is executed.

This property is ignored if no value is specified for traceFile.

traceLevel

Optional. Specifies which traces are enabled for the connection. The valid values for this
property are defined in the Java API documentation for the IMSDataSource class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.

Trace level traceLevel package value traceLevel
constant field in
IMSDataSource

traceLevel
demical value

All com.ibm.ims.db.opendb.* TRACE_ALL -1

DL/I com.ibm.ims.db.opendb.dli.* TRACE_DLI 28

DRDA com.ibm.ims.db.opendb.drda.* TRACE_DRDA 1

JDBC com.ibm.ims.db.opendb.jdbc.* TRACE_JDBC 32

Java EE com.ibm.ims.opendb.spi.*
com.ibm.ims.db.opendb.cci.*

TRACE_JEE 192

value
A valid value for the connection property.

Chapter 40. Programming with the IMS Universal drivers 605

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_odbjdbcSSAOptimizationproperty.htm#ims_odbjdbcSSAOptimizationproperty

To set the sslConnection and loginTimeout properties, use a java.util.Properties object.
For example, the following sample code shows how to enable SSL and set the timeout value to 10
seconds:

Properties props = new Properties();
props.put("sslConnection", "true");
props.put("timeout", "10");

3. For type-4 connectivity, you must specify a user ID and password in one of the following ways: through
the connection URL, through parameters, or through a java.util.Properties object.

To set the user ID and password for the connection through parameters, use the form of the
getConnection method that specifies user and password. For example:

String url =
"jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView";
String user = "myUserID";
String password = "MyPassword";
Connection conn = DriverManager.getConnection(url, user, password);

To set the user ID and password for the connection through a java.util.Properties object,
use the form of the getConnection method that specifies a java.util.Properties object. For
example:

Properties props = new Properties();
props.put("user", "myUserID");
props.put("password", "MyPassword");
String url =
"jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView";
Connection conn = DriverManager.getConnection(url, props);

4. After your application has finished with the connection, close the connection using the close method
on the Connection interface.

The following code example shows how to create a type-4 connection to an IMS database from your IMS
Universal JDBC driver application using the DriverManager interface:

Connection conn = null;

// Create Properties object
Properties props = new Properties();

// Enable SSL for connection
props.put("sslConnection", "true");

// Set datastoreName for connection
props.put("datastoreName", "IMS1");

// Set timeout for connection
props.put("loginTimeout", "10");

// Set user ID for connection
props.put("user", "myUserID");

// Set password for connection
props.put("password", "myPassword");

// Set URL for the data source
Class.forName("com.ibm.ims.jdbc.IMSDriver");

// Create connection
conn = DriverManager.getConnection
("jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView",
props);

Alternatively, you can specify the connection properties in the URL. For example:

String url=""jdbc:ims://tst.svl.ibm.com:8888/class://"
 + "BMP2.BMP2DatabaseView:datastoreName=IMS1;"
 + "loginTimeout=10;sslConnection=true;user=myUserID;password=myPassword;";
Connection conn = DriverManager.getConnection(url);

606 IMS: Application Programming

Related tasks
“Configuring the IMS Universal drivers for SSL support” on page 668
With type-4 connectivity, the IMS Universal drivers provide support for the Secure Sockets Layer (SSL)
through the Java Secure Socket Extension (JSSE).
Related reference
SQL Batch utility (Database Utilities)
How to enable the IMS JDBC trace

Sample application for the IMS Universal JDBC driver
The following sample Java application demonstrates the basic programming flow for a JDBC application
using the IMS Universal JDBC driver.

The following example connects to an IMS database, retrieves a list of patient names using a SQL SELECT
query, and modifies the patient information using a SQL UPDATE query.

package client;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import com.ibm.ims.jdbc.IMSDataSource;

public class JDBCSample {

 public static void main(String[] args)
 throws SQLException {
 IMSDataSource ds = new IMSDataSource();
 ds.setDatabaseName("MYPSB");
 ds.setDatastoreName("IMS1");
 ds.setDatastoreServer("ec0123.my.host.com");
 ds.setPortNumber(5555);
 ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);
 ds.setUser("myUserId");
 ds.setPassword("myPassword");

 Connection conn = null;

 try {
 conn = ds.getConnection();

 Statement st = conn.createStatement();

 // List all of the patient names in the
 // SURG ward in the ALEXANDRIA hospital
 ResultSet rs = st.executeQuery("SELECT patname from " +
 "pcb01.hospital, ward, patient " +
 "where hospital.hospname = 'ALEXANDRIA' " +
 "and ward.wardname = 'SURG'");
 while (rs.next()) {
 System.out.println(rs.getString("patname"));
 }

 // Update the name of the patient with patient
 // number 0222 in ward 04 in the hospital
 // with code R1210010000A
 int updatedRecords = st.executeUpdate("UPDATE PCB01.PATIENT " +
 "SET PATNAME='UPDATED NAME' WHERE PATNUM='0222' " +
 "AND HOSPITAL_HOSPCODE='R121001000A' AND WARD_WARDNO='04'");
 System.out.println("Updated " + updatedRecords + " Record(s)");

 conn.commit();
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 if (!conn.isClosed()) {
 conn.rollback();
 conn.close();
 }
 }

Chapter 40. Programming with the IMS Universal drivers 607

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dur/ims_sqlbatch.htm#ims_sqlbatch
https://imsinsiders.wordpress.com/2016/04/18/how-to-enable-the-ims-jdbc-trace

 }
}

Using ByteBuffers with the IMS Universal JDBC Driver
The IMS Universal JDBC driver allows the use of INSERT, SELECT, and UPDATE options for full segments
using java.nio.ByteBuffer as an I/O area .

You can use ByteBuffers as a qualification within the WHERE clause and also use them as an I/O area to
INSERT, SELECT, and UPDATE full segment I/O areas from an SQL Query. This feature can be accessed by
using the new reserved field in your SQL query: DFSIOSEG_{YOUR_SEGMENT_NAME. You do not have to
define this field in your DBD source and it need not exist in the IMS Catalog. IMS Universal JDBC driver
will automatically process this field when it is detected in the SQL Query.

Inserting data using ByteBuffers
You can insert a full segment I/O area using IMS Universal JDBC driver with a PreparedStatement. The
following code sample illustrates inserting a full segment I/O area using ByteBuffers:

String preparedInsertStatement = "INSERT INTO WARD (DFSIOSEG_WARD, HOSPITAL_HOSPCODE) values
(?, 'R1210010000A')";
PreparedStatement pst = conn.prepareStatement(preparedInsertStatement);

//Prepare buffer for inserting a ward patient

ByteBuffer bufferInsert = ByteBuffer.allocate(900);
bufferInsert.position(0);
bufferInsert.putShort((short) 900);
bufferInsert.put("0010".getBytes("Cp1047"));
bufferInsert.put("COOL WARD".getBytes("Cp1047"));

// Set prepared value for the buffer and execute the PreparedStatement
pst.setObject(1, bufferInsert);
pst.execute();

Selecting data using ByteBuffers
You can retrieve full segment I/O areas by specifying the hidden DFSIOSEG field in your SQL query. After
obtaining a ResultSet from your query, you can obtain your ByteBuffer object simply by getting an
Object from your ResultSet using the new DFSIOSEG field as a parameter and casting it to a ByteBuffer
object. If required, you can add additional fields in conjunction with the DFSIOSEG field. The following
code sample illustrates how to retrieve a full segment I/O area using ByteBuffers:

String selectQuery = "SELECT DFSIOSEG_WARD, WARDNAME FROM WARD WHERE HOSPITAL_HOSPCODE =
'R1210010000A' AND WARDNO = '0010'";
ResultSet rs = st.executeQuery(selectQuery);
 while(rs.next())
{
 String wardName = rs.getString("WARDNAME");
 ByteBuffer buffer = (ByteBuffer)rs.getObject("DFSIOSEG_WARD");
 }

Updating data using ByteBuffers
Updating a full segment I/O area using the IMS Universal JDBC driver can also be achieved using a
PreparedStatement. The following code sample illustrates how to update a full segment I/O area using
ByteBuffers :

String preparedUpdateStatement = "UPDATE WARD SET DFSIOSEG_WARD = ?
WHERE HOSPITAL_HOSPCODE = 'R1210010000A' AND WARDNO = '0010'";
PreparedStatement pst = conn.prepareStatement(preparedInsertStatement);

// Prepare buffer for inserting a ward patient
ByteBuffer bufferUpdate = ByteBuffer.allocate(900);
bufferUpdate.position(0);
bufferUpdate.putShort((short) 900);
bufferUpdate.put("0010".getBytes("Cp1047"));

608 IMS: Application Programming

bufferUpdate.put("COOL WARD".getBytes("Cp1047"));

// Set prepared value for the buffer and execute the PreparedStatement
pst.setObject(1, bufferUpdate);
pst.execute();

Considerations for Byte Buffers and Type-2 Java applications
If your JDBC application is running in Type-2 mode, you have the option of obtaining a direct ByteBuffer to
optimize the JVM storage use. You can obtain direct storage in the following ways:

• Directly using the java.nio.ByteBuffer class

ByteBuffer directBuffer = ByteBuffer.allocateDirect(10);

• Using the Universal Drivers Application object to obtain direct 31-bit storage

Application app = new ApplicationFactory.createApplication();
 ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);

Note: If an application is running in the 64-bit JVM, ByteBuffer.allocateDirect() will
not work with your application and you must directly request 31-bit storage using the
Application.get31BitDirectByteBuffer() method. ByteBuffer.allocateDirect() works in
a 31-bit JVM.

It is important to release and free the buffers correctly in your application. You can free buffers that were
obtained using the Application class in the following ways:

• Specifically freeing buffers

Application app = new ApplicationFactory.createApplication();
ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);

 // Doing work
app.free31BitDirectByteBuffer(directBuffer);

• IMS silently tracks all buffers allocated using the Application class and automatically releases all the
checked out buffers during the end() procedure.

Application app = new ApplicationFactory.createApplication();
 ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);

// Doing work
app.end();

Related concepts
“Using Byte Buffers with the IMS Universal DL/I driver” on page 662
The IMS Universal DL/I driver includes several methods to handle complex data types that are not fully
represented by the IMS Catalog.
Related reference
“Hospital database example” on page 568
The code examples for the IMS Universal drivers application programming topics use the Hospital
database.

Using the removeInvalidCaseFields property
Use the optional removeInvalidCaseFields connection property to return only columns and fields in
a valid map case.

In IMS, you can use DFSMAP and DFSCASE mapping definitions to create multiple field layouts for a
segment. Each layout (or “map case”) has a unique ID, and only one layout can be valid at a time. Layouts
are controlled by a defined control field, and a layout is valid when its ID matches the control field value.

If you use a SQL SELECT * statement and a WHERE clause with the IMS Universal JDBC driver to retrieve
map case fields from a segment, the returned results include all fields by default, including NULL values.

Chapter 40. Programming with the IMS Universal drivers 609

You can simplify your results by using the removeInvalidCaseFields property to remove case fields
from the result set that do not satisfy the DEPENDINGON field condition in the WHERE clause.

This property only supports use of the equal sign (=) operator in the WHERE clause. If other operators are
used, no case fields are removed from the returned result set.

Examples of supported cases are as follows:

• SELECT * FROM SEGMENT WHERE CONTROLFIELD = ‘VALUE’
• SELECT * FROM SEGMENT WHERE CONTROLFIELD = ‘VALUE1’ OR CONTROLFIELD =
‘VALUE2’

• SELECT * FROM SEGMENT WHERE CONTROLFIELD1 = ‘V1’ AND CONTROLFIELD2 = ‘V2’

You must enable the removeInvalidCaseFields property before you can use it.

Enable the removeInvalidCaseFields property
The following code examples show four ways to enable the removeInvalidCaseFields property.

You can enable the removeInvalidCaseFields property in server.xml for use with the IMS
Universal Driver:

<connectionFactory jndiName="HOSP_JDBC_T4_EXPANDED">
<properties.imsudbJLocal databaseName="BMP255" datastoreName="IMS1" datastoreServer="localhost"
driverType="4" password="myPassword" portNumber="{DRDA_PORT}" user="myUserID"
removeInvalidCaseFields="true"/>
</connectionFactory>

You can enable the removeInvalidCaseFields in an IMSManagedConnectionFactory object:

IMSManagedConnectionFactory imsManagedConnectionFactory = new IMSManagedConnectionFactory();
imsManagedConnectionFactory.setremoveInvalidCaseFields(true);

You can use the Driver Manager to enable the removeInvalidCaseFields property via a JDBC URL:

String url=""jdbc:ims://tst.svl.ibm.com:8888/class://"
 + "BMP2.BMP2DatabaseView:datastoreName=IMS1;"
 +
"loginTimeout=10;sslConnection=true;user=myUserID;password=myPassword;removeInvalidCaseFields=tr
ue;";
Connection conn = DriverManager.getConnection(url);

or

Connection conn = null;

// Create Properties object
Properties props = new Properties();

// Enable removeInvalidCaseFields
props.put("removeInvalidCaseFields", "true");

// Create connection
conn = DriverManager.getConnection
("jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView", props);

You can enable the removeInvalidCaseFields property on an IMSDataSource object:

IMSDataSource

IMSDataSource ds = new IMSDataSource();
Properties props = new Properties();
props.setProperty("removeInvalidCaseFields", "true");
props.setProperty("llField", "false");
ds.setProperties(props);

Or

IMSDataSource ds = new IMSDataSource();
ds.setremoveInvalidCaseFields(true);

610 IMS: Application Programming

Related concepts
DFSMAP statement overview (Database Administration)
DFSCASE statement overview (Database Administration)
Related reference
DFSMAP statements (System Utilities)
DFSCASE statements (System Utilities)

Using the expandArrayResultSet property
The IMS Universal JDBC driver allows for easier access to Array datatype fields using the
expandArrayResultSet property.

This property enables IMS Universal JDBC driver to create an ArrayResultSet with the array elements
as the actual fields in the ResultSet instead of a Struct object containing those elements as the only
entry into that ResultSet.

This property indicates whether the IMS Universal JDBC driver would flatten an array when an
ArrayResultSet is created. If this property is set to true, the array will be expanded to its individual
array sub fields in the ArrayResultSet. If set to false, the application will receive an array object for
each array instance that exists within the ArrayResultSet. The default value is set to false.

Programming example to use expandArrayResultSet property
The following is an example of obtaining a ResultSet using the expandArrayResultSet property.

 Properties props = new Properties();
props.setProperty("expandArrayResultSet", "true");
ds.setProperties(props);
 Connection conn = ds.getConnection();

Statement st = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

String selectSql = "SELECT * FROM ARRAY WHERE HOSPITAL_HOSPCODE='R1210010000A'";
st.executeQuery(selectSql);
rs = st.getResultSet();
while (rs.next()) {
Array accountArray = rs.getArray("ACCOUNTS");
ResultSet arrayResultSet = accountArray.getResultSet();

// delete first row
arrayResultSet.first();
arrayResultSet.deleteRow();

// move two relative to 1
arrayResultSet.relative(2);

// Start insert at position 3
arrayResultSet.moveToInsertRow();
arrayResultSet.updateString("TYPE", "VISA");
arrayResultSet.updateString("ACCOUNT_DATA", "1111XXXXXXXX4444");
arrayResultSet.updateString("EXPIRATION", "0112");
arrayResultSet.updateString("SECURITY_CODE", "9111");
arrayResultSet.insertRow();

// move to last remembered position
arrayResultSet.moveToCurrentRow();

// go to the last row
arrayResultSet.last();

// go back 4 relative to position 5. should be at 1
arrayResultSet.relative(-4);

// Update string at position 3.
arrayResultSet.updateString("EXPIRATION", "2099");
arrayResultSet.updateRow();

// Commit all changes
rs.updateRow();
}

Chapter 40. Programming with the IMS Universal drivers 611

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_dfsmap_stmt_overview.htm#ims_dfsmap_stmt_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_dfscase_stmt_overview.htm#ims_dfscase_stmt_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dfsmapstmt.htm#ims_dfsmapstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt

rs.close();
conn.close();

Enabling the expandArrayResultSet property
Enabling the expandArrayResultSet property in the server.xml for use with the IMS Universal Driver

<connectionFactory jndiName="HOSP_JDBC_T4_EXPANDED">
<properties.imsudbJLocal databaseName="BMP255" datastoreName="IMS1" datastoreServer="localhost"
driverType="4" password="myPassword" portNumber="{DRDA_PORT}" user="myUserID"
expandArrayResultSet="true"/>
</connectionFactory>

Enabling the expandArrayResultSet in an IMSManagedConnectionFactory object.

IMSManagedConnectionFactory imsManagedConnectionFactory = new IMSManagedConnectionFactory();
imsManagedConnectionFactory.setExpandArrayResultSet(true);

Using the Driver Manager to enable the expandArrayResultSet property via a JDBC URL

String url=""jdbc:ims://tst.svl.ibm.com:8888/class://"
 + "BMP2.BMP2DatabaseView:datastoreName=IMS1;"
 +
"loginTimeout=10;sslConnection=true;user=myUserID;password=myPassword;expandArrayResultSet=true;
";
Connection conn = DriverManager.getConnection(url);

or

Connection conn = null;

// Create Properties object
Properties props = new Properties();

/ Enable expandArrayResultSet
props.put("expandArrayResultSet", "true");

// Create connection
conn = DriverManager.getConnection
("jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView",
props);

Enabling the expandArrayResultSet property on an IMSDataSource object.

IMSDataSource

IMSDataSource ds = new IMSDataSource();
Properties props = new Properties();
props.setProperty("expandArrayResultSet", "true");
props.setProperty("llField", "false");
ds.setProperties(props);

Or

IMSDataSource ds = new IMSDataSource();
ds.setExpandArrayResultSet(true);

Related concepts
“Using Byte Buffers with the IMS Universal DL/I driver” on page 662
The IMS Universal DL/I driver includes several methods to handle complex data types that are not fully
represented by the IMS Catalog.
Related reference
“Programming with the Callout API” on page 692

612 IMS: Application Programming

Use the IMSCallout API to issue IMS synchronous callout requests from JMP or JBP applications that
are running in a Java dependent region. Another option is to use the Java Message Service (JMS) API,
which provides limited support.

Writing SQL queries to access an IMS database with the IMS Universal JDBC
driver

Use the IMS Universal JDBC driver to connect to an IMS database for writing SQL queries.

The IMS catalog provides metadata to your application program. You can write SQL queries to access IMS
data based on the metadata information available in the catalog database.

If your IMS system does not use the IMS catalog, you can use the IMS Enterprise Suite Explorer for
Development instead.

The IMS Explorer for Development generates a Java database metadata class. This class contains the PSB
and DBD metadata classes that the IMS Universal drivers use at runtime.

The metadata includes information about the IMS database, including segments, segment names, the
segment hierarchy, fields, field types, field names, fields offsets, and field lengths.

The metadata is used by the IMS Universal JDBC driver to allocate program specification blocks (PSBs),
issue DL/I calls, perform data transformation, and translate SQL queries to DL/I calls.

The following table summarizes the mapping between IMS database elements and relational database
elements.

Table 101. Mapping between IMS database elements and relational database elements.

Hierarchical database elements in IMS Equivalent relational database elements

Segment name Table name

Segment instance Table row

Segment field name Column name

Segment unique key Table primary key

Foreign key field Table foreign key

Related concepts
IMS Explorer for Development overview

SQL keywords supported by the IMS JDBC drivers
The SQL support provided by the IMS Universal JDBC driver is based on the SQL-92 standard for
relational database management systems.

If you use a SQL keyword as a name for a PCB, segment, or field, your JDBC application program will
throw an error when it attempts an SQL query. These keywords are not case-sensitive.

The following SQL keywords are supported by the IMS JDBC drivers:

ABS
ACOS
ALL
ALTER
AND
AS
ASC
ASIN
ATAN

Chapter 40. Programming with the IMS Universal drivers 613

http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.3.0/com.ibm.ims.explorer33.doc/wb_overview.htm

ATAN2
AVG
BETWEEN
CEIL
CEILING
COS
COSH
COT
COUNT
CREATE
DEGREES
DELETE
DESC
DISTINCT
DROP
EXP
FETCH
FIRST
FLOOR
FROM
GROUP BY
INNER
INSERT
INTO
JOIN
LN
LOG
LOG10
MAX
MIN
MOD
NULL
ON
ONLY
OR
ORDER BY
POWER
RADIANS
ROW
ROWS
SELECT
SET
SIGN
SIN
SINH
SQRT
SUM
TAN
TANH
UPDATE
VALUES

614 IMS: Application Programming

WHERE

Related reference
“Portable SQL keywords restricted by the IMS Universal JDBC drivers” on page 616
If you use any of the following SQL keywords as a name for a PCB, segment, or field, your JDBC
application will receive an error when it attempts an SQL query. Instead, use the aliasing feature of
the IMS Enterprise Suite Explorer for Development. These keywords are not case-sensitive.

SQL aggregate functions supported by the IMS JDBC drivers
The IMS Universal JDBC driver supports SQL aggregate functions and related keywords.

• AS
• AVG
• COUNT
• GROUP BY
• MAX
• MIN
• ORDER BY

– ASC
– DESC

• SUM

The ResultSet type for aggregate functions and ORDER BY and GROUP BY clauses is always
TYPE_SCROLL_INSENSITIVE.

The following table shows the data types of the fields that are accepted by the aggregate functions, along
with the resulting data type in the ResultSet.

Table 102. Supported SQL aggregate functions and their supported data types

Function Argument type Result type

SUM and AVG Byte Long

Short Long

Integer Long

Long Long

BigDecimal Double-precision floating point

Single-precision floating point Double-precision floating point

Double-precision floating point Double-precision floating point

MIN and MAX Any type except BIT, BLOB, or BINARY Same as argument type

COUNT Any type Long

Column names generated by aggregate functions
The ResultSet column name from an aggregate function is a combination of the aggregate function
name and the field name separated by an underscore character (_). For example, the statement SELECT
MAX(age) results in a column name MAX_age. Use this column name in all subsequent references—for
example, resultSet.getInt("MAX_age").

If the aggregate function argument field is table-qualified, the ResultSet column name is the
combination of the aggregate function name, the table name, and the column name, separated by

Chapter 40. Programming with the IMS Universal drivers 615

underscore characters (_). For example, SELECT MAX(Employee.age) results in a column name
MAX_Employee_age.

Using the AS clause
You can use the AS keyword to rename the aggregate function column in the result set or any other field
in the SELECT statement. You cannot use the AS keyword to rename a table in the FROM clause. When
you use the AS keyword to rename the column, you must use this new name to refer to the column.
For example, if you specify SELECT MAX(age) AS oldest, a subsequent reference to the aggregate
function column is resultSet.getInt("oldest").

If you are using the IMS Universal JDBC driver and you specified a SELECT query with column names
renamed by an AS clause, you can only refer to the field in the resulting ResultSet by the AS rename.
However, in the rest of your SELECT query, in the WHERE, ORDER BY, and GROUP BY clauses, you can use
either the original column name or the AS rename.

Using the ORDER BY and GROUP BY clauses
Important: The field names that are specified in a GROUP BY or ORDER BY clause must match exactly the
field name that is specified in the SELECT statement.

When using the IMS Universal JDBC driver, the following queries with the ORDER BY and GROUP BY
clauses are valid:

SELECT HOSPNAME, COUNT(PATNAME) AS PatCount FROM PCB01.HOSPITAL, PATIENT
GROUP BY HOSPNAME ORDER BY HOSPNAME

SELECT HOSPNAME, COUNT(DISTINCT PATNAME) AS PatCount FROM PCB01.HOSPITAL,
PATIENT GROUP BY HOSPNAME ORDER BY HOSPNAME

Using the COUNT function with DISTINCT
When using the IMS Universal JDBC driver, the COUNT aggregate function can be qualified with the
DISTINCT keyword. For example, the following query returns all hospital names listed in ascending order
along with the number of distinct patient names from that hospital. The COUNT aggregate function
generates a column name COUNT_DISTINCT_PATNAME .

SELECT HOSPNAME, COUNT(DISTINCT PATNAME)FROM PCB01.HOSPITAL, PATIENT
GROUP BY HOSPNAME ORDER BY HOSPNAME

Portable SQL keywords restricted by the IMS Universal JDBC drivers
If you use any of the following SQL keywords as a name for a PCB, segment, or field, your JDBC
application will receive an error when it attempts an SQL query. Instead, use the aliasing feature of
the IMS Enterprise Suite Explorer for Development. These keywords are not case-sensitive.

The keywords shown in the following table are reserved SQL keywords.

ABORT to CROSS CURRENT to IS JOIN to REAL REFERENCES to WORK

ABORT CURRENT JOIN REFERENCES

ANALYZE CURSOR LAST RESET

AND DECIMAL LEADING REVOKE

ALL DECLARE LEFT RIGHT

ALLOCATE DEFAULT LIKE ROLLBACK

ALTER DELETE LISTEN ROW

AND DESC LOAD ROWS

616 IMS: Application Programming

ABORT to CROSS CURRENT to IS JOIN to REAL REFERENCES to WORK

ANY DISTINCT LOCAL SELECT

ARE DO LOCK SET

AS DOUBLE MAX SETOF

ASC DROP MIN SHOW

ASSERTION END MOVE SMALLINT

AT EXECUTE NAMES SUBSTRING

AVG EXISTS NATIONAL SUM

BEGIN EXPLAIN NATURAL TABLE

BETWEEN EXTRACT NCHAR TO

BINARY EXTEND NEW TRAILING

BIT FALSE NO TRANSACTION

BOOLEAN FETCH NONE TRIM

BOTH FIRST NOT TRUE

BY FLOAT NOTIFY UNION

CASCADE FOR NULL UNIQUE

CAST FOREIGN NUMERIC UNLISTEN

CHAR FROM ON UNTIL

CHARACTER FULL ONLY UPDATE

CHECK GRANT OR USER

CLOSE GROUP ORDER USING

CLUSTER HAVING OUTER VACUUM

COLLATE IN PARTIAL VALUES

COLUMN INNER POSITION VARCHAR

COMMIT INSERT PRECISON VARYING

CONSTRAINT INT PRIMARY VERBOSE

COPY INTERVAL PRIVILEGES VIEW

COUNT INTERVAL PROCEDURE WHERE

CREATE INTO PUBLIC WITH

CROSS IS REAL WORK

Related reference
“SQL keywords supported by the IMS JDBC drivers” on page 613
The SQL support provided by the IMS Universal JDBC driver is based on the SQL-92 standard for
relational database management systems.

Writing DDL statements to modify IMS resources with the IMS Universal
JDBC driver
You can write a java application to create or modify an active DBD or PSB in an IMS system.

1. Create a connection to an IMS system by using the Universal Drivers.
2. Create a statement and execute the DDL query.

Chapter 40. Programming with the IMS Universal drivers 617

3. Execute a query called Commit DDL.
For example:

ds = FVTConnectionFactory.getIMSDataSource(alias, driverType,
host, port, userName,

password, url);
con = ds.getConnection();

Statement st = con.createStatement();
st.executeUpdate("CREATE DATABASE MYDB ACCESS SHSAM CCSID 'Cp1047'

VERSION '2.0'");
st.executeUpdate("CREATE TABLE MYTABLE (COLUMN1 DECIMAL(5,2)

INTERNALNAME COLUMN1 TYPE C BYTES 10 START 1) AMBIGUOUS INSERT LAST IN MYDB");
st.executeUpdate("CREATE TABLESPACE tb1 IN MYDB BLOCK PRIMARY

32768");
st.executeUpdate("COMMIT DDL");

Optimizing SQL statements to promote partial key subfields in the WHERE
Clause
You can use a variety of SSA optimization techniques to improve access to your IMS data. To use subfield
values to define a search range within a primary key range, set the optional ssaOptimization property to
true.

A general SSA optimization technique is to use a SQL WHERE statement to qualify access to your IMS
data. In the metadata grammar, define a searchable field as a column, then write a SQL statement with a
WHERE clause that references the column. A Segment Search Argument (SSA) is generated that optimizes
access by applying your WHERE qualification to the search field. For best performance, the WHERE clause
must reference columns that supply one or more key values from the primary key or a secondary index.

You can use a similar technique to optimize your IMS data access with a partial key. To create a partial
key, map multiple columns to an IMS primary key or secondary index so that each column references
only a portion of the field. Then write a WHERE clause that references only a subset of the columns.
Optimization occurs when the partial key is used to generate a range that specifies the lowest and highest
key values within that subset of columns. When you write the WHERE clause, specify partial keys in the
sequence in which they map to the IMS field. To learn more, see Partial keys.

In some cases, partial key values only cover the beginning byte or bytes of the key rather than the entire
offset range. The optional property ssaOptimization is available for such cases. When set to true, this
optimization creates a search range on the key in the SSA list, and then fills the remaining bytes with the
appropriate values. Rather than using low and high key values, this optimization uses the low and high
hexadecimal values of the remaining bytes to create low and high bounds for the range. The result is a
search for all the values that are in the range that begin with any given subfield value. To use this property,
set ssaOptimization to true.

Example
In the following example, a searchable IMS key field named MYSAMPLE is 10 bytes long. MYSAMPLE
is mapped to three columns, a WHERE clause is included in the SQL query, and the ssaOptimization
property is set to true. IMS returns only the segments that match the WHERE qualification and that are
within the generated SSA range.

Step 1. Map three columns to MYSAMPLE in the following sequence:

COLUMN1 = bytes 1-3
COLUMN2 = bytes 4-5
COLUMN3 = bytes 6-10

618 IMS: Application Programming

https://www.ibm.com/docs/en/icfsfz/11.3.0?topic=optimization-partial-keys-ims

Step 2. Issue the following SQL query:

WHERE COLUMN1 = 'abc' and COLUMN2 = '00'

The following SSA is generated:

MYSAMPLE >= abc00(low values) & MYSAMPLE =< abc00(high values).

IMS returns segments where bytes 1–5 are equal to 'abc00' and where the bytes in COLUMN3 are within
the range defined by the lowest and highest hexadecimal values for bytes 6–10.

The SSA is generated successfully and optimization occurs because COLUMNS 1 and 2 are specified in
proper sequence. Optimization cannot occur if the WHERE clause references only COLUMN2 or COLUMN3
because the query processor cannot generate an SSA and the query processor or connector must retrieve
all of the mapped segments and perform all filtering logic.

Related concepts
“WHERE clause subfield support” on page 627
When you use the IMS JDBC drivers to pass SQL statements, you can use the WHERE clause to list
subfields of any field, as long as the field itself is searchable and is fully defined by the subfields.
Related information
Keyed access techniques, SSA and IMS optimization

SQL statement usage with the IMS Universal JDBC driver
The following usage rules apply to SQL statements passed to IMS with the IMS Universal JDBC driver.

Foreign key fields
In relational databases, hierarchies can be logically built by creating foreign key relationships between
tables. In IMS, the hierarchies are explicit and are part of the database definition itself. The IMS Universal
JDBC driver introduces the concept of foreign keys to capture these explicit hierarchies in a relational
sense, which makes the SQL syntax for IMS equivalent to standard SQL.

When accessing IMS databases with the IMS Universal JDBC driver, every table that is not the root table
in a hierarchic path will virtually contain the unique keys of all of its parent segments up to the root of the
database. These keys are called foreign key fields.

For segments with secondary indexes, the secondary index is also the primary key of the segment.
Foreign keys that correspond with the segment are derived from the name of the secondary index.

Restriction: Secondary indexes cannot be referenced in SELECT statements. They can only be referenced
in WHERE clauses.

The purpose of the foreign key fields is to maintain referential integrity, similar to foreign keys in relational
databases. This allows SQL SELECT, INSERT, UPDATE, and DELETE queries to be written against specific
tables and columns located in a hierarchic path.

Remember: Foreign keys are maintained internally by the IMS Universal JDBC driver; the keys are not
physically stored in the IMS database.

Hospital database example without a secondary index
For example, in the Hospital database, the HOSPITAL, WARD, and PATIENT tables are on the same
hierarchic path. The JDBC application would view the tables as containing the following columns.

HOSPITAL table
Columns are:

• HOSPNAME
• HOSPCODE (primary key)

Chapter 40. Programming with the IMS Universal drivers 619

https://www.ibm.com/docs/en/icfsfz/11.3.0?topic=optimization-keyed-access-techniques-ssa-ims

WARD table
Columns are:

• WARDNO (primary key)
• WARDNAME
• PATCOUNT
• NURCOUNT
• DOCCOUNT
• HOSPITAL_HOSPCODE (foreign key field referencing the HOSPCODE column in the HOSPITAL table)

PATIENT table
Columns are:

• PATNUM (primary key)
• PATNAME
• WARD_WARDNO (foreign key field referencing the WARDNO column in the WARD table)
• HOSPITAL_HOSPCODE (foreign key field referencing the HOSPCODE column in the HOSPITAL table)

The following queries show how SQL SELECT statements can use foreign keys, based on the previous
database example. The following statement retrieves all columns from a PATIENT table derived from a
child segment under HOSPITAL and WARD on a hierarchic path:

SELECT * FROM PCB01.PATIENT
WHERE HOSPITAL_HOSPCODE = 'H5140070000H'
 AND WARD_WARDNO = '0023'

The following example shows an INSERT statement using foreign keys:

INSERT INTO PCB01.PATIENT (PATNUM, PATNAME,
WARD_WARDNO, HOSPITAL_HOSPCODE)
VALUES ('00345', 'John Doe', '0023', 'H514007000H')

The following statements retrieve the hospital code and all ward names from a WARD table. These
statements are all equivalent:

SELECT HOSPITAL.HOSPCODE, WARD.WARDNAME
FROM PCB01.HOSPITAL, PCB01.WARD

SELECT HOSPITAL_HOSPCODE, WARD.WARDNAME
FROM PCB01.WARD

SELECT WARD.HOSPITAL_HOSPCODE, WARD.WARDNAME
FROM PCB01.WARD

SELECT HOSPITAL_HOSPCODE, WARDNAME
FROM PCB01.WARD

The following statement will fail because the column HOSPITAL_HOSPCODE is not in the table
HOSPITAL.:

SELECT HOSPITAL_HOSPCODE FROM PCB01.HOSPITAL

Hospital database example with a secondary index
The following example shows how the previous example would change if the HOSPITAL table had a
secondary index.

620 IMS: Application Programming

HOSPITAL table
Columns are:

• HOSPNAME (secondary index and primary key)
• HOSPCODE

WARD table
Columns are:

• WARDNO (primary key)
• WARDNAME
• PATCOUNT
• NURCOUNT
• DOCCOUNT
• HOSPITAL_HOSPNAME (foreign key field referencing the HOSPNAME secondary index in the HOSPITAL

table)

PATIENT table
Columns are:

• PATNUM (primary key)
• PATNAME
• WARD_WARDNO (foreign key field referencing the WARDNO column in the WARD table)
• HOSPITAL_HOSPNAME (foreign key field referencing the HOSPNAME secondary index in the HOSPITAL

table)

CREATE statement usage
The CREATE statement is used to create a resource in IMS.

Each one of the create commands has their own separate list of keywords available. You can issue the
following create commands:

• CREATE DATABASE (Application Programming APIs)
• CREATE TABLE (Application Programming APIs)
• CREATE TABLESPACE (Application Programming APIs)
• CREATE PROGRAMVIEW (Application Programming APIs)

Example
Issuing the CREATE DATABASE statement, looks similar to the following.

CREATE DATABASE MYDB ACCESS HIDAM VSAM LIKE BASEDB CCSID 'UTF-8'
DATA CAPTURE CHANGES (EXIT1

NOCASCADE DATA INPOS PATH LOG, EXIT2 NOCASCADE DATA INPOS PATH LOG)
VERSION '1.8' DATXEXITNO

ALTER statement usage
The ALTER statement is used to modify a resource in IMS.

Each one of the alter commands has their own separate list of keywords available. You can issue the
following alter commands:

• ALTER DATABASE (Application Programming APIs)
• ALTER TABLE (Application Programming APIs)

Chapter 40. Programming with the IMS Universal drivers 621

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_database.htm#ims_sql_create_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_table.htm#ims_sql_create_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_tablespace.htm#ims_sql_create_tablespace
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_create_programview.htm#ims_sql_create_programview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_alter_database.htm#ims_sql_alter_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_alter_table.htm#ims_sql_alter_table

• ALTER TABLESPACE (Application Programming APIs)

Example
Issuing the ALTER DATABASE statement, looks similar to the following.

ALTER DATABASE MYDB CCSID 'Cp1047' VERSION '1.8' DATXEXITYES

Note: This alter statement will only modify the given keywords, any other keywords that were originally
defined will not change unless specified specifically in the ALTER statement.

DROP statement usage
The DROP statement is used to remove a resource in IMS.

Each one of the drop commands has their own separate list of keywords available. You can issue the
following drop commands:

• DROP DATABASE (Application Programming APIs)
• DROP PROGRAMVIEW (Application Programming APIs)
• DROP TABLE (Application Programming APIs)
• DROP TABLESPACE (Application Programming APIs)

Example
Issuing the DROP DATABASE statement, looks similar to the following.

DROP DATABASE MYDB

SELECT statement usage
The SELECT statement is used to retrieve data from one or more tables. The result is returned in a tabular
result set.

When using the SELECT statement with the IMS Universal JDBC driver:

• If you are selecting from multiple tables and the same column name exists in one or more of these
tables, you must table-qualify the column or an ambiguity error will occur.

• The FROM clause must list all the tables you are selecting data from. The tables listed in the FROM
clause must be in the same hierarchic path in the IMS database.

• In Java applications using the IMS JDBC drivers, connections are made to PSBs. Because there are
multiple database PCBs in a PSB, queries must specify which PCB in a PSB to use. To specify which
PCB to use, always qualify segments that are referenced in the FROM clause of an SQL statement by
prefixing the segment name with the PCB name. You can omit the PCB name only if the PSB contains
only one PCB.

Examples of valid IMS Universal JDBC driver SELECT queries
Selecting specified columns

The following statement retrieves the ward names and patient names from the WARD and PATIENT
tables, respectively:

SELECT WARD.WARDNAME,PATIENT.PATNAME
FROM PCB01.WARD, PATIENT

Selecting all columns with * symbol
The following statement retrieves all columns for the PATIENT table:

SELECT *
FROM PCB01.PATIENT

The following statement retrieves the hospital name from the HOSPITAL table and all columns from
the WARD table:

622 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_alter_tablespace.htm#ims_sql_alter_tablespace
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_drop_database.htm#ims_sql_drop_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_drop_programview.htm#ims_sql_drop_programview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_drop_table.htm#ims_sql_drop_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_sql_drop_tablespace.htm#ims_sql_drop_tablespace

SELECT HOSPITAL.HOSPNAME, WARD.*
FROM PCB01.HOSPITAL, PCB01.WARD

Selecting with DISTINCT
The following statement retrieves all distinct patient names from the PATIENT table:

SELECT DISTINCT PATNAME
FROM PCB01.PATIENT

Selecting with ORDER BY
The ORDER BY clause is used to sort the rows. By default, results are sorted by ascending
numerical or alphabetical order. The following statement retrieves all distinct hospital names, sorted
in alphabetical order:

SELECT DISTINCT HOSPNAME FROM PCB01.HOSPITAL
 ORDER BY HOSPNAME

The following statement retrieves all ward names sorted in alphabetical order, and the number of
patients in each ward sorted in ascending numerical order. If two WARDNAME values in the ORDER BY
compare are equal, the tiebreaker will be their corresponding PATCOUNT values (in this case, the row
with the numerically smaller corresponding PATCOUNT value is displayed first).

SELECT WARDNAME, PATCOUNT FROM PCB01.WARD
 ORDER BY WARDNAME, PATCOUNT

Use the DESC qualifier to sort the query result in descending numerical or reverse alphabetical order.
The following statement retrieves all patient names in reverse alphabetical order:

SELECT PATNAME FROM PCB01.PATIENT
 ORDER BY PATNAME DESC

Use the ASC qualifier to explicitly sort the query result in ascending numerical or reverse alphabetical
order. The following statement retrieves all ward names sorted in ascending alphabetical order, and
the number of patients in each ward sorted in descending numerical order:

SELECT WARDNAME, PATCOUNT FROM PCB01.WARD
 ORDER BY WARDNAME ASC, PATCOUNT DESC

Selecting with GROUP BY
The GROUP BY clause is used to return results for aggregate functions, grouped by distinct column
values. The following statement returns the aggregated sum of all doctors in every ward in a hospital,
grouped by distinct ward names:

SELECT WARDNAME, SUM(DOCCOUNT)
FROM PCB01.WARD
WHERE HOSPITAL_HOSPCODE = 'H5140070000H
 GROUP BY WARDNAME

The following statement returns the hospital name, ward name, and the count of all patients in each
ward in each hospital, grouped by distinct hospital names and sub-grouped by ward names:

SELECT HOSPNAME, WARDNAME, COUNT(PATNAME)
FROM PCB01.HOSPITAL, WARD, PATIENT
 GROUP BY HOSPNAME, WARDNAME

Using the AS clause
Use the AS clause to rename the aggregate function column in the result set or any other field in the
SELECT statement. The following statement returns the aggregate count of distinct patients in the
PATIENT table with the alias of "PATIENTCOUNT":

SELECT COUNT(DISTINCT PATNAME)
 AS PATIENTCOUNT
FROM PCB01.PATIENT

Chapter 40. Programming with the IMS Universal drivers 623

The following statement returns the aggregate count of distinct wards in all hospitals with the alias of
"WARDCOUNT", sorted by the hospital names in alphabetical order, and grouped by distinct hospital
names (under a renamed column alias "HOSPITALNAME"):

SELECT HOSPNAME AS HOSPITALNAME, COUNT(DISTINCT WARDNAME)
 AS WARDCOUNT
FROM PCB01.HOSPITAL, WARD
 GROUP BY HOSPNAME
 ORDER BY HOSPNAME

INSERT statement usage
The INSERT statement is used to insert new rows into a table.

Foreign key fields enable the IMS Universal JDBC driver to properly position the new record (or segment
instance) to be inserted in the hierarchic path using standard SQL processing, similar to foreign keys in a
relational database. When inserting a record in a table at a non-root level, you must specify values for all
the foreign key fields of the table.

Examples of valid IMS Universal JDBC driver INSERT statements
Inserting data at the root

The following statement inserts a new HOSPITAL record:

INSERT INTO PCB01.HOSPITAL (HOSPCODE, HOSPNAME)
VALUES ('R1210050000A', 'O''MALLEY CLINIC')

Inserting data into a specified table in a hierarchic path
When inserting a record in a table at a non-root level, you must specify values for all the foreign
key fields of the table. The following statement inserts a new ILLNESS record under a specific
HOSPITAL, WARD, and PATIENT table. In this example, the ILLNESS table has three foreign keys
HOSPITAL_HOSPCODE, WARD_WARDNO, and PATIENT_PATNUM. The new record will be inserted if
and only if there is a HOSPCODE in the HOSPITAL table with the value of 'H5140070000H', a WARD
table with a WARDNO value of '01', and a PATIENT table with PATNUM value of 'R1210050000A'.

INSERT INTO PCB01.ILLNESS (HOSPITAL_HOSPCODE, WARD_WARDNO,
 ILLNAME, PATIENT_PATNUM)
VALUES ('H5140070000H', '01', 'COLD', 'R1210050000A')

The following statement inserts a new WARD record under a specific HOSPITAL table. In this example,
the WARD table has the foreign key HOSPITAL_HOSPCODE. The new record will be inserted if and
only if there is a HOSPCODE in the HOSPITAL table with the value of 'H5140070000H'.

INSERT INTO PCB01.WARD (WARDNO, HOSPITAL_HOSPCODE, WARDNAME)
VALUES ('0001', 'H5140070000H', 'EMGY')

Inserting data in a searchable field with subfields
If a searchable field consists of subfields, you can insert data by setting all the subfield values such
that the searchable field is completely populated.

Examples of invalid IMS Universal JDBC driver INSERT statements
Inserting a record at a non-root level without specifying foreign key fields

In this statement, the WARD_WARDNO foreign key field is missing. The query will fail because it
violates the referential integrity constraint that all foreign keys must be provided with legal values.

INSERT INTO PCB01.PATIENT (HOSPITAL_HOSPCODE, PATNAME, PATNUM)
VALUES ('HW3201', 'JOHN O''CONNER', 'Z800')

624 IMS: Application Programming

UPDATE statement usage
The UPDATE statement is used to modify the data in a table.

Examples of valid IMS Universal JDBC driver UPDATE statements
Updating one column in a record

The following statement updates the root:

UPDATE HOSPITAL SET HOSPNAME = 'MISSION CREEK'
WHERE HOSPITAL.HOSPCODE = 'H001007'

Updating multiple columns in a specified record in a hierarchic path
Foreign keys allow the IMS Universal JDBC driver to maintain referential integrity by identifying the
exact record (or segment instance) to update. The following statement updates a WARD record under
a specific HOSPITAL. In this example, the WARD table has the foreign key HOSPITAL_HOSPCODE. The
record will be updated if and only if there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H'.

UPDATE WARD SET WARDNAME = 'EMGY',
 DOCCOUNT = '2', NURCOUNT = '4'
WHERE HOSPITAL_HOSPCODE = 'H5140070000H'
 AND WARDNO = '01'

Examples of invalid IMS Universal JDBC driver UPDATE statements
Updating a foreign key field

Making an UPDATE on a foreign key field is invalid for the IMS Universal JDBC driver. For example, the
following UPDATE query will fail:

UPDATE WARD SET WARDNAME = 'EMGY',
 HOSPITAL_HOSPCODE = 'H5140070000H'
WHERE WARDNO = '01'

DELETE statement usage
The DELETE statement is used to delete rows in a table. DELETE operations are cascaded to all child
segments.

Examples of valid IMS Universal JDBC driver DELETE statements
Deleting an entire database

The following statement deletes the HOSPITAL database:

DELETE FROM pcb01.HOSPITAL

Deleting a root
The following statement deletes the root segment instance and all its children in the hierarchic path.

DELETE FROM pcb01.HOSPITAL
WHERE HOSPCODE = 'H5140070000H'

Deleting a single record
Foreign keys allow the IMS Universal JDBC driver to maintain referential integrity by identifying the
exact record (or segment instance) to delete. The following statement deletes a single record from the
WARD table. In this example, the WARD table has the foreign key HOSPITAL_HOSPCODE. The WARD
record will be deleted if and only if there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H' and a WARD table with a WARDNO value of '0001'.

DELETE FROM pcb01.WARD
WHERE HOSPITAL_HOSPCODE = 'H5140070000H'
 AND WARDNO = '0001'

Chapter 40. Programming with the IMS Universal drivers 625

Deleting multiple records
The following statement deletes multiple records from the PATIENT table. In this example, the
PATIENT table has two foreign keys: HOSPITAL_HOSPCODE and WARD_WARDNO. The PATIENT
record will be deleted if and only if there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H', a WARD table with WARDNO value of '0001', and a PATIENT table with a PATNUM
value greater than '0007'.

DELETE FROM pcb01.PATIENT
WHERE PATNUM > '0007'
 AND HOSPITAL_HOSPCODE = 'H5140070000H'
 AND WARD_WARDNO = '0001'

The following statement deletes all WARD segment instances in the entire database:

DELETE FROM pcb01.WARD

WHERE clause usage
Use the WHERE clause to select data conditionally in SQL SELECT, UPDATE, or DELETE statements.

When using the WHERE clause with the IMS Universal JDBC driver, use columns that are in any table
listed in the FROM clause.

Recommendation: Qualify columns with table names to avoid the ambiguity that can arise if a column
exists in multiple tables that are joined in the FROM clause.

The IMS JDBC drivers convert the WHERE clause in a SQL query to a segment search argument (SSA) list
when querying a database. SSA rules restrict the type of conditions you can specify in the WHERE clause.
The following restrictions apply:

• In general, compare columns to values, not other columns. With the introduction of foreign keys, you
can compare one column to another column if one column is the foreign key and the other column is the
primary key it is referencing. Example:

WHERE HOSPITAL_HOSPCODE = HOSPITAL.HOSPCODE

You can use the following operators between column names and values in the individual qualification
statements:

=
Equals

!=
Not equal

>
Greater than

>=
Greater than or equals

<
Less than

<=
Less than or equals

The WHERE clause in the following example is valid because it compares a column to a value:

WHERE PAYMENTS.PATNUM='A415'

In contrast, the following WHERE clause is invalid and fails because it compares two columns:

WHERE PAYMENTS.PATNUM=PAYMENTS.AMOUNT

• Do not use parentheses. Qualification statements are evaluated from left to right. The order of
evaluation for operators is the IMS evaluation order for segment search arguments.

626 IMS: Application Programming

• List all qualification statements for a table adjacently. For example, in the following valid WHERE clause,
the qualified columns from the same PATIENT table are listed adjacently:

WHERE PATIENT.PATNAME='BOB' OR PATIENT.PATNUM='A342' AND WARD.WARDNO='52'

The following invalid WHERE clause fails because the columns from the HOSPITAL table are separated
by the columns from the WARD table:

WHERE HOSPITAL.HOSPNAME='Santa Teresa' AND WARD.WARDNO='52'
OR WARD.WARDNAME='CARD' AND HOSPITAL.HOSPCODE='90'

• The OR operator can be used only between qualification statements that contain columns from the
same table. You cannot use the OR operator across tables. To combine qualification statements for
different tables, use an AND operator. For example, the following invalid WHERE clause will fail:

WHERE WARD.WARDNO='03' OR PATIENT.PATNUM='A415'

However, the following WHERE clause is valid because the OR operator is between two qualification
statements for the same table:

WHERE PATIENT.PATNUM='A409' OR PATIENT.PATNAME='Sandy'

• When using prepared statements, you can use the question mark (?) character, which is later filled in
with a value. For example, the following WHERE clause is valid:

WHERE PAYMENTS.AMOUNT>?

• When using a column that is a virtual foreign key in the qualification statements, you must follow these
rules when access to the database is random:

– Specify a virtual foreign key that is only from one of the first child segments of the root segment (level
2). You cannot specify virtual foreign keys that are at lower levels in the hierarchy.

– Use the OR operator to combine multiple qualification statements that use the virtual foreign key.
– Specify qualifications statements that use only the virtual foreign key. For example, you cannot use

the OR or the AND operator to specify another column from the table or another table.

For example, the following WHERE clause is valid:

WHERE HOSPITAL_HOSPCODE='ARS100100D' OR HOSPITAL_HOSPCODE='ARS100100D'

(Optional) ssaOptimization- This property indicates whether to optimize the SSA List for SQL queries
that include columns that are a subset of a primary key or a secondary index in the WHERE clause. The
SSA List would be modified to a ranged search on the key provided that the column/columns cover the
beginning byte/bytes of the key offset range. The default value is false.

WHERE clause subfield support
When you use the IMS JDBC drivers to pass SQL statements, you can use the WHERE clause to list
subfields of any field, as long as the field itself is searchable and is fully defined by the subfields.

For example, a DBD-defined field is named ADDRESS and is 30 bytes long. In a COBOL copybook, this
field is split into the subfields CITY, STATE, and ZIPCODE, as illustrated by the following code.

01 ADDRESS
 02 CITY PIC X(10)
 02 STATE PIC X(10)
 03 ZIP PIC X(10)

Without subfield support, the ADDRESS value in the WHERE clause would have to be padded manually
and entered as follows:

WHERE ADDRESS = 'san jose ca 95141 '

Chapter 40. Programming with the IMS Universal drivers 627

With subfield support, you can enter the WHERE clause as follows:

WHERE CITY = 'san jose'
 AND STATE = 'ca'
 AND ZIPCODE = '95141'

The IMS JDBC drivers convert the individual subfields and bundle them into the ADDRESS field before
sending the SQL query to IMS.

The following rules and restrictions apply to WHERE clause subfield support:

• Parameter markers are supported for subfields. For example, for a prepared statement, the following
WHERE clause entry is valid:

WHERE CITY = ? AND STATE = ? AND ZIPCODE = ?

• The only relational operator supported for subfields is "=" (equals operator).
• The only Boolean operator is "AND" for connecting subfields. The following WHERE clause entry is valid

because the subfields are connected using only "AND" operators:

WHERE HOSPCODE=? OR CITY = ? AND STATE = ? AND ZIPCODE = ?

• All the subfields for a particular searchable field must be specified in the WHERE clause. You cannot
omit any subfields of a field. For example, the following WHERE clause entry is invalid because the
STATE subfield was not provided:

WHERE CITY = ? AND ZIPCODE = ?

• When specifying the subfields in a WHERE clause, all the subfields for a searchable field must be listed
adjacent to each other. For example, the following WHERE clause entry is invalid because the listing of
the subfields is not contiguous:

WHERE CITY = ? AND STATE = ? OR HOSPCODE=? AND ZIPCODE = ?

• You can enter subfields for multiple searchable fields in the WHERE clause. For example, if the
PATNAME field was broken into LASTNAME and FIRSTNAME subfields, you can specify the subfields
for ADDRESS and PATNAME as follows:

WHERE CITY = ? AND STATE = ? AND ZIPCODE = ?
 OR LASTNAME = ? AND FIRSTNAME = ?

• When specifying the subfields in a WHERE clause across multiple tables, all the subfields for the
searchable fields in each table must be listed together, before listing the subfields for the next table. For
example, if the ADDRESS field was in the HOSPITAL table and the PATNAME field was in the PATIENT
table, the following WHERE clause entry is invalid because not all the ADDRESS subfields have been
listed for HOSPITAL:

WHERE HOSPITAL.CITY = ? AND HOSPITAL.ZIPCODE = ?
 AND PATIENT.LASTNAME = ? AND PATIENT.FIRSTNAME = ?

Writing DL/I calls to access an IMS database with the IMS Universal JDBC
driver

In addition to support for SQL queries, the IMS Universal JDBC driver also supports casts to DL/I objects.

The IMS Universal JDBC driver is normally used to provide an interface for an application program to
make SQL queries to get IMS data. However, you can also cast to DL/I objects from the JDBC interface.
You might want to use this approach if you want to reuse a known-good DL/I call in a new application
context, or if you want to obtain maximum performance for a simple query.

1. Create JDBC and PSB connection objects.
2. Obtain a connection to the IMS data.

628 IMS: Application Programming

3. Cast the JDBC connection to get a PSB handle from the IMS Universal DL/I driver.
4. Get a PCB object from your existing PSB connection object.
5. Allocate a data connection from your PSB object.
6. Build and submit your segment search argument (SSA) list.
7. Create Path and PathSet objects to contain the returned data.
8. Process the PathSet data.

This example demonstrates how to make the cast to the DL/I driver and obtain data. This examples
accesses a JDBC connection from a JNDI datasource that was created in a JEE server with the IMS
Universal Database Resource Adapter.

import java.sql.Connection;

import javax.naming.InitialContext;
import javax.sql.DataSource;

import com.ibm.ims.dli.PCB;
import com.ibm.ims.dli.PSB;
import com.ibm.ims.dli.Path;
import com.ibm.ims.dli.PathSet;
import com.ibm.ims.dli.SSAList;

public class JDBCToDLI {
 public static void main(String args[]){

 Connection conn = null; // This is a JDBC Connection
 // This is the equivalent connection object to the JDBC connection for the IMS Java DL/I API
 PSB psb = null;
 try{
 // Lookup the JNDI DataSource that contains the IMS connection information.
 // The JNDI DataSource would be defined in the JEE
 // server with the IMS Universal Database Resource Adapters
 InitialContext ic = new InitialContext();
 DataSource ds = (DataSource) ic.lookup("myJNDIName");

 // Get a JDBC Connection from the DataSource
 conn = ds.getConnection();

 // Cast the JDBC Connection to the IMS ConnectImpl in order to retrieve
 // a handle to the PSB in the IMS Java DL/I API
 psb = ((com.ibm.ims.jdbc.ConnectionImpl) conn).getPSB();

 //Get a PCB using the PSB you just created
 PCB ivp1pcb = psb.getPCB("PHONEAP");
 //Allocate PSB1 to establish a connection to the data
 psb.allocate();
 System.out.println("PSB for IVPDB1 Allocated");

 //Do work on PSB1
 SSAList ssaList = ivp1pcb.getSSAList("PhoneBook"); //Create an SSA list to use in a DLI
call.
 //This SSA list qualifies the entire
 //PhoneBook segment. PhoneBook is an
 //alias name for segment A1111111 which
 //is specificed in the database view
 //(DFSIVPDBView.java).

 //Create a path object for later use
 Path path = null;
 PathSet ps = ivp1pcb.batchRetrieve(ssaList); //This statement uses the PCB object
created
 //above to do a batch retrieval of
 //all the segment instances of PhoneBook.
 //The data returned will be placed in
 //a PathSet which is a collection of
 //Path's containing the data you requested
 System.out.println("Batch retrieved all segment instances of Phone Book");

 System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
 System.out.println("--");

 /*
 * The following while loop process the PathSet by checking that there is

Chapter 40. Programming with the IMS Universal drivers 629

 * a next element (ps.hasNext), then it prints out the three fields that are defined in the
 * database view (FIRSTNAME, LASTNAME, EXTENSION) for segment PhoneBook. This will continue
 * until there are no more elements in the PathSet
 */
 while(ps.hasNext()){
 path = ps.next();
 System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
 path.getString("LASTNAME").trim()+"\t\t"+
 path.getString("EXTENSION").trim()+"\t"+
 path.getString("ZIPCODE").trim());
 }

 //INSERT a segment into the PhoneBook
 path = ssaList.getPathForInsert("PhoneBook");
 path.setString("LASTNAME", "LAST15");
 path.setString("FIRSTNAME", "FIRST15");
 path.setString("EXTENSION", "8-111-1515");
 path.setString("ZIPCODE", "D15/R15");
 ivp1pcb.insert(path, ssaList);
 System.out.println("\nInserted New Phone Book Entry with LASTNAME equal to LAST15");

 //Batch retrieve all segment instances of the PhoneBook (A1111111) segment
 ps = ivp1pcb.batchRetrieve(ssaList);
 System.out.println("\nBatch Retrieved all segment instances of Phone Book and verify LAST15
was inserted");

 System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
 System.out.println("--");
 while(ps.hasNext()){
 path = ps.next();
 System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
 path.getString("LASTNAME").trim()+"\t\t"+
 path.getString("EXTENSION").trim()+"\t"+
 path.getString("ZIPCODE").trim());
 }

 //UPDATE FIRSTNAME to NEWNAME where LASTNAME equals LAST15
 ssaList.addInitialQualification(1, "LASTNAME", SSAList.EQUALS, "LAST15");
 if(ivp1pcb.getUnique(path, ssaList, true)){
 path.setString("FIRSTNAME", "NEWNAME");
 if(16448==ivp1pcb.replace(path)){
 System.out.println("\nUpdated FIRSTNAME for segments with LASTNAME of LAST15");
 }
 }

 ssaList.removeAllQualificationStatements(1);
 //Batch retrieve all segment instances of the PhoneBook (A1111111) segment
 ps = ivp1pcb.batchRetrieve(ssaList);
 System.out.println("\nBatch Retrieved all segment instances of Phone Book and " +
 "\nverify that the FISTNAME was updated for the entry LAST15");

 System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
 System.out.println("--");
 while(ps.hasNext()){
 path = ps.next();
 System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
 path.getString("LASTNAME").trim()+"\t\t"+
 path.getString("EXTENSION").trim()+"\t"+
 path.getString("ZIPCODE").trim());
 }

 //DELETE all segments where LASTNAME equals LAST15
 ssaList.addInitialQualification(1, "LASTNAME", SSAList.EQUALS, "LAST15");
 if(ivp1pcb.batchDelete(ssaList)==1){
 System.out.println("\nSegment with LASTNAME equal to LAST15 has been deleted");
 }

 ssaList.removeAllQualificationStatements(1);

 //Batch retrieve all segment instances of the PhoneBook (A1111111) segment
 ps = ivp1pcb.batchRetrieve(ssaList);
 System.out.println("\nBatch Retrieved all segment instances of Phone Book and " +
 "\nverify that the segment with LASTNAME of LAST15 has been deleted");

 System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
 System.out.println("--");
 while(ps.hasNext()){
 path = ps.next();
 System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
 path.getString("LASTNAME").trim()+"\t\t"+
 path.getString("EXTENSION").trim()+"\t"+
 path.getString("ZIPCODE").trim());

630 IMS: Application Programming

 }

 //Commit the work
 psb.commit();
 System.out.println("\nPSB Committed");
 //Deallocate the PSB
 psb.deallocate();
 System.out.println("PSB deallocated");
 //Close the socket connection
 psb.close();
 System.out.println("Connection Closed");
 System.out.println("Open Database IVP Completed");
 } catch(Exception e) {
 e.printStackTrace();
 try {
 psb.deallocate();
 psb.close();
 }catch(Exception e1){
 e1.printStackTrace();
 }
 }
 }
}

Related concepts
“Programming with the IMS Universal DL/I driver” on page 641
Use the IMS Universal DL/I driver when you need to write granular queries to access IMS databases
directly from a Java client in an non-managed environment.

IMS Universal JDBC driver support for XML
You can write applications to store XML data in IMS databases or retrieve XML data from IMS databases
by using the IMS Universal JDBC driver. Both the type-4 and type-2 drivers offer this support.

You can use the IMS Universal JDBC driver support for XML to complete the following operations:

• Retrieve XML data from an IMS database as a character large object (CLOB) through a SQL SELECT
statement.

• Store XML data into an IMS database, through a SQL INSERT statement, by using either
the PreparedStatement.setClob method or the PreparedStatement.setCharacterStream
method.

The syntax for storing and retrieving XML data by using the IMS Universal JDBC driver is independent of
how the XML data is physically stored in the IMS database. The interface is not sensitive to whether the
data is stored in decomposed storage mode, intact storage mode, or both or whether the data is stored in
an existing or new IMS database.

To use IMS Universal JDBC driver support for XML, you need to generate a runtime Java metadata class
that corresponds to a program specification block (PSB). The Java metadata class must define the column
fields in the IMS database for storing and retrieving XML data and identify the XML schema that describes
the structure of the data.

IMS Version 12 and later includes new DBD source parameters (the DATATYPE=XML parameter of the
FIELD statement and the OVERFLOW parameter of the DFSMARSH statement) that you can use to define
XML-containing fields and overflow segments. If your IMS system uses the IMS catalog database, the IMS
Enterprise Suite Explorer for Development can make a connection to the catalog to dynamically retrieve
the needed metadata instead of generating a static metadata class. If your IMS system does not use the
IMS catalog database, these field definitions are included in the static Java metadata class created with
the IMS Explorer for Development.

Defining XML datatype column fields in the Java metadata class
To use IMS Universal JDBC driver support for XML, you need to define the XML datatype column fields for
storing and retrieving XML data.

Note: 15.3 and later supports new DBD generation parameters for XML datatype definitions: the
DATATYPE=XML parameter for the FIELD statement and the OVERFLOW segment definition for the

Chapter 40. Programming with the IMS Universal drivers 631

DFSMARSH statement. If you use these parameters, the Java metadata class will already contain the
XML definitions and you do not need to modify the class. If you are using the IMS catalog database, the
metadata is available with a data connection instead of with a static metadata class.

To define an XML data type column field in the Java metadata class:

1. Generate the Java metadata class with the IMS Enterprise Suite Explorer for Development.
2. Generate the XML schema for the database with the IMS Enterprise Suite DLIModel utility plug-in or

manually create the XML schema based on the DBD and data type mappings.
3. Specify the XML datatype column field by modifying the generated Java metadata class.

If you are storing or retrieving XML data in decomposed storage mode, define the XML datatype
column field with the following DLITypeInfo constructor syntax. One or more XML datatype column
fields can be defined in a segment.

public DLITypeInfo(String fieldName,
 String XMLSchemaName,
 DLITypeInfo.XML);

4. During database connection setup, pass the name of the Java metadata class to the IMS Universal
JDBC driver.

The following example shows how to define XML column datatype fields in a Java metadata class for
decomposed mode. In this example, an XML datatype column field named "HOSPXML" is defined that
is associated with the "BMP255-PCB01.xsd" XML schema. Another XML datatype column field named
"HXML" is defined that is associated with the "B.xsd" XML schema.

// The following describes Segment: HOSPITAL ("HOSPITAL") in PCB: PCB01 ("PCB01")
 static DLITypeInfo[] PCB01HOSPITALArray= {
 new DLITypeInfo("HOSPLL", DLITypeInfo.CHAR, 1, 2, "HOSPLL"),
 new DLITypeInfo("HOSPCODE", DLITypeInfo.CHAR, 3, 12,
 "HOSPCODE", DLITypeInfo.UNIQUE_KEY),
 new DLITypeInfo("HOSPNAME", DLITypeInfo.CHAR, 15, 17, "HOSPNAME"),
 new DLITypeInfo("HOSPXML", "BMP255-PCB01.xsd", DLITypeInfo.XML),
 new DLITypeInfo("HXML", "B.xsd", DLITypeInfo.XML)
 };

Storing XML data by using the IMS Universal JDBC driver
You can use the IMS Universal JDBC driver to store XML data into an IMS database through an SQL
INSERT statement.

To store XML data in your IMS Universal JDBC driver application:

1. Specify the file path that contains the XML schema file (.xsd) that describes the input XML data
structure by setting the http://www.ibm.com/ims/schema-resolver/file/path environment variable.
The following example shows how to programmatically set the environment variable. In this example,
the file path uxml/samples indicates a relative path to the XML schema file. You can also specify an
absolute file path.

System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",
 "uxml/samples");

2. Specify your XML data source.
If you are reading in XML data from an external source, such as a file, you must create a
java.io.Reader object to wrap the input XML data. The following example shows how to
create an InputStreamReader object to wrap an external file named hospwashington.xml. The
InputStreamReader object converts the bytes that are read from the input file from ASCII encoding
to Unicode.

String doc = "hospwashington.xml";
InputStream fileStream = getClass().getResourceAsStream(doc);
if (fileStream == null) {
 throw new FileNotFoundException("Insert Document: '" + doc + "' was
 not found in classpath");

632 IMS: Application Programming

}
InputStreamReader fileReader = new InputStreamReader(fileStream, "ASCII");

3. Insert the XML data.
a) Create a java.sql.preparedStatement object representing the SQL INSERT call.

In the SQL INSERT statement, you must specify the name of the XML column to store the XML data.
The column name must match the name that is defined in the Java metadata class.

The following example shows how to create a preparedStatement object to insert data into the
hospxml column in the HOSPITAL segment, using the java.sql.Connection instance conn.

String s = "INSERT INTO pcb01.HOSPITAL (hospxml) VALUES (?)"
PreparedStatement ps = conn.prepareStatement(s);

b) Set the value of the XML data to insert into the preparedStatement object.

The following table describes the methods and corresponding input data types that you can use to
insert data in XML columns.

Table 103. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

In decomposed storage mode, XML data is stored with EBCDIC encoding. In intact storage mode,
the default encoding is Unicode.

The following code sample shows how to insert XML data into the Hospital database.

package uxml.samples;

import java.io.*;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.PreparedStatement;
import com.ibm.ims.jdbc.IMSDataSource;

public class StoreXMLSamples{

 public static void main(String argv[]) throws SQLException,IOException {
 IMSDataSource ds = new IMSDataSource();
 ds.setDatabaseName("class://uxml.samples.BMP255NewSyntaxDatabaseView");
 ds.setDatastoreName("IMS1");
 ds.setDatastoreServer("yourhost.yourdomain.com");
 ds.setPortNumber(5555);
 ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);
 ds.setUser("myUserID");
 ds.setPassword("myPass");

 // Specify file path of XML schema
 System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",
 "uxml/samples");

 Connection conn = null;

 try {
 conn = ds.getConnection();
 Statement st = conn.createStatement();
 String doc = "hospwashington.xml";
 StoreXMLSamples storeSample = new StoreXMLSamples();
 InputStream fileStream =
 storeSample.getClass().getResourceAsStream(doc);
 if (fileStream == null) {
 throw new FileNotFoundException("Insert Document: '" +
 doc + "' was not found in classpath");
 }

 // Convert XML document from ASCII to Unicode

Chapter 40. Programming with the IMS Universal drivers 633

 InputStreamReader fileReader =
 new InputStreamReader(fileStream, "ASCII");

 PreparedStatement ps =
 conn.prepareStatement("INSERT INTO pcb01.HOSPITAL" +
 " (hospxml) VALUES (?)");

 ps.setCharacterStream(1, fileReader, -1);
 int rows = ps.executeUpdate();
 System.out.println("Inserted");
 conn.commit();
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 if (!conn.isClosed()) {
 conn.rollback();
 conn.close();
 }
 }
 }
}

Retrieving XML data by using the IMS Universal JDBC driver
You can use the IMS Universal JDBC driver to retrieve XML data from an IMS database as a character large
object (CLOB) through an SQL SELECT statement.

To retrieve XML data in your IMS Universal JDBC driver application:

1. Specify the file path that contains the XML schema file (.xsd) describing the input XML data structure
by setting the http://www.ibm.com/ims/schema-resolver/file/path environment variable.
The following example shows how to programmatically set the environment variable. In this example,
the file path uxml/samples indicates a relative path to the XML schema file. You can also specify an
absolute file path.

System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",
 "uxml/samples");

2. Specify and execute an SQL SELECT statement to retrieve the XML data.
The database table in your SQL SELECT statement must include the XML column for retrieving the XML
data. If you specify the column name explicitly in the SQL SELECT statement, the column name must
match the name defined in the Java metadata class.

The following example shows how to obtain a java.sql.resultSet object from an SQL
SELECT call to retrieve the hospxml column in the HOSPITAL segment. In the example, st is a
java.sql.Statement instance.

ResultSet rs = st.executeQuery("SELECT hospxml FROM PCB01.HOSPITAL");

3. Read the XML data from the resultSet object after the retrieve call is made.
The XML data is stored in a java.sql.Clob object in the resultSet.

The following code sample shows how to retrieve XML data from the Hospital database.

package uxml.samples;

import java.io.*;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import com.ibm.ims.jdbc.IMSDataSource;

public class RetrieveXMLSamples{

 public static void main(String argv[]) throws SQLException,IOException {
 IMSDataSource ds = new IMSDataSource();
 ds.setDatabaseName("class://uxml.samples.BMP255NewSyntaxDatabaseView");
 ds.setDatastoreName("IMS1");
 ds.setDatastoreServer("yourhost.yourdomain.com");
 ds.setPortNumber(5555);

634 IMS: Application Programming

 ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);
 ds.setUser("myUserId");
 ds.setPassword("myPass");

 // Specify file path of XML schema
 System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",
 "uxml/samples");

 Connection conn = null;

 try {
 conn = ds.getConnection();

 Statement st = conn.createStatement();

 ResultSet rs = st.executeQuery("SELECT hospxml FROM PCB01.HOSPITAL");

 StringWriter sw = new StringWriter();

 while (rs.next()) {

 Clob clob = rs.getClob(1);
 Reader reader = clob.getCharacterStream();
 char[] buffer = new char[1000];
 int read = reader.read(buffer);
 while (read != -1) {
 sw.write(buffer,0,read);
 read = reader.read(buffer);
 }
 }

 String result = sw.toString();
 System.out.println(result);
 System.out.println();

 conn.commit();
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 if (!conn.isClosed()) {
 conn.rollback();
 conn.close();
 }
 }
 }
}

Data transformation support for JDBC
The IMS JDBC drivers provide data transformation on behalf of client applications. When provided with
the information from the IMS catalog database or Java database metadata class, the libraries are able
to internally convert data from one datatype to another. The IMS Universal DL/I driver also includes an
extensible user data type converter for translating custom data types.

Supported JDBC data types
The following table lists the supported Java data types for each JDBC data type.

Table 104. Supported JDBC data types

JDBC data type Java data type Length

ARRAY java.lang.Array Application-defined

BIGINT long 8 bytes

BINARY byte[] 1 - 32 KB

BIT Boolean 1 byte

CHAR java.lang.String 1 - 32 KB

CLOB java.sql.Clob Application-defined

Chapter 40. Programming with the IMS Universal drivers 635

Table 104. Supported JDBC data types (continued)

JDBC data type Java data type Length

DATE java.sql.Date Application-defined

DOUBLE double 8 bytes

FLOAT float 4 bytes

INTEGER int 4 bytes

PACKEDDECIMAL java.math.BigDecimal 1 - 10 bytes

SMALLINT short 2 bytes

STRUCT java.lang.Struct Application-defined

TIME java.sql.Time Application-defined

TIMESTAMP java.sql.Timestamp Application-defined

TINYINT byte 1 byte

ZONEDDECIMAL java.math.BigDecimal 1 - 19 bytes

Methods for retrieving and converting data types
With the IMS Universal JDBC driver, you can use the ResultSet interface (java.sql.ResultSet) to
retrieve and convert the data from the type that is defined in the database metadata to the type that is
required by your Java application. Similarly, with the IMS Universal DL/I driver, you can use the Path
interface to perform data retrieval and conversion to Java data types.

The following table shows the available get methods in the ResultSet interface (for the IMS Universal
JDBC driver) or the Path interface (for the IMS Universal DL/I driver) for accessing data of a certain Java
data type.

The "No Truncation or Data Loss" column indicates the data types that are designed to be accessed
with the given getXXX method. No truncation or data loss occurs when using those methods for those
data types. The data types that are in the "Legal without Data Integrity" column are all other legal calls;
however, data integrity cannot be ensured when using the given getxxx method to access those data
types. If a data type is not in either column, using the given getXXX method for that data type will result in
an exception.

Table 105. ResultSet.getXXX and Path.getXXX methods to retrieve data types

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getByte TINYINT
UTINYINT

SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

636 IMS: Application Programming

Table 105. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getShort SMALLINT
USMALLINT

TINYINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getInt INTEGER
UINTEGER

TINYINT
SMALLINT
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getLong BIGINT
UBIGINT

TINYINT
SMALLINT
INTEGER
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getFloat FLOAT TINYINT
SMALLINT
INTEGER
BIGINT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

Chapter 40. Programming with the IMS Universal drivers 637

Table 105. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getDouble DOUBLE TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getBoolean BIT TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getString CHAR
VARCHAR

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
PACKEDDECIMAL1

ZONEDDECIMAL1

BINARY
DATE
TIME
TIMESTAMP

getBigDecimal BINARY3

PACKEDDECIMAL1

ZONEDDECIMAL1

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR

getClob CLOB2 all others result in an exception

638 IMS: Application Programming

Table 105. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getBytes BINARY SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1
ZONEDDECIMAL1
DATE
TIME

TIMESTAMP

getDate DATE CHAR
VARCHAR
TYIMESTAMP

getTime TIME CHAR
VARCHAR
TIMESTAMP

getTimestamp TIMESTAMP CHAR
VARCHAR
DATE
TIME

Note:

1. PACKEDDECIMAL and ZONEDDECIMAL are data type extensions for IMS Universal JDBC driver and
the IMS Universal DL/I driver. All other types are standard SQL types defined in SQL92. Restriction:
PACKEDDECIMAL and ZONEDDECIMAL data types do not support the Sign Leading or Sign Separate
modes. For these two data types, sign information is always stored with the Sign Trailing method.

2. The CLOB data type is supported only for the retrieval and storage of XML data.
3. The BINARY data type is valid only for decimal data used with a binary type converter.

If the field type is either PACKEDDECIMAL or ZONEDDECIMAL, the type qualifier is the COBOL PICTURE
string that represents the layout of the field. All COBOL PICTURE strings that contain valid combinations
of 9s, Ps, Vs, and Ss are supported. Expansion of PICTURE strings is handled automatically. For example,
'9(5)' is a valid PICTURE string. For zoned decimal numbers, the decimal point can also be used in the
PICTURE string. PIC 9(06)V99 COMP and PIC 9(06)V99 COMP-4 are valid PICTURE clauses for
BINARY decimal data.

If the field contains DATE, TIME, or TIMESTAMP data, the type qualifier specifies the format of the data.
For example, a type qualifier of ddMMyyyy indicates that the data is formatted as follows:

11122015 is December 11, 2015

For DATE and TIME types, all formatting options in the java.text.SimpleDateFormat class are
supported.

Chapter 40. Programming with the IMS Universal drivers 639

For the TIMESTAMP type, the formatting option 'f' is available for nanoseconds. TIMESTAMP can contain
up to nine 'f's and replaces the 'S' options for milliseconds. Instead, 'fff' indicates milliseconds of
precision. An example TIMESTAMP format is as follows:

yyyy-mm-dd hh:mm:ss.fffffffff

COBOL copybook types that map to Java data types
Because data in IMS is not strongly typed, you can use COBOL copybook types to map your IMS data to
Java data types.

The following table describes how COBOL copybook types are mapped to both DLITypeInfo constants
in the DLIDatabaseView class and Java data types.

Table 106. Mapping from COBOL formats to DLITypeInfo constants and Java data types

Copybook format DLITypeInfo constant Java data type

PIC X CHAR java.lang.String

PIC 9 BINARY1 See "DLITypeInfo constants and
Java data types based on the
PICTURE clause".2

See "DLITypeInfo constants and
Java data types based on the
PICTURE clause".2

COMP-1 FLOAT float

COMP-2 DOUBLE double

PIC 9 COMP-33 PACKEDDECIMAL java.math.BigDecimal

PIC 9 DISPLAY4 ZONEDDECIMAL java.math.BigDecimal

Notes:

1. Synonyms for BINARY data items are COMP and COMP-4. A PIC 9(06)V99 statement with COMP or
COMP-4 is used for binary decimal data.

2. For BINARY data items, the DLITypeInfo constant and Java type depend on the number of digits
in the PICTURE clause.The table "DLITypeInfo constants and Java data types based on the PICTURE
clause" describes the type based on PICTURE clause length.

3. PACKED-DECIMAL is a synonym for COMP-3.
4. If the USAGE clause is not specified at either the group or elementary level, it is assumed to be

DISPLAY.

The following table shows the DLITypeInfo constants and the Java data types based on the PICTURE
clause.

Table 107. DLITypeInfo constants and Java data types based on the PICTURE clause

Digits in PICTURE clause Storage occupied
DLITypeInfo
constant Java data type

1 through 2 1 byte TINYINT
UTINYINT

byte

1 through 4 2 bytes SMALLINT
USMALLINT

short

5 through 9 4 bytes INTEGER
UINTEGER

int

640 IMS: Application Programming

Table 107. DLITypeInfo constants and Java data types based on the PICTURE clause (continued)

Digits in PICTURE clause Storage occupied
DLITypeInfo
constant Java data type

10 through 18 8 bytes BIGINT
UBIGINT

long

The following table shows examples of specific copybook formats mapped to DLITypeInfo constants.

Table 108. Copybook formats mapped to DLITypeInfo constants

Copybook format DLITypeInfo constant

PIC X(25) CHAR

PIC 9(02) COMP UTINYINT

PIC S9(04) COMP SMALLINT

PIC 9(04) COMP USMALLINT

PIC S9(06) COMP-4 INTEGER

PIC 9(06) COMP-4 UINTEGER

PIC 9(06)V99 COMP or COMP-4 BINARY

PIC S9(12) BINARY BIGINT

PIC 9(12) BINARY UBIGINT

COMP-1 FLOAT

COMP-2 DOUBLE

PIC S9(06)V99 ZONEDDECIMAL

PIC 9(06).99 ZONEDDECIMAL

PIC S9(06)V99 COMP-3 PACKEDDECIMAL

Programming with the IMS Universal DL/I driver
Use the IMS Universal DL/I driver when you need to write granular queries to access IMS databases
directly from a Java client in an non-managed environment.

Because of the fundamental differences between hierarchical databases and relational databases,
sometimes the JDBC API does not provide access to the full set of IMS databases features. The IMS
Universal DL/I driver is closely related to the traditional IMS DL/I database call interface that is used with
other programming languages for writing applications in IMS, and provides a lower-level access to IMS
database functions than the JDBC API. By using the IMS Universal DL/I driver, you can build segment
search arguments (SSAs) and use the methods of the program communication block (PCB) object to read,
insert, update, delete, or perform batch operations on segments. You can gain full navigation control in
the segment hierarchy.

Preparing to write a Java application with the IMS Universal drivers
Java application programs that use the IMS Universal drivers require the Java Development Kit (JDK)
7.0. Java programs that run in JMP and JBP regions require JDK 7.0 or later. Java application programs
that use the IMS Universal drivers must have access to database metadata in order to interact with
IMS databases. This metadata can either be accessed directly in the IMS catalog database or it can be
generated as a Java metadata class with the IMS Enterprise Suite Explorer for Development.

Chapter 40. Programming with the IMS Universal drivers 641

Basic steps in writing a IMS Universal DL/I driver application
In general, to write a application program with the IMS Universal DL/I driver, you need to complete the
following tasks.

To write an IMS Universal DL/I driver application, follow these steps.

1. Import the com.ibm.ims.dli package that contains the IMS Universal DL/I driver classes,
interfaces, and methods.

2. Connect to an IMS database subsystem.
3. Obtain a program specification block (PSB), which contains one or more PCBs.
4. Obtain a PCB handle, which defines an application's view of an IMS database and provides the ability

to issue database calls to retrieve, insert, update, and delete database information.
5. Obtain an unqualified segment search argument list (SSAList) of one or more segments in the

database hierarchy.
6. Add qualification statements to specify the segments targeted by DL/I calls.
7. If retrieving data, mark the segment fields to be returned.
8. Execute DL/I calls to the IMS database.
9. Handle errors that are returned from the DL/I programming interface.

10. Disconnect from the IMS database subsystem.

Related tasks
“Retrieving data in a IMS Universal DL/I driver application” on page 649
The IMS Universal DL/I driver provides support for data retrieval that mirrors DL/I semantics.
Related reference
“Generating the runtime Java metadata class” on page 567
To connect to an IMS database using the IMS Universal drivers, you need to include on your Java
classpath the Java metadata class that provides the database view.

Java packages for IMS Universal DL/I driver support
Before you can invoke IMS Universal DL/I driver methods, you must access all or parts of various Java
packages that contain those methods.

You can do that by either importing the packages or specific classes, or by using the fully-qualified class
names. You might need the following packages or classes for your IMS Universal DL/I driver application:

com.ibm.ims.dli
Contains the core classes, interfaces, and methods for the IMS Universal DL/I driver.

com.ibm.ims.base
Contains exception classes for errors that are returned by DL/I or IMS.

Connecting to an IMS database by using the IMS Universal DL/I driver
Before you can execute DL/I calls from your IMS Universal DL/I driver application, you must connect to an
IMS database.

The IMS Universal DL/I driver application can establish a connection to an IMS database using the PSB
interface, which is part of the com.ibm.ims.dli package. Pass the connection properties using an
IMSConnectionSpec instance.

To connect to an IMS database by using the IMS Universal DL/I driver:

1. Create an IMSConnectionSpec instance by calling the createIMSConnectionSpec method in the
IMSConnectionSpecFactory class.

2. Set the following connection properties for the IMSConnectionSpec instance.

642 IMS: Application Programming

DatastoreName

The name of the IMS data store to access.

When using type-4 connectivity, the DatastoreName property must match either the name of the
data store defined to ODBM or be blank. The data store name is defined in the ODBM CSLDCxxx
PROCLIB member using either the DATASTORE(NAME=name) or DATASTORE(NAME=name,
ALIAS(NAME=aliasname)) parameter. If an alias is specified, you must specify the aliasname as
the value of the datastoreName property. If the DatastoreName value is left blank (or not
supplied), IMS Connect connects to any available instance of ODBM as it is assumed that data
sharing is enabled between all datastores defined to ODBM.

When using type-2 connectivity, set the DatastoreName property to the IMS subsystem alias.
This is not required to be set for the Java Dependent Region run time.

DatabaseName

The location of the database metadata representing the target IMS database.

The DatabaseName property can be specified in one of two ways, depending on whether the
metadata is stored in the IMS catalog or as a static metadata class generated by the IMS
Enterprise Suite Explorer for Development.

If your IMS system uses the IMS catalog, the DatabaseName property is the name of the PSB that
your application uses to access the target IMS database.

If you are using the IMS Explorer for Development, the databaseName property is the fully
qualified name of the Java metadata class generated by the IMS Explorer for Development. The
URL must be prefixed with class:// (for example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java metadata class generated by
the IMS Enterprise Suite Explorer for Development. The URL must be prefixed with class:// (for
example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can be overridden for an
individual connection without affecting the default value specified for the resource adapter.

PortNumber

The TCP/IP server port number to be used to communicate with IMS Connect. The port number
is defined using the DRDAPORT parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888. Do not set this property when
using type-2 connectivity.

DatastoreServer

The name or IP address of the data store server (IMS Connect). You can provide either the host
name (for example, dev123.svl.ibm.com) or the IP address (for example, 192.166.0.2). Do not set
this property when using type-2 connectivity.

DriverType

The type of driver connectivity to use (value must be IMSConnectionSpec.DRIVER_TYPE_4 for
type-4 connectivity or IMSConnectionSpec.DRIVER_TYPE_2 for type-2 connectivity).

allMetadata

Optional. When this property is set to true, the DatabaseMetadata interface returns information
for all resources in the IMS catalog. When the property is set to false, the DatabaseMetadata
interface returns information for the allocated PSB. The default value for this property is false.

Chapter 40. Programming with the IMS Universal drivers 643

initStatusGroup
Optional. When a connection is made and the PSB is allocated, this property will indicate that the
driver should automatically issue an INIT STATUS GROUPA or INIT STATUS GROUPB if a value
of 'A' or 'B' is provided. The default will not issue an INIT STATUS GROUP call.

sslConnection

Optional. Indicates if this connection uses Secure Sockets Layer (SSL) for data encryption. Set
this property to "true" to enable SSL, or to "false" otherwise. Do not set this property when using
type-2 connectivity.

sslKeyStoreType

Optional. Specifies the format of the file that contains cryptographic objects needed to
establish a secure socket connection. The valid values are "JKS" and "PKCS12". This value
is only used when sslConnection is set to "true" and sslKeyStoreType is not specified.
The sslKeyStoreType parameter defaults to "JKS".

sslSecureSocketProtocol

Optional. Specifies the cryptographic communication protocol for the new connection.
Specify a protocol that is supported by the server and provides the highest level of
security. The valid values are "SSL", "SSLv3", "TLSv1.1", and "TLSv1.2". This value is only
used when sslConnection is set to "true". If sslConnection is set to "true" and
sslSecureSocketProtocol is not specified, a default protocol will be determined at
runtime by the JRE and the server.

sslTrustStoreLocation

Optional. Specifies the location of the cryptographic trust store file for the new connection.
This value is only used when sslConnection is set to true.

sslTrustStorePassword

Optional. Specifies the password to access the cryptographic trust store file. This value is only
used when sslConnection is set to true.

sslKeyStoreLocation

Optional. Specifies the location of the cryptographic key store file for the new connection. This
value is only used when sslConnection is set to true.

sslKeyStorePassword

Optional. Specifies the password to access the cryptographic key store file. This value is only
used when sslConnection is set to true.

loginTimeout

Optional. Specifies the number of seconds that the driver waits for a response from the server
before timing out a connection initialization or server request. Set this property to a non-negative
integer for the number of seconds. Set this property to 0 for an infinite timeout length. Do not set
this property when using type-2 connectivity.

user

The user name for the connection to IMS Connect provided by your RACF administrator. Do not set
this property when using type-2 connectivity.

password

The password for the connection to IMS Connect provided by your RACF administrator. Do not set
this property when using type-2 connectivity.

dbViewLocation

Optional. Specifies the fully qualified path to a databaseView metadata class. You can use this
property to include a metadata class that is not located in your project path.

644 IMS: Application Programming

treatInvalidDecimalAsNull

Optional. Indicates whether to interpret certain Decimal values that appear invalid in Java
applications (such as PACKEDDECIMAL and ZONEDDECIMAL with invalid sign bits) as null. By
default, this property is "false", and a conversion exception is thrown when the Java applications
are processing invalid values.

3. Pass the connection request properties to the PSBFactory class to create the PSB instance.
When the PSB instance is created successfully, a connection is established to the database.

4. When you are finished with a connection to the IMS database from a IMS Universal DL/I driver
application, you must close the connection to the database by calling the close method on the PSB
instance.

Example: type-4 Connection
The following code example shows how to create a type-4 connection to an IMS database from your IMS
Universal DL/I driver application:

IMSConnectionSpec connSpec = IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("SYS1");
connSpec.setDatastoreServer("9.876.543.21");
connSpec.setPortNumber(8888);
connSpec.setDatabaseName("class://testdb.jdbo.HospitalDatabaseView");
connSpec.setSSLConnection(true);
connSpec.setLoginTimeout(10);
connSpec.setUser("usr");
connSpec.setPassword("usrpwd");
connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);
PSB psb = PSBFactory.createPSB(connSpec);

Related tasks
“Configuring the IMS Universal drivers for SSL support” on page 668
With type-4 connectivity, the IMS Universal drivers provide support for the Secure Sockets Layer (SSL)
through the Java Secure Socket Extension (JSSE).

IMS Universal DL/I driver interfaces for executing DL/I operations
In a traditional IMS application, you make DL/I calls to insert, update, delete, or retrieve data. To perform
the same functions in a IMS Universal DL/I driver application, you invoke methods.

Methods are defined in the following interfaces:

• The program specification block (PSB) interface is used to connect to IMS databases. Use the PSB
interface to obtain a handle to any program communication block (PCB) that is contained in the PSB.
The PCB handle is used to access the particular database that is referenced by the PCB.

• The PCB interface represents a cursor position in an IMS database. The PCB interface supports DL/I
message call functions, including Get Unique (GU), Get Next (GN), Get Next Within Parent (GNP), Insert
(ISRT), Replace (REPL), and Delete (DLET). The PCB interface can obtain an unqualified list of segment
search arguments and perform batch retrieve, update, and delete operations. You can also use the PCB
interface to return the application interface block (AIB) that is associated with the most recent DL/I call.

• The SSAList interface represents a list of segment search arguments (SSAs) used to specify the
segments to target in a particular database call. Use the SSAList interface to construct the SSAs, and
to set the command codes and lock class for the SSAs. You can set an initial qualification statement and
append additional qualifiers, based on the values of the segment fields, to restrict which segments to
target in the DL/I call. You can also specify which fields to return from a database retrieve call.

• The Path interface represents a database record for the purpose of a DL/I retrieval or update operation.
The Path interface can be viewed as the concatenation of all of the segment instances in a specific
database hierarchic path, starting from the highest level segment that is nearest the root segment to the
lowest level segment. Use the Path interface to set or retrieve the value of any segment field that is
located in the hierarchic path.

• The PathSet interface provides access to a collection of Path objects that are returned by a batch
retrieve operation.

Chapter 40. Programming with the IMS Universal drivers 645

• The AIB interface and the database PCB (DBPCB) interface return useful information that was returned
by IMS as a result of a DL/I call.

• The GSAMPCB interface represents a GSAM PCB and is essentially a cursor position in a GSAM database.
This interface provides data access to GSAM databases with calls that are similar to DL/I calls.

• The RSA interface represents a GSAM database record search argument that is the key to a cursor
position in the GSAM database.

Specifying segment search arguments using the SSAList interface
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Use the SSAList interface to construct each segment search argument (SSA) in the list and to set the
command codes and lock class for the SSAs. Each SSA in the SSAList can be unqualified or qualified.

In addition, your application can specify which segment fields are to be returned from a database retrieve
call by using the markFieldForRetrieval or the markAllFieldsForRetrieval methods. Following
the IMS default, all of the fields in the lowest level segment specified by the SSAList are initially marked
for retrieval.

• For non-batch DL/I data retrieval or update operations, use the getPathForRetrieveReplace
method.

• For a DL/I insert call, use the getPathForInsert method.
• For a batch update operation, use the getPathForBatchUpdate method.

The following examples demonstrate how to specify segment search arguments using the SSAList
interface. The examples are based on the Hospital database.

Creating an unqualified SSAList

This example returns a Path that consists of all fields in the segment "DOCTOR":

SSAList ssaList = pcb.getSSAList("HOSPITAL","DOCTOR");
Path path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path, ssaList, false);

In the previous example, the ssaList represents all segments along the hierarchic path from the topmost
segment ("HOSPITAL") to the lowest segment ("DOCTOR"). The ssaList will look like this:

HOSPITALb
WARDbbbbb
PATIENTbb
ILLNESSbb
TREATMNTb
DOCTORbbb

Creating a qualified SSAList

An SSAList can be qualified to filter the segments on the hierarchic path to be retrieved or updated. The
general steps to create a qualified SSAList are:

1. Obtain an unqualified SSAList from the PCB using the getSSAList method.
2. Use the addInititalQualification method to specify the initial search criteria for a segment

on the SSAList returned from a getSSAList method. For each segment represented in the
SSAList, you can make one call to specify an initial qualification for that segment. The segment
can be referenced by name or by using the 1-based offset of the SSA representing that segment
within the SSAList. If you use more than one addInitialQualification statement for a
segment, an exception will be thrown. The relational operator (relationalOp) parameter in the
addInitialQualification method indicates the conditional criteria that the segment must meet
in order to be qualified. Valid relational operators are:

646 IMS: Application Programming

• EQUALS
• GREATER_OR_EQUAL
• GREATER_THAN
• LESS_OR_EQUAL
• LESS_THAN
• NOT_EQUAL

3. To specify additional search criteria, use the appendQualification method. For each segment, you
can make multiple calls to the appendQualification method to add more than one qualification
statement. The Boolean operator (booleanOp) parameter in the appendQualification method
indicates how this qualification is logically connected to the previous qualification. Valid Boolean
operators are:

• AND
• OR
• INDEPENDENT_AND

4. You can also qualify a SSAList by setting DL/I command codes and lock classes. The supported DL/I
command codes include:

• CC_A: The A command code (clear positioning).
• CC_C: The C command code (concatenated key). Use the addConcatenatedKey method to add a

concatenated key to a segment.
• CC_D: The D command code (path call)
• CC_F: The F command code (first occurrence)
• CC_G: The G command code (prevent randomization).
• CC_L: The L command code (last occurrence)
• CC_N: The N command code (path call ignore)
• CC_O: The O command code (contain field names or segment position and length).
• CC_P: The P command code (set parentage)
• CC_U: The U command code (maintain position at this level)
• CC_V: The V command code (maintain position at this level and all superior levels)

You can use a lock class to prevent another program from updating a segment until your program
reaches a commit point. Use the addLockClass method to add a lock class to a segment. The
supported lock class letters are "A" to "J". The behavior of a lock class is the same as using a "Q"
command code with that lock class letter.

The following code example demonstrates how to specify and use a qualified SSAList with a single initial
qualification statement to retrieve data:

SSAList ssaList = pcb.getSSAList("HOSPITAL","DOCTOR");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
ssaList.markFieldForRetrieval("ILLNESS","ILLNAME",true);
ssaList.markFieldForRetrieval("TREATMNT","TREATMNT",true);
Path path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path, ssaList, false);

For the code example above, the ssaList will look like this:

HOSPITALb
WARDbbbbb
PATIENTb(PATNAMEbEQANDREAbSMITHbbbbb)
ILLNESSb*D
TREATMNT*D

The code example above retrieves the following information for all records where PATNAME is "ANDREA
SMITH":

Chapter 40. Programming with the IMS Universal drivers 647

• The ILLNAME field in the ILLNESS segment.
• The TREATMNT field in the TREATMNT segment.
• All fields in the DOCTOR segment (by default, IMS returns all fields in the lowest level segment specified

by the SSAList).

The following code example demonstrates how to specify a qualified SSAList with a multiple
qualification statements to retrieve data:

SSAList ssaList = pcb.getSSAList("HOSPITAL","WARD");
ssaList.addInitialQualification("WARD","NURCOUNT",SSAList.GREATER_THAN,4);
ssaList.appendQualification("WARD",SSAList.AND,"DOCCOUNT",SSAList.GREATER_THAN, 2);

For the code example above, the ssaList will look like this:

HOSPITALb
WARDbbbb(NURCOUNTGT4&DOCCOUNTGT2;)

The following example shows how to specify a qualified SSAList with the command code CC_L (which
means "last occurence") to find the most recently admitted patient in the "SANTA TERESA" hospital:

SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification
 ("HOSPITAL","HOSPNAME",SSAList.EQUALS,"SANTA TERESA");
ssaList.addCommandCode("PATIENT",SSAList.CC_L);
Path path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path,ssaList,false);

For the code example above, the ssaList will look like this:

HOSPITAL(HOSPNAMEEQSANTAbTERESAbbbbb)
WARDbbbbb
PATIENTb*L

Debugging an SSAList
If you need to debug by identifying whether the segment search arguments in your SSAList are correct,
use the buildSSAListInBytes method to build the SSAList in DL/I format for further debugging:

byte[][] ssaListInBytes = ssaList.buildSSAListInBytes();

You can iterate over each segment search argument in the byte array that is returned and print it out to
make sure the segment search argument is what it should be.

Related concepts
“Segment search arguments (SSAs)” on page 168
Segment search arguments (SSAs) specify information for IMS to use in processing a DL/I call. Regardless
of the datatype for the field specified in a SSA, the SSA treats the field as a binary type and does a binary
comparison.
Related reference
“SSA coding formats” on page 223
Use the following formats to code segment search arguments in assembler language, C language, COBOL,
Pascal, and PL/I.
“Hospital database example” on page 568
The code examples for the IMS Universal drivers application programming topics use the Hospital
database.
Command code reference (Application Programming APIs)

648 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_cmdcodref.htm#ims_cmdcodref

Retrieving data in a IMS Universal DL/I driver application
The IMS Universal DL/I driver provides support for data retrieval that mirrors DL/I semantics.

The following are the general steps to retrieve segments from the database:

1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList instance.
3. Specify the segment fields to retrieve. Use the markFieldForRetrieval method to mark a single

field, or use the markAllFieldsForRetrieval method to mark all the fields for a segment.
Following the IMS default, all of the fields in the lowest-level segment specified by the SSAList
instance are initially marked for retrieval. When one or more of the fields in the lowest level segment
specified in an SSAList instance is marked for retrieval, only the explicitly marked fields are retrieved.

4. Get a Path instance by using the SSAList instance from the previous steps and calling the
getPathForRetrieveReplace method. When a retrieve call is made, the resulting Path object
will contain all the fields that have been marked for retrieval.

5. Call a DL/I retrieve operation using one of the following methods from the PCB interface:
Java API for DL/I retrieve
method

Usage

getUnique Retrieves a specific unique segment. This method provides the same
functionality as the DL/I Get Unique (GU) database call. If the
isHoldCall parameter is set to true, the call behaves as a DL/I Get
Hold Unique (GHU) database call.

getNext Retrieves the next segment in a Path. This method provides the
same functionality as the DL/I Get Next (GN) database call. If the
isHoldCall parameter is set to true, the call behaves as a DL/I Get
Hold Next (GHN) database call.

getNextWithinParent Retrieves the next segment within the same parent. This method
provides the same functionality as the DL/I Get Next Within Parent
(GNP) database call. If the isHoldCall parameter is set to true, the
call behaves as a DL/I Get Hold Next Within Parent (GHNP) database
call.

batchRetrieve Retrieves multiple segments with a single call. See "Batch data
retrieval in a Java API for DL/I application" for more information
about how to use this method.

6. Read the values of the retrieved fields out of the Path object after the retrieve call is made.

IMS Universal DL/I driver data retrieval example

The following code fragment illustrates how to use the getUnique method and getNext method to
retrieve the hospital name (HOSPNAME), ward name (WARDNAME), patient count (PATCOUNT), nurse
count (NURCOUNT), and doctor count (DOCCOUNT) fields from the Hospital database:

import com.ibm.ims.dli.*;

public class HospitalDLIReadClient {

 public static void main(String[] args) {
 PSB psb = null;
 PCB pcb = null;
 SSAList ssaList = null;
 Path path = null;
 PathSet pathSet = null;

 try {
 // establish a database connection
 IMSConnectionSpec connSpec
 = IMSConnectionSpecFactory.createIMSConnectionSpec();

Chapter 40. Programming with the IMS Universal drivers 649

 connSpec.setDatastoreName("IMS1");
 connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
 connSpec.setPortNumber(5555);
 connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
 connSpec.setUser("usr");
 connSpec.setPassword("password");
 connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);
 psb = PSBFactory.createPSB(connSpec);
 System.out.println("**** Created a connection to the IMS database");

 pcb = psb.getPCB("PCb01");
 System.out.println("**** Created PCB object");

 // specify the segment search arguments
 ssaList = pcb.getSSAList("HOSPITAL", "WARD");
 // add the initial qualification
 ssaList.addInitialQualification("HOSPITAL", "HOSPCODE",
 SSAList.GREATER_OR_EQUAL, 444);
 // specify the fields to retrieve
 ssaList.markFieldForRetrieval("HOSPITAL", "HOSPNAME", true);
 ssaList.markAllFieldsForRetrieval("WARD", true);
 ssaList.markFieldForRetrieval("WARD", "WARDNO", false);
 System.out.println("**** Created SSAList object");

 // obtain a Path containing the segments that match the SSAList criteria
 path = ssaList.getPathForRetrieveReplace();
 System.out.println("**** Created Path object");

 // issue a DL/I GU call to retrieve the first segment on the Path
 if (pcb.getUnique(path, ssaList, true) {
 System.out.println("HOSPNAME: "+ path.getString("HOSPITAL", "HOSPNAME"));
 System.out.println("WARDNAME: "+ path.getString("WARD", "WARDNAME"));
 System.out.println("PATCOUNT: "+ path.getInt("WARD", "PATCOUNT"));
 System.out.println("NURCOUNT: "+ path.getInt("WARD", "NURCOUNT"));
 System.out.println("DOCCOUNT: "+ path.getShort("WARD", "DOCCOUNT"));
 }

 // issue multiple DL/I GN calls until there are no more segments to retrieve
 while (pcb.getNext(pat, ssaList, true) {
 System.out.println("HOSPNAME: "+ path.getString("HOSPITAL", "HOSPNAME"));
 System.out.println("WARDNAME: "+ path.getString("WARD", "WARDNAME"));
 System.out.println("PATCOUNT: "+ path.getInt("WARD", "PATCOUNT"));
 System.out.println("NURCOUNT: "+ path.getInt("WARD", "NURCOUNT"));
 System.out.println("DOCCOUNT: "+ path.getShort("WARD", "DOCCOUNT"));
 }

 // close the database connection
 psb.close();
 System.out.println("**** Disconnected from IMS database");

 } catch (DLIException e) {
 System.out.println(e);
 System.exit(0);
 }
 }
}

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.
Related tasks
“Basic steps in writing a IMS Universal DL/I driver application” on page 642
In general, to write a application program with the IMS Universal DL/I driver, you need to complete the
following tasks.
“Batch data retrieval in a IMS Universal DL/I driver application” on page 651
Use the batchRetrieve method to retrieve multiple segments in a single call.
Related reference
“Methods for retrieving and converting data types” on page 636
With the IMS Universal JDBC driver, you can use the ResultSet interface (java.sql.ResultSet) to
retrieve and convert the data from the type that is defined in the database metadata to the type that is

650 IMS: Application Programming

required by your Java application. Similarly, with the IMS Universal DL/I driver, you can use the Path
interface to perform data retrieval and conversion to Java data types.

Batch data retrieval in a IMS Universal DL/I driver application
Use the batchRetrieve method to retrieve multiple segments in a single call.

Instead of the client application making multiple GU and GN calls, IMS will perform all of the GU and GN
processing and will deliver the results back to the client in a single batch network operation. The fetch
size property determines how much data is sent back on each batch network operation.

To perform a batch data retrieval operation:

1. Obtain an SSAList instance from the PCB instance that represents the database.
2. Optionally, you can add qualification statements to the SSAList instance.
3. Specify the segment fields to retrieve. Use the markFieldForRetrieval method to mark a single

field, or use the markAllFieldsForRetrieval method to mark all the fields for a segment.
Following the IMS default, all of the fields in the lowest-level segment specified by the SSAList
instance are initially marked for retrieval.

4. Optionally, set the fetch size property.
The fetch size gives a hint to the IMS Universal DL/I driver as to the number of records to fetch from
the database in a single batch operation. See "Improving query performance by setting fetch size" for
more information.

5. Call the batchRetrieve method with the SSAList instance above as a parameter.
The batchRetrieve method returns a PathSet that contains a list of records that satisfy the criteria
specified by the SSAList.

6. Read the values of the retrieved fields out of the Path object after the retrieve call is made.

IMS Universal DL/I driver batch data retrieval example

The following code fragment illustrates how to use the batchRetrieve method to retrieve the hospital
name (HOSPNAME), ward name (WARDNAME), patient count (PATCOUNT), nurse count (NURCOUNT), and
doctor count (DOCCOUNT) fields from the Hospital database:

import com.ibm.ims.dli.*;

public class HospitalDLIReadClient {

 public static void main(String[] args) {
 PSB psb = null;
 PCB pcb = null;
 SSAList ssaList = null;
 Path path = null;
 PathSet pathSet = null;

 try {
 // establish a database connection
 IMSConnectionSpec connSpec
 = IMSConnectionSpecFactory.createIMSConnectionSpec();
 connSpec.setDatastoreName("IMS1");
 connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
 connSpec.setPortNumber(5555);
 connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
 connSpec.setUser("usr");
 connSpec.setPassword("password");
 connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);

 psb = PSBFactory.createPSB(connSpec);
 System.out.println("**** Created a connection to the IMS database");

 pcb = psb.getPCB("PCb01");
 System.out.println("**** Created PCB object");

 // specify the segment search arguments
 ssaList = pcb.getSSAList("HOSPITAL", "WARD");
 // add the initial qualification
 ssaList.addInitialQualification("HOSPITAL", "HOSPCODE",

Chapter 40. Programming with the IMS Universal drivers 651

 SSAList.GREATER_OR_EQUAL, 444);
 // specify the fields to retrieve
 ssaList.markFieldForRetrieval("HOSPITAL", "HOSPNAME", true);
 ssaList.markAllFieldsForRetrieval("WARD", true);
 ssaList.markFieldForRetrieval("WARD", "WARDNO", false);
 System.out.println("**** Created SSAList object");

 // issue the database call to perform a batch retrieve operation
 pathSet = pcb.batchRetrieve(ssaList);
 System.out.println("**** Batch Retrieve returned without exception");
 System.out.println("**** Created PathSet object");

 while(pathSet.hasNext()){
 path = pathSet.next();

 System.out.println("HOSPNAME: "+ path.getString("HOSPITAL", "HOSPNAME"));
 System.out.println("WARDNAME: "+ path.getString("WARD", "WARDNAME"));
 System.out.println("PATCOUNT: "+ path.getInt("WARD", "PATCOUNT"));
 System.out.println("NURCOUNT: "+ path.getInt("WARD", "NURCOUNT"));
 System.out.println("DOCCOUNT: "+ path.getShort("WARD", "DOCCOUNT"));
 }
 System.out.println("**** Fetched all rows from PathSet");

 // close the database connection
 psb.close();
 System.out.println("**** Disconnected from IMS database");
 } catch (DLIException e) {
 System.out.println(e);
 System.exit(0);
 }
 }
}

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.
Related reference
“Methods for retrieving and converting data types” on page 636
With the IMS Universal JDBC driver, you can use the ResultSet interface (java.sql.ResultSet) to
retrieve and convert the data from the type that is defined in the database metadata to the type that is
required by your Java application. Similarly, with the IMS Universal DL/I driver, you can use the Path
interface to perform data retrieval and conversion to Java data types.

Improving query performance by setting fetch size
You can optimize query performance by setting the number of records to retrieve in batch retrieval mode.

In the IMS Universal DL/I driver, a list of rows is represented by a Path instance containing one or more
segments that match the segment search argument criteria specified by an SSAList. The fetch size is the
number of rows physically retrieved from the IMS database per network call. This is set for you internally.
You can also set the fetch size using the setFetchSize method from the PCB interface. Setting the
fetch size allows a single request to return multiple rows at a time, so that each application request to
retrieve the next row does not always result in a network request. If the fetch size was n and the IMS
Universal DL/I driver application requires more than the previous n number of rows during a batch retrieve
operation, another network call will be made on behalf of the application to retrieve the next n number of
rows that match the segment search argument criteria.

Methods for retrieving and converting data types
With the IMS Universal JDBC driver, you can use the ResultSet interface (java.sql.ResultSet) to
retrieve and convert the data from the type that is defined in the database metadata to the type that is
required by your Java application. Similarly, with the IMS Universal DL/I driver, you can use the Path
interface to perform data retrieval and conversion to Java data types.

The following table shows the available get methods in the ResultSet interface (for the IMS Universal
JDBC driver) or the Path interface (for the IMS Universal DL/I driver) for accessing data of a certain Java
data type.

652 IMS: Application Programming

The "No Truncation or Data Loss" column indicates the data types that are designed to be accessed
with the given getXXX method. No truncation or data loss occurs when using those methods for those
data types. The data types that are in the "Legal without Data Integrity" column are all other legal calls;
however, data integrity cannot be ensured when using the given getxxx method to access those data
types. If a data type is not in either column, using the given getXXX method for that data type will result in
an exception.

Table 109. ResultSet.getXXX and Path.getXXX methods to retrieve data types

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getByte TINYINT
UTINYINT

SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getShort SMALLINT
USMALLINT

TINYINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getInt INTEGER
UINTEGER

TINYINT
SMALLINT
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getLong BIGINT
UBIGINT

TINYINT
SMALLINT
INTEGER
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

Chapter 40. Programming with the IMS Universal drivers 653

Table 109. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getFloat FLOAT TINYINT
SMALLINT
INTEGER
BIGINT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getDouble DOUBLE TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getBoolean BIT TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getString CHAR
VARCHAR

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
PACKEDDECIMAL1

ZONEDDECIMAL1

BINARY
DATE
TIME
TIMESTAMP

654 IMS: Application Programming

Table 109. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX Method
or Path.getXXX Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getBigDecimal BINARY3

PACKEDDECIMAL1

ZONEDDECIMAL1

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR

getClob CLOB2 all others result in an exception

getBytes BINARY SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1
ZONEDDECIMAL1
DATE
TIME

TIMESTAMP

getDate DATE CHAR
VARCHAR
TYIMESTAMP

getTime TIME CHAR
VARCHAR
TIMESTAMP

getTimestamp TIMESTAMP CHAR
VARCHAR
DATE
TIME

Note:

1. PACKEDDECIMAL and ZONEDDECIMAL are data type extensions for IMS Universal JDBC driver and
the IMS Universal DL/I driver. All other types are standard SQL types defined in SQL92. Restriction:
PACKEDDECIMAL and ZONEDDECIMAL data types do not support the Sign Leading or Sign Separate
modes. For these two data types, sign information is always stored with the Sign Trailing method.

2. The CLOB data type is supported only for the retrieval and storage of XML data.
3. The BINARY data type is valid only for decimal data used with a binary type converter.

If the field type is either PACKEDDECIMAL or ZONEDDECIMAL, the type qualifier is the COBOL PICTURE
string that represents the layout of the field. All COBOL PICTURE strings that contain valid combinations

Chapter 40. Programming with the IMS Universal drivers 655

of 9s, Ps, Vs, and Ss are supported. Expansion of PICTURE strings is handled automatically. For example,
'9(5)' is a valid PICTURE string. For zoned decimal numbers, the decimal point can also be used in the
PICTURE string. PIC 9(06)V99 COMP and PIC 9(06)V99 COMP-4 are valid PICTURE clauses for
BINARY decimal data.

If the field contains DATE, TIME, or TIMESTAMP data, the type qualifier specifies the format of the data.
For example, a type qualifier of ddMMyyyy indicates that the data is formatted as follows:

11122015 is December 11, 2015

For DATE and TIME types, all formatting options in the java.text.SimpleDateFormat class are
supported.

For the TIMESTAMP type, the formatting option 'f' is available for nanoseconds. TIMESTAMP can contain
up to nine 'f's and replaces the 'S' options for milliseconds. Instead, 'fff' indicates milliseconds of
precision. An example TIMESTAMP format is as follows:

yyyy-mm-dd hh:mm:ss.fffffffff

Creating and inserting data in a IMS Universal DL/I driver application
Use the create or the insert methods in the PCB interface to add a new segment to the database.

In the IMS Universal DL/I driver, the insert and create methods provide functionality similar to the DL/I
ISRT call. The insert methods will return an IMS status code indicating the results of the DL/I operation,
whereas the create method returns the number of segments created (this will always return 1). An
exception is thrown if a key field is not set.

The following are the general steps to add a new segment to the database:

1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList.
3. Get a Path instance by using the SSAList instance from the previous steps and calling the
getPathForInsert method. The getPathForInsert method takes the name of an existing
segment on the SSAList as a parameter. The parameter indicates the name of the segment type
for the new segment. For instance, to add a new patient segment, you would pass the segment name
PATIENT as the parameter.

4. Using the Path instance from the step above, set the field values for the new segment.
5. Call the insert or create method to add the new segment.

IMS Universal DL/I driver create and insert example

The following code fragment illustrates how to use the create and insert methods to add a new patient
and illness segment in the database where the hospital name is "SANTA TERESA" and the ward name is
"GENERAL".

SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",
SSAList.EQUALS,"SANTA TERESA");
ssaList.addInitialQualification("WARD","WARDNAME",
SSAList.EQUALS,"GENERAL");

Path path = ssaList.getPathForInsert("PATIENT");
path.setString("PATIENT", "PATNUM", "0088");
path.setString("PATIENT", "PATNAME", "JACK KIRBY");
int i = pcb.create(path, ssaList); // returns i = 1 if successful
System.out.println(i);

SSAList ssaList2 = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList2.addInitialQualification("HOSPITAL","HOSPNAME",
 SSAList.EQUALS,"SANTA TERESA");
ssaList2.addInitialQualification("WARD","WARDNAME",
 SSAList.EQUALS,"GENERAL");
ssaList2.addInitialQualification("PATIENT","PATNUM",
 SSAList.EQUALS,"0088");

656 IMS: Application Programming

Path path2 = ssaList2.getPathForInsert("ILLNESS");
path2.setString("ILLNAME", "APPENDICITIS");
short status = pcb.insert(path2, ssaList2);

The following code example shows another way to do this in a single call:

SSAList ssaList = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",
 SSAList.EQUALS,"SANTA TERESA");
ssaList.addInitialQualification("WARD","WARDNAME",
 SSAList.EQUALS,"GENERAL");
ssaList.addCommandCode("PATIENT", SSAList.CC_D);

Path path = ssaList.getPathForInsert("PATIENT");
path.setString("PATIENT", "PATNUM", "0088");
path.setString("PATIENT", "PATNAME", "JACK KIRBY");
path.setString("ILLNAME", "APPENDICITIS");

int i = pcb.create(path, ssaList); // returns i = 1 if successful

Important: To persist changes made to the database, your application must call the PSB.commit
method prior to deallocating the PSB, otherwise the changes are rolled back up to the last point commit
was called.

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Updating data in a IMS Universal DL/I driver application
Use the replace methods in the PCB interface to update an existing segment in the database.

In the IMS Universal DL/I driver, the replace methods provide functionality similar to the DL/I REPL call.
The replace methods will return an IMS status code indicating the results of the DL/I operation.

The following are the general steps to update an existing segment in the database:

1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList instance. See "Specifying segment

search arguments using the SSAList interface" for more information.
3. Get a Path instance by using the SSAList instance from the previous steps and calling the
getPathForRetrieveReplace method.

4. Using the Path instance from the step above, set the field values to update for the segment.
5. Perform a Hold operation before issuing the replace call. The Hold operation can be a getUnique,
getNext, or getNextWithinParent method call.

6. Call the replace method to update the segment.

IMS Universal DL/I driver update example

The following code fragment illustrates how to use the replace method to update a patient's name in
patient records where the patient name is "ANDREA SMITH", the ward name is "SURG", and the hospital
name is "ALEXANDRIA".

SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");

Path path = ssaList.getPathForRetrieveReplace();
if(pcb.getUnique(path, ssaList, true)){
 path.setString("PATNAME", "ANDREA TAYLOR");
 pcb.replace(path);
}
while(pcb.getNext(path, ssaList, true){
 path.setString("PATNAME", "ANDREA TAYLOR");

Chapter 40. Programming with the IMS Universal drivers 657

 pcb.replace(path);
}

Note: To persist changes made to the database, your application must call the commit method prior to
deallocating the PSB, otherwise the changes are rolled back up to the last point the commit method was
called.

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Making batch data updates in IMS Universal DL/I driver applications
Use the batchUpdate method in the PCB interface to update multiple existing segments in the database
with one call.

The following are the general steps to update multiple existing segments in the database with a single
call:

1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList method. See "Specifying segment

search arguments using the SSAList interface" for more information.
3. Get a Path instance by using the SSAList instance from the previous steps and calling the
getPathForBatchUpdate method.

4. Using the Path instance from the step above, set the field values to update for the segments.
5. Call the batchUpdate method to update the segments.

The following code fragment illustrates how to use the batchUpdate method to modify a patient's name.
The SSAList instance is set to update only records where the patient name is "ANDREA SMITH",
the ward name is "SURG", and the hospital name is "ALEXANDRIA". The getPathForBatchUpdate
method is called to obtain a Path containing the PATIENT segment and its child segments. Finally, the
batchUpdate method is called to change the value of the patient name field to "ANDREA TAYLOR".

SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
Path path = ssaList.getPathForBatchUpdate("PATIENT");
path.setString("PATNAME", "ANDREA TAYLOR");
pcb.batchUpdate(path, ssaList);

Important: To persist changes made to the database, your application must call the commit method prior
to deallocating the PSB, otherwise the changes are rolled back up to the last point the commit method
was called.

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Deleting data in a IMS Universal DL/I driver application
Use the delete method in the PCB interface to delete existing segments in the database.

In the IMS Universal DL/I driver, the delete methods provide functionality similar to the DL/I DLET call.
The delete call must be preceded by a HOLD operation. Deleting a segment causes all its child segments
to be deleted. The delete method will return an IMS status code indicating the results of the DL/I
operation.

The following are the general steps to delete existing segments in the database:

1. Obtain an unqualified SSAList instance from the PCB instance representing the database.

658 IMS: Application Programming

2. Optionally, you can add qualification statements to the SSAList instance.
See "Specifying segment search arguments using the SSAList interface" for more information.

3. Get a Path instance by using the SSAList instance from steps 1 and 2 and calling the
getPathForRetrieveReplace method.

4. Perform a Hold operation before issuing the replace call. The Hold operation can be a getUnique,
getNext, or getNextWithinParent method call.

5. You can delete all the segments on the Path retrieved by step 3 or delete a subset of the segments.

• To delete all the segments on the Path, call the PCB.delete method with no arguments.
• If the Path retrieved by step 3 returned multiple segments from the database and you do not

want to delete all the segments on the Path, use the PCB.delete method that takes an SSAList
argument and pass in an unqualified SSAList for the segment where you want the deletion to
begin. An exception is thrown if a qualified SSAList is provided as an argument.

IMS Universal DL/I driver delete examples

The following code fragment illustrates how delete all segments in a Path. Calling the delete method
with no arguments removes all PATIENT segments and its dependent segments (ILLNESS, TREATMNT,
DOCTOR, BILLING) where the patient name is "ANDREA SMITH", the ward name is "SURG", the hospital
name is "ALEXANDRIA", and the patient number is "PatientNo7".

SSAList ssaList = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
ssaList.addCommandCode("PATIENT", SSAList.CC_D);
Path path = ssaList.getPathForRetrieveReplace();
if (pcb.getUnique(path, ssaList, true)) {
 if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
 pcb.delete();
 }
}
while (pcb.getNext(path, ssaList, true)) {
 if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
 pcb.delete();
 }
}

The following code fragment illustrates how to use delete with an unqualified SSAList. Calling the
delete method with an unqualified SSAList removes all ILLNESS segments and its dependent segments
(TREATMNT, DOCTOR) where the patient name is "ANDREA SMITH", the ward name is "SURGICAL", the
hospital name is "ALEXANDRIA", and the patient number is "PatientNo7".

SSAList ssaList = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURGICAL");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
ssaList.markAllFieldsForRetrieval("PATIENT", true);
Path path = ssaList.getPathForRetrieveReplace();
SSAList illnessSSAList = pcb.getSSAList("ILLNESS");
if (pcb.getUnique(path, ssaList, true)) {
 if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
 pcb.delete(illnessSSAList);
 }
}
while (pcb.getNext(path, ssaList, true)) {
 if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
 pcb.delete(illnessSSAList);
 }
}

Important: To persist changes made to the database, your application must call the commit method prior
to deallocating the PSB, otherwise the changes are rolled back up to the last point the commit method
was called.

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646

Chapter 40. Programming with the IMS Universal drivers 659

The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Making batch data deletions in a IMS Universal DL/I driver application
Use the batchDelete method in the PCB interface to delete multiple existing segments in the database
with one call.

The following are the general steps to delete multiple existing segments in the database with a single call:

1. Obtain an unqualified SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList.

See "Specifying segment search arguments using the SSAList" for more information.
3. Call the batchDelete method to delete the segments specified by the SSAList in the previous

steps.

The following code fragment illustrates how to use the batchDelete method to remove a patient's
records. The SSAList instance is set to restrict the deletion operation to remove only records where the
patient name is "ANDREA SMITH", the ward name is "SURG", and the hospital name is "ALEXANDRIA".

SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
pcb.batchDelete(ssaList);

Important: To persist changes made to the database, your application must call the PSB.commit method
prior to deallocating the PSB, otherwise the changes are rolled back up to the last point commit was
called.

Related concepts
“Specifying segment search arguments using the SSAList interface” on page 646
The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Making an Inquiry (INQY) DL/I call without a PSB object
A new API is introduced to allow issuing INQY DL/I calls directly without the need for a PSB object.

All Type-2 users of the IMS Universal JDBC driver can use the application interface to call a method
that issues the desired Inquiry (INQY) DL/I call and return an appropriate object with the returned data
from the call, without requiring the PSB metadata. This functionality is delivered through APAR PH19041/
UI74514.

The following code examples illustrate how the application interface enables issuing INQY DL/I calls and
return the object with the returned data from the call:

• INQY DBQUERY : A user can issue an INQY DBQUERY call using the application interface. A call can
be issued by calling the inqyDBQuery() method from the application interface. A DBQueryInfo object is
returned containing the call's returned information.

Application app = ApplicationFactory.createApplication();
DBQueryInfo info = app.inqyDBQuery();
info.getReturnCode();
info.getReasonCode();
info.getStatusCode();

Returned data: DBQueryInfo object

 public int getReasonCode()
 public String getReasonCodeHex()
 public int getReturnCode()
 public String getReturnCodeHex()

660 IMS: Application Programming

 public int getStatusCode()
 public String getStatusCodeChars()

• INQY ENVIRON: A user can issue an INQY ENVIRON call using the application interface. A call can
be issued by calling the inqyEnviron() method from the application interface. An EnvironInfo object is
returned containing the call's returned information.

Application app = ApplicationFactory.createApplication();
EnvironInfo info = app.inqyEnviron();
info.getControlRegionType();

Returned data: EnvironInfo object

 public int getReasonCode()
 public String getReasonCodeHex()
 public int getReturnCode()
 public String getReturnCodeHex()
 public int getStatusCode()
 public String getStatusCodeChars()
 public String getRRSIndicator()
 public String getCatalogIndicator()

• INQY MSGINFO: A user can issue an INQY MSGINFO call using the application interface. A call can be
issued by calling the inqyMessageInfo() method from the application interface. A MessageInfo object
is returned containing the call's returned information.

•
Application app = ApplicationFactory.createApplication();
MessageInfo info = app.inqyMessageInfo();
info.getIMSID();

Returned data: MessageInfo object:

 public int getReasonCode()
 public String getReasonCodeHex()
 public int getReturnCode()
 public String getReturnCodeHex()
 public int getStatusCode()
 public String getStatusCodeChars()

• INQY FIND: A user can issue an INQY FIND call using the application interface. A call can be issued by
calling the inqyFind() method from the application interface. A PCB name must be entered as a string to
issue the call with. A FindInfo object is returned containing the call's returned information.

Application app = ApplicationFactory.createApplication();
FindInfo info = app.inqyFind(this.expectedPCBName);
assertEquals(0, info.getReturnCode());
assertEquals(0, info.getReasonCode());
assertEquals(16448, info.getPCBStatusCode());

Returned data: FindInfo object

 public short getPCBStatusCode()
 public String getPCBStatusCodeChar()
 public int getReasonCode()
 public String getReasonCodeHex()
 public int getReturnCode()
 public String getReturnCodeHex()
 public int getStatusCode()
 public String getStatusCodeChars()

• INQY PROGRAM: A user can issue an INQY PROGRAM call using the application interface. A call can
be issued by calling the inqyProgram() method from the application interface. A ProgramInfo object is
returned containing the call's returned information.

Application app = ApplicationFactory.createApplication();

Chapter 40. Programming with the IMS Universal drivers 661

ProgramInfo info = app.inqyProgram();
info.getProgramName();

Returned data : ProgramInfo object

 public String getProgramName()
 public int getReasonCode()
 public String getReasonCodeHex()
 public int getReturnCode()
 public String getReturnCodeHex()
 public int getStatusCode()
 public String getStatusCodeChars()

Note: To learn more about the Inquiry (INQY) call and the subfunctions, see INQY call (Application
Programming APIs)

Related tasks
“Writing DL/I calls to access an IMS database with the IMS Universal JDBC driver” on page 628
In addition to support for SQL queries, the IMS Universal JDBC driver also supports casts to DL/I objects.

Using Byte Buffers with the IMS Universal DL/I driver
The IMS Universal DL/I driver includes several methods to handle complex data types that are not fully
represented by the IMS Catalog.

The IMS Universal DL/I driver includes several methods that implement ByteBuffer input and output (I/O)
objects instead of the traditional Path objects. Using ByteBuffers as I/O areas allows an application to
retain full control in managing and interpreting data inserted or retrieved from IMS. These methods are
useful when dealing with complex data types that are not fully represented by the IMS Catalog.

getUnique();
getNext();
getNextWithinParent();
insert();
create();
replace();

Note:

The ByteBuffer support is extended to support the IMS Message Queue interface.

Programming examples using ByteBuffers and the IMS Universal DL/I Driver
The following example shows an example of inserting multiple segments along the same hierarchical
path. The hierarchical path consists of three segments that are children of the root segment Hospital.

// DEFINE SSA1 for INSERTS
SSAList ssaList = pcb.getSSAList("HOSPITAL", "ILLNESS");
ssaList.addInitialQualification("HOSPITAL", "HOSPCODE", SSAList.EQUALS, "R1210010000A");
ssaList.addCommandCode("WARD", SSAList.CC_D);
ssaList.addCommandCode("PATIENT", SSAList.CC_D);
ssaList.addCommandCode("ILLNESS", SSAList.CC_D);

// Allocate a ByteBuffer
ByteBuffer bufferInsert = ByteBuffer.allocate(1000);

// WARD
bufferInsert.position(0);
bufferInsert.putShort((short) 900);
bufferInsert.put("0010".getBytes("Cp1047"));
bufferInsert.put("NEW WARD".getBytes("Cp1047"));

// PATIENT
bufferInsert.position(900);
bufferInsert.putShort((short) 37);
bufferInsert.put("9999".getBytes("Cp1047"));
bufferInsert.put("JACKSON".getBytes("Cp1047"));

// ILLNESS

662 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_inqycall.htm#ims_inqycall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_inqycall.htm#ims_inqycall

bufferInsert.position(937);
bufferInsert.putShort((short) 900);
bufferInsert.put("FRECKLES".getBytes("Cp1047"));

// Insert ByteBuffer
pcb.insert(bufferInsert, ssaList);

The following example issues a GU call with a hold on the segment to replace that retrieved segment.

// DEFINE SSA2 FOR RETRIEVE/REPLACE
SSAList ssaList2 = pcb.getSSAList("HOSPITAL", "PATIENT");
ssaList2.addInitialQualification("HOSPITAL", "HOSPCODE", SSAList.EQUALS, "R1210010000A");

// Retrieve the segment with the ByteBuffer as an output object
ByteBuffer bufferRetrieve = ByteBuffer.allocate(900);
pcb.getUnique(bufferRetrieve, ssaList2, true);

 // Replace
bufferReplace = ByteBuffer.allocate(42);
bufferReplace.putShort((short) 27);
bufferReplace.put("9999".getBytes("Cp1047"));
bufferReplace.put("FRANKLIN".getBytes("Cp1047"));
pcb.replace(bufferReplace);

Considerations for ByteBuffers and Type-2 Java applications
If your JDBC application is running in Type-2 mode, you have the option of obtaining a direct ByteBuffer to
optimize JVM storage use. You can obtain direct storage in the following ways:

• Directly using the java.nio.ByteBuffer class

ByteBuffer directBuffer = ByteBuffer.allocateDirect(10);

• Using the Universal Drivers Application object to obtain direct 31-bit storage

Application app = new ApplicationFactory.createApplication();
 ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);

Note: If an application is running in the 64-bit JVM, ByteBuffer.allocateDirect() will
not work with your application and you must directly request 31-bit storage using the
Application.get31BitDirectByteBuffer() method. ByteBuffer.allocateDirect() works in
a 31-bit JVM.

It is important to release and free the buffers correctly in your application. You can free buffers that were
obtained using the Application class in the following ways:

• Specifically freeing buffers

Application app = new ApplicationFactory.createApplication();
ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);

 // Doing work
app.free31BitDirectByteBuffer(directBuffer);

• IMS silently tracks all buffers allocated using the Application class and automatically releases all the
checked out buffers during the end() procedure.

Application app = new ApplicationFactory.createApplication();
 ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);
 // Doing work
app.end();

Related concepts
“Using ByteBuffers with the IMS Universal JDBC Driver” on page 608
The IMS Universal JDBC driver allows the use of INSERT, SELECT, and UPDATE options for full segments
using java.nio.ByteBuffer as an I/O area .
Related reference
“Using the expandArrayResultSet property” on page 611

Chapter 40. Programming with the IMS Universal drivers 663

The IMS Universal JDBC driver allows for easier access to Array datatype fields using the
expandArrayResultSet property.
“Hospital database example” on page 568
The code examples for the IMS Universal drivers application programming topics use the Hospital
database.

Inspecting the PCB status code and related information using the
com.ibm.ims.dli.AIB interface

To inspect the PCB status code, return code, reason code, error code extension, and related information
after a data access call by the IMS Universal drivers, use the com.ibm.ims.dli.AIB interface provided
by the IMS Universal DL/I driver.

Typically, the IMS Universal drivers throws an exception if a call is not successful. The non-blank status
codes that do not generate an exception are GD, GE, GB, GA, GK, QC, QD, and CF. In error cases, the
generated exception contains the most pertinent information such as PCB status code, return code,
reason code, and error code extension. To inspect the PCB status code and related information for all the
non-error cases, use the com.ibm.ims.dli.AIB interface.

The AIB instance contains all the data attributes of an IMS application interface block. The AIB instance
also contains a reference to a com.ibm.ims.dli.DBPCB instance, which contains all the data attributes
of a PCB instance.

When your IMS Universal drivers application makes a data access call to IMS, the application is internally
making a DL/I call using a com.ibm.ims.dli.PCB instance. After each DL/I call that your application
issues, IMS places a two-character status code in the DBPCB instance stored in the AIB instance for that
PCB instance.

The com.ibm.ims.dli.IMSStatusCodes class contains constants for the IMS status codes. Use this
helper class for comparison checking of the status code from the DL/I call.

The following code example shows how to access the AIB instance from a IMS Universal DL/I driver
application:

try {
 psb = PSBFactory.createPSB(connSpec);
} catch (DLIException e) {
 AIB aib = e.getAib();
 if (aib != null) {
 String sc = aib.getDBPCB().getStatusCodeChars();
 String retcode = aib.getReturnCodeHex();
 String reascode = aib.getReasonCodeHex();
 System.out.println("Status code: " + sc + " Return Code: "
 + retcode + " Reason Code: " + reascode);
 }
}

The following code example shows how to access the AIB instance from a JDBC application. Note that
you need to import the com.ibm.ims.dli package to use the AIB and DLIException objects in your
Java code.

try {
 resultSet.updateString(1, "Harry Houdini");
} catch (SQLException e) {
 Throwable t = e.getCause();
 if (t != null && t instanceof DLIException) {
 com.ibm.ims.dli.DLIException de = (com.ibm.ims.dli.DLIException) t;
 com.ibm.ims.dli.AIB aib = de.getAib();
 if (aib != null) {
 String sc = aib.getDBPCB().getStatusCodeChars();
 String retcode = aib.getReturnCodeHex();
 String reascode = aib.getReasonCodeHex();
 System.out.println("Status code: " + sc + " Return Code: "
 + retcode + " Reason Code: " + reascode);
 }
 }
}

664 IMS: Application Programming

Related reference
DL/I status code explanations (Messages and Codes)

Committing or rolling back DL/I transactions
The IMS Universal DL/I driver provides support for local transactions with the commit and rollback
methods.

A local transaction consists of a unit of work with several units of recovery. A IMS Universal DL/I driver
application can commit or roll back changes to the database within a unit of recovery. In the IMS
Universal DL/I driver, the local transaction is scoped to the PSB instance. No explicit call is needed to
begin a local transaction. A unit of work starts when the application allocates a PSB object and obtains a
connection to the database by calling the PSB.allocate method.

After the unit of work starts, the application makes DL/I calls to access the database and create, replace,
insert, or delete data. The application commits the current unit of recovery by using the PSB.commit
method. The commit operation instructs the database to commit all changes to the database that are
made from the point when the unit of work started, or from the point after the last commit or rollback
method call, whichever was most recent.

Important: To persist changes made to the database, your application must call the commit method prior
to deallocating the PSB, otherwise the changes are rolled back up to the last point the commit method
was called.

The application can also end the unit of recovery by calling a roll back operation using the PSB.rollback
method. Calling a roll back operation causes the database to undo all changes to the database made from
the start of the unit of work, or from the point after the most recent commit or rollback call.

If the PSB.commit method or the PSB.rollback method is called and the PSB instance is not
deallocated, a new unit of recovery is started. The overall unit of work ends when the PSB instance is
deallocated. If the PSB.commit method or the PSB.rollback method are called while they are not
currently in a unit of work (either before the PSB instance is allocated or after it is deallocated), an
exception is thrown.

Local transaction with a single PSB

The following example code shows a local transaction for a single PSB.

IMSConnectionSpec connSpec = IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMS1");
connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
connSpec.setPortNumber(5555);
connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
connSpec.setUser("usr");
connSpec.setPassword("password");
connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);

PSB psb = PSBFactory.createPSB(connSpec);
psb.allocate(); // new unit of work begins
PCB pcb = psb.getPCB("PCb01");

SSAList ssa = pcb.getSSAList("HOSPITAL");
Path path = ssa.getPathForInsert("HOSPITAL");
path.setString("HOSPCODE", "R1210020000A");
path.setString("HOSPNAME", "SANTA TERESA");
pcb.insert(path);
psb.commit(); // or use psb.rollback() to undo the insert.
 // The unit of receovery ends.

In this example, the application makes a connection to the database and allocates a PSB. The application
obtains a PCB and specifies the path to insert a new HOSPITAL record. The application then performs a
DL/I operation to insert the new record into the database. At this point, the application commits the insert
operation and the new record is written to the database. Alternatively, the application can roll back the
insert operation to return the database to the previous state before the insert call was made. This ends
the current unit of recovery.

Chapter 40. Programming with the IMS Universal drivers 665

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dlistatuscodesxpl.htm#ims_dlistatuscodesxpl

Local transaction with multiple PSBs
When two or more PSB objects are allocated by an application, separate local transactions for each PSB
may run concurrently. The following example code shows multiple local transactions with two PSBs.

IMSConnectionSpec connSpec = IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMS1");
connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
connSpec.setPortNumber(5555);
connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
connSpec.setUser("usr");
connSpec.setPassword("password");
connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);

// create a connection to MyDB
PSB psb = PSBFactory.createPSB(connSpec);
psb.allocate(); // new unit of work begins for psb

// create another connection to MyDB.
// Note: This does not need be be a connection to the same database.
PSB psb2 = PSBFactory.createPSB(connSpec);
psb2.allocate();

pcb = psb.getPCB("PCb01");
SSAList ssa = pcb.getSSAList("HOSPITAL");
Path path = ssa.getPathForInsert("HOSPITAL");
path.setString("HOSPCODE", "R1210020000A");
path.setString("HOSPNAME", "SANTA TERESA");
pcb.insert(path);
psb.commit(); // or use psb.rollback() to undo the insert.
 // The unit of recovery for psb ends

pcb2 = psb2.getPCB("PCb01");
SSAList ssa2 = pcb2.getSSAList("HOSPITAL");
Path path2 = ssa2.getPathForInsert("HOSPITAL");
path2.setString("HOSPCODE", "R1210010000A");
path2.setString("HOSPNAME", "ALEXANDRIA");
pcb2.insert(path2);
psb2.rollback(); //or use psb2.commit() to commit the insert.
 // The unit of recovery for psb2 ends

psb2.deallocate(); // unit of work ends for psb2
psb.deallocate(); // unit of work ends for psb

In this example, the application makes two connections to the same database. A PSB is allocated for
the first connection and the application performs a DL/I operation to insert a new HOSPITAL record with
hospital name "SANTA TERESA" into the database. Another PSB is allocated to the second connection
and an insert operation is made for a new HOSPITAL record with hospital name "ALEXANDRIA". The
application then commits the changes for the first PSB and writes the new record with hospital name
"SANTA TERESA" to the database. The application issues a roll back statement for the second PSB,
undoing the previous insert operation for the record with hospital name "ALEXANDRIA". Only one new
record is inserted to the database: the HOSPITAL record with hospital name "SANTA TERESA".

Accessing dynamic arrays with the Universal Drivers using the
DBArrayElementSet class

The IMS Universal DL/I driver enables accesses and updates to dynamic arrays with the
DBArrayElementSet class.

A dynamic array is an array in which the number of repeating array elements can vary from one instance
of a segment type to another. It is defined by coding FIELD statements in the input control statements
of the DBD Generation utility. To access dynamic arrays through IMS Universal DL/I driver, use the
DBArrayElementSet class, which supports creating, receiving, and updating data structures that represent
DBArray objects.

The following example demonstrates how a DBArrayElementSet object accesses and updates a dynamic
array that has 15 repeating occurrences.

666 IMS: Application Programming

ssaList = pcb.getSSAList("HOSPITAL");
ssaList.addInitialQualification(1, "HOSPCODE", SSAList.EQUALS, "R1210010000A");
path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path, ssaList, true);
DBArray dbArray = path.getArray("DYNAMICARRAY");
DBArrayElementSet dbArrayElementSet = dbArray.getElements();
dbArrayElementSet.absolute(0);

dbArrayElementSet.prepareElementToAdd();
dbArrayElementSet.setString("DYNAMICFIELD1", "RR");
dbArrayElementSet.setString("DYNAMICFIELD2", "RRRR");
dbArrayElementSet.setString("DYNAMICFIELD3", "DDDD");
dbArrayElementSet.addElement();
dbArrayElementSet.setString("DYNAMICFIELD1", "XX");
dbArrayElementSet.setString("DYNAMICFIELD2", "VVVV");
dbArrayElementSet.setString("DYNAMICFIELD3", "ZZZZ");
dbArrayElementSet.addElement();
dbArrayElementSet.absolute(17);
dbArrayElementSet.setString("DYNAMICFIELD1", "SS");
dbArrayElementSet.setString("DYNAMICFIELD2", "SSSS");
dbArrayElementSet.setString("DYNAMICFIELD3", "DDDD");
dbArrayElementSet.addElement();
dbArrayElementSet.setString("DYNAMICFIELD1", "XX");
dbArrayElementSet.setString("DYNAMICFIELD2", "VVVV");
dbArrayElementSet.setString("DYNAMICFIELD3", "ZZZZ");
dbArrayElementSet.addElement();

path.setInt("OCCURSFIELD", 19);
path.setArray("DYNAMICARRAY", dbArray);
pcb.replace(path);

In this example, the array field is named DYNAMICARRAY and contains three elements named
DYNAMICFIELD1, DYNAMICFIELD2, DYNAMICFIELD3. The array field has a DEPENDSON field for setting
the number of occurrences of an element with the name OCCURSFIELD. Four more occurrences are
added to the array structure, making the total occurrence number 19. A replace (REPL) call is made to
update the path.

You might find the following notes helpful when using the previous example:

• The prepareElementToAdd() function moves the DBArrayElementSet object to an insert row
buffer that can be used to set the array's fields. Your current cursor's position will be stored. You will
remain on the insert row buffer until the moveToCurrentElement() function is called that restores
your cursor's position.

Note: Only dynamic arrays can use the prepareElementToAdd() function.
• You can move the DBArrayElementSet object's cursor by calling the following functions:

– previous()
– next()
– last()
– first()
– beforeFirst()
– afterLast()
– absolute(int position)
– relative(int position)

Moving the cursor's position cancels any pending data on the insert row buffer that is not added by the
addElement() function.

• You can use setters such as setString(), setInt(), and so on to complete the following tasks:

– Updating the array field value at the current cursor position
– Adding the array field value into the insert row buffer if the array field value is initialized

• You can use getters such as getString(), getInt(), and so on to complete the following tasks:

– Retrieving the array field value at the current cursor position

Chapter 40. Programming with the IMS Universal drivers 667

– Retrieving the array field value from the insert row buffer if the array field value is initialized
• The DEPENDSON field must always be set into the path object when you add or update a

DBArrayElementSet object and must reflect the total number of elements.

Related tasks
Defining a dynamic array to IMS (Database Administration)

Configuring the IMS Universal drivers for SSL support
With type-4 connectivity, the IMS Universal drivers provide support for the Secure Sockets Layer (SSL)
through the Java Secure Socket Extension (JSSE).

This information applies to type-4 connectivity only. You can use SSL support in your Java applications
in either a container-managed environment with the IMS Universal Database resource adapter, or in a
stand-alone environment with the IMS Universal JDBC driver and the IMS Universal DL/I driver.

Configuring the IMS Universal Database resource adapter for SSL support in
a container-managed environment

To enable SSL in a container-managed environment for the IMS Universal Database resource adapter,
you need to configure the SSL certificate and key management settings from your WebSphere Application
Server administrative console.

Prerequisites:

• You must first set up the IBM z/OS Communications Server Application Transparent Transport Layer
Security (AT-TLS) to enable SSL support on the z/OS system for IMS Connect.

• You also need to retrieve the client certificate (.crt) to your local file system where
WebSphere Application Server is installed. To retrieve the certificate, from TSO, browse the
OMVSID.CERTAUTH.CERT member. Copy its contents into a text file on your local file system, and
remove any trailing spaces. Name the file hostname.crt.

To configure the IMS Universal Database resource adapter for SSL support:

1. Open the WebSphere Application Server administrative console.
2. From the left pane, expand Security -> SSL certificate and key management.
3. Click Key stores and certificates.
4. Click NodeDefaultTrustStore.
5. Click Signer certificates.
6. Click Add.
7. In the Alias field, type a name that helps you remember that this certificate is associated with

(extracted from) the server key ring file that was created when you set up AT-TLS to enable SSL on IMS
Connect.

8. In the File name field, type the fully qualified path to the .crt file located on your local file system.
9. Click OK and then click Save.

The trusted certificate is picked up automatically and used during the SSL handshaking process at run
time.

Related tasks
Setting up AT-TLS SSL for IMS Connect (System Definition)

Configuring IMS Universal drivers for SSL support in a stand-alone
environment

To enable SSL in a stand-alone environment for the IMS Universal drivers, you need to generate and
configure an SSL keystore.

Prerequisites:

668 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_metadata_def_arrays_dynamic.htm#ims_cat_db_metadata_def_arrays_dynamic
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_odb_ssl_setup.htm#iconsslsetup

• You must first set up the IBM z/OS Communications Server Application Transparent Transport Layer
Security (AT-TLS) to enable SSL support on the z/OS system for IMS Connect.

• You also need to retrieve the client certificate (.crt) to your local file system. To retrieve the certificate,
from TSO, browse the OMVSID.CERTAUTH.CERT member. Copy its contents into a text file on your local
file system, and remove any trailing spaces. Name the file hostname.crt.

To configure the IMS Universal DL/I driver or the IMS Universal JDBC driver for SSL support:

1. Generate a new SSL keystore by using the Java Keytool provided by the Java SDK.
This keystore file will be used as a truststore by the JRE during SSL handshaking when it creates an
SSL connection to IMS. Save the keystore (.ks) file on your local file system and record its location. Set
the password for the keystore and record it.

Keystore files can contain public/private key pairs that are generated on the local system as well as
public keys (in the form of certificates) that are received from remote communicating peers. When the
keystore is accessed to retrieve a certificate of a communicating peer for use during SSL handshaking,
the keystore file is referred to as a truststore.

2. Verify that the certificate has not been tampered with before importing the certificate (.crt) file into the
keystore as a trusted self-signed certificate.
You can do this with the Keytool by viewing the fingerprint of the local certificate and comparing it to
the original that was extracted from the key ring file on the host.

3. Set the fully qualified path to the keystore file as the value for the system property
javax.net.ssl.trustStore and set the keystore password as the value for the system property
javax.net.ssl.trustStorePassword.
Optionally, to troubleshoot any SSL-related problems, you can turn on the SSL client-side trace by
setting the system property javax.net.debug=all. To specify the system properties from the
command line, enter:

java -Djavax.net.debug=all -Djavax.net.ssl.trustStore=myTruststore
-Djavax.net.ssl.trustStorePassword=myTruststorePassword MyApp

Related tasks
Setting up AT-TLS SSL for IMS Connect (System Definition)

Tracing IMS Universal drivers applications
To obtain data for diagnosing problems with the IMS Universal drivers, you can collect trace data.

Attention: Collecting tracing data must be enabled only for diagnosing problems with the
IMS Universal drivers. Enabling traces in a production environment on a regular basis is not
recommended.

Use one of the following procedures to enable tracing.

Turning on automatic tracing in JRE logging.properties file
The recommended method is to enable the trace by setting the trace level for the IMS Universal drivers
loggers in the logging.properties file of your Java Runtime Environment (JRE). Using this method, the
application does not need to be recompiled. The file is located on the install path of your JRE, under
\jre\lib\logging.properties. The recommended trace level is FINEST.

To set the trace for all IMS Universal drivers loggers, add the following line to the logging.properties
file:

com.ibm.ims.db.opendb = FINEST

To send the trace output to a file, make the following changes to your logging.properties file:

Chapter 40. Programming with the IMS Universal drivers 669

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_odb_ssl_setup.htm#iconsslsetup

1. Make sure that the file includes the following line and no other handlers= lines, unless they are
commented out. A pound sign (#) at the beginning of a line indicates that the line is a comment.

handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler

2. Add the following lines:

java.util.logging.FileHandler.level = FINEST
java.util.logging.FileHandler.pattern = c:/UniversalDriverTrace.txt
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter

Configuring Java EE tracing
Tracing can be turned on from your Java EE application server. In WebSphere Application Server, this
is configured through the administrative console. The IMS Universal Database resource adapter must be
deployed on WebSphere Application Server before tracing can be configured.

In WebSphere Application Server Liberty, tracing is configured through the server.xml configuration
file.

• To get the most detailed trace from the IMS Universal Database resource adapter, follow these steps:

1. Start the WebSphere Application Server administration console.
2. Select Troubleshooting.
3. Select Logs and Trace.
4. Select your application server from the table.
5. Under General Properties, select Diagnostic Trace.
6. Under Additional Properties, select Change Log Detail Levels.
7. Select the Runtime tab.

– Make sure that the Save runtime changes to configuration as well check box is turned ON.
– Under the Change Log Details Levels section, select the component com.ibm.ims.db.opendb.

This brings up the Message and Trace levels menu.
– Select the message level FINEST.
– Click Apply.

8. To save these changes for the next time the application server is started, click the Save link at the
top of the page. WebSphere Application Server does not need to be restarted.

• To get the most detailed trace from the WebSphere Application Server Liberty, follow these steps:

1. In the server.xml configuration file, add a <logging> element that contains a
traceSpecification attribute and the String argument "com.ibm.ims.db.opendb.*" :

<logging traceSpecification="*=info:com.ibm.ims.db.opendb.*=finest"/>

2. The default directory for the trace.log file can be found in the logsk/ directory of the server
instance. No restart is required for WebSphere Application Server Liberty.

Programmatically enabling tracing
You can also programmatically turn on tracing in your IMS Universal drivers application. This requires the
application to be recompiled.

1. Import the java.util.logging package in your application and create a logger by calling the
Logger.getLogger method with the String argument "com.ibm.ims.db.opendb".

2. In your application, you can set the level of tracing for the logger by using the Logger.setLevel
method. The recommended trace level is Level.FINEST.

670 IMS: Application Programming

The following sample code shows how programmatic trace is enabled for any IMS Universal drivers
application.

private static final Logger universalLogger
 = Logger.getLogger("com.ibm.ims.db.opendb");
universalLogger.setLevel(Level.FINEST);
FileHandler fh
 = new FileHandler("C:/UniversalTrace.txt");
fh.setFormatter(new SimpleFormatter());
fh.setLevel(Level.FINEST);
universalLogger.addHandler(fh);

Related tasks
IMS Universal drivers: WebSphere Application Server Liberty type-4 connections (Communications and
Connections)
IMS Universal drivers: WebSphere Application Server Liberty type-2 connections (Communications and
Connections)

Chapter 40. Programming with the IMS Universal drivers 671

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_uni_t4_wasliberty.htm#ims_uni_t4_wasliberty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_uni_t4_wasliberty.htm#ims_uni_t4_wasliberty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_uni_t2_wasliberty.htm#ims_uni_t2_wasliberty
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_uni_t2_wasliberty.htm#ims_uni_t2_wasliberty

672 IMS: Application Programming

Chapter 41. Programming Java dependent regions
Use these topics to design, write, and maintain application programs for running in the Java dependent
regions.
Related concepts
“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Overview of the IMS Java dependent regions
The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.

Important: You can host Java applications on the mainframe to access IMS from the following z/OS
environments:

• JMP and JBP regions
• WebSphere Application Server for z/OS
• Db2 for z/OS stored procedures
• CICS

Use the JMP or JBP regions to host your Java application if your application is required to run in an IMS
dependent region.

JMP and JBP regions can run applications written in Java, object-oriented COBOL, object-oriented PL/I, or
a combination of these languages.

To access IMS message queues from your JMP and JBP applications, use the IMS Java dependent region
resource adapter. To access IMS databases from your JMP and JBP applications, you can also use these
IMS Universal drivers: the IMS Universal JDBC driver and the IMS Universal DL/I driver.

In addition to IMS databases, you can access Db2 for z/OS databases from your JMP and JBP applications
by using the JDBC driver for Db2 for z/OS (JCC driver version 3.57.91).

JMP and JBP regions can load and run with a 31-bit or 64-bit Java virtual machine (JVM). Use the JVM=64
or JVM=31 parameter to switch between the 64-bit and 31-bit addressing mode. If no value is specified
on JVM=, the 31-bit addressing mode is used.

Java message processing (JMP) regions
JMP regions are like message processing program (MPP) regions, but JMP regions allow the scheduling
only of Java programs. In the PSB source associated with the Java program, the option LANG=JAVA must
be specified. A JMP application is started when there is a message in the queue for the JMP application
and IMS schedules the message to be processed. JMP applications, like MPP applications, are executed
through transaction codes submitted by users at terminals and from other applications. Each transaction
code represents a transaction that the JMP application processes.

A single application can also be started from multiple transaction codes. JMP applications, like MPP
applications, are flexible in how they process transactions and where they send the output. JMP
applications send any output messages back to the message queues and process the next message
with the same transaction code. The program continues to run until there are no more messages with the
same transaction code. JMP applications share the following characteristics:

• They are small.
• They can produce output that is needed immediately.
• They can access IMS or DB2 data in a DB/DC environment and DB2 data in a DCCTL environment.

© Copyright IBM Corp. 1974, 2022 673

Java batch processing (JBP) regions
JBP regions run flexible programs that perform batch-type processing online and can access the IMS
message queues for output, like non-message-driven batch message processing (BMP) applications.
JBP applications are started by submitting a job with JCL or from TSO. JBP applications are like BMP
applications, except that they cannot read input messages from the IMS message queue. For example,
there is no IN= parameter in the startup procedure. Like BMP applications, JBP applications can use
symbolic checkpoint and restart calls to restart the application after an abend. JBP applications can
access IMS or Db2 for z/OS data in a DB/DC or DBCTL environment and Db2 for z/OS data in a DCCTL
environment.

Related concepts
“Programming with the IMS Universal drivers” on page 559
Use these topics to design, write, and maintain application programs for IMS 15.3 using the IMS Universal
drivers.
Related tasks
“IBM Enterprise COBOL for z/OS interoperability with JMP and JBP applications” on page 702
With the IBM Enterprise COBOL for z/OS support for COBOL and Java language interoperability, you can
write Java and Object-Oriented (OO) COBOL applications that execute in a Java dependent region and
invoke existing COBOL programs.
“Accessing Db2 for z/OS databases from JMP or JBP applications” on page 703
A JMP or JBP application can access Db2 for z/OS using the latest JDBC driver for Db2 for z/OS.

Programming with the IMS Java dependent region resource
adapter

IMS provides a set of Java APIs called the IMS Java dependent region resource adapter to develop Java
applications to run on the IMS Java dependent regions.

The IMS Java dependent region resource adapter provides Java application programs running in JMP or
JBP regions with similar DL/I functionality to that provided in message processing program (MPP) and
non-message driven BMP regions, such as:

• Accessing IMS message queues to read and write messages
• Performing program switches
• Commit and rollback processing
• Accessing GSAM databases
• Database recovery (CHKP/XRST)

Use the IMS Java dependent region resource adapter together with the type-2 IMS Universal JDBC driver
or type-2 IMS Universal DL/I driver to perform database operations, including GSAM database access.

The following figure shows a Java application that is running in a JMP or JBP region. Database access and
message processing requests are passed to the IMS Java dependent region resource adapter and type-2
IMS Universal drivers, which converts the calls to DL/I calls.

674 IMS: Application Programming

Figure 109. JMP or JBP application that is using the IMS Java dependent region resource adapter

Preparing to write a Java application with the IMS Java dependent region resource
adapter
The IMS Java dependent region resource adapter is available as an SMP/E-installable driver
(imsutm.jar through the Java on Demand Feature FMID).

Java application programs that use the IMS Java dependent region resource adapter require the Java
Development Kit (JDK) 7.0 or later. They also require a way to generate the IMS database metadata,
such as using the IMS Enterprise Suite Explorer for Development. The default segment encoding of
the database metadata class produced by the IMS Explorer for Development is cp1047. To change the
segment encoding, use the com.ibm.ims.base.DLIBaseSegment.setDefaultEncoding method.

Related concepts
“Gathering requirements for message processing options” on page 91
One of the tasks of application design is providing information about your application's requirements to
the people in charge of designing and administering your IMS system.

Developing JMP applications with the IMS Java dependent region resource
adapter

Java message processing (JMP) applications access the IMS message queue to receive messages to
process and to send output messages.

Defining the input and output message classes
Before your JMP application can access the message queue, you must define input and output message
classes by subclassing the com.ibm.ims.application.IMSFieldMessage class.

Recommendation: Use the IMS Enterprise Suite Explorer for Development to generate the necessary
metadata class files from COBOL copybooks or PL/I resources when this support is available.

The IMS Java dependent region resource adapter provides the capability to process IMSFieldMessage
objects.

Chapter 41. Programming Java dependent regions 675

Subclass IMSFieldMessage: input message sample code

This example code subclasses the com.ibm.ims.application.IMSFieldMessage class to
make the fields in the message available to the program and creates an array of
com.ibm.ims.base.DLITypeInfo objects for the fields in the message. For the DLITypeInfo class,
the code identifies first the field name, then the data type, the position, and finally the length of the
individual fields within the array. This allows the application to use the access functions within the
IMSFieldMessage class hierarchy to automatically convert the data from its format in the message to a
Java type that the application can process. In addition to the message-specific fields that it defines, the
IMSFieldMessage class provides access functions that allow it to determine the transaction code and
the length of the message.

This class defines an input message that accepts a 2-byte type code of a car model to query a car
dealership database for available car models.

package dealership.application;
import com.ibm.ims.db.*;
import com.ibm.ims.base.*;
import com.ibm.ims.application.*;

/* Subclasses IMSFieldMessage to define application's input messages */
public class InputMessage extends IMSFieldMessage {

 /* Creates array of DLITypeInfo objects for the fields in message */
 final static DLITypeInfo[]fieldInfo={
 new DLITypeInfo("ModelTypeCode", DLITypeInfo.CHAR, 1, 2)
 };

 public InputMessage() {
 super(fieldInfo, 2, false);
 }
}

Subclass IMSFieldMessage: output message sample code

The following code example shows how to subclass the
com.ibm.ims.application.IMSFieldMessage class to define an output message that displays the
available car models from a type code query.

This sample code creates an array of com.ibm.ims.base.DLITypeInfo objects and then passes that
array, the byte array length, and the Boolean value false, which indicates a non-SPA message, to the
IMSFieldMessage constructor. For each DLITypeInfo object, you must first identify the field data
type, then the field name, the field offset in the byte array, and finally the length of the byte array.

package dealership.application;
import com.ibm.ims.db.*;
import com.ibm.ims.base.*;
import com.ibm.ims.application.*;

/*Subclasses IMSFieldMessage to define application's output messages */
public class ModelOutput extends IMSFieldMessage {

s /* Creates array of DLITypeInfo objects for the fields in message */
 final static DLITypeInfo[] fieldInfo={
 new DLITypeInfo("Type", DLITypeInfo.CHAR, 1, 2),
 new DLITypeInfo("Make", DLITypeInfo.CHAR, 3, 10),
 new DLITypeInfo("Model", DLITypeInfo.CHAR, 13, 10),
 new DLITypeInfo("Year", DLITypeInfo.DOUBLE, 23, 4),
 new DLITypeInfo("CityMiles", DLITypeInfo.CHAR, 27, 4),
 new DLITypeInfo("HighwayMiles", DLITypeInfo.CHAR, 31, 4),
 new DLITypeInfo("Horsepower", DLITypeInfo.CHAR, 35, 4)
 };

 public ModelOutput() {
 super(fieldInfo, 38,false);
 }

}

676 IMS: Application Programming

JMP programming models
JMP applications can retrieve input messages from the IMS message queue, access IMS and Db2 for z/OS
databases, commit or roll back transactions, and send output messages.

Creating the main method for a JMP application
The main method (public static void main(String[] args)) is the program entry point for all
JMP and JBP applications.

A JMP application starts when IMS receives a message with a transaction code for the JMP application
and schedules the message. A JMP application typically ends when there are no more messages with that
transaction code to process.

JMP application main method code sample

The following code sample shows how to implement a JMP application to access the hospital database
and send messages:

package hospital.ims;

import java.sql.*;
import com.ibm.ims.dli.tm.*;
import com.ibm.ims.dli.DLIException;

public static void main(String args[]) {
 try {
 Application app = null;
 MessageQueue messageQueue = null;
 IOMessage inputMessage = null;
 IOMessage outputMessage = null;
 Transaction tran = null;

 app = ApplicationFactory.createApplication();
 inputMessage = app.getIOMessage("class://hospital.ims.InMessage");
 outputMessage = app.getIOMessage("class://hospital.ims.OutMessage");
 messageQueue = app.getMessageQueue();
 tran = app.getTransaction();

 IMSDataSource dataSource = new IMSDataSource();
 dataSource.setMetadataURL("class://hospital.ims.HospitalDBView");
 dataSource.setDriverType(IMSDataSource.DRIVER_TYPE_2);
 dataSource.setDatastoreName("IMS1");

 Connection conn = dataSource.getConnection();
 conn.SetAutoCommit(false);
 Statement st = conn.createStatement();

 String in = new String("");

 // Returns true if a message is read from the queue
 while (messageQueue.getUnique(inputMessage)) {

 in = inputMessage.getString("Message").trim();
 if (!in.equals("")) {

 // Query the database for all hospital names
 ResultSet rs
 = st.executeQuery("SELECT HOSPNAME FROM PCB01.HOSpital");

 while (rs.next()) {

 // Return hospital name in output message
 outputMessage.setString("Message", rs.getString("HOSPNAME"));
 messageQueue.insert(outputMessage,
 MessageQueue.DEFAULT_DESTINATION);

 // Commit this transaction
 tran.commit();
 }
 conn.close();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();

Chapter 41. Programming Java dependent regions 677

 }
}

Accessing Db2 for z/OS data from a JMP application
When a JMP application accesses only IMS data, it must open a database connection only once to process
multiple transactions. However, a JMP application that accesses Db2 for z/OS data must open and close a
database connection for each message that is processed.

Processing an input message in a JMP application
A transaction begins when the application receives an input message and ends when the application
commits the results from processing the message. To get an input message, the application calls the
MessageQueue.getUnique method.

Processing an input message sample code

The following code example shows how an input message is processed in a JMP application.

import com.ibm.ims.dli.tm.*;

public static void main(String args[]) {

 conn = dataSource.getConnection(...); //Establish DB connection

 while(messageQueue.getUnique(...)){ //Get input message, which
 //starts transaction

 results=statement.executeQuery(...); //Perform DB processing
 ...
 messageQueue.insert(...); //Send output messages
 ...
 }

 conn.close(); //Close DB connection

 return;
}

Rolling back IMS changes in a JMP application
A JMP application can roll back IMS changes any number of times during a transaction. A rollback call
backs out all output messages to the most recent commit.

Use the com.ibm.ims.dli.tm.Transaction class to issue commit and rollback operations from your
JMP application.

The following code example shows how a JMP application rolls back IMS changes.

import com.ibm.ims.dli.tm.*;
import java.sql.*;

public static void main(String args[]) {

 conn = dataSource.getConnection(...); //Establish DB connection
 Application app = ApplicationFactory.createApplication();
 Transaction tran = app.getTransaction();
 MessageQueue mq = app.getMessageQueue();

 while(mq.getUnique(...)){ //Get input message, which
 //starts transaction

 results=statement.executeQuery(...); //Perform DB processing
 ...
 mq.insertMessage(...); //Send output messages
 ...
 tran.rollback(); //Roll back output messages

 results=statement.executeQuery(...); //Perform more DB processing
 //(optional)
 ...
 mq.insert(...); //Send more output messages
 //(optional)

678 IMS: Application Programming

 }

 conn.close(); //Close DB connection
}

Additional message handling considerations for JMP applications
The following considerations apply to JMP applications that access the IMS message queue when
handling conversational transactions, multi-segment messages, messages with repeating structures, and
multiple input messages.

Conversational transactions
The IMS Java dependent region resource adapter supports access to IMS conversational transactions.

Conversational transactions
A conversational transaction does not process the entire transaction at the same time. A conversational
program divides processing into a connected series of terminal-to-program-to-terminal interactions. Use
conversational processing when one transaction contains several parts. In contrast, a nonconversational
program receives a message from a terminal, processes the request, and sends a message back to the
terminal.

A conversational program receives a message from a terminal and replies to the terminal, but it saves the
data from the transaction in a scratchpad area (SPA). When the user at the terminal enters more data, the
program has the data it saved from the last message in the SPA, so it can continue processing the request
without the user at the terminal having to enter the data again.

Conversational transaction sample

The following code example shows how to write a JMP application to process a conversational
transaction.

package mytest.jdbo;

import com.ibm.ims.dli.DLIException;
import com.ibm.ims.dli.tm.*;

public class MyConversationalSample {

 public static void main(String[] args) {
 Transaction tran = null;
 try {
 Application app
 = ApplicationFactory.createApplication();
 IOMessage spaMessage
 = app.getIOMessage("class://mytest.jdbo.SPAMessage");
 IOMessage inputMessage
 = app.getIOMessage("class://mytest.jdbo.InMessage");
 IOMessage outputMessage
 = app.getIOMessage("class://mytest.jdbo.OutMessage");
 MessageQueue msgQueue = app.getMessageQueue();
 tran = app.getTransaction();

 // Read the SPA message
 while (msgQueue.getUnique(spaMessage)) {
 // before reading the application messages.
 if (msgQueue.getNext(inputMessage)) {
 String inField
 = inputMessage.getString("Message").trim();
 try {
 int sum = (new Integer(inField)).intValue();
 spaMessage.setString("Message", "" + sum);
 msgQueue.insert(spaMessage,
 MessageQueue.DEFAULT_DESTINATION);
 outputMessage.setString("Message",
 "The initial value is: " + sum);
 msgQueue.insert(outputMessage,
 MessageQueue.DEFAULT_DESTINATION);
 } catch (NumberFormatException e) {
 if (inField.equalsIgnoreCase("stop")) {
 // End the conversation

Chapter 41. Programming Java dependent regions 679

 spaMessage.setString("Message",
 "Exit requested, so I am exiting");
spaMessage.setTransactionName(IOMessage.END_CONVERSATION_BLANKS);
msgQueue.insert(spaMessage, MessageQueue.DEFAULT_DESTINATION);
 }
 }
 }
 }
 tran.commit();
 } catch (DLIException e) {
 e.printStackTrace();
 try {
 // Roll back the transaction
 if (tran != null) {
 tran.rollback();
 }
 } catch (DLIException e1) {
 e1.printStackTrace();
 }
 }
 }
}

Conversational transaction sequence of events
When the message is a conversational transaction, the following sequence of events occurs:

1. IMS removes the transaction code and places it at the beginning of a message segment. The message
segment is equal in length to the SPA that was defined for this transaction during system definition.
The transaction code is the first segment of the input message that is made available to the program.
The second through the nth segments from the terminal, minus the transaction code, become the
remainder of the message that is presented to the application program.

2. After the conversational program prepares its reply, it inserts the SPA to IMS. The program then inserts
the actual text of the reply as segments of an output message.

3. IMS saves the SPA and routes the message to the input LTERM (logical terminal).
4. If the SPA insert specifies that another program is to continue the same conversation, the total reply

(including the SPA) is retained on the message queue as input to the next program. This program then
receives the message in a similar form.

5. A conversational program must be scheduled for each input exchange. The other processing continues
while the operator at the input terminal examines the reply and prepares new input messages.

6. To terminate a conversation, the program places blanks in the transaction code field of
the SPA and inserts the SPA to IMS. To terminate a conversation when using the IMS
Java dependent region resource adapter, set the SPA transaction code to the constant
IOMessage.END_CONVERSATION_BLANKS.

7. The conversation can also be terminated if the transaction code in the SPA is replaced by any
transaction code from a nonconversational program, and the SPA is inserted to IMS. After the next
terminal input, IMS routes that message to the queue of the other program in the normal way.

Related concepts
Conversational transactions (Communications and Connections)

Handling multi-segment messages
Message-driven applications can have multi-segment input messages. That is, more than one message
needs to be read from the message queue in order to retrieve the entire message.

The following code shows how the IOMessage and the MessageQueue classes are used to retrieve
multi-segment messages:

 //Create a message queue
 MessageQueue messageQueue = app.getMessageQueue();

 //Create the first input message
 IOMessage input1
 = app.getIOMessage("class://InputMessage1");

680 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_tm_plan_terminals_convtrans.htm#ims_tm_plan_terminals_convtrans

 //Create the second input message
 IOMessage input2
 = app.getIOMessage("class://InputMessage2");

 try {
 //Read the first message from the queue
 messageQueue.getUnique(input1);
 ...
 //Read additional messages from the queue
 while(messageQueue.getNext(input2)) {
 ...
 } catch (DLIException e) {
 ...
 }

Coding and accessing messages with repeating structures
Messages with repeating structures can be defined by using the DLITypeInfoList class. With the
DLITypeInfoList class, you can specify a repeating list of fields and the maximum number of times the
list can be repeated. These repeating structures can contain repeating structures.

The following code example is a sample output message that contains a set of Make, Model, and Color
fields:

Sample output message with repeating structures

public class ModelOutput extends IMSFieldMessage {
static DLITypeInfo[] modelTypeInfo = {
 new DLITypeInfo("Make", DLITypeInfo.CHAR, 1, 20),
 new DLITypeInfo("Model", DLITypeInfo.CHAR, 21, 20),
 new DLITypeInfo("Color", DLITypeInfo.CHAR, 41, 20),
 };
static DLITypeInfo[] modelTypeInfoList = {
 new DLITypeInfoList("Models", modelTypeInfo, 1, 60, 100),
 };
public ModelOutput() {
 super(modelTypeInfoList, 6004, false);
} }

To access the nested structures that are defined in a DLITypeInfoList object, use a dotted notation
to specify the fields of the field within a repeating structure. For example, the "Color" field in the fourth
"Models" definition in the output object is accessed as "Models.4.Color" within the output message.
The following code sets the fourth "Color" in the output message to "Red."

IOMessage output = app.getIOMessage("class://ModelOutput");
output.setString("Models.4.Color", "Red");

Flexible reading of multiple input messages
JMP applications can process multiple input messages that require different input data types.

The following car dealership sample application supports requests to list models, show model details,
find cars, cancel orders, and record sales. Each of these requests requires different input data.

The following steps explain how to define the messages to support these requests, and how to access the
messages from the application.

1. Define the primary input message.

The primary input message is the message that you pass to the MessageQueue.getUnique method
to retrieve all of your input messages. Your primary input message must have an I/O area that is
large enough to contain any of the input requests that your application might receive. It must also
contain at least one field in common with all of your input messages. This common field allows you
to determine the input request. In the following code example, the common field is CommandCode,
and the maximum length of each message is 64 (the number passed to the IMSFieldMessage
constructor):

public class InputMessage extends IMSFieldMessage {

 final static DLITypeInfo[] fieldInfo =

Chapter 41. Programming Java dependent regions 681

 {
 new DLITypeInfo("CommandCode",
 DLITypeInfo.CHAR, 1, 20),
 };

 public InputMessage()
 {
 super(fieldInfo, 64, false);
 }
}

2. Define separate input messages for each request.

Each of these input messages contains the same CommandCode field as its first field. Each of these
input messages also uses an IMSFieldMessage constructor that takes an IMSFieldMessage object
and a DLITypeInfo array. The IMSFieldMessage constructor allows you to remap the contents
of the primary input message using the same type of information with each request; therefore, you
do not copy the I/O area of the message, only a reference to this area. The following code example
illustrates how to create the input messages for the requests ShowModelDetails, FindACar, and
CancelOrder.

public class ShowModelDetailsInput extends IMSFieldMessage {
 final static DLITypeInfo[] fieldInfo = {
 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20),
 new DLITypeInfo("ModelTypeCode", DLITypeInfo.CHAR, 21, 2)
 };

 public ShowModelDetailsInput(InputMessage inputMessage) {
 super(inputMessage, fieldInfo);
 }
}

public class FindACarInput extends IMSFieldMessage {
 final static DLITypeInfo[] fieldInfo = {
 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20),
 new DLITypeInfo("Make", DLITypeInfo.CHAR, 21, 10),
 new DLITypeInfo("Model", DLITypeInfo.CHAR, 31, 10),
 new DLITypeInfo("Year", DLITypeInfo.CHAR, 41, 4),
 new DLITypeInfo("LowPrice", DLITypeInfo.PACKEDDECIMAL, 45, 5),
 new DLITypeInfo("HighPrice", DLITypeInfo.PACKEDDECIMAL, 50, 5),
 new DLITypeInfo("Color", DLITypeInfo.CHAR, 55, 10),
 };
 public FindACarInput(InputMessage inputMessage) {
 super(inputMessage, fieldInfo);
 }
}

public class CancelOrderInput extends IMSFieldMessage {
 final static DLITypeInfo[] fieldInfo = {
 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20),
 new DLITypeInfo("OrderNumber", DLITypeInfo.CHAR, 21, 6),
 new DLITypeInfo("DealerNumber", DLITypeInfo.CHAR, 21, 6),
 };
 public CancelOrderInput(InputMessage inputMessage)
 {
 super(inputMessage, fieldInfo);
 }
}

Note the following details about the previous code examples:

• The CommandCode field is defined in every message that reads the command code. If you do not
define the field, you must adjust the offsets of the following fields to account for the existence
of the CommandCode in the byte array. For example, you can delete the DLITypeInfo entry for
CommandCode in the CancelOrderInput class, but the OrderNumber field must still start at offset
21.

• The length of the base class InputMessage must be large enough to contain any of its subclasses. In
this example, the InputMessage class is 64 bytes because the fields of the FindACarInput method
require it.

• Each InputMessage subclass must provide a constructor to create itself from an InputMessage
object. This constructor uses a new constructor in the IMSFieldMessage class, called a copy
constructor.

682 IMS: Application Programming

Given this design, an application can provide message-reading logic like in the following code example.

while (messageQueue.getUnique(inputMessage)) {

 string commandCode=inputMessage.getString("CommandCode").trim();

 if (commandCode.equals("ShowModelDetails")) {
 showModelDetails(new ShowModelDetailsInput(inputMessage));

 } else if(commandCode.equals("FindACar")) {
 findACar(new FindACarInput(inputMessage));

 } else {
 //process an error
 }

}

Developing JBP applications with the IMS Java dependent region resource
adapter

JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Symbolic checkpoint and restart
Similarly to batch message processing (BMP) applications, JBP applications can use symbolic checkpoint
and restart calls to restart the application after an abend. To issue a symbolic checkpoint and
restart when using the IMS Java dependent region resource adapter, use these methods of the
com.ibm.ims.dli.tm.Transaction interface:

• Transaction.checkpoint()
• Transaction.restart()

These methods perform functions that are analogous to the DL/I system service calls: (symbolic) CHKP
and XRST.

A JBP application connects to a database, makes a restart call, performs database processing,
periodically checkpoints, and disconnects from the database at the end of the program.
The program must issue a final commit before ending. On an initial application start, the
Transaction.restart() method notifies IMS that symbolic checkpoint and restart is to be enabled
for the application. The application then issues periodic Transaction.checkpoint() calls to
take checkpoints. The Transaction.checkpoint() method allows the application to provide a
com.ibm.ims.dli.tm.SaveArea object that contains one or more other application Java objects
whose state is to be saved with the checkpoint.

If a restart is required, it defaults to the last checkpoint ID. The Transaction.restart() method
returns a SaveArea object that contains the application objects in the same order in which they were
inserted at checkpoint time. If the SaveArea object returned is null, this means there were no objects
stored in the SaveArea object at checkpoint time.

Symbolic checkpoint and restart calls may also be used with GSAM data, or z/OS data sets. To restart
using a basic z/OS checkpoint, you must identify the restart checkpoint.

Code sample of JBP symbolic checkpoint and restart

The following symbolic checkpoint/restart sample JBP application demonstrates the use of the
checkpoint and restart functionality support with the IMS Java dependent region resource adapter.

Chapter 41. Programming Java dependent regions 683

The two symbolic checkpoint methods checkpoint() andcheckpoint(SaveArea saveArea)
require the application to be restarted (in the case of any abnormal end of the program) using the
4-character constant "LAST".

package samples.dealership.chkp_xrst;

import java.sql.*;
import java.io.*;

import com.ibm.ims.dli.DLIException;
import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.SaveArea;
import com.ibm.ims.dli.tm.Transaction;
import com.ibm.ims.jdbc.IMSDataSource;

public class CheckpointRestartAutoSample {

 private SaveArea saveAreaOut;
 private Connection connection;
 private Transaction transaction;

 // The entry point of the application
 public static void main(String[] args) throws Exception {
 CheckpointRestartAutoSample crSample
 = new CheckpointRestartAutoSample();

 crSample.setup();

 crSample.runSample();

 crSample.closeDown();

 }

 // Set up for the application:
 // 1. Enable trace
 // 2. Creates connection
 void setup() throws Exception {
 this.createConnection();
 Application app = ApplicationFactory.createApplication();
 this.transaction = app.getTransaction();
 }

 void closeDown() throws Exception {
 // close the connection
 connection.close();

 // Commit the IMS DB work
 this.transaction.commit();
 }

 // Creates a connection to the auto dealership database
 void createConnection() throws Exception {
 try {
 IMSDataSource ds = new IMSDataSource();
 ds.setDriverType(IMSDataSource.DRIVER_TYPE_2);
 ds.setMetadataURL("class://samples.dealership.AUTPSB11DatabaseView");

 connection = ds.getConnection();

 } catch (SQLException e) {
 String errorMessage
 = new String("During connection creation: "
 + e.toString());
 throw new Exception(errorMessage);
 }
 }

 void runSample() throws Exception {
 // the restart call is always the first call in a
 // checkpoint/restart application
 saveAreaOut = this.transaction.restart();

 // if the SaveArea object returned is null it
 // is a normal program start, otherwise it is a restart
 if (saveAreaOut != null) {
 // Check the SaveArea object to determine
 // where to restart from
 if (saveAreaOut.isEmpty()) {

684 IMS: Application Programming

 sqlMethod(true);
 } else {
 String str =
 (String)saveAreaOut.getObject(1);
 System.out.println("Retrieved string = "+str);
 }
 } else {
 sqlMethod(false);
 }
 }

 void sqlMethod(boolean isRestart)
 throws DLIException, SQLException {

 String sql
 = new String("SELECT * FROM Dealer.DealerSegment");
 Statement statement = connection.createStatement();
 ResultSet results = statement.executeQuery(sql);

 // this part of the code will be executed only during a normal
 // program start
 if (!isRestart && results.next()) {
 System.out.println("At first GetSegment call to the DealerDB: ");
 System.out.println("Dealer Number = "
 + results.getString("DealerNo"));
 System.out.println("Dealer Name = "
 + results.getString("DealerName"));
 System.out.println("DealerCity = "
 + results.getString("DealerCity"));
 System.out.println("DealerZip = "
 + results.getString("DealerZip"));
 System.out.println("DealerPhone = "
 + results.getString("DealerPhone"));
 }

 //String ckptid = null;
 for (int i=1; results.next(); i++) {
 System.out.println("GetSegment call to the DealerDB:");
 System.out.println("Dealer Number = "
 + results.getString("DealerNo"));
 System.out.println("Dealer Name = "
 + results.getString("DealerName"));
 System.out.println("DealerCity = "
 + results.getString("DealerCity"));
 System.out.println("DealerZip = "
 + results.getString("DealerZip"));
 System.out.println("DealerPhone = "
 + results.getString("DealerPhone"));

 // The checkpoint call, apart from storing program information,
 // causes the program to lose its position in the database
 this.transaction.checkpoint();
 }
 }

}

Rolling back changes in a JBP application
Similar to JMP applications, a JBP application can roll back database processing and output messages
any number of times during a transaction. A rollback call backs out all database processing and output
messages to the most recent commit.

Use the com.ibm.ims.dli.tm.Transaction class to issue commit and rollback operations from your
JMP application.

Related concepts
“Restarting your program” on page 65
If you issue symbolic checkpoint calls (for batch and BMP programs), you can use the Extended Restart
system service request (XRST) to restart your program after an abnormal termination.
Related reference
“Recovering databases and maintaining database integrity” on page 263

Chapter 41. Programming Java dependent regions 685

You can issue checkpoints, restart programs, and maintain database integrity in your application
programs.

Accessing GSAM data from a JBP application
GSAM data are frequently referred to as z/OS data sets or as flat files. This kind of data is non-hierarchical
in structure. You can access data from GSAM databases from a JBP application.

The JMP application connects to a GSAM database, performs database processing, periodically commits,
and disconnects from the database at the end of the application. To access the GSAM data, you will need
to supply your JBP application with the Java database metadata class for that database.

If your IMS system includes an activate IMS catalog database, you can connect to the catalog instead of
using a database metadata class file.

Sample metadata class for a car dealership database

The following Java code sample provides an example of the Java database metadata class.

package samples.dealership.gsam;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;

public class AUTOGSAMDatabaseView extends DLIDatabaseView {

// This class describes the data view of PSB: AUTOGSAM
// PSB AUTOGSAM has database PCBs with 8-char PCBNAME or label:
// AUTOLPCB
// PCBGSAMG
// PCBGSAML

// The following describes Segment:
 // DEALER ("DEALER") in PCB: AUTOLPCB ("AUTOLPCB")
static DLITypeInfo[] AUTOLPCBDEALERArray= {
new DLITypeInfo("DLRNO", DLITypeInfo.CHAR, 1, 4,
 "DLRNO", DLITypeInfo.UNIQUE_KEY),
new DLITypeInfo("DLRNAME", DLITypeInfo.CHAR,
 5, 30, "DLRNAME"),
new DLITypeInfo("CITY", DLITypeInfo.CHAR,
 35, 10, "CITY"),
new DLITypeInfo("ZIP", DLITypeInfo.CHAR,
 45, 10, "ZIP"),
new DLITypeInfo("PHONE", DLITypeInfo.CHAR,
 55, 7, "PHONE")
};
static DLISegment AUTOLPCBDEALERSegment= new DLISegment
("DEALER","DEALER",AUTOLPCBDEALERArray,61);

// The following describes Segment: MODEL ("MODEL")
 // in PCB: AUTOLPCB ("AUTOLPCB")
static DLITypeInfo[] AUTOLPCBMODELArray= {
new DLITypeInfo("MODKEY", DLITypeInfo.CHAR, 3, 24,
 "MODKEY", DLITypeInfo.UNIQUE_KEY),
new DLITypeInfo("MODTYPE", DLITypeInfo.CHAR, 1, 2, "MODTYPE"),
new DLITypeInfo("MAKE", DLITypeInfo.CHAR, 3, 10, "MAKE"),
new DLITypeInfo("MODEL", DLITypeInfo.CHAR, 13, 10, "MODEL"),
new DLITypeInfo("YEAR", DLITypeInfo.CHAR, 23, 4, "YEAR"),
new DLITypeInfo("MSRP", DLITypeInfo.CHAR, 27, 5, "MSRP"),
new DLITypeInfo("COUNT1", DLITypeInfo.CHAR, 32, 2, "COUNT")
};
static DLISegment AUTOLPCBMODELSegment= new DLISegment
("MODEL","MODEL",AUTOLPCBMODELArray,37);

// An array of DLISegmentInfo objects follows
 // to describe the view for PCB: AUTOLPCB ("AUTOLPCB")
static DLISegmentInfo[] AUTOLPCBarray = {
new DLISegmentInfo(AUTOLPCBDEALERSegment,DLIDatabaseView.ROOT),
new DLISegmentInfo(AUTOLPCBMODELSegment,0),
};

// Warning: PCB: PCBGSAMG has no SENSEGS
// The following describes GSAM Record:
 // JAVGSAM1 ("JAVGSAM1") in PCB: PCBGSAMG ("GSAMRead")
static DLITypeInfo[] PCBGSAMGJAVGSAM1Array= {
new DLITypeInfo("DealerNo", DLITypeInfo.INTEGER, 1, 4),

686 IMS: Application Programming

new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30),
new DLITypeInfo("ModelType", DLITypeInfo.CHAR, 35, 2),
new DLITypeInfo("ModelKey", DLITypeInfo.CHAR, 37, 24),
new DLITypeInfo("Make", DLITypeInfo.CHAR, 37, 10),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 47, 10),
new DLITypeInfo("Year", "yyyy", DLITypeInfo.DATE, 57, 4),
new DLITypeInfo("MSRP", "S999999V99", DLITypeInfo.PACKEDDECIMAL, 61, 5),
new DLITypeInfo("Counter", DLITypeInfo.SMALLINT, 66, 2)
};
static GSAMRecord PCBGSAMGRecord= new GSAMRecord
("PCBGSAMGRecord",PCBGSAMGJAVGSAM1Array,80);

// An array of DLISegmentInfo objects follows
 // to describe the view for PCB: PCBGSAMG ("GSAMRead")
static DLISegmentInfo[] PCBGSAMGarray = {
new DLISegmentInfo(PCBGSAMGRecord, DLIDatabaseView.ROOT)
};

// Warning: PCB: PCBGSAML has no SENSEGS
// The following describes GSAM Record:
 // JAVGSAM1 ("JAVGSAM1") in PCB: PCBGSAML ("GSAMLoad")
static DLITypeInfo[] PCBGSAMLJAVGSAM1Array= {
new DLITypeInfo("DealerNo", DLITypeInfo.INTEGER, 1, 4),
new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30),
new DLITypeInfo("ModelType", DLITypeInfo.CHAR, 35, 2),
new DLITypeInfo("ModelKey", DLITypeInfo.CHAR, 37, 24),
new DLITypeInfo("Make", DLITypeInfo.CHAR, 37, 10),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 47, 10),
new DLITypeInfo("Year", "yyyy", DLITypeInfo.DATE, 57, 4),
new DLITypeInfo("MSRP", "S999999V99",
 DLITypeInfo.PACKEDDECIMAL, 61, 5),
new DLITypeInfo("Counter", DLITypeInfo.SMALLINT, 66, 2)
};
static GSAMRecord PCBGSAMLRecord= new GSAMRecord
("PCBGSAMLRecord",PCBGSAMLJAVGSAM1Array,80);

// An array of DLISegmentInfo objects follows
 // to describe the view for PCB: PCBGSAML ("GSAMLoad")
static DLISegmentInfo[] PCBGSAMLarray = {
new DLISegmentInfo(PCBGSAMLRecord, DLIDatabaseView.ROOT)
};

// Constructor
public AUTOGSAMDatabaseView() {
super("2.0","AUTOGSAM", "AUTOLPCB", "AUTOLPCB",
 AUTOLPCBarray);
addDatabase("GSAMRead", "PCBGSAMG", PCBGSAMGarray);
addDatabase("GSAMLoad", "PCBGSAML", PCBGSAMLarray);
} // end AUTOGSAMDatabaseView constructor

} // end AUTOGSAMDatabaseView class definition

Sample JBP application for accessing a GSAM database

The following code example is a JBP application that relies on the previous code sample to access GSAM
data.

package samples.dealership.gsam;

import java.io.*;
import java.util.Properties;
import java.math.BigDecimal;

import com.ibm.ims.dli.*;
import com.ibm.ims.dli.tm.*;

/**
* This is an auto dealership sample application
* demonstrating the use of the
* GSAM database functionality support in
* the IMS Java dependent region resource adapter.
*
*/
public class GSAMAuto {
private final String readOnlyGSAMPCB
 = new String("GSAMRead");
private final String writeOnlyGSAMPCB

Chapter 41. Programming Java dependent regions 687

 = new String("GSAMLoad");

private PSB psb;

/**
* The entry point of the application
*/
public static void main(String[] args) {
GSAMAuto gsamLoadSample = new GSAMAuto();
if (System.getProperty("com.ibm.ims.jdbcenvironment")
 == null) {
Properties properties = System.getProperties();
properties.put("com.ibm.ims.jdbcenvironment", "IMS");
}

try {
gsamLoadSample.setup();
} catch (Exception e) {
e.printStackTrace();
}

try {
gsamLoadSample.runSample();

gsamLoadSample.closeDown();
} catch (Throwable e) {
e.printStackTrace();
}

}

/**
* This method does the set up for the application:
* 1. Enable trace
* 2. Creates dbConnection
* 3. Creates GSAMConnection object
* @throws IOException
* @throws SecurityException
* @throws DLIException
*/
void setup() throws SecurityException,
 IOException, DLIException {
IMSConnectionSpec cSpec
 = IMSConnectionSpecFactory.createIMSConnectionSpec();
cSpec.setDatastoreName("IMS1");
cSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_2);
cSpec.setMetadataURL("class://samples.dealership.gsam.AUTOGSAMDatabaseView");
psb = PSBFactory.createPSB(cSpec);
}

/**
* This method does the clean up before application exit.
* 1. Commits the database work done. IMS Java dependent
* regions require all applications to commit before exiting.
* @throws DLIException
*
* @exception Exception
*/
void closeDown() throws DLIException {
try {
Application app = ApplicationFactory.createApplication();
Transaction transaction = app.getTransaction();

// Always commit any work before exiting
transaction.commit();
} catch (DLIException e) {
System.out.println("IMS commit failed. Reason: "
 + e.toString());
throw e;
}
}

/**
* Demonstrates how to write to and read from a
* GSAM database. Also shows different data types
* being stored into the GSAM database using the
* internal data conversion methods.
*/
void runSample() {

final int dealerNo = 1171;
final String dealerName = "ABC Autos";

688 IMS: Application Programming

final String modelType = "LX";
final String make = "Santro";
final String model = "Zen";
final java.sql.Date year
 = java.sql.Date.valueOf("2011-05-18");
final BigDecimal msrp = new BigDecimal(17750.00);
final short count = (short) 8;

try {
GSAMPCB pcb1 = psb.getGSAMPCB(this.writeOnlyGSAMPCB);

Path myGSAMRecord = pcb1.getPathForInsert();

// Set values to individual fields in a GSAM record
myGSAMRecord.setInt("DealerNo", dealerNo);
myGSAMRecord.setString("DealerName", dealerName);
myGSAMRecord.setString("ModelType", modelType);
myGSAMRecord.setString("Make", make);
myGSAMRecord.setString("Model", model);
myGSAMRecord.setDate("Year", year);
myGSAMRecord.setBigDecimal("MSRP", msrp);
myGSAMRecord.setShort("Counter", count);

// Insert the GSAM record data
 // and save the RSA of the record
RSA rsa = pcb1.insert(myGSAMRecord);

// Close the GSAM database explicitly
 // for writing/loading data
pcb1.close();

// Open a GSAM Connection to write the GSAM dataset
GSAMPCB pcb2 = psb.getGSAMPCB(this.readOnlyGSAMPCB);

// Read the GSAM record data using
 // the RSA stored earlier
Path gsamRecord = pcb2.getUnique(rsa);

// Print the GSAM data
if (gsamRecord != null) {
System.out.println("Dealer Number: "
 + gsamRecord.getInt("DealerNo"));
System.out.println("Dealer Name: "
 + gsamRecord.getString("DealerName"));
System.out.println("Model Type: "
 + gsamRecord.getString("ModelType"));
System.out.println("Make: "
 + gsamRecord.getString("Make"));
System.out.println("Model: "
 + gsamRecord.getString("Model"));
System.out.println("Year: "
 + gsamRecord.getDate("Year"));
System.out.println("MSRP: "
 + gsamRecord.getBigDecimal("MSRP"));
System.out.println("Counter: "
 + gsamRecord.getShort("Counter"));

System.out.println
 ("\nSuccessful completion of GSAM sample application");
} else {
System.out.println("GSAM DB is empty");
}

} catch (DLIException e) {
System.out.println
 ("GSAM sample failed. Reason: " + e.toString());
}
}
}

Related concepts
“Processing GSAM databases” on page 283
GSAM databases are available to application programs that can run online in IMS batch message
processing (BMP) regions (message-driven or non-message-driven) or Java batch processing (JBP)
regions or standalone in DLIBATCH regions.
Related reference
“GSAM coding considerations” on page 289

Chapter 41. Programming Java dependent regions 689

The calls your program uses to access GSAM databases are not the same as the DL/I calls. The system
service calls that you use with GSAM are symbolic CHKP and XRST.

IMS Java dependent region resource adapter support for ICAL callout with
control data

IMS transactions that are written in Java and leverage the IMS Java dependent region resource adapter
can issue ICAL calls that include control data.

By using control data, you can include any information in an ICAL callout message such as the endpoint
information or other routing specifications.

The support for ICAL callout with control data uses the IMS implementation of the Java Message Service
(JMS) API in the IMS Java dependent region resource adapter (imsutm.jar). The IMS Java dependent
region resource adapter invokes the Universal Drivers C library (DFSCLIBU, in the SDFSJLIB data set)
through JNI calls to issue the calls from C to the AIBTDLI interface with the ICAL information.

The following example illustrates an IMS IMS Java dependent region resource adapter JMP application
that issues a synchronous callout message with control data:

public static void main(String args[]) {
 // Create an IMS JMP application
 app = ApplicationFactory.createApplication();

 // Get the IMS JMS queue connection factory
 IMSQueueConnectionFactory jmsConnectionFactory = app
 .getIMSQueueConnectionFactory();
 QueueConnection jmsConnection = null;
 QueueSession jmsQueueSession = null;
 javax.jms.Queue jmsQueue = null;
 QueueRequestor jmsQueueRequestor = null;

 try {
 // Get a reference to the IMS message queue
 msgQueue = app.getMessageQueue();

 // Create an input message object
 inputMessage = app.getIOMessage("class://MyInputMessage");

 // Create an output message object
 outputMessage = app.getIOMessage("class://MyOutputMessage");

 // Retrieve messages off the queue
 while (msgQueue.getUnique(inputMessage)) {

 // Setting the JMS settings to issue an ICAL call

 // Specify the amount of time to wait for a response from an
 // ICAL call. This value
 // corresponds to the RSFLD value in the AIB
 jmsConnectionFactory.setTimeout(999999);

 // Specify the expected size of the response message from the
 // ICAL call. This value
 // corresponds to the OAUSE value in the AIB
 jmsConnectionFactory.setResponseAreaLength(0x00000033);

 // Create the JMS queue connection
 jmsConnection = jmsConnectionFactory.createQueueConnection();

 // Create the JMS queue session
 jmsQueueSession = jmsConnection.createQueueSession(false, 1);

 // Specify the OTMA Routing descriptor which describes the
 // target that the ICAL call
 // will be sent to. This value correponse with the RSNM1 value
 // in the AIB
 jmsQueue = jmsQueueSession.createQueue("DEST0001");

 // Create the JMS queue requestor
 jmsQueueRequestor = new QueueRequestor(jmsQueueSession,
 jmsQueue);

 // Build the request area for the ICAL call
 // For synchronous program switch a BytesMessage object must be

690 IMS: Application Programming

 // used
 BytesMessage sendMsg = jmsQueueSession.createBytesMessage();

 // The content of the request area must follow the existing
 // format for synchronous program switch:
 // LL + ZZ + SWITCH-TO-TRAN + TRAN-INPUT
 short ll = 50;
 short zz = 0;
 sendMsg.writeShort(ll); // Specify the LL value
 sendMsg.writeShort(zz); // Specify the ZZ value

 // The name of the SWITCH-TO-TRAN is 8 bytes long and encoded in
 // CP1047
 // This value must be converted to bytes to be written into the
 // BytesMessage object
 String trancode = new String("SWTCHTRN");
 sendMsg.writeBytes(trancode.getBytes("Cp1047"));

 // Specify the input data for the switch to transaction
 sendMsg.writeUTF(inputMessage.getString("MYINPUT"));

 // Build the control data object
 IMSControlArea controlArea = new IMSControlArea();
 byte controlData[] = "Richard".getBytes();
 controlArea.addControlDataItem("name", controlData);

 // Attach the control data object to the message object
 ((BytesMessageImpl) sendMsg).addControlArea(controlArea);

 // The length of the request area can be retrieved by calling
 // the BytesMessage.getBodyLength() method
 // This value corresponds to the OALEN value in the AIB
 System.out.println("Request Message Length (AIBOALEN): "
 + sendMsg.getBodyLength());

 // Submit the ICAL call
 // >>-ICAL--aib--request_area--responseArea---control_area---<<
 // For synchronous program switch, the reply message will be a
 // BytesMessage object
 BytesMessage replyMsg = (BytesMessage) jmsQueueRequestor
 .request(sendMsg);

 // The response message will have the following format
 // LL + ZZ + TRAN-OUTPUT

 // Retrieve the LL field
 replyMsg.readShort();

 // Retrieve the ZZ field
 replyMsg.readShort();

 // Retrieve the output data from the switch to transaction and
 // place it in the output message
 outputMessage.setString("MYOUTPUT", replyMsg.readUTF());

 // Send the output message back to IMS
 msgQueue
 .insert(outputMessage, MessageQueue.DEFAULT_DESTINATION);

 }

 // Terminate the application and free up any associated resources
 app.end();

 } catch (Exception e) {
 // Error scenario, free up resources
 app.end();
 e.printStackTrace();
 }
 }

Chapter 41. Programming Java dependent regions 691

Programming with the Callout API
Use the IMSCallout API to issue IMS synchronous callout requests from JMP or JBP applications that
are running in a Java dependent region. Another option is to use the Java Message Service (JMS) API,
which provides limited support.

IMSCallout API
Use the IMSCallout class to issue Synchronous Callout (ICAL) DL/I calls directly from a Java-enabled
dependent region with the IMS Universal JDBC driver IMSCallout API.

The following code shows a simple application using the IMSCallout to issue a callout request:

ByteBuffer icalRequestArea = null;
ByteBuffer icalResponseArea = null;
icalRequestArea = app.get31BitDirectByteBuffer(requestSize);
icalRequestArea.position(0);
icalRequestArea.put("CALLOUT FROM ICAL PGM".getBytes("CP1047"));
icalResponseArea = app.get31BitDirectByteBuffer(actualResponseBufferSize);

IMSCallout imsCallout = app.createImsCallout();

imsCallout.setOtmaDescriptor(otmaDescriptor)
.setRequestArea(icalRequestArea)
.setResponseArea(icalResponseArea)
.setSubFunction(IMSCallout.SubFunction.SENDRECV)
.setTimeout(10000)
.execute();

System.out.println(imsCallout.getReturnCode());
System.out.println(imsCallout.getReasonCode());
System.out.println(imsCallout.getErrorCodeExtension());
System.out.println(imsCallout.getOutputAreaUsed());

app.free31BitDirectByteBuffer(icalResponseArea);
 app.free31BitDirectByteBuffer(icalRequestArea);
app.end();

ByteBuffers and Type-2 Java applications
If your JDBC application is running in Type-2 mode, you can optimize JVM storage by obtaining Byte
Buffers directly. When your specified work is complete, you must release the buffers.

Obtain direct storage in the following ways:

• If your application is running in a 31-bit JVM, you can obtain Byte Buffers directly by using the
java.nio.ByteBuffer class. ByteBuffer.allocateDirect() works only in a 31-bit JVM.

ByteBuffer directBuffer = ByteBuffer.allocateDirect(10);

• Use the Universal Drivers Application object to obtain direct 31-bit storage. If your application is running
in the 64-bit JVM, you must use this method.

Application app = new ApplicationFactory.createApplication();
 ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);

Release the buffers that were obtained with the Application class in the following ways:

• Specifically free the buffers with the free31BitDirectByteBuffer() method.

Application app = new ApplicationFactory.createApplication();
ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);
 // Doing work

app.free31BitDirectByteBuffer(directBuffer);

692 IMS: Application Programming

• Use the end() method. IMS tracks all buffers that are allocated with the Application class and
automatically releases them as part of the end() procedure.

Application app = new ApplicationFactory.createApplication();
 ByteBuffer directBuffer = app.get31BitDirectByteBuffer(20);
 // Doing work
 app.end();

Java Message Service API
The IMSCallout API is the newer, IMS-specific way to issue synchronous callout requests from a Java
dependent region. However, an IMS implementation of the Java Message Service (JMS) that uses JMS
classes can provide limited support for synchronous callout requests from JMP or JBP applications.

Support is limited to the Point-to-Point (PTP) messaging domain, and is provided only for nontransacted
QueueSession objects with Session.AUTO_ACKNOWLEDGE mode. Calling unsupported JMS methods or
passing unsupported JMS arguments throws a JMSException exception.

The JMS API is included in the Java SDK. To use JMP and JBP support for synchronous callout, the JMS
API (jms.jar) file must be on your classpath. Alternatively, IMS Enterprise Suite V3.2 is available for
purchase, which includes the JMS API.

Use the following steps to send a message and synchronously receive a response:

1. Create a com.ibm.ims.jms.IMSQueueConnectionFactory object.
2. Create a JMS QueueConnection instance by calling the createQueueConnection method on the
IMSQueueConnectionFactory object.

3. Create a JMS QueueSession instance by calling the createQueueSession method on the
QueueConnection instance. In the method call, set the input parameter values to false
and Session.AUTO_ACKNOWLEDGE to specify that the generated QueueSession instance is
nontransacted and runs in AUTO_ACKNOWLEDGE mode.

4. Create a queue identity by calling the createQueue method on the QueueSession instance. In the
method call, set the input parameter value to the OTMA descriptor name for the synchronous callout
operation.

5. Create a JMS QueueRequestor instance and pass in the QueueSession instance from step 3 and
the Queue instance from step 4 as input parameters to the QueueRequestor constructor method.

6. Create a TextMessage instance by calling the createTextMessage method on the QueueSession
instance from step 3. Set the string that contains the message data.

7. To send the message and retrieve a response, call the request method on the QueueRequestor object
from step 5. In the method call, pass in the TextMessage instance from step 6. Cast the return value
from the request method call to a TextMessage instance. If the call is successful, the return value is
the response to the synchronous callout request.

The following example shows a simple JMP or JBP application that sends a message to
an external application and synchronously receives a response message. In the example, an
IMSQueueConnectionFactory instance has a timeout value of 10 seconds and allocates 128 KB of
space to hold response messages.

import javax.jms.JMSException;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;
import javax.jms.Session ;
import javax.jms.TextMessage;
import com.ibm.ims.jms.IMSQueueConnectionFactory;

public class IMS_Sample
{
 public static void main(String argv[])
 {
 IMSQueueConnectionFactory jmsConnectionFactory
 = new IMSQueueConnectionFactory();

Chapter 41. Programming Java dependent regions 693

 QueueConnection jmsConnection = null;
 QueueSession jmsQueueSession = null;
 Queue jmsQueue = null;
 QueueRequestor jmsQueueRequestor = null;

 try {
 jmsConnectionFactory.setTimeout(1000);
 // set the timeout to 10 seconds
 jmsConnectionFactory.setResponseAreaLength(128000);
 // allocate 128k to hold the response message
 jmsConnection = jmsConnectionFactory.createQueueConnection();
 jmsQueueSession
 = jmsConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
 // set session to be non-transacted and in AUTO_ACKNOWLEDGE mode
 jmsQueue = jmsQueueSession.createQueue("OTMDEST1");
 // pass in the OTMA descriptor name

 jmsQueueRequestor
 = new QueueRequestor(jmsQueueSession, jmsQueue);
 TextMessage sendMsg = jmsQueueSession.createTextMessage();
 sendMsg.setText("MyMessage");
 System.out.println("Sending message: "+sendMsg.getText());
 TextMessage replyMsg
 = (TextMessage)jmsQueueRequestor.request(sendMsg);

 System.out.println("\nReceived message: "+replyMsg.getText());
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }
}

Related concepts
“Using Byte Buffers with the IMS Universal DL/I driver” on page 662
The IMS Universal DL/I driver includes several methods to handle complex data types that are not fully
represented by the IMS Catalog.
Related tasks
“Implementing the synchronous callout function” on page 453
To issue a synchronous callout request from your IMS application, issue the ICAL call and specify the
OTMA descriptor name.
Related reference
“Using the expandArrayResultSet property” on page 611
The IMS Universal JDBC driver allows for easier access to Array datatype fields using the
expandArrayResultSet property.

Program switching in JMP and JBP applications
IMS allows you to switch programs in JMP and JBP applications. You can perform immediate program
switches in JMP and JBP applications, and you can also make a deferred program switch in a
conversational JMP application.
Related concepts
“Sending messages to other IMS application programs” on page 393
A program-to-program switch occurs when an IMS application running in an IMS dependent region sends
a message to another IMS application running in an IMS dependent region.

Immediate program switching for JMP and JBP applications
The IMS Java dependent region resource adapter supports immediate program switching in JMP and JBP
applications. An immediate program switch passes the conversation directly to another conversational
program that is specified by an alternate PCB.

When an application makes an immediate program switch, the first MessageQueue.insert call sends
the SPA to the other conversational program, but subsequent MessageQueue.insert calls will send
messages to the new program. The program does not return or respond to the original terminal.

694 IMS: Application Programming

The setAlternatePCBName method of the com.ibm.ims.dli.tm.MessageDestinationSpec class
sets the name of the alternate PCB for the program switch. The setAlternatePCBName method issues
the DL/I CHNG call.

To make an immediate program switch in a JMP or JBP application:

1. Call the MessageDestinationSpec.setAlternatePCBName method to set the name of the
alternate PCB.

2. Call the MessageQueue.insert method to send the message to the alternate PCB.

Code sample of immediate program switching

The following code sample demonstrates how immediate program switching is performed in a JMP
application.

package sample.jmp;

import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.IOMessage;
import com.ibm.ims.dli.tm.MessageDestinationSpec;
import com.ibm.ims.dli.tm.MessageQueue;
import com.ibm.ims.dli.tm.Transaction;

public class SampleJMPImmediatePgmSwitch {
 private static IOMessage outputMessage = null;
 private static MessageQueue msgQueue = null;
 private static Application app = null;
 private static IOMessage inputMessage = null;

 public static void main(String[] args) {
 try {
 app = (Application) ApplicationFactory.createApplication();
 msgQueue = (MessageQueue) app.getMessageQueue();
 inputMessage
 = app.getIOMessage("class://sample.jmp.InMessage");
 outputMessage
 = app.getIOMessage("class://sample.jmp.OutMessage");

 //Define Message Destinations Specs
 MessageDestinationSpec mds2
 = new MessageDestinationSpec();
 mds2.setAlternatePCBName("TPPCB1");
 mds2.setDestination("JAVTRANJ");

 String in = new String("");
 while (msgQueue.getUnique(inputMessage)){
 in = inputMessage.getString("Message").trim();
 if(in.equalsIgnoreCase("ImmediatePGMSwitch1")){
 outputMessage.setString("Message",
 "Running ImmediatePGMSwitch1 Call");
 msgQueue.insert(outputMessage,
 MessageQueue.DEFAULT_DESTINATION);

 // Insert Message to JAVTRANJ TPPCB1: DLIWithCommit
 outputMessage.setString("Message",
 "Insert Message to JAVTRANJ TPPCB1");
 msgQueue.insert(outputMessage,
 MessageQueue.DEFAULT_DESTINATION);

 outputMessage.setString("Message", "DLIWithCommit");
 outputMessage.setTransactionName("JAVTRANJ");

 // Insert message to JAVTRANJ
 msgQueue.insert(outputMessage, mds2);

 // Commit transaction
 Transaction tran = app.getTransaction();
 tran.commit();
 } else {
 outputMessage.setString("Message",
 "Invalid input - valid input is 'ImmediatePGMSwitch1'");
 msgQueue.insert(outputMessage,
 MessageQueue.DEFAULT_DESTINATION);
 Transaction tran = app.getTransaction();
 tran.commit();
 }

Chapter 41. Programming Java dependent regions 695

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

To perform immediate program switching in a JBP application, the steps are similar to a JMP application.
In the main module, setup a MessageDestinationSpec instance then issue an insert call to another
transaction. For example:

MessageDestinationSpec mds2 = new MessageDestinationSpec();
mds2.setAlternatePCBName("TPPCB1");
mds2.setDestination("JAVTRANJ");
...
outputMessage.setString("Message", "Some Message");
outputMessage.setTransactionName("JAVTRANJ");
msgQueue.insert(outputMessage, mds2);

Related concepts
“Passing the conversation to another conversational program” on page 404
A conversational program can pass the conversation to another conversational program in by performing
a deferred switch or a immediate switch.

Deferred program switching for conversational JMP applications
You can make a deferred program switch in a conversational JMP application. A deferred program switch
changes the transaction code in the scratchpad area (SPA) before the SPA is returned to IMS. When
an application makes a deferred program switch, the application replies to the terminal and passes the
conversation to another conversational application.

Use the setTransactionName(String) method of the com.ibm.ims.dli.tm.IOMessage class to
specify the transaction code in the SPA.

To make a deferred program switch in a conversational JMP application:

1. Call the insert(IOMessage) method to send the output message to the terminal.
2. Call the setTransactionName(String) method to set the name of the transaction code in the SPA.
3. Call the insert(IOMessage) method to send the SPA to IMS.

Code sample of deferred program switching

The following code sample demonstrates how deferred program switching is performed in a JMP
application.

package sample.jmp;

import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.IOMessage;
import com.ibm.ims.dli.tm.MessageDestinationSpec;
import com.ibm.ims.dli.tm.MessageQueue;
import com.ibm.ims.dli.tm.Transaction;

public class SampleJMPDeferredPGM {
 private static IOMessage spaMessage = null;
 private static MessageQueue msgQueue = null;
 private static Application app = null;
 private static IOMessage inputMessage = null;
 private static Transaction tran = null;

 public static void main(String[] args) {
 try {
 app = ApplicationFactory.createApplication();
 spaMessage
 = app.getIOMessage("class://sample.jmp.SPAMessage");
 inputMessage
 = app.getIOMessage("class://sample.jmp.InMessage");
 msgQueue = app.getMessageQueue();

696 IMS: Application Programming

 tran = app.getTransaction();

 MessageDestinationSpec mds
 = new MessageDestinationSpec();
 mds.setAlternatePCBName("TPPCB1");
 mds.setDestination("IVTCM");

 String in = new String("");
 while (msgQueue.getUnique(spaMessage)) {
 if (msgQueue.getNext(inputMessage)) {
 in = inputMessage.getString("Message").trim();
 if (in.equalsIgnoreCase("DeferredPGMSwitch2")) {
 inputMessage.setString("Message", spaMessage.getString("Message"));
 msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

 // Setting Deferred Program Switch
 inputMessage.setString("Message", "Setting Deferred Program Switch");
 msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

 spaMessage.setString("Message", "SampleJMPDeferredPGM");
 spaMessage.setTransactionName("IVTCM");
 msgQueue.insert(spaMessage, mds);

 inputMessage.setString("Message", "SampleJMPDeferredPGM Completed");
 msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

 tran.commit();
 } else {
 inputMessage.setString("Message", spaMessage.getString("Message"));
 msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

 inputMessage.setString("Message",
 "Input Message was not 'DeferredPGMSwitch2'");
 msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

 tran.commit();
 }
 }
 }
 } catch(Exception e){
 e.printStackTrace();

 }
 }
}

Related concepts
“Passing the conversation to another conversational program” on page 404
A conversational program can pass the conversation to another conversational program in by performing
a deferred switch or a immediate switch.

Issuing synchronous program switch requests from a Java dependent region
IMS provides support for synchronous program switch functionality from Java message processing (JMP)
or Java batch processing (JBP) applications through an IMS implementation of the Java Message Service
(JMS).

To use the JMP support for synchronous program switch, the JMS API (jms.jar) file must be on your
classpath. The JMS API is included in the Java SDK. Alternatively, you can order IMS Enterprise Suite
V3.2, which includes the JMS API.

You must create an OTMA destination descriptor with the type IMSTRAN to use this function.

Restrictions:

• The IMS implementation of JMS is limited to supporting the Point-to-Point (PTP) messaging
domain only. In addition, support is only provided for non-transacted QueueSession objects with
Session.AUTO_ACKNOWLEDGE mode.

• The DFSYIOE0 and DFSMSCE0 exit routines are not called for synchronous program switch requests.
• The target transaction is not part of the RRS commit scope for the initiating application program.
• JBP applications cannot make synchronous program switch requests in a DBCTL environment.
• The target transaction has read-only access to Fast Path Main Storage Databases (MSDBs).

Chapter 41. Programming Java dependent regions 697

• The target transaction cannot be a conversational transaction.
• Synchronous program switch requests can be used in a shared queues environment only if all of the

participating IMS systems have a DBRC MINVERS value of 13.1 or greater.

If the application attempts to call a JMS method that is not supported by IMS or pass an unsupported
argument in a JMS method call, the API throws a JMSException.

The following procedure shows the high-level programming flow to implement a synchronous program
switch operation from a JMP application.

1. Create an IMS JMP application object.
2. Create an IMSQueueConnectionFactory.

The connection factory and application objects are reusable.
3. Get an IMS message queue reference.
4. Create input and output message objects.
5. Configure the timeout and response area size of your connection factory and create a connection.
6. From the connection, create a JMS queue session.
7. Configure the queue session object with the name of your IMSTRAN OTMA destination descriptor and

create a JMS queue requestor.
8. Create a BytesMessage object for the ICAL call input message area.

For synchronous program switch requests, only BytesMessage is supported.
9. Configure the message object with the target tran code, message length information, and input data.

10. Submit the ICAL call.
11. Retrieve the output message, parse the response message length information, and get the output

message data.
12. Clean up the output message and terminate the application.

This example demonstrates how to make a synchronous program switch request from a JMP application.

import javax.jms.BytesMessage;
import javax.jms.QueueConnection;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;
import com.ibm.ims.jms.IMSQueueConnectionFactory;
import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.IOMessage;
import com.ibm.ims.dli.tm.MessageQueue;

public class SyncCalloutSample
{
 private static IOMessage inputMessage = null;
 private static IOMessage outputMessage = null;
 private static MessageQueue msgQueue = null;
 private static Application app = null;

 public static void main(String args[])
 {
 // Create an IMS JMP application
 app = ApplicationFactory.createApplication();

 // Get the IMS JMS queue connection factory
 IMSQueueConnectionFactory jmsConnectionFactory = app.getIMSQueueConnectionFactory();
 QueueConnection jmsConnection = null;
 QueueSession jmsQueueSession = null;
 javax.jms.Queue jmsQueue = null;
 QueueRequestor jmsQueueRequestor = null;

 try {
 // Get a reference to the IMS message queue
 msgQueue = app.getMessageQueue();

698 IMS: Application Programming

 // Create an input message object
 inputMessage = app.getIOMessage("class://MyInputMessage");

 // Create an output message object
 outputMessage = app.getIOMessage("class://MyOutputMessage");

 // Retrieve messages off the queue
 while(msgQueue.getUnique(inputMessage)) {

 // Setting the JMS settings to issue an ICAL call

 // Specify the amount of time to wait for a response
 // from an ICAL call. This value corresponds to the
 // RSFLD value in the AIB
 jmsConnectionFactory.setTimeout(999999);

 // Specify the expected size of the response message
 // from the ICAL call. This value corresponds to the
 // OAUSE value in the AIB
 jmsConnectionFactory.setResponseAreaLength(0x00000033);

 // Create the JMS queue connection
 jmsConnection = jmsConnectionFactory.createQueueConnection();

 // Create the JMS queue session
 jmsQueueSession = jmsConnection.createQueueSession(false, 1);

 // Specify the OTMA Routing descriptor which describes the
 // target that the ICAL call will be sent to. This value
 // correponse with the RSNM1 value in the AIB
 jmsQueue = jmsQueueSession.createQueue("DEST0001");

 // Create the JMS queue requestor
 jmsQueueRequestor = new QueueRequestor(jmsQueueSession, jmsQueue);

 // Build the request area for the ICAL call
 // For synchronous program switch a BytesMessage object must be used
 BytesMessage sendMsg = jmsQueueSession.createBytesMessage();

 // The content of the request area must follow the existing
 // format for synchronous program switch:
 // LL + ZZ + SWITCH-TO-TRAN + TRAN-INPUT
 short ll = 50;
 short zz = 0;
 sendMsg.writeShort(ll); // Specify the LL value
 sendMsg.writeShort(zz); // Specify the ZZ value

 // The name of the SWITCH-TO-TRAN is 8 bytes long and encoded in CP1047
 // This value must be converted to bytes to be written into the BytesMessage
object
 String trancode = new String("SWTCHTRN");
 sendMsg.writeBytes(trancode.getBytes("Cp1047"));

 // Specify the input data for the switch to transaction
 sendMsg.writeUTF(inputMessage.getString("MYINPUT"));

 // The length of the request area can be retrieved by calling the
 // BytesMessage.getBodyLength() method
 // This value corresponds to the OALEN value in the AIB
 System.out.println("Request Message Length (AIBOALEN): " +
sendMsg.getBodyLength());

 // Submit the ICAL call
 // For synchronous program switch, the reply message will be a BytesMessage
object
 BytesMessage replyMsg = (BytesMessage)jmsQueueRequestor.request(sendMsg);

 // The response message will have the following format
 // LL + ZZ + TRAN-OUTPUT

 // Retrieve the LL field
 replyMsg.readShort();

Chapter 41. Programming Java dependent regions 699

 // Retrieve the ZZ field
 replyMsg.readShort();

 // Retrieve the output data from the switch to transaction and place it in
 // the output message
 outputMessage.setString("MYOUTPUT", replyMsg.readUTF());

 // Send the output message back to IMS
 msgQueue.insert(outputMessage, MessageQueue.DEFAULT_DESTINATION);

 }

 // Terminate the application and free up any associated resources
 app.end();

 }
 catch(Exception e) {
 // Error scenario, free up resources
 app.end();
 e.printStackTrace();
 }
 }

}

This example demonstrates how to make a synchronous program switch request from a JBP application.

package testcases.udb.opendb.t2;

import javax.jms.BytesMessage;
import javax.jms.QueueConnection;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;

import com.ibm.ims.jms.IMSQueueConnectionFactory;
import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;

public class SyncPgmSwitchFromJBPSample {
 private static Application app = null;

 public static void main(String args[]) {
 // Create an IMS JBP application
 app = ApplicationFactory.createApplication();

 // Get the IMS JMS queue connection factory
 IMSQueueConnectionFactory jmsConnectionFactory = app.getIMSQueueConnectionFactory();
 QueueConnection jmsConnection = null;
 QueueSession jmsQueueSession = null;
 javax.jms.Queue jmsQueue = null;
 QueueRequestor jmsQueueRequestor = null;

 try {

 // Setting the JMS settings to issue an ICAL call

 // Specify the amount of time to wait for a response from an
 // ICAL call. This value corresponds to the RSFLD value in the AIB
 jmsConnectionFactory.setTimeout(999999);

 // Specify the expected size of the response message from the
 // ICAL call. This value corresponds to the OAUSE value in the AIB
 int expectedResponseLength = 50;
 jmsConnectionFactory.setResponseAreaLength(expectedResponseLength);

 // Create the JMS queue connection
 jmsConnection = jmsConnectionFactory.createQueueConnection();

 // Create the JMS queue session
 jmsQueueSession = jmsConnection.createQueueSession(false, 1);

 // Specify the OTMA Routing descriptor which describes the
 // target that the ICAL call will be sent to. This value
 // corresponds with the RSNM1 value in the AIB
 jmsQueue = jmsQueueSession.createQueue("MYDEST");

700 IMS: Application Programming

 // Create the JMS queue requester
 jmsQueueRequestor = new QueueRequestor(jmsQueueSession,
 jmsQueue);

 // Build the request area for the ICAL call
 // For synchronous program switch a BytesMessage object must be used
 BytesMessage sendMsg = jmsQueueSession.createBytesMessage();

 // The content of the request area must follow the existing
 // format for synchronous program switch:
 // LL + ZZ + SWITCH-TO-TRAN + TRAN-INPUT
 short ll = 50;
 short zz = 0;
 sendMsg.writeShort(ll); // Specify the LL value
 sendMsg.writeShort(zz); // Specify the ZZ value

 // The name of the SWITCH-TO-TRAN is 8 bytes long and encoded in CP1047
 // This value must be converted to bytes to be written into the
 // BytesMessage object
 String trancode = new String("SWTCHTRN");
 sendMsg.writeBytes(trancode.getBytes("Cp1047"));

 // Specify the input data for the switch to transaction
 sendMsg.writeUTF("MYINPUT");

 // The length of the request area can be retrieved by calling
 // the BytesMessage.getBodyLength() method
 // This value corresponds to the OALEN value in the AIB
 System.out.println("Request Message Length (AIBOALEN): "
 + sendMsg.getBodyLength());

 // Submit the ICAL call
 // >>-ICAL--aib--request_area--responseArea------<<
 // For synchronous program switch, the reply message will be a
 // BytesMessage object
 BytesMessage replyMsg = (BytesMessage) jmsQueueRequestor
 .request(sendMsg);

 // The response message will have the following format
 // LL + ZZ + TRAN-OUTPUT

 // Retrieve the LL field
 replyMsg.readShort();

 // Retrieve the ZZ field
 replyMsg.readShort();

 // Retrieve the Data field
 byte[] messageBody = new byte[(int) replyMsg.getBodyLength()];
 replyMsg.readBytes(messageBody);

 // Terminate the application and free up any associated resources
 app.end();

 } catch (Exception e) {
 // Error scenario, free up resources
 app.end();
 e.printStackTrace();
 }
 }

}

Related concepts
Synchronous program switch requests (Communications and Connections)

IBM Enterprise PL/I for z/OS and Java language interoperability
With IBM Enterprise PL/I for z/OS support for Java and PL/I language interoperability, you can write PL/I
and Java applications that run in a Java dependent region and call PL/I programs already in production.
PL/I and Java language interoperability support is available only in a 31-bit Java virtual machine (JVM).

You can use this support to write and run applications specific to your workloads and business
environment. For example:

Chapter 41. Programming Java dependent regions 701

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_otma_admin_syncswitch.htm#ims_otma_admin_syncswitch

• Write front-end message processing applications in Java that call back-end PL/I applications to process
databases.

• Build PL/I applications with a main routine that can call Java routines.

You can access PL/I code in a JMP or JBP region by using PL/I language syntax features. For example:

• Define classes with methods and data that are implemented in PL/I.
• Create instances of Java and PL/I classes.
• Run methods on Java and PL/I objects.
• Write classes that inherit from Java classes or other PL/I classes.
• Define and run overloaded methods.
• From PL/I, call services that are provided by the JNI to obtain Java-oriented capabilities.

To learn more about building IBM Enterprise PL/I for z/OS applications that run in an IMS dependent
region, see Enterprise PL/I for z/OS V5.3.

IBM Enterprise COBOL for z/OS interoperability with JMP and JBP
applications

With the IBM Enterprise COBOL for z/OS support for COBOL and Java language interoperability, you can
write Java and Object-Oriented (OO) COBOL applications that execute in a Java dependent region and
invoke existing COBOL programs.

With this support, you can:

• Call an object-oriented (OO) COBOL application from a Java application by building the frontend
application, which processes messages, in Java, and the back end, which processes databases, in OO
COBOL.

• Build an OO COBOL application containing a main routine that can invoke Java routines.

You can access COBOL code in a JMP or JBP region because Enterprise COBOL provides object-oriented
language syntax that enables you to:

• Define classes with methods and data implemented in COBOL
• Create instances of Java and COBOL classes
• Invoke methods on Java and COBOL objects
• Write classes that inherit from Java classes or other COBOL classes
• Define and invoke overloaded methods

In IBM Enterprise COBOL for z/OS programs, you can call the services provided by the JNI to obtain Java-
oriented capabilities in addition to the basic OO capabilities available directly in the COBOL language.

In IBM Enterprise COBOL for z/OS classes, you can code CALL statements that interface with procedural
COBOL programs. Therefore, COBOL class definition syntax can be especially useful for writing wrapper
classes for procedural COBOL logic, enabling existing COBOL code to be accessed from Java.

Java code can create instances of COBOL classes, invoke methods of these classes, and can extend
COBOL classes.

Related Reading: For details building applications that use IBM Enterprise COBOL for z/OS and that run
in an IMS dependent region, see Enterprise COBOL for z/OS Programming Guide.

Related concepts
“Overview of the IMS Java dependent regions” on page 673

702 IMS: Application Programming

https://www.ibm.com/docs/en/epfz/5.3

The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.

IBM Enterprise COBOL for z/OS backend applications in a JMP or JBP region
When you define an object-oriented (OO) COBOL class and compile it with the IBM Enterprise COBOL for
z/OS compiler, the compiler generates a Java class definition with native methods and the object code
to implement the native methods. After compiling the class, you can create an instance and invoke the
methods of the compiled class from a Java program that runs in a JMP or JBP region.

For example, you can define an OO COBOL class with the appropriate DL/I call in COBOL to access an IMS
database.

To make the implementation of this class available to a Java application running with IMS:

1. Compile the COBOL class with the IBM Enterprise COBOL for z/OS compiler to generate a Java source
file, which contains the class definition, and an object module, which contains the implementation of
the native methods.

2. Compile the generated Java source file with the Java compiler to create the application class file.
3. Link the object module into a dynamic link library (DLL) in the z/OS file system (zFS) file (.so).
4. Update the application class path (ibm.jvm.application.class.path) for the JMP or JBP region to allow

access to the Java class file.
5. Update the library path for the JMP or JBP region to allow access to the DLL.

IBM Enterprise COBOL for z/OS frontend applications in a JMP or JBP region
The object-oriented syntax of IBM Enterprise COBOL for z/OS enables you to build COBOL applications
with a main method, which can be run directly in a JMP or JBP region.

The JMP or JBP region locates, instantiates, and invokes the main method of an OO COBOL application in
the same way it does for the main method of a Java application.

You can write an application for an JMP or JBP region entirely with OO COBOL, but a more likely use for a
frontend COBOL application is to call a Java routine from a COBOL application.

When running within the JVM of an JMP or JBP region, the IBM Enterprise COBOL for z/OS runtime
support automatically locates and uses the JVM to invoke methods on Java classes.

A frontend OO COBOL application with a main routine that runs in a JMP or JBP region has the same
requirements as a Java program that runs in a JMP or JBP region.

Accessing Db2 for z/OS databases from JMP or JBP applications
A JMP or JBP application can access Db2 for z/OS using the latest JDBC driver for Db2 for z/OS.

Attention: If you access a Db2 for z/OS database using both Java and COBOL in the same
application, you might experience unexpected behavior, but only if the commit or rollback
processing is done in COBOL while active cursors are in the Java portion.

The JMP or JBP region that the application is running in can also be defined with Db2 for z/OS attached by
the DB2 Recoverable Resource Manager Services attachment facility (RRSAF).

Accessing Db2 for z/OS data from a JMP or JBP application is like accessing IMS data. When writing a
JMP or JBP application that accesses Db2 for z/OS data, consider both the differences from IMS database
access and the differences from accessing Db2 for z/OS data in other environments:

• You must create a DB2 plan for each PSB (typically each Java application) that is used to access Db2 for
z/OS.

• You can have only one active Db2 for z/OS connection open at any time.
• If you are using the type-2 JDBC drivers for Db2 for z/OS, you must use the default connection URL in

the application program. For example, jdbc:db2os390: or db2:default:connection.

Chapter 41. Programming Java dependent regions 703

• If you are using the type-4 DB2 JDBC drivers, you can use a specific connection URL in the application
program.

• To commit or roll back work, use the Transaction.commit method or the Transaction.rollback
method.

– For JMP applications, the Transaction.commit method commits all work, including SQL calls.
Calling the Transaction.commit and Transaction.rollback methods does not automatically
reset the connection to Db2 for z/OS. The connection to Db2 for z/OS is reset when you issue a
MessageQueue.getUnique call.

– For JBP applications, the Transaction.commit method commits SQL calls.
• Because RRSAF is the coordinator, you cannot use the Connection.setAutoCommit or
Connection.commit method of the JDBC driver for Db2 for z/OS.

Related concepts
“Overview of the IMS Java dependent regions” on page 673
The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.
Related tasks
Preparing your system to use the DB2 Attach Facility (Communications and Connections)
DB2: Installing the IBM Data Server Driver for JDBC and SQLJ

704 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_usingdb2af.htm#ims_usingdb2af
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/java/src/tpc/imjcc_jccinstall.html

Chapter 42. 31-bit COBOL and 64-bit Java
interoperability

You can enable interoperability between 31-bit COBOL code and 64-bit Java code by adding value
JVM=3164 to an IMS dependent region's parameter list, installing required software, and configuring the
dependent region. Supported dependent region types include MPR, BMP, IFP, JBP, and JMP.

Adding parameter JVM=3164 indicates to an IMS dependent region that separate Language Environment
instances are to be established for each addressing mode: a primary 31-bit Language Environment
enclave, and a secondary 64-bit Language Environment enclave that hosts the Java virtual machine
(JVM). When JVM=3164, IMS uses module DFSJVM36.

Software requirements
This interoperability requires specific functions from the COBOL compiler, the Language Environment, and
the 64-bit IBM Java Software Development Kit (SDK). Required software includes the following items:

• IMS APAR PH37140.
• Language Environment APAR PH28966, which provides the base support for interoperability.
• Language Environment APAR PH40444, which provides a fix for S422 ABEND (BMP region) or U4083

ABEND out of CELQLIB during IMS dependent region termination.
• COBOL APAR PH37101.
• Java IBM SDK, Java Technology Edition V8.0.6.36 (FixPack 36) or newer.

Additionally, consider the following important information regarding Java, COBOL (including Object-
Oriented COBOL), and IMS.

Java considerations
The following Java considerations for IMS applications are based on IBM SDK, Java Technology Edition. To
learn more, see Using 31-bit native C or C++ code with the 64-bit Java VM (z/OS only).

Limitations

• The 31-bit native application must be a single-thread. The 64-bit Java application can be multi-
threaded but only a single Java application thread is allowed to interoperate across the address mode
(AMODE) boundary. If a second application thread tries to load a 31-bit library or call a 31-bit C or C++
function, a java.lang.UnsatisfiedLinkError is usually thrown.

• You must compile the 31-bit native application with standard CALL linkage; XPLINK is not supported.
• Language Environment Condition handling support is not available across the AMODE boundary.
Specifically, -XCEEHDLR, -Xsignal:userConditionHandler=percolate, and related options are
not supported. Language Environment conditions are not converted into Java exceptions.

• Signal chaining is not supported across the AMODE boundary.
• Environment variables are copied across the AMODE boundary on the first transition only. Subsequent

updates in one AMODE environment are not propagated back to the other; instead, the variables
are tracked separately in each AMODE environment. To learn more, see Environment variables
propagation to secondary Language Environment in Introduction to AMODE 31 and AMODE 64 programs
interoperability.

COBOL considerations
The following COBOL considerations are based on COBOL technical note An enhancement in COBOL/JNI
interface. To learn more, see COBOL programs in AMODE 31 interacting with Java programs in AMODE 64.

Object-Oriented (OO) COBOL

© Copyright IBM Corp. 1974, 2022 705

https://www.ibm.com/docs/en/sdk-java-technology/8
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=wja-using-31-bit-native-c-c-code-64-bit-java-vm-zos-only
https://www.ibm.com/docs/en/zos/latest?topic=interoperability-introduction-amode-31-amode-64-programs
https://www.ibm.com/docs/en/zos/latest?topic=interoperability-introduction-amode-31-amode-64-programs
https://www.ibm.com/support/pages/node/6451263
https://www.ibm.com/support/pages/node/6451263
https://www.ibm.com/docs/en/cobol-zos/latest?topic=dcpimale-cobol-programs-in-amode-31-interacting-java-programs-in-amode-64

Important: This enhancement cannot be used by COBOL programs that contain object-oriented features
such as INVOKE statements, OBJECT-REFERENCE data items, or class definitions. An exception is
JNIEnvPtr, a COBOL special register that can be used by OO COBOL and non-OO COBOL programs to
make Java Native Interface (JNI) calls.

COBOL programming considerations

In a mixed 31/64-bit environment, references to Java types must be declared as PIC 9(18) COMP-5 in
COBOL (that is, as an 8-byte data item). The OBJECT-REFERENCE type cannot be used because this
data item maps to an incorrect 4-byte size in AMODE 31 COBOL programs. This applies to COBOL data
items that interact with JNI types such as jobject, jclass, jfieldID, jmethodID, jarray, and
jarray<type> when they are used as parameters in JNI calls.

Note that accesses to EXTERNAL data items and EXTERNAL files are not serialized.

Building the mixed AMODE COBOL/Java interoperability application

It is recommended that you build and run COBOL JNI applications in z/OS UNIX.

Compiling

To compile the COBOL program, use the cob2 command in a z/OS UNIX shell. Specify the RENT, DLL
and PGMNAME(LONGMIXED) compiler options. The THREAD option is not mandatory if only one COBOL
program is active in the run-unit at any time.

If the COBOL program includes the file JNI.cpy by using a COPY statement, specify the include
subdirectory of the COBOL install directory (typically /usr/lpp/cobol/include) in the search order
for copybooks. You can specify the include subdirectory by using the -I option of the cob2 command or
by setting the SYSLIB environment variable.

Linking

To prepare the COBOL program for execution, link the object file with the following two DLL side files to
create an executable module:

• libjvm31.x, which is provided with your 64-bit IBM Java Software Development Kit:
$JAVA_HOME/lib/s390x/j9vm.

• igzxjni2.x, which is provided in the lib subdirectory of the cobol directory in the z/OS UNIX file
system (typically /usr/lpp/cobol/lib). This DLL side file is also available as the member IGZXJNI2
in the SCEELIB PDS.

Do not link with the sidedeck igzcjava.x, which is used only by object-oriented features and is not
supported in the mixed AMODE environment. Linking both igzxjni2.x and igzcjava.x in the same program
can lead to ABENDs.

Note that $JAVA_HOME is the home directory of the 64-bit IBM Java Software Development Kit.

IMS considerations
The following list includes known limitations, things to consider, and changes in behavior between a
31-bit only environment and a mixed address mode environment running 31-bit COBOL and 64-bit Java.

• The UMASK environment option is not supported on the 64-bit Java environment.
• Unhandled exceptions, such as divide by zero, in a COBOL first application will cause the Language

Environment to terminate and trigger the IMS dependent region controller to go through termination
without issuing a U0101 ABEND with reason code 'B'x (11 decimal).

• For Java application programs, only the main thread can properly interact with the IMS control region.
This is an existing restriction for Java application programs.

Dependent region setup
Dependent region setup for 31-bit COBOL and 64-bit Java interoperability is slightly different than for
interoperability between 31-bit COBOL and 32-bit Java. Differences include a different positional startup
option for the dependent region's JCL (JVM=3164), a different IMS module (DFSJVM36), a different Java

706 IMS: Application Programming

DLL (libjvm31.so), and a different JVM option (-XX:+Enable3164Interoperability), which is
automatically included by DFSJVM36 when starting the JVM. IMS module DFSJVM36 will print messages
that begin with "DFSJVM36:" to the dependent region's job log.

To set up a dependent region that supports 31-bit COBOL code and 64-bit Java code, make the following
changes:

• Update the dependent region's JCL to include the new option JVM=3164. You can tailor the JCL
examples in the following Samples section to start the different dependent region types.

• Update the dependent region's JCL to include the IMS SDFSJLIB as part of the STEPLIB
concatenation. This data set contains new IMS code that is needed for proper execution of the
dependent region.

• Update the LIBPATH and CLASSPATH to point to the 64-bit Java installation directories to be able to
start the 64-bit JVM. See the samples of the ENVIRON= member and the JVMOPMAS= member or the
STDENV DD card contents in the following section.

Samples
IMS dependent region procedure samples are available in the following topics:

• DFSMPR procedure
• IMSBATCH procedure
• IMSFP procedure
• DFSJBP procedure
• DFSJMP procedure

The following samples show JVM and other configuration information specified in the
ENVIRON=DFSJVMEV and JVMOPMAS=DFSJVMMS members:

HLQ.PROCLIB(DFSJVMEV)

LIBPATH=/tmp:>
javahome/J8.0_64/lib/s390x/j9vm/:>
javahome/J8.0_64/lib/s390x/compressedrefs:>
javahome/J8.0_64/lib/:>
/usr/lpp/ims/ims15/imsjava/lib/:

HLQ.PROCLIB(DFSJVMMS)

-Xms256m
-Xmx1024m
-Djzos.logging=E
-Djzos.merge.sysout=false
-Djava.class.path=/tmp:>
javahome/J8.0_64/:>
javahome/J8.0_64/lib/:>
javahome/J8.0_64/lib/ext:>
/tmp/udbtest-0.0.1.jar:>
/usr/lpp/ims/ims15/imsjava/imsudb.jar

The alternative to using ENVIRON= and JVMOPMAS= is to use the STDENV DD card on the JCL for starting
the dependent region. The following is a sample of the STDENV member that can be specified on the
STDENV DD card:

HLQ.PDS(STDENV01)

LP=/tmp
LP="$LP":javahome/J8.0_64/lib/s390x/j9vm/
LP="$LP":javahome/J8.0_64/lib/s390x/compressedrefs/
LP="$LP":javahome/J8.0_64/lib/
LP="$LP":/usr/lpp/ims/ims15/imsjava/lib/
export LIBPATH="$LP":
CP=/tmp

Chapter 42. 31-bit COBOL and 64-bit Java interoperability 707

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsmpr_procedure.htm#ims_dfsmpr_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_imsbatch_procedure.htm#ims_imsbatch_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_imsfp_procedure.htm#ims_imsfp_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsjbp_procedure.htm#ims_dfsjbp_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsjmp_procedure.htm#ims_dfsjmp_procedure

CP="$CP":javahome/J8.0_64/
CP="$CP":javahome/J8.0_64/lib/
CP="$CP":javahome/J8.0_64/lib/ext
CP="$CP":/tmp/udbtest-0.0.1.jar
CP="$CP":/usr/lpp/ims/ims15/imsjava/imsudb.jar
export CLASSPATH="$CP":
IJO="-Xms256m"
IJO="$IJO -Xmx512m"
IJO="$IJO -Djzos.logging=E"
IJO="$IJO -Djzos.merge.sysout=false"
export IBM_JAVA_OPTIONS="$IJO "

Troubleshooting common issues
You see message DFS529E indicating an invalid value on the JVM exec parameter. For example:

DFS529E MPP00001.REGION.MPP00001 - AN INVALID VALUE IS SPECIFIED ON THE JVM EXEC PARAMETER

• This message indicates that the job MPP00001 to start dependent region MPP00001 contains an invalid
value for JVM=. This can indicate that IMS APAR PH37140 is not on the system, or that the value
specified for parameter JVM= is not 31 (default) or 3164.

You see multiple messages that begin with 'DFSJVM00: Option' or 'DFSJVM64: Option' in the
dependent region's job output.

• The DFSJVM00 messages indicate that the dependent region was started without the parameter
JVM=3164, or with the parameter in the wrong position. The DFSJVM64 messages indicate that a
JMP or JBP dependent region type was started with JVM=64.

You see message DFSJVM00 in the dependent region's job output, indicating a failure to open
libjvm.so:

DFSJVM00: dlopen(libjvm.so) failed; function(JNI_CreateJavaVM); EDC5254S An AMODE31 application
is attempting to load an AMODE64 DLL load module.

• This indicates that you are starting a dependent region without the parameter JVM=3164 or with the
parameter in the wrong position, and that you properly configured the LIBPATH to point to the 64-bit
Java SDK.

You see message DFSJVM36 in the dependent region's job output, indicating a failure to open
libjvm31.so:

DFSJVM36: dlopen(libjvm31.so) failed; function(JNI_CreateJavaVM);

• This indicates that the LIBPATH is not pointing to the 64-bit Java SDK, or that the 64-bit Java SDK is not
at V8.0.6.36 or newer. To resolve, ensure that you installed Java SDK V8.0.6.36 or newer and that the
LIBPATH points to it.

You see messages DFSJVM36 and CEL4RO64 in the dependent region's job output, indicating a
failure to start the JVM and no support for CEL4RO64:

DFSJVM36: JNI_CreateJavaVM() failed
CEL4RO64: CEL4RO64 runtime support not found.
JNI_CreateJavaVM failed. CEL4RO64 rc: 6 - CEL4RO64 runtime support not found.

• The CEL4RO64 message produced by the Java Native Interface (JNI) indicates that the Language
Environment CEL4RO64 runtime support function is not present on the system. To resolve, ensure that
the required Language Environment APARs are installed on the system.

The dependent region terminates with U0101 ABEND and reason code 'E'x (14 decimal).

• Reason code 'E'x (14 decimal) for U0101 ABEND indicates that the dependent region was started
without the SDFSJLIB in the STEPLIB concatenation. The SDFSJLIB contains files that are needed by
the IMS dependent region to support 31-bit COBOL and 64-bit Java interoperability.

708 IMS: Application Programming

Related concepts
Language environments (Application Programming)
Related reference
APARM= parameter for procedures (System Definition)
DFSJBP procedure (System Definition)
DFSJMP procedure (System Definition)
DFSJVMEV (JVM environment settings member) (System Definition)
DFSMPR procedure (System Definition)
IMSBATCH procedure (System Definition)
IMSFP procedure (System Definition)
JVM= parameter for procedures (System Definition)

Chapter 42. 31-bit COBOL and 64-bit Java interoperability 709

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_languageenv.htm#ims_languageenv
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_proc_parms_aparm.htm#ims_proc_parms_aparm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsjbp_procedure.htm#ims_dfsjbp_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsjmp_procedure.htm#ims_dfsjmp_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsjvmev_proclib.htm#DFSJVMEVJVMEnvironmentSettingsMembe
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsmpr_procedure.htm#ims_dfsmpr_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_imsbatch_procedure.htm#ims_imsbatch_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_imsfp_procedure.htm#ims_imsfp_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_proc_parms_jvm.htm#ims_proc_parms_jvm

710 IMS: Application Programming

Part 7. PL/I top-down development for IMS
Enterprise Suite SOAP Gateway web services

You can generate a PL/I application template from a web service description language (WSDL) document
that describes the operations and messages of a web service by using IBM Developer for System z. Then
use the PL/I segmentation APIs to add your business logic to the generated application before enabling
this application as a web service running on IMS Enterprise Suite SOAP Gateway.

IBM Developer for System z has a batch processor that can generate an IMS web service application
template in Enterprise PL/I from a WSDL file. The approach is known as the top-down approach, where
the application to serve as a web service is generated from a web service description file. The batch
processor generates the data structure, XML converters, and PL/I application template file from the WSDL
file that describes the web service.

© Copyright IBM Corp. 1974, 2022 711

712 IMS: Application Programming

Chapter 43. WSDL-to-PL/I segmentation APIs for
adding business logic in generated PL/I templates

IBM Developer for System z generates metadata to record the high-level relationships between the WSDL
file that you supply and the generated artifacts based on the PL/I segmentation APIs. Use this set of APIs
to add your business logic before enabling it as a web service on IMS Enterprise Suite SOAP Gateway.

Important: The IRZPWSIO segmentation APIs in IBM Developer for System z V9.0.1 or older versions is
renamed to DFSPWSIO in IMS. Starting with IMS Enterprise Suite V3.1 SOAP Gateway and IBM Developer
for System z V9.0.1.1, you must use the DFSPWSIO segmentation APIs in IMS.

Language structures are written to a single include file that begins with an operation-to-language-
structure dictionary comment. The metadata file is in XML format and is used by the batch processor
to generate XML converters, deployment metadata, and template programs. Annotations are added to the
generated source code to describe the relationships between the generated language structures and the
XML schemas from which they are derived.

The annotations appear as language comments immediately preceding the definitions of the language
structures or language structure members to which they apply. The WSDL2PLI component in IBM
Developer for System z uses a set of segmentation APIs in the DFSPWSH include file that is required
during compilation of the PL/I program. These APIs define how to consume and produce IMS messages.
The DFSPWSH include file in the SDFSSMPL data set provides the PL/I binding and offers pointers to the
data structures.

For each operation on the specified service and port, the following is generated:

• The PL/I structure(s) for operation input message
• The XSD to PL/I mapping session for operation input message
• The PL/I to XSD mapping session for operation output message
• The PL/I structure(s) for operation output message

For each operation in the WSDL, an operationNameHandler procedure and an operationNameImpl
procedure are created in the generated template. The operationNameHandler procedure contains
protocol logic while the operationNameImpl procedure is ready to be filled out and customized with
your business logic.

A DFSPWSHK user exit is provided to demonstrate how you can inspect, modify, or replace the buffer
which contains the current data structure that is being processed by the DFSPWSIO segmentation APIs.
Customize the DFSPWSHK user exit if you need to inspect, modify, or replace data structures as they
are processed by the DFSPWSIO APIs. The DFSPWSHK user exit allows you to keep track of whether or
not a data structure has been modified or replaced via the dfs_in_struct_state and dfs_out_struct_state
parameters. These and other parameters are documented in detail in the sample procedure and in IMS
Version 15.3 Exit Routines.

The DFSPWSHK user exit is invoked by DFSPWSIO segmentation APIs when the APIs are called by XML
converters in IMS Connect or by message processing programs. Therefore the DFSPWSHK exit must be
compiled and linked into a data set such that IMS Connect and Message Processing Regions could find
it by using the standard MVS search order (for example, STEPLIB and LINKLIST). The following diagram
demonstrates how the DFSPWSHK exit is called by both the XML converters in IMS Connect and by
message processing programs.

© Copyright IBM Corp. 1974, 2022 713

• DFSXSETS: This API is used by the PL/I XML converter in IMS Connect to set a language structure
that contains either the SOAP header, SOAP body, or SOAP fault. This API does not copy language
structures into the IMS Connect output buffer until it is instructed to do so through the parameter
@dfs_commit_structs. It is an error to deallocate or otherwise invalidate structure pointers passed to
the API via parameter @dfs_struct_ptr before instructing the API to commit (copy) all structures to the
IMS Connect output buffer.

• DFSQGETS: This API is used by the message processing PL/I program to get that language structure
from the IMS Message Queue by using the CEETDLI in-terface. The language structure contains either a
SOAP header, SOAP body, or SOAP fault. All language structures must retrieved from the IMS Message
Queue prior to setting the language structures by using the DFSQSETS API.

• DFSQSETS: This API sets a language structure that contains either the SOAP header, SOAP body,
or SOAP fault. This API does not insert language structures into the IMS Message Queue until it
is instructed to do so via parameter @dfs_commit_structs. Therefore it is an error to deallocate or
otherwise invali-date structure pointers that are passed to the API through the @dfs_struct_ptr pa-
rameter before instructing the API to commit (insert) all structures to the IMS Message Queue.

• DFSXGETS: This API is used by the PL/I XML converter in IMS Connect to get a language structure
that contains either the SOAP header, SOAP body, or SOAP fault. Since the IMS Message Queue is not
available to XML Conversion in IMS Connect, language structures are retrieved from the IMS Connect
input buffer. The expected format of the IMS Connect input buffer is an LLZZDATA byte stream.

For more information about the generated DFSPWSH include file, see IMS Version 15.3 Application
Programming APIs.

Related reference
Include file DFSPWSH (Application Programming APIs)
WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK) (Exit Routines)

714 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dfspwsio_apis_dfspwsh.htm#includefiledfspwsh
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfspwshk.htm#ims_dfspwshk

Chapter 44. Sample of a generated PL/I application
template

IMS PL/I application requires a message protocol and segmentation API (DFSPWSIO) by the service
provider message processing programs (MPPs) and XML converters.

Here is an example operation defined in the FAST247.wsdl included in this sample. The operation here
is a check balance operation that takes in a request and returns a response. A SOAP fault element is also
defined.

<wsdl:operation name="CheckBalanceOperation">
 <soap:operation soapAction="CheckBalanceOperation" style="document" />
 <wsdl:input name="CheckBalanceRequest">
 <soap:body parts="CheckBalancePart" use="literal" />
 </wsdl:input>
 <wsdl:output name="CheckBalanceResponse">
 <soap:body parts="CheckBalancePart" use="literal" />
 </wsdl:output>
 <wsdl:fault name="ServiceExceptionFault">
 <soap:fault use="literal" name="ServiceExceptionFault" />
 </wsdl:fault>
</wsdl:operation>

The top-down application development tooling creates the corresponding operation in the PL/I
application template:

CheckBalanceOperationImpl: procedure(iopcb_mask_ptr, checkBalanceReques
t_ptr, checkBalanceResponse_ptr, ServiceException_ptr) internal;
 dcl iopcb_mask_ptr pointer byvalue;
 dcl checkBalanceRequest_ptr pointer byvalue;
 dcl checkBalanceResponse_ptr pointer byaddr;
 dcl ServiceException_ptr pointer byaddr;

 return;

end CheckBalanceOperationImpl;

© Copyright IBM Corp. 1974, 2022 715

716 IMS: Application Programming

Chapter 45. Trace output for WSDL-to-PL/I
segmentation APIs

Trace information for the segmentation APIs is typically written to standard out and therefore can be
found in the job log of the Message Processing Region.

Each API has a trace mode that when enabled writes out information from the message header and a
two-column hex dump of the language structure. These dumps can be helpful, because an IMS Connect
Recorder Trace shows only the first 670 bytes of an IMS message.

The following is an example of source code:

01: /* Invoke API DFSQSETS to set the SOAP body language
02: * structure and commit it to the IMS Message Queue.
03: */
04: @dfs_struct_name = 'gettteam_1_0Response';
05: @dfs_struct_ptr = gettteam_1_0Response_ptr;
06: @dfs_struct_size = storage(getteam)1_0Response);
07: @dfs_commit_structs = '1'b;
08: @dfs_cee_feedback_ptr = addr(@dfs_cee_feedback);
09: @dfs_debug = '1'b;
10:
11: @return_code =
12: DFSQSETS(@dfs_async_msg_header_ptr,
13: @dfs_iopcb_mask_ptr, @dfs_soap_body_struct,
14: @dfs_struct_name, @dfs_struct_ptr,
15: @dfs_struct_size, @dfs_commit_structs,
16: @dfs_cee_feedback_ptr, @dfs_debug);
17:
18: if (@return_code != @dfs_success) then do;
19: display('MYMPP#handle_getteam():
20: || 'ERROR, DFSQSETS @dfs_soap_body_struct, '
21: || '@return_code: '|| trim(@return_code) || '.');
22: return;
23: end;

The corresponding trace output for this source code is as follows:

..:: DFSPWSIO#DFSQSETS() @20140415152643909 ::..
o @dfs_asyn_msg_header_ptr: 877656904.
o @dfs_iopcb_ptr: 110672.
o @dfs_struct_type: 2.
o @dfs_struct_name: getteam_1_0Response.
o @dfs_struct_ptr: 878837800.
o @dfs_struct_size: 150274.
o @dfs_commit_struct: 1.
o @dfs_cee_feedback_ptr: 875679616.
o DFSQSETS#setBodyStruct()
o body_struct_ptr: 878837800.
o body_struct_size: 150274.
o body_struct_ptr(1:body_struct_size):
00000000: 000001F4 00000001 00000002 000DE296 |...4..........So|
00000010: 86A3A681 998540E3 85A2A300 00000000 |ftware Test.....|
00000020: 00000000 00000000 00000000 00000000 |................|
...

© Copyright IBM Corp. 1974, 2022 717

718 IMS: Application Programming

Chapter 46. Limitations and restrictions of the
segmentation APIs

The APIs are designed to support SOAP header, body, and fault structures, but currently the APIs
implement only the SOAP body and fault structures.

© Copyright IBM Corp. 1974, 2022 719

720 IMS: Application Programming

Part 8. IMS Transaction Manager Resource Adapter
You can use the IMS Transaction Manager Resource Adapter (also known as the IMS TM resource
adapter) to create Java Platform, Enterprise Edition (Java EE, previously known as J2EE) applications
to access IMS transactions over the Internet, as well as to make callout requests to external Java EE
applications from IMS applications that run in IMS dependent regions.

Using this resource adapter within a WebSphere or Rational development environment, you can:

• Develop components of business processes in support of service-oriented architecture
• Create Java EE applications from Java beans
• Develop service-based applications

The applications can then be deployed on application servers such as WebSphere Application Server,
WebSphere Process Server, WebSphere Transformation Extender, or IBM Integration Bus.

© Copyright IBM Corp. 1974, 2022 721

722 IMS: Application Programming

Chapter 47. IMS Transaction Manager Resource
Adapter overview

The IBM IMS Transaction Manager Resource Adapter (also known as the IMS TM resource adapter)
is used by Java applications, Java Platform, Enterprise Edition (Java EE, previously known as J2EE)
applications or web services to access IMS transactions that are running on host IMS systems.

The IMS TM resource adapter implements the Java EE Connector Architecture (JCA), which connects
enterprise information systems (EISs) such as IMS to the Java EE platform. JCA provides your
applications with the qualities of service that can be provided by a Java EE application server, such
as connection management, transaction management, and security management. In addition, the IMS TM
resource adapter implements the JCA Common Client Interface (CCI), a programming interface that you
use in your application to communicate with IMS Transaction Manager.

The IMS TM resource adapter can be used with any generic Java EE 1.4 or later application server, such
as IBM WebSphere Application Server and IBM WebSphere Application Server Liberty Profile. The IMS TM
resource adapter can also enable a Java application to access IMS transactions that are running on a host
IMS system. In addition, the IMS TM resource adapter enables an IMS application to act as a client to
invoke applications in a Java EE server.

Although the IMS TM resource adapter is intended for use primarily by Java applications or web services
that submit transactions to IMS, the IMS TM resource adapter can also be used by services that submit
IMS commands to IMS or for IMS applications to invoke external Java EE applications.

Related information
J2EE Connector Architecture SpecificationSee the J2EE Connector Architecture Specification at http://
java.sun.com/j2ee/connector/index.jsp.
WebSphere Application Server request metrics tool informationFor more information about request
metrics, see IBM Documentation for WebSphere Application Server.
IMS TM Resource Adapter V15 release notesIMS TM Resource Adapter V15 release notes

Components of the IMS TM resource adapter
The IMS TM resource adapter includes a development-time component and a runtime component.

The IMS TM resource adapter runtime component must be deployed on IBM WebSphere Application
Server (z/OS or distributed), IBM WebSphere Integration Developer, IBM IBM Integration Bus, or IBM
WebSphere Process Server.

The IMS TM resource adapter also includes a development component that lets you create your
application by using an integrated development environment (IDE), such as IBM Rational Application
Developer for WebSphere Software, IBM Rational Software Architect, WebSphere Integration Developer,
IBM WebSphere Transformation Extender, and IBM Integration Bus. The development component is
included with the optional Java EE Connector Architecture (J2C) feature in these IDEs.

You can use the J2C wizard in these IDEs to create J2C applications, EJB components, and Web services,
either as stand-alone programs, or as added functionality to existing applications. You can also use this
wizard to dynamically import a specific version of the resource adapter if it is not already deployed in your
workspace. Even though you can code your own application by using the Common Client Interface (CCI)
of the Java EE Connector Architecture, use of an IDE significantly simplifies the development process.

© Copyright IBM Corp. 1974, 2022 723

http://java.sun.com/j2ee/connector/index.jsp
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/tprf_rqenable.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.tmra/topics/cimsfeatures15.htm

Runtime process of the IMS TM resource adapter
The communication between the IMS TM resource adapter and IMS are through IMS Connect, which
communicates with IMS Open Transaction Manager Access (OTMA).

When an initiating client (a Java application or a web service) issues a request to access an IMS
transaction, the IMS TM resource adapter communicates with IMS Connect through TCP/IP or Local
Option connections. IMS Connect then sends the transaction request to IMS OTMA by using the cross-
system coupling facility (XCF), and the transaction runs in IMS. The response is returned to the Java
application using the same path.

When an IMS application invokes an external enterprise JavaBeans (EJB) component, message-driven
bean (MDB), or web service (also known as the IMS callout function), the callout requests from IMS
applications are placed in the IMS OTMA hold queue. The Java application in WebSphere Application
Server is set up to start and obtain a connection to IMS Connect through the IMS TM resource adapter.
The IMS TM resource adapter polls IMS Connect to retrieve the callout requests from the hold queue. The
Java application processes the request, and returns any response data to IMS by issuing a normal IMS
transaction request. The response might be returned in the same transaction or a different transaction,
depending on whether IMS application issued a synchronous or asynchronous callout request.

The following figure illustrates the IMS TM resource adapter runtime process for the first scenario, where
an initiating client issues a request to access an IMS transaction.

Figure 110. IMS TM resource adapter runtime process

IMS TM resource adapter features
IMS TM resource adapter Version 15 provide the key functionality for Java applications to access various
types of IMS transactions with secure socket connections.

The base functionality available in IMS TM resource adapter includes:

• Component-managed and container-managed security.
• Pooling and reuse of connections.
• Both commit mode 1 and commit mode 0 IMS transactions.
• Secure Sockets Layer (SSL) communication between the IMS TM resource adapter and IMS Connect.
• Support for SSL null encryption
• Use of RACF keyrings as SSL keystores and truststores.

724 IMS: Application Programming

• Retrieval of output messages queued as the result of a failed commit mode 0 interaction or by insertion
to an alternate Program Control Block (PCB).

• Retrieval of asynchronous output with an alternate client ID when using shareable persistent socket
connections

• Control of whether undelivered output for commit mode 0 interactions on shareable persistent socket
connections is queued or discarded. This function is controlled by the purgeAsyncOutput property.

• Specification of the name of a destination for undelivered output for commit mode 0 interactions
on shareable persistent socket connections. This function is controlled by the reRoute flag and
reRouteName properties.

• Conversational processing.
• Support for commit mode 1, sync level CONFIRM applications
• Support for PL/I IMS applications

With Rational Application Developer (or other WebSphere and Rational development environments that
include the required version of Rational Application Developer), you can generate Java EE and Web
services applications to use the IMS TM resource adapter to invoke your PL/I IMS applications.

• Global transaction and two-phase-commit support.
• Run-as-thread identity support.

Related information
IMS TM Resource Adapter V15 release notesIMS TM Resource Adapter V15 release notes

New features in IMS TM Resource Adapter Version 15
V15.1 adds the support for distributed network security credentials in IMS 15.
Support for IMS 15 distributed network security credentials

IMS TM Resource Adapter can pass the original, distributed user credentials to be audited in IMS log
records with both inbound and outbound (callout) requests. This feature requires IMS 15 and IMS
Connect 15, and the application server, WebSphere Application Server or WebSphere Liberty, must be
configured to enable the network security credentials.

An extendable Java Authentication and Authorization Service (JAAS) login module is provided with
IMS TM resource adapter to enable network security credentials to be passed from a Java EE
application to IMS. You must install and link the JAAS module to your application before network
security credentials can be passed to IMS and audited in IMS log records.

The activation specification is enhanced with the resumeTpipeNsc property to enable IMS TM
resource adapter to support network security credentials in IMS synchronous callout messages. To
enable IMS TM resource adapter to support network security credentials in asynchronous callout
messages, the IMS interaction specification is enhanced with the setResumeTpipeNSC property.

Distributed network security credentials
“IMS TM resource adapter security” on page 797
The Java EE Connector Architecture (JCA) specifies that the application server and the Enterprise
Information System (EIS) must collaborate to ensure that only authenticated users are able to access
the EIS.
“Enabling support for distributed network security credentials” on page 810
IMS TM resource adapter can pass the original, distributed network security credentials, including the
network session ID and the network user ID, between Java EE applications and IMS. The network security
credentials that are passed by IMS TM resource adapter are written to IMS log records.
“Configuring WebSphere Application Server for distributed network security credentials” on page 810
You can enable IMS to audit the network security credentials that are passed to and from a Java EE
application that runs on WebSphere Application Server.
“Configuring WebSphere Liberty for distributed network security credentials” on page 812

Chapter 47. IMS Transaction Manager Resource Adapter overview 725

https://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.tmra/topics/cimsfeatures15.htm

You can enable IMS to audit the network security credentials that are passed to and from a Java EE
application that runs on WebSphere Liberty.

Supported platforms
The IMS TM resource adapter runtime component supports WebSphere Application Server on various
distributed platforms and on z/OS.

The IMS TM resource adapter runtime component can run on WebSphere Application Server on the
following platforms:

• z/OS
• Windows
• AIX®

• HP-UX
• Linux®

• Linux on System z
• Solaris

For other generic Java EE application servers, see the documentation for the specific application server
for its supported platforms.

Supported software configurations
The IMS TM resource adapter is based on Java EE Connector Architecture (JCA) Version 1.5.

The following table lists the supported software configurations for each version of TM resource adapter.
Supported configurations are paired 1:1 with each version of IMS. To view the supported software
configurations for IMS TM resource adapter Version 15, see IBM Documentation.

Table 110. Supported software configurations by IMS TM resource adapter Version 15

Software Supported versions

IMS with integrated IMS Connect“1” on page 726
• IMS Version 15
• IMS Version 14
• IMS Version 13

IBM WebSphere Application Server
IBM WebSphere Liberty servers Version 8.5 or later“2” on page 726

IBM WebSphere Transformation Extender Version 8.4

IBM Integration Bus Version 10

Non-IBM Java EE application servers Any generic Java EE 1.7 or later certified
application servers“2” on page 726

1. The integrated IMS Connect function can coexist with earlier or newer versions of IMS. See the Release
Planning Guide for the version of IMS that you are using for IMS Connect coexistence considerations
and coexistence APARs.

2. Generic Java EE 1.7 or later certified application servers, are supported if the IMS TM resource adapter
installation verification program (IVP) can run successfully. For these application servers, only a subset
of IMS TM resource adapterfunctions are supported unless additional conditions are met. See the
restrictions topic for usage restrictions. For generic Java EE 1.7 or later certified application servers,
IBM support is provided for specific functions if:

• The problem can be recreated in the supported versions of WebSphere Application Server or
WebSphere Application Server Liberty Profile.

726 IMS: Application Programming

• The problem is confirmed to be caused by the IMS TM resource adapter through diagnostic traces.

See the requirements and restrictions topics for more information about support for specific functionality
on these supported software configurations.

For a more detailed description of the compatibility of supported architecture, development
environments, and runtime environments, including the use of WebSphere Process Server and IBM
Integration Bus, see the IMS TM resource adapter supported development environments and runtime
environments technote.

Related tasks
Verifying installation by using the installation verification program
Use the IMS TM resource adapter installation verification program (IVP) to verify that an enterprise
application can successfully access the target IMS system from the application server by using the IMS
TM resource adapter.
Related reference
Requirements for the IMS TM resource adapter
Some IMS TM Resource Adapter features require TCP/IP connections (no Local Option).
Restrictions for the IMS TM resource adapter
IMS TM Resource Adapter has some restrictions with their support of JCA 1.5 implementations.
Related information
Technote on supported development environments and runtime environments For supported
development environments and runtime environments, see this technote.

Requirements for the IMS TM resource adapter
Some IMS TM Resource Adapter features require TCP/IP connections (no Local Option).

The following list describes other requirements for specific features.

• The support for complex data formats by using the WebSphere Transformation Extender requires
WebSphere Transformation Extender Version 8.2.0.2 and later.

• If the synchronous callout request is issued from an IMS application in the IMS Java dependent region,
the Java Message Service (JMS) API in the Java SDK is required.

• The IMS TM Resource Adapter support for network security credentials has the following requirements:

– One of the following application servers, except for the IMS service provider in IBM z/OS Connect
Enterprise Edition (z/OS Connect EE):

- WebSphere Application Server Version 8.0 or later
- WebSphere Liberty Version 8.5.5.9 or later

– IMS Version 15
– IMS Connect Version 15
– Java 8, Java 11, and Java 17

See the IMS TM Resource Adapter website for more information on the new features and enhancements
available in each release level.

Related concepts
IMS TM resource adapter features
IMS TM resource adapter Version 15 provide the key functionality for Java applications to access various
types of IMS transactions with secure socket connections.

Restrictions for the IMS TM resource adapter
IMS TM Resource Adapter has some restrictions with their support of JCA 1.5 implementations.

• IMS TM Resource Adapter do not provide the JCA 1.5 Kerberos support.

Chapter 47. IMS Transaction Manager Resource Adapter overview 727

http://www-01.ibm.com/support/docview.wss?rs=81&uid=swg27017027

• For a complete description of the restrictions for building composite business applications that
invoke IMS conversational transactions, see the IMS Connect conversational support topic in IMS
Communications and Connections information.

• New features that are added after IMS TM Resource Adapter Version 10 require TCP/IP connections (no
Local Option).

• For generic Java EE application servers and WebSphere Liberty servers, two-phase commit (2PC),
MFS functions, and conversational and global transactions (XA) are not supported. These features are
supported only when the IMS TM resource adapter runs in IBM WebSphere Application Server.

Important: The information provided in this set of IMS TM resource adapter documentation is mainly
based on the use of WebSphere Application Server. IMS TM resource adapter functions that are not
supported in WebSphere Application Server Liberty Profile are not supported in other generic Java EE
application servers.

WebSphere Application Server platform configurations and
communication protocol considerations

Use TCP/IP as your communication protocol between IBM WebSphere Application Server and IMS
Connect.

The IMS TM resource adapter can be deployed to WebSphere Application Server for distributed platforms
(AIX, HP-UX, Linux, Linux on System z, Solaris, or Windows) and to WebSphere Application Server for
z/OS. The IMS TM resource adapter communicates with IMS Connect by using the TCP/IP communication
protocol. .

The following diagram shows several possible deployment scenarios for the IMS TM resource adapter,
and the supported communication protocols.

728 IMS: Application Programming

Figure 111. IMS TM resource adapter connections

The following table describes the communication protocols that are supported for the different platform
configurations. All platform configurations support global transactions (two-phase commit).

WebSphere Application Server platform used
with the IMS TM resource adapter

Supported communication protocols

AIX TCP/IP

HP-UX TCP/IP

Linux TCP/IP

Linux on System z TCP/IP

Solaris TCP/IP

Windows TCP/IP

z/OS TCP/IP

Chapter 47. IMS Transaction Manager Resource Adapter overview 729

To use global transaction support for your IMS and WebSphere Application Server, see the topic on global
transaction and two-phase commit support process for more information.

Related concepts
Global transaction and two-phase commit support process
A Java EE-compliant application server uses a Java transaction manager to communicate and coordinate
among the application components and the resource managers.
Related information
Configuring IMS connection factories
You use the IMS connection factory in your application to interact with the IMS TM resource adapter.
Through the IMS connection factories, you create pre-configured connections to the IMS Transaction
Manager (IMS TM).

730 IMS: Application Programming

Chapter 48. Installing the IMS TM resource adapter
runtime component

Installing the IMS TM resource adapter runtime component consists of extracting the contents of the
installation archive file to a target installation directory for later deployment to an application server, such
as WebSphere Application Server.

Prerequisite:

Follow the preparation steps in “Preparing to use the IMS TM resource adapter” on page 731 to
determine the version of the IMS TM resource adapter that you need, and download the runtime
component.

The IMS TM resource adapter is available as both a .tar file and a .zip file as follows:

Table 111. Installation files for the IMS TM resource adapter in different formats for different platforms

File name Description

icoxxxx.zip IMS TM resource adapter runtime component for distributed in a compressed
format, where xxxx is the version of IMS TM resource adapter that you are installing.

icoxxxx.tar IMS TM resource adapter runtime component for distributed in a compressed
format, where xxxx is the version of IMS TM resource adapter that you are installing.

icoxxxxzos.ta
r

IMS TM resource adapter runtime component for z/OS in a compressed format,
where xxxx is the version of IMS TM resource adapter that you are installing.

To install the IMS TM resource adapter:

1. Extract and install the archive file for your platform:

• “Extracting the compressed file for installation on distributed platforms” on page 733.
• “Extracting the compressed file for installation on z/OS” on page 734.

2. Verify the extracted content.
3. Install the resource adapter RAR file:

• “Installing the resource adapter on WebSphere Application Server” on page 735
• “Installing the resource adapter on WebSphere Liberty servers” on page 737

4. Create a connection factory:

• “Creating a connection factory in WebSphere Application Server” on page 736
• “Configuring the connection factory for WebSphere Liberty servers” on page 738

5. “Verifying installation by using the installation verification program” on page 739.

Preparing to use the IMS TM resource adapter
Before you use the IMS TM resource adapter, you must first determine the version of the IMS TM resource
adapter and the development environment you need to use.

1. Determine which version of the IMS TM resource adapter you want to use.
The version of the IMS TM resource adapter that you use depends on whether you need the new
features that are added to IMS TM Resource Adapter and the version of your IMS.

• “Supported software configurations” on page 726
2. Determine which integrated development environment (IDE) you will use.
3. If you plan to deploy the IMS TM resource adapter to an application server other than IBM WebSphere

Application Server, including WebSphere Liberty servers, International Components for Unicode (ICU)

© Copyright IBM Corp. 1974, 2022 731

https://www.ibm.com/resources/mrs/assets?source=imscjd
https://www.ibm.com/resources/mrs/assets?source=imscjd

Version 4.4.2 or later is required. This component is included in a special runtime package for
WebSphere Liberty servers on the IMS TM resource adapter download site.

4. Review the potential migration issues and decide if the issues apply to you.
5. Download the runtime component for the version that you choose.

The runtime component is available for downloads from the IMS TM resource adapter download site.
It is also available for installation on z/OS by using SMP/E.

6. If you are upgrading from an older version of the IMS TM resource adapter, follow the steps in
“Installing IMS TM resource adapter service and updates” on page 747.

Potential migration issues for the IMS TM resource adapter
You might need to modify existing applications that use older connector frameworks, architectures, or
APIs when you upgrade to newer versions of the IMS TM resource adapter

Deprecated functions and support
• The SYNC_RECEIVE_ASYNCOUTPUT interaction verb was deprecated in IMS TM Resource Adapter

Version 10, and is replaced by SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT. No migration step is
required.

See the topic on "Asynchronous output programming model" for the differences
between the new interaction verbs SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT. These two verbs provide finer control of the
interactions when checking for the output on the IMS OTMA asynchronous hold queue.

Removed functions and support
• The Common Connector Framework (CCF) is not supported. Applications that use CCF must be migrated

to the JCA specification.
• You might encounter warnings if you run applications that use non-managed connections or were

generated by using a previous version of JCA 1.0-based IMS TM Resource Adapter with the latest
versions of IMS TM Resource Adapter. The TransactionResourceRegistration property available
in IMS TM Resource Adapter Version 9 was removed from the custom properties of an IMS TM resource
adapter connection factory. This property supported dynamic transaction enlistment for JCA 1.0-based
resource adapters. This function was incorporated into the JCA 1.5-based resource adapters, so the
TransactionResourceRegistration property is no longer needed.

• MFS web services applications that were generated by WebSphere Studio Application Developer
Integration Edition are not supported by IMS TM Resource Adapter.

Related concepts
Asynchronous output programming model
Use this programming model to retrieve output that has been queued by IMS.

Updating the IMS TM resource adapter
Use the Update RAR function in the administrative console in WebSphere Application Server Version 7
and later to install the new version of the IMS TM resource adapter.

To update the IMS TM resource adapter version without deleting and reconfiguring all existing connection
factories, use the Update RAR function in the WebSphere Application Serveradministrative console and
update the class path accordingly.

1. In the WebSphere Application Server administrative console, click to expand ResourcesResource
Adapters.

2. Click Resource adapters.
3. Click the check box to select the IMS TM resource adapter that you want to update and click Update

RAR.

732 IMS: Application Programming

https://www.ibm.com/resources/mrs/assets/mrs_landing_page?source=imscjd

Figure 112. Updating the RAR for new versions of the resource adapter
4. In Step 1, Select either Local file system or Remote file system, and click Browse to navigate to

where the new IMS TM resource adapter RAR file is.
For example, on a local file system, the RAR file is located in install_path/IBM/IMS/ICOxx/
Vxxxx/JCA15/imsxxxx.rar

5. Click Next.
6. In Step 2, verify the version numbers of the existing and the new resource adapters and click Next.
7. In Step 3, configure any new properties introduced by the new version of resource adapter as

prompted. Click Next.
8. Confirm the changes in the summary step, and click Finish.

You are returned to the Resource adapter page.
9. Click the name of the resource adapter you updated.

10. In the class path field under General Properties, update the RAR file name.
For example, if you are upgrading to Version 14.1 of the IMS TM resource adapter, change the class
path to: ${CONNECTOR_INSTALL_ROOT}/imsico1410.RAR

11. Click OK.
You are returned to the Resource adapter page.

12. Click Save at the top of the page.

The IMS TM resource adapter RAR file is updated. All existing connection factories now use the new
version of the RAR.

Extracting the compressed file for installation on distributed
platforms

On distributed platforms, you install the IMS TM resource adapter by extracting the installation files from
a compressed file to the correct location for later deployment to the application server.

Download, and then extract the compressed file contents to a target installation directory.

One of the many options, some platform-dependent, for extracting the contents of the installation archive
is as follows:

tar -xvf icoxxxx.tar install_path

The tar program is available as part of the operating system in UNIX and Linux variants. Versions of the tar
program are also available from a variety of sources as free software program downloads. Note that some
extraction tools are able to handle .tar files as well as .zip files.

Successful completion of the extraction places the contents of the compressed file in the directories
install_path/IBM/IMS/ICOxxx/Vxxxx, where install_path is the target installation path of your
choice and Vxxxx is the version number of the IMS TM resource adapter installation compressed
file that you downloaded. For example, c:\Program Files\IBM\IMS\ICOxxx\Vxxxx on Windows
or /opt/IBM/IMS/ICOxxx/Vxxxx for AIX.

Proceed to verify the extracted directory structure and file contents.

Chapter 48. Installing the IMS TM resource adapter runtime component 733

https://www.ibm.com/resources/mrs/assets?source=imscjd

Extracting the compressed file for installation on z/OS
For z/OS platform, install the IMS Java On Demand features that are included in IMS, or extract the z/OS
TAR file that you download from the IMS TM Resource Adapter website.

If you install the IMS Java On Demand features that are included in IMS, SMP/E installation instructions
are in the Program Directory for Information Management System (IMS) Transaction and Database Servers.

If you download the z/OS TAR file from the IMS download page, to install the IMS TM resource adapter:

1. Transfer the downloaded TAR file to a UNIX System Services file system in binary mode.
2. Use the tar program to extract the contents of the TAR file to a target installation directory.

For example:

tar -xvf icoxxxx.tar

Successful extraction and installation, either by using the SMP/E process or by manually expanding
the contents of the downloaded TAR file, places the files in install_path/Vxxxx where install_path
is /usr/lpp/ims/icoxxx. Vxxxx is the IMS TM resource adapter version number of the TAR file that you
extracted the files from, or the APAR or PTF that is used for the installation.

Proceed to verify the extracted directory structure and file contents.

Verifying file contents for the IMS TM resource adapter runtime
component

After you extracted the .tar or .zip file for the IMS TM resource adapter runtime component, verify that you
have the required files in the correct directories.

File name Description

/JCA15/imsxxxx.rar The resource adapter archive (RAR) file for the IMS TM resource adapter.

/JCA15/imsicoivp.ear The enterprise archive (EAR) file for the IMS TM resource adapter
installation verification program (IVP). This IVP verifies the proper
deployment of the IMS TM resource adapter in WebSphere Application
Server.

/JCA15/
imsicocalloutivp.ear

The enterprise archive (EAR) file for the IMS TM resource adapter callout
IVP. This IVP includes a message-driven bean (MDB) application that can
be used to verify that, using the IMS TM resource adapter, the application
can receive a callout request from the host IMS system and return a
response for a synchronous callout request.

/licenses/
license_xx.txt

License agreements in all supported languages. Users must accept all
the terms and conditions in these license agreements before installing
or using the IMS TM resource adapter. For the z/OS platform, these
license agreements are formatted as EBCDIC-encoded text files in the
z/OS compressed files (imsxxxxzos.tar and imsxxxxzos.tar) for
direct viewing in the z/OS file system (zFS).

/README.html The readme file with information on new features and bug fixes.

If your extracted files do not have the same directory structure and file contents, you must extract the
contents of the .tar or .zip file again into the correct directories.

Proceed to install the extracted RAR file for the IMS TM resource adapter:

• “Installing the resource adapter on WebSphere Application Server” on page 735
• “Installing the resource adapter on WebSphere Liberty servers” on page 737

734 IMS: Application Programming

https://www.ibm.com/resources/mrs/assets?source=imscjd

Installing the resource adapter on WebSphere Application Server
Use the WebSphere Application Server administrative console to deploy the IMS TM resource adapter
RAR file.

Important:

1. If you are installing the IMS TM resource adapter archive (RAR) on a generic application server,
additional class libraries might be needed for use with the IMS TM resource adapter. For class libraries
that are not included in the IMS TM resource adapter installation archive, contact your product
representative for the development environment of your choice for information regarding the licensing
and location of any needed JAR files.

2. When you use the Install RAR dialog to install a RAR file, the scope you define on the Resource
Adapters page has no effect on where the RAR file is installed. You can install RAR files only at the
node level, which you specify on the Install RAR page. To set the scope of an RAR file to a specific
cluster, or server, after you install the RAR file at each node level, create a copy of the RAR file with the
appropriate cluster or server scope.

Prerequisites:

• You must have installed the IMS TM resource adapter RAR to a file system that is accessible to your
WebSphere Application Server.

• Start the WebSphere Application Server and log in to the administrative console.

To deploy the RAR on a WebSphere Application Server:

1. In the navigation pane in the administrative console (also known as the Integrated Solutions Console),
click Resources > Resource Adapters > Resource adapters.

Figure 113. Resource adapter configuration in WebSphere Application Server
2. If a RAR that you no longer want to use is already installed, delete it first. Stop and restart

the WebSphere Application Server. Repeat the previous step to return to the resource adapter
configuration page.

3. In the content pane, click Install RAR.
You might need to scroll down in the pane to locate the button.
The Install RAR File page displays.

4. Click Local file system or Remote file system, depending on the location of the RAR file.

Chapter 48. Installing the IMS TM resource adapter runtime component 735

• If you choose Local file system, click Browser to locate and specify the IMS TM resource
adapter RAR file that is installed, for example, install_path/IBM/IMS/ICOxx/Vxxxx/JCA15/
imsxxxx.rar.

5. Click Next.
6. On the Configuration page, type a name for the RAR, for example, imstmravxxxx. Click OK.
7. Optionally, create a copy of the RAR file with a different scope level. After you install the RAR file at

each node level, you can create another copy of the file that has a specific server or cluster as the
scope for that file. See Installing a resource adapter archive.

8. To save your results in the master configuration, click Save at the top of the panel.

The IMS TM resource adapter runtime RAR file is deployed.

You can proceed to create a connection factory for the IMS TM resource adapter.

Related tasks
Running your application on a stand-alone WebSphere Application Server
You can test your application by using a stand-alone WebSphere Application Server. You must first export
your Java EE application as an Enterprise Application Archive (EAR) file and then install the EAR file on the
server.

Creating a connection factory in WebSphere Application Server
After you install and deploy the IMS TM resource adapter on WebSphere Application Server, create a
connection factory for the IMS TM resource adapter, if it does not already exist.

The connection factory is used by one or more applications to create connections between IMS and IMS
Connect.

Prerequisite: Start the WebSphere Application Server, and log in to the WebSphere Application Server
administrative console.

To create a connection factory for the IMS TM resource adapter:

1. In the WebSphere Application Server administrative console, click to expand Resources > Resource
Adapters.

2. Click Resource adapters.
3. Click the name of the IMS TM resource adapter that you deployed and want to create a connection

factory for.
4. In the Additional Properties section, select J2C connection factories.
5. Click New, and in the Name field, type a name for the connection factory.

For example, myIMSTMRA.
6. Specify the JNDI name if necessary.
7. Click Apply.
8. Click Save at the top of the page.
9. Click the name of the connection factory that you just created, myIMSTMRA.

The Configuration page opens.
10. In the Configuration page, in the column under Additional Properties, click Custom properties.
11. Click the fields to fill in the values to configure your connection factory. Host name, port number, and

data store name must be configured.
12. When you are done configuring the properties, click Save at the top of the page.
13. Stop the server and restart it to see the new connection factory.

You have created a connection factory for your IMS TM resource adapter.

You can proceed to verify the installation by using the installation verification program (IVP).

736 IMS: Application Programming

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=resources-installing-resource-adapter-archive

Installing the resource adapter on WebSphere Liberty servers
Download the IMS TM resource adapter RAR file and set up the WebSphere Application Server Liberty
Profileenvironment before you install the resource adapter.

The following software is required:

• IMS TM Resource Adapter Version 13 or later runtime package for WebSphere Liberty Profile
• WebSphere Application Server Version 8.5.5.4 Liberty Profile or later, with the JCA feature installed

Prerequisites:

1. Your WebSphere Liberty server runtime environment must be properly installed and set up.

Download the JCA Connection Architecture 1.6 feature. For details and download options, see
WebSphere Liberty for developers.

2. Download the IMS TM resource adapter runtime component archive file for WebSphere Application
Server Liberty Profile from the IMS TM resource adapter download site. Select the version of the
runtime offering that you want to use, and then select the IMS TM Resource Adapter vxxxx runtime
component for WebSphere Liberty Profile.

To install the IMS TM resource adapter, you need to edit the server.xml file.WebSphere Application
Server Liberty Profile does not provide a graphical administrative console. In general, you can use
WebSphere Application Server Developer Tools for Eclipse or a text editor to edit the server.xml file.

To install the resource adapter, take the following steps:
1. Open the server.xml file of your WebSphere Liberty server instance in your editor.
2. Enable the JCA 1.6 and JNDI 1.0 features by adding these features to the <featureManager>

section:

<featureManager>
 ...
 <feature>jca-1.6</feature>
 <feature>jndi-1.0</feature>
 ...
</featureManager>

3. Install the IMS TM resource adapter by adding a <resourceAdapter> entry:

<resourceAdapter id="IMS_adapter_id" location="IMS_adapter_RAR_file_location">

IMS_adapter_id is used to differentiate the resource adapter from other resource adapters that are
installed. This value is used later when you configure the connection factory to connect to IMS.

IMS_adapter_RAR_file_locationn is the absolute path, including the resource adapter filename, to the
IMS TM resource adapter RAR file.

The server.xml might look as follows:

<server description="myLibertyServer">
 <!-- Enable features -->
 <featureManager>
 <feature>jsp-2.2</feature>
 <!-- Added jca-1.6 and jndi-1.0 features required by the IMS
 TM resource adapter -->
 <feature>jca-1.6</feature>
 <feature>jndi-1.0</feature>
 </featureManager>

 <!-- To access this server from a remote client add a host attribute
 to the following element, e.g. host="*" -->
 <httpEndpoint id="defaultHttpEndpoint" httpPort="9080"
 httpsPort="9443" />

 <resourceAdapter id="IMSTMRA"
 location="C:\IBM\IMS\ico1410\IBM\IMS\ICO14\V1410\JCA15\imsico1410.rar" />

</server>

Chapter 48. Installing the IMS TM resource adapter runtime component 737

https://www.ibm.com/support/pages/node/6250961
https://www.ibm.com/resources/mrs/assets/mrs_landing_page?source=imscjd

In this example, IMSTMRA is the resource adapter ID, and it points to the imsico1410.rar file.
4. Save your changes.
5. Start your WebSphere Libertyserver.

The following J2CA7001I message is issued in the console, indicating a successful installation.

J2CA7001I: Resource adapter imsicoxxxx installed in 0.735 seconds.

Next, you need to configure a connection factory to connect to your IMS host system.
Related information
Configuring and deploying a basic JCA resource adapter (WebSphere Application Server Liberty Core
V8.5.5)

Configuring the connection factory for WebSphere Liberty servers
Configure a connection factory in your server.xml file for connection to your IMS TM host system.

For the WebSphere Liberty server, the connection factory is configured in the server.xml file.

1. Open the server.xml file.
2. Configure a connection factory for connection to your IMS host system by adding a
<connectionFactory> entry:

<connectionFactory jndiName="your_JNDI_name"
type="javax.resource.cci.ConnectionFactory">
 <properties.IMS_adapter_id hostName="your_host_name"
 portNumber="xxxx" dataStoreName="data_store_name" />
</connectionFactory>

IMS_adapter_id is the ID that is specified in the <resourceAdapter> entry when you installed and
deployed the resource adapter.

The server.xml might look as follows:

<server description="myLibertyServer">
 <!-- Enable features -->
 <featureManager>
 <feature>jsp-2.2</feature>
 <!-- Added jca-1.6 and jndi-1.0 features required by the IMS
 TM resource adapter -->
 <feature>jca-1.6</feature>
 <feature>jndi-1.0</feature>
 </featureManager>
 . . .
 <!-- Added connection factory for the IMS TM resource adapter -->
 <connectionFactory jndiName="myJNDIName"
 type="javax.resource.cci.ConnectionFactory">
 <properties.IMSTMRA hostName="MY.IMS.IBM.COM"
 portNumber="9999" dataStoreName="IMS1" />
 </connectionFactory>

 <resourceAdapter id="IMSTMRA"
 location="C:\IBM\IMS\ico1410\IBM\IMS\ICO14\V1410\JCA15\imsico1410.rar" />
</server>

3. Save your changes.

You are ready to proceed to test the connection by deploying and testing the provided installation
verification program (IVP).
Related information
Configuring and deploying a basic JCA resource adapter (WebSphere Application Server Liberty Core
V8.5.5)

738 IMS: Application Programming

https://www.ibm.com/docs/en/was-liberty/core?topic=manually-configuring-deploying-basic-jca-resourceadapter
https://www.ibm.com/docs/en/was-liberty/core?topic=manually-configuring-deploying-basic-jca-resourceadapter
https://www.ibm.com/docs/en/was-liberty/core?topic=manually-configuring-deploying-basic-jca-resourceadapter
https://www.ibm.com/docs/en/was-liberty/core?topic=manually-configuring-deploying-basic-jca-resourceadapter

Verifying installation by using the installation verification program
Use the IMS TM resource adapter installation verification program (IVP) to verify that an enterprise
application can successfully access the target IMS system from the application server by using the IMS
TM resource adapter.

The IMS TM resource adapter IVP is a simple Java EE application that is installed when the IMS TM
resource adapter runtime component is installed. The objective of the IVP is to receive a message from
IMS in response to the /STA OTMA command. The IVP does not run an IMS application program, so
running an IMS application program is not required.

Tip: The IVP does not verify that IMS transactions can run successfully; it performs only the following
verifications:

• Communications among the client, IMS Connect, and IMS are working.
• IMS is running, and is able to execute an IMS command and return the output of that command.
• The client is able to submit an IMS command request and receive the output from that command.

Therefore, the IVP does not require a host IMS application.

Prerequisites for running the IVP
Before you run the IVP, you must ensure that several components are running on your target host system.

• For IMS Connect:

– Ensure that the outstanding IMS Connect reply is displayed on the system console of target system.
For example:

HWSC0000I *IMS CONNECT READY* IMS_Connect_Name

For message HWSC0000I to display on the system console when IMS Connect is active, ensure either
that WTORCMD=Y is specified in the HWS statement of the IMS Connect HWSCFGxx configuration
member or that the WTORCMD parameter is omitted from the HWS statement.

– Verify that the target data store and port are active by entering the IMS Connect command VIEWHWS
at the IMS Connect outstanding reply. If necessary, use the IMS Connect commands OPENDS
datastore_name and OPENPORT port_number, respectively, to activate the data store and port.

• Ensure that the IMS outstanding reply is displayed on the system console of the target system. For
example:

DFS996I *IMS READY*

• Verify that the XCF status of both the IMS and IMS Connect members is active by entering the IMS
command /DISPLAY OTMA at the outstanding IMS reply:

DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
 DFS000I GROUPNM
 DFS000I -IMSMEM ACTIVE SERVER NONE
 DFS000I -ICONNMEM ACTIVE ACCEPT TRAFFIC

• Obtain the latest update of IMS TM resource adapter for fixes and enhancements.
• Ensure that you have created a connection factory.

For WebSphere Application Server, see “Creating a connection factory in WebSphere Application
Server” on page 736.

After these prerequisites are met, proceed to deploying the IVP EAR file to WebSphere Application Server.

Chapter 48. Installing the IMS TM resource adapter runtime component 739

Deploying the IVP EAR file in the Java EE application server
The installation verification program (IVP) for the IMS TM resource adapter is packaged as an enterprise
archive (EAR) file that must be deployed to the application server to test the proper installation of the IMS
TM resource adapter (a RAR file).

Prerequisites:

• A connection factory must be created to connect to the IMS host system. If you have not yet done so,
create a connection factory for use by the IVP.

• The application server must be started and running properly.
• For WebSphere Application Server, you must be logged in to the administrative console of the server.

Deploying the IVP EAR file to WebSphere Application Server
To deploy the IVP EAR file on WebSphere Application Server, you first create a new application by
uploading the IVP EAR file, and then start the application.

In the WebSphere Application Server administrative console:

1. Install the enterprise application:
a) In the administrative console, expand Applications in the navigation tree, and click New

Application.
b) In the New Application page, click New Enterprise Application.
c) Click Local file system or Remote file system, depending on where the EAR file for the IVP

(imsicoivp.ear) is.
d) Click Browse and navigate to where the EAR file is.

The file imsicoivp.ear is in target_dir/IBM/IMSICO/ICOxx/xx/JCAxx/, where target_dir
is a directory of your choice and xx is the corresponding version number for the IMS TM resource
adapter installation.

e) Click Next.
f) In the Preparing for application installation page, click Next.
g) Click Fast Path.

The Fast Path installation option displays only options that require your attention, based on the
contents of your application or module.

h) Click Next.
You are prompted to specify installation options and map modules to servers.

i) In Step 1, specify or change any installation options as needed, and click Next.
j) In Step 2, change the server that this module is mapped to if needed, and click Next.

k) In the Summary page, verify the information that is displayed, and click Finish.
l) Click the Save directly to the master configuration link.

The IVP EAR file is installed.
2. Start the enterprise application.

a) In the administrative console, expand Applications > Application Types > WebSphere enterprise
applications.
IMSICOIVPServiceEAR is displayed on the Enterprise Applications page.

b) Select the application IMSICOIVPServiceEAR by selecting the check box next to it. Click Start to
start the application.
The status changes to a green arrow, which indicates that the application is started.

Tip: If the status does not change to started, try restarting the server.

You have deployed the EAR file for the IMS TM resource adapter IVP.

740 IMS: Application Programming

You are ready to run the IMS TM resource adapter IVP.

Deploying the IVP EAR file to WebSphere Liberty servers
 To deploy the IVP EAR file in WebSphere Liberty servers, edit the server.xml file.

1. Open the server.xml file.
2. Add an <enterpriseApplication> entry as follows:

<enterpriseApplication location="file_location" type="ear">
 <classloader classProviderRef="IMS_adapter_id" />
 </enterpriseApplication>

IMS_adapter_id should be set to the value of resource adapter ID that you set in the
<resourceAdapter> tag. For example, the server.xml might look as follows:

<server description="myLibertyServer">
 <!-- Enable features -->
 <featureManager>
 <feature>jsp-2.2</feature>
 <!-- Added jca-1.6 and jndi-1.0 features required by the IMS
 TM resource adapter -->
 <feature>jca-1.6</feature>
 <feature>jndi-1.0</feature>
 </featureManager>

 <resourceAdapter id="IMSTMRA"
 location="C:\IBM\IMS\ico1410\IBM\IMS\ICO14\V1410\JCA15\imsico1410.rar" />

 <enterpriseApplication location="imsicoivp.ear" type="ear">
 <classloader classProviderRef="IMSTMRA" />
 </enterpriseApplication>

You have deployed the EAR file for the IMS TM resource adapter IVP.

You are ready to run the IMS TM resource adapter IVP.

Running the IMS TM resource adapter IVP
You can run the IMS TM resource adapter IVP from any web browser.

To run the IMS TM resource adapter IVP:

1. From a web browser, enter the following URL to invoke the IVP:

• If the application server is running on your local system: http://localhost:9080/
IMSICOIVPServiceWeb/IMSICOIVPInputForm.html

• If the application server is running on a remote system: http://remote_server:port/
IMSICOIVPServiceWeb/IMSICOIVPInputForm.html

remote_server:port is the hostname and port number where your application server is running.
2. Click Submit.

You will receive one of the following messages from IMS, depending on your security configuration:

• DFS1292E SECURITY VIOLATION
• DFS058I hh:mm:ss START COMMAND COMPLETED

If you do not receive one of these messages, the IVP did not run successfully. Restart the server. If
restarting the server does not solve the problem, see the topic on “Diagnosing IVP failures” on page
835.

If you plan to use the IMS TM resource adapter for processing IMS callout requests, use the IMS TM
resource adapter callout IVP sample to test the proper setup of your environment.

Chapter 48. Installing the IMS TM resource adapter runtime component 741

Running the IMS TM resource adapter callout IVP sample
The callout IVP sample contains a message-driven bean that is designed to process both synchronous
and asynchronous callout requests from sample IMS applications. The callout IVP sample also includes
sample IMS applications and associated setup files on the IMS host system to enable the sample IMS
applications to issue a callout request for the message-driven bean to process.

Prerequisite: The installation verification program (IVP) provides a set of jobs and tasks that you can
modify to set up the IMS OTMA destination descriptors and the transaction pipes (tpipes). The OTMA
destination descriptors, one for synchronous and the other for asynchronous callout requests, describe
where the callout requests are queued (tpipe name).

Two jobs are provided for you to run the provided IMS applications to issue callout requests.

Table 112. The IVP jobs, TPIPE name, OTMA destination descriptor, and COBOL application part name for
the asynchronous and synchronous callout samples

Type of callout
requests Job TPIPE

OTMA destination
descriptor

Part name for the
COBOL application

Asynchronous IV_S227J IVPPIPE3 IVPDTOR3 DFSASCBL

Synchronous IV_S228J IVPPIPE4 IVPDTOR4 DFSSSCBL

Two simple IMS BMP applications are provided.

• One application uses the IMS DL/I testing program, DFSDDLT0, to issue a DL/I ICAL call for sending a
synchronous callout request. This ICAL call specifies the tpipe for holding the callout request, the OTMA
destination descriptor for routing of the callout message, and the request and response areas in the
callout message.

• The other application uses the IMS DL/I testing program, DFSDDLT0, to issue an insert (ISRT) to an
alternate PCB (program communication bolck) call to place the asynchronous callout request on the
IVPPIPE3 tpipe.

The IMS TM resource adapter callout IVP sample is a simple message-driven bean that is installed
with the IMS TM Resource Adapter runtime installation. The bean can be deployed to your WebSphere
Application Server environment to verify that the bean can receive either an asynchronous or synchronous
callout request from an IMS application, and, in the case of a synchronous callout request, send a
response. This sample is designed to work with the IMS callout IVP samples, with the pre-defined tpipes
and OTMA destination descriptors.

The general tasks involved to implement a callout solution for an IMS application are as follows:

Table 113. Steps to implementing a callout solution for an IMS application

Step Description
Environment in which the
task is performed

How the tasks are handled
by the callout sample

1 Create or modify an IMS application
to issue a callout request by using
the DL/I ICAL call (synchronous) or
ISRT altpcb call (asynchronous)

IMS host system The IMS callout sample IVP
provides an IMS application.

See the related IVP jobs in the
IMS installation information.
Run the IVP jobs to compile
and bind the samples:

• IMS V14 installation
information

2 Define an OTMA destination
descriptor

3 Restart IMS for the newly defined
OTMA destination descriptor

742 IMS: Application Programming

Table 113. Steps to implementing a callout solution for an IMS application (continued)

Step Description
Environment in which the
task is performed

How the tasks are handled
by the callout sample

4 Create a message-driven bean or
J2C application to process the IMS
inbound transaction.

IBM Rational Application
Developer for WebSphere
Software. or other
application development
environments

The IMS TM resource adapter
callout IVP sample provides
this message-driven bean.

5 Deploy the IMS TM resource
adapter runtime in the Java EE
application server.

Your Java EE application
server.

See:

• “Installing the resource
adapter on WebSphere
Application Server” on page
735

• “Installing the resource
adapter on WebSphere
Liberty servers” on page
737

6 Configure a J2C activation
specification in the Java EE
application server and specify the
connection information, such as the
IMS host name, port number, data
store name, and queue name (tpipe
name) for the IMS TM resource
adapter to pull callout messages.

For WebSphere Application
Server, see “Configuring a J2C
activation specification for the
callout IVP” on page 744.

For WebSphere Liberty
servers, the J2C activation
specification information is
specified as part of the
deployment topics in Step 7.

7 Deploy the message-driven bean
or J2C application in the Java EE
application server, and start the
application.

See:

• “Deploying the sample
application on WebSphere
Application Server to
process callout requests ”
on page 743

• “Deploying the sample
application on WebSphere
Liberty servers to process
callout requests” on page
745

8 Run the IMS application to issue
the synchronous callout request or
asynchronous callout request

IMS host system See “Running the IMS host
callout IVP application” on
page 746.

Deploying the sample application on WebSphere Application Server to
process callout requests

Deploy the callout IVP application on WebSphere Application Server to listen for IMS synchronous callout
requests.

Prerequisite: Complete “Configuring a J2C activation specification for the callout IVP” on page 744.

1. Install the callout application:

Chapter 48. Installing the IMS TM resource adapter runtime component 743

a) In the administrative console, expand Applications in the navigation tree, and click New
Application.

b) In the New Application page, click New Enterprise Application.
c) Click Local file system or Remote file system, depending on where the EAR file for the IVP

(imsicocalloutivp.ear) is.
d) Click Browse and navigate to where the EAR file is.

The file imsicocalloutivp.ear is in target_dir/IBM/IMSICO/ICOxx/xx/JCAxx/, where
target_dir is a directory of your choice and xx is the corresponding version number for the IMS TM
resource adapter installation.

e) Click Next.
f) In the Preparing for application installation page, click Next.
g) Click Fast Path.

The Fast Path installation option displays only options that require your attention, based on the
contents of your application or module.

h) Click Next.
You are prompted to specify installation options and map modules to servers.

i) In Step 1, specify or change any installation options as needed, and click Next.
j) In Step 2, change the server that this module is mapped to if needed, and click Next.

k) In the Summary page, verify the information that is displayed, and click Finish.
l) Click the Save directly to the master configuration link.

The callout IVP EAR file is installed.
2. Start the application.

a) In the administrative console, expand Applications > Application Types > WebSphere enterprise
applications.
IMSICOIVPServiceEAR is displayed on the Enterprise Applications page.

b) Select the application IMSICOCalloutIVPMDBEAR by selecting the check box next to it. Click Start
to start the application.
The status changes to a green arrow, which indicates that the application is started.

The application that listens for callout requests from IMS is ready.

Proceed to “Running the IMS host callout IVP application” on page 746.

Configuring a J2C activation specification for the callout IVP
In the WebSphere Application Server administrative console, set up the connection information that is
already defined in the IVP sample jobs and tasks for the resource adapter to pull callout messages and to
reply with responses.

To use the IMS callout sample IVP, the queue name (or tpipe) where synchronous callout requests are
queued must be set to IVPPIPE4. This tpipe value is already defined in IMS OTMA destination descriptor.
You also need to obtain the IMS host name and port number where IMS Connect is running, and the data
store name.

To create and configure a J2C activation specification in WebSphere Application Server:

1. Create a J2C specification for the IMS TM resource adapter.
a) In the administrative console, select Resources > Resource Adapters > J2C activation

specifications in the navigation pane.
b) Click New in the content pane.

A Configuration tab displays.
c) Select the IMS TM resource adapter from the list.

744 IMS: Application Programming

The Message listener type field at the bottom of this page is automatically populated based on the
selection.

d) Specify a name for this J2C activation specification.
For example, IMSICOCalloutIVP.

e) Type the JNDI name.
For example, eis/IMSICOCalloutIVP.

f) Click Apply.
You are back to the J2C activation specifications page.

g) Click Save in the message box at the top to save the changes to the master configuration.
The J2C activation specification is created.

2. To configure the J2C activation specification for use with the IMS TM resource adapter:
a) Click the name of the J2C activation specification for the IMS TM resource adapter.

The Configuration tab displays.
b) Under the Additional Properties section on the side, click the J2C activation specification custom

properties link.
Custom properties in this instance of J2C activation specification display.

c) Specify the values for the following required properties by clicking their names in the table and
entering the appropriate values.

• queueName:

– Specify IVPPIPE3,IVPPIPE4 if you plan to verify both asynchronous and synchronous callout
messages

– Specify IVPPIPE3 if you plan to verify only asynchronous callout messages
– Specify IVPPIPE4 if you plan to verify only synchronous callout messages

• portNumber: the port number for IMS Connect
• hostName: the IMS Connect host name
• dataStoreName: the IMS data store name.

d) Specify the values for the other optional properties based on your environment.
e) Click Apply.
f) Click Save in the message box at the top to save the changes to the master configuration.

3. Restart the server to see the new activation specification.

The activation specification for the sample application is configured.

Proceed to “Deploying the sample application on WebSphere Application Server to process callout
requests ” on page 743.

Deploying the sample application on WebSphere Liberty servers to process
callout requests

To deploy the callout IVP EAR file in WebSphere Liberty servers, download the required extended content
and the message-driven bean (MDB) feature. Then modify the server.xml file to configure the MDB feature
and a JCA activation specification.

Prerequisite: The WebSphere Application Server Liberty Profile extended content and the MDB feature
are required for callout request processing. If they are not yet downloaded and installed:

1. Review the instructions at WebSphere Liberty for developers.
2. Follow the instructions to install the Liberty Profile Extended Programming Models that provide the

WebSphere Application Server Liberty Profile Extended Content.
3. Follow the instructions to install the "Message-Driven Beans 3.1" feature.

Chapter 48. Installing the IMS TM resource adapter runtime component 745

https://www.ibm.com/support/pages/node/6250961

Make the following changes in the server.xml file:
1. Configure the MDB feature.

 <!-- Enable features -->
 <featureManager>
 ...
 <!-- Added the mdb-3.1 feature required for callout support -->
 <feature>mdb-3.1</feature>
 </featureManager>

2. Configure a JCA activation specification that uses the resource adapter so that the MDB acts as a
listener.
A JCA activation specification is configured by adding an <activationSpec> tag:

<activationSpec id="imsicocalloutivp/IMSICOCalloutIVPMDB/IMSICOCalloutIVPMDB">
 <properties.IMS_adapter_id hostName="host_name" portNumber="port_number"
 dataStoreName="data_store_name" queueNames="tpipe_name"/>
 </activationSpec>

IMS_adapter_id is the ID for the IMS TM resource adapter that is specified in the
<resourceAdapter> entry when you installed and deployed the resource adapter. In the earlier
example, we set the ID to IMSTMRA, so the corresponding activation specification would look as
follows:

<activationSpec id="imsicocalloutivp/IMSICOCalloutIVPMDB/IMSICOCalloutIVPMDB">
 <properties.IMSTMRA hostName="my.host.server.com" portNumber="9999"
 dataStoreName="myDataStoreName" queueNames="myTpipeName"/>
 </activationSpec>

3. Add an <enterpriseApplication> entry for the callout IVP.

<enterpriseApplication location="imsicocalloutivp.ear" type="ear">
 <classloader classProviderRef="IMS_adapter_id" />
 </enterpriseApplication>

IMS_adapter_id, again, is the ID for the IMS TM resource adapter that is specified in the
<resourceAdapter> entry, so in this example, it would be IMSTMRA:

<enterpriseApplication location="imsicocalloutivp.ear" type="ear">
 <classloader classProviderRef="IMSTMRA" />
 </enterpriseApplication>

4. Save your changes.

You have configured the required MDB feature and the JCA activation specification, and deployed the EAR
file for the IMS TM resource adapter callout IVP.

You are ready to run the IMS callout application on the host system.

Running the IMS host callout IVP application
Run the IMS host callout IVP application to issue a synchronous or asynchronous callout message.

Prerequisites: The sample application must be deployed on your target Java EE application server.

For asynchronous callout requests:
1. Run the IV_S227J job as described in IV_S001T, which contains the introductory information

asynchronous IMS Callout IVP application on the host.
The sample output shows the request message as "HELLO FROM IMS":

CALL=ISRT
 0100
SEGMENT =(0E00HELLO FROM IMS)

COMP RET CODE=OK
ALTPCB SOURCE/DEST=IVPDTOR3 RET CODE=

746 IMS: Application Programming

You can locate the following message in your server log or console. The presence of the message
confirms that the IMS TM resource adapter Callout IVP MDB receives the asynchronous callout request
from the host IMS Callout IVP application.

SystemOut O Asynchronous callout request from IMS: HELLO FROM IMS

For synchronous callout requests:
2. Run the IV_S228J job as described in the IMS Callout IVP application on the host.

The output shows the request message "HELLO FROM IMS", and the response message "HELLO FROM
WEBSPHERE MDB":

CALL=ICAL SENDRECV IVPDTOR4 001000 00050 00050

 0003 0003 0000
AIBOALEN = 0002, AIBOAUSE = 0002, AIBRSFLD = 003Y

SEGMENT =(HELLO FROM IMS)

CALL=ICAL SEGMENT = (HELLO FROM WEBSPHERE MDB)
COMP RET CODE=OK

You can locate the following messages in the WebSphere Application Server log or console. The
presence of the messages confirm that the IMS TM resource adapter callout IVP message-driven bean
has received the synchronous callout request from the host IMS callout IVP application, and send a
response message to the host IMS application:

SystemOut O Synchronous callout request from IMS: HELLO FROM IMS
SystemOut O Synchronous callout response from WAS MDB: HELLO FROM WEBSPHERE MDB

Installing IMS TM resource adapter service and updates
Service and updates are available as newer versions of the IMS TM resource adapter. Use the Update
RAR function in the WebSphere Application Server administrative console to install the new version of the
IMS TM resource adapter.

Prerequisite:

1. Check the IMS TM resource adapter V15 release notes.
2. Download the new version (for all supported platforms). For z/OS, you can also obtain the updates as

APARs or PTFs.

To update the IMS TM resource adapter version without deleting and reconfiguring all existing connection
factories, use the Update RAR function in the WebSphere Application Server administrative console and
update the class path accordingly.

To install the new version:

1. In the WebSphere Application Server administrative console, click to expand Resources > Resource
Adapters .

2. Click Resource adapters.
3. Click the check box to select the IMS TM resource adapter that you want to update and click Update

RAR.

Chapter 48. Installing the IMS TM resource adapter runtime component 747

https://www.ibm.com/support/pages/ims-transaction-manager-tm-resource-adapter-version-15

Figure 114. Updating the RAR for new versions of the resource adapter
4. In Step 1, select either Local file system or Remote file system, and click Browse to navigate to

where the new IMS TM resource adapter RAR file is.
For example, on a local file system, the RAR file is located in install_path/IBM/IMS/ICOxx/
Vxxxx/JCA15/imsxxxx.rar

5. Click Next.
6. In Step 2, verify the version numbers of the existing and the new resource adapters and click Next.
7. In Step 3, configure any new properties introduced by the new version of resource adapter as

prompted. Click Next.
8. Confirm the changes in the summary step, and click Finish.

You are returned to the Resource adapter page.
9. Click the name of the resource adapter you updated.

10. In the class path field under General Properties, update the RAR file name.
For example, if you are upgrading to Version 14.1 of the IMS TM resource adapter, change the class
path to: ${CONNECTOR_INSTALL_ROOT}/imsico1410.RAR

11. Click OK.
You are returned to the Resource adapter page.

12. Click Save at the top of the page.
13. Update the IMS TM resource adapter IVP EAR file by using the same approach if the EAR file is

already deployed.
14. Optionally, remove the old IMS TM resource adapter RAR files.

• For distributed platforms, remove the installation directory at install_path/IBM/IMS/
ICOxxx/Vxxxx.

• For z/OS, remove the directory at install_path/Vxxxx.

install_path is the target installation path and Vxxxx is the IMS TM resource adapter version that you
want to remove.

The IMS TM resource adapter RAR file is updated. All existing connection factories now use the new
version of the RAR.
Related information
WebSphere Application Server Version 8 documentationFor more information, see the WebSphere
Application Server Version 8 documentation.

Configuring for resource workload routing
Use the resource workload routing feature in WebSphere Application Server to provide data source and
connection factory failover and failback from a predefined alternate resource.

Prerequisite: You must have created at least two connection factories for the IMS TM resource adapter.
For steps on how to create a connection factory, see “Creating a connection factory in WebSphere
Application Server” on page 736.

WebSphere Application Server Version 8 or later provides a resource workload routing function that
enables applications to recover from resource outages without having to embed alternate resource or
configuration information.

748 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html

A data source and connection factory can fail over and fail back automatically when a specified or default
failure threshold value is reached. When fail over occurs, the application switches from using the primary
resource to using the alternate resource. Fail back occurs when the application switches back from the
alternate resource to the primary resource.

When an alternate resource is configured for the IMS TM resource adapter, WebSphere Application
Server sends a ping message to IMS Connect to verify that it is up and running before re-establishing a
connection to the currently available resource.

To enable the resource workload routing function, configure the alternateResourceJNDIName property
as a custom connection pool property for your primary connection factory. Set the value of the
alternateResourceJNDIName property to the JNDI name of the secondary connection factory.

1. In the WebSphere Application Server administrative console, expand Resources > Resource
Adapters. Click Resource adapters.

2. Click the Connection pool properties link under the Additional Properties section.
3. In the Connection pools page, click Connection pool custom properties.
4. In the Custom properties page, click New to add the alternateResourceJNDIName property.
5. The property name must be set to alternateResourceJNDIName. The value is the JNDI name of the

alternate connection factory.

Figure 115. The Custom properties page when you create a property.
6. Click OK.

An alternate resource is configured.

You have created an alternate connection factory for your IMS TM resource adapter.

You can repeat the same step to add other custom properties such as failureThreshold. For other
properties that you can configure, see the WebSphere Application Server information.
Related information
IBM Documentation for WebSphere Application Server

Chapter 48. Installing the IMS TM resource adapter runtime component 749

https://www.ibm.com/docs/en/was-nd/latest?topic=console-resource-workload-routing

750 IMS: Application Programming

Chapter 49. Developing an application for use with
the IMS TM resource adapter

To interact with IMS Transaction Manager (IMS TM) through the IMS TM resource adapter, you can
develop your application by using a Rational or WebSphere integrated development environment (IDE), or
by coding your application outside of an IDE by using the Java EE Connector Architecture Common Client
Interface (CCI).

An application uses the IMS TM resource adapter to run an IMS transaction in IMS Transaction Manager.
The IMS TM resource adapter also supports other types of interactions with IMS TM, such as executing
the IMS commands that are supported by IMS OTMA. Consider the type of interaction with IMS TM
when you develop your application. In addition, the IMS TM resource adapter implements the Java EE
Connector Architecture Common Client Interface (CCI) API, an application programming interface that
you can use in your applications to communicate with an Enterprise Information System (EIS), IMS TM in
this case, through the IMS TM resource adapter.

Recommendation: When you develop your application by using an IDE, you can use the provided wizards
and file importers to generate a Java EE application that will run on WebSphere Application Server. When
you use an IDE to generate your code, you do not need to write the quality of service (QOS) code or
the CCI code that is needed by your Java application. Instead, you can concentrate on writing code to
implement your business logic and function.

Related information
Submitting commands to IMS
Although the IMS TM resource adapter is intended primarily for you to run transactions on a host IMS
system through a Java EE application, you can also issue IMS commands that are supported by IMS OTMA
from your Java applications.

Interacting with the IMS Transaction Manager
A Java application interacts with the IMS Transaction Manager (IMS TM) to run an IMS transaction, to
retrieve undelivered or asynchronous output messages, to retrieve and respond to an IMS callout request,
or to invoke any of the IMS commands that are supported by IMS Open Transaction Manager Access
(OTMA).

Java applications that run non-conversational IMS transactions are the most common type of Java
applications that use the IMS TM resource adapter. To run a non-conversational transaction, the Java
application interacts with IMS TM through IMS Connect, passing the input message of the transaction to
IMS TM and accepting the output message from IMS TM in return.

In the Java EE Connector Architecture (JCA), this interaction is done using an instance of the
Interaction object. The Java application interacts with IMS by invoking the execute method of an
Interaction class, providing the input message of the IMS transaction and an IMSInteractionSpec
object. The IMSInteractionSpec class in the com.ibm.connector2.ims.ico package describes the
properties of the interaction.

The properties of the IMSInteractionSpec class determine the type of interaction that a Java
application has with IMS TM. Interactions take place in a transaction pipe (tpipe), which is a logical
connection between an OTMA client, such as IMS Connect, and the server, IMS OTMA.

You can configure an IMSInteractionSpec object in your Java application to invoke the execute
method of an Interaction object in several ways:

• By using the wizards of an integrated development environment (IDE) to generate Common Client
Interface (CCI) code for the Java application. In this case, the values for the properties of the
IMSInteractionSpec class are provided to the wizards and the CCI code is generated for you.

© Copyright IBM Corp. 1974, 2022 751

Recommendation: Use this method to develop your application because the skeleton code is generated
for you.

• By coding a Java application that directly calls the Common Client Interface of the IMS TM resource
adapter. Use the set methods to configure an IMSInteractionSpec object and invoke the execute
method of an Interaction object.

• By using a variation of the code-generating IDE model in which the properties of
IMSInteractionSpec are dynamically provided at run time. This method is typically referred to as
exposing the properties of the IMSInteractionSpec (or IMSConnectionSpec) object as data.

Related reference
IMS interaction specification properties
The properties of the IMSInteractionSpec object describe the interaction with IMS.
Related information
Samples and tutorials
Samples and tutorials for developing Java applications or Web services to access IMS transactions can be
found in several WebSphere and Rational integrated development environments (IDEs).

Programming models
The programming model to use depends on the type of IMS transactions that the Java application
interacts with.

The IMS TM resource adapter supports the following programming models:

Send/receive programming model
Use the send/receive programming model to run an IMS response mode transaction.

To run a transaction in IMS, a Java application executes a SYNC_SEND_RECEIVE interaction. In your
application, provide the following values for the IMSInteractionSpec object that is used by the
execute method of the Interaction object.

• A value of SYNC_SEND_RECEIVE for the interactionVerb property
• A value of 0 or 1 for the commitMode property

However, the SYNC_SEND_RECEIVE interaction processing is different for shareable and dedicated
persistent socket connections. Depending on the type of socket connections, the processing model is
different in either a normal processing of the transaction, or when an error or an execution timeout
occurs.

If you convert a send-then-commit (CM1) application that expects a response to a commit-then-send
(CM0) application that does not, set the IMSInteractionSpec CM0Response property to true. When this
property is set for a CM0 transaction, if the IMS application does not reply to the IOPCB or complete a
message switch to another transaction, IMS OTMA issues a DFS2082 message to the client, regardless of
the transaction response mode.

Shareable persistent socket processing model
Shareable persistent socket connections are connections that can be used for commit mode 1 and
commit mode 0 interactions. The following scenarios describe the SYNC_SEND_RECEIVE interaction on a
shareable persistent socket during normal processing, error processing, and execution timeout.

Normal processing scenario
The IMS TM resource adapter, with the application server, obtains either an available connection from
the connection pool or creates a new connection. The IMS TM resource adapter, as part of initializing a
new connection, generates a client ID for the connection. The generated client ID identifies the socket
connection, and for commit mode 0 interactions, the tpipe and associated OTMA asynchronous hold
queue.

752 IMS: Application Programming

The IMS TM resource adapter ensures that a socket is associated with the connection and sends the
request with input data to IMS Connect by using that socket. IMS Connect then sends the message to
IMS, where IMS runs the transaction and returns the output message.

For commit mode 0 interactions, when it receives the output message, the IMS TM resource adapter
sends an ACK message to IMS, which signals IMS to discard the output from the IMS queue. When the
client application closes the connection or terminates, the connection is returned to the connection pool
for reuse by other commit mode 0 or commit mode 1 interactions.

Error processing scenario
All errors result in a resource exception being thrown to the client application. In addition, some errors
result in the socket being disconnected by IMS Connect. For commit mode 0 interactions, an exception
means that the output message cannot be delivered to the client application. However, following the
exceptions, undelivered output messages for commit mode 0 interactions on shareable persistent socket
connections can be retrieved if the SYNC_SEND_RECEIVE interaction specifies that undelivered output is
to be rerouted to a specific destination. To have an undelivered output message rerouted to a specific
destination, the following additional properties must be specified in the IMSInteractionSpec object
that is passed on the SYNC_SEND_RECEIVE interaction:

• Set the purgeAsyncOutput property to false so that undelivered output is not purged.
• Set the reRoute property to true, and specify a reroute destination in the RouteName property.

To retrieve undelivered output from a reroute destination, a separate client application issues
a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interaction on a dedicated persistent socket connection. The client application provides the reroute
destination as the client ID of the interaction.

Alternatively, to retrieve undelivered output from a reroute destination, a
separate client application issues a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction on a shareable persistent socket connection
by specifying the alternate client ID. Using the alternate client ID, a client application can retrieve
undelivered asynchronous output messages from any tpipe.

The default value of the purgeAsyncOutput property is true. When the value of the purgeAsyncOutput
property is true, the following output messages are purged:

• Undelivered output message inserted to the I/O Program Communications Block (I/O PCB) by the
primary IMS application program

• Output messages inserted to the I/O PCB by secondary IMS application programs invoked by program-
to-program switches

When the purgeAsyncOutput property is set to false, the reroute destination must be specified.

Execution timeout scenario
If an execution timeout occurs, the socket connection remains open but the output message is not
delivered to the client application. However, following an execution timeout exception, undelivered output
messages for commit mode 0 interactions on shareable persistent socket connections can be retrieved in
either of the following two ways:

• The same client application that issued the SYNC_SEND_RECEIVE interaction can issue a
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interaction.

• The undelivered output message can be rerouted to a specific destination as described in the error
processing scenario.

When the client application closes the connection or terminates, the connection is returned to the
connection pool so it can be reused by other commit mode 0 or commit mode 1 interactions.

Chapter 49. Developing an application for use with the IMS TM resource adapter 753

Related concepts
Shareable persistent sockets
A shareable persistent socket is a socket that can be shared (serially reused) by multiple applications that
execute either commit mode 1 (CM1) or commit mode 0 (CM0) interactions.

Dedicated persistent socket processing model
Dedicated persistent socket connections are connections that can be used only for commit mode 0
interactions.

The following scenarios describe the commit mode 0 SYNC_SEND_RECEIVE interaction on a dedicated
persistent socket during normal processing, error processing, and execution timeout.

Normal processing scenario
When a commit mode 0 SYNC_SEND_RECEIVE interaction is executed by a client application, the
application server returns an existing connection with the user-specified client ID, or creates a new
connection with the user-specified client ID. The user-specified client ID identifies the socket connection
and the tpipe that is associated with the OTMA asynchronous hold queue.

The IMS TM resource adapter ensures that a socket is associated with the connection and sends the
request with input data to IMS Connect using that socket. IMS Connect then sends the message to IMS,
where IMS runs the transaction and returns the output message. When it receives the output message,
the IMS TM resource adapter sends an ACK to IMS, which signals IMS to discard the output from the IMS
queue. When the connection is closed or the application terminates, the connection is returned to the
connection pool for reuse by another application that is running a commit mode 0 interaction with the
same user-specified client ID.

Error processing scenario
All errors result in a resource exception being thrown to the client application. In addition, some errors
result in the socket being disconnected by IMS Connect. For commit mode 0 interactions, an exception
means the output message cannot be delivered to the client application. The undelivered output is
queued to the tpipe that is associated with the user-specified client ID.

The properties, purgeAsyncOutput and reRoute, are not applicable to dedicated persistent sockets. You
can not purge or reroute undelivered output messages on a dedicated persistent socket.

Execution timeout scenario
If an execution timeout occurs, the socket remains open and the output of the commit mode 0
interaction is queued to the tpipe associated with the user-specified client ID for later retrieval. When
the connection is closed or the application terminated, the IMSManagedConnection object is returned
to the connection pool for reuse by another application that is running a commit mode 0 interaction with
the same user-specified client ID.

Related concepts
Dedicated persistent sockets
A dedicated persistent socket is a socket connection that is assigned to a specific client ID and remains
dedicated to that particular client ID until it is disconnected.

Send-only programming model
Use the send-only programming model to run an IMS non-response mode transaction in the IMS
Transaction Manager (IMS TM).

To run a non-response mode transaction in IMS TM, a Java application executes a SYNC_SEND
interaction. In a SYNC_SEND interaction, the IMS TM resource adapter sends the request to IMS through
IMS Connect and does not expect a response from IMS. Because the IMS TM resource adapter performs
a send-only interaction with IMS, a SYNC_SEND interaction is typically used with a non-response mode
transaction.

754 IMS: Application Programming

To use a SYNC_SEND interaction to run a transaction, your application must provide a value of
SYNC_SEND for the interactionVerb property and a value of 0 for the commitMode property of
the IMSInteractionSpec object that is used by the execute method. The SYNC_SEND interaction
processing varies, depending on the type of persistent socket that is used (shareable or dedicated) and
the type of IMS transaction that is run.

Important: The IMSInteractionSpec properties purgeAsycOutput, reRoute, and reRouteName do
not apply to SYNC_SEND interactions and are ignored by the IMS TM resource adapter.

Shareable persistent socket processing model
The following scenarios describe a SYNC_SEND interaction on a shareable persistent socket connection
for different types of transactions.

• Non-response mode transaction

The IMS application program associated with a transaction that is defined to IMS as non-response
mode typically does not insert an output message to the I/O PCB. Therefore, an output message is not
created and nothing is queued on a tpipe.

• Response mode transaction

The IMS application program associated with a transaction that is defined to IMS as a response
mode transaction typically inserts an output message to the I/O PCB. Because the IMS TM
resource adapter does not expect a response from a SYNC_SEND interaction, the output message,
if inserted, is queued on the tpipe with the name of the generated client ID. However, interactions
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
can be used to retrieve the response, if they are performed following the SYNC_SEND interaction in the
same application and on the same connection.

• Non-response mode or response mode transactions that invoke an IMS application program that inserts
a message to an alternate PCB

A message that is inserted to an alternate PCB can be retrieved by executing an interaction on
a dedicated persistent socket connection. To insert this message, see the discussion on retrieving
asynchronous output on dedicated persistent socket connections in the "Asynchronous output
programming model" topic.

Dedicated persistent socket processing model
The following scenarios describe a SYNC_SEND interaction on a dedicated persistent socket connection
for different types of transactions. SYNC_SEND interactions use commit mode 0 and dedicated persistent
socket connections can be used only for commit mode 0 interactions.

• Non-response mode transaction

The IMS application program associated with a transaction that is defined to IMS as non-response
mode typically does not insert an output message to the I/O PCB. Therefore, an output message is not
created and nothing is queued on a tpipe.

• Response mode transaction

The IMS application program associated with a transaction that is defined to IMS as response mode
typically inserts an output message to the I/O PCB. Because the IMS TM resource adapter does not
expect a response from a SYNC_SEND interaction, the output message, if inserted, is queued on
the tpipe with the name that is provided for the client ID of the interaction. Messages queued to
this type of tpipe can be retrieved by issuing a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions. The tpipe name is the client ID that is
specified for the SYNC_SEND interaction. A client ID is required for interactions that use a dedicated
persistent socket connection.

• Non-response mode or response mode transactions that invoke an IMS application that inserts to an
alternate PCB

Chapter 49. Developing an application for use with the IMS TM resource adapter 755

A message inserted to an alternate PCB can be retrieved by executing an interaction on a dedicated
persistent socket connection. For more information, see the "Asynchronous output programming
model" topic.

Related concepts
Asynchronous output programming model
Use this programming model to retrieve output that has been queued by IMS.

Asynchronous output programming model
Use this programming model to retrieve output that has been queued by IMS.

Your application might need to retrieve output that was queued at some earlier time. Such output is called
asynchronous output. Asynchronous output can result from several situations: undelivered output from
commit mode 0 interactions, output from program-to-program switches, output from ISRT calls to an
alternate PCB, and output from an IMS application that returns multiple output messages.

To retrieve asynchronous output, a Java application executes a
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interaction. Your application must provide the value for the interactionVerb property and a value of 0
for the commitMode property of the IMSInteractionSpec object that is used by the execute method of
the interaction.

Two types of socket connections that can be used to retrieve asynchronous output are shareable
persistent socket and dedicated persistent socket. The way to retrieve asynchronous output messages
varies, depending on the type of socket connection that is used. The interactionVerb property values that
can be used to retrieve asynchronous output are:

• SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

Tip: SYNC_RECEIVE_ASYNCOUTPUT was deprecated inIMS TM Resource Adapter Version 10, and is
replaced by SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT.

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT is different from
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT in how IMS Connect checks for the output on the IMS
OTMA asynchronous hold queue.

• For SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions, if no asynchronous output is in the
IMS OTMA asynchronous hold queue when the retrieve request is made, IMS Connect returns an
execution timeout notification as soon as the execution timeout value that is specified by the client
application has passed.

Recommendation: Specify the minimum execution timeout value of 10 for
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions.

• For SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions, when the execution timeout value has
passed, if no asynchronous output is in the hold queue, IMS Connect returns an execution timeout error.
Otherwise, IMS Connect returns the first output message when it is placed in the queue.

Recommendation: For SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions, select an
appropriate execution timeout value, rather than the minimum value.

The asynchronous output programming model requires commit mode 0 and can be used on
both shareable persistent socket and dedicated persistent socket connections. In addition, the
IMSInteractionSpec properties purgeAsycOutput, reRoute, and reRouteName do not apply and are
ignored when the interactionVerb property is set to either of these values. The interactionVerb property is
invoked differently on dedicated and shareable persistent socket connections.

Related concepts
Java exceptions that involve output messages

756 IMS: Application Programming

If any errors occur when the IMS TM resource adapter passes the message through IMS Connect to IMS,
and as IMS processes this transaction and attempts to return the output, the Java client receives an
exception.
Securing message retrieval from IMS hold queues
You can specify the user ID and password information to ensure that only authorized users are allowed to
retrieve asynchronous output or callout request messages from the IMS hold queue.

Retrieving asynchronous output on dedicated persistent socket connections
To retrieve asynchronous output on a dedicated persistent socket connection, use commit mode 0
interaction and specify a client ID.

1. Execute a commit mode 0 interaction with the interactionVerb property
of IMSInteractionSpec set to SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

2. Provide a value for the clientID property. The clientID property is required because it determines
the tpipe from which the asynchronous output is retrieved.

• To retrieve output messages from a commit mode 0 interaction on a dedicated persistent
socket, the client ID that is specified on the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction must match the value that is
specified for the original commit mode 0 interaction.

• To retrieve output messages sent to an alternate PCB, the client
ID that is specified on the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction must match the name of the
alternate PCB.

• To retrieve output messages that were rerouted to a reRouteName destination,
the client ID that is specified on the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction must be set to the destination that
is specified by the reRouteName property.

Related concepts
Dedicated persistent sockets
A dedicated persistent socket is a socket connection that is assigned to a specific client ID and remains
dedicated to that particular client ID until it is disconnected.

Retrieving asynchronous output with an alternate client ID on shareable persistent
socket connections
A client application can retrieve asynchronous output messages that are either rerouted or non-rerouted
from any OTMA tpipe by using an alternate client ID.

This alternate client ID is specified by the altClientID property of the IMSInteractionSpec object.
The alternate client ID corresponds with the name of the OTMA tpipe that has the asynchronous output
messages. A client application cannot specify a reroute name (the reRouteName property) and an
alternate client ID (the altClientID property) in the same interaction.

Alternate client IDs are supported when a client application meets all the following requirements:

1. Use a TCP/IP connection with a shareable persistent socket.
2. Use a valid value for the interactionVerb property for retrieval of asynchronous

output messages (resume tpipe): SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

3. Set the commitMode property value to 0.

Related concepts
Shareable persistent sockets

Chapter 49. Developing an application for use with the IMS TM resource adapter 757

A shareable persistent socket is a socket that can be shared (serially reused) by multiple applications that
execute either commit mode 1 (CM1) or commit mode 0 (CM0) interactions.

Retrieving asynchronous output without an alternate client ID on shareable persistent
socket connections
Asynchronous output must be retrieved on the same connection as the previous interaction if an alternate
client ID is not specified.

Without using alternate client ID, a client application can retrieve only non-rerouted asynchronous
output messages from an interaction on a shareable persistent socket connection by executing
a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interaction. This interaction must be on the same shareable persistent socket connection where the
interaction from the same application led to the asynchronous output being queued.

The following table shows the behavior of the retrieval of asynchronous output message (resume tpipe)
interaction when different property values are specified.

Table 114. Behavior of resume tpipe interactions with different IMSConnectionSpec property values

Interaction Socket
Client
ID

Reroute
name

Alternate
client ID Comments

resume tpipe,
without
specifying
alternate client
ID

Shareable null null null Asynchronous output must be retrieved
on the same connection as the
previous interaction. Otherwise, the
asynchronous output cannot be
retrieved. If the retrieval failed, the
message is lost.

resume tpipe,
without
specifying
alternate client
ID

Shareable null myRR null Asynchronous messages must be
retrieved on the same connection as
the previous interaction. If the retrieval
failed, the message is rerouted to myRR.

resume tpipe,
specifying
alternate client
ID

Shareable null N/A myTpipe Asynchronous messages are retrieved
from tpipe myTpipe. the reRouteName
and altClientID properties are
mutually exclusive and cannot be used
at the same time.

resume tpipe Dedicated myCID N/A N/A Asynchronous messages must be
retrieved by using the client ID myCID.

For shareable persistent socket connections, the commit mode for a
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
interaction is automatically set to 0 by the IMS TM resource adapter, regardless of the value that is
set in the IMSInteractionSpec object for that interaction. This behavior is different from the behavior
for SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
interactions on dedicated persistent socket connections. For dedicated socket connections, the commit
mode must be explicitly set to 0.

Related concepts
Shareable persistent sockets

758 IMS: Application Programming

A shareable persistent socket is a socket that can be shared (serially reused) by multiple applications that
execute either commit mode 1 (CM1) or commit mode 0 (CM0) interactions.

Displaying and interpreting output message counts
You can use IMS Connect commands to display output message counts when you want to monitor or
troubleshoot the proper retrieval of asynchronous output messages.

For commit mode 0 interactions, the tpipe name is the client ID that is used for the interaction. For
commit mode 0 interactions, the IMS OTMA asynchronous hold queue that is associated with the tpipe
has the same name as the client ID.

For commit mode 1 interactions, the tpipe name is the IMS Connect port number that is used for the
interaction. Each port has a tpipe that is used for all clients that run commit mode 1 interactions on that
port.

1. To view counts of the output messages that are sent to the IMS TM resource adapter, as well as
messages that are inserted to Alternate Program Communication Blocks (Alternate PCBs), use the IMS
Connect command /DISPLAY TMEMBER IMSConnect_Name TPIPE ALL.

The following sample output is from a /DISPLAY TMEMBER HWS1 TPIPE ALL command. The types
of tpipes and counts for the command output are also described.

DFS000I MEMBER/TPIPE ENQCT DEQCT QCT STATUS IMS1
DFS000I HWS1 IMS1
DFS000I -9999 0 0 0 IMS1
DFS000I -HWSMIJRC 2 2 0 IMS1
DFS000I -CLIENT01 3 2 1 IMS1
DFS000I -ALTPCB1 2 1 1 IMS1
DFS000I -HWS$DEF 1 0 1 IMS1
DFS000I -RRNAME 1 0 1 IMS1

2. To interpret the command output, determine which tpipe is the queue of interest, and the
corresponding QCT column contain the message count.
The tpipe name is determined by the type of interactions and connections.

• For commit mode 1 interactions on a shareable persistent socket:

– The tpipe name is the port number used for the interaction. In this sample, tpipe 9999 indicates
that this queue is for a commit mode 1 interaction on a shareable persistent socket.

– The enqueue count (ENQCT) and dequeue count (DEQCT) are the same, and the queue count
(QCT) is 0, because undelivered output messages are not recoverable for commit mode 1
transactions.

• For commit mode 0 interactions on a shareable persistent socket:

– The tpipe name is generated by the IMS TM resource adapter and has a prefix of HWS. In this
example, tpipe name HWSMIJRC is generated by the IMS TM resource adapter.

– The enqueue count (ENQCT) and dequeue count (DEQCT) are the same, and the queue count
(QCT) is 0 if all messages are delivered to the IMS TM resource adapter.

– The enqueue count (ENQCT) and dequeue count (DEQCT) are the same, the queue count (QCT) is
0, and all undelivered output messages are discarded if both the following conditions are met:

- Output messages are not delivered to the IMS TM resource adapter on SYNC_SEND_RECEIVE
interactions.

- The default values for the reRoute property (false) and the purgeAsyncOutput property (true)
are used.

– The enqueue count (ENQCT) is greater than the dequeue count (DEQCT), and the queue count
(QCT) is the number of messages that were not delivered to the IMS TM resource adapter if both
the following conditions are met:

- Output messages are not delivered to the IMS TM resource adapter on SYNC_SEND_RECEIVE
interactions.

- The reRoute property is set to true and the purgeAsyncOutput property is set to false

Chapter 49. Developing an application for use with the IMS TM resource adapter 759

The tpipe name is the value specified for the reRouteName property. For example, RRNAME, or a
default value, for example, HWS$DEF.

– For SYNC_SEND interactions, output is not expected, and undelivered
output does not apply. If SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are unsuccessful, the queue count
does not change.

• For commit mode 0 interactions on a dedicated persistent socket:

– Typically, the tpipe name is provided by the Java application and does not include a prefix of
HWS. For example, CLIENT01. However, you might occasionally see a tpipe name of HWS$DEF,
which is the default value for the reRouteName property.

– The enqueue count (ENQCT) and dequeue count (DEQCT) are the same, and the queue count
(QCT) is 0 if all messages are delivered to the IMS TM resource adapter, and no undelivered
messages were rerouted from interactions on shareable persistent socket connections.

– If output messages are not delivered to the IMS TM resource adapter, or rerouted from
interactions on shareable persistent socket connections, the enqueue count (ENQCT) is greater
than the dequeue count (DEQCT), and the queue count (QCT) is the number of messages that
were not delivered. The tpipe name is the client ID name that the user specified. For example,
CLIENT01.

• For output messages inserted to Alternate PCBs:

– The tpipe name is the name of the Alternate PCB, for example, ALTPCB1.

Callout programming models
Use this programming model to send outbound messages from an IMS application to request services or
data from message-driven beans (MDBs), Enterprise JavaBeans (EJB) components, or web services and,
optionally, receive response data.

In the IMS callout programming models, IMS acts as a client to interact with business data or logic that
resides in a MDB, an EJB component, or a Web service. IMS applications invoke external Java applications
by issuing callout requests. From the perspective of WebSphere Application Server, on the contrary, these
messages from IMS applications are inbound messages.

Depending on whether a response from the external Java application is expected, and whether the
response is expected by the initiating IMS application in the same transaction, different programming
models can be employed.

Synchronous callout
A synchronous callout request is a request that expects a response from the external Java application or
Web service to return in the same transaction to the same IMS application.

When an IMS application issues a synchronous callout request by using the IMS DL/I ICAL call, an OTMA
transaction pipe (tpipe) is used to hold the request. The IMS application in the dependent region remains
scheduled and waits for the response. After the external application pulls the request message from the
tpipe, the tpipe is in a wait status until a response is returned from the external application.

For message-driven beans (MDBs), you can take advantage of the Java EE Connector Architecture 1.5
inbound specification, and the tooling support in various Rational or WebSphere integrated development
environments (IDEs). The IMS TM resource adapter listens for callout messages from IMS Connect and
handles the correlation of the request and its response.

For non-MDB applications, it is the application's responsibility to poll IMS Connect for any callout
requests on the hold queue. The application also needs to handle the correlator token that is passed
as a property of the IMSInteractionSpec class.

The key benefit of having the callout request and the response in the same transaction instance is that the
programming logic for issuing the request and for processing the response can be contained in the same

760 IMS: Application Programming

IMS application. This approach does, however, require that the IMS application wait for the response, and
the dependent regions would be blocked.

Asynchronous callout
An asynchronous callout request is a request that does not expect a response, or expects the response to
return in a different transaction.

After the IMS application issues the asynchronous callout request by using the ISRT ALPCB call, an
OTMA transaction pipe (tpipe) or an alternative destination (as coded in an exit routine), is used to hold
the request. After the external application pulls the request message from the hold queue, the IMS
application is no longer scheduled in the IMS dependent region, and the dependent region is freed up.

If a response is expected, the response message returns as a new IMS transaction request to either the
same or a different IMS application with the output data, depending on your application design.

The key benefit of having the response return asynchronously is to avoid blocking the dependent regions
and therefore locking IMS resources for an excessive period of time. However, this approach does require
that, if a response needs to be processed, the IMS application must be designed to be capable of handling
the output in a separate transaction instance. It is also the responsibility of the application to correlate
that response with the request.

Related concepts
Execution timeouts
The value for the execution timeout is the maximum amount of time that is allowed for IMS Connect to
send a message to IMS and receive a response to that message back from IMS.
Securing message retrieval from IMS hold queues
You can specify the user ID and password information to ensure that only authorized users are allowed to
retrieve asynchronous output or callout request messages from the IMS hold queue.
Related reference
Diagnosing problems with callout requests
Callout request errors are often related to the execution timeout setting, incorrect or corrupted callout
messages, or network failures.

OTMA destination descriptors
You can instruct an IMS application to route callout requests to services accessible to the IMS TM
resource adapter without having to code assembler routing exits by using the OTMA destination
descriptors.

You can define an IMS Connect destination (a transaction pipe, or tpipe) to where the IMS callout request
messages are routed by using the OTMA destination descriptor. If no special routing is required, the tpipe
name for the callout request can be specified directly in the ICAL call (for synchronous callout) or ISRT
ALTPCB call (for asynchronous callout) in the IMS application.

To use the OTMA destination descriptor, your IMS system programmer must configure the descriptor
in the DFSYDTx PROCLIB member. The following example demonstrates a descriptor for a destination
named IMSTMRA that will route messages to the target member named HWS1 and a tpipe named
HWS1TP01.

D IMSTMRA TYPE=IMSCON TMEMBER=HWS1 TPIPE=HWS1TP01

An OTMA destination descriptor is required for routing synchronous callout requests, but not required
for routing asynchronous callout requests. However, the use of the OTMA destination descriptor for
asynchronous callout requests is preferred because the descriptor approach is easier to use than the
OTMA exit routines approach.

For more information, see the topic "OTMA descriptors" in IMS Communications and Connections
information, and the DFSYDTx PROCLIB member in IMS System Definition information.

Chapter 49. Developing an application for use with the IMS TM resource adapter 761

Security for retrieving callout requests
With the security feature that is provided by the IMS OTMA resume tpipe, you can protect callout
messages from unauthorized use, with either RACF, the OTMA resume tpipe security exit routine
(DFSYRTUX), or both.

IMS callout requests are retrieved from IMS Connect by using the RESUME TPIPE call. When security is
enabled, the user ID issuing the RESUME TPIPE call must be authorized to access the tpipe name that is
contained in the RESUME TPIPE call message before any messages are sent to an OTMA client. If security
is enabled and the tpipe does not exist at the time the RESUME TPIPE call is issued, the call is rejected.

For message-driven beans (MDBs), Secure Sockets Layer (SSL) authentication is supported for
communication with IMS. Security information is specified in the J2C activation specification
(IMSActivationSpec) that is configured in WebSphere Application Server.

For non-MDB applications, you can optionally specify a user ID in your Java application if you have
configured your IMS security so that only authorized users can retrieve the callout request message from
the hold queue. This user ID must be specified in the connection specification in your application or the
connection factory that is used by your application.

Synchronous callout message flow
A synchronous callout message is placed on the tpipe hold queue and waits to be pulled by an external
application or service, and the tpipe remains in a wait state until the response message from the external
application returns before the next callout message can be delivered.

A typical message flow is as follows:

Figure 116. Synchronous callout message flow

1. A Java EE application in WebSphere Application Server starts and WebSphere Application Server
connects to IMS Connect through the IMS TM resource adapter. The IMS TM resource adapter, in turn,
issues a RESUME TPIPE request to the tpipe and waits for the callout request from IMS Connect.

2. An initiating client, such as a terminal or an IMS Connect or OTMA client starts an IMS application.

762 IMS: Application Programming

3. The IMS application issues an IMS DL/I ICAL call and specifies the OTMA destination descriptor that
contains the destination tpipe name where the callout request message is to be queued. When the
request is placed on the tpipe hold queue, a correlation token is attached with the request.

4. If a callout request is not available at the time of the request, the IMS TM resource adapter is blocked
and the Java application will wait for the next available callout message. In the case of an EJB
application where the application itself handles the polling of IMS Connect for the callout messages,
the IMS TM resource adapter waits until timeout occurs. As soon as the callout request is available in
the tpipe, IMS Connect delivers the callout message to the IMS TM resource adapter.

5. The IMS TM resource adapter receives the callout request message and sends the callout request to
the Java application. The application processes the callout request.

6. The Java application sends the response, with the correlation token attached, to the IMS TM resource
adapter.

7. The IMS TM resource adapter forwards the response to IMS Connect.

If the send-only-with-acknowledgment protocol is enabled, IMS TM Resource Adapter receives an
acknowledgment from IMS when IMS receives the synchronous callout response message.

8. Based on the correlation token, the response is correlated back to the initiating request from IMS.

Asynchronous callout message flow
An asynchronous callout message is placed in the hold queue and awaits to be pulled by an external
application or service. If response data is expected, the external application issues a normal IMS
transaction to the appropriate IMS application with the output data.

The following figure shows the typical asynchronous callout message flow:

Figure 117. Asynchronous callout message flow

1. A Java application in WebSphere Application Server starts and obtains a sharable persistent
connection to IMS Connect through the IMS TM resource adapter. The application issues a
SYNC_RECEIVE_CALLOUT interaction, specifies the tpipe name as the value for the alternate client

Chapter 49. Developing an application for use with the IMS TM resource adapter 763

ID, and sets a timeout value. The IMS TM resource adapter, in turn, issues a RESUME TPIPE request to
the tpipe and waits for the callout request from IMS Connect.

2. An initiating client, such as a terminal or an IMS Connect or OTMA client, starts an IMS application.
3. The IMS application issues an ISRT ALTPCB call to an OTMA destination descriptor, which contains the

destination tpipe name. The callout request message is queued in this tpipe.
4. If a callout request is not available at the time of the SYNC_RECEIVE_CALLOUT request, the IMS TM

resource adapter is blocked, and the bean waits for the next available callout message or until timeout
occurs. When the callout request is available in the tpipe, IMS Connect delivers the callout message to
the IMS TM resource adapter.

5. The IMS TM resource adapter receives the callout request message and returns the callout request to
the bean. The bean processes the callout request.

6. If the bean receives response data to be returned to IMS, the bean issues a normal IMS transaction
request to the appropriate IMS application with the output data.

Managed callout programming model
You can use the managed callout programming model to send outbound messages from IMS applications
to request services or data from an external message-driven bean (MDB) and receive response data
synchronously or asynchronously to the same IMS application in the same transaction.

MDBs are stateless, server-side Java EE components that can be configured as listeners on a Java
Connector Architecture (JCA) 1.5 resource adapter for handling inbound messages coming from an
enterprise information system (EIS). An MDB is an EJB component that can be activated by message
delivery to consume and process messages.

In the JCA 1.5 specification, MDBs are commonly referred to as message endpoints or simply endpoints.
The key benefits of MDBs include a clearer separation of message handling and business processing, and
a wider reuse of the business processing by other incoming messages.

Because this programming model takes advantage of the JCA 1.5 standards, the IMS TM resource adapter
can manage the callout protocol and the correlation of the response to the appropriate request for
you. As a result, the managed callout programming model is preferred over the non-managed callout
programming model for its ease of use, cleaner code, greater reuse, and better scalability.

The following diagram shows how a synchronous callout message is processed by an MDB.

764 IMS: Application Programming

Figure 118. Processing a synchronous callout message from IMS by using a message-driven bean

The following diagram shows how an asynchronous callout message is processed by an MDB.

Chapter 49. Developing an application for use with the IMS TM resource adapter 765

Figure 119. Processing an asynchronous callout message from IMS by using a message-driven bean

In the MDB callout programming model, the MDB must implement:

• The com.ibm.j2ca.base.ExtendedInboundListener interface
• The onMessage() method for receiving synchronous callout requests
• The onNotification() method for receiving asynchronous callout request messages

These methods are invoked by the IMS TM resource adapter when a message comes in for the particular
MDB, depending on whether the callout message is asynchronous or synchronous. The IMS TM resource
adapter automatically handles the callout protocol. For synchronous callout messages, the IMS TM
resource adapter also handles the passing of the correlation token.

You can enable the send-only-with-acknowledgment protocol. Using this protocol, IMS TM Resource
Adapter receives an acknowledgment from IMS when IMS receives a synchronous callout response
message. In Version 13 and earlier, this acknowledgment is unavailable.

You can enable connection pooling for synchronous callout messages that are sent back to IMS. In
Version 13 and earlier, the IMS TM Resource Adapter must create and then discard a new connection
whenever a callout response is sent. By enabling connection pooling, you can avoid the overhead of
opening and closing multiple connections.

Retrieving IMS callout messages by using a message-driven bean

To retrieve IMS callout messages by using an MDB:

766 IMS: Application Programming

1. Generate the data binding and an MDB by using IBM Rational Application Developer for WebSphere
Software or other integrated development environments (IDEs) that include the J2C tools.
a) Import the IMS application source file into the IDE.
b) Use the J2C wizard to generate data bindings for handling the callout requests and messages.

2. Implement the com.ibm.j2ca.ExtendedInboundListener interface to listen to callout
messages.

• Implement the onMessage() method for synchronous callout requests.
• Implement the onNotification() method for asynchronous callout request messages

3. Configure a J2C activation specification (an instance of the IMSActivationSpec class) in WebSphere
Application Server, and specify, at a minimum, a value for the following properties to listen for callout
requests:

• Host name
• Port number
• Data store name
• Queue names (a comma-delimited list of tpipes)

4. Deploy the MDB on WebSphere Application Server by using the WebSphere Application Server
administrative console.
a) At the Bind listeners for message-driven beans panel in the administrative console, enter the

JNDI name of the J2C activation specification that you configured previously.
b) Start the MDB application.

Configuring a J2C activation specification
You must configure a J2C activation specification to describe the inbound messaging from IMS for
message-driven beans.

J2C activation specifications are part of the configuration of inbound messaging support of a JCA 1.5
resource adapter. A JCA 1.5 resource adapter supports inbound messaging by implementing its own
message listener interface. The message listener is the interface that the resource adapter uses to
communicate inbound messages to the message endpoint. A message-driven bean is a message endpoint
and implements one of the message listener interfaces provided by the resource adapter.

When an application that contains a message-drive bean is deployed, the deployer must select a resource
adapter that supports the same type of message listener that the message-driven bean implements. As
part of the message-driven bean deployment, the deployer needs to specify the properties to set on the
J2C activation specification. Later, during application startup, a J2C activation specification instance is
created, and these properties are set and used to activate the endpoint.

The IMSActivationSpec class is the implementation of J2C activation specifications in IMS TM
resource adapter. When you deploy a message-driven bean in WebSphere Application Server, you must
select the IMS TM resource adapter, and configure the activation specification by specifying the values for
IMSActivationSpec properties that describe the inbound communication from IMS.

If multiple data stores and multiple tpipes are involved, the IMS TM resource adapter thread pool might
quickly exhaust and the callout processing might stall. In this case, you might want to configure the
WebSphere Application Server to add your own thread pool. After the thread pool is added, reference the
thread pool in the Thread pool alias field for the IMS TM resource adapter.

Related tasks
“Configuring a thread pool in WebSphere Application Server” on page 772

Chapter 49. Developing an application for use with the IMS TM resource adapter 767

Configure a thread pool in WebSphere Application Server if you have multiple data stores and multiple
tpipes for synchronous callout request processing.

Configuring a J2C activation specification in WebSphere Application Server
You must configure a new J2C activation specification from the IMS TM resource adapter and then specify
the values for communication with IMS.

To create and configure a J2C activation specification in WebSphere Application Server:

1. Create a J2C specification for the IMS TM resource adapter.
a) Create a J2C specification for the IMS TM resource adapter. In the administrative console (also

known as the Integrated Solutions Console) of WebSphere Application Server, select Resources >
Resource Adapters > J2C activation specifications in the navigation pane.

Figure 120. J2C activation specification configuration in WebSphere Application Server
b) Click New in the content pane.

A Configuration tab is displayed.
c) Under Provider, select the IMS TM resource adapter from the list.

The Message listener type field at the bottom of this page is automatically populated based on the
selection.

d) Specify a name for this J2C activation specification.
For example, IMSActivationSpec.

e) Type the JNDI name.
For example, eis/IMSActivationSpec.

f) Click Apply.
You are back to the J2C activation specifications page.

g) Click Save in the message box at the top to save the changes to the master configuration.
The J2C activation specification is created.

768 IMS: Application Programming

Figure 121. Newly created J2C activation specification from the IMS TM resource adapter
2. To configure the J2C activation specification for use with the IMS TM resource adapter:

a) Click the name of the J2C activation specification for the IMS TM resource adapter.
The Configuration tab is displayed.

b) Under the Additional Properties section on the side, click the J2C activation specification custom
properties link.
Custom properties in this instance of J2C activation specification are displayed.

Note: The properties in the following figure might not match the properties that you see, depending
on your version of the IMS TM resource adapter.

Figure 122. Custom properties for the J2C activation specification for the IMS TM resource adapter
c) Specify the values for the following required properties by clicking their names in the table and

entering the appropriate values.

Chapter 49. Developing an application for use with the IMS TM resource adapter 769

• queueName: A comma-delimited list of the tpipe hold queue names where the callout requests
from IMS are being held.

• portNumber: the port number for IMS Connect
• hostName: the IMS Connect host name
• dataStoreName: the IMS data store name.

In WebSphere Application Server Version 8 or later, the data store name can be a comma-
delimited list of names, enabling an IMSActivationSpec instance to pull callout messages from
multiple data stores.

d) If you want the IMS TM resource adapter to use connection pooling for responses that are sent
back to IMS, specify values for the following properties:

• connectionPoolEnabled: whether IMS TM resource adapter should use connection pooling
(specify true to enable this feature)

• maxConnections: the maximum number of connections that the connection pool can hold
• poolCleanupFrequency: the cleanup interval (in minutes) for idle connections in the connection

pool
• ddurationOfIdleConnections: the number of minutes that a connection in the connection pool can

remain idle before it is cleaned up at the next cleanup interval
e) If you want the IMS TM resource adapter to receive an acknowledgment from IMS when IMS

receives a synchronous callout response message, specify true for the sendOnlyWithAck property.
f) Specify the values for the other optional properties based on your environment.
g) Click Apply.
h) Click Save in the message box at the top to save the changes to the master configuration.

The J2C activation specification for the IMS TM resource adapter is created and configured.

IMSActivationSpec property configuration for message-driven beans
The values of the properties of the IMSActivationSpec object describe the inbound communication
from IMS to be used by message-driven beans.

You must configure an instance of the IMSActivationSpec object when you deploy a message-drive
bean in order for the IMS TM resource adapter to communicate with IMS Connect for retrieving and
responding to synchronous callout messages.

The following table describes the properties for the IMSActivationSpec object, the implementation of
the J2C activation specification in IMS TM resource adapter. Specify and configure the values for these
properties by using the administrative console in WebSphere Application Server.

Properties in the J2C activation specification that are not listed in the following table are not supported by
the IMS TM resource adapter.

Table 115. Properties for the IMSActivationSpec object

Propertiesk Description

dataStoreName Specifies the IMS data store name. The name must match the ID
parameter of the Datastore statement that is specified in the IMS
Connect configuration member when IMS Connect is installed. It also
serves as the XCF member name for IMS during cross-system coupling
facility (XCF) communications between IMS Connect and OTMA.

The data store name can be a comma-separated list of data store
names, enabling one instance of the IMSActivationSpec class to pull
callout messages from more than one IMS data store.

groupName Specifies the security authorization facility (SAF) group name.

hostName Specifies the IMS Connect host name.

770 IMS: Application Programming

Table 115. Properties for the IMSActivationSpec object (continued)

Propertiesk Description

password Specifies the SAF password.

portNumber Specifies the IMS Connect port number.

queueNames Specifies a comma-delimited list of IMS OTMA tpipe names for the
callout (synchronous or asynchronous) messages. Queue names must
be 1 to 8 alphanumeric characters (A-Z, 0-9, @, #, $).

retryInterval Specifies the time delay in milliseconds before the IMS TM resource
adapter tries to check on the availability of the data store.

retryLimit Specifies the maximum number of times the IMS TM resource adapter
will attempt to reconnect to IMS Connect if a connection is lost due to
IMS Connect or IMS data store availability issues.

SSLEnabled Instructs the IMS TM resource adapter to create a Secure Sockets
Layer (SSL) socket connection to IMS Connect by using the specified
host name and port number in the IMSActivationSpec object. This
property is valid for TCP/IP connections only.

SSLEncryptionType Specifies the SSL encryption type. Valid values are strong and weak.

SSLKeyStoreName Specifies the name, including the full file path, of the keystore for
TCP/IP SSL communications.

Private keys and their associated public key certificates are stored in
password-protected databases called keystores. Trusted certificates
can also be stored in the keystore, and the truststore property can
either be empty or could point to the keystore file. An example of a
keystore name is c:\keystore\MyKeystore.ks. The file can have
other file extensions.

SSLKeyStorePassword Specifies the password for the keystore for TCP/IP SSL
communications.

SSLTrustStoreName Specifies the name, including the full path, of the keystore file
that contains security credentials (certificates) for TCP/IP SSL
communications. A value for the SSLTrustStoreName property is not
mandatory if a keystore is used. A truststore file is a key database
file that contains public keys or certificates. Private keys can also
be stored in the truststore, and the keystore property can either be
empty or could point to the truststore file. An example of a truststore
name is c:\keystore\MyTruststore.ks. The file can have other
file extensions.

SSLTrustStorePassword The password for the truststore for TCP/IP SSL communications.

connectionPoolEnabled Specifies whether to enable connection pooling.
true

Enables IMS TM Resource Adapter to create a connection pool for
synchronous callout responses that are sent back to IMS.

false
Disables connection pooling. IMS TM Resource Adapter creates and
then discards a new connection whenever a synchronous callout
response is sent. The default value is false (for compatibility with
earlier versions of IMS TM Resource Adapter).

Chapter 49. Developing an application for use with the IMS TM resource adapter 771

Table 115. Properties for the IMSActivationSpec object (continued)

Propertiesk Description

durationOfIdleConnections Specifies the number of minutes that a connection in the connection
pool can remain idle before it is cleaned up at the next cleanup interval.
The default value is 0, which causes an idle connection to be cleaned
up immediately. This property is ignored if the connectionPoolEnabled
property is false.

maxConnections Specifies the maximum number of connections that the connection
pool can hold. If the pool is full, all new connections are
discarded. The default value is 1. This property is ignored if the
connectionPoolEnabled property is false.

poolCleanupFrequency Specifies the cleanup interval (in minutes) for idle connections in the
connection pool. The default value is 20. This property is ignored if the
connectionPoolEnabled property is false.

sendOnlyWithAck Specifies whether to enable the send-only-with-acknowledgment
protocol.
true

Enables the protocol. IMS TM Resource Adapter receives an
acknowledgment from IMS when IMS receives a synchronous
callout response message.

false
Disables the protocol. The default value is false (for compatibility
with earlier versions of IMS TM Resource Adapter).

userName SAF user name.

Related information
Configuring a J2C activation specificationFor more information, see IBM Documentation for WebSphere
Application Server.

Configuring a thread pool in WebSphere Application Server
Configure a thread pool in WebSphere Application Server if you have multiple data stores and multiple
tpipes for synchronous callout request processing.

A thread pool enables components of the server to reuse threads, which eliminates the need to create
new threads at run time. The IMS TM resource adapter thread pool could quickly exhaust and the callout
processing would stall when multiple data stores and tpipes are involved.

If you have multiple data stores and multiple tpipes, configure the WebSphere Application Server to add
your own thread pool. The IMS TM resource adapter thread pool could quickly exhaust and the callout
processing would stall when multiple data stores and tpipes are involved. A possible thread pool size to
start with is numberOfDatastore * numberOfQueues + numberOfActiveWorkload (for example, 20 for 20
message-driven bean requests per second). However, the actual number requires testing based on your
environment and usage.

1. Go to the WebSphere Application Server Admin Console.
2. Select Application servers > server_name > Additional Properties > Thread Pools.
3. Set the maximum size for the thread pool.

A possible thread pool size to start with is number_of_data_store * number_of_queues
* number_of_active_workload, where the number_of_active_workload is the number of
request per second that you would like to be processed.

The actual number requires testing based on your environment and usage.
4. Reference the thread pool in the IMS TM resource adapter configuration.

772 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/tj2c_cfgas.html

For example, if you add a thread pool called IMSTMRA as shown in the following example:

Figure 123. Thread pool configuration in WebSphere Application Server

You can add the thread pool to the Thread pool alias field for IMS TM resource adapter.

Chapter 49. Developing an application for use with the IMS TM resource adapter 773

Figure 124. Resource adapter configuration in WebSphere Application Server

Sample MDB for receiving callout requests from IMS
Because an MDB implements the InboundListener interface, you must implement the onMessage()
and onNotification() methods that are used for synchronous and asynchronous processing,
respectively.

The following sample shows a bean implementation class for an MDB (IMSCalloutIVPMDBBean) that is
configured to listen for both synchronous and asynchronous callout messages from IMS.

package ejbs;

import java.io.IOException;
import javax.resource.ResourceException;
import javax.resource.cci.Record;
import com.ibm.connector2.ims.ico.IMSInputStreamRecord;
import commonj.connector.runtime.InboundInteractionSpec;

774 IMS: Application Programming

/**
 * Bean implementation class for Enterprise Bean: IMSInboundMessage
 */
public class IMSCalloutIVPMDBBean
 implements
 javax.ejb.MessageDrivenBean,
 com.ibm.j2ca.base.ExtendedInboundListener {

 private javax.ejb.MessageDrivenContext fMessageDrivenCtx;

 /**
 * getMessageDrivenContext
 */
 public javax.ejb.MessageDrivenContext getMessageDrivenContext() {
 return fMessageDrivenCtx;
 }

 /**
 * setMessageDrivenContext
 */
 public void setMessageDrivenContext(javax.ejb.MessageDrivenContext ctx) {
 fMessageDrivenCtx = ctx;
 }

 /**
 * ejbCreate
 */
 public void ejbCreate() {
 }

 /**
 * onMessage
 */
 public void onMessage(javax.jms.Message msg) {
 }

 /**
 * ejbRemove
 */
 public void ejbRemove() {
 }

 /**
 * onMessage
 */
 public javax.resource.cci.Record onMessage(
 javax.resource.cci.Record arg0,
 javax.resource.cci.InteractionSpec arg1)
 throws javax.resource.ResourceException {

 return processSyncMessageReceived(arg1);
 }

 /**
 * onNotification
 */
 public void onNotification(
 javax.resource.cci.Record arg0,
 javax.resource.cci.InteractionSpec arg1)
 throws javax.resource.ResourceException {

 processAsyncMessageReceived(arg0);
 }

 public void onNotification(Record arg0) throws ResourceException {
 processAsyncMessageReceived(arg0);
 }

 public Record onMessage(Record arg0) throws ResourceException {
 return processSyncMessageReceived(arg0);
 }

 public Record onMessage(InboundInteractionSpec arg0, Record arg1)
throws ResourceException {
 return processSyncMessageReceived(arg1);
 }

 public void onNotification(InboundInteractionSpec arg0, Record arg1)
throws ResourceException {
 processAsyncMessageReceived(arg1);
 }

Chapter 49. Developing an application for use with the IMS TM resource adapter 775

 /*
 * Process synchronous callout requests from IMS and return a response
 */
 public Record processSyncMessageReceived(Object event) {

 SYNCCALLOUTREQUEST request = new SYNCCALLOUTREQUEST();
 SYNCCALLOUTRESPONSE response = new SYNCCALLOUTRESPONSE();

 try {
 // Request
 request.setBytes(((IMSInputStreamRecord)event).getBytes());

 System.out.println("Synchronous callout request from IMS: " +
 request.getSync__callout__request__str());

 // Response
 response.setSync__callout__response__str("HELLO FROM WEBSPHERE MDB");

 System.out.println("Synchronous callout response from WAS MDB: " +
 response.getSync__callout__response__str());

 } catch (IOException e) {
 System.err.println(e);
 }

 return response;
 }

 /*
 * Receive asynchonrous callout requests from IMS
 */
 public void processAsyncMessageReceived(Object event) {
 ASYNCCALLOUTREQUEST request = new ASYNCCALLOUTREQUEST();

 try {
 request.setBytes(((IMSInputStreamRecord)event).getBytes());

 System.out.println("Asynchronous callout request from IMS: " +
 request.getAsync__callout__request__str());

 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

Non-managed (client-managed) callout programming model
You can use the non-managed callout programming model to retrieve IMS application callout requests
from any external Java applications that do not use a message-driven bean.

For any response data to a callout request, the Java application can send the response data either
synchronously to the same IMS application in the same transaction or asynchronously in a different
transaction.

For a synchronous callout request, unlike in the managed callout programming model where the callout
protocol and response correlation are handled for you through the message-driven bean, you must handle
the following issues in your Java application:

• Handle the callout protocol in your application to poll the hold queue for any callout messages.
• Ensure that the correlation token that is attached to the callout request is passed back with the

response in order for the response to be correlated back to the initiating request.

Because you must handle the synchronous callout protocol and the correlation of response messages to
the request, this programming model is also called client-managed callout programming model.

In general, the following tasks are required when you use the client-managed callout programming
model:

1. Your WebSphere Application Server administrator must configure a shareable connection factory to be
used by the Java application to retrieve the callout requests.

2. Retrieve the callout messages from the IMS OTMA hold queue (tpipe).

776 IMS: Application Programming

• For synchronous callout requests:

– You must correlate the response from the EJB application to the callout request. For more
information, see “Correlating the response from the Java application to the synchronous callout
request” on page 777

– Follow the steps described in “Retrieving synchronous callout request messages from non-MDB
applications” on page 778

• For asynchronous callout requests, see “Retrieving asynchronous callout request messages from
non-MDB applications” on page 780.

You can enable the send-only-with-acknowledgment protocol. Using this protocol, IMS TM Resource
Adapter receives an acknowledgment from IMS when IMS receives a synchronous callout response
message. In Version 13 and earlier, this acknowledgment is unavailable.

You can enable connection pooling for sychronous callout messages that are sent back to IMS. In Version
13 and earlier, the IMS TM Resource Adapter must create and then discard a new connection whenever
a callout response is sent. By enabling connection pooling, you can avoid the overhead of opening and
closing multiple connections.

Correlating the response from the Java application to the synchronous callout request
If your Java application generates an output response and you need to correlate the response with the
initial synchronous callout request, your IMS application is responsible for such correlation.

For asynchronous callout, correlation can be achieved by defining some data, such as a message identifier
or a unique request ID, in the callout request that can correlate with the initial input message.

For synchronous callout, use the correlator token that is passed with the callout message.

The following diagram demonstrates the high-level steps that are involved in a non-MDB application to
retrieve an IMS callout request and to send the response back.

Chapter 49. Developing an application for use with the IMS TM resource adapter 777

Figure 125. Process flow for retrieving and responding to a synchronous callout request from IMS for
non-MDB Java applications

1. The Java application issues a SYNC_RECEIVE_CALLOUT request to the OTMA tpipe TP1.
2. An IMS application issues a DL/I ICAL call with the SENDRECV subfunction and specifies the OTMA

destination descriptor name and the timeout value.
3. IMS OTMA delivers the request message to the IMS TM resource adapter through IMS Connect. A

correlation token is sent with the callout request.
4. The Java application receives the callout request message and the correlation token. After processing

the request, the Java application sends the response message and the correlation token back to IMS
by using the SYNC_SEND request. With the correlation token, IMS correlates the response message
back to the corresponding IMS transaction instance.

Retrieving synchronous callout request messages from non-MDB applications
You must modify the Java application to retrieve the callout requests in the hold queue and to handle the
correlation of the response to the appropriate request.

Prerequisite: Your WebSphere Application Server administrator must configure a shareable connection
factory to be used by the Java application to retrieve the callout requests.

The following steps are key steps in a Java application for retrieving and responding to a synchronous
callout request from IMS.

1. To retrieve the synchronous callout request:
a) Set the interaction commit mode to 0 (COMMIT_THEN_SEND).

interactionSpec.setCommitMode(IMSInteractionSpec.COMMIT_THEN_SEND);

b) Set the interaction sync level to CONFIRM.

778 IMS: Application Programming

interactionSpec.setSyncLevel(IMSInteractionSpec.SYNC_LEVEL_CONFIRM);

c) Specify the callout queue name to the OTMA tpipe (hold queue) name.

// An 8-character name of the OTMA asynchronous hold queue that the
// messages are to be retrieved from
String calloutQueueName = new String (“CALLOUTQ”);
// Set the queue name for the callout messages
interactionSpec.setAltClientID(calloutQueueName);

d) Set the interaction verb to SYNC_RECEIVE_CALLOUT.

interactionSpec.setInteractionVerb(IMSInteractionSpec.SYNC_RECEIVE_CALLOUT);

e) Specify the type of callout request to retrieve: synchronous only (CALLOUT_REQUEST_SYNC),
asynchronous only (CALLOUT_REQUEST_ASYNC), or both (CALLOUT_REQUEST_BOTH).
The following example retrieves only synchronous callout request messages.

// Specify to retrieve only synchronous callout request messages
interactionSpec.setCalloutRequestType(IMSInteractionSpec.CALLOUT_REQUEST_SYNC);

f) Specify the execution timeout value.
The following example sets the timeout value to 5 seconds.

interactionSpec.setExecutionTimeout(5000);

g) Execute the interaction.
The following example executes the interaction, and the request is returned as calloutRequestMsg.

iteraction.execute(interactionSpec, null, calloutRequestMsg);

2. Obtain the correlation token from the IMSInteractionSpec instance.
The following example sets the timeout value to 5 seconds.

byte[] corrToken = interactionSpec.getSyncCalloutCorrelationToken();

3. Process the request.
In the previous example, the request is returned as calloutRequestMsg.

4. Send the response.
a) Set the interaction verb to SYNC_SEND.

interactionSpec.setInteractionVerb(IMSInteractionSpec.SYNC_SEND);

b) Set the correlation token to be sent back with the request.

interactionSpec.setSyncCalloutCorrelationToken(corrToken);

c) Execute the interaction.
The following example executes the interaction and sends the callout response message
(calloutRespondMsg).

iteraction.execute(interactionSpec, calloutRespondMsg, null);

Sample non-MDB Java application for retrieving and processing synchronous callout requests
To prepare a Java application for inbound requests from an IMS application program, specify the
appropriate interaction verb, the tpipe name, and the timeout value in the Java application.

// JNDI lookup returns connFactory
InitialContext initCntx = new InitialContext();
ConnectionFactory connFactory =
(ConnectionFactory) initCntx.lookup(“java:comp/env/ibm/ims/IMSTarget”);

IMSConnectionSpec connSpec = new IMSConnectionSpec();

Chapter 49. Developing an application for use with the IMS TM resource adapter 779

Connection connection = connFactory.getConnection(connSpec);
Interaction interaction = connection.createInteraction();
IMSInteractionSpec interactionSpec = new IMSInteractionSpec();

//set the commit mode and sync level
interactionSpec.setCommitMode(IMSInteractionSpec.COMMIT_THEN_SEND);
interactionSpec.setSyncLevel(IMSInteractionSpec.SYNC_LEVEL_CONFIRM);

// An 8-character name of the OTMA asynchronous hold queue that the
// messages are to be retrieved from
String calloutQueueName = new String (“CALLOUTQ”);
// Set the queue name for the callout message
interactionSpec.setAltClientID(calloutQueueName);

// Set InteractionVerb for retrieving callout request with a timeout value
interactionSpec.setInteractionVerb(IMSInteractionSpec.SYNC_RECEIVE_CALLOUT);
// Specify to retrieve only synchronous callout request messages
interactionSpec.setCalloutRequestType(IMSInteractionSpec.CALLOUT_REQUEST_SYNC);
interactionSpec.setExecutionTimeout(5000);

// Execute the interaction
iteraction.execute(interactionSpec, null, calloutRequestMsg);

// Get correlation token
byte[] corrToken = interactionSpec.getSyncCalloutCorrelatorToken();

// Further processing on the request (calloutRequestMsg)
:

// Send back the response (calloutRespondMsg) by using the SYNC_SEND interaction
interactionSpec.setInteractionVerb(com.ibm.connector2.ims.ico.IMSInteractionSpec.SYNC_SEND);
// SYNC_SEND does not support alternate client ID
interactionSpec.setAltClientID(null);
interactionSpec.setSyncCalloutCorrelatorToken(corrToken);

// Execute the interaction
iteraction.execute(interactionSpec, calloutRespondMsg, null);

iteraction.close();
connection.close();

Retrieving asynchronous callout request messages from non-MDB applications
You must modify your Java application to retrieve the callout requests in the hold queue, and if a response
message is expected, correlate the response to the appropriate request.

Prerequisite: Your WebSphere Application Server administrator must configure a shareable connection
factory to be used by the Java application to retrieve the callout requests.

Modify the Java application to set the following property values:

1. Specify an alternate client ID whose value is the name of the OTMA asynchronous hold queue (tpipe)
on which the callout request is to be queued.
The tpipe that the callout Java application listens to must be reserved for receiving callout requests.
The name of the OTMA asynchronous hold queue is:

• The name of the ALTPCB to which the callout request is inserted, or
• The name of the tpipe specified in the OTMA destination descriptor.

2. Set the interactionVerb property to SYNC_RECEIVE_CALLOUT (which corresponds to an IMS Connect
Resume Tpipe Single Wait request).

3. Specify an execution timeout value that you would like to wait for a callout message in the hold queue.
4. For added security, you can optionally specify a user ID in your Java application if you have configured

your IMS security so that only authorized users can retrieve the callout request message from the
asynchronous hold queue.
This user ID must be specified in the connectionSpec object in your application or the connection
factory used by your application.

780 IMS: Application Programming

Sample Java application for retrieving asynchronous callout requests
To prepare a non-MDB Java application for inbound requests from an IMS application program, specify
the appropriate interaction verb, the asynchronous hold queue name, and a timeout value in the Java
application.

• Specify the asynchronous hold queue name.

interactionSpec.setAltClientID(calloutQueueName);

• Set the interactionVerb property to SYNC_RECEIVE_CALLOUT.

interactionSpec.setInteractionVerb(com.ibm.connector2.ims.ico.
IMSInteractionSpec.SYNC_RECEIVE_CALLOUT);

• Specify an execution timeout value (in milliseconds).

interactionSpec.setExecutionTimeout(3600000);

Specify a timeout value to wait for a callout request message in the hold queue. In this example, a
large execution timeout value is specified. A large execution timeout value helps to minimize the looping
required in a callout EJB component when there might be long periods of time when no callout requests
occur. The length of the timeout depends on the maximum length of time that you expect to elapse
between your callout requests and what you want your EJB component to do if that length of time is
exceeded.

The following sample code shows an example of a Java application that is configured to receive the
callout requests.

// JNDI lookup returns connFactory
InitialContext initCntx = new InitialContext();
ConnectionFactory connFactory =
 (ConnectionFactory) initCntx.lookup("java:comp/env/ibm/ims/IMSTarget");

IMSConnectionSpec connSpec = new IMSConnectionSpec();
Connection connection = connFactory.getConnection(connSpec);
Interaction interaction = connection.createInteraction();
IMSInteractionSpec interactionSpec = new IMSInteractionSpec();

//set the commit mode and sync level
interactionSpec.setCommitMode(0);
interactionSpec.setSyncLevel(1);

// An eight-character queue name that the asynchronous messages to be retrieved from
String calloutQueueName = new String ("CALLOUTQ");
// Set the asynchronous queue name for the callout message
interactionSpec.setAltClientID(calloutQueueName);

// Set interactionVerb to retrieve async output with a timeout
interactionSpec.setInteractionVerb(com.ibm.connector2.ims.ico.
IMSInteractionSpec.SYNC_RECEIVE_CALLOUT);
interactionSpec.setExecutionTimeout(3600000);

for (;;) {
 try {
 // Execute the interaction
 iteraction.execute(interactionSpec, null, calloutMsg);

 // Further processing on the calloutMsg
 :
 } catch (Exception e) {
 // if the exception is an execution timeout error,
 // you can either do nothing and continue to loop
 // or process the error and then break the loop
 break;
 }
}

Chapter 49. Developing an application for use with the IMS TM resource adapter 781

iteraction.close();
connection.close();

Commit mode and sync level processing
The commit mode that you choose determines the type of commit mode processing that IMS performs.

The Java client specifies the commit mode protocol that is used when it submits a transaction request to
IMS. IMS Connect and IMS support two types of commit mode processing:

• Commit mode 0 (commit-then-send), where IMS commits the IMS database changes and then sends
the output to the client

• Commit mode 1 (send-then-commit), where IMS sends the output to the client and then commits the
database changes

Associated with the commit mode protocols, IMS Connect and IMS also support three synchronization
levels (sync levels): NONE, CONFIRM, and SYNCPT (the sync-point protocol). All three sync levels can
be used with commit mode 1. Only CONFIRM can be used with commit mode 0. The Java client
cannot explicitly set the sync level to SYNCPT. The IMS TM resource adapter supports only the following
combinations:

Commit mode Sync level = NONE supported
Sync level = CONFIRM
supported

commit mode 0 No Yes

commit mode 1 Yes Yes

Commit mode 1 with sync level SYNCPT is used by the IMS TM resource adapter when it participates in
two-phase commit processing with IMS.

Interactions supported with commit mode and sync level combinations
The interactions that are supported by the IMS TM resource adapter depend on the combination of
commit mode and sync level that you choose.

The following combinations of commit mode and sync level are supported by the IMS TM resource
adapter:

• Commit mode 1 with sync level NONE

This combination is used for non-transactional interactions. For non-conversational applications, use
the SYNC_SEND_RECEIVE interaction. For conversational applications, use the SYNC_SEND_RECEIVE
or, optionally, the SYNC_END_CONVERSATION interaction.

• Commit mode 1 with sync level CONFIRM

This combination is used for non-transactional interactions. For non-conversational applications, use
the SYNC_SEND_RECEIVE interaction. For conversational applications, use the SYNC_SEND_RECEIVE
or, optionally, the SYNC_END_CONVERSATION interaction.

• Commit mode 0 with sync level CONFIRM

This combination is used for non-transactional SYNC_SEND_RECEIVE, SYNC_SEND,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
and SYNC_RECEIVE_CALLOUT interactions.

Tip: Commit mode 0 is supported only for non-conversational applications that are running on TCP/IP
connections.

For commit mode 1 interactions, the IMS TM resource adapter automatically provides the synchronization
level when it communicates with IMS Connect. The synchronization level can also be set explicitly by the
Java client by using the setSyncLevel(int) method to NONE or CONFIRM. The default sync level is
NONE. You can set the interaction verb to SYNC_SEND_RECEIVE without setting the sync level.

782 IMS: Application Programming

For commit mode 0 interactions, only the CONFIRM sync level is supported.

The setSyncLevel(int) method throws an exception for any invalid combination of commit mode and
sync level.

Related concepts
Java exceptions that involve output messages
If any errors occur when the IMS TM resource adapter passes the message through IMS Connect to IMS,
and as IMS processes this transaction and attempts to return the output, the Java client receives an
exception.

Specification of transaction pipe, client ID, and interaction verb
You must specify an interaction verb regardless of the commit mode that you use. Specification of the
transaction pipe (tpipe) and client ID depends on the commit mode or the type of socket connection that
you sue.

In IMS and OTMA terminology, a transaction pipe (tpipe) is a logical connection between a client
(IMS Connect) and the server (IMS OTMA). The IMSConnectionSpec class has a clientID property
that identifies the connection associated with that IMSConnectionSpec. The name of the IMS OTMA
asynchronous output queue or tpipe where recoverable output messages are placed during an interaction
is determined in one of two ways, depending on the commit mode that is used for that interaction:

• For commit mode 0 interactions, the tpipe is identified by the client ID that is used for the interaction.
Each client ID that is used for a commit mode 0 transaction has its own tpipe.

– The client ID is automatically generated for interactions on shareable socket connections.
– The client ID must be set by the user for interactions on dedicated socket connections.

In general, use shareable socket connections rather than dedicated socket connections. Sharable
socket connections allow for more efficient use of connections. Shareable socket connections also
are less prone to problems in Sysplex Distributor and WebSphere Application Server for z/OS clone
environments. In these environments, multiple instances of the WebSphere Application Server might
communicate with the same IMS Connect and try to use the same client ID for their connections.

• For commit mode 1 interactions, the tpipe is identified by the IMS Connect port number used for
the interaction. Therefore, each port has a tpipe that is used for all clients that run commit mode 1
interactions on that port.

Whether your Java client is running an IMS transaction with commit mode 1 or commit mode 0, the
Java client specifies a value for the interactionVerb property for the interaction. If a commit mode 0
interaction is specified and a dedicated socket connection is used by the Java client, the Java client also
must provide a value for the client ID for the connection.

Socket connections
All socket connections that are created by the IMS TM resource adapter are persistent, and they can be
shareable or dedicated.

Shareable persistent sockets can be shared by applications that execute either commit mode 0 or commit
mode 1 interactions. Dedicated persistent sockets can be used only for applications that execute commit
mode 0 interactions.

The same socket connection between the IMS TM resource adapter and IMS Connect can be serially
reused for multiple interactions with IMS Connect. The socket connection will not be closed and reopened
between interactions.

Chapter 49. Developing an application for use with the IMS TM resource adapter 783

Dedicated persistent sockets
A dedicated persistent socket is a socket connection that is assigned to a specific client ID and remains
dedicated to that particular client ID until it is disconnected.

Typically, a dedicated persistent socket connection is used (or reused) serially by a single application.
However, a dedicated persistent socket connection can also be used serially by multiple applications,
which can obtain the socket by using the same client ID.

If different applications attempt to use a dedicated persistent socket connection by using the same client
ID at the same time, the attempt by the first application will succeed. Subsequent attempts by other
applications when the first application is still using its connection will receive duplicate client errors
(DUPCLNT) from IMS Connect.

A duplicate client error might also occur when an application that obtains a dedicated persistent
socket connection by using a given client ID runs in an environment in which dedicated persistent
socket connections originate from multiple WebSphere Application Server instances. For example, an
environment that has multiple WebSphere Application Server instances that are managed by a workload
manager might encounter duplicate client errors.

Recommendation: Do not deploy your application to this type of environment if it uses a dedicated
persistent socket connection.

Dedicated persistent socket connections are intended to be used in an environment in which a single
instance of WebSphere Application Server is connected to a single IMS Connect. In some situations, a
single instance of WebSphere Application Server can be connected to multiple instances of IMS Connect.
In this configuration, if Sysplex Distributor is used between WebSphere Application Server and IMS
Connect, the following interactions are not supported:

• Two-phase commit recovery
• IMS conversational transactions

Supported commit mode and interactions
A dedicated persistent socket can be used only for Java applications that execute commit mode 0
interactions.

Table 116. Supported commit modes, interaction verbs, and sync levels by socket type

Commit
mode Socket type Interaction verb Client ID Sync level

CM1 Shareable
persistent

• SYNC_END_CONVERSATION (for
conversational transactions)

• SYNC_SEND_RECEIVE

Automatically
generated and
managed

None or
Confirm

784 IMS: Application Programming

Table 116. Supported commit modes, interaction verbs, and sync levels by socket type (continued)

Commit
mode Socket type Interaction verb Client ID Sync level

CM0 Shareable
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT
• SYNC_RECEIVE_CALLOUT (for non-managed

callout programming model)

Automatically
generated and
managed

Confirm

Dedicated
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT

Specified by
client
applications
(the clientID
property)

Confirm

Table 117. Supported commit modes, interaction verbs, and sync levels by socket type

Commit
mode Socket type Interaction verb Client ID Sync level

CM1 Shareable
persistent

• SYNC_END_CONVERSATION (for
conversational transactions)

• SYNC_SEND_RECEIVE

Automatically
generated and
managed

None or
Confirm

CM0 Shareable
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT
• SYNC_RECEIVE_CALLOUT (for non-managed

callout programming model)

Automatically
generated and
managed

Confirm

Dedicated
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT

Specified by
client
applications
(the clientID
property)

Confirm

The SYNC_RECEIVE_ASYNCOUTPUT interaction verb is deprecated and replaced by the
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction verb.

Chapter 49. Developing an application for use with the IMS TM resource adapter 785

Message retrieval
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions (along with the deprecated SYNC_RECEIVE_ASYNCOUTPUT interaction) on dedicated
persistent sockets enable client applications to retrieve messages from the following sources:

• Messages that were placed on an IMS OTMA asynchronous output queue as a result of a failed commit
mode 0 interaction

• Messages that were from an IMS application that issued an insert to an Alternate Program
Communication Block (ALTPCB)

• Messages from the reroute of the output from a transaction that was executed on a shareable socket
connection

To retrieve these messages, the client application must provide the client ID, which represents the tpipe
that asynchronous output messages are queued. Undelivered output messages from interactions on
dedicated persistent sockets cannot be rerouted or purged.

You might not be able to retrieve all available output messages with the
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions when you use multiple IMS systems
without the OTMA Super Member.

Dedicated persistent socket connections
Dedicated persistent socket connections are created by an IMS connection factory with values for at least
the following custom properties:

• Host name: TCP/IP host name of the system that is running IMS Connect
• Port number: associated port number
• Data store name: name of the target IMS
• CM0 dedicated: true

A value of true for the CM0Dedicated property ensures that the connection factory creates dedicated
persistent socket connections.

If more than one connection factory is configured to create dedicated persistent sockets to the same IMS
Connect instance, only one connection factory can dedicate a socket to a particular client ID at one time.
For example, assume that a connection factory successfully creates a socket connection that is dedicated
to a client ID, CLIENT01. A second connection factory also tries to create a socket connection that is
dedicated to CLIENT01. If the socket connection that is created by the first connection factory is still
connected to IMS Connect, the second connection will receive the following exception:

javax.resource.spi.EISSystemException: ICO0001E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@23766050.processOutputOTMAMsg
(byte [], InteractionSpec,Record) error. IMS Connect returned error: RETCODE=[8],
REASONCODE=[DUPECLNT].
Duplicate client ID was used; the client ID is currently in use.

Related tasks
Establishing dedicated persistent socket connections
Use WebSphere Application Server to configure a J2C connection factory that creates dedicated
persistent socket connections.
Related reference
Client ID (clientID)

786 IMS: Application Programming

A value for this property must be provided when an application component uses a dedicated persistent
socket connection to IMS Connect to identify this particular client.

Shareable persistent sockets
A shareable persistent socket is a socket that can be shared (serially reused) by multiple applications that
execute either commit mode 1 (CM1) or commit mode 0 (CM0) interactions.

For an application that executes a commit mode 0 interaction on a shareable persistent socket, the IMS
TM resource adapter automatically generates a client ID with the prefix HWS. This client ID represents
and identifies the socket connection and the associated OTMA tpipe. For this type of socket, only client
IDs that are generated by the IMS TM resource adapter are allowed. If you specify a client ID for a
connection that has not been defined as CM0 on a shareable persistent socket, an exception is thrown
and returned to the client.

Restriction: IMS application programs that insert messages to an alternate PCB must not use names that
begin with HWS for the alternate PCBs. IMS TM resource adapter cannot retrieve HWS messages.

Tip: Client IDs are different from alternate client IDs. The alternate client ID is a property of the
IMSInteractionSpec class. Alternate client IDs are used to retrieve asynchronous output messages
from OTMA hold queues (tpipes).

Supported commit mode and interaction
A shareable persistent socket can be used for Java applications that execute either commit mode 1 or
commit mode 0 interactions.

Table 118. Supported commit modes, interaction verbs, and sync levels by socket type

Commit
mode Socket type Interaction verb Client ID Sync level

CM1 Shareable
persistent

• SYNC_END_CONVERSATION (for
conversational transactions)

• SYNC_SEND_RECEIVE

Automatically
generated and
managed

None or
Confirm

CM0 Shareable
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT
• SYNC_RECEIVE_CALLOUT (for non-managed

callout programming model)

Automatically
generated and
managed

Confirm

Dedicated
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT

Specified by
client
applications
(the clientID
property)

Confirm

Chapter 49. Developing an application for use with the IMS TM resource adapter 787

Table 119. Supported commit modes, interaction verbs, and sync levels by socket type

Commit
mode Socket type Interaction verb Client ID Sync level

CM1 Shareable
persistent

• SYNC_END_CONVERSATION (for
conversational transactions)

• SYNC_SEND_RECEIVE

Automatically
generated and
managed

None or
Confirm

CM0 Shareable
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT
• SYNC_RECEIVE_CALLOUT (for non-managed

callout programming model)

Automatically
generated and
managed

Confirm

Dedicated
persistent

• SYNC_SEND
• SYNC_SEND_RECEIVE
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_NOWAIT
• SYNC_RECEIVE_ASYNCOUTPUT

_SINGLE_WAIT

Specified by
client
applications
(the clientID
property)

Confirm

The SYNC_RECEIVE_ASYNCOUTPUT interaction verb is deprecated and replaced by the
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction verb.

Message retrieval
Any output message that cannot be delivered to a Java client that executes a CM0 interaction on a
shareable persistent socket can be queued for later retrieval. Secondary output is always treated as CM0
output and can be requeued for subsequent retrieval.

Consider the situation in which a CM1 or CM0 interaction on a shareable persistent socket executes
a program-to-program switch. If both programs return output, the second output message returned is
treated as a CM0 output. It can be queued again and then retrieved later.

If a CM1 or CM0 interaction on a shareable persistent socket creates a program-to-program switch that
invokes another CM0 interaction that results in secondary output (which is always CM0), the output can
be queued again for later retrieval.

If undelivered output messages that are queued in the IMS OTMA asynchronous hold queue or tpipe are
not retrieved by using the alternate client ID, the original interaction and the retrieval must be invoked
within the same client application by using the same socket connection. The same generated client ID
that identifies the shareable socket connection and the associated OTMA tpipe must be used for both the
original interaction and the retrieval of any asynchronous output from that interaction.

On shareable persistent sockets, undelivered output messages can be handled in several ways:

• Retrieve undeliverable output by specifying the OTMA hold queue name that has the asynchronous
output messages as the alternate client ID property value of the IMSInteractionSpec object.

• Purge the undelivered output. To purge undelivered output messages, the value of the
IMSInteractionSpec purgeAsyncOutput property must be set to true. This input property
determines if IMS Connect purges the undelivered I/O PCB output. The purgeAsyncOutput property
is valid with the SYNC_SEND_RECEIVE interaction verb only. If the property is not specified on
SYNC_SEND_RECEIVE, the default is true.

788 IMS: Application Programming

• Reroute the messages to another destination. You can reroute the undelivered output message to a
different destination by setting the IMSInteractionSpec reRoute property to true. This property is
valid only for the SYNC_SEND_RECEIVE and SYNC_SEND interaction verbs. If the reRoute property is
set to true, the undelivered output message is queued to a named destination that is usually provided
by the client application. This destination is specified in the IMSInteractionSpec reRouteName property.
If the reRoute property is set to true and no reRouteName is provided, the value of the reRouteName
property is the value specified in the IMS Connect configuration file. If no value is specified in the IMS
Connect configuration file, the default value HWS$DEF is used.

Shareable persistent socket connections
Shareable persistent socket connections are created by an IMS connection factory with required values
for the following custom properties:

• Host name: TCP/IP host name of the system that is running IMS Connect
• Port number: associated port number
• Data store name: name of the target IMS
• CM0 dedicated: false

The default value for the CM0Dedicated property is false, which ensures that the connection factory
creates a shareable persistent socket connection unless the CM0Dedicated property has been explicitly
set to true.

Related tasks
Establishing shareable persistent socket connections
Use WebSphere Application Server to configure a J2C connection factory that creates shareable
persistent socket connections.

Releasing and reconnecting persistent sockets
A TCP/IP connection between the IMS TM resource adapter and IMS Connect is persistent and remains
open for both a shareable persistent socket connection and a dedicated persistent socket connection
unless an error occurs.

The socket might close when either the IMS TM resource adapter or IMS Connect encounter an error, or
when WebSphere Application Server disconnects the socket for connection pool management.

In a dedicated persistent socket connection, the socket connection can be used only by interactions that
have the same client ID that was used to establish the connection. The number of socket connections
increases as new client IDs are used for interactions on dedicated persistent socket connections.

If you set both the maximum connections property and the connection timeout property
in the WebSphere Application Server administrative console to a non-zero value, when
the maximum connections value is reached and all the connections are in use, the
application gets a ConnectionWaitTimeoutException exception after the connection timeout
has elapsed. This behavior is a standard behavior for WebSphere Application Server. The
ConnectionWaitTimeoutException applies to both dedicated persistent sockets and shareable
persistent sockets.

However, if the maximum connections value is reached and one of the persistent socket connections
is not in use, WebSphere Application Server would disconnect that socket to respond to the request
to create a new persistent socket connection. This standard behavior of WebSphere Application Server
applies to both dedicated persistent sockets and shareable persistent sockets.

Tip: WebSphere Application Server has several connection pool settings that can help manage the pool
and redistribute persistence sessions. Use the aged timeout setting to specify the interval in seconds
before a physical connection is discarded.

Important: If you are not using an application server to help manage the connection (also referred to as
a non-managed environment), for commit mode 0 (CM0, or commit-then-send) transactions, you must
manage the connection pooling yourself. Because CM0 transactions are recoverable, IMS Connect creates

Chapter 49. Developing an application for use with the IMS TM resource adapter 789

a separate TPIPE for each client that uses CM0. Without an application server to manage the connection
pool, many TPIPEs would be created and ultimately overload the system.

Socket reconnect
The IMS TM resource adapter has a socket reconnect feature that tries to reestablish a stale connection
in a connection pool when one of the connections encounters a communication problem in the process of
sending a request to or receiving a response from IMS Connect.

When a request comes in, if the IMS TM resource adapter detects a stale connection, the adapter throws
an exception. When the next request comes in and tries to use the stale connection, the IMS TM resource
adapter checks to see if IMS Connect is up. If IMS Connect is up, the IMS TM resource adapter would
reconnect before submitting the interaction request. When the connection is restored, an ICO0140I
informational message is logged.

This socket reconnect feature increases the fault-tolerance of the IMS TM resource adapter when a
temporary network connection issue occurs. More importantly, with this feature you can recycle IMS
Connect as part of your system maintenance without having to resubmit any IMS TM resource adapter
interactions from the client application.

When a sysplex distributor is used between the IMS TM resource adapter and WebSphere Application
Server, a WebSphere Application Server connection pool might have connections that are connected to
more than one IMS Connect. If one of the IMS Connect instances is being recycled, new requests are
directed to other IMS Connect instances. New requests would go to the recycled IMS Connect only when
this IMS Connect instance comes back up and if other IMS Connect instances can no longer handle the
workload.

To help redistribute the workload among the IMS Connect instances, you can use the aged timeout
property in WebSphere Application Server connection pool settings. Because connections with an expired
age are discarded, a new connection helps redistribute the connection to recycled IMS Connect instances.

For a callout request, the IMS TM resource adapter would attempt to reconnect based on the values of the
IMSActivationSpec retryLimit and retryInterval properties. The retryLimit property specifies the maximum
number of times the IMS TM resource adapter would attempt to reconnect to IMS Connect if a connection
is lost, or to IMS if the connection to the IMS data store is lost. The retryInterval property specifies the
time delay before the next attempt to check the IMS Connect status.

Related information
Aged timeout information in WebSphere Application Server V8 documentationFor more information about
aged timeout, see the WebSphere Application Server Version 8 documentation.

IMSInteractionSpec property configuration
You must provide a configured IMSInteractionSpec object in your Java application to interact with
IMS.

The values of the IMSInteractionSpec properties describe the interaction with IMS, such as the
maximum amount of time the IMS TM resource adapter waits for a response from IMS Connect, and the
commit mode and sync level for the interaction.

Values for IMSInteractionSpec properties can be provided directly through the set methods by an
application that uses the Common Client Interface. They can also be provided to a wizard of an IDE that
generates code for the application.

Some of the properties are input-only properties, some are input and output properties, and some are
output-only properties. Input-only properties provide input to the IMS TM resource adapter, and their
values do not change. Output-only properties can be interrogated by the Java application (also called
application component) to determine additional information about the interaction.

Related reference
IMS interaction specification properties

790 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SS7JFU_8.5.5/com.ibm.websphere.express.doc/ae/udat_conpoolset.html

The properties of the IMSInteractionSpec object describe the interaction with IMS.

Submitting commands to IMS
Although the IMS TM resource adapter is intended primarily for you to run transactions on a host IMS
system through a Java EE application, you can also issue IMS commands that are supported by IMS OTMA
from your Java applications.

The IMS TM resource adapter uses the host product, IMS Connect, to access IMS. IMS Connect uses the
cross-system coupling facility (XCF) to access IMS through OTMA.

Only certain IMS commands can to be submitted through the IMS OTMA interface. Because the IMS
TM resource adapter accesses IMS through OTMA, IMS commands supported by OTMA are the only
commands that can be submitted to IMS by an application that uses the IMS TM resource adapter.

The output of an IMS command is a message that consists of one or more segments of data. The output
of some IMS commands is a DFS message. For example, the output of most /START commands is
usually the message DFS058I START COMMAND COMPLETED. Other IMS commands do not return DFS
messages. For example, /DISPLAY commands return multiple segments of data representing lines of
display information. To treat both types of output the same, you must set the imsRequestType property
of the IMSInteractionSpec class to 2 (IMS_REQUEST_TYPE_IMS_COMMAND). This value indicates to
the IMS TM resource adapter that the interaction is an IMS command, and to treat DFS messages as
normal output and not as Java exceptions.

Commands that can be submitted to IMS by an application that uses the IMS TM resource adapter can be
found in the IMS commands reference.

Configuring IMS connection factories
You use the IMS connection factory in your application to interact with the IMS TM resource adapter.
Through the IMS connection factories, you create pre-configured connections to the IMS Transaction
Manager (IMS TM).

Connections between the IMS TM resource adapter and IMS Connect can be managed or non-managed.

Managed connections are connections that are managed by a Connection Manager in a Java EE
application server such as WebSphere Application Server. In a managed environment, applications do
not need to create EIS connections. Instead, they request connections from the Java EE Connection
Manager. Non-managed connections, however, are obtained directly by applications from the IMS TM
resource adapter.

Use TCP/IP socket to connect the IMS TM resource adapter with IMS Connect. Your application uses a
Java EE Connection Architecture (JCA) connection factory to obtain a connection to IMS Connect.

When your application uses managed connections, all connections between the IMS TM resource adapter
and IMS Connect are persistent. A connection is not opened and closed for each interaction. Instead,
it can remain open and can be serially reused by multiple interactions, which provides better utilization
of CPU and memory resources. Your Java EE application server administrator configures the connection
factory at deployment time.

A non-managed connection must be opened and closed by the application that uses it. Your application
must create and configure the connection factories that it needs at run time.

Recommendation: Use managed connections, and get a reference to the appropriate connection factory
by using JNDI lookup.

The IMS TM resource adapter supports only persistent connections to IMS Connect. In a managed
environment, persistent connections are serially reused by application components, without the need
to disconnect and reconnect between each use. When using TCP/IP socket connections, application
components can use either dedicated or shareable persistent socket connections between the IMS TM
resource adapter and IMS Connect. Shareable persistent socket connections use client IDs that are
generated by the IMS TM resource adapter and are not visible to the application that uses the shareable
socket.

Chapter 49. Developing an application for use with the IMS TM resource adapter 791

Recommendation: Always use shareable TCP/IP sockets unless there is some overriding requirement
to use dedicated socket connections. Dedicated persistent socket connections use client IDs that are
specified by the application.

TCP/IP connections to IMS Connect
TCP/IP can be used for the connections between the IMS TM resource adapter and IMS Connect in both
distributed and z/OS environments.

When your application is on a distributed platform, the connection between the IMS TM resource adapter
and IMS Connect must be a TCP/IP connection. For example, if the IMS TM resource adapter is installed
on WebSphere Application Server on Windows, AIX, Solaris, Linux, Linux for System z, or HP-UX, the IMS
TM resource adapter must connect with IMS Connect by using TCP/IP connections.

TCP/IP connections to IMS Connect are associated with an identifier called the client ID. IMS Connect
ensures the uniqueness of these client IDs for all of the socket connections to it.

TCP/IP connections to IMS Connect can be one of the following two types:

• Dedicated persistent socket connections
• Shareable persistent socket connections

The client ID is determined differently for the two types of socket connections.

Related concepts
Shareable persistent sockets
A shareable persistent socket is a socket that can be shared (serially reused) by multiple applications that
execute either commit mode 1 (CM1) or commit mode 0 (CM0) interactions.
Dedicated persistent sockets
A dedicated persistent socket is a socket connection that is assigned to a specific client ID and remains
dedicated to that particular client ID until it is disconnected.

Establishing dedicated persistent socket connections
Use WebSphere Application Server to configure a J2C connection factory that creates dedicated
persistent socket connections.

To establish dedicated persistent socket connections:

1. In WebSphere Application Server administrative console, configure a J2C connection factory.
2. Specify a value of TRUE for the CM0Dedicated property of the connection factory. For managed

connections, your application uses JNDI to locate this connection factory.
3. In your application, set the commitMode property of the IMSInteractionSpec class to 0.
4. Provide a value for the clientID property of the IMSConnectionSpec class that is used to obtain

the connection. If your application uses generated code, you can set this value by exposing the
clientID property as data. If your application uses the Common Client Interface (CCI) of the IMS
TM resource adapter, set this value by using the setClientID method of the IMSConnectionSpec
object that is passed in the getConnection method.

Related concepts
Dedicated persistent sockets
A dedicated persistent socket is a socket connection that is assigned to a specific client ID and remains
dedicated to that particular client ID until it is disconnected.

Establishing shareable persistent socket connections
Use WebSphere Application Server to configure a J2C connection factory that creates shareable
persistent socket connections.

To establish shareable persistent socket connections:

1. In WebSphere Application Server administrative console, configure a J2C connection factory.

792 IMS: Application Programming

2. Specify a value of FALSE for the CM0Dedicated property of the connection factory. For managed
connections, your application uses JNDI to locate this connection factory.

3. For shareable persistent socket connections, the client ID is set for you automatically by the IMS TM
resource adapter. If your application uses generated code, the shareable persistent socket connection
is obtained by the generated code. If your application uses the Common Client Interface (CCI) of the
IMS TM resource adapter, ensure that you do not provide a value for the clientID property of the
IMSConnectionSpec object that is passed in the getConnection method.

Related concepts
Shareable persistent sockets
A shareable persistent socket is a socket that can be shared (serially reused) by multiple applications that
execute either commit mode 1 (CM1) or commit mode 0 (CM0) interactions.

IMS connection factory
The properties of an IMS TM resource adapter connection factory must be configured properly to match
the characteristics of the target Enterprise Information System (EIS).

When you create an IMS service definition or define an IMS connection factory to WebSphere Application
Server (managed connections), you must provide values for certain properties of the connection between
the IMS TM resource adapter and IMS Connect. A connection factory provides the required information,
such as host name and data store name, to connect to the EIS. Other connection information might be
needed depending on the security settings and the type of connections.

If you must use non-managed connections, the IMSConnectionSpec class provides the API to set the
connection properties.

Related tasks
Creating a connection factory in WebSphere Application Server
After you install and deploy the IMS TM resource adapter on WebSphere Application Server, create a
connection factory for the IMS TM resource adapter, if it does not already exist.
Related reference
IMS connection factory properties
The properties of an IMS TM resource adapter connection factory describes the characteristics of the
target Enterprise Information System.

Input and output message formats
You must consider the platforms where your target host application and the Java client run, and any
special characteristics your input and output message might have when you develop an application that
uses the IMS TM resource adapter.

The Java application that you create is running on a different platform (for example, Windows, AIX, and
Solaris) than the enterprise information system (EIS) platform. IMS Transaction Manager (IMS TM) is an
IMS application program on z/OS). Because of the platform differences, you must convert the text data in
your messages from text data in UNICODE at the client end to text data in EBCDIC that is used by your
IMS application.

Depending on the Endian value for the platform where the target host application runs, and the code page
that is used by your IMS host system, format conversion might be required. The default is US English
(037).

Recommendation: Let the integrated development environment (IDE) handle the format conversion for
you. For example, the J2C wizard in various WebSphere or Rational development environment creates
Java data bindings from imported C, COBOL, and PL/I data structures. The data bindings do all the format
conversion for your messages at run time. These data bindings are created based on the options that you
select in the Importer wizard.

IMS requires that all transaction messages be prefixed by a 2-byte LL field, a 2-byte ZZ field, followed
by the transaction code. The LL field specifies the length of the message. The ZZ is a field of binary zero.

Chapter 49. Developing an application for use with the IMS TM resource adapter 793

When you build input messages to IMS, you must set the LL value to the size of the input message, and
set zz to 0.

Multi-segment and variable length output
If the IMS application returns multi-segment output or output with variable lengths, you can use the
COBOL definition OUTPUT-MSG to define the output of the transaction, or create an output message for
the output of the transaction.

In the following COBOL application, the output message returned by IMS consists of three fixed-length
segments. The total output message returned by this IMS application is a fixed size of 99 bytes and
is represented by the COBOL 01 structure OUTPUT-MSG. OUTPUT-SEG1 is 16 bytes in length, OUTPUT-
SEG2 is 31 bytes, and OUTPUT-SEG3 is 52 bytes.

LINKAGE SECTION.

 01 INPUT-MSG.
 02 IN-LL PICTURE S9(3) COMP.
 02 IN-ZZ PICTURE S9(3) COMP.
 02 IN-TRCD PICTURE X(5).
 02 IN-DATA1 PICTURE X(6).
 02 IN-DATA2 PICTURE X(6).

 01 OUTPUT-MSG.
 02 OUT-ALLSEGS PICTURE X(99) VALUE SPACES.

 01 OUTPUT-SEG1.
 02 OUT-LL PICTURE S9(3) COMP VALUE +0.
 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.
 02 OUT-DATA1 PICTURE X(12) VALUE SPACES.

 01 OUTPUT-SEG2.
 02 OUT-LL PICTURE S9(3) COMP VALUE +0.
 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.
 02 OUT-DATA1 PICTURE X(13) VALUE SPACES.
 02 OUT-DATA2 PICTURE X(14) VALUE SPACES.

 01 OUTPUT-SEG3.
 02 OUT-LL PICTURE S9(3) COMP VALUE +0.
 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.
 02 OUT-DATA1 PICTURE X(15) VALUE SPACES.
 02 OUT-DATA2 PICTURE X(16) VALUE SPACES.
 02 OUT-DATA3 PICTURE X(17) VALUE SPACES.

You can use the J2C wizard to create a J2C bean that runs the IMS transaction by :

• Creating a message buffer class to store the output message returned from the IMS application
• Importing the COBOL file to do the COBOL-to-Java mapping for both the input and output messages

– Creating the input binding operation by selecting the input message structure (represented by the
COBOL 01 structure INPUT-MSG)

– Creating the output binding operations for the segments of the output message by using the data
mapping wizard, available by selecting File > New > Other > CICS/IMS Java Data Binding. For each
segment, use the data binding wizard to select the correct segment as the data structure and specify
the parameters such as the code page, endian name, quote name, and trunc name.

• Invoking the J2C bean method that runs the IMS transaction, and populating the output segments from
the buffer of data returned by the IMS transaction

package sample.ims;

import com.ibm.etools.marshall.util.MarshallIntegerUtils;
import sample.ims.data.*;

public class TestMultiSeg
{
 public static void main (String[] args)
 {
 byte[] segBytes = null;
 int srcPos = 0;
 int dstPos = 0;

794 IMS: Application Programming

 int totalLen = 0;
 int remainLen = 0;
 byte[] buff;
 short LL = 0;
 short ZZ = 0;

 try
 {
 // ---
 // Populate the IMS transaction input message with
 // data. Use the input message format handler method
 // getSize() to set the LL field of the input message.
 // ---
 InputMsg input = new InputMsg();
 input.setIn__ll((short) input.getSize());
 input.setIn__zz((short) 0);
 //--
 // find out the transaction code from your IMS
 // administrator
 //---
 input.setIn__trcd("SKS6 ");
 input.setIn__data1("M2 SI1");
 input.setIn__data2("M3 SI1");

 // ---
 // Run the IMS transaction. The multi-segment output
 // message is returned.
 // ---
 MSOImpl proxy = new MSOImpl();

 sample.ims.CCIBuffer output = proxy.runMultiSegOutput(input);

 // ---
 // Retrieve the multi-segment output message as a
 // byte array using the output message format
 // handler method getBytes().
 // ---
 System.out.println(
 "\nSize of output message is: " + output.getSize());
 segBytes = output.getBytes();

 srcPos = 0;
 dstPos = 0;
 totalLen = segBytes.length;
 remainLen = totalLen;

 // ---
 // Populate first segment object from buffer.
 // ---------------------------------------
 buff = null;
 // Get length of segment.
 LL =
 MarshallIntegerUtils.unmarshallTwoByteIntegerFromBuffer(
 segBytes,
 srcPos,
 true,
 MarshallIntegerUtils.SIGN_CODING_TWOS_COMPLEMENT);

 // Put segment in byte array.
 buff = new byte[LL];
 System.arraycopy(segBytes, srcPos, buff, dstPos, LL);
 remainLen -= LL;

 // Create and populate segment object from byte array.
 OutputSeg1 S1 = new OutputSeg1();
 S1.setBytes(buff);
 System.out.println(
 "\nOutSeg1 LL is: "
 + S1.getOut__ll()
 + "\nOutSeg1 ZZ is: "
 + S1.getOut__zz()
 + "\nOutSeg1_DATA1 is: "
 + S1.getOut__data1());

 // ---
 // Populate second segment object from buffer.
 // ---
 srcPos += LL;
 buff = null;
 // Get length of segment.
 LL =
 MarshallIntegerUtils.unmarshallTwoByteIntegerFromBuffer(

Chapter 49. Developing an application for use with the IMS TM resource adapter 795

 segBytes,
 srcPos,
 true,
 MarshallIntegerUtils.SIGN_CODING_TWOS_COMPLEMENT);

 // Put segment in byte array.
 buff = new byte[LL];
 System.arraycopy(segBytes, srcPos, buff, dstPos, LL);
 remainLen -= LL;

 // Create and populate segment object from byte array.

 OutputSeg2 S2 = new OutputSeg2();
 S2.setBytes(buff);
 System.out.println(
 "\nOutSeg2 LL is: "
 + S2.getOut__ll()
 + "\nOutSeg2 ZZ is: "
 + S2.getOut__zz()
 + "\nOutSeg2_DATA1 is: "
 + S2.getOut__data1()
 + "\nOutSeg2_DATA2 is: "
 + S2.getOut__data2());
 // ---
 // Populate third segment object from buffer.
 // ---
 srcPos += LL;
 buff = null;
 // Get length of segment.
 LL =
 MarshallIntegerUtils.unmarshallTwoByteIntegerFromBuffer(
 segBytes,
 srcPos,
 true,
 MarshallIntegerUtils.SIGN_CODING_TWOS_COMPLEMENT);

 // Put segment in byte array.
 buff = new byte[LL];
 System.arraycopy(segBytes, srcPos, buff, dstPos, LL);
 remainLen -= LL;

 // Create and populate segment object from byte array.
 OutputSeg3 S3 = new OutputSeg3();
 S3.setBytes(buff);
 System.out.println(
 "\nOutSeg3 LL is: "
 + S3.getOut__ll()
 + "\nOutSeg3 ZZ is: "
 + S3.getOut__zz()
 + "\nOutSeg3_DATA1 is: "
 + S3.getOut__data1()
 + "\nOutSeg3_DATA2 is: "
 + S3.getOut__data2()
 + "\nOutSeg3_DATA3 is: "
 + S3.getOut__data3());
 }
 catch (Exception e)
 {
 System.out.println("\nCaught exception is: " + e);
 }
 }
}

For variable length messages, multiple segment messages, and messages that contain arrays, see the
IMS tutorials and samples in the online help or IBM Documentation in the WebSphere or Rational
development environment.

• IMS tutorials are available in Tutorials > Do and Learn.
• IMS samples are available in Samples > Technology samples > J2C samples.

These tutorials and samples provide guidance information and sample code for handling special message
formats.

Related information
Tutorials in IBM Documentation for Rational Application Developer V9See the IMS tutorials under the
Java category in tutorials section in IBM Documentation.

796 IMS: Application Programming

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.6.1/com.ibm.rad.nav.doc/com.ibm.rad.nav.doc_eclipse-gentopic2.html

Samples in IBM Documentation for Rational Application Developer V9See the IMS samples in J2C
samples section IBM Documentation.

Measuring IMS TM resource adapter performance
To measure IMS TM resource adapter performance, use the interaction execution as the measurement
point.

Measuring the time between the opening and closing of the socket does not provide useful data because
various nuisances that have nothing to do with the actual transaction response time could be involved. A
meaningful transaction response time should be calculated from the start of the send request to the end
of the request by setting the start and stop timers around the IMSInteraction.execute() method.

The measured data would be similar to what would be measured in IMS Connect HWS trace and other
mainframe performance measurement tools.

Securing interactions with the IMS Transaction Manager
You can secure the interactions with IMS Connect and IMS by using the different security features in IMS
TM resource adapter.

IMS TM resource adapter security
The Java EE Connector Architecture (JCA) specifies that the application server and the Enterprise
Information System (EIS) must collaborate to ensure that only authenticated users are able to access
the EIS.

The JCA security architecture extends the end-to-end security model for Java EE-based applications to
include integration with EISs. The IMS TM resource adapter follows the Java EE Connector Architecture
security architecture, and works with the WebSphere Application Server Java 2 Security Manager.

EIS signon
The JCA security architecture supports the user ID and password authentication mechanism that is
specific to an EIS. The user ID and password that are used to sign on to the target EIS are supplied
either by the application component (component-managed signon) or by the application server (container-
managed signon).

For the IMS TM resource adapter, IMS is the target EIS. The security information provided by the
application component or the application server is passed to the IMS TM resource adapter. IMS TM
resource adapter then passes it to IMS Connect. IMS Connect uses this information to perform user
authentication, and passes that information to IMS OTMA. IMS OTMA can then use this information to
verify authorization to access certain IMS resources.

In a typical environment, the IMS TM resource adapter passes on the security information (user ID,
password, and optional group name) that it receives to IMS Connect in an IMS OTMA message. Depending
on its security configuration, IMS Connect might then call the Security Authorization Facility (SAF) on the
host.

• For WebSphere Application Server on distributed platforms or z/OS with TCP/IP, using either
component-managed signon or container-managed signon:

– If RACF=Y is set in the IMS Connect configuration member, or if the IMS Connect command SETRACF
ON has been issued, IMS Connect calls the SAF to perform authentication using the user ID and
password that are passed by the IMS TM resource adapter in the OTMA message. If authentication
succeeds, the user ID, optional group name, and UTOKEN returned from the IMS Connect call to the
SAF are passed to IMS OTMA for verifying authorization to access IMS resources.

– If RACF=N is set in the IMS Connect configuration member, or if the IMS Connect command SETRACF
OFF has been issued, IMS Connect does not call the SAF. However, the user ID and group name, if
specified, are passed to IMS OTMA for authorization to access IMS resources.

Chapter 49. Developing an application for use with the IMS TM resource adapter 797

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.6.1/com.ibm.rad.nav.doc/com.ibm.rad.nav.doc_eclipse-gentopic12.html

• You can provide the user identity to the application server in two ways:

– The user ID and password can be provided in a Java Authentication and Authorization Service (JAAS)
alias. The JAAS alias is associated with either the connection factory that is used by the application
that accesses IMS or, depending on the version of WebSphere Application Server, with the EJB
resource reference that is used by the application. The application server creates and passes the user
token that represents the user identity in the alias to the IMS TM resource adapter.

– WebSphere Application Server for z/OS can be configured to obtain the user identity that is
associated with the thread of execution of the application. You have the option to synchronize
a Java thread identity or an operating system thread identity (SyncToOSThread), in which user
authentication is performed by the application server. The application server creates and passes the
user token that represents this user identity to the IMS TM resource adapter. The IMS TM resource
adapter then passes the user token to IMS Connect for authentication. To bypass authentication,
modify the HWSJAVA0 exit with the trusted users. IMS Connect then passes the user token to IMS
OTMA to verify authorization to access IMS resources.

The level of authorization checking that IMS completes is controlled by the IMS command, /SECURE
OTMA.

Distributed network security credentials
You can configure WebSphere Application Server or WebSphere Liberty to enable IMS TM resource
adapter to pass between Java EE applications and IMS the network security credentials that are entered
from an Java EE applications. The network security credentials can include a network session ID and a
network user ID. The distributed network security credentials are propagated by the IMS TM resource
adapter to IMS Connect, which then passes the credentials to IMS, when a Java EE application accesses
IMS transactions.

To enable IMS TM resource adapter to pass network security credentials from a Java EE application to
IMS, you must configure and link to your application the Java Authentication and Authorization Service
(JAAS) login module that is provided with IMS TM resource adapter. After you link your application to
the JAAS login module, users must enter their security credentials when they invoke an IMS transaction
for authentication by an external user account registry. The external user account registry can be any
user account registry that is supported by WebSphere Application Server or WebSphere Liberty such as
an LDAP server. After the credentials are successfully authenticated, IMS TM resource adapter sends the
distributed credentials to IMS Connect by using the security-data section of the OTMA message prefix.

You can also enable IMS TM resource adapter to support network security credentials when IMS
applications that run in IMS dependent regions make synchronous or asynchronous callout requests to
external Java EE applications.

The network session ID that is extracted by the IMS TM resource adapter is, by default, the IP address
and port of the authentication server that is used. The maximum length for a network session ID is 254
bytes.

The network user ID that is extracted by the IMS TM resource adapter is one of the distinguished names
that are defined in the authentication server. The maximum length for a network user ID is 246 bytes.

Secure Sockets Layer (SSL) Communications
You can configure IMS TM resource adapter and IMS Connect, if properly configured, are able to use the
TCP/IP SSL protocol to secure the communications between them.

SSL connections are more secure than non-SSL TCP/IP connections, and provide authentication for the
IMS Connect server and, optionally, for the IMS TM resource adapter client. Messages that flow on SSL
connections might also be encrypted.

SSL with null encryption provides an intermediate level of security in which the authentication occurs but
the messages are not encrypted. Non-encrypted SSL communications offer higher throughput because of
the elimination of the overhead that is required to encrypt each message that flows between the IMS TM
resource adapter and IMS Connect.

798 IMS: Application Programming

Related concepts
Container-managed EIS signon
With container-managed EIS signon, the security manager in the application server manages the security
information for your application.
Secure Sockets Layer (SSL) support
SSL provides security for your interactions by securing the TCP/IP connection between the IMS TM
resource adapter and IMS Connect.
Related tasks
Configuring container-managed EIS signon
In WebSphere Application Server Version 6 and later, the container-managed authentication is
superseded by the specification of a login configuration on the resource-reference mapping at
deployment time.
Related information
Java thread identity and an operating system thread identity (WebSphere Application Server)

Container-managed EIS signon
With container-managed EIS signon, the security manager in the application server manages the security
information for your application.

When the directive <res-auth>Container</res-auth> is specified in the deployment descriptor of
the application, container-managed EIS signon is used. In this case, the application server (the container)
provides the security information (user ID and password).

For TCP/IP, the application server passes the security information in the alias to the IMS TM resource
adapter. The IMS TM resource adapter passes the security information to IMS Connect for authentication.
IMS Connect authenticates the user and passes the security information for signon to IMS. If IMS Connect
cannot authenticate the user, a security failure is returned to the IMS TM resource adapter which, in turn,
passes an exception back to the application.

With container-managed signon, if your application does pass security information to the IMS
TM resource adapter by using the userName, password or groupName properties of the
IMSConnectionSpec class, this information is ignored. However, if you pass other information in the
IMSConnectionSpec object, such as the client ID with commit mode 0 interactions, this information is
used by the IMS TM resource adapter.

Configuring container-managed EIS signon
In WebSphere Application Server Version 6 and later, the container-managed authentication is
superseded by the specification of a login configuration on the resource-reference mapping at
deployment time.

The <res-auth>Container</res-auth> directive in the application deployment descriptor file that
you set in your Rational or WebSphere development environment is replaced by the setting of the
resource reference that is used by your application.

Configuring container-managed EIS signon consists of:

1. Creating a Java Authentication and Authorization Service (JAAS) authentication data entry alias to be
used to provide the user ID and password used for EIS signon.

2. Configuring your application or connection factory to use the appropriate JAAS authentication alias.

To configure for container-managed EIS signon:

1. Create a JAAS - J2C authentication data entry alias and specify the user ID and password.
a) In the WebSphere Application Server administrative console, click Security.
b) Click Global security.
c) In the global security page, under the Authentication section, click to expand Java Authentication

and Authorization Service and then click J2C authentication data.

Chapter 49. Developing an application for use with the IMS TM resource adapter 799

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=security-java-thread-identity-operating-system-thread-identity

d) In the JAAS - J2C authentication data page, click New.
e) Specify an alias name, and specify the user ID and the password to be used by your application for

signon when connecting to IMS.

Figure 126. Specification of a security alias to use for J2C authentication
f) Click OK, and click Save at the top of the page.

2. Configure your application or connection factory to use the appropriate JAAS authentication alias.

• To configure an application, in the administrative console:

a. Click Applications > Application Types (for example, WebSphere enterprise applications).
b. Click the name of your application from the list of applications.
c. Under the References section, click Resource references.
d. Click Modify Resource Authentication Method.
e. Select the authentication method, and select the module in the table that the authentication

method applies to.

Figure 127. Specification of the authentication method for your application

800 IMS: Application Programming

Tip: When no authentication is specified, the deprecated container-managed authentication alias
on the data source or connection factory is used. Use the online help that is provided to assist you
with your configuration.

f. Click Apply, and click Save to save the changes.
• To configure a connection factory, in the administrative console:

a. Click Resources > Resource adapters > J2C connection factories.
b. Click the name of the connection factory.
c. Specify the component-managed authentication alias, or the container-managed authentication

alias.

Figure 128. Specification of the security setting and authentication alias for a J2C connection
factory

Tip: The container-managed authentication alias field is used only in the absence of a login
configuration on the component resource reference. Use the online help that is provided to assist
you with your configuration.

d. Click OK, and click Save at the top of the page to save the changes.

Tip: The process for configuring container-managed signon in a stand-alone WebSphere Application
Server is the same as the process for a WebSphere Application Server in a unit test environment.

Chapter 49. Developing an application for use with the IMS TM resource adapter 801

Related information
Configuring Java EE Connector connection factories in the administrative console (WebSphere Application
Server Version 8)For more information, see IBM Documentation for WebSphere Application Server.
J2C connection factories settings (WebSphere Application Server Version 8)For more information, see
IBM Documentation for WebSphere Application Server.
Resource references (WebSphere Application Server Version 8)For more information, see IBM
Documentation for WebSphere Application Server.

Component-managed EIS signon
With component-managed EIS signon, your application manages the security information provided to IMS
Connect and IMS. In general, your application supplies the security information to be used for EIS signon.

To specify component-managed EIS signon for your application, type the value application for the
<res-auth> element in the resource reference of the deployment descriptor of your application.

Your application (the component) provides the security information (user ID, password, and optional
group name) that is used for EIS signon:

• If your application uses the Java EE Connector Architecture Common Client Interface (CCI), it performs
component-managed EIS signon by using the following methods:

– IMSConnectionSpec.setUserName()
– IMSConnectionSpec.setPassword()
– IMSConnectionSpec.setGroupName()

These methods populate an IMSConnectionSpec object with security information. After the application
establishes a connection to IMS, it passes the IMSConnectionSpec object as a parameter of the
IMSConnectionFactory.getConnection method. The IMS TM resource adapter passes this
security information to IMS Connect for use in signing on (authentication and authorization) to IMS.

• If your application is generated by a Rational or WebSphere development environment, the security
information is passed as application input data. To pass the security information as input data you must
expose the userName, password, and groupName properties of the IMSConnectionSpec class.

If your application does not use one of the methods to provide security information, WebSphere
Application Server obtains the security information from the J2C connection factory custom properties.

Tip: If you specified a component-managed JAAS alias when you set up your connection factory, the
user ID and password in the alias override the userName and password values in the connection factory
custom properties during the startup of WebSphere Application Server.

Configuring component-managed EIS signon
You specify component-managed EIS signon during application development and configure it during
application deployment.

When you create a Java EE application by using a Rational or WebSphere development environment,
you are able to select either component-managed or container-managed EIS signon. Setting the
authentication directive in the resource reference of your application deployment descriptor to
Application configures your application for component-managed EIS signon. Similar steps would be used
for other resources and other IDEs.

The following example explains how to verify or change this setting for an EJB Project in a Rational or
WebSphere development environment:

1. Set the value of the element to Application.

a. In the Java EE perspective, in the Project Explorer view, expand your EJB project in EJB Projects.
b. Right-click Deployment Descriptor: your_EJB_project and select Open With > Deployment

Descriptor Editor.

802 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.iseries.doc/ae/tdat_confconfac.html
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.iseries.doc/ae/tdat_confconfac.html
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/uwbs_jaasconfig.html
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/udat_maprrr.html

c. In the EJB Deployment Descriptor view, click the References tab, expand the name of the EJB
component used by your application, and select the resource reference for the EJB. When you
select the resource reference for the EJB, fields on the right side of the EJB Deployment Descriptor
view are displayed with values.

d. Select Application, if it is not already selected, in the Authentication field. This field maps to the
<res-auth> element.

e. Close the EJB Deployment Descriptor Editor and click Yes to save your changes. The following code
is added to the deployment descriptor of your EJB application:

<res-auth>Application</res-auth>

Typically, component-managed signon does not require further configuration because the security
information is provided by the application in the IMSConnectionSpec object. However, if your
application does not provide an IMSConnectionSpec object, or the user ID is not specified in
the IMSConnectionSpec object that is provided, the IMS TM resource adapter will obtain default
security values from the connection factory that is used by your application.

2. If the application component does not provide a user ID, or the user ID provided is null or blanks,
the default security values is used. The default value is specified in the connection factory and can be
provided in two ways:

• Specify a component-managed authentication alias.

a. To use a component-managed authentication alias, you must define a JAAS authentication alias.

i) In the Servers view, right-click the server and select Run administrative console.
ii) Expand Resources and select Resource Adapters.

iii) Click the resource adapter you want to modify.
iv) Under Additional Properties, click J2C Connection factories.
v) Under Related Items, click J2C Authentication Data Entries.

vi) Above the list of aliases, click New.
vii) Enter an alias name, your user ID, password, and optional description. Select OK.

b. Select the JAAS authentication alias for the component-managed authentication alias property
of the J2C connection factory that is used by your application. You can select the JAAS
authentication alias when you first create the connection factory, or later by editing the
connection factory. To edit the connection factory:

i) In the administrative console for the server, navigate to the connection factory that you want
to modify by selecting Resource Adapters > server_name > J2C connection factories >
connection_factory_name.

ii) In the Component-managed Authentication Alias drop-down list, select the JAAS
authentication alias to be used for component-managed authentication by applications that
use that connection factory.

iii) Select OK.

The user ID and password that are associated with the component-managed authentication
alias are used to set (or override if applicable) the default values in the custom properties of the
associated connection factory during application server startup.

• Define default values in the connection factory custom properties.

– If you do not assign a valid JAAS authentication alias to the Component-managed Authentication
Alias field of your J2C connection factory, you can assign values for the userName, password,
and groupName fields on the Custom Properties page of your J2C connection factory.

– To create a connection factory, use the IMSConnectionSpec API to specify connection properties.
Using a component-managed authentication alias is preferred over specifying values in the
custom properties of your J2C connection factory. The component-managed authentication alias

Chapter 49. Developing an application for use with the IMS TM resource adapter 803

provides greater security for the user ID and password because the user name and password
values of a JAAS authentication alias are visible only to server administrators.

The process for configuring component-managed signon in the test environment of an IDE and the
process for configuring component-managed signon in a stand-aloneWebSphere Application Server are
similar.

Related tasks
Creating a connection factory in WebSphere Application Server
After you install and deploy the IMS TM resource adapter on WebSphere Application Server, create a
connection factory for the IMS TM resource adapter, if it does not already exist.
Related reference
IMS connection factory properties
The properties of an IMS TM resource adapter connection factory describes the characteristics of the
target Enterprise Information System.

Secure Sockets Layer (SSL) support
SSL provides security for your interactions by securing the TCP/IP connection between the IMS TM
resource adapter and IMS Connect.

The SSL protocol ensures that the transfer of sensitive information over the Internet is secure. SSL
protects information from:

• Internet eavesdropping
• Data theft
• Traffic analysis
• Data modification
• Trojan horse browser/server

The IMS TM resource adapter can communicates with IMS Connect through TCP/IP sockets. If the IMS
TM resource adapter uses TCP/IP, you can use SSL to secure the TCP/IP communication between the
two entities. The SSL support that is provided by the IMS TM resource adapter and IMS Connect uses
a combination of public and private keys, along with symmetric key encryption schemes, to achieve
client and server authentication, data confidentiality, and integrity. SSL runs in a layer above the TCP/IP
communication protocol and allows an SSL-enabled server to authenticate itself to an SSL-enabled client
and vice versa.

For an SSL connection between the IMS TM resource adapter and IMS Connect, the IMS TM resource
adapter is considered the client and IMS Connect is considered the server. After authentication is
complete, the server and client can establish an encrypted connection that also preserves the integrity of
the data.

For SSL support in a WebSphere Application Server environment, the IMS TM resource adapter uses the
IBM implementation of Java Secure Socket Extension (IBM JSSE). The SSL library is included WebSphere
or Rational development environments and in WebSphere Application Server.

Important:

• The IMS TM resource adapter supports only X.509 certificates and the JKS keystore type on distributed
platforms (which include Linux for System z) and the JKS keystore type, or RACF keyrings on z/OS.

• Transport Layer Security, Version 1 (TLS V1) is the successor to SSL 3.0 protocol. The IMS TM resource
adapter supports TLS V1, and newer versions. TLS V1 is compatible with the earlier SSL 3.0 protocol.

804 IMS: Application Programming

SSL concepts
The SSL protocol involves key concepts such as certificates, certificate authority, certificate management,
key stores, and trust stores.

Certificate
A digital certificate is a digital document that validates the identity of the certificate's owner. A
digital certificate contains information about the individual, such as their name, company, and public
key. The certificate is signed with a digital signature by the Certificate Authority (CA), which is a
trustworthy authority.

Certificate authority
A certificate authority (CA) is a trusted party that creates and issues digital certificates to users and
systems. The CA, as a valid credential, establishes the foundation of trust in the certificates.

Certificate management
Certificates and private keys are stored in files called keystores. A keystore is a database of key
material. Keystore information can be grouped into two categories: key entries and trusted certificate
entries. The two entries can be stored in the same keystore or separately in a keystore and truststore
for security purposes. Keystores and truststores are used by both the SSL client, the IMS TM resource
adapter, and the SSL server, IMS Connect.

Keystore
A keystore holds key entries, such as the private key of the IMS TM resource adapter, and the SSL
client.

Truststore
A truststore is a keystore that holds only certificates that the user trusts. Add an entry to a truststore
only if the user makes a decision to trust that entity. An example of an IMS TM resource adapter
(client) truststore entry is the certificate of the target SSL server, IMS Connect.

You can store key entries and trusted certificate entries in either the keystore or the truststore. You can
also store them separately. The IMS TM resource adapter supports only X.509 certificates and the JKS
keystore type on distributed platforms (which include Linux for System z) and the JKS keystore type, or
RACF keyrings on z/OS.

SSL protocol
The SSL protocol consists of server authentication and client authentication, followed by an encrypted
conversation (SSL handshake).

Server authentication
SSL server authentication allows a client to confirm the identity of a server. SSL-enabled client software
uses standard techniques of public-key cryptography to ensure that a server's certificate and public ID
is valid, and that the certificate and ID were issued from one of the client's list of trusted certificate
authorities (CA).

Client authentication
SSL client authentication allows a server to confirm a client's identity. Using the same techniques used for
server authentication, SSL-enabled server software verifies that a client's certificate and public ID is valid
and that the certificate and ID was issued by one of the server's list of trusted certificate authorities (CA).

Null Encryption
Null encryption allows for authentication to occur during the SSL handshake. After the SSL handshake
completes, all messages flow without being encrypted over that socket.

SSL handshake
Both the client, the IMS TM resource adapter, and the server, IMS Connect, store their certificates and
private keys in keystores. The SSL session between the IMS TM resource adapter and IMS Connect is
established by following a handshake sequence between the client and the server. The sequence varies,

Chapter 49. Developing an application for use with the IMS TM resource adapter 805

depending on whether the server is configured to provide just a server certificate, or to provide a server
certificate and request a client certificate, and which cipher suites are available for use. A cipher is an
encryption algorithm. The SSL protocol determines how the client and the server negotiate the cipher
suite to be used, authenticate one another, transmit certificates, establish session keys, and transmit
messages. Some of the algorithms used in cipher suites include:

• DES - Data Encryption Standard
• DSA - Digital Signature Algorithm
• KEA - Key Exchange Algorithm
• MD5 - Message Digest algorithm
• RC2 and RC4 - Rivest encryption ciphers
• RSA - A public key algorithm for both encryption and authentication
• RSA key exchange - A key-exchange for SSL based on the RSA algorithm
• SHA-1 - Secure Hash Algorithm
• SKIPJACK - A classified symmetric-key algorithm implemented in FORTEZZA-compliant hardware
• Triple-DES - DES applied three times.

SSL handshake and authentication process
To use SSL, both the client (the IMS TM resource adapter) and the server (IMS Connect) must be
configured for SSL handshake.

At run time, when the Java client application executes an interaction with IMS, the interaction flows on
a secure (SSL) connection between the SSL client, the IMS TM resource adapter, and the SSL server, IMS
Connect. To open an SSL connection between the client and the server, an SSL handshake process occurs.
This SSL handshake, which is transparent to the Java client application, occurs as follows:

1. The SSL client, the IMS TM resource adapter, initiates a connection by sending a client hello message.
The server, IMS Connect, replies with a server hello message and its certificate that contains its public
key.

2. If this certificate is authenticated successfully by the server, a session key is established at both ends
and a cipher specification is negotiated that determines the type of encryption to be used on the
connection. The cipher can be STRONG, WEAK, or ENULL. The SSL handshake is then completed if the
server does not require client authentication.

3. If the server requires client authentication, the client authenticates the server's certificate by using
the server's public key from its certificate. If this authentication is successful, a client certificate is
sent from the client's keystore. If this certificate is authenticated successfully by the server, a session
key is established at both ends, and a cipher specification is negotiated that determines the type of
encryption to be used on the connection. The SSL handshake is then completed.

4. The client and server are ready to send and receive encrypted data.

Important: When the client applications run in a managed environment, which is particularly preferred
with SSL connections, the IMS TM resource adapter must use persistent socket connections to
communicate with IMS Connect. However, in a non-managed environment, these persistent connections
are disconnected by the application after each use rather than being made available for reuse by another
application.

When the WebSphere Application Server Connection Manager is used, connections can be serially reused
by other client applications. The connection manager creates connections if necessary, and provides
them to the applications as needed. When an application is finished using a connection, the connection
manager returns that connection to the free pool, making it available for reuse by any other application
that requires that type of connection. However, client and server authentication only occurs one time
for each socket during the handshake that occurs when that socket is first created and initialized as an
SSL socket. When a socket is reused, the SSL client, the IMS TM resource adapter, and the server, IMS
Connect, do not change. Consequently, it is not necessary to re-authenticate the client and the server

806 IMS: Application Programming

(go through the handshake process again) when a socket is reused. The client ID that identifies a socket
remains the same each time a socket is reused.

If the SSLEncryption value is set to ENULL, performance is faster than SSL connections that use Strong
or Weak encryption. The level of performance improvement depends on several factors, including
whether hardware or software encryption is used. In general, hardware encryption is faster than software
encryption.

Configuring the client and the server for SSL support
To use SSL, both the client (the IMS TM resource adapter) and the server (IMS Connect) must be
configured.

To configure the IMS TM resource adapter and IMS Connect for SSL:

1. Decide if client authentication is required on the SSL server, IMS Connect. If client authentication is not
required, skip to step 3.

Recommendation: Us client authentication to protect against unauthorized access to IMS Connect.
2. When client authentication is required, the client must have a signed certificate in the server's

truststore or keyring.
a) Obtain signed certificates and a private key for the client.
b) On the client, create a keystore and insert the client's private key and certificate.
c) On the server (IMS Connect), insert the client's public key certificate into the keyring. See IMS

Version 14 Communications and Connections for more information.
3. On the client, create a truststore (another optional keystore) and insert the server's public key

certificate . Alternatively, insert the public key certificate into the client keystore if trusted and non-
trusted certificates are stored in the same keystore.

4. Decide which IMS Connect SSL port to use. Set up the IMS Connect and SSL configuration members
with the appropriate values.
For more information about setting up these configuration members, see IMS Version 14
Communications and Connections.

5. Set up the connection factory with the appropriate SSL parameters, including the port number from
step 4.

6. Bind the application to the SSL connection factory.

Tip: If the SSLEncryption value is set to ENULL, performance is faster than SSL connections that use
Strong or Weak encryption. The level of improvement depends on several factors, including whether
hardware or software encryption is used. In general, hardware encryption is faster than software
encryption.

Related tasks
Logging and tracing IMS TM resource adapter information
Configure the logging and tracing setting in WebSphere Application Server to ensure messages are logged,
and diagnostic trace information is recorded for the IMS TM resource adapter.

Creating the keystore or truststore for the client
On the SSL client, create a keystore to store the client certificate, and create a truststore for the client to
store the server certificate.

Several tools are available for managing keystores. The following steps create a client certificate to store
in the client keystore and a client truststore to store server certificates.

1. Create a certificate for the client, the IMS TM resource adapter, and have the certificate signed by a
certificate authority (for example, VeriSign). You can also create your own certificate authority (CA) by
using software such as OpenSSL to sign your own (self-signed) certificate.

2. Create a keystore by using a key management tool such as Ikeyman or Keytool.
3. Import the client certificate (if one is available) into the keystore.

Chapter 49. Developing an application for use with the IMS TM resource adapter 807

4. Create a truststore for the client by creating another keystore.
5. Import the certificate for the server (IMS Connect) into the client truststore.

Configuring SSL connections
A secure SSL connection between a Java client application and IMS Connect is created by ensuring
that the connection factory used by the Java client application has the appropriate values for its SSL
properties.

In WebSphere and Rational development environments, you can set up the SSL properties in multiple
ways:

• If you are running your Java client application in the test environment inside of your integrated
development environment (IDE), use the tooling in the IDE or the administrative console for your
test environment. Map or bind the connection factory resource reference in the Java client application
which is installed on an integrated WebSphere Application Server, to an SSL-configured connection
factory also deployed in that integrated WebSphere Application Server by setting the JNDI name of the
connection factory in the resource reference.

• If you are running your Java application in WebSphere Application Server, you can configure a
connection factory that creates SSL connections.

To set a connection factory that creates SSL connections in WebSphere Application Server:

1. In the WebSphere Application Server administrative console, navigate to Resources > Resource
Adapters > yourIMSTMResourceAdapter > J2C Connection Factories > yourJ2CConnectionFactory
> Custom Properties.

2. Map the connection factory resource reference in the Java client application to the SSL connection
factory by specifying the JNDIName of the target connection factory in Applications > Enterprise
Applications > yourApplication > Map resource references to resources.

Related reference
IMS connection factory properties
The properties of an IMS TM resource adapter connection factory describes the characteristics of the
target Enterprise Information System.

Changing RACF passwords
When IMS Connect is configured to perform RACF authentication, you can change RACF password by
issuing a password change request to IMS Connect from your Java application.

To change the RACF password of the user ID that is specified in your message from your Java application:

Submit a message that includes the password change request keyword HWSPWCH in the following
format:

HWSPWCH old-password/new-password/new-password

The HWSPWCH keyword must be at the beginning of the application data section of the message and
be followed by one or more blank spaces, the current password, a forward slash character, the new
password, another forward slash and then the new password again.

• The keyword HWSPWCH must be all uppercase characters.
• You must include one or more blank spaces between HWSPWCH and the old password.
• The old password must be valid password for the user ID.
• All passwords must follow RACF standards.

If the password is successfully changed, a "HWSC0031I PASSWORD CHANGE SUCCESSFUL" message
is returned. If the operation fails, the IMS TM resource adapter throws an exception ICO0001E with a
reason code indicating the error.

Related concepts
Container-managed EIS signon

808 IMS: Application Programming

With container-managed EIS signon, the security manager in the application server manages the security
information for your application.
Component-managed EIS signon
With component-managed EIS signon, your application manages the security information provided to IMS
Connect and IMS. In general, your application supplies the security information to be used for EIS signon.
Related reference
Diagnosing problems with callout requests
Callout request errors are often related to the execution timeout setting, incorrect or corrupted callout
messages, or network failures.
Related information
Submitting commands to IMS
Although the IMS TM resource adapter is intended primarily for you to run transactions on a host IMS
system through a Java EE application, you can also issue IMS commands that are supported by IMS OTMA
from your Java applications.

Securing message retrieval from IMS hold queues
You can specify the user ID and password information to ensure that only authorized users are allowed to
retrieve asynchronous output or callout request messages from the IMS hold queue.

You can use both the asynchronous output programming model and the callout programming model
of the IMS TM resource adapter to retrieve asynchronous output or callout request messages
from the hold queue. To ensure that only an authorized user can retrieve an asynchronous output
message or a callout request from the hold queue, you can optionally specify the user ID, together
with the tpipe name that is contained in the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT command message. Authorization is performed by IMS
OTMA when the message is retrieved from the hold queue.

If security checking is enabled with IMS Connect or IMS OTMA, you must configure the IMS TM
resource adapter with the appropriate user ID for the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT request to retrieve the asynchronous output message
or callout request from an IMS asynchronous hold queue. Specify the user ID and password
information in the IMSConnectionSpec class or in the authentication alias that is used by the
IMSConnectionFactory or the application's deployment descriptor.

For more information about OTMA security, see the "Securing messages on the asynchronous hold queue"
topics in IMS Version 14 Communications and Connections.

Related concepts
Asynchronous output programming model
Use this programming model to retrieve output that has been queued by IMS.
Callout programming models
Use this programming model to send outbound messages from an IMS application to request services or
data from message-driven beans (MDBs), Enterprise JavaBeans (EJB) components, or web services and,
optionally, receive response data.
Java exceptions that involve output messages

Chapter 49. Developing an application for use with the IMS TM resource adapter 809

If any errors occur when the IMS TM resource adapter passes the message through IMS Connect to IMS,
and as IMS processes this transaction and attempts to return the output, the Java client receives an
exception.

Enabling support for distributed network security credentials
IMS TM resource adapter can pass the original, distributed network security credentials, including the
network session ID and the network user ID, between Java EE applications and IMS. The network security
credentials that are passed by IMS TM resource adapter are written to IMS log records.

The network session ID that can be passed by the IMS TM resource adapter is, by default, the IP address
and port of the authentication server that is used. The maximum length for a network session ID is 254
bytes.

The network user ID that can be passed by the IMS TM resource adapter is a distinguished name that is
defined in the authentication server. The maximum length for a network user ID is 246 bytes.

Provided with IMS TM resource adapter to support network security credentials is an extendable Java
Authentication and Authorization Service (JAAS) login module. You must install the JAAS login module
in the application server, which can be either WebSphere Application Server or WebSphere Liberty, and
link the login module to a Java EE application. The following process describes how network security
credentials are passed by the JAAS login module and IMS TM resource adapter after the login module is
installed and configured:

1. The JAAS login module prompts the user to enter network security credentials and captures the
credentials.

2. The network security credentials are passed by WebSphere Application Server or WebSphere Liberty
to an external user account registry, such as an LDAP server, for authentication.

3. If the security credentials are successfully authenticated by the user account registry, the credentials
are set in a Java principal object and passed to IMS TM resource adapter.

4. IMS TM resource adapter extracts the network user ID and the network session ID and includes the
security credentials in the security-data section of the OTMA message prefix. The OTMA message is
then sent to IMS Connect with the network security credentials.

5. IMS Connect passes the OTMA message with network security credentials to IMS, and the credentials
are written to IMS log records.

You can also enable IMS TM resource adapter to support network security credentials from IMS in
synchronous and asynchronous callout messages.

Configuring WebSphere Application Server for distributed network security
credentials
You can enable IMS to audit the network security credentials that are passed to and from a Java EE
application that runs on WebSphere Application Server.

Before you enable support for distributed network security credentials that are passed from your Java EE
application, ensure that the following items are enabled:

• Container-managed security for your application. If your application does not have container-managed
security, you might have to modify your application’s web.xml file.

• An external user account registry, such as an LDAP server, that contains authorized users.

The following procedure makes the following assumptions:

• That you are use an LDAP server as the external user registry. However, you can use any other user
registry that is supported by WebSphere Application Server.

• That you use IMS_Login as the alias name for the login module that you create.
• That a login module is linked to a simple imsicoivp.ear application, which sends a /STA OTMA

command.

810 IMS: Application Programming

1. Set up the user registry.
a) On the left menu, click Security and then Global Security. Then, in the User account repository

area, select Standalone LDAP Registry from the Available realm definitions list. Click Configure.
b) In the configuration menu for your LDAP server, specify the primary administrative user name. This

user name must be defined in the LDAP server.
The administrative user name consists of a unique user ID, an organization unit, and one or more
domains. In the following example administrative user name, the unique user ID is admin, the
organization unit is users, and the domains are security and com:

uid=admin,ou=users,dc=security,dc=com

c) Specify the host and port address of your LDAP server.
d) Specify the base distinguished name of your LDAP server.

The base distinguished name is the directory that holds authorized users. For example, the
following base distinguished name might be used:

ou=users,dc=security,dc=com

If the preceding base distinguished name is used, the following example users are authorized :

uid=admin,ou=users,dc=security,dc=com
cn=Bob,ou=users,dc=security,dc=com

e) Click Test connection to test the connection to the LDAP server. Then, click Apply.
f) On the Global Security page, select Standalone LDAP registry from the Available realm
definitions list, and then click Set as current. Then, click Apply.
Your user account registry is set up. The login module uses this user account registryto
authenticate distributed network security credentials that are entered.

2. Enable security for WebSphere Application Server and install the custom JAAS login module.
a) Ensure that your server has Administrative and Application Security enabled. On the left side of the

WebSphere Application Server window, click Security > Global Security, and then select Enable
administrative security and Enable application security.

b) In the right panel, click Authentication and expand Java Authentication and Authorization
Service. Click Application logins and then click New.

c) Create an alias name for the login module. The following steps in this procedure assume that you
create an alias name of IMS_Login. Then, in the JAAS login modules table, click New.

d) Specify the module class name com.ibm.ims.login.IMSLoginModule. This is the login module
that is bundled with the IMS TM resource adapter.

e) From the Authentication strategy list, select REQUIRED.
f) In the Custom properties section, add a new custom property. Enter propIdentity as the name

and Caller as the value.
g) If you have a web application and the URI is unprotected, you must allow WebSphere Application

Server to prompt for authentication with unprotected URIs. To enable WebSphere Application
Server to prompt for authentication, on the Global Security page, click Web and SIP Security.
Select General Settings.

h) In the Web authentication behavior area, select Authenticate when any URI is accessed.
3. Map the login module to your application.

a) On the left menu, click Applications. Then, click Application Types and click the imsicoivp.ear
application.

b) Click Resource References, select your application, and click Modify Resource Authentication
Method.

c) Select Use custom login configuration, and then select IMS_Login from the Application login
configuration list. Click Apply > OK.

Chapter 49. Developing an application for use with the IMS TM resource adapter 811

After you map the login module to your application, you are prompted to enter a user name and password
when you start and open your application in your web browser. Enter your distinguished name as the user
name. The following example of a log file snippet shows that the IMS TM resource adapter successfully
received the distributed network security credentials:

TMRA has received the following credentials:
Security Realm: '0.0.0.0:10389'
Distinguished Name: 'uid=admin,ou=users,dc=security,dc=com'
Authenticated?: 'true'

If the credentials are valid and exist in the LDAP registry, the distinguished name and realm are
propagated to IMS.

Related concepts
“Container-managed EIS signon” on page 799
With container-managed EIS signon, the security manager in the application server manages the security
information for your application.

Configuring WebSphere Liberty for distributed network security credentials
You can enable IMS to audit the network security credentials that are passed to and from a Java EE
application that runs on WebSphere Liberty.

Before you enable support for distributed network security credentials that are passed from your Java EE
application, ensure that the following items are enabled:

• Container-managed security for your application.
• An external user account registry, such as an LDAP server, that contains authorized users.

This procedure assumes that you are using an LDAP server as the external user registry. However, you can
use any other user registry that is supported by WebSphere Liberty.

1. If the distributed network security credentials are sent from a web application, ensure that the
application URI is protected because WebSphere Liberty does not authenticate unprotected URIs.
To protect a web application URI, define security roles and authorizations in the web.xml file of your
web application.
In the following example web.xml file, a security role that is called Testing is defined, and in the
<security-constraint> tag, Testing is the only role that is authorized to access that application. Any
user that wants to access the application must be assigned the Testing role.

<security-constraint>
<display-name>SampleWebApp</display-name>
 <web-resource-collection>
 <web-resource-name>SampleWebApp</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Testing</role-name>
 </auth-constraint>
</security-constraint>

<security-role>
 <role-name>Testing</role-name>
</security-role>

2. Set up a user registry for your application by creating the registry element in the server.xml file.
In the registry tag, specify the following items:

• The LDAP type, port, and host address
• The baseDN attribute for the base distinguished name
• The <customFilters> element for custom filters

In this example, the <ldapRegistry> element is used because an LDAP server is used as the user
registry.

812 IMS: Application Programming

3. Configure the custom login module in the server.xml file.
a) Create a <library> element that uses a <fileset> element, which indicates where the
IMSLogin.jar file is. The IMSLogin.jar file is packaged in the IMS TM resource adapter .rar
file. However, WebSphere Liberty cannot scan .rar files, so you must extract the .rar file to a
directory that can be scanned by WebSphere Liberty. In this example, the id is customLoginLib.

b) Create the <jaasLoginModule> element and set the following attributes:

• The id attribute. In this example, the id is IMS_Login.
• On the className attribute, specify the com.ibm.ims.login.IMSLoginModule class.
• On the controlFlag attribute, specify REQUIRED to require a successful authentication of the

distributed network security credentials.
• On the <libraryRef> tag, specify customLoginLib, the ID of the <library> element configured in

the previous substep.
c) Create a <jaasLoginContextEntry> element and specify an ID and a unique name of the system-

defined JAAS configuration. In the following example, IMS_Login_Entry is used as the name
and ID. On the loginModuleRef attribute, specify IMS_Login, the ID of the <jaasLoginModule>
element that you created in the previous substep.

The server configuration is now set up to use your login module.
4. Link your application to the custom JAAS login module. In the web application bind file, manually

link the application to the login module by using the loginConfigurationName attribute of the
<resRefBindings> element. For the value of the loginConfigurationName attribute, specify the ID
of the <jaasLoginContextEntry> element that you defined in the previous step.

Related concepts
“Container-managed EIS signon” on page 799

Chapter 49. Developing an application for use with the IMS TM resource adapter 813

With container-managed EIS signon, the security manager in the application server manages the security
information for your application.

Enabling IMS TM resource adapter client applications to support network
security credentials in callout messages
If you enable IMS TM resource adapter client applications to support network security credentials in
IMS callout messages, external web servers can use the credentials to perform authentication and
authorization for callout requests.

Network security credentials in synchronous callout messages
To enable IMS TM resource adapter client applications to support network security credentials in
synchronous callout messages, set the resumeTpipeNsc property of the IMSActivationSpec object
to true.

Network security credentials in asynchronous callout messages
To enable IMS TM resource adapter client applications to support network security credentials in
asynchronous callout messages, you must call the setResumeTpipeNSC(int resumeTpipeNSC)
method for the IMSInteractionSpec object and set the value of the setResumeTpipeNSC
property to 1. If 1 is set for the setResumeTpipeNSC property, IMS TM resource adapter sets a
flag byte in the OTMA message prefix that is sent to IMS to indicate that network security credentials
should be included in the callout message.

Related reference
IMSActivationSpec property configuration for message-driven beans
The values of the properties of the IMSActivationSpec object describe the inbound communication
from IMS to be used by message-driven beans.
Resume tpipe network security credentials (resumeTpipeNSC)
This property is used by a Java application to indicate whether network security credentials are to be
included in asynchronous callout requests from IMS.

IMS TM resource adapter timeouts
Several types of timeouts can be used to prevent applications from hanging due to failures during
execution of an interaction.

Sometimes network problems affect the transmission of data between a client and IMS. Without a way to
handle such unexpected problems, applications can stop or run in an endless loop. One such example is
router failure on the TCP/IP path between the IMS TM resource adapter and IMS Connect.

Several timeouts can be used to recover from such a failure.

• The executionTimeout property of the IMSInteractionSpec class is used to deal with problems
between IMS Connect and IMS. Examples of such problems include XCF communications link failure, or
a failure in IMS that leads to the target transaction not running or its output not being returned to IMS
Connect.

• The socketTimeout property of the IMSInteractionSpec class is used to address problems affecting
TCP/IP communication between the IMS TM resource adapter and IMS Connect.

You can specify values for the executionTimeout and socketTimeout properties to handle problems that
occur during execution of an interaction. The timer for execution timeout runs inside the socket timeout
window.

Recommendation: Always set the socketTimeout property to a value that is larger than the
executionTimeout property value.

814 IMS: Application Programming

Execution timeouts
The value for the execution timeout is the maximum amount of time that is allowed for IMS Connect to
send a message to IMS and receive a response to that message back from IMS.

The execution timeout setting is used an IMS TM resource adapter client application to instruct IMS
Connect to override its current TIMEOUT value.

If an interaction does not complete before execution timeout occurs, IMS Connect returns an error
message to the IMS TM resource adapter. The IMS TM resource adapter then returns an exception to the
client application, indicating that the duration of time for IMS to respond to IMS Connect has exceeded
the timeout value. The error message also specifies the timeout value that was used by IMS Connect.

Tip: Because connections between the IMS TM resource adapter and IMS Connect are persistent, if a
connection is in a known state after an execution timeout occurs, the socket is not closed. Instead, the
socket remains open and is made available for reuse.

Transaction expiration
You can take advantage of the OTMA transaction expiration enhancement to explicitly instruct IMS
Connect to indicate to OTMA to discard or dequeue a transaction when the execution timeout value is
reached.

By default, the transExpiration property is set to false for backward compatibility, and OTMA continues to
process the transaction even after the execution times out. To take advantage of the OTMA transaction
expiration function to save unnecessary processing costs and CPU cycles for transactions that are no
longer needed, set the transExpiration property to true.

Conversational transactions
For conversational transactions, the execution timeout value applies to each iteration of a conversation.
An iteration consists of one input message that is sent to IMS and one output message that is received
from IMS. If an iteration of the conversation times out due to an execution timeout, the conversation ends
and any database updates that have taken place in that conversation are backed out.

Exceptions
If you specify an invalid execution timeout value, the TIMEOUT value that is specified in the IMS Connect
configuration member is used and a javax.resource.NotSupportedException is thrown.

Related concepts
Other types of timeouts
In addition to execution timeouts and socket timeouts, other types of timeouts, such as those for the J2C
connection factory, the Enterprise JavaBeans (EJB) transaction, browsers, the HTTP session, and the EJB
session, can impact your application's execution.

Valid execution timeout values
The execution timeout value is represented in milliseconds and must be a decimal integer from 1 through
3600000.

That is, the execution timeout value must be greater than zero and less than or equal to one hour.
The execution timeout value can also be -1 if you want an interaction to run without a time limit. The
execution timeout value cannot contain non-numeric characters.

If you do not specify an execution timeout value or if the value that you specify is invalid:

• For SYNC_SEND_RECEIVE interactions, the timeout value in the IMS Connect configuration member is
used and the interaction continues to run.

• For SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions, IMS Connect sets the timeout value to
two seconds and the interaction continues to run.

Chapter 49. Developing an application for use with the IMS TM resource adapter 815

If an execution timeout is specified for a send-only interaction it is ignored as execution timeout does not
apply to send-only interactions.

If you specify an invalid value and a timeout occurs, the timeout value that is specified in the IMS Connect
configuration member is used, and the exception javax.resource.NotSupportedException is
thrown.

Tip: The host system administrator determines the global timeout value in the IMS Connect configuration
member. To display this value, issue the VIEWHWS command on the z/OS console.

If a valid execution timeout value is set, this value is converted to a value that IMS Connect can use. The
following table describes how the values that you specify are converted to the values that IMS Connect
uses:

Range of user-specified values Conversion rule

1 - 250 If the user-specified value is not divisible by 10, it
is converted to the next greater increment of 10.

251 - 1000 If the user-specified value is not divisible by 50, it
is converted to the next greater increment of 50.

1001 - 60000 The user-specified value is converted to the
nearest increment of 1000. Values that are exactly
between increments of 1000 are converted to the
next greater increment of 1000.

60001 - 3600000 The user-specified value is converted to the
nearest increment of 60000. Values that are
exactly between increments of 60000 are
converted to the next greater increment of 60000.

For example, if you specify a value of 1, this value is converted to 10 (because 1 is not divisible by 10
and 10 is the next increment that is greater than 1). The following examples illustrate how the conversion
works for each range of values:

User-specified value (milliseconds) Converted value (milliseconds)

1 10

11 20

251 300

401 450

1499 1000

1500 2000

60000 60000

89999 60000

3600000 3600000

3750000 3600000

Related concepts
Other types of timeouts

816 IMS: Application Programming

In addition to execution timeouts and socket timeouts, other types of timeouts, such as those for the J2C
connection factory, the Enterprise JavaBeans (EJB) transaction, browsers, the HTTP session, and the EJB
session, can impact your application's execution.
Related reference
Execution timeout (executionTimeout)
This property specifies the maximum amount of time that is allowed for IMS Connect to send a message
to IMS and receive a response

Setting execution timeout values
You can set the execution timeout value in the J2C wizard in your Rational or WebSphere integrated
development environment (IDE) or by using the Common Client Interface (CCI) API.

The execution timeout property is a property of the IMSInteractionSpec class. The execution timeout
value that you set is converted to a value that IMS Connect uses. This conversion occurs to meet the
requirements of IMS Connect.

Other timeouts, such as socket timeouts, or the interaction between your client application and
WebSphere Application Server for z/OS, can affect your interactions. If other timeout values are less
than the execution timeout value you set for your IMS interaction, these other timeouts can mask the fact
that IMS did not return a response.

In an IDE, you can set the execution timeout value when you initially define the IMS binding properties for
a new J2C Java bean.

To edit the IMS binding properties that are already defined in the IDE for a new J2C Java bean, complete
the following steps:

1. Open the appropriate Java binding for IMS by using the Java Editor.
2. Locate the doclet tag for the IMSInteractionSpec class.
3. Modify the doclet tag to add the executionTimeout property, if it is not listed, and specify a value for

the executionTimeout property. If the property is listed, modify the value.
4. Close the editor and click Yes to save your changes.

You can also code the individual timeout values for different interactions by setting the
IMSInteractionSpec executionTimeout property value. If you code an execution timeout value in your
Java client application code, that value overrides any execution timeout value that you set in the IMS
binding properties of your J2C Java bean.

With the second approach, use the setExecutionTimeout method to set an execution timeout value in
an CCI application.

1. First instantiate a new IMSInteractionSpec instance or obtain the IMSInteractionSpec instance from
your specific interaction.

2. Set the executionTimeout value by using the setExecutionTimeout method. For example:

interactionSpec.setExecutionTimeout(timeoutValue);

3. Assign this interactionSpec to the specific interaction.

Socket timeouts
The value for the execution timeout is the maximum amount of time the IMS TM resource adapter waits
for a response from IMS Connect before disconnecting the socket and returning an exception to the client
application.

If network problems or routing failures occur, the socket timeout value that you specify can prevent
the client application or the IMS TM resource adapter from waiting indefinitely for a response from IMS
Connect. Because the socketTimeout property is based on the TCP/IP sockets that IMS Connect and the
IMS TM resource adapter use to communicate, the socketTimeout property does not apply to Local Option
connections.

Chapter 49. Developing an application for use with the IMS TM resource adapter 817

With the socketTimeout property, you can set individual timeout values for a particular interaction
by using a socket. The value, in milliseconds, can be set on the socketTimeout property in the
IMSInteractionSpec class. If the socketTimeout property is not specified for an interaction or it is
set to zero milliseconds, no socket timeout value exists, and the connection waits indefinitely.

When determining the socket timeout value, you must consider other existing timeout values.

If a valid socket timeout value is specified for a particular interaction and socket
timeout occurs, a java.io.IOInterruptedException and the Java EE J2C exception,
javax.resource.spi.CommException are thrown. The Java EE J2C exception message indicates that
the client has spent more time than was allocated by the socketTimeout value to communicate with IMS
Connect.

Related concepts
Other types of timeouts
In addition to execution timeouts and socket timeouts, other types of timeouts, such as those for the J2C
connection factory, the Enterprise JavaBeans (EJB) transaction, browsers, the HTTP session, and the EJB
session, can impact your application's execution.
Related reference
Socket timeout (socketTimeout)
The maximum amount of time the IMS TM resource adapter waits for a response from IMS Connect
before disconnecting the socket and returning an exception to the client application.

Setting socket timeout values
Set the socket timeout value to a number greater than the execution timeout value.

The executionTimeout property is for setting the maximum amount of time that is allowed for IMS
Connect to send a message to IMS and receive a response from IMS. Because the socket timeout value
encapsulates the execution timeout value, the socket timeout value must be greater than the execution
timeout value. A socket might time out unnecessarily if its value is set to less than the execution timeout
value.

The following table lists suggested values for socket timeouts based on execution timeout values.

Table 120. Suggested values for socket timeouts based on execution timeout values

Execution timeout value
(milliseconds) Execution timeout behavior Suggested socket timeout value

0 (or no value) The default value from the IMS
Connect configuration member is
used.

The socket timeout value must
be greater than the execution
timeout default value specified
in the IMS Connect configuration
file.

1 - 3600000 The wait response times out after
the specified millisecond value.

The socket timeout value must
be greater than the execution
timeout value.

-1 The wait response is indefinite. Set the socket timeout value to
0 so that the connection waits
indefinitely.

You can set the socket timeout value in two ways. You can use the Common Client Interface (CCI)
to access the getter and setter methods provided with the IMSInteractionSpec class, or use the
tooling that is provided by a WebSphere or Rational development environment, with the optional Java EE
Connector (J2C) feature installed.

818 IMS: Application Programming

Setting the socket timeout value by using the Common Client Interface
Use the setSocketTimeout method of the IMSInteractionSpec object to set the socket timeout
value.

To use the setSocketTimeout method to set the socket timeout value:

1. Instantiate a new IMSInteractionSpec object or obtain the IMSInteractionSpec object from your
specific interaction.

2. set the socket timeout value for IMSInteractionSpec by using the setSocketTimeout method.
For example:

interactionSpec.setSocketTimeout(timeoutValue1);
interaction.execute(interactionSpec,input,output);

interactionSpec.setSocketTimeout(timeoutValue2);
interaction.execute(interactionSpec,input,output);

Setting the socket timeout value by using a development environment
You can use a Rational or WebSphere development environment to set the socket timeout value when you
initially define the IMS binding properties for a new J2C Java bean.

To edit the operation binding properties that are already defined for a new J2C Java bean:

1. Open the appropriate IMS binding Java file by using the Java Editor.
2. Locate the doclet tag for the IMSInteractionSpec class.
3. Modify the doclet tag to add the socketTimeout property and specify a value. If this property is already

listed, modify the value.
4. Select the operation extensibility element again to indicate that changes have been made.
5. Close the editor and click Yes to save your changes.

Other types of timeouts
In addition to execution timeouts and socket timeouts, other types of timeouts, such as those for the J2C
connection factory, the Enterprise JavaBeans (EJB) transaction, browsers, the HTTP session, and the EJB
session, can impact your application's execution.

When you developer your application, you must consider how other types of timeouts might impact the
execution of your application.

Timeouts overlap or even encapsulate one another. Such capability provides multiple layers of protection
against problems that can cause your application to hang. A longer timeout might mask a shorter timeout.
For example, if the socket timeout is set to a lower value than the execution timeout, the socket timeout
error would preclude an execution timeout and the absence of a response from IMS would remain
unknown.

Other timeout values that might interact with the IMS TM resource adapter timeouts include the following
values:

• Connection timeout property of J2C connection factories
• Enterprise JavaBeans (EJB) transaction timeout
• Browser timeout
• Servlet HTTP session or EJB session timeout

One example of a timeout that might impact the execution of your application is the interaction between
the applications that run on WebSphere Application Server for z/OS and the IMS TM resource adapter.
The WebSphere Application Server for z/OS consists of two parts: a controller and a set of one or more
servants. By default, application work is timed, even when it is dispatched to a servant region. When
an application that is dispatched to a servant region reaches its timeout, that servant region usually is
abended and restarted. The server stays up and continues taking work. For this reason, use care when
you choose execution timeout values that are greater than WebSphere Application Server timeout values.

Chapter 49. Developing an application for use with the IMS TM resource adapter 819

Also use care when you choose the execution timeout value of -1, which tells IMS Connect to wait
indefinitely for a response from IMS.

If you disable WebSphere Application Server timeouts, refer to the server documentation for information
regarding additional timeout values that are not described in this information.

A second example of a timeout value that would impact the execution of your application is the browser
timeout. If the execution timeout value is configured to be greater than the browser timeout, the
execution timeout value is not used because the browser timeout occurs before the execution timeout.

Related information
IBM Documentation for WebSphere Application Server Version 8For more information about server
timeouts, see IBM Documentation for WebSphere Application Server.

Conversational programs
An IMS program can support a transaction that is composed of one interaction or multiple interactions. A
transaction with multiple iterations is referred to as a conversational transaction.

An IMS conversational program is intended to process more complex transactions that take multiple
interactions to complete. Each interaction is known as an iteration of the conversation. An IMS
conversational program divides the complex processing into a connected series of client-to-program-to-
client interactions that are known as iterations. In each iteration of a conversation, the IMS conversational
transaction program receives a request message from the client, processes that request, and sends a
reply to the client. The program also saves any intermediate data from the transaction in the scratchpad
area (SPA) to be used in the next iteration of the conversation. The user can modify the data in the
reply, or enter additional data and then send in the request to IMS to process the next iteration of the
conversation. Using the data in this new request along with any data in the SPA from the last iteration, the
IMS conversational program will process the next iteration of the conversation. The processing of these
iterations continues until the conversation is ended either by the client application or by IMS.

With IMS TM resource adapter conversational support, a client that interacts with the IMS conversational
transaction usually uses one of the following applications:

• Java applications or Web applications
• Business process applications that are based on service component architecture (SCA) in a service-

oriented architecture (SOA)

Java applications or Web applications
With Java or Web applications, a user uses the same browser session to conduct a series of requests
that iterate through different interactions of an IMS conversation. One possible implementation involves
a Java servlet receiving an input request from the browser and using IMS TM resource adapter classes to
send a conversational transaction request to IMS Connect through a TCP/IP communication. IMS Connect
then forwards the transaction request to both OTMA and IMS and schedules the IMS conversational
transaction to run; this process creates a new IMS conversation. The IMS application processes the
request and sends the output back to the Java servlet through the conversational support in IMS Connect
and in the IMS TM resource adapter. The Java servlet loads the appropriate JavaServer Pages (JSP) file to
display the output to the user in the browser.

Business process applications
A business process is an orchestration of a set of services to fulfill a particular business goal. Business
process choreography is a key SOA implementation to ensure that business applications are composed
of flexible and adaptable elements. IBM WebSphere Process Server provides the runtime infrastructure
to execute business processes, and IBM WebSphere Integration Developer provides the modeling tool to
author business processes and various other components.

820 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html

Client-managed and IMS Connect-managed conversation state programming
models

An IMS program can support a transaction that is composed of one interaction or multiple interactions. A
transaction with multiple iterations is referred to as a conversational transaction.

You can enable your applications for business process choreography by indicating in your Java application
that the conversation state will be managed by your application rather than by IMS Connect. By managing
a unique conversation ID across iterations of a conversation, you allow different iterations to come in from
any connection. This model is known as the client-managed conversation state programming model.

By default, the conversation state is still managed by IMS Connect to provide backward compatibility. This
model is known as the IMS Connect-managed conversation state programming model.

To enable your applications for business process choreography or for use on shareable persistent socket
connections, you must manage the conversation state in your client application. In your application,
you indicate to IMS Connect that you need IMS to assign a conversation ID for you to pass among the
iterations of the conversation by setting the useConvID property of the IMSInteractionSpec class to
true. This client-managed conversation state programming model ensures that the different iterations of a
conversation can come in from any connections without being rejected.

Recommendation: Use this client-managed conversation state programming model for all new
application development for better conversation state management.

Related tasks
Using the client-managed conversation state programming model
For the client application to manage all iterations in a conversation, the useConvID property of the
IMSInteractionSpec class must be set to true.
Using the IMS Connect-managed conversation state programming model
To specify to have IMS Connect manage all iterations in a conversation, the useConvID property of the
IMSInteractionSpec class must be set to false.

Orphaned IMS conversation
When a conversation is not ended explicitly, it continues to exist in the system as an orphaned
conversation, and the associated IMS storage continues to be allocated to that conversation.

An IMS conversation is usually ended explicitly in one of two ways:

• The IMS application inserts blanks to the SPA before returning a response to the client.
• The client application program submits a SYNC_END_CONVERSATION request.

If the browser was closed before the conversation ends properly, for example, the IMS conversation is
not ended explicitly and continues to exist in the system. When an IMS conversation becomes orphaned,
you have no way of programmatically continuing or ending that conversation. One measure that you can
take to avoid orphaned conversations would be to use timeouts, such as the EJB session timeout, to
force the end of a conversation that does not complete in a reasonable amount of time by submitting a
SYNC_END_CONVERSATION request in the EJB session timeout cleanup code.

If a client application is terminated and a conversation becomes orphaned, the orphaned IMS
conversation can be ended only by an IMS restart. You can check for orphaned IMS conversations in the
system by issuing an IMS /DISPLAY CONV command through an IMS_REQUEST_TYPE_IMS_COMMAND
interaction. For a list of IMS commands supported by OTMA, see the "Commands Supported from LU 6.2
Devices and OTMA" section in IMS Version 14 Commands, Volume 2 or in "IMS Commands using OTMA" in
IMS Version 14 Communications and Connections.

Chapter 49. Developing an application for use with the IMS TM resource adapter 821

Business process choreography applications
You can run IMS conversational transactions in composite business applications by using IMS TM
Resource Adapter.

To allow for business flexibility in a service-oriented architecture (SOA), a key implementation is business
process choreography. Business process choreography ensures that business applications are made up of
flexible and adaptable elements, so you can rapidly change the applications to meet business demands.
Instead of having one huge application that cannot be easily modified for new business processes
or needs, you compose your business applications based on your business process model. With IMS
TM Resource Adapter, you can reuse your IMS conversational transactions in composite business
applications that are served by IBM WebSphere Process Server.

To invoke an IMS conversational application through business process choreography:

• You must use the client-managed conversation state programming model.

You must indicate to IMS Connect that this conversation needs a unique conversation ID to keep track
of the conversation by setting the IMSInteractionSpec class useConvID property to true in your Service
Component Architecture (SCA) component for the business process choreography application.

This setting triggers IMS to assign a unique conversational token and returns it to IMS Connect in the
output message of the first iteration. This conversational token can then be passed back and forth
between the business process choreography application and IMS Connect, and onto OTMA.

• You must use the dynamic interaction specification (InteractionSpec) support that is provided by
WebSphere Process Server when you use the SCA enterprise information system (EIS) bindings. The
SCA component uses this support to propagate the conversation token to the next component in
all subsequent iterations of a conversation or in the SYNC_END_CONVERSATION iteration to end a
conversation.

• Specify commit mode 1 (CM1) with sync level of NONE or CONFIRM in the IMSInteractionSpec
object.

• All iterations of a given IMS conversation must be processed by the same IMS Connect and the same
IMS in a non-sysplex environment. This unique conversation ID is not shared between multiple IMS
systems.

• All iterations of a given IMS conversation must use the same conversational ID, port number, IMS
Connect, and data store.

For more information about the conversational support provided by IMS Connect and OTMA and related
restrictions, see the topic "IMS Connect conversational support" in IMS Version 14 Communications and
Connections.

For more information about the dynamic interaction specification support provided in WebSphere Process
Server, see the JCA EIS binding-related topics in the WebSphere Process Server documentation.

Related information
WebSphere Process Server documentation (all versions)For more information about JCA EIS binding, see
IBM Documentation for the version of WebSphere Process Server that you use.

Enabling your Java client for IMS conversational transactions
You can enable your Java client for IMS conversational transactions by using either the client-managed or
the IMS Connect-managed conversation state programming model.
Related concepts
Conversational programs

822 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSQH9M/welcome

An IMS program can support a transaction that is composed of one interaction or multiple interactions. A
transaction with multiple iterations is referred to as a conversational transaction.

Using the client-managed conversation state programming model
For the client application to manage all iterations in a conversation, the useConvID property of the
IMSInteractionSpec class must be set to true.

To enable your Java client for IMS conversational transactions by using the client-managed conversation
state programming model:

1. Obtain a connection handle from the IMSConnectionFactory object. In this programming model,
you can use the same or different connection handles in subsequent iterations. These connection
handles must come from the same IMSConnectionFactory. instance.

2. Set the IMSInteractionSpec useConvID property to true. This property needs to remain true for
all iterations of the conversation. If the useConvID flag changes during a conversation, an error would
occur.

3. Set the IMSInteractionSpec commitMode property to 1.
4. Set an appropriate value for the syncLevel property based on your application design.
5. On the first iteration, set the IMSInteractionSpec convID property value to an empty string.
6. On all iterations other than the first iteration, set the value of the convID property to the value of the

convID property that is returned in the previous iteration.
7. If the client application controls the ending of a conversation, on the last iteration, set the
IMSInteractionSpec interactionVerb property to SYNC_END_CONVERSATION.

Recommendation: With the client-managed conversation state programming model, use local
references per request in your client application or servlet instead of application-wide references.
This approach is to avoid any race conditions that might occur in the client application due to stress
or load that could violate the integrity of the conversational data. If the client application is browser-
based, you need to carefully design the navigation so that the conversational request does not get
resubmitted accidentally. This scenario can happen if the user presses the back button on the browser,
which causes the conversational request to be resubmitted again and therefore results in an additional
conversation.

Related concepts
Client-managed and IMS Connect-managed conversation state programming models
An IMS program can support a transaction that is composed of one interaction or multiple interactions. A
transaction with multiple iterations is referred to as a conversational transaction.

Using the IMS Connect-managed conversation state programming model
To specify to have IMS Connect manage all iterations in a conversation, the useConvID property of the
IMSInteractionSpec class must be set to false.

To enable your Java client for IMS conversational transactions by using the IMS Connect-managed
conversation state programming model:

1. Obtain a connection handle from the IMSConnectionFactory. This connection handle must be used
by all subsequent iterations for the conversation. If your Java application is a Web application, you
might have to save the connection handle in the HTTP Session object for the connection handle to be
retrieved and used on subsequent iterations in the same browser.

2. Set the IMSInteractionSpec useConvID property to false (the default value is false) in the first
iteration. Do not change the value of this property in subsequent iterations of the conversation. If the
useConvID property changes during a conversation, an error would occur.

3. Set the IMSInteractionSpec commitMode property to 1. Set an appropriate value for the syncLevel
property.

4. If the client application controls the ending of a conversation, on the last iteration, set the
IMSInteractionSpec interactionVerb property to SYNC_END_CONVERSATION.

Chapter 49. Developing an application for use with the IMS TM resource adapter 823

5. Close the connection handle at the end of the conversation.

Related concepts
Client-managed and IMS Connect-managed conversation state programming models
An IMS program can support a transaction that is composed of one interaction or multiple interactions. A
transaction with multiple iterations is referred to as a conversational transaction.

Processing global transactions
The IMS TM resource adapter supports global transaction management and two-phase commit
processing so that your application can run in a Java EE-compliant application server to access IMS
transactions.

Global transaction support with two-phase commit
To protect and maintain the integrity of your business resources, the IMS TM resource adapter supports
global transaction management and two-phase commit processing.

Using this support, you can build a Java EE application to group a set of changes into one transaction,
or a single unit-of-work, so that all changes within a transaction are either fully completed or fully rolled
back. This support means that your application can run in a Java EE-compliant application server (for
example, WebSphere Application Server) to access IMS transactions and data in a coordinated manner.
Global transaction management ensures the integrity of the data in IMS.

Example of global transaction support
When you make changes to your protected resources, you want to guarantee that the changes are made
correctly. For example, as a bank customer you want to transfer money from your savings account to your
checking account. You want to be sure that when the money is deducted from your savings account it
is added to your checking account simultaneously. You would not want this transaction to be completed
only partially, with the money deducted from your savings account but not added to your checking
account.

In another example, you need to buy a ticket from San Francisco to Paris but a direct flight is not available.
Unless you can successfully reserve a ticket from San Francisco to Chicago and another ticket from
Chicago to Paris, you will not commit to your trip to Paris. That is, you will roll back your decision to go to
Paris because having a confirmed seat for only one part of your trip is not useful to you.

In both of these examples, several smaller transactions are required to complete one overall transaction.
If a problem occurs with one of these smaller transactions, you would not want to commit the overall
transaction (such as transferring money or going to Paris). Instead, you would want to roll back every step
of the transaction so that none of the smaller transactions are committed. To transfer your money or to
go on your trip to Paris successfully, you want the smaller transactions to be managed and coordinated
together to complete the overall transaction.

To ensure a coordinated transaction process, the Java EE platform (which consists of a Java EE
application server, Java EE application components, and a Java EE connector architecture resource
adapter) provides a distributed transaction processing environment where transactions are managed
transparently and resources are updated and recovered across multiple platforms in a coordinated
manner.

Related concepts
WebSphere Application Server platform configurations and communication protocol considerations
Use TCP/IP as your communication protocol between IBM WebSphere Application Server and IMS
Connect.
Related reference
Two-phase commit environment recommendations

824 IMS: Application Programming

To run a two-phase commit application, review the following recommendations to avoid a region or
message processing from stopping due to contention for resources.

Global transaction and two-phase commit support process
A Java EE-compliant application server uses a Java transaction manager to communicate and coordinate
among the application components and the resource managers.

For example, a Java EE-compliant application server such as WebSphere Application Server
communicates with the application components (for example, Java servlets or Enterprise JavaBeans
components) and the resource managers (for example, IMS or DB2) through the resource adapters (for
example, the IMS TM resource adapter) to coordinate a transaction. If a transaction manager coordinates
a transaction, that transaction is considered a global transaction. If a transaction manager coordinates a
transaction with more than one resource manager, the external coordinator uses the two-phase commit
protocol.

Suppose that you want to transfer money from your savings account to your checking account. If
your savings account information resides on a separate resource manager from your checking account
information (for example, your saving account resides on IMS and your checking account resides on DB2),
the transaction manager in the application server (WebSphere Application Server) helps the application to
coordinate the changes between IMS and DB2 transparently by using the two-phase commit processing.
Specifically, the transaction manager works with the IMS TM resource adapter to coordinate the changes
in IMS.

The IMS TM resource adapter is designed to work with the Java transaction manager in the Java EE
platform, the Resource Recovery Services (RRS) of z/OS, and IMS Connect to make consistent changes to
IMS and other protected resources.

To participate in two-phase commit processing with IMS, the IMS TM resource adapter uses the IMS
OTMA synchronization level sync-point protocol. To participate in global transaction and two-phase
commit processing when the changes are requested from a remote application, IMS uses RRS on z/OS.

RRS acts as the external coordinator or sync-point manager to coordinate the update and recovery of
resources. The IMS TM resource adapter and IMS Connect interact with the Java transaction manager
running in the application server and RRS on z/OS to allow a global transaction running on a Java EE
platform to participate in a coordinated update with IMS running on the host.

Related concepts
WebSphere Application Server platform configurations and communication protocol considerations
Use TCP/IP as your communication protocol between IBM WebSphere Application Server and IMS
Connect.
Related reference
Two-phase commit environment recommendations
To run a two-phase commit application, review the following recommendations to avoid a region or
message processing from stopping due to contention for resources.

Global transactions support requirements
When setting up a Java EE application to participate in a global transaction, you must select the
appropriate communication protocols and RSS must be enabled on IMS.

• IMS must be enabled for Resource Recovery Services (RRS) processing. To ensure that IMS is enabled
for RRS processing, check that the RRS value in the startup parameter within your IMS environment is
set to Y. This setting will be displayed in the job logs generated when IMS is brought up.

• If you are using two-phase commit processing with TCP/IP, you need to enable IMS Connect for RRS
processing by either issuing the IMS Connect command SETRRS ON or set RRS=Y in the IMS Connect
configuration file.

Chapter 49. Developing an application for use with the IMS TM resource adapter 825

Global transaction with TCP/IP
In a global transaction scope, your Java EE application component can access an IMS transaction by
establishing a TCP/IP connection with IMS Connect.

Global transaction with TCP/IP
The IMS TM resource adapter interacts with the Java transaction manager by using the X/Open (XA)
protocol to manage the global transaction and two-phase commit processing. The XA protocol defines
a set of interfaces and interactions that describe how the Java transaction manager and the resource
managers interact in a distributed transaction processing environment. The IMS TM resource adapter,
together with IMS Connect, uses the XA protocol and works with IMS and Resource Recovery Services
(RRS) on z/OS to make consistent changes.

To use global transaction with TCP/IP, RRS must run on the same z/OS image with IMS Connect and IMS.

If both IMS and IMS Connect are at IMS 14 or later, IMS and IMS Connect do not have to be on the same
z/OS image if IMS Connect is configured to support cascading global transactions. However, an instance of
RRS must be running on each z/OS image.

Global transaction support in client applications
On the Java EE platform, you can use either a programmatic or a declarative transaction demarcation
approach to manage transactions in your application.

The programmatic approach is the component-managed (or bean-managed) transaction and the
declarative transaction demarcation approach is the container-managed transaction.

Component-managed (or bean-managed) transactions
The Java EE application uses the Java Transaction API (JTA) javax.transaction.UserTransaction
interface to demarcate a transaction boundary to a set of changes to the protected resource
programmatically. Component-managed transactions can be used in both the servlet and the EJB
environment. In the case of an EJB component, you set the transaction attribute in its deployment
descriptor as TX_BEAN_MANAGED.

A transaction normally begins with a UserTransaction.begin() call. When the application
component is ready to commit the changes, it invokes a UserTransaction.commit() call to
coordinate and commit the changes. If the application component must roll back the transaction, it
invokes UserTransaction.rollback() and all changes are backed out. For example:

 // Get User Transaction
 javax.transaction.UserTransaction transaction =
 ejbcontext.getUserTransaction();

 // Start transaction
 transaction.begin();

 // Make changes to the protected resources.
 // For example, use the Java EE or JCA CCI Interaction interface
 // to submit changes to an EIS system(s)
 interaction.execute(interactionSpec, input, output);

 if (/* decide to commit */) {
 // commit the transaction
 transaction.commit();

 } else { /* decide to roll back */
 // rollback the transaction
 transaction.rollback();
 }

826 IMS: Application Programming

Container-managed transactions
Container-managed transactions can be used only in the EJB environment. The EJB component specifies
a container-managed transaction declaratively through the transaction attribute in the deployment
descriptor (such as TX_REQUIRED). A container-managed transaction is managed by the EJB container.
The container calls the appropriate methods (such as begin, commit, or rollback) on behalf of the EJB
component. This declarative approach simplifies the programming calls in the EJB component.

Related information
Java EE architecture and JTA specifications For more information about the Java EE architecture and JTA
specifications, see the Java 2 Platform, Enterprise Edition documentation.

Two-phase commit environment recommendations
To run a two-phase commit application, review the following recommendations to avoid a region or
message processing from stopping due to contention for resources.

• Have as many message processing program (MPP) regions as possible running to ensure that two-phase
commit applications do not contend for a region, because a transaction that is within a two-phase
commit application uses an MPP region for the duration of the entire two-phase commit transaction.

• If a number of IMS transactions are performed within a two-phase commit transaction, at least that
many MPP regions must be available to avoid stopping the two-phase commit application.

• To safeguard against a transaction that might be waiting for an extensive amount of time for resources,
set an appropriate timeout value for each interaction taking place within the global transaction.

• Avoid having an excessive number of database interactions performed in one two-phase commit
transaction. If multiple IMS transactions are used within a two-phase commit transaction, they could
contend or lock in an attempt to update or modify the same data. To avoid this problem, write an
application that will prevent a user from accessing duplicate entries within the same two-phase commit
operation.

• Consider configuring your internal resource lock manager (IRLM) or Program Isolation (PI) locking
manager to use a block size that is as small as the smallest entry to that database. Larger block sizes
might have two transactions contending for entries that might not even be the same and yet reside
close to one another on the disk.

• If multiple interactions are performed using the same IMS transaction on the same IMS database within
a global transaction (unit-of-work), each interaction with that IMS transaction must run on a separate
MPP region. The IMS transaction must have a SCHDTYP=PARALLEL and a PARLIM=0 value, to indicate
that the IMS transaction can run on multiple MPP regions and that it will always meet the scheduling
requirements (the number of messages will be greater than zero) to process every interaction on a new
MPP region.

• If a region is hung, and no execution timeout value has been set, you can end the attempt to run a
transaction that is hanging the MPP region by issuing a /STOP REGION IMS command with the abend
transaction parameter. For example, /STOP REGION reg# ABDUMP tranname. This command rolls back
the transaction for that particular interaction and free the MPP region.

Other transaction support
The IMS TM resource adapter also supports local transaction, one-phase commit processing, non-global
transaction processing, and conversational transaction processing in a global transaction scope.

Local transaction
The Java EE Connection Architecture defines the javax.resource.cci.LocalTransaction interface
for a resource manager, rather than a transaction manager, to coordinate a transaction locally. However,
the IMS TM resource adapter supports only transaction coordination with a transaction manager.
Thus, the IMS TM resource adapter does not support the javax.resource.cci.LocalTransaction
interface. If you call the IMSConnection.getLocalTransaction() method you will get a
NotSupportedException. To use transaction support with the IMS TM resource adapter, you need

Chapter 49. Developing an application for use with the IMS TM resource adapter 827

http://java.sun.com/j2ee/docs.html

to either use the JTA transaction interface, or set an appropriate transaction attribute in the deployment
descriptor in your application. See the topic on global transaction support in client applications for more
information.

One-phase commit processing
The IMS TM resource adapter supports one-phase commit optimization with a transaction manager. As a
result, if all changes inside a transaction scope belong to the same IMS resource, the transaction manager
might perform one-phase-commit optimization such that the transaction manager sends the phase two
commit request directly to the resource manager for committing the changes without sending the phase
one prepare request.

Non-global transaction processing
If no global transaction processing is used in the application (for example, when the transaction attribute
is set to TX_NOTSUPPORTED), all non-global transaction processing uses "Sync-On-Return" (OTMA
SyncLevel=None). By the time the IMS transaction is committed, the output has been returned to the
client.

Conversational transaction processing in global transaction scope
IMS uses a conversational program to divide processing into a connected series of client-to-program-to-
client interactions (also called iterations). Each iteration is a type of IMS conversational transaction.
Conversational processing is used when one transaction contains several parts. Each part that comprises
one large transaction is separately committed or rolled back.

You can run a conversational transaction in the global transaction scope if:

• Each iteration is run under the same transaction level. For example, if the first iteration is processed
with a global transaction scope, then all the subsequent iterations in that IMS conversational
transaction must be processed at a global transaction level. If you issue the second iteration with
no transaction scope, IMS OTMA reports an error.

• Each iteration must be completed with a commit or rollback call before issuing the next iteration in the
IMS conversation. You cannot group multiple iterations in a single global transaction scope.

Related concepts
Global transaction and two-phase commit support process
A Java EE-compliant application server uses a Java transaction manager to communicate and coordinate
among the application components and the resource managers.

Common Client Interface (CCI)
You can create an application to use the IMS TM resource adapter to interact with IMS by using the
Common Client Interface (CCI).

You can use the application code that is generated by the J2C wizard in a Rational or WebSphere
integrated development environment (IDE) to access IMS transactions through the IMS TM resource
adapter. No coding is necessary when you use this approach. Alternatively, you can write the application
source code without using an IDE.

To write the code yourself, you must use the CCI programming interface. The CCI API provides access
from Java EE clients, such as enterprise beans, JavaServer Pages (JSP) pages, and servlets, to backend
enterprise information systems (EIS) such as IMS.

Applications that follow the CCI programming interface model have a common structure, independent of
the EIS that is being used. The Java EE Connector Architecture (JCA) specification defines two objects
that are necessary for the application:

• Connection objects that represent connections to an EIS
• ConnectionFactory objects that create those Connection objects

828 IMS: Application Programming

These objects are what an application server uses to manage security, transaction context,
and connection pools for a resource adapter. An application that uses the IMS TM resource
adapter CCI programming interface starts by obtaining an IMSConnectionFactory object. The
IMSConnectionFactory object can be obtained in two ways:

• Managed: If you are using an application server, the IMSConnectionFactory object is normally
created from the resource adapter through an administration interface such as the WebSphere
Application Server administrative console. This type of environment is called a managed environment
because an application server is used to manage the qualities of service of the connections in
its environment. For example, you would create an IMSConnectionFactory object and configure
its custom properties by using the WebSphere Application Server administrative console. Custom
properties such as the hostname and port number of the target IMS system are configured on the
IMSConnectionFactory object. When the IMSConnectionFactory object is created, it can be
made available for use by any enterprise applications through JNDI.

• Non-managed: When you are not using an application server to manage the connection (such as
running the application as a stand-alone Java application), this type of environment is called a non-
managed environment. In this type of configuration:

– You must manually create an IMSManagedConnectionFactory object and set its custom properties.
You can then create an IMSConnectionFactory object from the IMSManagedConnectionFactory
object.

– The IMS TM resource adapter uses the DefaultConnectionManager class in the JCA 1.5 Connection
Management API for connections. This class does not provide any connection pooling, and all the
connection pool properties would be ignored. The IMS TM resource adapter would open and close
a socket connection with IMS Connect for every transaction request. Opening and closing socket
connections introduces resource overhead and is likely to result in performance degradation as
compared to a managed scenario. You can build your own connection pooling by implementing a
PoolManager class to be used with the DefaultConnectionManager class. For more information, see
the JCA 1.5 Connection Management API section.

Because CM0 transactions are recoverable, IMS Connect creates a separate TPIPE for each client
that uses CM0. Without the connection pool management function provided by an application server,
too many TPIPEs would be created and overload the system.

IMS connections
An IMSConnection object can then be created from that IMSConnectionFactory object. The
properties of the IMSConnection object can either be specified in an IMSConnectionSpec object
passed as a parameter to the getConnection method, or the default values defined in the
IMSConnectionFactory is used. After an IMSConnection is obtained, an IMSInteraction instance
can be created from the IMSConnection instance. An IMSInteraction instance represents the
interaction that is going to be executed on that connection. As with the connection, interactions can
have custom properties taken from the IMSInteractionSpec class.

Input and output
To perform the interaction, the application makes a call to the execute() method of the
IMSInteraction object, passing it input and output objects to hold the data. An input byte array must
be created containing values for each field in the input message to IMS. Likewise, an output byte array
must also be created to hold the response message returned by IMS. The value of each field in the output
message is extracted from the output byte array.

You can write the input and output byte arrays yourself, or you can use the J2C options in a Rational or
WebSphere development environment to create Java data bindings for the input and output messages of
your CCI application.

Requirements for applications that retrieve data from an IMS system:

• Use the IMSConnectionFactory object to create an IMSConnection object.
• Use the IMSConnection object to create an IMSInteraction object.

Chapter 49. Developing an application for use with the IMS TM resource adapter 829

• Use the IMSInteraction object to execute transactions on the backend IMS system.
• Close the IMSInteraction and IMSConnection objects.

Related information
IMS TM Resource Adapter Version 15 Java API SpecificationFor more information, see the IMS TM
Resource Adapter Version 15 Javadoc information.

Sample CCI application code
This sample CCI application code demonstrates how to obtain a connection and then an IMSInteraction
object to execute an IMS transaction.

In a managed environment, use the CCI API to look up an IMSConnectionFactory instance from the
JNDI namespace and then use it to get an IMSConnection instance.

ConnectionFactory cf = null;
if (isManaged) {
 //Use JNDI lookup to get ConnectionFactory instance
 //Assume the connection factory has a JNDI name of MyIMS
 Context ic = new InitialContext();
 cf = (ConnectionFactory) ic.lookup("MyIMS");

If JNDI is not configured, a CCI application can manually configure an
IMSManagedConnectionFactory object and use it to obtain a connection factory.

IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();
mcf.setDataStoreName("MyDSName");
mcf.setHostName("myHostNm");
mcf.setPortNumber(new Integer(1234));
...
//Create connection factory from ManagedConnectionFactory
cf = (IMSConnectionFactory) mcf.createConnectionFactory();

The following example shows the use of the CCI interfaces to execute a command on an EIS.

• Use the IMSConnectionFactory object to create an IMSConnection object.
• Use the IMSConnection object to create an IMSInteraction object.
• Use the IMSInteraction object to execute transactions on the backend IMS system.
• Close the IMSInteraction and IMSConnection objects.

public void execute() {
 try {
 ConnectionFactory cf = null;
 if (isManaged) {
 //Use JNDI lookup to get ConnectionFactory instance - assumes
 //connection factory has JNDI name of MyIMS
 Context ic = new InitialContext();
 cf = (ConnectionFactory) ic.lookup("MyIMS");
 } else {
 //Create and set values for ManagedConnectionFactory
 IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();
 mcf.setDataStoreName("MyDSName");
 mcf.setHostName("myHostNm");
 mcf.setPortNumber(new Integer(1234));
 //Create connection factory from ManagedConnectionFactory
 cf = (IMSConnectionFactory) mcf.createConnectionFactory();
 }
 // Create an IMSConnection object
 Connection connection = cf.getConnection();

 //Create an IMSInteraction from the connection to
 //interact with IMS to run the IVTNO transaction (Phonebook)
 IMSInteraction interaction = (IMSInteraction) connection.createInteraction();
 IMSInteractionSpec ixnSpec = new IMSInteractionSpec();
 ixnSpec.setInteractionVerb(IMSInteractionSpec.SYNC_SEND_RECEIVE);

 //Create new input record
 input = new PhoneBookInputRecordField("cp037");
 input.setIn__ll((short)59);
 input.setIn__zz((short) 0);

830 IMS: Application Programming

 input.setIn__trcd("IVTNO");
 input.setTranCodeLength(10);
 input.setIn__command("DISPLAY");
 input.setIn__name1("LAST3");
 input.setIn__name2("");
 input.setAllFieldsGiven(false);
 PhoneBookOutputRecordField

 //Create new output record
 output = new PhoneBookOutputRecordField("cp037");

 //Execute interaction by calling the execute() method
 interaction.execute(ixnSpec, input, output);

 //Display output
 System.out.println ("Output is: ");
 System.out.println("\nMessage: "
 + output.getOut__mesg()
 + "\nName:"
 + output.getOut__name1()
 + " "
 + output.getOut__name2()
 + "\nExtension: "
 + output.getOut__extn()
 + "\nZipcode: "
 + output.getOut__zip());

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 //Close both the interaction and the connection
 interaction.close();
 connection.close();
 }
}

Samples and tutorials
Samples and tutorials for developing Java applications or Web services to access IMS transactions can be
found in several WebSphere and Rational integrated development environments (IDEs).

• Tutorials and samples for creating J2C applications for different types of IMS transactions are available
in the online help of various WebSphere and Rational development environments.

• WebSphere Integration Developer users can find the examples for creating imports to access IMS
transactions in IBM Documentation for WebSphere Integration Developer.

• WebSphere Transformation Extender users can find tutorials for creating maps for various types of IMS
transactions.

• An end-to-end callout IVP sample is provided with IMS and the IMS TM resource adapter.

– In IMS, jobs and tasks are provided in the IMS installation verification program (IVP) that include
an IMS callout application and the required IMS OTMA destination descriptor. The OTMA destination
descriptor defines the tpipes that callout requests are queued.

– In the IMS TM resource adapter, a sample application is provided that listens for callout requests
from IMS.

Related information
Tutorials in IBM Documentation for Rational Application Developer V9See the IMS tutorials under the
Java category in tutorials section in IBM Documentation.
Samples in IBM Documentation for Rational Application Developer V9See the IMS samples in J2C
samples section IBM Documentation.

Chapter 49. Developing an application for use with the IMS TM resource adapter 831

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.6.1/com.ibm.rad.nav.doc/com.ibm.rad.nav.doc_eclipse-gentopic2.html
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.6.1/com.ibm.rad.nav.doc/com.ibm.rad.nav.doc_eclipse-gentopic12.html

832 IMS: Application Programming

Chapter 50. Running your application on a stand-
alone WebSphere Application Server

You can test your application by using a stand-alone WebSphere Application Server. You must first export
your Java EE application as an Enterprise Application Archive (EAR) file and then install the EAR file on the
server.

Prerequisite: If you do not package the IMS TM resource adapter with your enterprise application, you
must ensure that:

• The IMS TM resource adapter that your application uses is deployed on the stand-alone WebSphere
Application Server.

• A connection factory has been defined to create connections to the IMS Connect and IMS that you want
to run the IMS transaction.

After the prerequisites are met, you can proceed to install your EAR file on WebSphere Application Server.

Related tasks
Installing the resource adapter on WebSphere Application Server
Use the WebSphere Application Server administrative console to deploy the IMS TM resource adapter
RAR file.
Creating a connection factory in WebSphere Application Server
After you install and deploy the IMS TM resource adapter on WebSphere Application Server, create a
connection factory for the IMS TM resource adapter, if it does not already exist.

Installing your EAR file on WebSphere servers
You can export your application as an EAR file and deploy it in your WebSphere servers and then run the
application.

Prerequisite: You must have installed the IMS TM resource adapter RAR and created a connection factory
for the IMS TM resource adapter.

The steps to install your application EAR file is similar to how you deploy the IMS TM resource adapter
IVP EAR file. To install your application EAR file and run your application, follow the steps described in the
following topics:

• “Deploying the IVP EAR file to WebSphere Application Server ” on page 740
• “Deploying the IVP EAR file to WebSphere Liberty servers” on page 741

© Copyright IBM Corp. 1974, 2022 833

834 IMS: Application Programming

Chapter 51. Diagnosing problems
Errors might come from various sources that are involved in the transaction of the message request or
response. You can configure the application server to log and trace the component-specific information,
and IMS TM resource adapter also generate messages from Java exceptions.

Diagnosing IVP failures
If an error occurs when you run the IMS TM resource adapter IVP, first check for information in
WebSphere Application Server logs.

The WebSphere Application Server logs are located under
WebSphere_install_directory\AppServer\logs. The trace.log file lists exceptions and
provides stack traces that are useful for diagnosing the failure.

The following problems are possible causes for IVP failures:

• WebSphere Application Server is not started properly.
• If you receive the following ResourceException error about not finding the RAR reference in the context

in a cluster environment, ensure that you have created a copy of the RAR file with the appropriate
cluster or server scope, in addition to installing the RAR at the node level.

Error 500: javax.resource.ResourceException:
Context: myCell/clusters/myCluster1, name: myIMSTMRARef:
First component in name myIMSTMRARef not found.

• The enterprise application for the IVP, IMSICOIVPServiceEAR, is not started. To determine the status
of the enterprise application:

1. In the WebSphere Application Server administrative console, expand Applications in the navigation
tree on the left pane of the console.

2. Click the Enterprise Applications link. The IMSICOIVPServiceEAR EAR file displays as one of the
installed applications. A green arrow indicates that the application is started. If the application is not
started, follow the instructions for starting the application in the topic on “Deploying the IVP EAR file
in the Java EE application server” on page 740.

• Invalid data was specified when you configured the connection factory. For example:

– The host name is misspelled or is not sufficiently qualified (for TCP/IP communication).
– An incorrect port number was specified for the target IMS Connect (for TCP/IP communication).
– The IMS Connect name was misspelled.
– The data store name is invalid for the target IMS or was misspelled. The data store name must be in

uppercase characters.
• IMS is not running.
• IMS Connect is not running.
• The IMS Connect port is not active. Use the IMS Connect command VIEWHWS to determine if the port is

active. Use the IMS Connect command OPENPORT to activate an IMS Connect port.
• The target IMS data store is not active. Use the IMS Connect command VIEWHWS to determine if the

data store is active. Use the IMS Connect command OPENDS to activate a IMS data store.
• TCP/IP fails. Issue the ping command before you run the IVP to ensure the connection is working.
• The wrong level of IMS Connect is running on the host. See “Prerequisites for running the IVP” on page

739 for the required level of IMS Connect.
• If you expect the IVP to return the message DFS058I hh:mm:ss START COMMAND COMPLETED, but

the message DFS1292E SECURITY VIOLATION is returned instead, check for the conditions:

© Copyright IBM Corp. 1974, 2022 835

– The username and password that you provided in the custom properties of your IVP connection
factory are not authorized to run the /STA OTMA command that the IVP issues to IMS.

– Security is not enabled in IMS Connect (RACF=Y in the VIEWHWS command output).
– Security is not enabled in IMS OTMA (SECURITY=FULL in the /DIS OTMA command output).

• If you receive the following exception, you must configure the connection factory that is used by the IVP
to set the value of the CM0Dedicated property to false.

javax.resource.ResourceException: ICO0087E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@28f39301.call(Connection,
InteractionSpec, Record, Record) error. Protocol violation. Commit Mode 1 is not
allowed for interactions on a dedicated persistent socket

Diagnosing problems accessing IMS from Java applications
If you are unable to access IMS from your Java application, verify that IMS TM resource adapter is
properly set up and configured, that IMS Connect and IMS are active, and that you can access the host
system by using the ping command.

• Verify that you have the correct setup and configurations for using the IMS TM resource adapter. See the
topic on supported versions, configurations, and platforms for supported configurations.

• Verify that IMS Connect is active by ensuring that the outstanding IMS Connect reply HWSC0000I *IMS
CONNECT READY* ims_connect_name is displayed on the system console of the target system. For
message HWSC0000I to display on the system console when IMS Connect is active, ensure either that
WTORCMD=Y is specified in the HWS statement of the IMS Connect HWSCFGxx configuration member or
that the WTORCMD parameter is omitted from the HWS statement.

• Verify that the port and data store are ACTIVE by entering the IMS Connect command VIEWHWS at the
IMS Connect outstanding reply.

• Verify that IMS is active by ensuring that the outstanding IMS reply DFS996I *IMS READY* is displayed
on the system console of the target system.

• Verify that the cross-system coupling facility (XCF) service status of both the IMS and IMS Connect
members is ACTIVE by entering the IMS command /DISPLAY OTMA at the outstanding IMS reply. The
display output will be similar to the following output:

DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS
SECURITY IMS1

DFS000I XCFGRPNM
 IMS1

DFS000I -IMSNAME ACTIVE SERVER FULL
 IMS1

DFS000I -ICONNAME ACTIVE ACCEPT TRAFFIC
 IMS1

DFS000I *02033/143629* IMS1

• If you are using TCP/IP to communicate between the Java application and IMS Connect, verify that you
can successfully access the target host system by using the ping command. If you cannot ping the
host system and you are using a host name rather than an IP address, ensure that the host name is
sufficiently qualified.

If your IMS service is not providing the expected output from the IMS transaction, ensure that the output
message that is returned by the IMS application program matches the output COBOL definition used by
the service. For a Java EE application, you can view the IMS OTMA message containing the message
returned by the IMS application program by setting the traceLevel property to 3. See the topic on logging
and tracing with the IMS TM resource adapter for instructions on how to turn on the IMS TM resource
adapter trace.

Related tasks
Logging and tracing IMS TM resource adapter information

836 IMS: Application Programming

Configure the logging and tracing setting in WebSphere Application Server to ensure messages are logged,
and diagnostic trace information is recorded for the IMS TM resource adapter.

Diagnosing problems with callout requests
Callout request errors are often related to the execution timeout setting, incorrect or corrupted callout
messages, or network failures.

• Execution timeout occurs (no callout message is being retrieved within the time interval).

Explanation: Possible reasons include:

– No IMS application issues a callout request and the tpipe does not hold any request.
– The tpipe name that is specified in the alternate client ID field in the Java application does not match

the tpipe name that is used by the IMS application for the callout request.
– The tpipe name that is specified in the alternate client ID field in the Java application does not match

the tpipe name that is specified in the OTMA destination descriptor.
– The message processing program (MPP) has not started.

User Action: Either increase the timeout interval (the executionTimeout property), or verify that the
tpipe name matches. Ensure that the MPP is started.

• IMS Connect fails to process the callout request and the message is placed in the Dead Letter Queue.

Explanation: This problem is most likely due to a bad callout message.

User Action: Fix the callout message in the IMS application.
• IMS Connect fails to deliver the callout request to the IMS TM resource adapter.

Explanation This problem is most likely due to a network failure.

User Action: If a network failure occurs, you might receive a Java exception. Modify the Java
application to catch the exception.

• The IMS TM resource adapter or the Java application fails to process the callout request.

Explanation Possible reasons include:

– The callout request is corrupted.
– The message is not a callout request, but a regular asynchronous output message.

User Action: Verify that the callout request is issued correctly from the IMS application. Verify that the
tpipe name that is specified in the Java application is correct, and that it is not the name for another
queue for a regular asynchronous output message.

Java exceptions that involve output messages
If any errors occur when the IMS TM resource adapter passes the message through IMS Connect to IMS,
and as IMS processes this transaction and attempts to return the output, the Java client receives an
exception.

The type of exception that is thrown indicates whether an output message is available for retrieval.
For example, if the Java client receives an IMSDFSMessageException exception that indicates that
the transaction is stopped, the application was not run. Therefore, no output message is available for
retrieval. However, if the transaction runs but the executionTimeout value expires before the output
message is returned to IMS Connect, the Java client receives an EISSystemException exception. This
exception indicates that an execution timeout has occurred. In this case, the output message is queued to
the appropriate IMS OTMA asynchronous output queue or tpipe for later retrieval.

Asynchronous output interaction errors
In general, you can use the asynchronous output interactions,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT,

Chapter 51. Diagnosing problems 837

to retrieve output messages queued for any client ID, regardless of how those messages were queued
to the associated client ID. The messages might be queued either as a result of a failed commit
mode 0 transaction, or from an IMS application that issued an INSERT call to an Alternate Program
Communication Block (ALTPCB).

For example, in retrieving an output message from a failed commit mode 0 transaction, the client ID that
is specified in the IMSConnectionSpec class for retrieval request must match the client ID that was
specified on the failed commit mode 0 transaction. If nothing is in the OTMA asynchronous output queue
for that particular client ID, an execution timeout exception occurs. The timeout exception can mean one
of the following two scenarios:

• The queue has no messages.
• The timeout value did not provide enough time for IMS Connect to retrieve the message from the queue.

For both asynchronous output interactions, execution timeout is the length of time IMS Connect waits for
a response from IMS. If you do not specify an execution timeout value for a retrieval request, the default
execution timeout value is used. The default timeout value is the IMS Connect configuration member
TIMEOUT value. You might need to experiment with the execution timeout value to ensure that output
messages are returned for all types of interactions.

Related concepts
Interactions supported with commit mode and sync level combinations
The interactions that are supported by the IMS TM resource adapter depend on the combination of
commit mode and sync level that you choose.
Asynchronous output programming model
Use this programming model to retrieve output that has been queued by IMS.
Securing message retrieval from IMS hold queues
You can specify the user ID and password information to ensure that only authorized users are allowed to
retrieve asynchronous output or callout request messages from the IMS hold queue.

Logging and tracing IMS TM resource adapter information
Configure the logging and tracing setting in WebSphere Application Server to ensure messages are logged,
and diagnostic trace information is recorded for the IMS TM resource adapter.

Application logging captures various events that happen in the execution of an application. The IMS TM
resource adapter provides Java logging support that builds on the java.util.logging package included in
WebSphere Application Server. Because Java message logging is included in the trace log, logging and
tracing is used together to describe the troubleshooting support feature. While the message logs are for
end users, application developers, or system administrators, diagnostic trace information is for technical
support personnel to obtain finer and verbose details of events that took place.

In WebSphere Application Server, tracing for all components is disabled by default. After you configure
the logging and tracing setting, tracing is enabled. A trace file is created when logging and tracing is
enabled, and a Java application is run in WebSphere Application Server.

For standalone applications, you can also create your own logger by using the java.util.logging.Logger
object, create a FileHandler, pass the log file to the FileHandler, and set the logger to the
ManagedConnectionFactory object.

Tip: Ensure that only one client is running when the trace is on.

Logging and tracing in WebSphere Application Server
To turn on logging and tracing for IMS TM resource adapter information in WebSphere Application Server,
set the trace output to a file or the memory buffer, and specify the log level for the packages that contain
IMS TM resource adapter information.

To set controls for logging and tracing IMS TM resource adapter information:

838 IMS: Application Programming

1. On the welcome page of WebSphere Application Server administrative console, expand
Troubleshooting, and click Logs and Trace to open the Logging and Tracing page.

2. On the Logging and Tracing page, click the server that you want to trace (for example, server1), and
click Diagnostic Trace.
The Diagnostic trace service page opens.

3. On the Configuration tab, set Trace Ouput to Memory Buffer or File

Tips:

• Changes made in the Configuration tab persist after the server restarts. To temporarily change the
trace level, make the changes in the Runtime tab.

• Trace information are events at the fine, finer and finest levels, and can be written only to the trace
log. For differences among the different log levels, see Log level settings.

4. If you select File to store trace output, you can accept the default name and location of the trace
output file or you can modify it. To modify the default name and location, enter a different name and
location of the file in the File Name field.

5. Click OK.
6. On the Logging and Tracing page, click Change Log Detail Levels.

The Change Log Detail Levels page displays.
7. To enable logging and tracing for the IMS TM resource adapter:

a) Under General Properties, click Components.
b) Enter the following string in the text box:

*=info: com.ibm.j2ca.RAIMSTM=finest

You can combine the string with others to enable tracing in other components.
8. Click OK, If you are making changes on the Configuration tab, click Save at the top of the page to save

the changes to the master configuration.
9. Run your Java application and then examine the trace file.

Logging and tracing in WebSphere Liberty
To turn on logging and tracing for IMS TM resource adapter information in WebSphere Liberty, specify the
log level for the packages that contain IMS TM resource adapter information.

To print out the logging and tracing information for the IMS TM resource adapter, add a <logging> entry
in the server.xml file.

1. Open the server.xml file.
2. Add a <logging> for the IMS TM resource adapter by specifying the com.ibm.j2ca.RAIMSTM package

for the traceSpecification element, and set the trace level to FINEST:

<logging traceSpecification="*=info:com.ibm.j2ca.RAIMSTM=finest"></logging>

For more information about WebSphere Liberty server logging and tracing configuration, the log level
settings and their content, and what the primary log files, see the documentation for the version of
WebSphere Liberty server that you are using.

Related information
Liberty profile logging and tracing (V8.5.5)

Creating a stand-alone Logger with output sent to a file
This code sample demonstrates how to create a stand-alone Logger with output sent to a file.

This sample uses the java.util.logging.Logger object, sets the logger to the ManagedConnectionFactory
object and the log level to FINEST:

Chapter 51. Diagnosing problems 839

https://www.ibm.com/docs/en/was-nd/8.5.5?topic=console-log-level-settings
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_feat_logging.html

1. In the application, create a java.util.logging.Logger object and a FileHandler, pass the output file to the
FileHandler, set the logger to the ManagedConnectionFactory object, and set the log level:

com.ibm.connector2.ims.ico.IMSManagedConnectionFactory mcf =
 new com.ibm.connector2.ims.ico.IMSManagedConnectionFactory();
mcf.setHostName("yourHostName");
mcf.setDataStoreName("yourDataStore");
mcf.setPortNumber(new Integer(yourPortNumber));

// Create a file logger
Logger logger = Logger.getLogger("myLogger");
FileHandler fh = new FileHandler("output.txt");
SimpleFormatter formatter = new SimpleFormatter();
fh.setFormatter(formatter);
logger.addHandler(fh);

// Set the file logger to the IMSManagedConnectionFactory object
// Set log level to finest
LogUtils logUtils = new LogUtils(logger, "log", "yourProduct", "yourVersion");
mcf.setLogUtil(logUtils);
mcf.getLogUtil().setLoggingLevel(Level.FINEST);
connFactory = (ConnectionFactory) mcf.createConnectionFactory();

2. Add your other code for the application.
3. Run the application.

As the application runs, information is logged to the output.txt file.

Analyzing the trace data
The trace data in the trace.log file in WebSphere Application Server includes the time and sequence of
method calls by the base classes and additional classes based on your configuration of the logging and
tracing setting.

The trace output format consists of:

• a timestamp
• a thread ID
• an abbreviated short name of the logging component
• an event type indicator
• the class that issued the message or trace event
• additional text message

The following trace entries demonstrate the information that is logged when WebSphere Application
Server is properly configured for the IMS TM resource adapter.

• RAIMSTM is the short name for the IMS TM resource adapter.
• Each time a major event takes place, information is logged for its entrance and exit.

[7/5/11 14:24:04:968 PDT] 00000012 RAIMSTM 2
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID() Entering method.
[7/5/11 14:24:04:968 PDT] 00000012 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID()
 LocalPort = [3107]
[7/5/11 14:24:04:968 PDT] 00000012 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID()
 IP Address = [9030020219]
[7/5/11 14:24:04:968 PDT] 00000013 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID()
 Generated ID = [HWSY6N4P]
[7/5/11 14:24:04:968 PDT] 00000013 RAIMSTM <
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID() Exiting method.
[7/5/11 14:24:04:968 PDT] 00000013 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter connect()
 <-- [com.ibm.ims.ico.IMSTCPIPAdapter@1eca167.connect()]

840 IMS: Application Programming

If the connection to the IMS host system is successful, the trace shows the message is sent to IMS and
the client ID is generated.

[7/5/11 14:24:04:968 PDT] 00000013 RAIMSTM 2
 com.ibm.connector2.ims.ico.inbound.IMSInboundUtil .sendIMSMessage()
 Entering method.
[7/5/11 14:24:04:968 PDT] 00000013 RAIMSTM 3
 com.ibm.connector2.ims.ico.inbound.IMSInboundUtil .sendIMSMessage() Mode
is:
 MODE_RECEIVE_ASYNCOUTPUT_AUTO
[7/5/11 14:24:04:968 PDT] 00000012 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID()
 Generated ID = [HWSYEW06]
[7/5/11 14:24:04:968 PDT] 00000012 RAIMSTM <
 com.ibm.ims.ico.IMSTCPIPAdapter generateClientID() Exiting method.
[7/5/11 14:24:04:968 PDT] 00000012 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter connect()
 <-- [com.ibm.ims.ico.IMSTCPIPAdapter@1ee8e00.connect()]

The following trace entries demonstrate a failed connection to IMS (host dev555.vmec.ibm.com; port
9999). An ICO0003E message is logged. When the connection fails, no message is sent.

connect() -> [com.ibm.ims.ico.IMSTCPIPAdapter@2037bc2.connect():
 HostName=dev555.vmec.ibm.com PortNumber=9999] SocketTimeout = [0]
[7/5/11 14:24:16:734 PDT] 00000021 RAIMSTM E
 com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection connect() ICO0003E:
 com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@2037bae.connect()
error.
 Failed to connect to host [dev555.vmec.ibm.com], port [9999].
 [java.net.UnknownHostException: dev555.vmec.ibm.com]
 Explanation=The IMS TM resource adapter was unable to connect to the host
and
 port combination. java_exception indicates the reason for the failure to
 connect.
 UserAction=Examine the exception to determine the reason for the failure to
 connect to the host.
[7/5/11 14:24:16:734 PDT] 00000021 RAIMSTM 2
 com.ibm.connector2.ims.ico.IMSManagedConnection errorOccurred(Exception)
 Entering method.
[7/5/11 14:24:16:734 PDT] 00000021 ConnectionEve W
 J2CA0206W: A connection error occurred.
 To help determine the problem, enable the Diagnose Connection Usage option
 on the Connection Factory or Data Source.
[7/5/11 14:24:16:734 PDT] 00000021 ConnectionEve A
 J2CA0056I: The Connection Manager received a fatal connection error from
 the Resource Adapter for resource

With a successful connection, when the message is sent, the trace data shows the buffer that is sent.
This information is the same information you see in an IMS Connect recorder trace, unless you have
customized exit routine.

 [7/5/11 14:24:04:984 PDT] 00000012 RAIMSTM 2
 com.ibm.ims.ico.IMSTCPIPAdapter send(byte[]) Entering method.
[7/5/11 14:24:04:984 PDT] 0000000b ApplicationMg A WSVR0221I: Application started:
 query
[7/5/11 14:24:04:984 PDT] 0000000b CompositionUn A WSVR0191I: Composition unit
 WebSphere:cuname=query in BLA WebSphere:blaname=query started.
[7/5/11 14:24:04:984 PDT] 00000013 RAIMSTM 3
 com.ibm.ims.ico.IMSTCPIPAdapter send(byte[]) Buffer sent:
 [
 000001f2 001c0100 5cc8e6e2 d1c1e55c |...2. ..*HWSJAV*| : 16
 00000000 c0ff0000 c8e6e2e8 f6d5f4d7 |....{...HWSY6N4P| : 32
 01100000 28004040 40404040 4040a0e0 |...... µ\| : 48
 00000000 00000000 00000000 00010000 |................| : 64
 00480240 01104040 40404040 40400000 |.ç.| : 80
 00000000 00000000 00000000 00000000 |................| : 96
 00000000 00000000 00000000 00000000 |................| : 112
 00000000 00000000 00000000 00004040 |.............. | : 128
 40404040 40400000 006ac614 09024040 | ...¦F... | : 144
 40404040 40400903 40404040 40404040 | .. | : 160

Chapter 51. Diagnosing problems 841

 00000000 00000000 00000000 00000000 |................| : 176
 00000000 00000000 00000000 00000000 |................| : 192
 00000000 00000000 00000000 00000000 |................| : 208
 00000000 00000000 00000000 00000000 |................| : 224
 00000000 00000000 00000000 00000000 |................| : 240
 00000100 0000c9d4 e2f14040 4040c8e6 |......IMS1 HW| : 256
 e2e8f6d5 f4d70000 00000000 00000000 |SY6N4P..........| : 272
 00000000 00000000 00000000 00000000 |................| : 288
 00000000 00004040 40404040 40401040 |...... . | : 304
 00000000 00004040 40404040 40400000 |...... ..| : 320
 00000300 00000000 00000000 0000e3d4 |..............TM| : 336
 d9c1e3d7 f4400000 00000000 00000000 |RATP4| : 352
 00000000 00000000 00000000 00000000 |................| : 368
 00000000 00000000 00000000 00000000 |................| : 384
 00000000 00000000 00000000 00000000 |................| : 400
 00000000 00000000 00000000 00000000 |................| : 416
 00000000 00000000 00000000 00000000 |................| : 432
 00000000 00000000 00000000 00000000 |................| : 448
 00000000 00000000 00000000 00000000 |................| : 464
 00000000 00000000 00000000 00000000 |................| : 480
 00000000 00000000 00000000 00000000 |................| : 496
 0000 |..|
]
[7/5/11 14:24:04:984 PDT] 00000013 RAIMSTM
 < com.ibm.ims.ico.IMSTCPIPAdapter send(byte[]) Exiting method.

For more information about how to work with trace, see IBM Documentation for WebSphere Application
Server.

Related information
Troubleshooting and support

IMS TM resource adapter messages and exceptions
IMS TM resource adapter messages are Java exceptions that are thrown by the IMS TM resource adapter
itself or by class libraries that it uses (such as the Java class libraries), and have the prefix of ICO.

This topic provides information about exceptions generated by IMS TM resource adapter J2C applications.

The following terms, in italics in the message descriptions that follow, are replaced by specific values at
run time.

hostname
The TCP/IP host name of the system that is running IMS Connect.

java_exception
The Java exception that is thrown.

length
The length of the data.

libraryFileName
The Local Option native library file name.

llvalue
The value of LL.

maxlength
The maximum valid length of the data.

methodname
The name of the method that is throwing this exception.

mode
The type of interaction between the IMS TM resource adapter and the IMS Connect component on the
host (as defined in the interactionSpec object).

nativeMethodName
The Local Option native method name.

842 IMS: Application Programming

https://www.ibm.com/docs/en/was/latest?topic=troubleshooting-support

portnumber
The port number that is assigned to IMS Connect.

propertyname
The name of the property.

propertyvalue
The value of the property.

reasoncode
The reason code that is returned by IMS Connect.
For OTMA sense codes, a reason code of 0 indicates that the sense code does not have an associated
reason code.

rectype
The type of the record.

returncode
The return code, formatted in decimal, that is returned by IMS Connect.

sensecode
The sense code, formatted in decimal, that is returned from IMS OTMA

socketexception
The socket exception.

source_exception
The exception thrown when the error first occurred in an internal method.

source_methodname
The internal method in which the error first occurred.

state
The internal state of the IMS TM resource adapter.

Exceptions generated by IMS TM resource adapter J2C applications
The following exception messages are produced by applications built with the Java EE Connector
Architecture class libraries when an error condition is detected.

ICO0001E javax.resource.spi.EISSystemExce
ption: ICO0001E:
methodname error.
IMS Connect returned an error:
RETCODE=[returncode],
REASONCODE=[reasoncode].
reasoncode_string.

Explanation
IMS Connect returned an error. The connection that is
in error will not be reused. reasoncode_string provides
a brief description of the reasoncode, if available.

When IMS TM Resource Adapter Version 12 or later
is used with IMS Version 12 or later, RACF return
codes and failure descriptions are returned. With
older version of the resource adapter or IMS, one
single return code and reason code for all RACF
authentication errors are returned.

User response
Check the z/OS console for associated IMS Connect
error messages. IMS Connect error messages begin

with the prefix HWS. For diagnostic information
about the return code (returncode) and reason code
(reasoncode) values, as well as IMS Connect error
messages, see the integrated IMS Connect return and
reason codes section in IMS Messages and Codes.

ICO0002E javax.resource.spi.EISSystemExce
ption:
ICO0002E:methodname error.
IMS OTMA returned an error:
SENSECODE=[sensecode],
REASONCODE=[otmareasoncode].
[source_methodname:source_excep
tion]

Explanation
IMS OTMA returned a negative acknowledgment (NAK)
error.

User response
The IMS TM resource adapter displays sensecode
and otmareasoncode in decimal. A reason code of
0 indicates that the sense code does not have

Chapter 51. Diagnosing problems 843

an associated reason code. If the application is
running with two-phase commit, you might receive the
following sense code values with the NAK error.

Table 121. Sense code values if the application is
running with two-phase commit

Sense
code Description

17
(decimal,
11 hex)

Your IMS is not enabled with resource
recovery services (RRS) processing.
Ensure your IMS has Protected
Conversation processing with RRS
enabled. See the topics on global
transactions and two-phase commit
support for more information.

46
(decimal,
2E hex)

RRS and two-phase commit processing is
not supported by IMS Connect and the
IMS TM resource adapter.

51
(decimal,
33 hex)

If an authorization failure occurs when
an asynchronous output message or a
callout request is being retrieved from the
hold queue, the OTMA reason code might
be one of the following values:

• 1 – A security segment is required.
• 2 – A user ID is required.
• 3 – A RACF group name is required.
• 4 – A UTOKEN is required.
• 5 – A TPIPE name is required.
• 6 – A system error occurred in RACF.
• 7 – The RACF profile for the USERID is

not in RACF database.
• 8 – An authorized user ID is required.
• 9 – A valid TPIPE name is required.

For diagnostic information about the sense code
(sensecode) and OTMA reason code (otmareasoncode)
values of the NAK error, see the IMS Messages and
Codes information.

Related concepts
Global transaction and two-phase commit
support process
A Java EE-compliant application server uses a
Java transaction manager to communicate and
coordinate among the application components
and the resource managers.

ICO0003E javax.resource.spi.CommExceptio
n:
ICO0003E:methodname error.
Failed to connect to host
[hostname],

port [portnumber].
[java_exception]

Explanation
The IMS TM resource adapter was unable to connect
to the host and port combination. java_exception
indicates the reason for the failure to connect.

User response
Examine java_exception to determine the reason for
the failure to connect to the host. Some values for
java_exception are:

Table 122. Exceptions for ICO0003E

Exception Description

java.net
.UnknownHost
Exception:
hostname

The host name that you
specified when you configured
the connection factory that
is used by your application
is invalid, or your application
specified an invalid host name.
Check the spelling of the host
name. You might need to use the
fully qualified path for the host
name or the IP address.

java.net
.ConnectException
: Connection
refused

Some possible reasons for the
exception are:

• The port number is invalid.
Ensure that you are using a
valid port number for the IMS
Connect that is indicated by
hostname.

• The specified port is stopped.
Check the status of the port
by using the IMS Connect
command VIEWHWS. If the
port is stopped, its status
is NOT ACTIVE. To start the
port, use the IMS Connect
command, OPENPORT dddd,
where dddd is the specified
port number.

• IMS Connect on the specified
host is not running. Start IMS
Connect on the host system.

• TCP/IP was restarted without
canceling and restarting IMS
Connect or issuing STOPPORT
followed by OPENPORT on the
host.

844 IMS: Application Programming

Table 122. Exceptions for ICO0003E (continued)

Exception Description

java.net
.SocketException:
connect
(code=10051)

Some possible reasons for the
exception are:

• The system with the specified
host name is unreachable on
the Internet Protocol network.
Verify that the host system is
accessible from the Internet
Protocol network by issuing
the ping command to the
specified host system. Enter
the ping command on the
system on which the IMS TM
resource adapter is running.
Start TCP/IP on the host, if it
is not started.

• TCP/IP was restarted but the
status of the port that is
used by the application was
NOT ACTIVE. To correct this
situation, take one of the
following actions:

– Use the IMS Connect
command OPENPORT dddd,
where dddd is the port
number, to activate the port.

– Restart IMS Connect.

ICO0005E javax.resource.spi.CommExceptio
n:
ICO0005E:methodname error.
A communication error occurred
during sending or receiving the
IMS message.
clientID=[clientid][java_exception]

Explanation
The IMS TM resource adapter was unable to
successfully complete a send and receive interaction
with the target IMS Connect. The clientid in
the message is the client ID of the connection
on which the communication exception occurred.
java_exception indicates the reason for the failure to
complete the interaction.

User response
Use the client ID to help analyze the trace data from
the different components that are involved. Examine
java_exception to determine the reason for the failure.
Some values for java_exception are described in the
following table.

Table 123. Java exceptions for ICO0005E

Java exceptions Description

java.io
.EOFException

Some possible reasons for the
exception are:

• The timeout value that
is specified in the IMS
Connect configuration member
is exceeded before IMS Connect
receives a response from IMS.
Exceeding a timeout value
typically occurs when a region is
not available in IMS to run the
IMS transaction that processes
the client request. If so, ensure
that an appropriate region is
started and available to process
the request. Exceeding a timeout
value can also occur if the
IMS application program that is
associated with the transaction
is stopped. If so, use the IMS
command /START PROGRAM
to start the IMS application
program.

• A Java client tries to use
a previously active client (for
example, a connection from the
pool) for which an IMS Connect
STOPCLNT command has been
issued.

Chapter 51. Diagnosing problems 845

Table 123. Java exceptions for ICO0005E (continued)

Java exceptions Description

java.net
.SocketExceptio
n: Connection
reset by peer:
socket write
error

Some possible reasons for the
exception are:

• A Java client attempts to use
a connection for which the
underlying socket is no longer
connected to IMS Connect.
The socket connection might
be lost if IMS Connect is
recycled, but the application
server is not. After IMS Connect
is restarted, the connections
that were formerly successfully
connected to IMS Connect are
still in the connection pool. As
clients attempt to reuse each of
these connections, the exception
java.net.SocketException
is thrown, and the connection
object is removed from the
connection pool.

You can change this behavior
in WebSphere Application Server
by setting the purge policy of the
connection factory that is used
by the Java application to the
entire pool.

• TCP/IP on the host is coming
down.

ICO0006E javax.resource.ResourceException
:
ICO0006E:methodname error.
The value for DataStoreName is
null or an empty string.

Explanation
The method indicated in methodname was invoked
using an empty DataStoreName parameter. This error
message is displayed in the trace log when a
connection factory with an empty DataStoreName
parameter is started. This message is followed by a
Java EE Connector warning:
J2CA0007W: An exception occurred while invoking
method setDataStoreName on
com.ibm.connector2.ims.ico
.IMSManagedConnectionFactory used by resource
Connection_Factory_JNDI_name.

Processing will then continue leading to other error
messages after IMS Connect sends a response
indicating that a data store with a null name cannot
be found. The underlying message which triggers the
other messages is:

javax.resource.spi.EISSystemException: ICO0001E:
com.ibm.connector2.ims.ico
.IMSTCPIPManagedConnection@.processOutputOTMAMsg
(byte[], InteractionSpec, Record) error.
IMS Connect returned error: RETCODE=[4],
REASONCODE=[NFNDDST].
Datastore not found.

When this error occurs, a corresponding HWSS0742W
warning message is displayed on the z/OS console of
the host system where IMS Connect is running. This
HWSS0742W message includes a field showing the
data store name that it attempted to find, in this case
all blanks:
DESTID= ;

User response:
Provide a valid name for the DataStoreName
parameter. In a managed environment, the
DataStoreName is specified when you configure
a connection factory to be used by WebSphere
Application Server. In a non-managed environment,
the DataStoreName is specified in your Java
application.

ICO0007E javax.resource.NotSupportedExce
ption:
ICO0007E:methodname error.
The [propertyname] property value
[propertyvalue] is not supported.

Explanation:
The value propertyvalue specified for the property
propertyname is not supported.

User response:
Provide a supported value for the named property.
For example, certain values of the interactionVerb
property of the InteractionSpec class that are
defined in the J2C architecture are not supported
by the IMSInteractionSpec class in the IMS TM
resource adapter. Also, a value of true for the
reRoute property is not supported on dedicated
persistent socket connections.

ICO0008E javax.resource.ResourceException
:
ICO0008E:methodname error. The
value [propertyvalue] of the
[propertyname]
property exceeds the maximum
allowable length
of [maxpropertylength].

Explanation:
The length of the value propertyvalue that is
specified for the property propertyname exceeds
maxpropertylength, the maximum length that is
allowed for the value of property propertyname.

User response:
For the named property, provide a value that does not
exceed maxpropertylength.

846 IMS: Application Programming

ICO0009E javax.resource.ResourceException
:
ICO0009E:methodname error.
The [propertyname] property value
[propertyvalue] is not valid.

Explanation:
The value propertyvalue specified for the property
propertyname is not valid.

User response:
Provide a valid value for the named property. For
example, valid values for the interactionVerb
property of the InteractionSpec class of IMS
TM resource adapter are listed in the Javadoc
documentation for the IMSInteractionSpec class.

ICO0010E javax.resource.spi.IllegalStateExc
eption:
ICO0010E:methodname error.
The method was invoked on an
invalid IMSConnection instance.

Explanation:
The method indicated in methodname was invoked
on an invalid IMSConnection instance. If the
methodname is lazyEnlist, an attempt was made
to enlist a connection in the current transaction that
could not be enlisted.

User response
The named method was most likely issued on an
IMSConnection instance that was already closed.

• If the methodname is not lazyEnlist, ensure that
the IMSConnection instance is not already closed
before you attempt to use it or close it.

• If the methodname is lazyEnlist, ensure that your
application is not using non-managed connections
in a managed environment, because only managed
connections are eligible for lazy transaction
enlistment optimization. For more information,
please refer to IBM Documentation for WebSphere
Application Server.

Related information
Lazy transaction enlistment optimizationFor
more information about lazy transaction
enlistment optimization, see IBM
Documentation for WebSphere Application
Server.

ICO0011E javax.resource.spi.IllegalStateExc
eption:
ICO0011E:methodname error.
The method was invoked on an
invalid IMSInteraction instance.

Explanation:

The method indicated in methodname was invoked on
an invalid IMSInteraction instance.

User response:
The named method was most likely issued on an
IMSInteraction instance that was already closed.
Ensure that the IMSInteraction instance is not
already closed before you attempt to use it or close
it.

ICO0012E javax.resource.ResourceException
:
ICO0012E:methodname error.
The value provided for HostName
is null or an empty string.

Explanation:
The method indicated in methodname was invoked
with a null or empty HostName parameter.

User response:
Provide a valid value for the HostName parameter. In a
managed environment, the property value is specified
when you are configuring a Connection Factory to
be used by WebSphere Application Server. In a non-
managed environment, the property value is specified
in your Java application.

ICO0013E javax.resource.ResourceException
:
ICO0013E:methodname error.
The ConnectionManager is null.

Explanation:
The application server invoked the
createConnectionFactory method of the
IMSManagedConnectionFactory class with a null
ConnectionManager object.

User response:
This form of the createConnectionFactory
method is typically used in a managed environment
rather than invoked by a client program. Contact the
service personnel for your application server.

ICO0014E javax.resource.ResourceException
:
ICO0014E:methodname error.
The input record contains no data.

Explanation:
The method that is indicated in methodname was
invoked with an input record that contained no data.

User response:
Verify that the input record that you provide is not
empty.

ICO0015E ResourceAdapterInternalExceptio
n
ICO0015E: methodname error.

Chapter 51. Diagnosing problems 847

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdat_conpoolman.html

An unexpected error occurred
while the OTMA message was
being processed.
[java_exception]

Explanation:
An unexpected internal error was encountered when
the OTMA message was being processed. The local
Java client was unable to locate code page 1047 or
037.

User response:
Ensure that the local Java client has code pages 1047
and 037 installed and that they are not corrupted.

ICO0016E javax.resource.ResourceException
:
ICO0016E:methodname error.
The message was encoded using
an unsupported code page.
[java_exception].

Explanation:
The message cannot be encoded using the specified
code page, or the code page was not found.

User response:
Ensure that the local Java client has code pages 1047
and 037 installed and that they are not corrupted.

ICO0017E ResourceAdapterInternalExceptio
n
ICO0017E:methodname error.
Invalid value provided for
TraceLevel.

Explanation:
An invalid trace level was specified.

User response:
Specify a valid trace level. Optionally, this exception
can be ignored because the default trace level is used
for this connection factory. In this case, the connection
factory is still usable but the trace level is the default
trace level.

ICO0018E javax.resource.ResourceException
:
ICO0018E:methodname error.
The value provided for
PortNumber is null.

Explanation:
The method indicated in methodname was invoked
using a null PortNumber.

User response:
Provide a valid PortNumber parameter. In a managed
environment, the property value is specified when
you are configuring a Connection Factory to be used
by WebSphere Application Server. In a non-managed
environment, the property value is specified in your
Java application.

ICO0020E javax.resource.ResourceException
:
ICO0020E:methodname error.
Alternate client ID is not
supported for interaction
[interactionverb].

Explanation:
The value of interactionverb that is specified with the
alternate client ID is not valid.

User response:
Provide a valid interactionverb value. The
alternate client ID can only be specified for
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, and
SYNC_RECEIVE_CALLOUT.

ICO0024E javax.resource.ResourceException
:
ICO0024E:methodname error.
Invalid segment length (LL) of
[llvalue] in the input object.
[java_exception]

Explanation:
The input message provided by the Java program for
the IMS application program contains a value for its
segment length (llvalue) that is negative, 0, or greater
than the number of bytes of data in the message
segment.

User response:
Provide the correct value for the segment length of the
input message.

ICO0025E javax.resource
.IllegalArgumentException:
ICO0025E:methodname error.
Invalid segment length (LL) of
[llvalue] in the OTMA message.

Explanation:
The output message provided by the IMS application
program contains a value for its segment length
(llvalue) that is negative, 0, or greater than the number
of bytes of data in the message segment. The output
message provided by the IMS application program is
contained in the OTMA message.

User response:
Ensure that your IMS application program provides
valid lengths for the segments of its output message.

ICO0026E javax.resource.ResourceException
:
ICO0026E:methodname error.
An error was encountered while
processing the IMS message.
[source_methodname:source_excep
tion]

848 IMS: Application Programming

Explanation:
An error occurred when the IMS transaction message
is being processed. source_exception provides
additional information regarding the cause of the error.

User response
Examine source_exception for additional information
regarding the cause of the error. Suggested actions
to take, based on the value of source_exception are
described in the following table.

Table 124. Source exceptions for ICO0026E

Source
exceptions Description

java.io
.IOException

Error preparing input or output
record. Ensure that the objects
you are providing to the IMS TM
resource adapter for use as the
IMS transaction input and output
are defined properly for the J2C
architecture. For example, they
must implement the interfaces
javax.resource.cci.Record and
javax.resource.cci.Streamable.

com.ibm.ims.i
co
.IMSConnResou
rce
Exception

The OTMA message containing the
IMS transaction output message
contained an invalid length field
(for example, LLLL was less
than or equal to 0). If this
error continues to occur after
verifying that your IMS application
program is returning a valid
output message, contact your IBM
service representative.

java.lang
.IllegalArgum
ent
Exception

The output message returned
from IMS Connect is invalid.
Ensure that the release levels of
the IMS TM resource adapter and
IMS Connect are compatible. For
example, this exception occurs if
you built a transactional-required
EJB application to perform a two-
phase commit transaction through
TCP/IP by using a newer version
of the resource adapter, but you
are using an out-of-service version
of IMS TM Resource Adapter at
run time. To resolve the problem,
update to the same version of
IMS TM Resource Adapter in the
runtime environment.

ICO0027E javax.resource.ResourceException
:
ICO0027E:methodname error.
The OTMA header of the IMS
output message did not contain a
segment_name segment.

Explanation:
The OTMA header in the IMS transaction output
message was not built properly. It did not contain the
segment identified by segment_name.

User response:
Correct the problem with how the message
header is built. An example of a situation
in which this error could occur is
executing a SYNC_RETRIEVE_ASYNCHOUTPUT_WAIT
or SYNC_RETRIEVE_ASYNCHOUTPUT_NOWAIT
interaction that retrieves a message that was queued
by a non-IMS TM resource adapter client (for example,
a 3270 terminal interaction). Messages that are
queued by non-IMS TM resource adapter clients
typically do not have the OTMA headers that are
required by the IMS TM resource adapter. To resolve
the problem, ensure that the IMS TM resource adapter
and non-IMS TM resource adapter clients use separate
queues for their respective asynchronous output.

ICO0028E javax.resource.ResourceException
:
ICO0028E:methodname error.
The Prefix flag in the OTMA header
Message-Control Information
segment of the
IMS output message is not valid.

Explanation:
The OTMA header in the IMS transaction output
message was not built properly. The Prefix flag in the
OTMA header specified which segments are included
in the OTMA header of the message, but the total
length of the message (which must include both the
headers and the message data) is less than the sum
of the lengths of the specified headers. The total
message length must be equal to or greater than the
total length of the headers, depending on whether the
message contains any data, but never less than the
total length of the headers.

User response:
Correct the problem with how the message header
is built. This situation typically is a result of either
a user message incorrectly modifying the message
header or an internal error in either IMS Connect or
the IMS TM resource adapter. If your user exits are
being used as shipped, without modification, or you
are unable to determine why the headers are not being
built correctly, contact IBM Software Support.

ICO0030E javax.resource.spi

Chapter 51. Diagnosing problems 849

.ApplicationServerInternalExcepti
on:
ICO0030E:methodname error.
[source_methodname:source_excep
tion]

Explanation:
A run time error or exception was
detected in methodname during the interaction.
source_methodname:source_exception indicates where
the error or exception that was detected in
methodname originally occurred and might provide
additional information regarding the cause of the error.

User response
Examine source_exception for additional information
regarding the cause of the error. The
actions to be taken depend on the value
of source_methodname:source_exception. Suggested
actions to take, based on the value of
source_methodname:source_exception are described
in the following table.

Table 125. Source exceptions for ICO0030E

Java
exceptions Description

java.lang
.OutOfMemory
Error

This error is thrown when the Java
Virtual Machine cannot allocate an
object because it is out of memory,
and no more memory could be
made available by the garbage
collector. Increase the amount of
memory that is available to the
virtual machine used by WebSphere
Application Server.

java.io
.Interrupted
IO
Exception

An InterruptedIOException is
thrown to indicate that an input
or output transfer has been
terminated because the thread
performing it was terminated.
Investigate reasons why the thread
was terminated.

ICO0031E javax.resource.spi.IllegalStateExc
eption:
ICO0031E:methodname error.
Protocol violation. The interaction
verb [interactionverb] is not
allowed for
the current state [state].
[java_exception]

Explanation:
The interaction attempted by the application
resulted in a protocol violation. [interactionverb] is

the value of the interactionVerb property of the
IMSInteractionSpec object that was used for the
interaction. [state] is the current state of the protocol
that is used for the interactions between the IMS TM
resource adapter and IMS Connect.

User response:
Ensure that you are using an appropriate
value for the interactionVerb property of the
IMSInteractionSpec class.

ICO0034E javax.resource.NotSupportedExce
ption:
ICO0034E:methodname error.
Auto-commit is not supported.

Explanation:
Auto-commit is not supported by the IMS TM resource
adapter.

User response:
Ensure that your Java application uses classes and
methods that are appropriate for the level of support
that is provided by the IMS TM resource adapter.

ICO0035E javax.resource.NotSupportedExce
ption:
ICO0035E:methodname error.
Local transaction is not supported.

Explanation:
Local transactions are not supported by the IMS TM
resource adapter.

User response:
Ensure that your Java application uses classes and
methods that are appropriate for the level of support
that is provided by the IMS TM resource adapter.

ICO0037E javax.resource.NotSupportedExce
ption:
ICO0037E:methodname error.
ResultSet is not supported.

Explanation:
ResultSets are not supported by the IMS TM resource
adapter.

User response:
Ensure that your Java application uses classes and
methods that are appropriate for the level of support
that the IMS TM resource adapter provides.

ICO0039E javax.resource.spi.IllegalStateExc
eption:
ICO0039E:methodname error.
Not in CONNECT state.

Explanation:
The sequence of interactions between the IMS TM
resource adapter and IMS Connect is invalid. The
current state of the protocol used for the interactions
between the IMS TM resource adapter and IMS

850 IMS: Application Programming

Connect is not CONNECT as it needs to be at this point
in the interactions.

User response:
This is most likely an error in the IMS TM resource
adapter or in IMS Connect. Contact IBM Software
Support.

ICO0040E javax.resource.NotSupportedExce
ption:
ICO0040E:methodname error.
IMSConnector does not support
this version of execute method.

Explanation:
The IMS TM resource adapter does not support
the form of the execute method that takes two
input parameters and returns an object of type
javax.resource.cci.Record.

User response
Use the supported form of the execute method in class
IMSInteraction. The supported form of the execute
method has the following signature:

boolean execute(InteractionSpec, Record input,
 Record output)

ICO0041E javax.resource.ResourceException
:
ICO0041E:methodname error.
An invalid interactionSpec
[interactionSpec] was specified.

Explanation:
An invalid InteractionSpec object was
passed to the execute method of class
com.ibm.connector2.ims.ico.IMSInteraction.

User response:
Ensure that the InteractionSpec object that
you pass to the execute method of class
com.ibm.connector2.ims.ico.IMSInteraction is of type
com.ibm.connector2.ims.ico.IMSInteractionSpec.

ICO0042E javax.resource.ResourceException
:
ICO0042E: methodname error.
The input is not of type
Streamable.

Explanation
The input that is provided to the execute method of
com.ibm.connector2.ims.ico.IMSInteraction
for the Input parameter either was
null or did not implement the interface
javax.resource.cci.Streamable. This exception
occurs most likely when an application is written
to use the Java EE Connector Architecture Common
Client Interface (CCI). This exception does not occur

if a Rational or WebSphere integrated development
environment is used to build the input message.

The execute method allows null input objects for some
types of interactions. For example, interactions with
interactionVerb values of SYNC_END_CONVERSATION,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
allow null input objects.

User response:
Ensure that you provide a valid
javax.resource.cci.Record object for the
input parameter to the execute method. For
example, ensure that this object implements
the interfaces javax.resource.cci.Record and
javax.resource.cci.Streamable.

ICO0043E javax.resource.ResourceException
:
ICO0043E: methodname error.
The output is not of type
Streamable.

Explanation:
The output object provided to the execute method of
com.ibm.connector2.ims.ico.IMSInteraction
either was null or did not implement the interface
javax.resource.cci.Streamable. This exception
occurs most likely when an application is written
to use the Java EE Connector Architecture Common
Client Interface (CCI). This exception does not occur
if a Rational or WebSphere integrated development
environment is used to build the output message.

User response:
Ensure that you provide a valid output object to the
execute method.

ICO0044E javax.resource.NotSupportedExce
ption:
ICO0044E:methodname error.
RecordFactory is not supported by
IMS TM Resource Adapter.

Explanation:
RecordFactory is not supported by the IMS TM
resource adapter.

User response:
Ensure that your Java application uses classes and
methods that are appropriate for the level of support
that the IMS TM resource adapter provides.

ICO0045E javax.resource.NotSupportedExce
ption:
ICO0045E:methodname error.
Invalid type of
ConnectionRequestInfo.

Explanation:
An invalid ConnectionRequestInfo object was passed
to an IMS TM resource adapter method.

Chapter 51. Diagnosing problems 851

User response:
This is most likely an error in the IMS TM resource
adapter. Contact IBM Software Support.

ICO0049E javax.resource.NotSupportedExce
ption:
ICO0049E:methodname error.
The security credentials passed
to getConnection do not match
existing security credentials.

Explanation:
The security credentials in the request do not match
the security credentials of the IMSManagedConnection
instance that is used to process the request.

User response:
Contact IBM Software Support.

ICO0050E ICO0050E: methodname error.
Invalid RACF user id is specified in
SSLKeyStoreName
or SSLTrustStoreName when
specifying a RACF keystore or
truststore.

Explanation:
The user ID specified in the SSLKeyStoreName or the
SSLTrustStoreName property for the RACF keystore or
truststore is not valid.

User response:
Specify a valid user ID and ensure that the RACF user
ID is less than 8 characters long.

ICO0053E javax.resource.ResourceException
:
ICO0053E: methodname error.
The client ID is not value. The
prefix HWS is reserved by the IMS
TM resource
adapter.

Explanation:
The value specified for the clientID property is not
valid. The prefix HWS is reserved by the IMS TM
resource adapter.

User response
Provide a valid value for the clientID property. A
valid value follows the following rules:

• Is not a null string
• Does not start with a blank field
• Does not start with the IMS TM resource adapter

reserved prefix HWS
• Is 8 characters long
• Uses valid characters: A - Z, 0 - 9, @, #, and $

ICO0054E javax.resource.ResourceException
:

ICO0054E:methodname error.
Invalid ConnectionSpec.

Explanation:
The IMS TM resource adapter was unable to cast
the provided connectionSpec for this connection
to type IMSConnectionSpec. Although the Common
Client Interface accepts a connectionSpec object
for any supported connector, the IMS TM resource
adapter works only with an IMSConnectionSpec
or a derivative of IMSConnectionSpec as its
connectionSpec.

User response:
Ensure that the connectionSpec used by your
application is an IMSConnectionSpec or inherits
from IMSConnectionSpec.

ICO0055E javax.resource.ResourceException
:
ICO0055E:methodname error.
Failed to cast the connection
object to IMSConnection.

Explanation:
The IMS TM resource adapter was unable to
cast the connection object allocated by the
ConnectionManager for this connection to type
IMSConnection. The IMS TM resource adapter
works only with an IMSConnection or a derivative
of IMSConnection as its connection object. This
error might be the result of a problem with the
ConnectionManager instance.

User response:
Contact IBM Software Support.

ICO0056E javax.resource.ResourceException
:
ICO0056E:methodname error.
IMSConnectName is only valid for
Local Option connections
which can only be used in z/OS or
OS/390.

Explanation:
Setting the IMSConnectName property of an
IMSManagedConnectionFactory instance is
required for managed connection factory to be used
for Local Option connections. Also, you can use only
Local Option to communicate with IMS Connect if the
application that is using the IMS TM resource adapter
is running on z/OS. This exception indicates that
you have specified a value for the IMSConnectName
property but your application is not running on z/OS.

User response:
Ensure that your application that is using the IMS
TM resource adapter is running on z/OS. The Web
application server where your application is running
must be running in the same z/OS image as IMS
Connect. If, for example, you plan to run your

852 IMS: Application Programming

application on a workstation platform or if the Web
server where you plan to run your application is on
z/OS but in a different z/OS image from IMS Connect,
ensure that the connection factory that is used by your
application is set up to use TCP/IP communication.

ICO0057E javax.resource.spi.IllegalStateExc
eption:
ICO0057E:methodname error.
Invoked with invalid connection
handle.

Explanation:
The application is in an illegal state. The connection
handle (IMSConnection instance) that is used for
this interaction is not valid. The application might
be attempting to use a connection handle that is
either for a previously used connection or for the
wrong connection if the application has more than one
connection open.

User response:
Ensure that the application is using the valid
IMSConnection instance for that connection.

ICO0058E javax.resource.ResourceException
:
ICO0058E:methodname error.
Interactions
SYNC_SEND_RECEIVE,
SYNC_SEND,
SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_NOWAIT and
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_WAIT interactions with
Commit Mode 0
are not supported with Local
Option.

Explanation:

User response:
Ensure that your application is selected with commit
mode 1. If you plan to run your application with
commit mode 0, correct your application to use TCP/IP
communication.

ICO0059E javax.resource.ResourceException
:
ICO0059E: methodname error.
SYNC_END_CONVERSATION
interaction with Commit Mode 0 is
not supported.

Explanation:
Interaction SYNC_END_CONVERSATION with commit
mode 0 is not supported.

User response:
The IMS TM resource adapter
supports the interaction combination

SYNC_END_CONVERSATION with commit mode 1,
SYNC_SEND_RECEIVE with commit mode 0, and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
with commit mode 0.

ICO0060E java.lang.UnsatisfiedLinkError:
ICO0060E:methodname error.
Error loading Local Option native
library: libname=libraryfilename.
[source_exception].

Explanation:
The Local Option native library named libraryfilename
cannot be found in any of the directories listed in the
LIBPATH environment variable.

User response:
Ensure that the Local Option native library exists in
one of the directories in the LIBPATH environment
variable. If the IMS TM resource adapter is running
on WebSphere Application Server for z/OS, ensure
that the full name of the directory that contains
the Local Option native library file is defined in
the LIBPATH environment variable for your Java EE
server. For more information about how to prepare the
base operation system, see IBM Documentation for
WebSphere Application Server.

Related information
Preparing the base z/OS operating systemFor
more information, see IBM Documentation for
WebSphere Application Server.

ICO0061E javax.resource.ResourceException
:
ICO0061E:methodname error.
Local Option runs only in z/OS and
OS/390.

Explanation:
You can use Local Option to communicate with IMS
Connect only if your application using the IMS TM
resource adapter is running on z/OS.

User response:
Ensure that your application using the IMS TM
resource adapter is running on z/OS. The Web
application server where your application is running
must be running in the same z/OS image as IMS
Connect. If you plan to run your application on a
workstation platform or if the Web server where you
plan to run your application is on z/OS but in a
different z/OS image than IMS Connect, ensure that
the connection factory used by your application is set
up to use TCP/IP communication.

ICO0062E javax.resource.ResourceException
:
ICO0062E:methodname error.

Chapter 51. Diagnosing problems 853

http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.installation.zseries.doc/ae/tins_preparez.html

Error loading Local
Option native method:
libfilename=libraryFileName,
methodname=nativeMethodName.
[source_exception].

Explanation:
The Local Option native method named
nativemethodname cannot be found in the Local
Option native library file named libraryfilename.

User response:
Verify that you have the correct level of the IMS
TM resource adapter and Local Option native library
installed on your system. Always use the version of
the Local Option native library that shipped with the
IMS TM resource adapter that you installed in your
WebSphere Application Server for z/OS.

ICO0063E javax.resource.spi
.ResourceAdapterInternalExceptio
n:
ICO0063E:methodname error.
Exception thrown in native
method. [source_exception].

Explanation:
An internal error occurred in the Local Option native
method.

User response:
Contact IBM Software Support.

ICO0064E javax.resource.spi.SecurityExcepti
on:
ICO0064E:methodname error.
Invalid security credential.

Explanation:
WebSphere Application Server did not provide a
security credential that is supported by the IMS TM
resource adapter.

User response:
Ensure that you have the correct level of WebSphere
Application Server for z/OS installed. Configure
WebSphere Application Server for z/OS to provide
a security credential that is supported by IMS TM
resource adapter (the PasswordCredential for TCP/IP
connections and the UToken GenericCredential for
Local Option connections).

ICO0065E javax.resource.spi.SecurityExcepti
on:
ICO0065E:methodname error.
Error obtaining credential data
from the security credential.
[source_exception].

Explanation:
A security-related error occurred in obtaining the
credential data from the security credential provided
by the application server.

User response:
Ensure that you correctly set up security for your
application server so that the user associated with the
calling program is authorized to extract the data from a
security credential.

ICO0066E javax.resource.ResourceException
:
ICO0066E:methodname error.
Error loading WebSphere
Application Server
Transaction Manager.
[source_exception].

Explanation:
An error occurred when accessing the transaction
manager of the WebSphere Application Server for
processing the transaction request.

User response:
Ensure that you have the correct level of WebSphere
Application Server for z/OS installed.

ICO0068E javax.resource.ResourceException
:
ICO0068E:methodname error.
Error obtaining the transaction
object. [java_exception]

Explanation:
An error occurred in determining if a transaction has
been started using the WebSphere Application Server
for z/OS transaction manager.

User response:
Ensure that you have the correct level of WebSphere
Application Server for z/OS installed.

ICO0069E javax.resource.spi
.ResourceAllocationException
ICO0069E:methodname error.
Error obtaining RRS transaction
context token.
IMSConnResourceException: RRS
retcode=[rrs_routinecode].

Explanation:
An unexpected internal error occurred in obtaining a
Recovery Resource Services (RRS) transaction context
token for processing the global transaction.

User response:
Check the RRS job log for associated RRS error
messages. For diagnostic information about the RRS
return code (rrs_routinecode) see z/OS V1R9 MVS
Programming: Resource Recovery or the same manual
for your release of z/OS.

Related information
RRS return code in Resource recovery services
(RRS) in z/OS MVS Programming: Callable
Services for High-Level LanguagesFor more
information, see the Resource recovery services

854 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm

(RRS) return code information in z/OS MVS
Programming: Callable Services for High-Level
Languages.

ICO0070E javax.resource.spi.EISSystemExce
ption
ICO0070E:methodname error.
IMS Connect reported an RRS
error: IMS Connect Return
Code=[returncode],
RRS Routine
name=[rrs_routine], RRS Return
code=[rrs_routinecode].

Explanation:
IMS Connect returned an error that resulted from a
Recovery Resource Services (RRS) failure.

User response:
Check the z/OS console for associated IMS Connect
and RRS error messages. For diagnostic information
about the return code (returncode) value, as well as
IMS Connect error messages, see the IMS Messages
and Codes information. For diagnostic information
about the RRS return code (rrs_routinecode) locate the
RRS routine name (rrs_routine) within z/OS V1R9 MVS
Programming: Resource Recovery or the same manual
for your release of z/OS.

Related information
RRS return code in Resource recovery services
(RRS) in z/OS MVS Programming: Callable
Services for High-Level LanguagesFor more
information, see the Resource recovery services
(RRS) return code information in z/OS MVS
Programming: Callable Services for High-Level
Languages.

ICO0071E javax.transaction.xa.xAException
ICO0071E:methodname error.
A communication error occurred
when processing the XA
commandtype operation.
[java_exception]

Explanation:
A communication failure during the processing of a
global transaction can occur when a TCP/IP or socket
failure occurs or when IMS Connect is down. The
connection in error will not be reused.

User response
• Examine the Java exceptions to determine the

reason for the failure to connect to the host.
• Check the z/OS console for associated IMS Connect

or TCP/IP error messages.
• Validate that system can be reached through TCP/IP

and that IMS Connect has not been brought down.

The command type (commandtype) in the error
message refers to the stage at which this
communication failure occurred during the global
transaction: prepare, commit, rollback, recover, or
forget.

ICO0072E javax.transaction.xa.xAException:
ICO0072E:methodname error.
The associated UR for the Xid is
not found.

Explanation:
During transaction processing a unit of recovery (UR)
that was tied to a specific global transaction ID (XID)
was eliminated by manual intervention or an error in
IMS Connect or Recovery Resource Services (RRS).

User response:
See IBM Documentation for WebSphere Application
Server for steps on how to acquire transaction
information and Xids within the WebSphere
Application Server logs. Refer to the IMS Version 14
Commands, Volume 3 for IMS commands that list the
XIDs and their associated UR. Verify that a UR is listed
for that XID. Verify that the global transaction was not
left in a state where the transactions need manual
completion.

Related information
IBM Documentation for WebSphere Application
Server 8.5.5For more information about
resolving transaction information and Xids, see
IBM Documentation for WebSphere Application
Server 8.5.5.

ICO0073E javax.transaction.xa.xAException:
ICO0073E:methodname error.
RRS is not available.

Explanation:
Recovery Resource Services (RRS) has been brought
down, or communication between RRS and IMS
Connect has ended.

User response:
Check the z/OS console for associated IMS Connect
and RRS error messages. Ensure that RRS has not
been brought down on your z/OS system. Refer to IMS
Version 14 Communications and Connections for IMS
Connect commands that can be used to verify that RRS
is enabled.

Related information
RRS return code in Resource recovery services
(RRS) in z/OS MVS Programming: Callable
Services for High-Level LanguagesFor more
information, see the Resource recovery services
(RRS) return code information in z/OS MVS
Programming: Callable Services for High-Level
Languages.
IBM Documentation for WebSphere Application
Server 8.5.5For more information about

Chapter 51. Diagnosing problems 855

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html

resolving transaction information and Xids, see
IBM Documentation for WebSphere Application
Server 8.5.5.

ICO0074E javax.transaction.xa.xAException:
ICO0074E: The RRS rrs_routine
call returns with a return code
[rrs_routinecode].

Explanation:
During the processing of your global transaction, the
Recovery Resource Services (RRS) error message was
passed by IMS Connect.

User response
Check the z/OS console for associated IMS Connect
and RRS error messages. For diagnostic information
on the RRS return code (rrs_routinecode) locate the
RRS routine name (rrs_routine) within z/OS V1R9 MVS
Programming: Resource Recovery, or the same manual
for the version of your release of z/OS.

Related information
RRS return code in Resource recovery services
(RRS) in z/OS MVS Programming: Callable
Services for High-Level LanguagesFor more
information, see the Resource recovery services
(RRS) return code information in z/OS MVS
Programming: Callable Services for High-Level
Languages.

ICO0075E javax.transaction.xa.xAException:
ICO0075E:methodname error.
The transaction branch might have
been heuristically completed.
[rrs_exception]

Explanation:
An Recovery Resource Services (RRS) error was
passed by IMS Connect that indicates that the
processing of your transaction might be left in a state
where part of the transaction was committed and part
of it encountered an error during the commit phase.
The rrs_exception is an ICO0074E error message that
indicates the RRS routine and return code that are
associated with this issue.

User response
Check the z/OS console for associated IMS Connect
and RRS error messages. For diagnostic information
on the RRS return code (rrs_routinecode) locate the
RRS routine name (rrs_routine) within z/OS V1R9 MVS
Programming: Resource Recovery, or the same manual
for the version of your release of z/OS.

See IBM Documentation for WebSphere Application
Server for steps on how to acquire transaction
information and global transaction ID (XID) within

theWebSphere Application Server logs. Refer to IMS
Version 14 Communications and Connections for IMS
Connect commands that list the XIDs and their
associated units of recovery (URs). Determine the XIDs
and URs that are involved and the result that should
have been committed to IMS. Verify values within
IMS to determine that a heuristic state, where the
completion of the transaction cannot be determined,
has occurred. Decide the action to take to rectify the
data within IMS so that it matches the result that
would have been committed, or to rectify the other
databases that are involved to return to a state before
the execution of that transaction.

Related information
RRS return code in Resource recovery services
(RRS) in z/OS MVS Programming: Callable
Services for High-Level LanguagesFor more
information, see the Resource recovery services
(RRS) return code information in z/OS MVS
Programming: Callable Services for High-Level
Languages.
IBM Documentation for WebSphere Application
Server 8.5.5For more information about
resolving transaction information and Xids, see
IBM Documentation for WebSphere Application
Server 8.5.5.

ICO0076E javax.resource.ResourceException
:
ICO0076E:methodname error.
An internal error occurred.
[rrs_exception]

Explanation:
An internal error occurred in extracting information
about an Recovery Resource Services (RRS) error
message from IMS Connect. The rrs_exception is an
ICO0074E error message indicating the RRS routine
and return code associated with the error.

User response
Check the z/OS console for associated IMS Connect
and RRS error messages. For diagnostic information
on the RRS return code (rrs_routinecode) locate the
RRS routine name (rrs_routine) within z/OS V1R9 MVS
Programming: Resource Recovery, or the same manual
for the version of your release of z/OS.

Related information
RRS return code in Resource recovery services
(RRS) in z/OS MVS Programming: Callable
Services for High-Level LanguagesFor more
information, see the Resource recovery services
(RRS) return code information in z/OS MVS
Programming: Callable Services for High-Level
Languages.

856 IMS: Application Programming

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieac100/rrs.htm

ICO0077E javax.resource.ResourceException
:
ICO0077E:methodname error. The
transaction has already rolled
back. [rrs_exception]

Explanation:
An Recovery Resource Services (RRS) error has been
passed by IMS Connect, which indicates that the
attempt to roll back a transaction has been made a
second time on the same unit of recovery (UR). RRS
prevents the second rollback from taking place and
throws an error indicating that such an action is being
attempted. The rrs_exception is an ICO0074E error
message indicating the RRS routine and return code
associated with the error.

User response:
No action is needed as the transaction should be rolled
back. Refer to the documentation for ICO0074E for
more information about the RRS failure that has taken
place. As a precaution, verify that data was not lost or
modified before the execution of the transaction.

Related information
ICO0074E
javax.transaction.xa.xAException:
ICO0074E: The RRS rrs_routine call returns with
a return code [rrs_routinecode].

ICO0078E javax.resource.ResourceException
:
ICO0078E: methodname error.
A valid user-specified clientID is
required for interactions on a
dedicated persistent connection.

Explanation:
A valid, user-specified value is required for the
clientID property when the commit mode is
0, and the interaction is using a dedicated
persistent socket connection. This requirement
applies to SYNC_SEND_RECEIVE, SYNC_SEND,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions.

User response
Provide a valid value for the clientID property. A
valid value must follow the following rules:

• Is not a null string
• Does not begin with a blank field
• Does not begin with the IMS TM resource adapter

reserved prefix HWS
• Is eight characters long
• Has valid characters A - Z, 0 - 9, and @, #, $

ICO0079E com.ibm.connector2.ims.ico

.IMSDFSMessageException:
ICO0079E:methodname error.
IMS returned a DFS
message:DFS_message

Explanation
IMS returned a DFS message (DFS_message)
instead of the output of the IMS transaction. This
exception is thrown if the interaction uses the
value IMS_REQUEST_TYPE_IMS_TRANSACTION for
the imsRequestType property.

For example, if the Java application attempts to run
an IMS transaction that is stopped, this exception is
thrown and the value of DFS_message might be:

DFS064 hh:mm:ss DESTINATION CAN NOT BE FOUND OR
 CREATED, DEST=
DFS065 hh:mm:ss TRAN/LTERM STOPPED

User response:
Find the explanation and response that corresponds
to DFS_message in the IMS Messages and Codes
documentation, and then address the problem in IMS.

ICO0080E javax.resource.spi.EISSystemExce
ption:
ICO0080E:methodname error.
Execution timeout has occurred
for this interaction. The
executionTimeout
was [executionTimeout_value]
milliseconds. The IMS Connect
TIMEOUT was used.

Explanation
The time it took for IMS Connect to send
a message to IMS and receive the response
(executionTimeout_value)) was greater than the IMS
Connect TIMEOUT value. The IMS Connect TIMEOUT
value is:

• Specified in the IMS Connect configuration member
for SYNC_SEND_RECEIVE interactions

• 2 seconds for SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_NOWAIT, and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions

The IMS Connect TIMEOUT value was used because
the executionTimeout property for this interaction
was not specified or has been set to zero.

User response:
Ensure that your application has set a
valid executionTimeout value. To set the
executionTimeout values, you can use either
a WebSphere or Rational integrated development

Chapter 51. Diagnosing problems 857

environment, or use the setExecutionTimeout
method.

ICO0081E javax.resource.spi.EISSystemExce
ption:
ICO0081E:methodname error.
Execution timeout has occurred
for this interaction. The
executionTimeout
value specified
was [executionTimeout_value]
milliseconds.
The value used by IMS Connect
was
[rounded_executionTimeout_value]
milliseconds.

Explanation:
The amount of time that it took for IMS
Connect to send a message to IMS and receive
the response (executionTimeout_value) was greater
than the executionTimeout value that was
rounded to an appropriate execution timeout
interval, rounded_executionTimeout_value. After a
valid execution timeout value is set, this value is
converted into a value that IMS Connect can use.

User response
If the rounded execution timeout value is not what you
expected, verify that the value follows the conversion
rules:

Table 126. Execution timeout value conversion rules

Range of
user-
specified
values Conversion rule

1 - 250 If the user-specified value is not
divisible by 10, it is converted to the
next greater increment of 10.

251 - 1000 If the user-specified value is not
divisible by 50, it is converted to the
next greater increment of 50.

1001 -
60000

The user-specified value is converted
to the nearest increment of 1000.
Values that are exactly between
increments of 1000 are converted to
the next greater increment of 1000.

60001 - 3
600000

The user-specified value is converted
to the nearest increment of 60000.
Values that are exactly between
increments of 60000 are converted to
the next greater increment of 60000.

ICO0082E javax.resource.NotSupportedExce
ption:
ICO0082E:methodname error.
Execution timeout has occurred
for this interaction. The
executionTimeout
value of [{executionTimeout_value}]
milliseconds is not supported.
The valid range is
[{executionTimeout_waitforever_fla
g}, 0 to
{maximum_executionTimeout_valu
e}] milliseconds.
The IMS Connect TIMEOUT was
used.

Explanation:
The execution timeout value that was specified for
the executionTimeout property did not meet the
requirements for the minimum or maximum timeout
values.

User response:
Ensure that your application has set a valid value
for the executionTimeout property. The execution
timeout value is represented in milliseconds and must
be a decimal integer in the range of 1 to 3600000,
inclusively. You can also set the value to -1 if you want
an interaction to run without a time limit.

Related reference
Execution timeout (executionTimeout)
This property specifies the maximum amount of
time that is allowed for IMS Connect to send a
message to IMS and receive a response

ICO0083E javax.resource.ResourceException
:
ICO0083E:methodname error.
SYNC_SEND_RECEIVE,
SYNC_SEND,
SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_NOWAIT and
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_WAIT interactions with
Commit Mode 0
are not valid within the scope of a
global transaction.

Explanation:
SYNC_SEND_RECEIVE, SYNC_SEND,
SYNC_RECEIVE_ASYNCOUTPUT (deprecated),
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
(replacing SYNC_RECEIVE_ASYNCOUTPUT)
and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions with commit mode 0 are not valid
within the scope of a global transaction. The global
transaction requires commit mode 1 interactions with
a sync level of SYNC_LEVEL_SYNCPOINT.

858 IMS: Application Programming

User response
• If you want to use commit mode 0, ensure that

your application is configured as a non-transactional
application.

• If you want to run your interactions within the scope
of a global transaction, the commitMode property
value must be 1.

ICO0084E javax.resource.ResourceException
:
ICO0084E:methodname error.
An unexpected internal IMS TM
Resource Adapter error occurred.
[source_method] [source_exception]

Explanation:
A PrivelegedActionException occurred in
executing a [source_method] call in methodname.
This exception occurs if Java EE security is enabled
and the user associated with the calling program,
methodname, or any program in the current call stack
is not authorized to execute [source_method].

User response:
Ensure that you have correctly set up security for your
application server so that the user associated with
the calling program, along with any programs in the
current call stack at the time of the exception, are
authorized to execute [source_method]. Alternatively,
turn off Java EE security checking in the application
server.

ICO0085E javax.resource.ResourceException
:
ICO0085E: methodname error.
Protocol violation. A user-
specified clientID is not allowed
for interactions
on a shareable persistent socket.

Explanation:
The value specified for the clientID property is not
allowed. Because the connection factory is configured
for a shareable persistent socket, a user-specified
client ID is not allowed within this connection factory.

User response:
For a shareable persistent socket connection factory,
the IMS TM resource adapter provides a generated
client ID. User-specified client ID is not allowed. To
determine if you are using a shareable persistent
socket, check for a value of false for the
CM0Dedicated property of the connection factory that
is used by the interaction.

Related reference
Client ID (clientID)
A value for this property must be provided when
an application component uses a dedicated

persistent socket connection to IMS Connect to
identify this particular client.

ICO0086E javax.resource.ResourceException
:
ICO0086E:methodname error.
Invalid value was specified for
CommitMode property.

Explanation:
The value that you specified in the commitMode
property field is invalid.

User response
Ensure that your application has set a valid value for
the commitMode property. Values supported are:

• 1 (SEND_THEN_COMMIT) indicates that IMS
processes the transaction and sends a response
back before committing the data.

• 0 (COMMIT_THEN_SEND) indicates that IMS
processes the transaction and commits the data
before sending a response.

Related reference
Commit mode (commitMode)
This property indicates the type of commit
mode processing to be performed for an IMS
transaction.

ICO0087E javax.resource.ResourceException
:
ICO0087E: methodname error.
Protocol violation. commit mode 1
is not allowed for interactions on a
dedicated persistent socket.

Explanation:
The value of 1 that is specified for the commitMode
property is invalid. Because the connection factory is
configured for a dedicated persistent socket, commit
mode 1 is not allowed.

User response:
For a dedicated persistent socket connection factory,
only commit mode 0 interactions are valid. To
determine if you are using a dedicated persistent
socket, check for a value of true for the
CM0Dedicated property of the connection factory that
is used by the interaction.

Related reference
CM0 dedicated (CM0Dedicated)
This optional property applies to TCP/IP
connections only. The default value is false,
which indicates that the connection factory
will generate shareable persistent socket

Chapter 51. Diagnosing problems 859

connections that can be used by commit mode
0 and commit mode 1 interactions.

ICO0088E javax.resource.ResourceException
:
ICO0088E: methodname error.
Protocol violation.
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_NOWAIT interactions
are not allowed on a shareable
persistent socket.

Explanation:
The value
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
that is specified for the interactionVerb property
is not valid. Because the connection factory
is configured for a shareable persistent socket,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT is
not allowed.

User response:
Determine if you are using a shareable persistent
connection by checking for a value of false for
the CM0Dedicated property of the connection
factory that is used by the interaction. Set the
interaction to SYNC_SEND_RECEIVE, SYNC_SEND, and
SYNC_END_CONVERSATION for shareable persistent
connections.

ICO0089I javax.resource.ResourceException
:
ICO0089I: methodname.
Non-persistent socket closed for
Commit Mode 0 IMS transaction.

Explanation:
Running commit mode 0 with non-persistent socket
(transaction socket), the IMS TM resource adapter
forces the removal of managed connection object from
the connection pool.

User response:
No action is required.

ICO0091E javax.resource.ResourceException
:
ICO0091E: methodname
error.SSL client context could not
be created. [{1}]

Explanation
An SSL context could not be created due to one of the
following reasons:

• The algorithm that checks the integrity of the
keystore cannot be found.

• The certificates in the keystore could not be loaded.
• The key cannot be recovered (for example, the
specified password is wrong).

User response
Ensure that:

• The algorithm that creates the certificates is
supported by the IBM Java Secure Socket Extension
provider (IBMJSSE).

• The passwords for the keystore and truststore are
correct.

ICO0096I javax.resource.ResourceException
:
ICO0096I: methodname
Warning. Invalid value provided
for SSL parameter.

Explanation:
The method indicated in methodname was invoked
by using a null or empty SSLKeystoreName,
SSLKeystorePassword, SSLTruststoreName, or
SSLTruststorePassword parameter. This information
message does not terminate the program execution.

User response:
Provide valid values for SSLKeystoreName,
SSLKeystorePassword, SSLTruststoreName and
SSLTruststorePassword parameters. For convenience,
you can store private keys and certificates in either a
keystore or a truststore. Only one set of valid values
(either SSLKeystoreName and SSLKeystorePassword
or SSLTruststoreName and SSLTruststorePassword)
are required for proper execution.

ICO0097E javax.resource.ResourceException
:
ICO0097E:methodname error.
The given value is invalid for
'SSLEncryptionType'. The value
must
be 'STRONG' for strong encryption,
'WEAK' for weak (export)
encryption or
'ENULL' for null (no) encryption.

Explanation:
A value other than STRONG, WEAK, or ENULL was
provided for the SSLEncryptionType parameter.

User response:
Specify STRONG, WEAK, or ENULL for the
SSLEncryptionType parameter. The value is not case-
sensitive.

Related reference
SSL encryption type (SSLEncryptionType)
This optional property applies to TCP/IP
connections only, and specifies the SSL
encryption type. The SSLEnabled property
must be set to true.

ICO0111E javax.resource.ResourceException
:

860 IMS: Application Programming

ICO0111E:methodname error.
SSLEnabled must be set to FALSE
when using Local Option.

Explanation:
The property SSLEnabled is set to true, and the
property IMSConnectName is set to a non-null value,
which indicates that local option connections are
used. However, SSL is not supported on local option
connections.

User response:
Set the SSLEnabled property to false.

ICO0112E ICO0112E:methodname error.
Connection is closed due to
transaction timeout.

Explanation:
The connection is closed due to a WebSphere
Application Server transaction timeout.

User response:
Allow more time for your transaction to complete
by increasing the WebSphere Application Server
transaction timeout value.

ICO0113E javax.resource.spi.CommExceptio
n:
ICO0113E: methodname error.
Socket timeout has occurred
for this interaction. The socket
timeout value
specified was
[socket_timeout_value]
milliseconds.
[source_exception:exception_reaso
n]

Explanation:
The execution timeout value for the IMS TM resource
adapter to receive a response from IMS Connect is
greater than the value that is specified for socket
timeout.

User response:
Ensure that the value of the socketTimeout property
is sufficient for the IMS TM resource adapter to receive
a response from IMS Connect. If it is not, increase the
value. If the value of the socketTimeout property
given is sufficient, network problems might be causing
delays. Contact your network administrator.

Related reference
Socket timeout (socketTimeout)
The maximum amount of time the IMS TM
resource adapter waits for a response from IMS
Connect before disconnecting the socket and
returning an exception to the client application.

ICO0114E javax.resource.ResourceException
:

ICO0114E: methodname error.
The socket timeout value
of [socket_timeout_value]
milliseconds is not valid.
[source_exception:exception_reaso
n]

Explanation:
The value socket_timeout_value that was specified for
the socketTimeout property is not valid.

User response:
Review the exception reason provided. Ensure that the
socketTimeout property is set to a positive numeric
value.

Related reference
Socket timeout (socketTimeout)
The maximum amount of time the IMS TM
resource adapter waits for a response from IMS
Connect before disconnecting the socket and
returning an exception to the client application.

ICO0115E javax.resource.spi.CommExceptio
n:
ICO0115E: methodname error.
A TCP Error occurred.

Explanation:
An error occurred in the underlying network protocol.

User response:
Contact your network administrator.

ICO0116E ICO0116E:methodname error. A
Common Client Interface error
occurred.

Explanation:
An error occurred in the underlying protocol.

User response:
Contact IBM Software Support.

ICO0117E javax.resource.ResourceException
:
ICO0117E: methodname error.
Protocol violation: Commit Mode 1
is not allowed for SYNC_SEND,
SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_NOWAIT
and
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_WAIT interactions.

Explanation:
The IMS TM resource adapter supports only commit
mode 0 for SYNC_SEND interactions.

User response:
Correct either the commit mode or the interaction
verb. Commit mode 0 is required for SYNC_SEND,

Chapter 51. Diagnosing problems 861

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions. Commit mode 1 is
valid with SYNC_SEND_RECEIVE and
SYNC_END_CONVERSATION interactions.

Related concepts
Interactions supported with commit mode and
sync level combinations
The interactions that are supported by the
IMS TM resource adapter depend on the
combination of commit mode and sync level
that you choose.

ICO0118E javax.resource.ResourceException
:
ICO0118E: methodname error.
Protocol violation. IMS request
type 2 (IMS_REQUEST_TYPE_IMS
_COMMAND)
is not allowed for SYNC_SEND,
SYNC_END_CONVERSATION,
SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_NOWAIT and
SYNC_RECEIVE_ASYNCOUTPUT
_SINGLE_WAIT
interactions.

Explanation:
The value 2 (IMS_REQUEST_TYPE_IMS_COMMAND)
that was specified for the imsRequestType property is
invalid.

User response:
The value of 2 (IMS_REQUEST_TYPE_IMS_COMMAND)
for the ImsRequestType property is valid only
with the SYNC_SEND_RECEIVE interaction. The
value of 1 (IMS_REQUEST_TYPE_IMS_TRANSACTION)
is required for
SYNC_SEND, SYNC_END_CONVERSATION,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions.

ICO0119E javax.resource.ResourceException
:
ICO0119E: methodname error.
A supported SSL provider was not
found. [caught_exception]

Explanation:
When attempting to initialize a Secure Sockets Layer
(SSL) TCP/IP connection with IMS Connect, the IMS
TM resource adapter needs to use one of the two
supported providers: com.ibm.jsse.JSSEProvider or
sun.security.provider.Sun. This error indicates that
neither of these providers is available.

User response:

The provider com.ibm.jsse.JSSEProvider is added
by default in an IBM JVM. The provider
sun.security.provider.Sun is added by default in a Sun
JVM. Ensure that you are running the IMS TM resource
adapter in a supported IBM JVM if you are running in
WebSphere Application Server or a Sun JVM in other
application servers.

ICO0121E javax.resource.ResourceException
:
ICO0121E: methodname error.
Invalid reRoute name value. Prefix
HWS is reserved for use by
IMS TM Resource Adapter.

Explanation:
The value for the reRouteName property is invalid. The
prefix HWS is reserved for use only by the IMS TM
resource adapter.

User response:
Provide a valid value for the reRouteName property.
See the reRouteName property information for more
information.

Related reference
Reroute name (reRouteName)
This property provides the name of the
destination to which asynchronous output is
queued.

ICO0122E javax.resource.ResourceException
:
ICO0122E: methodname error.
Invalid reRoute value. When
purgeAsyncOutput value is true,
reRoute
value cannot be true.

Explanation:
The value for the reRoute property is invalid because
the value for the purgeAsyncOutput property is set
to true, or the default value (true) is used for the
purgeAsyncOutput property.

User response:
Set the purgeAsyncOutput property to false if you
want to set the reRoute property to true.

Related reference
Purge async output (purgeAsyncOutput)
This input property determines whether or not
IMS Connect purges undelivered output.
Reroute (reRoute)
This input property determines whether
undelivered output is to be rerouted to a named
destination that is specified in the reRouteName
field.

ICO0123E javax.resource.NotSupportedExce
ption:

862 IMS: Application Programming

ICO0123E : methodname error .
A Sync Level value of synclevel
is not supported for commit-then-
send
(Commit mode 0) interactions.

Explanation:
The value specified for the syncLevel property is
not supported for commit-then-send (commit mode
0) interactions . The value 1 (confirm) is the only
supported value of the syncLevel property for
commit-then-send (commit mode 0) interactions.

User response:
Specify the value of 1 (confirm) for the syncLevel
property, or accept the default sync level value 1 for
commit-then-send (commit mode 0) interactions.

Related reference
Sync level (syncLevel)
This input property specifies the
synchronization level of the interaction between
the IMS TM resource adapter and IMS OTMA.

ICO0124E javax.resource.ResourceException
:
ICO0124E : methodname error .
SYNC_SEND_RECEIVE interactions
with Sync Level Confirm are not
supported
with Local Option.

Explanation:
Commit-then-send (commit mode 0) interactions are
not supported with Local Option. Send-then-commit
(commit mode 1) interactions with a sync level of
confirm (1) are not supported with Local Option.

User response:
Do not use Local Option for this functionality.

ICO0125E javax.resource.EISSystemExcepti
on:
ICO0125E : methodname error.
An internal error occurred. The
status of the IMS transaction
associated
with this SYNC_SEND_RECEIVE
interaction with Commit Mode 1
and Sync Level 1
cannot be determined.

Explanation:
As part of the send-then-commit (commit mode 1)
sync level confirm (1) protocol, the IMS TM resource
adapter received an output message from the IMS
transaction, sent a positive acknowledgment to IMS
Connect, but received an error indication instead of
the expected indication from IMS Connect that the
transaction was committed. The output message that
was received by the IMS TM resource adapter was

not returned to the application component. The IMS
transaction might or might not have been committed.

User response:
Determine whether the in-flight transaction was
committed or aborted by consulting the type X'01'
and X'03' IMS log records on the target IMS system.
Perform reconciliation between the state of the IMS
system and the external application if necessary.

ICO0126E javax.resource.ResourceException
:
ICO0126E : methodname error .
IMS Connect reported a Commit
Mode 1 Sync Level Confirm error:
IMS
Connect Return
Code=[returncode], Reason
Code=[reasoncode].
reasoncode_string

Explanation:
IMS Connect returned an error. The connection in error
will not be reused. reasoncode_string provides a brief
description of the reason code, if available.

User response:
Check the z/OS console for associated IMS Connect
error messages. IMS Connect error messages begin
with the characters HWS.

ICO0127E com.ibm.ims.ico
.IMSIllegalStateException:
ICO0127E : methodname error.
Protocol violation. The Mode
[mode] is not allowed for the
current state
[state]. [java_exception]

Explanation:
The IMS TM resource adapter is in an illegal state.

User response:
This is most likely an error in the IMS TM resource
adapter or IMS Connect. Contact your IBM service
representative.

ICO0128E javax.resource.NotSupportedExce
ption
ICO0128E : methodname error.
The Sync Level property value of
[synclevel] given is invalid. Sync
Level
NONE (0) and Sync Level CONFIRM
(1) are the only values supported
by the
setSyncLevel(int) method.

Explanation:
A value other than 0 or 1 was specified as input to the
setSyncLevel(int) method.

User response:

Chapter 51. Diagnosing problems 863

Specify either 0 or 1 as a sync level property value
input to the setSyncLevel(int) method.

Related reference
Sync level (syncLevel)
This input property specifies the
synchronization level of the interaction between
the IMS TM resource adapter and IMS OTMA.

ICO0129E javax.resource.ResourceException
:
ICO0129E:methodname error.
Specifying the Alternate ClientID
is not allowed on a dedicated
persistent
connection. The Alternate ClientID
value is supported on shareable
persistent
socket connections ONLY.

Explanation:
The retrieval of asynchronous output using an
alternate client ID is supported only on shareable
persistent socket connections.

User response:
Use a shareable persistent socket connection to
retrieve asynchronous output with an alternate client
ID.

Related reference
Alternate client ID (altClientID)
This input-only property provides the name
of an alternate client ID. This name is used
as a tpipe from which asynchronous output
is retrieved on a shareable persistent socket
connection.

ICO0130E javax.resource.ResourceException
:
ICO0130E:methodname error.
The ignorePURGCall property is
not allowed on a dedicated
persistent connection.

Explanation:
The ignorePURGCall property is not supported
on a dedicated persistent connection for
SYNC_SEND_RECEIVE interactions. An exception is
thrown if you try to set this property on a dedicated
persistent connection.

User response:
Either use a shareable persistent socket connection for
the interaction (preferred solution) or do not set the
ignorePURGCall property if your application must use a
dedicated persistent connection.

Related reference
Ignore PURG call (ignorePURGCall)

This property controls whether or not multiple
ISRT and PURG calls in an IMS application for a
commit mode 0 interaction is to be ignored.

ICO0131E javax.resource.ResourceException
:
ICO0130E:methodname error.
The property ignorePURGCall is
not supported for interaction verb
[SYNC_END_CONVERSATION or
SYNC_RECEIVE_ASYNCOUTPUT_*
].
The property ignorePURGCall can
only be specified for interaction
SYNC_SEND
and SYNC_SEND_RECEIVE.

Explanation:
The ignorePURGCall property is not
supported for SYNC_END_CONVERSATION,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,
and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions.

User response:
Use the SYNC_SEND or SYNC_SEND_RECEIVE
interaction on a shareable persistent
socket connection. If your intent is
to execute a SYNC_END_CONVERSATION,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,
or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interaction, do not specify a value of true for the
ignorePURGCall property.

Related reference
Ignore PURG call (ignorePURGCall)
This property controls whether or not multiple
ISRT and PURG calls in an IMS application for a
commit mode 0 interaction is to be ignored.

ICO0132E IMS Connect returned an
error during a conversational
transaction:
RETCODE=[{1}],
REASONCODE=[{2}]. {3}

Explanation:
IMS Connect returned an error return code and reason
code during a conversational transaction.

User response:
Refer to the IMS Messages and Codes documentation
and take the appropriate action that is suggested for
the specific return code and reason code.

ICO0133E The interactionVerb must be
either SYNC_SEND_RECEIVE or
SYNC_END_CONVERSATION
when the value of the
IMSInteractionSpec property
useConvID is true (client-managed

864 IMS: Application Programming

conversation state programming
model).

Explanation:
The interactionVerb property of the
IMSInteractionSpec object is not set to
SYNC_SEND_RECEIVE or SYNC_END_CONVERSATION.

User response:
Use either SYNC_SEND_RECEIVE or
SYNC_END_CONVERSATION for the interaction verb
setting of the IMSInteractionSpec object.

Related reference
Interaction verb (interactionVerb)
Specifies the mode of interaction between the
Java application and IMS. The following table
describes the values that are supported by the
IMS TM resource adapter.

ICO0134E When the value of
IMSInteractionSpec property
useConvID is true (client-managed
conversation state programming
model), conversational
transactions are supported
on shareable persistent socket
connections ONLY.

Explanation:
Conversational transactions that use the conversation
ID to track the iterations of a conversation (by setting
the IMSInteractionSpec useConvID property to true)
are supported only on shareable persistent socket
connections.

User response:
Use shareable persistent socket connections with
the client-managed conversation state programming
model.

ICO0135E When the value of
IMSInteractionSpec property
useConvID is true (client-managed
conversation state programming
model), conversational
transactions are supported
with Commit Mode 1 ONLY.

Explanation:
Conversational transactions that use the conversation
ID to track the iterations of a conversation (by setting
the IMSInteractionSpec useConvID property to true)
are supported only for commit mode 1.

User response:
Use commit mode 1 with the client-managed
conversation state programming model.

ICO0136I The duplicate [queue] name name
was removed. The list of [queue]
names was reset

to new_list.

Explanation:
Duplicate queue or data store names are not allowed.

User response:
This message is informational, and no user action is
required.

ICO0137I The maximum length of the
property property_name was
exceeded. old_property_value
has been truncated to
old_property_value.

Explanation:
The maximum length of this property is eight
characters.

User response:
This message is informational, and no action is
required.

ICO0138E The value for property_name
is invalid. The prefix HWS is
reserved for use by IMS TM
Resource Adapter.

Explanation:
A reserved prefix, HWS, was used in the
property_name value.

User response:
Provide a value for the property_name property that
does not use a reserved prefix.

ICO0139E The message endpoint threw an
exception. endpoint_exception

Explanation:
A Java exception (endpoint_exception) was passed to
the IMS TM resource adapter by the message-driven
bean (MDB).

User response:
Resolve the exception that is passed to the IMS TM
resource adapter by the MDB.

ICO0140I Reconnecting in
number_of_seconds seconds...

User response:
This message is informational, and no user action is
required.

ICO0141E The endpoint is already active.

Explanation:
An attempt was made to add an endpoint that already
exists.

User response:
Do not attempt to add this endpoint until it has been
removed.

ICO0142E The endpoint is not found.

Chapter 51. Diagnosing problems 865

Explanation:
An attempt was made to access an endpoint that does
not exist.

User response:
Do not attempt to remove this endpoint.

ICO0143E An unexpected error occurred
when the message was dispatched
from IMS to the message
endpoint. java_exception

User response:
Contact IBM Software Support and provide the Java
exception that is thrown.

ICO0144E The IMS TM resource adapter
encountered an error while
sending the message to IMS.

Explanation:
An unexpected internal error occurred when the
message was sent to IMS.

User response:
Contact IBM Software Support.

ICO0145E The IMS TM resource adapter
encountered an error while
sending the response message
for a synchronous callout request
to IMS. java_exception

Explanation:
The maximum length of this property is eight
characters.

User response:
Examine the Java exception to determine the cause for
the failure to send the message. Ensure that the queue
is not in an invalid state by issuing the /DISPLAY
TMEMBER TPIPE queue_name SYNC command in IMS.

ICO0146E An error occurred when the error
message for a synchronous callout
request was back

to IMS. java_exception

Explanation:
This message is the result of an encoding or message
type error generated within a message that is passed
back to IMS during a synchronous callout request.

User response:
Examine the documentation for the Java exception or
error message to determine why the original message
generated an error.

ICO0147E No message listeners were
started. There are no queues on
which to listen.

User response:
Specify at least one valid queue name in the
queueNames property of the IMSActivationSpec
class.

ICO0148E The ActivationSpec
activationSpec_name is not
supported.

Explanation:
An unsupported ActivationSpec was passed to the
method.

User response:
Use the supported ActivationSpec, which is
IMSActivationSpec.

ICO0150E The IMS TM Resource Adapter
is unable to listen for callout
messages from IMS on queue
queue_name because it is unable
to connect to host host_name, port
port_number.

Explanation:
The TM Resource Adapter did not receive a response
from a host at the specified address.

User response:
Ensure that you have specified a valid host name and
port number in the ActivationSpec.

Other exceptions and error messages
You might encounter errors from IMS Connect, or from WebSphere Application Server, as it catches the
error messages and exceptions that are thrown by the IMS TM resource adapter or the class libraries used
by the IMS TM resource adapter.

J2CA0056I
Exceptions that the IMS TM resource adapter throws can be caught by a component other than your Java
application, such as the WebSphere Application Server.

For example, when WebSphere Application Server catches an exception from your Java application,
it might then issue its own message, including in it the message from the IMS TM resource adapter

866 IMS: Application Programming

exception. For example, when execution timeout occurs, you see the following message on the
WebSphere Application Server console:

J2CA0056I: The Connection Manager received a fatal connection error
from the
Resource Adaptor for resource myConnFactry. The exception which
was received is
ICO0080E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@e59583c.
processOutputOTMAMsg(byte[],IMSInteractionSpec, int) error.
Execution timeout has occurred for this interaction.
The executionTimeout was [0] milliseconds. The IMS Connect TIMEOUT
was used.

J2CA0056I is an informational message from WebSphere Application Server. The fatal connection error
occurs because IMS Connect closes the socket when an execution times out, and the WebSphere
Application Server Connection Manager removes the connection object for the socket from the connection
pool.

Another example occurs when a transaction (non-persistent) socket is used for a commit mode 0
interaction. In this case, you see the following message on the WebSphere Application Server console:

J2CA0056I: The Connection Manager received a fatal connection error
from the
Resource Adaptor for resource myConnFactry. The exception which
was received is ICO0089I:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@6db5d83a.call(Connection,
InteractionSpec, Record, Record). Non-persistent socket closed for
Commit Mode 0 IMS transaction.

Related information
WebSphere Application Server Version 8 documentationSee the WebSphere Application Server
documentation for more troubleshooting information.

WLTC0017E
WLTC0017E is produced by the WebSphere Transaction Monitor to indicate that the resources enlisted
with a local transaction containment (LTC) were rolled back instead of committed.

A LTC is used to define the application server behavior in an unspecified transaction context. For example,
if a single method within a container-managed enterprise Java bean (EJB) that has a transaction attribute
of NotSupported is called outside of any transaction scope, the WebSphere Application Server creates a
local transaction to handle resources that are used during the execution of that method.

Message WLTC0017E indicates that the resources that were enlisted with the LTC were rolled back
instead of committed because the setRollbackOnly() method was called on the LTC. This message
does not require any action by the user and is for your information only.

WLTC0017E: Resources rolled back due to setRollbackOnly() being called.

The prefix of a WebSphere Application Server message indicates the component that issued the message.
You can find documentation of these messages in the WebSphere Application Server Information Center.

Related information
WebSphere Application Server Version 8 documentationSee the WebSphere Application Server
documentation for more troubleshooting information.

HWSP1445E
Message HWSP1445E occurs in IMS Connect when you specify to use Secure Sockets Layer (SSL) for the
connection, but provide a non-SSL port for your Java application.

When you configure a connection factory for use by your Java application, you specify whether you are
using SSL with the SSLEnabled property. If you are using SSL (SSLEnabled=TRUE), the port number that
you provide must be configured as an SSL port in IMS Connect. If you provide a non-SSL port for your Java
application, unexpected results will occur when you run your application.

Chapter 51. Diagnosing problems 867

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/as_ditamaps/was855_welcome_ndmp.html

• The IMS TM resource adapter will throw an exception that indicates a communication error:

javax.resource.spi.CommException:
ICO0003E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@56503fc6.connect()
error.
Failed to connect to host [CSDMEC13], port [9999].
[java.net.SocketException:
Connection reset by peer: socket closed]

• The following IMS Connect message is displayed on the z/OS console:

HWSP1445E UNKNOWN EXIT NAME SPECIFIED IN MESSAGE PREFIX; MSGID=
 /9 * !hR, M=SDRC

The first step in establishing an SSL connection involves the SSL handshake protocol, in which the client
(the IMS TM resource adapter) sends the server (IMS Connect) an SSL "Hello" message. In this scenario,
IMS Connect is waiting for an incoming message on a non-SSL port. When IMS Connect receives the
handshake message, it interprets the message as an OTMA message with a valid Exit name in the prefix
and issues message HWSP1445E.

HWSSSL00E
Message HWSSSL00E occurs in IMS Connect when you specify not to use Secure Sockets Layer (SSL) for
the connection, but the port number you provide for your Java application is an SSL port.

In this error scenario, the following errors will occur:

• The IMS TM resource adapter will throw an exception that indicates a communication error:

javax.resource.spi.CommException: ICO0005E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@5bcdcdd4.receive()
error. A communication error occurred while sending or receiving
the IMS message.
[java.net.SocketException: Connection reset by peer: socket closed]

• The following IMS Connect message is displayed on the z/OS console:

HWSSSL00E Unable to initialize the SSL socket:Error while reading
or writing data

IMS Connect's attempt to initialize the SSL socket fails because IMS Connect does not receive the initial
client "Hello" message that is part of the SSL handshake protocol.

868 IMS: Application Programming

Chapter 52. Reference information
The IMS TM resource adapter has the following classes for managing interactions and connections with
IMS, as well as inbound communication from IMS to the Java client application.

IMS connection factory properties
The properties of an IMS TM resource adapter connection factory describes the characteristics of the
target Enterprise Information System.

The following list describes these connection properties.

Client ID (clientID)
A value for this property must be provided when an application component uses a dedicated persistent
socket connection to IMS Connect to identify this particular client.

The client ID value must be specified to identify the client to which the socket connection is dedicated
(when the CM0Dedicated property is set to true). A dedicated persistent socket connection must be
used for only commit mode 0 interactions with the following interaction verbs:

• SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
• SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT (replacing the deprecated

SYNC_RECEIVE_ASYNCOUTPUT)
• SYNC_SEND_RECEIVE

The client ID is generated in a shareable persistent socket connection that can be used by commit mode
0 and commit mode 1 interactions (when the CM0Dedicated property is set to false).

The client ID in a shareable persistent socket can be obtained through the IMSConnectionMetaData
getClientID method. You can access the IMSConnectionMetaData class from the IMSConnection class. If
you use this method with IMS Version 12, APAR PM75222 (V12.1.2) is required.

A valid user-specified client ID must meet the following requirements:

• Must be a string of 1 to 8 alphanumeric (A-Z, 0-9) or special (@,#,$) characters.
• Must not start with the character string HWS.
• Must not be an IMS Connect port number.
• If lowercase letters are provided, the letters are changed to uppercase

Client IDs are dedicated to their sockets, regardless of whether they are shareable or dedicated. Unlike
the other properties, the original client ID never changes until the socket is disconnected.

CM0 dedicated (CM0Dedicated)
This optional property applies to TCP/IP connections only. The default value is false, which indicates
that the connection factory will generate shareable persistent socket connections that can be used by
commit mode 0 and commit mode 1 interactions.

When the value is false, the IMS TM resource adapter generates a client ID to identify the socket
connection.

A value of true indicates that the connection factory will generate dedicated persistent socket
connections, which require user-specified client IDs to identify the socket connections. Each dedicated
persistent socket connection is reserved for a particular client ID. Only commit mode 0 interactions are
permitted on dedicated persistent socket connections.

© Copyright IBM Corp. 1974, 2022 869

Data store name (dataStoreName)
This required value is the name of the target IMS data store.

The IMS data store name is the ID parameter of the Datastore statement in the target IMS Connect
configuration member. This name also serves as the XCF member name for IMS during internal XCF
communications between IMS Connect and IMS OTMA. The value for the dataStoreName property is case
sensitive.

Group name (groupName)
This optional value is the IMS group name to use for all connections that are created by this connection
factory if the default user name is used.

The groupName property can be provided only in a component-managed EIS signon environment.

Host name (hostName)
You must provide the IP address or host name of the system on which the target IMS Connect is running.
The value is ignored for Local Option connections.

Password (password)
This optional value is the password to use for connections that are created by this connection factory if
the default user name is used.

Password phrase (passwordPhrase)
The password phrase to be used by the Security Access Facility, such as RACF, to authenticate the user
that is identified by the userName property.

 This property applies to IMS TM Resource AdapterVersion 12.2.0, Version 13.2.0,
and later.

The password phrase must be 9 - 100 characters.

Port number (portNumber)
You must provide the port number that is used by the target IMS Connect for TCP/IP connections.

Multiple sockets can be open on a single TCP/IP port, and IMS Connect can be configured to use multiple
ports for communications with the IMS TM resource adapter and other clients.

SSL enabled (SSLEnabled)
This optional property applies to TCP/IP connections only. The default value is false, which indicates
that SSL sockets are used for connecting to the port that is specified in the portNumber property.

A value of true indicates that this connection factory is used to create SSL socket connections to IMS
Connect by using the host name and port number that are specified in its connection properties. This port
number must be configured as an SSL port in the IMS Connect configuration.

SSL encryption type (SSLEncryptionType)
This optional property applies to TCP/IP connections only, and specifies the SSL encryption type. The
SSLEnabled property must be set to true.

Valid encryption types are STRONG, WEAK and ENULL. STRONG and WEAK reflect the strength of the
ciphers, which is related to the key length. All ciphers that can be used for export are in the weak category
and the others are in the strong category.

870 IMS: Application Programming

By default, the encryption type is set to WEAK. When ENULL is specified, the IMS TM resource
adapter uses a cipher specification whose name contains the string "NULL." Null encryption enables
authentication during the SSL handshaking process. After the handshaking process for a socket
completes, which includes the required authentication, all messages flows over that socket.

The SSLEncryptionType property is case-insensitive.

SSL keystore name (SSLKeyStoreName)
This optional property applies to TCP/IP connections only, and only when the SSLEnabled property is set
to true. The value contains the name, including the full file path, of the keystore.

Private keys and their associated public key certificates are stored in password-protected databases
called keystores. For convenience, trusted certificates can also be stored in the keystore. The
SSLKeyStoreName property can either be empty or could point to the keystore file. If the
SSLKeyStoreName or the SSKeyStorePassword property is empty, an informational message is
generated in the server log.

For non-z/OS platforms, specify the fully-qualified path name of your JKS keystore file. An example of a
fully-qualified path name of your JKS keystore file is c:\keystore\MyKeystore.ks.

For z/OS, the SSLKeyStoreName property can be used to specify either a JKS keystore or a RACF
keyring. For a JKS keystore, specify the name with the full path of the JKS keystore file. For a RACF
keyring, specify the string that provides the information needed to access the RACF keyring. An example
of a RACF keyring is keystore_type;keyring_name;racfid.

• keystore_type must be one of the following values:

– JCERACFKS if software encryption is used for SSL.
– JCE4758RACFKS if hardware encryption is used.

• keyring_name is the name of the RACF keyring that you are using as your keystore.
• racfid is a RACF ID that is authorized to access the specified keyring.

The following examples show two RACF keyring specifications:

• JCERACFKS;myKeyring;kruser01
• JCE4758RACFKS;myKeyring;kruser01

On z/OS, if the SSLKeyStoreName matches the RACF keyring format, the IMS TM resource adapter
uses the specified RACF keyring as its keystore. If the specified keystore type is anything other
than JCERACFKS or JCE4758RACFKS, the IMS TM resource adapter attempts to interpret the
SSLKeyStoreName that is specified as the name of a JKS keystore file.

The JKS file can have a file extension other than KS.

Related reference
SSL truststore name (SSLTrustStoreName)
This optional property applies to TCP/IP connections only, and only when the SSLEnabled property is set
to true. The value contains the name, including the full file path, of the truststore.

SSL keystore password (SSLKeyStorePassword)
This optional property applies to TCP/IP connections only and specifies the password for the SSL
keystore. The SSLEnabled property must be set to true.

Chapter 52. Reference information 871

SSL truststore name (SSLTrustStoreName)
This optional property applies to TCP/IP connections only, and only when the SSLEnabled property is set
to true. The value contains the name, including the full file path, of the truststore.

On z/OS, SSL truststore name is the JKS name or the RACF keyring of the truststore. The same format is
used for the values of the SSLKeyStoreName and SSLTrustStoreName properties. See the description
of the SSLKeyStoreName property for this format.

For other platforms, specify the fully-qualified path name of your JKS truststore file.

A truststore file is a key database file (keystore) that contains public keys or certificates. For convenience,
private keys can also be stored in the truststore. The SSLKeyStoreName property can be empty or can
point to the truststore file. If the SSLTrustStoreName or SSLTrustStorePassword property is empty,
an informational message is generated in the server log.

The JKS file can have a file extension other than KS.

Related reference
SSL keystore name (SSLKeyStoreName)
This optional property applies to TCP/IP connections only, and only when the SSLEnabled property is set
to true. The value contains the name, including the full file path, of the keystore.

SSL truststore password (SSLTrustStorePassword)
This optional property applies to TCP/IP connections only and specifies the password for the SSL
truststore. The SSLEnabled property must be set to true.

SSL protocol (SSLProtocol)
This property specifies the protocol to be used for a secure socket connection. SSLProtocol can have a
value of TLS, TLSv1.0, TLSv1.1, or TLSv1.2. The default value is TLSv1.0.

User name (userName)
This optional value is the default security authorization facility (SAF) user name to use for connections
that are created by this connection factory if no user name is provided by the application component or
the container.

IMS interaction specification properties
The properties of the IMSInteractionSpec object describe the interaction with IMS.

Values for IMSInteractionSpec properties can be provided directly in the application by using the set
methods. They can also be provided to the J2C wizard in an IDE that generates code for the application.

The following list describes the properties of the IMSInteractionSpec object:

Alternate client ID (altClientID)
This input-only property provides the name of an alternate client ID. This name is used as a tpipe from
which asynchronous output is retrieved on a shareable persistent socket connection.

This property is supported with the following criteria:

• TCP/IP connection with shareable persistent socket.
• Valid interaction verbs for retrieval of asynchronous output messages (resume tpipe requests) are:

– SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
– SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
– SYNC_RECEIVE_CALLOUT

872 IMS: Application Programming

• Commit mode 0 interactions cannot be used with Local Option connections.
• This property cannot be used with dedicated socket connections
• The reroute name and the alternate client ID are mutually exclusive and cannot be specified at the

same time.

Async output available (asyncOutputAvailable)
This output-only property is used by a Java application to determine whether queued output exists for the
tpipe associated with the connection that is used by the Java application.

For dedicated persistent socket connections, the name of the tpipe is the value in the clientID property
the of IMSConnectionSpec object.

For shareable persistent socket connections, the name of the tpipe is generated by the IMS TM
resource adapter. The value of asyncOutputAvailable is true if messages exist in the queue. The
asyncOutputAvailable property is not set on input by the application component.

If your Java application uses this property, it must be exposed as an output property of the
IMSInteractionSpec object in your application.

Callout request type (calloutRequestType)
This property specifies which type of callout request messages the Java application is to retrieve.

Valid values are:

• CALLOUT_REQUEST_ASYNC (default): To retrieve only asynchronous callout request messages.
• CALLOUT_REQUEST_SYNC: To retrieve only synchronous callout request messages.
• CALLOUT_REQUEST_BOTH: To retrieve both synchronous and asynchronous callout request messages.

This property is only valid when the interaction verb is set to SYNC_RECEIVE_CALLOUT.

Conversation ended (convEnded)
This is an output-only property that is used by a Java application to determine whether a conversation has
been ended by IMS. The convEnded property is not set on input by the application component.

If your Java application uses this property, it must be exposed as an output property of the
IMSInteractionSpec object in your application.

Conversation ID (convID)
This property is an 8-byte time stamp (a hexadecimal string) that uniquely identifies an IMS conversation.

When the useConvID property is set to true:

• The IMS TM resource adapter returns this conversation ID to the Java client as part of the output
message for each iteration of a conversation.

• The conversation ID is assigned by IMS and set in the response message header at the end of the first
iteration of the conversation.

• The Java client is responsible for passing this conversation ID in the input for all subsequent iterations
in order for IMS Connect to process all iterations of a conversation that comes in from shareable
persistent socket connections.

Restriction: This property is supported for only SYNC_SEND_RECEIVE and SYNC_END_CONVERSATION
interaction verbs. It is ignored for other interaction verbs. For restrictions that apply to the use of
conversation ID, see the topic on "Conversational transactions for business process choreography."

Related concepts
Business process choreography applications

Chapter 52. Reference information 873

You can run IMS conversational transactions in composite business applications by using IMS TM
Resource Adapter.

Commit mode (commitMode)
This property indicates the type of commit mode processing to be performed for an IMS transaction.

• The commitMode property can be set to 0 or 1 when the interactionVerb property is set to
SYNC_SEND_RECEIVE.

• When the interactionVerb property is set to SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, SYNC_RECEIVE_CALLOUT, or SYNC_SEND, the IMS TM
resource adapter uses commit mode 0.

• Commit mode 1 is required when the interactionVerb property is set to SYNC_END_CONVERSATION.

If the commit mode is 0 and a shareable persistent socket is used for the interaction (when the
CM0Dedicated property of the connection factory is set to false), the clientID property must not
be specified. If commit mode 0 is specified for an interaction on a shareable persistent socket, the
output message from a transaction can be purged or rerouted. The undelivered secondary output from a
program-to-program switch can also be purged or rerouted.

If a dedicated persistent socket connection is used for an interaction (when the CM0Dedicated property
of the connection factory is set to true), the commit mode must be 0 and the client ID of the
IMSConnectionSpec object that is used for the connection must be provided. If a dedicated persistent
socket is used for a commit mode 0 interaction, undelivered output messages are always recoverable and
cannot be purged or rerouted.

Related reference
Sync level (syncLevel)
This input property specifies the synchronization level of the interaction between the IMS TM resource
adapter and IMS OTMA.

CM0 response (CM0Response)
This property indicates whether a DFS2082 message should be issued for a CM0 input transaction if the
IMS application do not reply to the IOPCB or do a message switch to another transaction.

By default, a CM0 transaction does not receive a DFS2082 informational message if the IMS application
do not reply to the IOPCB or do a message switch to another transaction. To request for a DFS2082
message, set this property to true.

Execution timeout (executionTimeout)
This property specifies the maximum amount of time that is allowed for IMS Connect to send a message
to IMS and receive a response

• The executionTimeout value is represented in milliseconds and must be a decimal integer that is either
-2, -1, 0, or between 1 and 3600000 (one hour), inclusively.

• If a value of 0 is set for this property, the actual timeout value is determined by IMS Connect.
• If a -1 value is set for this property, the interaction runs without a time limit.
• If a value of -2 is set for this property, the callout request message is retrieved by using the OTMA

RESUME TPIPE call with SINGLE option and a timer of NOWAIT. If no callout request message exists
on the OTMA hold queue, the IMS TM resource adapter does not wait for the callout request and
immediately returns the control back to the Java application.

Related reference
Valid execution timeout values
The execution timeout value is represented in milliseconds and must be a decimal integer from 1 through
3600000.
Socket timeout (socketTimeout)

874 IMS: Application Programming

The maximum amount of time the IMS TM resource adapter waits for a response from IMS Connect
before disconnecting the socket and returning an exception to the client application.

Ignore PURG call (ignorePURGCall)
This property controls whether or not multiple ISRT and PURG calls in an IMS application for a commit
mode 0 interaction is to be ignored.

When an IMS application has multiple ISRT and PURG calls:

• If the client application uses commit mode 1 interaction, IMS sends one response message with
multiple output segments.

• If the client application uses commit mode 0:

– If the ignorePURGCall property is set to false (the default), IMS sends multiple output response
messages, one for each PURG call. The client application receives the first output message,
and the remaining output messages remain in the asynchronous hold queue for that client. The
message can then be retrieved by using the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, or SYNC_RECEIVE_CALLOUT interaction.

– If the ignorePURGCall property is set to true, the multiple PURG calls in the IMS application are
ignored. The output is returned as one single message with multiple segments.

The ignorePURGCall flag is valid for the SYNC_SEND and SYNC_SEND_RECEIVE interactions for commit
mode 0 interactions on shareable persistent socket connections. Multiple PURG calls are always ignored,
regardless of the value of this flag for commit mode 1 interactions.

The ignorePURGCall flag is not valid for SYNC_END_CONVERSATION,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT
interactions, or for SYNC_SEND_RECEIVE interactions on dedicated persistent socket connections. An
exception is thrown in these interactions.

IMS request type (imsRequestType)
This property indicates the type of IMS request and determines how output from the request is handled
by the IMS TM resource adapter.

The following table describes the valid IMS request types.

Table 127. IMS request types

Value Named constant in
IMSInteractionSpecProperties

Description

1 IMS_REQUEST_TYPE_IMS_
TRANSACTION

The request is an IMS transaction. Normal transaction output that is
returned by IMS is used to populate the application's output message.
If IMS returns a DFS message, the IMS TM resource adapter throws an
IMSDFSMessageException that contains the DFS message.

This value for the imsRequestType property is used for applications that
are not generated from MFS message definitions through message input
descriptor (MID) and message output descriptor (MOD) names.

2 IMS_REQUEST_TYPE_IMS_
COMMAND

The request is an IMS command. Command output that is returned by
IMS, including DFSmessages, is used to populate the application's output
message. The IMSDFSMessageException is not thrown.

This value for the imsRequestType property is used for applications that
submit IMS commands.

3 IMS_REQUEST_TYPE_MFS_
TRANSACTION

The request is from an application that is generated from MFS message
definitions through message input descriptor (MID) and message output
descriptor (MOD) names.

Normal transaction output that is returned by IMS, as well as DFS messages,
are used to populate the output message from the application. The
IMSDFSMessageException is not thrown.

Chapter 52. Reference information 875

Interaction verb (interactionVerb)
Specifies the mode of interaction between the Java application and IMS. The following table describes
the values that are supported by the IMS TM resource adapter.

Table 128. Mode of interaction between the Java application and IMS

Value Named constant in
IMSInteractionSpecProperties

Description

0 SYNC_SEND The IMS TM resource adapter sends the client request to IMS through IMS
Connect and does not expect a response from IMS. With a SYNC_SEND
interaction, the client does not need to synchronously receive a response from
IMS. SYNC_SEND is supported on both shareable and dedicated persistent
socket connections and is allowed only with commit mode 0 interactions.

If the interactionVerb property is set to SYNC_SEND, execution timeout and
socket timeout values are ignored.

Restriction: Type 2 of IMS request (IMS_REQUEST_TYPE_IMS_COMMAND) is
not allowed with the SYNC_SEND interaction and will generate an exception.

1 SYNC_SEND_RECEIVE The execution of an IMS Interaction sends a request to IMS and receives a
response synchronously.

A typical SYNC_SEND_RECEIVE interaction involves a non-conversational IMS
transaction in which an input record (the IMS transaction input message) is sent
to IMS, and an output record (the IMS transaction output message) is returned
by IMS.

SYNC_SEND_RECEIVE interactions are also used for the iterations of a
conversational IMS transaction. A conversational transaction requires commit
mode 1. A non-conversational transaction can run using either commit mode 1
or commit mode 0. If commit mode 0 is used on a dedicated persistent socket,
a value for the clientID property of IMSConnectionSpec must be provided. If
commit mode 0 is used on a shareable persistent socket, a value for the clientID
property of IMSConnectionSpec must not be provided.

3 SYNC_END_
CONVERSATION

If the application executes an interaction with the interactionVerb property set
to SYNC_END_CONVERSATION, the IMS TM resource adaptersends a message
to force the end of an IMS conversational transaction.

The commitMode property of the IMSInteractionSpec class and the
clientID property of the IMSConnectionSpec class do not apply when
SYNC_END_CONVERSATION is specified as the interaction verb.

4 SYNC_RECEIVE_
ASYNCOUTPUT

The interaction verb SYNC_RECEIVE_ASYNCOUTPUT has been replaced
by the more specific SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT.
SYNC_RECEIVE_ASYNCOUTPUT is supported for backward compatibility. New
applications must use either SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT
or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

5 SYNC_RECEIVE_
ASYNCOUTPUT_
SINGLE_NOWAIT

The interaction verb SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT is valid
on both shareable and dedicated persistent socket connections. It is used to
retrieve asynchronous output.

A SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction on a shareable
persistent socket connection must be in the same application as the original
SYNC_SEND or SYNC_SEND_RECEIVE interaction and must use the same
shareable persistent connection. This primarily occurs following execution
timeout.

With this type of interaction, the Java client can receive only one single
message. If no messages are in the IMS OTMA asynchronous hold queue
for the client ID when the request is made, no further attempts are made
to retrieve the message. No message is returned and a timeout occurs
after the length of time specified in the executionTimeout property of the
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interaction passes.

876 IMS: Application Programming

Table 128. Mode of interaction between the Java application and IMS (continued)

Value Named constant in
IMSInteractionSpecProperties

Description

6 SYNC_RECEIVE_
ASYNCOUTPUT_
SINGLE_WAIT

The interaction verb SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT is used to
retrieve asynchronous output. It is valid on both shareable and dedicated
persistent socket connections.

A SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction on a shareable
persistent socket connection must be in the same application as the original
SYNC_SEND or SYNC_SEND_RECEIVE interaction and must use the same
shareable persistent connection. This primarily occurs following execution
timeout.

With this type of interaction, the Java client can receive only one single message.
If the IMS OTMA asynchronous hold queue holds no messages for the client ID
when the request is made, IMS Connect waits for OTMA to return a message.
IMS Connect waits the length of time specified in the executionTimeout
property of the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction
before returning an exception.

7 SYNC_RECEIVE_
CALLOUT

The interaction verb SYNC_RECEIVE_CALLOUT is used to retrieve asynchronous
or synchronous callout messages.

Use the calloutRequestType property to specify whether only synchronous, only
asynchronous, or both synchronous and asynchronous callout messages are to
be retrieved.

With this type of interaction, if the IMS OTMA asynchronous hold queue contains
no messages for the specified client ID when the request is made, IMS Connect
waits for OTMA to return a message. The time the IMS TM resource adapter
waits for the response from IMS Connect and OTMA depends on the value for
the executionTimeout property.

Restriction: The Java EE Connection Architecture (JCA) value SYNC_RECEIVE (2) is not supported.

Lterm name (ltermName)
The LTERM name that is used to override the value in the LTERM field of the IMS application program's I/O
PCB.

The value of this property can be set if the client application needs to provide an LTERM override name.
This name will be in the IMS application program's I/O PCB, with the intent that the IMS application will
make logic decisions based on this override value.

To use the LTERM override name for calling IBM Workload Manager for input transactions, you need to
specify the WLMLTRM parameter with YES option. This enables OTMA to pass the LTERM override name to
IBM Workload Manager, instead of the tpipe name, which is set as default.

Map name (mapName)
The mapName field contains the name of a Message Format Service (MFS) control block. MFS is the
component of IMS that performs online formatting of transaction input and output messages.

Because IMS Connect uses IMS OTMA to access IMS, MFS online formatting is bypassed. The mapName
field is used by the IMS TM resource adapter to process requests from Java applications whose input
and output messages are formatted based on MFS message definitions. The mapName field is not for
use directly by Java applications. For reference purposes, the following is a brief description of how the
mapName field is used by the IMS TM resource adapter.

For input messages, the value of the mapName property is the name of an MFS message output
descriptor, or MOD. The MOD name is provided to the IMS application program in the I/O PCB as
the default MODNAME. You can overwrite this default value in your IMS application program. The IMS
application program can either use this default MODNAME from the I/O PCB or override that value and
use a different MODNAME of its choice.

In general, for output messages, the value of the mapName property is the name of an MFS message
output descriptor (MOD). Depending on how the IMS application is programmed, this MOD name can be

Chapter 52. Reference information 877

set in different ways. The IMS application program can specify a different MODNAME when it inserts the
transaction output message to the I/O PCB. If the IMS application program does not specify a different
MOD name for use in the output message, the value of the mapName property from the input message
will be used as the value of the mapName property in the output message. If a mapName value was not
provided in the input message and the IMS application does not set a value in the MODNAME field in the
I/O PCB for use in the output message, IMS placse the default IMS MOD name in the mapName field of
the output message.

Purge async output (purgeAsyncOutput)
This input property determines whether or not IMS Connect purges undelivered output.

This property is valid only for interactions on shareable persistent socket connections that use IMS
interaction verb SYNC_SEND_RECEIVE. It is not valid for any interactions on dedicated persistent socket
connections. It applies only to commit mode 0 interactions, not to commit mode 1 interactions. However,
if a commit mode 1 interaction executes a program-to-program switch, the spawned program will run in
commit mode 0 and, therefore, the property will apply.

If the purgeAsyncOutput property is not specified on a SYNC_SEND_RECEIVE interaction on a shareable
persistent socket connection, the default is true, and the following output messages are purged:

• Undelivered output messages inserted to the I/O PCB by the primary IMS application program
• Output messages inserted to the I/O PCB by secondary IMS application programs that are invoked by a

program-to-program switch

Reroute (reRoute)
This input property determines whether undelivered output is to be rerouted to a named destination that
is specified in the reRouteName field.

The reRoute property is valid for interactions on shareable persistent socket connections that use the IMS
interaction verb SYNC_SEND_RECEIVE. It is not valid for any interactions on dedicated persistent socket
connections. It applies to commit mode 0 interactions, not to commit mode 1 interactions.

However, if a commit mode 1 interaction executes a program-to-program switch, the spawned program
will run in commit mode 0 and therefore the property will apply. This property determines whether
undelivered output is to be rerouted to a named destination that is specified in the reRouteName field. If
reRoute is true, the asynchronous output is not queued to the tpipe of the generated client ID. Instead,
the asynchronous output is queued to the destination that is specified in the reRouteName field. The
default value for reRoute is false.

If both reRoute and purgeAsyncOutput are set to true, an exception is thrown.

Reroute name (reRouteName)
This property provides the name of the destination to which asynchronous output is queued.

If the reRoute property is set to true, this property provides the named destination. If the reRoute
property is set to false, the reRouteName property is ignored. If the reRoute property is set to true, and
no value for the reRouteName property is provided, the value for the reRouteName property is:

• The value specified in the IMS Connect configuration file
• If no value is specified in the IMS Connect configuration file, the value HWS$DEF is used

A valid value must meets the following rules:

• Must be a string of 1 to 8 characters. Valid characters are A-Z, 0-9, @ ,#, and $.
• Must not begin with the IMS TM resource adapter reserved prefix, HWS.
• Must not be an IMS Connect port number.

Important: If lowercase letters are provided, the letters are changed to uppercase.

878 IMS: Application Programming

The reRouteName property is valid only for SYNC_SEND_RECEIVE interactions on shareable persistent
socket connections. It is not valid for any interactions on dedicated persistent socket connections.

Resume tpipe network security credentials (resumeTpipeNSC)
This property is used by a Java application to indicate whether network security credentials are to be
included in asynchronous callout requests from IMS.

If you set the value of the resumeTpipeNSC property to 1, IMS TM resource adapter sets a flag byte in the
OTMA message prefix that is sent to IMS to indicate that network security credentials are to be included
in the asynchronous callout message.

Socket timeout (socketTimeout)
The maximum amount of time the IMS TM resource adapter waits for a response from IMS Connect
before disconnecting the socket and returning an exception to the client application.

The socketTimeout value is represented in milliseconds. The value must be greater than zero. If a socket
timeout is not specified for an interaction or it is supplied with a socket timeout value of zero milliseconds,
the IMS TM resource adapter waits indefinitely for IMS Connect to respond.
Related reference
Execution timeout (executionTimeout)
This property specifies the maximum amount of time that is allowed for IMS Connect to send a message
to IMS and receive a response

Synchronous callout correlator token (syncCalloutCorrelatorToken)
This property contains the correlator token that is generated by IMS Connect and sent with the callout
request message to associate the synchronous callout request with the response.

If you are using the managed callout programming model (by using a message-driven bean), this token
is automatically managed by the IMS TM resource adapter. In the client-managed callout programming
model (non-MDB application), the Java application must manage the correlation token and pass it back
with the response by using the associated getter and setter methods. The managed callout programming
model is, therefore, the simpler and preferred approach of the two.

This property is valid only when the interaction verb is set to SYNC_RECEIVE_CALLOUT.

Synchronous callout status code (syncCalloutStatusCode)
This property contains a user-specified status code when the Java application sends an error response
message for synchronous callout messages from an IMS application.

The valid user-specified status code is from 500 to 1000.

Sync level (syncLevel)
This input property specifies the synchronization level of the interaction between the IMS TM resource
adapter and IMS OTMA.

Valid sync level values are 0 (NONE) and 1 (CONFIRM). The syncLevel property applies only when the
interactionVerb property is set to SYNC_SEND_RECEIVE, SYNC_SEND, and SYNC_RECEIVE_CALLOUT. The
value of the syncLevel property applies to both conversational and non-conversational applications, and is
used in combination with the commitMode property.

Commit mode 1

Sync levels 0 and 1 are valid. 0 is the default value. If the interactionVerb property is set to
SYNC_SEND_RECEIVE and the commitMode property is set to 1, it is not necessary to set the syncLevel
property. If any other value besides 0 or 1 is passed to the setSyncLevel(int) method, an exception is
thrown.

Commit mode 0

Chapter 52. Reference information 879

Sync level 1 is the only valid value. It is not necessary to set the sync level with this commit mode. If any
other value is passed to the setSyncLevel(int) method, an exception is thrown.

Programs triggered by a program-to-program switch are always processed as commit mode 0, regardless
of the sync level of the originating program. For this reason, secondary output from these programs can
be put onto the reroute queue or purged according to the setting of the reRoute and purgeNotDeliverable
properties in the original interaction.

Related reference
Commit mode (commitMode)
This property indicates the type of commit mode processing to be performed for an IMS transaction.

Transaction expiration (transExpiration)
Indicates to IMS OTMA, when the execution timeout value is reached, whether the transaction is
considered expired, and OTMA no longer needs to process it.

When this property is set to true, the IMS TM resource adapter client application indicates to OTMA that
the transaction can be discarded after the execution times out. This function relieves OTMA from having
to process unnecessary messages.

The default is false.

Related reference
Execution timeout (executionTimeout)
This property specifies the maximum amount of time that is allowed for IMS Connect to send a message
to IMS and receive a response

Transaction tracking ID (trckID)
This input-only property is an up-to-480 byte token (an alphanumeric string) that uniquely identifies an
IMS™ transaction. This tracking ID can be used to show the components which a transaction involves,
the order in which the components communicate with each other, and the time it takes a transaction to
traverse each component.

The tracking ID is set by the ZAPM™ Connect client and returned in the HTTP response message for each
transaction. By default, transaction tracking is disabled. To use a tracking ID, transaction tracking must be
enabled.

You can set a tracking ID in the following ways:

• By using a client such as Instana or AppDynamics on Websphere Application Server (WAS) that
uses IMSInteractionSpec Class methods to directly set the tracking ID. This process is described in
Optional IMS TM resource adapter plug-in support. For more information, see the documentation on
instrumenting the application environment for AppDynamics and Instana.

• By using the Z APM Connect Interceptor on z/OS Connect EE to set the tracking ID for the IMS
Service Provider. This process is described in Z APM Connect Interceptor. For more information, see the
documentation on instrumenting the application environment for AppDynamics and Instana.

• By specifying the tracking ID manually in the transactions IMS IRM control block as described in
Optional IMS Connect user message exit for AppDynamics.

Use conversation ID (useConvID)
This property indicates whether an IMS conversation is using the same connection for all iterations of the
conversation or different connections.

By default, a subsequent iteration of a conversation on a shareable persistent socket is rejected by IMS
Connect (if the socket is different between iterations) because IMS Connect cannot find the relevant
information for the socket that is used in the first iteration.

When this property is set to true, IMS assigns a unique conversation token that must be passed back
and forth between the Java application and IMS Connect. IMS Connect no longer keeps track of the

880 IMS: Application Programming

https://www.ibm.com/docs/en/zapmc/6.1.1?topic=producer-instrumenting-application-environment
https://www.ibm.com/docs/en/iooz?topic=producer-instrumenting-application-environment
https://www.ibm.com/docs/en/zapmc/6.1.1?topic=producer-instrumenting-application-environment
https://www.ibm.com/docs/en/iooz?topic=producer-instrumenting-application-environment
https://www.ibm.com/docs/en/zapmc/6.1.1?topic=producer-optional-ims-connect-user-message-exit

conversational status of the client. As a result, the VIEWHWS IMS Connect command will not display
the CONV status for the client unless the command is entered when IMS Connect is processing a
conversational iteration. This approach to manage the iterations of a conversation is called the client-
managed conversation state programming model, as opposed to IMS Connect-managed conversation
state programming model.

Important: The default is false for backward compatibility. For applications that are migrating to
use IMS TM Resource Adapter Version 12 or later, if you are not using shareable socket connections
for different iterations of a conversational transaction, no change is required. For new application
development, set this property to true to take advantage of using different shareable persistent socket
connections for the different iterations of a conversational transaction.

Java API specifications
The IMS TM resource adapter Java API specification includes reference information about the Java
classes, interfaces, and methods.

Version 15.2 Java API documentation

Chapter 52. Reference information 881

https://www.ibm.com/docs/en/ims/15.2.0?topic=specifications-version-152-java-api

882 IMS: Application Programming

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan, Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1974, 2022 883

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and Associated Guidance
Information provided by IMS, as well as Diagnosis, Modification or Tuning Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or
as a result of service. Product-sensitive Programming Interface and Associated Guidance Information
is identified where it occurs, either by an introductory statement to a section or topic, or by a Product-
sensitive programming interface label. IBM requires that the preceding statement, and any statement in
this information that refers to the preceding statement, be included in any whole or partial copy made of
the information described by such a statement.

Diagnosis, Modification or Tuning information is provided to help you diagnose, modify, or tune IMS. Do
not use this Diagnosis, Modification or Tuning information as a programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either by an introductory
statement to a section or topic, or by the following marking: Diagnosis, Modification or Tuning
Information.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

884 Notices

http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek

Notices 885

your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

To learn more, see IBM Privacy Statement.

886 IMS: Application Programming

https://www.ibm.com/privacy

Bibliography

This bibliography lists all of the publications in the IMS 15.3 library.

Title Acronym

IMS Version 15.3 Application Programming APG

IMS Version 15.3 Application Programming APIs APR

IMS Version 15.3 Commands, Volume 1: IMS Commands A-M CR1

IMS Version 15.3 Commands, Volume 2: IMS Commands N-V CR2

IMS Version 15.3 Commands, Volume 3: IMS Component and z/OS
Commands

CR3

IMS Version 15.3 Communications and Connections CCG

IMS Version 15.3 Database Administration DAG

IMS Version 15.3 Database Utilities DUR

IMS Version 15.3 Diagnosis DGR

IMS Version 15.3 Exit Routines ERR

IMS Version 15.3 Installation INS

IMS Version 15.3 Licensed Program Specifications LPS

IMS Version 15.3 Messages and Codes, Volume 1: DFS Messages MC1

IMS Version 15.3 Messages and Codes, Volume 2: Non-DFS Messages MC2

IMS Version 15.3 Messages and Codes, Volume 3: IMS Abend Codes MC3

IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes MC4

IMS Version 15.3 Operations and Automation OAG

IMS Version 15.3 Release Planning RPG

IMS Version 15.3 System Administration SAG

IMS Version 15.3 System Definition SDG

IMS Version 15.3 System Programming APIs SPR

IMS Version 15.3 System Utilities SUR

© Copyright IBM Corp. 1974, 2022 887

888 IMS: Application Programming

Index

Numerics
274X

defining to operate with MFS 444
3270P Printer

defining to operate with MFS 444
3290 Display Panel

defining to operate with MFS 444
3601 workstation

defining to operate with MFS 444
3770 Data Communication System

defining to operate with MFS 444
3790 Communication System

defining to operate with MFS 444
6670 Printer

defining to operate with MFS 444

A
abend codes

pseudo- 52
S201 329
U0069 53
U0711 111
U0777 45
U1008 49
U119 111
U2478 45
U2479 45
U261 329
U3301 49
U3303 45
U476 329
U711 95

access methods
DEDB 73
description 69
GSAM 75
HDAM 70
HIDAM 72
HISAM 74
HSAM 74
MSDB 73
PHDAM 69, 70
PHIDAM 69, 72
SHISAM 75
SHSAM 75

access of
IMS databases through z/OS 75
segments through different paths 81

accessibility
features xix
keyboard shortcuts xix

accessing data
from an application program 541

accessing databases with application programs 36
accessing GSAM databases 283

activation specification property
dataStoreName 770
groupName 770
hostName 770
password 770
portNumber 770
queueNames 770
retryLimit 770
SSLEnabled 770
SSLEncryptionType 770
SSLKeyStoreName 770
SSLKeyStorePassword 770
SSLTrustStoreName 770
SSLTrustStorePassword 770
userName 770

adding
data 538

addressability to UIB, establishing 219
addressing mode (AMODE) 233, 375
Advanced Function Printing (AFP) 427
AFPDS and IMS Spool API 427
aged timeout property 789
aggregates, data 21
AIB (application interface block)

address return 227
AIB identifier (AIBID) 367
AIBERRXT (reason code)

AIB mask 367
AIBID (AIB identifier) field, AIB mask 214
AIBLEN (DFSAIB allocated length) field 367
AIBLEN (DFSAIB allocated length) field, AIB mask 214
AIBOALEN (maximum output area length)

AIB mask 367
AIBOAUSE (used output area length)

AIB mask 367
description 214

AIBREASN (reason code) 214
AIBRSA1 (resource address)

AIB mask 367
AIBRSNM1 (resource name)

AIB mask 367
description 214

AIBSFUNC (subfunction code)
AIB mask 367
description 214

defining storage 226, 370
description 226, 370
DFSAIB allocated length (AIBLEN) 214, 367
fields 214, 367
mask 214, 367
program entry statement 227
specifying 214, 367

AIB (Application Interface Block)
supported commands 477

AIB identifier (AIBID)
description 214

AIB interface 11

Index 889

AIB mask, specifying 214
AIBERRXT (reason code) 214
AIBOALEN (maximum output area length) field, AIB mask
214
AIBOAUSE (used output area length) field, AIB mask 214
AIBREASN (reason code) AIB mask, field 214
AIBREASN (reason code) field, AIB mask 214
AIBRSA1 (resource address) field, AIB mask 214
AIBRSNM1 (resource name) field, AIB mask 214
AIBSFUNC (subfunction code) field, AIB mask 214
AIBTDLI interface 53, 226, 370
AJ status code 496
AL_LEN call 321, 325
allocation, dynamic 54
alternate client IDs 872
alternate destinations

sending messages 391
alternate PCB

alternate destinations 391
change call 391
CHNG call

description 391
using PURG with 391

defining in ISRT call 391
destination of modifiable alternate PCBs 391
express 391
modifiable

description 391
use 391

modifiable alternate PCBs
changing the destination 391
CHNG call 391
description 391

modifiable PCBs 391
PURG call

description 391
using CHNG with 391

replying to one alternate terminal 391
response 403
SAMETRM=YES 403
sending messages

to several alternate destinations 391
using alternate PCBs 391
using the PURG call 391

sending messages to other terminals 391
types and uses 367
use with program-to-program message switching 393
using the CHNG call with 391

alternate PCB mask
description 367
format 367

alternate PCBs 98
alternate response PCBs 98
alternate terminals

responding 391
AM status code 496
AMODE 233
AMODE(31) 476
analysis of

processing requirements 35
required application data 17
user requirements 15

anchor point, root 70
AND operators

AND operators (continued)
dependent 272
independent 272

API (application programming interface) for LU 6.2 devices
explicit API 110
implicit API 110

APPC
application program types for LU 6.2 devices 101
basic conversation 104
description 101
entering IMS transactions from LU 6.2 devices 101
LU 6.2 partner program design

DFSAPPC message switch 133
flow diagrams 111
integrity after conversation completion 131

mapped conversation 104
RRS 329

APPC conversational program
CPI-C driven 409
ending the conversation 408
message switching 406
modified application program

MSC 409
remote execution, MSC 409

modified IMS application 409
application data

analyzing required 17
identifying 17

application design
analyzing

processing requirements 55
the data a program must access 56
user requirements 15, 17

data dictionary, using 20
DataAtlas 20
DB/DC Data Dictionary 20
debugging 427
designing a local view 21
documenting 15, 163
IMS Spool API interface 425
overview 15

application interface block (AIB) 214
Application Interface Block (AIB)

supported commands 477
application program

checking success of SQL statements 509
coding SQL statements

dynamic SQL 511
selecting rows using a cursor 545

design
tasks overview 12

documentation 163
HALDB environment, scheduling 233
hierarchy examples 5
I/O areas, specifying 221, 370
including queries 509
preparation

preparing for running 548
sync point 257
test 135
TSO 45

application programming
catalog 234
database versioning 237

890 IMS: Application Programming

application programming (continued)
IMS catalog 234
SQL 505

Application programming
IMS database 165

application programming interface (API) 110
application programs

accessing databases 36
assembler language

DL/I call formats 195, 349
CICS

testing 155
DL/I calls

sample call formats 195, 349
host structures 511
host variables 510
Pascal 204, 357
PL/I 206, 360
PL/I language 713, 715, 717, 719
PL/I top-down development 711
sample PL/I templates 715

application programs, IFP 483
applications

development tasks overview 12
APSB (allocate program specification block) 110, 329
area, I/O 11
AREALIST call 326
ArrayResultSet property 611
assembler language

DL/I call-level sample 178
DL/I command-level sample 462
DL/I program structure 177
entry statement 227
MPP coding 418
program entry 227
register 1, program entry 227
return statement 227
skeleton MPP 418
SSA definition examples 223
UIB, specifying 219
UIBDLTR

introduction 219
UIBFCTR

introduction 219
UIBPCBAL

introduction 219
asynchronous callout

definition 760
message flow 763
message-driven beans (MDBs) 763
non-MDB applications 780
non-MDB sample Java application 781
requirements 727

asynchronous conversation, description for LU 6.2
transactions 102
asynchronous output

availability 873
purging 878

AUTH call 91
authorization

ID Db2 for z/OS
91
security 91

availability enhancements, data 503

availability of data
sensitivity 66

B
back-out database changes 64
backing out

database changes 486
backout point

description 410
intermediate 486
intermediate (SETS/SETU)
414

backout point, intermediate 267
backout, dynamic 39
bank account database example 5
basic checkpoint 48, 62, 65
basic conversation, APPC 104
Basic edit

IMS TM 437
Basic Edit

input message 382
output message 382
translation to uppercase 382

basic edit, overview of 94
Batch Backout utility 39
batch environment 36
batch message processing (BMP) programs

issuing checkpoints 485
PCBs 483

batch message processing program. 42
batch programs

assembler language 177
C language 180
COBOL 182
command-level samples

assembler 462
C 471
COBOL 465
PL/I 468

converting to BMPs 42
databases that can be accessed 36, 56
DB batch processing 39
differences from online 39
IMS database 180
issuing checkpoints 49, 62, 485
maintaining integrity 264
Pascal 188
PL/I 190
recovery 39, 62
recovery of database 64

Batch Terminal Simulator (BTS) 136
batch-oriented BMPs. 42
BILLING segment 5
binder options with EXEC DLI 476
binding, reference 192
BKO execution parameter 39
block descriptor word (BDW)

IMS Spool API 426
BMP (batch message processing) program

batch-oriented
checkpoints in 49, 62
databases that can be accessed 42
description of 42

Index 891

BMP (batch message processing) program (continued)
batch-oriented (continued)

limiting number of locks with LOCKMAX= parameter
49
recovery 42

databases that can be accessed 36, 56
transaction-oriented

checkpoints in 49
databases that can be accessed 44
recovery 44

BMP (batch message processing) programs
basic checkpoint

issuing 485
checkpoint (CHKP)

description 485
EXEC DLI command 485

checkpoint (CHKP) command
in a Batch or BMP Program 485
issuing 485

checkpoint (CHKP) EXEC DLI command
current position 485

CHKP (Checkpoint)
description 485
EXEC DLI command 485

CHKP (Checkpoint) command
issuing in a Batch or BMP Program 485

CHKP (Checkpoint) EXEC DLI command
current position 485

committing your program’s changes to a database 485
EXEC DLI recovery commands

CHKP (Checkpoint) 485
SYMCHKP (Symbolic Checkpoint) 485

I/O area
symbolic CHKP 485

issuing checkpoints 485
PCBs 483
planning for database recovery

CHKP command checkpoints 485
taking checkpoints 485

recovery EXEC DLI commands
basic CHKP 485
SYMCHKP 485

SYMCHKP (Symbolic Checkpoint) command
description 485

BMPs, transaction-oriented
ROLB 264

Boolean operators
dependent AND 272
independent AND 272
SSA, coding 222

BTS (Batch Terminal Simulator) 136
buffer pool, STAT call and OSAM 139
buffer subpool, statistics for debugging

enhanced STAT call and
OSAM 143
VSAM 141, 148

business applications
composite 822
developing 751

business process choreography
overview 820
planning details 822

ByteBuffers 611

C
C language

__pcblist 227
application programming

IMS database 198
IMS Transaction Manager 352

batch program, coding 180
DL/I call formats 198, 352
DL/I calls

sample call formats 198, 352
DL/I program structure 180
entry statement 227
exit 227
I/O area 198, 352
PCBs, passing 227
return statement 227
skeleton MPP 418
SSA definition examples 223
system function 227

C program
DL/I command-level sample 471

C/MVS 53
CALL statement (DL/I test program) 135
call-level programs

comparing with command-level programs
command codes and options 501
commands and calls 499

DL/I calls available to IMS and CICS command-level
499

call-level programs, scheduling a PSB 59
callout IVP (installation verification program)

as EAR file 745
callout request

asynchronous callout
programming model 457

asynchronous callout request 449
comparison of synchronous and asynchronous callout
requests 449
IMS TM Resource Adapter

Enterprise JavaBeans (EJB) 450
Java EE application 450
message-driven bean (MDB) 450
web service 450

JMS (Java Message Service) implementation
IMSQueueConnectionFactory 692

overview 449
resume tpipe

IRM_TIMER field 452
protocol 452
security 452
security exit routine (DFSYRTUX) 452

RESUME TPIPE call 450
SOAP Gateway

web service 450
synchronous callout

COBOL code example 453
control data 456
JBP (Java batch processing) regions 692
JMP (Java message processing) regions 692
programming model 453

synchronous callout request 449
synchronous program switch

JBP (Java batch processing) regions 697

892 IMS: Application Programming

callout request (continued)
synchronous program switch (continued)

JMP (Java message processing) regions 697
synchronous program switch request 449
user-written IMS Connect TCP/IP application 450

callout requests
diagnosis 837
IMS callout applications 746
IVP samples 742
message-driven bean (MDB) sample 774
retrieving from message-driven beans (MDB) 766
types 873

calls, DL/I 11
calls, system service

calls,system service
SETS/SETU (set a backout point)
267

PLITDLI 267
SETS (Set a Backout Point) call

description 267
SETS/SETU (set a backout point)

backing out to an intermediate backout point 267
SETU (Set a Backout Point Unconditional) call

description 267
SETU, call function 267

CCTL (coordinator controller)
restrictions

with BTS (Batch Terminal Simulator) 136
with DL/I test program 135

CEETDLI
address return 227
program entry statement 227

character host variable
COBOL 525

checkpoint
basic 48, 62
calls, when to use 49
frequency, specifying 51, 62
IDs 62
in batch programs 49, 62
in batch-oriented BMPs 49, 62
in MPPs 49
in transaction-oriented BMPs 49
issuing 39
printing log records 62
restart 49, 65
summary of 48
symbolic 48, 62

checkpoint (CHKP) calls
considerations 175
description 263
issuing 263

checkpoints
relationship to commit point and sync point 257

CHKP (checkpoint) 48
CHKP (checkpoint) call

considerations 175
CHKP (symbolic checkpoint) call

with GSAM 289
CHKPT=EOV 48
CHNG call

usage 429
with directed routing 397

CHNG system service call 425

CICS
command language translator 475
distributed transactions

accessing IMs 60
CICS applications

unit testing 155
CICS applicationsIMS batch regions

database logging 67
ESTAE routine 67
resource cleanup 67
STAE routine 67

CICS DL/I call program
compiling 176

CICS online programs
assembler language

sample 178
COBOL, sample 184
PL/I, sample 192

CIMS 329
classes schedule, example 28
client IDs 869
CLOSE

statement
description 548
WHENEVER NOT FOUND clause 512, 514

closing a GSAM database explicitly 287
CM0Response

interaction property 874
CMPAT option 483
CMPAT=YES PSB specification 39
COBOL

application programming 201, 355
copybook types 640
data types

mapped to COBOL 640
DL/I call formats 201, 355
DL/I call-level, sample 184
DL/I command-level sample 465
DL/I program structure 182
entry statement 227
mapping to IMS 640
return statement 227
skeleton MPP 419
SQL aggregate function

ASC 536
AVG 536
COUNT 536
DESC 536
GROUP BY 536
MAX 536
MIN 536
ORDER BY 536
SUM 536

SQL aggregate functions supported 536
SSA definition examples 223
types

data, mapped to COBOL 640
UIB, specifying 219

COBOL application program
defining the SQLIMSDA 510, 524
host structure 529
host variable

use of hyphens 533
host variable, declaring 525

Index 893

COBOL application program (continued)
INCLUDE statement 533
including SQLIMSCA 524
naming convention 533
options 533
SQLIMSCODE host variable 524
SQLIMSSTATE host variable 524
WHENEVER statement 533

code
course 17
transaction 40

codes abend 45
codes, status

logical relationships 277
coding batch

PL/I programs 190
coding DC calls and data areas

in assembler language 418
in C Language 418
in COBOL 419
in Pascal 420
in PL/I 422
skeleton MPP 417–420, 422

coding rules, SSA 222
coding SQL statements

dynamic 511
colon

preceding a host variable 513
column

labels, usage 514
name, with UPDATE statement 539
retrieving, with SELECT 541

columns
fields, compared to 555
relational representation, in 555

command codes
D

examples 174
DEDBs 174
F

restrictions 320
overview 174
Q 270
qualified SSAs 174
restrictions 222
subset pointers 174
unqualified SSAs 174

command language translator, CICS 475
command-level program

DFHEIENT 462
DFHEIRET 462
DFHEISTG 462
parameters

EIBREG 462
RCREG 462

RCREG parameters 462
reentry 462
SCHD PSB command 462

command-level programs
adjustable character string 481
array, connected 481
assembler language

I/O area 481
automatic storage 468

command-level programs (continued)
C code standard header file 471
character string

adjustable 481
fixed-length 481

COBOL
I/O area 481

commands
SCHD PSB 468

comparing with call-level programs
command codes and options 501
commands and calls 499

concatenated key, segment 480
connected array 481
DIB (DL/I interface block) 477
DL/I calls available to IMS and CICS 499
EIBREG parameter 462
fixed-length character string 481
GE status code 468, 471
I/O area

assembler language 481
COBOL 481
coding 481
PL/I 481
restriction 481

I/O area, defining 481
key feedback area, defining 480
major structure 481
minor structure 481
PL/I

I/O area 481
preparing EXEC DL/I program for execution 475
reentrance 462
restrictions

I/O area 481
I/O area, PL/I
481

samples
assembler language 462
C 471
COBOL 465
PL/I 468

SCHD PSB command 468
segment

concatenated key 480
standard header file, C code 471
status codes

GE 468, 471
structure

major 481
minor 481

commands, EXEC DLI 11
COMMENTS statement 135
commit

single-phase 260
UOR 260

commit mode processing
client IDs 783
interaction verbs 783
transaction pipes 783

commit modes
interaction property 874
processing 782
supported interactions 782

894 IMS: Application Programming

commit point
process 257
relationship to check point and sync point 257

commit point processing
DEDB 319
MSDB 302

commit points 39, 45, 62
Common Client Interface (CCI)

IMS TM resource adapter 828
IMS TM resource adapter samples 830
passing input and output 828

Common Connector Framework
file names 734
migration 732

communicating with other IMS TM systems 395
communication protocols

TCP/IP connections 792
COMPARE statement 135
comparing EXEC DLI

commands with DL/I calls 499
options with command codes 501

comparison of symbolic CHKP and basic CHKP 48
comparison to ROLB and ROLS call 410
comparison to ROLL and ROLB call 410
comparison to ROLL and ROLS call 410
compiler, COBOL 465
compiling, options with EXEC DLI 476
component-managed transactions 826
composite business applications

business process choreography 822
conversational programs 820
requirements 727

concatenated data sets, GSAM 293
concatenated segments, logical relationships 274
concurrent access to full-function databases 39
connection factories

alternate resources 748
configuration 791
creating 736
custom properties 748

connection factory
WebSphere Liberty servers 738

connection pooling 789
connections

managed 828
non-managed 828
persistent

configuring 791
dedicated 784
overview 807
reconnection 789
releasing sockets 789

samples 830
shareable persistent sockets 787

considerations in screen design 94
CONTINUE clause of WHENEVER statement 523
CONTINUE-WITH-TERMINATION indicator 53
continuing a conversation 95
control data

synchronous callout 456
control, passing processing 11
conventions, naming 15
conversation attributes

asynchronous 102

conversation attributes (continued)
MSC synchronous and asynchronous 102
synchronous 102

conversation ID
conversational 821

conversation IDs 822, 873, 880
conversation state, rules for APPC verbs 104
conversational mode

description 98
LU 6.2 transactions 102

conversational processing
abnormal termination of, precautions for 96
coding necessary information 408
deferred program switch 95
designing a conversation 95
DFSCONE0 96
example 398
for APPC/IMS 407
gathering requirements 95
how to continue the conversation 95
how to end the conversation 95
immediate program switch 95
overview 95, 398
passing control and continuing the conversation 404
passing the conversation to another program 95
recovery considerations 96
replying to the terminal 403
SPA 96
structure 399
use with alternate response PCBs 98
using a deferred program switch to end the conversation
95
using ROLB, ROLL and ROLS in 403
what happens in a conversation 95

conversational program
definition 398

conversational programs
building business process choreography applications for
822
client-managed conversation state programming model
823
enabling Java clients 822
IMS Connect-managed conversation state programming
model 823
managing conversation states 821
orphaned 821
overview 820, 822
programming models 821

conversations
ended 873
orphaned 821
transaction processing 822

conversations, preventing abnormal termination 96
converting an existing application 15
coordinator controller. 135
coordinator, sync-point 105
copybook types 640
correlation tokens

interaction property 879
managing 777
message flow 762

course code 17
CPI Communications driven program

sync point 257

Index 895

CPI Resource Recovery calls 257
creation of

a new hierarchy 81
reports 20

crossing a unit of work (UOW) boundary when processing
DEDBs 498
currency of data 3
current position

determining 241
current roster 17
cursor

closing 548
description 545, 546
non-scrollable 546
OPEN statement 546
result segment 545
row-positioned

declaring 546
description 545
end-of-data condition 547
steps in using 546

D
data

a program's view 9
accessing from an application program 541
adding 538
aggregate 21
associated with WHERE clause 541
documentation 20
elements, homonym 19
elements, isolating repeating 22
elements, naming 19
hierarchical relationships 5
integrity, how DL/I protects 61
keys 22
modifying 538
recording its availability 20
relationships, analyzing 22
retrieval using SELECT *

variable-length segments 544
retrieving a set of rows 547
structuring 22
unique identifier 19

data areas
coding 175

data availability
considerations 52, 65
levels 9
recording 20

data availability enhancements 503
data bindings

creating in MDBs 766
input message formats 793
output message formats 793

data capture 226, 370
data currency 3
data definition 15
data dictionary

DataAtlas 20, 163
DB/DC Data Dictionary 20, 163
documentation for other programmers 163
in application design 20

data element
description 17
homonym 19
isolating repeating 22
listing 17
naming 19
synonym 19

data elements, grouping into hierarchies 22
data entity 17
data entry database 36
data mask 11
data propagation

sync point 261
data redundancy 3
data redundancy, reducing 274
data sensitivity 9
data sensitivity, defined 84
data storage methods

combined file 3
in a database 3
separate files 3

data store names 870
data structure 9
data structure conflicts, resolving 76
data structures 175
data type

comparisons 513
compatibility

COBOL and SQL 531
DataAtlas 20, 163
database

access to 56
administrator 5
availability

obtaining information 503
status codes, accepting 503

calls
Fast Path 327

changes, backing out 64
DBCTL facilities

REFRESH command 503
description (DBD) 9
example, medical hierarchy 5
hierarchy 5
integrity, maintaining 485
options 69
planning for recovery

backing out database changes 486
position

determining 241
record, processing 11
recovery 485
recovery with ROLL call 264
recovery, back out changes 264
REFRESH command 503
unavailability 52, 65

database and data communications security 15
DATABASE macro 89
database record 5
database recovery

backing out 412
backing out database changes 64
checkpoints, description 62
planning

896 IMS: Application Programming

database recovery (continued)
planning (continued)

XRST command 486
restarting your program, description 65

Database Resource Adapter (DRA) 329
database statistics, retrieving 139
database types

areas 36
Db2 for z/OS 36, 56
DEDB 36, 73
description 36
full-function 36
GSAM 36, 75
HDAM 70, 72
HISAM 74
HSAM 74
MSDB 36, 73
PHDAM 69, 70
PHIDAM 69, 72
relational 36
root-segment-only 36
SHISAM 75
SHSAM 75

databases
accessing with application programs 36
versioning

application programming 237
DB batch processing 39
DB Control

DRA (Database Resource Adapter) 329
DB Control DRA (Database Resource Adapter) 329
DB PCB

definition 483
DB PCB (database program communication block)

concatenated key and PCB mask 283
database

DB PCB, name 283
database name 283
entry statement, pointer 283
fields 212
fields in a DB PCB 283
key feedback area

length field in DB PCB 283
key feedback area length field 283
length of key feedback area 283
mask

fields 283
fields, GSAM 283
general description 212
name 283
relation 212
specifying 212

masks
DB PCB 212

multiple DB PCBs 255
processing options

field in DB PCB 283
processing options field 283
relation to DB PCB 212
RSA (record search argument)

overview 283
secondary indexing, contents 274
status code field 283
status codes

DB PCB (database program communication block) (continued)
status codes (continued)

field in DB PCB 283
undefined-length records 283
variable-length records 283

DB/DC
Data Dictionary 20, 163
environment 36

DB2 (DATABASE 2)
with IMS TM 390, 423

Db2 for z/OS
databases 36, 56

Db2 for z/OS access
application programming 703
committing work 703
drivers 703
IMS databases, compared to 703
rolling back work 703

Db2 for z/OS stored procedures
ASUTIME, recommendation 334
best practices, design 334
best practices, ODBA 334
best practices, writing 336
design best practices 334
ODBA best practices 334
stopping threads 336
threads, stopping 336
writing 336
writing best practices 336

DBA 5
DBASF, formatted OSAM buffer pool statistics 139
DBASS, formatted summary of OSAM buffer pool statistics
139
DBASU, unformatted OSAM buffer pool statistics 139
DBCTL

environment 36
DBCTL (Database Control)

single-phase commit 260
two-phase commit 258

DBCTL environment 56
DBCTL facilities

ACCEPT command 503
data availability 503
QUERY command 503
ROLS (Roll Back to SETS or SETU) command 486
SETS (Set a Backout Point) command 486

DBCTLID parameter 329
DBD (database description) 9
DBESF, formatted OSAM subpool statistics 143
DBESO, formatted OSAM pool online statistics 143
DBESS, formatted summary of OSAM pool statistics 143
DBESU, unformatted OSAM subpool statistics 143
DCCTL

environment 36
DDL 617
DDM (distributed data management) 560
deadlock, program 39
debug a program, How to 159
DECLARE CURSOR statement

description, row-positioned 546
prepared statement 512, 514

DEDB
DL/I calls

AL_LEN call 325

Index 897

DEDB (continued)
DL/I calls (continued)

AREALIST call 326
DEDBINFO call 326
DEDSTR call 327
DI_LEN call 325
DS_LEN call 325
summary 321

DEDB (data entry database)
call restrictions 320
crossing a unit of work (UOW) boundary when
processing 498
data entry database 487
database

processing, Fast Path 487
dependent segments

sequential 487
direct dependent segments, in DEDBs 487
DL/I calls 320
Fast Path

database, processing 487
multiple qualification statements 173
processing

commit point 319
DEDBs 487
fast path 295
H option 319
overview 487
P option 319
POS (Position) command 496
POS call 316
secondary index 308
subset pointers 304, 487

segment
sequential dependent 487

sequential dependent segments
in DEDBs 487

updating segments 298
updating with secondary index 308
updating with subset pointers 304

DEDB (data entry database) and the PROCOPT operand 87
DEDBINFO call 326
dedicated persistent socket connections

establishing 792
overview 792
processing models 752, 754
programming models 756, 757
TCP/IP connections 792

DEDSTR call 327
deferred program switch 95
defining application program elements to IMS

AIB 477
AIB (Application Interface Block)

AIB mask 477
restrictions 477

Application Interface Block (AIB)
AIB mask 477
restrictions 477

DIB 477
execution diagnostic facility 477
I/O area 481
key feedback area 480
restrictions

AIB 477

defining application program elements to IMS (continued)
Transaction Server, CICS 477

defining subset pointers 489
definition

data 15
dependent segment 5
root segment 5

Delete (DLET) call
with MSDB, DEDB or VSO DEDB 298

DELETE statement
description 540

deleting
current rows 547
data 540
every row from a table 540
rows from a table 540

dependent AND operator 272
dependent segment 5
dependent segments

retrieving 80
sequential

identfying free space 498
locating a specific dependent 497
locating the last inserted dependent 497

dependents
direct 36
sequential 36

dependents, direct 298
deploying

callout IVP EAR file 743
callout IVP EAR file in WebSphere Liberty servers 745
generic application server 735
IVP EAR file 740
IVP EAR file in WebSphere Application Server V7 740
IVP EAR file in WebSphere Application Server V8 740
IVP EAR file in WebSphere Liberty servers 741
WebSphere Application Server 735
WebSphere Liberty servers 737

dequeue count 759
DESCRIBE statement

column labels 514
INTO clauses 514

description, segment 5
design efficiency, programs 461
design of

an application 15
conversation 95
local view 21

designing
terminal screen 94

determination of mappings 27
device input format (DIF), control block 93
device output format (DOF), control block 93
devices supported by MFS 444
DFSAPPC

DFSAPPC
format 406
option keywords 406

message switching 406
DFSAPPC message switch 133
DFSCONE0 (Conversational Abnormal Termination exit
routine) 96
DFSDDLT0 (DL/I test program) 135
DFSDLTR0 (DL/I image capture). 156

898 IMS: Application Programming

DFSHALDB ddname
selective partition processing 279

DFSLI000 (language interface module)
binding COBOL code to 184

DFSMDA macro 54
DI_LEN call 325
diagnosing multiple parsing error return codes 429
DIB (DL/I interface block)

accessing information 477
assembler language program

DIB fields 477
variable names, mandatory 477

BA status code 477
BC status code 477
C program

DIB fields 477
variable names, mandatory 477

CICS
HANDLE ABEND command 477

COBOL program
DIB fields 477
variable names, mandatory 477

FH status code 477
fields 477
FW status code 477
GA status code 477
GB status code 477
GD status code 477
GE status code 477
GG status code 477
GK status code 477
II status code 477
label restriction 477
labels 477
LB status code 477
NI status code 477
PL/I

program variable names, mandatory 477
restrictions

DIB label 477
status codes

BA 477
BC 477
FH 477
FW 477
GA 477
GB 477
GD 477
GE 477
GG 477
GK 477
II 477
LB 477
NI 477
TG 477

structure 477
translator version 477

DIB (DLI interface block) 11
dictionary, data 20
DIF (device input format), control block 93
direct access methods

characteristics 70
HDAM 70
HIDAM 72

direct access methods (continued)
PHDAM 69, 70
PHIDAM 69, 72
types of 70

direct dependents 36
directed routing 395
distributed data management (DDM) 560
distributed presentation management 446
Distributed Relational Database Access (DRDA) 559, 560
distributed relational database architecture (DRDA)

DDM commands 344
overview 343

distributed security credential propagation
enabling in IMS TM resource adapter 810, 812
propagating

in asynchronous callout messages 814
in synchronous callout messages 814

WebSphere Application Server 810
WebSphere Liberty 812

Distributed Sync Point 109
DL/I

calls
for CICS and IMS programs 499

DL/I access methods
considerations in choosing 69
DEDB 73
direct access 70
GSAM 75
HDAM 70
HIDAM 72
HISAM 74
HSAM 74
MSDB 73
PHDAM 69, 70
PHIDAM 69, 72
sequential access 74
SHISAM 75
SHSAM 75

DL/I call trace 135
DL/I calls

general information
coding 175

image capture
batch job 138

JDBC driver 628
log data set

DFSERA50 call trace exit routine 138
relationships to PCB types

I/O PCBs 362
sample call formats 201, 204, 355, 357
tracing

DLITRACE control statement 138
image capture 136–138, 339
IMS TRACE command 339
TRACE command 137

Universal JDBC driver 628
DL/I calls (general information)

qualification statements
overview 168

qualified calls 168
qualified SSAs (segment search arguments)

structure 168
qualifying calls

command codes 174

Index 899

DL/I calls (general information) (continued)
qualifying calls (continued)

field 168
segment type 168

segment search arguments (SSAs) 168
SSAs (segment search arguments)

qualified 168
unqualified calls 168

DL/I calls, system service
ROLB 264
ROLL 264

DL/I calls, testing DL/I call sequences 135, 156
DL/I database

access to 56
description 56

DL/I image capture (DFSDLTR0) programs 156
DL/I interface block 477
DL/I language interfaces

overview 195, 349
supported interfaces 195, 349

DL/I options
field level sensitivity 76
logical relationships 81, 274
secondary indexing 77, 271

DL/I program ROLB scenario 111
DL/I test program (DFSDDLT0)

call statements 135
checking program performance 135
comments statements 135
compare statements 135
control statements 135
description 135
status statements 135
testing DL/I call sequences 135, 156

DLET (Delete) call
with MSDB, DEDB or VSO DEDB 298

DLI
GUR call 234

DLITPLI 229
documentation for users 163
documentation of

data 20
the application design process 15

DOF (device output format), control block 93
DPM (distributed presentation management)

using 446
with ISC 446

DRA (Database Resource Adapter)
description 329
startup table 329

DRDA (Distributed Relational Database Access) 559, 560
DRDA (distributed relational database architecture)

DDM commands 344
overview 343

DS_LEN call 325
duplicate values, isolating 22
DYNAM option of COBOL 533
dynamic allocation 54, 67
dynamic backout 39, 486
dynamic MSDBs (main storage databases) 5
dynamic SQL

COBOL application program 533
description 511
EXECUTE 520

dynamic SQL (continued)
fixed-list SELECT statements 512
non-SELECT statements 518, 520
parameter marker 520
PREPARE 520
programming 511
SELECT 519
varying-list SELECT statements 514

E
EBCDIC 62
editing

considerations in your application 94
messages

considerations in message and screen design 94
overview 93

editing messages
edit routines

Basic Edit 381
Intersystem Communication (ISC) Edit 381
Message Format Service (MFS) 381

efficient program design 461
EIS

component-managed signon 802
container-managed signon 799

EJB
process flow for synchronous callout 777
synchronous callout sample 779
transaction timeouts 819

elements
data, description 17
data, naming 19

emergency restart 427
EMH (expedited message handler) 41
end a conversation, how to 95
end conversation request

conversational programs 820
end-of-data condition 547
enhanced STAT call formats for statistics

OSAM buffer subpool 143
VSAM buffer subpool 148

enhancements
INQY DL/I call 660

enqueue count 759
Enterprise Information System (EIS)

component-managed signon 802
container-managed signon 799

entity, data 17
entry and return conventions 227
entry point

AIB (application interface block)
address return 371
and program entry statement 371

assembler language
program entry 371
register 1 at program entry 371

C language
__pcblist 371
entry statement 371
exit 371
longjmp 371
passing PCBs 371
return 371

900 IMS: Application Programming

entry point (continued)
C language (continued)

system function 371
CEETDLI

address return 371
program entry statement 371

COBOL
DLITCBL 371

entry point
assembler language 371

Java 371
overview 371
Pascal

entry statement 371
passing PCBs 371

PL/I
passing PCBs 371
pointers in entry statement 371

environments
DB/DC 36
DBCTL 36
DCCTL 36
options in 36, 56
program and database types 36

equal-to relational operator 168
ERASE parameter 87
error

execution 159
handling 523
initialization 159
return codes 522

ESTAE routines 53
example

current roster 17
field level sensitivity 76
instructor schedules 28
instructor skills report 28
local view 28
logical relationships 81
schedule of classes 28

examples
bank account database 5
Boolean operators 173
conversational processing 398
D command code 174
FLD/CHANGE 302
FLD/VERIFY 302
medical database 5
multiple qualification statements 173
path call 174
UIB, defining 219

exception condition handling 523
exceptions

IMS TM resource adapter
HWSP1445E 867
HWSSSL00E 868
J2C applications 842
J2C messages 842
J2CA0056I 866
other errors 866
WLTC0017E 867

output messages 837
socket timeouts 817

EXEC DLI

EXEC DLI (continued)
binder options, required 476
compiler options, required 476
DLI option 476
preparing program for execution 475
PROCESS statement overrides 476
recovery commands

XRST (Extended Restart) 486
translator options, required 476
z/OS & VM 476
z/OS & VM translator 476

EXEC DLI commands 11
EXEC DLI program translating 476
EXECUTE statement

dynamic execution 520
parameter types 514

execution errors 159
execution timeouts

conversational transactions 815
definition 815
exceptions 815
IMS Connect 815
interaction properties 874
specification 817
valid values 815

existing application, converting an 15
explicit API for LU 6.2 devices 110
explicitly opening and closing a GSAM database 287
express alternate PCB 391
express PCBs 98
Extended Restart 48, 65

F
F command code

restrictions 320
failover 748
Fast Path

database calls 295, 296
databases 36
databases, processing 295
DEDB (data entry database)

processing 295
DEDB and the PROCOPT operand 87
IFPs 41
MSDB (main storage database)

processing 295
P (position) processing option 498
secondary index, using with DEDBs 308
subset pointers with DEDBs 487
subset pointers, using with DEDBs 304
types of databases 295

FETCH statement
description, single row 547
host variables 512

field
changing contents 301
checking contents: FLD/VERIFY 299

Field (FLD) call 298
field level sensitivity

as a security mechanism 85
defining 9
description 76
example 76

Index 901

field level sensitivity (continued)
specifying 76
uses 76

field name
FSA 300
SSA

qualification statement 168
field search argument (FSA)

description 299
with DL/I calls 299

field value
FSA 300
SSA qualification statement 168

fields
columns, compared to 555
in SQL queries 555

File Select and Formatting Print Program (DFSERA10) 48
FIN (Finance Communication System)

defining to operate with MFS 444
fixed, MSDBs (main storage databases) 5
FLD (Field) call

description 298
FLD/CHANGE
301
FLD/VERIFY 299

flow diagrams, LU 6.2
CPI-C driven commit scenario 111
DFSAPPC, synchronous SL=none 111
DL/I program backout scenario 111
DL/I program commit scenario 111
local CPI communications driven program, SL=none 111
local IMS Command

asynchronous SL=confirm 111
local IMS command, SL=none 111
local IMS conversational transaction, SL=none 111
local IMS transaction

asynchronous SL=confirm 111
asynchronous SL=none 111
synchronous SL=confirm 111
synchronous SL=none 111

multiple transactions in same commit 111
remote MSC conversation

asynchronous SL=confirm 111
asynchronous SL=none 111
synchronous SL=confirm 111
synchronous SL=none 111

formats
PSB 483

formatting
result tables 543

frequency, checkpoint 51
FROM clause

SELECT statement 541
FSA (field search argument)

description 299
with DL/I calls 299

full-function databases
and the PROCOPT operand 87
how accessed, CICS 56
how accessed, IMS 36

G
gather requirements

gather requirements (continued)
for conversational processing 95

gathering requirements
for database options 69
for message processing options 91

GC status code 498
general programming guidelines 461
Generalized Sequential Access Method (GSAM)

program access 283
generalized sequential access method (GSAM))

DB PCB (database program communication block)
mask 226

global transaction support
TCP/IP 826

GO processing option 49
GO TO clause of WHENEVER statement 523
GPSB (generated program specification block)

format 373
greater-than relational operator 168
greater-than-or-equal-to relational operator 168
group data elements

into hierarchies 22
with their keys 22

group names 870
GSAM (generalized sequential access method

GSAM (generalized sequential access method)
RSA 285

record search argument 285
GSAM (generalized sequential access method)

accessing databases 283
BMP region type 294
call summary 289
CHKP 289
coding considerations 289
data areas 226
data set

attributes, specifying 293
characteristics, origin 290
concatenated 293
DD statement DISP parameter 291
extended checkpoint restart 292

database, explicitly opening and closing 287
DB PCB masks 226
DBB region type 294
description 283
designing a program 283
DLI region types 294
fixed-length records 287
I/O areas 288
record formats 287
records, retrieving and inserting 285
restrictions on CHKP and XRST 289
RSA 226
RSA (record search argument)

description 285
status codes 288
undefined-length records 287
variable-length records 287
XRST 289

GSAM (Generalized Sequential Access Method)
accessing GSAM databases 56
database type 36
description 75

GSAM PCB 483

902 IMS: Application Programming

guidelines, general programming 461
guidelines, programming 167
GUR call 234

H
H processing option 319
HALDB

DFSHALDB ddname 279
HALDB control statement 279
partitions

selective partition processing 279
selective partition processing 279

HALDB (High Availability Large Database)
application programs

scheduling against 233
initial load 233

HALDB control statement 279
HDAM

multiple qualification statements 173
HDAM (Hierarchical Direct Access Method) 70
HIDAM (Hierarchical Indexed Direct Access Method) 72
hierarchical database

example 555
relational database, compared to 555

hierarchical database example, medical 5
Hierarchical Direct Access Method (HDAM) 70
Hierarchical Indexed Direct Access Method (HIDAM) 72
Hierarchical Indexed Sequential Access Method (HISAM) 74
Hierarchical Sequential Access Method (HSAM) 74
hierarchy

bank account database 5
data structures 175
description 5
grouping data elements 22
medical database 5

hierarchy examples 5
High Availability Large Database (HALDB)

application programs
scheduling against 233

initial load 233
HISAM (Hierarchical Indexed Sequential Access Method) 74
homonym, data element 19
Hospital database example 568
host names 870
host structure

COBOL 529
description 511
indicator structure 511

host variable
COBOL 525
description 510
FETCH statement 512
indicator variable 511
PREPARE statement 512
using 513

host variables 510
HOUSHOLD segment 5
HSAM (Hierarchical Sequential Access Method) 74

I
I/O area

I/O area (continued)
command-level program 481
specifying 221, 370
XRST 486

I/O PCB
in different environments 58
mask

12-byte time stamp 208
general description 208
group name field 208
input message sequence number 208
logical terminal name field 208
message output descriptor name 208
specifying 208
status code field 208
userid field 208
userid indicator field 208

I/O PCB mask
general description 363
specifying 363

IBM Enterprise COBOL for z/OS
Java dependent region

interoperability 702
Java dependent regions

backend application for Java applications 703
frontend application for Java applications 703
issuing DL/I calls in COBOL 703

ICAL callout with control data
IMS Java dependent region resource adapter 690

identification of
recovery requirements 49

identifying
application data 17
online security requirements 91
output message destinations 97
security requirements 84

IDEs (integrated development workbench)
IMS TM resource adapter applications 751

IDs, checkpoint 62
IFP (IMS Fast Path) program

databases that can be accessed 36
differences from an MPP 41
recovery 41
restrictions 41

IFP application programs 483
ILLNESS segment 5
image capture program

CICS application program 156
IMS application program 136

immediate program switch 95
implicit API for LU 6.2 devices 110
IMS application

diagnosing
abnormal termination (abend) 151
program execution errors 151
program initialization errors 151

IMS application programs, standard 408
IMS catalog

application programming 234
PSBs 234

IMS commands
submitting 791

IMS connection factories
configuration 791

Index 903

IMS connection factories (continued)
overview 793, 828
properties

clientID 869
CM0Dedicated 869
dataStoreName 870
groupName 870
hostName 870
password 870
passwordPhrase 870
portNumber 870
SSLEnabled 870
SSLEncryptionType 870
SSLKeyStoreName 871
SSLKeyStorePassword 871
SSLProtocol 872
SSLTrustStoreName 872
SSLTrustStorePassword 872
userName 872

IMS conversations
conversational program 398
nonconversational program 398

IMS coprocessor
processing SQL statements 548

IMS database
batch programming 180
database design

logical relationships 83
IMS DB

Application programming 165
IMS Explorer for Development

com.ibm.ims.db.DLIDatabaseView class
generating 567

DLIDatabaseView class
generating 567

Java metadata class
generating 567

IMS Fast Path (IFP) programs, description of 41
IMS interaction specification

asynchronous callout sample 781
client-managed conversation state 823
configuration 790
IMS Connect-managed conversation state 823
properties

altClientID 872
asyncOutputAvailable 873
calloutRequestType 873
CM0Response 874
commitMode 874
convEnded 873
convID 873
executionTimeout 874
ignorePURGCall 875
imsRequestType 875
interactionVerb 876
ltermName 877
mapName 877
purgeAsyncOutput 878
reRoute 878
reRouteName 878
resumeTpipeNSC 879
socketTimeout 879
syncCalloutCorrelationToken 879
syncCalloutStatusCode 879

IMS interaction specification (continued)
properties (continued)

syncLevel 879
transExpiration 880
useConvID 880

synchronous callout 760
synchronous callout sample 778

IMS Java dependent region resource adapter
Java batch processing (JBP) regions 674
Java message processing (JMP) regions 674
support for ICAL callout with control data 690

IMS request types 875
IMS solutions for Java development

overview 553, 566
IMS Spool API

dynamic allocation
error messages 432

print data sets
CHNG call 433

z/OS services for Dynamic Output (SVC109)
433

IMS Spool API application design 425
IMS support for DRDA 559
IMS TM

application program
message Type 377

DB2 considerations 390, 423
IMS TM resource adapter

components 723
connection factories 791
conversational programs 820, 821
diagnosis

callout requests 837
installation verification program 835
Java applications access to IMS 836

distributed security credentials
in asynchronous callout messages 814
in synchronous callout messages 814

enabling distributed security credentials 810, 812
enabling network security credentials 810, 812
functions 723
IMS Connect interactions 791
logging 838–840
migration 732
network security credentials

in asynchronous callout messages 814
in synchronous callout messages 814

overview 723
runtime process 724
supported platforms 726
supported software configurations 726
supported versions 726
tracing 838–840
update installation 747

IMS Transaction Manager (IMS TM)
application development 751
interactions with 751

IMS Universal Database resource adapter
CCI programming interface 584
configuring SSL support

container-managed environment 668
WebSphere Application Server 668

connectivity
RRSLocalOption 573

904 IMS: Application Programming

IMS Universal Database resource adapter (continued)
connectivity (continued)

type-2 573
type-4 573

creating a CCI Connection
managed environment 573

creating a CCI ConnectionFactory
managed environment 573

DLIInteractionSpec class
deleting data 585
inserting data 585
retrieving data 585
updating data 585

JNDI lookup
connecting to IMS 573

logging 669
overview 571
sample application 584
specifying IMSConnectionSpec properties

managed environment 573
SQLInteractionSpec class

deleting data 589
inserting data 589
retrieving data 589
updating data 589

supported software configurations 572
tracing 669
transaction management

bean managed 571
container managed 571
local transaction support 571
LocalTransaction interface 571
UserTransaction interface 571
XA transaction support 571

WebSphere Application Server for distributed platforms
support 573
WebSphere Application Server for z/OS support 573

IMS Universal DL/I driver
Accessing

dynamic arrays 666
adding segments

example 656
AIB

example 664
AIB interface 645
application programming 642
batchDelete

example 660
batchRetrieve

example 651
batchUpdate

example 658
ByteBuffers

using 662
com.ibm.ims.base 642
com.ibm.ims.dli 642
commit

example 665
configuring SSL support

stand-alone environment 668
connecting

IMS database 642
connections

IMS database 642

IMS Universal DL/I driver (continued)
connections (continued)

properties 642
create

example 656
creating segments

example 656
DBArrayElementSet class 666
DBPCB

example 664
DBPCB interface 645
delete

example 658
deleting multiple segments

example 660
deleting segments

batch 660
example 658, 660

DL/I DLET 658
DL/I ISRT 656
DL/I REPL 657
Dynamic arrays in

IMS Universal DL/I driver 666
fetch size

setting 652
getNext

example 649
getNextWithinParent 649
getPathForBatchUpdate

example 658
getPathForInsert

example 656
getPathForRetrieveReplace

example 649, 657, 658
getUnique

example 649
GSAMPCB interface 645
IMSConnectionSpec

creating 642
example 642

IMSConnectionSpecFactory
example 642

IMSStatusCodes 664
insert

example 656
inserting segments

example 656
interfaces 645
Java packages 642
logging 669
overview 641
Path

data transformation 636, 652
retrieving java.sql data types 636, 652

Path interface 645
PathSet interface 645
PCB interface 645
programming model 642
PSB

creating 642
example 642

PSB interface 645
PSBFactory

example 642

Index 905

IMS Universal DL/I driver (continued)
query performance

improving 652
replace

example 657
retrieving

error code extension 664
reason code 664
return code 664
status code 664

retrieving data
example 649

retrieving multiple segments
example 651

retrieving segments
batch 651
example 649, 651

rollback
example 665

segment search arguments
specifying 646

setFetchSize 652
SSAList

adding intitial qualification 646
appending additional qualifications 646
creating 646
debugging 646
qualified 646
setting command codes 646
setting lock classes 646
unqualified 646

SSAList interface 645
SSAs

specifying 646
tracing 669
transactions

example 665
local 665
one-phase commit 665
processing 665
scope 665
unit of recovery 665
unit of work 665

updating multiple segments
example 658

updating segments
batch 658
example 657, 658

Using Byte Buffers 662
IMS Universal drivers

application platforms 564
architecture 560
CICS support 560
com.ibm.ims.db.DLIDatabaseView class

generating 567
configuring JAXB 563
configuring SSL support

container-managed environment 668
stand-alone environment 668
WebSphere Application Server 668

connectivity
distributed (type-4) 560
local (type-2) 560

data access methods 564

IMS Universal drivers (continued)
Db2 for z/OS stored procedures support 560
DLIDatabaseView class

generating 567
Java dependent region support 560
Java metadata class

generating 567
JBP region support 560
JMP region support 560
overview 559
programming approaches 564
SSL support

container-managed environment 668
stand-alone environment 668

transaction processing options 564
variable length database segments 565
WebSphere Application Server for distributed platforms
support 560
WebSphere Application Server for z/OS support 560

IMS Universal JCA/JDBC driver
connecting 579
data operations

DELETE 592
INSERT 592
PreparedStatement 592
SELECT 592
Statement 592
syntax 592
UPDATE 592

deploying 579
IMS Universal JDBC driver

columns compared to fields 613
configuring SSL support

stand-alone environment 668
connecting to IMS

DataSource 595
DriverManager 601

DDL-specific SQL usage
ALTER statement 621
CREATE statement 621
DROP statement 622

foreign key fields
example 619
SQL statement usage 619

hierarchical databases compared to relational
databases 613
IMS-specific SQL usage

AS clause 622
DELETE statement 625
DISTINCT clause 622
FROM clause 622
GROUP BY clause 622
INSERT statement 624
ORDER BY clause 622
SELECT statement 622
UPDATE statement 625
WHERE clause 626

IMSCALLOUTAPI 692
interfaces

DataSource 595
DriverManager 601

JDBC programming interface 607
logging 669
programming with the IMSCALLOUTAPI 692

906 IMS: Application Programming

IMS Universal JDBC driver (continued)
rows compared to segment instances 613
sample application 607
supported drivers 594
tables compared to segments 613
tracing 669
using byte buffers with IMS Universal JDBC Driver 608
using the ArrayResultSet property 611
using the removeInvalidCaseFields property 609

IMSActivationSpec properties
configuring 744, 768
list 770

IMSInteractionSpec properties
list 872

in-doubt UOR
definition 260

in-flight UOR
definition 260

independent AND operator 272
indexed field in SSA 271
indexing, secondary

DL/I Returns 274
effect on program 271
multiple qualification statements 272
status codes 274

indicator structure
description 511

indicator variable
description 511

INIT system service call 52
initialization errors 159
input for a DL/I program 175
input message

format 378
MFS 384

INQY DL/I call name enhancement 660
INQY system service call 52
INSERT statement

description 538
single row 538
VALUES clause 538

inserting a segment
GSAM records 285

installation
distributed platforms 733
IMS TM adapter runtime component 731
preparation 731, 732
verification 739
z/OS platform 734

instructor
schedules 28
skills report 28

integrity
batch programs 264
how DL/I protects data 61
maintaining,database 264
read without 89
using ROLB

MPPs and transaction-oriented BMPs 264
using ROLL 264
using ROLS 264

interaction verbs 876
interface, AIB 11
intermediate backout point

intermediate backout point (continued)
backing out 267

intermediate backout points 486
interoperability

31-bit COBOL and 64-bit Java 705
Introduction to Resource Recovery 105
invalid processing and ROLB/SETS/ROLLS calls 96
IPDS and IMS Spool API 427
ISC (intersystem communication)

defining to operate with MFS 446
ISC (Intersystem Communication) 41
isolation of

duplicate values 22
repeating data elements 22

ISRT (Insert) call
with MSDB, DEDB or VSO DEDB 298

ISRT call
issuing to other terminals 391
message call

in conversational programs 399
referencing alternate PCBs 391
usage 391

ISRT system service call 425
issue checkpoints 39
issuing

checkpoints in batch or BMP programs 485
IVP (installation verification program)

as EAR file 740, 741
prerequisites to running 739
running 741
troubleshooting 835

IVP EAR file 746

J
J2C applications

adapters
activation specifications 767
Common Client Interface (CCI) 751

Java API reference 881
Java Authentication and Authorization Service (JAAS) 797
Java Batch Processing (JBP)

applications 45
databases that can be accessed 36

Java batch processing (JBP) application
accessing GSAM data 686
program switching

immediate 694
programming models 683
restart 683
symbolic checkpoint 683

Java batch processing (JBP) regions
Db2 for z/OS access

application programming 703
IMS Java dependent region resource adapter 674
JBP applications 673
overview 673

Java data bindings
input message formats 793
output message formats 793

Java Database Connectivity (JDBC) 559
Java EE Connector Architecture (JCA) 559
Java Message Processing (JMP)

applications 45

Index 907

Java Message Processing (JMP) (continued)
databases that can be accessed 36

Java message processing (JMP) application
Db2 for z/OS data access 677
IMS data access 677
IMSFieldMessage class

subclassing 675
input messages

defining 675
message handling

input messages 678
output messages

defining 675
program switching

deferred 696
immediate 694

programming models 677
transactions

commit 678
rollback 678

Java message processing (JMP) applications
message handling

conversational transactions 679
multi-segment messages 680
multiple input messages 681
repeating structures 681
scratchpad area (SPA) 679

Java message processing (JMP) regions
Db2 for z/OS access

application programming 703
IMS Java dependent region resource adapter 674
JMP applications 673
overview 673

Java metadata class
IMS Explorer for Development

generating 567
IMS Universal drivers 567, 631

JBP (Java Batch Processing)
applications 45
databases that can be accessed 36

JBP (Java batch processing) regions
Db2 for z/OS access

application programming 703
IMS Java dependent region resource adapter 674
synchronous callout support 692
synchronous program switch support 697

JCA (Java EE Connector Architecture) 559
JDBC

ARRAY 635
BIGINT 635
BINARY 635
BIT 635
CHAR 635
CLOB 635
DATE 635
DOUBLE 635
FLOAT 635
IMS-specific SQL usage

WHERE clause subfield support 618, 627
INTEGER 635
mapping SQL data types to Java 635
overview 594
PACKEDDECIMAL 635
ResultSet

JDBC (continued)
ResultSet (continued)

data transformation 636, 652
retrieving java.sql data types 636, 652

SMALLINT 635
SQL aggregate function

AS 615
ASC 615
AVG 615
COUNT 615
DESC 615
GROUP BY 615
MAX 615
MIN 615
ORDER BY 615
SUM 615

SQL aggregate functions supported 615
SQL keywords supported 613
STRUCT 635
TIME 635
TIMESTAMP 635
TINYINT 635
Universal drivers

portable SQL keywords restrictions 616
XML support

Java metadata class 631
overview 631
retrieval 634
SQL INSERT 632
SQL SELECT 634
storage 632
type-4 connectivity 631

ZONEDDECIMAL 635
JDBC (Java Database Connectivity) 559
JDBC driver

DL/I calls 628
JES Spool/Print server 427
JMP (Java Message Processing)

applications 45
databases that can be accessed 36

JMP (Java message processing) regions
Db2 for z/OS access

application programming 703
IMS Java dependent region resource adapter 674
synchronous callout support 692
synchronous program switch support 697

JNDI
configuration in applications 830
configuration in WebSphere Application Server 744,
766, 768

JOURNAL parameter 426

K
key feedback area

command-level program 480
key sensitivity 85
keyboard shortcuts xix
keys, data 22
keystores

configuring for IMS TM resource adapter 807
creating 807

908 IMS: Application Programming

L
label, column 514
Language Environment

characteristics of CEETDLI 232, 374
interoperability, COBOL and Java 705
LANG= Option on PSBGEN for PL/I Compatibility with
Language Environment 232, 374
Language Environment

LANG = option for PL/I compatibility 232, 374
supported languages 232, 374

Language Environment, with IMS 232, 374
Large Data Sets 293
legal notices

notices 883
trademarks 883, 884

less-than relational operator 168
less-than-or-equal-to relational operator 168
limit access with signon security 91
link editing, EXEC DLI 476
link to another online program 60
LIST parameter 137
listing data elements 17
LL field

in input message 378
in output message 379

Local Option
64-bit support 724
container-managed security 799
restrictions 727
shareable persistent connections 791
supported communication protocol 728
tpipe names 759
WebSphere Application Server on z/OS
728

local view
designing 21
examples 28

locating
a specific sequential dependent 497
last inserted sequential dependent 497

locating dependents in DEDBs
last-inserted sequential dependent, POS call 316
POS call 316
specific sequential dependent, POS call 316

lock management 270
locking protocol 87
LOCKMAX= parameter, BMP programs 49
log

records
sync points 261

LOG call
description 151
use in monitoring 159

log records
type 18 62
X'18' 48

LOG system service call 340
log, system 39
logging

for IMS TM resource adapter 838, 840
in WebSphere Application Server 838
in WebSphere Liberty servers 839
standalone logger 839

logical child 274
logical parent 274
logical relationships

defining 81
description 81
effect on programming 276
example 81
introduction 274
logical child 274
logical parent 274
physical parent 274
processing segments 274
programming, effect 274
status codes 277

logical structure 274
lterm names 877
LTERM, local and remote 133
LU 6.2

conversations 407
support for APPC 101

LU 6.2 devices, signon security 91
LU 6.2 partner program design

DFSAPPC message switch 133
flow diagrams 111
integrity after conversation completion 131
scenarios 111

LU 6.2 User Edit Exit
using 390

M
macros

DATABASE 89
DFSMDA 54
TRANSACT 44

main storage database (MSDB) 73
main storage database (MSDBs)

types
nonrelated 5

main storage databases (MSDBs)
dynamic 5
types

related 5
maintaining database integrity 485
managed connections

connection factories 791
JNDI lookups 791

managing subset pointers in DEDBs with command codes
296
many-to-many mapping 27
map names 877
mapped conversation, APPC 104
mappings, determining 27
mask

AIB 214
DB PCB 212

mask, data 11
master terminal

issuing timeout 395
MDBs (message-driven beans)

callout sample 774
configuring IMSActivationSpec property 744, 768
J2C activation specification configuration 767
retrieving callout messages 766

Index 909

MDBs (message-driven beans) (continued)
thread pool 772

medical database example
description 5
segments 5

message
editing

description 381
input message 382, 384
output 382
output message 390
skipping line 382
using Basic Edit 382
using ISC Edit 383
using LU 6.2 User Edit Exit 390
using MFS Edit 383

from terminals 377
I/O PCB 381
input 378, 384
input descriptor (MID), control block 93
input fields

contents 378
ISC (intersystem communication)

editing output messages 383
ISC (intersystem communication) edit

output message 383
message formatting service 382
MFS (Message Format Service)

editing message 382
obtaining text

COBOL 533
output 97, 379, 390
output descriptor (MOD), control block 93
output fields

contents 379
printing 382
processing of

summary 380
processing options 91
receiving by program 377
result 381
sending to other application programs 393
type

message switch service 377
types

another terminal 377
Message Format Service 437
Message Format Service (MFS)

control blocks
relationship with screen format 442

LU 6.2 device restriction 383
secondary logical unit (SLU) 383
terminal

message processing program (MPP) 383
Message Input

Segment Format 378
message processing options

sending message to originating terminal 97
message processing program 418
message-driven beans (MDBs)

callout sample 774
configuring IMSActivationSpec property 768
J2C activation specification configuration 767
retrieving callout messages 766

message-driven programs
definition 416
supported message destinations 416
usage restrictions 416

messages
IMS TM resource adapter 842
WebSphere Application Server

HWSP1445E 867
HWSSSL00E 868
J2CA0056I 866
other messages 866
WLTC0017E 867

methods of data storage
combined file 3
database 3
separate files 3

MFS (Message Format Service)
components 444
control blocks

relationship with screen format 442
editing output messages 383
example 441
input message

formats 384
MFS (message format service)

message editor 444
online performance 437
output message

formats 390
overview 93, 437
pool manager 444
remote programs 444
supported devices 444

MFS control blocks
DIF (device input format)

description 438
DOF (device output format)

description 438
MID (message input descriptor)

description 438
MOD (message output descriptor)

description 438
summary 438

MFS libraries
online change function 444

MFS message output descriptors (MODs) 877
MFS SOA support 724
MFSTEST procedure (language utility)

pool manager 444
MID (message input descriptor), control block 93
migration

IMS TM resource adapter 732
mixed-language programming 233, 375
MOD (message output descriptor), control block 93
mode

multiple 49
processing 45
response 98
single 49

MODE parameter 45
modifying

data 538
MOVENEXT option

examples 489

910 IMS: Application Programming

MOVENEXT option (continued)
use when moving subset pointer forward 489

moving subset pointer forward 489
MPP (message processing program)

coding in assembler language 418
coding in C language 418
coding in COBOL 419
coding in Pascal 420
coding in PL/I 422
coding necessary information 417
databases that can be accessed 36, 40
description 40
executing 40
input 417
parmcount 422
PL/I

entry statement restrictions 422
MPP coding notes 422
optimizing compiler 422

MPP regions
troubleshooting callout issues 837
two-phase commit applications 827

MPPs
ROLB 264

MSC (multiple systems coupling)
description 395
directed routing 395
receiving messages from other IMS TM systems 396
sending messages to other IMS TM systems 397

MSDB (main storage database)
call restrictions 297
commit point processing 302
updating segments 298

MSDBs (main storage database)
processing commit points 302

MSDBs (main storage databases)
nonrelated 297
terminal related 297
types

description 297
nonrelated 5
related 5

multi-segment messages 793
multiple

DB PCBs 255
processing 249
qualification statements

DEDB 173
HDAM 173
PHDAM 173

multiple ISRT calls 875
multiple mode 45, 49
multiple positioning

advantages of 253
effecting your program 253
resetting position 255

multiple PURG calls 875
multiple systems coupling 395
multiple-row FETCH statement

SQLIMSCODE +100 522
MVS SJF (Scheduler JCL Facility) 425
MYLTERM 297

N
names of data elements 19
naming convention

COBOL 533
naming conventions 15
NDM (Non-Discardable Messages) routine 45
network security credentials

asynchronous callout 814
IMS TM resource adapter 810, 812, 814
propagating 810, 812, 814
synchronous callout 814
WebSphere Application Server 810
WebSphere Liberty 812

network-qualified LU name 133
non-MDB Java applications

asynchronous callout sample 781
nonconversational program

definition 398
nonrelated (non-terminal-related) MSDBs 297
NOSTAE and NOSPIE 53
NOT FOUND clause of WHENEVER statement 523
not-equal-to relational operator 168
NTO (Network Terminal Option) 444
null encryption 797
null value

column value of UPDATE statement 539

O
ODBA

application execution environment
establishing 329, 333

application programs
testing 337
writing 329

CIMS 329
Db2 for z/OS stored procedures 333
DRA (Database Resource Adapter) 329
RRS 329
server program 332

ODBA (Open Database Access)
best practices

Db2 for z/OS stored procedures 334
Db2 for z/OS stored procedures, writing
336

Db2 for z/OS stored
procedures

best practices 334
design best practices 334
stopping threads 336
writing best practices 336

threads, stopping
Db2 for z/OS stored procedures
336

one-to-many mapping 27
online performance 437
online processing

databases that can be accessed 56
description 58
linking and passing control to other applications 60
performance, maximizing 61

online programs 40
online programs, command-level samples

Index 911

online programs, command-level samples (continued)
assembler 462
C 471
COBOL 465
PL/I 468

online security
password security 91
supplying information about your application 91
terminal 91

OPEN
statement

opening a cursor 546
prepared SELECT 512
without parameter markers 514

Open Database Access (ODBA)
best practices

Db2 for z/OS stored procedures 334
Db2 for z/OS stored procedures, writing
336

Db2 for z/OS stored
procedures

best practices 334
design best practices 334
stopping threads 336
writing best practices 336

threads, stopping
Db2 for z/OS stored procedures
336

Open Database Access (ODBA) program
application interface block (AIB)

fields 216
Open Database Access (ODBA) programs

abnormal termination (abend)
diagnosing 340, 341
initialization errors 341
running errors 341

application interface block (AIB)AERTDLI interface
231
tracing

DFSDDLT0 338
image capture 338

operator
FSA 300
SSA 168

operators
AND operators

logical 171
Boolean 171
Boolean operators

logical AND operator 171
logical OR 171

OR operators
logical 171

relational 171
relational operators

independent AND 171
logical AND 171
logical OR 171

options
CMPAT 483
MOVENEXT 489
P processing 498

options for subset pointers
MOVENEXT 489

ORDER BY clause
SELECT statement 543

OSAM buffer pool, retrieving statistics 139
OTMA

destination descriptors 761
resume tpipe security exit routine 762

OTMA, processing conversations with 410
output message

format 379
printing 382
sending 393
to other application programs 393
to other IMS TM systems 397
using Basic Edit 382
using MFS 390
with directed routing 397

output message counts
displaying 759
overview 759
tpipes 759

output messages, identifying destinations for 97
overlap, storage 481

P
P processing option 319, 498
parameter marker

dynamic SQL 519, 520
values provided by OPEN 512
with arbitrary statements 514

parameters
BKO 39
DBCTLID 329
ERASE 87
JOURNAL 426
LIST 137
LOCKMAX 49
MODE 45
PROCOPT 87
TRANSACT 45
TXTU 426
WFI 44

parsing error return codes 429
Partitioned Hierarchical Direct Access Method (PHDAM) 69,
70
Partitioned Hierarchical Indexed Direct Access Method
(PHIDAM) 69, 72
Partitioned Secondary Index (PSINDEX) 78
partitions

DFSHALDB ddname 279
HALDB control statement 279
selective partition processing 279

Pascal
application programming 204, 357
batch program, coding 188
DL/I call formats 204, 357
DL/I program structure 188
entry statement 227
PCBs, passing 227
skeleton MPP 420
SSA definition examples 223
syntax diagram, DL/I call format 204

pass control of processing 11
pass control to other applications 60

912 IMS: Application Programming

passing control
to a conversational program 404
to another program in a conversation 404

password phrase 870
password security 91
passwords 870
path call

definition 174
example 174
overview 174

PATIENT segment 5
PAYMENT segment 5
PCB (program communication block)

12-byte time stamp, field in I/O PCB 208
address list, accessing 219
alternate 483
call 59
description 9
express 98
group name, field in I/O PCB 208
GSAM (generalized sequential access method)

DB PCB mask, fields 283
I/O PCB mask

12-byte time stamp 363
group name field 363
input message sequence number 363
logical terminal name field 363
message output descriptor name 363
status code field 363
userid field 363

in application programs, summary 483
input message sequence number, field in I/O PCB
208
logical terminal name, field in I/O PCB 208
masks

GSAM databases 283
I/O PCB 208, 363

message output descriptor name, field in I/O PCB 208
modifiable alternate PCBs 263
PCB (program communication block)

types 483
RACF signon security 208, 363
RACROUTE SAF 208
signon security, RACF 208
status codes, field in I/O PCB 208
types 373
userid, field in I/O PCB 208

PCB lists 373
PCB parameter list in assembler language MPPs 418
PCB, express alternate 391
performance

impact 426
maximizing online 61

performance measurement 797
persistent socket connections

configuration 791
dedicated 784
overview 807
reconnect 789
release 789
shareable 787

PHDAM
multiple qualification statements 173

PHDAM (Partitioned Hierarchical Direct Access Method) 69,
70
PHIDAM (Partitioned Hierarchical Indexed Direct Access
Method) 69, 72
physical parent 274
physical structure of a database 9
PL/I

application programming
DL/I call formats 206, 360
DL/I calls 206, 360

batch program, coding 190
DL/I call-level sample 192
DL/I command-level sample 468
DL/I program, multitasking restriction 190
entry statement 227
PCBs, passing 227
pointers in entry statement 227
return statement 227
skeleton MPP 422
UIB, specifying 219

PL/I language 53
PL/I segmentation APIs

language structures 713
limitations 719
restrictions 719
sample templates 715
top-down development 711
trace output 717

platform configuration
WebSphere Application Server 728

PLITDLI procedure
description 239

pool manager
MFS 444

port numbers 870
POS (Position) call

description 316
POS (Position) command

identifying free space 498
locating a specific sequential dependent 497
locating the last inserted sequential dependent 497
using with DEDBs 496

Position (POS) command
identifying free space 498
locating a specific sequential dependent 497
locating the last inserted sequential dependent 497
using with DEDBs 496

position, reestablishing with checkpoint calls 49, 62
positioning

after DLET 243
after ISRT 245
after REPL 245
after retrieval calls 243
after unsuccessful DLET or REPL call 246
after unsuccessful retrieval or ISRT call 246
CHKP, effect

modifiable alternate PCBs 263
current position

unsuccessful calls 246
database position

unsuccessful calls 246
determining 241
not-found status code

description 246

Index 913

positioning (continued)
not-found status code (continued)

position after 246
positioning

after unsuccessful calls 246
understanding current 241

predicate
general rules 541

preloaded programs 233
PREPARE statement

dynamic execution 520
host variable 512

preparing programs
for EXEC DLI 461
for EXEC DLI execution 475

prerequisites
running IMS TM resource adapter client applications
833

primarily sequential processing 74
print checkpoint log records, how to 62
problem determination 159
procedures

CBLTDLI 239
PLITDLI 239

process database records 11
process of requests 11
process of requirements, analyzing 35, 55
processing

commit-point in DEDB 319
commit-point in MSDB 302
current position

multiple positioning 249
database position

multiple positioning 249
database, several views 255
DEDBs 304
Fast Path

P (position) option 498
Fast Path databases 295
GSAM databases 283
multiple

positioning 249
options

H (position), for Fast Path 319
P (position), for Fast Path 319

segments in logical relationships 274
single positioning 249

processing a message 380
processing mode 45
processing models

dedicated persistent socket connections
send-only 754
send-receive 752, 754

shareable persistent socket connections
send-only 754
send-receive 752

processing options
A (all) 87
D (delete) 87
defined 84
E (exclusive) 87
G (get)

description and concurrent record access 87
general description 87

processing options (continued)
GO (read only)

description 87
invalid pointers and T and N options 87
N option 87
risks of GOx options 87
T option 87

I (insert) 87
K (key) 85
R (replace) 87

PROCOPT parameter 87
PROCOPT=GO 49
program

design 175
design efficiency 461
restarting 263

program communication block
I/O PCB mask

userid indicator field 363
userid indicator, field in I/O PCB
208

program communication block (PCB) 9
program deadlock 39
program restarting

EXEC DLI XRST command 486
program sensitivity 52
program specification block (PSB) 9
program structure

conversational 399
conversational processing

message formats 399
restrictions 399
ROLB call 399
ROLL call 399
ROLS call 399
steps in a conversational program 399

deferred program switch
passing control to another 399

immediate program switch 399
LL field 399
message

in conversations 399
ROLB call

use in conversations 399
ROLL call

use in conversations 399
ROLS call

use in conversations 399
SPA (scratchpad area)

contents 399
format 399
inserting 399
restrictions on using 399
saving information 399

system service calls
ROLB call 399
ROLL call 399
ROLS call 399

program switch
deferred 95
immediate 95

program test 135
program types, environments and database types 36
program waits 49

914 IMS: Application Programming

program-to-program message switching
conversational 404
conversational processing

by deferred switch 404
by immediate switch 404
ending the conversation and passing control 404
passing control and continuing the conversation
404
restrictions 404

deferred program switch
in conversational programs 404

ending a conversation and passing control to another
program 404
immediate program switch

in conversational programs 404
MSC (multiple systems coupling)

conversational programming 404
nonconversational 393
passing a conversation to another IMS TM system 404
passing control

restrictions 404
restrictions 393
security checks 393
SPA (scratchpad area)

and program-to-program switches 404
programming

guidelines 167
mixed language 233
secondary indexing 271

programming guidelines, general 461
programming models

asynchronous callout requests
overview 760
retrieving request messages 780

asynchronous output requests 756–758
client-managed callout requests 776
client-managed conversation state 821
conversational 821
IMS Connect-managed conversation state 821
message-driven callout requests 764
non-managed callout requests 776
non-managed synchronous callout 760
synchronous callout requests

correlating responses 777
managed 760
request message retrieval 778
retrieval from non-MDB applications 778

programs
DL/I image capture 156
DL/I test 135
online 40
TM batch 40

programs, BMP 483
properties

trckID 880
protected resources 105
protocol, locking 87
protocols

selecting 728
TCP/IP connections 792

PSB (program specification block)
APSB (allocate program specification block) 110
CMPAT=YES 39
defining subset pointers 489

PSB (program specification block) (continued)
description 9
format

generated program specification block (GPSB),
format 230
GPSB (generated program specification block),
format 230
PCB (program communication block) 230

PCB, types of 483
scheduling in a call-level program 59

pseudo-abend 52
PSINDEX (Partitioned Secondary Index) 78
PURG system service call 425

Q
Q command code 270
QC status code 44
qualification statement

coding 222
field name 168
field value

SSA qualification statement 168
multiple qualification statements

DEDB 173
HDAM 173
PHDAM 173

qualification statement
field value 168

randomizing routine
exit routine 173

relational operator 168
segment name 168
structure 168

qualified calls
overview 168

qualified SSA
structure with command code 174

qualified SSAs (segment search arguments)
qualification statement 168

qualifying
DL/I calls with command codes 174
SSAs 168

quantitative relationship between data aggregates 27
queries

in application programs 509

R
read access, specify with PROCOPT operand 87
read without integrity 89
read-only access, specify with PROCOPT operand 87
reading segments in MSDBs 297, 299
receiving messages

other IMS TM systems 396
record

database processing 11
database, description of 5

record descriptor word (RDW)
IMS Spool API 426

recording
data availability 20
information about your program 163

Index 915

recoverable in-doubt structure. 260
recoverable resources 105
recovering databases 485
recovery

considerations in conversations 96
identifying requirements 49
in a batch-oriented BMP 42
in batch programs 39
RIS 260
token

definition 260
recovery EXEC DLI commands

XRST 486
recovery of databases 64
Recovery process

distributed 105
local 105

Recovery, Resource 105
redundant data 3
reestablish position in database 49
related (terminal related) MSDBs 297
relational database

hierarchical database, compared to 555
relational databases 36
relational operators

Boolean operators 171
list 168
overview 168
SSA qualification statement 168
SSA, coding 222

relationships
between data elements 22
data, hierarchical 5
defining logical 81
mapping data 27

relationships between data aggregates 27
remote DL/I 56
removeInvalidCaseFields 609
repetitive data elements, isolating 22
REPL (Replace) call

with MSDB, DEDB or VSO DEDB 298
reply to the terminal in a conversation 95
replying to the terminal in a conversation 403
report of instructor schedules 28
reports, creating 20
requests, processing 11
required application data, analyzing 17
requirements

composite business applications 727
global transactions 825
IMS TM resource adapter 727

requirements, analyzing processing 35
reroute names 878
rerouting undelivered output 878
reserving

place for command codes 320
segment

command code 270
lock management 270

residency mode (RMODE) 233, 375
resolving data structure conflicts 76
resource managers 105
Resource Recovery

application program 105

Resource Recovery (continued)
Introduction to 105
protected resources 105
recoverable resources 105
resource managers 105
sync-point manager 105

Resource Recovery Services. 258
Resource Recovery Services/Multiple Virtual Storage (RRS)

introduction to 105
resource workload routing 748
resources

protected 105
recoverable 105
security 15

response mode, description 98
response time

measurement 797
restart your program

code for, description 65
with basic CHKP 49
with symbolic CHKP 49

Restart, Extended 48, 65
restarting your program, basic checkpoints 263
restrictions

CHKP and XRST with GSAM 289
composite business applications 727
database calls

to DEDBs 320
to MSDBs 297

IMS TM resource adapter 727
XRST (Extended Restart) call with GSAM 289

result segment
description 543
example 543
of SELECT statement 543

result segments
formatting 543

retrieval of IMS database statistics 139
retrieving

data using SELECT *
variable-length segments 544

dependent segments 80
RETRY option 53
return codes

UIB 219
RIS (recoverable in-doubt structure) 260
risks to security, combined files 3
RMODE 233
ROLB

in MPPs and transaction-oriented BMPs 264
ROLB (Roll Back) call

compared to ROLL call 264, 265
description 264
maintaining database integrity 264
usage 264

ROLB call
description 412

ROLB command
compared to ROLL and ROLS 411

ROLB system service call 39, 64
ROLB, ROLL, ROLS 410
ROLL (Roll) call

compared to ROLB call 264, 265
description 264

916 IMS: Application Programming

ROLL (Roll) call (continued)
maintaining database integrity 264

roll back point 410
ROLL call

description 412
ROLL command

compared to ROLB and ROLS 411
ROLL system service call 64
ROLS

backing out to an intermediate backout point 267
ROLS (Roll Back to SETS) call

maintaining database integrity 264
TOKEN 264, 266

ROLS (Rollback to SETS or SETU) command
backout point, intermediate 486

ROLS call
with LU 6.2 413
with TOKEN 413
without TOKEN 413

ROLS command
compared to ROLB and ROLL 411

ROLS system service call 39, 52, 67
root anchor point 70
root segment, definition 5
roster, current 17
routines

ESTAE 53
STAE 53

row
selecting with WHERE clause 541
updating 539

rows
relational representation, in 555
segment instances, compared to 555

RRS (z/OS Resource Recovery
Services)

summary of IMS support 108
RSA (record search argument)

GSAM, reference 226
rules

coding an SSA 222
runtime component

file contents 734

S
SAA resource recovery interface calls 257
SAMETRM=YES 403
sample programs

call-level assembler language
CICS online 178

call-level COBOL, CICS online 184
call-level PL/I, CICS online 192

sample programs, command level
assembler language 462
C 471
COBOL 465
PL/I 468

samples
Common Client Interface (CCI) 828, 830
IMS TM resource adapter 831
JNDI lookups 830

schedule a PSB, in a call-level program, how to 59
schedule, classes example 28

screen design considerations 94
SCS1 devices

meaning of designation 444
SCS2 devices

meaning of designation 444
SDSF (Spool Display and Search Facility) 427
search condition

comparison operators 541
WHERE clause 541

secondary index
description 308
preparing to use 308
using 308

secondary indexes
multiple qualification statements 272

secondary indexing
DB PCB contents 274
description 77
effect on programming 271
examples of uses 78
information returned by DL/I 274
Partitioned Secondary Index (PSINDEX) 78
specifying 78
SSAs 271
status codes 274

secondary logical unit 444
secondary processing sequence 271
Secure Sockets Layer (SSL)

client authentication 805
configuration 807, 808
enablement 870
encryption types 870
error messages

HWSP1445E 867
HWSSSL00E 868

keystore names 871
keystore passwords 871
null encryption 805
overview 804
process 805, 806
server authentication 805
SSL handshake 805
supported certificates 804
supported keystore type 804
supported SSL protocol 804
truststore names 872
truststore passwords 872

security
and the PROCOPT= operand 87
changing RACF password 808
client authentication 805
Common Client Interface (CCI) 802
component-managed signon 797
container-managed 799
container-managed signon 797
database 84, 85
distributed security credential propagation 810, 812,
814
EIS signon 797
field level sensitivity 85
identifying online requirements 91
IMS TM resource adapter 810, 812, 814
JAAS 797
Java 2 Security Manager 797

Index 917

security (continued)
key sensitivity 85
Local Option connections 797
network security credential propagation 810, 812, 814
null encryption 805
of databases and data communications 15
of resources 15
password security 91
process 805
RACF 797
retrieving asynchronous output messages 809
retrieving callout messages 809
risks of combined files 3
SAF 797
Secure Sockets Layer (SSL) communications 797
segment sensitivity 85
server authentication 805
signon 91
SSL handshake 805
SSL overview 804
supplying information about your application 91
supported certificates 804
supported keystore type 804
supported SSL protocol 804
terminal 91
TLS support 804

Security Authorization Facility (SAF) 797
security checks in program-to-program switching 393
segment

description 5
preventing access to by other programs 61
retrieving 545
sensitivity 85
sequential dependent

identifying free space 498
locating a specific dependent 497
locating the last inserted dependent 497

segment name
SSA qualification statement 168

segment search argument (SSA)
coding rules 222

segment search arguments (SSAs) 168
segment, information needed 175
segments

in medical database example 5
in SQL queries 555
medical database example 5
tables, compared to 555

Segments
Message Input Format 378

SELECT keyword
example query 555

SELECT statement
AS clause

with ORDER BY clause 543
clauses

FROM 541
ORDER BY 543
WHERE 541

dynamic execution 519
fixed-list 512
named columns 541
ORDER BY clause

derived columns 543

SELECT statement (continued)
ORDER BY clause (continued)

with AS clause 543
parameter markers 514
selecting a set of rows 545
using with

* (to select all columns) 541
column-name list 541
DECLARE CURSOR statement 546

varying-list 514
selecting

all columns 541
named columns 541
rows 541
some columns 541

selective partition processing
DFSHALDB ddname 279
HALDB control statement 279

sending messages
defining alternate PCBs for 391
other IMS TM systems 397
overview 377
to other application programs 393
to other IMS TM systems 395
using ISRT 391

sensitivity
data 9
field level 9, 85
general description 84
key 85
program 52
segment 85

sequence field
virtual logical child, in 168

sequence numbers
COBOL application program 533

sequential access methods
characteristics of 74
HISAM 74
HSAM 74
types of 74

sequential dependent segments
how stored 298
identifying free space 498
locating a specific dependent 497
locating the last inserted dependent 497
POS (Position) command 496

sequential dependents
overview 298

sequential processing only 74
SET clause of UPDATE statement 539
SETO call

usage 429
SETO system service call 425
SETS

backing out to an intermediate backout point 267
SETS call

description 414
SETS system service call 39, 52, 67
SETU

backing out to an intermediate backout point 267
SETU system service call 67
shareable persistent socket connections

establishing 792

918 IMS: Application Programming

shareable persistent socket connections (continued)
processing models 752
programming models 756–758
TCP/IP connections 792

shared queues option 91
SHISAM (Simple Hierarchical Indexed Sequential Access
Method) 75
SHSAM (Simple Hierarchical Sequential Access Method) 75
signon security 91
simple HISAM (SHISAM) 75
simple HSAM (SHSAM) 75
single mode 41, 45, 49
skeleton programs

assembler language 177, 418
C language 180, 418
COBOL 182, 419
Pascal 188, 420
PL/I 190, 422

skills report, instructor 28
SLU

type 1
defining to operate with MFS 444

type 2
defining to operate with MFS 444

type 6.1
defining to operate with MFS 444

type P
defining to operate with MFS 444

socket connections
dedicated persistent 784
reconnect 789
shareable persistent 787
types 783

socket timeouts
definition 817
exceptions 817
interaction properties 879
setting in a development environment 819
setting in the CCI 819
specifying values 818

sort key
ORDER BY clause 543
ordering 543

SPA (scratchpad area) 96
specification of

field level sensitivity 76
frequency, checkpoint 51

specifying
DB PCB mask 212
GSAM data set attributes 293
processing options for DEDBs 319

SPIE routine 53
Spool API

CHNG call, keywords 429
code examples

Application PCB structure 434
CHNG call to alternate PCB 434
GU call to I/O PCB 434
ISRT call to alternate PCB 434

error codes
description 429
diagnosis, examples 430

parsing errors
diagnosis, examples 430

Spool API (continued)
parsing errors (continued)

error codes 429
status codes 429

print data set characteristics 429
SETO call, keywords 429
status codes 429

Spool Display and Search Facility (SDSF) 427
SQL

application programming 505
writing application programs 509

SQL (Structured Query Language)
checking execution 521
coding 511
cursors 545
dynamic

coding 511
example query 555
return codes

checking 522
varying-list 514

SQL communication area (SQLIMSCA)
description 522

SQL statements
checking for successful execution 509
CLOSE 512, 548
COBOL program sections 533
comments

COBOL 533
continuation

COBOL 533
DECLARE CURSOR

description 546
example 512, 514

DELETE
description 547
example 540

DESCRIBE 514
EXECUTE 520
FETCH

description 547
example 512

in application programs 509
INSERT 538
labels

COBOL 533
margins

COBOL 533
OPEN

description 546
example 512

PREPARE 520
SELECT

description 541
UPDATE

description 547
example 539

WHENEVER 523
SQLERROR clause of WHENEVER statement 523
SQLIMSCA (SQL communication area)

checking SQLIMSCODE 522
checking SQLIMSERRD(3) 522
checking SQLIMSSTATE 522
deciding whether to include 509

Index 919

SQLIMSCA (SQL communication area) (continued)
description 522

SQLIMSCA (SQL communications area)
COBOL 524

SQLIMSCODE
+100 523
values 522

SQLIMSCODE host variable
deciding whether to declare 509

SQLIMSDA (SQL descriptor area)
allocating storage 514
COBOL 524
dynamic SELECT example 514
no occurrences of SQLIMSVAR 514
OPEN statement 512
parameter markers 514
requires storage addresses 514
varying-list SELECT statement 514

SQLIMSN field of SQLIMSDA 514
SQLIMSSTATE

values 522
SQLIMSSTATE host variable

deciding whether to declare 509
SQLIMSVAR field of SQLIMSDA 514
SQLWARNING clause of WHENEVER statement 523
SSA (segment search argument)

coding
formats 223
restrictions 222
rules 222

coding rules 222
command codes 174
qualification statement 222
reference 222
relational operators 168
restrictions 222
segment name field 222
structure with command code 174
usage

command codes 174
guidelines 170
multiple qualification statements 171

virtual logical child 168
ssaOptimization 618
SSAs (segment search argument)

overview 168
segment name field 168

SSAs (segment search arguments)
definition 168
unqualified 168
usage

secondary indexing 271
SSL (Secure Sockets Layer)

client authentication 805
configuration 807, 808
enablement 870
encryption types 870
error messages

HWSP1445E 867
HWSSSL00E 868

keystore names 871
keystore passwords 871
null encryption 805
overview 804

SSL (Secure Sockets Layer) (continued)
process 805, 806
protocol 872
server authentication 805
SSL handshake 805
supported certificates 804
supported keystore type 804
supported SSL protocol 804
truststore names 872
truststore passwords 872

SSL concepts 805
SSLProtocol

Secure Sockets Layer (SSL)
protocol 872

STAE routines 53
standard application programs and MSC 408
STAT call

formats for statistics
OSAM buffer pool, STAT call 139
OSAM buffer subpool, enhanced STAT call 143
VSAM buffer subpool, enhanced STAT call 148
VSAM buffer subpool, STAT call 141

system service 340
use in debugging 139, 159

static SQL
description 511

statistics, database 139
status code, QC 44
status codes

AJ 496
AM 496
FSA 300
GSAM 288
H processing option 319
logical relationships 277
P processing option 319, 498
subset pointers 308, 496

STATUS statement 135
storage

acquiring
retrieved row 514
SQLIMSDA 514

addresses in SQLIMSDA 514
storage of data

in a combined file 3
in a database 3
in separate files 3

storage overlap 481
structure

data 9
physical, of a database 9

structure of data, methods 22
Structured Query Language (SQL) 36
subset pointer command codes

restrictions 174
subset pointers

command codes
subset pointers 304

DEDB
managed by command codes 174

defining DBD 489
defining PSB 489
defining, DBD 304
defining, PCB 304

920 IMS: Application Programming

subset pointers (continued)
description 304, 487
MOVENEXT option 489
moving forward 489
preparation for using 489
preparing to use 304
specifying

command codes for DEDBs 304
status codes 308, 496
using 304

summary of command codes 174
summary of symbolic CHKP and basic CHKP 48
supply security information, how to 91
supported features

IMS TM resource adapter all versions 724
supported platforms 726
supported software configurations 726
supported versions 726
symbolic checkpoint

description 48, 62
IDs, specifying 62
issuing 65
restart 65
restart with 49

Symbolic Checkpoint (SYMCHKP) command
restart 486
XRST 486

SYMCHKP (Symbolic Checkpoint) command
restart 486
XRST 486

sync levels
interaction property 879
processing 782
supported interactions 782

sync point
application program 257
CPI Communications driven programs 257
data propagation 261
log records 261
relationship to commit point and check point 257

sync_level values 104
sync-point manager (SPM) 105
synchronization point 410
synchronization point manager 104
synchronous callout

definition 760
message flow 762
non-MDB sample 779
requirements 727
status codes 879

synchronous callout requests
non-message-driven bean (MDB) applications 778

synchronous conversation, description for LU 6.2
transactions 102
synchronous program switch request

JMS (Java Message Service) implementation
IMSQueueConnectionFactory 697

SYNCLVL 257
synonym, data element 19
syntax diagram

how to read xvii
sysplex data-sharing 42
sysplex distributor 789
system log

system log (continued)
on tape 39
storage 39

system service calls
CHNG 425
INIT 52
INQY 52
ISRT 425
LOG 151, 340
PURG 425
ROLB 39, 64
ROLB call 412
ROLL 64
ROLL call 412
ROLS 39, 52, 67
SETO 425
SETS 39, 52, 67
SETU 67
STAT 139, 340

T
table

deleting rows 540
inserting single row 538
updating rows 539

tables
relational representation, in 555
segments, compared to 555

take checkpoints, how to 62
TCP/IP

global transaction support 826
supported communication protocol 728

terminal screen, designing 94
terminal security 91
termination of a PSB, restrictions 59
termination, abnormal 45
test of application programs

using BTS 136
using DFSDDLT0 156
using DL/I test program 135
what you need 135, 155

test of DL/I call sequences 135, 156
test, unit 135
testing

CICS programs
tools 155

thread pool
configuration 772

timeout
activating 395

timeouts
browsers 819
Enterprise JavaBeans (EJB) sessions 819
Enterprise JavaBeans (EJB) transactions 819
execution 814
HTTP sessions 819
J2C connection factory 819
socket 814

TM batch program 40
token, definition of 96
tpipes

dequeue count 759
enqueue count 759

Index 921

tracing
for IMS TM resource adapter 838, 840
in WebSphere Application Server 838
in WebSphere Liberty servers 839

trademarks 883, 884
TRANSACT macro 45
transaction code 40
transaction expiration

interaction property 880
transaction pipes 751
transaction response mode 41
Transaction tracking ID 880
transaction-oriented BMPs

ROLB 264
transaction-oriented BMPs. 49
transactions

conversational 820, 821, 827
expiration 815
global transaction processing 824
global transaction support process 825
global transaction with TCP/IP 826
local transaction processing 827
non-global transaction processing 827
one-phase commit processing 827
two-phase commit support process 825

translator
options required for EXEC DLI 476

Transport Layer Security (TLS) 804
TREATMNT segment 5
troubleshooting

IMS TM resource adapter
callout requests 837
installation verification program 835
Java applications access to IMS 836

truststores
configuring for IMS TM resource adapter 807
connection property 872
creating 807
password 872

TSO application programs 45
tutorials

IMS TM resource adapter 831
two-phase 258
two-phase commit

overview 258
single-phase 260
UOR 260

two-phase commit process
UOR 105

two-phase commit processing
global transaction support 824, 825
recommendations 827

two-phase commit protocol 105
TXTU parameter 426
type 18 log record 62

U
UIB (user interface block)

defining, in program 219
field names 219
PCB address list, accessing 219
return codes, accessing 219

unavailability of data 52, 65

Unicode
data, retrieving from IMS 514

unique identifier, data 19
unit of recovery (UOR)

definition 260
unit of work 45
unit of work (UOW)

crossing a boundary when processing DEDBs 498
unit test 135
Universal JDBC driver

DL/I calls 628
unqualified calls

command codes
C 168
SSAs (segment search arguments) 168

definition 168
DL/I calls (general information)

types 168
overview 168
qualified calls

definition 168
SSAs (segment search arguments)

qualified 168
unqualified 168

unqualified SSA
structure with command code 174
usage with command codes 174

unqualified SSAs
segment name field 168

UOR (unit of recovery)
definition 260
in-doubt

definition 260
in-flight

definition 260
UOW (unit of work)

crossing a boundary when processing DEDBs 498
UOW boundary, processing DEDB 319
updatable cursor 546
update access, specify with PROCOPT operand 87
UPDATE statement

description 539
SET clause 539

updating
segments in an MSDB, DEDB or VSO DEDB 298

uppercase, using Basic Edit 382
user interface block 219
user names 872
user requirements, analyzing 15
USER special register

value in UPDATE statement 539
Using

MFS 437
USING DESCRIPTOR clause

EXECUTE statement 514
FETCH statement 514
OPEN statement 514

utilities
Batch Backout 39
DFSERA10 62, 339
File Select and Formatting Print program 48

922 IMS: Application Programming

V
VALUES clause, INSERT statement 538
values, isolating duplicate 22
variable

COBOL 525
variable length messages 793
variable-length database segments

IMS Universal drivers 565
SQL support for 565

VBASF, formatted VSAM subpool statistics 141
VBASS, formatted summary of VSAM subpool statistics 141
VBASU, unformatted VSAM subpool statistics 141
VBESF, formatted VSAM subpool statistics 148
VBESS, formatted summary of VSAM subpool statistics 148
VBESU, unformatted VSAM subpool statistics 148
versioning

databases
application programming 237

view of data, a program's 9
view, local 28
virtual logical child 168
VisualGen 20
VSAM buffer subpool, retrieving

enhanced subpool statistics 148
statistics 141, 148

VTAM I/O facility
effects on VTAM terminals 395

VTAM terminal
activating a timeout 395

W
wait-for-input (WFI)

transactions 41, 44
waits, program 49
WebSphere Application Server

aged timeout property 789
distributed security credential propagation 810
EAR file installation 833
IMS TM resource adapter 810
IMS TM resource adapter archive (RAR file) deployment
735
network security credential propagation 810

WebSphere Liberty
distributed security credential propagation 812
IMS TM resource adapter 812
network security credential propagation 812

WebSphere Liberty servers
connection factory configuration 738
IMS TM resource adapter archive (RAR file) deployment
737

WFI parameter 44
WHENEVER statement

COBOL 533
CONTINUE clause 523
GO TO clause 523
NOT FOUND clause 523, 547
specifying 523
SQL error codes 523
SQLERROR clause 523
SQLWARNING clause 523

WHERE clause
SELECT statement

WHERE clause (continued)
SELECT statement (continued)

description 541
writing

DDL 617
writing application programs

SQL 509
writing information to the system log 151

X
X'18' log record 48
XRST (Extended Restart) 48

Z
z/OS

extended addressing capabilities
addressing mode (AMODE) 375
DCCTL environment 375
preloaded program 375
residency mode (RMODE) 375

z/OS files
access to 36, 56
description 56

z/OS Resource Recovery Services 110, 257
z/OS Resource Recovery Services

(RRS)
ODBA interface 329
summary of IMS support 108

z/OS Scheduler JCL Facility (SJF) 425
Z1 field 379
Z2 field 379
ZZ field

in input message 378
in output message 379

Index 923

924 IMS: Application Programming

IBM®

Product Number: 5635-A06
 5655-DS5
 5655-TM4

	Contents
	About this information
	Prerequisite knowledge
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS 15.3
	How to send your comments

	Part 1. Application programming design
	Chapter 1. Designing an application: Introductory concepts
	Storing and processing information in a database
	Database hierarchy examples
	Your program's view of the data
	Processing a database record

	Tasks for developing an application

	Chapter 2. Designing an application: Data and local views
	An overview of application design
	Identifying application data
	Listing data elements
	Naming data elements
	Documenting application data

	Designing a local view
	Analyzing data relationships
	Grouping data elements into hierarchies
	Determining mappings

	Local view examples

	Chapter 3. Analyzing IMS application processing requirements
	Defining IMS application requirements
	Accessing databases with your IMS application program
	Accessing data: the types of programs you can write for your IMS application
	DB batch processing
	TM batch processing
	Processing messages: Message Processing Programs
	Processing messages: IMS Fast Path Programs
	Batch message processing: BMPs
	Batch processing online: batch-oriented BMPs
	Batch message processing: transaction-oriented BMPs

	Java message processing: JMPs
	Java batch processing: JBPs

	IMS programming integrity and recovery considerations
	How IMS protects data integrity: commit points
	Planning for program recovery: checkpoint and restart
	Introducing checkpoint calls
	When to use checkpoint calls
	Specifying checkpoint frequency

	Data availability considerations
	Use of STAE or ESTAE and SPIE in IMS programs

	Dynamic allocation for IMS databases

	Chapter 4. Analyzing CICS application processing requirements
	Defining CICS application requirements
	Accessing databases with your CICS application program
	Writing a CICS program to access IMS databases
	Writing a CICS online program

	Using data sharing for your CICS program
	Scheduling and terminating a PSB (CICS online programs only)
	Linking and passing control to other programs (CICS online programs only)
	How CICS distributed transactions access IMS
	Maximizing the performance of your CICS system
	Programming integrity and database recovery considerations for your CICS program
	How IMS protects data integrity for CICS online programs
	Recovering databases accessed by batch and BMP programs
	Taking checkpoints in batch and BMP programs
	Backing out database changes
	Restarting your program

	Data availability considerations for your CICS program
	Unavailability of a database
	Unavailability of some data in a database
	The SETS or SETU and ROLS functions

	Use of STAE or ESTAE and SPIE in IMS batch programs
	Dynamic allocation for IMS databases

	Chapter 5. Gathering requirements for database options
	Analyzing data access
	Direct access
	Primarily direct processing: HDAM
	Direct and sequential processing: HIDAM
	Main storage database: MSDB
	Data entry database: DEDB

	Sequential access
	Sequential processing only: HSAM
	Primarily sequential processing: HISAM

	Accessing z/OS files through IMS: GSAM
	Accessing IMS data through z/OS: SHSAM and SHISAM

	Understanding how data structure conflicts are resolved
	Using different fields: field-level sensitivity
	Resolving processing conflicts in a hierarchy: secondary indexing
	Retrieving segments based on a different key
	Retrieving segments based on the qualification of a dependent segment

	Creating a new hierarchy: logical relationships
	Accessing a segment through different paths
	Inverting a parent-child relationship

	Providing data security
	Keeping a program from accessing the data: data sensitivity
	Preventing a program from updating data: processing options

	Read without integrity

	Chapter 6. Gathering requirements for message processing options
	Identifying online security requirements
	Analyzing screen and message formats
	An overview of MFS
	An overview of basic edit
	Editing considerations in your application

	Gathering requirements for conversational processing
	What happens in a conversation
	Designing a conversation
	Important points about the scratchpad area (SPA)
	Recovery considerations in conversations

	Identifying output message destinations
	The originating terminal
	To other programs and terminals

	Chapter 7. Designing an application for APPC
	Overview of APPC and LU 6.2
	Application program types
	Application objectives
	Conversation type
	Conversation state
	Synchronization level
	Introduction to resource recovery
	Summary of z/OS Resource Recovery Services support
	Distributed sync point
	Application programming interface for LU type 6.2
	LU 6.2 partner program design
	LU 6.2 flow diagrams
	Integrity tables
	DFSAPPC message switch

	Chapter 8. Testing an IMS application program
	Recommendations for testing an IMS program
	Testing DL/I call sequences (DFSDDLT0) before testing your IMS program
	Using BTS to test your IMS program
	Tracing DL/I calls with image capture for your IMS program
	Using image capture with DFSDDLT0
	Restrictions on using image capture output
	Running image capture online
	Running image capture as a batch job
	Retrieving image capture data from the log data set

	Requests for monitoring and debugging your IMS program
	Retrieving database statistics: the STAT call
	Format of OSAM buffer pool statistics
	Format of VSAM buffer subpool statistics
	Format of enhanced/extended OSAM buffer subpool statistics
	Format of enhanced VSAM buffer subpool statistics

	Writing Information to the system log: the LOG request

	What to do when your IMS program terminates abnormally

	Chapter 9. Testing a CICS application program
	Recommendations for testing a CICS program
	Testing your CICS program
	Tracing DL/I calls with image capture

	Requests for monitoring and debugging your CICS program
	What to do when your CICS program terminates abnormally

	Chapter 10. Documenting your application program
	Documentation for other programmers
	Documentation for end users

	Part 2. Application programming for IMS DB
	Chapter 11. Writing your application programs for IMS DB
	Programming guidelines
	Segment search arguments (SSAs)
	SSA guidelines
	Multiple qualification statements
	Example of how to use multiple qualification statements
	Multiple qualification statements for HDAM, PHDAM, or DEDB

	SSAs and command codes

	Considerations for coding DL/I calls and data areas
	Preparing to run your CICS DL/I call program
	Examples of how to code DL/I calls and data areas
	Coding a batch program in assembler language
	Coding a CICS online program in assembler language
	Coding a batch program in C language
	Coding a batch program in COBOL
	Binding COBOL code to the IMS language interface module

	Coding a CICS online program in COBOL
	Coding a program in Java
	Coding a batch program in Pascal
	Coding a batch program in PL/I
	Binding PL/I code to the IMS language interface module

	Coding a CICS online program in PL/I

	Chapter 12. Defining application program elements for IMS DB
	Formatting DL/I calls for language interfaces
	Assembler language application programming
	C language application programming
	COBOL application programming
	Java application programming for IMS
	Pascal application programming
	Application programming for PL/I
	Specifying the I/O PCB mask
	Specifying the DB PCB mask
	Specifying the AIB mask
	Specifying the AIB mask for ODBA applications
	Specifying the UIB (CICS online programs only)
	Specifying the I/O areas
	Formatting segment search arguments (SSAs)
	SSA coding rules
	SSA coding formats

	Data areas in GSAM databases
	AIBTDLI interface
	Language specific entry points
	Program communication block (PCB) lists
	The AERTDLI interface
	Language environments
	Special DL/I situations for IMS DB programming
	Application programming with the IMS catalog

	Chapter 13. Database versioning and application programming
	Chapter 14. Establishing a DL/I interface from COBOL or PL/I
	Chapter 15. Current position in the database after each call
	Current position after successful calls
	Position after retrieval calls
	Position after DLET
	Position after REPL
	Position after ISRT

	Current position after unsuccessful calls
	Multiple processing
	Advantages of using multiple positioning
	Multiple DB PCBs

	Chapter 16. Using IMS application program sync points
	Commit process
	Two-phase commit in the synchronization process
	Unit of recovery
	DBCTL single-phase commit

	Sync-point log records
	Sync points with a data-propagation manager

	Chapter 17. Recovering databases and maintaining database integrity
	Issuing checkpoints
	Restarting your program from the latest checkpoint
	Maintaining database integrity (IMS batch, BMP, and IMS online regions)
	Backing out to a prior commit point: ROLL, ROLB, and ROLS
	Backing out to an intermediate backout point: SETS, SETU, and ROLS

	Reserving segments for the exclusive use of your program

	Chapter 18. Secondary indexing and logical relationships
	How secondary indexing affects your program
	SSAs with secondary indexes
	Multiple qualification statements with secondary indexes
	DL/I returns with secondary indexes
	Status codes for secondary indexes

	Processing segments in logical relationships
	How logical relationships affect your programming
	Status codes for logical relationships

	Chapter 19. HALDB selective partition processing
	Chapter 20. Processing GSAM databases
	Accessing GSAM databases
	PCB masks for GSAM databases
	Retrieving and inserting GSAM records
	Explicit open and close calls to GSAM

	GSAM record formats
	GSAM I/O areas
	GSAM status codes
	Symbolic CHKP and XRST with GSAM
	GSAM coding considerations
	Origin of GSAM data set characteristics
	DD statement DISP parameter for GSAM data sets
	Extended checkpoint restart for GSAM data sets
	Concatenated data sets used by GSAM
	Specifying GSAM data set attributes
	DLI, DBB, and BMP region types and GSAM

	Chapter 21. Processing Fast Path databases
	Fast Path database calls
	Main storage databases (MSDBs)
	Restrictions on using calls for MSDBs

	Data entry databases (DEDBs)
	Updating segments: REPL, DLET, ISRT, and FLD
	Checking the contents of a field: FLD/VERIFY
	Changing the contents of a field: FLD/CHANGE
	Example of using FLD/VERIFY and FLD/CHANGE
	Commit-point processing in MSDBs and DEDBs

	Processing DEDBs (IMS and CICS with DBCTL)
	Processing Fast Path DEDBs with subset pointer command codes
	Subset pointer status codes

	Processing DEDBs with a secondary index
	Retrieving location with the POS call (for DEDB only)
	Commit-point processing in a DEDB
	P processing option
	H processing option

	Calls with dependent segments for DEDBs
	DEDB DL/I calls to extract DEDB information
	AL_LEN Call
	DI_LEN Call
	DS_LEN Call
	AREALIST Call
	DEDBINFO Call
	DEDSTR Call

	Fast Path coding considerations

	Chapter 22. Writing ODBA application programs
	General application program flow of ODBA application programs
	Server program structure
	Db2 for z/OS stored procedures use of ODBA

	Best practices for Db2 for z/OS stored procedures with ODBA
	Design best practices for ODBA Db2 for z/OS stored procedures
	Writing Db2 for z/OS stored procedures that use ODBA
	Stopping Db2 for z/OS stored procedure threads

	Testing an ODBA application program
	Tracing DL/I calls with image capture to test your ODBA program
	Using image capture with DFSDDLT0 to test your ODBA program
	Running image capture online
	Retrieving image capture data from the log data set
	Requests for monitoring and debugging your ODBA program

	What to do when your ODBA program terminates abnormally
	Recommended actions after an abnormal termination of an ODBA program
	Diagnosing an abnormal termination of an ODBA program

	Chapter 23. Programming with the IMS support for DRDA
	DDM commands for data operations with the IMS support for DRDA

	Part 3. Application programming for IMS TM
	Chapter 24. Defining application program elements for IMS TM
	Formatting DL/I calls for language interfaces
	Application programming for assembler language
	Application programming for C language
	Application programming for COBOL
	Java application programming for IMS
	Application programming for Pascal
	Application programming for PL/I
	Relationship of calls to PCB types
	Specifying the I/O PCB mask
	Specifying the alternate PCB mask
	Specifying the AIB mask
	Specifying the I/O areas
	AIBTDLI interface
	Specifying language-specific entry points
	Program communication block (PCB) lists
	Language environments
	Special DL/I situations for IMS TM programming

	Chapter 25. Message processing with IMS TM
	How your program processes messages
	Message types
	Input message format and contents
	Output message format and contents

	When a message is processed
	Results of a message: I/O PCB

	How IMS TM edits messages
	Printing output messages
	Using Basic Edit
	Using Intersystem Communication Edit
	Using Message Format Service
	Terminals and MFS
	MFS input message formats
	MFS output message formats

	Using LU 6.2 User Edit exit routine (optional)

	Message processing considerations for DB2
	Sending messages to other terminals and programs
	Sending messages to other terminals
	Sending messages to other IMS application programs
	How the VTAM I/O facility affects your VTAM terminal

	Communicating with other IMS TM systems using Multiple Systems Coupling
	Implications of MSC for program coding
	Receiving messages from other IMS TM systems
	Sending messages to alternate destinations in other IMS TM systems

	IMS conversational processing
	A conversational example
	Conversational structure
	Replying to the terminal
	Conversational processing using ROLB, ROLL, and ROLS
	Passing the conversation to another conversational program
	Message switching in APPC conversations

	Processing conversations with APPC
	Ending the APPC conversation
	Coding a conversational program
	Standard IMS application programs
	Modified IMS application programs
	CPI-C driven application programs

	Processing conversations with OTMA
	Backing out to a prior commit point: ROLL, ROLB, and ROLS calls
	Comparison of ROLB, ROLL, and ROLS
	ROLL
	ROLB
	ROLS

	Backing out to an intermediate backout point: SETS/SETU and ROLS
	Writing message-driven programs
	Coding DC calls and data areas
	Before coding your program
	MPP code examples
	Coding your MPP program in assembler language
	Coding your MPP program in C language
	Coding your MPP program in COBOL
	Coding your MPP program in Pascal
	Coding your MPP program in PL/I

	Message processing considerations for DB2

	Chapter 26. IMS Spool API
	Managing the IMS Spool API overall design
	IMS Spool API design
	Sending data to the JES spool data sets
	IMS Spool API performance considerations
	JES initiator considerations
	Application managed text units
	BSAM I/O area

	IMS Spool API application coding considerations
	Print data formats
	Message integrity options

	Understanding parsing errors
	Diagnosis examples

	Understanding allocation errors
	Understanding dynamic output for print data sets
	Sample programs using the Spool API

	Chapter 27. IMS Message Format Service
	Advantages of using MFS
	MFS control blocks
	MFS examples
	Relationship between MFS control blocks and screen format

	Overview of MFS components
	Devices and logical units that operate with MFS
	Using distributed presentation management (DPM)

	Chapter 28. Callout requests for services or data
	Callout request approaches
	Resume tpipe protocol
	Implementing the synchronous callout function
	Control data in synchronous callout requests
	Implementing the asynchronous callout function

	Part 4. Application programming for EXEC DLI
	Chapter 29. Writing your application programs for EXEC DLI
	Programming guidelines
	Coding a program in assembler language
	Coding a program in COBOL
	Coding a program in PL/I
	Coding a program in C

	Preparing your EXEC DLI program for execution
	Translator, compiler, and binder options required for EXEC DLI

	Chapter 30. Defining application program elements
	Specifying an application interface block (AIB)
	Specifying the DL/I interface block (DIB)
	Defining a key feedback area
	Defining I/O areas

	Chapter 31. EXEC DLI commands for an application program
	PCBs and PSB

	Chapter 32. Recovering databases and maintaining database integrity
	Issuing checkpoints in a batch or BMP program
	Restarting your program and checking for position
	Backing out database updates dynamically: the ROLL and ROLB commands
	Using intermediate backout points: the SETS and ROLS commands

	Chapter 33. Processing Fast Path databases
	Processing Fast Path DEDBs with subset pointer options
	Preparing to use subset pointers
	Designating subset pointers
	Subset pointer options
	Subset pointer status codes

	The POS command
	Locating a specific sequential dependent segment
	Locating the last inserted sequential dependent segment
	Identifying free space with the POS command
	The P processing option

	Chapter 34. Comparing command-level and call-level programs
	DL/I calls for IMS and CICS
	Comparing EXEC DLI commands and DL/I calls
	Comparing command codes and options

	Chapter 35. Data availability enhancements

	Part 5. Application programming for SQL
	Chapter 36. SQL considerations and restrictions for COBOL
	Chapter 37. Writing application programs for SQL
	Coding SQL statements in application programs: General information
	Defining the items that your program can use to check whether an SQL statement executed successfully
	Defining SQL descriptor areas
	Declaring host variables and indicator variables
	Host variables
	Host structures
	Indicator variables, arrays, and structures

	Using SQL statements in your application
	Dynamic SQL
	Dynamically executing SQL for fixed-list SELECT statements
	Rules for host variables in an SQL statement

	Dynamically executing SQL for varying-list SELECT statements
	Dynamically executing SQL for non-SELECT statements
	Dynamically executing a SELECT SQL statement with parameter markers
	Dynamically executing a non-select SQL statement with parameter markers

	Checking the execution of SQL statements
	Checking the execution of SQL statements by using the SQLIMSCA
	Checking the execution of SQL statements by using SQLIMSCODE and SQLIMSSTATE
	Checking the execution of SQL statements by using the WHENEVER statement

	Coding SQL statements in COBOL application programs
	Defining the SQL communications area in COBOL
	Defining SQL descriptor areas in COBOL
	Declaring host variables and indicator variables in COBOL
	Host variables in COBOL
	Host structures in COBOL

	Equivalent SQL and COBOL data types
	SQL statements in COBOL programs
	Delimiters in SQL statements in COBOL programs

	SQL aggregate functions supported for COBOL

	Adding and modifying data
	Inserting rows
	Updating segment data
	Deleting data from segments

	Accessing data
	Retrieving data by using the SELECT statement
	Formatting the result segment
	Result segments
	Ordering the result segment rows

	Optimizing retrieval for a small set of rows
	Implications of using SELECT *
	Support for variable-length database segments

	Retrieving a set of rows by using a cursor
	Cursors
	Types of cursors

	Accessing data by using a row-positioned cursor
	Declaring a row cursor
	Opening a row cursor
	Specifying the action that the row cursor is to take when it reaches the end of the data
	Executing SQL statements by using a row cursor
	Closing a row cursor

	Commit or roll back data
	Preparing an application to run on IMS
	Processing SQL statements
	Processing SQL statements by using the IMS coprocessor

	Part 6. Java application development for IMS
	Chapter 38. IMS solutions for Java development overview
	Chapter 39. Comparison of hierarchical and relational databases
	Chapter 40. Programming with the IMS Universal drivers
	IMS Universal drivers overview
	Distributed and local connectivity with the IMS Universal drivers
	Configuring JAXB with JDK 9 or higher
	Comparison of IMS Universal drivers programming approaches for accessing IMS
	Support for variable-length database segments with the IMS Universal drivers
	Support for flattening complex structures
	Generating the runtime Java metadata class
	Hospital database example

	Programming using the IMS Universal Database resource adapter
	Overview of the IMS Universal Database resource adapter
	Transaction types and programming interfaces supported by the IMS Universal Database resource adapter
	Software configurations supported by the IMS Universal Database resource adapter
	Connecting to IMS with the IMS Universal Database resource adapter
	Connecting using the IMS Universal Database resource adapter in a managed environment
	Connecting using the IMS Universal JCA/JDBC driver in a managed environment

	Sample EJB application using the IMS Universal Database resource adapter CCI programming interface
	Accessing IMS data with the DLIInteractionSpec class
	Accessing IMS data with the SQLInteractionSpec class
	Accessing IMS data with the IMS Universal JCA/JDBC driver

	Programming with the IMS Universal JDBC driver
	Supported drivers for JDBC
	Connecting to IMS using the IMS Universal JDBC driver
	Connecting to an IMS database using the JDBC DataSource interface
	Connecting to an IMS database by using the JDBC DriverManager interface

	Sample application for the IMS Universal JDBC driver
	Using ByteBuffers with the IMS Universal JDBC Driver
	Using the removeInvalidCaseFields property
	Using the expandArrayResultSet property
	Writing SQL queries to access an IMS database with the IMS Universal JDBC driver
	SQL keywords supported by the IMS JDBC drivers
	SQL aggregate functions supported by the IMS JDBC drivers
	Portable SQL keywords restricted by the IMS Universal JDBC drivers
	Writing DDL statements to modify IMS resources with the IMS Universal JDBC driver
	Optimizing SQL statements to promote partial key subfields in the WHERE Clause
	SQL statement usage with the IMS Universal JDBC driver
	Foreign key fields
	CREATE statement usage
	ALTER statement usage
	DROP statement usage
	SELECT statement usage
	INSERT statement usage
	UPDATE statement usage
	DELETE statement usage
	WHERE clause usage
	WHERE clause subfield support

	Writing DL/I calls to access an IMS database with the IMS Universal JDBC driver
	IMS Universal JDBC driver support for XML
	Defining XML datatype column fields in the Java metadata class
	Storing XML data by using the IMS Universal JDBC driver
	Retrieving XML data by using the IMS Universal JDBC driver

	Data transformation support for JDBC
	Supported JDBC data types
	Methods for retrieving and converting data types
	COBOL copybook types that map to Java data types

	Programming with the IMS Universal DL/I driver
	Basic steps in writing a IMS Universal DL/I driver application
	Java packages for IMS Universal DL/I driver support
	Connecting to an IMS database by using the IMS Universal DL/I driver
	IMS Universal DL/I driver interfaces for executing DL/I operations
	Specifying segment search arguments using the SSAList interface
	Retrieving data in a IMS Universal DL/I driver application
	Batch data retrieval in a IMS Universal DL/I driver application
	Improving query performance by setting fetch size

	Methods for retrieving and converting data types
	Creating and inserting data in a IMS Universal DL/I driver application
	Updating data in a IMS Universal DL/I driver application
	Making batch data updates in IMS Universal DL/I driver applications
	Deleting data in a IMS Universal DL/I driver application
	Making batch data deletions in a IMS Universal DL/I driver application
	Making an Inquiry (INQY) DL/I call without a PSB object
	Using Byte Buffers with the IMS Universal DL/I driver

	Inspecting the PCB status code and related information using the com.ibm.ims.dli.AIB interface
	Committing or rolling back DL/I transactions
	Accessing dynamic arrays with the Universal Drivers using the DBArrayElementSet class

	Configuring the IMS Universal drivers for SSL support
	Configuring the IMS Universal Database resource adapter for SSL support in a container-managed environment
	Configuring IMS Universal drivers for SSL support in a stand-alone environment

	Tracing IMS Universal drivers applications

	Chapter 41. Programming Java dependent regions
	Overview of the IMS Java dependent regions
	Programming with the IMS Java dependent region resource adapter
	Developing JMP applications with the IMS Java dependent region resource adapter
	Defining the input and output message classes
	JMP programming models
	Processing an input message in a JMP application
	Rolling back IMS changes in a JMP application

	Additional message handling considerations for JMP applications
	Conversational transactions
	Handling multi-segment messages
	Coding and accessing messages with repeating structures
	Flexible reading of multiple input messages

	Developing JBP applications with the IMS Java dependent region resource adapter
	Accessing GSAM data from a JBP application

	IMS Java dependent region resource adapter support for ICAL callout with control data
	Programming with the Callout API
	Program switching in JMP and JBP applications
	Immediate program switching for JMP and JBP applications
	Deferred program switching for conversational JMP applications
	Issuing synchronous program switch requests from a Java dependent region

	IBM Enterprise PL/I for z/OS and Java language interoperability
	IBM Enterprise COBOL for z/OS interoperability with JMP and JBP applications
	IBM Enterprise COBOL for z/OS backend applications in a JMP or JBP region
	IBM Enterprise COBOL for z/OS frontend applications in a JMP or JBP region

	Accessing Db2 for z/OS databases from JMP or JBP applications

	Chapter 42. 31-bit COBOL and 64-bit Java interoperability

	Part 7. PL/I top-down development for IMS Enterprise Suite SOAP Gateway web services
	Chapter 43. WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I templates
	Chapter 44. Sample of a generated PL/I application template
	Chapter 45. Trace output for WSDL-to-PL/I segmentation APIs
	Chapter 46. Limitations and restrictions of the segmentation APIs

	Part 8. IMS Transaction Manager Resource Adapter
	Chapter 47. IMS Transaction Manager Resource Adapter overview
	Components of the IMS TM resource adapter
	Runtime process of the IMS TM resource adapter
	IMS TM resource adapter features
	New features in IMS TM Resource Adapter Version 15

	Supported platforms
	Supported software configurations
	Requirements for the IMS TM resource adapter
	Restrictions for the IMS TM resource adapter
	WebSphere Application Server platform configurations and communication protocol considerations

	Chapter 48. Installing the IMS TM resource adapter runtime component
	Preparing to use the IMS TM resource adapter
	Potential migration issues for the IMS TM resource adapter
	Updating the IMS TM resource adapter

	Extracting the compressed file for installation on distributed platforms
	Extracting the compressed file for installation on z/OS
	Verifying file contents for the IMS TM resource adapter runtime component
	Installing the resource adapter on WebSphere Application Server
	Creating a connection factory in WebSphere Application Server

	Installing the resource adapter on WebSphere Liberty servers
	Configuring the connection factory for WebSphere Liberty servers

	Verifying installation by using the installation verification program
	Prerequisites for running the IVP
	Deploying the IVP EAR file in the Java EE application server
	Deploying the IVP EAR file to WebSphere Application Server
	Deploying the IVP EAR file to WebSphere Liberty servers

	Running the IMS TM resource adapter IVP

	Running the IMS TM resource adapter callout IVP sample
	Deploying the sample application on WebSphere Application Server to process callout requests
	Configuring a J2C activation specification for the callout IVP

	Deploying the sample application on WebSphere Liberty servers to process callout requests
	Running the IMS host callout IVP application

	Installing IMS TM resource adapter service and updates
	Configuring for resource workload routing

	Chapter 49. Developing an application for use with the IMS TM resource adapter
	Interacting with the IMS Transaction Manager
	Programming models
	Send/receive programming model
	Shareable persistent socket processing model
	Dedicated persistent socket processing model

	Send-only programming model
	Asynchronous output programming model
	Retrieving asynchronous output on dedicated persistent socket connections
	Retrieving asynchronous output with an alternate client ID on shareable persistent socket connections
	Retrieving asynchronous output without an alternate client ID on shareable persistent socket connections
	Displaying and interpreting output message counts

	Callout programming models
	OTMA destination descriptors
	Security for retrieving callout requests
	Synchronous callout message flow
	Asynchronous callout message flow
	Managed callout programming model
	Retrieving IMS callout messages by using a message-driven bean
	Configuring a J2C activation specification
	Configuring a J2C activation specification in WebSphere Application Server
	IMSActivationSpec property configuration for message-driven beans
	Configuring a thread pool in WebSphere Application Server

	Sample MDB for receiving callout requests from IMS

	Non-managed (client-managed) callout programming model
	Correlating the response from the Java application to the synchronous callout request
	Retrieving synchronous callout request messages from non-MDB applications
	Sample non-MDB Java application for retrieving and processing synchronous callout requests
	Retrieving asynchronous callout request messages from non-MDB applications
	Sample Java application for retrieving asynchronous callout requests

	Commit mode and sync level processing
	Interactions supported with commit mode and sync level combinations
	Specification of transaction pipe, client ID, and interaction verb

	Socket connections
	Dedicated persistent sockets
	Shareable persistent sockets
	Releasing and reconnecting persistent sockets

	IMSInteractionSpec property configuration
	Submitting commands to IMS

	Configuring IMS connection factories
	TCP/IP connections to IMS Connect
	Establishing dedicated persistent socket connections
	Establishing shareable persistent socket connections

	IMS connection factory

	Input and output message formats
	Measuring IMS TM resource adapter performance
	Securing interactions with the IMS Transaction Manager
	IMS TM resource adapter security
	Container-managed EIS signon
	Configuring container-managed EIS signon

	Component-managed EIS signon
	Configuring component-managed EIS signon

	Secure Sockets Layer (SSL) support
	SSL concepts
	SSL protocol
	SSL handshake and authentication process
	Configuring the client and the server for SSL support
	Creating the keystore or truststore for the client
	Configuring SSL connections

	Changing RACF passwords
	Securing message retrieval from IMS hold queues
	Enabling support for distributed network security credentials
	Configuring WebSphere Application Server for distributed network security credentials
	Configuring WebSphere Liberty for distributed network security credentials
	Enabling IMS TM resource adapter client applications to support network security credentials in callout messages

	IMS TM resource adapter timeouts
	Execution timeouts
	Valid execution timeout values
	Setting execution timeout values

	Socket timeouts
	Setting socket timeout values
	Setting the socket timeout value by using the Common Client Interface
	Setting the socket timeout value by using a development environment

	Other types of timeouts

	Conversational programs
	Client-managed and IMS Connect-managed conversation state programming models
	Orphaned IMS conversation
	Business process choreography applications
	Enabling your Java client for IMS conversational transactions
	Using the client-managed conversation state programming model
	Using the IMS Connect-managed conversation state programming model

	Processing global transactions
	Global transaction support with two-phase commit
	Global transaction and two-phase commit support process
	Global transactions support requirements
	Global transaction with TCP/IP

	Global transaction support in client applications
	Two-phase commit environment recommendations
	Other transaction support

	Common Client Interface (CCI)
	Sample CCI application code

	Samples and tutorials

	Chapter 50. Running your application on a stand-alone WebSphere Application Server
	Installing your EAR file on WebSphere servers

	Chapter 51. Diagnosing problems
	Diagnosing IVP failures
	Diagnosing problems accessing IMS from Java applications
	Diagnosing problems with callout requests
	Java exceptions that involve output messages
	Logging and tracing IMS TM resource adapter information
	Logging and tracing in WebSphere Application Server
	Logging and tracing in WebSphere Liberty
	Creating a stand-alone Logger with output sent to a file
	Analyzing the trace data

	IMS TM resource adapter messages and exceptions
	Other exceptions and error messages
	J2CA0056I
	WLTC0017E
	HWSP1445E
	HWSSSL00E

	Chapter 52. Reference information
	IMS connection factory properties
	Client ID (clientID)
	CM0 dedicated (CM0Dedicated)
	Data store name (dataStoreName)
	Group name (groupName)
	Host name (hostName)
	Password (password)
	Password phrase (passwordPhrase)
	Port number (portNumber)
	SSL enabled (SSLEnabled)
	SSL encryption type (SSLEncryptionType)
	SSL keystore name (SSLKeyStoreName)
	SSL keystore password (SSLKeyStorePassword)
	SSL truststore name (SSLTrustStoreName)
	SSL truststore password (SSLTrustStorePassword)
	SSL protocol (SSLProtocol)
	User name (userName)

	IMS interaction specification properties
	Alternate client ID (altClientID)
	Async output available (asyncOutputAvailable)
	Callout request type (calloutRequestType)
	Conversation ended (convEnded)
	Conversation ID (convID)
	Commit mode (commitMode)
	CM0 response (CM0Response)
	Execution timeout (executionTimeout)
	Ignore PURG call (ignorePURGCall)
	IMS request type (imsRequestType)
	Interaction verb (interactionVerb)
	Lterm name (ltermName)
	Map name (mapName)
	Purge async output (purgeAsyncOutput)
	Reroute (reRoute)
	Reroute name (reRouteName)
	Resume tpipe network security credentials (resumeTpipeNSC)
	Socket timeout (socketTimeout)
	Synchronous callout correlator token (syncCalloutCorrelatorToken)
	Synchronous callout status code (syncCalloutStatusCode)
	Sync level (syncLevel)
	Transaction expiration (transExpiration)
	Transaction tracking ID (trckID)
	Use conversation ID (useConvID)

	Java API specifications

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

