
IMS
15.2.0

System Utilities
(2024-08-30 edition)

IBM

Note

Before you use this information and the product it supports, read the information in “Notices” on page
639.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.02.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.02.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this information... vii
Prerequisite knowledge..vii
How new and changed information is identified... vii
How to read syntax diagrams...vii
Accessibility features for IMS 15.2... ix
How to send your comments.. ix

Part 1. Generation utilities...1

Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0)...3
Examples of the ACB Maintenance utility..11
Managing DOPT PSBs...12

Managing DOPT PSBs in IMS systems that use ACB libraries... 13
Managing DOPT PSBs in IMS-managed ACB environments..13

Chapter 2. Database Description (DBD) Generation utility.. 15
DBD generation for database types...19

DBD generation input record structure (except for DEDB DBDs)..24
DEDB DBD generation input record structure..26
DBD generation coding conventions.. 27

DBDGEN statements.. 27
DBD statements..28
DATASET statements.. 48
AREA statement..61
SEGM statements... 63
LCHILD statements...93
FIELD statements... 101
XDFLD statements.. 123
DFSMARSH statements.. 127
DFSMAP statements...133
DFSCASE statements... 136
DBDGEN, FINISH, and END statements.. 140

Examples of the DBDGEN utility..140
Examples without secondary indexes or logical relationships... 140
Examples with logical relationships...148
Examples with secondary indexes...152

Running the DBDGEN procedure... 157

Chapter 3. MFS Device Characteristics Table utility (DFSUTB00)..161
Running the DFSUTB00 utility... 164

Chapter 4. MFS Language utility (DFSUPAA0).. 167
Utility control statements and syntax rules.. 172

Summary of control statements...175
Message definition statements.. 177
Format definition statements...188
Partition set definition statements...240
Table definition statements..243
Compilation statements... 245

Running the utility in standard mode.. 251

 iii

Running the utility in batch mode..254
Running the utility in test mode...257
MFS library backup procedure...259
MFS restore procedure.. 260

Chapter 5. Program Specification Block (PSB) Generation utility..263
Utility control statements.. 266

Alternate PCB statement..266
Full-function or Fast Path database PCB statement... 269
GSAM PCB statement... 281
SENSEG statement... 283
SENFLD statement..286
PSBGEN statement...287
END statement..291

Examples of the PSBGEN utility.. 291
Running the PSBGEN procedure..308

Part 2. IMS catalog utilities.. 311

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB)..313

Chapter 7. IMS Catalog Alias Names utility (DFS3ALI0).. 329

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0)... 331
IMS Catalog Export utility (DFS3CCE0)... 331
IMS Catalog Import utility (DFS3CCI0)... 339

Chapter 9. IMS Catalog Directory Recovery utility (DFS3RU00).. 353

Chapter 10. IMS Catalog Library Builder utility (DFS3LU00)... 357

Chapter 11. IMS Catalog Maintenance utility (DFS3CM00)... 365

Chapter 12. IMS Catalog Partition Definition Data Set utility (DFS3UCD0)... 369

Chapter 13. IMS Catalog Populate utility (DFS3PU00).. 373

Chapter 14. IMS Catalog Record Purge utility (DFS3PU10)... 389

Part 3. Analysis utilities and reports...399

Chapter 15. Fast Path Log Analysis utility (DBFULTA0)..401
Fast Path report types..409

Chapter 16. File Select and Formatting Print utility (DFSERA10).. 423
Examples of the DFSERA10 utility...432
DFSERA10 utility modules...438

Record Format and Print module (DFSERA30)..438
Program Isolation Trace Record Format and Print module (DFSERA40)................................... 445
DL/I Call Image Capture module (DFSERA50).. 448
IMS Trace Table Record Format and Print module (DFSERA60)...448
Enhanced Select module (DFSERA70).. 449
OM Audit Trail Format and Print module (CSLULALE)... 451

Chapter 17. IMS Monitor Report Print utility (DFSUTR20)...455
Examples of the DFSUTR20 utility...457

iv

Chapter 18. Log Transaction Analysis utility (DFSILTA0)... 459

Chapter 19. Offline Dump Formatter utility (DFSOFMD0)..465
Running the DFSOFMD0 utility.. 467

Chapter 20. Statistical Analysis utility (DFSISTS0).. 471
Examples of the DFSISTS0 utility.. 479

Part 4. Log utilities...491

Chapter 21. Log Archive utility (DFSUARC0)...493
Examples of the DFSUARC0 utility.. 502

Chapter 22. Log Merge utility (DFSLTMG0)...503

Chapter 23. Log Recovery utility (DFSULTR0)...507
Examples of the DFSULTR0 utility... 519

Part 5. Service utilities...525

Chapter 24. Batch SPOC utility (CSLUSPOC).. 527
Examples of the Batch SPOC utility...530

Chapter 25. Database Recovery Control utility (DSPURX00)...531
Examples of the DSPURX00 utility.. 534
Invoking the utility using entry point DSPURXRT..534

Chapter 26. Dynamic SVC utility (DFSUSVC0).. 537
Examples of the DFSUSVC0 utility...539

Chapter 27. Global Online Change utility (DFSUOLC0).. 541
Examples of the DFSUOLC0 utility...545

Chapter 28. MFS Service utility (DFSUTSA0)..547

Chapter 29. Multiple Systems Verification utility (DFSUMSV0)... 561

Chapter 30. Online Change Copy utility (DFSUOCU0).. 573
OLCUTL procedure... 578
Initializing the IMS.MODSTAT data set..579

Chapter 31. Spool SYSOUT Print utility (DFSUPRT0)... 583
Examples of the DFSUPRT0 utility...586

Chapter 32. Time-Controlled Operations Verification utility (DFSTVER0)...587
Examples of the DFSTVER0 utility...589

Part 6. Dynamic resource definition utilities... 593

Chapter 33. Repository to RDDS utility (CSLURP20).. 595
Examples of the CSLURP20 utility...597

Chapter 34. RDDS to Repository utility (CSLURP10).. 599
Examples of the CSLURP10 utility...602

Chapter 35. Copy RDDS utility (DFSURCP0)... 605

 v

Examples of the DFSURCP0 utility.. 607

Chapter 36. Create RDDS from Log Records utility (DFSURCL0)... 609
Examples of the DFSURCL0 utility...614

Chapter 37. Create RDDS from MODBLKS utility (DFSURCM0)... 619
Examples of the DFSURCM0 utility..623

Chapter 38. DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0)... 627
Examples of the DFSURST0 utility...631

Chapter 39. RDDS Extraction utility (DFSURDD0).. 633
Examples for the DFSURDD0 utility...636

Notices..639
Programming interface information..640
Trademarks.. 640
Terms and conditions for product documentation... 641
IBM Online Privacy Statement.. 641

Bibliography.. 643

Index.. 645

vi

About this information

These topics provide reference information for the utilities that you can use with the IMS system to
generate IMS resources, work with the IMS catalog, analyze IMS activity, manage IMS logging, run the
IMS Database Recovery Control (DBRC) facility, maintain IMS networking services, and use dynamic
resource definition (DRD).

This information is available in IBM® Documentation.

Prerequisite knowledge
Before using this information, you should understand z/OS®, and be familiar with IMS concepts, facilities,
and access methods. The prerequisite publications are:

• IMS Version 15.2 Communications and Connections
• IMS Version 15.2 Database Administration
• IMS Version 15.2 System Administration

To learn about z/OS, see z/OS Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified
For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

• Only technical changes are marked; style and grammatical changes are not marked.
• If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,

the entire element is marked with revision markers, even though only part of the element might have
changed.

• If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next line.
– The >--- symbol indicates that a syntax diagram is continued from the previous line.
– The --->< symbol indicates the end of a syntax diagram.

• Required items appear on the horizontal line (the main path).
required_item

© Copyright IBM Corp. 1974, 2020 vii

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_item

• In IMS, a b symbol indicates one blank position.

viii About this information

• Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

• Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

• Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

• Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.2
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including IMS 15.2. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.2 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.2 ISPF panels using TSO/E or ISPF, refer to the z/OS TSO/E
Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information
Online documentation for IMS 15.2 is available in IBM Documentation.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

• Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

• Send an email to imspubs@us.ibm.com. Be sure to include the book title.
• Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

About this information ix

http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

x IMS: System Utilities

Part 1. Generation utilities
Use the generation utilities to generate and configure an IMS system.

Each topic introduces how the utility works, defines requirements and restrictions for its use, and
provides examples.

© Copyright IBM Corp. 1974, 2020 1

2 IMS: System Utilities

Chapter 1. Application Control Blocks Maintenance
utility (DFSUACB0)

In IMS systems that use ACB libraries to manage runtime application control blocks, use the Application
Control Blocks (ACB) Maintenance utility to save instruction execution and direct-access wait time and
improve performance in application scheduling.

This utility might not be used in IMS systems that manage runtime application control blocks by using the
catalog. It provides a facility for pre-building the required application control blocks offline; so that when
the application is scheduled, its application control blocks can be read directly, and control can be passed
promptly to the application program.

When an application program is scheduled for execution, IMS must first have available database
descriptor and PSB control blocks previously created. These control blocks can be created by the
DBDGEN and PSBGEN procedures.

These control blocks must then be merged and expanded into an IMS internal format called application
control blocks (ACBs). The merge and expansion process is called block building.

Application control blocks required for the DB/DC environment must be prebuilt, except for application
programs that use a GPSB. It is optional for the batch environment. Using IMS.ACBLIB in a batch
environment requires less virtual storage than building the ACBs dynamically from PSBLIB and DBDLIB.

The ACB Maintenance utility maintains the prebuilt blocks (ACB) library (IMS.ACBLIB). The ACB library
is a consolidated library of program (PSB) and database (DBD) descriptions. Through control statements,
you can direct the maintenance utility to build all control blocks for all PSBs, for a specific PSB, or for all
PSBs that reference a specific DBD.

The ACB Maintenance utility does not populate the IMS catalog. To populate the IMS catalog after the
ACB Maintenance utility builds the ACBs, use the IMS Catalog Populate utility (DFS3PU00).

As an alternative to running both the ACB Maintenance utility and the IMS Catalog Populate utility,
you can use the ACB Generation and Catalog Populate utility (DFS3UACB), which builds the ACBs and
populates the IMS catalog in a single job step.

Subsections:

• “Restrictions” on page 3
• “Prerequisites” on page 4
• “Requirements” on page 4
• “Recommendations” on page 5
• “Input and output” on page 5
• “JCL specifications” on page 6
• “Utility control statements” on page 7
• “Return codes” on page 11

Restrictions

You do not need to run ACB generation if your application program requires only an I/O PCB and one
modifiable alternate PCB. Such applications, typically used in a DCCTL environment, can use GPSBs to
define the resources necessary for execution.

You cannot predefine GSAM PSBs and DBDs using ACB generation because the control blocks for GSAM
are different from the standard IMS data set control blocks. PSBs that reference GSAM, as well as non-
GSAM databases, can be predefined using ACB generation to build the control block for the non-GSAM
databases.

© Copyright IBM Corp. 1974, 2020 3

The ACB Maintenance utility uses some IMS system resources but not the total system. IMS.PSBLIB and
IMS.DBDLIB are shared data sets. IMS.ACBLIB must be used exclusively. The utility can only be executed
using an ACB library which is not concurrently allocated to an active IMS system.

IMS.ACBLIB is modified and cannot be used for any other purpose during execution of this program.
IMS.ACBLIB is a partitioned data set and carries required linkage information in the directory. You can use
the operating system (IEHMOVE) and data set (IEBCOPY) utilities for maintenance purposes.

Do not add FP DBDs to the active ACBLIB between an abnormal termination and /ERE. FP DBDs added to
the active ACBLIB after abnormal termination of IMS are inaccessible after /ERE.

A Fast Path secondary index database supports only symbolic pointers. The ACB Maintenance utility
issues message DFS2292E when PTR=SYMB is not specified on a LCHILD statement for a HISAM or
SHISAM secondary index database. The primary DEDB database and its secondary index databases are
deleted from the ACBLIB.

A user partition group for a Fast Path secondary index must contain all HISAM secondary index databases
or all SHISAM secondary index databases in the same user partition group. The LCHILD statement
contains both HISAM and SHISAM secondary index databases in the same user partition group identified
in the DBD dbdname in the message. The primary DEDB database and its secondary index databases are
deleted from the ACBLIB.

When a SENSEG statement for a segment that is other than a direct parent segment of the target segment
along the physical path from the root segment or a child segment of the target segment in the PCB with
the PROCSEQD operand is specified, the ACB Maintenance utility detects the invalid SENSEG statement
specification. The ACB Maintenance utility issues a message DFS2295E. The PSB identified in message
DFS2295E is deleted in the ACBLIB.

User partitioning is requested for Fast Path HISAM secondary index databases or Fast Path SHISAM
secondary index databases. However, the user partition database specified in the PROCSEQD= parameter
on the PCB statement is not the first user partition in the user partition group as defined in the NAME=
parameter on the LCHILD statement in the primary DEDB database DBD. The ACB Maintenance utility
issues message DFS2366E. The primary DEDB database and its secondary index databases are deleted in
the ACBLIB.

A PSB has the PSELOPT= parameter specified on a PCB statement for a primary DEDB database and
there is no user partitioning requested. The primary DEDB database has only one secondary index
database specified in the NAME= parameter on a LCHILD statement in the primary DEDB DBD. The
ACB Maintenance utility issues message DFS2367E. The PSB identified in the message is deleted in the
ACBLIB.

Prerequisites

The ACB Maintenance utility does not change the PSB in IMS.PSBLIB or the DBD in IMS.DBDLIB. If
changes are made in either PSBs or DBDs that require changes in the associated PSB or DBD, you
must make these changes before running the utility. You can make additions, changes, and deletions to
IMS.ACBLIB without stopping IMS, by using the Online Change utility and commands.

Changes in PSBs might also require modifications to the affected application programs. For example, if a
DBD has a segment name changed, all PSBs which are sensitive to that segment must have their SENSEG
statements changed.

Application programs which use this database might also need to be modified.

Requirements

IMS conforms to z/OS rules for data set authorization. If an IMS job step is authorized, all libraries used
in that job step must be authorized. To run an IMS batch region as unauthorized, a non-authorized library
must be concatenated to IMS.SDFSRESL.

4 IMS: System Utilities

Recommendations

If the IMS catalog is enabled in your IMS system, specify an output data set with the ACBCATWK DD
statement so that the ACB Maintenance utility records a list of the ACB members it generates during
the current execution. Providing this record of generated ACB members as input to the DFS3PU00 utility
significantly reduces the time required to populate the IMS catalog.

Input and output

The following figure shows the functional relationship of the I/O data sets and their naming requirements.
The ACB Maintenance utility receives input from IMS.DBDLIB data set, IMS.PSBLIB data set, SYSIN
control statements, COMPCTL IEBCOPY control statements, and SYSPRINT messages. The ACB
Maintenance utility outputs to the SYSUT3 and SYSUT4 IEBCOPY utility data sets, and the IMS.ACBLIB
data set.

In IMS systems that have enabled the IMS catalog, the ACB Maintenance utility can optionally output
a list of the generated ACB members to a data set referenced by the ACBCATWK DD statement. The
DFS3PU00 utility reads the list of generated ACB members as input to significantly reduce the time
required to populate the IMS catalog.

ACB generation procedure

The procedure is built during SMP/E processing and placed in the ADFSPROC and SDFSPROC data sets.

The following example shows the procedure for ACBLIB maintenance.

// PROC SOUT=A,COMP=,RGN=4M,SYS2=,
// NODE1=IMS,
// NODE2=IMS
//G EXEC PGM=DFSRRC00,PARM='UPB,&COMP',
// REGION=&RGN
//SYSPRINT DD SYSOUT=&SOUT
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//IMS DD DSN=&NODE1..&SYS2.PSBLIB,DISP=SHR
// DD DSN=&NODE1..&SYS2.DBDLIB,DISP=SHR
//IMSACB DD DSN=&NODE1..&SYS2.ACBLIB,DISP=OLD
//SYSUT3 DD UNIT=SYSDA,SPACE=(80,(100,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(256,(100,100)),
// DCB=KEYLEN=8
//COMPCTL DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(DFSACBCP)

In the figure, the high-level qualifier of the IMS data sets is IMS. This high-level qualifier is the default
provided by IMS generation. However, if the default value was not used in IMS generation at your
installation, the high-level qualifier for the IMS data set names might not be IMS.

ACB generation JCL statements

The following is a sample of the JCL statements that can be used to invoke the ACB generation procedure.

//ACBGEN JOB
// EXEC ACBGEN
//SYSIN DD *
 BUILD PSB=(MYPSB)

The ACB generation procedure uses the following symbolic variables:
SOUT=

Specifies the SYSOUT class. The default is A.

Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0) 5

COMP=
PRECOMP,POSTCOMP, in any combination, cause the required in-place compression. The default is
none.

RGN=
Specifies the region size for execution of the ACB utility. This region size depends on the size of the
blocks to be generated and typically varies from 100 to 150 KB. The default is 4 MB.

SYS2=
Specifies an optional second-level dsname qualifier. When specified, the parameter must include a
trailing period and be enclosed in quotes, for example:

SYS2='IMSA.'

JCL specifications
EXEC statement

The first part of the EXEC statement must be in the form:

PGM=DFSRRC00

A parameter field must be in the form:

PARM='UPB,PRECOMP,POSTCOMP'

where PRECOMP requests the IMS.ACBLIB data set be compressed before blocks are built, and
POSTCOMP requests compression after the blocks are built. 'UPB' indicates that the block maintenance
utility is to receive control. This parameter is required. PRECOMP and POSTCOMP are optional and can be
used in any combination. Do not specify the POSTCOMP option if the ACBCATWK DD statement is used.

DD statements

ACBCATWK
Defines an optional work data set that contains a list of the ACB members that are written to the ACB
library during ACB generation.

The ACBCATWK data set is an output data set for the ACB Maintenance utility and an input data set for
the DFS3PU00 utility.

You must specify a single ACBCATWK data set. Multiple data sets are not supported by the utility.

Specify the ACBCATWK data set to improve the performance of the DFS3PU00 utility. The DFS3PU00
utility uses the list of names to determine which records in the IMS catalog need to be inserted or
updated. If you do not specify the ACBCATWK data set, the DFS3PU00 utility processes all members
in the ACB libraries that are referenced in the IMSACBxx DD statements.

COMPCTL DD
Defines the control input data set to be used by IEBCOPY if PRECOMP or POSTCOMP is specified.

If both PRECOMP and POSTCOMP are requested on the EXEC statement parameters, this data set
must be capable of being closed with a reread option.

This data set must contain the following control statement of the form:

COPY INDD=IMSACB,OUTDD=IMSACB

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC

6 IMS: System Utilities

modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
Defines a single ACB library data set.

Restriction: This data set is modified and cannot be shared with other jobs.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSIN DD
Defines the input control statement data sets. They can be on a tape volume, direct-access device,
card reader, or be routed through the input stream. The input can be blocked as multiples of 80.
During execution, this utility can process as many control statements as required.

SYSPRINT DD
Defines the output message data set.

When the SYSPRINT DD statement refers to a DASD or tape data set, you can control the block size
of this data set with the BLKSIZE subparameter of the DCB parameter. If specified, the BLKSIZE
value must be an exact multiple of 121 or a system ABEND013-20 can result. Omitting BLKSIZE
from a DASD data set causes a system-determined block size to be used. Regardless of what value is
specified for the LRECL parameter, the utility always uses a record length of 121.

SYSUT3 DD
Defines a work data set that is required if either PRECOMP or POSTCOMP is specified on the EXEC
statement.

SYSUT4 DD
Same function as SYSUT3.

DFSACBCP control statement

The following control statement is created by using the DFSPROCB JCL that is built by SMP/E processing.

COPY INDD=IMSACB,OUTDD=IMSACB

The ACB generation procedure uses DFSACBCP to compress ACBLIB.

Utility control statements

You specify control statements in the utility JCL to build or delete ACB members. The control statements
must conform to the following guidelines:

• A statement is coded as a card image and is contained in columns 1 - 71.
• The control statement can optionally contain a name, starting in column 1.
• To continue a statement, enter a non-blank character in column 72 and begin the statement on the next

line starting in column 16.
• The operation field must be preceded and followed by one or more blanks.
• The parameter is composed of one or more PSB or DBD names and must also be preceded and followed

by one or more blanks.
• Commas, parentheses, and blanks can be used only as delimiting characters.
• Comments can be written following the last parameter of a control statement, separated from the

parameter by one or more blanks.

Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0) 7

ACB Maintenance utility syntax: BUILD format

name
BUILD

1

PSB= (

,

psbname)

ALL

DBD=(

,

 dbdname)

,BLDPSB=YES

,BLDPSB=NO

PSB= (

,

psbname)

ALL

,

DBD=(

,

 dbdname)

,BLDPSB=YES

,BLDPSB=NO
2

CATRSCS=NO

CATRSCS=YES

Notes:
1 There is no first in, first out (FIFO) process for the ACB Maintenance utility SYSIN input control
statements. If both the BUILD PSB= and BUILD DBD= parameters are specified in the same
application control block (ACB) generation job SYSIN control statement, DBD= operands are passed to
the block builder utility program first. DFS0586I is issued if the DBD is not already in the ACBLIB data
sets, regardless of where DBD= operands are entered in the SYSIN control statements.
2 If you specify the parameters PSB=ALL and BLDPSB=NO in the same statement, IMS builds all of the
PSBs (BLDPSB=NO is ignored). Similarly, if you specify the BLDPSB=NO parameter for one DBD and
the BLDPSB=YES parameter on another DBD in the same ACBGEN job, IMS builds all the PSBs that
refer to the changed DBDs and ignores the BLDPSB=NO specification. Also, if you specify BLDPSB=NO,
no PSBs will be built for all SYSIN ACBGEN control cards.

In the following example, all of the PSBs that are associated with the CUSTOMER and ORDER DBDs are
rebuilt, even though BLDPSB=NO is specified for the CUSTOMER DBD:

BUILD DBD=(CUSTOMER),BLDPSB=NO
BUILD DBD=(ORDER),BLDPSB=YES

ACB Maintenance utility syntax: DELETE Format

name
DELETE

PSB=(

,

 psbname)

DBD=(

,

 dbdname)

ACB Maintenance utility parameters

BUILD
Specifies that blocks are built for the named PSBs, which refer to the named DBDs.

8 IMS: System Utilities

DELETE
Specifies that blocks are deleted from the ACBLIB data set. The named PSBs and all PSBs that refer to
the named DBDs are deleted.

Deleting a block from the ACBLIB data set does not delete the corresponding record in the IMS
catalog.

PSB=ALL
Specifies that blocks are built for all PSBs that currently reside in IMS.PSBLIB. You use this parameter
to create an initial IMS.ACBLIB. When the PSB=ALL parameter is specified, all PSBs and DBDs (and
any other modules) are deleted from the ACBLIB data set and their space is available for reuse. Then
an ACB generation is executed for every PSB in the PSBLIB data set. Do not use this parameter with a
DELETE statement.

Restriction: When you specify the BUILD PSB=ALL parameter on a SYSIN control statement, all PSBs
must reside in a single PSBLIB data set. No concatenated PSBLIBs are recognized on the IMS DD
statement.

Restriction: Specifying PSB=ALL with CATRSCS=NO (or defaulting to CATRSCS=NO) does not build or
update the IMS catalog PSBs and DBDs. If some PSBs or DBDs are not built or updated, message
DFS5008W is issued and those PSBs or DBDs are ignored.

PSB=(psbname)
Specifies that blocks are built or deleted for all PSBs that are named on this control statement. As
many of this type of control statement as required can be submitted. This parameter adds a new PSB
to IMS.ACBLIB or delete a PSB no longer in use. You can omit the parentheses if you supply a single
parameter.

DBD=(dbdname)
Specifies that blocks are built or deleted for this DBD and for all PSBs that reference this DBD either
directly or indirectly through logical relationships. The DBD to be built must already exist in the
IMS.ACBLIB data set. The referencing PSBs must already exist in the IMS.ACBLIB data set. PSBs
that are newly added to the IMS.PSBLIB data set must be referenced by PSB operands. Because
deleting a PSB does not delete any DBDs referenced by the PSB, this parameter can be used to delete
specific DBDs. However, deleting or building a DBD causes every PSB in the IMS.ACBLIB data set
that references the named DBD to be rebuilt or deleted based on the request type. You can omit the
parentheses if you supply a single parameter.

Example 1: PSB-a references DBD-a and DBD-b. A DBDGEN was done for DBD-a and DBD-b and the
updated DBDs are in DBDLIB (but not ACBLIB yet). By specifying DBD-a in an ACB generation, DBD-a
is rebuilt in ACBLIB and any referencing PSBs (in this case PSB-a) are also rebuilt. Even though PSB-a
has been rebuilt, the ACBLIB is not usable because DBD-b was not specifically rebuilt in ACBLIB.
For DBD-b to be rebuilt in ACBLIB, it must be explicitly specified in the ACB generation. Although
the referencing PSB is completely updated, the updated DBDs must be explicitly specified in the ACB
generation.

Every PSB processed by this program generates a member in the IMS.ACBLIB data set. DBDs
referenced by PSBs generate a member the first time the specific DBD is processed or any time a
DBD name appears on a control statement. All PSBs that reference the same DBD carry information in
their directory entries to connect the PSB to the referenced DBDs.

Logical DBDs do not have members in IMS.ACBLIB and cannot be referenced on BUILD or DELETE
control statements.

Example 2: The following examples illustrate uses of the BLDPSB parameter:

• The DBD named CUSTOMER was changed and all of the PSBs that refer to CUSTOMER need to be
rebuilt:

BUILD DBD=CUSTOMER,BLDPSB=YES

• The DBDs named ORDER and INVENTORY are changed and all of the PSBs that refer to these DBDs
need to be rebuilt:

Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0) 9

BUILD DBD=(ORDER,INVENTORY),BLDPSB=YES

When a DBD is replaced in IMS.DBDLIB, it must also be included in a BUILD DBD control statement.
This is the only valid way the DBD can be replaced in IMS.ACBLIB without doing a BUILD PSB=ALL.

If a BUILD PSB is performed that references a modified DBD on DBDLIB, the PSB replaced on
ACBLIB will contain the updated version of the DBD. If this BUILD PSB occurs before a BUILD
DBD for the changed DBD, ACBLIB will contain PSBs with different versions of the DBD. The PSBs
specified in the BUILD PSB will contain the updated DBD, while those not built will reference the old
DBD. When a DBD for a PSB on ACBLIB does not match the accessed database, the results will be
unpredictable. (For example, U852 abend occurs because segment codes have been added or deleted
in the changed DBD). Therefore, when DBDGEN is run for later use, do not build a PSB that refers to
the changed DBD unless the database reflects the change.

When a physical DBD is changed and is referenced in a BUILD DBD statement, all physical DBDs that
are logically related to the one that was changed (including primary indexes and secondary indexes)
must also be referenced in a BUILD DBD statement. However, DBDs that are logically related to these
DBDs do not need to be rebuilt.

The following figure illustrates the relationships between some physical databases, where A is the
changed DBD. The following relationships exist:

• B and C are logically related to A.
• D is logically related to B.
• E is logically related to C.
• D and E are not referenced in the BUILD DBD statement because they are not logically related to A.

Figure 1. Example of logically related physical databases

BLDPSB=YES | NO
Specifies whether ACBGEN rebuilds all PSBs that reference a changed DBD in the BUILD
DBD=(dbdname) statement.
YES

Indicates that ACBGEN rebuilds all PSBs that reference the changed DBD on the BUILD
DBD=(dbdname) statement. The default is BLDPSB=YES.

NO
Indicates that ACBGEN does not rebuild PSBs that reference the changed DBD if the changed DBD
does not change the physical structure of the database. For Fast Path DEDBs, the PSBs are rebuilt
only when the number of segments, the number of fields within the segments of the database, or
both are changed. For Fast Path MSDBs, the referencing PSBs are not rebuilt even if the database
has physical structure changes.

10 IMS: System Utilities

CATRSCS=YES | NO
Specifies whether ACBGEN builds all PSBs and DBDs of the IMS catalog.
YES

Indicates that ACBGEN builds all IMS catalog PSBs and DBDs.
NO

Indicates that ACBGEN does not build any of the IMS catalog PSBs and DBDs. The default is
CATRSCS=NO.

Return codes

The ACB generation procedure returns the following codes:

Code
Meaning

0
Successful completion of all operations

4
One or more warning messages issued

8
One or more blocks could not be built

16
Program terminated due to severe errors

Related concepts
Building the application control blocks (ACBGEN) (Database Administration)
Allocating ACBLIB data sets (System Definition)
Related reference
“ACB Generation and Catalog Populate utility (DFS3UACB)” on page 313
Use the ACB Generation and Catalog Populate utility (DFS3UACB) to generate ACB members in an
IMS.ACBLIB data set, create the corresponding metadata records in the IMS catalog, and, if your IMS
system manages ACBs, add the resulting ACBs as pending changes to the staging data set of the IMS
catalog, all in a single job step.
“IMS Catalog Populate utility (DFS3PU00)” on page 373
Use the IMS Catalog Populate utility (DFS3PU00) to load, insert, or update DBD and PSB instances into
the database data sets of the IMS catalog from ACB library data sets. If the IMS management of ACBs is
enabled in the IMS system, the utility also adds the active application control blocks (ACBs) to the IMS
directory data set that is managed by IMS.

Examples of the ACB Maintenance utility
These examples show how to use the ACB Maintenance utility to create or delete blocks for PSBs.

Example of creating blocks for all PSBs

In this example, all blocks currently existing in IMS.ACBLIB are deleted and their space is reused to
create new blocks for all PSBs that currently reside in IMS.PSBLIB. This option will normally be used for
initial creation of the IMS.ACBLIB data set. If space is not yet allocated for ACBLIB, there should be a
space parameter and a DISP=NEW on the IMSACB DD statement.

//BLDBLKS JOB
//*
//STEP EXEC ACBGEN,SOUT=A
//SYSIN DD *
 BUILD PSB=ALL
/*

Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0) 11

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets

Example of creating blocks for specific PSBs

This example creates blocks for PSB1, PSB2, and PSB3. All other PSBs in IMS.ACBLIB remain unchanged.
If any DBDs referenced by these PSBs do not exist in IMS.ACBLIB, they are added. In addition, DBD5 and
DBD6 are deleted from ACBLIB. IMS.ACBLIB is compressed after the blocks are built, and deletions are
performed.

//BLDBLKS JOB
//*
//STEP EXEC ACBGEN,SOUT=A,COMP=POSTCOMP
//SYSIN DD *
 BUILD PSB=(PSB1,PSB2,PSB3)
 DELETE DBD=(DBD5,DBD6)
/*

Example of deleting a PSB and rebuilding blocks

This example deletes PSB1 from the IMS.ACBLIB data set and causes all PSBs in the IMS.ACBLIB data
set that reference DBD4 to have their blocks rebuilt. If PSB1 referenced DBD4, it will not be rebuilt, since
PSB1 had just been deleted from IMS.ACBLIB. PSB1 is not deleted from IMS.PSBLIB. The IMS.ACBLIB is
compressed before and after the blocks have been built.

//BLDBLKS JOB
//*
//STEP EXEC ACBGEN,SOUT=A,COMP='PRECOMP,POSTCOMP'
//SYSIN DD *
 DELETE PSB=PSB1
 BUILD DBD=DBD4
 /*

Managing DOPT PSBs
How you manage dynamic option (DOPT) PSBs that are generated by the ACB Maintenance utility differs
depending on whether your IMS systems use ACB libraries or the IMS catalog as the repository for active
ACBs.

In IMS systems that use an ACB library, the blocks for the DOPT PSBs must be contained in an ACBLIB
data set concatenated after the primary ACBLIB data set.

In IMS systems that use the IMS catalog, the blocks for the DOPT PSBs are stored in the IMS catalog
along with all the other active ACB blocks. You do not need to concatenate any data sets.

The PSB definitions and the blocks that are generated for DOPT PSBs are no different than the blocks for
non-DOPT PSBs. The PSBs are defined as dynamic by the DOPT parameter in either an APPLCTN stage-1
system definition macro or in the IMS type-2 command CREATE PGM or UPDATE PGM.

If the programs that are associated with the PSBs are scheduled for a BMP or JBP dependent region, you
can also use the Program Creation user exit (PGMCREAT) to define the PSBs as dynamic by setting the
PGMCR_PF1_DOPTY bit in the PGMCREAT parameter list.

Related concepts
Declaring online application programs (System Definition)
Related reference
“IMS Catalog Populate utility (DFS3PU00)” on page 373
Use the IMS Catalog Populate utility (DFS3PU00) to load, insert, or update DBD and PSB instances into
the database data sets of the IMS catalog from ACB library data sets. If the IMS management of ACBs is
enabled in the IMS system, the utility also adds the active application control blocks (ACBs) to the IMS
directory data set that is managed by IMS.
APPLCTN macro (System Definition)
CREATE PGM command (Commands)
PGMCREAT user exit routine type (Exit Routines)

12 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_declaring_online_apps.htm#declaring_online_apps
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_applctn_macro.htm#ims_applctn_macro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.cr/imscmds/ims_createpgm.htm#ims_cr1createpgm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.err/ims_pgmcreat_procreatexit.htm#ims_pgmcreat_procreatexit

Managing DOPT PSBs in IMS systems that use ACB libraries
Using dynamic option (DOPT) PSBs in IMS systems that use ACB library (ACBLIB) data sets requires
concatenation of a primary ACBLIB data set. The first or primary data set in the ACBLIB data set
concatenation should contain the blocks for all non-dynamic (non-DOPT) PSBs. A subsequent DOPT
ACBLIB data set should contain blocks for all dynamic option (DOPT) PSBs.

Note: You must ensure that the active and inactive DOPT ACBLIB data sets have different names to
ensure that online change finds the changes made to the DOPT ACBLIB data sets.

The primary ACBLIB data set is the first DD statement of the concatenation. To BUILD a PSB or DBD into
the concatenated data sets, supply only one DD statement to the ACB Maintenance utility.

At system initialization time, all non-dynamic PSBs and all DBDs must have been built into either the
primary or DOPT ACBLIB data sets.

By transaction schedule time, the DOPT PSBs being scheduled must be built into the DOPT ACBLIB data
sets. Never build DOPT PSBs into the primary ACBLIB data sets.

If all PSBs in the system are DOPT PSBs, the primary ACBLIB should be a dummy PDS data set. The DOPT
ACBLIB should contain blocks for all DBDs and PSBs. Set the DIRCA size parameter in the BMP, MPP, or
IFP JCL.

If some, but not all, PSBs in the system are DOPT PSBs, both ACBLIB data sets will contain blocks for
DBDs and PSBs. When you BUILD a PSB into one ACBLIB data set, the blocks for the DBDs referenced by
the PSB are also built into that data set. If the DBD was already built into another ACBLIB data set, you
will have two sets of blocks for the DBD. When DL/I does a BLDL to use the blocks for the DBD, it uses the
set of blocks in the primary ACBLIB.

During the termination process of a program using DOPT PSBs, the PSBs are deleted from the PSB pool.

Related reference
DBLDL= parameter for procedures (System Definition)

Managing DOPT PSBs in IMS-managed ACB environments
When the IMS management of ACBs is enabled, the blocks for dynamic option (DOPT) PSBs that are
generated by the ACB Maintenance utility are stored in IMS in the same way as the blocks for other types
of PSBs: in the IMS catalog. IMS does not use an ACB library or require you to put the DOPT PSBs in a
separate, concatenated data set.

You add ACB blocks for new or modified DOPT PSBs that are generated by the ACB Maintenance utility to
the IMS catalog by providing the ACBLIB data set that contains them as input to the IMS Catalog Populate
utility (DFS3PU00).

If the input ACBLIB contains only DOPT PSBs, the IMS Catalog Populate utility can make the DOPT PSBs
available for immediate use without requiring you to issue the IMPORT DEFN command or restart IMS.

If the input ACBLIB contains DBDs and non-DOPT PSBs with the DOPT PSBs, you need to activate the
DOPT PSBs with the other resource types by issuing the IMPORT DEFN SOURCE(CATALOG) command or, if
the IMS Catalog Populate utility is run with the UPDATE option, by restarting IMS.

To add DOPT PSBs only:
1. Generate the DOPT PSBs into an ACBLIB data set
2. Remove any blocks for DBDs or non-DOPT PSBs from the ACBLIB data set
3. Prepare the JCL for the IMS Catalog Populate utility by specifying:

a) The ACBLIB that contains the DOPT PSBs on the IMSACB01 DD statement.
If you concatenate ACBLIB data sets, do not include any ACBLIB data sets that contain DBDs or
non-DOPT PSBs.

b) The MANAGEDACBS control statement with the UPDATE and SHARE options.

If the SHARE option is specified when the input ACBLIB contains DBDs or non-DOPT PSBs, these
resources are not activated in the IMS systems. No IMS system can use the new resources until

Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0) 13

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_proc_parms_dbldl.htm#ims_proc_parms_dbldl

either the system is restarted or some other event causes the system to load the resources into
memory.

Before you can use the SHARE option, your z/OS system must be configured to support extended
sharing of PDSE data sets. Specify PDSESHARING(EXTENDED) in the IGDSMSxx member of the
z/OS SYS1.PARMLIB data set.

4. Run the IMS Catalog Populate utility.

When the UPDATE and SHARE options are specified, the IMS Catalog Populate utility adds the ACBs
for the DOPT PSBs to the IMS catalog directly without staging the resources first or requiring you to
issue the IMPORT DEFN SOURCE(CATALOG) command. The DOPT PSBs are added to the IMS catalog
data sets in a shared mode that allows the online IMS systems to continue to access the IMS catalog
while the IMS Catalog Populate utility adds the DOPT PSBs.

Related tasks
z/OS: Specifying Extended PDSE Sharing in a Multiple-System Environment
Related reference
IMS Catalog Populate utility (DFS3PU00) (System Utilities)

14 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sur/ims_catalog_pop_utility.htm#ims_catalog_pop_utility

Chapter 2. Database Description (DBD) Generation
utility

In IMS systems that use DBD libraries, use the Database Description Generation (DBDGEN) utility to
define a database so that it can be used by an application program.

This utility might not be used in IMS systems that manage runtime application control blocks by using the
catalog.

A database description (DBD) is a DL/I control block containing all of the database information needed by
an application program.

You create a database description (DBD) by coding special macro instructions. These macros become the
input to the DBDGEN utility.

You can use only one physical DBD to describe each physical database; otherwise, a user abend, such
as 0850, 0852, or 0853 occurs. At execution time, DL/I uses the DBD to create a set of internal control
blocks.

The DBDGEN utility defines each DBD with the following database information:

• Segment types
• Physical and logical relationships between segment types
• Database organization and access method
• Physical characteristics of the database
• Define the name and data options of selected exit routines
• Metadata that describes the database and the data stored in the database

Subsections:

• “Restrictions” on page 15
• “Prerequisites” on page 15
• “Requirements” on page 15
• “Recommendations” on page 15
• “Input and output” on page 16

Restrictions

Currently, no restrictions are documented for the DBDGEN utility.

Prerequisites

Currently, no prerequisites are documented for the DBDGEN utility.

Requirements

There are strict rules for structuring DBDGEN input. A separate input set is required for each database.

Recommendations

Currently, no recommendations are documented for the DBD Generation utility.

© Copyright IBM Corp. 1974, 2020 15

Input and output

The DBDGEN program accepts several types of control statements.

• The DBD statement names the database being described and provides DL/I with information concerning
database organization.

• The DATASET statement is used only in non-DEDB DBDGEN input record structures. The DATASET
statement defines a data set group within a database. One or more DATASET statements follow the DBD
statement.

• The AREA statement is used only in DEDB DBDGEN input record structures. The AREA statement
defines an area within a database. One or more AREA statements follow the DBD statement.

• The SEGM statement defines the segments of the specified database. The SEGM statement is used with
the following statements:

– FIELD
– XDFLD
– LCHILD
– DFSMARSH
– DFSMAP
– DFSCASE

Each statement defines different aspects of a segment or the fields in a segment.
• The DBDGEN statement indicates the end of DBDGEN control statements.
• FINISH is an optional statement retained in the input stream for compatibility.
• The END statement indicates to the z/OS assembler that the end of the input statements has been

reached.

Three types of printed output and a load module, which becomes a member of the partitioned data
set named IMS.DBDLIB, are produced by a DBD generation. Each of these outputs is described in the
following sections.

Control statement listing

This is a listing of the input statement images to this job step.

Diagnostics

Errors discovered during the processing of each statement result in diagnostic messages. These
messages are printed immediately following the image of the last statement that is read. The message
can reference either the statement immediately preceding it or the preceding group of statements. It is
also possible that more than one message could be printed for each statement.

In this case, these messages follow each other on the output listing. After all the statements have been
read, a further check is made of the reasonableness of the entire deck. This might result in one or more
additional diagnostic messages.

Any discovered error results in the diagnostic messages being printed, the statements being listed, and
the other outputs being suppressed. However, all the statements are read and checked before the DBD
generation execution is terminated. The bind step of DBD generation is not processed if a statement error
has been found.

Assembler listing

An assembler language listing of the DBD macro expansion created by DBD generation execution is
provided. You can eliminate a printout of this listing by including an assembler language PRINT NOGEN
statement.

16 IMS: System Utilities

If the DBD generation is for a database that uses VSAM as the operating system access method, a
page in the assembler listing will provide recommended values for some of the parameters necessary
to define the data sets of the database to VSAM. CONTROLINTERVALSIZE and RECORDSIZE values
other than those recommended might be desired for special reasons, such as performance improvement.
RECORDSIZE needs to be changed appropriately for all ESDS definitions.

If the control interval size is not specified (see the SIZE parameter in the GSAM row in Table 4 on page
54), it defaults to the size recommended in this assembler listing. The following example shows the
output produced for a HISAM database. The parameters provided are in the format required for Access
Method Services statements. The first DEFINE provides parameters for the key sequenced data set
(KSDS) and the second DEFINE provides parameters for the entry sequenced data set (ESDS).

To provide a complete definition for a VSAM data set, you must add parameters for data set name (NAME),
space allocation (CYL), and volume assignment (VOLUMES) to those provided by DBD generation. Optional
parameters such as FREESPACE and WRITECHECK can be included if desired.

Example of Access Method Services parameters from DBD generation

If you use the /DBD command to allow an offline dump of a VSAM database, you must use SHARE
OPTIONS(3) in the VSAM DEFINE operation for the data sets of the database. The following figure shows
an example of Access Method Services parameters from DBD generation.

+*,* *
+*,*
+*, RECOMMENDED VSAM DEFINE CLUSTER PARAMETERS
+*,*
+*,* *
+*,* *
+*,* *NOTE 1
+*, DEFINE CLUSTER (NAME(DDI3I1) -
+*,* INDEXED KEYS (6, 10) -
+*,* RECORDSIZE (680,680) -
+*,* DATA (CONTROLINTERVALSIZE (4096))
+*,* *NOTE 1: SHOULD SPECIFY DSNAME FOR DDI3I1
+*,* *
+*,* *
+*,* *NOTE 2
+*,* DEFINE CLUSTER (NAME(DDI3O1) NONINDEXED -
+*,* RECORDSIZE (680,680) -
+*,* CONTROLINTERVALSIZE (4096))
+*,* *NOTE 2: SHOULD SPECIFY DSNAME FOR DDI301
+*,* *

Segment flag codes

Segment flags are printed in DBD generation output to confirm what has been generated by that particular
DBD generation. The flags, when interpreted, tell you which pointer options were generated; the segment
insert, delete, and replace rules specified; whether physical child pointers have been reserved in this
segment's prefix; and how many physical children are related to the segment. Segment flags appear
in the output as an assembler language defined constant (DC) statement. The constant is defined as 8
hexadecimal digits followed by the comment, SEGMENT FLAGS. Each pair of digits in the constant is a
hexadecimal byte. To interpret the constant, convert the first 6 digits to binary values, and the last 2 digits
to decimal values as shown in the following figure.

 CONVERTED
BYTE VALUE DESCRIPTION

 0 POINTER POSITIONS GENERATED:

 1....... CTR (Counter)
 .1...... Physical twin forward
 .11..... Physical twin forward and backward
 ...1.... Physical parent
 1... Logical twin forward
 11.. Logical twin forward and backward
 1. Logical parent
 .1.....1 Hierarchic forward

Chapter 2. Database Description (DBD) Generation utility 17

 .11....1 Hierarchic forward and backward

 1 SEGMENT PROCESSING RULES:

 10...... Insert physical
 01...... Insert virtual
 11...... Insert logical
 ..10.... Insert nonsequential last
 ..01.... Insert nonsequential first
 ..11.... Insert nonsequential here at current position
 10.. Replace physical
 01.. Replace virtual
 11.. Replace logical
 10 Delete physical
 01 Delete virtual
 11 Delete logical
 00 Bivirtual delete

2 ..XX.XXX Reserved
 1....... Segment is paired
 .1...... Segment is a direct dependent in a FP DEDB
 1... Segment's parent has two physical child
 pointers; hierarchic pointers were not specified

3 0-254 Number of physical children of this segment
 pointed to by physical child pointers

Segment prefix format description

Convert the values to binary and decimal representations:

 Byte 0 Byte 1 Byte 2 Byte 3
 FE FD 08 0A
11111110 11111101 00001000 10

Byte 0
Segment has counter, physical twin forward and backward, logical twin forward and backward,
physical parent, and logical parent pointers.

Byte 1
The insert and replace rules specified are logical, and the delete rule specified is virtual.
Nonsequenced inserts at current position.

Byte 2
Two 4-byte fields are reserved for physical child pointers in the parent of this segment.

Byte 3
This segment is the parent of 10 physical children.

Output from DBD generation contains the statement:

DC X'FEFD080A' SEGMENT FLAGS

Load module

DBD generation is a two-step operating system job. Step 1 is a macro assembly execution which produces
an object module that becomes input to Step 2. Step 2 is a bind of the object module, which produces a
load module that becomes a member of the IMS.DBDLIB library.

DBD generation error conditions

If operands or parameters other than those shown for each type of database are coded, or if operands or
parameters that are necessary are omitted, one or more of the following conditions can occur:

• DBD generation issues diagnostic messages that:

– Flag operands or parameters that are not shown for the type of database being defined
– Indicate that operands or parameters that are required for the type of database being defined were

omitted

18 IMS: System Utilities

• DBD generation completes, but DL/I ignores the control information that was generated by the
specification of operands or parameters that are not shown for the type of database that was defined.

• DBD generation completes, but DL/I is unable to create and access the defined database because (a)
conflicting control information was specified when attempting to interrelate databases, or (b) segment
relationships describing the application program's view of the database were not properly defined in the
DBD generation.

• DBD generation completes, and DL/I creates and accesses a database. However, the results provided
to you are not those you desired. This condition can occur because the default actions taken by DL/I in
response to finding missing or conflicting control information are actions that you had not considered
during DBD generation.

Related concepts
Coding database descriptions as input for the DBDGEN utility (Database Administration)
Building the application control blocks (ACBGEN) (Database Administration)
Allocating ACBLIB data sets (System Definition)

DBD generation for database types
The DBDGEN utility generates DBDs for a database based on the type of database that is using the utility.

The following types of databases use the DBDGEN utility:

• HSAM (including SHSAM)
• GSAM
• HISAM (including SHISAM)
• HDAM
• PHDAM
• HIDAM
• PHIDAM
• MSDB
• DEDB
• Index

– Primary HIDAM
– Secondary

• PSINDEX
• Logical

HSAM/SHSAM DBD generation

During DBD generation for an HSAM database, you specify:

• One data set group.
• The ddname of an input data set that is used when an application retrieves data from the database.
• The ddname of an output data set that is used when loading the database.
• From 1 to 255 segment types for the database.
• From 0 to 255 fields within each segment type, with a maximum of 1000 fields within the database.

For an HSAM database, you cannot specify:

• The use of hierarchic or physical child or physical twin pointers between segments in the database
• The use of logical or index relationships between segments

Chapter 2. Database Description (DBD) Generation utility 19

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_codedbdescdbdgen.htm#ims_codedbdescdbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets

Optionally, you can define a simple HSAM (SHSAM) database that can contain only one fixed-length
segment type. In this case, no prefixes are built in occurrences of the segment type.

During DBD generation for an SHSAM database, you specify:

• One data set group.
• The ddname of an input data set that is used when an application retrieves data from the database.
• The ddname of an output data set that is used when loading the database.
• From 0 to 255 fields within the single segment type.

GSAM DBD generation

During DBD generation for a GSAM database, you specify:

• One data set group.
• The ddname of an input data set that is used when an application retrieves data from the database.
• The ddname of an output data set that is used when loading the database.
• Optionally, a SEGM statement that describes a virtual segment.
• Optionally, a FIELD statement that is defined with an external name only. These fields are not

searchable by IMS and therefore cannot be specified in an SSA. They are typically used to store field
metadata from a COBOL copybook that would otherwise not be defined in IMS.

You cannot specify:

• A SEGM statement that describes a physical segment
• A FIELD statement that describes an IMS-searchable field
• The use of logical or index relationships between segments

For variable length GSAM/BSAM database, IMS adds 2 bytes to the record length value in the GSAM
records passed by the application. This is done in order to accommodate the ZZ field that makes up the
BSAM Record Descriptor Word (RDW) when the record is written to the I/O device.

The following figure shows that the four GSAM records (IMS segments) fit exactly in one 32,760 byte
block.

//IDASD DD DUMMY
//ODASD DD UNIT=SYSDA,VOL=SER=000000,DISP=(,KEEP),
// SPACE=(TRK,(5,1)),DSN=GSAM.VARIABLE1,
// DCB=(RECFM=VB,BLKSIZE=32760,LRECL=32756)
//SYSIN DD *,DCB=BLKSIZE=80
S 1 1 1 1 1 DBDNAME
L ISRT
L V8187 DATA 1ST RECORD LOADED TO GSAM
L ISRT
L V8187 DATA 2ND RECORD LOADED TO GSAM
L ISRT
L V8187 DATA 3RD RECORD LOADED TO GSAM
L ISRT
L V8187 DATA 4TH RECORD LOADED TO GSAM

HISAM/SHISAM DBD generation

During DBD generation for a HISAM or SHISAM database, you specify:

• One data set group.
• The ddname of one VSAM key sequenced data set (KSDS) and one VSAM entry sequenced data set

(ESDS). HISAM supports only one data set group; you cannot have a secondary data set group with
HISAM databases.

20 IMS: System Utilities

• Optionally, you can define a simple HISAM (SHISAM) database that can contain only one fixed-length
segment type. In this case, no prefixes are built in occurrences of the segment type. The logical record
length specified for a SHISAM database must be equal to or greater than the segment length specified.

• At least one segment type and a maximum of 255 segment types for the database.
• From 0 to 255 fields for each segment type, and a maximum of 1000 for the database, one of which

must be a unique sequence field in the root segment type for indexing root segment occurrences.
• A maximum of 32 secondary index relationships (optional) per segment type, and a maximum of 1000

for the database.
• Logical relationships (optional) using symbolic pointer options when a segment in a HISAM database

points to another segment in a HISAM database, and direct or symbolic pointer options when a segment
in a HISAM database points to a segment in an HDAM or HIDAM database.

• Segment Edit/Compression exit routine routines, which are optional, to enable user-supplied routines to
manipulate each occurrence of a segment type to or from auxiliary storage.

• Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data.
This exit routine can be used in SHISAM also.

Restriction: You cannot specify the use of hierarchic or physical child or physical twin pointers between
segments in a HISAM database.

HDAM/PHDAM DBD generation

During DBD generation for HDAM and PHDAM databases, you specify:

• The name of the user-supplied randomizing module used for placement of root segment occurrences
• One to 10 data set groups
• How free space is to be distributed in each data set group
• The ddname of an OSAM or ESDS data set for each data set group defined
• At least one segment type for each data set group, and a maximum of 255 segment types for the

database
• Segment Edit/Compression exit routine routines, which are optional, to enable user-supplied routines to

manipulate each occurrence of a segment type on their way to or from auxiliary storage
• The use of hierarchic or physical child or physical twin pointers between segments in the database
• Logical relationships (optional) between segments using direct address or symbolic pointer options
• From 0 to 255 fields for each segment type, and a maximum of 1000 for the database
• A maximum of 32 secondary index relationships (optional) per segment type and a maximum of 1000

for the database
• Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data

DBDGEN for PHDAM

• The ddnames and data sets are not part of DBDGEN for PHDAM databases. The remaining database
definition is purely for defining the hierarchical structure and relationships of the data.

• DBDGEN does not define each individual partition.

HIDAM and PHIDAM DBD generation

During DBD generation for HIDAM and PHIDAM databases, you specify:

• One to 10 data set groups
• How free space is to be distributed in each data set group
• The ddname of an OSAM or ESDS data set for each data set group defined (HDAM databases only)

Chapter 2. Database Description (DBD) Generation utility 21

• At least one segment type for each data set group, and a maximum of 255 segment types for the
database

• Segment Edit/Compression exit routine routines, which are optional, to enable user-supplied routines to
manipulate each occurrence of a segment type on their way to or from auxiliary storage

• A maximum of 32 secondary index relationships (optional) per segment type and a maximum of 1000
for the database

• The use of hierarchic or physical child or physical twin pointers between segments in the database
• Logical relationships (optional) between segments using direct address or symbolic pointer options
• From 0 to 255 fields for each segment type, and a maximum of 1000 for the database, one of which

must be a unique sequence field in the root segment type for indexing root segment occurrences
• Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data

DBDGEN for PHIDAM:

• The ddnames and data sets are not part of DBDGEN for PHIDAM databases. The remaining database
definition is purely for defining the hierarchical structure and relationships of the data.

• DBDGEN does not define each individual partition.

MSDB DBD generation

During DBD generation for an MSDB, you must specify:

• One database name
• One data set group
• One segment type for the database
• From 0 to 255 fields within the database

You cannot specify:

• A logical or index relationship between segments
• Fields used with secondary indexes
• Fields defined as arrays or structures

If the DBD for an existing MSDB is changed, the header information (BHDR) might change, even though
the database segments are unchanged. This might result in message DFS2593I because of the attempted
load from the MSDBCPx data set. In this case, the headers in the MSDBCPn data sets are either invalid or
the wrong length. If ABND=y is specified in the MSDB PROCLIB member, it also causes a U1012 abend.
After modifying the DBD, load the MSDBs from an MSDBINIT data set by using the MSDBLOAD option for
either a warm start or a cold start to eliminate these problems.

DEDB DBD generation

During DBD generation for a DEDB, you must specify:

• One database name
• From 1 to 2048 areas within a database
• From 1 to 127 segment types for the database
• From 0 to 255 fields for each segment type, with a maximum of 1000 fields within the database, one of

which must be a unique sequence field for the root segment type
• The ddname or area name used to describe an area
• Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data

You can optionally specify up to eight subset pointers for each child type of the parent.

22 IMS: System Utilities

You cannot specify a logical or index relationship between segment types.

Index, PSINDEX DBD, and FPINDEX DBD generation

Primary HIDAM index DBD generation creates an index database composed of one index segment type
that indexes occurrences of the HIDAM root segment type. PHIDAM does not have a DBD for the primary
index. An index segment contains:

• The sequence field key of the root segment occurrence it indexes
• In its prefix, a direct address pointer to the root segment occurrence

During DBD generation for a primary HIDAM index, you must specify:

• One database name.
• One data set group. You must specify the ddname of one KSDS.
• One segment type.
• The index relationship required between the primary HIDAM index database and the root segment type

of a HIDAM database.
• One field within the segment type as a sequence field.

Restriction:

• You cannot specify any additional FIELD statements as you might for a secondary index.
• You cannot use DBDGEN to define individual partitions.
• Non-unique secondary index (PSINDEX) databases are not supported for HALDB.

Secondary index DBD generation creates a secondary index database made up of 1 to 16 index pointer
segment types. These are used to index target segment types in HISAM, SHISAM, HDAM, PHDAM,
HIDAM, or PHIDAM databases.

During DBD generation for a full-function secondary index, you must specify:

• One database name.
• One data set group. If all index pointer segment keys are unique, you must specify the ddname of one

KSDS. If index pointer segment keys are non-unique you must specify the ddnames of one KSDS and
one ESDS. A secondary index must use VSAM.

• One segment type.
• One field for each segment type.

For a Fast Path secondary index, the DBD statement specifies the name of the secondary index database
in the NAME= parameter. The ACCESS= parameter must specify one of the following values:

ACCESS=(INDEX,VSAM),FPINDEX=YES
A HISAM secondary index database on the DBD statement for the new Fast Path secondary index
database.

ACCESS=(INDEX,SHISAM),FPINDEX=YES
A SHISAM secondary index database on the DBD statement for the new Fast Path secondary index
database.

To define a primary DEDB database with secondary indexing, add LCHILD and XDFLD statements for the
indexing fields in the DBD of the primary DEDB database.

If a HISAM secondary index database or a SHISAM secondary index database has two or more user
partition databases defined in the NAME= parameter on the LCHILD statement, specify a user partition
selection exit in the PSELRTN= parameter on an XDFLD statement in the primary DEDB database. The
sample user partition selection exit is DBFPSE00. The PSELOPT=MULT|SNGL parameter can be specified
on an XDFLD statement or on a PCB statement with the PROCSEQD= parameter to control whether a

Chapter 2. Database Description (DBD) Generation utility 23

single user partition or multiple user partitions are used before a GB status code is returned to indicate
when the end of data is reached. The PSELOPT=MULT|SNGL must be explicitly specified on the PCB
statement with the PROCSEQD= parameter. There is no default of PSELOPT=MULT on the PCB statement
because its value overrides the PSELOPT=MULT|SNGL on the XDFLD statement.

Logical DBD generation

A logical DBD generation creates a logical database made up of logical segment types. A logical segment
type is a segment type defined in a logical database that represents a segment type or the concatenation
of two segment types defined in a physical database or databases.

During DBD generation for a logical database, you must specify:

• One database name.
• One logical data set group.
• From 1 to 255 segment types. Each defines the name of a logical segment type, and the name of the

segment type or types in physical databases that are to be processed when a call is issued to process
the logical segment type.

The logical relationships used to create a logical database must be defined in a physical database or
databases.

All fields required for segments in a logical database must have been defined in physical databases.

DBD generation input record structure (except for DEDB DBDs)
The DBDGEN program accepts control statements that must be added to the SYSIN input stream in a
specific order.

The following figure shows the rules for structuring DBD generation input.

24 IMS: System Utilities

Figure 2. DBDGEN input record structure (except DEDB)

Exception: This input record structure applies to all DBDs except DEDB DBDs.

The PRINT statement is optional. If included, it is the first statement in the input deck. When PRINT
is not included, the DBD control statement is first in the input deck. One or more DATASET statements
follow the DBD statement. Each DATASET statement is followed by the SEGM, LCHILD, FIELD, XDFLD,
DFSMARSH, DFSMAP, and DFSCASE statements that might be defined in that data set group. At least one
SEGM statement must follow each DATASET statement. SEGM statements in the DBDGEN input set of
records must be placed in the same hierarchic order as the segments in the database being defined.

FIELD and LCHILD statements follow the SEGM statement to which they apply. When a FIELD statement
defines a sequence field within a segment, it must precede any XDFLD statements or any other FIELD
statements that follow a SEGM statement. LCHILD statements follow the SEGM that defines a logical
parent, HIDAM and PHIDAM root, and index target and index pointer segment types. When you are
defining a secondary index relationship, the LCHILD statement that establishes the relationship must
be followed by its corresponding XDFLD statements. No unrelated LCHILD statements can intervene
between the two. XDFLD statements follow a SEGM that defines an index target segment type for a
secondary index. A separate input set of records is required for each database.

If a DFSMARSH statement is used to define additional metadata for a field, the DFSMARSH statement
must follow the corresponding FIELD statement. IMS associates the DFSMARSH statement with the last
FIELD statement to precede the DFSMARSH statement in the input.

Chapter 2. Database Description (DBD) Generation utility 25

If DFSMAP and DFSCASE statements are used to define alternative field mappings with in a segment, the
FIELD statement referenced by the DEPENDSON parameter in the DFSMAP statement must precede the
DFSMAP statement in the input.

Requirement: The DBDGEN statement is required.

If FINISH is used, it precedes the END statement. END is the last statement in the input record structure.

DEDB DBD generation input record structure
The input record set structure for a DEDB DBD generation is essentially the same as for the other types of
DBD generation except that AREA statements are used instead of DATASET statements.

All AREA statements must immediately follow the DBD statement. The SEGM statements and their
associated FIELD statements follow the last AREA statement in hierarchic order. SEGM statements must
also be placed in the same hierarchic order as the segments in the database being defined.

For DEDB DBD generation:

• The data set group concept does not apply.
• A secondary index is permitted.
• Logical relationships between databases are not permitted.
• LCHILD and XDFLD statements are permitted.
• Sequential dependent segments cannot have dependents.
• A separate input set of records is required for each database.

The following figure shows the rules for structuring a DEDB DBD generation input set of records.

Figure 3. DEDB DBDGEN input record structure

26 IMS: System Utilities

DBD generation coding conventions
DBD generation statements are assembler language macro instructions. Each control statement must be
identified by an operation code, for example: record-type code

Related concepts
Writing MVS macro instructions

DBDGEN statements
The DBDGEN utility uses statement instruction types as input to define a database.

The following list describes the macro statements that the DBDGEN utility accepts:

PRINT
Controls printing of assembly listing if present. This statement is optional.

DBD
Defines database name. This statement is required for all database types.

All full-function database names and DEDB database names must be unique.

DATASET
Defines a data set group within a database.

AREA
Defines an area within a Fast Path DEDB database.

All DEDB area names must be unique.

SEGM
Defines a segment type within a data set group or area.

LCHILD
Defines a logical or index relationship between segment types.

FIELD
Defines a field within a segment type.

The maximum combined total of FIELD and XDFLD statements per DBD generation is 1000.

XDFLD
Defines fields used with secondary indexes

The maximum combined total of FIELD and XDFLD statements per DBD generation is 1000.

DFSMARSH
Defines marshalling attributes for a field.

DFSMAP
For defining alternative field mappings in a segment, DFSMAP statements associate DFSCASE
statements with the control field in the segment that identifies the particular DFSCASE statement
in effect in segment instance. This statement is required only when a segment uses alternative field
mappings.

DFSCASE
Defines a map case for a segment type that uses alternative field mapping. This statement is required
only when a segment uses alternative field mappings.

DBDGEN
The DBDGEN statement indicates the end of DBD generation statements used to define the DBD. This
statement is required.

FINISH
The FINISH statement is optional and is retained for compatibility.

END
The END statement indicates the end of input statements to the assembler. This statement is
required.

Chapter 2. Database Description (DBD) Generation utility 27

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.asma400/asmr1021180.htm

The following table shows the statement instruction types that are used as input to the DBDGEN utility to
define a database. Also included is the general use of each type of statement and the number of each type
used per DBD generation.

The set of DBDGEN statements that each database type requires can differ. In the table, the numbers
shown for each statement indicate whether the statement is required, optional, or does not apply for each
database type.

Table 1. DBD generation statement instruction summary

Macro

Number used per DBD generation

HSAM/
SHSAM GSAM HISAM/

HDAM PHDAM HIDAM PHIDAM MSDB DEDB Index PSINDEX Logical

PRINT 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1

DBD 1 1 1 1 1 1 1 1 1 1 1

DATASET 1 1 1/1-10 N/A 1-10 N/A 1 0 1 N/A 1

AREA 0 0 0 0 0 0 0 1-2048 0 0

SEGM 1-2553 0-1 1-255 1-255 1-255 1-255 1 1-127 11 11 1-255

LCHILD 0 0 0-255 0-255 1-255 1-255 0 0 11 11 0

FIELD 0-1000 0-100
0

1-1000 0-1000 1-1000 1-1000 0-255 1-1000 12 12 0

XDFLD 0 0 0-1000 0-1000 0-1000 0-1000 0 0-1000 0 0 0

DFSMARSH 0-1000 0-1,00
0

0-1000 0-1000 0-1000 0-1000 0-255 0-1000 12 12 0

DFSMAP 0 or
more. No
set limits

0 or
more.
No set
limits.

0 or
more. No
set limits

0 or
more. No
set limits

0 or
more. No
set limits

0 or more.
No set
limits

0 or
more.
No set
limits

0 or
more.
No set
limits

0 or
more.
No set
limits

0 or more.
No set
limits

0 or more.
No set
limits

DFSCASE 0 or
more. No
set limits

0 or
more.
No set
limits.

0 or
more. No
set limits

0 or
more. No
set limits

0 or
more. No
set limits

0 or more.
No set
limits

0 or
more.
No set
limits

0 or
more.
No set
limits

0 or
more.
No set
limits

0 or more.
No set
limits

0 or more.
No set
limits

DBDGEN 1 1 1 1 1 1 1 1 1 1 1

FINISH 1 1 1 1 1 1 1 1 1 1 1

END 1 1 1 1 1 1 1 1 1 1 1

Notes:

1. Maximum of 16 for a secondary index database.
2. Maximum of 1000 for a secondary index database.
3. A SHSAM database can only have one SEGM statement.

DBD statements
The DBD statement names the database being described and provides DL/I with information concerning
its organization. There can be only one DBD control statement in the control statement input deck.

The format of the DBD macro instruction for each database type is shown in the following examples.

DEDB database DBD statement

28 IMS: System Utilities

DBD NAME= dbname1

DBVER=  dbd_vers_number

,ACCESS=DEDB

,RMNAME= ( mod , anch ,,, XCI)

EXIT=
1

(NONE

A C
,

,

(A) C

)

,VERSION='  n'
2

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname

,NOLOG

,LOG

*
3

,LOG

,NOLOG

B D E

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

4

D
,BEFORE

,NOBEFORE

,DLET

,NODLET

E
,NOSSPCMD

,SSPCMD

,NOINPOS

,INPOS

,NOFLD

,FLD

Notes:

Chapter 2. Database Description (DBD) Generation utility 29

1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.
2 The default is an automatic DBDGEN time stamp.
3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

GSAM database DBD statement

DBD NAME=( dbname1) ,ACCESS= (GSAM

,VSAM

,BSAM)

,PASSWD=

NO

YES ,DATXEXIT=

NO

YES

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

30 IMS: System Utilities

HDAM database DBD statement
DBD NAME= (dbname1)

DBVER=  dbd_vers_number

,ACCESS= (HDAM

,VSAM

,OSAM)

,RMNAME=( mod

,anch ,rbn ,bytes

)
1

,PASSWD=

NO

YES

EXIT=
2

(NONE

A C
,

,

(A) C

) ,VERSION='  n'
3

,DATXEXIT=

NO

YES ,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname

,NOLOG

,LOG

*
4

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

5

D

Chapter 2. Database Description (DBD) Generation utility 31

,NOINPOS

,INPOS

Notes:
1 Optional operands, such as anch and rbn, might be required by certain randomizing modules. See the
documentation for the randomizing module you are using.
2 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.
3 The default is an automatic DBDGEN time stamp.
4 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
5 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

HIDAM database DBD statement
DBD NAME= dbname1

DBVER=  dbd_vers_number

,ACCESS= (HIDAM

,VSAM

,OSAM)

,PASSWD=

NO

YES

EXIT=
1

(NONE

A C
,

,

(A) C

) ,VERSION='  n'
2

,DATXEXIT=

NO

YES ,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname

,NOLOG

,LOG

*
3

,LOG

,NOLOG

B D

B

32 IMS: System Utilities

,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

4

D
,NOINPOS

,INPOS

Notes:
1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.
2 The default is an automatic DBDGEN time stamp.
3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

HISAM/SHISAM database DBD statement

DBD NAME=( dbname1) ,ACCESS= (HISAM

SHISAM

,VSAM

)

,PASSWD=

NO

YES

EXIT=
1

(NONE

A C
,

,

(A) C

) ,VERSION='  n'
2

,DATXEXIT=

NO

YES ,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Chapter 2. Database Description (DBD) Generation utility 33

A

exitname
3

,NOLOG

,LOG

*

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

4

D
,NOINPOS

,INPOS

Notes:
1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.
2 The default is an automatic DBDGEN time stamp.
3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

HSAM/SHSAM database DBD statement
DBD NAME= dbname1

,ACCESS= HSAM

SHSAM ,VERSION='  n'
1

,DATXEXIT=

NO

YES

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Notes:
1 The default is an automatic DBDGEN time stamp.

34 IMS: System Utilities

INDEX database DBD statement

DBD NAME=( dbname1

,

,dbname2

)

,ACCESS=(INDEX, VSAM

SHISAM

1
,PROT

,NOPROT ,DOSCOMP

)

,PASSWD=

NO

YES ,DATXEXIT=

NO

YES

,FPINDEX=

NO

null

YES

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Notes:
1 A full-function secondary index must use VSAM. A Fast Path secondary index can use either VSAM or
HISAM.

LOGICAL database DBD statement
DBD NAME= dbname1 ,ACCESS=LOGICAL

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

MSDB database DBD statement
DBD NAME= dbname1 ,ACCESS=MSDB

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Chapter 2. Database Description (DBD) Generation utility 35

PHDAM database DBD statement
DBD NAME= (dbname1)

DBVER=  dbd_vers_number

,ACCESS= (PHDAM

,VSAM

,OSAM)

,RMNAME=( mod

,anch ,rbn ,bytes

)
1

,PASSWD=

NO

YES

EXIT=
2

(NONE

A C
,

,

(A) C

) ,VERSION='  n'
3

,PSNAME=  psname

,DATXEXIT=

NO

YES

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname

,NOLOG

,LOG

*
4

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

5

36 IMS: System Utilities

D
,NOINPOS

,INPOS

Notes:
1 Optional operands, such as anch and rbn, might be required by certain randomizing modules. See the
documentation for the randomizing module you are using.
2 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.
3 The default is an automatic DBDGEN time stamp.
4 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
5 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

PHIDAM database DBD statement
DBD NAME= dbname1

DBVER=  dbd_vers_number

,ACCESS= (PHIDAM

,VSAM

,OSAM)

,PASSWD=

NO

YES

EXIT=
1

(NONE

A C
,

,

(A) C

) ,VERSION='  n'
2

,PSNAME=  psname

,DATXEXIT=

NO

YES

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

Chapter 2. Database Description (DBD) Generation utility 37

exitname

,NOLOG

,LOG

*
3

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

4

D
,NOINPOS

,INPOS

Notes:
1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.
2 The default is an automatic DBDGEN time stamp.
3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

PSINDEX database DBD statement

DBD NAME= dbname1 ,ACCESS=(PSINDEX,VSAM
1

,PROT

,NOPROT

)

,PASSWD=

NO

YES ,DATXEXIT=

NO

YES

,PSNAME=  psname

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

38 IMS: System Utilities

Notes:
1 A secondary index must use VSAM.

DBD statement parameter descriptions
DBD

Identifies this statement as the DBD control statement.
NAME=

Specifies the name of the database being described. The name can be from 1 to 8 alphanumeric
characters. Do not give a database the same name as an existing PSB or program view. Using an
existing name can cause unpredictable results.

If an existing name is used, an error occurs during ACB generation.

This name can be the same as that specified in the DD1 parameter of the first DATASET control
statement.

For a shared secondary index database, the names of up to 16 secondary index DBDs can be
specified.

DBVER=
A numeric value from 1 to 2147483647 that identifies a specific version of a DBD when multiple DBDs
are used by application programs to access the same database.

The value specified on the DBVER keyword must be one greater than the highest DBVER value of any
prior version of the DBD that is stored in the database record in the IMS catalog.

The DBVER keyword is optional. If the DBVER keyword is omitted, the version of the DBD is 0, even if
database versioning is not enabled.

The DBVER keyword is valid only for the following database types:

• DEDB
• HDAM
• HIDAM
• PHDAM
• PHIDAM

ACCESS=

Specifies the DL/I access method and the operating system access method to be used for this
database. This keyword also defines the secondary index database as a HALDB. The different access
methods are:
HSAM

Hierarchical sequential access method (HSAM). When HSAM is specified, and only one segment
type is defined in the HSAM database, this parameter defaults to SHSAM.

SHSAM
Simple HSAM database that contains only one fixed-length segment type. When a simple HSAM
database is defined, no prefix is required in occurrences of the segment type to enable IMS to
process the database.

GSAM
Generalized sequential access method (GSAM). BSAM or VSAM can be specified as the operating
system access method. VSAM is the default. When GSAM is specified, no SEGM control statement
is allowed in the DBD.

Chapter 2. Database Description (DBD) Generation utility 39

HISAM
Hierarchical index sequential access method (HISAM). VSAM can be specified as the operating
system access method. It is the default.

SHISAM
Simple HISAM database that contains only one fixed-length segment type. A simple HISAM
database can only be specified when VSAM is specified as the operating system access method.
When a simple HISAM database is defined, no prefix is required in occurrences of the segment
type to enable IMS to process the database.

HDAM
Hierarchical direct access method (HDAM). OSAM or VSAM can be specified as the operating
system access method. VSAM is the default.

PHDAM
Partitioned hierarchical direct access method (PHDAM). OSAM or VSAM can be specified as the
operating system access method. VSAM is the default.

HIDAM
Hierarchical indexed direct access method (HIDAM). OSAM or VSAM can be specified as the
operating system access method. VSAM is the default.

PHIDAM
Partitioned hierarchical indexed direct access method (PHIDAM). OSAM or VSAM can be specified
as the operating system access method. VSAM is the default.

MSDB
Main storage database (MSDB).

DEDB
Data entry database (DEDB).

INDEX
Creates the primary index to occurrences of the root segment type in a HIDAM database, or
creates a secondary index to a segment type in a HISAM, HDAM, or HIDAM database. For the
primary or secondary index to a HIDAM database, VSAM must be specified as the operating
system access method.

The INDEX parameter is also used to create a secondary index for a DEDB database. In such a
case, VSAM and SHISAM are both valid operating system access types.

The INDEX parameter is not used to define the primary index of a PHIDAM database.

PSINDEX
Creates the partitioned secondary index to a segment type in PHDAM and PHIDAM databases.
VSAM must be specified as the operating system access method. VSAM is the default.

LOGICAL
A logical database comprises logical concatenations of some or all of one or more physical
databases. Logical databases must reference existing physical databases.

PROT | NOPROT

Specifies if a secondary index database uses index pointer protection. This optional parameter
ensures the integrity of all fields in index pointer segments that are used by IMS. Use of this
parameter prevents an application program from doing a replace operation on any field within an
index pointer segment except for fields within the user data portion of index pointer segments. Delete
operations are still enabled for index pointer segments. If a delete is issued for an index pointer
segment, the index target segment pointer in the index pointer segment is deleted. However, the
index source segment that caused the index pointer segment to be created originally is not deleted.

If index pointer protection is not used, an application program can replace all fields within an index
pointer segment except the constant, search, and subsequence fields. Inserts to an index database
are invalid under all conditions.

By default, a secondary index database uses index pointer protection.

40 IMS: System Utilities

DOSCOMP
Indicates if this is a DLI/DOS index database. Must be specified if the database is an index, and it
was created using DLI/DOS. DLI/DOS index databases contain a segment code as part of the prefix.
Specifying that a database is a DLI/DOS index database causes IMS to expect this code to be present
in the defined database, and to process in a way that preserves this code. This includes providing a
segment code for new segments being inserted. DLI/DOS databases must use VSAM and cannot be
PHDAM, PHIDAM, or PSINDEX databases.

PSNAME=
Specifies the module that selects the HALDB partition for PSINDEX, PHDAM, or PHIDAM databases.
The parameter is a HALDB partition selection exit routine module name. This parameter is only valid
when the access type for the database is PSINDEX, PHDAM, or PHIDAM.

Exception: A user-provided HALDB partition selection routine is not needed if root key ranges define
HALDB partition membership.

RMNAME=

Specifies a module name that is used to manage the data that is stored in a DEDB or in the primary
data set group of an HDAM or PHDAM database. This parameter is only valid when the database
access type is HDAM, PHDAM, or DEDB. A randomizing module controls root segment placement in
or retrieval from the DEDB, HDAM, or PHDAM database. One or more modules, called randomizing
modules, can be utilized within the IMS system. A particular database has only one randomizing
module associated with it. A generalized module, which uses user-supplied parameters to perform
randomizing for a particular database, can be written to service several databases. The purpose of
a randomizing module is to convert a value supplied by an application program for root segment
placement in, or retrieval from, a DEDB, HDAM, or PHDAM database into a relative block number
and anchor point number. You can randomize within an area by selecting a two-stage randomizer.
When you select a two-stage randomizer, the number of root anchor points in an area can be changed
without having to stop all areas in the DEDB with the /DBRECOVERY command.

For PHDAM databases, the randomizer module names and values become the default for each
partition. You can set a different randomizer name and values for each partition during HALDB
partition definition. HALDB partition selection is done prior to invoking the randomizing module. The
randomizing module selects locations only within a partition.

mod
The module name is the 1- to 8-character alphanumeric name of a user-supplied randomizing
module that is used to store and access segments in this DEDB, PHDAM, or HDAM database.
Select a two-stage randomizer by specifying the randomizer name in the module name parameter
and 2 in the anchor point parameter.

anch
The purpose of the anch value is different depending on whether you are defining a Fast Path
DEDB database or a full-function HDAM or PHDAM database.

This parameter must be an unsigned decimal integer. The default value of this parameter is one.

For a DEDB database, the value of anch specifies the type of randomizer. A value of 1 indicates a
single-stage randomizer. A value of 2 indicates a two-stage randomizer. Any other value is invalid.

For HDAM and PHDAM databases, the value of anch specifies the number of root anchor points
desired in each control interval or block in the root addressable area of the HDAM or PHDAM
database. Typical values are from 1 to 5 and the value cannot exceed 255.

When accessing a HDAM or PHDAM database, if a user randomizing routine produces an anchor
point number greater than the number specified for this parameter, the highest-numbered anchor
point in the control interval or block is used. When a randomizing routine produces an IMS anchor
point number of zero, IMS uses anchor point one in the control interval or block.

rbn
Specifies the maximum relative block number value that you want to allow a randomizing module
to produce for this database. This parameter is for HDAM or PHDAM databases only. This value

Chapter 2. Database Description (DBD) Generation utility 41

determines the number of control intervals or blocks in the root addressable area of an HDAM
or PHDAM database. This parameter must be an unsigned decimal integer whose value does not
exceed 224-1. If this parameter is omitted, no upper limit check is performed on the relative
block number created by the randomizing module. If this parameter is specified, but the specified
randomizing module produces an relative block number greater than this parameter, the highest
control interval or block in the root addressable area is used by IMS. If a user randomizing module
produces a block number of zero, the control interval or block one is used by IMS.

In an HDAM or PHDAM data set, the first bit map is in the first block of the first extent of the data
set. In an HDAM or PHDAM database, the first control interval or block of the first extent of the
data set specified for each data set group is used for a bit map. In a VSAM data set, the second
control interval is used for the bit map and the first control interval is reserved. IMS adds one to
the block calculated by the randomizer.

bytes
Specifies the maximum number of bytes of database record that can be stored into the root
addressable area in a series of inserts unbroken by a call to another database record. This
parameter is for HDAM and PHDAM databases only. If this parameter is omitted, no limit is placed
on the maximum number of bytes of a database record that can be inserted into this database's
root segment addressable area. The bytes parameter must be an unsigned decimal integer whose
value does not exceed 224-1. When the maximum relative block number parameter is omitted,
this parameter is ignored. In this case, there is no limit on the number of bytes of a database
record that can be inserted into the root addressable area.

If this parameter is specified for an HDAM or PHDAM database and the length of the database
record is larger, the remainder of the record is inserted into the overflow area following the current
end-of-file (EOF). This operation requires that enough space be available after the current EOF to
contain the remainder of all database records that exceed the value of this parameter. If sufficient
space is not available in the overflow area following the current EOF, the database records are
inserted randomly in the database.

XCI
Specifies whether this DEDB uses the Extended Call Interface when making calls to the
randomizer. This option allows the randomizer to be called in three different ways. On initialization
of IMS or during a /START DB command, IMS will first load the randomizer and then make an
INIT call to the randomizer to invoke its initialization routines. During a /DBR DB command, IMS
will make a TERM call to the randomizer to invoke the termination routines before unloading the
randomizer. The normal randomizing call to the randomizer is made when the application issues a
GU or ISRT call on a root segment. The XCI option is only valid for DEDBs.

PASSWD=
Prevents accidental access of IMS databases by non-IMS programs.
YES

Specifying PASSWDYES causes DL/I to use the database name as the VSAM password when
opening any data set for this database. This parameter is only valid for databases that use VSAM
as the access method. You cannot use the database name as the password for the LOGICAL or
DEDB database types. When the user defines the VSAM data sets for this database using the
DEFINE statement of z/OS Access Method Services, the control level (CONTROLPW) or master
level (MASTERPW) password must be the same as the DBDNAME for this DBD. All data sets
associated with this DBD must use the same password.

For the IMS DB/DC system, all VSAM OPENs bypass password checking and thus avoid operator
password prompting. For the IMS DB system, VSAM password checking is performed. In the
batch environment, operator password prompting occurs if automatic password protection is
not specified, and the data set is password protected at the control level (CONTROLPW) with
passwords not equal to the database name.

NO
Specifying PASSWDNO indicates that the database name should not be used as the VSAM
password. This is the default behavior.

42 IMS: System Utilities

EXIT=
Specifies that the Data Capture exit routine is used. You can specify multiple exit routine names on a
single DBD statement. You can select different data options for each exit routine. The order that you
list the exit routines within the parameter determines the order the exit routines are called for the
segment.

When specified on the DBD statement, the EXIT= parameter applies to all segments within the
physical database that do not have the EXIT= parameter on the SEGM statement. The following
physical databases are supported by this exit routine:

• HISAM
• SHISAM
• HDAM
• PHDAM
• HIDAM
• PHIDAM
• DEDB

If the exit routine is not specified for a supported database organization or a supported segment type,
DBDGEN fails.

If the job name of a CCTL or ODBM address space is specified on the SUPPDCAPNAME= parameter,
which is in the DATABASE section of the DFSDFxxx member of the IMS PROCLIB data set, the exit
routine is not called for data updates invoked by the specified job, even if a Data Capture exit routine
is specified on the EXIT= parameter.

The EXIT= parameter can also be specified on the SEGM statement.
exit_name

Specifies the name of the exit routine that processes the data. This parameter is required. The
name must follow standard naming conventions. A maximum of 8 alphanumeric characters is
allowed. You can specify an asterisk (*) instead of an exit routine name to indicate that you want
logging only. If this is done, the logging parameter default is LOG. If you do specify an exit routine,
the logging parameter default is NOLOG. All of the following operands are optional.

KEY | NOKEY
Specifies whether the exit routine is passed the physical concatenated key. This key identifies the
physical segment that is updated by the application.
KEY

Specifies the exit routine is passed the physical concatenated key.

KEY is the default.

NOKEY
Can be specified when the physical concatenated key is not required for the exit routine.

DATA | NODATA
Specifies whether the physical segment data is passed to the exit routine for updating.
DATA

Specifies that the physical segment data is passed to the exit routine for updating. When DATA
is specified and a Segment Edit/Compression exit routine is also used, the data passed is
expanded data.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. Use NODATA to avoid
the overhead that is created from saving physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires data from segments in the physical root's hierarchical
path.

Chapter 2. Database Description (DBD) Generation utility 43

NOPATH
Indicates that the exit routine does not require data from segments in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time that is needed to
retrieve path data.

NOPATH is the default.

PATH
Can be specified when the data from each segment in the physical root's hierarchical path
must be passed to the exit routine for an updated segment. Use PATH to allow an application
to separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from segments in the path is needed to
compose the Db2 for z/OS primary key. The Db2 for z/OS primary key would then be used
in a propagation request for a dependent segment update. Typically, you need this kind
of segment information when the parent contains the key information and the dependent
contains additional data that would not fit in the parent segment.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several segments with one call; for example, you did not invoke the D command
code. In this case, additional processing is necessary if the application is to access each
segment with a separate call.

DLET | NODLET

Specifies whether X'99' log records are written for DLET calls.

Note: DLET or NODLET can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

DLET
X'99' log records are written for DLET calls.

DLET is the default.

NODLET
No X'99' log records are written for DLET calls.

BEFORE | NOBEFORE

Specifies whether the before data is included in X'99' log records for REPL calls.

Note: BEFORE or NOBEFORE can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

BEFORE
Before data is included in X'99' log records for REPL calls.

BEFORE is the default.

NOBEFORE
No before data is included in X'99' log records for REPL calls.

CASCADE | NOCASCADE
Specifies whether the exit routine is called when DL/I deletes this segment.
CASCADE

Indicates that the exit routine is called when DL/I deletes this segment because the
application deleted a parent segment. Using CASCADE ensures that data is captured for the
defined segment.

CASCADE is the default.

44 IMS: System Utilities

The CASCADE parameter has three suboptions. These suboptions control the way data
is passed to the exit routine. If you specify suboptions, you must enclose the CASCADE
parameter and the suboptions within parentheses.

KEY | NOKEY
Specifies whether the physical concatenated key is passed to the exit.
KEY

Passes the physical concatenated key to the exit. This key identifies the segment being
deleted by a cascade delete.

KEY is the default.

NOKEY
Can be used when the exit routine does not require the physical concatenated key of
the segment being deleted.

DATA | NODATA
Specifies whether segment data is passed to the exit routine for a cascade delete.
DATA

Passes segment data to the exit routine for a cascade delete. DATA also identifies the
segment being deleted when the physical concatenated key is unable to do so.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. NODATA
reduces the significant storage and performance requirements that result from saving
physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires segment data in the physical root's hierarchical
path.
NOPATH

Indicates that the exit routine does not require segment data in the physical root's
hierarchical path. Use NOPATH to eliminate the substantial amount of path data
needed for a cascade delete.

NOPATH is the default.

PATH
Can be specified to allow an application to separately access several segments for a
cascade delete.

NOCASCADE
Indicates that the exit routine is not called when DL/I deletes this segment. Cascade delete is
not necessary when a segment without dependents is deleted.

Note: If any (CASCADE B) suboptions are specified with NOCASCADE in an EXIT= parameter,
they will be ignored, and the value for those suboptions will be set to NOxxxx.

LOG | NOLOG
Specifies whether data capture control blocks or data is written to the IMS system log.
LOG

Requests that the data capture control blocks and data be written to the IMS system log.
For more information, see Asynchronous data propagation (System Programming APIs).

NOLOG
Indicates that no data capture control blocks or data is written to the IMS system log.

NOSSPCMD | SSPCMD
An optional parameter that indicates whether command codes related to Fast Path subset
pointers (SSP) be captured. The default is NOSSPCMD. It is recommended that this option be
specified only on segments that involve subset pointers.

Chapter 2. Database Description (DBD) Generation utility 45

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

The following table indicates which command codes are captured for a given DL/I call:

Table 2. Command codes that are captured for DL/I calls

DL/I call Details

G* (get calls) M, S, W, Z. R is captured if at least one of M, S,
W, or Z is also on the same SSA, or along with
the PATH data if PATH is requested.

REPL M, S, W, Z

DLET Z

ISRT M, S, W, Z. R is captured if the segment is being
inserted or if it was specified on an SSA of a
segment not being inserted but PATH data is
requested.

NOINPOS | INPOS
An optional parameter to request that the next twin data be captured on an ISRT call. The default
is NOINPOS. The twin data of the twin that follows an inserted segment will be captured if INPOS
is specified and the following conditions are true:

• An ISRT of a non-unique segment is made.
• An ISRT rule of HERE is used.

If the new segment is the only twin instance or last in the twin chain, no twin data will be
captured.

NOFLD | FLD
An optional parameter to request that updates that are made by a DEDB FLD call be captured. This
option is valid only for a DEDB. The information captured is logged only in the X'9904' log records
if option LOG is specified. It is not passed to the Data Capture exit routine.

VERSION=
Specifies a character string used to identify the DBD. The exit routine is passed this character string so
it can determine the DBD version used to update the database.
character string

The character-string length can be up to 255 bytes. There are no checks to ensure that the proper
values have been inserted. Therefore, it is important that the variable-length character string be
updated whenever the DBD changes.

If you do not specify a character string, a 13-character time stamp is generated by DBDGEN. It
represents the date and time the DBDGEN was completed. Its format is:

MM/DD/YYHH.MM

Where:

MM
The month

DD
The day of the month

YY
The last two digits of the year

HH
The hour on a 24-hour clock

MM
The minutes

46 IMS: System Utilities

DATXEXIT=
Allows a user exit, DFSDBUX1, to be used by an application while processing this database. The
default is NO.

Allows the Data Conversion user exit routine (DFSDBUX1) to be used by an application while it is
processing this database. The default is DATXEXITNO.

If DATXEXITYES is specified, the user exit DFSDBUX1 is called at the beginning and at the end of each
database call. If DFSDBUX1 is not loaded, IMODULE is called to load it.

If DATXEXITNO is specified, the DFSDBUX1 user exit routine can be called, provided DFSDBUX1 is
located in the SDFSRESL. If DFSDBUX1 does not need to be called again for the database definition,
X'FF' is returned in the SRCHFLAG field in the JCB, and DFSDLA00 dynamically marks the database
definition as not requiring the exit. In this case, the user exit is not called again for that database
definition for the duration of the IMS session, unless the DMB is purged from the DMB pool.

FPINDEX=
Specifies whether an index database is a secondary index for a primary Fast Path DEDB database. By
default, an index database is not a secondary index.

Valid values are NO, null, and YES. NO and null are equivalent. The default is NO (or null).

ENCODING=
An optional 1- to 25-character field that specifies the default encoding of all character data in this
database.

The default code page is Cp1047, which specifies EBCDIC encoding.

This value cannot contain the following characters:

• Single or double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

This value can be overridden in individual segments or fields.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

Related concepts
Data Capture exit routines (Database Administration)

Chapter 2. Database Description (DBD) Generation utility 47

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_datacapexit.htm#ims_datacapexit

Related information
DBD770 (Messages and Codes)

DATASET statements
A DATASET statement defines a data set group within a database.

At least one DATASET statement is required for each DBD generation, except for HALDB, DEDB, and
LOGICAL databases. HALDB databases use the DSGROUP parameter on the SEGM statement instead
of DATASET statements to define data set groups. DEDB databases use AREA statements instead of
DATASET statements to define data set groups.

The maximum number of DATASET statements used depends on the type of databases. Some databases
can have only one data set group. Data Entry databases can have 1 to 2048 areas defined. HDAM and
HIDAM databases can be divided into 1 to 10 data set groups subject to the rules in “Rules for dividing a
database into multiple data set groups” on page 48.

In the DBDGEN input deck, a DATASET statement precedes the SEGM statements for all segments that
are to be placed in that data set group. The first DATASET statement of a DBD generation defines the
primary data set group. Subsequent DATASET statements define secondary data set groups.

Exception: The only exception to the order of precedence is when the LABEL field of a DATASET
statement is used. Refer to “Use of the LABEL field” on page 48 for this exception.

Comments must not be added to a subsequent labeled DATASET macro that has no operands.

Rules for dividing a database into multiple data set groups

HDAM and HIDAM databases can be divided into a maximum of 10 data set groups according to the
following restrictions. Each DATASET statement creates a separate data set group, except for the case
explained in “Use of the LABEL field” on page 48. The first DATASET statement defines the primary data
set group. Subsequent DATASET statements define secondary data set groups.

For HDAM or HIDAM databases, you can use DATASET statements to divide the database into multiple
data set groups at any level of the database hierarchy; however, the following restriction must be met. A
physical parent and its physical children must be connected by physical child or physical twin pointers,
as opposed to hierarchic pointers, when they are in different data set groups, as shown in the following
figure.

The connection between segment A (the root segment in the primary data set group), and segment
B (a first level dependent in the secondary data set group) must be made using a physical child. The
connection between segment C (a first level dependent in the primary data set group) and segment D (a
second level dependent in the secondary data set group) must also be made using a physical child. The
connection between multiple occurrences of segments B and D under one parent must be made using
physical twin pointers.

Use of the LABEL field

In HDAM or HIDAM databases, it is sometimes desirable to place segments in data set groups according
to segment size or frequency of access rather than according to their hierarchic position in the data
structure. To achieve this while still observing the DBD generation rule that the SEGM statements defining
segments must be arranged in hierarchic sequence, the LABEL field of the DATASET statement is used.

An identifying label coded on a DATASET statement is referenced by coding the same label on additional
DATASET statements. Only the first DATASET statement with the common label can contain operands
that define the physical characteristics of the data set group. All segments defined by SEGM statements
that follow DATASET statements with the same label are placed in the data set group defined by the first
DATASET statement with that label.

48 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.mc/msgs/dbd770.htm#dbd770

You can use this capability in much the same manner as the CSECT statement of assembler language,
with the following restrictions:

• A label used in the label field of a DATASET statement containing operands cannot be used on another
DATASET statement containing operands.

• Labels must be alphanumeric and must be valid labels for an assembler language statement.
• Unlabeled DATASET statements must have operands.

Table 3. Using the label field to group segment types

Label Operation Parameter

 DBD NAME=HDBASE,ACCESS=HDAM, RMNAME=(RANDMODL,1,500,824)

DSG1 DATASET DD1=PRIMARY,BLOCK=1648

SEGM NAME=SEGMENTA,BYTES=100

DSG2 DATASET DD1=SECOND,BLOCK=3625

SEGM NAME=SEGMENTB,BYTES=50,PARENT=SEGMENTA

DSG1 DATASET

SEGM NAME=SEGMENTC,BYTES=100,PARENT=SEGMENTA

DSG2 DATASET

SEGM NAME=SEGMENTD,BYTES=50,PARENT=SEGMENTC

DBDGEN

FINISH

END

The segments named SEGMENTA and SEGMENTC exist in the first data set group. The segments named
SEGMENTB and SEGMENTD exist in the second data set group.

The format of the DATASET statement for each database type is shown in the following examples.

GSAM database DATASET Statement

DATASET DD1= ddname1

,DD2= ddname2
,BLOCK=( blkfact1)

1

,SIZE=  size1
1

,RECORD=( reclen1 , reclen2)
1

,DEVICE=3380
2

,RECFM=  recfm1
3

,REMARKS=  comments

Notes:
1 If you do not specify a value, the DBDGEN utility generates the value used.
2 The DEVICE parameter is ignored.
3 RECFM is only valid for a GSAM database.

HDAM database DATASET statement

Chapter 2. Database Description (DBD) Generation utility 49

label
1

DATASET DD1= ddname1

,BLOCK=  size0
2

,SIZE=(,  size1)
3

,DEVICE=3380
4 ,SCAN=  cyls ,FRSPC=( fbff , fspf)

,SEARCHA= 0

1

2

,REMARKS=  comments

Notes:
1 If you have multiple DATASET statements with the same label, only the first one with the common
label can contain operands that define the physical characteristics of the data set group.
2 If you do not specify a value, the DBDGEN utility generates the value used.
3 For VSAM, the valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB,
8 KB, and multiples of 2 KB up to 28 KB.
4 The DEVICE parameter is ignored.

HIDAM database DATASET statement

label
1

DATASET DD1= ddname1

,BLOCK=  size0
2

,SIZE=( size1)
3

,DEVICE=3380
4 ,SCAN=  cyls ,FRSPC=( fbff , fspf)

,SEARCHA= 0

1

2

,REMARKS=  comments

Notes:
1 If you have multiple DATASET statements with the same label, only the first one with the common
label can contain operands that define the physical characteristics of the data set group.
2 If you do not specify a value, the DBDGEN utility generates the value used.
3 For VSAM, the valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB,
8 KB, and multiples of 2 KB up to 28 KB.
4 The DEVICE parameter is ignored.

HISAM/SHISAM database DATASET statement

50 IMS: System Utilities

DATASET DD1= ddname1 ,OVFLW=  ddname3
1

,BLOCK=( blkfact1 ,blkfact2)
2

,SIZE=( size1, size2)
23

,RECORD=( reclen1 , reclen2)
2

,DEVICE=3380
4

,REMARKS=  comments

Notes:
1 If a HISAM database has only one segment type defined, you do not need to specify OVFLW. OVFLW
is invalid in a simple HISAM database.
2 If you do not specify a value, the DBDGEN utility generates the value used.
3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB, 8 KB, and
multiples of 2 KB up to 28 KB.
4 The DEVICE parameter is ignored.

HSAM/SHSAM database DATASET statement

DATASET DD1= ddname1 ,DD2= ddname2

,BLOCK=( blkfact1 , blkfact2)
1

,RECORD=( reclen1 , reclen2)
1

,DEVICE=3380
2

,REMARKS=  comments

Notes:
1 If you do not specify a value, the DBDGEN utility generates the value used.
2 DEVICE parameter is ignored.

INDEX database DATASET statement

DATASET DD1= ddname1 ,OVFLW=  ddname3
1

,BLOCK=( blkfact1 , blkfact2)
2

,SIZE=( size1, size2)
23

,RECORD=( reclen1 , reclen2)
2

,DEVICE=3380
4

,REMARKS=  comments

Notes:

Chapter 2. Database Description (DBD) Generation utility 51

1 If the keys of all the index segments are unique, you do not need to specify OVFLW.
2 If you do not specify a value, the DBDGEN utility generates the value used.
3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB, 8 KB, and
multiples of 2 KB up to 28 KB.
4 The DEVICE parameter is ignored.

LOGICAL database DATASET statement

DATASET LOGICAL

,REMARKS=  comments

MSDB database DATASET statement

DATASET ,REL=(NO

TERM

, fldnm

FIXED

, fldnm

DYNAMIC

, fldnm

)

,REMARKS=  comments

DATASET statement parameter description

DATASET
Identifies this as a DATASET control statement for a DL/I database.

LOGICAL
Indicates a logical database is being defined in this DBD generation. This parameter must be specified
if the ACCESS=LOGICAL parameter is specified on this DBD generation's DBD statement. If LOGICAL
is specified, all other operands are invalid; this must be the only DATASET statement for the DBD
generation. The SEGM statements that follow this statement can only specify NAME=, PARENT=,
and SOURCE= operands. No FIELD, XDFLD, or LCHILD statements can be used in a LOGICAL DBD
generation.

DD1=
Specifies the ddname of the primary data set in this data set group. ddname1 must be a 1- to
8-character alphanumeric name. IMS use of the data set indicated by this parameter depends on the
type of database being defined as shown in the following list:
Database Type

Use of the DD1= parameter
HSAM/SHSAM

ddname of input data set
GSAM

ddname of input data set
HISAM/SHISAM

ddname of primary data set in data set group
HIDAM

ddname of data set in data set group
HDAM

ddname of data set in data set group

52 IMS: System Utilities

MSDB
Parameter is invalid

DEDB
Name of defined area

INDEX
ddname of primary data set

LOGICAL
Parameter is invalid

For an HSAM, SHSAM, or GSAM database, this input data set is used when an application program
retrieves data from the database.

DEVICE=
Specifies the physical storage device type on which the data set in this area is stored. The default is
3380. If you code any other device, it will be ignored.

DD2=
Specifies the 1- to 8-character alphanumeric ddname of the output data set required for an HSAM or
SHSAM database and optional for a GSAM database. If it is omitted, ddname1 is assumed. This output
data set is used by IMS when loading the database.

label
An identifying label coded on a DATASET statement referenced by coding the same label on additional
DATASET statements. Only the first DATASET statement with the common label can contain operands
that define the physical characteristics of the data set group. All segments defined by SEGM
statements that follow DATASET statements with the same label are placed in the data set group
defined by the first DATASET statement with that label.

OVFLW=
Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in this data set group.
This parameter must be specified for:

• An INDEX database that contains index pointer segments with nonunique keys
• All data set groups of a HISAM database except when only one segment type is defined in the

HISAM database

The ddnames used in DD1, DD2, or OVFLW subparameters must be unique within an IMS system
or account. Nonunique ddnames in two or more DBDs might result in destruction of the database.
One situation that can result in destruction of a database is if both ddnames were inadvertently used
concurrently (both used in two different message regions of a data communications system or in two
PCBs of one PSB used in a batch DL/I region of a database only system).

The following restrictions apply:

• The OVFLW parameter is not allowed when a simple HISAM database is defined.
• When a HISAM database that contains only one segment type is defined, the OVFLW parameter

does not have to be specified.
• No OVFLW parameter on the DATASET statement is required for the index DBD because all index

segments are inserted in the key sequenced data set of the index.
• If ACCESS=(INDEX,SHISAM) is specified, then the OVFLW parameter is invalid.

BLOCK=
Is used to specify the blocking factors (blkfact1, blkfact2) to be used for data sets in a data set group
for HSAM, SHSAM, GSAM, HISAM, SHISAM, and INDEX databases, or is used to specify the block size
or control interval size without overhead (size0) for the data set in a data set group for HDAM and
HIDAM databases.

For HISAM, SHISAM, and INDEX databases that use VSAM as the access method, use the SIZE=
parameter to specify control interval size in place of the BLOCK= parameter. If the SIZE= keyword is
used for a HISAM, SHISAM, or INDEX database, the BLOCK= keyword is invalid.

The SIZE and BLOCK keywords are mutually exclusive for the following database access types:

Chapter 2. Database Description (DBD) Generation utility 53

• HDAM
• HIDAM
• HISAM
• INDEX
• SHISAM

In cases where the RECORD= and BLOCK= operands are used, the resulting control interval size must
be a multiple of 512 when the resulting size is less than 8192 bytes. If the product of the record
length specified times the blocking factor specified plus VSAM overhead is not a multiple of 512 and
is less than 8192 bytes, the resulting control interval size is obtained by rounding the value up to
the next higher multiple of 512. Control interval sizes from 8192 to 30720 bytes (maximum allowed
size) must be in multiples of 2048 bytes. When the product of the RECORD= and BLOCK= operands
plus VSAM overhead is from 8192 to 30720 bytes but is not a multiple of 2048, the resulting control
interval size is obtained by rounding the value up to the next higher multiple of 2048.

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10 bytes. The maximum block
size for OSAM data sets is 32 KB.

For HDAM and HIDAM databases, the BLOCK= parameter is used to enable you to override DBDGEN's
computation of control interval or block size. However, in addition to the value specified in the
BLOCK= parameter, DBDGEN adds space for root anchor points, a free space anchor point, and access
method overhead. The block or control interval size that results can be determined by referring to the
equations in the description of the SIZE= parameter or by examining the output of DBDGEN. If SIZE=
is not specified and the access method is VSAM, DBDGEN calculates the best VSAM LRECL value by
equally distributing any unused space in the CI to each logical record in the CI. If SIZE= is specified or
the database is SHISAM, this is not done.

The following table explains the use of the BLOCK= and RECORD= operands.

Table 4. BLOCK and RECORD operands

Database type Use of BLOCK and RECORD operands

HSAM/SHSAM BLOCK=
blkfact1 applies to input data set and should always be 1.

blkfact2 applies to output data set and should always be 1.

RECORD=
reclen1 is the input record length.

reclen2 is the output record length.

HSAM/SHSAM is always unblocked; LRECL and BLKSIZE are equal.

GSAM BLOCK=
blkfact1 applies to input/output data set.

blkfact2 is an invalid subparameter.

RECORD=
reclen1 is the size of an LRECL length or maximum size for a variable
length record.

reclen2 is the minimum size for a variable length record.

SIZE=
size1 is the BLKSIZE for input/output data set.

size2 is an invalid subparameter.

54 IMS: System Utilities

Table 4. BLOCK and RECORD operands (continued)

Database type Use of BLOCK and RECORD operands

HISAM/SHISAM BLOCK=
blkfact1 is the primary data set blocking factor.

blkfact2 is the overflow data set blocking factor.

RECORD=
reclen 1 is the data set logical record length.

reclen2 is the overflow data set logical record length.

HIDAM, HDAM BLOCK=
size0 is size without overhead of OSAM or VSAM data set group

RECORD=
Is ignored.

MSDB BLOCK= and RECORD= operands are invalid

DEDB BLOCK= and RECORD= operands are invalid.

INDEX BLOCK=
blkfact1 is the primary data set blocking factor.

blkfact2 is the overflow data set blocking factor.

RECORD=
reclen1 is the primary data set logical record length.

reclen2 is the overflow data set logical record length.

LOGICAL BLOCK= and RECORD= operands are invalid.

Note: When both reclen1 and reclen2 are specified in a DATASET statement, reclen2 must be equal
to or greater than reclen1, except for GSAM.

SIZE=
Overrides how the DBDGEN utility computes control interval or block size. If the value specified for
SIZE= is different from the control interval size defined to VSAM using the Access Method Services,
DL/I uses the value defined to VSAM.

For DL/I DBDs, you can effectively modify the DBD without a DBDGEN by redefining the control
interval size to VSAM using the Access Method Services. This allows you to migrate databases to new
devices without a DBDGEN. When used, no overhead is added to the values specified and the value
specified is not validated by IMS.

For VSAM data sets, when the values specified are less than 8192, they must be a multiple of 512. If
not a multiple of 512, DBDGEN rounds the value specified to the next higher multiple of 512 and issue
a warning message. Values specified in the range of 8192 to 30720 bytes (maximum allowed size)
must be a multiple of 2048. If not a multiple of 2048, DBDGEN rounds the value specified to the next
higher multiple of 2048 and issue a warning message.

For HISAM, SHISAM, primary HIDAM index, and secondary index databases, size1 specifies the
control interval or block size of the primary data set in a data set group, and size2 specifies the control
interval or block size of the overflow data set.

For HDAM and HIDAM databases, only the size1 parameter is used. The size1 parameter specifies the
control interval or block size of the data set in the data set group.

When SIZE is specified for a HISAM or INDEX database, the RECORD parameter must also be
specified; the size value specified must be a multiple of the record parameter in order to allow

Chapter 2. Database Description (DBD) Generation utility 55

VSAM to open the data sets involved. Following are equations that show the minimum block or control
interval size that you can specify for databases.

The maximum block size of OSAM data sets is 32768 bytes. An OSAM data set with an even length
block size has an 8-gigabyte size limit. If the database is saved with image copy, 32752 bytes is the
maximum amount that can be specified for the block size. Image copy processing module DFSUDMP0
adds 15 bytes to the block size for double-word alignment of its prefix, and the block size cannot
exceed 32768. If the DBDGEN utility specifies the block size, 32752 bytes is the maximum amount
specified.

Important: Calculating SIZE= for HISAM primary data set groups, primary HIDAM index data set
groups, and secondary index data set groups

For the primary data set group of a HISAM or INDEX database, the minimum control interval size that
can be specified for the primary data set is given by primary size and for the overflow data set by
overflow size. The overflow data set is not always required in the data set group.

• primary size ≥ ROOTSEG + OVERHEAD + VSAM CONTROL
• overflow size ≥ MAXSEG + OVERHEAD + VSAM CONTROL

ROOTSEG=
Maximum root segment size including the segment prefix. An INDEX VSAM root segment prefix
does not include a segment code, unless it was created using DL/I DOS.

OVERHEAD=
Number of bytes required is:
7

Used for OSAM, if the database has more then one physical segment type
3

Used for OSAM, if the database has only one physical segment type
4

Used for INDEX VSAM databases with nonunique root segment keys
0

Used for INDEX VSAM databases unique root segment keys, not created using DL/I DOS.

5 bytes for all other VSAM databases.

VSAM CONTROL=
Number of bytes required is:
0

Used for OSAM, if the blocking factor is 1
7

Used for VSAM if the blocking factor is 1
10

Used for all other cases
MAXSEG=

Length in bytes of the longest segment in this data set group including the segment prefix.

Calculating SIZE= for HDAM Primary Data Set Group

The minimum block or control interval size that you can specify for the primary data set group of an
HDAM database is dependent on whether or not the DBD statement rbn parameter of the RMNAME
parameter is specified.

• If rbn is specified, then the following two conditions must be met:

– size ≥ (RAPs*4) + FSEAP + 2 + VSAM CONTROL
– size ≥ MAXSEG + FSEAP + VSAM CONTROL

• If rbn is not specified, then the following condition must be met:

56 IMS: System Utilities

– size ≥ MAXSEG + (RAPs*4) + FSEAP + VSAM CONTROL

RAPs=
Number of root anchor points specified for the root addressable area of the database.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

MAXSEG=
Length in bytes of the longest segment in this data set group including the segment prefix.

Calculating SIZE= for HDAM Secondary Data Set Groups

The block or control interval size specified must be:

size ≥ MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=
Length in bytes of the longest segment in this data set group including the segment.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

Calculating SIZE= for HIDAM Data Set Groups

The minimum block or control interval size that you can specify for data set groups in a HIDAM
database is dependent on the access method specified. The block or control interval size of the
primary data set group is also dependent on the type of pointers specified for the root segment type.

If you specify forward-only hierarchic or physical twin pointers for the root segment type of a HIDAM
database, the block or control interval size specified for the primary data set group must be:

size ≥ MAXSEG + FSEAP + RAP + VSAM CONTROL

Under any other conditions for primary or secondary data set groups, the block or control interval size
specified must be:

size ≥ MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=
Length in bytes of the longest segment in this data set group including the segment prefix.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

RAP=
4 bytes for one root anchor point.

RECORD=(reclen1,reclen2)
Specifies the data management logical record lengths to be used for this data set group. This
parameter is optional and cannot be specified if ACCESS=LOGICAL is used on the DBD statement.
reclen1 and reclen2 must be numeric values. The value of reclen2 must always be equal to or greater
than the value of reclen1 except for GSAM databases. The meaning of each of the parameter's
parameters depends on the type of database being defined.

For a simple HISAM (SHISAM) database, the logical record length specified must be the same as
the segment length specified. The minimum allowable logical record lengths for HISAM and INDEX
DBDs are the same as the minimum block or control interval sizes described for the DATASET SIZE=
parameter, except that VSAM CONTROL should be ignored. In addition, for both the VSAM KSDS and
ESDS for HISAM, and INDEX DBDs, the logical record length specified must also be an even value.

Chapter 2. Database Description (DBD) Generation utility 57

For VSAM primary index (INDEX, VSAM) databases, the overflow logical record length (reclen2)
parameter should not be defined, because all index segments are inserted into the key sequence
data set.

For a GSAM database, reclen1 specifies the size of a logical record for a fixed-length record or the
maximum size for a variable-length or undefined record. The value of reclen2 specifies the minimum
size for a variable-length or undefined record. For variable length GSAM/BSAM database, IMS adds 2
bytes to the record length value in the GSAM records passed by the application. This is done in order
to accommodate the ZZ field that makes up the BSAM Record Descriptor Word (RDW) when the record
is written to the I/O device.

RECFM=
Specifies the format of the records in the data set. The record format is specified using the characters
defined as follows:
F

The records are fixed-length.
FB

The records are fixed-length and blocked.
V

The records are variable-length.
VB

The records are variable-length and blocked.
U

The records are of undefined length.

This parameter is only valid for a GSAM database.

SCAN=cyls
Specifies the number of direct-access device cylinders to be scanned when searching for available
storage space during segment insertion operations. This parameter is optional. It is only used when
this DBD generation defines a HIDAM or HDAM database. If specified, cyls must be a decimal integer
whose value does not exceed 255. Typical values are from 0 to 5. The default value is 3. If SCAN=0 is
specified, only the current cylinder is scanned for space.

Scanning is performed in both directions from the current cylinder position. If a scan limit value
causes scanning to include an area outside of the current extent, IMS adjusts the scan limits so that
scanning does not exceed current extent boundaries. If space cannot be found for segment insertion
within the cylinder bounds defined by this parameter, space is used at the current end of the data set
group for the database.

FRSPC=
Specifies how free space is to be distributed in an HDAM or HIDAM database. The free block
frequency factor (fbff) specifies that every nth control interval or block in this data set group is left
as free space during database load or reorganization (where fbff=n). The range of fbff includes all
integer values from 0 to 100 except fbff=1. The fspf is the free space percentage factor. It specifies
the minimum percentage of each control interval or block that is to be left as free space in this data
set group. The range of fspf is from 0 to 99. The default value for fbff and fspf is 0. If the total of
the percentage of free space specified and any segment size exceeds the control interval or block
size, a warning message that flags oversized segments is issued by DBDGEN. When loading oversized
segments, the "fspf" specification is ignored and one control interval or block is used to load each
oversized segment.

When you specify the first parameter, FBFF, realize that a smaller value increases the frequency
of free space in the database. A value of 2, for example, would mean that after every piece of
data there would be a free space block. This causes system performance degradation when running
reorganization or load utilities because of the extra processing required for the free space blocks.

SEARCHA=
Specifies the type of HD space search algorithm that IMS uses to insert a segment into an HD
database.

58 IMS: System Utilities

0
Specifies that IMS chooses which HD space search algorithm to use. This is the default. For this
release, IMS uses the same algorithm it would use if you had specified SEARCHA=2.

1
Specifies that IMS uses the HD space search algorithm that does not search for space in the
second-most desirable block or CI.

2
Specifies that IMS uses the HD space search algorithm that includes a search for space in the
second-most desirable block or CI.

REL=
Defines whether an MSDB is a non-terminal-related (NO or TERM) or a terminal-related (FIXED and
DYNAMIC) MSDB. There is no ownership of segments in non-terminal-related MSDBs.

MSDBs with terminal-related keys are not supported for ETO in IMS V5 or above. Other types of
MSDBs are still supported.

With terminal-related MSDBs, each segment is assigned to a different LTERM. The LTERM name is the
segment key but is not contained in the segment. Each LTERM owns no more than one segment per
MSDB, and only the owner can alter a segment.
NO

Specifies a non-terminal-related MSDB without terminal-related keys. The key and the sequence
field are part of the segment.

TERM
Specifies a non-terminal-related MSDB with terminal-related keys. The key is the LTERM name
(not part of the segment) and there is no sequence field.

FIXED
Specifies a terminal-related fixed MSDB. The LTERM name is the segment key. Segment updates
are allowed. Segment insertions and deletions are not allowed.

DYNAMIC
Specifies a terminal-related dynamic MSDB. The LTERM name is the segment key. Segments can
be inserted and deleted. No more than one insertion or deletion can be made to the same MSDB
from a single LTERM within one sync processing interval.

search field name
Specifies a 1- to 8-character alphanumeric name. The name must not be the same as any other
field name defined in a FIELD statement.

Because a sequence field cannot be defined for an MSDB using an LTERM name as a segment
key (REL=TERM, FIXED, or DYNAMIC), a search field name is provided to allow qualified calls. The
only valid value in an SSA is an LTERM name. Therefore, the search field is treated as an 8-byte
character field and no further definition is provided.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'

Chapter 2. Database Description (DBD) Generation utility 59

• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

Data sets in IMS data set groups
The DD statements for non-HALDB data sets in each IMS database must be provided with each job that
accesses the database. For databases used by message or batch message processing programs, you must
include DD statements in the JCL for the IMS control region. For databases used exclusively in the batch
processing environment, you must include DD statements in the JCL for the batch processing region. In a
z/OS online environment, databases can be dynamically allocated.

DD statements are not required for HALDB data sets, because they are dynamically allocated.

DD statements required for VSAM

When the operating system access method for a database is VSAM, one DD statement is required for each
KSDS and one for each ESDS. The parameters required on the DD statements have the following format:

//DDname DD DISP=SHR,DSNAME=

UNIT=, VOLSER=, and SPACE= parameters are not required because all VSAM data sets are cataloged.

For a HISAM database, two DD statements are required: one for the KSDS and one for the ESDS. If the
HISAM database has only one segment type defined, only the KSDS DD statement is required.

For an HDAM or HIDAM database, one DD statement is required for each data set group. For the primary
index of a HIDAM database one DD statement is required for the KSDS.

For secondary index databases with unique keys one DD statement is required for the KSDS.

For secondary index databases with nonunique keys, two DD statements are required; one for the KSDS
and one for the ESDS. Note that secondary index databases with nonunique keys are not supported for
HALDB. In addition to the DD statements defining VSAM data sets, a DD statement specifying a data
set containing parameters defining the IMS VSAM buffer pool must be provided for batch regions. The
DDNAME for this DD statement is DFSVSAMP. For online IMS execution, this information is provided in a
member of the IMS.PROCLIB data set with member name DFSVSMxx.

DD statements required for OSAM

For HSAM or SHSAM, you must provide a DD statement for either input or output in the following format:

//DDname DD DSNAME= ,UNIT= ,VOL=SER= ,
// DISP= ,DCB=

Where the DD statement is for an HSAM or SHSAM output data set, the data set must be preallocated, or
the SPACE= parameter must be present when a direct-access storage device is used.

RECFM=FB is optional, but if used, must be specified at load time. RECFM=F must not be specified.

For an OSAM data set, the LRECL, BLKSIZE, and BUFL subparameters of the DCB parameter should be
omitted. This information is obtained from the DBD and cannot be overridden.

For HDAM or HIDAM, a DD statement is required for the OSAM data set of each data set group. The format
is as follows:

//dd1 DD DSNAME= ,UNIT= ,VOL=SER= ,
// DISP= ,DCB=(DSORG=PS[,OPTCD=W])

60 IMS: System Utilities

When the HDAM or HIDAM database is being created, the OSAM data set must be preallocated, or the
SPACE= parameter must be present.

If a model DSCB is to be used to describe a generation data set, the LRECL, RECFM, and BLKSIZE
parameters must be omitted from the model DSCB. This information is obtained from the DBD and cannot
be overridden.

AREA statement
DEDB databases use an AREA statement to define an area within a database.

In the DBDGEN input deck for a DEDB, all AREA statements must be placed between the DBD statement
and the first SEGM statement. At least one AREA statement is required, but as many as 2048 AREA
statements can be used to define multiple areas.

Restriction: AREA statements are not allowed for HALDB databases. Partitions are defined outside
DBDGEN.

AREA DD1= ddname1 ,SIZE=  size1
1

,UOW=( number1 , overflow1)

,ROOT=( number2 , overflow2)

,DEVICE=3380

,REMARKS=  comments

Notes:
1 The valid parameter specifications for a DEDB SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB, 8 KB,
and multiples of 4 KB up to 28 KB. To ensure future compatibility, use only CI sizes that are multiples
of 4 KB.

AREA statement parameter description

AREA
Identifies this statement as a DEDB AREA control statement.

DD1=
Specifies the ddname of the defined area. ddname1 must be a 1- to 8-character alphanumeric (A-Z,
0-9, #, @, $) name. This parameter can be an area name or a ddname for single area data sets but can
only be an area name for multiple area data sets. If the database is registered in DBRC, this parameter
should specify the area name.

DEVICE=
Specifies the physical storage device type on which the data set in this area is stored. The default is
3380. If you code any other device, it will be ignored.

SIZE=
Specifies the control interval. Size can be 512 bytes, 1 KB, 2 KB, 4 KB, and 8 KB and multiples of
4 KB up to 28 KB. For future compatibility, only CI sizes that are multiples of 4 KB should be used. No
default value is allowed.

Restriction: 4 KB cannot be specified with a 2319 device.

For DEDBs, the DBDGEN SIZE= must match the control interval size defined to VSAM, because IMS
uses this value in accessing the data set. If the control interval size is changed in the VSAM data set,
the DBD for that area must be changed to the new SIZE= value.

UOW=
Specifies the number of control intervals in a unit of work (UOW). The UOW= parameter has two
operands, number1 and overflow1.

Chapter 2. Database Description (DBD) Generation utility 61

number1
Specifies the number of control intervals in a unit of work (UOW). Its value must be from 2 to
32767.

overflow1
Specifies the number of control intervals in the overflow section of a UOW. Overflow1 can be any
value greater than or equal to one but at least one less than the specified value for number1.

The total number of root anchor points (RAPs) within one UOW is given by number1 minus overflow1.
Multiply the number of RAPs in one UOW by the number of UOWs in the root addressable part to find
the total number of RAPs within an area.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

ROOT=
Specifies characteristics of a DEDB area. The ROOT= parameter has two operands, number2 and
overflow2.
number2

Specifies the total space allocated to the root addressable part of the area and to the area
reserved for independent overflow. It is expressed in UOWs. The rest of the VSAM data set is
reserved for sequential dependent data. The value must be greater than 2 and less than 32767; it
cannot be larger than the amount of space actually in the VSAM data set.

overflow2
Specifies the space reserved for independent overflow in terms of UOWs. It must be at least one
and must be less than the value specified for number2. Although independent overflow does not
contain UOWs, the UOW size is used as the unit for space allocation.

The reorganization UOW is automatically allocated by the DEDB Initialization utility. VSAM space
definition should include this additional UOW. That is, the total space required is the root
addressable area, the independent overflow, and one additional UOW for reorganization. The
reorganization UOW is not used by the High-Speed DEDB Direct Reorganization utility, but may be
used by other functions of IMS.

Example: This example allocates 2048*64*936 bytes and leaves the rest of the area for
sequential dependent segments.

AREA DD1=XX,SIZE=2048,
 UOW=(64,14),
 ROOT=(936,36)

62 IMS: System Utilities

Because there is only one root anchor point (RAP) per control interval, the total number of RAPs
within the area is given by: (64-14)*(936-36) = 45000 RAPs.

The amount of space allocated for independent overflow by DBDGEN can be increased while IMS is
online.

SEGM statements
The SEGM statement defines a segment type, the segment's position in a database hierarchy, the physical
characteristics of the segment, and how the segment is to be related to other segments.

Except for GSAM databases, at least one SEGM statement must immediately follow each DATASET
statement; the segment that is defined by the SEGM statement is placed in the data set group that is
defined by the DATASET statement. Except for MSDBs and DEDBs, a maximum of 255 SEGM statements
are allowed in a DBD generation. For an MSDB, only one SEGM statement can be specified. For a DEDB,
at least one and up to 127 SEGM statements must immediately follow the last AREA statement; no other
SEGM statements can be provided in the DBD generation. SEGM statements must be placed in the input
file in hierarchic sequence, and a maximum of 15 hierarchic levels can be defined.

For a GSAM database, you can specify one SEGM statement in the DBD generation. The SEGM statement
defines a virtual segment that you can use to define non-searchable fields that would otherwise be
mapped only in a COBOL copybook. The resulting field metadata is stored in the IMS catalog for use by
application programs and products that access the GSAM database through the IMS Universal drivers.

The SEGM statement is used with FIELD, XDFLD, and LCHILD statements to totally define a segment to
IMS. The FIELD statement defines fields within segments, the XDFLD statement defines fields used for
secondary indexing, and the LCHILD statement defines index or logical relationships between segments.

The format of the SEGM statement for each database type is shown in the following examples.

DEDB database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 63

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT= (( segname2
,SNGL

,DBLE

))

0

1

,BYTES= max bytes

( max bytes , min bytes)

,TYPE=

DIR

SEQ
2

,RULES=(,

HERE

LAST

FIRST

)
3

,SSPTR=

 n

EXIT=
4

(

NONE

A C
.

,

(A) C

)

,COMPRTN=
5

( routinename
,

,INIT

DATA

,INIT

)

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname

,NOLOG

,LOG

*
6

,LOG

,NOLOG

B D E

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C

64 IMS: System Utilities

,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

7

D
,BEFORE

,NOBEFORE

,DLET

,NODLET

E
,NOSSPCMD

,SSPCMD

,NOINPOS

,INPOS

,NOFLD

,FLD

Notes:
1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
2 TYPE=SEQ is required on SEGM statements for the sequential dependent type.
3 Required when a segment type does not have a unique sequence field. HERE is the default. When
using Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden. For DEDB direct dependent segment processing, HERE is the default.
4 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.
5 Used for Segment Edit/Compression exit routine.
6 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.
7 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

GSAM database SEGM statement

SEGM EXTERNALNAME=  external_name
1

,PARENT=0
2

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Notes:
1 NAME= is invalid for GSAM. EXTERNALNAME is required.
2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

HDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 65

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=0

,PARENT= (( segname2
,SNGL

,DBLE

)

,( lpsegname .

,VIRTUAL

,PHYSICAL , dbname1

)
1

)

2
,SOURCE=(( segname ,

DATA
, dbname))

,BYTES= max bytes

( max bytes , min bytes)

,FREQ=  frequency

,POINTER=

,PTR=

(
HIER

HIERBWD

TWIN

TWINBWD

NOTWIN

, LTWIN

,

,LTWINBWD
3

,LPARNT
1

,CTR ,PAIRED

)

,RULES=
1

(LLL,LAST)

,RULES=
1

(
LLL

L

P

V

L

P

V

B

L

P

V

,LAST
4

,FIRST

,HERE

)

EXIT=
5

(

NONE

A C
.

,

(A) C

)

,COMPRTN=
6

( routinename

,DATA

,KEY

,INIT , max
,PAD

)

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname
7

,NOLOG

,LOG

*

,LOG

,NOLOG

B D

B

66 IMS: System Utilities

,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

8

D
,NOINPOS

,INPOS

Notes:
1 Optional for HDAM logical relationships.
2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
3 Required for HDAM logical relationships; otherwise, it is optional.
4 Required when a segment type does not have a unique sequence field. LAST is the default.
5 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.
6 Used for Segment Edit/Compression exit routine.
7 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.
8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

HIDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 67

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=0

,PARENT= (( segname2
,SNGL

,DBLE

)

,( lpsegname .

,VIRTUAL

,PHYSICAL , dbname1

)
1

)

2
,SOURCE=(( segname ,

DATA
, dbname))

,BYTES= max bytes

( max bytes , min bytes)

,FREQ=  frequency

,POINTER=

,PTR=

(
HIER

HIERBWD

TWIN

TWINBWD

NOTWIN

,LTWIN
3

,

,LTWINBWD

,LPARNT
1

,CTR ,PAIRED

)

,RULES=
1

(LLL,LAST)

,RULES=
1

(
LLL

L

P

V

L

P

V

B

L

P

V

,LAST
4

,FIRST

,HERE

)

EXIT=
5

(

NONE

A C
.

,

(A) C

)

,COMPRTN=
6

( routinename

,DATA

,KEY

,INIT ,  max
,PAD

)

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

exitname

,NOLOG

,LOG
7

*

,LOG

,NOLOG

B D

68 IMS: System Utilities

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

8

D
,NOINPOS

,INPOS

Notes:
1 Optional for HIDAM logical relationships.
2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
3 Required for HIDAM logical relationships; otherwise, it is optional.
4 Required when a segment type does not have a unique sequence field. LAST is the default. When
using Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden.
5 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.
6 Used for Segment Edit/Compression exit routine.
7 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.
8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

HISAM/SHISAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 69

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=0

,PARENT= ( segname2

( lpsegname .

,VIRTUAL

,PHYSICAL

, dbname1)
1

)

2
,SOURCE=(( segname ,

DATA
, dbname))

,BYTES= max bytes

( max bytes , min bytes)

,FREQ=  frequency

,POINTER=

,PTR=

(

,LPARNT
1

,CTR ,PAIRED

)

,RULES=
1

(LLL,LAST)

,RULES=
1

(
LLL

L

P

V

L

P

V

B

L

P

V

,LAST
3

,FIRST

,HERE

)

EXIT=
4

(

NONE

A C
.

,

(A) C

)

,COMPRTN=
5

( routinename

,DATA

,KEY

,INIT , max
,PAD

)
6

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

70 IMS: System Utilities

exitname
7

,NOLOG

,LOG

*

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

8

D
,NOINPOS

,INPOS

Notes:
1 Required for HISAM logical relationships; otherwise, it is optional.
2 The PARENT=keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
3 Required when a segment type does not have a unique sequence field. LAST is the default.
4 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.
5 Used for Segment Edit/Compression exit routine.
6 Variable-length segments and segment edit/compression cannot be specified for a simple HISAM
database.
7 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.
8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

HSAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 71

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=

0

segname2
1

,BYTES=  max bytes

,ENCODING=

Cp1047

encoding

,FREQ=  frequency

,REMARKS=  comments

Notes:
1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

INDEX database SEGM statement

SEGM NAME= segname1

,EXTERNALNAME=  external_name ,PARENT=0

,BYTES=  max bytes

,FREQ=  frequency

,RULES=

HERE

LAST

FIRST

1

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Notes:
1 Required when a segment type does not have a unique sequence field. HERE is the default. When
using Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden. For DEDB direct dependent segment processing, HERE is the default.

LOGICAL database SEGM statement
SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=

0

segname2

1

,SOURCE= (( segname ,

DATA

KEY , dbname), (

segname ,

DATA

KEY ,  dbname
2

))

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

Notes:

72 IMS: System Utilities

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
2 Required when defining a concatenated segment type.

MSDB database SEGM statement

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,BYTES=  max bytes

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

PHDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 73

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=0

,PARENT= (( segname2
,SNGL

,DBLE

)

,( lpsegname .

,VIRTUAL

,PHYSICAL , dbname1

)
1

)

2
,BYTES= max bytes

( max bytes , min bytes) ,FREQ=  frequency

,POINTER=

,PTR=

TWIN

TWINBWD

NOTWIN

3
,LPARNT

1

,PAIRED

,RULES=
1

(LLL,LAST)

,RULES=
1

(
LLL

L

P

V

L

P

V

L

P

V

,LAST
4

,FIRST

,HERE

)

,DSGROUP= (

A

B

C

D

E

F

G

H

I

J

)

EXIT=
5

(

NONE

A C
.

,

(A) C

)

,COMPRTN=
6

( routinename

,DATA

,KEY

,INIT ,  max
,PAD

)

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

74 IMS: System Utilities

 exitname
,NOLOG

,LOG

*

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,NOCASCADE

,(CASCADE B)

,(NOCASCADE B)

8

D
,NOINPOS

,INPOS

Notes:
1 Optional for PHDAM logical relationships.
2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
3 Required for PHDAM logical relationships; otherwise, it is optional.
4 Required when a segment type does not have a unique sequence field. LAST is the default.
5 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.
6 Used for Segment Edit/Compression exit routine.
7 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.
8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

PHIDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 75

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=0

,PARENT= (( segname2
,SNGL

,DBLE

)

( lpsegname .

,VIRTUAL

,PHYSICAL

, dbname1)
1

)

2
,BYTES= max bytes

( max bytes , min bytes) ,FREQ=  frequency

,POINTER=

,PTR=

TWINBWD

NOTWIN

TWIN
3

4
,LPARNT

1

,PAIRED

,RULES=
1

(LLL,LAST)

,RULES=
1

(
LLL

L

P

V

L

P

V

L

P

V

,LAST
5

,FIRST

,HERE

)

,DSGROUP =(

A

B

C

D

E

F

G

H

I

J

)

EXIT=
6

(

NONE

A C
.

,

(A) C

)

,COMPRTN=
7

( routinename

,DATA

,KEY

,INIT ,  max
,PAD

)

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

A

76 IMS: System Utilities

exitname
8

,NOLOG

,LOG

*

,LOG

,NOLOG

B D

B
,KEY

,NOKEY

,NOPATH

,PATH

,DATA

,NODATA

C
,CASCADE

,KEY

,(NOCASCADE B)

,(NOCASCADE B)

9

D
,NOINPOS

,INPOS

Notes:
1 Optional for PHIDAM logical relationships.
2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.
3 TWIN is not allowed for the root segment.
4 Required for PHIDAM logical relationships; otherwise, it is optional.
5 Required when a segment type does not have a unique sequence field. LAST is the default.
6 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.
7 Used for Segment Edit/Compression exit routine.
8 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.
9 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

PSINDEX database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 77

SEGM NAME= segname1

,EXTERNALNAME=  external_name ,PARENT=0

,BYTES=  max bytes

,FREQ=  frequency

,ENCODING=

Cp1047

encoding

,REMARKS=  comments

SHSAM database SEGM statement

SEGM NAME= segname1

,EXTERNALNAME=  external_name

,PARENT=0
1

,BYTES=  max bytes

,ENCODING=

Cp1047

encoding

,FREQ=  frequency

,REMARKS=  comments

Notes:
1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

SEGM statement parameter description

For the SEGM statement, you can use the following abbreviations in place of keywords specified in the
macro definitions:

Table 5. Keyword abbreviations

Keyword Abbreviation

POINTER PTR

FIRST F

LAST L

HERE H

KEY K

DATA D

VIRTUAL V

PHYSICAL P

SEGM
Identifies this statement as a segment definition statement.

78 IMS: System Utilities

NAME=
Specifies the name of the segment type being defined.

The specified name is used by DL/I and application programs in all references to this segment.
Duplicate segment names are not allowed within a DBD generation. The segname1 parameter must
be a 1- to 8-character alphanumeric value. Each character must be in the range of A through Z, or 0
through 9, or be the character $, #, or @.

Restriction: The first character of the name cannot be numeric.

GSAM databases do not support the NAME= parameter on the SEGM statement.

PARENT=
Specifies the names of the physical and logical parents of the segment type being defined, if any.
0

For root segment types, the PARENT= keyword must be omitted or PARENT=0 specified.
segname2

For dependent segment types, specifies the name of this segment's physical parent.
SNGL | DBLE

Specifies the type of physical child pointers to be placed in all occurrences of the physical parent
of the segment type being defined. SNGL and DBLE can be specified only for segments in PHDAM,
PHIDAM, HDAM, HIDAM, or DEDB databases and are ignored if the physical parent specifies
hierarchic pointers (PTR=HIER or HIERBWD).

SNGL causes a 4-byte physical child first pointer to be placed in all occurrences of the physical
parent of the segment type being defined. SNGL is the default.

DBLE causes a 4-byte physical child first pointer and a 4-byte child last pointer to be placed in all
occurrences of the physical parent of the segment type being defined.

lpsegname
Specifies the name of the logical parent of the segment type being defined, if any. This operand is
used only during DBDGEN of a physical database, and it must be specified on SEGM statements
that define logical child segment types.

VIRTUAL | PHYSICAL
Specifies whether the concatenated key of the logical parent (LPCK) is stored as a part of the
logical child segment. Specify the parameter only for logical child segments. If PHYSICAL is
specified, the LPCK is stored with each logical child segment. If VIRTUAL is specified, the LPCK is
not stored in the logical child segment. PHYSICAL must be specified for a logical child segment
whose logical parent is in a HISAM database. It must be specified also for a logical child segment
that is sequenced on its physical twin chain through use of any part of the concatenated key of the
logical parent.

• PHDAM and PHIDAM

– PHYSICAL is the default for PHDAM and PHIDAM.
– If VIRTUAL is specified for PHDAM or PHIDAM, it is ignored, and PHYSICAL is used.

• HDAM and HIDAM

– VIRTUAL is the default for HDAM and HIDAM.
– Symbolic pointers in HDAM and HIDAM databases use the LPCK and require the PHYSICAL

specification.

dbname1
Specifies the name of the database in which the logical parent is defined. If the logical parent is in
the same database as the logical child, dbname1 can be omitted.

BYTES=
Specifies the length of the data portion of a segment type in bytes using unsigned decimal
integers. This parameter is required. For segments that are logical children, this length includes the

Chapter 2. Database Description (DBD) Generation utility 79

concatenated key of the logical parent when either VIRTUAL or PHYSICAL is specified or defaulted to
in the PARENT parameter.
maxbytes and minbytes in fixed-length segments

For fixed-length segments, the maxbytes parameter specifies the amount of storage used for
the data portion of the segment. The minbytes parameter cannot be specified for a fixed-length
segment, including a fixed-length compressed segment. The maximum length specified for a
segment type must not exceed the maximum record length of the storage device used minus any
prefix or record overhead.

For VSAM, the maximum record length is 30713 bytes; for tape, the maximum is 32760 bytes.
The minimum length that can be specified for maxbytes must be large enough to contain all fields
defined for the segment type. If the segment is a logical child segment type, the length must be
sufficient to contain the concatenated key of the logical parent.

For an MSDB, the maxbytes value specifies the length of the data portion of a fixed-length
segment not to exceed 32000 bytes. The value specified must be a multiple of 4.

maxbytes and minbytes in variable-length segments
Defines a segment type as variable-length if the minbytes parameter is included. The maxbytes
field specifies the maximum length of any occurrence of this segment type. The maximum and
minimum allowable values for the maxbytes parameter are the same values as described for a
fixed-length segment.

If the segment is processed by a compression routine, set the maxbytes field to accommodate
control information to indicate whether the segment length can be longer than the specified
maximum definition in order to avoid an abend 0799. To allow for the expansion, add an arbitrary
value of 10 bytes to the maxbytes.

The minbytes parameter specifies the minimum amount of storage used by a variable-length
segment. The maximum value for minbytes is the value specified for maxbytes. The minimum
value for minbytes must be:

• For a segment type that is not processed by an edit/compression routine or is processed by an
edit/compression routine but the key compression option has not been specified, minbytes must
be large enough to contain the complete sequence field if a sequence field has been specified
for the segment type.

• For a segment type that is processed by an edit/compression routine that includes the key
compression option or a segment that is not sequenced, the minimum value is 4.

Because segments in an HSAM, SHSAM, or SHISAM database cannot be variable-length, the
minbytes parameter is invalid for these databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines the length of the segment
including the 2-byte length field, followed by user data specified by a FIELD statement. The value
of minbytes can be specified from a minimum of 4 bytes to a maximum of maxbytes; however, the
minbytes value must be large enough to contain this segment's sequence field (that is, minbytes
≥ START - 1 + BYTES of the sequence field following the SEGM statement). For example, the
smallest minbytes value for a segment with a 20-byte sequence field length and START = 7 is
26. On any given DL/I call, the actual segment length can fall anywhere between a length that
includes the sequence field and the value of maxbytes. The value of maxbytes must not exceed the
control interval size minus 120.

TYPE=
Describes the type of DEDB dependent segment. Must not be specified for root segments.
SEQ

Specifies that the segment is a sequential dependent segment type. Only one sequential
dependent segment is permitted per DEDB, and, if specified, it must be the first dependent
segment type.

DIR
Specifies that the segment is direct dependent segment type. DIR is the default.

80 IMS: System Utilities

FREQ=
Specifies the estimated number of times that this segment is likely to occur for each occurrence of
its physical parent. Value must be a whole, unsigned decimal number from 1 to 16777215. If this
segment is a root segment, "frequency" is the estimate of the maximum number of database records
that appear in the database that is being defined. The value of the FREQ= parameter when applied to
dependent segments is used to determine the logical record length and physical storage block sizes
for each data set group of the database.

The IF0110 ARITHMETIC OVERFLOW or IEV103 MULTIPLICATION OVERFLOW assembler error
message can occur when the DBDGEN utility is attempting to calculate a recommended logical record
length. If this error occurs during an HSAM, SHSAM, or HISAM DBD generation, you might want to
determine the logical record length and physical block size.

FREQ= is not valid for segments in Fast Path DEDB or MSDB databases.

INPOS|NOINPOS
An optional parameter to capture next twin data on an ISRT. The default is NOINPOS. The twin data of
the twin following an inserted segment is captured if INPOS is specified and the following conditions
are true:

• An ISRT of a non-unique segment is made.
• An ISRT rule of HERE is used.

If the new segment is the only twin instance or last in the twin chain, no twin data exists.

POINTER=
Specifies the pointer fields to be reserved in the prefix area of occurrences of the segment type that is
being defined. These fields are used to relate this segment to its immediate parent segments and twin
segments.

The use of the POINTER= parameter is primarily for HDAM, HIDAM, PHDAM, and PHIDAM databases.
In addition, it can be used for segment types that are defined in HISAM databases that participate in
logical relationships with segment types in HDAM or HIDAM databases.

Important: If a segment type is being defined in an HSAM or SHSAM database, the POINTER=
parameter must be omitted. If the segment type that is being defined is in a HISAM database and
does not participate in a logical relationship, omit the POINTER= parameter.

The following list describes some general attributes of the keyword options:

• Selected keyword options can be specified in any order, and must be separated by commas.
• A keyword option can be specified only once.
• All keywords are optional.
• One keyword option can be selected from each line.
• A keyword option or its abbreviation can be selected:

Table 6. POINTER= keywords and abbreviations

Keyword option Abbreviation

HIER H

HIERBWD HB

TWIN T

TWINBWD TB

NOTWIN NT

LTWIN LT

LTWINBWD LTB

Chapter 2. Database Description (DBD) Generation utility 81

Table 6. POINTER= keywords and abbreviations (continued)

Keyword option Abbreviation

PAIRED

LPARNT LP

CTR C

The keyword options of the POINTER= parameter have the following meanings:

HIER [H]
Reserves a 4-byte hierarchic forward pointer field in the prefix of occurrences of the segment type
being defined. HALDB does not support HIER.

HIERBWD [HB]
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic backward pointer field
in the prefix of occurrences of the segment type being defined. Hierarchic backward pointers
provide increased delete performance. HALDB does not support HIERBWD.

TWIN [T]
Reserves a 4-byte physical twin forward pointer field in the segment prefix being defined.

TWINBWD [TB]
Reserves a 4-byte physical twin forward pointer field and a 4-byte physical twin backward pointer
field in the segment prefix being defined. The twin backward pointers provide increased delete
performance.

Recommendation: This option is recommended for HIDAM and PHIDAM database root segments.

NOTWIN [NT]
Prevents space from being reserved for a physical twin forward pointer in the prefix of occurrences
of the segment type being defined.

NOTWIN can be specified for a dependent segment type if:

• The physical parent does not have hierarchic pointers specified.
• No more than one occurrence of the dependent segment type is stored as a physical child of any

occurrence of the physical parent segment type.

In addition, NOTWIN can be specified for the root segment type of HDAM and PHIDAM databases,
but only when the randomizing module does not produce synonyms (keys with different values
having the same block and anchor point).

When NOTWIN is specified for a dependent segment type and an attempt is made to load or insert
a second occurrence of the dependent segment as a physical child of a given physical parent
segment:

• An LB status code is returned when trying to insert the second occurrence during initial load.
• An II status code is returned when trying to insert the second occurrence after initial load.

Any attempt to load or insert a synonym is rejected with an LB or II status code.

LTWIN [LT]
Is used for virtually paired logical relationships only when defining a real logical child. Reserves a
4-byte logical twin forward pointer field in the prefix of occurrences of the logical child segment
type being defined. This parameter can only be specified if the segment type being defined is
a logical child and is being defined in an HDAM or HIDAM database. If PAIRED is specified, the
LTWIN parameter is invalid. HALDB does not support LTWIN.

LTWINBWD [LTB]
Is used for virtually paired logical relationships only when defining a real logical child. Reserves a
4-byte logical twin forward pointer field and a 4-byte logical twin backward field in the prefix of
occurrences of the logical child segment type being defined. This parameter can only be specified

82 IMS: System Utilities

if the segment being defined is a logical child and is being defined in an HDAM or HIDAM database.
If PAIRED is specified, the LTWIN parameter is invalid. HALDB does not support LTWINBWD.

The use of LTWINBWD rather than LTWIN provides increased performance when deleting logical
child segments.

LPARNT [LP]
This parameter can be specified only when the segment type that is being defined is a logical child
and the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database. If the logical parent
is in a HISAM database, omit this parameter and specify PHYSICAL in the PARENT= parameter for
the segment that is being defined.

For HDAM, HIDAM, and HISAM databases, LPARNT reserves a 4-byte logical parent pointer field in
the prefix of occurrences of the segment type being defined.

For PHDAM and PHIDAM databases, LPARNT reserves a 28-byte extended pointer set in the prefix
of occurrences of the segment type being defined.

CTR [C]
Reserves a 4-byte counter field in the prefix of occurrences of the segment type being defined. A
counter is required if a logical parent segment in a HISAM, HDAM, or HIDAM database has logical
child segments which are not connected to it by logical child pointers. Counters are placed in all
segments requiring them automatically during DBD generation without the user specifying this
parameter. To avoid a later DBD generation, however, the user can anticipate future requirements
for counters and reserve a counter field in the prefix of occurrences of a segment type by using
this parameter. HALDB does not support CTR.

PAIRED
Indicates that this segment participates in a bidirectional logical relationship. This parameter is
specified for the following types:

• A virtual logical child segment type
• Both physically paired logical child segment types in a bidirectional logical relationship

If PAIRED is specified, the LTWIN and LTWINBWD parameters are invalid.

POINTER= Parameter Default Values
The default option for the POINTER= parameter in any HIDAM or HDAM DBD is:

PTR=(TWIN,LTWIN,LPARNT)

LTWIN
Is a default if the name of a logical parent (lpsegname) is specified, in the PARENT= parameter of
a SEGM statement.

LPARNT
Is a default if VIRTUAL is selected in the PARENT= parameter of a SEGM statement.

The default option for the POINTER= parameter in an INDEX, HISAM, HSAM, or SHSAM DBD is no
pointer fields.

If the POINTER= parameter is explicitly stated on a SEGM statement, the segment contains the
pointers specified and any pointers that are required by IMS for correct operation. For example,
LTWIN and LPARNT pointers are created as required. The default values are only used when
the parameter is omitted entirely. The following table illustrates use of the POINTER= parameter
parameters for various types of DBD generations.

Chapter 2. Database Description (DBD) Generation utility 83

Table 7. Use of POINTER= parameters (no logical relationship)

Segment definition

Physical segments contained in database type

Purpose Keyword
parameter

Logical segments
GSAM MSDB
DEDB

HSAM
SHSAM
SHISAM

HISAM HDAM
HIDAM

PHDAM
PHIDAM

INDEX
PSINDEX

Pointer to next
segment in
hierarchy

HIER INVALID VALID IGN VALID IGN IGN

Pointer to next and
previous segments
in hierarchy

HIERBWD INVALID INVALID IGN VALID IGN IGN

Pointer to next
occurrence of
physical twins

TWIN INVALID INVALID IGN VALID VALID IGN

Pointer to next
and previous
occurrence of
physical twins

TWINBWD INVALID INVALID IGN VALID VALID IGN

Counter field in
prefix

CTR INVALID INVALID VALID VALID IGN IGN

Pointer to next
occurrence of
logical twin

LTWIN INVALID INVALID IGN VALID1 IGN IGN

Pointer to next
and previous
occurrence of
logical twins

LTWINBWD INVALID INVALID IGN VALID1 IGN IGN

Pointer to logical
parent segment

LPARNT INVALID INVALID VALID2 VALID3 VALID3 IGN

Logical
relationship
between HS-HS or
HS-HD or HD-HD

PAIRED INVALID INVALID VALID4 VALID5 VALID5 IGN

Key:

• INVALID — This parameter cannot be specified.
• IGN — This parameter can be specified but it is ignored.
• VALID — This parameter is valid and used as indicated in the following notes.

84 IMS: System Utilities

Table 7. Use of POINTER= parameters (no logical relationship) (continued)

Segment definition

Physical segments contained in database type

Purpose Keyword
parameter

Logical segments
GSAM MSDB
DEDB

HSAM
SHSAM
SHISAM

HISAM HDAM
HIDAM

PHDAM
PHIDAM

INDEX
PSINDEX

Notes:

1. Used when a logical child segment being defined participates in a logical relationship. This should be
specified if the segment exists within HDAM, HIDAM, PHDAM or PHIDAM, and the logical parent relates to
the logical child with direct addresses (logical child pointers).

2. Can be used when a logical child segment is being defined in a HISAM database and the logical parent is
defined in an HDAM, HIDAM, PHDAM, or PHIDAM database.

3. Can be used when a logical child segment is being defined in an HDAM, HIDAM, PHDAM, or PHIDAM
database and the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.

4. Can be used when a logical child segment is being defined in a HISAM database and the logical parent
is defined in a HISAM, HDAM, HIDAM, PHDAM, or PHIDAM database, and the logical relationship is
bidirectional.

5. Used when a bidirectional logical relationship is being defined with two logical child segments, both
physically present or on the SEGM statement for a virtual logical child.

RULES=
Specifies the rules used for insertion, deletion, and replacement of occurrences of the segment type
being defined.
path type values

Specifies the path type that must be used to insert, delete, or replace a segment.

The first column applies to segment insertion, the second column applies to segment deletion,
and the third column applies to segment replacement. Each of the three columns can contain the
same or different characters, but you must select a value from each column for a total of three
values. These parameters are specified for logical child segments and for their physical and logical
parent segments. They should be omitted for all segment types that do not participate in logical
relationships. The values are: P specifies physical, L specifies logical, V specifies virtual, and B
specifies bidirectional virtual.

FIRST | LAST | HERE
Specifies where new occurrences of the segment type defined by this SEGM statement are
inserted into their physical database (establishes the physical twin sequence). This value is used
only when processing segments with no sequence field or with a nonunique sequence field. The
value is ignored when specified for a segment type with a unique sequence field defined.

Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do not apply to the initial
loading of a database and segments are loaded in the sequence presented in load mode. If a
unique sequence field is not defined for the HDAM root on initial load or HD reload, the insert rules
of FIRST, LAST, or HERE determine the sequence in which roots are chained. Thus the reload of an
HDAM or PHDAM database reverses the order of the unsequenced roots when HERE or FIRST is
used.

LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of FIRST is always used
and cannot be overridden. For direct dependent segment processing, you can specify FIRST, LAST,
or HERE. HERE is the default.

Chapter 2. Database Description (DBD) Generation utility 85

FIRST
For segments without a sequence field defined, a new occurrence is inserted before all
existing physical twins. For segments with a nonunique sequence field defined, a new
occurrence is inserted before all existing physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is inserted after all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted after all existing physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted immediately before
the physical twin on which position was established. If a position was not established on a
physical twin of the segment being inserted, the new occurrence is inserted before all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted immediately before the physical twin with the same sequence field value on which
position was established. If a position was not established on a physical twin with the same
sequence field value, the new occurrence is inserted before all physical twins with the same
sequence field value. The insert position is dependent on the position established by the
previous DL/I call.

A command code of L (last) takes precedence over the insert rule specified causing a new
occurrence to be inserted according to the insert rule of LAST, for insert calls issued against a
physical path.

DSGROUP=
Specifies multiple data set groups for PHDAM and PHIDAM databases. The format is DSGROUP=c,
where c is equivalent to the letters A through J. This enables you to divide PHDAM and PHIDAM
databases into a maximum of ten data set groups. The default for every segment is A (single set for
data per partition). If specified on the root segment, it must be DSGROUP=A.

Restriction: Gaps in the A-J sequence are not allowed. For example, if DSGROUP=C is specified on
a SEGM statement, there must also be at least one SEGM statement with DSGROUP=B, and each
HALDB partition will have A, B, and C data sets.

SOURCE=
Is used for two purposes:

• To identify the real logical child segment type that is to be represented by the virtual logical child
segment type that is being defined

• To identify the segment type or types in physical databases that are represented by the segment
type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM databases because they
support only physical pairing.

When defining a virtual logical child the statement is:

SOURCE=(( segname ,
DATA

, dbname))

segname
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be used in constructing the
segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical child.

When defining a segment type in a logical database the statement is:

86 IMS: System Utilities

SOURCE=

(( segname ,

DATA

KEY ,  dbname), (segname ,

DATA

KEY ,  dbname))

(segname, KEY | DATA,dbname)
The first occurrence refers to the segment in a physical database that is being defined as a logical
segment, or it refers to the logical child segment type in a physical database that is used for the
first portion of a concatenated segment type in this logical database.

segname
Is the name of the segment type in the physical database.

KEY
Specifies that the key portion of the segment specified in segname is to be placed in the key
feedback area. The segment must not be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

DATA
Specifies that the key portion of the segment specified in segname must be placed in the key
feedback area, and the segment must be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

dbname
Specifies the name of the physical database that contains segname. The second occurrence of
(segname, KEY|DATA, dbname) refers to the logical or physical parent segment type in a physical
database that is used for the destination parent part of a concatenated segment in this logical
database. The description of each parameter for the second occurrence is the same as described
for the first occurrence.

When the first occurrence of (segname, KEY | DATA, dbname) refers to a virtual logical child, the
second occurrence, if specified, must refer to the real logical child's physical parent.

When the source segments is used to represent a concatenated segment, the KEY and DATA
parameters are used to control which of the two segments (or both) are placed in the user's I/O
area on retrieval calls. If DATA is specified, the segment is placed in the user's I/O area. If KEY
is specified, the segment is not placed in the user's I/O area, but the sequence field key, if one
exists, is placed in the key feedback area of the PCB. The key of a concatenated segment is the
key of the logical child, either the physical twin sequence field or the logical twin sequence field,
depending on which path the logical child is accessed from. The KEY and DATA parameters apply
to retrieval type calls only.

On insert calls, the user's I/O area must always contain the logical child segment and, unless
the insert rule is physical, the logical parent segment. Even if KEY is specified for a segment,
the database containing that segment must be available to IMS when calls are issued against
the logical database containing the referenced segment. When the first occurrence of the
SOURCE= segment specification references a logical child, the second occurrence referencing
the destination parent for the concatenated segment should also be specified. If not explicitly
specified it is included with the KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their physical definition from
segments previously defined in one or more physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the SOURCE= parameter is
invalid.

SSPTR=
Specifies the number of subset pointers. You can specify from 0 to 8. When you specify 0 or if SSPTR
is not specified, you are not using a subset pointer.

EXIT=
Specifies that the Data Capture exit routine is used. You can specify multiple exit routine names on a
single SEGM statement. You can select different data options for each exit routine. The order you list
the exit routines within the parameter determines the order the exit routines are called.

Chapter 2. Database Description (DBD) Generation utility 87

When specified on the SEGM statement, the EXIT= parameter can either override the specification
on the DBD or limit the parameter to specific segments. The EXIT= parameter applies only to the
particular segments within the physical database specified. However, when applied to logical children
segments, the exit routine must be specified on the real logical child, not the virtual logical child. The
following physical databases are supported by this exit routine:

• HDAM
• HIDAM
• PHDAM
• PHIDAM
• HISAM
• SHISAM
• DEDB

If the exit routine is not specified for a supported database organization or a supported segment type,
DBDGEN fails.

If the job name of a CCTL or ODBM address space is specified on the SUPPDCAPNAME= parameter,
which is in the DATABASE section of the DFSDFxxx member of the IMS PROCLIB data set, the exit
routine is not called for data updates invoked by the specified job, even if a Data Capture exit routine
is specified on the EXIT= parameter.

The EXIT= parameter can also be specified on the DBD statement.

exit_name
Specifies the name of the exit routine that processes the data. This parameter is required. The
name must follow standard naming conventions. A maximum of 8 alphanumeric characters is
allowed. You can specify an asterisk (*) instead of an exit routine name to indicate that you want
logging only. If this is done, the logging parameter default is LOG. If you do specify an exit routine,
the logging parameter is NOLOG.

The following operands are optional.

NONE
Nullifies an exit routine specified on the DBD statement. It must be specified on the SEGM
statement to indicate the DBD exit name does not apply to that specific segment.

EXIT=NONE explicitly nullifies the exit specified on the DBD for virtual logical children.

LOG | NOLOG
Specifies whether data capture control blocks and data are to be written to the IMS system log.
LOG

Requests that the data capture control blocks and data be written to the IMS system log.
For more information, see Asynchronous data propagation (System Programming APIs).

NOLOG
Indicates that no data capture control blocks or data is written to the IMS system log.

KEY | NOKEY
Specifies whether the physical concatenated key is passed to the exit routine.
KEY

Specifies that the exit routine is passed the physical concatenated key. This key identifies the
physical segment updated by the application.

KEY is the default.

NOKEY
Specifies the physical concatenated key is not required for the exit routine.

DATA | NODATA
Specifies whether physical segment data is to be passed to the Data Capture exit routine for
updating.

88 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

DATA
Passes physical segment data to the Data Capture exit routine for updating. When DATA is
specified and a Segment Edit/Compression exit routine is also being used, the data passed is
expanded data.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. Use NODATA to avoid
the overhead created from saving physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires data from segments in the physical root's hierarchical
path.
NOPATH

Indicates that the exit routine does not require data from segments in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time needed to retrieve
path data.

NOPATH is the default.

PATH
Can be specified when the data from each segment in the physical root's hierarchic path must
be passed to the exit routine for an updated segment. Use PATH to allow an application to
separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from segments in the path is needed to
compose the Db2 for z/OS primary key. The Db2 for z/OS primary key would then be used
in a propagation request for a dependent segment update. Typically, you need this kind
of segment information when the parent contains the key information and the dependent
contains additional data that would not fit in the parent segment.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several segments with one call; for example, you did not invoke the D command
code. In this case, additional processing is necessary if the application is to access each
segment with a separate call.

DLET | NODLET

Specifies whether X'99' log records are written for DLET calls.

Note: DLET or NODLET can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

DLET
X'99' log records are written for DLET calls.

DLET is the default.

NODLET
No X'99' log records are written for DLET calls.

BEFORE | NOBEFORE

Specifies whether the before data is included in X'99' log records for REPL calls.

Note: BEFORE or NOBEFORE can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

BEFORE
Before data is included in X'99' log records for REPL calls.

BEFORE is the default.

Chapter 2. Database Description (DBD) Generation utility 89

NOBEFORE
No before data is included in X'99' log records for REPL calls.

CASCADE | NOCASCADE
Specifies whether the exit routine is called when DL/I deletes this segment.
CASCADE

Indicates that the exit routine is called when DL/I deletes this segment because the
application deleted a parent segment. Using CASCADE ensures that data is captured for the
defined segment.

CASCADE is the default.

The CASCADE parameter has three suboptions. These suboptions control the way data
is passed to the exit routine. If you specify suboptions, you must enclose the CASCADE
parameter and the suboptions within parentheses.

KEY | NOKEY
Specifies whether the physical concatenated key is passed to the exit routine.
KEY

Passes the physical concatenated key to the exit routine. This key identifies the
segment being deleted by a cascade delete.

KEY is the default.

NOKEY
Can be used when the exit routine does not require the physical concatenated key of
the segment being deleted.

DATA | NODATA
Specifies whether segment data is to be passed to the exit routine.
DATA

Passes segment data to the exit routine for a cascade delete. DATA also identifies the
segment being deleted when the physical concatenated key is unable to do so.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. NODATA
reduces the significant storage and performance requirements that result from saving
physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires segment data in the physical root's hierarchical
path.
NOPATH

Indicates the exit routine does not require segment data in the physical root's
hierarchical path. Use NOPATH to eliminate the substantial amount of path data
needed for a cascade delete.

NOPATH is the default.

PATH
Can be specified to allow an application to separately access several segments for a
cascade delete.

NOCASCADE
Indicates that the exit routine is not called when DL/I deletes this segment. Cascade delete is
not necessary when a segment without dependents is deleted.

Note: If any (CASCADE B) suboptions are specified with NOCASCADE in an EXIT= parameter,
they will be ignored, and the value for those suboptions will be set to NOxxxx.

90 IMS: System Utilities

NOSSPCMD | SSPCMD
An optional parameter that indicates whether command codes related to Fast Path subset
pointers (SSP) be captured. The default is NOSSPCMD. It is recommended that this option be
specified only on segments that involve subset pointers.

The following table indicates which command codes are captured for a given DL/I call:

Table 8. Command codes that are captured for DL/I calls

DL/I call Details

G* (get calls) M, S, W, Z. R is captured if at least one of M, S,
W, or Z is also on the same SSA, or along with
the PATH data if PATH is requested.

REPL M, S, W, Z

DLET Z

ISRT M, S, W, Z. R is captured if the segment is being
inserted or if it was specified on an SSA of a
segment not being inserted but PATH data is
requested.

NOINPOS | INPOS
An optional parameter to request that the next twin data be captured on an ISRT call. The default
is NOINPOS. The twin data of the twin that follows an inserted segment will be captured if INPOS
is specified and the following conditions are true:

• An ISRT of a non-unique segment is made.
• An ISRT rule of HERE is used.

If the new segment is the only twin instance or last in the twin chain, no twin data will be
captured.

NOFLD | FLD
An optional parameter to request that updates that are made by a DEDB FLD call be captured. This
option is valid only for a DEDB. The information captured is logged only in the X'9904' log records
if option LOG is specified. It is not passed to the Data Capture exit routine.

COMPRTN=
Selects a Segment Edit/Compression exit routine for either DEDB or full-function database.

For segment edit/compression of full-function database

Do not specify this keyword if the SOURCE keyword is used. The DL/I COMPRTN keyword is invalid
during DBDGEN for MSDB, HSAM, SHSAM, SHISAM, INDEX, and logical databases. It is also invalid
for logical child segments in any database. When used for a HISAM database, it must not change the
sequence field offset for HISAM root segments. In addition, the minimum segment length that can be
specified for a segment type where the segment edit/compression option is specified is 4 bytes.

Remember: If you are using a segment edit/compression exit routine and defined your segments
as variable-length, be aware that when a variable-length segment is compressed, it is padded with
null bytes up to the minimum segment length that was defined in the DBD. Minimum segment length
essentially overrides the compression; this enables you to provide additional space during load time
for segments that are heavily compressed.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This name must be a 1- to
8-character alphanumeric value, must not be the same as any other name in IMS.SDFSRESL, and
must not be the same as DBDNAME.

DATA
Specifies that the indicated exit routine condenses or modifies data fields only. Sequence fields
must not be modified, nor data fields that change the position of the sequence field in respect

Chapter 2. Database Description (DBD) Generation utility 91

to the start of the segment. DATA is the default value if a compression routine is named but no
parameter is selected.

KEY
Specifies that the exit routine can condense or modify any fields within the named segment. This
parameter is invalid for the root segment of a HISAM database.

INIT
Indicates that initialization and termination processing control is required by the segment exit
routine. When this parameter is specified, the edit/compression routine gains control after
database open and after database close.

max
Specifies the maximum number of bytes by which fixed-length segments can increase during
compression exits. You can specify from 1 to 32 767 bytes. The default for max is 10.

PAD
Indicates that the numeric value supplied by MAX should be used for padding and not for MAX.
The numeric range of 1 to 32 767 indicates a size to which an inserted segment will be padded
when the compression of that segment results in a length somewhat less than the PAD value.

For segment edit/compression of DEDB

routinename
Specifies the z/OS load module name of the user-supplied segment edit/compression exit routine.
The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA is the default.

Restriction: The KEY parameter is not supported for DEDB. If you specify the KEY parameter, an
error message is issued and DBDGEN is terminated.

INIT
Allows the segment compression exit routine to gain control immediately after the first area in the
database is opened and returns control immediately before the last area in the database is closed.
As long as the segment length is within the values specified by DBDGEN, no errors occur while
checking the field qualification for segment compression or expansion.

Restriction: The COMPRTN= keyword is prohibited on DEDB segments containing a unique key field
located at the end of the segment. If you use COMPRTN= to process these types of segments,
DBDGEN fails and message DGEN440 is issued.

ENCODING=
An optional 1- to 25-character field that specifies the encoding of the character data in the segment.

The value specified on the ENCODING keyword cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The value of the ENCODING parameter in the SEGM statement overrides the value of the ENCODING
parameter in the DBD statement for this segment. If the ENCODING parameter is not specified
on the SEGM statement, the default value is either the value of the ENCODING parameter on the
DBD statement or, if ENCODING was not specified on the DBD statement, the value Cp1047, which
specifies EBCDIC encoding.

This value can be overridden in individual fields by the ENCODING parameter in the DFSMARSH
statement.

EXTERNALNAME=
An optional alias for the NAME= parameter. Java™ application programs use the external name to refer
to the segment.

92 IMS: System Utilities

GSAM databases require the EXTERNALNAME parameter on the SEGM statement.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

The external names specified on the SEGM statement must be unique within a DBD.

The default value of the EXTERNALNAME parameter is the value of the NAME parameter.

Restriction: External names cannot be reserved SQL keywords or begin with DFS.

If the EXTERNALNAME parameter is not specified and a reserved SQL keyword is specified in the
NAME parameter, EXTERNALNAME accepts the NAME value as the default external name after
appending "_TBL" to the NAME value.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

Related concepts
Data Capture exit routines (Database Administration)
Origin of GSAM data set characteristics (Application Programming)
Related reference
“DATASET statements” on page 48
A DATASET statement defines a data set group within a database.
Segment edit/compression exit routines (Exit Routines)
Portable SQL keywords restricted by the IMS Universal JDBC drivers (Application Programming)
Related information
0799 (Messages and Codes)

LCHILD statements
The LCHILD statement defines a logical relationship between two segment types in a DEDB, HISAM,
HIDAM, HDAM, PHDAM, or PHIDAM database or a logical relationship between a segment type in any two
of these databases.

Restriction: Do not specify an LCHILD statement for the primary index of a PHIDAM database.

Logical relationships

Following any SEGM statement that defines a logical parent segment type in a DBDGEN input deck, there
must be one LCHILD statement for each segment type that is a logical child of that logical parent, except

Chapter 2. Database Description (DBD) Generation utility 93

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_datacapexit.htm#ims_datacapexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/ims_origingsamdataset.htm#ims_origingsamdataset
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.err/ims_dfscmpx0.htm#ims_dfscmpx0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.mc/msgs/0799.htm#imsabend0799

for virtual logical child segment types. These LCHILD statements establish the relationships between the
logical parent and its logical child segment types. The SOURCE= parameter of a SEGM statement that
defines a virtual logical child segment type establishes the same relationship between a logical parent
and a virtual logical child segment type.

HIDAM primary index relationship

Two LCHILD statements are used to establish the index relationship required between the HIDAM primary
index database and the root segment type of a HIDAM database.

Following the SEGM statement that defines the root segment type in a HIDAM database DBD generation,
there must be an LCHILD statement that names the index pointer segment type in an index database.
Following the SEGM statement that defines the index pointer segment type in a HIDAM Primary index
database DBD generation, there must be an LCHILD statement that names the root segment type in a
HIDAM database.

Secondary index relationships

Two LCHILD statements are used to establish each secondary index relationship.

Following a SEGM statement that defines an index target segment type, there must be one LCHILD
statement for each index pointer segment type that points to that index target segment type. Each
LCHILD statement following the SEGM for an index target segment type identifies the index pointer
segment type that points to the index target.

Fast Path DBDs support multiple LCHILD statements under a single SEGM statement. You can specify as
many LCHILD statements in the DEDB DBD as there are search fields of equal lengths from each source
segment to form multiple secondary index pointer segments that point to a single secondary index.

To define multiple secondary index segments with the same segment name for a single target segment
from a single source segment, define two or more LCHILD/XDFLD statement pairs under the SEGM
statement of a target segment.

A maximum of 255 LCHILD statements can occur in a single DBD generation. An LCHILD statement
can follow only a SEGM statement, FIELD statement, XDFLD statement, or another LCHILD statement.
Because logical relationships and index relationships must not be defined in an HSAM or SHSAM
database, LCHILD statements are invalid when ACCESS=HSAM or ACCESS=SHSAM.

Fast Path secondary indexes do not support PAIR and RULES operands on LCHILD statements. The
PAIR= and RULES= parameters on an LCHILD statement are used for logical relationships and are invalid
parameters on an LCHILD statement in a primary DEDB database DBD.

The format of the LCHILD statement for each database type is shown in the following examples.

HISAM database LCHILD statement

94 IMS: System Utilities

1
LCHILD NAME=( segname1 , dbname)

2

,POINTER=

,PTR=

SNGL
3

DBLE
3

NONE
3

SYMB
4

,PAIR=  segname2
3

,RULES=

LAST

FIRST

HERE

3

,REMARKS=  comments

Notes:
1 If a HISAM secondary index database or a SHISAM secondary index database has two or more user
partition databases, specify two or more user partition secondary index database names in the NAME=
parameter.
2 Used for logical relationships or secondary indexing.
3 Used for logical relationships.
4 If symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified
for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also. For Fast Path secondary indexing, the PTR=SYMB parameter must be explicitly
specified on an LCHILD statement because Fast Path secondary indexing only supports symbolic
pointers, and PTR=SNGL is the default.

HDAM database LCHILD statements

LCHILD NAME=( segname1 , dbname)
1

,POINTER=

,PTR=

SNGL
2

DBLE
2

NONE
2

SYMB
3

,PAIR=  segname2
2

,RULES=

LAST

FIRST

HERE

2

,REMARKS=  comments

Notes:
1 Used for logical relationships or secondary indexing.
2 Used for HDAM, HISAM, and HIDAM logical relationships.
3 If symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified

Chapter 2. Database Description (DBD) Generation utility 95

for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also.

PHDAM database LCHILD statements

LCHILD NAME=( segname1 , dbname)
1

,POINTER=

,PTR=

NONE
2

INDX
3

,PAIR=  segname2
2

,RULES=

LAST

FIRST

HERE

2

,REMARKS=  comments

Notes:
1 Used for logical relationships or secondary indexing.
2 Used for HDAM, HISAM, and HIDAM logical relationships.
3 Required during a HIDAM DBD generation on the LCHILD statement that establishes the HIDAM
Primary index relationship. If PTR=INDX is specified for the target segment of a secondary index, PTR
must be omitted or specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.

HIDAM Database LCHILD Statements

LCHILD NAME=( segname1 , dbname)

,POINTER=

,PTR=

INDX
1

SNGL
2

DBLE
2

NONE
2

SYMB
3

,PAIR=  segname2
2

,RULES=

LAST

FIRST

HERE

2

,REMARKS=  comments

Notes:
1 Required during a HIDAM DBD generation on the LCHILD statement that establishes the HIDAM
Primary index relationship. If PTR=INDX is specified for the target segment of a secondary index, PTR
must be omitted or specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.
2 Used for HDAM, HISAM, and HIDAM logical relationships.
3 If symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified

96 IMS: System Utilities

for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also.

PHIDAM Database LCHILD Statements

Restriction: Do not enter an LCHILD statement for the primary index of a PHIDAM database.

LCHILD NAME=( segname1 , dbname)

,POINTER=

,PTR=

INDX
1

NONE
2

,PAIR=  segname2
2

,RULES=

LAST

FIRST

HERE

2

,REMARKS=  comments

Notes:
1 Required during a HIDAM DBD generation on the LCHILD statement that establishes the HIDAM
Primary index relationship. If PTR=INDX is specified for the target segment of a secondary index, PTR
must be omitted or specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.
2 Used for HDAM, HISAM, and HIDAM logical relationships.

INDEX database LCHILD Statement for full-function secondary index databases

LCHILD NAME=( segname1 , dbname)
1

,POINTER=

,PTR=

SNGL
2

SYMB
3

,INDEX=  fldname
,REMARKS=  comments

Notes:
1 Primary indexing and secondary indexing.
2 Required for primary index of HIDAM database.
3 If symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified
for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also.

INDEX database LCHILD Statement for DEDB secondary index databases

Chapter 2. Database Description (DBD) Generation utility 97

LCHILD
1

NAME=( segname1 , dbname)

NAME=( segname1 ,(

,

dbname))

,POINTER=

,PTR=

SYMB
2

,INDEX=  fldname

,MULTISEG=

NO

YES

,REMARKS=  comments

Notes:
1 Primary indexing and secondary indexing.
2 Fast Path secondary indexes require symbolic pointers.

PSINDEX database LCHILD statement

LCHILD NAME=( segname1 , dbname)

,POINTER=

,PTR=

SNGL

,INDEX=  fldname ,RKSIZE=  #
,REMARKS=  comments

LCHILD statement parameter description
The following abbreviations can be used in place of keywords specified in the macro definition:

Keyword
Abbreviation

POINTER
PTR

FIRST
F

LAST
L

HERE
H

NAME=
The segname1 parameter specifies the name of the logical child, index pointer, index target, HIDAM
or PHIDAM root segment type that is to be associated with the segment type defined by the
preceding SEGM statement in the DBD generation input deck. The dbname parameter is the name
of the database that contains the segment type specified in segname1. dbname can be omitted
when segname1 is defined in this DBD generation. Both segname1 and dbname must be one- to
eight-character alphanumeric values.

POINTER=
Specifies the pointers used in logical or index relationships. When the POINTER= keyword is omitted
from any index DBD generation, POINTER=SNGL is the default. You must specify POINTER=INDX

98 IMS: System Utilities

or SYMB for any LCHILD statement following an index target segment type; no default is provided
for this part of the index relationship. When the POINTER= keyword is omitted from an LCHILD
statement which establishes a unidirectional or physically paired bidirectional logical relationship,
POINTER=NONE is the default. When the POINTER= keyword is omitted or specified as NONE
for an LCHILD statement which establishes a virtually paired bidirectional logical relationship,
POINTER=SNGL is the default.

Restrictions:

• For PHDAM and PHIDAM databases, only the operands INDX and NONE are supported. All other
operands are treated as if errors are present.

• For DEDB secondary index databases, only the SYMB operand is supported.

SNGL
Is used for logical relationships, or index relationships implemented with direct address pointers.
SNGL specifies that a logical child first pointer field is to be reserved in each occurrence of the
segment type defined by the preceding SEGM statement in the DBDGEN input deck. When the
preceding SEGM defines a logical parent, the pointer field contains a direct address pointer to the
first occurrence of a logical child segment type. When the preceding SEGM defines the HIDAM
Primary index database segment type, the pointer field contains a direct address pointer to a
HIDAM database root segment. When the preceding SEGM defines an index pointer segment type
in a secondary index database, the pointer field contains a direct address pointer to an index
target segment.

DBLE
Is used to specify two 4-byte pointer fields, logical child first and logical child last, reserved in
the logical parent segment. The two pointers point to the first and last occurrences of logical child
segment type under a logical parent. The logical child last pointer is of value when the logical child
is not sequenced and the RULES= parameter is LAST.

NONE
Should be used when the logical relationship from the logical parent to the logical child segment
is not implemented or not implemented with direct address logical child pointers. In this case, the
relationship from logical parent to logical child does not exist or is maintained by using physically
paired segments. No pointer fields are reserved in the logical parent segment.

INDX
Is specified on the LCHILD statement in a HIDAM database used to establish the index
relationship between the HIDAM root segment type and the HIDAM Primary index during a HIDAM
database DBD generation. INDX can also be specified on the LCHILD statement in the DBD for the
target database that establishes the index relationship between an index target segment type and
a secondary index. In these cases, omit the PTR= parameter or specify PTR=SNGL on the LCHILD
statement of the primary or secondary index DBD. An LCHILD statement for a HIDAM primary
index must precede the LCHILD statements for secondary indexes.

Requirement: If the target database is a HALDB, the index database must be defined as a HALDB
index by use of the PSINDEX parameter in the DBD statement ACCESS parameter.

SYMB
Can be used in the DBD generation for the target database of a secondary index to specify that the
concatenated keys of the index target segments are to be placed in the index pointer segments
in lieu of a direct pointer. You must specify SYMB when the index target segment type is in a
HISAM database. SYMB is optional when the index target segment type is in an HDAM or HIDAM
database.

An additional use of the SYMB parameter in the INDEX DBDGEN is to prevent reserving space in
the prefix of index pointer segments for the 4-byte direct address index target segment pointer
that is not used when the index pointer is symbolic.

PAIR=
Is specified segname2 for bidirectional logical relationships only. The segname2 parameter is the
name of the logical child segment that is, physically or virtually, paired with the logical child segment
specified in segname1. The segname2 parameter must be a 1- to 8-character alphanumeric value.

Chapter 2. Database Description (DBD) Generation utility 99

Restriction: This parameter is not allowed for virtual pairing when using PHDAM and PHIDAM
databases, because they only support physical pairing.

INDEX=
Is specified on LCHILD statements for an Index DBD generation only. The fldname parameter
specifies the name of the sequence field of a HIDAM root segment type during DBD generation of
the primary index for a HIDAM database, or the name of an indexed field, defined through an XDFLD
statement in an index target segment type during DBD generation of a secondary index database. This
parameter is not needed for a primary index of a PHIDAM database.

RKSIZE=
Specifies the root key size of the target database. This parameter is required for partitioned secondary
index (PSINDEX) databases only, and is invalid for any other database type.

RULES=
Is used for logical relationships when no sequence field or a nonunique sequence field has been
defined for a virtual logical child. Under these conditions, the rule of FIRST, LAST, or HERE controls
the sequence in which occurrences of the real logical child in the logical relationship are sequenced
from the logical parent through logical child and logical twin pointers (this establishes the logical twin
sequence).

Restriction: This parameter is not allowed for virtual pairing when using PHDAM and PHIDAM
databases, because they only support physical pairing.

FIRST
Indicates that, if no sequence field is specified for the logical child, a new occurrence is inserted
before the first existing occurrence of the logical child. If a nonunique sequence field is specified
for the logical child, a new occurrence is inserted before all existing occurrences with the same
key.

LAST
Indicates that, if no sequence field is specified for the logical child, a new occurrence is inserted
after the last existing occurrence of the logical child. If a nonunique sequence field is specified for
the logical child, a new occurrence is inserted after all existing occurrences with the same keys.
LAST is the default option.

HERE
Indicates that the insert is dependent on the position established by the previous DL/I call. If
no sequence field is defined, the segment is inserted before the logical twin that position was
established on through the previous call. If no position was established by a previous call, the
new twin is inserted before all existing logical twins. If a nonunique sequence field is defined, the
segment is inserted before the logical twin with the same sequence field value on which position
was established by a previous call. If no position was established on a logical twin with the same
sequence field value, the segment is inserted before all twins with the same sequence field value.

When a new occurrence of a logical child is inserted from its physical parent, no previous position
exists for the logical child on its logical twin chain. Therefore, the new occurrence is placed before
all existing occurrences on the logical twin chain when no sequence field has been defined, or
before all existing occurrences with the same sequence field value when a nonunique sequence
field has been defined.

A command code of L (last) takes precedence over the insert rule specified, causing a new occurrence
to be inserted according to the insert rule of LAST, for insert calls issued against a logical path.

MULTISEG=
Identifies a set of LCHILD and XDFLD statements belonging to a multiple secondary index segment
group. Valid values for the MULTISEG= parameter are YES or NO. NO is the default.
YES

Identifies the LCHILD/XDFLD statement pair as a member of a multiple secondary index segment
group.

100 IMS: System Utilities

NO
Identifies the LCHILD/XDFLD statement pair not belonging to a multiple secondary index segment
group.

Restriction: The MULTISEG= parameter is valid only on a LCHILD statement for a DEDB database. If
MULTISEG= is specified for a database that is not a DEDB database, the DBDGEN utility terminates
with an error message.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

FIELD statements
The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.

The FIELD statement must meet the following conditions:

• A maximum of 1,000 FIELD statements that include the NAME parameter and XDFLD statements
combined can be defined for all segments in a DBD generation.

• A maximum of 20,000 XDFLD statements and all FIELD statements combined can be defined for all
segments in a DBD generation.

• A maximum of 255 FIELD statements and XDFLD statements combined can be defined for any segment
type.

A unique sequence field must be defined for the root segment types of HISAM, HIDAM, PHIDAM, HIDAM
Primary INDEX, SHISAM, DEDB, and non-terminal-related MSDB databases. Root segment types in an
HDAM database do not need a key field defined; if a key field is defined, it does not have to be unique.

The use of /SX to define unique secondary indexes in HDAM, HIDAM, PHDAM, and PHIDAM databases
causes a 4-byte RBA of the index source segment to be included as part of the key of the index record.
The use of /CK to define unique secondary indexes in HISAM, HDAM, HIDAM, PHDAM, and PHIDAM
databases does the same. In a PSINDEX, the /SX specification causes an 8-byte ILK to be used instead of
a 4-byte RBA.

PSINDEX entries also contain the root key of the target segment.

FIELD statements are used in DBD generation:

• To define fields of a segment type as that segment type is seen when it is accessed from its physical
parent segment.

Chapter 2. Database Description (DBD) Generation utility 101

• To define the fields of a real logical child segment type in a virtually paired logical relationship as seen
when that segment type is accessed from its logical parent. The FIELD statements must immediately
follow the SEGM statement defining the virtual logical child.

• To define system-related fields that are used for secondary indexing.

The “FIELD statement parameter descriptions” on page 113 are documented following the syntax
diagrams below.

The format of the FIELD statement for each database type is shown in the following syntax diagrams.

DEDB database FIELD statement

102 IMS: System Utilities

FIELD NAME=( fldname1
,SEQ ,U

)

NAME=( fldname1
,SEQ ,U

) ,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

GSAM database FIELD statement

Chapter 2. Database Description (DBD) Generation utility 103

FIELD EXTERNALNAME=  external_name ,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos ,TYPE=

C

X

P

,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name

,DEPENDSON=  field_name ,MINOCCURS=  min_array_elements

,MAXOCCURS=  max_array_elements ,PARENT=  field_name

,REDEFINES=  field_name ,REMARKS=  comments

HDAM and PHDAM database FIELD statement

104 IMS: System Utilities

FIELD

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
1

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
1

,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

2
,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

Notes:
1 A system related field used for secondary indexing.
2 The TYPE=parameter is ignored for fields with a systrelfldname.

Chapter 2. Database Description (DBD) Generation utility 105

HIDAM and PHIDAM database FIELD statements

FIELD

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
1

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
1

,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

2
,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

Notes:
1 A system related field used for secondary indexing.

106 IMS: System Utilities

2 The TYPE=parameter is ignored for fields with a systrelfldname.

HISAM database FIELD statement

1
FIELD

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
2

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
2

,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

3
,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

Notes:

Chapter 2. Database Description (DBD) Generation utility 107

1 Only CK can be coded for the systrelfldname field.
2 A system related field used for secondary indexing.
3 The TYPE=parameter is ignored for fields with a systrelfldname.

HSAM/SHSAM database FIELD statement

108 IMS: System Utilities

FIELD

NAME=( fldname1

, SEQ

,U

,M

)

NAME=( fldname1

, SEQ

,U

,M

) ,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

INDEX/PSINDEX database FIELD statement

Chapter 2. Database Description (DBD) Generation utility 109

FIELD

NAME=( fldname1
,SEQ

,U

,M)

NAME=( fldname1
,SEQ

,U

,M) ,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

MSDB database FIELD statement

110 IMS: System Utilities

FIELD

NAME=( fldname1
,SEQ ,U

)

NAME=( fldname1
,SEQ ,U

) ,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes ,START=  startpos

,TYPE=

C

X

P

H

F

,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name

,REMARKS=  comments

SHISAM database FIELD statement

Chapter 2. Database Description (DBD) Generation utility 111

1
FIELD

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
2

NAME= ( fldname1

,SEQ

,U

,M

)

systrelfldname
2

,EXTERNALNAME=  external_name

EXTERNALNAME=  external_name

,BYTES=  bytes

,MAXBYTES=  max_array_bytes

,START=  startpos

,STARTAFTER=  field_name

,RELSTART=  relstartpos

,TYPE=

C

X

P

3
,DATATYPE= ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

DATE

DECIMAL( pp , ss)

DOUBLE

FLOAT

INT

UINT

LONG

ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

TIMESTAMP

XML

,CASENAME=  case_name ,DEPENDSON=  field_name

,MINOCCURS=  min_array_elements ,MAXOCCURS=  max_array_elements

,PARENT=  field_name ,REDEFINES=  field_name

,REMARKS=  comments

Notes:
1 Only CK can be coded for the systrelfldname field.
2 A system related field used for secondary indexing.
3 The TYPE=parameter is ignored for fields with a systrelfldname.

112 IMS: System Utilities

FIELD statement parameter descriptions

BYTES=
Specifies the length of the field being defined in bytes. For fields other than system-related fields,
BYTES must be a valid self-defining term whose value does not exceed 255.

If a concatenated key or a portion of a concatenated key of an index source segment type is defined
as a system-related field, the value specified can be greater than 255, but must not exceed the length
of the concatenated key of the index source segment.

A case in which the byte length can be greater than 255 is when the column is defined as not
searchable by IMS. These columns cannot be defined as primary keys and cannot have the NAME
keyword specified.

The length of a /SX system-related field is always 4 bytes; therefore, when specified, the BYTES
parameter is disregarded.

If this field is defined as either a structure or an array by STRUCT or ARRAY, the value specified
on BYTES must be greater than or equal to the sum total of the bytes of all fields contained in the
structure or array.

When XML, the BYTES parameter is optional and the valid values for BYTES range from 0 to the
maximum size of the segment. If the BYTES parameter is omitted when XML, BYTES and MAXBYTES
are not allowed.

CASENAME=
The name of the map case that this field belongs to when alternative mappings are defined for the
fields in a segment. CASENAME is valid and required only to associate a FIELD statement with the
preceding DFSCASE statement that defines the map case to which this field belongs. The value of
CASENAME must match the value specified on the NAME parameter of the DFSCASE statement.

DATATYPE=
An optional 3- to 9-character alphanumeric field that specifies the external data type of the field.

If DECIMAL is specified on the DATATYPE parameter, the default INTERNALTYPECONVERTER is
signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP is specified on the DATATYPE parameter, you must specify
either LONG or CHAR on the INTERNALTYPECONVERTER parameter in the DFSMARSH statement
or specify a USERTYPECONVERTER. If a DFSMARSH statement is not included for this field,
INTERNALTYPECONVERTER=LONG is the default. When LONG is used, the value is stored on DASD as
the number of milliseconds since January 1, 1970.

If XML is specified on the DATATYPE parameter, the default INTERNALTYPECONVERTER is XML_CLOB,
which is the only valid value when DATATYPE=XML is specified.

If STRUCT or ARRAY is specified on the DATATYPE parameter, the default INTERNALTYPECONVERTER
is STRUCT or ARRAY, respectively, which are the only valid values when either one is specified on the
DATATYPE parameter.

For all other values for DATATYPE, the value is used as the default INTERNALTYPECONVERTER.

If TYPE=C, DATATYPE defaults to CHAR. For any other specification of the TYPE parameter, DATATYPE
defaults to BINARY.

If the DFSMARSH statement specifies USERTYPECONVERTER, the BYTES value is not validated for the
data type of BIT, BYTE, UBYTE, DOUBLE, FLOAT, INT, UINT, LONG, ULONG, and SHORT.

Valid values are:
ARRAY

When ARRAY is specified:

• The NAME parameter is not supported
• The EXTERNALNAME parameter is required

Chapter 2. Database Description (DBD) Generation utility 113

• The byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the array.

The MSDB database type does not support the ARRAY data type.

BINARY
If TYPE=P or TYPE=X is specified, BINARY is the default value of the DATATYPE parameter.

BIT

If you specify BIT, you must also specify BYTES=1.

If you specify BIT, you must also specify BYTES=1 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

BYTE

If you specify BYTE, you must also specify BYTES=1.

If you specify BYTE, you must also specify BYTES=1 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

UBYTE

If you specify UBYTE, you must also specify BYTES=1.

If you specify UBYTE, you must also specify BYTES=1 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

CHAR
If TYPE=C is specified, CHAR is the default value of the DATATYPE parameter.

DATE
When DATE is specified, you must also specify BYTES=8, unless you also specify
a DFSMARSH statement that includes either INTERNALTYPECONVERTER=CHAR or
USERTYPECONVERTER=convertername.

DECIMAL(pp,ss)
pp

Precision. A 1- to 2-byte numeric field greater than 0.
ss

Scale. A 1- to 2-byte numeric field greater than or equal to 0. The value specified for ss cannot
be greater than the value of pp.

You must specify a value on the BYTES parameter that matches the decimal format that is used.

The default decimal format is signed packed decimal. To calculate the required value of the BYTES
parameter for the signed packed decimal format, use the following formula: length = ceiling ((pp
+ 1) / 2)

The default decimal format can be changed by specifying the INTERNALTYPECONVERTER
parameter.

When the zoned decimal format is used, as specified by
INTERNALTYPECONVERTER=ZONEDDECIMAL, use the following formula to calculate the value
of the BYTES parameter: length = pp

DOUBLE

If you specify DOUBLE, you must also specify BYTES=8.

If you specify DOUBLE, you must also specify BYTES=8 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

FLOAT

If you specify FLOAT, you must also specify BYTES=4.

114 IMS: System Utilities

If you specify FLOAT, you must also specify BYTES=4 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

INT

If you specify INT, you must also specify BYTES=4.

If you specify INT, you must also specify BYTES=4 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

UINT

If you specify UINT, you must also specify BYTES=4.

If you specify UINT, you must also specify BYTES=4 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

LONG

If you specify LONG, you must also specify BYTES=8.

If you specify LONG, you must also specify BYTES=8 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

ULONG

If you specify ULONG, you must also specify BYTES=8.

If you specify ULONG, you must also specify BYTES=8 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

OTHER
Specifies the use of a user-defined data type. When OTHER is specified, a DFSMARSH
statement must also be specified with a user-provided type converter specified on the
USERTYPECONVERTER parameter.

SHORT

If you specify SHORT, you must also specify BYTES=2.

If you specify SHORT, you must also specify BYTES=2 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

USHORT
If you specify USHORT, you must also specify BYTES=2.

STRUCT
When STRUCT is specified, you cannot also specify the SEQ parameter if this structure field
contains a dynamic array field as a child. Dynamic array fields are defined with DATATYPE=ARRAY
and the DEPENDSON and MAXBYTES parameters, among others.

Also, the byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the structure.

The MSDB database type does not support the STRUCT data type.

TIME
When TIME is specified, you must also specify BYTES=8, unless you also specify
a DFSMARSH statement that includes either INTERNALTYPECONVERTER=CHAR or
USERTYPECONVERTER=convertername.

TIMESTAMP
When TIMESTAMP is specified, you must also specify BYTES=8, unless you also
specify a DFSMARSH statement that includes either INTERNALTYPECONVERTER=CHAR or
USERTYPECONVERTER=convertername.

XML

Restriction: DATATYPE=XML is not supported when the NAME parameter is specified.

Chapter 2. Database Description (DBD) Generation utility 115

DEPENDSON
Specifies the name of a field that defines the number of elements in a dynamic array. The FIELD
statement of the referenced field must precede the FIELD statement that specifies the DEPENDSON
parameter. The name specified must be the value, whether explicitly defined or accepted by default,
of the EXTERNALNAME parameter in the definition of the referenced field.

The DEPENDSON parameter is valid only when ARRAY is also specified. DEPENDSON is required if the
values of MINOCCURS and MAXOCCURS are different.

The field referenced by the DEPENDSON parameter must be defined with one of the following
DATATYPE values:

• INT
• SHORT
• LONG
• UINT
• USHORT
• ULONG
• DECIMAL with either (pp) or (pp,ss) specified, where ss is either 0 or 00.

The MSDB database type does not support the DEPENDSON parameter.

EXTERNALNAME=
An optional alias for the NAME= parameter. Java application programs use the external name to refer
to the field. The external name is stored only in the IMS catalog, not in the database that you are
defining.

The EXTERNALNAME parameter is required only when either the NAME parameter is not specified or
the field is defined in a GSAM database. If the NAME parameter is not specified, you cannot search for
this field.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

External names must be unique within a segment.

The default value of the EXTERNALNAME parameter is the value of the NAME parameter.

Restriction: External names cannot be reserved SQL keywords or begin with DFS.

If EXTERNALNAME is not specified and a reserved SQL keyword is specified in the NAME parameter,
EXTERNALNAME accepts the NAME value as the default external name after appending "_COL" to the
NAME value.

For a list of reserved SQL keywords that are restricted by the IMS Universal drivers, see Portable SQL
keywords restricted by the IMS Universal JDBC drivers (Application Programming).

M or U
See the entry for U or M later in this topic.

MINOCCURS=
For ARRAY only, a required numeric value that specifies the minimum number of elements in an
ARRAY. MINOCCURS must be lesser than or equal to MAXOCCURS.

MAXOCCURS=
For ARRAY only, a required numeric value that specifies the maximum number of elements in an
ARRAY. MAXOCCURS must be greater than or equal to MINOCCURS and not zero.

MAXBYTES=
Specifies the maximum size of a field in bytes when the byte-length of the field instance can vary
based on the number of elements in a dynamic array. MAXBYTES and BYTES are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum possible sum total of the byte
values of all fields nested under this field.

116 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

The MAXBYTES parameter is required and valid only in the following cases:

• The field is defined as a dynamic array. A field is a dynamic array when the number of elements in
the array can vary from one instance of the field to another. In the definition of a dynamic array,
the DEPENDSON parameter references another field in the segment definition that will define the
number of array elements for a given instance of the dynamic array.

• For a field defined as a static array or a structure that contains a nested field that is defined as a
dynamic array.

The MSDB database type does not support the MAXBYTES parameter.

NAME=fldname1
Specifies the name of this field within a segment type. The name specified can be referred to by an
application program in a DL/I call SSA. Field names must be unique within a segment definition. The
fldname1 value must be a 1- to 8-character alphanumeric value.

The NAME parameter is required on the following types of fields:

• Key-sequenced field types, which specify the SEQ parameter
• Field types that are referenced by a segment search argument (SSA)
• Field types that are referenced by in a SENFLD statement in a PSB
• Field types that are referenced by an XDFLD statement

For other field types, you can omit the NAME parameter when the EXTERNALNAME parameter is
specified. Omitting the NAME parameter can save storage in the data management block (DMB) of a
database. However, to be able to search on this field, you must specify the NAME parameter.

The NAME parameter cannot be specified on the following types of fields:

• Fields that are defined in a GSAM database. Use the EXTERNALNAME parameter instead.
• Fields that are defined as arrays. A field that is defined as an array includes ARRAY in the field
definition.

• Fields that are defined as array elements. A field that is an array element specifies the name of an
array field on the PARENT parameter in the FIELD statement.

• Fields that are defined as structures that contain one or more nested dynamic arrays. A field that is
defined as a structure includes DATATYPE=STRUCT in the field definition.

• Fields that are contained in a structure that also contains a dynamic array. A field that is contained
within a structure specifies the name of the structure field on the PARENT parameter in the FIELD
statement.

• Fields that follow a dynamic array in a segment. A field that follows a dynamic array specifies the
STARTAFTER parameter.

• Fields that include the RELSTART parameter to specify a starting position that is relative to the
starting position of another field.

• Fields defined with XML.

PARENT=
Specifies the name of a field that is defined as a structure or array in which this field is contained. The
referenced field must be defined with either DATATYPE=ARRAY or DATATYPE=STRUCT.

REDEFINES=

The name of the redefined field, as specified on the EXTERNALNAME parameter of the FIELD
statement that defines the redefined field. The value can be specified as a 1- to 128-character
alphanumeric string.

If the redefined field does not specify the EXTERNALNAME parameter, the value of the NAME
parameter can be used. If the redefined field specifies both the NAME and EXTERNALNAME parameters
with different values on each, the value of the EXTERNALNAME parameter must be used.

In the DBD generation input order, the FIELD statement of the field that is being redefined must
precede the FIELD statement that specifies the REDEFINES parameter.

Chapter 2. Database Description (DBD) Generation utility 117

This field must be the same length as the field that is being redefined, as specified on the BYTES
parameter in each FIELD statement.

You cannot redefine a field that has been defined as an ARRAY or that contains an ARRAY.

The MSDB database type does not support the REDEFINES parameter.

RELSTART=
Specifies the starting position of a field that is defined as an element of an array or, in some
circumstances, a structure. Valid values are from 1 to 32767.

The value specified on RELSTART is the starting byte offset of the field relative to the start of the array
or structure. For example, the first field in an array would typically specify RELSTART 1, even if the
array that contains the field starts at byte 50 of a segment.

For fields that specify an array field as a parent, RELSTART is required.

For fields that specify a structure as a parent, RELSTART is required if the structure field is defined
with RELSTART or STARTAFTER.

In the following example, the field DYNARRAY is a dynamic array. The field STRUCT01 is a structure.
The fields FLD03 and FLD04 both specify STRUCT01 as a parent. Because a dynamic array precedes
STRUCT01 in the segment, the starting offsets of FLD03 and FLD04 can be specified only relative to
the start of STRUCT01.

FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100
 MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10
FIELD EXTERNALNAME=FLD03,RELSTART=1,BYTES=5,PARENT=STRUCT01
FIELD EXTERNALNAME=FLD04,RELSTART=6,BYTES=5,PARENT=STRUCT01

START, STARTAFTER, and RELSTART are mutually exclusive.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

SEQ
A subparameter of NAME, SEQ identifies this field as a sequence field in the segment type. FIELD
statements containing the keyword SEQ must be the first FIELD statements following a SEGM
statement in a DBD generation input deck.

118 IMS: System Utilities

If the sequence field of a real logical child segment consists of any part of the concatenated key of
the logical parent, you must specify the PHYSICAL parameter in the SEGM statement in order for the
logical child to include the concatenated key of the logical parent with the logical child in storage.

Generally, a segment can have only one sequence field. However, in the case of virtually paired
bidirectional logical relationships, multiple FIELD statements can be used to define a logical sequence
field for the virtual logical child segment type, as described as follows.

A sequence field must be specified for a virtual logical child segment type if, when accessing a logical
child segment from its logical parent, one requires real logical child segments to be retrieved in an
order determined by data in a field or fields of the real logical child segments. This sequence field
can include any part of the segment as it appears when viewed from the logical parent (that is, the
concatenated key of the physical parent of the real logical child followed by any intersection data).
Because it might be necessary to describe the sequence field of a logical child segment as accessed
from its logical parent segment in noncontiguous pieces, multiple FIELD statements with the SEQ
parameter present are permitted. Each statement must contain a unique fldname1 parameter.

You can define any sequence field as a qualification in an SSA, but all succeeding sequence fields
are considered as a part of the named field. Therefore, the length of the field named in the SSA is
the concatenated length of the specified field plus all succeeding sequence fields. This "scattered"
sequence field is permitted only when specifying the sequence field for a virtual logical child segment.
If the first sequence field is not included in a "scattered" sequence field in an SSA, DL/I treats the
argument as a data field specification rather than a sequence field specification. DL/I must examine
all segment instances on a twin chain when a data field specification is evaluated. When a sequence
field specification is evaluated the search continues along the twin chain until a sequence field value
that is higher than the SSA value is reached. The search stops at that point.

In an MSDB, the keyword SEQ must be specified if the DATASET statement specifies REL=NO (a
non-terminal-related MSDB without terminal-related keys); otherwise this keyword is invalid.

In a DEDB, SEQ must be used in the root segment and can be specified in any direct dependent
segment.

Restrictions:

• SEQ cannot be specified for the sequential dependent segment
• SEQ cannot be specified for a field that is defined as a structure that contains a field that is defined

as a dynamic array. Structure fields are defined by DATATYPE=STRUCT. Dynamic array fields are
defined by DATATYPE=ARRAY and the DEPENDSON and MAXBYTES parameters, among others.

START=
Specifies the starting position of the field being defined in terms of bytes relative to the beginning
of the segment. The value of START must be a numeric term whose value does not exceed 32767.
The starting position for the first byte of a segment is one. For variable-length segments, the first 2
bytes contain the length of the segment. Therefore the first actual user data field starts in byte 3.
Overlapping fields are permitted. When defining a logical child segment, the first n number of bytes
of the segment type is the concatenated key of the logical or physical parent. A field starting in
position one would define all or a portion of this field. A field starting in position n+1 would start with
intersection data.

START can be used for a system-related field, to describe a portion of the concatenated key as a
field in an index source segment type. If used in this way, START specifies the starting position of the
relevant portion of the concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be a numeric term whose
value does not exceed the length of the concatenated key plus one. Subtract the value specified in the
BYTES parameter. The starting position parameter for the /SX system-related field is disregarded.

START, STARTAFTER, and RELSTART are mutually exclusive.

When XML, the START parameter is optional and START 0 can be specified. If the START parameter is
omitted when XML, START 0 is the default.

Chapter 2. Database Description (DBD) Generation utility 119

STARTAFTER=

When the starting byte offset of a field cannot be calculated because the field starts after a dynamic
array, specifies the name of the field that directly precedes this field in the segment. The name cannot
be the name provided on the NAME keyword.

STARTAFTER is required and valid only when the starting position of a field cannot be calculated
because the field is preceded at a prior offset by a field defined as a dynamic array.

Dynamic arrays make it impossible to calculate the starting offsets of subsequent fields in a segment,
because the byte lengths of dynamic arrays can vary from one instance of a segment to another. The
columns of dynamic array fields can be identified by the inclusion of the DEPENDSON and MAXBYTES
parameters.

The STARTAFTER parameter cannot be specified on fields that define an array field as a parent.
Instead, specify the RELSTART parameter.

START, STARTAFTER, and RELSTART are mutually exclusive.

The STARTAFTER data is not returned if the GUR application is using IMS Universal Drivers (UDB).

systrelfldname
Defines a system-related field which can be used only for secondary indexing. There are two types of
system-related fields:

• All of or a portion of the concatenated key of an index source segment type defined by the preceding
SEGM statement. The name for this type of system-related field can be up to eight characters
long, and must begin with the three characters /CK. The fourth through eighth characters permit
unique identification of the field being defined, whose name must be unique among all other
fields defined in the segment type. This type of system-related field is defined to enable the use
of the concatenated key of an index source segment, or portions of the concatenated key in the
subsequence or duplicate data fields of index pointer segments.

The following are sample concatenated keys for a given index source segment type:

– Root key (10 bytes)
– Dependent key (3 bytes)
– Dependent key (3 bytes)
– Dependent key (3 bytes)

If three system-related fields were to consist of bytes 2 through 8 of the root key, byte 1 of the
second key and bytes 2 and 3 of the fourth key, the FIELD statements specifying these fields could
be as follows:

NAME=/CK1
BYTES=7
START=2

NAME=/CK2
BYTES=1
START=11

NAME=/CK3
BYTES=2
START=18

You can then specify the three system-related fields defined for use in the subsequence or duplicate
data fields of index pointer segments by including the names of the system-related fields in lists for
the subsequence or duplicate data fields on an XDFLD statement.

• The second type of system-related field is defined within an index source segment type to ensure
uniqueness of sequence field keys in a secondary index. The name specified for this type of
system-related field must begin with the characters /SX, and the name specified can be up to eight
characters in length. When this type of system-related field is defined in an index source segment
type, IMS generates a unique 4-byte value, and places it in the subsequence field of the index
pointer segment generated from an index source segment.

120 IMS: System Utilities

On an XDFLD statement, a /CK field can be included in the list of fields specified for either the
subsequence or DDATA fields or both of an index pointer segment. A /SX field can be included only in
the list of fields specified for the subsequence field of index pointer segments.

For Fast Path secondary indexing, only a /CK field is valid and the /SX field is not valid.

TYPE=
Determines the type of character that IMS uses to mask or pad the data in this field.

If the DATATYPE parameter is not explicitly set, the TYPE parameter also determines the default value
of DATATYPE; however, TYPE does not otherwise affect how data is stored, converted, or presented to
application programs.

For example, when application programs that use field-level sensitivity are not sensitive to this field,
IMS can mask the data in a field with either X'00', X'40, or, for MSDBs, halfword or fullword binary
data.

When an application program is sensitive to one or more fields in a segment, IMS masks fields if one
of the following conditions is met:

• On an insert call, the segment contains fields that the application program is not sensitive to.
• On a call that replaces a variable-length segment with a segment that is longer than the existing

segment, the increased portion of the segment contains fields that the application program is not
sensitive to.

• On a call that retrieves a variable-length segment that does not contain the field.

If an alphanumeric field (TYPE=C) is partially present in the physical segment, the data is moved to
the field in the user's I/O area and padded on the right with blanks. Partially present hexadecimal or
packed decimal fields are replaced with the fill value when presented to the user.

All DL/I calls perform field comparisons on a byte-by-byte binary basis. No check is made by IMS to
ensure that the data contained within a field is of the type specified by this parameter, except when
the defined field is used with field sensitivity or is in an MSDB.

You can specify the following values on the TYPE parameter:
X

Specifies hexadecimal data. When X is specified, if IMS needs to fill unused bytes in the field, IMS
right justifies the value and fills the unused bytes to the left of the value with X'00'. For example, a
3-byte value X'543210' in a 5-byte field is written out as X'0000543210'.

P
Packed decimal data. When P is specified, if IMS needs to fill unused bytes in the field, IMS right
justifies the value and fills the unused bytes to the left of the value with X'00'. For example, a
3-byte value X'54321C' in a 5-byte field is written out as X'000054321C'.

C
Specifies alphanumeric data or a combination of types of data. When C is specified, if IMS needs
to fill unused bytes in the field, IMS left justifies the value and fills the unused bytes to the right
of the value with X'40'. For example, a 3-byte value X'F5F4F3' in a 5-byte field is written out as
X'F5F4F34040'.

F
Specifies binary fullword data.

An arithmetic field cannot be overlapped by another field in a segment definition; that is, another
field cannot be defined to start or end between the starting and ending byte offsets of a field that
specifies TYPE=F.

H
Specifies binary halfword data.

An arithmetic field cannot be overlapped by another field in a segment definition; that is, another
field cannot be defined to start or end between the starting and ending byte offsets of a field that
specifies TYPE=H.

Chapter 2. Database Description (DBD) Generation utility 121

For MSDB databases, types X, C, P, H, and F are valid, with the following rules applying:

• Only a C or X field can contain another field.
• A single field can have multiple definitions as long as no more than one definition is arithmetic

(types P, H, and F).
• If a field contains any part of an arithmetic field, it must contain the entire field.
• The sequence field must be TYPE=C or X.
• The sequence field cannot be part of any other field.
• SSA and FSA comparisons of arithmetic fields use arithmetic rather than logical compare

operations.
• Initial loading and call processing routines test for valid digits and X and P type fields.
• The following rules apply to the MSDB field length:

– TYPE=X: BYTES=1 to 256
– TYPE=P: BYTES=1 to 16
– TYPE=C: BYTES=1 to 256
– TYPE=F: BYTES=4
– TYPE=H: BYTES=2
– Field types F and H must have explicit length specifications.
– Fields should be aligned on appropriate boundaries for performance optimization if they are

involved in compare or arithmetic operations and are a fullword or halfword long. The beginning
of the segment is aligned on a fullword boundary.

• If the systrelfldname in the field statement is defined as either /SX or /CK, the TYPE= parameter is
ignored and no type is set.

U or M
Subparameters of NAME, U and M qualify the type of sequence (SEQ) field that is being specified.

The parameter U indicates that only unique values are allowed in the sequence field of occurrences
of the segment type. For a dependent segment type, the sequence field of each occurrence under a
given physical parent segment must contain a unique value.

The parameter M indicates that duplicate values are allowed in the sequence field of occurrences of
the segment type. For a root segment type, the sequence field of each occurrence must contain a
unique value, except in HDAM. The root segment type in an HDAM database does not need a key field;
if a key field is defined, it does not have to be unique.

When no sequence field or a nonunique sequence field is defined for a segment, occurrences of the
segment are inserted according to the rule of FIRST, LAST, or HERE as specified on the SEGM or
LCHILD statement for that segment.

Recommendation: Use unique sequence fields for all segments that participate in a logical
relationship. This includes physical and logical parents as well as physical and logical child segments.
Multiple sequence fields for a virtual logical child segment type must be uniformly defined as either
unique or nonunique.

In a non-terminal-related MSDB without terminal-related keys, unique (U) values must be specified
for the root sequence field. In a DEDB, unique (U) values must be specified for the sequence field
of the root segment. A dependent segment in a DEDB does not require a key. However, if a key is
defined, it must be unique.

Related concepts
Defining DBD and PSB metadata to the generation utilities (Database Administration)
Related reference
“DFSMARSH statements” on page 127

122 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_cat_db_metadata_overview.htm#ims_cat_db_metadata_overview

The DFSMARSH statement defines the marshal attributes for a field.

XDFLD statements
Use the XDFLD statement only for secondary index relationships. The XDFLD statement defines the name
of an indexed field that is associated to an index target segment type, identifies the index source segment
type, and identifies the index source segment fields that are used in creating a secondary index.

In addition, information regarding suppressing the creation of index pointer segments is provided through
this statement.

Restriction: This statement cannot be used to reference a segment in a DBD where ACCESS=INDEX,
SHSAM, SHISAM, HSAM, or MSDB has been specified.

The XDFLD statement must meet the following conditions:

• A maximum of 32 XDFLD statements are allowed per SEGM statement.
• The number of XDFLD and all FIELD statements combined must not exceed 255 per SEGM statement,

and must not exceed 20,000 per DBD.
• The number of FIELD statements that include the NAME parameter and XDFLD statements combined

must not exceed 1,000 per DBD.

One XDFLD statement is required for each secondary index relationship. It must appear in the DBD
generation input deck for the indexed database after the LCHILD statement that references the index
pointer segment. Only FIELD statements for the index target segment can appear between the LCHILD
statement and the associated XDFLD statement in the input deck. The index target segment, which is the
segment defined by the preceding SEGM statement in the DBD generation input deck must not be either a
logical child segment type or a dependent of a logical child segment type.

The format of the XDFLD statement is for each database type is shown in the following examples.

HISAM/SHISAM database XDFLD statement

XDFLD
1

NAME= fldname
,SEGMENT= segname ,CONST=  char

2

,SRCH=  list1

,SUBSEQ=  list2 ,DDATA=  list3 ,NULLVAL=  value1

,EXTRTN=  name1 ,REMARKS=  comments

,EXTERNALNAME=  external_name

Notes:
1 An XDFLD statement is not allowed during DBD generation of a simple HISAM database.
2 The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE fields must not exceed 240
bytes.

Chapter 2. Database Description (DBD) Generation utility 123

DEDB database XDFLD
XDFLD NAME= fldname

,SEGMENT= segname

1
,SRCH=  list1

,SUBSEQ=  list2 ,DDATA=  list3 ,NULLVAL=  value1

,EXTRTN=  name1 ,PSELRTN=  name

,PSELOPT=

MULT

SNGL

,REMARKS=  comments ,EXTERNALNAME=  external_name

Notes:
1 The combined length of the SEARCH and SUBSEQUENCE fields must not exceed 240 bytes.

HDAM and HIDAM database XDFLD statement

XDFLD NAME= fldname
,SEGMENT= segname ,CONST=  char

1

,SRCH=  list1

,SUBSEQ=  list2 ,DDATA=  list3 ,NULLVAL=  value1

,EXTRTN=  name1 ,REMARKS=  comments

,EXTERNALNAME=  external_name

Notes:
1 The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE fields must not exceed 240
bytes.

PHDAM and PHIDAM database XDFLD statement

XDFLD NAME= fldname
,SEGMENT= segname

,SRCH=  list1
1

,SUBSEQ=  list2 ,DDATA=  list3 ,NULLVAL=  value1

,EXTRTN=  name1 ,REMARKS=  comments

,EXTERNALNAME=  external_name

Notes:
1 The combined length of the SEARCH and SUBSEQUENCE fields must not exceed 240 bytes.

124 IMS: System Utilities

XDFLD statement parameter description

NAME=
Specifies the name of the indexed data field of an index target segment. The name specified actually
represents the search field of an index pointer segment type as being a field in the index target
segment type. You can use the name specified to qualify SSAs of calls for an index target segment
type through the search field keys of index pointer segments. This enables accessing occurrences of
an index target segment type through a primary or secondary processing sequence based on data
contained in a secondary index. fldname must be a 1- to 8-character alphanumeric value.

Since the name specified is used to access occurrences of the index target segment type based on the
content of a secondary index, the name specified must be unique among all field names specified for
the index target segment type.

SEGMENT=
Specifies the index source segment type for this secondary index relationship. segname must be the
name of a subsequently defined segment type, which is hierarchically below the index target segment
type or it can be the name of the index target segment type itself. The segment name specified must
not be a logical child segment. If this parameter is omitted, the index target segment type is assumed
to be the index source segment.

CONST=
Specifies a character with which every index pointer segment in a particular secondary index is
identified. This parameter is optional. The purpose of this parameter is to identify all index pointer
segments associated with each secondary index when multiple secondary indexes reside in the same
secondary index database. Char must be a 1-byte self-defining term.

Restriction: CONST is not supported for HALDB or DEDB databases.

SRCH=
Specifies which field or fields of the index source segment you must use as the search field of a
secondary index. list1 must be a list of one to five field names defined in the index source segment
type by FIELD statements. If two or more names are included, they must be separated by commas
and enclosed in parentheses. The sequence of names in the list is the sequence in which the field
values are concatenated in the index pointer segment search field. The sum of the lengths of the
participating fields constitutes the index target segment indexed field length which must be reflected
in segment search arguments.

For Fast Path secondary indexes, you can use part of a concatenated key as a value for the SRCH
parameter by specifying the /CK operand, a starting byte, and a length in parentheses. For example,
SRCH=((/CK,1,3),(/CK,5,2),(/CK,9,2)) or SRCH=((/CK,1,3),FLDNM).

SUBSEQ=
Specifies which, if any, fields of the index source segment you must use as the subsequence field of
a secondary index. list2 must be a list of one to five field names defined in the index source segment
by FIELD statements. If two or more names are included, they must be separated by commas and
enclosed in parentheses. The sequence of names in the list is the sequence in which field values are
concatenated in the index pointer segment subsequence field. This parameter is optional.

For Fast Path secondary indexes, you can use part of a concatenated key as a value for the SUBSEQ
parameter by specifying the /CK operand, a starting byte, and a length in parentheses. For example,
SUBSEQ=((/CK,1,3),(/CK,5,2),(/CK,9,2)) or SUBSEQ=((/CK,1,3),FLDNM).

DDATA=
Specifies which, if any, fields of the index source segment you must use as the duplicate data field of
a secondary index. list3 must be a list of one to five field names defined in the index source segment
by FIELD statements. If two or more names are included, they must be separated by commas and
enclosed in parentheses. The sequence of names in the list is the sequence in which field values are
concatenated in the index pointer segment duplicate data field. This parameter is optional.

Chapter 2. Database Description (DBD) Generation utility 125

NULLVAL=
Suppresses the creation of index pointer segments when the index source segment data used in the
search field of an index pointer segment contains the specified value.

The value1 parameter must be a 1-byte self-defining term (X'10',C'Z', 5, or B'00101101') or the words
BLANK or ZERO. BLANK is equivalent to C' ' or X'40'. ZERO is equivalent to X'00' or 0, but not C'0'. If a
packed decimal value is required, it must be specified as a hexadecimal term with a valid number digit
and zone or sign digit (X'3F' for a packed positive 3 or X'9D' for negative 9).

No indexing is performed when each field of the index source segment specified in the SRCH=
parameter has the value of this parameter in every byte. For example, if the NULLVAL=C'9' were
specified, the associated index would have no entries indexed on the value C'9999...9'.

There is a slight difference in the case of packed fields. For packed fields, each field that composes
the search field is considered to be a separate packed value.

Example: If the NULLVAL=X'9F' were specified in a case where the search field was composed of
three 2-byte packed source fields, there would be no index entries with the search field value of
X'999F999F999F' because all index entries containing a X'9F'would be suppressed.

Also, with the same NULLVAL=X'9F', if the search field were one 6-byte field, no indexing would be
performed whenever the value of the search field was X'99999999999F'.

The only form of the sign that is checked is the form specified.

Example: If X'9C' is specified, X'9F' does not cause suppression.

If both the NULLVAL= and the EXTRTN= operands are specified, indexing of a segment is performed
only if neither causes suppression.

EXTRTN=
Specifies the name of a user-supplied index maintenance exit routine that is used to suppress the
creation of selected index pointer segments. The parameter (name1) must be the name of a user-
supplied routine which receives control whenever DL/I attempts to insert, delete or replace an index
entry because of changes occurring in the indexed database. This exit routine can inspect the affected
index source segment and decide whether an index pointer segment should be generated.

If both the NULLVAL= and the EXTRTN= operands are specified, indexing of a segment is performed
only if neither causes suppression.

EXTERNALNAME=
Acts as an optional alias for the NAME= parameter. Java application programs use the external name
to refer to the field. The external name is stored only in the IMS catalog, not in the database. The
EXTERNALNAME parameter is optional. The NAME parameter must be specified.

Specify an external name as a 1- 26 character uppercase alphanumeric string. The following
additional characters are also allowed:

• _ (underscore)
• $
• #
• @

External names must be unique within a segment.

The default value of the EXTERNALNAME parameter is the value of the NAME parameter.

Note: External names cannot be reserved SQL keywords or begin with DFS.

If EXTERNALNAME is not specified and a reserved SQL keyword is specified in the NAME parameter,
EXTERNALNAME accepts the NAME value as the default external name after appending "_IDX" to the
NAME value. For a list of reserved SQL keywords that are restricted by the IMS Universal drivers, see
Portable SQL keywords restricted by the IMS Universal JDBC drivers.

126 IMS: System Utilities

PSELRTN=
Identifies the name of a user partition selection exit routine when user partitioning is requested for
HISAM or SHISAM Fast Path secondary index databases.

PSELOPT=
Indicates how user partition databases in a user partition group are logically grouped for qualified
GN calls with no SSA processing before the end of data is reached on the user partition databases.
User partition databases are defined as part of a user partition group in the NAME= parameter on the
LCHILD statement. This parameter applies to Fast Path secondary index databases only.

The PSELOPT= parameter can also be specified on the PCB statement with the PROCSEQD=
parameter in a PSB. There is no default for the PSELOPT= parameter on the PCB statement with
the PROCSEQD= parameter. If the PSELOPT= parameter is specified on both the XDFLD statement
and the PCB statement with the PROCSEQD operand, the PSELOPT= parameter on the PCB statement
takes precedence.

MULT
Indicates the selected user partition and its subsequent user partition databases in a user data
partition group as they are physically defined in the NAME= parameter on the LCHILD statement of
the primary DEDB database DBD.

SNGL
Indicates that only the selected user partition database is used.

PSELOPT=MULT is the default for the PSELOPT= parameter on a XDFLD statement.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

DFSMARSH statements
The DFSMARSH statement defines the marshal attributes for a field.

In the input to the DBD Generation utility, the DFSMARSH statement must immediately follow the FIELD
statement to which it applies.

DFSMARSH statement syntax diagram for all database types
The format of the DFSMARSH statement for all database types is shown in the following syntax diagram.

Chapter 2. Database Description (DBD) Generation utility 127

DFSMARSH

ENCODING=

Cp1047

encoding

,INTERNALTYPECONVERTER= CHAR

BIT

BINARY

BYTE

UBYTE

SHORT

USHORT

INT

UINT

LONG

ULONG

FLOAT

DOUBLE

PACKEDDECIMAL

ZONEDDECIMAL

CLOB

BLOB

XML_CLOB

ARRAY

STRUCT

,USERTYPECONVERTER=  usertypeconverter ,PROPERTIES=  properties

,ISSIGNED=

Y

N

,OVERFLOW=  seg_name

,PATTERN=  pattern ,REMARKS=  comments ,URL=  xml_schema_url

DFSMARSH statement parameter description

ENCODING=
An optional 1- to 25-character field that specifies the encoding of the character data in the field.
ENCODING is valid on the DFSMARSH statement only when INTERNALTYPECONVERTER=CHAR.

The value specified on the ENCODING keyword cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

If the ENCODING parameter is not specified on the DFSMARSH statement, the default value is
determined by the value specified on the ENCODING parameter of either the SEGM statement or, if

128 IMS: System Utilities

ENCODING is not specified on the SEGM statement, the DBD statement. If the ENCODING parameter
is not specified on either the SEGM or DBD statement, the default value for the ENCODING parameter
is Cp1047, which specifies EBCDIC encoding.

INTERNALTYPECONVERTER=
Specifies the internal conversion routine that IMS uses to convert the IMS data into the data types
expected by the application program.

You are required to specify either INTERNALTYPECONVERTER or USERTYPECONVERTER, but not
both. INTERNALTYPECONVERTER or USERTYPECONVERTER are mutually exclusive.

When you code the INTERNALTYPECONVERTER parameter on the DFSMARSH statement, you must
explicitly code a value. You cannot leave the value blank or specify a null value.

Valid values for the INTERNALTYPECONVERTER parameter are:

ARRAY
BINARY
BIT

If you specify BIT, you must also specify BYTES=1 on the corresponding FIELD statement.
BLOB
BYTE

If you specify BYTE, you must also specify BYTES=1 on the corresponding FIELD statement.
UBYTE

If you specify UBYTE, you must also specify BYTES=1 and either DATATYPE=BYTE or
DATATYPE=UBYTE on the corresponding FIELD statement.

CHAR
CLOB
DOUBLE

If you specify DOUBLE, you must also specify BYTES=8 on the corresponding FIELD statement.
FLOAT

If you specify FLOAT, you must also specify BYTES=4 on the corresponding FIELD statement.
INT

If you specify INT, you must also specify BYTES=4 on the corresponding FIELD statement.
UINT

If you specify UBYTE, you must also specify BYTES=4 and either DATATYPE=INT or
DATATYPE=UINT on the corresponding FIELD statement.

LONG
If you specify LONG, you must also specify BYTES=8 on the corresponding FIELD statement.

ULONG
If you specify ULONG, you must also specify BYTES=8 and either DATATYPE=LONG or
DATATYPE=ULONG on the corresponding FIELD statement.

PACKEDDECIMAL
SHORT

If you specify SHORT, you must also specify BYTES=2 on the corresponding FIELD statement.
USHORT

If you specify USHORT, you must also specify BYTES=2 and either DATATYPE=SHORT or
DATATYPE=USHORT on the corresponding FIELD statement.

STRUCT
XML_CLOB
ZONEDDECIMAL

When you specify INTERNALTYPECONVERTER, you must also specify the DATATYPE parameter on the
FIELD statement to which this DFSMARSH statement applies.

Chapter 2. Database Description (DBD) Generation utility 129

The value specified on the INTERNALTYPECONVERTER parameter must be consistent with the
value specified on the DATATYPE parameter. In most cases, you must specify the same value on
INTERNALTYPECONVERTER that you specify on the DATATYPE parameter. The following table shows
the valid exceptions to this rule.

Table 9. Additional valid values based on DATATYPE values

DATATYPE value Valid INTERNALTYPECONVERTER values

BINARY BINARY, BLOB, CLOB, AND XML_CLOB

BYTE BYTE, UBYTE

DATE LONG, CHAR

DECIMAL(pp,ss) PACKEDDECIMAL, ZONEDDECIMAL, BINARY

INT INT, UINT

LONG LONG, ULONG

SHORT SHORT, USHORT

TIME LONG, CHAR

TIMESTAMP LONG, CHAR

XML XML_CLOB

If INTERNALTYPECONVERTER=LONG is specified when either DATE, TIME, or TIMESTAMP is specified
on the DATATYPE parameter, the value is stored on DASD as the number of milliseconds since January
1, 1970.

If the DFSMARSH statement is not coded, IMS internally sets the value of the
INTERNALTYPECONVERTER parameter to a default value determined by the value of the DATATYPE
parameter on the field statement.

In most cases, the default value of INTERNALTYPECONVERTER is the same as the value of the
DATATYPE parameter. The following table shows the exceptions to this rule.

Table 10. Default values of INTERNALTYPECONVERTER when DFSMARSH statement not specified

DATATYPE value Default INTERNALTYPECONVERTER value

DATE LONG

DECIMAL(pp,ss) Signed PACKEDDECIMAL

TIME LONG

TIMESTAMP LONG

XML XML_CLOB

ISSIGNED=
Valid only for DATATYPE=DECIMAL.

Valid values are Y or N. The default is Y.

OVERFLOW=
A 1- to 8-character name of a dependent segment that can be used to store any portion of an XML
document that does not fit into the field that is defined to hold the XML document.

The parent of the dependent segment is the segment that contains the XML data field. The name of
the parent segment must be specified on the PARENT parameter of the SEGM statement that defines
the dependent segment.

The OVERFLOW parameter only applies to fields that specify DATATYPE=XML for XML_CLOB data.

130 IMS: System Utilities

PATTERN=
An optional 1- to 50-character field that specifies the pattern to use for the date, time, and timestamp
Java datatypes.

The PATTERN parameter applies only when DATE, TIME, or TIMESTAMP is specified on the DATATYPE
keyword in the FIELD statement and CHAR is specified on the INTERNALTYPECONVERTER keyword in
the DFSMARSH statement. PATTERN is invalid for other datatypes.

Patterns are case sensitive and must be enclosed in single quotation marks.

Except for single quotation marks that are used as delimiters for the keyword value, the value
specified on the PATTERN keyword cannot contain the following characters:

• Single and double quotation marks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The patterns you can specify are defined by the Java class java.text.SimpleDateFormat. The DBD
Generation utility does not check that the value entered on PATTERN conforms to the patterns defined
by Java.

For example, if you enter the Java format yyyy.MM.dd, the resulting time format is "2013.01.01".

PUREDBCS=Y|N

Specifies the use of the character field as the double byte character set.

Valid only for DATATYPE=CHAR. Valid values are Y or N. The default is Y.

PROPERTIES=
Specifies properties for a user type converter specified on the USERTYPECONVERTER parameter.
These properties are passed to the user type converter.

Valid only when USERTYPECONVERTER is specified.

The names and properties specified on the PROPERTIES keyword are case sensitive.

The following characters are not supported by the PROPERTIES keyword:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The maximum length for a property name is 128 characters. The maximum length for a property value
is also 128 characters.

The format is:

PROPERTIES=(property1_name=property1_value,property2_name=property2_value)

For example,

PROPERTIES=(DOG=BUTCH,CAT=LUCY)

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment

Chapter 2. Database Description (DBD) Generation utility 131

string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

URL=
An optional 1- to 256-character field for the URL that references the XML schema that describes this
field. For example, URL=MySchema.xsd.

The value specified on the URL keyword cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

The URL parameter applies only to fields that specify DATATYPE=XML for XML_CLOB data.

USERTYPECONVERTER=
A 1- to 256-character, fully-qualified Java class name of the user provided Java class to be used for
type conversion.

The value specified on the USERTYPECONVERTER keyword cannot contain the following characters:

• Single and double quotation marks
• Blanks
• Less than (<) and greater than (>) symbols
• Ampersands (&)

Mutually exclusive with INTERNALTYPECONVERTER.

For example,

USERTYPECONVERTER=class://com.ibm.ims.dli.types.PackedDateConverter

Examples of the DFSMARSH statement

The following series of examples show some possible uses of the DFSMARSH statement for various
DATATYPE and type converter specifications.

DATATYPE=DATE:

FIELD EXTERNALNAME=XDATE,
 BYTES=8,
 START=84,
 DATATYPE=DATE
DFSMARSH ENCODING=Cp1047,
 INTERNALTYPECONVERTER=CHAR,
 PATTERN='MMddyyyy'

DATATYPE=TIME:

FIELD EXTERNALNAME=XTIME,
 BYTES=6,
 START=92,
 DATATYPE=TIME

132 IMS: System Utilities

DFSMARSH ENCODING=Cp1047,
 INTERNALTYPECONVERTER=CHAR,
 PATTERN='HHmmss'

DATATYPE=TIMESTAMP:

FIELD EXTERNALNAME=XTIMESTAMP,
 BYTES=16,
 START=84,
 DATATYPE=TIMESTAMP
DFSMARSH ENCODING=Cp1047,
 INTERNALTYPECONVERTER=CHAR,
 PATTERN='MMddyyyyHHmmssff'

DATATYPE=ZONEDDECIMAL:

FIELD NAME=ORDPRICE,
 BYTES=10,
 START=21,
 DATATYPE=DECIMAL(10,2)
DFSMARSH INTERNALTYPECONVERTER=ZONEDDECIMAL,
 ISSIGNED=Y

DATATYPE=PACKEDDECIMAL:

FIELD EXTERNALNAME=XPACKEDDEC1,
 BYTES=4,
 START=60,
 DATATYPE=DECIMAL(7,2)
DFSMARSH INTERNALTYPECONVERTER=PACKEDDECIMAL,
 ISSIGNED=Y

USERTYPECONVERTER=:

FIELD EXTERNALNAME=PACKEDDATEFIELD,
 BYTES=5,
 START=40,
 DATATYPE=DATE
DFSMARSH USERTYPECONVERTER=class://com.ibm.ims.dli.types.PackedDateConverter,
 PROPERTIES=(pattern=MMddyyyy,isSigned=false)

Related tasks
Specifying data types for application programs (Database Administration)
Related reference
“FIELD statements” on page 101
The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.
Related information
com.ibm.ims.dli.types Package Javadoc

DFSMAP statements
The DFSMAP statement enables the alternate mapping of fields within a segment.

The DFSMAP statement defines a group of one or more map cases and relates the cases to a control field.
The control field identifies which map case is used in a given segment instance.

The format of the DFSMAP statement for all database types is shown in the following syntax diagram.

DFSMAP statement syntax diagram for all database types
DFSMAP NAME= map_name ,DEPENDINGON=  field_name

REMARKS = remarks CTLSEGNM = ctrl_seg_name

Chapter 2. Database Description (DBD) Generation utility 133

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_cat_db_metadata_def_datatype.htm#ims_cat_db_metadata_def_datatype
https://www.ibm.com/docs/en/ims/latest?topic=adapter-comibmimsdlitypes-package

DFSMAP statement parameter description

CTLSEGNM=
An optional parameter that specifies the NAME of the segment whose key feedback data is used to
determine which map case is used for a given segment instance. The segment specified must be
in the hierarchical path of the current segment for its value to be stored in the IMS catalog. When
the CTLSEGNM parameter is specified, the DEPENDINGON= parameter must specify the name of the
control field that is within the key range of the segment that is specified in CTLSEGNM.

The CTLSEGNM= specifies a name as a 1 to 8-character uppercase alphanumeric string. Each
character must be in the range of A through Z, or 0 through 9, or be the character $, #, @. The
first character cannot be numeric. The same restrictions apply as those for the NAME= parameter of
the SEGM statement. The specified segment must be in the hierarchical path of the current segment.

Note:

• CTLSEGNM cannot be specified for GSAM, MSDB, logical and index databases.
• The CTLSEGNM parameter is ignored if the name of the segment specified is blank or if it is the

name of the current segment.

DEPENDINGON=
The external name of the control field within this segment that contains the value that determines
which map case is used for a given segment instance.

When the CTLSEGNM parameter is also specified, the external name of the control field must be
a field within the key range of the segment specified in CTLSEGNM. Otherwise, the external name
of the control field must be within this segment. When the CTLSEGNM parameter is also specified,
the validation of DEPENDINGON is deferred during DFSMAP processing and is completed after all
the SEGM statements are processed. If the control field does not contain a value that corresponds
to a CASEID in a DFSCASE statement for this map, this map is not used for this segment instance.
If the FIELD statement that defines the control field does not explicitly code the EXTERNALNAME
parameter, specify the value of the NAME parameter in the DEPENDINGON field.

NAME=
A required 1- to 128-character alphanumeric field that defines the name of this map. Blanks are not
supported.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

134 IMS: System Utilities

Mapping example: DFSMAP and DFSCASE

The following example shows how mapping might be used in the DBD source to define a single segment
that is used to store data about three different types of insurance policy: an auto insurance policy, a
home insurance policy, and a boat insurance policy. Each policy type requires different fields to hold the
information that is unique to that policy type.

In the DBD source, the fields for each policy type are mapped by a different DFSCASE statement. The
three map cases in the example are named AUTOMAP, HOMEMAP, and BOATMAP. The fields that make
up the map defined by a given DFSCASE statement each specify the name of the DFSCASE statement
that they belong to on the CASENAME parameter in their FIELD statement. The DFSCASE statements are
grouped by the DFSMAP statement POLICYMAPS in the segment CUSTOMERPOLICY.

The value specified on the CASEID parameter of each map case uniquely identifies the map case and
serves as the control field value. When a segment instance is first inserted into the database, the ID of
the map case that the segment instance uses is inserted into the control field. In the example, the control
field is named POLICYTYPE. At run time, when an application program retrieves the segment from the
database, the application program must evaluate the control field value to determine the correct mapping
of the fields.

 DBD NAME=POLICYDB, C
 ENCODING=CP1047, C
 ACCESS=(DEDB), C
 RMNAME=(RMOD3), C
 PASSWD=NO
 AREA DD1=PLCYAR01, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5), C
 REMARKS='AREA NUMBER 1 FOR POLICYDB DATABASE'
 SEGM NAME=CUSTOMER, C
 PARENT=0, C
 BYTES=(390,20)
 FIELD NAME=(CUSTKEY,SEQ,U), C
 BYTES=12, C
 START=1, C
 TYPE=C
 SEGM NAME=POLICY, C
 EXTERNALNAME=CUSTOMERPOLICY, C
 ENCODING=CP1047, C
 PARENT=CUSTOMER, C
 BYTES=(900), C
 TYPE=DIR, C
 RULES=(LLL,HERE)

* CONTROL FIELD:

 FIELD EXTERNALNAME=POLICYTYPE, C
 BYTES=4, C
 START=1, C
 DATATYPE=CHAR

* DFSMAP STATEMENT:

 DFSMAP NAME=POLICYMAPS, C
 DEPENDINGON=POLICYTYPE

* DFSCASE STATEMENT 1:

 DFSCASE NAME=AUTOMAP, C
 CASEID=AUTO, C
 CASEIDTYPE=C, C
 MAPNAME=POLICYMAPS, C
 REMARKS='DEFINES THE FIELDS OF AN AUTO INSURANCE POLICY'
 FIELD EXTERNALNAME=AUTOMAKE, C
 CASENAME=AUTOMAP, C
 BYTES=15, C
 START=5, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=MODEL, C
 CASENAME=AUTOMAP, C
 BYTES=15, C
 START=20, C
 DATATYPE=CHAR

Chapter 2. Database Description (DBD) Generation utility 135

 FIELD EXTERNALNAME=YEAR, C
 CASENAME=AUTOMAP, C
 BYTES=4, C
 START=35, C
 DATATYPE=CHAR

* DFSCASE STATEMENT 2:

 DFSCASE NAME=HOMEMAP, C
 CASEID=HOME, C
 CASEIDTYPE=C, C
 MAPNAME=POLICYMAPS, C
 REMARKS='DEFINES THE FIELDS OF A HOME INSURANCE POLICY'
 FIELD EXTERNALNAME=DWELLING_TYPE, C
 CASENAME=HOMEMAP, C
 BYTES=20, C
 START=5, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=ROOMS, C
 CASENAME=HOMEMAP, C
 BYTES=5, C
 START=25, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=SQ_FOOT, C
 CASENAME=HOMEMAP, C
 BYTES=6, C
 START=30, C
 DATATYPE=CHAR

* DFSCASE STATEMENT 3:

 DFSCASE NAME=BOATMAP, C
 CASEID=BOAT, C
 CASEIDTYPE=C, C
 MAPNAME=POLICYMAPS, C
 REMARKS='DEFINES THE FIELDS OF A BOAT INSURANCE POLICY'
 FIELD EXTERNALNAME=CLASS, C
 CASENAME=BOATMAP, C
 BYTES=10, C
 START=5, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=LENGTH, C
 CASENAME=BOATMAP, C
 BYTES=6, C
 START=15, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=BOATMAKE, C
 CASENAME=BOATMAP, C
 BYTES=10, C
 START=21, C
 DATATYPE=CHAR
 DBDGEN
 FINISH
 END

Related tasks
Defining alternative field maps for a segment (Database Administration)
Related reference
“FIELD statements” on page 101
The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.
“DFSCASE statements” on page 136
The DFSCASE statement defines a map case, which is a set of FIELD statements that together define an
optional, alternative field layout for a given byte range within a segment definition.

DFSCASE statements
The DFSCASE statement defines a map case, which is a set of FIELD statements that together define an
optional, alternative field layout for a given byte range within a segment definition.

Map cases that map the same byte range in a segment are grouped by a DFSMAP statement. The DFSMAP
statement also links the map cases to a separately defined control field in the segment definition.

136 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_cat_db_metadata_def_mapcases.htm#ims_cat_db_metadata_def_mapcases

Each map case has a unique ID. In an instance of the segment, the ID of the map case that is in effect is
stored in the control field when the segment is created.

Unless the IMS universal drivers are used, the field layouts that are defined by the map cases must
be defined to the application programs that access this byte range by a COBOL copybook or other
programming artifact. At the time a segment instance is accessed, the application programs determine
which copybook to use by checking the value of the control field.

When application programs access IMS through the IMS Universal drivers, no additional programming
artifacts are needed to define the field layouts to the application programs.

The format of the DFSCASE statement for all database types is shown in the following syntax diagram.

DFSCASE statement syntax diagram for all database types

DFSCASE NAME= case_name ,CASEID=  case_ID ,CASEIDTYPE=

X

C

,MAPNAME=  map_name

REMARKS=  remarks

DFSCASE statement parameter description

CASEID
A 1- to 128-byte field that defines a unique identifier for the case.

A segment instance specifies the CASEID value in a user-defined control field when part or all of the
field structure of the segment is mapped by this case.

When CASEIDTYPE=C, the CASEID field can contain alphanumeric characters, _, @, $, and #. Single
quotation marks are supported, but not required. Blanks are not supported.

When CASEIDTYPE=X, the only valid characters in the CASEID parameter are 0-9 and A-F.

The length of the CASEID value must be supported by the length of the user-defined control field. If
CASEIDTYPE=C, the length of the CASEID value must be less than or equal to the value specified on
the BYTES parameter of the control field. If CASEIDTYPE=X, the length of the CASEID value must be
exactly equal to twice the value specified on the BYTES parameter of the control field.

A case ID must be unique within the map that the case belongs to.

CASEIDTYPE
Defines the data type of the value specified in the CASEID parameter. Valid values are C, which
specifies Cp1047 (EBCDIC character encoding) and X, which specifies hexadecimal.

Depending on whether C or X is specified on CASEIDTYPE, the valid length of the CASEID value is
calculated differently. The length is valid when it is consistent with the length specified on the BYTES
parameter of the field referenced by the DEPENDINGON parameter in the DFSMAP statement. For
CASEIDTYPE=C, the length of the CASEID value must be less than or equal to the value specified on
the BYTES parameter. For CASEIDTYPE=X, the length of the CASEID value must be exactly equal to
twice the value specified on the BYTES parameter.

MAPNAME
The name of the map that this case belongs to, as specified on the NAME parameter in the DFSMAP
statement. This field is required.

NAME
A required 1- to 128-character, alphanumeric field that defines the name of this case. Blanks are not
supported.

A case name must be unique within a segment.

Chapter 2. Database Description (DBD) Generation utility 137

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

Mapping example: DFSMAP and DFSCASE

The following example shows how mapping might be used in the DBD source to define a single segment
that is used to store data about three different types of insurance policy: an auto insurance policy, a
home insurance policy, and a boat insurance policy. Each policy type requires different fields to hold the
information that is unique to that policy type.

In the DBD source, the fields for each policy type are mapped by a different DFSCASE statement. The
three map cases in the example are named AUTOMAP, HOMEMAP, and BOATMAP. The fields that make
up the map defined by a given DFSCASE statement each specify the name of the DFSCASE statement
that they belong to on the CASENAME parameter in their FIELD statement. The DFSCASE statements are
grouped by the DFSMAP statement POLICYMAPS in the segment CUSTOMERPOLICY.

The value specified on the CASEID parameter of each map case uniquely identifies the map case and
serves as the control field value. When a segment instance is first inserted into the database, the ID of
the map case that the segment instance uses is inserted into the control field. In the example, the control
field is named POLICYTYPE. At run time, when an application program retrieves the segment from the
database, the application program must evaluate the control field value to determine the correct mapping
of the fields.

 DBD NAME=POLICYDB, C
 ENCODING=CP1047, C
 ACCESS=(DEDB), C
 RMNAME=(RMOD3), C
 PASSWD=NO
 AREA DD1=PLCYAR01, C
 DEVICE=3330, C
 SIZE=(2048), C
 UOW=(15,10), C
 ROOT=(10,5), C
 REMARKS='AREA NUMBER 1 FOR POLICYDB DATABASE'
 SEGM NAME=CUSTOMER, C
 PARENT=0, C
 BYTES=(390,20)
 FIELD NAME=(CUSTKEY,SEQ,U), C
 BYTES=12, C
 START=1, C
 TYPE=C
 SEGM NAME=POLICY, C
 EXTERNALNAME=CUSTOMERPOLICY, C
 ENCODING=CP1047, C
 PARENT=CUSTOMER, C
 BYTES=(900), C
 TYPE=DIR, C
 RULES=(LLL,HERE)

138 IMS: System Utilities

* CONTROL FIELD:

 FIELD EXTERNALNAME=POLICYTYPE, C
 BYTES=4, C
 START=1, C
 DATATYPE=CHAR

* DFSMAP STATEMENT:

 DFSMAP NAME=POLICYMAPS, C
 DEPENDINGON=POLICYTYPE

* DFSCASE STATEMENT 1:

 DFSCASE NAME=AUTOMAP, C
 CASEID=AUTO, C
 CASEIDTYPE=C, C
 MAPNAME=POLICYMAPS, C
 REMARKS='DEFINES THE FIELDS OF AN AUTO INSURANCE POLICY'
 FIELD EXTERNALNAME=AUTOMAKE, C
 CASENAME=AUTOMAP, C
 BYTES=15, C
 START=5, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=MODEL, C
 CASENAME=AUTOMAP, C
 BYTES=15, C
 START=20, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=YEAR, C
 CASENAME=AUTOMAP, C
 BYTES=4, C
 START=35, C
 DATATYPE=CHAR

* DFSCASE STATEMENT 2:

 DFSCASE NAME=HOMEMAP, C
 CASEID=HOME, C
 CASEIDTYPE=C, C
 MAPNAME=POLICYMAPS, C
 REMARKS='DEFINES THE FIELDS OF A HOME INSURANCE POLICY'
 FIELD EXTERNALNAME=DWELLING_TYPE, C
 CASENAME=HOMEMAP, C
 BYTES=20, C
 START=5, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=ROOMS, C
 CASENAME=HOMEMAP, C
 BYTES=5, C
 START=25, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=SQ_FOOT, C
 CASENAME=HOMEMAP, C
 BYTES=6, C
 START=30, C
 DATATYPE=CHAR

* DFSCASE STATEMENT 3:

 DFSCASE NAME=BOATMAP, C
 CASEID=BOAT, C
 CASEIDTYPE=C, C
 MAPNAME=POLICYMAPS, C
 REMARKS='DEFINES THE FIELDS OF A BOAT INSURANCE POLICY'
 FIELD EXTERNALNAME=CLASS, C
 CASENAME=BOATMAP, C
 BYTES=10, C
 START=5, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=LENGTH, C
 CASENAME=BOATMAP, C
 BYTES=6, C
 START=15, C
 DATATYPE=CHAR
 FIELD EXTERNALNAME=BOATMAKE, C
 CASENAME=BOATMAP, C
 BYTES=10, C
 START=21, C
 DATATYPE=CHAR
 DBDGEN

Chapter 2. Database Description (DBD) Generation utility 139

 FINISH
 END

Related tasks
Defining alternative field maps for a segment (Database Administration)
Related reference
“FIELD statements” on page 101
The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.
“DFSMAP statements” on page 133
The DFSMAP statement enables the alternate mapping of fields within a segment.

DBDGEN, FINISH, and END statements
All DBD generation utility control statements must be followed by an END statement.

There are three additional utility statements. Two are required (DBDGEN and END) and one is optional
(FINISH).

The DBDGEN statement indicates the end of DBD generation statements used to define the DBD. This
statement is required. The following example shows the format of the DBDGEN statement for all database
types.

DBDGEN

The FINISH statement is optional and is retained for compatibility. The following example shows the
format of the FINISH statement for all database types.

FINISH

The END statement indicates the end of input statements to the assembler. This statement is required.
The following example shows the format of the END statement for all database types.

END

Examples of the DBDGEN utility
These examples show how to use the DBDGEN utility for DBD generation for different database types.

An application program through a database PCB can operate on any of the databases previously
described. The value of the DBDNAME= parameter on the database statement should equal the value
of the NAME= parameter on a DBD statement of DBD generation. The SENSEG statements following the
database statements in PSB generation should reference segments defined by SEGM statements in the
named DBD generation.

When a HIDAM database is used by an application program, the value of the DBDNAME= parameter on
the statement should equal the value of the NAME= parameter on the DBD statement for the HIDAM DBD
generation. The LCHILD statement in the HIDAM DBD provides IMS with the relationship to the necessary
INDEX DBD and index database. The INDEX DBD name should not be specified in the DBDNAME=
parameter of a database PCB.

Examples without secondary indexes or logical relationships
The DBD generation examples show the statements that are required to define HSAM, HISAM, HDAM,
HIDAM, primary HIDAM index, GSAM, MSDB, and DEDB databases without secondary indexes or logical
relationships.

Two data structures are shown in the following figure. One represents the hierarchic order of data used
in a payroll inventory data structure, which includes NAME, ADDRESS, and PAYROLL. The other structure

140 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_cat_db_metadata_def_mapcases.htm#ims_cat_db_metadata_def_mapcases

represents the hierarchic order of data used in a skills inventory data structure, which includes SKILL,
NAME, EXPERIENCE, and EDUCATION.

Figure 4. Payroll and skills inventory data structures

HSAM DBD generation example

The following examples show the DBD generation statements that define the skills inventory and payroll
data structures as HSAM databases.

HSAM DBD generation of skills inventory database

DBD NAME=SKILLINV,ACCESS=HSAM
DATASET DD1=SKILHSAM,DD2=HSAMOUT,BLOCK=1,
 RECORD=3000

SEGM NAME=SKILL,BYTES=31,FREQ=100, PARENT=0
FIELD NAME=TYPE,BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500,PARENT=SKILL
FIELD NAME=STDCLEVL,BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10,PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,FREQ=5,PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HSAM DBD generation of payroll database

DBD NAME=PAYROLDB,ACCESS=HSAM
DATASET DD1=PAYROLL,DD2=PAYOUT,BLOCK=1,RECORD=1000,

SEGM NAME=NAME,BYTES=150,FREQ=1000,PARENT=0
FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C
FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=ADDRESS,BYTES=200,FREQ=2,PARENT=NAME
FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C
FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1,PARENT=NAME
FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P
FIELD NAME=BASICPAY,BYTES=15,START=1,TYPE=P

Chapter 2. Database Description (DBD) Generation utility 141

DBDGEN
FINISH
END

HISAM DBD generation example

The following examples show the DBD generation statements that define the skills inventory and payroll
data structures as HISAM databases.

HISAM DBD generation of skills inventory SKILLINV database

DBD NAME=SKILLINV,ACCESS=HISAM
DATASET DD1=SKLHISAM,OVFLW=HISAMOVF,

SEGM NAME=SKILL,BYTES=31,FREQ=100
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500,PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10,PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,FREQ=5,PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HISAM DBD generation of payroll database

DBD NAME=PAYROLDB,ACCESS=HISAM
DATASET DD1=PAYROLL,OVFLW=PAYROLOV,

SEGM NAME=NAME,BYTES=150,FREQ=1000,PARENT=0
FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C
FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=ADDRESS,BYTES=200,FREQ=2,PARENT=NAME
FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C
FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1,PARENT=NAME
FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P
FIELD NAME=BASICPAY,BYTES=15,START=1,TYPE=P

DBDGEN
FINISH
END

HDAM DBD generation example

The following examples show the statements required to define the skills inventory data structure as
HDAM databases. The first example defines a database that uses hierarchic pointers, and the second
example defines a database that uses physical child and physical twin pointers. The third example defines
a database that uses the VERSION= and EXIT= parameters.

HDAM DBD generation of skills inventory SKILLINV database with hierarchic pointers

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(DFSHDC40,20,500,824)
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=H,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,PTR=H,PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

142 IMS: System Utilities

SEGM NAME=EXPR,BYTES=20,PTR=H,PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H,PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HDAM DBD generation of skills inventory database with physical child and physical twin pointers

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(DFSHDC40,20,500,824)
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HDAM DBD generation of skills inventory SKILLINV database with EXIT= and VERSION= parameters

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(DFSHDC40,20,500,824),VERSION=CCCCCC
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=A,BYTES=8,PTR=H,PARENT=0,EXIT=(EXITA)
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=B,BYTES=20,PTR=H,PARENT=SKILL,(EXIT=(EXITB,(CASCADE,KEY))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=C,BYTES=8,PTR=H,PARENT=A,EXIT=((EXITA,PATH),(EXITC))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H,PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HIDAM DBD generation example

A HIDAM database is indexed through the sequence field of its root segment type. In defining the
HIDAM and primary HIDAM index databases, an index relationship is established between the HIDAM
root segment type and the segment type defined in the primary HIDAM index database. The following
examples summarize the statements required to establish the index relationship between the HIDAM root
segment type and the index segment type in the primary HIDAM index database. Only those operands
pertinent to the index relationship are shown.

Primary HIDAM index relationship

HIDAM: INDEX:

DBD NAME=dbd1,ACCESS=HIDAM DBD NAME=dbd2,ACCESS=INDEX

Chapter 2. Database Description (DBD) Generation utility 143

SEGM NAME=seg1,BYTES=, SEGM NAME=seg2,BYTES=
 POINTER=

LCHILD NAME=(seg2,dbd2), LCHILD NAME=(seg1,dbd1),
 PTR=INDX INDEX=fld1

FIELD NAME=(fld1,SEQ,U), FIELD NAME=(fld2,SEQ,U),
 BYTES=,START= BYTES=,START=

The following examples show the statements that define the skills inventory data structure as two HIDAM
databases. The first is defined with hierarchic pointers, and the second is defined with physical child and
physical twin pointers. Since a HIDAM database is indexed on the sequence field of its root segment type,
an INDEX DBD generation is required. The following example shows the statements for the two HIDAM
DBD generations and the index DBD generation.

INDEX DBD generation for HIDAM database SKILLINV

DBD NAME=INDEXDB,ACCESS=INDEX
DATASET DD1=INDXDB1,
SEGM NAME=INDEX,BYTES=21,FREQ=10000
LCHILD NAME=(SKILL,SKILLINV),INDEX=SKILL
FIELD NAME=(INDXSEQ,SEQ,U),BYTES=21,START=1
DBDGEN
FINISH
END

HIDAM DBD generation of skills inventory database with hierarchic pointers

DBD NAME=SKILLINV,ACCESS=HIDAM
DATASET DD1=SKLHIDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=H,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C
LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

SEGM NAME=NAME,BYTES=20,PTR=H,PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=H,PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H,PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HIDAM DBD generation of skills inventory SKILLINV database with physical child and physical twin
pointers

DBD NAME=SKILLINV,ACCESS=HIDAM
DATASET DD1=SKLHIDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

144 IMS: System Utilities

FINISH
END

PHDAM DBD generation example

The following example shows the DBD generation of skills inventory database with physical child and
physical twin pointers for a PHDAM database.

 DBD NAME=SKILLINV,ACCESS=(PHDAM,OSAM),RMNAME=(DFSHDC40,20,500,824)
 SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
 FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
 FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C
 SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))

 FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C
 SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))
 FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
 FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C
 SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))
 FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
 FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C
 DBDGEN
 END

PHIDAM DBD generation example

The following example shows the DBD generation of skills inventory database with physical child and
physical twin pointers for a PHIDAM database. No index base definitions are required.

 DBD NAME=SKILLINV,ACCESS=PHIDAM
 SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
 FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
 FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C
 SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))
 FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C
 SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))
 FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
 FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C
 SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))
 FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
 FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C
 DBDGEN
 FINISH
 END

GSAM DBD generation example

The following example shows the DBD generation statements that define input and output data sets for a
GSAM database.

DBD NAME=CARDS,ACCESS=(GSAM,BSAM)
DATASET DD1=ICARDS,DD2=OCARDS,RECFM=F,RECORD=80
DBDGEN
FINISH
END

MSDB DBD generation examples

The following examples show the DBD generation statements necessary to define the three types of main
storage database DBDs.

Chapter 2. Database Description (DBD) Generation utility 145

DBD generation for a nonterminal-related MSDB without LTERM keys

DBD NAME=MSDBLM02,ACCESS=MSDB
DATASET REL=NO
SEGM NAME=LDM,BYTES=4
FIELD NAME=(FIELDSEQ,SEQ,U),BYTES=1,START=1,TYPE=X
DBDGEN
FINISH
END

DBD generation for a nonterminal-related MSDB with LTERM keys

DBD NAME=MSDBLM04,ACCESS=MSDB
DATASET REL=(TERM,FIELDLDM)
SEGM NAME=LDM,BYTES=52
FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDC01,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDH01,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDF01,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDC03,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDP01,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDP02,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDP03,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDH02,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDF02,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDH03,BYTES=2,START=50,TYPE=H
DBDGEN
FINISH
END

DBD generation for a fixed terminal-related MSDB

DBD NAME=MSDBLM05,ACCESS=MSDB
DATASET REL=(FIXED,FIELDLDM)
SEGM NAME=LDM,BYTES=52
FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDC01,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDH01,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDF01,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDC03,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDP01,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDP02,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDP03,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDH02,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDF02,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDH03,BYTES=2,START=50,TYPE=H
DBDGEN
FINISH
END

DBD generation for a dynamic terminal-related MSDB

DBD NAME=MSDBLM06,ACCESS=MSDB
DATASET REL=(DYNAMIC,FIELDLDM)
SEGM NAME=LDM,BYTES=52
FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDC01,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDH01,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDF01,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDC03,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDP01,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDP02,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDP03,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDH02,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDF02,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDH03,BYTES=2,START=50,TYPE=H
DBDGEN
FINISH
END

146 IMS: System Utilities

Data entry database DBD generations example

The following example shows the DBD generation statements necessary to define a data entry database
DBD.

DEDB1 DBD NAME=DEDB0001,ACCESS=DEDB,RMNAME=RMOD1
AREA0 AREA DD1=DB1AREA0, AREA 0
 SIZE=1024,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA1 AREA DD1=DB1AREA1, AREA 1
 SIZE=1024,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA2 AREA DD1=DB1AREA2, AREA 2
 SIZE=1024,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA3 AREA DD1=DB1AREA3, AREA 3
 SIZE=4096,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA4 AREA DD1=DB1AREA4, AREA 4
 MODEL=1,SIZE=2048,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA5 AREA DD1=DB1AREA5, AREA 5
 SIZE=4096,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA6 AREA DD1=DB1AREA6, AREA 6
 SIZE=1024,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
AREA7 AREA DD1=DB1AREA7, AREA 7
 SIZE=2048,
 ROOT=(10,5), 5 UOW'S/AREA
 UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
ROOTSEG SEGM NAME=ROOTSEG1,PARENT=0,BYTES=(300,50)
ROOTLFLD FIELD NAME=(ROOTKEY1,SEQ,U),BYTES=8,START=3,TYPE=C
SDSEG SEGM NAME=SDSEGNM1,PARENT=ROOTSEG1,BYTES=(300,50),
 TYPE=SEQ
SDFLD FIELD NAME=SDSCFLD1,BYTES=10,START=3,TYPE=C
DDSEG SEGM NAME=DDSEGNM1,PARENT=ROOTSEG1,
 BYTES=(40,15),TYPE=DIR
DDFLD1 FIELD NAME=(DD1FLD1,SEQ,U),BYTES=4,START=6
DDFLD2 FIELD NAME=DD1FLD2,BYTES=5,START=10,TYPE=P
 DBDGEN
 FINISH
 END

DBD generation of DEDB subset pointers example

The following example shows the DBD generation statements necessary to define a DEDB with subset
pointers.

DBD NAME=DEDBDB,ACCESS=DEDB,RMNAME=DBFHD040
AREA DD1=DEDBDD,SIZE=1024,
 ROOT=(10,5),UOW=(15,10)
SEGM NAME=A,BYTES=(48,27),PARENT=0
FIELD NAME=(A1,SEQ,U),BYTES=10,START=3,TYPE=C
SEGM NAME=B,BYTES=(24,11),PARENT=((A,SNGL)),TYPE=DIR,SSPTR=5
FIELD NAME=(B1,SEQ,U),BYTES=5,START=3,TYPE=C
FIELD NAME=B2,BYTES=5,START=10,TYPE=C
SEGM NAME=C,BYTES=(34,32),PARENT=((B,DBLE)),RULES=(,HERE),TYPE=DIR
FIELD NAME=(C1,SEQ,U),BYTES=20,START=3,TYPE=C
SEGM NAME=D,BYTES=(52,33),PARENT=((A,DBLE)),TYPE=DIR,SSPTR=3
FIELD NAME=(D1,SEQ,U),BYTES=2,START=3,TYPE=C
SEGM NAME=B,BYTES=(52,33),PARENT=((A,DBLE)),RULES=(,FIRST),TYPE=DIR
FIELD NAME=(B1,SEQ,U),BYTES=2,START=3,TYPE=C
DBDGEN
FINISH
END

Note: SSPTR=n, where n indicates the number of subset pointers

Chapter 2. Database Description (DBD) Generation utility 147

Examples with logical relationships
You can define three types of logical relationships: unidirectional, bidirectional physically paired, and
bidirectional virtually paired.

The following figure shows the three types of logical relationships that can be defined in IMS databases.
The tables that follow the figure define the statements that are required to define each type of
relationship. Only the operands pertinent to the relationship are shown, and it is assumed that each
type of relationship is defined between segments in two databases named DBD1 and DBD2.

Figure 5. Comparison of unidirectional, physically paired bidirectional, and virtually paired bidirectional
logical relationships

The following tables show statements that are required to define each type of relationship. Only the
operands pertinent to the relationship are shown, and it is assumed that each type of relationship is
defined between segments in two databases named DBD1 and DBD2.

148 IMS: System Utilities

Table 11. Statements that are required to define unidirectional logical relationships

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG1,PARENT=
 ,BYTES=,FREQ=
 ,POINTER=,RULES=

SEGM NAME=SEG3,PARENT=
 ,BYTES=,FREQ=,POINTER=
 ,RULES=

SEGM NAME=SEG2
 ,PARENT=((SEG1,)
 ,SEG3,PHYSICAL,DBD2))1
 ,BYTES=,FREQ=
 ,POINTER=(LPARNT)1
 ,RULES=

LCHILD NAME=(SEG2,DBD1)

Note:

1. Specify symbolic or direct logical parent pointer. The direct-access pointer can be specified only
when the logical parent is in an HDAM, HIDAM, PHDAM or HIDAM database.

Table 12. Statements that are required to define physically paired bidirectional logical relationships

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG1,PARENT=
 ,BYTES=,FREQ,=
 ,POINTER=,RULES=

SEGM NAME=SEG3,PARENT=
 ,BYTES=,FREQ=
 ,POINTER=,RULES=

LCHILD NAME=(SEG4,DBD2)
 ,PAIR=SEG2

LCHILD NAME=(SEG2,DBD1)
 ,PAIR=SEG4

SEGM NAME=SEG2
 ,PARENT=((SEG1,)
 ,(SEG3,PHYSICAL,DBD2))1
 ,BYTES=,FREQ=
 ,POINTER=(LPARNT,PAIRED)1
 ,RULES=

SEGM NAME=SEG4
 ,PARENT=((SEG3,)
 ,(SEG1,PHYSICAL,DBD1))1
 ,BYTES=,FREQ=
 ,POINTER=(LPARNT,PAIRED)1
 ,RULES=

Note:

1. Specify symbolic or direct logical parent pointer. The direct-access pointer can be specified only
when the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.

Table 13. Statements that are required to define virtually paired bidirectional logical relationship

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG1,PARENT=
 ,BYTES=,FREQ=
 ,POINTER=,RULES=

SEGM NAME=SEG3,PARENT=
 ,BYTES=,FREQ=
 ,POINTER=,RULES=

SEGM NAME=SEG4
 ,PARENT=SEG3
 ,POINTER=PAIRED
 ,SOURCE=((SEG2,DATA,DBD1))

Chapter 2. Database Description (DBD) Generation utility 149

Table 13. Statements that are required to define virtually paired bidirectional logical relationship
(continued)

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG2
 ,PARENT=((SEG1,)
 ,(SEG3,PHYSICAL,DBD2))1
 ,BYTES=,FREQ=
 ,POINTER=(LTWIN,LPARNT)2
 ,RULES=

LCHILD NAME=(SEG2,DBD1)
 ,POINTER=SNGL3
 ,PAIR=SEG4
 ,RULES=3

Notes:

1. Specify symbolic or direct logical parent pointer. The direct-access pointer can be specified only
when the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.

2. Specify LTWIN or LTWINBWD for logical twin pointers.
3. Specify DNGL or DBLE for logical child pointers. The LCHILD RULES= parameter is used when either

no sequence field or a nonunique sequence field has been defined for the virtual logical child or when
the virtual logical child segment does not exist.

In the Virtually Paired Bidirectional Logical Relationship area of the following figure, a HISAM database
can participate in a virtually paired logical relationship only when the real logical child is in an HDAM,
HIDAM, PHDAM, or PHIDAM database and its logical parent is in the HISAM database.

The following figure illustrates how logical relationships and logical databases are defined. Part 1 depicts
the physical data structures of a payroll database and a skills inventory database. Part 2 depicts the
logical relationship between the physical data structures, NAMEMAST (in the Payroll database) and
SKILNAME (in the Skills inventory database). Part 3 depicts the logical databases (SKILL and NAME) that
can be defined as a result of the logical relationships. The new databases contain segments from both the
NAMEMAST structure and the SKILNAME structure. Examples of DBD generation statements follow the
figure.

150 IMS: System Utilities

Figure 6. Logical relationship between physical databases and the resulting logical databases that can be
defined

DBD generation statements examples

The following example shows the DBD generation statements necessary to define:

• The payroll and skills inventory data structures depicted in Part 2 of the preceding figure as a HIDAM
and HDAM database with a virtually paired bidirectional logical relationship between the two databases

• The logical data structures depicted in Part 3 of the preceding figure as logical databases

DBD NAME=PAYROLDB,ACCESS=HIDAM
DATASET DD1=PAYHIDAM,BLOCK=4096,SCAN=0
SEGM NAME=NAMEMAST,PTR=TWINBWD,RULES=(VVV), X
 BYTES=150

Chapter 2. Database Description (DBD) Generation utility 151

LCHILD NAME=(INDEX,INDEXDB),PTR=INDX
LCHILD NAME=(SKILNAME,SKILLINV),PAIR=NAMESKIL,PTR=DBLE
FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C
FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C
SEGM NAME=NAMESKIL,PARENT=NAMEMAST,PTR=PAIRED, X
 SOURCE=((SKILNAME,DATA,SKILLINV))
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDLEVL,BYTES=20,START=22,TYPE=C
SEGM NAME=ADDRESS,BYTES=200,PARENT=NAMEMAST
FIELD NAME=(HOMEADDR,SEQ,U),BYTES=100,START=1,TYPE=C
FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C
SEGM NAME=PAYROLL,BYTES=100,PARENT=NAMEMAST
FIELD NAME=(BASICPAY,SEQ,U),BYTES=15,START=1,TYPE=P
FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P
DBDGEN
FINISH
END

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(DFSHDC40,20,500,824)
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0
SEGM NAME=SKILMAST,BYTES=31,PTR=TWINBWD
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C
SEGM NAME=SKILNAME, X
 PARENT=((SKILMAST,DBLE),(NAMEMAST,P,PAYROLDB)), X
 BYTES=80,PTR=(LPARNT,LTWINBWD,TWINBWD), X
 RULES=(VVV)
FIELD NAME=(EMPLOYEE,SEQ,U),START=1,BYTES=60,TYPE=C
FIELD NAME=(STDLEVL),BYTES=20,START=61,TYPE=C
SEGM NAME=EXPR,BYTES=20,PTR=T, X
 PARENT=((SKILNAME,SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C
SEGM NAME=EDUC,BYTES=75,PTR=T, X
 PARENT=((SKILNAME,SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C
DBDGEN
FINISH
END

DBD NAME=LOGICDB,ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=SKILL,SOURCE=((SKILMAST,,SKILLINV))
SEGM NAME=NAME,PARENT=SKILL, X
 SOURCE=((SKILNAME,,SKILLINV),(NAMEMAST,,PAYROLDB))
SEGM NAME=ADDRESS,PARENT=NAME,SOURCE=((ADDRESS,,PAYROLDB))
SEGM NAME=PAYROLL,PARENT=NAME,SOURCE=((PAYROLL,,PAYROLDB))
SEGM NAME=EXPR,PARENT=NAME,SOURCE=((EXPR,,SKILLINV))
SEGM NAME=EDUC,PARENT=NAME,SOURCE=((EDUC,,SKILLINV))
DBDGEN
FINISH
END

BD NAME=LOGIC1,ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=NAME,SOURCE=((NAMEMAST,,PAYROLDB))
SEGM NAME=ADDRESS,PARENT=NAME,SOURCE=((ADDRESS,,PAYROLDB))
SEGM NAME=PAYROLL,PARENT=NAME,SOURCE=((PAYROLL,,PAYROLDB))
SEGM NAME=SKILL,PARENT=NAME, X
 SOURCE=((NAMESKIL,,PAYROLDB),(SKILMAST,,SKILLINV))
SEGM NAME=EXPR,SOURCE=((EXPR,,SKILLINV)),PARENT=SKILL
SEGM NAME=EDUC,SOURCE=((EDUC,,SKILLINV)),PARENT=SKILL
DBDGEN
FINISH
END

Related concepts
Creating logical relationships (Database Administration)

Examples with secondary indexes
These examples show the statements that are required to establish a secondary index relationship
between a segment type in an indexed database and a segment type in a secondary index database.

The statements required when the index target and index source segment types are the same are shown
in the following table.

152 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_logrelation.htm#ims_logrelation

Table 14. Same index source and target segment types

Indexed DBD Index DBD

DBD NAME=DBD1,ACCESS=
 .
 .
 .
SEGM NAME1=SEG1,PARENT=
 ,BYTES
FIELD NAME=(FLD2,SEQ,...),BYTES=
FIELD NAME=FLD1,BYTES=
 ,START

LCHILD NAME=(SEG3,DBD2),
 POINTER2=INDX

XDFLD NAME=XDNAME,SRCH=FLD1

DBD NAME=DBD2,ACCESS=INDEX
 .
 .
 .
SEGM NAME=SEG3,PARENT=0,BYTES=

FIELD NAME=(FLD2,SEQ,...),BYTES=
 ,START=1

LCHILD NAME=(SEG1,DBD1),
 INDEX=XDNAME,POINTER2=SNGL

Notes:

1. The index target segment type can be a root or a dependent segment type; it must not be either a
logical child segment type or a dependent of a logical child segment type. The index source segment
type must not be a logical child segment type.

2. The example is shown with direct pointers for the index pointer segment types in the index DBD.
If symbolic pointing is desired, POINTER=SYMB should be specified on both LCHILD statements;
symbolic pointing is required when the index target segment type is in a HISAM database.

In the following table, the index target and index source segment types are different. In both this table
and the preceding one, only those operands pertinent to the secondary index relationships are shown.

Table 15. Different index source and target segment types

Indexed DBD Index DBD

DBD NAME=DBD1,ACCESS=
 .
 .
 .
SEGM NAME1=SEG1,BYTES=,PARENT=

LCHILD NAME=(SEG4,DBD2),
 POINTER2=INDX

XDFLD NAME=XDNAME,SEGMENT=SEG3,
 SRCH=FLD3,...

SEGM NAME=SEG2,BYTES=
 ,PARENT=SEG1

SEGM NAME1=SEG3
 ,PARENT=SEG2

FIELD NAME=FLD3,BYTES=
 ,START=

DBD NAME=DBD2,ACCESS=INDEX
 .
 .
 .
SEGM NAME=SEG4,PARENT=0,BYTES=

FIELD NAME=(FLD4,SEQ,...)
 ,START=1,BYTES=

LCHILD NAME=(SEG1,DBD1),
 INDEX=XDNAME,POINTER2=SNGL

Notes:

1. The index target segment type can be a root or a dependent segment type. It must not be either a
logical child segment type or a dependent of a logical child segment type. The index source segment
type must not be a logical child segment type.

2. The example is shown with direct pointers for the index pointer segment types in the index DBD.
If symbolic pointing is desired, POINTER=SYMB should be specified on both LCHILD statements;
symbolic pointing is required when the index target segment type is in a HISAM database.

Chapter 2. Database Description (DBD) Generation utility 153

Example DBDs for full-function secondary index databases

The following figure shows a database, DTA1, that is indexed by two secondary index databases. The first
secondary index, X1, uses the same segment for its index target segment and index source segment; the
second secondary index, X2, has an index target segment that is different from its index source segment.

Figure 7. Database indexed by two secondary indexes

The following figure shows the DBD generation statement that defines the indexed database.

DBD NAME=DTA1,ACCESS=HDAM,RMNAME=(DFSHDC40,20,500,824)
DATASET DD1=D1
SEGM NAME=DA,PARENT=0,BYTES=15
FIELD NAME=(DAF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X1SEG,X1),PTR=INDX
XDFLD NAME=DAF1X,SRCH=DAF1
SEGM NAME=DB,PARENT=DA,BYTES=20
FIELD NAME=(DBF1,SEQ),BYTES=5,START=1
SEGM NAME=DC,PARENT=DA,BYTES=20
FIELD NAME=(DCF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X2SEG,X2),PTR=SYMB
XDFLD NAME=DCF1X,SRCH=DEF1,SEGMENT=DE
SEGM NAME=DD,PARENT=DC,BYTES=25
FIELD NAME=(DDF1,SEQ),BYTES=5,START=1
SEGM NAME=DE,PARENT=DC,BYTES=25
FIELD NAME=(DEF1,SEQ),BYTES=5,START=1
DBDGEN
FINISH
END

The following figure shows the DBD generation statement that defines the secondary index database X1.

DBD NAME=X1,ACCESS=INDEX
DATASET DD1=X1P
SEGM NAME=X1SEG,BYTES=5,PARENT=0
FIELD NAME=(X1F1,SEQ,U),START=1,BYTES=5
LCHILD NAME=(DA,DTA1),INDEX=DAF1X,POINTER=SNGL
DBDGEN
FINISH
END

154 IMS: System Utilities

The following figure shows the DBD generation statement that defines the secondary index database X2.

DBD NAME=X2,ACCESS=INDEX
DATASET DD1=X2P
SEGM NAME=X2SEG,BYTES=5,PARENT=0
FIELD NAME=(X2F1,SEQ,U),START=1,BYTES=5
LCHILD NAME=(DC,DTA1),INDEX=DCF1X,POINTER=SYMB
DBDGEN
FINISH
END

Example DBDs for Fast Path secondary index databases

The following example shows a HISAM secondary index database DBD using unique key pointer
segments.

DBDX DBD NAME=NAMESXDB,ACCESS=(INDEX,VSAM),FPINDEX=YES
 DATASET DD1=NAMEKSDS
 SEGM NAME=NAMEXSEG,PARENT=0,BYTES=15
 FIELD NAME=(NAMESKEY,SEQ,U),BYTES=10,START=1
 LCHILD NAME=(COURSE,EDUCDB),INDEX=NAMEINDX,PTR=SYMB
 DBDGEN
 FINISH
 END

The following example shows a HISAM secondary index database DBD using non-unique key pointer
segments.

DBDX DBD NAME=NAMESXDB,ACCESS=(INDEX,VSAM),FPINDEX=YES
 DATASET DD1=NAMEKSDS,OVFLW=NAMEESDS
 SEGM NAME=NAMEXSEG,PARENT=0,BYTES=15
 FIELD NAME=(NAMESKEY,SEQ,M),BYTES=10,START=1
 LCHILD NAME=(COURSE,EDUCDB),INDEX=NAMEINDX,PTR=SYMB
 DBDGEN
 FINISH
 END

The following example shows a SHISAM secondary index database DBD using unique key pointer
segments.

DBDX DBD NAME=NAMESXDB,ACCESS=(INDEX,SHISAM),FPINDEX=YES
 DATASET DD1=NAMEKSDS
 SEGM NAME=NAMEXSEG,PARENT=0,BYTES=15
 FIELD NAME=(NAMESKEY,SEQ,U),BYTES=10,START=1
 LCHILD NAME=(COURSE,EDUCDB),INDEX=NAMEINDX,PTR=SYMB
 DBDGEN
 FINISH
 END

The following three examples illustrate DEDB DBD definitions with secondary indexes, multiple secondary
index segments, and a user partition defined.

The following example shows a primary DEDB database DBD with secondary indexing defined.

There are three secondary index databases defined for primary DEDB EDUCDB database: NAMESXDB,
CLASSXDB, and INSTSXDB secondary index databases. The target segment for NAMESXDB secondary
index is a root segment. The target segment, COURSE segment, for NAMESXDB is the same as the source
segment. The target segments for CLASSXDB and INSTSXDB secondary indexes are not a root segment.
The target segment, CLASS segment, for CLASSXDB is the same as the source segment. The target
segment, INSTRUCT segment, for INSTSXDB is not the same as the source segment, COURSE segment.

DBD1 DBD NAME=EDUCDB,ACCESS=DEDB,RMNAME=RMOD3
 AREA NAME=EDAREA1,SIZE=1024,UOW=(100,10),ROOT=(236,36)

 SEGM NAME=COURSE,PARENT=0,BYTES=100
 FIELD NAME=(COURNO,SEQ,U),BYTES=5,START=1
 FIELD NAME=COURNAME,BYTES=10,START=15

 LCHILD NAME=(NAMEXSEG,NAMESXDB),PTR=SYMB

Chapter 2. Database Description (DBD) Generation utility 155

 XDFLD NAME=NAMEINDX,SRCH=COURNAME

 SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
 FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7
 FIELD NAME=CLASNAME,BYTES=10,START=15

 LCHILD NAME=(CLASXSEG,CLASSXDB),PTR=SYMB
 XDFLD NAME=CLASINDX,SRCH=CLASNAME

 LCHILD NAME=(INSTXSEG,INSTSXDB),PTR=SYMB
 XDFLD NAME=INSTINDX,SEGMENT=INSTRUCT,SRCH=INSTNAME

 SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
 FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
 FIELD NAME=INSTPHNO,BYTES=10,START=11
 FIELD NAME=INSTNAME,BYTES=20,START=21

 SEGM NAME=STUDENT,BYTES=50,PARENT=CLASS
 FIELD NAME=(STUDNO,SEQ,U),BYTES=6,START=1
 FIELD NAME=STUDPHNO,BYTES=10,START=11
 FIELD NAME=STUDNAME,BYTES=20,START=21
 FIELD NAME=ENRLDATE,BYTES=6,START=41

 DBDGEN
 FINISH
 END

The following example shows a DEDB database DBD with multiple secondary index segments defined.
The LCHILD statements define the same secondary index segment name (NAMEXSEG segment in the
secondary database) and the same secondary index database name (NAMESXDB database). The XDFLD
statements define the same sequence field name (NAMEINDX) for the secondary index segments with the
different search fields (COURNAME and COURSECT) from the same source segment (COURSE segment).

The target segment of COURSE can be located using either a secondary index of course name
(COURNAME) or a secondary index of course section number (COURSECT).

The search key lengths of the multiple secondary index segments (COURNAME and COURSECT) must be
identical. In this example, they are both 10 bytes.

DBD1 DBD NAME=EDUCMDB,ACCESS=DEDB,RMNAME=RMOD3
 AREA NAME=EDMAREA1,SIZE=1024,UOW=(100,10),ROOT=(236,36)

 SEGM NAME=COURSE,PARENT=0,BYTES=100
 FIELD NAME=(COURNO,SEQ,U),BYTES=5,START=1
 FIELD NAME=COURNAME,BYTES=10,START=15
 FIELD NAME=COURSECT,BYTES=10,START=25

 LCHILD NAME=(NAMEXSEG,NAMESXDB),PTR=SYMB,MULTISEG=YES
 XDFLD NAME=NAMEINDX,SRCH=COURNAME
 LCHILD NAME=(NAMEXSEG,NAMESXDB),PTR=SYMB,MULTISEG=YES
 XDFLD NAME=NAMEINDX,SRCH=COURSECT

 SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
 FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7
 FIELD NAME=CLASNAME,BYTES=10,START=15

 SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
 FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
 FIELD NAME=INSTPHNO,BYTES=10,START=11
 FIELD NAME=INSTNAME,BYTES=20,START=21

 SEGM NAME=STUDENT,BYTES=50,PARENT=CLASS
 FIELD NAME=(STUDNO,SEQ,U),BYTES=6,START=1
 FIELD NAME=STUDPHNO,BYTES=10,START=11
 FIELD NAME=STUDNAME,BYTES=20,START=21
 FIELD NAME=ENRLDATE,BYTES=6,START=41
 DBDGEN
 FINISH
 END

The following example shows a primary DEDB database DBD with secondary indexing defined using user
partitioning for a HISAM secondary index database or a SHISAM secondary index database. There are two
user partitions specified on the LCHILD statement: NAMSXDB1 and NAMSXDB2.

156 IMS: System Utilities

PSELRTN=DBFPSE00 is the user partition selection exit. The user partition selection option is
PSELOPT=SNGL which indicates only the selected user partition database is used to access the primary
DEDB database in the user partition group. When subsequent qualified GN calls with no SSA using the
PCB with the PROCSEQD= parameter are issued, a GB status code is returned to an application to indicate
end of database after the last pointer segment in the selected user partition is used to access the
segment in the primary DEDB database.

DBD1 DBD NAME=EDUCUDB,ACCESS=DEDB,RMNAME=RMOD3
 AREA NAME=EDUAREA1,SIZE=1024,UOW=(100,10),ROOT=(236,36)

 SEGM NAME=COURSE,PARENT=0,BYTES=100
 FIELD NAME=(COURNO,SEQ,U),BYTES=5,START=1
 FIELD NAME=COURNAME,BYTES=10,START=15

 LCHILD NAME=(NAMEXSEG,(NAMESXB1,NAMSXDB2)),PTR=SYMB
 XDFLD NAME=XNAME,SRCH=COURNAME,PSELRTN=DBFPSE00,PSELOPT=SNGL

 SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
 FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7
 FIELD NAME=CLASNAME,BYTES=10,START=15

 SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
 FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
 FIELD NAME=INSTPHNO,BYTES=10,START=11
 FIELD NAME=INSTNAME,BYTES=20,START=21

 SEGM NAME=STUDENT,BYTES=50,PARENT=CLASS
 FIELD NAME=(STUDNO,SEQ,U),BYTES=6,START=1
 FIELD NAME=STUDPHNO,BYTES=10,START=11
 FIELD NAME=STUDNAME,BYTES=20,START=21
 FIELD NAME=ENRLDATE,BYTES=6,START=41

 DBDGEN
 FINISH
 END

Related concepts
Creating secondary indexes (Database Administration)

Running the DBDGEN procedure
Running the DBDGEN procedure is a two step assemble and bind procedure that produces database
definition blocks. The procedure is built during SMP/E processing and named DFSDBDGN in the
ADFSPROC and SDFSPROC data sets. Use the DFSPROCB JCL to rename DFSDBDGN to DBDGEN.

Recommendations

Currently, no recommendations are documented for the DBD Generation utility.

JCL for the DBDGEN utility

The following example shows the JCL for the DBDGEN utility.

// PROC MBR=TEMPNAME,SOUT=A,RGN=0M,SYS2=,
// NODE1=IMS,
// NODE2=IMS
//C EXEC PGM=ASMA90,REGION=&RGN,
// PARM=(OBJECT,NODECK,NODBCS,
// 'SIZE(MAX,ABOVE)')
//SYSLIB DD DSN=&NODE2..&SYS2.SDFSMAC,DISP=SHR
//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),
// SPACE=(80,(100,100),RLSE),
// DCB=(BLKSIZE=80,RECFM=F,LRECL=80)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,
// SPACE=(121,(300,300),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// SPACE=(CYL,(10,5))
//L EXEC PGM=IEWL,PARM='XREF,LIST',
// COND=(0,LT,C),REGION=4M
//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)

Chapter 2. Database Description (DBD) Generation utility 157

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_secindexes.htm#ims_secindexes

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,
// SPACE=(121,(90,90),RLSE)
//SYSLMOD DD DISP=SHR,
// DSN=&NODE1..&SYS2.DBDLIB(&MBR)
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),
// SPACE=(1024,(100,10),RLSE),DISP=(,DELETE)

Procedure to invoke the DBDGEN

To process a request for a DBDGEN, the DBD generation control statements must be created and
appended to the JCL (shown in the following figure) which invokes the DBDGEN procedure.

//DBDGEN JOB
// EXEC DBDGEN,MBR=
//C.SYSIN DD *

 DBD
 DATASET
 SEGM
 FIELD DBD generation control statements
 LCHILD
 XDFLD
 DBDGEN
 FINISH
 END
/*

JCL parameters

MBR=
Is the name of the DBD to be generated. This name should be the same as the first name specified
for the NAME= keyword on the DBD statement. The first database name becomes the DBD member
name and, in the case of a shared secondary index, the additional names are added as aliases. When
a database PCB relates to this DBD generation, one of the names specified in the NAME= keyword
on the DBD statement must be the name used in the DBDNAME= keyword on the database PCB
statement. Except for a shared secondary index, the name used in the DBDNAME= keyword on the
database PCB statement must be the same as the name used in the MBR= keyword value.

RGN=
Specifies the region size for this execution. The default is 256 KB.

SOUT=
Specifies the class assigned to SYSOUT DD statements.

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period; for example, SYS2='IMSA.'.

Step C

Step C is the assembly step. The following DD statement is needed for this step.

SYSIN DD
Defines the input data sets to step C. These DD statements must be provided when invoking the
procedure.

Step L

Step L is the bind step.

Example: This step can be run using AMODE=31, RMODE=24 instead of the default AMODE=24,
RMODE=24 by adding AMODE=31 to the bind EXEC statement PARM list as shown as follows:

//L EXEC PGM=IEWL,PARM='XREF,LIST,AMODE=31',
// COND=(0,LT,C),REGION=120K

158 IMS: System Utilities

If you do not specify different values for AMODE or RMODE, the default values are in effect. You must
always run the bind step with RMODE=24. The following DD statement is needed for this step.

IMS.DBDLIB DD
Defines an output partitioned data set, IMS.DBDLIB, for the binder.

Chapter 2. Database Description (DBD) Generation utility 159

160 IMS: System Utilities

Chapter 3. MFS Device Characteristics Table utility
(DFSUTB00)

Use the Message Format Service Device Characteristics Table (MFSDCT) utility (DFSUTB00) to define
new screen sizes in a descriptor member of the IMS.PROCLIB library without performing an IMS system
definition. These new screen size definitions are added to the screen sizes that were previously defined.

The MFSDCT (DFSUTB00) utility procedure consists of the following steps:

1. The DFSUTB00 program is executed to initiate several functions. The DFSUTB00 program:

• Reads one or two descriptor members from PROCLIB and uses only the new device descriptors as
input.

• Builds DCTENTRY statements for each device descriptor.
• Optionally loads an existing device characteristics table from JOBLIB/STEPLIB data sets (usually

from the IMS.SDFSRESL library) and then builds DCENTRY statements for each DCT entry.
• Invokes the assembler, passing the DCTENTRY statements and the DCTBLD and MFSINIT macros as

input.
• Readies the output from the assembler as an updated or new device characteristics table and

as a new set of default MFS format definitions. (This output is split into separate files for later
processing.)

2. The assembler is invoked to assemble the new device characteristics table.
3. The binder is invoked to bind the new device characteristics table into the IMS.SDFSRESL.
4. Phase 1 of the MFS Language utility generates new default MFS format control blocks.
5. Phase 2 of the MFS Language utility puts the new default MFS format control blocks into the

IMS.FORMAT library.

Subsections:

• “Restrictions” on page 161
• “Prerequisites” on page 161
• “Requirements” on page 161
• “Recommendations” on page 162
• “JCL specifications” on page 162
• “Return codes” on page 163

Restrictions

The following restrictions apply to this utility:

• The utility ignores all other descriptors while reading the one or two descriptor members from PROCLIB.
• At least one device descriptor must be specified or the utility terminates.

Prerequisites

Currently, no prerequisites are documented for the DFSUTB00 utility.

Requirements

To run the DFSUTB00 utility you must satisfy MFS device description format requirements.

© Copyright IBM Corp. 1974, 2020 161

MFS device descriptors are used by the MFS Device Characteristics Table utility to update screen size in
the DCT and generate new MFS default formats without system definition.

Recommendations

Currently, no recommendations are documented for the DFSUTB00 utility.

JCL specifications

The MFSDCT procedure requires the procedure statement, the EXEC statement, DD statements, and MFS
device descriptions.

Procedure statement

The procedure statement must be in the form shown in the following example.

PROC RGN=4M,SOUT=A,SYS2=,PXREF=NOXREF,
PCOMP=NOCOMP,PSUBS=NOSUBS,PDIAG=NODIAG,
COMPR=NOCOMPRESS,COMPR2=COMPRESS,
LN=55,SN=8,DEVCHAR=0,COMPR3=NOCOMPREND,
DIRUPDT=UPDATE,DCTSUF=,
DSCTSUF=,DSCMSUF=,FMTMAST=N

In addition to the optional keyword parameters, you might need to specify the following parameters
depending on the other parameters you specify. (x is the alphanumeric suffix character that you are
appending to the member name.)

DCTSUF=x
Specifies the suffix character to be appended to DFSUDT0. The name DFSUDT0x identifies the device
characteristics table to which new definitions are added. This suffix character corresponds to the
value specified in the SUFFIX= keyword of the IMSGEN macro. If a suffix character is not specified, a
completely new device characteristics table is built from just the device descriptors.

DSCTSUF=x
Specifies the suffix character to be appended to DFSDSCT. The name DFSDSCTx identifies a descriptor
member. This suffix character corresponds to the value specified in the IMS procedure DSCT=
keyword. This parameter is required if DSCMSUF= is not specified.

DSCMSUF=x
Specifies the suffix character to be appended to DFSDSCM. The name DFSDSCMx identifies a
descriptor member. This suffix character corresponds to the value specified in the SUFFIX= keyword
of the IMSGEN macro. This parameter is required if DSCTSUF= is not specified.

FMTMAST=Y/N
Specifies whether (Y) or not (N) the IMS-provided support for MFS is to be used on the master
terminal.

EXEC statement

The EXEC statement determines that a device characteristics table is created. It also specifies the name
for the desired descriptor member and the name of the updated or new device characteristics table. Each
of the five steps in this procedure names a different program for execution.

The following figure shows the five steps of the MFSDCT (DFSUTB00) utility.

//S1 EXEC PGM=DFSUTB00,REGION=&RGN,
// PARM=('DCTSUF=&DCTSUF,DSCTSUF=&DSCTSUF'
// 'DSCMSUF=&DSCMSUF,DEVCHAR=&DEVCHAR')
//S2 EXEC PGM=ASMA90,REGION=&RGN,
// PARM=('OBJECT,NODECK,NOLIST',
// COND=(0,LT)'

162 IMS: System Utilities

//S3 EXEC PGM=IEWL,
// PARM=('SIZE=880K,64K),NCAL,LET,REUS,XREF,LIST',
// REGION=&RGN,
// COND=(0,LT)
//S4 EXEC PGM=DFSUPAA0,REGION=&RGN,
// PARM=(&PXREF,&PCOMP,&PSUBS,&PDIAG,&COMPR,;
// 'LINECNT=&LN,STOPRC=&SN,DEVCHAR=&DEVCHAR'),
// COND=(0,LT)
//S5 EXEC PGM=DFSUNUB0,REGION=&RGN,
// PARM=(&COMPR2,&COMPR3,&DIRUPDT,;
// 'DEVCHAR=&DEVCHAR'),COND=((0,LT,S1),
// (0,LT,S2),(0,LT,S3),(8,LT,S4))

DD statements

The following ddnames are used in step 1 of the MFSDCT procedure.

DCT
Defines the temporary data set for the updated or new device characteristics table as output from the
assembler with the ddname SYSLIN (step 2) and as input to the binder with ddname DCT (step 3).

DCTIN
Defines a temporary data set for the device characteristics table as input to the assembler (step 2).

DCTLNK
Defines the temporary data set for the bind control statements for step 3.

DEFLTS
Defines the temporary data set for the default MFS format definitions for MFS Language utility input
(step 4).

PROCLIB
Defines the libraries containing the descriptor members DFSDSCMx and DFSDSCTx.

STEPLIB
Defines the libraries containing the program DFSUTB00 and the device characteristics table specified
in the DCTSUF= parameter.

SYSIN
Defines the temporary file containing the generated DCENTRY statements.

SYSLIN
Defines the temporary data set for the updated or new device characteristics table as output from the
assembler (step 2) and as input to the binder with ddname DCT (step 3).

SYSLIB
Defines the libraries containing IMS and z/OS macros.

SYSPRINT
Defines the data set for all of the printed output from step 1, including error messages and output
from steps 2 and 3.

SYSPUNCH
Defines the temporary file containing the object module output from the assembler. The output is the
device characteristics table, followed immediately by the default MFS format definitions.

SYSUT1
Defines an assembler and binder work data set.

SYSLMOD
Defines the IMS.SDFSRESL data set to contain the new or modified device characteristics table.

Return codes
Return codes are based on the error message.

Chapter 3. MFS Device Characteristics Table utility (DFSUTB00) 163

Running the DFSUTB00 utility
You can invoke the MFS Device Characteristics Table utility by running the Message Format Service Device
Characteristics Table (MFSDCT) procedure.

Parameters
You can specify the following execution parameters in the MFSDCT procedure:

• NODE1
• NODE2
• NODE3: specifies the high-level qualifier of the IMS data sets, which corresponds to the third node

name specified in the NODE parameter of the IMSGEN macro.

NODE1 and NODE2 are described in Parameter descriptions for IMS procedures (System Definition)

Message Format Service Device Characteristics Table procedure

// PROC RGN=4M,SOUT=A,SYS2=,PXREF=NOXREF,
// PCOMP=NOCOMP,PSUBS=NOSUBS,PDIAG=NODIAG,
// COMPR=NOCOMPRESS,COMPR2=COMPRESS,
// LN=55,SN=8,DEVCHAR=0,COMPR3=NOCOMPREND,
// DIRUPDT=UPDATE,DCTSUF=,
// DSCTSUF=,DSCMSUF=,FMTMAST=N,
// NODE1=IMS,
// NODE2=IMS,
// NODE3=IMS
//S1 EXEC PGM=DFSUTB00,REGION=&RGN,
// PARM=('DCTSUF=&DCTSUF,DSCTSUF=&DSCTSUF',
// 'DSCMSUF=&DSCMSUF,DEVCHAR=&DEVCHAR'
// 'FMTMAST=&FMTMAST')
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SYSLIB DD DSN=&NODE3..ADFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.SDFSMAC,DISP=SHR
//PROCLIB DD DSN=&NODE2..&SYS2.PROCLIB,DISP=SHR
//SYSIN DD DSN=&&SYSIN,UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=800
//SYSPUNCH DD DSN=&&SYSPUNCH,UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=800
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//DCTIN DD DSN=&&DCTIN,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//DEFLTS DD DSN=&&DEFLTS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//DCTLNK DD DSN=&&DCTLNK,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),
// DCB=BLKSIZE=800
//S2 EXEC PGM=ASMA90,REGION=& RGN,
// PARM='OBJECT,NODECK,NOLIST',
// COND=(0,LT)
//SYSLIB DD DSN=&NODE3..ADFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSLIN DD DSN=&&DCT,DISP=(NEW,PASS)
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// DCB=BLKSIZE=800<
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// SPACE=(CYL,(15,15))
//SYSIN DD DSN=&&DCTIN,DISP=(OLD,DELETE)
//S3 EXEC PGM=IEWL,
// PARM=('SIZE=(880K,64K)',NCAL,LET,REUS,
// XREF,LIST),
// REGION=&RGN,
// COND=(0,LT)
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=605),

164 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions

// SPACE=(605,(10,10),RLSE,,ROUND)
//SYSLMOD DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSPUNCH)),
// SPACE=(CYL,(10,1))
//SYSLIN DD DSN=&&DCTLNK,DISP=(SHR,DELETE)
//DCT DD DSN=&&DCT,DISP=(SHR,DELETE)
//S4 EXEC PGM=DFSUPAA0,REGION=&RGN,
// PARM=(&PXREF,&PCOMP,&PSUBS,&PDIAG,;
// &COMPR,'LINECNT=&LN,STOPRC=&SN',
// 'DEVCHAR=&DEVCHAR'),COND=(0,LT)
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*SYSLIB - USER OPTION
//SYSIN DD DSN=&&DEFLTS,DISP=(OLD,DELETE)
//REFIN DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFOUT DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFRD DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//SYSTEXT DD DSN=&&TXTPASS,UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=800
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//DUMMY DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(REFCPY)
//UTPRINT DD SYSOUT=&SOUT
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//SEQBLKS DD DSN=&&BLKS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//S5 EXEC PGM=DFSUNUB0,REGION=&RGN,
// PARM=(&COMPR2,&COMPR3,&DIRUPDT,;
// 'DEVCHAR=&DEVCHAR'),COND=((0,LT,S1),
// (0,LT,S2),(0,LT,S3),(8,LT,S4))
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SEQBLKS DD DSN=&&BLKS,DISP=(OLD,DELETE)
//UTPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//FORMAT DD DSN=&NODE1..&SYS2.FORMAT,DISP=SHR
//DUMMY DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(FMTCPY)
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

Chapter 3. MFS Device Characteristics Table utility (DFSUTB00) 165

166 IMS: System Utilities

Chapter 4. MFS Language utility (DFSUPAA0)
Use the MFS Language utility (DFSUPAA0) to create and store the Message Format Service (MFS) control
blocks.

The intermediate text block (ITB) form of the control blocks is placed in the IMS.REFERAL library. The
control blocks are placed in the IMS.FORMAT library for use during normal IMS operation.

Definition: One format and all the messages that refer to it in their SOR= operand make up a format set.

The MFS Language utility has three modes of operation: standard, batch, and test. In all three modes,
the utility is executed offline, accepts the same control statements, and produces the same kinds of ITBs
and control blocks. The modes differ in their use of the MFS libraries. Accordingly, they use different
procedures.

In standard mode, ITBs written in IMS.REFERAL are converted to control blocks and placed in the staging
library, IMS.FORMAT, by the MFSUTL procedure. Because the control blocks are placed in the staging
library and not the active library, the standard mode can run concurrently with the online IMS control
region.

Batch mode differs from standard mode, in that the MFSBTCH1 procedure places the created control
blocks in a special library, IMS.MFSBATCH, for later transfer by the MFSBTCH2 procedure (in another job)
to the staging library, IMS.FORMAT.

In test mode, the MFSTEST procedure creates control blocks and places them in a separate
IMS.TFORMAT library. The control blocks can be tested without interfering with online operation and
can operate concurrently with the online IMS control region.

SMP/E processing generates the following procedures:

MFSUTL
A two-step standard mode execution procedure of the MFS Language utility for creating MFS online
control blocks and placing these blocks into the IMS.FORMAT library.

MFSBTCH1
A one-step batch mode execution procedure of the MFS Language utility for creating and
accumulating MFS online blocks.

MFSBTCH2
A one-step batch mode execution procedure of the MFS Language utility for placing the accumulated
MFS online control blocks (from MFSBTCH1) into the IMS.FORMAT library.

MFSBACK
A two-step execution procedure to back up the MFS libraries. If the optional MFSTEST facility is used,
MFSBACK contains an additional step to back up the test library.

MFSREST
A two-step execution procedure to restore the MFS libraries. If the optional MFSTEST facility is used,
MFSREST contains an additional step to restore the test library.

MFSRVC
A one-step execution procedure for maintaining the MFS libraries.

If MFSTEST mode is selected during system definition, an additional procedure is generated:

MFSTEST
A two-step test mode execution procedure of the MFS Language utility for creating MFS online blocks
and placing them into the IMS.TFORMAT library.

In addition to the procedures for creating new or replacement control blocks, the MFS Language utility
includes MFSBACK and MFSREST procedures for backup and restore operations in MFS libraries.

Delete and listing operations are performed by the service utility.

Subsections:

© Copyright IBM Corp. 1974, 2020 167

• “Restrictions” on page 168
• “Prerequisites” on page 168
• “Requirements” on page 168
• “Recommendations” on page 168
• “JCL specifications” on page 168

Restrictions

Do not execute the MFSTEST procedure concurrently with itself or any other program or procedure that
utilizes the MFS libraries. To test the control blocks in IMS.TFORMAT, the terminal operator enters the /
TEST MFS command. Then, test control blocks from IMS.TFORMAT (as well as online control blocks from
the active format library, if necessary) are read into a buffer for test operation. After successful testing,
the control blocks can be placed in the staging IMS.FORMAT library by recompiling the source statements
using the MFSUTL procedure.

Prerequisites

Currently, no prerequisites are documented for the DFSUPAA0 utility.

Requirements

Currently, no requirements are documented for the DFSUPAA0 utility.

Recommendations

Currently, no recommendations are documented for the DFSUPAA0 utility.

JCL specifications
The DFSUPAA0 utility requires an EXEC statement and DD statements for the MFSUTL, MFSBTCH1, and
MFSTEST procedures.

When Step 1 (S1) executes (in the MFSUTL, MFSBTCH1, and MFSTEST procedures), the following
parameters can be specified in the PARM keyword of the EXEC statement.

PXREF= NOXREF | XREF
Specifies whether (XREF) or not (NOXREF) a sorted cross reference listing should be provided. The
default value is NOXREF. A sorted cross reference listing includes a list of all labels and related
references.

PCOMP= NOCOMP | COMP
Specifies whether (COMP or COMPOSITE) or not (NOCOMP) the composite or final version of the
statement, after error recovery or substitution has modified it, is printed. The default value is
NOCOMP. The composite statement reflects syntactic assumptions made during error recovery.
Semantic assumptions do not appear in the composite statement but are reflected in the intermediate
text blocks. If the repetitive generation function for MFLD/DFLD statements is used, COMP also
causes the generated statements to be printed; NOCOMP suppresses this printing.

PSUBS= NOSUBS | SUBS
Specifies whether (SUBS or SUBSTITUTE) or not (NOSUBS) the substitution variable and its equated
value are printed when the substitution variable is encountered in the operand field of a statement.
The default value is NOSUBS.

168 IMS: System Utilities

PDIAG= NODIAG | DIAG
Specifies whether (DIAG or DIAGNOSTIC) or not (NODIAG) the XREF, COMP, and SUBS options should
all be set on. In addition, diagnostic information is printed. The default value is NODIAG, which has no
effect on the XREF, COMP, and SUBS options but suppresses printing of the diagnostic information.

COMPR= NOCOMPRESS | COMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.REFERAL library is to be compressed
before new ITBs are added. The default value is NOCOMPRESS.

LN= 55 | nn
Specifies how many lines per page should be printed. The default value is 55.

SN= 08 | nn
Specifies the severity code compare value. MSG, FMT, and TABLE blocks whose error severity equals
or exceeds this value are not written to the IMS.REFERAL library. The default value is 08.

DEVCHAR= 0 | x
Specifies the alphanumeric suffix character (x) to be appended to DFSUDT0. The name DFSUDT0
identifies the desired device characteristics table. This suffix character (x) corresponds to the value
specified in the SUFFIX= keyword of the IMSGEN macro. The default is zero (0).

In the execution of the MFSRVC procedure, one parameter can be specified. The DEVCHAR=0 or x
parameter specifies the alphanumeric suffix character (x) to be used for the device characteristics
table, when no suffix is specified in the LIST control statement parameter DEVCHAR. The default is
zero.

In the execution of Step 2 (S2) in the MFSUTL and MFSBTCH2 procedures, three parameters can be
specified in the EXEC statement's PARM keyword:

COMPR2= COMPRESS | NOCOMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.FORMAT library is to be compressed
before new control blocks are added. The default value is COMPRESS.

COMPR3= COMPREND | NOCOMPREND
Specifies whether (COMPREND) or not (NOCOMPREND) the data set with the ddname of FORMAT is
compressed after all format blocks have been added/replaced and the index directory ($$IMSDIR)
has been updated.

DIRUPDT= UPDATE | NOUPDATE
Specifies whether (UPDATE) or not (NOUPDATE) the special index directory ($$IMSDIR) is
automatically updated after a block has been deleted from a format library. You can bypass the
$$IMSDIR update by specifying NOUPDATE. The default is UPDATE.

In the execution of Step 2 (S2) in the MFSTEST procedure, the PARM='TEST' parameter must be specified.

Other EXEC statement parameters that can be specified are:

RGN=
Specifies the region size for this execution. The default is 360K.

SOUT=
Specifies the SYSOUT class. The default is A.

SNODE=
Specifies the node that can be assigned to the MFS utility data set name. The default value is IMS.

SOR=
Specifies the library name that can be assigned to the MFS utility library for SYSIN or SYSLIB. The
default value is NOLIB.

MBR=
Specifies the member name that can be assigned to the MFS utility member for SYSIN. The default is
NOMBR.

EXEC statement

EXEC statement parameters supported by the MFS Language utility have variable compilation control
functions.

Chapter 4. MFS Language utility (DFSUPAA0) 169

The format of the EXEC statement is:

//S1 EXEC PGM=DFSUPAA0,REGION=&RGN,
// PARM=(&PXREF,&PCOMP,&PSUBS,&PDIAG,
// &COMPR,'LINECNT=&LN,STOPRC=&SN',
// 'DEVCHAR=&DEVCHAR')

Parameters can be specified on the EXEC statement for the preprocessor and phase 1 to:

• Control the printed output
• Compress the reference library (IMS.REFERAL)
• Request diagnostic information
• Indicate which MFS device characteristics table is to be used
• Prevent control blocks with a specified level of error from being written in IMS.REFERAL

Parameters can also be specified on the EXEC statement for phase 2 to specify whether IMS.FORMAT
and IMS.REFERAL should be compressed and whether $$IMSDIR should be automatically updated after
deletions.

The DEVCHAR parameter specifies the suffix of the MFS device characteristics table to be used. The
device characteristics table is accessed only if DEV TYPE=3270-An (where n is 1 to 15) is coded as input
to the MFS Language utility.

The EXEC statement parameters supported by the MFS Language utility have variable compilation control
functions. The parameters that can be specified are:

NOXREF | XREF
Specifies whether (XREF) or not (NOXREF) a sorted cross-reference listing should be provided. A
sorted cross-reference listing includes a list of all the labels and related references. The default is
NOXREF.

NOCOMP | COMP
Specifies whether (COMP or COMPOSITE) or not (NOCOMP) the composite or final version of the
statement, after error recovery or substitution has modified it, will be printed. A composite statement
reflects syntactic assumptions made during error recovery. Semantic assumptions do not appear in
composite statements but are reflected in the intermediate text blocks. The default is NOCOMP.

NOSUBS | SUBS
Specifies whether (SUBS or SUBSTITUTE) or not (NOSUBS) any statement containing a substitution
variable (EQU operand) is printed. The default is NOSUBS.

NODIAG | DIAG
Specifies whether (DIAG or DIAGNOSTIC) or not (NODIAG) the XREF, COMP, and SUBS options should
be set on and diagnostic information be printed. The default is NODIAG, which has no effect on the
setting of the XREF, COMP, and SUBS options but suppresses printing of the diagnostic information.

NOCOMPRESS | COMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.REFERAL library is to be compressed
before new ITBs are added. The default is NOCOMPRESS.

DIRUPDT= UPDATE | NOUPDATE
Specifies whether (UPDATE) or not (NOUPDATE) the special index directory ($$IMSDIR) will be
automatically updated after one or more blocks have been deleted from a format library. You can
bypass the $$IMSDIR update by specifying NOUPDATE. The default is UPDATE.

LINECNT=nn
Specifies how many lines per page should be printed. The default is 55.

STOPRC=nn
Specifies the severity code compare value. MSG, FMT, and TABLE blocks whose error severity equals
or exceeds this value will not be written to the IMS.REFERAL library. The default is 08.

170 IMS: System Utilities

DEVCHAR=n | x
Specifies the alphanumeric suffix character (x) used as the final character of the name of the device
characteristics table DFSUDT0x loaded when DEV TYPE=3270-An is encountered. The default is zero
(DFSUDT00).

The definition statements are described in the sequence shown, with the DO and ENDDO compilation
statements where they would normally be coded—before and after the MFLD or DFLD statements. The
compilation statement formats are sequenced according to related function (if any)—ALPHA; COPY; EQU
and RESCAN (equate processing); STACK and UNSTACK (stacking SYSIN/SYSLIB records); TITLE, PRINT,
SPACE, and EJECT (SYSPRINT listing control); and END.

Estimating MFSUTL and MFSTEST region parameters

The following steps help you estimate the main storage requirements that you should specify in the RGN=
parameter of the EXEC statement invoking the MFSUTL and MFSTEST procedures.

1. Calculate statement base count. For the input to the MFS Language utility, determine the largest
(number of statements) device format to be processed and the largest message descriptor related to
the format. Add the total number of statements contained in these two control blocks to obtain the
statement base count.

For the processing of a specific user-supplied MSG or FMT ITB, the utility reprocesses all related MSG
or FMT ITBs saved from the IMS.REFERAL data set to ensure compatible linkage between all related
online blocks. These reprocessed ITBs must be analyzed as well for the process of obtaining the
statement base count.

2. Estimate Region Requirements. Multiply the statement base count by 214 and add 300000 to the
result. Round the resulting value to the next highest multiple of 2048. The result is an estimate of the
main storage requirements which should be specified in the RGN= parameter of the EXEC statement
invoking the MFSUTL and MFSTEST procedures.

Complex formats with a large number of literal DFLD statements in relation to the statement base
count can exceed the estimate.

DD statements

The data set names used in the MFSUTL, MFSBTCH1, MFSBTCH2, and MFSTEST procedures fit
installation needs. The ddnames used and the data sets they refer to are:

REFIN
REFOUT
REFRD

Refers to the MFS reference library, except when used in the MFSTEST procedure. In MFSTEST, REFIN
and REFRD refer to the MFS reference library; REFOUT is a temporary data set.

FORMAT
Refers to the MFS control block library. In MFSTEST, this ddname refers to the MFS test control block
library.

SYSLIB
Refers to an optional user library from which input can be copied.

SYSIN
Refers to the input data set, which can be a sequential data set or a member of a partitioned data set.

DUMMY
Refers to the IMS procedure library, which contains control statements used to compress the MFS
reference and control block libraries.

SYSUT3
SYSUT4

Are ddnames for data sets used during the data set compression as work data sets.

DUMMY, SYSUT3, and SYSUT4 can all be omitted if neither the MFS reference library nor the MFS control
block library is to be compressed.

Chapter 4. MFS Language utility (DFSUPAA0) 171

UTPRINT
Is used for messages during the compression of the MFR reference library, and is used for MFS error
and status messages during MFS Language utility Phase 2 processing.

The following ddnames refer to data sets used in the MFSRVC procedure. The data set names can be
altered to fit installation needs.

REFIN
Refers to the MFS reference library.

FORMAT
Refers to the MFS control block library.

SYSIN
Refers to the input data set, which can be a sequential data set or a member of a partitioned data set.

SYSSNAP
Refers to a data set that is used to receive the output from a SNAP macro if certain severe errors are
detected.

SYSPRINT
Refers to the destination of the output. If output is to be sent to a data set (instead of SYSOUT=), use
DISP=MOD for the data set.

Related concepts
MFS Device Characteristics table (Application Programming APIs)

Utility control statements and syntax rules
The control statements used by the MFS Language utility are divided into two major categories: definition
statements and compilation statements.

The control statements used by the MFS Language utility are divided into two major categories:

• Definition statements are used to define message formats, device formats, partition sets, and operator
control tables.

• Compilation statements are those used to control the compilation and SYSPRINT listings of the
definition statements.

Use the definition and compilation control statements to identify a particular function performed by the
utility and to specify various options.

The definition and compilation control functions are:

• SYSPRINT LISTING CONTROL

The following parameters are provided to format the compilation listing: XREF, SUBS, COMP, DIAG, and
LINECNT.

• SYSIN and SYSLIB RECORD STACKING and UNSTACKING

Control statements are provided to allow one or more SYSIN or SYSLIB records to be processed and
kept in processor storage for reuse later in the compilation. These statements are an alternative to the
COPY facility for groups of statements that are repeated.

MFLD and DFLD statements can be repetitively generated if preceded by a DO statement and followed
by an ENDDO statement. Repetitive DFLD generation supports increments to line and column position
information.

• ALPHA CHARACTER GENERATION

The ALPHA statement allows specification of additions to the set of characters as alphabetic.
• COPY

The COPY statement allows members of partitioned data sets to be copied into the input stream of the
utility preprocessor.

The control statements are written in assembler-like language with the following standard format:

172 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apr/ims_mfsdevchartable.htm#ims_mfsdevchartable

Control statement syntax for the MFS Language utility
label operation operand comments

label
Identifies the statement; if it is shown as optional, it can be omitted. When included, the name must
begin in the first position of the statement (column 1) and must be followed by one or more blanks.
It can contain from one to eight alphanumeric characters (one to six, for the FMT label), the first of
which must be alphabetic.

operation
Identifies the type of control statement. It normally begins in column 10 and must be preceded and
followed by one or more blanks.

operand
Is made up of one or more parameters, which can be positional or keyword parameters. A positional
parameter in MFS control statements always appears in the first position of the operand, normally
starting in column 16. The position of a keyword parameter is not important. The parameters within
one operand are separated by commas. In the syntactical description of the control statements,
parameters preceded by commas are thus identified as keyword parameters. The operand field itself
must be preceded and followed by one or more blanks.

comments
Can be written in a utility control statement, but they must be separated from the last parameter of
the operand field by one or more blanks. (If the statement does not include an operand, the comment
should be separated from the statement by at least one blank.) A comment line begins with an
asterisk in column 1.

Continuation is accomplished by entering a nonblank character in column 72. If the current line is a
comment, then the continuation line can begin in any column.

Other considerations are as follows:

• There is no limit on the number of continuation lines.
• There is no limit on the number of characters in the operand field. Individual operand items cannot

exceed 256 characters, excluding trailing and embedded second quote characters.
• If a nonstandard character is detected in a literal, a severity 4 warning message is issued. The

nonstandard character is retained in the literal.
• If the current line is a control statement, the continuation line must begin in column 16.
• A single ampersand is needed to generate one ampersand character in the literal.

In addition to the definition and compiler statement specifications, several parameters can be specified in
the EXEC statement PARM keyword to control the current compilation for the preprocessor and phase 1;
one parameter can be specified for phase 2.

The five special rules that follow use actual MFS code as examples.

1. If you code a statement such that an equal sign or a left parenthesis immediately precedes a comma,
you can omit the comma.

,FTAB=(,FORCE) could be coded as ,FTAB=(FORCE)
2. If you code a statement such that an equal sign immediately precedes a single item enclosed in

parentheses, you can omit the parentheses.

,FTAB=(,FORCE) could be coded as ,FTAB=,FORCE
3. You can apply both Rule 1 and Rule 2, in either order, to a single item.

,FTAB=(,FORCE) could be coded as ,FTAB=FORCE
4. Under no condition can you specify a keyword without specifying at least one parameter immediately

after that keyword.

Neither ,FTAB= nor ,FTAB=,LDEL='**' is permitted.

Chapter 4. MFS Language utility (DFSUPAA0) 173

5. Blanks are required between labels and statement type names, and between statement type names
and their parameters; they are not permitted elsewhere unless explicitly represented by the symbol ␢.

DEV ,PAGE is correct, but DEV,PAGE and ,FTAB= (,MIX) are incorrect.

Syntax errors
The MFS Language utility attempts to recover from syntax errors in source statements. No guarantee
exists for the correctness of the assumptions made in the recovery, and these assumptions can differ in
different releases of IMS. Assumptions made during recovery are based on (1) what is expected when the
incorrect item is encountered; (2) what could appear to the right of the item preceding the incorrect item;
and (3) what could appear to the left of the incorrect item.

During the process of error recovery, the following notation can be used in the diagnostic messages:

;
Indicates that the end of the source statement was encountered. The position marker points to the
position immediately following the last source item scanned.

L
Refers to a literal operand item.

V
Refers to an identifier operand item (alphabetic character optionally followed by alphanumeric
characters).

I
Refers to a numeric operand item.

A
Refers to an alphanumeric operand item (numeric character optionally followed by alphanumeric
characters).

D
Refers to a delimiter operand item.

Most error recovery messages have a severity code of 4, indicating a warning level error. When an item is
deleted, or the syntax scan is aborted, the statement cannot be validly processed and a severity code of 8
is generated.

Invalid sequence of statements
The language utility preprocessor routines that process MSG, FMT, PDB, or TABLE definition statements
are organized hierarchically. A routine for a given level processes a statement at that level, reads the next
statement, then determines which routine will next receive control.

If the statement just read is the next lower level statement (for example, a DIV statement following a DEV
statement), the next lower level routine (for example, the DIV statement processor) is called.

If the statement just read is not the next lower level statement, control can be passed to one of the
following three routines:

• The next lower level routine to assume the missing statement (for example, the DIV processor if a DEV
statement is followed by a DPAGE statement)

• The same level routine if the statement just read is of the same level as the processor (for example, a
series of DFLD statements)

• The next higher level routine (the calling routine) if the statement just read is not the same or the
next lower level (for example, a DEV statement following a DFLD statement, an invalid statement, or a
statement out of sequence)

Thus, if the hierarchic structure of a MSG, FMT, PDB, or TABLE definition is invalid or a statement operator
is misspelled, case (3) will result in control being returned to successively higher level routines. At the
highest level, only a FMT, MSG, TABLE, PDB, or END statement will be accepted by the preprocessor.

174 IMS: System Utilities

Therefore, all statements before the next FMT, PDB, MSG, TABLE or END statement will be flushed (that
is, not processed) and flagged with the appropriate error message.

Summary of control statements
The definition of message formats, device formats, partition sets, and operator control tables is
accomplished with separate hierarchic sets of definition statements.

Message Definition Statement Set
Is used to define message formats. It includes the following statements:
MSG

Identifies the beginning of a message definition.
LPAGE

Identifies a related group of segment/field definitions.
PASSWORD

Identifies a field or fields to be used as an IMS password.
SEG

Identifies a message segment.
DO

Requests iterative processing of the subsequent MFLD statements.
MFLD

Defines a message field. Iterative processing of MFLD statements can be invoked by specifying
DO and ENDDO statements. To accomplish iterative processing, the DO statement is placed before
the MFLD statements and the ENDDO after the MFLD statements.

ENDDO
Terminates iterative processing of the preceding MFLD statements.

MSGEND
Identifies the end of a message definition.

Format Definition Statement Set
Is used to define device formats. It consists of the following statements:
FMT

Identifies the beginning of a format definition.
DEV

Identifies the device type and operational options.
DIV

Identifies the format as input, output, or both.
DPAGE

Identifies a group of device fields corresponding to an LPAGE group of message fields.
PPAGE

Identifies a group of logically related records that can be sent to a remote application program at
one time.

DO
Requests iterative processing of the subsequent RCD or DFLD statements.

RCD
Identifies a group of related device fields that are sent to a remote application program as a single
record.

DFLD
Defines a device field. Iterative processing of DFLD statements can be invoked by specifying DO
and ENDDO statements. To accomplish iterative processing, the DO statement is placed before
the DFLD statements and the ENDDO after the DFLD statements.

ENDDO
Terminates iterative processing of the previous RCD or DFLD statements.

Chapter 4. MFS Language utility (DFSUPAA0) 175

FMTEND
Identifies the end of a format definition.

Partition Definition Statement Set
Is used to define partition sets (Partition Descriptor Blocks). It consists of the following statements:
PDB

Identifies the beginning of a partition set definition and allows the specification of several
parameters that describe it.

PD
Defines a Partition Descriptor, which contains the parameters necessary to describe a partition.

PDBEND
Identifies the end of a partition set definition.

TABLE Definition Statement Set
is used to define operator control tables. It includes the following statements:
TABLE

Identifies the beginning of a table definition.
IF

Defines a conditional test and resulting action.
TABLEEND

Identifies the end of a table definition.
Compilation Statements

Are used for variable functions. Compilation statements that are supported by the MFS Language
utility are listed in alphabetic order:
ALPHA

Defines a set of characters to be considered alphabetic for the purpose of defining field names
and literals.

COPY
Copies a member of the partitioned data set represented by the SYSLIB DD statement into the
input stream of the preprocessor.

DO
Requests iterative processing of MFLD or DFLD definition statements.

EJECT
Ejects SYSPRINT listing to the next page.

END
Defines the end of data for SYSIN processing.

ENDDO
Terminates iterative processing of MFLD, RCD, or DFLD definition statements.

EQU
Equates a symbol with a number, alphanumeric identifier, or literal.

PRINT
Controls SYSPRINT options.

RESCAN
Controls EQU processing.

SPACE
Skips lines on the SYSPRINT listing.

STACK
Delineates one or more SYSIN or SYSLIB records that are to be kept in processor storage for
reuse.

TITLE
Provides a title for the SYSPRINT listing.

176 IMS: System Utilities

UNSTACK
Retrieves previously stacked SYSIN or SYSLIB records.

Compilation statements are inserted at logical points in the sequence of control statements. For
example, TITLE could be first, and EJECT could be placed before each MSG, FMT, or TABLE statement.

Message definition statements
Message definition statements include the MSG statement, the LPAGE statement, the PASSWORD
statement, the SEG statement, the DO statement, the MFLD statement, the ENDDO statement, and the
MSGEND statement.

MSG statement
The MSG statement initiates and names a message input or output definition.

Format for MSG TYPE=INPUT or OUTPUT
label MSG

TYPE=

INPUT

OUTPUT

,SOR=( formatname ,

IGNORE

)

,OPT=

1

2

3

,NXT= msgcontrolblockname

Format for MSG TYPE=OUTPUT only

,PAGE=

NO

YES ,FILL=

C' '

C' c'

NULL

PT

Parameters
label

A one- to eight-character alphanumeric name must be specified. This label can be referred to in the
NXT operand of another message descriptor.

TYPE=
Defines this definition as a message INPUT or OUTPUT control block. The default is INPUT.

SOR=
Specifies the source name of the FMT statement which, with the DEV statement, defines the
terminal or remote program data fields processed by this message descriptor. Specifying IGNORE
for TYPE=OUTPUT causes MFS to use data fields specified for the device whose FEAT= operand
specifies IGNORE in the device format definition. For TYPE=INPUT, IGNORE should be specified only
if the corresponding message output descriptor specified IGNORE. If you use SOR=IGNORE, you must
specify IGNORE on both the message input descriptor and the message output descriptor.

OPT=
Specifies the message formatting option used by MFS to edit messages. The default is 1.

Chapter 4. MFS Language utility (DFSUPAA0) 177

NXT=
Specifies the name of a message descriptor to be used to map the next expected message as a result
of processing a message using this message descriptor. If TYPE=INPUT, NXT= specifies a message
output descriptor. If TYPE=OUTPUT, NXT= specifies a message input descriptor. For ISC output, NXT=
becomes the RDPN in the ATTACH FM header.

If TYPE=OUTPUT and the formatname specified in the SOR= operand contains formats for 3270 or
3270P device types, the msgcontrolblockname referred to by NXT= must use the same formatname.

PAGE=
Specifies whether (YES) or not (NO) operator logical paging (forward and backward paging) is to be
provided for messages edited using this control block. This operand is valid only if TYPE=OUTPUT. The
default is NO, which means that only forward paging of physical pages is provided.

FILL=
Specifies a fill character for output device fields. This operand is valid only if TYPE=OUTPUT. The
default is C' '. The fill specification is ignored unless FILL=NONE is specified on the DPAGE statement
in the FMT definition. For 3270 output when EGCS fields are present, only FILL=PT or FILL=NULL
should be specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only when data is
sent to the field, and thus does not erase the DFLD if the application program message omits the
MFLD. For DPM-Bn, if OFTAB is specified, FILL= is ignored and FILL=NULL is assumed.
C' '

Character ' ' is the default used to fill device fields. The blank character is interpreted as is X'40'
which is a valid printable character.

C'c'
Character 'c' is used to fill device fields. For 3270 display devices, any specification with a
value less than X'3F' is changed to X'00' for control characters or to X'40' for other nongraphic
characters. For all other devices, any FILL=C'c' specification with a value less than X'3F' is ignored
and defaulted to X'3F' (which is equivalent to a specification of FILL=NULL).

If you specify C'c' as X'36', it changes to either X'0' or X'40' as X'36' is not a valid printable
character.

NULL
Specifies that fields are not to be filled. For devices other than 3270 and SLU 2 display,
'compacted lines' are produced when message data does not fill device fields.

PT
Is identical to NULL except for 3270 and SLU 2 display. For 3270 and SLU 2 display, PT specifies
that output fields that do not fill the device field (DFLD) are followed by a program tab character to
erase data previously in the field.

Related reference
MFS output message formats (Application Programming)

178 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/java_mfsoutputmessageformats.htm#java_mfsoutputmessageformats

LPAGE statement
The optional LPAGE statement defines a group of segments comprising a logical page.

Format for MSG TYPE=OUTPUT

label LPAGE SOR= dpagename

,COND=(mfldname

mfldname ( pp)

segoffset

, >

<

≥

≤

=

!=

,' value ')

,NXT= msgcontrolblockname ,PROMPT=( dfldname ,' literal ')

Format for MSG TYPE=INPUT

label

LPAGE SOR=(

,

dpagename)

,NXT= msgcontrolblockname

Parameters
label

A one- to eight-character alphanumeric name can be specified to uniquely identify this statement.
SOR=

Specifies the name of the DPAGE statement that defines the device format for this logical page. If
TYPE=INPUT and more than one DPAGE can be used as a source of data to create an input message,
more than one dpagename can be specified.

COND=
Describes a conditional test that, if successful, specifies that the segment and field definitions
following this LPAGE are to be used for output editing of this logical page. The specified portion
of the first segment of a logical page is examined to determine if it is greater than (>), less than (<),
greater than or equal to (≥), less than or equal to (≤), equal to (=), or not equal to (≠) the specified
literal value to determine if this LPAGE is to be used for editing. COND= is not required for the last
LPAGE statement in the MSG definition.

The area examined can be defined by a field name (mfldname), an offset in a field (mfldname(pp)
where pp is the offset in the named field), or an offset in the segment (segoffset). If the mfldname(pp)
form is used, pp must be greater than or equal to 1. The length of the compare is the length of the
specified literal. If OPT=3 is specified on the previous MSG statement, the area to be examined must
be within one field as defined on an MFLD statement.

If segoffset is used, it is relative to zero, and the specification of that offset must allow for LLZZ of the
segment (that is, the first data byte is at offset 4).

Chapter 4. MFS Language utility (DFSUPAA0) 179

If pp is used, the offset is relative to 1 with respect to the named field (that is, the first byte of data in
the field is at offset 1, not zero).

If the mfldname specified is defined with ATTR=YES, the pp offset must be used. The minimum offset
specified must be 3. That is, the first byte of data in the field is at offset 3, following the two bytes of
attributes.

If ATTR=nn is specified, the minimum offset must be one plus twice nn. Thus, if ATTR=2 is specified,
pp must be at least 5, and, if ATTR=(YES,2) is specified, pp must be at least 7.

If the conditional tests for all LPAGEs fail, the last LPAGE in this MSG definition is used for editing.

If LPAGE selection is to be specified using the command data field, that is, /FORMATmodname...
(data), the MFLD specified in the LPAGE COND=mfldname parameter should be within the first 8 bytes
of the associated LPAGEs of the MOD.

NXT=
Specifies the name of the message descriptor to be used to map the next message if this logical page
is processed. This name overrides any NXT=msgcontrolblockname specified on the preceding MSG
statement.

PROMPT=
Specifies the name of the DFLD into which MFS should insert the specified literal when formatting the
last logical page of an output message. If FILL=NULL is specified once the prompt literal is displayed,
it can remain on the screen if your response does not cause the screen to be reformatted.

PASSWORD statement
The PASSWORD statement identifies one or more fields to be used as an IMS password or password
phrase.

When used, the PASSWORD statement and its associated MFLDs must precede the first SEG statement
in an input LPAGE or MSG definition. Up to 8 MFLD statements can be specified after the PASSWORD
statement but the total password length must not exceed 100 characters. The fill character must be X'40'.
For option 1 and 2 messages, the first 8 characters of data after editing are used for the IMS password.
For option 3 messages, the data content of the first field after editing is used for the IMS password.

A password for 3270 input can also be defined in a DFLD statement. If both password methods are used,
the password specified in the MSG definition is used.

Format

label

PASSWORD blanks

comments

Parameters
label

A one- to eight-character alphanumeric name can be specified to uniquely identify this statement.

SEG statement
The SEG statement delineates message segments and is required only if multisegment message
processing is required by the application program.

Output message segments cannot exceed your specified queue buffer length. Only one segment should
be defined for TYPE=INPUT MSGs when the input message destination is defined as a single segment
command or transaction. If more than one segment is defined, and the definition is used to input a
single segment command or transaction, care must be used to ensure that your input produces only one
segment after editing.

180 IMS: System Utilities

Format for MSG TYPE=INPUT

label

SEG

EXIT=( exitnum , exitvect)

,GRAPHIC=

YES

NO

Format for MSG TYPE=OUTPUT

label

SEG ,GRAPHIC=

YES

NO

Parameters
label

A 1- to 8-character name can be specified to uniquely identify this statement.
EXIT=

Describes the segment edit exit routine interface for this message segment. exitnum is the exit routine
number and exitvect is a value to be passed to the exit routine when it is invoked for this segment.
exitnum can range from 0 to 127. exitvect can range from 0 to 255. Unless NOSEGEXIT is specified on
the DIV statement (for DPM devices only), the SEG exit is invoked when processing completes for the
input segment.

GRAPHIC=
Specifies for MSG TYPE=INPUT whether (YES) or not (NO) IMS should perform upper case translation
on this segment if the destination definition requests it (see the EDIT= parameter of the TRANSACT
or NAME macro). The default is YES. If input segment data is in nongraphic format (packed decimal,
EGCS, binary, and so forth), GRAPHIC=NO should be specified. When GRAPHIC=NO is specified,
FILL=NULL is invalid for MFLDs within this segment.

The following list shows the translation that occurs when GRAPHIC=YES is specified and the input
message destination is defined as requesting upper case translation:

Before Translation
After Translation

a through z
A through Z

X'81' through X'89'
X'C1' through X'C9'

X'91' through X'99'
X'D1' through X'D9'

X'A2' through X'A9'
X'E2' through X'E9'

If FILL=NULL is specified for any MFLD in a segment defined as GRAPHIC=YES, the hexadecimal
character X'3F' is compressed out of the segment. If GRAPHIC=NO and FILL=NULL are specified in
the SEG statement, any X'3F' in the non-graphic data stream is compressed out of the segment and
undesirable results might be produced. Non-graphic data should be sent on output as fixed length
output fields and the use of FILL=NULL is not recommended in this case.

For MSG TYPE=OUTPUT, the GRAPHIC= keyword applies only for DPM. It specifies whether (YES) or
not (NO) nongraphic control characters (X'00' to X'3F') in the data from the IMS application program
are to be replaced by blanks. The default value is YES. If NO is specified, MFS allows any bit string
received from an IMS application program to flow unmodified through MFS to the remote program.

Chapter 4. MFS Language utility (DFSUPAA0) 181

Restriction: When GRAPHIC=NO is specified, IMS application programs using Options 1 and 2 cannot
omit segments in the middle of an LPAGE, or truncate or omit fields in the segment using the null
character (X'3F').

DO statement
The DO statement causes repetitive generation of MFLD statements between the DO and ENDDO
statements.

DO is optional, but a message that includes a DO must include a subsequent ENDDO.

Format

label

DO count

,SUF=

01

number

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
count

Specifies how many times to generate the following MFLD statements. The maximum count that can
be specified is 99; if more than 99 is specified, the 2 rightmost digits of the specified count are used
(for example, 03 would be used if 103 were specified) and an error message is issued.

SUF=
Specifies the 1- or 2-digit suffix to be appended to the MFLD label and dfldname of the first group
of generated MFLD statements. The default is 01. MFS increases the suffix by 1 on each subsequent
generation of statements.

If the specified suffix exceeds 2 digits, MFS uses the rightmost 2 digits.

If the specified count is such that the generated suffix eventually exceeds 2 digits, MFS reduces the
count to the largest legitimate value. For example, if count equals 8 and SUF=95, invalid suffixes of
100, 101, and 102 would result. In this instance, MFS reduces count to 5, processes the statement,
and issues an error message.

MFLD statement
The MFLD statement defines a message field as it will be presented to an application program as part of a
message output segment.

At least one MFLD statement must be specified for each MSG definition.

182 IMS: System Utilities

Format for MSG TYPE=INPUT

label

MFLD

( dfldname ,' literal ')

,LTH=

1

nn

( pp , nn)

,JUST=

L

R ,ATTR=(
NO

YES , nn
)

,FILL= X'40'

X' hh'

C' c'

NULL

,EXIT=( exitnum , exitvect)

Format for MSG TYPE=OUTPUT

label

MFLD

dfldname

( dfldname ,' literal ')

( dfldname , system-literal)

(,SCA)

,LTH=

1

nn

,JUST=

L

R ,ATTR=(
NO

YES , nn
)

Parameters
label

A one-to eight-character alphanumeric name can be specified. label is required if it is referred to
in the COND operand of the previous LPAGE statement. It can be used to uniquely identify this
statement. If the MFLD is between the DO and ENDDO statements, label is restricted to 6 characters
or less. DO statement processing appends a 2-digit suffix (a sequence number, 01 to 99) to the label
and prints the label as part of the generated MFLD statement. If label is more than 6 characters and
iterative generation is used, the label is truncated at 6 characters, and the 2-digit sequence number is
added to make the 8-character name. No error message is issued if this occurs.

dfldname
Specifies the device field name (defined using the DEV or DFLD statement) from which input data is
extracted or into which output data is placed. If this parameter is omitted when defining a message
output control block, the data supplied by the application program is not displayed on the output
device. If the repetitive generation function of MFS is used (DO and ENDDO statements), dfldname
should be restricted to 6 characters maximum length. When each repetition of the statement is
generated, a 2-character sequence number (01 to 99) is appended to dfldname. If the dfldname
specified here is greater than 6 bytes and repetitive generation is used, dfldname is truncated at 6
characters and a 2-character sequence number is appended to form an 8-character name. No error
message is provided if this occurs. This parameter can be specified in one of the following formats:

Chapter 4. MFS Language utility (DFSUPAA0) 183

dfldname
Identifies the device field name from which input data is extracted or into which output data is
placed.

'literal'
Can be specified if a literal value is to be inserted in an input message.

(dfldname,'literal')
If TYPE=OUTPUT, this describes the literal data to be placed in the named DFLD. When this form
is specified, space for the literal must not be allocated in the output message segment supplied by
the application program.

If TYPE=INPUT, this describes the literal data to be placed in the message field when no data
for this field is received from the device. If this dfldname is used in the PFK parameter of a DEV
statement, this literal is always replaced by the PF key literal or control function. However, when
this dfldname is specified in the PFK parameter, but the PF key is not used, the literal specified in
the MFLD statement is moved into the message field. When physical paging is used, the literal is
inserted in the field but is not processed until after the last physical page of the logical page has
been displayed.

In both cases, if the LTH= operand is specified, the length of the literal is truncated or padded as
necessary to the length of the LTH= specification. If the length of the specified literal is less than
the defined field length, the literal is padded with blanks if TYPE=OUTPUT and with the specified
fill character (FILL=) if TYPE=INPUT. If no fill character is specified for input, the literal is padded
with blanks (the default). The length of the literal value cannot exceed 256 bytes.

(dfldname,system-literal)
Specifies a name from a list of system literals. A system literal functions like a normal literal
except that the literal value is created during formatting prior to transmission to the device. The
LTH=, ATTR=, and JUST= operands cannot be specified. When this form is specified, space for the
literal must not be allocated in the output message segment supplied by the application program.

The following table shows the system literals and their associated lengths and formats.

Table 16. Lengths and formats of system literals

System literal name

Produces literal of:

Length Format Notes

LTSEQ 5 nnnnn 1

LTNAME 8 aaaaaaaa 1

TIME 8 HH:MM:SS

DATE1 or YYDDD 6 YY.DDD

DATE2 or MMDDYY 8 MM/DD/YY

DATE3 or DDMMYY 8 DD/MM/YY

DATE4 or YYMMDD 8 YY/MM/DD

DATE1Y4 or YYYYDDD
or DATEJUL

8 YYYY.DDD

DATE2Y4 or
MMDDYYYY or
DATEUSA

10 MM/DD/YYYY

DATE3Y4 or
DDMMYYYY or
DATEEUR

10 DD/MM/YYYY

184 IMS: System Utilities

Table 16. Lengths and formats of system literals (continued)

System literal name

Produces literal of:

Length Format Notes

DATE4Y4 or
YYYYMMDD or
DATEISO

10 YYYY/MM/DD

LPAGENO 4 nnnn 2

LTMSG 14 MSG WAITING Qx 3

Notes:

1. LTSEQ is the output message sequence number for the logical terminal. The value created is
the logical terminal dequeue count plus 1. The first output message after an IMS cold start
or /NRESTART BUILDQ has a sequence number of 00001. Certain IMS-created messages do
not change this number.

LTNAME is the logical terminal (LTERM) name of the LTERM for which this message is being
formatted.

Messages generated by the IMS control region in response to terminal input (error messages,
most command responses) do not have an LTSEQ or an LTNAME. These messages use the
IMS message output descriptor DFSMO1. In these instances, the values provided are 00000
and blanks, respectively.

2. LPAGENO specifies that the current logical page number of the message be provided as a
system literal. This number corresponds to the page number you entered for an operator
logical page request. The literal produced is a 4-digit number with leading zeros converted to
blanks.

3. LTMSG specifies that when this output message is sent to the terminal, the literal 'MSG
Waiting Qx' (where x is message queue number 1, 2, 3, or 4) is sent in the LTMSG field if there
are messages in the queue for the terminal. If there are no messages in the queues, other
than the current queue, blanks are sent in the LTMSG field.

Usually the message waiting is sent when the current message is dequeued. If the message
is waiting in Q1, it is sent. If the message is in Q2 and the terminal is in exclusive mode, it is
sent (when any other messages from Q1 are sent). If the message is in Q2 and conversational
status does not prevent it from being sent or if the message is in Q3 or Q4 and the exclusive
or conversational status does not prevent it from being sent, it is sent. If a message is
waiting to be sent on another queue and the terminal is in conversation, the conversation
can be held to view the message; if the terminal is in exclusive mode, the message can be
viewed when the terminal is taken out of exclusive mode. If you are entering response mode
transactions, the message can be viewed before entering response mode transaction input
from the terminal.

This system literal is recommended for conversational mode. It is not recommended for ISC
subsystems.

(,SCA)
Defines this output field as the system control area which is not displayed on the output device.
There can be only one such field in a logical page (LPAGE) and it must be in the first message
segment of that page. If no logical pages are defined, only one SCA field can be defined
and it must be in the first segment of the output message. This specification is valid only if
TYPE=OUTPUT was specified on the previous MSG statement.

Chapter 4. MFS Language utility (DFSUPAA0) 185

LTH=
Specifies the length of the field to be presented to an application program on input or received from
an application program on output. Default or minimum value is 1. Maximum value is 8000. (The
maximum message length must not exceed 32767.)

The form (pp,nn) can be used when defining an input field; however, a field name must be specified
in the first positional parameter if the (pp,nn) form is used. The value supplied for pp specifies which
byte in the input data field is to be considered the first byte of data for the message field. For example,
a pp of 2 specifies that the first byte of input data is to be ignored, and the second byte becomes the
first byte of this field. The value of pp must be greater than or equal to 1. The value supplied for nn
specifies the length of the field to be presented to an application program.

If (,SCA) is specified in the positional parameter, the specified LTH= value must be at least 2.

LTH= can be omitted if a literal is specified in the positional operand (TYPE=INPUT), in which case,
length specified for literal is used. If LTH= is specified for a literal field, the specified literal is either
truncated or padded with blanks to the specified length. If the MFLD statement appears between a
DO and an ENDDO statement, a length value is printed on the generated MFLD statement, regardless
of whether LTH= is specified in the MFLD source statement.

JUST=
Specifies that the data field is to be left-justified (L) or right-justified (R) and right- or left- truncated
as required, depending upon the amount of data expected or presented by the device format control
block. The default is L.

ATTR=
Specifies whether (YES) or not (NO) the application program can modify the 3270 attributes and the
extended attributes (nn).

If YES, 2 bytes must be reserved for the 3270 attribute data to be filled in by the application program
on output and to be initialized to blanks on input. These 2 bytes must be included in the LTH=
specification.

The value supplied for nn is the number of extended attributes that can be dynamically modified. The
value of nn can be a number from 1 to 6. An invalid specification will default to 1. Two additional
bytes per attribute must be reserved for the extended attribute data to be filled in by the application
program on output and to be initialized to blanks on input. These attribute bytes must be included in
the MFLD LTH= specification.

The following example shows valid specifications for ATTR= and the number of bytes that must be
reserved for each different specification:

MFLD ,ATTR=(YES,nn)
2 + (2 × nn)

MFLD ,ATTR=(NO,nn)
2 × nn

MFLD ,ATTR=(nn)
2 × nn

MFLD ,ATTR=YES
2

MFLD ,ATTR=NO
0

ATTR=YES and nn are invalid if a literal value has been specified through the positional parameter in
an output message.

The attributes in a field sent to another IMS ISC subsystem are treated as input data by MFS
regardless of any ATTR= specifications in the format of the receiving subsystem. For example, a
message field (MFLD) defined as ATTR=(YES,1),LTH=5 would contain the following:

00A0C2F1C8C5D3D3D6

186 IMS: System Utilities

If the MFLD in the receiving subsystem is defined as LTH=9 and without ATTR=, the application
program receives:

00A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=13 and ATTR=(YES,1), the application
program receives:

4040404000A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=5 and ATTR=(YES,1), the application
program receives:

4040404000A0C2F1C8

The input SEG statement should be specified as GRAPHIC=NO to prevent translation of the attribute
data to uppercase.

FILL=
Specifies a character to be used to pad this field when the length of the data received from the device
is less than the length of this field. This character is also used to pad when no data is received for this
field (except when MSG statement specifies option 3.) This operand is only valid if TYPE=INPUT. The
default is X'40'.
X'hh'

Character whose hexadecimal representation is hh is used to fill fields. FILL=X'3F' is the same as
FILL=NULL.

C'c'
Character c is used to fill fields.

NULL
Causes compression of the message segment to the left by the amount of missing data in the field.

EXIT=
Describes the field edit exit routine interface for this message field. The exit routine number is
specified in exitnum, and exitvect is a value to be passed to the exit routine when it is invoked for
this field. The value of exitnum can range from 0 to 127. The value of exitvect can range from 0 to
255. The address of the field as it exists after MFS editing, (but before NULL compression for option
1 and 2), is passed to the edit exit routine, along with the vector defined for the field. (If NOFLDEXIT
is specified for a DPM device, the exit routine will not be invoked.) The exit routine can return a code
with a value from 0 to 255. MFS maintains the highest such code returned for each segment for use by
the segment edit routine. EXIT= is invalid if 'literal' is specified on the same MFLD statement.

Printing generated MFLD statements
The generated MFLD statements can be printed in a symbolic source format by specifying COMP in the
parameter list of the EXEC statement.

This provides a means of seeing the results of the MFLD statement generation without having to interpret
the intermediate text blocks.

The following items are printed for each generated MFLD statement:

• The generated statement sequence number followed by a + (plus sign) to indicate that the MFLD
statement was generated as a result of DO statement processing.

• The MFLD statement label, if present, including the appended suffix.
• The statement operator, MFLD.
• dfldname, if present, including the appended suffix.
• For ECGS literals, the G, SO, and SI is not present. Literals are truncated if there is insufficient room

to print all specifications. Truncation is indicated by a portion of the literal followed by an ellipsis (…)
representing the truncated portion.

Chapter 4. MFS Language utility (DFSUPAA0) 187

• The system literal name, if present.

If both dfldname and a literal are present, they are enclosed in parentheses.
• (,SCA), if present.
• The field length, in the form LTH=nnnn (or LTH=(pppp,nnnn), if present).
• JUST=L or R, if present.
• ATTR=YES, if present.
• ATTR=nn, if present.

No other operands are printed, even if specified on the source MFLD statement.

ENDDO statement
The ENDDO statement terminates the group of MFLD statements that are to be repetitively generated.

The generated MFLD statements are printed immediately following the ENDDO statement. ENDDO is
required when a DO statement has been specified.

label

ENDDO blanks

comments

label
A one- to eight-character alphanumeric name can be specified. It is not used.

MSGEND statement
The MSGEND statement terminates a message input or output definition and is required as the last
statement in the definition.

If this is the end of the job submitted, it must also be followed by an END compilation statement.

label

MSGEND blanks

comments

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Format definition statements
Format definition statements include the FMT statement, the DEV statement, the DIV statement, the
DPAGE statement, the PPAGE statement, the DO statement, the RCD statement, the DFLD statement, the
ENDDO statement, and the FMTEND statement.

FMT statement
The FMT statement initiates and names a format definition that includes one or more device formats
differing only in the device type and features specified in the DEV statement.

Each device format included in the format definition specifies the layout for data sent to or received from
a device or a remote program.

Format
label FMT blanks

comments

188 IMS: System Utilities

Parameters
label

A required one- to six-character alphanumeric name that is referred to by message descriptors in the
SOR= operand of MSG statements.

The name specified for label becomes part of the member name used for the resulting device output
format and device input format blocks that are stored in the IMS.FORMAT library.

If DEV TYPE=DPM-An, and DIV OPTIONS=MSG, the name specified for label is sent to the remote
program as the data name in the output message header.

If DEV TYPE=DPM-Bn, and DIV OPTIONS=(MSG,DNM), the name specified for label is sent to the
other subsystem as the data structure name in the DD FM header.

DEV statement
The DEV statement defines device characteristics for a specific device or data formats for a specific device
type.

The DFLD statements following this DEV statement are mapped using the characteristics specified until
the next DEV or FMTEND statement is encountered. For DPM devices, the DEV statement specifies the
DPM program type number and (optionally) a feature set number.

Important: Read the TYPE= operand description before using the DEV statement.

Chapter 4. MFS Language utility (DFSUPAA0) 189

Format for 3270 display

label

DEV TYPE 3270

(3270,

2

1)

3270-An

,FEAT= IGNORE

1

2

3

4

5

6

7

8

9

10

(
CARD

NOCD

,PFK

,NOPFK

,DEKYBD

,PEN

,NOPEN

)

,PEN= dfldname ,CARD=  dfldname ,SYSMSG=  dfldlabel

,DSCA= X' value '

number

,PFK=( dfldname ,

,

' literal '

NEXTPP

NEXTMSG

NEXMSGP

NEXTLP

ENDMPPI
,

integer = ' literal '

NEXTPP

NEXTMSG

NEXMSGP

NEXTLP

ENDMPPI

)

,SUB= X' hh'

C' c'

,PDB= pdbname

190 IMS: System Utilities

Format for 3270 printers

label

DEV TYPE= 3270P

(3270P,

2

1)

,FEAT= 120

126

132

IGNORE

1

2

3

4

5

6

7

8

9

10

,WIDTH=

120

number

,PAGE=(
55

number

,DEFN

,FLOAT

,SPACE

)

,DSCA= X' value '

number

Format for Finance workstations (3600 or 4700)

label

DEV TYPE= 3600

36DS

36DS3

36DS4

36DS7

36JP

36PB

36FP

Chapter 4. MFS Language utility (DFSUPAA0) 191

Format for DEV TYPE=FIN

label

DEV TYPE=FIN

,MODE=

RECORD

STREAM

,FTAB=(

' tabchars '

X' value '

,FORCE

,MIX

,ALL

)

,LDEL=

'**'

' ldelchars '

X' value '

NONE

Format for DEV TYPE=FIDS, FIDS3, FIDS4, FIDS7

label

DEV TYPE= FIDS

FIDS3

FIDS4

FIDS7

,DSCA= X' value '

number

,FEAT=
IGNORE

192 IMS: System Utilities

Format for DEV TYPE=FIJP, FIPB, FIFP

label

DEV TYPE=FIN FIJP

FIPB

FIFP

,PAGE=(
55

number

,DEFN

,SPACE

,FLOAT

,EJECT

(BGNPP)

(ENDPP)

(BGNMSG)

(ENDMSG)

)

,DSCA= X' value '

number

,FORMS='  literal '

,FEAT=

IGNORE

DUAL
1

132
1

(DUAL,132)
1

Notes:
1 FIFP only

Chapter 4. MFS Language utility (DFSUPAA0) 193

Format for SCS1

label

DEV TYPE=SCS1

,FEAT=

IGNORE

1

2

3

4

5

6

7

8

9

10

,FORMS='  literal '

<FOR INPUT>

<FOR OUTPUT>

<FOR INPUT>

,MODE=

RECORD

STREAM

,FTAB=(

' tabchars '

X' value '

,FORCE

,MIX

,ALL

)

,LDEL=

'**'

' ldelchars '

X' value '

NONE

,CARD=  dfldname

,WIDTH=

132

number

<FOR OUTPUT>

194 IMS: System Utilities

,PAGE=(
55

number

,DEFN

,SPACE

,FLOAT

,EJECT

,

(BGNPP)

(ENDPP)

(BGNMSG)

(ENDMSG)

)

,DSCA= X' value '

number ,WIDTH=

132

number

,HTAB=(
SET

OFFLINE

ONLINE

,1

,1 m

,HT=(

,

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

)

)

,VT=(t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

)

,VTAB=( tm, bm) ,SLDI=  nn

,SLDP=  nn

Chapter 4. MFS Language utility (DFSUPAA0) 195

Format for SCS2

label

DEV TYPE=SCS2

,FEAT=

IGNORE

1

2

3

4

5

6

7

8

9

10

<FOR INPUT>

<FOR OUTPUT>

<FOR INPUT>

,MODE=

RECORD

STREAM

,FTAB=(

' tabchars '

X' value '

,FORCE

,MIX

,ALL

)

,LDEL=

'**'

' ldelchars '

X' value '

NONE

,WIDTH=

80

number

<FOR OUTPUT>

,PAGE=(
55

number

,DEFN

,FLOAT

,SPACE

)

,DSCA= X' value '

number

,WIDTH=

80

number

196 IMS: System Utilities

Format for DPM-An

label

DEV TYPE=DPM-An

,FEAT=

IGNORE

1

2

3

4

5

6

7

8

9

10

,VERSID=

MFS

X' value '

' chars '

<FOR INPUT>

<FOR OUTPUT>

<FOR INPUT>

,LDEL=

NONE

' ldelchars '

X' value '

,FTAB=(

' tabchars '

X' value '

,FORCE

,MIX

,ALL

)

,MODE=

RECORD

STREAM

<FOR OUTPUT>

,DSCA= X' value '

number

,FORMS= ' literal '

Chapter 4. MFS Language utility (DFSUPAA0) 197

Format for DPM-Bn

label

DEV TYPE=DPM-Bn

,FEAT=

IGNORE

1

2

3

4

5

6

7

8

9

10

,MODE=

RECORD

STREAM ,VERSID=

MFS

X' value '

' chars '

<FOR INPUT>

<FOR OUTPUT>

<FOR INPUT>

,LDEL=

NONE

' ldelchars '

X' value '

,FTAB=(

' tabchars '

X' value '

,FORCE

,MIX

,ALL

)

<FOR OUTPUT>

,DSCA= X' value '

number

Parameters

label
An optional one- to eight-character alphanumeric name that uniquely identifies this statement.

TYPE=
Specifies the device type and model number of a device using this format description. The 3284-3
printer attached to a 3275 is supported only as TYPE=3270P. The model number specified when
defining a format for a 3284-3 is the model number of the associated 3275.

198 IMS: System Utilities

TYPE=3270-An specifies a symbolic name for 3270 and SLU 2 displays with the screen size defined
during IMS system definition, feature numbers n=1-15. This specification causes the MFS Language
utility to read the MFS device characteristics table (DFSUDT0x) to extract the screen size.

TYPE=DPM-Bn specifies the device as an ISC node. The device type specified by n must agree with
the specification of the component (COMPT=) on the system definition TERMINAL macro.

Based on the device and model used, specify:

TYPE=
Device-Model

3270, 1
3275-1
3276-1,11 (defined at IMS system definition as 3270 model 1)
3277-1
3278-1 (defined at IMS system definition as 3277 model 1)
SLU 2 (480 characters)

3270,2
3275-2 SLU 2 (1920 characters)

(any display defined during IMS system definition as 'mod 2' with screen area of 1920 characters)

3270-An
3270-An (applies to any 3270 or SLU 2 display defined as TYPE=3270-An during IMS system
definition)

Examples of 3270 devices that can be defined as 3270-An and the recommended standard of
associating screen sizes with the device type symbolic name follow:

Device
Screen size and definition

3180
24×80 screen size defined as 3270-A2

327X-1,11
12×80 screen size defined as 3270-A1

327X-2,12
24×80 screen size defined as 3270-A2

327X-3,13
32×80 screen size defined as 3270-A3

327X-4,14
43×80 screen size defined as 3270-A4

3278-5
27x132 screen size defined as 3270-A7

3290
62x160 screen size defined as 3270-A8
or
24×80 screen size defined as 3270-A2

5550
3270 Kanji Emulation or 3270 PC with 24×80 screen size defined as 3270-A2

3270P,1
3284-1
3286-1
3287 (with 480 character print feature and not attached as SLU 1 or SLU 4)
3289 (with 480 character print feature and not attached as SLU 1 or SLU 4)

Chapter 4. MFS Language utility (DFSUPAA0) 199

3270P,2
3284-2
3286-2
3287 (with 1920 character print feature and not attached as SLU 1 or SLU 4)
3289 (with 1920 character print feature and not attached as SLU 1 or SLU 4)

FIN
Finance application program (input only)

FIDS
Finance display component (6×40; for example, 3604-1 or -2)

FIDS3
Finance display component (12×40; for example, 3604-3)

FIDS4
Finance display component (16×64; for example, 3604-4)

FIDS7
Finance display component (24×80; for example, 3604-7)

FIJP
Finance journal printer

FIPB
Finance passbook printer

FIFP
Finance administrative printer

SCS1
The following console keyboard printers:

NTO
3771
3773
3774
3775
3776
5553
5557
SLU 1 (with a print data set or bulk printer)
SLU 4
3289 and 3287 when attached to IMS as SLU 1

SCS2
3521 card punch
3501 card reader
2502 card reader
SLU 1 (transmit data set)
SLU 4

DPM-An
SLU P (n is value 1-15)

DPM-Bn
ISC (n is value 1-15)

MODE=
Specifies the manner in which field scanning is to occur. Default value is RECORD. MODE= is valid for
DPM-An input only, and for DPM-Bn input and output. For DPM-Bn, if the input and output modes are
not the same, each DIV statement must be preceded by a DEV statement.

200 IMS: System Utilities

RECORD
Specifies that fields are defined as occurring within specific records (a line from a device, a
transmission from a remote program) that is transmitted from the device or program. For DPM-Bn,
Record mode must be specified for variable length, variable blocked (VLVB) format records.

STREAM
Specifies that fields are defined as a contiguous stream of fields—record boundaries do not affect
the MFS scan. Fields can be split across records and fields can be entered from any record
provided they are entered in the defined sequence. For DPM-Bn, Stream mode must be specified
for chained request/response units (RUs).

FTAB=
Specifies the field tab (FTAB) characters that you or a remote program can use to terminate an input
field when either the length of the data entered is less than the defined field length, or no data for the
field exists:

• For FIN, DPM-An, and DPM-Bn, a maximum of eight FTAB characters or 16 hexadecimal digits can
be specified, and at least one character (or two hexadecimal digits) should be specified.

• For SCS1, up to four FTAB characters or eight hexadecimal digits can be specified; the characters
NL, LF, HT, and VT are always FTAB characters and do not need to be specified.

• For SCS2, up to three FTAB characters or six hexadecimal digits can be specified. The characters NL,
CR, LF, HT, and VT are always FTAB characters and do not have to be specified; however, they are
received by MFS only if the Hollerith code is punched in the card if the input is from the card reader.

If no FTAB characters are defined, each device input field is considered to be of its defined length. In
Record mode, when the end of a record is reached, the current field is terminated and all subsequent
fields defined for that record are processed with no device data (message fill). In Stream mode, all
transmissions that comprise the input message are treated as a stream of data fields unaffected by
transmission boundaries. If FTABs are not defined or are not used for DPM input, each input field
is considered to be of defined length except when NULL=DELETE is specified. With NULL=DELETE, if
trailing nulls are encountered in a field or an entire field is null, the field is padded to defined length
using the message fill character.

If FTAB characters are defined in this operand, either FORCE, MIX, or ALL can also be specified. The
default is FORCE.

FORCE
Specifies that an FTAB is not required until you or a remote program enters an FTAB character. In
record mode, if an FTAB is used for one field, the remaining fields of the current record must be
terminated with an FTAB, regardless of length. In stream mode, if an FTAB is used for one field,
the remaining fields in the message must be terminated with an FTAB.

MIX
Specifies that an FTAB is never required but can be used to terminate any input field when data is
less than the defined field length.

ALL
Specifies that an FTAB must be used to terminate all fields, regardless of length, except for certain
mode (MODE=) dependent conditions. In record mode, an FTAB is not required for the last field
defined or entered in the record. In stream mode, an FTAB is not required for the last field defined
or entered in the message.

LDEL=
Specifies two characters or four hexadecimal digits, which, if entered as the last two characters of a
record of input data, cause the record to be discarded. A specification of NONE causes IMS to bypass
record delete processing, except for the first record, which is always deleted if the last two characters
are asterisks (**). NONE is the default for DPM devices. For other devices, the default is **.

PAGE=
Specifies output parameters as follows:

Chapter 4. MFS Language utility (DFSUPAA0) 201

number
For printer devices, number defines the number of print lines on a printed page; for card devices,
number defines the number of cards to be punched per DPAGE or physical page (if pp parameter is
used in the DFLD statements). This value is used for validity checking. The number specified must
be greater than or equal to 1 and less than 256. The default is 55.

If VTAB= is specified for SCS1 printers, then the minimum value for PAGE= is 3.

DEFN
Specifies that lines/cards are to be printed/punched as defined by DFLD statements (no lines/
cards are to be removed or added to the output page).

SPACE
Specifies that each output page contains the exact number of lines/cards specified in the number
parameter.

FLOAT
Specifies that lines/cards with no data (all blank or NULL) after formatting are to be deleted.

For 3270P and SCS1 devices, some lines having no data (that is, all blank or null) must not be
deleted under the following circumstances:

• The line contains one or more set line density (SLDx=) specifications.
• A field specified as having extended attributes spans more than one line.

EJECT
Specifies that a forms eject operation should be performed for printer devices. EJECT is valid only
when TYPE=FIJP, FIPB, FIFP, or SCS1. If EJECT is specified for SCS1, MFS assumes the Vertical
Forms Control feature is present. The default for the sublist is BGNPP.

The sublist specifies when ejects are to be performed:
BGNPP

Specifies that an eject is to be performed before each physical page of output.
ENDPP

Specifies that an eject is to be performed after each physical page is printed.
BGNMSG

Specifies that an eject is to be performed before any data in the message is printed.
ENDMSG

Specifies that an eject is to be performed after all message data is printed.

DSCA=
Specifies a default system control area (DSCA) for output messages using this device format.
The DSCA supersedes any SCA specified in a message output descriptor if there are conflicting
specifications. Normally, the functions specified in both SCAs are performed. If the DSCA= operand is
specified for SCS1 or SCS2, it is ignored. If the DSCA= operand is specified for 3270P, it is ignored,
except for the bit setting for "sound device alarm". If this bit is specified on the DSCA/SCA option, it is
sent to the device. For TYPE=DPM-An or DPM-Bn, DSCA/SCA information is sent to a remote program
or ISC subsystem only if a DFLD definition requests it.

The value specified here must be a decimal number not exceeding 65535 or X'hhhh'. If the number is
specified, the number is internally converted to X'hhhh'.

The two bytes of the DSCA field should be defined as shown in the following table and Table 19 on
page 203.

The following table shows the DSCA bit settings for 3270 display or SLU 2 devices or TYPE=DPM-An or
DPM-Bn.

Table 17. Bit settings for DSCA field for 3270 Display, SLU 2 Devices, TYPE=DPM-An, or DPM-Bn

Byte Bit Setting

0 0-7 Should be 0.

202 IMS: System Utilities

Table 17. Bit settings for DSCA field for 3270 Display, SLU 2 Devices, TYPE=DPM-An, or DPM-Bn
(continued)

Byte Bit Setting

1 0 Should be 1.

 1 Force format write (erase device buffer and write all required data).

 2 Erase unprotected fields before write.

 3 Sound device alarm.

 4 Copy output to candidate pointer. Bits 1-4 are ignored for DPM-Bn.

 5 B'0'- For 3270, protect the screen when output is sent. For DPM, demand
paging can be performed. B'1'- For 3270, do not protect the screen when
output is sent. For DPM-B, autopaging can be performed.

 6-7 Should be 0, except for the 3290 in partitioned format mode.

If byte 1 bit 5 is set to B'1' (unprotect screen option) for a 3275 display, and both input and output
occur simultaneously (contention), the device is disconnected. For non-3275 devices, the SCA option
is ignored. If byte 1 bit 5 is set to B'0', the application program can request autopaged output by
setting the SCA value to B'1'. This request is honored only if present in the first segment of the first
LPAGE of the output message.

If a nonzero value is specified for byte 0, or for bit 6 or 7 in byte 1, MFS overrides the specified value
with zero, except for the 3290 in partitioned format mode.

For the 3290 in partitioned format mode, byte 1 bit 6 has special significance. If the DOF of the output
message is the same as the DOF of the last message, then byte 1 bit 6 of the DSCA is checked for
the erase/not erase partitions option before the output message is sent. The following table shows
meanings of the bit 6 settings.

Table 18. 3290 partitioned format mode bit setting

Byte Bit Setting Meaning

1 6 B'1' Erase all partitions before sending output message.

 B'0111' Do not erase existing partitions.

The default is B'0' (do not erase). If bit 6 is defined, all existing partitions are erased and the output
is sent according to the specified partition paging option. If bit 6 is not defined, the output is sent
according to the specified partition paging option and partitions that do not receive output remain in
the state they were in before output was sent.

The following table shows the DSCA bit settings for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or
FIFP.

Table 19. Bit settings for DSCA field for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or FIFP

Byte Bit Setting

0 0-7 Should be 0.

1 0 Should be 1.

 1-2 Not applicable for FIN output devices.

 3 Set 'device alarm' in output message header.

 4 Not applicable for FIN output devices.

 5-7 Should be 0.

Chapter 4. MFS Language utility (DFSUPAA0) 203

For FIN devices, if a nonzero value is specified for byte 0, or for bits 1, 2, 5, 6, or 7 in byte 1, MFS
overrides the specified value with zero.

Bits 1, 2, and 4 in byte 1 only function for 3270 and SLU 2 and are therefore not applicable to FIN. If
set on, and the message is edited for an FIN output device, they are ignored.

For 3270 and FIN devices, the function specified is performed. For DPM devices, the specification is
supplied to the remote program in a user-defined device field (DFLD).

FEAT=
Specifies features for this device or program group.
IGNORE

Specifies that device features are to be ignored for this device.
120 | 126 | 132

Specifies line length for 3284, and 3286 device types (TYPE=3270P).
CARD

Specifies that the device has a 3270 operator identification card reader. NOCD specifies the
absence of the CARD feature.

DEKYBD
Specifies data entry keyboard feature. This feature implies PFK feature; therefore, PFK is invalid if
DEKYBD is specified. NOPFK implies the absence of PFK and DEKYBD features.

PFK
Specifies that the device has program function keys. NOPFK specifies the absence of the PFK and
DEKYBD features.

PEN
Specifies the selector light pen detect feature. NOPEN specifies the absence of the PEN feature.

DUAL
Specifies that the FIFP device has the dual independent forms feed feature.

132
Specifies that the FIFP device has the expanded print line feature.

1|2|3|4|5|6|7|8|9|10
Specifies customer-defined features for the SCS1, SCS2, 3270P, DPM-An, or DPM-Bn device type.

For SCS1, SCS2, and 3270P devices, FEAT= allows grouping of devices with special device
characteristics. For example, FEAT=1 could group devices with a maximum of 80 print positions and
no VFC, and FEAT=2 could group devices with 132 print positions and the VFC feature. FEAT=IGNORE
should be specified to group together devices with a minimum set of device capabilities. For 3270P
devices, when WIDTH= is specified, FEAT=(1…10) must also be specified. If FEAT=(1…10) is specified
but WIDTH= is not specified, WIDTH= defaults to 120.

For DEV TYPE=DPM-An or DPM-Bn, FEAT= specifies a user-defined group of device formats so that
programs with common features and dependencies can be selected together.

When IGNORE is specified, no other values should be coded in the FEAT= operand. When
FEAT=IGNORE is not specified in the TERMINAL macro during system definition, the MSG statement
must specify IGNORE in the SOR= operand for the device format with the IGNORE specification.
Unless FEAT=IGNORE is used, FEAT= must specify exactly what was specified in the TERMINAL
macro during IMS system definition. If it does not, the DFS057 error message is issued. When
FEAT=IGNORE or 1-10 is specified for 3270 devices, the operands PEN=, CARD=, and PFK= can still
be specified. When TYPE=3270P and FEAT=IGNORE, MFS allows a line width of 120 characters.

CARD, PFK, DEKYBD, and PEN feature values are valid only for 3270 displays. DUAL is valid only if
TYPE=FIFP. If the FEAT= operand is omitted, the default features are CARD, PFK, and PEN for 3270
displays; the default line width is 120 for TYPE=3270P and 80 for TYPE=FIFP.

1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are valid values only for 3270, 3270P, 3270-An, SCS1, SCS2, DPM-An,
and DPM-Bn (for DEV TYPE=). For 3270 displays, the FEAT= specifications of 1 to 5 can be used to
group devices with specific features or hardware data stream dependencies.

204 IMS: System Utilities

Restriction: This keyword is optional and cannot be used with any other feature specification for 3270
displays.

When using the same format for both the 3290 and the 3180, you must specify a different value on
the FEAT= operand for each device type. The FEAT parameter values selected for each device must
also be specified on the TERMINAL macro in the IMS system definition.

For FIN, FIDS, FIDS3, FIDS4, FIDS7, FIJP, and FIPB, FEAT is always IGNORE. For FIFP, IGNORE is
used unless 132 and DUAL are specified.

Feature operand values can be specified in any order, and only those values desired need be
specified. The underlined values do not have to be specified because they are defaults. Only one
value in each vertical list can be specified.

Examples: Some of the uses of the FEAT= specification are:

• TYPE=DPM-A1,FEAT=1 could group device formats with DPAGE paging option and simulated
attributes.

• TYPE=DPM-A5,FEAT=2 could group device formats with no paging option and bit string attributes
(which are not interpreted by MFS).

• TYPE=DPM-B1,FEAT=IGNORE could identify device formats with PPAGE paging option and a
minimum set of program requirements.

PFK=
Defines an input field name to contain program function key literal or control function data (first
subparameter) and, in positional or keyword format, either the literal data to be placed in the
specified field, or the control function to be performed when the corresponding function key is
entered (remaining subparameters).

The name of the first subparameter (the input field name that will contain the program function key
literal or control function data) can be referred to by an MFLD statement and must not be used as the
label of a DFLD statement within this DEV definition. The remaining subparameters can be specified in
positional or keyword format. If the subparameters are in keyword format, the integer specified must
be from 1 to 36, inclusive, and not duplicated. Only one PFK= operand format (positional or keyword)
can be specified on a DEV statement. This operand is valid only for 3270 displays. At the time the
actual format blocks are created, each literal is padded on the right with blanks to the length of the
largest literal in the list. The maximum literal length is 256 bytes.

If the device supports the IMS copy function, then PFK12 invokes the copy function and the definition
of PFK12 in the DEV statement is ignored; otherwise, the definition of PFK12 is honored.

If FEAT=NOPFK is specified, it is changed to PFK. The maximum number of user-defined PFKs is 36.

Control functions that can be specified are:

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output message. If no output message
is in progress, no explicit response is made.

NEXTMSG—MESSAGE ADVANCE
Specifies a request to dequeue the output message in progress (if any) and to send the next
output message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any), and send the next output
message or return an information message indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of a multiple physical page input message.

PEN=
Defines an input field name to contain literal data when an immediate light pen detection of a field
with a space or null designator character occurs. The literal data is defined on the DFLD statement

Chapter 4. MFS Language utility (DFSUPAA0) 205

with the PEN= operand. (See PEN= operand on the DFLD statement.) This name can be referred to by
an MFLD statement and must not be used as the label of a DFLD statement within this DEV definition.
The PEN= operand is valid only for 3270 displays. If FEAT=NOPEN is specified, it is changed to PEN.

If an immediate detect occurs on a field defined with a space or null designator character, and either
another field has been selected or modified or has the MOD attribute, or the PEN= operand is not
defined for the DFLD, a question mark (?) is inserted in the PEN= field name.

If no immediate detection occurs or the immediate detect occurs on a field defined with an
ampersand (&) designator character, the PEN= operand is padded with the fill specified in the MFLD
statement.

CARD=
Defines the input field name to receive operator identification card data when that data is entered.
This name can be referenced by an MFLD statement and must not be used as the label of a DFLD
statement within this DEV definition. This operand is valid only if a 3270 display or SCS1 is specified.
If FEAT=NOCD is specified for a 3270 display, it is changed to CARD. All control characters are
removed from magnetic card input before the data is presented to the input MFLD that refers to this
card field name.

For 3270 displays, an unprotected field large enough to contain the magnetic card data and control
characters must be defined through a DFLD statement. Position the cursor to this field and insert the
card in the reader to enter card information. The card data is logically associated with the CARD= field
name, not the name used in the DFLD statement.

For device TYPE=SCS1, only card data with the operator ID (OID) character is associated with this
field name. Cards with the OID character can be entered at any time during data entry. MFS treats
data without the OID character as if it were data entered from the keyboard.

SYSMSG=
Specifies the label of the DFLD statements that define the device field in which IMS system messages
are to be displayed. This operand is valid only if a 3270 display is specified. A DFLD with this label
should be defined for each physical page within each DPAGE defined within this DEV definition. DFLDs
for SYSMSG should be at least LTH=79 to prevent message truncation. The referenced DFLD can also
be referenced by an MFLD statement.

FORMS=
Specifies a 1- to 16-byte literal. For the FIN, this literal is included in the output message header for
each message sent to the device using this FMT. The data can be used by the FIN application program
to ensure that special forms required for a given message are mounted on the device and that page
size and forms alignment are established.

For SCS1 output to SLU 1 print data set components or SLU 4, this literal names the data set to receive
IMS output. For 3770 programmable models defined to IMS as SLU 1 or SLU 4, however, the literal
is ignored by the terminal and all print data set output goes to the SYS.INTR data set. For all SCS1
output to 3770 (nonprogrammable), SLU 1 non-PDS components or SLU 4, the literal is ignored.

For DEV TYPE DPM-An, this literal is included in the output message header. If the DPAGE or PPAGE
paging option is specified, the literal is part of the special forms output message header sent as a
separate transmission, followed (after a paging request from the remote program) by the DPAGE or
PPAGE output message header and data records. If the default MSG option is selected, the output
message header with literal is sent as the first record, followed by data records.

WIDTH=
Specifies the maximum line width for this DEV type as one of:

• Number of print positions per line of input or output data
• Number of punch positions per card of input or output data
• Card width for card reader input data

The defaults are 132 for SCS1 input and output, 80 for SCS2 input and output, and 120 for 3270P
output. A specified number cannot exceed 255 for SCS1 and 249 for SCS2. Line width is specified

206 IMS: System Utilities

relative to column 1, regardless of whether a left margin value is specified in the HTAB= keyword
(SCS1 and SCS2 only). The width specified must be greater than or equal to 1.

For 3270P devices, if WIDTH is specified, then FEAT=(1…10) must also be specified. If FEAT=(1…10)
is specified, and WIDTH= is not specified, WIDTH= defaults to 120.

HTAB=
Specifies when TYPE=SCS1:

• Where on the device MFS should set horizontal tab stops
• Whether and when MFS should insert tab control characters in the output message to cause

horizontal tabbing
• Where on the device MFS should position the left margin

If HTAB= is not specified, no horizontal tabbing is done and the left margin position is assumed to be
column 1.

SET | ONLINE | OFFLINE
Specifies that MFS should set horizontal formatting controls for the device. When MFS sets
horizontal format controls for the device, the following characteristics are established: maximum
line width, left and right margins, and horizontal tab stops. The default is SET when the HTAB=
keyword is present.
SET

Specifies that MFS should set horizontal tab stops but should not insert tab control characters
into the output message. You can then use horizontal tabbing on subsequent input.

ONLINE
Specifies that MFS should set horizontal tab stops at the specified (HT=) locations and insert
tab control characters during online processing.

OFFLINE
Specifies that MFS should set horizontal tab stops at the specified (HT=) locations and insert
tab control characters during offline compilation of the format.

1 | lm (left margin)
Specifies the column position of the left margin. The default is 1. The value specified must be less
than the WIDTH= value.

HT=
Specifies from 1 to 10 horizontal tab stop locations. The values specified must be relative to
position 1, equal to or greater than the left margin value, and less than the WIDTH= value.

VT=
Specifies that MFS should insert tab control characters at the specified locations. From 1 to 11
vertical tab stop locations can be specified. If VTAB= is specified, the VT= values specified must
be relative to line 1 and equal to or less than the bottom margin specified on the VTAB= keyword.
If VTAB= is not specified, the VT= values must be equal to or less than the page depth specified
in the PAGE= keyword. The maximum value is 255. If a value greater than 255 is specified, 255 is
assumed and no error message is generated. VT= is valid only when TYPE=SCS1. If PAGE=(n,FLOAT)
is specified, VT= is invalid.

X'00' is accepted as a valid tab stop only if VTAB= is also specified.

Together with VTAB= and PAGE=, VT= comprises a data stream to set the vertical format of the page.
tm on the VTAB= keyword must be greater than or equal to 1 and less than t1 on the VT= keyword.
bm on the VTAB= keyword must be greater than or equal to t11 on the VT= keyword and less than or
equal to the maximum page length specified on the PAGE= keyword.

VTAB=
For SCS1 printers, specifies top (tm) and bottom (bm) page margins. Together with VT= and PAGE=,
VTAB= comprises a data stream to set the vertical format of the page. tm must be greater than or
equal to 1 and less than t1 on the VT= keyword. The maximum tm is 253.

Chapter 4. MFS Language utility (DFSUPAA0) 207

bm must be greater than or equal to t11 on the VT= keyword and less than or equal to the maximum
page length specified on the PAGE= keyword. bm must be at least two greater than tm. If VTAB= is
specified, then the PAGE= value must be 3 or greater.

A form feed (FF) is inserted after the set vertical format (SVF) data stream if the top margin (tm)
specified on the VTAB= keyword is not equal to 1.

If PAGE=(n,FLOAT) is specified, VTAB= is invalid.

SLDI=
For SCS1 printers, specifies the line density for an output message in lines per inch. (See also SLDP=).
SLDI= can also be specified on the DFLD statement. The SLDI= value must be from 1 through 72 and
consistent with the architecture of the device for which it is specified (see the appropriate device or
component manual).

If SLDI= is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDI= specification is encountered, but after any
vertical tabs and new line characters.

Restriction: You cannot specify both SLDI= and SLDP= on the DEV statement.

The SLDI= specification within the message changes the line density from that set at the beginning of
the message, and this latter line density remains in effect until explicitly reset.

SLDP=
For SCS1 printers, specifies the line density for an output message in points per inch. (See also
SLDI=). SLDP= can also be specified on the DFLD statement. The SLDP= value must be from 1
through 72 and consistent with the architecture of the device for which it is specified (see the
appropriate device or component manual).

If SLDP= is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDP= specification is encountered, but after any
vertical tabs and new line characters.

Restriction: You cannot specify both SLDP= and SLDI= on the DEV statement.

The SLDP= specification within the message changes the line density from that set at the beginning of
the message, and this latter line density remains in effect until explicitly reset.

Tip: When you define set line density (SLDx) keywords, ensure that forms alignment is maintained. If
SLDx= is improperly defined, loss of forms alignment can occur.

VERSID=
Specifies any two-character or 2-byte hexadecimal value as the version ID. If MFS is specified or if the
VERSID keyword is not specified, MFS calculates the version ID. MFS is the default.

The version ID is calculated by MFS and is based on the date and time stamp that an FMT definition
has compiled. The value is printed on the MFS Language utility output so you can refer to it in format
definitions.

SUB=
Specifies the character used by MFS to replace any X'3F' characters in the input data stream. No
translation occurs if this parameter is specified as X'3F' or this parameter is not specified, or the input
received bypasses MFS editing. The specified SUB character should not appear elsewhere in the data
stream; therefore, it should be nongraphic.
X'hh'

Character whose hexadecimal representation is 'hh' replaces all X'3F' in the input data stream.
C'c'

Character 'c' replaces all X'3F' in the input data stream.

208 IMS: System Utilities

PDB=
(For the 3290 or 3180 in partitioned format mode) specifies the name of the Partition Descriptor
Block that is used to describe the partition set for an output or input message. This parameter is valid
only for DEV statements that specify TYPE=3270-An.

Related concepts
MFS message formats (Application Programming APIs)

DIV statement
The DIV statement defines device formats within a DIF or DOF. The formats are identified as input, output,
or both input and output, and can consist of multiple physical pages.

For DEV TYPE=SCS1, SCS2, or DPM-AN, two DIV statements can be defined: DIV TYPE=OUTPUT and DIV
TYPE=INPUT. For all other device types, only one DIV statement per DEV is allowed.

Format for DEV TYPE=SCS1, or SCS2 and DIV TYPE=INPUT

label

DIV

TYPE=INPUT

,OPTIONS=

MSG

DPAGE

Format for DEV TYPE=3270 or 3270-An

label

DIV

TYPE=

INOUT

OUTPUT

Format for DEV TYPE=FIN

label

DIV

TYPE=
INPUT

,OPTIONS=

MSG

DPAGE

Format for DEV TYPE=SCS1, SCS2, 3270P, FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB,
or FIFP and DIV TYPE=OUTPUT

label

DIV

TYPE=
OUTPUT

,COMPR= FIXED

SHORT

ALL

Format for DEV TYPE=DPM-An

label

DIV

TYPE=

INPUT A

OUTPUT B

A

Chapter 4. MFS Language utility (DFSUPAA0) 209

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apr/ims_appprogwithmfs.htm#ims_appprogwithmfs

,RCDCTL=(

256

nnnnn

,NOSPAN

)

,NULL=

KEEP

DELETE

,OPTIONS=(
FLDEXIT

NOFLDEXIT

,SEGEXIT

,NOSEGEXIT

,MSG

,DPAGE ,NODNM

)

B

,RCDCTL=(
256

nnnnn

,SPAN

,NOSPAN

)

,HDRCTL=(
FIXED

VARIABLE

,7

, nn
)

,OPTIONS=(
MSG

DPAGE

PPAGE

,SIM

,NOSIM2 ,DNM

)

,COMPR= FIXED

SHORT

ALL

Format for DEV TYPE=DPM-Bn

label

DIV

TYPE=

INPUT A

OUTPUT B

A

210 IMS: System Utilities

,RCDCTL=(

256

nnnnn

,NOSPAN

)

,OPTIONS=(
FLDEXIT

NOFLDEXIT

,SEGEXIT

,NOSEGEXIT

,MSG

,DPAGE

,DNM

,NODNM

)

,DPN=  dfldname ,RDPN=  dfldname ,RPRN=  dfldname

B

,RCDCTL=(

256

nnnnn

,NOSPAN

)

,OPTIONS=(

,MSG

,DPAGE

,PPAGE

,SIM

,NOSIM2

,DNM

,NODNM

)

,DPN= ('  literal '

, dfldname

)

,PRN= ('  literal '

, dfldname

)

,RPRN= ('  literal '

, dfldname

)

,OFTAB=(

X' hh'

C' c'

,MIX

,ALL

)

,COMPR= FIXED

SHORT

ALL

Chapter 4. MFS Language utility (DFSUPAA0) 211

Parameters
label

A one- to eight-character alphanumeric name can be specified to uniquely identify this statement.
TYPE=

Describes an input only format (INPUT), an output only format (OUTPUT), or both (INOUT).

If DIV TYPE=OUTPUT or TYPE=INPUT is specified, certain DEV statement keywords are applicable.

For example, specifying WIDTH=80 for DEV TYPE=SCS1 indicates that fields can be printed in
columns 1 through 80 on output and received from columns 1 through 80 on input. Specifying
WIDTH=80 for DEV TYPE=SCS2 indicates that both the card reader and card punch have the same
number of punch positions. Specifying WIDTH=80 and HTAB=(SET,5) for DEV TYPE=SCS1 indicates
that fields can be printed in columns 5 through 80 and received from columns 5 through 80 on input.
In this case DFLD POS=(1,5) or POS=5 on input is the same as if you specified column 1 and a left
margin position at 1. You enter data the same way, regardless of where the left margin is currently set.

RCDCTL=
This parameter is valid only if MODE=RECORD is specified on the DEV statement. For DEV TYPE=DPM-
An or DPM-Bn only, RCDCTL specifies the maximum length of an input or output transmission record.
For DPM-An, RCDCTL specifies whether (SPAN) or not (NOSPAN) fields can span records. The RCDCTL
number cannot be larger than 32000 and should not be less than the length of the message output
header (For DPM-An, see HDRCTL discussion.) The default value is 256. RCDCTL creates record
definitions even if RCD statements are used in the same format definition.

• For DEV TYPE=DPM-An or TYPE=Bn and DIV TYPE=INPUT

For an input format definition, fields must not span record boundaries, and therefore must be within
the length specified by the RCDCTL value. NOSPAN is the default.

• For DEV TYPE=DPM-An or Bn and DIV TYPE=OUTPUT

The RCDCTL size specified should be less than or equal to the output buffer size specified in the
OUTBUF= macro at IMS system definition. If the RCDCTL size is greater than the OUTBUF value
specified, one record might require multiple output transmissions and might produce undesirable
results in the remote program. If fields do not exactly fit in the defined records, and NOSPAN has
been specified, records might not be completely filled.

The RCDCTL also specifies whether (SPAN) (for DPM-An only) or not (NOSPAN) a field can span
record boundaries. If SPAN is specified (for DPM-An only), some fields can span a record boundary
(but never a PPAGE boundary), and the remote program must include logic to associate the partial
fields or deal with them separately.

If NOSPAN is specified, every field is entirely contained within a record and no field will have a
length greater than the RCDCTL value specified.

The first data field is the first field of the message for OPTIONS=MSG. The first data field is the first
field of the DPAGE or PPAGE for OPTIONS=DPAGE and PPAGE respectively. If the first data field
does not fit in the same record as the output message header, and if OPTIONS=DPAGE or PPAGE
has been specified, the first data record will be sent in the next transmission. The output message
header will be transmitted by itself (as is always the case for OPTIONS=MSG).

NULL=
For DEV TYPE=DPM-An and DIV TYPE=INPUT only, NULL= specifies whether MFS is to ignore (KEEP)
or search for and replace (DELETE) trailing nulls in fields. If NULL=DELETE is specified, MFS searches
input message fields for trailing nulls or for fields that are all nulls, and replaces the nulls with the fill
character specified in the message definition.

OPTIONS=
For DIV TYPE=INPUT, the OPTIONS keyword specifies the exit routines to be called, the type of paging
or delivery requested, and, for DPM-Bn only, the selection of the DPAGE data name to be used to map
data.

212 IMS: System Utilities

For DIV TYPE=OUTPUT, the OPTIONS= keyword specifies the type of paging or delivery requested, the
type of attribute processing requested, and, for DPM-Bn only, the selection of the DPAGE data name to
be used to map data.

For DPM output messages, the option selection determines how records are constructed for
transmission to the remote program or ISC subsystem and effects the distribution of processing and
logic between the IMS application program and the remote program or ISC subsystem.

• For DEV TYPE=DPM-An or TYPE=DPM-Bn and DIV TYPE=INPUT
FLDEXIT|NOFLDEXIT
SEGEXIT|NOSEGEXIT

Input data from this device type can be partially edited by the remote program before it is sent
to IMS. For input format definitions, this parameter specifies whether (FLDEXIT and SEGEXIT)
or not (NOFLDEXIT and NOSEGEXIT) exit routines specified in the MSG definition MFLD and SEG
statements, respectively, are to be called for this DPM format. If NOFLDEXIT or NOSEGEXIT is
specified, the corresponding exit routine is bypassed. FLDEXIT and SEGEXIT are the defaults.

MSG
Specifies that an input message can be created from a single DPAGE.

DPAGE
Specifies that an input message can be created from multiple DPAGEs. If multiple DPAGE input
is not requested in MFS definitions, messages can not be created from more than one DPAGE. In
this case:

If a single DPAGE is transmitted and contains more data than defined for the DPAGE selected,
the input message is rejected and an error message is issued.

If multiple DPAGEs are transmitted, the input message is rejected and an error message is
issued.

NODNM (DPM-An only)
DNM/NODNM (DPM-Bn only)

When a data name (DNM) is specified or defaulted to (DPM-Bn only), a specific DPAGE is
selected to map the current or only data transmission when:

The DPAGE data name is supplied as the DSN parameter in the message header, and

The DPAGE data name matches a defined DPAGE data name.

If these conditions are not met, the last defined DPAGE name is used to map the data, unless
the DPAGE is defined as conditional.

When no data name (NODNM) is specified (for either DPM-An or -Bn) MFS selects a specific
DPAGE by performing a conditional test on the data received and the COND= parameter.

• For DEV TYPE=SCS1, SCS2, FIN, and DIV TYPE=INPUT
MSG

Specifies that an input message can be created from a single DPAGE.
DPAGE

Specifies that an input message can be created from multiple DPAGEs. If multiple DPAGE input
is not requested in MFS definitions, messages can not be created from more than one DPAGE. In
this case:

– If a single DPAGE is transmitted and contains more data than defined for the DPAGE selected,
the input message is rejected and an error message is sent to the other subsystem.

– If multiple DPAGEs are transmitted, the input message is rejected and an error message is
sent to the other subsystem.

• For DEV TYPE=DPM-An or TYPE=DPM-Bn and DIV TYPE=OUTPUT

Chapter 4. MFS Language utility (DFSUPAA0) 213

MSG
Is the default and specifies that IMS will transmit all the DFLDs within a message together as
a single message group. The message is preceded by an output message header. All DFLDs are
transmitted. For DPM-Bn, the data structure name is optional in the header.

DPAGE
Specifies that IMS will transmit all DFLDs that are grouped in one logical page together. The
logical page will be transmitted in one or more records. If PPAGE statements are defined with
the DPAGE, each PPAGE statement begins a new record. An additional logical page will be sent
when a paging request is received from the remote program. Each logical page is preceded by
an output message header, and the label on the DPAGE is placed in the header. For DPM-Bn,
the data structure name is optional in the DD header and depends on the specification of DNM/
NODNM.

PPAGE
Specifies that IMS will transmit the DFLDs that are grouped in one presentation page (PPAGE)
together in one chain. The presentation page will be transmitted in a group of one or more
records. An additional presentation page will be sent when a paging request is sent to IMS from
the remote program. Each presentation page is preceded by an output message header, and the
label on the PPAGE statement is placed in the header. For DPM-Bn, the data structure name is
optional in the DD header and depends on the specification of DNM/NODNM.

SIM/NOSIM2
Specifies whether (SIM) or not (NOSIM2) MFS is to simulate attributes. SIM, the default,
indicates that MFS is to simulate the attributes specified by the IMS application program
and place the simulated attributes in corresponding DFLDs that are defined with ATTR=YES
or YES,nn. The first byte of the field is used for the simulated attributes. If the MFLD does
not supply 3270 attribute information (by means of the ATTR=YES or YES,nn operand) for the
corresponding DFLD specifying ATTR=YES or YES,nn, a blank is sent in the first byte of the field.
The application designer of the remote program or ISC subsystem is responsible for interpreting
the simulated attribute within the remote program or ISC subsystem.

If NOSIM2 is specified, MFS sends a 2-byte bit string to the remote program or subsystem. This
bit string is sent exactly as received from the IMS application program. 3270 extended bytes,
if any (ATTR=YES,nn), are always sent as received from the application program and follow the
2-byte string of 3270 attributes. If the MFLD does not supply attribute information, binary zeros
are sent in the two bytes preceding the data for the field.

See ATTR= on the DFLD statement for additional information.

DNM (DPM-An only)
Can be used with the FORMS= keyword on the DEV statement to specify a literal in the message
header. This parameter is optional.

DNM/NODNM (DPM-Bn only)
If DNM is specified or defaulted to, MFS includes the following in the DD header:

– The FMT name, if OPTIONS=MSG
– The DPAGE name, if OPTIONS=DPAGE
– The PPAGE name, if OPTIONS=PPAGE

If NODNM is specified, no data structure name (DSN) is supplied in the DD header.

HDRCTL=
Specifies, for DEV TYPE=DPM-An and DIV TYPE=OUTPUT only, the characteristics of the output
message header.
FIXED

Specifies that a fully padded output message header is to be sent to the remote program. The
structure of the fixed output message header is the same for all DPM output messages built using
this FMT definition. The base DPM output message header has a length of 7, and includes the
version ID.

214 IMS: System Utilities

VARIABLE
Specifies that MIDNAME and DATANAME will have trailing blanks omitted and their length fields
adjusted accordingly. If MIDNAME is not used, neither the MIDNAME field nor its length is present.

nn
Specifies the minimum length of the header, that is, the base header without MFS fields. The
default is 7, which is the length of the base message header for DPM. Specifying other than 7
might cause erroneous results in the remote program.

The parameters referenced as RDPN=, DPN=, PRN=, and RPRN= refer to both the ISC ATTACH function
management header and the equivalent ISC SCHEDULER function management header.

RDPN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return destination process
name (RDPN) to be supplied in the input message MFLD referencing this dfldname. If dfldname is not
specified, no RDPN is supplied in the input message.

DPN=
For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the DPN in the
output ATTACH message header. The literal cannot exceed 8 characters. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as the DPN in the output
ATTACH message header. If no output message MFLD reference to the dfldname exists, the 'literal'
is used. If the data in the MFLD referencing the dfldname is greater than 8 characters, the first 8
characters are used.

PRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested primary resource name (PRN)
to be supplied in the input message MFLD referencing this dfldname. If the dfldname is not specified,
no PRN is supplied in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the PRN in the
output ATTACH message header. The literal cannot exceed 8 characters. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as the PRN in the output
ATTACH message header. If no output message MFLD reference to the dfldname exists, the 'literal'
is used. If the data in the MFLD referencing the dfldname is greater than 8 characters, the first 8
characters are used.

RPRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return primary resource
name (RPRN) to be supplied in the input message MFLD referencing this dfldname. If dfldname is not
specified, no RPRN is supplied in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the suggested
return primary resource name (RPRN) in the output ATTACH message header. The literal cannot
exceed 8 characters. If the dfldname is also specified, the data supplied in the MFLD referencing this
dfldname is used as the RPRN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, the 'literal' is used. If the data in the MFLD referencing the dfldname
is greater than 8 characters, the first 8 characters are used.

OFTAB=
Directs MFS to insert output field tab separator characters in the output data stream for the message.
If OPTIONS=DNM and OFTAB, then the OFTAB character is placed in the DD header and an indicator is
set to MIX or ALL. If OPTIONS=NODNM, then no DD header is sent.
X'hh'

Character whose hexadecimal representation is "hh" is used as the output field tab separator
character. Specification of X'3F' or X'40' is invalid.

C'c'
Character "c" is used as the output field tab separator character. Specification of C""␢ is invalid.

Restriction: The character specified cannot be present in the data stream from the IMS
application program. If it is present, it is changed to a blank (X'40').

Chapter 4. MFS Language utility (DFSUPAA0) 215

If an output field tab separator character is defined, either MIX or ALL can also be specified.
Default value is MIX.

MIX
Specifies that the output field tab separator character is to be inserted into each individual field
with no data or with less data than the defined DFLD length.

ALL
Specifies that the output field tab separator character is to be inserted into all fields, regardless of
data length.

COMPR=
Requests MFS to remove trailing blanks from short fields, fixed-length fields, or all fields presented by
the application program.

For DPM-AN devices, trailing blanks are removed at the end of a segment if all of the following
conditions are true:

1. FILL=NULL or FILL=PT is specified.
2. GRAPHIC=YES is specified for the current segment being mapped.
3. OPT=1 or OPT=2 is specified in the MSG segment.

If conditions 1, 2, and 3 are met, replacement of trailing blanks occurs as follows:

FIXED
Specifies that trailing blanks from fixed-length fields are to be replaced by nulls.

SHORT
Specifies that trailing blanks fields shortened by the application program are to be replaced by
nulls.

ALL
Specifies that trailing blanks from all fields are to replaced by nulls.

The trailing nulls are then compressed at the end of the record. See the description of the FILL=
operand for additional information.

For DPM-BN devices, trailing blanks are removed if all of the following conditions are true:

1. OFTAB is specified on the current DIV statement, or FILL=NULL or FILL=PT is specified.
2. GRAPHIC=YES is specified for the current segment being mapped.
3. OPT=1 or OPT=2 is specified in the MSG segment.

If conditions 1, 2, and 3 are met, the removal of trailing blanks occurs as follows:

FIXED
Specifies that trailing blanks are to be removed from fixed-length fields.

SHORT
Specifies that trailing blanks are to be removed from fields shortened by the application program.

ALL
Specifies that trailing blanks are to be removed from all fields.

DPAGE statement
The DPAGE statement defines a logical page of a device format.

This statement can be omitted if none of the message descriptors referring to this device format (FMT)
contains LPAGE statements and if no specific device option is required.

216 IMS: System Utilities

Format for DEV TYPE=DPM-An, or DPM-Bn and DIV TYPE=INPUT

label

DPAGE

COND=( offset , >=

<=

>

<

=
¬

,' value ')

Format for DEV TYPE=DPM-An and DIV TYPE=OUTPUT

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

Format for DEV TYPE=DPM-Bn and DIV TYPE=OUTPUT

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

,OFTAB=(

X' hh'

C' c'

,MIX

,ALL

)

Chapter 4. MFS Language utility (DFSUPAA0) 217

Format for DEV TYPE=3270-An

label

DPAGE

CURSOR=(

,

(111, ccc

, dfld

))

,FILL=

PT

X' hh'

C' c'

NONE

NULL

,MULT=YES ,PD= pdname

,ACTVPID=  dfldname

Format for DEV TYPE=3270

label

DPAGE

CURSOR=(

,

(111, ccc

, dfld

))

,FILL=

PT

X' hh'

C' c'

NONE

NULL

,MULT=YES

Format for DEV TYPE=3270P

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

218 IMS: System Utilities

Format for DEV TYPE=FIN

label

DPAGE

COND=( offset , >=

<=

>

<

=
¬

,' value ')

Format for DEV TYPE=FIDS, FIDS3, FIDS4, or FIDS7

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

CURSOR=(

,

(111, ccc

, dfld

))

,ORIGIN=(

,

ABSOLUTE

RELATIVE)

Format for DEV TYPE=FIJP or FIPB

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

Chapter 4. MFS Language utility (DFSUPAA0) 219

Format for DEV TYPE=FIFP

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

SELECT=(

,

LEFT

RIGHT

DUAL

)

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=INPUT

label

DPAGE

COND=( offset , >=

<=

>

<

=
¬

,' value ')

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=OUTPUT

label

DPAGE

FILL=

X'40'

X' hh'

C' c'

NONE

NULL

Parameters
label

A 1- to 8-byte alphanumeric name can be specified for this device format that contains LPAGE SOR=
references, or if only one DPAGE statement is defined for the device. If multiple DEV statements are
defined in the same FMT definition, each must contain DPAGE statements with the same label.

For device type DPM-An and DIV statement OPTIONS=DPAGE, this name is sent to the remote
program as the data name in the output message header. If the label is omitted, MFS generates a
diagnostic name and sends it to the remote program in the header. If the DPAGE statement is omitted,
the label on the FMT statement is sent in the output message header. If OPTIONS=DNM, the label on
the FMT statement is sent as the DSN in the DD header.

COND=
Specifies a conditional test to be performed on the first input record. The offset specified is relative
to zero. The specification of the offset must allow for the LLZZ field of the input record (for example,
the first data byte is at offset 4). If the condition is satisfied, the DFLDs defined following this DPAGE
will be used to format the input. When no conditions are satisfied, the last defined DPAGE will be used

220 IMS: System Utilities

only if the last defined DPAGE does not specify COND=. If the COND= parameter is specified for the
last DPAGE defined and the last defined DPAGE condition is not satisfied, the input message will be
rejected. Multiple LPAGE definitions are allowed in message input definitions.

If this keyword is specified, and OPTIONS=NODNM is specified on the DIV statement, this
specification is used for DPAGE selection. If this keyword is specified and OPTIONS=DNM is specified
on the DIV statement, the COND= specification is ignored and the data structure name from the DD
header is used for DPAGE selection.

Lowercase data entered from Finance, SCS1, or SCS2 keyboards is not translated to uppercase when
the COND= comparison is made. Therefore, the literal operand must also be in lowercase.

FILL=
Specifies a fill character for output device fields. Default value for all device types except the 3270
display is X'40'; default for the 3270 display is PT. For 3270 output when EGCS fields are present,
only FILL=PT or FILL=NULL should be specified. A FILL=PT erases an output field (either a 1- or
2-byte field) only when data is sent to the field, and thus does not erase the DFLD if the application
program message omits the MFLD. For DPM-Bn, if OFTAB is specified, FILL= is ignored and FILL=NULL
is assumed.
NONE

Must be specified if the fill character from the message output descriptor is to be used to fill the
device fields.

X'hh'
Character whose hexadecimal representation is 'hh' will be used to fill the device fields.

C'c'
Character 'c' will be used to fill the device fields.

NULL
Specifies that fields are not to be filled. For devices other than the 3270 display, 'compacted lines'
are produced when message data does not fill the device fields.

For DPM-An devices, trailing nulls (X'3F') are removed from all records transmitted to the
remote program or subsystem. Trailing nulls are removed up to the first non-null character. Null
characters between non-null characters are transmitted. If the entire record is null, but more
data records follow, a record containing a single null is transmitted to the remote program. If
the entire record is null and more records follow, if OPTIONS=MSG or DPAGE, or in a PPAGE, if
OPTIONS=PPAGE, then all null records are deleted to the end of that DPAGE or PPAGE.

PT
Is identical to NULL except for the 3270 display. For the 3270 display, specifies that output fields
that do not fill the device field (DFLD) are followed by a program tab character to erase data
previously in the field; otherwise, this operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is changed to X'00' for
control characters or to X'40' for other nongraphic characters. For all other devices, any FILL=X'hh'
or FILL=C'c' specification with a value less than X'3F' is ignored and defaulted to X'3F' (which is
equivalent to a specification of FILL=NULL).

MULT=YES
Specifies that multiple physical page input messages will be allowed for this DPAGE.

CURSOR=
Specifies the position of the cursor on a physical page. Multiple cursor positions might be required
if a logical page or message consists of multiple physical pages. The value lll specifies line number,
ccc specifies column; both lll and ccc must be greater than or equal to 1. The cursor position must
either be on a defined field or defaulted. The default lll,ccc value for 3270 displays is 1,2. For Finance
display components, if no cursor position is specified, MFS will not position the cursor—the cursor
is normally placed at the end of the output data on the device. For Finance display components, all
cursor positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program with cursor information
on input and allowing the application program to specify cursor position on output.

Chapter 4. MFS Language utility (DFSUPAA0) 221

Tip: Use the cursor attribute facility (specify ATTR=YES in the MFLD statement) for output cursor
positioning.

The dfld parameter specifies the name of a field containing the cursor position. This name can
be referenced by an MFLD statement and must not be used as the label of a DFLD statement in
this DEV definition. The format of this field is two binary halfwords containing line and column
number, respectively. When this field is referred to by a message input descriptor, it will contain
the cursor position at message entry. If referred to by a message output descriptor, the application
program places the desired cursor position into this field as two binary halfwords containing line and
column, respectively. Binary zeros in the named field cause the specified lll,ccc to be used for cursor
positioning during output. During input, binary zeros in this field indicate that the cursor position is not
defined. The input MFLD referring to this dfld should be defined within a segment with GRAPHIC=NO
specified or should use EXIT=(0,2) to convert the binary numbers to decimal.

ORIGIN=
Specifies page positioning on the Finance display for each physical page defined. Default value is
ABSOLUTE.
ABSOLUTE

Erases the previous screen and positions the page at line 1 column 1. The line and column
specified in the DFLD statement will become the actual line and column of the data on the screen.

RELATIVE
Positions the page starting on column 1 of the line following the line where the cursor is
positioned at time of output. Results might be undesirable unless all output to the device is
planned in a consistent manner.

OFTAB=
Directs MFS to insert the output field tab separator character specified on this DPAGE statement for
the output data stream of the DPAGE being described.
X'hh'

Character whose hexadecimal representation is 'hh' is used as the output field tab separator
character. Specification of X'3F' or X'40' is invalid.

C'c'
Character 'c' is used as the output field tab separator character. Specification of C' ' is invalid.

Restriction: The character specified cannot be present in data streams from the IMS application
program. If it is present, it is changed to a blank (X'40').

If the output field tab separator character is defined, either MIX or ALL can also be specified.
Default value is MIX.

MIX
Specifies that an output field tab separator character is to be inserted into each individual field
with no data or with data less than the defined DFLD length.

ALL
Specifies that an output field tab separator character is to be inserted into all fields, regardless of
data length.

SELECT=
Specifies carriage selection for a FIFP device with FEAT=DUAL specified in the previous DEV
statement. It is your responsibility to ensure that proper forms are mounted and that left margins
are set properly. Default value is LEFT.
LEFT

Causes the corresponding physical page defined in this DPAGE to be directed to the left platen.
RIGHT

Causes the corresponding physical page defined in this DPAGE to be directed to the right platen.
DUAL

Causes the corresponding physical page defined in this DPAGE to be directed to both the left and
right platens.

222 IMS: System Utilities

PD=
(for the 3180 and 3290 in partition formatted mode) Specifies the name of the partition descriptor of
the partition associated with the DPAGE statement. This parameter maps a logical page of a message
to or from the appropriate partition. The name of the PD must be contained within the PDB statement
specified in the DEV statement.

ACTVPID=
(for the 3290 in partition formatted mode) Specifies the name of an output field in the message
containing the partition identification number (PID) of the partition to be activated. This dfldname
must be referenced by an MFLD statement and must not be used as the label of a DFLD statement in
the DEV definition. The application program places the PID of the partition to be activated in this field.
The PID must be in the format of a two byte binary number ranging from X'0000' to X'000F'.

Do not specify this operand for the 3180. Because only one partition is allowed for this device, you
need not specify an active partition.

PPAGE statement
The PPAGE statement, valid only for device types of DPM-An or DPM-Bn, defines the beginning of a
presentation page.

A presentation page is the unit of data delivered to the remote program in response to a paging
request when OPTIONS=PPAGE has been specified in the DIV statement for this definition. For DPM-Bn
MODE=RECORD only, if OPTIONS=MSG or DPAGE has been specified, paging is as described for those
options under the DIV statement, and the PPAGE statement then defines the beginning of a new record
(that is, it is equivalent to a RCD statement).

For an input DPAGE, only one PPAGE statement is allowed, and it must be placed between the DPAGE
statement and the first DFLD statement. For an output DPAGE, if two consecutive PPAGE statements
appear in the DPAGE for a message defined with OPTIONS=PPAGE, only an output message header with
the PPAGE label as its data name is sent to the remote program, except OPTIONS=(PPAGE,DNM) for DPM-
Bn. For DPM-Bn, a PPAGE statement without a DFLD statement is not allowed when OPTIONS=(PPAGE,
NODNM) is specified for DIV TYPE=OUTPUT. A warning message is issued, and the PPAGE statement is
ignored. For OPTIONS=MSG or DPAGE, consecutive PPAGE statements are ignored.

Format

label

PPAGE,  comments

Parameters
label

A one- to eight-character alphanumeric name should be specified. For OPTIONS=PPAGE, this label is
sent as the data name for DPM-An or as the data structure name for DPM-Bn in the message output
header or DD header to identify the data structure of this presentation page to the remote program.
If no label is specified, MFS generates a diagnostic label that is sent to the remote program in the
header.

Tip: Specify a user-defined label because the MFS-generated name can change whenever the MFS
definitions are recompiled.

The label specified should be unique, at least within a given FMT definition, and preferably within an
IMS system if the remote program uses this label to identify the appropriate DSECT for formatting the
data included in this presentation page.

Chapter 4. MFS Language utility (DFSUPAA0) 223

DO statement
The DO statement causes repetitive generation of DFLD and RCD statements between the DO and ENDDO
statements.

When DO is used, there are restrictions in the naming of DFLDs.

Format

label

DO count

,1

, line-increment

, position-increment

,MAX

, column-increment

,SUF=

01

number ,BOUND=

LINE

FIELD

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
count

Specifies how many times to generate the statements.
line-increment

Specifies how much to increase the line position after the first cycle. The first cycle uses the lll value
specified in the POS= keyword of the DFLD statement. The default is 1. This parameter is not specified
for DEV type DPM-An or DPM-Bn.

position-increment
Specifies how much to increase the position parameter after the first cycle. The first cycle uses the
nnn value specified in the POS= operand of the DFLD statement. The position increment is used for
an input device format when MODE=STREAM is specified. This parameter is not specified for DEV type
DPM-An or DPM-Bn.

MAX
Specifies that the line increment to be used at the end of each cycle and the column values in
the DFLDs are to remain the same for each cycle. This parameter is not used if MODE=STREAM is
specified for the device format or if DEV type is DPM-An or DPM-Bn; if present, it is ignored.

column-increment
Specifies how much to increase the column position after the first cycle. The first cycle uses the ccc
value specified in the POS= keyword of the DFLD statement. The default is MAX. This parameter is
not used for DEV type DPM-An or DPM-Bn, or when MODE=STREAM is specified for the device format,
because it is ignored.

SUF=
Specifies the 2-digit suffix to be appended to the dfldname of the first group of generated DFLD
statements. The default is 01. MFS increments the suffix by one on each subsequent generation of
statements.

If the specified suffix exceeds 2 digits, MFS uses the rightmost 2 digits.

If the specified count is such that the generated suffix eventually exceeds 2 digits, MFS reduces the
count to the largest legitimate maximum value. For example, if count equals 8 and SUF=95, invalid
suffixes of 100, 101, and 102 would result. In this instance, MFS reduces the count to 5, processes
the statement, and issues an error message.

224 IMS: System Utilities

BOUND=
Specifies when updates to line position and column position are to occur. The default is LINE. This
parameter is not used if MODE=STREAM is specified for the device format or if DEV type is DPM-An or
DPM-Bn; if present, it is ignored.
LINE

Specifies that all fields be inspected before the repetition is performed. If the column increment
would cause any field in the group of DFLD statements to not fit on a line, the column position
value for all fields is reset to the initial value, and the line position values are increased by the
line-increment value.

FIELD
Specifies that each time the statement is repeated, the column position value is increased by the
column-increment value. If MAX is specified, or the new column position value reaches device line
length capacity, the line position value is increased by the line-increment value and the column
position value is reset to its initial value.

Example of line and column increment

The following example demonstrates how to increment lines and columns:

 DO 20,1,38
A1 DFLD POS=(9,6),LTH=6
B1 DFLD POS=(9,27),LTH=3

In this example, A1 and B1 are increasing by line increment (1) and column increment (38). Generation
would proceed in the following fashion by a compiler:

• Add the column increment to each column value in the set, resulting in positions (9,44) and (9,65).
• Test to see if any field using these new column values would exceed the line size limitation for this

device. In this example, assume a limitation of 80 for a 3270 Model 2.
• Since there is no violation of line width, generate A2 and B2 using the new column values and the same

line value.
• Add the column increment again, resulting in positions (9,82) and (9,103).
• Since the fields would exceed line width, the column values are reset to the original values of (9,6) and

(9,27) and the line increment is applied. The resulting positions are now (10,6) and (10,27).
• Generate A3 and B3 using the new line values, with column values as in the original statements.

Generation continues in this manner until the count of 20 iterations is reached.

Printing generated DFLD statements

The generated DFLD statements can be printed in a symbolic source format by specifying COMP in the
parameter list of the EXEC statement. This provides a means of seeing the results of the DFLD statement
generation without having to interpret the intermediate text blocks.

The following items are printed for each generated DFLD statement:

• The generated statement sequence number followed by a plus sign (+) to indicate that the DFLD
statement was generated as a result of DO statement processing.

• The DFLD statement label, if present, including the appended suffix.
• The statement operator, DFLD.
• For EGCS literals, the G, SO, and SI are not present. Literals are truncated if there is insufficient room

to print all specifications. Truncation is indicated by a portion of the literal with three periods (...),
representing the truncated portion.

• ATTR=(YES,nn), if present.
• ATTR=YES, if present.

Chapter 4. MFS Language utility (DFSUPAA0) 225

• ATTR=nn, if present.
• ATTR=(...), if attributes are present.
• EATTR=(...), if present.
• The RECORD or STREAM form of the POS= keyword, with the line and column or stream position

updated by the respective increments. This is not printed if DEV type is DPM-An or DPM-Bn.
• SCA, if present.
• The field length, in the form of LTH=nnnn.

No other operands are printed, even if specified on the source DFLD statement.

For device type DPM-An or DPM-Bn, the RCD statement can appear between a DO and ENDDO statement.
If it does, a new record boundary is created for each repetitive generation of the DFLD field following the
RCD statement. For example, the following sequence causes the DFLDs A01, B01, and C01 to be in record
1, while A02, B02, and C02 are in record 2, and A03, B03, and C03 are in record 3.

 DO 3
 RCD
A DFLD LTH=10
B DFLD LTH=10
C DFLD LTH=10
 ENDDO

Alternatively, the RCD statement can immediately precede the DO statement. If it does, a new record
boundary begins with the first DFLD after the DO statement and does not end until the ENDDO statement
(or the maximum record length) is reached. For example, the following sequence causes the DFLD D01 to
begin a new record, in which E01, D02, and E02 also occur.

 RCD
 DO 2
D DFLD LTH=10
E DFLD LTH=10
 ENDDO

RCD statement
The RCD statement, valid for DEV TYPE=DPM-An or DPM-Bn only, can be used to influence the placement
of DFLDs in records.

The RCD statement precedes a DFLD statement and initiates a new transmission record for delivery to a
remote program. DFLDs following the RCD statement are included into the transmission record until the
next RCD statement or the maximum record length is reached (or, if NOSPAN is specified, until a field will
not be fully contained in the current record).

The RCD statement can be placed after the PPAGE, DO, DFLD, or ENDDO statements. If a RCD statement
is immediately followed by another, only the first one is effective.

The RCD statement is invalid for STREAM mode.

Format

label

RCD, comments

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

226 IMS: System Utilities

DFLD statement
The DFLD statement defines a field within a device format which is read from or written to a terminal or
remote program.

Only those areas which are of interest to the IMS or remote application program should be defined. Null
space in the format does not need to be defined.

Format for DEV TYPE=3270 or 3270-An

label

DFLD

PASSWORD

' literal '

,POS=( lll , ccc
, pp

)

,LTH=  nnn
,PEN= ' literal '

NEXTPP

NEXTMSG

NEXTMSGP

NEXTLP

ENDMPPI

,ATTR=(
ALPHA

NUM

,NOPROT

,PROT

A)

,OPCTL=  tablename

,EATTR=(

HD

HBLINK

HREV

HUL

,CD

,BLUE

,RED

,PINK

,GREEN

,TURQ

,YELLOW

,NEUTRAL

,PX'00'

,PX' hh'

,PC' c'

,EGCS

,EGCS' hh'

B)

A
,NODET

,DET

,IDET

,NORM

,NODISP

,HI

,NOMOD

,MOD

,STRIP

,NOSTRIP

B

Chapter 4. MFS Language utility (DFSUPAA0) 227

,VDFLD

,VMFILL,VMFLD

,VMFILL

,VMFLD

,OUTL

,OUTL'  hh'

,BOX

,RIGHT

,LEFT

,UNDER

,OVER

,MIX

,MIXD

Format for DEV TYPE=3270P

label

DFLD

' literal '

,POS=( lll , ccc
, pp

)

,LTH=  nnn

,ATTR=
NO

YES

,EATTR=(

HD

HBLINK

HREV

HUL

,CD

,BLUE

,RED

,PINK

,GREEN

,TURQ

,YELLOW

,NEUTRAL

,PX'00'

,PX' hh'

,PC' c'

)

Format for DEV TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIFP, FIJP, and FIPB

label

DFLD

' literal '

,POS=( lll , ccc
, pp

)

,LTH=  nnn

,ATTR=
NO

YES

228 IMS: System Utilities

Format for DEV TYPE=FIN

label

DFLD POS
1

=( lll , ccc
, pp

)

POS
2

= nnn

,LTH=  nnn

,OPCTL=  tablename

Notes:
1 MODE=RECORD only
2 MODE=STREAM only

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=OUTPUT

label

DFLD

' literal '

,POS=( lll , ccc
, pp

)

,LTH=  nnn

,ATTR=
NO

YES

Format for SCS1 only

,SLDI=  nn

,SLDP=  nn

,EATTR=(

HD

HBLINK

HREV

HUL

,CD

,BLUE

,RED

,PINK

,GREEN

,TURQ

,YELLOW

,NEUTRAL

A)

A

,PX'00'

,PX' hh'

,PC'c'

,ECGS

,MIX

,MIX' nn'

,MIXS

,MIX' nn'

,OUTL

,OUTL'  hh'

,BOX

,RIGHT

,LEFT

,UNDER

,OVER

Chapter 4. MFS Language utility (DFSUPAA0) 229

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=INPUT

label

DFLD POS
1

=( lll , ccc
, pp

)

POS
2

= nnn

,LTH=  nnn

,OPCTL=  tablename

Notes:
1 MODE=RECORD only
2 MODE=STREAM only

Format for DEV TYPE=DPM-An or DPM-Bn and DIV TYPE=INPUT

label

DFLD

,LTH=  nnn ,OPCTL=  tablename

Format for DEV TYPE=DPM-An or DPM-Bn and DIV TYPE=OUTPUT

label

DFLD

PASSWORD

' literal '

SCA

,LTH=  nnn

,ATTR=(
NO

YES , nn
)

Parameters

label
A one- to eight-character alphanumeric name can be specified. This label (dfldname) can be referred
to by a message descriptor in transferring data to and from a terminal or remote program. If the
repetitive generation function of MFS is used (DO and ENDDO statements), this dfldname should be
restricted to 6 characters maximum length. When each repetition of the statement is generated, a
2-digit sequence number (01 to 99) is appended to the label. If the label specified here is greater than
6 characters and repetitive generation is used, the label is truncated at 6 characters, and a 2-digit
sequence number is appended to form the 8-character name. No error message is provided if this
occurs.

If PASSWORD, SCA, or 'literal' is specified, label is not valid, and specification of a label will result in
an error message. If a DPN, PRN, RDPN, or RPRN dfldname is specified on the DIV statement, the
dfldname cannot be used as a DFLD label for the current DIV statement.

PASSWORD
Identifies this field as the location of the IMS password field for input messages.

IMS supports mixed case or upper case passwords up to 8 characters, and password phrases up to
100 characters.

Tip: Use the PASSWORD capability in the input message definition. If you specify PASSWORD you
cannot refer to the field described by this DFLD statement with a message descriptor. Additionally, if
you specify PASSWORD you must omit label.

230 IMS: System Utilities

'literal'
Specifies a literal character string to be presented to the device. The length of literal cannot exceed
256 bytes for 3270 display devices, 40 bytes for FIDS and FIDS3, 64 bytes for FIDS4, 80 bytes for
FID57, 256 bytes for 3270P, and line width for all printer and punch devices. For DPM, the length of
literal cannot exceed the value specified in the RCDCTL operand.

For 3270 displays, literal fields have the PROT attribute whether specified or not; the NUM attribute is
assumed if ALPHA is not specified.

Restriction: If you specify literal you cannot refer to the field described by this DFLD statement with a
message descriptor. Additionally, if you specify literal you must omit label.

SCA
Specifies, for DPM definitions only, that SCA information, when sent by the IMS application program or
specified in the DSCA, is to be sent in this DFLD.

If SCA is specified, label must not be specified.

POS=
Defines the first data position of this field in terms of line (lll), column (ccc), and physical page (pp) of
the display format. If pp is omitted, 1 is assumed.

For DEV TYPE=FIN,FIDS,FIDS3,FIDS4, FIDS7,FIJP,FIPB,FIFP,SCS1, or SCS2

lll,ccc
Specifies the record number and position within the record of this field. This form is required if
MODE=RECORD. lll and ccc must be greater than or equal to 1.

nnn
Specifies the starting position of this field in STREAM mode input. If not specified, this field
starts immediately following the preceding field, or at the left margin if this is the first field. If
MODE=STREAM has been specified, and POS= is specified, this form is required. nnn must be
greater than or equal to 1.

lll,ccc,pp
Specifies the line, column, and optionally, the physical page number for an output field. lll, ccc,
and pp must be greater than or equal to 1.

For DEV TYPE=3270, 3270-An, or 3270P

lll,ccc,pp
Specifies the line, column, and optionally, the physical page number for an output field. lll, ccc, and
pp must be greater than or equal to 1.

For 3270 displays, POS=(1,1) must not be specified. Fields must not be defined such that they
wrap from the bottom to the top.

Restriction: On some models of 3270s, the display screen cannot be copied when a field starting
on line 1, column 2, has both alphabetic and protect attributes.

For DEV TYPE=DPM-An or DPM-Bn

For DPM devices
The POS= keyword is ignored.

LTH=
Specifies the length of the field. This operand should be omitted if 'literal' is specified in the positional
parameter, in which case the length of literal is used as the field length. Unpredictable output
formatting can occur if this operand is used in conjunction with a 'literal' and the two lengths are
different. The specified LTH= cannot exceed the physical page size of the device.

The maximum allowable length for all devices except 3270, 3604 display, and DPM with
RCDCT=NOSPAN is 8000 characters. For 3270 displays, the maximum length is one less than screen
size. For example, for a 480-character display, the maximum length is 479 characters. For a FIDS
display component, the maximum length is 240 characters; for a FIDS3, the maximum length is 480
characters; for a FIDS4, the maximum length is 1024 characters; for a FIDS7, the maximum length is

Chapter 4. MFS Language utility (DFSUPAA0) 231

1920. A length of 0 must not be specified. For DPM, if RCDCT=NOSPAN is specified, the length must
be less than or equal to the RCDCTL value, if RCDCTL is less than 8000. If SCA and LTH= are both
specified, LTH must be 2.

POS= and LTH= do not include the attribute character position reserved for a 3270 display device or
a DFLD with ATTR=YES specified. The inclusion of this byte in the design of display/printer formats is
necessary because it occupies the screen/printed page position preceding each displayed/printed field
even though it is not accessible by an application program.

When defining DFLDs for 3270 printers, a hardware ATTRIBUTE character is not used. Therefore, fields
must be defined with a juxtaposition that does not allow for the attribute character unless ATTR=YES
is specified. However, for printers defined as 3270P the last column of a print line (based on FEAT=,
WIDTH=, or the device default width) cannot be used. The last column of the line is reserved for carriage
control operations performed by IMS. Thus, if the print line specifies 120 (FEAT=120) and the DFLD
specifies POS=(1,1),LTH=120 then 119 characters are printed on line 1 and one character on line 2.

For DPM definitions, if OPTIONS=NOSIM2 is specified on the DIV statement, and ATTR=YES or YES,nn is
specified, 2 bytes plus the extended attributes are added to the length of the DFLD. The first two bytes
are reserved for the binary 3270 attribute, (protect, numeric, and so forth.) If OPTIONS=SIM is specified,
1 byte or 1 byte plus the extended attributes is added to the length of the DFLD with ATTR=YES or YES,nn.
The first byte of the field is thus reserved for the simulated attribute.

Detectable fields (DET or IDET) must include four positions in POS and LTH for a 1-byte detection
designator character and 3 pad characters, unless the detectable field is the last field on a display line, in
which case only one position for the detection designator character is required. The detection designator
character must precede field data, and pad characters (if required) follow field data. Detection designator
and required pad characters must be supplied by the application program or MFLD literal with the field
data. Pad characters can also be required in the preceding field on the device.

ATTR=
Defines the display attributes of this field for each of the listed DEV TYPE, DIV TYPE combinations:

• For DEV TYPE=3270 or 3270-An

Attribute keywords can be specified in any order and only those desired need be specified. The
underlined keywords do not have to be specified, because they are defaults.

When two user-defined fields are separated by two or more characters, MFS generates an undefined
field to represent that space in the display buffer. The display attributes for an undefined field are
NUM, PROT, and NODISP.

ALPHA | NUM
Specifies whether the field should have the numeric attribute. The numeric attribute specifies
that the Numeric Lock feature (automatic upshift of data entry keyboard) will be used by the
3275/3277 or 3276/3278. If NUM and PROT are specified for the field, the auto-skip feature
is used. That is, upon entry of a character into the last character location of an unprotected
field, the cursor automatically skips the field with the NUM and PROT attribute specifications
and is positioned to the first character location of the next unprotected field. If an undefined
field, as described in the ATTR= parameter, follows the filled unprotected field, the auto-skip
feature is used. This parameter, in conjunction with the PROT parameter, is used to lock the
COPY function. See "PROT" for details.

NOPROT | PROT
Specifies whether the field is protected from modification by you. For literal fields, PROT is used
and specification of NOPROT is ignored.

The IMS copy function on remote 3270 terminals can be locked by setting the attribute value
of protect and alpha for an attribute byte in line 1 and column 1 of a display. When the copy
function is locked, it cannot be used to copy the contents of a display to a printer. The "Local
Copy Function" available on the 3274 and 3276 control units is not locked by the attribute
setting. The "Local Copy Function" is invoked by the print key.

232 IMS: System Utilities

NODET|DET|IDET
Specifies the detectability of the field through light pen operations. DET specifies a deferred
detectable field, while IDET indicates an immediately detectable field. You must provide
appropriate designator and pad characters as discussed under the LTH= operand. Note that
the 3270 display devices place restrictions on the number of detectable or mixed detectable
and nondetectable fields that can precede that last detectable field on a given line.

NORM|NODISP|HI
Specifies the field's display intensity as normal (NORM), high intensity (HI), or nondisplayable
(NODISP). If NODISP is specified, DET or IDET cannot be specified.

When defining a high-intensity (HI) field, including a detection designator character as the first
data byte causes the high-intensity (HI) field to be detectable.

NOMOD|MOD
defines whether or not the field-modified-attribute byte should be assumed for this field. MOD
causes the terminal to assume the field has been modified by you even though it was not (that
is, the modified data tag (MDT) is set in the field-modified-attribute byte). This should not be
confused with the PROT attribute which prevents modification by you. MOD is ignored for literal
fields.

When MOD is specified, each time MFS sends output for this physical page, the modified
attribute is set (unless overridden by dynamic attribute modification).

STRIP|NOSTRIP
Specifies whether the pen detect designator byte preceding the input field should be stripped
(STRIP) before presentation to the application program. If an EGCS attribute is defined for
a light-pen-detectable field, you should specify ATTR=NOSTRIP on the DFLD statement and
design the application program to bypass or remove the two designator characters from the
input data. If ATTR=STRIP is specified or defaulted, MFS will only remove the first designator
character and the last character in the field could be lost (truncated).

• For DIV TYPE=OUTPUT and DEV TYPE=3270P, FIDS, FIDS3, FIDS4, FIDS7, FIFP, FIJP, FIPB, FIS1,
or SCS2

Attribute keywords specify whether (YES) or not (NO) the first byte of this field will be used to
display attribute information when the output message includes attribute information for the field.
The default is NO. If ATTR=YES is specified, the LTH= and POS= keywords do not have to allow for
the simulated attribute byte because the MFS preprocessor adjusts the keyword values internally.
The action taken when ATTR=YES is specified is:

CURSOR
(FIDS, FIDS3, FIDS4, and FIDS7 ABSOLUTE output only). The cursor will be positioned to the
first position of this field.

NODISP
No data sent regardless of other attributes

HI
An asterisk (*) is placed in the first byte

MODIFIED
An underscore character (_) is placed in the first byte

HI and MODIFIED
An exclamation point (!) is placed in the first byte

If attribute information is not provided from the output message, the first byte is a blank.
• For DIV TYPE=OUTPUT, DEV TYPE=DPM-An, and DEV TYPE=DPM-Bn, 3270P, FIDS, FIDS3, FIDS4,

FIDS7, FIFP, FIJP, FIPB, FIS1, or SCS2

Attribute keywords specify whether (YES) or not (NO) the first one or two bytes of this field carries
existing 3270 attributes and whether extended attributes (nn) are present. The keywords can be
used in various combinations as follows:

Chapter 4. MFS Language utility (DFSUPAA0) 233

YES
Specifies that the first one or two bytes of this field are used to convey the existing 3270
attributes (in simulated or binary form depending upon the specification of SIM or NOSIM2
respectively on the DIV statement) from the IMS application program to the remote program.
(SIM causes MFS to simulate an attribute. NOSIM2 causes MFS to pass the bits exactly as
entered.)

Thus, if ATTR=YES is specified and OPTIONS=SIM or OPTIONS= is not specified, one byte is
added to the length of the DFLD. If OPTIONS=NOSIM2, two bytes are added to the length of the
DFLD. These bytes are reserved as the attribute bytes to be transmitted to the remote program.

NO
Specifies that the first one or two bytes of this field will not be used to convey the existing 3270
attributes (in simulated or binary form respectively) from the IMS application program to the
remote program. This is the default.

nn
Is the number of extended attributes that can be dynamically modified, and is a number from
1 to 4. An invalid specification is defaulted to 1. Two additional bytes are added to the length
of the DFLD for each attribute specified (2 x nn). The additional bytes, which just precede the
data, either can (YES) or must not (NO) follow the bytes reserved for the existing 3270 attribute
bytes. These bytes are used to convey the extended attributes (in binary form) from the IMS
application program to the remote program. The attributes are always transmitted as presented
from the IMS application program. They are never simulated or validated.

YES,nn
When used in combination, YES,nn specifies that both attributes and extended attributes are
to be transmitted. In this case, and depending upon the specification of SIM and NOSIM2 as
described:.

When specified with SIM, specifies that 3270 simulated attributes (1 byte) plus extended
attributes (2 x nn bytes) of this field are to be transmitted from the IMS application program
to the remote program. The total number of bytes used to convey all of these attributes to the
remote program is 1 + (2 x nn)

When specified with NOSIM2, specifies that 3270 attributes in binary form (2 bytes) plus
extended attributes (2 x nn bytes) of this field are to be transmitted from the IMS application
program to the remote program. The total number of bytes used to convey all of these
attributes, which are all in binary form, to the remote program is 2 + (2 x nn).

NO,nn
When used in combination, NO,nn specifies that only extended attributes are transmitted. Thus,
the number of bytes transmitted, in binary form, is (2 x nn) only.

Valid specifications and the number of bytes that must be reserved are:

For DIV ,OPTION=NOSIM2 then:
DFLD ,ATTR=(YES,nn) 2 + (2 × nn)
DFLD ,ATTR=(NO,nn) 2 × nn
DFLD ,ATTR=(,nn) 2 × nn
DFLD ,ATTR=YES 2
DFLD ,ATTR=NO 0
For DIV ,OPTION=SIM or not specified then:
DFLD ,ATTR=(YES,nn) 1 + (2 × nn)
DFLD ,ATTR=(NO,nn) 2 × nn
DFLD ,ATTR=YES 1
DFLD ,ATTR=NO 0

EATTR=
Is valid for output DFLDs only and defines the extended attributes of this field for DEV TYPE=3270,
3270-An, 3270P, or SCS1.

Not all extended attributes apply to all device types. To ensure that your specifications for your device
types are correct, refer to the component description manual for your device.

The operands specify:

234 IMS: System Utilities

• Additional field highlighting
• Field color
• Field outlining
• Input control
• Validation to be performed
• Local ID of the programmed symbol buffer

Characters are selected from the programmed symbol buffer and placed in the field. These operands
can be specified in any order. When the device default value is selected for an operand, it is used
to hold a place in the data stream to permit application program modification of the attribute so
specified.

To specify the additional highlighting for the field use the following:

HD
device default

HBLINK
blink

HREV
reverse video

HUL
underline

To specify the field's color use the following:

• BLUE
• RED
• PINK
• GREEN
• TURQ(uoise)
• YELLOW
• CD
• NEUTRAL

The last two operands are used as follows:

CD
Used to specify the default.

NEUTRAL
Used to specify device-dependent. The particular color displayed for NEUTRAL is device-
dependent. In general, NEUTRAL is white on displays and black on printers with single-plane
programmed symbols and as multicolored on displays or printers with tri-plane programmed
symbols.

The following five operands—PX'00', PX'hh', PC'c', EGCS, and EGCS'hh'—are mutually exclusive. That
is, a field can be specified as having one of these characteristics, but not a combination thereof. For
all 3270 devices, MFS does not verify that any specified character set has been properly loaded. The
programmed symbol buffers can be loaded by an IMS application program using the MFS bypass.

PX'00'|PX'hh'|PC'c'
Specifies a value that must correspond to the local ID specified for a programmed symbol buffer
already loaded or to the EGCS programmed symbol buffer.
PX'00'

Is the same as no specification, except that it allows an application program to specify a
programmed symbol buffer for the field through dynamic modification of the programmed
symbol attribute.

Chapter 4. MFS Language utility (DFSUPAA0) 235

PX'hh'
Is a hexadecimal character in the range X'40' through X'FE'.

PC'c'
Is a hexadecimal character within the range X'40' through X'FE'.

EGCS|EGCS'hh'
Is valid only on output DFLDs for the 3270 display. SCS1 device types can specify EGCS only and
not EGCS 'hh'.

When an extended graphic character set literal is specified on a DFLD statement, the extended
graphic character set attribute is forced—that is, you do not have to code EATTR=EGCS'hh' for
3270 displays or EATTR=EGCS for SCS1 device types. For 3270 displays, a programmed symbol
value of X'F8' is set.

Restriction: The IMS application program cannot modify the SCS1 DFLD extended graphic
character set attribute.

When defining an EGCS field for a 3283 Model 52, the length must be an even number. If the EGCS
field spans device lines, WIDTH= and POS= should be specified so that an even number of print
positions are reserved on each of the device lines.

EGCS
Specifies the field attribute for the field as Extended Graphic Character Set. Also specifies the
field attribute for the field as Double Byte Character Set.

EGCS'hh'
'hh' is the programmed symbol value that is used. The value for 'hh' can be any hexadecimal
value from X'40' through X'FE' or X'00'. If 'hh' is omitted from the extended graphic character
set specification for a 3270 display, a programmed symbol value of X'F8' is assumed. 'hh' is
ignored if specified for an SCS1 device.

To define an EBCDIC field that can be dynamically modified by the IMS application program
to accept extended graphic character set data, the programmed symbol attribute should be
specified as EGCS'00'.

VDFLD|VMFILL|VMFLD|VMFILL,VMFLD
Defines the type of validation for the field as follows:
VDFLD

Default
VMFILL

Mandatory fill
VMFLD

Mandatory field
VMFILL,VMFLD

A combination of mandatory fill and mandatory field

If a field is defined as protected (ATTR=PROT) or if it is a literal with validation attributes specified,
then the validation attribute specifications are reset and a message is issued.

The following are used to specify field outlining:

OUTL'hh'
Field outlining with field outlining value 'hh'

OUTL
Device default

BOX
Box

RIGHT, LEFT, UNDER, OVER
Lines that can be specified individually or in combination

236 IMS: System Utilities

Field outlining value 'hh' is a two-digit hexadecimal number between X'00' and X'0F'. If any other
value is specified, the device default, X'00', is assumed. The following table shows the values for the
field outlining patterns.

Table 20. Field outlining values

Value UNDER RIGHT OVER LEFT

00

01 X

02 X

03 X X

04 X

05 X X

06 X X

07 X X X

08 X

09 X X

0A X X

0B X X X

0C X X

0D X X X

0E X X X

0F X X X X

Field outlining for 3270 displays and SCS1 printers can be dynamically modified by code in an
application program. The position of left, right, over, and underlines differ according to the device.

The following is a brief description of field outlining for the IBM 5550 family (as 3270) of devices.

3270 display
Left and right lines are printed in the position of the 3270 basic attribute byte. The overline of the
current line and the underline of the preceding line are the same line.

The underline for the 24th line is the same line as the line separating the application program area
and your message area.

SCS1 printer
Left and right lines are printed in the byte reserved by MFS before and after the current field. The
overline of the current line and the underline of the preceding line are the same line. When an
underline is specified in the last line of the page, an underline is drawn in the last line of the page,
and an overline is drawn on the first line of the next page.

If one byte space exists between two adjacent fields, the right line of the first field is the same line
as the left line of the second field.

MIX|MIXD|MIX'nn'|MIXS|MIXS'nn'
Specify a DBCS/EBCDIC mixed field.
3270 display

MIX
DBCS/EBCDIC mixed field

Chapter 4. MFS Language utility (DFSUPAA0) 237

MIXD
device default

Input control for the 3270 display can be dynamically modified by the application program.

SCS1 printer
MIX

DBCS/EBCDIC mixed field with SO/SI blank print option.
MIXS

DBCS/EBCDIC mixed field with SO/SI blank print suppress option.
MIX'nn'

'nn' is the maximum number of SO/SI pairs. DBCS/EBCDIC mixed field with SO/SI blank
print option.

MIXS'nn'
'nn' is the maximum number of SO/SI pairs. DBCS/EBCDIC mixed field with SO/SI blank
print suppress option.

The 'nn' is buffer information used by MFS message editor and must be a two-digit decimal
number between 01 and 31. If MIX or MIXS is specified, the MFS default is calculated as follows:

MIX
DFLD length divided by 5 plus 1, or 31, whichever is smaller.

MIXS
DFLD length divided by 3 plus 1, or 31, whichever is smaller.

When a field spans continuation lines, the number 'nn' obtained from the field length with either of
the methods plus 1, is assigned to each line.

With the SCS1 printer, when DBCS/EBCDIC mixed data spanning across continuation lines is split
at a DBCS character, MFS replaces the last character with a blank and places that character at the
beginning of the next line. As a result, one print position is lost.

PEN=
Specifies a literal to be selected or an operator control function to be performed when this field
is detected. If (1) 'literal' is specified, (2) the field is defined as immediately detectable (ATTR=
operand), and (3) contains the null or space designator character, the specified literal is placed in the
field referred to by the PEN operand of the preceding DEV statement when the field is detected (if
no other device fields are modified). If another field on the device is modified, a question mark (?) is
provided instead of the literal. Literal length must not exceed 256 bytes.

If (1) a control function is specified, (2) the field is defined as immediately detectable (ATTR=
operand), and (3) contains the null or space designator character, the specified control function is
performed when the field is detected and no other device fields are modified. If another field on
the device is modified, a question mark (?) is provided and the function is not performed. Control
functions that can be specified are:

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output message. If no output message
is in progress, no explicit response is made.

NEXTMSG—MESSAGE ADVANCE
specifies a request to dequeue the output message in progress (if any) and to send the next output
message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any), and send the next output
message or return an information message indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of a multiple physical page input message.

238 IMS: System Utilities

ENDMPPI is valid only if data has been received and will not terminate multiple page input (MPPI)
in the absence of data entry.

OPCTL=
Specifies the name of a table, defined by a TABLE statement, that is to be checked for operator
control requests when this device field is received. OPCTL processing occurs when the input device
data is processed. If a control function is selected, in most cases the control function is performed
immediately; no IMS input message is created.

SLDI=
For SCS1 printers, specifies the line density for an output message in lines per inch. (See also SLDP=.)
SLDI= can also be specified on the DEV statement. SLDI= is validated for a value from 1 through
72. The value specified must be consistent with the architecture of the device for which this value is
specified (see the appropriate device or component manual).

If SLDI= is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDI= specification is encountered, but after any
vertical tabs and new line characters. The SLDI= specification within the message changes the line
density from that set at the beginning of the message, and this latter line density remains in effect
until explicitly reset.

SLDP=
For SCS1 printers, specifies the line density for an output message in points per inch. (See also
SLDI=.) SLDP= can also be specified on the DEV statement. SLDP= is validated for a value from 1
through 72. The value specified must be consistent with the architecture of the device for which this
value is specified (see the appropriate device or component manual).

If SLDP= is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDP= specification is encountered, but after any
vertical tabs and new line characters. The SLDP= specification within the message changes the line
density from that set at the beginning of the message, and this latter line density remains in effect
until explicitly reset.

Attention: Be careful, when defining set line density (SLDx) keywords, to ensure that forms
alignment is maintained. If SLDx= is improperly defined, the forms might not align properly. Also,
note that SLDI= and SLDP= are mutually exclusive. Neither SLDI= nor SLDP= can occur on a DFLD
statement between a DO and an ENDDO statement.

Related reference
MFS output message formats (Application Programming)

ENDDO statement
The ENDDO statement terminates the group of DFLD statements that are to be repetitively generated.

The generated DFLD statements are printed immediately following the ENDDO statement. An ENDDO
statement is required for each DO statement entered in this definition.

Format

label

ENDDO blanks

comments

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

Chapter 4. MFS Language utility (DFSUPAA0) 239

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/java_mfsoutputmessageformats.htm#java_mfsoutputmessageformats

FMTEND statement
The FMTEND statement terminates a device format definition and is required as the last statement in the
device format definition.

If this is the end of the input to SYSIN processing, the FMTEND statement must be followed by an END
compilation statement.

Format

label

FMTEND blanks

comments

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

Partition set definition statements
Partition set definition statements include the PDB statement, the PD statement, and the PDBEND
statement.

PDB statement
The PDB statement initiates and defines a partition set (a Partition Descriptor Block) for 3290 and 3180
devices in partitioned format mode.

The PDB statement contains several parameters that describe certain characteristics of the entire
partition set. Its name is referenced by the PDB keyword of a DEV statement if a partition set is required
to format logical pages of a message.

At least one PD statement must be specified within each PDB. Note, however, that for a 3180 in
partitioned format mode, only one PD statement should be specified within each PDB. This is because
only one partition can be specified for the 3180. There are additional differences in specifications that can
be made for the partitioned 3180 and 3290.

Format
label PDB LUSIZE= ( verticalpels , horizontalpels)

( rows , columns) ,SYSMSG=  pdname

,PAGINGOP=

1

2

3

,LUDEFN=

ROWCOL

PELS

Parameters
label

A one- to eight-character alphanumeric name (pdbname) for the PDB must be specified.
LUSIZE=

Describes the physical size of the Logical Unit display for which the PDB is defined. If LUDEFN=PELS,
the size is specified in picture elements (pels). If LUDEFN=ROWCOL, the size is specified in rows and
columns (this is the default value). For the 3180, LUSIZE must be specified in terms of rows and
columns.

240 IMS: System Utilities

SYSMSG=
Specifies the partition name (pdname) for displaying system messages. The system message partition
should have only one field defined. This DFLD should be defined as at least LTH=79 so the system
message is not truncated.

If the current PDB defines a system message partition, then all system messages are directed to this
partition. If a system message partition is not defined, but a SYSMSG field is defined in the current
DOF, the system message is directed to the system message field of the active partition. Finally, if the
current PDB does not define a partition for system messages and the DOF does not define a field for
that purpose, a system message destroys the current partitioned format mode and the 3290 returns
to standard format mode.

PAGINGOP=
Specifies the option number (1, 2, or 3) for the partition page presentation algorithm. These three
algorithms specify different ways of presenting the initial pages of the message to the partitions of the
partition set. They also specify what paging actions result when you enter paging requests from the
3290 device.

The default of 1 must be accepted or specified on this operand for 3180 formats.

LUDEFN=
Indicates whether the LUSIZE parameter in the PDB statement and the VIEWLOC parameter in the PD
statements are specified in rows and columns or in pels. LUDEFN is optional if all the PD statements
use the same cell size and the default (ROWCOL) is acceptable. Note that ROWCOL must be specified
or accepted as the default for 3180 formats.

If two or more PD statements within the same PDB specify different cell sizes, PELS must be chosen.

PD statement
The PD statement defines one partition and its presentation space.

Every partition set described by a PDB statement must contain at least one PD statement. Note, however,
that for a 3180 in partitioned format mode, only one PD statement should be specified within each PDB.

Format
label PD PID= nn ,VIEWPORT=( rrrrr , ccccc) ,VIEWLOC=

( rrrrr , ccccc)

( verticalpels , horizontalpels) ,PRESPACE=( rrrrr , ccccc)

,WINDOWOF=  rrrrr ,CELLSIZE=( hh, vv) ,SCROLLI=  rows

Parameters
label

A one- to eight-character alphanumeric name (pdname) must be specified. This name is referenced
by the DPAGE statement to associate a logical page with its appropriate partition.

PID=
Specifies a partition identifier number for the partition. Values 00 through 15 are valid for 3290
formats. Each partition must have a unique PID. A value of 00 must be specified for 3180 formats,
because only one partition need be identified.

VIEWPORT=
Specifies the size of the viewport for the partition. rrrrr indicates rows and ccccc indicates columns.
For the 3180 device, the following restrictions apply:

Chapter 4. MFS Language utility (DFSUPAA0) 241

• If the number of columns is greater than or equal to 80, then the number of rows must be less than
or equal to 43.

• If the number of columns is greater than 80 and less than or equal to 132, then the number of rows
must be less than or equal to 27.

VIEWLOC=
Specifies the location of the viewport on the display screen, in terms of the distance offset from the
top left of the screen. When the LUDEFN parameter of the PDB statement is ROWCOL, the distance is
expressed in rows and columns. rrrrr indicates rows and ccccc indicates columns. When the LUDEFN
parameter is PELS, the distance is expressed in the number of pels from the top of the screen and the
number of pels from the left of the screen. When defining formats for the 3180, VIEWLOC must be
expressed in rows and columns.

PRESPACE=
Indicates the size of the presentation space buffer in rows and columns. rrrrr indicates rows and ccccc
indicates columns. If this parameter is not specified, the default is the size of the viewport specified
on the VIEWPORT parameter. When this parameter is specified, the columns parameter is optional
and defaults to the columns specification on the VIEWPORT parameter. If columns are specified, they
must be the same as the columns specified in the VIEWPORT parameter.

When specifying this operand for 3180 formats, the product of the number of rows times the number
of columns might not be greater than 7680.

WINDOWOF=
Indicates the initial offset in rows of the top edge of the view window from the top of the presentation
space. The window maps the portion of the presentation space to be displayed onto the viewport
on the screen. During interactive processing, change the offset by scrolling. The default value of
WINDOWOF is zero.

CELLSIZE=
Indicates the number of horizontal and vertical pels in a character cell. Note that this specification is
in an unusual order for MFS. That is, the width of the character cell is specified first, then the height.
This is the reverse of the usual MFS order.

For the 3290, the default is 6 X 12 PEL (for a small character). Valid values for the 3290 are 6 X 12
to 12 X 31, or the value 00 X 00. If the value is 00 X 00, the 3290 device will select a cell size for
optimum readability. This prevents MFS from making validity checks on the viewport locations and
possible overlaps. Therefore, be careful to choose viewport size and location specifications accurately.

For the 3180, this operand should be specified according to usable screen area size as follows:

• CELLSIZE=(12,12)

– 24 x 80
– 32 x 80
– 43 x 80

• CELLSIZE=(10,16)

– 27 x 132

SCROLLI=
Indicates the number of rows that are scrolled when the scrolling function is used. The default
scrolling increment is one row. If the scrolling increment is larger than the viewport size, part of the
presentation space is not viewable on the screen. Specifying 0 as the scrolling increment disables the
scrolling function.

242 IMS: System Utilities

PDBEND statement
The PDBEND statement terminates a partition set definition (a partition descriptor block) and is required
as the last statement of the definition.

If this is the end of the input to SYSIN processing, the PDBEND statement must be followed by an END
compilation statement.

Format
PDBEND blanks

comments

Table definition statements
Table definition statements include the TABLE statement, the IF statement, and the TABLEEND
statement.

TABLE statement
The TABLE statement initiates and names an operator control table that can be referred to by the OPCTL
keyword of the DFLD statement.

The TABLE statement, and the IF and TABLEEND statements that follow, must be outside of a MSG or FMT
definition.

Format
tablename TABLE blanks

comments

Parameters
tablename

A 1- to 8-byte alphanumeric name for the table must be specified.

IF statement
The IF statement defines an entry in the table named by the previous TABLE statement.

Each IF statement defines a conditional operation and an associated control or branching function to be
performed if the condition is true.

Chapter 4. MFS Language utility (DFSUPAA0) 243

Format

label

IF DATA

LENGTH

, >=

<=

>

<

=
¬

' literal '

data-length

,

ENDMPPI

label

NEXTLP

NEXTMSG

NEXTMSGP

NEXTPP

NOFUNC

PAGEREQ

Parameters
label

A one- to eight-character alphanumeric name can be specified. This label is required if a previous IF
statement contained a branch function.

DATA
Specifies that the conditional operation is to be performed against the data received from the device
for the field.

LENGTH
Specifies that the conditional operation is testing the number of characters entered for the field. The
size limit for this field is the same as for DFLDs.

=, <, >, ¬, ≤, ≥
Specify the conditional relationship that must be true to invoke the specified control function.

'literal'
Is a literal string to which input data is to be compared. The compare is done before the input is
translated to upper case. If 'literal' is specified, DATA must be specified in the first operand. If the
input data length is not equal to the literal string length, the compare is performed with the smaller
length, unless the conditional relationship is ¬ and the data length is zero, in which case the control
function is performed. If the input is in lowercase, the ALPHA statement should be used and the literal
coded in lowercase.

data-length
Specifies an integer value to which the number of characters of input data for the field is compared.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of multiple physical page input (this input is the last for the message being created).

label
Specifies that testing is to continue with the IF statement bearing the label (branch). The label must
be placed on an IF statement that follows the current statement in the TABLE definition (that is, it
must be a forward branch function).

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

NEXTMSG—MESSAGE ADVANCE
Specifies a request to dequeue the output message in progress (if any) and to send the next output
message in the queue (if any).

244 IMS: System Utilities

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any), and either send the next
output message or return an information message indicating that no next message exists.

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output message. If no output message is
in progress, no explicit response is made.

NOFUNC
Specifies that conditional function testing is to be terminated.

PAGEREQ—LOGICAL PAGE REQUEST
Specifies that the second through last characters of input data are to be considered as a logical page
request.

TABLEEND statement
The TABLEEND statement establishes the end of a table definition.

If this is the end of the input to SYSIN processing, the TABLEEND statement must be followed by an END
compilation statement.

Format

label

TABLEEND blanks

comments

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

Compilation statements
Compilation statements include the ALPHA statement, the COPY statement, the EQU statement, the
RESCAN statement, the STACK statement, the UNSTACK statement, the TITLE statement, the PRINT
statement, the SPACE statement, the EJECT statement, and the END statement.

ALPHA statement
The ALPHA statement specifies a set of characters to be considered alphabetic by the MFS Language
utility for the purpose of defining valid field names and literals.

Restriction: The following characters cannot be made alphabetic using ALPHA.

b ¢ * < (+ !! *) ; ¬ .
- ⁄ , % _ > ? :
' = ”
0 through 9

The characters A through Z, &; (X'50'), #, $, and @ are always considered alphabetic by the MFS Language
utility.

All the characters referred to are known as standard characters. Therefore, all other characters are
referred to as nonstandard characters.

Format

label

ALPHA 'EBCDIC  literal character string '

Chapter 4. MFS Language utility (DFSUPAA0) 245

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
'literal character string'

Specifies the characters to be considered alphabetic by the MFS Language utility. The use of an EGCS
literal in an ALPHA statement causes an ERROR message.

COPY statement
The COPY statement invokes a copy of a member of the partitioned data set represented by the SYSLIB
DD statement.

The copied member can request the nested copy of another member. The member to be copied cannot
already exist at a higher level in a nested chain of copy requests. The nesting level available for copy is
limited only by the amount of storage available to the language utility preprocessor. The level of the COPY
statement is indicated to the right of each printed COPY record.

Format

label

COPY member-name

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
member-name

Specifies the name of the partitioned data set member to be copied into the input stream of the utility
preprocessor.

EQU statement
The EQU statement defines a symbol as a substitution variable.

All subsequent occurrences of the symbol in the operand field of a statement is replaced by the value
specified in the operand field of the EQU statement.

Format
symbol EQU number

alphanumeric identifier

literal

Parameters
symbol

Specifies the symbol to be equated to the value specified in the operand field. The symbol must be a
one- to eight-character alphanumeric identifier, the first character of which must be alphabetic.

number
Specifies the value to be represented by the symbol, and consists of 1 to 256 decimal digits.

alphanumeric identifier
Specifies the value to be represented by the symbol, and consists of 1 to 256 alphanumeric
characters, the first of which must be alphabetic.

246 IMS: System Utilities

literal
Specifies the value to be represented by the symbol, and consists of 1 to 256 valid characters
(not counting embedded second quotes), enclosed in quotes. The characters within the leading and
trailing quotes replace the symbol when substitution occurs. An EGCS literal cannot be equated if any
hexadecimal value within the literal is a X'7D' (a single quote character).

A symbol used in an equate (EQU) statement can be re-equated to another value.

There are no reserved words that cannot be used as symbols on the EQU statement. However, when
defining symbols do not use a symbol as one of the words used by the MFS statement operands.
Otherwise, the intended function of the MFS word cannot be used.

Example: Consider the following equate statement:

NOPROT EQU PROT

Then if one DFLD specifies ATTR=NOPROT and another DFLD specifies ATTR=PROT, both DFLDs would
generate the protect attribute (PROT).

Restriction: Once an MFS word is equated, it cannot be restored to its original symbol. In other words, a
symbol cannot be equated to itself.

Concatenated EQU statements
A period (.) can be used to concatenate two equated values, or one value and specific data, if a delimiter
exists at the point of concatenation.

Example EQU statements

Consider the following EQU statements:

A EQU ATTR

AE EQU 'ATTR='

P EQU '(PROT,NUM)'

EP EQU '=(PROT,NUM)'

The following examples generate the same results:

ATTR=(PROT,NUM)

ATTR=P

AE.P

A.EP

A=P

RESCAN statement
The RESCAN statement controls the operation of EQU statements during replacement mode.

Format

label

RESCAN
OFF

ON

,5

, number

Chapter 4. MFS Language utility (DFSUPAA0) 247

Parameters
label

A 1- to 8-character alphanumeric name can be specified. It is not used.
OFF | ON

Specifies whether (ON) or not (OFF) replacement text should be rescanned for further substitution.
The default is OFF unless a number is specified.

If ON is specified, replacement text can invoke further substitution within the substituted text up to a
maximum number of occurrences.

5 | number
Specifies how many times further substitution is allowed in a single rescan substitution. The default
is 5. If more recursive substitutions are attempted than specified by the maximum 'number', an error
message is issued and substitution terminates. RESCAN ON,0 will be interpreted as RESCAN OFF.

STACK statement
The STACK statement is used to delineate one or more SYSIN or SYSLIB records, and to request that
those records, once processed, be kept (stacked) in processor storage for reuse at a later time.

A stack of SYSIN/SYSLIB records must not contain STACK and UNSTACK statements. The letter S to the
right of each printed record indicates that it is being stacked for future use.

Format

label

STACK

ON

,id

OFF

Parameters
label

A 1- to 8-character name can be specified. It is not used.
ON

Specifies the beginning of a stack of SYSIN/SYSLIB records. ON is the default, and it does not have to
be specified to begin stacking.
id

Specifies the one-to eight-character alphanumeric name for the record stack. If the compilation
only uses one stack, no ID is required; MFS assigns an ID of eight blanks to the stack.

When multiple stacking operations are requested, all stacks should be uniquely identified; one
unnamed stack is permitted.

OFF
Specifies the end of a stack of SYSIN/SYSLIB records.

UNSTACK statement
The UNSTACK statement requests retrieval of a previously processed stack of SYSIN/SYSLIB records and
specifies whether the retrieved stack should be deleted after processing.

The letter U to the right of each printed record indicates that it is being read from the processor storage
stack for processing.

248 IMS: System Utilities

Format

label

UNSTACK

id

,DELETE

,KEEP

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
id

Specifies the 1- to 8-character identifier of the stack to be retrieved and processed. If no ID is
specified, MFS retrieves the stack identified by eight blanks.

DELETE|KEEP
Specifies whether (KEEP) or not (DELETE) the stack should be retained after retrieval and processing.
The default is DELETE.

TITLE statement
The TITLE statement is used to specify the heading to appear on the SYSPRINT listing.

Format

label

TITLE literal

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
literal

Specifies the heading to be printed on the output listing. The heading can be specified as an EGCS
literal. An EGCS literal of more than 108 bytes causes an error message.

PRINT statement
The PRINT statement provides printing specifications for the SYSPRINT listing.

Format

label

PRINT
ON

OFF

,GEN

,NOGEN

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
ON|OFF

Specifies whether (ON) or not (OFF) a listing should be printed. The default is ON.

Chapter 4. MFS Language utility (DFSUPAA0) 249

GEN|NOGEN
Specifies whether (GEN) or not (NOGEN) the intermediate text blocks (ITBs) should be printed in
hexadecimal following the statement at the left margin. If PRINT GEN is used following the ENDDO
statement, all definitions generated for the iterative DO group are printed. The default is GEN.

SPACE statement
The SPACE statement specifies the number of lines to skip when output is printed. The SPACE statement
is printed.

Format

label

SPACE
1

number

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.
1 | number

Specifies how many lines to skip after this statement is encountered. The default is 1.

EJECT statement
The EJECT statement is used to eject a page in an output listing. The EJECT statement is printed.

Format

label

EJECT blanks

comments

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

END statement
The END statement is used to define the end of the input to SYSIN processing. If this statement is
omitted, one is provided and an error message is issued.

Format

label

END blanks

comments

Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

250 IMS: System Utilities

Running the utility in standard mode
You can run the DFSUPAA0 utility in standard mode using the two-step mode of operation using the
MFSUTL procedure described.

The following figure shows an overview of the two-step standard mode of operation using the MFSUTL
procedure.

Figure 8. Overall flow with the MFSUTL procedure

The following topics discuss the details of Step 1 (S1) and Step 2 (S2).

MFSUTL procedure description
Step 1 (S1): Source statement preprocessor

The MFS Language utility preprocessor provides a nonassembler, nonmacro preprocessor for the MFS
Language source statements.

The execution of the preprocessor generates intermediate text blocks (ITBs), which are then processed
by the remaining utility phase to generate message (MSG) and format (FMT) control blocks. IMS uses the
control blocks to format messages for device display and application program presentation.

The primary function of the preprocessor is to perform syntax and relational validity checks on user
specifications. The preprocessor generates ITBs for each MSG, FMT, partition descriptor block (PDB), and
TABLE source definition processed, and stores them in IMS.REFERAL.

Chapter 4. MFS Language utility (DFSUPAA0) 251

The IMS.REFERAL partitioned data set (PDS) directory contains an entry for each MSG, FMT, PDB, and
TABLE ITB. Additionally, the interrelationships between all known FMT and MSG ITBs that have been
placed in the IMS.REFERAL are recorded in the PDS directory.

The preprocessor executes in the following order:

1. The preprocessor constructs a control table representing the interrelationships between all known
FMT and MSG ITBs that have been placed in IMS.REFERAL. If you request the compress function in the
EXEC statement, the preprocessor compresses IMS.REFERAL.

2. The preprocessor adds the user-supplied FMT and MSG definitions to the control table and resolves
them against the table to ensure that, when a given definition is supplied for processing, all control
blocks in the format set are reprocessed by phase 1. This resolution also allows you to compile source
for only the message or format that requires change—not the entire format set.

3. After the resolution function has been accomplished to determine the definitions to be processed, the
preprocessor places the control statements for these FMT and MSG definitions on the SYSTEXT data
set for phase 1 processing.

If you change a PDB definition, each format set referencing that PDB might need to be recompiled.

The following actions cause phase 1 reprocessing of the format set ITBs to create new FMT and MSG
control blocks for the IMS.FORMAT library:

• Modification of a FMT definition that already exists as a control block in IMS.FORMAT.
• Modification of a MSG definition that already exists as a control block in IMS.FORMAT.
• Addition of a new MSG to the format set.
• Reassignment of a MSG definition to a different FMT. This reassignment causes the old format set and

the new format set to be reprocessed.

If a MSG definition refers to a FMT name (through the SOR= keyword) that has not yet been supplied
to the MFS Language utility, the preprocessor stores the MSG ITB in the IMS.REFERAL library. The MSG
control block is not created until a FMT definition is supplied. The format set is then processed to create
the new MSG and FMT control blocks for IMS.FORMAT.

Similarly, if a FMT definition is supplied to the MFS Language utility and no MSGs refer to it, the FMT ITB is
stored in IMS.REFERAL. The FMT control block is not created until at least one MSG definition is supplied.
The format set is then processed to create the new MSG and FMT control blocks for IMS.FORMAT.

Each IMS error message is accompanied by a return code of 4, 8, 12, 16, or 20 to indicate increasing
severity of error.

If an error condition is detected during the processing of statements that would create an FMT, MSG, PDB,
or TABLE ITB, the highest such severity code associated with the message stating the error is kept and
used to determine if the ITB is to be written to the IMS.REFERAL library. The preprocessor maintains the
highest return code issued for each definition processed. You can specify a compare value (the lowest
unacceptable return code) in the STOPRC parameter of the EXEC statement. If the return code is greater
than or equal to the STOPRC value, the ITB is not written in IMS.REFERAL. For example, a STOPRC of 4
permits only ITBs that have a return code of 0 to be written. If no STOPRC is specified, a value of 8 is
assumed, and only ITBs having a return code of 0 or 4 are written.

The preprocessor also maintains the highest return code for all ITBs processed during a job. Phase 1 is
not given control by the preprocessor if the highest return code is greater than or equal to 16, or if no ITBs
were written in IMS.REFERAL. If the return code is 16 or greater, the preprocessor returns control to z/OS
with a completion code equal to the return code.

Step 1 (S1): Phase 1 processor

The preprocessor invokes the phase 1 processor. Initially, the phase 1 processor uses the control
statements placed by the preprocessor on the SYSTEXT data set to construct a module table representing
all of the FMT and MSG ITBs to be processed in this run. After constructing the module table, the phase 1
processor reads in ITBs from IMS.REFERAL and builds control blocks for each MSG and FMT definition. If

252 IMS: System Utilities

a TABLE of control functions is requested by an input format definition, the phase 1 processor obtains the
TABLE ITB from IMS.REFERAL and builds functions into the device input format (DIF).

When a format definition requests a HALDB partition set, the phase 1 processor gets the PDB ITB from
IMS.REFERAL and builds the partitioning control functions into the device output format (DOF).

The phase 1 processor places the newly constructed control blocks on the SEQBLKS data set. Each
member processed has a control record placed on the SEQBLKS data set identifying the member, its size,
and the date and time of creation. This control record is followed by the image of the control block as
constructed by the phase 1 processor.

If an error is detected during control block building, an error control record is placed on the SEQBLKS
data set for the definition in error, identifying the member in error, and the date and time the error
control record was created. In addition, the phase 1 processor returns a completion code of 12 to z/OS. If
execution of step 2 is forced, the phase 2 processor deletes control blocks with build errors.

The phase 1 processor maintains a high return code for all ITBs processed during an execution of the MFS
Language utility. Before returning to z/OS, the phase 1 processor compares its high return code to the
preprocessor's high return code. The highest of the two is passed to z/OS as the completion code for step
1.

Step 2 (S2): Phase 2 processor

The phase 2 processor receives control as a job step when the phase 1 processor is finished. The phase
2 processor operates in a two-pass mode to place the new control blocks into the IMS.FORMAT library.
On the first pass, the phase 2 processor reads the SEQBLKS data set and creates an internal table that
contains the name of every MOD, MID, DOF, and DIF created by the phase 1 processor. The name of
the format or message description that had build errors during the phase 1 processor's execution is
also added to this internal table. Control blocks in the IMS.FORMAT library that are to be replaced in
IMS.FORMAT, or had build errors during phase 1, are deleted from IMS.FORMAT.

If you request the compress function, the phase 2 processor compresses the IMS.FORMAT library. This
ensures maximum available library space for adding control block members and, due to the reprocessing
of all related members by the phase 1 processor, allows the grouping of related control blocks for seek
time reductions when fetching the control blocks during online execution.

In the second pass, the SEQBLKS data set is reprocessed, together with the module table, to write the
new control blocks into IMS.FORMAT and STOW them for a directory update.

If control blocks with entries in the main-storage index directory, $$IMSDIR, were deleted and not
replaced, the index entries should be deleted. This update can be done automatically, but it is inefficient
for a large format library with a relatively small number of blocks deleted. To avoid this, the following
parameter can be used for both the MFSUTL and MFSBTCH2 procedures: DIRUPDT=UPDATE|NOUPDATE.
The default is UPDATE. If UPDATE is specified or defaulted, $$IMSDIR is updated automatically. If
NOUPDATE is specified, updating is bypassed; and you must delete the blocks from $$IMSDIR with the
MFS Service Utilities

If index entries are to be added to $$IMSDIR for new control blocks created in this run, the INDEX
function of the MFS service utility must be used.

The phase 2 processor passes a completion code to z/OS for step 2 based on all the control block
maintenance to IMS.FORMAT for a given execution of the MFS Language utility.

JCL requirements

The following figure shows the JCL for the MFSUTL procedure.

// PROC RGN=4M,SOUT=A,SYS2=,
// SNODE='IMS',
// SOR=NOLIB,MBR=NOMBR,PXREF=NOXREF,
// PCOMP=NOCOMP,PSUBS=NOSUBS,PDIAG=NODIAG,
// COMPR=NOCOMPRESS,COMPR2=COMPRESS,

Chapter 4. MFS Language utility (DFSUPAA0) 253

// LN=55,SN=8,DEVCHAR=0,COMPR3=NOCOMPREND,
// DIRUPDT=UPDATE,
// NODE1=IMS,
// NODE2=IMS
//S1 EXEC PGM=DFSUPAA0,REGION=&RGN,
// PARM=(&PXREF,&PCOMP,&PSUBS,&PDIAG,
// &COMPR,'LINECNT=&LN,STOPRC=&SN',
// 'DEVCHAR=&DEVCHAR')
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*SYSLIB - USER OPTION
//SYSIN DD DISP=SHR,
// DSN=&SNODE..&SOR.(&MBR)
//REFIN DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFOUT DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFRD DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//SYSTEXT DD DSN=&&TXTPASS,UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=800
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//DUMMY DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(REFCPY)
//UTPRINT DD SYSOUT=&SOUT
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT&SOUT
//SEQBLKS DD DSN=&&BLKS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//S2 EXEC PGM=DFSUNUB0,REGION=&RGN,
// PARM=(&COMPR2,&COMPR3,&DIRUPDT,
// 'DEVCHAR=&DEVCHAR'),COND=(8,LT,S1)
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SEQBLKS DD DSN=&&BLKS,DISP=(OLD,DELETE)
//UTPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//FORMAT DD DSN=&NODE1..&SYS2.FORMAT,DISP=SHR
//DUMMY DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(FMTCPY)
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

The DISP=OLD specifications are required.

Restriction: A DD DUMMY specification is not supported.

REFCPY control statement

The MFSUTL procedure uses this control statement to compress REFERAL.

COPY INDD=REFOUT,OUTDD=REFOUT

FMTCPY control statement

The MFSUTL procedure uses this control statement to compress FORMAT.

COPY INDD=FORMAT,OUTDD=FORMAT

Running the utility in batch mode
You can run the DFSUPAA0 utility in batch mode using the two required procedures: MFSBTCH1 and
MFSBTCH2.

Batch mode provides the ability to batch the message descriptors and device formats into an
accumulation data set, IMS.MFSBATCH. This data set can then be applied to the MFS staging library,
IMS.FORMAT, with a separate job. The batch accumulation data set requires you to allocate and catalog
an IMS system data set, IMS.MFSBATCH, large enough to hold all the control blocks that are to be
accumulated before they are placed into IMS.FORMAT. The following figure shows an overview of the
batch mode.

254 IMS: System Utilities

Figure 9. Overall flow with the MFSBTCH1 and MFSBTCH2 procedures

MFSBTCH1 procedure description

This procedure is identical to step 1 of the “MFSUTL procedure description” on page 251, except that
the newly constructed control blocks or error control records, or both, are added to the SEQBLKS
accumulation data set, IMS.MFSBATCH.

JCL requirements

The JCL for the MFSBTCH1 procedure is shown in the following example. Refer to Chapter 4, “MFS
Language utility (DFSUPAA0),” on page 167 for details on the EXEC parameters and DD statements.

// PROC RGN=4M,SOUT=A,SYS2=,
// SNODE='IMS',
// SOR=NOLIB,MBR=NOMBR,PXREF=NOXREF,
// PCOMP=NOCOMP,PSUBS=NOSUBS,PDIAG=NODIAG,
// COMPR=NOCOMPRESS,LN=55,SN=8,DEVCHAR=0,

Chapter 4. MFS Language utility (DFSUPAA0) 255

// NODE1=IMS,
// NODE2=IMS
//S1 EXEC PGM=DFSUPAA0,REGION=&RGN,
// PARM=(&PXREF,&PCOMP,&PSUBS,&PDIAG,
// &COMPR, 'LINECNT=&LN,STOPRC=&SN',
// 'DEVCHAR=&DEVCHAR')
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*SYSLIB - USER OPTION
//SYSIN DD DISP=SHR
// DSN=&SNODE..&SOR.(&MBR),
//REFIN DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFOUT DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFRD DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//SYSTEXT DD DSN=&&TXTPASS,UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=800
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//DUMMY DD DISP=SHR
// DSN=&NODE2..&SYS2.PROCLIB(REFCPY),
//UTPRINT DD SYSOUT=&SOUT
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//SEQBLKS DD DISP=(MOD,KEEP)
// DSN=&NODE1..&SYS2.MFSBATCH

REFCPY control statement

The MFSBTCH1 procedure uses this control statement to compress REFERAL.

COPY INDD=REFOUT,OUTDD=REFOUT

MFSBTCH2 procedure description

This procedure is identical to step 2 of the “MFSUTL procedure description” on page 251, except as noted
in the following paragraphs.

If control blocks with duplicate names are found, only the last one found is recorded. This ensures that
if the control block with the same name was processed more than once by the MFSBTCH1 procedure,
the control block created last is added to IMS.FORMAT. If the control blocks are to be replaced in
IMS.FORMAT, they are first deleted from IMS.FORMAT. Consequently, if the control block created last had
build time errors, and a block with the same name existed in IMS.FORMAT, the block is deleted from
IMS.FORMAT.

On the second pass, IMS.MFSBATCH is reprocessed together with the module table to write the new
control blocks, and last occurrences of the duplicate control blocks, into IMS.FORMAT and STOW them for
a directory update.

At the end of this step, the SEQBLKS data set is emptied for subsequent use by the MFSBTCH1 procedure.

JCL requirements

The JCL for the MFSBTCH2 procedure is shown in the following example. Refer to Chapter 4, “MFS
Language utility (DFSUPAA0),” on page 167 for details on the EXEC parameters and DD statements.

// PROC RGN=4M,SOUT=A,COMPR2=COMPRESS,
// COMPR3=NOCOMPREND,DIRUPDT=UPDATE,SYS2=,
// NODE1=IMS,
// NODE2=IMS
//S2 EXEC PGM=DFSUNUB0,REGION=&RGN,
// PARM='&COMPR2,&COMPR3,&DIRUPDT'
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SEQBLKS DD DISP=(OLD,KEEP),
// DSN=&NODE1..&SYS2.MFSBATCH
//UTPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT

256 IMS: System Utilities

//FORMAT DD DSN=&NODE1..&SYS2.FORMAT,DISP=SHR
//DUMMY DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(FMTCPY)
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

FMTCPY control statement

The MFSBTCH2 procedure uses this control statement to compress FORMAT.

COPY INDD=FORMAT,OUTDD=FORMAT

Running the utility in test mode
You can run the DFSUPAA0 utility in test mode of operation using the MFSTEST procedure described.

The following figure shows an overview of the test mode of operation using the MFSTEST procedure.

Figure 10. Overall flow with the MFSTEST procedure

MFSTEST procedure description
The MFSTEST procedure can be used to create message descriptors and device formats while an IMS
control region is active. You can check the control blocks created by MFSTEST, without disrupting online
production activity, by using the /TEST MFS command. Control blocks that have been tested can be

Chapter 4. MFS Language utility (DFSUPAA0) 257

placed into the staging library using the MFSUTL procedure. The MFSTEST procedure does not alter the
staging library, and all of the ITBs and control blocks remain stable.

The two-step execution of the MFS Language utility describes differs when the MFSTEST procedure is
used.

Step 1 (S1): Source statement preprocessor

The source statement preprocessor operates in the same manner as the MFSUTL procedure with the
exception that the ITBs are placed into a temporary library. The contents of the historical reference
library, IMS.REFERAL, are not changed to reflect new MSG, FMT, PDB, or TABLE ITBs, or new relationships
that result from this test mode execution. The IMS.REFERAL library is used only in a read-only manner to
perform the resolution function that ensures that all required MSG and FMT ITBs are processed.

Step 1 (S1): Phase 1 processor

The phase 1 processor operates identically to the operation with the MFSUTL procedure, except that the
ITBs for the required MSGs and FMTs are read in from the concatenated temporary library created by the
preprocessor and from the IMS.REFERAL library.

The phase 1 processor obtains all MSGs, FMTs, PDBs, and TABLEs defined by this execution from the
temporary library created by the preprocessor. Additional blocks, if related ITBs are present, are obtained
from IMS.REFERAL.

Step 2 (S2): Phase 2 processor

The phase 2 processor operates against a special format library, IMS.TFORMAT, which is used by the IMS
control region to access MFS control blocks when terminals are in MFSTEST mode. The phase 2 processor
deletes control blocks from this library if new versions are created during this execution or if errors are
detected during this execution. The phase 2 processor then inserts the new control blocks created during
this execution into the library which will be available for online testing.

IMS.TFORMAT is not compressed, since the IMS control region might be concurrently reading from it.

Recommendation: Periodically compress this data set when the IMS control region is not executing (use
DISP=OLD for IMS.TFORMAT).

The test procedure deletes $$IMSDIR, if one exists on the test format data set.

JCL requirements

The following figure shows the JCL for the MFSTEST procedure.

// PROC RGN=4M,SOUT=A,SYS2=,
// SNODE='IMS',
// SOR=NOLIB,MBR=NOMBR,PXREF=NOXREF,
// PCOMP=NOCOMP,PSUBS=NOSUBS,PDIAG=NODIAG,
// COMPR=NOCOMPRESS,LN=55,SN=8,DEVCHAR=0,
// NODE1=IMS,
// NODE2=IMS
//S1 EXEC PGM=DFSUPAA0,REGION=&RGN,
// PARM=(&PXREF,&PCOMP,&PSUBS,&PDIAG,
// &COMPR,'LINECNT=&LN,STOPRC=&SN',
// 'DEVCHAR=&DEVCHAR')
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*SYSLIB - USER OPTION
//SYSIN DD DISP=SHR,
// DSN=&SNODE..&SOR.(&MBR)
//REFIN DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//REFOUT DD DSN=&&TEMPPDS,
// DCB=&NODE1..&SYS2.REFERAL,
// UNIT=SYSDA,SPACE=(CYL,(5,1,10))
//REFRD DD DSN=*.REFOUT,VOL=REF=*.REFOUT,
// DISP=(OLD,DELETE)

258 IMS: System Utilities

// DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//SYSTEXT DD DSN=&&TXTPASS,UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=800
//SYSPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//SEQBLKS DD DSN=&&BLKS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//S2 EXEC PGM=DFSUNUB0,REGION=&RGN,
// PARM='TEST,DEVCHAR=&DEVCHAR',
// COND=(8,LT,S1)
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SEQBLKS DD DSN=&&BLKS,DISP=(OLD,DELETE)
//UTPRINT DD SYSOUT=&SOUT,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT
//FORMAT DD DSN=&NODE1..&SYS2.TFORMAT,DISP=SHR

The DISP=OLD specifications are required.

Restriction: A DD DUMMY specification is not supported.

MFS library backup procedure
The MFSBACK procedure performs utility library backup operations.

Attention: When you use this procedure, make sure that the IMS.REFERAL and IMS.FORMAT
libraries are dumped and restored at the same level, that is, at the same time. It is important to
do this because of the relational information in the IMS.REFERAL PDS directory which describes
the contents of the libraries. To ensure that all libraries are restored to the same level, scratch
and reallocate all MFS data sets prior to performing the restore operation. If the libraries are not
restored to the same level, unpredictable operation can occur.

MFSBACK procedure

The following figure shows the JCL for the MFSBACK procedure and includes the optional MFSTEST
facility. All DISP=OLD specifications are required.

Restriction: A DD DUMMY specification is not supported in the statements that require DISP=OLD.

The block size for the IMS.REFERAL library, if specified, must be 800 bytes.

// PROC NODE='IMS',
// TAPE=MFSDBS,SOUT=A,DSN=FORMAT,SYS2=
//*
//**
//* *
//* PROCEDURE KEYWORDS FOR // EXEC STATEMENT: *
//* *
//* NODE= PREFIX LEVEL TO BE USED FOR *
//* ACCESS TO IMS MFS LIBRARIES. *
//* *
//* SYS2= SECOND PREFIX LEVEL TO BE USER FOR *
//* ACCESS TO IMS MFS LIBRARIES. *
//* *
//* TAPE= BACKUP TAPE SERIAL NUMBER. *
//* *
//* SOUT= SPECIFIES THE PRINT OUTPUT CLASS *
//* TO BE USED FOR PRINTED OUTPUT *
//* DURING THE BACKUP OPERATION. *
//* *
//**
//*
//MOVE1 EXEC PGM=IEBCOPY,PARM='SIZE=100K'
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//REFERAL DD DSN=&NODE..&SYS2.REFERAL,DISP=OLD
//TAPEOUT DD UNIT=2400,LABEL=(1,SL),DISP=(NEW,PASS),
// VOL=(,RETAIN,SER=&TAPE),
// DSN=&NODE..&SYS2.REFERAL,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//*

Chapter 4. MFS Language utility (DFSUPAA0) 259

//**
//* *
//* //MOVE1.SYSIN DD * MUST BE SUPPLIED BY THE *
//* USER WITH THE APPROPRIATE COPY CONTROL *
//* STATEMENT AS SHOWN BELOW: *
//* *
//* COPY OUTDD=TAPEOUT,INDD=REFERAL *
//* *
//**
//*
//MOVE2 EXEC PGM=IEBCOPY,PARM='SIZE=100K'
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//FORMAT DD DSN=&NODE..&SYS2.&DSN,DISP=OLD
//TAPEOUT DD UNIT=2400,LABEL=(2,SL),
// VOL=(,RETAIN,REF=*.MOVE1.TAPEOUT),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DSN=&NODE..&SYS2.&DSN,
// DISP=(OLD,KEEP)
//*
//**
//*
//* //MOVE2.SYSIN DD * MUST BE SUPPLIED WITH *
//* APPROPRIATE COPY CONTROL STATEMENT *
//* AS SHOWN BELOW: *
//* *
//* COPY OUTDD=TAPEOUT,INDD=FORMAT *
//* *
//**
//* //MOVE3 EXEC PGM=IEBCOPY,PARM='SIZE=100K'
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//FORMAT DD DSN=&NODE..&SYS2.TFORMAT,DISP=SHR
//TAPEOUT DD UNIT=2400,LABEL=(3,SL),
// VOL=REF=*.MOVE1.TAPEOUT,
// DSN=&NODE..&SYS2.TFORMAT,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DISP=(OLD,KEEP)
//*
//**
//* //MOVE3.SYSIN DD * MUST BE SUPPLIED WITH *
//* THE APPROPRIATE COPY CONTROL STATEMENT *
//* AS SHOWN BELOW: *
//* *
//* COPY OUTDD=TAPEOUT,INDD=FORMAT *
//* *
//**
//*

MFS restore procedure
The MFSREST procedure performs utility restore operations.

Attention: When you use this procedure, make sure that the IMS.REFERAL and IMS.FORMAT
libraries are dumped and restored at the same level, that is, at the same time. It is important to
do this because of the relational information in the IMS.REFERAL PDS directory which describes
the contents of the libraries. To ensure that all libraries are restored to the same level, scratch
and reallocate all MFS data sets prior to performing the restore operation. If the libraries are not
restored to the same level, unpredictable operation can occur.

MFSREST procedure

The following figure shows the JCL for the MFSREST procedure and includes the optional MFSTEST
facility. All DISP=OLD specifications are required.

Restriction: A DD DUMMY specification is not supported in the statements that require DISP=OLD.

// PROC NODE='IMS',
// TAPE=MFSDBS,SOUT=A,DSN=FORMAT,SYS2=
//*
//**
//* *
//* PROCEDURE KEYWORDS FOR // EXEC STATEMENT: *

260 IMS: System Utilities

//* *
//* NODE= PREFIX LEVEL TO BE USED FOR *
//* ACCESS TO IMS MFS LIBRARIES. *
//* *
//* SYS2= SECOND PREFIX LEVEL TO BE USED FOR *
//* ACCESS TO IMS MFS LIBRARIES. *
//* *
//* TAPE= RESTORE TAPE SERIAL NUMBER. *
//* *
//* SOUT= SPECIFIES THE PRINT OUTPUT CLASS *
//* TO BE USED FOR PRINTED OUTPUT *
//* DURING THE RESTORE OPERATION. *
//* *
//**
//*
//MOVE1 EXEC PGM=IEBCOPY,PARM='SIZE=100K'
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//REFERAL DD DSN=&NODE..&SYS2.REFERAL,DISP=OLD
//TAPEIN DD UNIT=2400,LABEL=(1,SL),DISP=(OLD,KEEP),
// VOL=(,RETAIN,SER=&TAPE),
// DSN=&NODE..&SYS2.REFERAL,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//*
//**
//* *
//* //MOVE1.SYSIN DD * MUST BE SUPPLIED BY THE *
//* USER WITH THE APPROPRIATE COPY CONTROL *
//* STATEMENT AS SHOWN BELOW: *
//* *
//* COPY OUTDD=REFERAL,INDD=TAPEIN *
//* *
//**
//*
//MOVE2 EXEC PGM=IEBCOPY,PARM='SIZE=100K'
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//FORMAT DD DSN=&NODE..&SYS2.&DSN,DISP=OLD
//TAPEIN DD UNIT=2400,LABEL=(2,SL),
// VOL=(,RETAIN,REF=*.MOVE1.TAPEIN),
// DSN=&NODE..&SYS2.&DSN,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DISP=(OLD,KEEP)
//*
//**
//* //MOVE2.SYSIN DD * MUST BE SUPPLIED WITH *
//* THE APPROPRIATE COPY CONTROL STATEMENT *
//* AS SHOWN BELOW: *
//* *
//* COPY OUTDD=FORMAT,INDD=TAPEIN *
//* *
//**
//*
//MOVE3 EXEC PGM=IEBCOPY,PARM='SIZE=100K'
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//FORMAT DD DSN=&NODE..&SYS1.TFORMAT,DISP=SHR
//TAPEIN DD UNIT=2400,LABEL=(3,SL),
// VOL=REF=*.MOVE1.TAPEIN,
// DSN=&NODE..&SYS2.TFORMAT,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DISP=(OLD,KEEP)
//*
//**
//* //MOVE3.SYSIN DD * MUST BE SUPPLIED WITH *
//* THE APPROPRIATE COPY CONTROL STATEMENT *
//* AS SHOWN BELOW: *
//* *
//* COPY OUTDD=FORMAT,INDD=TAPEIN *
//* *
//**
//*

Chapter 4. MFS Language utility (DFSUPAA0) 261

262 IMS: System Utilities

Chapter 5. Program Specification Block (PSB)
Generation utility

The Program Specification Block (PSB) Generation utility generates PSBs from macro instructions that
describe the characteristics of application programs and the use of logical terminals and logical data
structures.

Unless the IMS management of ACBs is enabled in an IMS system, the PSB Generation utility is required
before you can run an application program under IMS. The ACB Maintenance utility uses the PSBs
together with database descriptors (DBDs) to create application control blocks (ACBs) for use during run
time.

When the IMS management of ACBs is enabled in an IMS system, instead of using the PSB Generation
utility, you can use SQL Dynamic Definition Language (DDL) statements, such as CREATE PROGRAMVIEW,
to describe the characteristics of an application program to IMS.

The PSB generation statements supply the identification and characteristics of the IMS resources to
be used. These program communication blocks (PCBs) represent message destinations and databases
that are used by the application program. In addition, there must be a statement that supplies the
characteristics of the application program itself. There must be one PSB for each message, batch, or
Fast Path program. The name of the PSB and its associated application program must be the same in a
telecommunications system.

If you require only an I/O PCB and a single, modifiable alternate PCB, you can use a generated PSB
(GPSB) to describe the resources that are required for your application program. GPSBs can be used
in any online environment, and are typically used in DCCTL application programs. You do not need to
perform PSBGEN for GPSBs.

Attention: If the PROCOPT values allow a BMP application to insert, replace, or delete segments in
the databases, ensure that a BMP application does not update a combined total of more than 300
databases and HALDB partitions without committing the changes.

All full-function database types that have uncommitted updates count against the limit of 300.
When you design a HALDB database, use particular caution because the number of partitions
in HALDB databases is the most common reason for approaching the 300 database limit for
uncommitted updates.

Subsections:

• “Restrictions” on page 263
• “Prerequisites” on page 263
• “Requirements” on page 264
• “Recommendations” on page 264
• “Input and output” on page 264
• “JCL specifications” on page 265

Restrictions

Currently, no restrictions are documented for the PSB Generation utility.

Prerequisites

Currently, no prerequisites are documented for the PSB Generation utility.

© Copyright IBM Corp. 1974, 2020 263

Requirements

Currently, no requirements are documented for the PSB Generation utility.

Recommendations

Currently, no recommendations are documented for the PSB Generation utility.

Input and output

The PSB Generation utility places the created PSB in the PSB library. Each PSB is a member of the
operating system partitioned data set IMS.PSBLIB. For IMS batch execution (DL/I region type), the
necessary database PCB PSB is loaded from PSBLIB and the expanded PSB needed for DL/I database
PCB statement processing is built from it. ACB generation must be performed to prebuild the expanded
PSBs into the ACBLIB. PSBLIB is used as input to the ACB generation process. Batch executions can also
use prebuilt blocks from the ACBLIB by specifying region type 'DBB' on the JCL execute statement. When
an application that is running in an online region (BMP) references a PSB with one or more GSAM PCBs
defined, IMS uses ACBLIB with PSBLIB to build its internal control blocks. In this case, the PSB must be
defined the same in both ACBLIB and PSBLIB.

The six types of statements used for a PSB generation are:

• PCB statements for output message destinations other than the source of the input message. These
statements are called alternate PCBs, and they are used in message processing, batch message
processing, and Fast Path programs that interface with the IMS message queues.

• PCB statements for DL/I and Fast Path databases. These statements are used by message, batch, and
Fast Path processing programs to define interfaces to a database.

• SENSEG statements for segments within a database to which the application program is sensitive.
These statements are used with message, batch, and Fast Path processing programs to define logical
data structures.

• SENFLD statements for fields within a segment to which the application program is sensitive.
• PSBGEN statement for each PSB. This statement is used to indicate the characteristics of the

associated application program.
• An assembler language END statement is required for each PSBGEN statement.

The list of statements used for a PSB generation does not include a PCB for the input message source. I/O
PCBs exist within the IMS online control program nucleus for this purpose. Upon entry to the application
program used for message processing, a PCB pointer to the source of the input message is provided as
the first entry in a list of PCB address pointers. The remainder of the PCB list has a direct relationship
to the PCBs as defined within the associated PSB and must be defined in the application program in the
same order as defined during PSB generation. All PCBs can be used by the application program when
making DL/I message and database calls. Only one PCB is used in a particular DL/I call.

You can exclude alternate, DL/I, Fast Path, and GSAM PCBs from the PCB list that is passed to the
application program by defining a name for the PCB (PCBNAME=name) and specifying LIST=NO. You must
name the PCB when you want to issue calls using the application interface block (AIB). The AIB can be
used for all types of PCBs.

To test message processing or batch message processing programs in a batch processing region, use
the CMPAT option of the PSBGEN statement. When CMPAT=YES is specified, IMS provides PCBs to the
application as if it were executing in a message processing region. Using CMPAT eliminates the need to
recompile the program between batch and online executions.

In the case of a batch program, no I/O PCB exists in the list unless you request it with the CMPAT option
on the PSBGEN statement. Therefore, if CMPAT=YES is not specified, the PCB list provided to the program

264 IMS: System Utilities

has a direct relationship to the PCBs within the PSB. No TP PCBs should be contained in a PSB for batch
processing in a batch processing region.

In a TM batch environment, CMPAT=YES is implied and cannot be overridden by PSBGEN. The PCB list for
application programs running in a DCCTL batch region always contains an I/O PCB.

You can specify alternate PCBs in a PSB associated with a batch program operative in an IMS batch
message processing region. These PCBs are available for output message queuing. A batch program
operative in batch message processing regions can access messages from the input message queue. An
I/O PCB is always provided as in the case of a message processing program.

You can specify alternate and modifiable alternate PCBs in a PSB associated with a Fast Path program
executing in a Fast Path region. A response alternate PCB with the same PTERM can be used to send
a Fast Path output message back to the original PTERM with a different component attached to the
terminal. You can use an alternate PCB (non-response mode) to send an output message to any terminal
or IMS message queue.

You can reference the PCB list passed to the application program upon entry to the application program
by the names defined within the application program for making DL/I calls and interrogating PCB
information (status codes and feedback information). The address of a PCB can be the second parameter
in a DL/I call from an application program to IMS. The PCB address can represent the source of the input
message, the destination for an output message, or a database. Upon completion of a DL/I call, the PCB
contains status and feedback information pertinent to the call.

Output messages and statistics

PSB generation produces three types of printed output and one load module, which becomes a member
of the partitioned data set, IMS.PSBLIB. The types of output are:

Control Statement Listing
This is a listing of the input statement images to this job step.

Diagnostics
Errors discovered during the processing of control statement result in diagnostic messages being
printed immediately following the image of the last control statement read before the error was
discovered. The message can either refer to the control statement immediately preceding it or the
preceding group of control statements. It is also possible for more than one message to be printed for
each control statement. In this case, they follow each other on the output listing. After all the control
statements have been read, a further check is made of the logic of the entire deck. This can result in
one or more additional diagnostic messages.

If an error is discovered, a diagnostic message is printed, the control statements are listed, and the
other outputs are suppressed. However, all the control statements are read and checked before the
PSB generation execution is terminated. The bind step of PSB generation is not executed if a control
statement error has been found.

Assembler Listing
Except when PRINT NOGEN is specified, an operating system assembler language listing of the PSB
created by PSB generation execution is provided.

Load Module
PSB generation is a two-step operating system job. Step 1 is a macro assembly execution that
produces an object module. Step 2 is a bind of the object module, which produces a load module that
becomes a member of IMS.PSBLIB.

JCL specifications
The PSB Generation utility executes as a standard operating system job. You must define an EXEC
statement and an Utility control statement.

EXEC statement

Chapter 5. Program Specification Block (PSB) Generation utility 265

Must be in the format

// EXEC PSBGEN,MBR=APPLPGM1

Related concepts
Building the application control blocks (ACBGEN) (Database Administration)
Allocating ACBLIB data sets (System Definition)

Utility control statements
Utility control statements define the required and optional statements for the PSBGEN utility.

No PCB statement is needed in PSB generation for the I/O PCB. IMS builds it automatically. This is true
for message processing application programs, batch processing application programs that operate in IMS
batch message processing regions and need to obtain input messages from the IMS message queues,
and Fast Path application programs that operate in an IMS Fast Path dependent region. Batch processing
application programs that operate in IMS DB batch processing regions never have an I/O PCB, unless
specifically requested in the PSBGEN macro statement.

Alternate PCB statement
The alternate PCB describes a destination other than the source of the current input message.

This statement instruction allows the application program to send output messages to a destination other
than the source of an input message.

Requirement: A PCB statement is required for each destination to which output is to be sent.

These messages can be sent to either an output terminal or an input transaction queue to be processed
by another program. Each output message destination requires a separate alternate PCB destination. If
the input source terminal is all that is required to respond with output, do not include any PCB statements
of this type. Message processing programs, batch message processing programs, and Fast Path programs
can have alternate PCB statements in their associated PSBs. An alternate PCB cannot be used to send a
message to a Fast Path transaction; however, Fast Path application programs can use an alternate PCB to
route messages to any terminal or IMS transaction.

Alternate PCB statements must be first in the PSB generation control card deck, followed by the
statements identifying PCBs associated with IMS databases. The following diagram shows the alternate
PCB statement format.

266 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets

label

1
PCB TYPE=TP

,LTERM=  name

,NAME=  name

,ALTRESP=

NO

YES ,SAMETRM=

NO

YES

,MODIFY=

NO

YES ,EXPRESS=

NO

YES

,PCBNAME=  pcbname
2 ,EXTERNALNAME=  external_name

,LIST=

YES

NO

,REMARKS=  comments

Notes:
1 label and PCBNAME are mutually exclusive. Use either the label or the PCBNAME= parameter.
2 label and PCBNAME are mutually exclusive. Use either the label or the PCBNAME= parameter.

label
Specifies an alphanumeric label from 1 to 8 characters long, that is valid for an assembler language
statement. The labels for the PCB statement within a PSB must be unique.

Exception: Do not specify this parameter if the PCBNAME= parameter is used.

PCB
Indicates that this is a PCB statement.

TYPE=TP
Is a required keyword parameter for all alternate PCBs.

LTERM=|NAME=
Is the parameter for the output message destination. The "name" is the actual destination of the
message and is either a logical terminal name (LTERM=) or a transaction-code name (NAME=).
When the name is a transaction-code name, output messages to this PCB are enqueued for input
to the program used to process the transaction code named by the NAME parameter. The name
must be from 1- to 8-alphanumeric characters in length, and must be specified in the user's IMS
system definition as a logical terminal name or transaction code. The LTERM= or NAME= parameter is
required except when MODIFY=YES is specified.

EXTERNALNAME=
An optional alias for the PCB label or the PCBNAME= parameter. Java application programs use the
external name to refer to the PCB.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

The external name must be unique within a PSB.

When EXTERNALNAME is not specified, the default external name is either the PCB label or the
PCBNAME, whichever has been specified.

If no PCB label or PCBNAME is specified, EXTERNALNAME defaults to blanks.

Restriction: External names cannot be reserved SQL keywords or begin with DFS.

Chapter 5. Program Specification Block (PSB) Generation utility 267

If the EXTERNALNAME parameter is not specified and a reserved SQL keyword is specified in the
NAME parameter, EXTERNALNAME accepts the NAME value as the default external name after
appending "_SCH" to the NAME value.

ALTRESP=
Specifies whether (YES) or not (NO) this alternate PCB can be used instead of the I/O PCB for
responding to terminals in response mode, conversational mode, or exclusive mode. The default value
is NO. ALTRESP=YES is only valid for alternate PCBs.

SAMETRM=
Specifies whether (YES) or not (NO) IMS verifies that the logical terminal named in the response
alternate PCB is assigned to the same physical terminal as the logical terminal that originated the
input message. The default value is NO. You must specify SAMETRM=YES for response alternate
PCBs used by conversational programs and programs operating with terminals in response mode.
SAMETRM=NO should be specified if alternate response PCBs are used to send messages to output-
only devices that are in exclusive mode.

MODIFY=
Specifies whether the alternate PCB is modifiable (YES). This feature allows for the dynamic
modification of the destination name associated with this PCB. Default value is NO. If MODIFY=YES is
specified, omit the NAME= or LTERM= parameter.

EXPRESS=
Specifies whether messages from this alternate PCB are to be sent (YES) or are to be backed out (NO)
if the application program should abend.
YES

When specified, indicates EXPRESS messages can be sent to the destination terminal even though
the program abends or issues a ROLL or ROLB call. For all PCBs (express or non-express) under
these conditions, messages inserted but not made available for transmission are canceled, while
messages made available for transmission are never canceled.

For a non-express PCB, the message is not available for transmission to its destination until the
program reaches a sync (commit) point. The sync point occurs when the program terminates,
issues a CHKP call, or requests the next input message (if the transaction is defined with
MODE=SNGL).

For an express PCB, the message is available for transmission to the destination when IMS knows
it has the complete message. The message is available when a PURG call is made using that PCB,
or when the program requests the next input message.

When the PSB is defined as a Fast Path application in the IMS system definition, EXPRESS=YES, if
specified, will be ignored at execution time for a response alternate PCB.

NO
When specified, indicates messages are backed out if the application program abends. NO is the
default.

PCBNAME=
Specifies the name of the PCB. The PCB name must be an alphanumeric, 8-byte character string that
follows standard naming conventions. The PCB name must be unique within the PSB.

Exception: Do not specify this parameter if a label is used.

LIST=
Specifies whether the named PCB is included in the PCB list passed to the application program at
entry. Specify YES to include a named PCB in the PCB list. Specify NO to exclude a named PCB from
the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with the PCBNAME= parameter.
You can specify LIST=NO if an application program does not need a PCB's address.

REMARKS=
Optional user comments. A 1- to 256-character field.

268 IMS: System Utilities

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

Full-function or Fast Path database PCB statement
The second type of statement in a PSB generation input record specifies a description of a PCB for a DL/I
or a Fast Path database.

Although one or more database PCBs are usually included in a PSB, the second type of statement is not
always required. For example, a message switching program or conversational message program might
not require access to a DL/I database. Therefore, a database PCB is not required.

In a DCCTL environment, database PCBs (except for GSAM PCBs) are not supported, but might be
included in the PSBGEN. Application programs that execute in a DCCTL environment and that attempt to
use a database PCB will receive an AD status code.

The maximum number of database PCBs that can be defined in a PSBGEN is 2500, including alternate
terminal PCBs. This is the maximum value for application programs executing in all IMS region types
(MSG, DL/I, and so on).

If a Fast Path secondary index PCB is the only PCB in the PSB, the associated DEDB PCB must be included
in the PSB. The minimal DEDB PCB requires a SENSEG statement for the root segment of the associated
DEDB database.

The following diagram shows the format for the DL/I database PCB statement.

Chapter 5. Program Specification Block (PSB) Generation utility 269

label
1

PCB TYPE=DB ,DBDNAME=

,NAME= DBVER=  n
name

,PCBNAME=  pcbname
2 ,EXTERNALNAME=  external_name

,PROCOPT=A

,PROCOPT= a

,SB=

NO

COND

,KEYLEN=  value b

,PROCSEQ=  full_function_index_dbname

,PROCSEQD=  Fast_Path_index_dbname

,PSELOPT=

MULT

SNGL

,ACCESS=

DB

(INDEX,VSAM)

(INDEX,SHISAM)

,VIEW= MSDB

MSDBL

,LIST=

YES

NO

,REMARKS=  comments

a

270 IMS: System Utilities

A

A

E P H

GO

GOP

GON

GONP

GOT

GOTP

G

E S P H

3

I

E P H

R

E H

D

E P H

L

S P

b

,POS=
SINGLE

MULTIPLE

Notes:
1 Both label and PCBNAME can be specified. If they have the same name, then PSBGEN will be
successful, and that name will be used. If they do not have the same name, then PSBGEN will fail.
2 Both label and PCBNAME can be specified. If they have the same name, then PSBGEN will be
successful, and that name will be used. If they do not have the same name, then PSBGEN will fail.
3 These operands can be selected in any combination; if G, I, R, and D are selected, use A instead (A =
G, I, R, and D combined).

label
An optional label used to allow the SBPARM control statement in the DFSCTL file to reference specific
PCBs. If specified, this must be an alphanumeric 1- to 8-byte character string that is valid for an
assembler language statement. The labels for the PCB statements within a PSB must be unique.

Note: If both label and PCBNAME= are specified, they must have the same name, or PSBGEN will fail.

TYPE=DB
Is a required keyword parameter for all DL/I database PCBs.

DBDNAME= or NAME=
Is the parameter for the name that specifies the physical or logical DBD to be used as the primary
source of database segments for this logical data structure. The logical structure, which is defined
under this PCB with one or more SENSEG statements, is the hierarchical set of data segments
to which the associated application program is sensitive. This logical hierarchy of data segments
might or might not exist as a physical hierarchy. This depends on the relationship of segments
defined by SENSEG statements and the existence of these segments in one or more databases as
defined by their database descriptions (DBDs). All SENSEG statements that follow this statement and

Chapter 5. Program Specification Block (PSB) Generation utility 271

precede the next PCB or PSBGEN statement must refer to segments defined in the DBD named in the
DBDNAME= or NAME= parameter of this PCB.

The keywords DBDNAME and NAME are synonymous. DBDNAME is more descriptive, and NAME is
kept for compatibility with earlier releases.

DBVER=n
When database versioning is enabled, specifies the version number of the database definition (DBD)
that this application program requires.

The numeric value specified must match a version number defined on the DBD and stored in the IMS
catalog. Valid values for a database version number are 0 to 2147483647.

If multiple PCBs within a PSB refer to the same database, each PCB must specify the same DBD
version number.

PCBNAME=
Specifies the name of the PCB. The PCB name must be an alphanumeric, 8-byte character string that
follows standard naming conventions.

Note: If both label and PCBNAME= are specified, they must have the same name, or PSBGEN will fail.

PROCOPT=
Specifies the processing options for the sensitive segments that are declared in this PCB. You can use
these specified options in an associated application program. You can use a maximum of four options
with this parameter. The letters in the parameter have the following meaning:
A

All options. By default, PROCOPT=A includes the G (get), I (insert), R (replace), and D (delete)
options. PROCOPT=A is the default setting.

G
Get option.

I
Insert option. By default, PROCOPT=I includes the G (get) option for Fast Path DEDBs;
PROCOPT=I does not include the G option for other database types.

R
Replace option. By default, PROCOPT=R includes the G (get) option.

D
Delete option. By default, PROCOPT=D includes the G (get) option.

P
Path calls. Required if command code D is to be used, except for ISRT calls in a batch program
that is not sensitive to fields. PROCOPT=P is not required if command code D is used when
processing DEDBs. P is used in conjunction with the A (all), G (get), I (insert), D (delete), and L
(load) options.

O
If the O option is used for a PCB, IMS does not check the ownership of the segments returned.
Therefore, the read without integrity program might get a segment that has been updated by
another program. If the updating program abends and backs out, the read without integrity
program will have a segment that does not exist in the database and never did. If a segment
has been deleted and another segment of the same type has been inserted in the same location,
the segment data, and all subsequent data returned to the application, can be from a different
database record. Therefore, if you use the O option, do not update based on data read with that
option. O must be specified as GO, GON, GONP, GOT, GOTP, or GOP only.

IMS recognizes some of these error types and converts them to abend U0849. However, other
conditions that occur under PROCOPT GOx are not detected as having been caused by the
read-without-integrity. It is possible to get loops, hangs, and system abends. When using this
PROCOPT, carefully consider system design to determine if concurrent update activity is likely to
cause higher risk of these kinds of conditions.

272 IMS: System Utilities

N
Reduces the number of abends that read-only application programs are subject to. Read-only
application programs can reference data being updated by another application program. When
this happens, an invalid pointer to the data might exist. If an invalid pointer is detected, the read-
only application program abends. By specifying N, you avoid this. A GG status code is returned
to the program instead. The program must determine whether to terminate processing, continue
processing by reading a different segment, or access the data using a different path. N must be
specified as GON, GONH, or GONP.

T
Similar to the N option, except that T causes DL/I to automatically retry the operation. If the retry
fails, a GG status code is returned to the application program. T must be specified as GOT, GOTH,
or GOTP.

E
Enables exclusive use of the database or segment by online programs. Used in conjunction with G,
I, D, R, and A.

Restriction: For a DEDB, PROCOPT=E is not permitted.

L
Load option for database loading (except HIDAM and PHIDAM).

GS
Get segments in ascending sequence only (HSAM only). If you specify GS for HSAM databases,
they will be read using the Queued Sequential Access Method (QSAM) instead of the basic
Sequential Access Method (BSAM) in a DL/I IMS region.

LS
Load segments in ascending sequence only (HIDAM, HDAM, PHIDAM, PHDAM). This load option
is required for HIDAM and PHIDAM. Because you must specify LS for HIDAM and PHIDAM
databases, the index for the root segment sequence field will be created at the time the database
is loaded.

H
Specifies high-speed sequential processing for the application program that is using a particular
PSB. The following restrictions apply to using PROCOPT=H:

• It can be used for DEDBs only.
• It is allowed on the PCB level and not on the segment level.
• It must be used with other Fast Path processing options.
• A maximum of four PROCOPT options can be specified, including H.
• It can only be specified for BMPs.
• Only one PROCOPT=H PCB per database per PSB is allowed. If a BMP that is using HSSP uses

multiple PCBs with PROCOPT=H for the same database within the same PSB, all database calls
that are using a PCB other than the first one that is used will receive an FH status code. You can
use the NOPROCH keyword on the SETO statement to alleviate this restriction.

• PROCOPT=H cannot be used if PROCSEQD=Fast_Path_index_dbdname is specified.
• PROCOPT=H cannot be used with PROCOPT=GO.

H is used in conjunction with A, G, I, R, and D.

If you do not specify the PROCOPT parameter, it defaults to PROCOPT=A. The replace and delete
functions also imply the Get function.

A user abend (U8XX) from the retrieve module (DFSDLR00) can occur with PROCOPT=GO if another
program updates pointers when this program is following the pointers. A U0800 or U0852 abend can
also occur in the VLEXP routine, or in the retrieve module, if an invalid compressed segment is detected.
Pointers are updated during the insert and delete functions and during replacement of a variable-length
segment. To reduce the number of abends of this type, code the PROCOPT= parameter with an N or a T.

Note:

Chapter 5. Program Specification Block (PSB) Generation utility 273

1. If any PCBs in the PSB have a PROCOPT of L or LS and either explicitly reference HISAM or HIDAM
databases, or implicitly reference INDEX databases, no other PCB in the same PSB can reference any
of the databases listed, either explicitly or implicitly, with a PROCOPT other than L or LS. If any PCB in
the PSB has a PROCOPT of L or LS and explicitly references a PHIDAM database, no other PCB in the
same PSB can reference the PHIDAM database with a PROCOPT of L or LS. The SENSEG statements
within that PCB should not contain INDICES= operands.

2. If L is specified for a PCB that references a database with multiple data set groups, the PCB should
include at least one SENSEG statement for each data set group in the database.

3. When the first ISRT call is issued using a PCB with PROCOPT=L, and the database is using VSAM, the
VSAM data set must be empty. If it is not empty, an open error will result.

Recommendation: If the database is using OSAM, use a newly allocated empty data set.

If the data set is not empty, the load will start at the front of the data set, writing over the existing data.
4. If the 'O' option is used for a PCB, the SENSEG statement must not specify a PROCOPT of I, R, D, or A.
5. An online application program always has exclusive use of the SHSAM or HSAM databases, which are

referenced by PCBs in its PSB. No other application programs can be concurrently scheduled to access
those same SHSAM or HSAM databases in an online environment.

6. If the Online Database Image Copy utility refers to this PCB, the value of PROCOPT= L or LS is invalid.
If the database to be copied is the index portion of a HIDAM or PHIDAM database, only PROCOPT=G
and PROCOPT=GO are valid. If PROCOPT=E is specified, the Online Image Copy utility will execute
with exclusive control of the database, even though the utility does not require the control.

7. If the Database Surveyor utility feature refers to this PCB, you must specify PROCOPT=G.
8. In the case of concatenated segments, the PROCOPT= parameter governs the logical child segment

of the concatenated segment. The logical parent of the concatenated segment is governed by the
RULES= parameter of the SEGM statement.

9. PROCOPT=E only applies to the database specified in the PCB. To enable exclusive use of a secondary
index not explicitly used by the application, add another PCB with PROCOPT=E for the secondary index
database.

SB=
Specifies which PCBs will be buffered using sequential buffering (SB). This is an optional parameter.
The default is SB=NO, unless the default option has been modified for Batch and BMPs by the
DFSSBUX0 to SB=COND.
COND

Specifies that SB should be activated conditionally. IMS will monitor statistics about the I/O
reference pattern of this PCB to the DB data set. If IMS detects a sequential I/O reference pattern
and a reasonable activity rate, it will activate SB and acquire the required buffers.

NO
Specifies that SB should not be used for this DB PCB.

Tip: For short-running MPPs, Fast Path programs, and CICS® programs, either omit the SB= keyword
or specify SB=NO.

KEYLEN=
The value specified in bytes of the longest concatenated key for a hierarchic path of sensitive
segments that the application program uses in the logical data structure. The following figure shows
an IMS database that contains segments A- H plus segment J. Segments A, B, C, D, F, and J each have
a key field length of 10 bytes. Segment E has a key field length of 250 bytes. Segment G has a key field
length of 40 bytes. And Segment H has a key field length of 50 bytes. The following table shows how
the KEYLEN= will be specified.

Table 21. How a KEYLEN is determined

Database hierarchical paths Concatenated key length paths

A+B+C= 30 bytes

274 IMS: System Utilities

Table 21. How a KEYLEN is determined (continued)

Database hierarchical paths Concatenated key length paths

A+B+D= 30 bytes

A+E= 260 bytes

A+F+G+H+J= 120 bytes

A KEYLEN=260 bytes would be specified

Figure 11. KEYLEN definition

For a non-terminal-related MSDB without terminal-related keys, the value must be greater than or equal
to the value of the BYTES parameter of the sequence field in the DBD generation and be from 1 to 240
bytes.

For a terminal-related MSDB (using the LTERM name as a key), this value must be 8.

POS=
Specifies single or multiple positioning for the logical data structure. Single or multiple positioning
provides a functional variation in the call.

Chapter 5. Program Specification Block (PSB) Generation utility 275

The performance variation between single and multiple positioning is insignificant. HSAM does not
support multiple positioning.

POS=SINGLE or S is the default.

Exception: For DEDBs having more than two dependent segments, the default is POS=MULTPLE or M.

Coding a POS value on the PCB statement for a DEDB will not override the default that is selected
based on the number of dependent segments.

PROCSEQ=
Specifies the name of a secondary index that is used to process the database named in the DBDNAME
parameter through a secondary processing sequence. The parameter is optional. It is valid only if a
secondary index exists for this database. If this parameter is used, subsequent SENSEG statements
must reflect the secondary processing sequence hierarchy of segment types in the indexed database.
For example, the first SENSEG statement must name the indexed segment with a PARENT=0
parameter.

full_function_index_dbname must be the name of a secondary index DBD.

For a secondary processing sequence, processing options L and LS are invalid. Inserting and deleting
the index target segment and any of its inverted parents is not allowed. When the blocks are built,
if the processing option for these segments includes I or D, a warning message indicates that the
processing option has been changed to reflect this restriction.

PROCSEQD=
Specifies the name of the secondary index database to be used to access the segments in the primary
DEDB database. The parameter is optional. It is valid only if a secondary index exists for this database.
If this parameter is used, subsequent SENSEG statements must be coded in the physical sequence
of the primary DEDB. The minimum SENSEG statements to be coded are those in the path from the
physical root segment, to the index segment (also called the target segment).

For partitioned secondary index databases, Fast_Path_index_dbname must be the first dbdname
listed in the LCHILD statement.

For a secondary processing sequence, processing options L and LS are invalid. Inserting and deleting
the index target segment and any of its inverted parents is not allowed. When the blocks are built,
if the processing option for these segments includes I or D, a warning message indicates that the
processing option has been changed to reflect this restriction.

When user partitioning is requested for HISAM or SHISAM secondary index databases, the
PROCSEQD= parameter specifies the name of the first partition database in the user partition group
as defined in the NAME= parameter on the LCHILD statement in the primary DEDB database DBD.
The user partition selection exit in the PSELRTN= parameter on the XDFLD statement determines the
actual partition database to use based on the secondary index key value.

PSELOPT=
Indicates how user partition databases in a user partition group are logically grouped for qualified
GN calls with no SSA processing before the end of data is reached on the user partition databases.
User partition databases are defined as part of a user partition group in the NAME= parameter on the
LCHILD statement. This parameter applies to Fast Path secondary index databases only.

The PSELOPT= parameter can also be specified on the XDFLD statement. There is no default
for the PSELOPT= parameter on the PCB statement with the PROCSEQD= parameter, whereas
PSELOPT=MULT is the default for the PSELOPT= parameter on a XDFLD statement.

If the PSELOPT= parameter is specified on both the XDFLD statement and the PCB statement with the
PROCSEQD operand, the PSELOPT= parameter on the PCB statement takes precedence.

MULT
Indicates the selected user partition and its subsequent user partition databases in a user data
partition group as they are physically defined in the NAME= parameter on the LCHILD statement of
the primary DEDB database DBD. PSELOPT=MULT is the default for the PSELOPT= parameter on a
XDFLD statement.

276 IMS: System Utilities

SNGL
Indicates that only the selected user partition database is used.

ACCESS=
Specifies whether the secondary index database is to be used to access its primary DEDB database or
the secondary index database is to be processed as a separate logical database.
DB

Specifies that the primary DEDB database is accessed using its secondary index sequence.
ACCESS=DB is the default.

(INDEX,VSAM) | (INDEX,SHISAM)
Specifies that one or more user partition databases in a user partition group are accessed as a
separate logical database.

Specify ACCESS=(INDEX,VSAM) for a HISAM secondary index database on the DBD statement for
a Fast Path secondary index database.

Specify ACCESS=(INDEX,SHISAM) for a SHISAM secondary index database on the DBD statement
for a Fast Path secondary index database.

VIEW=MSDB or VIEW=MSDBL

Applications can use the default DEDB commit view, or can use either the MSDB or MSDBL commit
view if you specify VIEW=MSDB or VIEW=MSDBL. If you specify VIEW=MSDBL, a lock is held for the
duration of DL/I data access and then released at the end of the call.

If you choose to use the default DEDB commit view after having previously specified VIEW=MSDB or
VIEW=MSDBL, no changes to existing application programs are required to migrate your MSDBs to
DEDBs.

If you issue a REPL call with a PCB that specifies VIEW=MSDB or VIEW=MSDBL, the segment must
have a key. This includes any segment in a path if command code 'D' is specified. Otherwise, status
AM is returned.

LIST=
Specifies whether the named PCB is included in the PCB list passed to the application program at
entry. Specify YES to include a named PCB in the PCB list. Specify NO to exclude a named PCB from
the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with either the label or
PCBNAME= parameter. You can specify LIST=NO if an application program does not need a PCB's
address.

EXTERNALNAME=
An optional alias for the PCB label or the PCBNAME= parameter. Java application programs use the
external name to refer to the PCB.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

The external name must be unique within a PSB.

When EXTERNALNAME is not specified, the default external name is either the PCB label or the
PCBNAME, whichever has been specified.

If no PCB label or PCBNAME is specified, EXTERNALNAME defaults to blanks.

Restriction: External names cannot be reserved SQL keywords or begin with DFS.

If the EXTERNALNAME parameter is not specified and a reserved SQL keyword is specified in the
NAME parameter, EXTERNALNAME accepts the NAME value as the default external name after
appending "_SCH" to the NAME value.

REMARKS=
Optional user comments. A 1- to 256-character field.

Chapter 5. Program Specification Block (PSB) Generation utility 277

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

Related reference
Portable SQL keywords restricted by the IMS Universal JDBC drivers (Application Programming)

Processing options for Fast Path databases
Processing options for Fast Path databases vary, depending on the Fast Path database type: non-terminal-
related or fixed-terminal-related MSDB, dynamic terminal-related MSDB, or DEDB.

In a non-terminal-related or fixed terminal-related MSDB, only the processing options G and R are valid.

G
Get function.

R
Replace function. Includes G.

In a dynamic terminal-related MSDB, the processing options G, I, R, D, A or any combination of G, I, R, and
D are valid.

G
Get function.

I
Insert function.

R
Replace function. Includes G.

D
Delete function. Includes G.

A
All. Includes functions G, I, R and D.

In a DEDB, the processing options G, I, R, D, A, P, N, T, O, and H are valid.

G
Get function.

I
Insert function.

R
Replace function. Includes G.

D
Delete function. Includes G.

278 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

A
All. Includes functions G, I, R, and D.

P
Position function. Is not required if command code D is used when processing DEDBs. It is only valid
for a batch message program (BMP). If this option is specified for another type of region, such as an
IFP region, it will be ignored. With this option, a GC status code is returned when a UOW boundary is
crossed during a G(H)U, G(H)N, or ISRT on a root segment. Also, database positioning is maintained
across a valid SYNC call and a blank status code is returned when the sync is issued immediately after
receiving a GC status code. In the case of a sync process failure or ROLB call, position is set to the
last valid sync point or, if no valid sync point exists, to the start of the database. A SYNC or ROLB call
without a preceding GC status will also cause position to be set to the start of the database.

If you use the D command code in a call to a DEDB, the P processing option need not be specified in
the PCB for the program.

N
Reduces the number of abends that read-only application programs are subject to. Read-only
application programs can reference data being updated by another application program. When this
happens, invalid pointer to the data might exist. If an invalid pointer is detected, the read-only
application program abends. By specifying N, you avoid this. A GG status code is returned to the
program, instead. The program can then terminate processing, continue processing by reading a
different segment, or access the data using a different path. N must be specified as GON, GONH, or
GONP.

O
Read only; do not enqueue to check availability. Selecting PROCOPT=GO, GON, or GOT for DEDBs
indicates that read without integrity is in effect. No locking mechanism is used to maintain the
integrity of the retrieved data. O must be specified as GO, GON, or GOT, and may not be used in
conjunction with H.

With O, IMS reads the control interval (CI) once and uses the same copy of the CI for the next 50
references within the same syncpoint interval. After 50 references occur, the reference counter resets
and the CI will be read again. This occurs to prevent segment chain loops due to access to stale data
updated by another thread.

A user abend (U1026) can occur with PROCOPT=GO if another program updates pointers when this
program is following the pointers. Another example of the abend U1026 is if this program rereads a
segment that has moved when another program changes its length. The following examples will help
illustrate instances where abend U1026 could occur or old data is retrieved.

Example 1: If one region uses both update and PROCOPT=GO PCBs to update and read the
same segment, the following scenario will not produce a pointer error to the control blocks of the
PROCOPT=GO PCB (MLTE). Call the update PCB (PCBA), and the read PCB (PCBGO).

1. Region 1 PCBGO reads the CI and sets the position of the segment in MLTE. The data in the buffer
is linked to EPSTGOBF.

2. Region 1 issues a call to update the segment. Region 1 PCBA steals the buffer off its EPSTGOBF.
Region 1 PCBA saves the old position and updates the segment. Even if the segment is moved,
Region 1 will update the PCBGO MLTE because the position in the GO MLTE matches the saved old
position.

3. Region 1 PCBGO references the segment again and retrieves the updated segment.

Example 2: When two regions update the same segment and use both update and PROCOPT=GO
PCBs, the following scenario will not produce a pointer error to the control blocks of the
PROCOPT=GO PCB (MLTE), but the PROCOPT=GO PCB will not have access to the updated segment
from the other region.

1. Region 1 PCBGO reads the CI and sets the position of the segment in MLTE. The buffer is linked to
EPSTGOBF.

Chapter 5. Program Specification Block (PSB) Generation utility 279

2. Region 2 PCBA reads the CI with lock and replaces the segment with a length change. The position
of the segment changes, resulting in an FSE in the updated CI at the position set in Region 1
PCBGO MLTE. Region 1 still has the old data in the buffer which is linked to EPSTGOBF.

3. Region 1 PCBGO references the segment again and retrieves the old segment because its buffer
has not been updated by Region 2's change.

Example 3: When two regions update the same segment and use both update and PROCOPT=GO
PCBs, the following scenario will not produce a pointer error to the control blocks of the
PROCOPT=GO PCB (MLTE), but the PROCOPT=GO PCB will not have access to the updated segment
from its own region.

1. Region 1 PCBGO reads the CI and sets the position of the segment in MLTE. The buffer is linked to
EPSTGOBF.

2. Region 2 PCBA reads the CI with lock and replaces the segment with a length change. The position
of the segment changes, resulting in an FSE in the updated CI at the position set in Region 1
PCBGO MLTE. Region 1 still has the old data in the buffer which is linked to EPSTGOBF.

3. Region 1 issues a call to update the segment. Region 1 waits for the release of Region 2's lock.
Because the updated segment is now on a different block, Region 1 does not find the duplicate
buffer on EPSTGOBF and the old buffer is still linked to EPSTGOBF. Region 1 reads the update CI,
which is now in its buffer. Region 1 PCBA updates the segment in its place. Even if the segment
is moved, Region 1 will not update the PCBGO MLTE because the position in the MLTE no longer
matches the position of the segment. There are now two duplicate buffers, one containing the
old data that is linked to EPSTGOBF, and another containing updated information that is linked to
EPSTXCOC.

4. Region 1 PCBGO references the segment and retrieves the old data.

Example 4: When two regions update the same segment and use both update and PROCOPT=GO
PCBs, the following scenario will produce a pointer error to the control blocks of the PROCOPT=GO
PCB (MLTE).

1. Region 1 PCBGO reads the CI and sets the position of the segment in MLTE. The buffer is linked to
EPSTGOBF.

2. Region 2 PCBA reads the CI with lock and replaces the segment with a length change. The position
of the segment changes within the same block and creates an FSE in the updated CI at the position
set in Region 1 PCBGO MLTE. Region 1 still has the old data in the buffer linked to EPSTGOBF.

3. Region 1 issues a call to update the segment. Region 1 waits for the release of Region 2's lock.
Region 1 PCBA steals the buffer off EPSTGOBF and reads the updated CI, moving it to Region 1's
buffer. Region 1 PCBA updates the segment in its place. Even if the segment is moved, Region 1
will not update the PCBGO MLTE because the position in the MLTE no longer matches the position
of the segment.

4. Region 1 PCBGO references the segment again and receives abend U1026 since there is now an
FSE where the segment had been (MLTE's position).

To reduce the number of abends of this type, code the PROCOPT= parameter with an N or a T.

T
Works exactly like the N option. T must be specified as GOT, GOTH, or GOTP.

H
HSSP. Includes G and P.

A DLET or ISRT call to a terminal-related dynamic MSDB from a program with no input LTERM present, for
example, a batch-oriented BMP, will result in a status code of AM, regardless of the processing options
specified.

The Replace function also implies the Get function. If the referenced segment is a root or direct
dependent segment, A implies G, I, R, and D. Only processing options of G, I, and GI are valid for
sequential dependent segments.

280 IMS: System Utilities

The processing option of P is valid only when specified for a root segment to be used by an IMS batch
message program. If the processing option P is specified for another type of region, such as an IFP region,
it will be ignored. With this option, a GC status code is returned when a UOW boundary is crossed during
a G(H)U, G(H)N, or ISRT on a root segment. Also, database positioning is maintained across a valid SYNC
call and a blank status code is returned when the sync is issued immediately after receiving a GC status
code. In the case of a sync process failure or ROLB call, position is set to the last valid sync point or, if no
valid sync point exists, to the start of the database. A SYNC or ROLB call without a preceding GC status
will also cause position to be set to the start of the database.

If you use the D command code in a call to a DEDB, the P processing option need not be specified in the
PCB for the program.

Procopt H may not be used in conjunction with O.

If you specify invalid processing options, the PSBGEN accepts them but the Application Control Blocks
Maintenance utility fails. The error does not appear in the PSBGEN but appears in the ACBGEN.

GSAM PCB statement
The GSAM PCB statement specifies the name of the GSAM database PCB that will be allocated.

The following diagram shows the format for the GSAM database PCB statement.

PCB TYPE=GSAM, DBDNAME=  name

NAME= name

,PROCOPT= G

S

L

S

,PCBNAME=  pcbname

label

,EXTERNALNAME=  external_name

,LIST=

YES

NO

,REMARKS=  comments

TYPE=GSAM
Is a required keyword parameter for all GSAM database PCBs that will be allocated and processed in
the dependent region.

DBDNAME= or NAME=
Is a required keyword parameter for the name that specifies the GSAM DBD to be used as the primary
source of data set description. SENSEG statements must not follow this PCB statement.

PROCOPT=
Is a required parameter for the processing options on the data set declared in this PCB that can be
used in an associated application program. Use the following characters to specify the parameter.
G

Get function.
L

Load function.
S

Large-scale sequential activity. Use GSAM multiple-buffering option (BUFFIO).

The GSAM PCB statement must follow the PCB statements with TYPE=TP or DB if any exist in the PSB
generation. The rule is:

TP PCBs
First

Chapter 5. Program Specification Block (PSB) Generation utility 281

DB PCBs
Second

GSAM PCBs
Last

PCBNAME=
Specifies the name of the PCB. The PCB name must be an alphanumeric, 8-byte character string that
follows standard naming conventions. The PCB name must be unique within the PSB.

Exception: Do not specify this parameter if the PCB statement includes label.

label
Specifies an 1- to 8-character alphanumeric label that is valid for an assembler language statement.
The labels for the PCB statements within a PSB must be unique.

Exception: Do not specify this parameter if PCBNAME= is used.

EXTERNALNAME=
An optional alias for the PCB label or the PCBNAME= parameter. Java application programs use the
external name to refer to the PCB.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

The external name must be unique within a PSB.

When EXTERNALNAME is not specified, the default external name is either the PCB label or the
PCBNAME, whichever has been specified.

If no PCB label or PCBNAME is specified, EXTERNALNAME defaults to blanks.

Restriction: External names cannot be reserved SQL keywords or begin with DFS.

If the EXTERNALNAME parameter is not specified and a reserved SQL keyword is specified in the
NAME parameter, EXTERNALNAME accepts the NAME value as the default external name after
appending "_SCH" to the NAME value.

LIST=
Specifies whether the named PCB is included in the PCB list passed to the application program at
entry. Specify YES to include a named PCB in the PCB list. Specify NO to exclude a named PCB from
the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with the PCBNAME= parameter.
You can specify LIST=NO if an application program does not need a PCB's address.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.

282 IMS: System Utilities

• Ampersands (&).

SENSEG statement
You use the SENSEG statement with the database PCB statement to define a hierarchically related set of
data segments.

This set represents segments to which a program through this PCB is sensitive. This segment set can
physically exist in one database or can be derived from several physical databases. One or more SENSEG
PCB statements can be included. Each SENSEG statement must immediately follow the PCB statement
to which it is related. There must be one SENSEG statement for each segment to which the application
program is sensitive. All segments in the hierarchic path to any required segment must be specified. A
maximum of 30,000 SENSEG statements can be defined in a single PSB generation. 30,000 SENSEG
statements are impractical because this many SENSEG statements will require more storage than is
usually available.

The order in which SENSEG statements are sequenced after a PCB statement determines the logical
access order for the segments. When using HSAM or HISAM databases, the SENSEG statement sequence
must follow the physical sequence of the segments as defined in DBDGEN, unless the PROCSEQ
parameter is used in the PCB statement.

If the PROCSEQ parameter is used in the PCB statement, the SENSEG statement sequence reflects the
secondary processing sequence specified by the PROCSEQ parameter. For HDAM, HIDAM, PHDAM, and
PHIDAM databases, the SENSEG statements for segments on the same level do not have to be in the
same order as the DBD. The order of dependent segments whose parent segment does not use hierarchic
pointing can differ from the physical sequence.

When the PROCSEQD parameter is specified on a PCB statement, the SENSEG statements must be
specified using the physical structure order of the primary DEDB database. For every PCB with the
PROCSEQD operand specified, it is counted as two PCBs toward the 2500 PCB limit per PSBGEN.

If the target segment is a root segment, you specify the SENSEG segments the same way as you would
specify for a DEDB database without a secondary index. All segments under the root segment are
accessible in the entire physical structure of the primary DEDB database using a secondary index.

If the target segment is not a root segment, you must specify SENSEG statements for all segments that
are the direct parents of the target segment along the physical path from the root segment to the target
segment. Only the segments that are the direct parents of the target segment along the physical path
from the root segment, and all children segments of the target segment are accessible in the physical
structure of the primary DEDB database when the primary DEDB database is accessed using a secondary
index.

For a DEDB database, when the PROCSEQD parameter is specified on a PCB statement and the target
segment is not the root segment, every SENSEG statement in the direct line from the physical root
segment to the target segment must be coded. The order of the SENSEG statements must also be in
physical order, even though the PROCSEQD GN processing navigates in logical order, starting from target
segment going up to the root.

The format of the SENSEG statement is as follows:

Chapter 5. Program Specification Block (PSB) Generation utility 283

SENSEG NAME= name ,PARENT=

0

name

,PROCOPT= G

I

E P

R

D

A

E P

K

1

,SSPTR= (

.

( n,
r

u))

,INDICES=  list1

,REMARKS=  comments

Notes:
1 These can be selected in any combination; if G, I, R, and D are all chosen, use A instead (A = G, I, R,
and D combined).

NAME=
Is the name of the segment type as defined through a SEGM statement during DBD generation. The
field is from 1- to 8-alphanumeric characters.

PARENT=
Is the segment type name of this segment's parent.

Requirement: This parameter is required for all dependent segments.

The field is either from 1- to 8-alphanumeric characters or 0. If this SENSEG statement defines a root
segment type as being sensitive, this parameter must equal zero. PARENT=0 is the default.

PROCOPT=
Indicates the processing options valid for use of this sensitive segment by an associated application
program. This parameter has the same meaning as the PROCOPT= parameter on the PCB statement.
In addition to the valid options for this parameter, an option can be used on the SENSEG statement
which does not apply to the PCB statement. A PROCOPT of K indicates key sensitivity only. A GN
call with no SSAs can access only data-sensitive segments. If a key-sensitive segment is designated
for retrieval in an SSA, the segment is not moved to the user's I/O area. The key is placed at the
appropriate offset in the key feedback area of the PCB. If this PROCOPT= parameter is not specified,
the PCB PROCOPT parameter is used as default. If there is a difference in the processing options
specified on the PCB and SENSEG statements and the options are compatible, SENSEG PROCOPT
overrides the PCB PROCOPT. If PROCOPT= L or LS is specified on the preceding PCB statement, this
parameter must be omitted.

Do not specify a SENSEG statement for a virtual logical child segment type if PROCOPT= L or LS is
specified. The Replace and Delete functions also imply the Get function.

If a segment has PROCOPT=K specified, an unqualified Get Next call (GN) skips to the next sensitive
segment with a PROCOPT other than K.

The SENSEG PROCOPT overrides the PCB PROCOPT. If PROCOPT=E is specified in the PCB, the
SENSEG PROCOPT must also specify E if it is intended to schedule exclusively for that SENSEG.

284 IMS: System Utilities

It is not valid to code the N or T processing option in the SENSEG statement. You can code them only
in the PCB statement.

The processing option for a DEDB sequential dependent segment must be either G or I. If one of these
values is not specified on the PCB statement, PROCOPT=G or I must be specified on the SENSEG PCB
statement.

In the case of concatenated segments, the PROCOPT= parameter governs the logical child segment
of the concatenated segment. The logical parent of the concatenated segment is governed by the
RULES= parameter of the SEGM PCB statement.

SSPTR=
Specifies the subset pointer number and the sensitivity for the pointer. Up to 8 subset pointers can be
defined. The subset pointer number (the first parameter) must be 1 through 8. The sensitivity for the
pointer (the second parameter) must be R (read sensitive) or U (update). If the first parameter and the
second parameter are not specified, the pointer has no sensitivity. If only n is specified, the pointer is
read sensitive. SSPTR=R is the default.

You cannot use U (update sensitivity) if the processing option is not A, R, I, or D.

INDICES=
Specifies which secondary indexes contain search fields that are used to qualify SSAs for an indexed
segment type. The INDICES= parameter can be specified for indexed segment types only. It enables
SSAs of calls for the indexed segment type to be qualified on the search field of the index segment
type contained in each secondary index specified.

Restriction:

• An SSA of a call for an indexed segment type cannot be qualified on the search field of a secondary
index unless that secondary index was specified in the INDICES= parameter of the SENSEG
statement for the indexed segment type or in the PROCSEQ= parameter of the PCB statement.

• The INDICES= parameter is not supported for Fast Path secondary indexing.

For list1, you can specify up to 32 DBD names of secondary indexes. If two or more names are
specified, these names must be separated by commas and the list enclosed in parentheses.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

The following figure shows the data structure of segment definition and includes segments A- F.

Chapter 5. Program Specification Block (PSB) Generation utility 285

Figure 12. Data structure of segment definition

All of these segments are defined within one DBD. Do not specify INDICES= on a SENSEG PCB statement
if you specified PROCOPT=L, LS, I, or D on the preceding PCB statement.

The complete PCB and SENSEG statements for the data structure might be written as follows:

Col. 10 Col. 16 72.

PCB TYPE=DB,DBDNAME=DATABASE, X
 PROCOPT=A,KEYLEN=22
SENSEG NAME=A,PARENT=0,PROCOPT=G
SENSEG NAME=B,PARENT=A,PROCOPT=G
SENSEG NAME=C,PARENT=B,PROCOPT=I
SENSEG NAME=D,PARENT=A,PROCOPT=A
SENSEG NAME=E,PARENT=D,PROCOPT=G
SENSEG NAME=F,PARENT=D,PROCOPT=A

SENFLD statement
The SENFLD statement is used with the SENSEG statement to indicate those fields within a segment to
which an application program is sensitive.

One or more SENFLD statements can be included. Each statement must follow the SENSEG statement to
which it is related. You can define a maximum of 255 SENFLD statements for a given SENSEG statement.
You can define a maximum of 10 000 SENFLD statements in a single PSB generation.

The same field can be referenced in more than one SENFLD statement within a SENSEG. If the duplicate
field names participate in a concatenated segment and the same field name appears in both portions of
the concatenation, the first reference will be to the logical child, and all subsequent references will be to
the logical parent. This referencing sequence determines the order in which fields will be moved to the
user's I/O area.

For retrieve-only processing you can request, using the SENFLD statement, that the same data be moved
to multiple locations in your I/O area, provided that no overlapping occurs, and that SENFLDs of variable-
length segments are of the same type.

The following restrictions apply to the SENFLD statement:

• The length field of a variable-length segment cannot be referenced through a SENFLD statement.
• A SENFLD statement cannot appear within a SENSEG with PROCOPT=K.
• A SENFLD statement cannot not appear within a SENSEG with PROCOPT=I or L, if the SENSEG refers to

a logical child segment.
• If SENFLD statements are used within a SENSEG with PROCOPT=I or L, a SENFLD statement must be

included for the segment sequence field, if it exists.
• This statement is not supported for MSDB and DEDB.

The format of the SENFLD statement is as follows:

286 IMS: System Utilities

SENFLD NAME= name ,START=  startpos A

A

,REPLACE=

,REPL=

YES

NO

,REMARKS=  comments

NAME=
Is the name of this field as defined through a FIELD statement during DBD generation. The field is
from 1- to 8-alphanumeric characters.

START=
Specifies the starting position of this field relative to the beginning of the segment within the user's
I/O area. startpos for the first byte of a segment is 1. startpos must be a decimal number whose value
does not exceed 32 767.

REPLACE= or REPL=
Specifies whether or not this field can be altered on a replace call. You can specify NO or N. If omitted,
REPLACE=YES (or Y) is the default.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

PSBGEN statement
The PSBGEN statement specifies characteristics of the application program.

The following syntax diagram shows the format for the PSBGEN statement.

Chapter 5. Program Specification Block (PSB) Generation utility 287

PSBGEN PSBNAME=  name
DBLEVEL= CURR

BASE

,LANG= COBOL

PL/I

ASSEM

PASCAL

JAVA

blank

,MAXQ=

0

nr

,CMPAT=

NO

YES

,IOASIZE=  value ,SSASIZE=  value

,IOEROPN= n

( n,WTOR) ,OLIC=

NO

YES

GSROLBOK=

NO

YES ,LOCKMAX=

0

n

,REMARKS=  comments

PSBNAME=
Specifies the parameter for the alphanumeric name of this PSB. The PSBNAME name must be an
alphanumeric, 8-byte character string that follows standard naming conventions. This name becomes
the load module name for the PSB in the library IMS.PSBLIB. If the program is to run in a message
processing region, this name must be the same as the program load module name in the program
library called IMS.PGMLIB No special characters can be used in the name.

Do not give a DBD the same name as an existing PSB. Using an existing name can cause unpredictable
results: an error will occur at ACB generation time.

DBLEVEL=
When database versioning is enabled, specifies the version of the DBD that is used to return data to
application programs that do not request a specific database version. For all application programs that
use this PSB, the value specified here overrides the system default for DBLEVEL that is specified in the
DFSDFxxx member of the IMS.PROCLIB data set.

The valid values for DBLEVEL are:
CURR

When DBLEVEL=CURR and an application program does not specify a version number on a call to
access the database, IMS returns data to the application program by using the database structure
that is defined by the active members in the ACB library. Usually, the active ACB members define
the actual current structure of the physical database.

BASE

When DBLEVEL=BASE and an application program does not specify a database version number,
IMS returns data to the application program by using the database structure that is defined by
the DBD record in the IMS catalog that contains DBVER=0. DBVER=0 is the default version of a

288 IMS: System Utilities

DBD before a DBVER value is specified explicitly on a subsequent version of a DBD. If multiple
instances of a version-0 DBD exist in the IMS catalog, IMS uses the instance that has the most
recent timestamp.

Individual application programs can request DBD version numbers other than the one that is indicated
by the DBLEVEL value by either specifying the DBD version number on the DBVER keyword of the PCB
statement or on an INIT VERSION call.

When database versioning is disabled, the DBLEVEL parameter is ignored.

LANG=
An optional keyword that indicates the compiler language in which the message processing or batch
processing program is written. If you specify OLICYES, LANGPLI is invalid. If your application program
is written in C language, specify LANGASSEM.

CICS and the Language Environment for z/OS do not support LANGPASCAL.

You must specify LANGJAVA if the application is using the Java class libraries for IMS in a JMP region.

If you are using IMS PL/I applications that run in a compatibility mode using the PLICALLA entry point,
you must specify LANGPLI.

MAXQ=
Is the maximum number of database calls with Qx command codes that can be issued between
synchronization points. The maximum number is 32,767. The default value is zero.

CMPAT=
Provides compatibility between BMP or MSG and Batch-DL/I parameter lists. If set to YES, this PSB is
always treated as if there were an I/O PCB, no matter how it is used. If set to NO, the PSB has an I/O
PCB added only for BMP or MSG regions. The default is NO.

IOASIZE=
Specifies the size (in bytes) of the largest I/O area used by the application program. The size
specification is used to determine the amount of main storage reserved in the PSB pool to hold
the control region copy of the user I/O area data during scheduling of this application program. If you
do not specify this value, the IMS calculates a maximum default I/O area size. The default size is the
total length of all of the sensitive segments in the longest possible path call. (The total length of the
segment must be used, even if the application program is not sensitive to all fields in a segment.)
The value specified is in bytes, with a maximum of 256000. However, the combined length of all
concatenated segments to be returned to the application on a single path call must not exceed 65535
bytes.

If the PSB contains any field-sensitive segments, and IOASIZE is specified, the specified value is used
only if it is larger than the IOASIZE calculated by the ACBGEN utility. The value of the IOASIZE that
will be used is indicated. The major components of this pool requirement are IOASIZE and SSASIZE.

If STAT calls or the test program (DFSDDLT0) are used with this PSB, IOASIZE must be greater than
600 bytes.

If CMD or GCMD calls (from automated operator interface application programs) are used with this
PSB, IOASIZE must be at least 132 bytes.

If extended checkpoint/restart is used, IOASIZE must be set to a value equal to or greater than the
larger of the following:

• I/O area needed to receive data from a GU call issued during restart, while repositioning DL/I
databases that have a previous checkpoint (if this PSB contains any).

• Largest LRECL used in a GSAM data set that has a previous checkpoint.

Either the value pointed to by the third parameter (I/O AREA LEN) of the XRST CALL or the value of
this parameter will be used, depending on which value is larger.

SSASIZE=
Specifies the maximum total length of all SSAs used by the application program. IMS uses the size
specification to determine the amount of main storage reserved in the PSB work pool to hold a copy
of the user's SSA strings during execution of this application program. If you do not specify this value,

Chapter 5. Program Specification Block (PSB) Generation utility 289

the ACB utility program calculates a maximum SSA size to be used as a default. The size calculated is
the maximum number of levels in any PCB within this PSB multiplied by 280. The value specified is in
bytes, with a maximum of 256000.

Restriction: When you run IMS under CICS without DBCTL, the PSB work pool requirement cannot
exceed 64KB.

The major components of this pool requirement are IOASIZE and SSASIZE. When the PSB is built into
ACBLIB, ACB generation message DFS0589I indicates the PSB's total work pool space requirement.

Important: For Fast Path secondary index calls, an SSASIZE workarea holds the converted SSAs that
accommodate the additional storage from SUBSEQ fields and number of qualifications. When a DL/I
call is initiated, the converted SSAs are passed into the full-function database.

The default SSASIZE is specified as the default SSA size defined during ACBGEN plus 840 bytes.

If you specify an SSASIZE or if you use the default and the SSASIZE is not large enough, an AU status
code is issued. To correct this problem, specify a larger SSASIZE in the PSB and rerun PSBGEN and
ACBGEN to resolve the problem.

IOEROPN n
Is applicable only in batch-type regions (DLI or DBB). This parameter is not valid for CICS. The n
subparameter is the condition code returned to the operating system when IMS terminates normally
and one or more input or output errors occurred on any database during the application program
execution. The n subparameter is a number from 0 to 4095.

If n=451, IMS terminates with a U451 abend instead of passing a condition code to the operating
system. If n=451 and the IMS or the application program abends with an abend other than U451, and
an I/O error has also occurred, a write-to-programmer of message DFS0426I is issued. This message
indicates that an I/O error has occurred during execution and that a U451 abend has occurred if the
actual abend has not.

If n=451, IMS terminates with abend U0451, even if the operator responds CONT to the DFS0451A
message.

By using the IOEROPN parameter, you can set a unique JCL condition code when an I/O error occurs
and test the condition code in subsequent job steps. If you do not specify this parameter, the return
code passed from the application program is passed to the operating system and status codes and
console messages are the only indications of database I/O errors.

OLIC=
Indicates whether the user of this PSB is authorized to execute the Online Database Image Copy
utility or the Surveyor utility feature that runs as a BMP against a database named in this PSB. YES
allows the Online Image Copy and the Surveyor utility feature; NO prohibits the Online Image Copy
and the Surveyor utility feature. NO is the default. This parameter is invalid if any database PCB (a PCB
with DB specified for the TYPE parameter) in the PSB specifies the L or LS processing options.

Exception: This parameter is not applicable to CICS, GSAM, HSAM, MSDB, or DEDB databases.

GSROLBOK=
Controls whether an internal ROLB call should be done to roll back non-GSAM database updates
when:

• The application is a non-message-driven BMP.
• The PSB contains a PCB for a GSAM database.
• Db2 for z/OS reports a deadlock either on a thread create or on an SQL call.

YES means that the internal ROLB call is done and that the SQL code regarding the deadlock is
returned to the application program. NO means that a user abend 777 occurs instead of the ROLB call.
The default is NO.

290 IMS: System Utilities

LOCKMAX=
Indicates the maximum number of locks an application program can get at one time. n is a numeric
value between 0 and 255. n is specified in units of 1000. For example, a specification of LOCKMAX=5
indicates a maximum of 5000 locks at one time.

The default value is 0. This indicates that there is no maximum number of locks that are allowed at
one time.

If an application program runs for an extended time without committing, the locking done by IMS of
database records and changes can accumulate. You can use the LOCKMAX parameter to prevent a
single application program from consuming all locking storage and thereby causing other programs to
abend.

You can override the LOCKMAX value specified on the PSBGEN statement at program execution by
specifying LOCKMAX=0 (to turn off limit completely) or by specifying LOCKMAX=1 to 32767 on the
dependent region (BMP, MPP, or IFP) or Batch (DBB or DLI). The value is in units of 1000. You can
use this method to exceed the maximum value of 255 that can be specified on the PSBGEN statement
LOCKMAX parameter.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

• Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:
CORRECT

REMARKS='These remarks apply to the XYZ application'
INCORRECT

REMARKS='These remarks apply to the 'XYZ' application'
• Double quotation marks.
• Less than (<) symbols.
• Greater than (>) symbols.
• Ampersands (&).

There can be several PCB statements for message output and several PCB statements for databases,
but only one PSBGEN in a PSB generation PCB statement deck. The PSBGEN statement must be the last
statement in the deck preceding the END statement.

END statement
All PSB generation utility control statements must be followed by an END statement.

The END statement is required by the macro assembler to indicate the end of the assembly data.

Examples of the PSBGEN utility
These examples show how to use the PSBGEN utility to generate PSBs.

PSB generation examples

This following example shows a PSB generation for a message processing program to process the
hierarchic data structure. The data structure contains segments: PARTMAST, CPWS, POLN, OPERTON,
INVSTAT, and OPERSGMT.

Chapter 5. Program Specification Block (PSB) Generation utility 291

Figure 13. Sample hierarchic data structure

Example 1

This example shows output messages that are to be transmitted to logical terminals OUTPUT1 and
OUTPUT2 as well as the terminal representing the source of input.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

 PCB TYPE=TP,NAME=OUTPUT1,PCBNAME=OUTPCB1
 PCB TYPE=TP,NAME=OUTPUT2,PCBNAME=OUTPCB2
 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=INVSTAT,PARENT=OPERTON,PROCOPT=A
 SENSEG NAME=OPERSGMT,PARENT=OPERTON
 PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
 END
 /*

Example 2

This example shows these statements being used for a batch program, where programs using this PSB do
not reference the telecommunications PCBs in the batch environment.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM2
 //C.SYSIN DD *

 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=INVSTAT,PARENT=OPERTON,PROCOPT=A
 SENSEG NAME=OPERSGMT,PARENT=OPERTON
 PSBGEN LANG=COBOL,PSBNAME=APPLPGM2
 END
 /*

Example 3

292 IMS: System Utilities

This example shows that a PSB generation is being performed for a batch message processing program.
The GSAM PCB is used by the application program to generate a report file.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM3
 //C.SYSIN DD *

 PCB TYPE=TP,NAME=OUTPUT1
 PCB TYPE=TP,NAME=OUTPUT2
 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
 PCB TYPE=GSAM,DBDNAME=REPORT,PROCOPT=LS
 PSBGEN LANG=COBOL,PSBNAME=APPLPGM3
 END
 /*

Example 4

This example shows that a PSB generation is being performed for a batch program. The PCB has been
named (PRTMASTR). The PCB name is used on DLI calls that use the AIBTDLI interface.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM4
 //C.SYSIN DD *

 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100,PCBNAME=PARTMSTR
 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A
 SENSEG NAME=INVSTAT,PARENT=OPERTON,PROCOPT=A
 SENSEG NAME=OPERSGMT,PARENT=OPERTON
 PSBGEN LANG=COBOL,PSBNAME=APPLPGM4
 END
 /*

Example 5

This example shows that a PSB generation is being performed for a batch program. A label (PARTROOT) is
being used to indicate the only root segment in the PCB. The PCB's address will be excluded from the PCB
list that is passed to the application at entry.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM5
 //C.SYSIN DD *

 PARTROOT PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,LIST=NO
 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
 PSBGEN LANG=COBOL,PSBNAME=APPLPGM5
 END
 /*

Field level sensitivity PSB generation example

The following figure shows a PCB for a batch program using field level sensitivity. The illustration shows
the hierarchic order of the segments. The employee segment is at the first level. The office and employee
project segments are at the second level. Outside of the hierarchic structure, but on the second level, the
segment project is connected to the employee project segment.

Chapter 5. Program Specification Block (PSB) Generation utility 293

Figure 14. Sample field level sensitivity PSB generation

SEGMENT NAME FIELD NAME START LOCATION LENGTH

 EMPLOYEE EMPSSN 1 9
 EMPLNAME 10 10
 EMPFNAME 20 9
 EMPMI 29 1
 EMPADDR 30 30

OFFICE OFNUMBER 1 5
 OFPHONE 6 7
EMPLPROJ EPFUNCTN 1 20
 EPTIMEST 21 5
 EPTIMCUR 26 5

PROJECT PROJNUM 1 8
 PROJTTLE 9 20
 PROJSTRT 29 8
 PROJEND 37 8
 PROJSTAT 45 1

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

 PCB TYPE=DB,NAME=FISDBD1,PROCOPT=GRP,KEYLEN=20
 SENSEG NAME=EMPLOYEE,PARENT=0
 SENFLD NAME=EMPLNAME,START=13,REPL=NO
 SENFLD NAME=EMPFNAME,START=1,REPL=NO
 SENFLD NAME=EMPMI,START=11
 SENSEG NAME=OFFICE,PARENT=EMPLOYEE
 SENSEG NAME=EMPLPROJ,PARENT=EMPLOYEE
 SENFLD NAME=PROJNUM,START=1
 SENFLD NAME=PROJTITLE,START=10
 SENFLD NAME=EPFUNCTN,START=35
 SENFLD NAME=EPTIMEST,START=60
 SENFLD NAME=EPTIMCUR,START =70
 PSBGEN LANG=ASSEM,PSBNAME=APPLPGM1
 END
 /*

Fast Path PSB generation examples

The following two examples show sample Fast Path PSB Generations.

Example 1

This example shows the statements for an MSDB PSB containing eight PCBs.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1

294 IMS: System Utilities

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R, NONTERMINAL-RELATED X
 KEYLEN=4 END OF PCB STATEMENT
SENSEG NAME=LDM,PARENT=0 (DEFAULT)
PCB TYPE=DB,DBDNAME=MSDBLM02,PROCOPT=R, NONTERMINAL-RELATED X
 KEYLEN=1
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM03,PROCOPT=R, NONTERMINAL-RELATED X
 KEYLEN=2
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM04,PROCOPT=R, NONTERMINAL-RELATED X
 KEYLEN=8 TERM KEYS
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM05,PROCOPT=R, FIXED RELATED X
 KEYLEN=8
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=A, DYNAMIC RELATED X
 KEYLEN=8
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=R, DYNAMIC RELATED X
 KEYLEN=8
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=G, DYNAMIC RELATED X
 KEYLEN=8
SENSEG NAME=LDM,PARENT=0
PSBGEN LANG=ASSEM,PSBNAME=APPLPGM1 END OF PSBGEN MACRO
END END OF PSB GEN
 /*

Example 2

This example shows the statements for DEDB subset pointers.

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R, NONTERMINAL-RELATED X
PCB TYPE=DB,DBDNAME=X,PROCOPT=A,KEYLEN=100
SENSEG NAME=A,PARENT=C
SENSEG NAME=B,PARENT=A,SSPTR=((1,R),(2,U),(5))
SENSEG NAME=C,PARENT=B
SENSEG NAME=D,PARENT=A,SSPTR=((2,R))
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Note:

1. SSPTR=((n,r))
n

Subset pointer number in this SENSEG
r

Sensitivity for the pointer (R: read, U: update)
2. If n and r are not specified, the pointer has no sensitivity.
3. If n is specified but r is not specified, the default is R (read sensitive).

Additional PSB generation examples

Example 1

The following figure shows a PSB generation that is being performed for a batch program. The illustration
shows the hierarchic order of the segments. The Skill segment is at the first level. The Name segment
(which is divided into payroll and skill) is at the second level. Address, Payroll, Expr, and Educ are on the
third level.

Chapter 5. Program Specification Block (PSB) Generation utility 295

Figure 15. A PSBGEN statement used to define a DL/I database statement (example 1)

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=LOGIC1;PROCOPT=G,KEYLEN=151,POS=M
SENSEG NAME=SKILL,PARENT=0,PROCOPT=A
SENSEG NAME=NAME,PARENT=SKILL,PROCOPT=A
SENSEG NAME=ADDRESS,PARENT=NAME,PROCOPT=A
SENSEG NAME=PAYROLL,PARENT=NAME,PROCOPT=A
SENSEG NAME=EXPR,PARENT=NAME,PROCOPT=A
SENSEG NAME=EDUC,PARENT=NAME,PROCOPT=A
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example 2:

The following figure shows a PSB generation that is being performed for a batch program. The illustration
shows the hierarchic order of the segments. The NAME segment is at the first level. The NAMESK,
ADDRESS, and PAYROLL segments are at the second level. The Expr and Educ segments are on the third
level, connected to the NAMESK segment. Although the illustration separates the NAMESK segment into
NAMESKIL and SKILL, the SENSEG statements do not define these as separate segments.

296 IMS: System Utilities

Figure 16. A PSBGEN PCB statement used to define a DL/I database PCB statement (example 2)

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=LOGICDB,PROCOPT=A,KEYLEN=241,POS=M
SENSEG NAME=NAME,PARENT=0,PROCOPT=G
SENSEG NAME=NAMESK,PARENT=NAME,PROCOPT=G
SENSEG NAME=EXPR,PARENT=NAMESK,PROCOPT=G
SENSEG NAME=EDUC,PARENT=NAMESK,PROCOPT=G
SENSEG NAME=ADDRESS,PARENT=NAME,PROCOPT=G
SENSEG NAME=PAYROLL,PARENT=NAME,PROCOPT=G
PSBGEN LANG=PL/I,PSBNAME=APPLPGM1
END
 /*

Example 3:

The following figure shows a PSB that defines a logical relationship between segments in a DL/I
database. The illustration shows the hierarchic order of the segments PARTMAST (the parent segment),
CPWS, POLN, INVSTAT, and OPERSGMT (which are all first-level child segments of PARTMAST). The
alternate statement sends output to logical terminal "OUTPUT". The PSBGEN statement saves this JCL as
APPLPGM1 in the IMS.PSBLIB library.

Chapter 5. Program Specification Block (PSB) Generation utility 297

Figure 17. A PSBGEN PCB statement used to define a DL/I database PCB statement (example 3)

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=TP,LTERM=OUTPUT
PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=GIDR,KEYLEN=100
SENSEG NAME=PARTMAST,PARENT=O,PROCOPT=A
SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=INVSTAT,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=OPERSGMT,PARENT=PARTMAST
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example 4:

The following figure shows the JCL used to define the relationship between the POMSTR and POLNITEM
segments from the DL/I database PODB. The alternate statements send output to applications with the
transaction-code name "out1" and "out2".

Figure 18. A PSBGEN PCB statement used to define a logical relationship and produce output

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=TP,NAME=OUT1
PCB TYPE=TP,NAME=OUT2
PCB TYPE=DB,DBDNAME=PODB,PROCOPT=GID,KEYLEN=200
SENSEG NAME=POMSTR
SENSEG NAME=POLNITEM,PARENT=POMSTR
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

298 IMS: System Utilities

Examples of a sample problem with an application database

Examples five through ten use DBDNAME=DI21PART as a basis for the logical databases created with
each example's JCL. The database contains segments PARTROOT, STANINFO, STOKSTAT, CYCCOUNT,
and BACKORDR. PARTROOT is the parent segment. STANINFO and STOKSTAT are child segments of
PARTROOT. CYCCOUNT and BACKORDR are child segments of STOKSTAT.

Example 1:

The following figure shows either a message switching or conversational message program. The JCL is
saved as load module DFSSAM01 in the IMS.PSBLIB library.

Figure 19. The data structure and JCL for a message switching or conversational message program

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

SENSEG NAME=BACKORDR,PARENT=STOKSTAT
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example 2:

The JCL shown in the following figure defines a logical relationship between the PARTROOT and
STANINFO segments (shown in the illustration with shading). The JCL is saved as load module DFSSAM02
in the IMS.PSBLIB library.

Chapter 5. Program Specification Block (PSB) Generation utility 299

Figure 20. The data structure and JCL for a logical relationship in database DI21PART

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=19
SENSEG NAME=PARTROOT
SENSEG NAME=STANINFO,PARENT=PARTROOT
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example 3:

The following figure defines the entire logical structure from the DL/I database DI21PART. The JCL is
saved as load module DFSSAM03 in the IMS.PSBLIB library.

300 IMS: System Utilities

Figure 21. The data structure and JCL for a logical database defined from DL/I database DI21PART

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43
SENSEG NAME=PARTROOT
SENSEG NAME=STANINFO,PARENT=PARTROOT
SENSEG NAME=STOKSTAT,PARENT=PARTROOT
SENSEG NAME=CYCCOUNT,PARENT=STOKSTAT
SENSEG NAME=BACKORDR,PARENT=STOKSTAT
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example 4:

The following figure defines the logical relationship between the PARTROOT and STOKSTAT segments
(shown in the illustration with shading). The JCL also outputs to the logical terminal HOWARD and saves
the JCL as load module DFSSAM03 in the IMS.PSBLIB library.

Chapter 5. Program Specification Block (PSB) Generation utility 301

Figure 22. The data structure and JCL for a logical relationship in database DI21PART that produces output
(part 1)

 //PSBGEN JOB MSGLEVEL=1
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=TP,LTERM=HOWARD
PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=33
SENSEG NAME=PARTROOT
SENSEG NAME=STOKSTAT,PARENT=PARTROOT
PSBGEN LANG=COBOL,PSBNAME=DFSSAM05
END
 /*

Example 5:

The following figure is identical to example 8, except this JCL is saved as load module DFSSAM06 in the
IMS.PSBLIB library.

302 IMS: System Utilities

Figure 23. The data structure and JCL for a logical relationship in database DI21PART that produces output
(part 2)

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=TP,LTERM=HOWARD
PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=33
SENSEG NAME=PARTROOT
SENSEG NAME=STOKSTAT,PARENT=PARTROOT
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example 6:

The following figure defines the entire logical structure from the DL/I database DI21PART. The JCL is
saved as load module DFSSAM07 in the IMS.PSBLIB library.

Chapter 5. Program Specification Block (PSB) Generation utility 303

Figure 24. The data structure and JCL for a logical database defined from DL/I database DI21PART

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43
SENSEG NAME=PARTROOT
SENSEG NAME=STANINFO,PARENT=PARTROOT
SENSEG NAME=STOKSTAT,PARENT=PARTROOT
SENSEG NAME=CYCCOUNT,PARENT=STOKSTAT
SENSEG NAME=BACKORDR,PARENT=STOKSTAT
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Example of a shared secondary index

The following figure shows the database structure for this example. It shows a database, DTA3, that is
indexed by three secondary indexes (X4, X5, and X6) in a shared secondary index database, X4. Each
secondary index uses a different segment as both its index target segment and index source segment.
Secondary index X4 uses DTA3 segment DA as its target/source segment. Secondary index X5 uses DTA3
segment DC as its target/source segment. Secondary index X6 uses DTA3 segment DE as its target/source
segment.

304 IMS: System Utilities

Figure 25. Database indexed by three secondary indexes in a shared secondary index database

The following figure shows the database structure for index through DA. It contains segments DA, DB, DC,
DD, and DE.

Figure 26. The data structure and JCL for index through segment DA

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X4
SENSEG NAME=DA,PARENT=0
SENSEG NAME=DB,PARENT=DA
SENSEG NAME=DC,PARENT=DA,INDICES=X5
SENSEG NAME=DD,PARENT=DC
SENSEG NAME=DE,PARENT=DC,INDICES=X6
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

The following figure shows the database structure for index through DC. It shows segment DC, DA, DD,
and DE.

Chapter 5. Program Specification Block (PSB) Generation utility 305

Figure 27. The data structure and JCL for index through segment DC

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X5
SENSEG NAME=DC,PARENT=0
SENSEG NAME=DA,PARENT=DC,INDICES=X4
SENSEG NAME=DD,PARENT=DC
SENSEG NAME=DE,PARENT=DC,INDICES=X6
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

This database structure can also include, as a substructure, the database structure for index through DA.

The following figure shows the database structure for index through DE. It shows segments DE, DC, and
DA.

Figure 28. The data structure and JCL for index through segment DE

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X6
SENSEG NAME=DE,PARENT=0
SENSEG NAME=DC,PARENT=DE,INDICES=X5
SENSEG NAME=DA,PARENT=DC,INDICES=X4
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

306 IMS: System Utilities

This database structure can also include, as substructures, the database structures for indexes through
DA and DC.

The PCB for INDEX database is shown as follows:

 //PSBGEN JOB
 // EXEC PSBGEN,MBR=APPLPGM1
 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=X4,PROCOPT=A,KEYLEN=5
SENSEG NAME=X4A,PARENT=0
PCB TYPE=DB,DBDNAME=X5,PROCOPT=A,KEYLEN=5
SENSEG NAME=X5A,PARENT=0
PCB TYPE=DB,DBDNAME=X6,PROCOPT=A,KEYLEN=5
SENSEG NAME=X6A,PARENT=0
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END
 /*

Examples of Fast Path secondary indexes

The following example shows a Fast Path secondary index PCB in PSB using the PROCSEQD= parameter
with the target segment is a root segment.

When PCB PCB2NDX is selected, the primary DEDB database, EDUCDB, is accessed using its Fast Path
secondary index database, NAMESXDB. The PROCSEQD parameter specifies the name of the Fast Path
secondary index database, NAMESXDB, to use to access the primary DEDB database, EDUCDB.

The target segment, COURSE segment, is a root segment. All segments under the root segment are
accessible in the entire physical structure of the primary DEDB database using NAMESXDB secondary
index.

PCB2NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=A,KEYLEN=100,PROCSEQD=NAMESXDB
 SENSEG NAME=COURSE,PARENT=0,PROCOPT=GR
 SENSEG NAME=CLASS,PARENT=COURSE
 SENSEG NAME=INSTRUCT,PARENT=CLASS <<-- target segment
 SENSEG NAME=STUDENT,PARENT=CLASS
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END

The following example shows a Fast Path secondary index PCB in PSB using the PROCSEQD= parameter
with the target segment is not a root segment.

When PCB PCB3NDX is selected, the primary DEDB database, EDUCDB, is accessed using its Fast Path
secondary index database, INSTSXDB. The PROCSEQD parameter specifies the name of the Fast Path
secondary index database, INSTSXDB, to use to access the primary DEDB database, EDUCDB.

The target segment, INSTRUCT segment, is not a root segment. Only the segments that are the direct
parents of the target segment along the physical path from the root segment, and all child segments
of the target segment are accessible in the physical structure of the primary DEDB database when the
primary DEDB database is accessed using INSTSXDB secondary index.

Note: The STUDENT segment is not accessible because it is neither a direct parent segment nor a child
segment of the target segment, INSTRUCT segment.

PCB3NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,PROCSEQD=INSTSXDB
 SENSEG NAME=COURSE,PARENT=0
 SENSEG NAME=CLASS,PARENT=COURSE
 SENSEG NAME=INSTRUCT,PARENT=CLASS <<-- target segment
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END

The following example shows a Fast Path secondary index PCB in PSB using the PROCSEQD= parameter
with the target segment is not a root segment.

Chapter 5. Program Specification Block (PSB) Generation utility 307

When PCB PCB4NDX is selected, the primary DEDB database, EDUCDB, is accessed using its Fast Path
secondary index database, CLASSXDB. The PROCSEQD parameter specifies the name of the Fast Path
secondary index database, CLASSXDB, to use to access the primary DEDB database, EDUCDB.

The target segment, CLASS segment, is not a root segment. Only the segments that are the direct parents
of the target segment along the physical path from the root segment, and all child segments of the
target segment are accessible in the physical structure of the primary DEDB database when the primary
DEDB database is accessed using the CLASSXDB secondary index database. The STUDENT segment is
accessible because it is a child segment of the target segment, CLASS segment.

PCB4NDX
 PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,PROCSEQD=CLASSXDB
 SENSEG NAME=COURSE,PARENT=0
 SENSEG NAME=CLASS,PARENT=COURSE
 SENSEG NAME=INSTRUCT,PARENT=CLASS
 SENSEG NAME=STUDENT,PARENT=CLASS
 PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
 END

The following example shows a Fast Path secondary index as a database.

PCB2XDB
 PCB TYPE=DB,DBDNAME=NAMESXDB,PROCOPT=GR,KEYLEN=10
 SENSEG NAME=NAMEXSEG,PARENT=0
 PSBGEN PSBNAME=DB2DXPSB,LANG=COBOL
 END

Running the PSBGEN procedure
The DFSPSBGN procedure is generated in the ADFSPROC and SDFSPROC data sets. The DFSPROCB JCL
can then be used to rename DFSPSBGN to PSBGEN.

Recommendations

Currently, no recommendations are documented for the PSB Generation utility.

The first step, Step C, an operating system assembly, is performed after the procedure is invoked. The
second step, Step L, is a bind which takes the assembly output from Step C and places the PSBs in
IMS.PSBLIB.

Procedure statement
The following figure shows the procedure statement. The list following the figure defines the parameters
used in the statement.

// PROC MBR=TEMPNAME,SOUT=A,RGN=0M,SYS2=,
// NODE1=IMS,
// NODE2=IMS
//C EXEC PGM=ASMA90,REGION=&RGN,
// PARM=(OBJECT,NODECK,NODBCS,
// 'SIZE(MAX,ABOVE)')
//SYSLIB DD DSN=&NODE2..&SYS2.SDFSMAC,DISP=SHR
//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),
// SPACE=(80,(100,100),RLSE),
// DCB=(BLKSIZE=80,RECFM=F,LRECL=80)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,
// SPACE=(121,(300,300),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// SPACE=(CYL,(10,5))
//L EXEC PGM=IEWL,PARM='XREF,LIST',
// COND=(0,LT,C),REGION=4M
//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,
// SPACE=(121,(90,90),RLSE)
//SYSLMOD DD DISP=SHR,
// DSN=&NODE1..&SYS2.PSBLIB(&MBR)

308 IMS: System Utilities

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),
// SPACE=(1024,(100,10),RLSE),DISP=(,DELETE)

MBR=
Is the name of the PSB generated. This name should be the same as the name specified on the
PSBNAME= parameter of the PSBGEN statement. If this precaution is not followed, a user ABEND
929 can occur during execution, or message DFS929I ("BLDL FAILED FOR MEMBER") can be received
during an ACB generation "BUILD PSB" operation.

SOUT=
Specifies the SYSOUT class. The default is A.

RGN=
Specifies the region size for execution of the PSBGEN utility. The default is 512KB.

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period, for example, SYS2='IMSA.'.

Step C
Step C is the assembly step.

DD statements

SYSIN DD
Defines the input data sets to step C. These DD statements must be provided when invoking the
procedure.

Step L
Step L is the bind step.

Example: This step can be run using AMODE=31, RMODE=24 instead of the default AMODE=24,
RMODE=24 by adding AMODE=31 to the bind EXEC statement PARM list as shown as follows.

//L EXEC PGM=IEWL,PARM='XREF,LIST,AMODE=31',
// COND=(0,LT,C),REGION=120K

If you do not specify different values for AMODE or RMODE, the default values are in effect. You must
always run the bind step with RMODE=24.

DD statements

SYSLMOD DD
Defines an output partitioned data set, IMS.PSBLIB, for the binder.

Invoking the procedure

The JCL statements in the following figure are used to invoke the PSBGEN procedure.

//PSBGEN JOB
// EXEC PROC=PSBGEN,MBR=TEMPNAME
//C.SYSIN DD *

 PCB
 SENSEG (The control statements for PSB generation)
 PSBGEN PSBNAME=TEMPNAME
 END
/*

Chapter 5. Program Specification Block (PSB) Generation utility 309

310 IMS: System Utilities

Part 2. IMS catalog utilities
Use the IMS catalog utilities to perform a variety of tasks for an IMS catalog.

Each topic introduces how the utility works, defines requirements and restrictions for its use, and
provides examples.

© Copyright IBM Corp. 1974, 2020 311

312 IMS: System Utilities

Chapter 6. ACB Generation and Catalog Populate
utility (DFS3UACB)

Use the ACB Generation and Catalog Populate utility (DFS3UACB) to generate ACB members in an
IMS.ACBLIB data set, create the corresponding metadata records in the IMS catalog, and, if your IMS
system manages ACBs, add the resulting ACBs as pending changes to the staging data set of the IMS
catalog, all in a single job step.

In IMS systems that manage ACBs by using the catalog, the generation of ACBs into an ACB library is not
required. However, you can still use the DFS3UACB utility to generate ACBs and populate the IMS catalog
if you have tools or utilities that have not yet been updated for the IMS management of ACBs.

Populating the IMS catalog in the same job step as the generation of the ACB members ensures that the
IMS catalog and your ACB library are consistent with each other.

The DFS3UACB utility calls the ACB Maintenance utility to generate ACB members and then, in the same
job step, calls the IMS Catalog Populate utility (DFS3PU00) to populate the IMS catalog with records that
correspond to the generated ACB members.

You must specify control statements for the ACB Maintenance utility by using the SYSIN DD statement.
If you do not specify control statements for the ACB Maintenance utility, DFS3UACB terminates
immediately.

You may provide execution parameters for the ACB Maintenance utility. To do so, provide them as
execution parameters in the PARM parameter for the DFS3UACB utility. In these parameters do not
specify the POSTCOMP option if the ACBCATWK DD statement is used.

You must specify the execution parameters for the DFS3PU00 utility, including the name of the DFSDFxxx
PROCLIB member that supports your IMS catalog, by using the DFS3PPRM DD statement. The DFS3UACB
utility passes the execution parameters to the DFS3PU00 utility at the start of the population phase.

If the IMS management of ACBs is enabled, you must specify the MANAGEDACBS= control statement on
the SYSINP DD statement to make the generated ACBs available to the online IMS system. Depending on
the specification, the DFS3PU00 utility either adds the ACBs to the staging data set of the IMS catalog
for later activation or, if the IMS system is offline or you are setting up managed ACBs for the first time,
adds them directly to the IMS directory data sets. IMS loads the ACBs from the directory data sets during
startup.

The DFS3UACB utility can populate the catalog in load mode or in update mode. When load mode is used,
any existing records in the IMS catalog are discarded.

The PSB that you specify in the utility JCL determines which access mode the utility uses to access the
IMS catalog. You can specify the following PSBs in the DFS3UACB utility JCL:

• DFSCPL00, to perform an initial load of the IMS catalog
• DFSCP001, to insert records into an existing IMS catalog
• DFSCP000, to estimate the space requirements of the IMS catalog data sets

Subsections:

• “Restrictions” on page 314
• “Prerequisites” on page 314
• “Requirements” on page 314
• “Recommendations” on page 314
• “Input and output” on page 315
• “JCL specifications” on page 315
• “ACB generation control statements” on page 319

© Copyright IBM Corp. 1974, 2020 313

• “Catalog population control statements” on page 323
• “Return codes” on page 327

Restrictions

The DFS3UACB utility runs in a stand-alone region under z/OS control.

The DFS3UACB utility does not accept JCL parameters that are specified on the PARM= keyword of the
EXEC= statement. To specify the execution parameters that are required to populate the IMS catalog, use
the DFS3PPRM DD statement instead.

If you are running the DFS3UACB utility against more than one version of IMS in separate LPARs in an
IMSplex environment, run the utility in separate jobs. For each job, use the SCHENV parameter to ensure
that each job goes to the correct LPAR.

Prerequisites

If you are loading an IMS catalog for the first time, ensure that the IMS catalog is properly configured. The
following steps must be complete before running the DFS3UACB utility to load an IMS catalog for the first
time:

• The DBD and PSB load modules for the IMS catalog are in your DBD and PSB libraries.
• The ACB member for the IMS catalog was generated and is in the active ACB library.
• The IMS catalog HALDB master database and partitions are defined in either the RECON data set or, if

the target IMS catalog is not supported by DBRC, in an IMS catalog partition definition data set.
• The CATALOG section of the DFSDFxxx PROCLIB member is properly coded.

To use the SHARE option to add DOPT PSBs to an online IMS catalog, extended sharing of PDSE data sets
must be enabled in z/OS before the Populate utility first sets up the IMS management of ACBs. For more
information, see z/OS: Specifying Extended PDSE Sharing in a Multiple-System Environment.

Requirements

IMS conforms to z/OS rules for data set authorization. If an IMS job step is authorized, all libraries used
in that job step must be authorized. To run an IMS batch region as unauthorized, a non-authorized library
must be concatenated to IMS.SDFSRESL.

You must specify control statements for the ACB Maintenance utility by using the SYSIN DD statement.

You must specify the execution parameters that the DFS3UACB utility passes to the DFS3PU00 utility by
using the DFS3PPRM DD statement.

If the IMS management of ACBs is enabled, you must specify the MANAGEDACBS= control statement on
the SYSINP DD statement to make the generated ACBs available to the online IMS system.

Recommendations

If you are updating an existing IMS catalog, consider creating an image copy of the IMS catalog data
sets. If the IMS catalog is registered with DBRC, you can use the DBRC command GENJCL.IC to back up
the catalog. If you defined the IMS catalog in an IMS Catalog partition definition data set, you must use
standard image copy JCL.

The storage requirement is highly dependent on the total number of ACBLIB members because they have
to be kept in storage. Consider increasing the job's region size to prevent a GETMAIN failure that will
cause abend U1002 reason code 4 to be issued.

314 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm

Input and output
The DFS3UACB utility uses the following input and output data sets.

Required data sets:

• IMS.ACBLIB data set. After creating the ACB members in the ACBLIB data set, the utility uses the
ACBLIB data set as input when creating the records in the IMS catalog.

• DBDLIB data set.
• PSBLIB data set.
• ACBCATWK data set. The ACBCATWK data set is both an input and output data set. The ACB

Maintenance utility uses it as an output data set to record the ACB members that are generated. The
DFS3PU00 utility reads the ACBCATWK data set as input to improve performance when populating the
IMS catalog.

• IMS.PROCLIB data set. The DFS3UACB utility reads the DFSDFxxx member in the IMS.PROCLIB data
set.

• SYSIN control statements.
• An input data set or inline statement that contains execution parameters for the DFS3PU00 utility,

which the DFS3UACB utility calls internally to populate the IMS catalog. This data set or inline
statement is specified by using a DFS3PPRM DD statement.

• SYSPRINT messages.

Optional data sets:

• An input data set of COMPCTL IEBCOPY control statements.

The primary output of the DFS3UACB utility is the ACB library members and the records of the IMS
catalog. The utility loads the ACB members into the inactive IMS.ACBLIB data set. The catalog records are
stored in the IMS catalog data set (DFSCD000).

Optionally, the DFS3UACB utility can output a list of the generated ACB members to a data set referenced
by the ACBCATWK DD statement. Maintaining a list of the generated ACB members greatly improves the
performance of the population phase of the DFS3UACB utility.

The DFS3UACB utility also writes messages and statistical information to the SYSPRINT data set.

The DFS3UACB utility outputs to the SYSUT3 and SYSUT4 IEBCOPY utility data sets.

Figure 29. ACBGEN and Catalog Populate utility input and output

JCL specifications
Two examples of the DFS3UACB utility JCL are provided in the following subsections. One example shows
the JCL for updating an existing catalog. The second example shows the JCL for loading an IMS catalog.
Loading an IMS catalog deletes any existing records in the IMS catalog.

DFS3UACB utility JCL statements for update mode

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 315

The following is an example of the JCL statements that can be used to generate ACB members and
catalog records for an existing IMS catalog by using the DFS3UACB utility. In the JCL, the PSB DFSCP001
is specified on the DFS3PPRM DD statement to access the IMS catalog in update mode.

//ACBPOPUP JOB 'IMS SYSTEM',CLASS=K,MSGLEVEL=(1,1),REGION=0M
//*
//***
//* DFS3UACB GENERATES ACB MEMBERS IN AN ACB LIBRARY BY CALLING THE
//* ACB MAINTENANCE UTILITY. IN THE SAME JOB STEP,
//* DFS3UACB INSERTS RECORDS IN THE EXISTING IMS CATALOG BY CALLING
//* THE IMS CATALOG POPULATE UTILITY (DFS3PU00)
//***
//*
//ACBCATT EXEC PGM=DFS3UACB,REGION=0M
//*
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//ACBCATWK DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//*
//***
//* ACBGEN DATASETS
//***
//IMSACB DD DSN=IMS.ACBLIB,DISP=OLD
//SYSUT3 DD UNIT=SYSDA,SPACE=(80,(100,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(256,(100,100)),DCB=KEYLEN=30
//***
//* ACBGEN INPUT PARMS TO UPDATE ACBLIB
//***
//SYSIN DD *
 BUILD PSB=psbname (same as needed for ACBGEN)
/*
//***
//* POPULATE UTILITY DATASETS
//***
//IMSACB01 DD DSN=*.IMSACB,DISP=OLD DO NOT REPLACE ASTERISK
//SYSINP DD * ISRTLIST DUPLIST /*
//DFSVSAMP DD BUFFER POOL DEFINITIONS
//IEFRDER DD LOG DATASET FOR CATALOG UPDATES
//IEFRDER2 DD LOG DATASET FOR CATALOG UPDATES
//***
//* UPDATE INPUT PARMS FOR IMS CATALOG POPULATE UTILITY
//***
//DFS3PPRM DD *
DLI,DFS3PU00,DFSCP001,,,,,,,,,,,Y,Y,irlmidN,,,,,,,,,,,,DFSDF=CAT
/*
//

DFS3UACB utility JCL statements for load mode

The following is an example of the JCL statements that can be used to generate ACB members and load
catalog records into an IMS catalog by using the DFS3UACB utility.

In the example, the PSB DFSCPL00 is specified on the DFS3PPRM DD statement to access the IMS
catalog in load mode.

Attention: Running the DFS3UACB utility in load mode deletes any existing records in an IMS
catalog.

//ACBPOPLD JOB 'IMS SYSTEM',CLASS=K,MSGLEVEL=(1,1),REGION=0M
//*
//***
//* DFS3UACB GENERATES ACB MEMBERS IN AN ACB LIBRARY BY CALLING THE
//* ACB MAINTENANCE UTILITY. IN THE SAME JOB STEP,
//* DFS3UACB LOADS RECORDS IN THE IMS CATALOG BY CALLING
//* THE IMS CATALOG POPULATE UTILITY (DFS3PU00)
//***
//*
//ACBCATT EXEC PGM=DFS3UACB,REGION=0M
//*

316 IMS: System Utilities

//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//ACBCATWK DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//*
//***
//* DATASETS USED ONLY BY ACB MAINTENANCE UTILITY
//***
//IMSACB DD DSN=IMS.ACBLIB,DISP=OLD
//SYSUT3 DD UNIT=SYSDA,SPACE=(80,(100,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(256,(100,100)),DCB=KEYLEN=30
//***
//* ACBGEN INPUT PARMS TO REBUILD ACBLIB
//***
//SYSIN DD *
 BUILD PSB=ALL
/*
//***
//* DATASETS USED ONLY BY IMS CATALOG POPULATE UTILITY
//***
//IMSACB01 DD DSN=*.IMSACB,DISP=OLD DO NOT REPLACE ASTERISK
//DFSVSAMP DD BUFFER POOL DEFINITIONS
//IEFRDER DD LOG DATASET FOR CATALOG UPDATES
//IEFRDER2 DD LOG DATASET FOR CATALOG UPDATES
//***
//* LOAD INPUT PARMS FOR IMS CATALOG POPULATE UTILITY
//***
//DFS3PPRM DD *
DLI,DFS3PU00,DFSCPL00,,,,,,,,,,,Y,N,,,,,,,,,,,,DFSDF=CAT
/*
//

DD statements

ACBCATWK
Defines an optional work data set that contains a list of the ACB members that are written to the ACB
library during ACB generation.

The ACBCATWK data set is an output data set for the ACB Maintenance utility and an input data set for
the DFS3PU00 utility.

You must specify a single ACBCATWK data set. Multiple data sets are not supported by the utility.

Specify the ACBCATWK data set to improve the performance of the DFS3PU00 utility. The DFS3PU00
utility uses the list of names to determine which records in the IMS catalog need to be inserted or
updated. If you do not specify the ACBCATWK data set, the DFS3PU00 utility processes all members
in the ACB libraries that are referenced in the IMSACBxx DD statements.

DFSVSAMP
Defines the buffer pool parameters data set.

IEFRDER DD
Defines the primary IMS log data set.

IEFRDER2 DD
Defines the secondary IMS log data set.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
Defines a single ACB library data set.

Restriction: This data set is modified and cannot be shared with other jobs.

IMSACB01
Defines an ACB library data set that contains the ACB members that are used to populate the IMS
catalog. This DD statement is required.

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 317

This DD statement must specify the same data set defined in the IMSACB DD statement. To ensure
that the same data set is referenced, code this DD statement with an asterisk as the high-level
qualifier, as shown in the example: //IMSACB01 DD DSN=*.ACBLIB,DISP=OLD

IMSDSTAG DD
Optionally defines the IMS directory staging data set.

DFS3PPRM
Specifies execution parameters for the DFS3PU00 utility. The execution parameters specified by the
DFS3PPRM DD statement include the following values:

• The PSB for the DFS3PU00 utility to use
• Whether DBRC is enabled
• Whether IRLM is enabled
• The name of the DFSDFxxx PROCLIB member that contains the IMS catalog attributes

If the DFS3PPRM DD statement is omitted, the DFS3UACB utility passes the following default
execution parameters to the DFS3PU00 utility:

DLI,DFS3PU00,DFSCP001,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=CAT'

The preceding default parameters run the DFS3PU00 utility in update mode with DBRC and without
IRLM. The default values specify DFSDFCAT as the DFSDFxxx PROCLIB member.

To load an IMS catalog, you must specify the DFSCPL00 PSB in the execution parameters defined on
the DFS3PPRM DD statement.

Attention: Specifying the DFSCPL00 PSB in the execution parameters of the DFS3PU00 utility
deletes any existing IMS catalog before starting the load process.

If data sharing is enabled for your IMS catalog, you must specify IRLM support in the DFS3PPRM DD
statement by specify Y in the IRLM support position and the IRLM ID in the following position.

The following example of the DFS3PPRM DD statement specifies the load PSB DFSCPL00, no IRLM
support, and a DFSDFxxx member named DFSDF001:

//DFS3PPRM DD *
DLI,DFS3PU00,DFSCPL00,,,,,,,,,,,Y,N,,,,,,,,,,,,DFSDF=001

In contrast to the preceding example, the following example of the DFS3PPRM DD statement specifies
the update PSB DFSCP001, support by IRLM IRL1, and a DFSDFxxx member named DFSDF002:

//DFS3PPRM DD *
DLI,DFS3PU00,DFSCP001,,,,,,,,,,,Y,Y,IRL1,,,,,,,,,,,DFSDF=002

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines various attributes
of the IMS catalog that are required by the utility.

SYSABEND DD
Defines the dump data set.

SYSIN DD
Defines the input control statement data sets. They can be on a tape volume, direct-access device,
card reader, or be routed through the input stream. The input can be blocked as multiples of 80.
During execution, this utility can process as many control statements as required.

SYSINP DD
An optional control statement sequential data set with 80-character fixed-length records. Only
characters in positions 1 - 72 are read.

The control statement parameters, which are separated by blanks or commas, can be specified on
one or more records.

For a desciption of the control statements that you can specify with the SYSINP DD statement, see
“Catalog population control statements” on page 323.

318 IMS: System Utilities

SYSPRINT DD
Defines the output message data set.

When the SYSPRINT DD statement refers to a DASD or tape data set, you can control the block size
of this data set with the BLKSIZE subparameter of the DCB parameter. If specified, the BLKSIZE
value must be an exact multiple of 121 or a system ABEND013-20 can result. Omitting BLKSIZE
from a DASD data set causes a system-determined block size to be used. Regardless of what value is
specified for the LRECL parameter, the utility always uses a record length of 121.

SYSUT3 DD
Defines a work data set that is required if either PRECOMP or POSTCOMP is specified on the EXEC
statement.

SYSUT4 DD
Same function as SYSUT3.

ACB generation control statements

For the ACB generation phase of the DFS3UACB utility, you specify control statements in the utility JCL
to specify the actions to take for the ACB members. You can specify BUILD statements and DELETE
statements.

For BUILD statements, the DFS3UACB builds the specified ACB members and loads and inserts the
corresponding records into the IMS catalog. For DELETE statements, the DFS3UACB utility deletes only
the ACB members for the ACB library data set. No records are deleted from the IMS catalog. The removal
of records from the IMS catalog is controlled by a retention policy.

The control statements must conform to the following guidelines:

• A statement is coded as a card image and is contained in columns 1 - 71.
• The control statement can optionally contain a name, starting in column 1.
• To continue a statement, enter a non-blank character in column 72 and begin the statement on the next

line starting in column 16.
• The operation field must be preceded and followed by one or more blanks.
• The parameter is composed of one or more PSB or DBD names and must also be preceded and followed

by one or more blanks.
• Commas, parentheses, and blanks can be used only as delimiting characters.
• Comments can be written following the last parameter of a control statement, separated from the

parameter by one or more blanks.

DFS3UACB utility control syntax: BUILD format

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 319

name
BUILD

1

PSB= (

,

psbname)

ALL

DBD=(

,

 dbdname)

,BLDPSB=YES

,BLDPSB=NO

PSB= (

,

psbname)

ALL

,

DBD=(

,

 dbdname)

,BLDPSB=YES

,BLDPSB=NO
2

CATRSCS=NO

CATRSCS=YES

Notes:
1 There is no first in, first out (FIFO) process for the ACB Maintenance utility SYSIN input control
statements. If both the BUILD PSB= and BUILD DBD= parameters are specified in the same
application control block (ACB) generation job SYSIN control statement, DBD= operands are passed to
the block builder utility program first. DFS0586I is issued if the DBD is not already in the ACBLIB data
sets, regardless of where DBD= operands are entered in the SYSIN control statements.
2 If you specify the parameters PSB=ALL and BLDPSB=NO in the same statement, IMS builds all of the
PSBs (BLDPSB=NO is ignored). Similarly, if you specify the BLDPSB=NO parameter for one DBD and
the BLDPSB=YES parameter on another DBD in the same ACBGEN job, IMS builds all the PSBs that
refer to the changed DBDs and ignores the BLDPSB=NO specification. Also, if you specify BLDPSB=NO,
no PSBs will be built for all SYSIN ACBGEN control cards.

In the following example, all of the PSBs that are associated with the CUSTOMER and ORDER DBDs are
rebuilt, even though BLDPSB=NO is specified for the CUSTOMER DBD:

BUILD DBD=(CUSTOMER),BLDPSB=NO
BUILD DBD=(ORDER),BLDPSB=YES

ACB Maintenance utility syntax: DELETE Format

The DELETE statement removes an ACB member from the ACB library, but does not remove the
corresponding record from the IMS catalog.

name
DELETE

PSB=(

,

 psbname)

DBD=(

,

 dbdname)

ACB Maintenance utility parameters

BUILD
Specifies that blocks are built for the named PSBs, which refer to the named DBDs.

320 IMS: System Utilities

DELETE
Specifies that blocks are deleted from the ACBLIB data set. The named PSBs and all PSBs that refer to
the named DBDs are deleted.

Deleting a block from the ACBLIB data set does not delete the corresponding record in the IMS
catalog.

PSB=ALL
Specifies that blocks are built for all PSBs that currently reside in IMS.PSBLIB. You use this parameter
to create an initial IMS.ACBLIB. When the PSB=ALL parameter is specified, all PSBs and DBDs (and
any other modules) are deleted from the ACBLIB data set and their space is available for reuse. Then
an ACB generation is executed for every PSB in the PSBLIB data set. Do not use this parameter with a
DELETE statement.

Restriction: When you specify the BUILD PSB=ALL parameter on a SYSIN control statement, all PSBs
must reside in a single PSBLIB data set. No concatenated PSBLIBs are recognized on the IMS DD
statement.

Restriction: Specifying PSB=ALL with CATRSCS=NO (or defaulting to CATRSCS=NO) does not build or
update the IMS catalog PSBs and DBDs. If some PSBs or DBDs are not built or updated, message
DFS5008W is issued and those PSBs or DBDs are ignored.

PSB=(psbname)
Specifies that blocks are built or deleted for all PSBs that are named on this control statement. As
many of this type of control statement as required can be submitted. This parameter adds a new PSB
to IMS.ACBLIB or delete a PSB no longer in use. You can omit the parentheses if you supply a single
parameter.

DBD=(dbdname)
Specifies that blocks are built or deleted for this DBD and for all PSBs that reference this DBD either
directly or indirectly through logical relationships. The DBD to be built must already exist in the
IMS.ACBLIB data set. The referencing PSBs must already exist in the IMS.ACBLIB data set. PSBs
that are newly added to the IMS.PSBLIB data set must be referenced by PSB operands. Because
deleting a PSB does not delete any DBDs referenced by the PSB, this parameter can be used to delete
specific DBDs. However, deleting or building a DBD causes every PSB in the IMS.ACBLIB data set
that references the named DBD to be rebuilt or deleted based on the request type. You can omit the
parentheses if you supply a single parameter.

Example 1: PSB-a references DBD-a and DBD-b. A DBDGEN was done for DBD-a and DBD-b and the
updated DBDs are in DBDLIB (but not ACBLIB yet). By specifying DBD-a in an ACB generation, DBD-a
is rebuilt in ACBLIB and any referencing PSBs (in this case PSB-a) are also rebuilt. Even though PSB-a
has been rebuilt, the ACBLIB is not usable because DBD-b was not specifically rebuilt in ACBLIB.
For DBD-b to be rebuilt in ACBLIB, it must be explicitly specified in the ACB generation. Although
the referencing PSB is completely updated, the updated DBDs must be explicitly specified in the ACB
generation.

Every PSB processed by this program generates a member in the IMS.ACBLIB data set. DBDs
referenced by PSBs generate a member the first time the specific DBD is processed or any time a
DBD name appears on a control statement. All PSBs that reference the same DBD carry information in
their directory entries to connect the PSB to the referenced DBDs.

Logical DBDs do not have members in IMS.ACBLIB and cannot be referenced on BUILD or DELETE
control statements.

Example 2: The following examples illustrate uses of the BLDPSB parameter:

• The DBD named CUSTOMER was changed and all of the PSBs that refer to CUSTOMER need to be
rebuilt:

BUILD DBD=CUSTOMER,BLDPSB=YES

• The DBDs named ORDER and INVENTORY are changed and all of the PSBs that refer to these DBDs
need to be rebuilt:

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 321

BUILD DBD=(ORDER,INVENTORY),BLDPSB=YES

When a DBD is replaced in IMS.DBDLIB, it must also be included in a BUILD DBD control statement.
This is the only valid way the DBD can be replaced in IMS.ACBLIB without doing a BUILD PSB=ALL.

If a BUILD PSB is performed that references a modified DBD on DBDLIB, the PSB replaced on
ACBLIB will contain the updated version of the DBD. If this BUILD PSB occurs before a BUILD
DBD for the changed DBD, ACBLIB will contain PSBs with different versions of the DBD. The PSBs
specified in the BUILD PSB will contain the updated DBD, while those not built will reference the old
DBD. When a DBD for a PSB on ACBLIB does not match the accessed database, the results will be
unpredictable. (For example, U852 abend occurs because segment codes have been added or deleted
in the changed DBD). Therefore, when DBDGEN is run for later use, do not build a PSB that refers to
the changed DBD unless the database reflects the change.

When a physical DBD is changed and is referenced in a BUILD DBD statement, all physical DBDs that
are logically related to the one that was changed (including primary indexes and secondary indexes)
must also be referenced in a BUILD DBD statement. However, DBDs that are logically related to these
DBDs do not need to be rebuilt.

The following figure illustrates the relationships between some physical databases, where A is the
changed DBD. The following relationships exist:

• B and C are logically related to A.
• D is logically related to B.
• E is logically related to C.
• D and E are not referenced in the BUILD DBD statement because they are not logically related to A.

Figure 30. Example of logically related physical databases

BLDPSB=YES | NO
Specifies whether ACBGEN rebuilds all PSBs that reference a changed DBD in the BUILD
DBD=(dbdname) statement.
YES

Indicates that ACBGEN rebuilds all PSBs that reference the changed DBD on the BUILD
DBD=(dbdname) statement. The default is BLDPSB=YES.

NO
Indicates that ACBGEN does not rebuild PSBs that reference the changed DBD if the changed DBD
does not change the physical structure of the database. For Fast Path DEDBs, the PSBs are rebuilt
only when the number of segments, the number of fields within the segments of the database, or
both are changed. For Fast Path MSDBs, the referencing PSBs are not rebuilt even if the database
has physical structure changes.

322 IMS: System Utilities

CATRSCS=YES | NO
Specifies whether ACBGEN builds all PSBs and DBDs of the IMS catalog.
YES

Indicates that ACBGEN builds all IMS catalog PSBs and DBDs.
NO

Indicates that ACBGEN does not build any of the IMS catalog PSBs and DBDs. The default is
CATRSCS=NO.

Catalog population control statements
The following control statement parameters, which are separated by blanks or commas, can be specified
on one or more records by using the SYSINP DD statement.

DUPLIST
Specifies that the DFS3PU00 utility list each DBD or PSB resource in the input ACB library that is not
added to the IMS catalog because it is a duplicate of an instance that is already in the IMS catalog. For
each duplicate instance of a resource in the IMS catalog, the utility prints message DFS4436I.

If the MANAGEDACBS= statement is specified and the IMS management of ACBs is enabled, the
utility also lists each DBD or PSB resources that is not added to the IMS directory or the staging data
set because it is a duplicate of the instance of a resource that is already in the IMS directory.

If the UPDATE parameter is specified on the MANAGEDACBS= statement, the utility prints message
DFS4531I for each duplicate instance.

If LATEST is specified or accepted as the default with the UPDATE parameter, the utility also prints
message DFS4522I for each instance that is not added to the IMS directory because the instance of
the resource in the IMS directory has a later timestamp.

If the STAGE parameter is specified on the MANAGEDACBS= statement, the utility prints message
DFS4542I for each resource that is not copied to the staging data set because it is a duplicate
instance.

If LATEST is specified or accepted as the default with the STAGE parameter, the utility also prints
message DFS4539I for each instance that is not added to the staging data set because the instance of
the resource in the IMS directory has a later timestamp.

ERRORMAX=n
Terminate the IMS Catalog Populate utility when more than n messages indicate errors that prevent
certain DBDs and PSBs from having their metadata that is written to the IMS catalog. Duplicate
instances of metadata do not count toward this limit. If this option is omitted, there is no limit.

RESOURCE_CHKP_FREQ=n
Specifies the number of DBD and PSB resource instances to be inserted between checkpoints. n can
be a 1- to 8-digit numeric value of 1 to 99999999. The default value is 100.

SEGMENT_CHKP_FREQ=n
Specifies the number of segments to be inserted between checkpoints. When the number is reached,
IMS finishes inserting all of the segments for the resource instance that is currently being processed
before issuing the checkpoint. n can be a 1- to 8-digit numeric value of 1 to 99999999. The default
value is 1000.

Note: The first checkpoint frequency number to be reached will cause a checkpoint to be taken and
the counters will be reset to 0.

ISRTLIST

If the IMS management of ACBs is enabled, the utility also lists each DBD or PSB resources that is
either added to the IMS directory or saved to the staging data set for importing into the IMS directory
later.

The utility identifies the action taken for each resource by printing the following messages:

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 323

DFS4520I
The resource was added to the IMS directory as a new resource.

DFS4521I
This instance of the resource replaced an existing instance of the resource in the IMS directory.

DFS4537I
The resource was copied to the staging data set. When it is imported into the IMS directory later, it
will be inserted as a new resource in the IMS directory.

DFS4538I
The resource was copied to the staging data set. When it is imported into the IMS directory later, it
will replace an existing instance of the resource in the IMS directory.

MANAGEDACBS=
Use the MANAGEDACBS control statement to perform the following actions:

• Set up IMS to manage the runtime application control blocks (ACBs) for your databases and
program views.

• Update an IMS system that manages ACBs with new or modified ACBs from an ACB library data set.
• Save ACBs from an ACB library to a staging data set for later importing into an IMS system that

manages ACBs.

The MANAGEDACBS statement can be specified according to the following syntax diagram:

MANAGEDACBS= SETUP

(STAGE

,LATEST

,UNCOND ,DELETE ,GSAMPCB ,CATRSCS

)

(UPDATE

,LATEST

,UNCOND ,GSAMPCB ,SHARE

)

If you use the gsamdbd parameter, the MANAGEDACBS statement can be specified according to the
following syntax diagram:

MANAGEDACBS= SETUP

(STAGE ,GSAM=  gsamdbd)

(UPDATE ,GSAM=  gsamdbd)

The parentheses are required only if you specify multiple parameters on the MANAGEDACBS=
statement.

The following list describes the parameters that you can specify on the MANAGEDACBS= statement:

SETUP
Creates the IMS directory data sets that are required by IMS to manage application control blocks
(ACBs). Any existing instances of the IMS directory data sets are replaced.

Do not specify ACBMGMT=CATALOG in the CATALOG section of the DFSDFxxx PROCLIB member
until after you successfully run the utility with MANAGEDACBS=SETUP specified. You must create
the IMS directory and load it with the active ACBs before you enable the IMS management of
ACBs.

When SETUP is specified, the utility inserts the ACBs that are in the input ACB libraries into the
IMS directory data sets.

If the IMS catalog PSB DFSCP001 is specified in the utility JCL, the utility inserts any new or
modified DBDs or PSBs into the IMS catalog.

If the IMS catalog PSB DFSCPL00 is specified in the utility JCL, the utility deletes all existing
catalog records and reloads the IMS catalog.

324 IMS: System Utilities

When the utility adds an ACB to the IMS directory, it flags the corresponding DBD and PSB
instances in the IMS catalog as active.

Do not run the DFS3PU00 utility as a BMP with MANAGEDACBS=SETUP specified.

STAGE

Saves the ACBs from the input ACB libraries to a staging data set. ACBs saved in the staging
data set are not activated until you add them to the IMS system by issuing the IMPORT DEFN
SOURCE(CATALOG) command.

When STAGE is specified, the IMS catalog PSB DFSCP001 must be specified in the utility JCL.

If the staging data set exists when the MANAGEDACBS=STAGE control statement is specified,
the utility uses the existing staging data set. Any ACBs already in the staging data set are
preserved. To scratch and re-create the staging data set when you stage new resources, specify
MANAGEDACBS=(STAGE,DELETE). When DELETE is specified, any ACBs in the existing data set
are lost.

When STAGE is specified, the DFS3PU00 utility copies all ACBs in the ACB libraries that do not
already exist in the IMS system into the staging data set. If an ACB in the ACB library already
exists in the IMS system, the utility saves it to the staging data set based on whether timestamp of
the ACB meets the criteria of the UNCOND or LATEST parameter.

Do not specify STAGE when you do an initial load of the IMS catalog or before you enable the IMS
management of ACBs. The STAGE parameter is for staging updates to existing IMS directory data
sets only.

If you specify multiple parameters after MANAGEDACBS=, you must enclose them in parentheses.
For example, (STAGE,LATEST). If you specify only STAGE, you can omit the parentheses.

CATRSCS
When you use the STAGE option with the CATRSCS option, IMS catalog resources are added to
the staging directory data set.

DELETE
If the staging data set is not allocated to any online IMS system, scratch and recreate the
staging data set before adding the resources to the staging data set. Any ACBs in the existing
staging data set are lost.

GSAMPCB
GSAM resources are included for MANAGEDACBS= running in DLI mode using PSB DFSCP001.
When GSAMPCB is specified, the IEFRDER batch log data set is not used by the catalog
members information gather task. Only the catalog update task writes to the batch log data
set for catalog database changes. GSAMPCB and DELETE are mutually exclusive.

LATEST
If an ACB already exists in the IMS system, do not save an instance of the ACB in an ACB
library to the staging data set unless the instance in the ACB library has a later timestamp than
the ACB in the IMS system.

This is the default.

UNCOND
If an ACB already exists in the IMS system, save an instance of the ACB in an ACB library to
the staging data set unconditionally, unless the timestamp of the ACB in the ACB library is the
same as the timestamp of the ACB in the IMS system.

gsamdbd

gsamdbd is the name of changed GSAM database. The specified database record is inserted into
the IMS catalog, and the application control block is written to the staging or active directory
based on the MANAGEDACBS control statement parameters that you specify.

You can use the gsamdbd variable with the STAGE or UPDATE parameter. However, LATEST,
UNCOND, DELETE, SHARE, and GSAMPCB are not supported if you specify the gsamdbd variable.

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 325

Because the gsamdbd variable identifies a GSAM resource, the GSAMPCB batch logging rule
applies only to the catalog update task that writes to the batch log data set for catalog database
changes.

Follow these steps if you want to change GSAM DBDs by using the STAGE parameter and
gsamdbd. This process writes only the GSAM DBD to the staging directory.

1. Change the GSAM DBD source.
2. Run a DBDGEN to generate the GSAM DBD into DBDLIB.
3. Run the DFS3PU00 utility with MANAGEDACBS=(STAGE,GSAM=gsamdbd).

Tip: Only the DBDLIB DD card is required for the DFS3PU00 utility. ACBLIB and PSBLIB are not
needed and are ignored if specified.

The new GSAM DBD instance will be inserted to the catalog, and the application control block
will be written to the staging directory.

4. Run the IMPORT DEFN SOURCE(CATALOG) or IMPORT DEFN SOURCE(CATALOG)
NAME(gsamdb) command with or without OPTION(NOCHECK).

UPDATE
Updates existing IMS directory system data sets directly in exclusive mode. The ACBs are not
placed in the staging data set.

Recommendation: Shut down all IMS systems that use the IMS directory when you specify the
UPDATE parameter. When UPDATE is specified, the IMS Catalog Populate utility requires exclusive
access to the IMS directory.

Also, the utility does not notify online IMS systems when it updates the IMS directory.
Consequently, any IMS systems that are online when the utility updates the IMS directory must be
restarted to load the updated ACBs.

When UPDATE is specified, the DFS3PU00 utility inserts ACBs that are not already in the IMS
system into the IMS directory unconditionally. If an ACB exists in the IMS system, the instance
of the ACB is replaced depending on the timestamp of the instance in the ACB library and the
specification of the UNCOND or LATEST parameter.

Do not specify UPDATE when you do an initial load of the IMS catalog or before you enable the
IMS management of ACBs. The UPDATE parameter is for updating existing IMS directory data sets
only.

When UPDATE is specified, the IMS catalog PSB DFSCP001 must be specified in the utility JCL.

If you specify multiple parameters after MANAGEDACBS, you must enclose them in parentheses.
For example, (UPDATE,LATEST). If you specify only UPDATE, you can omit the parentheses.

By default, the system data set names that are allocated for IMS management of ACBs are derived
from the data set name prefix that is specified in the RECON data set when the first partition of
the IMS catalog is defined. To override this default, you can specify the SYSDSHLQ= parameter in a
TYPE=CATDSHLQ statement in the dynamic allocation (DFSMDA) macro.

LATEST
If an ACB already exists in the IMS system, do not replace it with an instance of the ACB from
an ACB library unless the instance in the ACB library has a later timestamp than the ACB in the
IMS system.

This is the default.

UNCOND
If an ACB already exists in the IMS system, replace it with an instance of the ACB from an ACB
library unconditionally, unless the timestamp of the ACB in the ACB library is the same as the
timestamp of the ACB in the IMS system.

326 IMS: System Utilities

SHARE
For dynamic option (DOPT) PSBs only, allocates the required IMS directory data sets in a
shared mode so that DOPT PSBs can be added to the IMS catalog without interrupting online
processing.

Do not specify SHARE if the utility is loading the IMS catalog, as indicated by the specification
of DFSCPL00, the IMS catalog load PSB, in the execution parameters of the utility JCL.

Do not specify SHARE if any resources in the input ACBLIB data sets are not DOPT PSBs.

Before you run the utility with the SHARE option specified, the extended sharing of PDSE
data sets must be enabled in your z/OS system. The extended sharing of PDSE data sets is
enabled in z/OS by specifying PDSESHARING(EXTENDED) in the IGDSMSxx member in the
SYS1.PARMLIB on each system in the sysplex. If extended PDSE sharing is not enabled when
SHARE is specified, the utility allocates the required IMS catalog data sets in exclusive mode,
which might cause conflicts with other IMS processes and application programs.

For more information about enabling extended PDSE sharing, see z/OS: Specifying Extended
PDSE Sharing in a Multiple-System Environment.

GSAMPCB
GSAM resources are included for MANAGEDACBS= running in DLI mode using PSB DFSCP001.
When GSAMPCB is specified, the IEFRDER batch log data set is not used by the catalog
members information gather task. Only the catalog update task writes to the batch log data
set for catalog database changes. GSAMPCB and DELETE are mutually exclusive.

gsamdbd

gsamdbd is the name of changed GSAM database. The specified database record is inserted into
the IMS catalog, and the application control block is written to the staging or active directory
based on the MANAGEDACBS control statement parameters that you specify.

You can use the gsamdbd variable with the STAGE or UPDATE parameter. However, LATEST,
UNCOND, DELETE, SHARE, and GSAMPCB are not supported if you specify the gsamdbd variable.

Because the gsamdbd variable identifies a GSAM resource, the GSAMPCB batch logging rule
applies only to the catalog update task that writes to the batch log data set for catalog database
changes.

Follow these steps if you want to change GSAM DBDs by using the UPDATE parameter and
gsamdbd:

1. Change the GSAM DBD source.
2. Run a DBDGEN to generate the GSAM DBD into DBDLIB.
3. Run the DFS3PU00 utility with MANAGEDACBS=(UPDATE,GSAM=gsamdbd).

Tip: Only the DBDLIB DD card is required for the DFS3PU00 utility. ACBLIB and PSBLIB are not
needed and are ignored if specified.

The new GSAM DBD instance will be inserted to the catalog, and the application control block
will be written to the IMS directory.

NODUPLIST
Do not print a list of resource instances that were not added. This parameter is the default.

NOISRTLIST
Do not print a list of inserted resource instances.

Return codes

The DFS3UACB utility returns the following codes:

0
Successful completion of all operations

Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB) 327

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm

4
One or more records were not loaded into the IMS catalog. Warning messages issued.

16
Program terminated due to severe errors

Related tasks
Populating the IMS catalog using the ACB Generation and Catalog Populate utility (DFS3UACB) (System
Definition)
Related reference
DFSDFxxx member of the IMS PROCLIB data set (System Definition)
“Application Control Blocks Maintenance utility (DFSUACB0)” on page 3
In IMS systems that use ACB libraries to manage runtime application control blocks, use the Application
Control Blocks (ACB) Maintenance utility to save instruction execution and direct-access wait time and
improve performance in application scheduling.

328 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_definition_pop_acbgen.htm#ims_catalog_definition_pop_acbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_definition_pop_acbgen.htm#ims_catalog_definition_pop_acbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Chapter 7. IMS Catalog Alias Names utility
(DFS3ALI0)

Use the IMS Catalog Alias Names utility (DFS3ALI0) to define multiple catalogs in an IMSPlex
environment.

Overview
Use this utility to define a complete list of catalog aliases to IMS. This definition list is required so that IMS
can perform catalog name translation on behalf of your user database PCBs.

You do not need to use this utility if your catalog database uses the standard prefix, DFSC.

Restrictions
No restrictions are documented for this utility.

Prerequisites
You must configure the DFSDFxxx member of the IMS.PROCLIB data set that is used in the start up JCL
for the IMS system with a CATALOG section before you can use a catalog alias name.

Requirements
Your IMS system must use the IMS catalog.

Input and output
This utility takes a list of IMS catalog alias prefixes (4 characters each) and adds the names to the system
DBD library.

JCL specifications
EXEC statement

//ALIAS EXEC PGM=DFS3ALI0

DD statements
JOBLIB/STEPLIB

The location of the IMS.SDFSRESL data set, which contains the executable modules for this utility.
DFSRESLB

The location of the IMS.SDFSRESL data set, which contains the executable modules for this utility.
It also contains the catalog DFSCD000 DBD.

SYSPRINT
The data set that receives messages generated by the utility. The DCB parameters for the
SYSPRINT data set are RECFM=FB and LRECL=121.

SYSLMOD
The location of the DBD library that the alias names are added to.

SYSIN
The data set that contains the input parameters for the utility. Include the complete list of catalog
alias prefixes. Separate multiple entries with commas.

© Copyright IBM Corp. 1974, 2020 329

Sample JCL statements
 //ALIAS EXEC PGM=DFS3ALI0
 //STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
 //DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
 //SYSPRINT DD SYSOUT=*
 //SYSLMOD DD DSN=IMS.DBDLIB,DISP=OLD
 //SYSLIN DD UNIT=SYSDA,SPACE=(CYL,(1,1))
 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
 //SYSIN DD *
 prefix1,prefix2,…
 /*

Related tasks
Defining an IMS catalog alias name (System Definition)
Sharing an IMS catalog (System Definition)
Related reference
DFSDFxxx member of the IMS PROCLIB data set (System Definition)

330 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_definition_alias.htm#ims_catalog_definition_alias
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_definition_multisystem_shared_catlg.htm#ims_catalog_definition_multisystem_shared_catlg
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0,
DFS3CCI0)

Use the IMS Catalog Copy utilities to create a copy of an IMS catalog and, optionally, to create copies of
the ACB, DBD, and PSB library data sets that were used to populate the IMS catalog.

If the IMS management of ACBs is enabled, you also can use the IMS Catalog Copy utilities to copy the
active ACBs that are managed by the IMS catalog.

The IMS Catalog Copy utilities can be used for such purposes as migrating an IMS catalog database from
a test environment to a production environment or for copying an IMS catalog database from a production
environment to another installation for disaster recovery purposes.

The IMS Catalog Copy utilities include the IMS Catalog Export utility (DFS3CCE0) and the IMS Catalog
Import utility (DFS3CCI0).

The Catalog Copy utilities can be run in either a batch region or as an online BMP.

Related concepts
IMS catalog data sets (System Definition)
Related tasks
Copying an IMS catalog (System Definition)
Related reference
“IMS Catalog Populate utility (DFS3PU00)” on page 373
Use the IMS Catalog Populate utility (DFS3PU00) to load, insert, or update DBD and PSB instances into
the database data sets of the IMS catalog from ACB library data sets. If the IMS management of ACBs is
enabled in the IMS system, the utility also adds the active application control blocks (ACBs) to the IMS
directory data set that is managed by IMS.
z/OS: IEBCOPY (Library Copy) program

IMS Catalog Export utility (DFS3CCE0)
The IMS Catalog Export utility copies an IMS catalog and any included ACB, DBD, and PSB libraries to
export data sets in the same job step.

In IMS-managed ACB environments, the IMS Catalog Export utility also can export the active ACBs that
are managed by the IMS catalog.

To copy ACB, DBD, and PSB library data sets, the IMS Catalog Export utility calls the z/OS data set utility
IEBCOPY, which does not support the concatenation of input data sets. So, only one of each type of library
can be copied per job step.

The IMS Catalog Export utility produces an export statistics report when the utility copies an IMS catalog
to an export data set. The IEBCOPY utility reports on its own statistics.

The IMS Catalog Export utility can be run in either a batch region or as an online BMP.

The IMS Catalog Export utility copies all of the DBD and PSB records in an IMS catalog. However, if an
ACB library is specified on the IMSACB DD statement in the export JCL, the IMS Catalog Export utility
copies only the segments in a DBD or PSB record that have a timestamp that matches the timestamp of
the corresponding member in the specified ACB library. If the IMSACB DD statement is omitted, the utility
copies all timestamp versions of the segments in every DBD or PSB record in the IMS catalog.

If an ACB library is specified on the IMSACB DD statement, but the ACB member for a particular DBD or
PSB record in the IMS catalog is not found, the utility issues a warning message and copies all timestamp
versions of the segments in the record.

Subsections:

© Copyright IBM Corp. 1974, 2020 331

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_definition_allocds.htm#ims_catalog_definition_allocds
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_copying.htm#ims_catalog_copying
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idau100/iebcopy.htm

• “Restrictions” on page 332
• “Prerequisites” on page 332
• “Requirements” on page 332
• “Recommendations” on page 332
• “Input and output” on page 332
• “Export JCL specifications” on page 334
• “Export DD statement descriptions” on page 336
• “Export statistics report” on page 337
• “Library statistics report” on page 339
• “Return codes” on page 339

Restrictions

The IMS Catalog Export utility uses the system service utility IEBCOPY to copy the ACB, PSB, and DBD
libraries. The IEBCOPY utility does not support the concatenation of input data sets, so the IMS Catalog
Export utility can copy only one data set for each type of library in a single job step.

Prerequisites

No prerequisites that are unique to the IMS Catalog Export utility are currently documented.

Requirements

No requirements that are unique to the IMS Catalog Export utility are currently documented.

Recommendations

No recommendations that are unique to the IMS Catalog Export utility are currently documented.

Input and output
To copy an IMS catalog, the primary input of the IMS Catalog Export utility (DFS3CCE0) is an IMS catalog.
The utility uses the IMS catalog PSB DFSCP000 to read the IMS catalog database.

During the copying of the IMS catalog, the IMS Catalog Export utility must read the PSB and DBD libraries
that are used to access the IMS catalog. For this purpose, an //IMS DD statement is required to reference
the PSB and DBD libraries. A DD statement for the input IMS catalog data sets is not required.

When the IMS catalog that you are copying contains multiple timestamp versions of DBD and PSB
members in the catalog records, you can specify the ACB library data set on the IMSACB DD statement to
copy only the timestamp version of each DBD or PSB member in the catalog that matches the timestamp
of the corresponding ACB library member.

The IMS Catalog Export utility uses the IMSACB DD statement to limit the number of timestamp versions
of the DBD and PSB member segments that are copied from an IMS catalog.

To copy ACB, DBD, and PSB libraries, the data set for each must be specified as input by using the
following DD statements:

• CCUACB DD statement for the ACB library data set
• CCUDBD DD statement for the DBD library data set
• CCUPSB DD statement for the PSB library data set

332 IMS: System Utilities

To maintain the integrity of the copy process, the data sets that are described by the CCUACB, CCUDBD,
and CCUPSB DD statements should be the same as the data sets that are described by the IMS and
IMSACB DD statements.

If the active ACBs of an IMS system are managed by using the ACB library, the output data sets for the
exported copies of the IMS catalog, the ACB library, the DBD library, and the PSB library must be specified
in the JCL by using the following DD statements:

• CCUCATEX DD statement for the IMS catalog export data set
• CCUACBEX DD statement for the ACB library export data set
• CCUDBDEX DD statement for the DBD library export data set
• CCUPSBEX DD statement for the PSB library export data set

If the IMS management of ACBs is enabled, use the CCUDIREX DD statement for the catalog system
export data set that is required to copy the active ACBs managed by the IMS catalog. The catalog system
export data set contains information about the active ACBs that are in the IMS catalog directory and the
corresponding DBD and PSB records that are in the IMS catalog. If no active ACBs are found in the IMS
catalog directory, the IMS catalog directory is not copied and exported.

If the CCUDIREX DD statement is used, the following DD statements are ignored:

• CCUACBEX DD
• CCUACB DD
• CCUDBDEX DD
• CCUDBD DD
• CCUPSBEX DD
• CCUPSB DD

The following figure shows the input and output for the IMS Catalog Export utility.

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 333

Figure 31. IMS Catalog Export utility input and output for export

Export JCL specifications
IMS Catalog Export utility JCL statements

The following JCL is an example of the JCL that you can use to copy an IMS catalog to an export data set.

//EXPRTCAT EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3CCE0,DFSCP000,,,,,,,,,,,Y,{Y|N},[irlmname],
// ,,,,,,,,,,,'DFSDF=xxx')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set
//DFSVSAMP DD ... Buffer pool parameters
//CCUCATEX DD ... Catalog export data set
//CCUACB DD ... Input data set for ACBLIB export function
//CCUACBEX DD ... Output data set for ACBLIB export function
//CCUDBD DD ... Input data set for DBDLIB export function
//CCUDBDEX DD ... Output data set for DBDLIB export function
//CCUPSB DD ... Input data set for PSBLIB export function
//CCUPSBEX DD ... Output data set for PSBLIB export function

If the IMS management of ACBs is enabled, the following JCL is an example of the JCL that you can use to
copy an IMS catalog directory by using a catalog system export data set. If the CCUDIREX DD statement is
used, the following statements are ignored:

334 IMS: System Utilities

• CCUACB DD
• CCUACBEX DD
• CCUDBD DD
• CCUDBDEX DD
• CCUPSB DD
• CCUPSBEX DD

//EXPRTCAT EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3CCE0,DFSCP000,,,,,,,,,,,Y,{Y|N},[irlmname],
// ,,,,,,,,,,,'DFSDF=xxx')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set
//DFSVSAMP DD ... Buffer pool parameters
//CCUCATEX DD ... Catalog export data set
//CCUACB DD ... Input data set for ACBLIB export function
//CCUACBEX DD ... Output data set for ACBLIB export function
//CCUDBD DD ... Input data set for DBDLIB export function
//CCUDBDEX DD ... Output data set for DBDLIB export function
//CCUPSB DD ... Input data set for PSBLIB export function
//CCUPSBEX DD ... Output data set for PSBLIB export function
//CCUDIREX DD ... Catalog directory export data set

If the catalog is not shared, the copy utility can access and copy it with a BMP job in an IMS that is using it.
Here is the sample JCL job step for copying the catalog in a BMP:

//EXPRTCAT EXEC PGM=DFSRRC00,
// PARM=’BMP,DFS3CCE0,DFSCP000,,,,,,,,,,,imsname’
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//CCUCATEX DD ... Catalog export data set
//CCUACB DD ... Input data set for ACBLIB export function
//CCUACBEX DD ... Output data set for ACBLIB export function
//CCUDBD DD ... Input data set for DBDLIB export function
//CCUDBDEX DD ... Output data set for DBDLIB export function
//CCUPSB DD ... Input data set for PSBLIB export function
//CCUPSBEX DD ... Output data set for PSBLIB export function

If the IMS catalog directory data set is not shared, the copy utility can access and copy it with a BMP job in
an IMS that is using it. Here is the sample JCL job step for copying the catalog in a BMP. If the CCUDIREX
DD statement is used, the following statements are ignored:

• CCUACB DD
• CCUACBEX DD
• CCUDBD DD
• CCUDBDEX DD
• CCUPSB DD
• CCUPSBEX DD

//EXPRTCAT EXEC PGM=DFSRRC00,
// PARM=’BMP,DFS3CCE0,DFSCP000,,,,,,,,,,,imsname’
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 335

//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//CCUCATEX DD ... Catalog export data set
//CCUACB DD ... Input data set for ACBLIB export function
//CCUACBEX DD ... Output data set for ACBLIB export function
//CCUDBD DD ... Input data set for DBDLIB export function
//CCUDBDEX DD ... Output data set for DBDLIB export function
//CCUPSB DD ... Input data set for PSBLIB export function
//CCUPSBEX DD ... Output data set for PSBLIB export function
//CCUDIREX DD ... Catalog directory export data set

Export DD statement descriptions

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC
modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

DFSVSAMP
Defines the buffer pool parameters data set.

IEFRDER DD
Defines the primary IMS log data set.

CCUACB DD
For the IMS Catalog Export utility, defines the input ACB library data set to be copied.

The IMS Catalog Export utility does not support the concatenation of ACB library data sets on the
CCUACB DD statement.

If both the CCUACB and IMSACB DD statements are specified in the JCL for the IMS Catalog Export
utility, make sure that both statements point to the same ACB library data set.

CCUACBEX DD
Defines the output data set for the copy of the ACB library.

CCUCATEX DD
Defines the output data set for the copy of the IMS catalog.

CCUDBD DD
For the IMS Catalog Export utility, defines the input DBD library data set to be copied.

CCUDBDEX DD
Defines the output data set for the copy of the DBD library.

CCUDIREX DD

Defines the output data set to contain the information about the active ACBs of the IMS catalog. The
information is required to populate a target IMS system with the active ACBs.

The data set name can be up to 44 characters long. However, the length of all qualifiers excluding the
last qualifier can be up to 37 characters. The qualifiers are used as the high-level qualifiers for the
exported IMS directory data sets.

CCUPSB DD
For the IMS Catalog Export utility, defines the input PSB library data set to be copied.

CCUPSBEX DD
Defines the output data set for the copy of the PSB library.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
An optional DD statement that defines an ACB library data set that was used to populate the IMS
catalog.

336 IMS: System Utilities

Specify the IMSACB DD statement to copy only the timestamp version of a DBD or PSB member in
a record that matches the timestamp of the corresponding ACB library member. When the IMSACB
DD statement is omitted, the IMS Catalog Export utility copies all timestamp versions of a member in
each record.

If you need to define multiple ACB library data sets as input to the IMS Catalog Export utility, the ACB
library data sets must be concatenated to the IMSACB DD statement.

The data sets referenced by the IMSACB DD statement are not copied. To copy ACB library data sets,
you must reference them by the CCUACB DD statement and reference a corresponding output data set
by the CCUACBEX DD statement.

If both the CCUACB and IMSACB DD statements are specified in the JCL for the IMS Catalog Export
utility, make sure that both statements point to the same ACB library data set.

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines various attributes
of the IMS catalog that are required by the utility.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSABEND DD
Defines the dump data set.

SYSPRINT DD
Defines the output data set for the statistics report and utility messages. If a SYSPRINT data set is not
defined, the utility defines one.

Export statistics report

The IMS Catalog Export utility outputs an export statistics report to the SYSPRINT data set.

The report has two sections. The first section lists the DBD or PSB records that the utility copies from the
IMS catalog to the export data set. Each DBD or PSB record that is copied is listed as a separate entry with
the record type, the DBD or PSB name, and the timestamp.

If the record for a DBD or PSB member in the IMS catalog contains multiple timestamp versions of
the record segments, the record appears on multiple rows in the report, with each row representing
a different timestamp version of the segments in the DBD or PSB record. The entries for the different
timestamp versions of the segments in a DBD or PSB record are identical except for the timestamp, which
reflects the time at which the corresponding version of the member was generated in the ACB library.

In the second section, the utility lists the total number of each type of segment that the utility copies
to the export data set. The header segment is the root segment for a DBD or PSB member record.
Regardless of whether the IMS catalog contains multiple timestamp versions of a DBD or PSB member,
the IMS catalog contains only one root segment for each DBD or PSB name. The different timestamp
versions of a DBD or PSB member are stored in the catalog as twin segments directly under the header
segment.

In the following example, the IMS Catalog Export utility copied records for 24 DBD and PSB members. In
the first section of the report, 26 rows are shown because the member records for DBD DBOVLFPC and
PSB PSBCOMPT each have two timestamp versions in the IMS catalog.

In the second section of the example, the number of header segments reflects the actual number of DBD
and PSB member names, while the sum of the DBD and PSB segments copied reflects the total number of
timestamp versions that were copied.

DFS4803I DBD DBOHIDK5 WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DBOVLFPC WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 337

DFS4803I DBD DBOVLFPC WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DBVHDJ05 WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DFSCD000 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DFSCX000 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DHVNTZ02 WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DIVNTZ02 WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DLOHIDK5 WITH TIME STAMP 1133521550000 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DLVHDJ05 WITH TIME STAMP 1133521550000 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DLVNTZX2 WITH TIME STAMP 1133521560000 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DLVNTZ02 WITH TIME STAMP 1133521560000 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD DXVNTZ02 WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD D2XHDJ05 WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.
DFS4803I DBD D2XHIDK5 WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB CATCP000 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB DFSCPL00 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB DFSCP000 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB DFSCP001 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB DFSCP002 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB DFSCP003 WITH TIME STAMP 1133521563369 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB PLVAPZ12 WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB PLVAPZ22 WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB PSBCOMPT WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB PSBCOMPT WITH TIME STAMP 1133521561758 WAS COPIED TO THE EXPORT DATA
SET.
DFS4804I PSB PSBEJK05 WITH TIME STAMP 1133521555167 WAS COPIED TO THE EXPORT DATA
SET.

DFS4805I 00000024 HEADER SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000015 DBD SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000003 DBDRMK SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000010 DSET SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000329 SEGM SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000006 SEGMRMK SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000944 FLD SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000004 FLDRMK SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000944 MAR SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000038 LCHILD SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000003 XDFLD SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000011 PSB SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000004 PSBRMK SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000036 PCB SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000009 PCBRMK SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000860 SS SEGMENTS WERE COPIED TO THE EXPORT DATA SET.
DFS4805I 00000030 DBDXREF SEGMENTS WERE COPIED TO THE EXPORT DATA SET.

If you used the CCUDIREX DD statement to copy the active ACBs of the IMS catalog, a list is generated
of the output data sets that are created and that must be available to the system where the IMS Catalog
Import utility will be used. The list of the output data sets is printed at the end of the export job output.

338 IMS: System Utilities

The following example shows three output data sets that must be available for the IMS Catalog Import
utility:

CATALOG COPY EXPORT UTILITY

DFS4813I THE FOLLOWING DATA SETS MUST BE MADE AVAILABLE FOR
IMPORT OF THIS IMS CATALOG DIRECTORY:

 IMSTESTS.DIR.CONTROL
 IMSTESTS.DIR.DX1001
 IMSTESTS.DIR.DX1002

Library statistics report
The IMS Catalog Export utility calls the z/OS data set utility IEBCOPY to copy ACB, DBD, and PSB libraries.
The IEBCOPY utility provides statistics and messages for the copy operation. For more information about
the IEBCOPY utility, see the related link near the bottom of this topic.

Return codes

The IMS Catalog Export utility returns the following codes:

0
Successful completion of all operations

4
One or more warning messages were issued.

8 or greater
Program terminated due to severe errors

IMS Catalog Import utility (DFS3CCI0)
Use IMS Catalog Import utility (DFS3CCI0) at the destination environment to load or update an IMS
catalog and copy any included ACB, DBD, and PSB libraries from the export data sets into their destination
data sets.

If the IMS management of ACBs is enabled in the originating environment, you can use the IMS Catalog
Import utility to import the active ACBs that are in the IMS catalog directory data set. The IMS Catalog
Import utility can install the ACBs into an IMS catalog directory at the target environment.

To copy ACB, DBD, and PSB library data sets, the IMS Catalog Import utility calls the z/OS data set utility
IEBCOPY, which does not support the concatenation of input data sets. So, only one of each type of library
can be copied per job step.

The IMS Catalog Import utility produces an import statistics report when it loads or updates the IMS
catalog at the destination environment. The IEBCOPY utility reports on its own statistics.

The IMS Catalog Import utility can be run in either a batch region or as an online BMP.

Subsections:

• “Restrictions” on page 340
• “Prerequisites” on page 340
• “Requirements” on page 340
• “Recommendations” on page 340
• “Input and output” on page 340
• “Import JCL specifications” on page 343
• “Import DD statement descriptions” on page 344
• “Control statements” on page 346
• “Import statistics report” on page 350

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 339

• “Library statistics report” on page 352
• “Return codes” on page 352

Restrictions

The IMS Catalog Import utility uses the system service utility IEBCOPY to copy the ACB, PSB, and DBD
libraries. The IEBCOPY utility does not support the concatenation of input data sets, so the IMS Catalog
Import utility can copy only one data set for each type of library in a single job step.

Prerequisites

No prerequisites that are unique to the IMS Catalog Import utility are currently documented.

Requirements

No requirements that are unique to the IMS Catalog Import utility are currently documented.

Recommendations

No recommendations that are unique to the IMS Catalog Import utility are currently documented.

Input and output
The primary input for the IMS Catalog Import utility (DFS3CCI0) is the export data set that was
generated by the IMS Catalog Export utility (DFS3CCE0) and that contains the copy of the IMS catalog. A
CCUCATIM DD statement is required to identify this data set. If IMS manages ACBs at the destination IMS
environment, another key input is the export data set that contains information about the IMS-managed
active ACBs from the originating IMS environment. The CCUDIRIM DD statement is required to identify
this data set.

During the copying of the IMS catalog, the IMS Catalog Export utility must read the PSB and DBD libraries
that are used to access the IMS catalog. For this purpose, an //IMS DD statement is required to reference
the PSB and DBD libraries. A DD statement for the input IMS catalog data sets is not required.

The IMS Catalog Copy utilities use the IMSACB DD statement to limit the number of timestamp versions
of the DBD and PSB member segments that are copied from an IMS catalog.

To maintain the integrity of the copy process, the data sets that are described by the CCUACB, CCUDBD,
and CCUPSB DD statements should be the same as the data sets that are described by the IMS and
IMSACB DD statements.

If ACB libraries, DBD libraries, and PSB libraries were copied by the IMS Catalog Export utility, identify the
libraries in the import JCL by using the following DD statements:

• CCUACBIM DD statement for the ACB library export data set
• CCUDBDIM DD statement for the DBD library export data set
• CCUPSBIM DD statement for the PSB library export data set

To use the IMS Catalog Import utility to copy the ACB libraries, DBD libraries, and PSB libraries to
destination libraries, identify the destination libraries in the import JCL by using the following DD
statements:

• CCUACB DD statement for the ACB library data set
• CCUDBD DD statement for the DBD library data set
• CCUPSB DD statement for the PSB library data set

340 IMS: System Utilities

If the IMS-managed active ACBs from the IMS directory were copied by the IMS Catalog Export utility,
in the import JCL identify the catalog system export data set for the ACBs by using the CCUDIRIM DD
statement. The CCUDIRIM DD statement also tells the utility that the ACBs are being added to an IMS
directory data set in an IMS-managed ACB environment.

If the CCUDIRIM DD statement is used, the following DD statements are ignored if they are specified:

• CCUACBIM DD
• CCUACB DD
• CCUDBDIM DD
• CCUDBD DD
• CCUPSBIM DD
• CCUPSB DD

Important: If you use the CCUDIRIM DD statement, you must use the SYSINP DD statement in the
JCL of the IMS Catalog Import utility to specify the MANAGEDACBS= control statement parameter. The
MANAGEDACBS= control statement parameter directs the IMS Catalog Import utility to either create or
update the IMS directory data set of the target system with the copied ACBs. For a description of the
MANAGEDACBS= control statement parameter, see “Control statements” on page 346.

The IMS Catalog Import utility uses the CCUDIRIM DD statement to copy only the segments that
represent the active ACBs into the IMS directory at the destination environment.

The following figure shows the input and output for the IMS Catalog Import utility.

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 341

Figure 32. IMS Catalog Import utility input and output for import

342 IMS: System Utilities

Import JCL specifications
JCL statements for importing to an existing IMS catalog in update mode

The following sample JCL statements can be used to import exported DBD and PSB metadata to an
existing catalog or to a new catalog. Specified ACB, DBD, and PSB libraries can be copied to the specified
destination ACB, DBD, and PSB libraries.

//IMPRTCAT EXEC PGM=DFS3CCI0,
// PARM=(DLI,DFS3CCI0,DFSCP001,,,,,,,,,,,Y,{Y|N},[irlmname],
// ,,,,,,,,,,,'DFSDF=xxx')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set with catalog updates
//DFSVSAMP DD ... Buffer pool parameters
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB
//CCUCATIM DD ... Catalog import data set
//CCUACBIM DD ... Input data set for ACBLIB import function
//CCUACB DD ... Output data set for ACBLIB import function
//CCUDBDIM DD ... Input data set for DBDLIB import function
//CCUDBD DD ... Output data set for DBDLIB import function
//CCUPSBIM DD ... Input data set for PSBLIB import function
//CCUPSB DD ... Output data set for PSBLIB import function

If the catalog is not shared, the copy utility can update it with a BMP job in an IMS that is using it. Here is
the sample JCL job step for updating the catalog in a BMP:

//IMPRTCAT EXEC PGM=DFS3CCI0,
// PARM=(BMP,DFS3CCI0,DFSCP001,,,,,,,,,,,imsname’
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set with catalog updates
//DFSVSAMP DD ... Buffer pool parameters
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB
//CCUCATIM DD ... Catalog import data set
//CCUACBIM DD ... Input data set for ACBLIB import function
//CCUACB DD ... Output data set for ACBLIB import function
//CCUDBDIM DD ... Input data set for DBDLIB import function
//CCUDBD DD ... Output data set for DBDLIB import function
//CCUPSBIM DD ... Input data set for PSBLIB import function
//CCUPSB DD ... Output data set for PSBLIB import function

The following sample JCL statements can be used to import the IMS catalog directory from the originating
environment to an existing IMS catalog at the destination environment that already manages active ACBs.

//IMPRTCAT EXEC PGM=DFS3CCI0,
// PARM=(DLI,DFS3CCI0,DFSCP001,,,,,,,,,,,Y,{Y|N},[irlmname],
// ,,,,,,,,,,,'DFSDF=xxx')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set with catalog updates
//DFSVSAMP DD ... Buffer pool parameters
//CCUCATIM DD ... Catalog import data set
//CCUDIRIM DD ... Catalog directory import data set
//SYSINP DD * MANAGEDACBS=UPDATE

JCL statements for importing to a new IMS catalog in load mode

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 343

The following JCL is an example of the JCL that you can use to load an IMS catalog from an export data
set.

If the database data sets of the IMS catalog do not exist, IMS creates them automatically during
execution of the IMS Catalog Import utility.

If you want to control data set size or placement yourself, you can use the IMS Catalog Populate
utility (DFS3PU00) to evaluate the DASD space required for the data sets of the IMS catalog. For more
information, see “Import statistics report” on page 350.

After the IMS catalog is updated or loaded, back up the IMS catalog by using GENJCL.IC or standard
image copy JCL.

//IMPRTCAT EXEC PGM=DFS3CCI0,
// PARM=(DLI,DFS3CCI0,DFSCPL00,,,,,,,,,,,Y,{Y|N},[irlmname],
// ,,,,,,,,,,,'DFSDF=xxx')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set with catalog updates
//DFSVSAMP DD ... Buffer pool parameters
//IMSACB DD ... ACBLIB
//IMS DD ... PSBLIB
// DD ... DBDLIB
//CCUCATIM DD ... Catalog import data set
//CCUACBIM DD ... Input data set for ACBLIB import function
//CCUACB DD ... Output data set for ACBLIB import function
//CCUDBDIM DD ... Input data set for DBDLIB import function
//CCUDBD DD ... Output data set for DBDLIB import function
//CCUPSBIM DD ... Input data set for PSBLIB import function
//CCUPSB DD ... Output data set for PSBLIB import function

The following JCL is an example of the JCL that you can use to load an IMS directory from a catalog
system export data set.

//IMPRTCAT EXEC PGM=DFS3CCI0,
// PARM=(DLI,DFS3CCI0,DFSCPL00,,,,,,,,,,,Y,{Y|N},[irlmname],
// ,,,,,,,,,,,'DFSDF=xxx')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* Dump data set
//SYSPRINT DD SYSOUT=* Messages
//IEFRDER DD ... Log data set with catalog updates
//DFSVSAMP DD ... Buffer pool parameters
//CCUCATIM DD ... Catalog import data set
//CCUDIRIM DD ... Catalog directory import data set
//SYSIN DD * MANAGEDACBS=SETUP

Import DD statement descriptions
DFSRESLB DD

Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC
modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

DFSVSAMP
Defines the buffer pool parameters data set.

IEFRDER DD
Defines the primary IMS log data set.

CCUACB DD

For the IMS Catalog Import utility, defines the destination ACB library data set.

344 IMS: System Utilities

CCUACBIM DD
Defines the input data set that holds the copy of the ACB library to be imported.

CCUCATIM DD
Defines the input data set that holds the copy of the IMS catalog to be imported.

CCUDBD DD
For the IMS Catalog Import utility, defines the destination DBD library data set.

CCUDBDIM DD
Defines the input data set that holds the copy of the DBD library to be imported.

CCUDIRIM DD
Defines the input data set that holds information about the active ACBs of the IMS catalog to be
imported.

CCUPSB DD
For the IMS Catalog Import utility, defines the destination PSB library data set.

CCUPSBIM DD
Defines the input data set that holds the copy of the PSB library to be imported.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
An optional DD statement that defines the input data set that holds the copy of the ACB library used to
populate the IMS catalog at the originating IMS system.

If multiple ACB library data sets are defined as input, the ACB library data sets must be concatenated
to the IMSACB DD statement.

The data sets referenced by the IMSACB DD statement are not imported. To import ACB library data
sets, you must reference them by using the CCUACBIM DD statement and reference a corresponding
destination data set by the CCUACB DD statement.

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines various attributes
of the IMS catalog that are required by the utility.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSABEND DD
Defines the dump data set.

SYSINP DD

If the CCUDIRIM DD statement is used, a required control statement sequential data set with 80-
character fixed-length records. Only characters in positions 1 - 72 are read.

The control statement parameters, which are separated by blanks or commas, can be specified on
one or more records.

If you specify the CCUDIRIM DD statement, you must specify the MANAGEDACBS= control statement
parameter by using the SYSINP DD statement in the JCL of the IMS Catalog Import utility. The
MANAGEDACBS= control statement parameter directs the IMS Catalog Import utility to either create
or update the IMS directory data set of the target system with the copied ACBs.

For a description of the control statements that you can specify with the SYSINP DD statement, see
“Control statements” on page 346.

SYSPRINT DD
Defines the output data set for the statistics report and utility messages. If a SYSPRINT data set is not
defined, the utility defines one.

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 345

Control statements
The following control statement parameters, which are separated by blanks or commas, can be specified
on one or more records by using the SYSINP DD statement.

DUPLIST
Specifies that the DFS3PU00 utility list each DBD or PSB resource in the input ACB library that is not
added to the IMS catalog because it is a duplicate of an instance that is already in the IMS catalog. For
each duplicate instance of a resource in the IMS catalog, the utility prints message DFS4436I.

If the MANAGEDACBS= statement is specified and the IMS management of ACBs is enabled, the
utility also lists each DBD or PSB resources that is not added to the IMS directory or the staging data
set because it is a duplicate of the instance of a resource that is already in the IMS directory.

If the UPDATE parameter is specified on the MANAGEDACBS= statement, the utility prints message
DFS4531I for each duplicate instance.

If LATEST is specified or accepted as the default with the UPDATE parameter, the utility also prints
message DFS4522I for each instance that is not added to the IMS directory because the instance of
the resource in the IMS directory has a later timestamp.

If the STAGE parameter is specified on the MANAGEDACBS= statement, the utility prints message
DFS4542I for each resource that is not copied to the staging data set because it is a duplicate
instance.

If LATEST is specified or accepted as the default with the STAGE parameter, the utility also prints
message DFS4539I for each instance that is not added to the staging data set because the instance of
the resource in the IMS directory has a later timestamp.

ERRORMAX=n
Terminate the IMS Catalog Populate utility when more than n messages indicate errors that prevent
certain DBDs and PSBs from having their metadata that is written to the IMS catalog. Duplicate
instances of metadata do not count toward this limit. If this option is omitted, there is no limit.

RESOURCE_CHKP_FREQ=n
Specifies the number of DBD and PSB resource instances to be inserted between checkpoints. n can
be a 1- to 8-digit numeric value of 1 to 99999999. The default value is 100.

SEGMENT_CHKP_FREQ=n
Specifies the number of segments to be inserted between checkpoints. When the number is reached,
IMS finishes inserting all of the segments for the resource instance that is currently being processed
before issuing the checkpoint. n can be a 1- to 8-digit numeric value of 1 to 99999999. The default
value is 1000.

Note: The first checkpoint frequency number to be reached will cause a checkpoint to be taken and
the counters will be reset to 0.

ISRTLIST

If the IMS management of ACBs is enabled, the utility also lists each DBD or PSB resources that is
either added to the IMS directory or saved to the staging data set for importing into the IMS directory
later.

The utility identifies the action taken for each resource by printing the following messages:
DFS4520I

The resource was added to the IMS directory as a new resource.
DFS4521I

This instance of the resource replaced an existing instance of the resource in the IMS directory.
DFS4537I

The resource was copied to the staging data set. When it is imported into the IMS directory later, it
will be inserted as a new resource in the IMS directory.

346 IMS: System Utilities

DFS4538I
The resource was copied to the staging data set. When it is imported into the IMS directory later, it
will replace an existing instance of the resource in the IMS directory.

MANAGEDACBS=
Use the MANAGEDACBS control statement to perform the following actions:

• Set up IMS to manage the runtime application control blocks (ACBs) for your databases and
program views.

• Update an IMS system that manages ACBs with new or modified ACBs from an ACB library data set.
• Save ACBs from an ACB library to a staging data set for later importing into an IMS system that

manages ACBs.

The MANAGEDACBS statement can be specified according to the following syntax diagram:

MANAGEDACBS= SETUP

(STAGE

,LATEST

,UNCOND ,DELETE ,GSAMPCB ,CATRSCS

)

(UPDATE

,LATEST

,UNCOND ,GSAMPCB ,SHARE

)

If you use the gsamdbd parameter, the MANAGEDACBS statement can be specified according to the
following syntax diagram:

MANAGEDACBS= SETUP

(STAGE ,GSAM=  gsamdbd)

(UPDATE ,GSAM=  gsamdbd)

The parentheses are required only if you specify multiple parameters on the MANAGEDACBS=
statement.

The following list describes the parameters that you can specify on the MANAGEDACBS= statement:

SETUP
Creates the IMS directory data sets that are required by IMS to manage application control blocks
(ACBs). Any existing instances of the IMS directory data sets are replaced.

Do not specify ACBMGMT=CATALOG in the CATALOG section of the DFSDFxxx PROCLIB member
until after you successfully run the utility with MANAGEDACBS=SETUP specified. You must create
the IMS directory and load it with the active ACBs before you enable the IMS management of
ACBs.

When SETUP is specified, the utility inserts the ACBs that are in the input ACB libraries into the
IMS directory data sets.

If the IMS catalog PSB DFSCP001 is specified in the utility JCL, the utility inserts any new or
modified DBDs or PSBs into the IMS catalog.

If the IMS catalog PSB DFSCPL00 is specified in the utility JCL, the utility deletes all existing
catalog records and reloads the IMS catalog.

When the utility adds an ACB to the IMS directory, it flags the corresponding DBD and PSB
instances in the IMS catalog as active.

Do not run the DFS3PU00 utility as a BMP with MANAGEDACBS=SETUP specified.

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 347

STAGE

Saves the ACBs from the input ACB libraries to a staging data set. ACBs saved in the staging
data set are not activated until you add them to the IMS system by issuing the IMPORT DEFN
SOURCE(CATALOG) command.

When STAGE is specified, the IMS catalog PSB DFSCP001 must be specified in the utility JCL.

If the staging data set exists when the MANAGEDACBS=STAGE control statement is specified,
the utility uses the existing staging data set. Any ACBs already in the staging data set are
preserved. To scratch and re-create the staging data set when you stage new resources, specify
MANAGEDACBS=(STAGE,DELETE). When DELETE is specified, any ACBs in the existing data set
are lost.

When STAGE is specified, the DFS3PU00 utility copies all ACBs in the ACB libraries that do not
already exist in the IMS system into the staging data set. If an ACB in the ACB library already
exists in the IMS system, the utility saves it to the staging data set based on whether timestamp of
the ACB meets the criteria of the UNCOND or LATEST parameter.

Do not specify STAGE when you do an initial load of the IMS catalog or before you enable the IMS
management of ACBs. The STAGE parameter is for staging updates to existing IMS directory data
sets only.

If you specify multiple parameters after MANAGEDACBS=, you must enclose them in parentheses.
For example, (STAGE,LATEST). If you specify only STAGE, you can omit the parentheses.

CATRSCS
When you use the STAGE option with the CATRSCS option, IMS catalog resources are added to
the staging directory data set.

DELETE
If the staging data set is not allocated to any online IMS system, scratch and recreate the
staging data set before adding the resources to the staging data set. Any ACBs in the existing
staging data set are lost.

GSAMPCB
GSAM resources are included for MANAGEDACBS= running in DLI mode using PSB DFSCP001.
When GSAMPCB is specified, the IEFRDER batch log data set is not used by the catalog
members information gather task. Only the catalog update task writes to the batch log data
set for catalog database changes. GSAMPCB and DELETE are mutually exclusive.

LATEST
If an ACB already exists in the IMS system, do not save an instance of the ACB in an ACB
library to the staging data set unless the instance in the ACB library has a later timestamp than
the ACB in the IMS system.

This is the default.

UNCOND
If an ACB already exists in the IMS system, save an instance of the ACB in an ACB library to
the staging data set unconditionally, unless the timestamp of the ACB in the ACB library is the
same as the timestamp of the ACB in the IMS system.

gsamdbd

gsamdbd is the name of changed GSAM database. The specified database record is inserted into
the IMS catalog, and the application control block is written to the staging or active directory
based on the MANAGEDACBS control statement parameters that you specify.

You can use the gsamdbd variable with the STAGE or UPDATE parameter. However, LATEST,
UNCOND, DELETE, SHARE, and GSAMPCB are not supported if you specify the gsamdbd variable.

Because the gsamdbd variable identifies a GSAM resource, the GSAMPCB batch logging rule
applies only to the catalog update task that writes to the batch log data set for catalog database
changes.

348 IMS: System Utilities

Follow these steps if you want to change GSAM DBDs by using the STAGE parameter and
gsamdbd. This process writes only the GSAM DBD to the staging directory.

1. Change the GSAM DBD source.
2. Run a DBDGEN to generate the GSAM DBD into DBDLIB.
3. Run the DFS3PU00 utility with MANAGEDACBS=(STAGE,GSAM=gsamdbd).

Tip: Only the DBDLIB DD card is required for the DFS3PU00 utility. ACBLIB and PSBLIB are not
needed and are ignored if specified.

The new GSAM DBD instance will be inserted to the catalog, and the application control block
will be written to the staging directory.

4. Run the IMPORT DEFN SOURCE(CATALOG) or IMPORT DEFN SOURCE(CATALOG)
NAME(gsamdb) command with or without OPTION(NOCHECK).

UPDATE
Updates existing IMS directory system data sets directly in exclusive mode. The ACBs are not
placed in the staging data set.

Recommendation: Shut down all IMS systems that use the IMS directory when you specify the
UPDATE parameter. When UPDATE is specified, the IMS Catalog Populate utility requires exclusive
access to the IMS directory.

Also, the utility does not notify online IMS systems when it updates the IMS directory.
Consequently, any IMS systems that are online when the utility updates the IMS directory must be
restarted to load the updated ACBs.

When UPDATE is specified, the DFS3PU00 utility inserts ACBs that are not already in the IMS
system into the IMS directory unconditionally. If an ACB exists in the IMS system, the instance
of the ACB is replaced depending on the timestamp of the instance in the ACB library and the
specification of the UNCOND or LATEST parameter.

Do not specify UPDATE when you do an initial load of the IMS catalog or before you enable the
IMS management of ACBs. The UPDATE parameter is for updating existing IMS directory data sets
only.

When UPDATE is specified, the IMS catalog PSB DFSCP001 must be specified in the utility JCL.

If you specify multiple parameters after MANAGEDACBS, you must enclose them in parentheses.
For example, (UPDATE,LATEST). If you specify only UPDATE, you can omit the parentheses.

By default, the system data set names that are allocated for IMS management of ACBs are derived
from the data set name prefix that is specified in the RECON data set when the first partition of
the IMS catalog is defined. To override this default, you can specify the SYSDSHLQ= parameter in a
TYPE=CATDSHLQ statement in the dynamic allocation (DFSMDA) macro.

LATEST
If an ACB already exists in the IMS system, do not replace it with an instance of the ACB from
an ACB library unless the instance in the ACB library has a later timestamp than the ACB in the
IMS system.

This is the default.

UNCOND
If an ACB already exists in the IMS system, replace it with an instance of the ACB from an ACB
library unconditionally, unless the timestamp of the ACB in the ACB library is the same as the
timestamp of the ACB in the IMS system.

SHARE
For dynamic option (DOPT) PSBs only, allocates the required IMS directory data sets in a
shared mode so that DOPT PSBs can be added to the IMS catalog without interrupting online
processing.

Do not specify SHARE if the utility is loading the IMS catalog, as indicated by the specification
of DFSCPL00, the IMS catalog load PSB, in the execution parameters of the utility JCL.

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 349

Do not specify SHARE if any resources in the input ACBLIB data sets are not DOPT PSBs.

Before you run the utility with the SHARE option specified, the extended sharing of PDSE
data sets must be enabled in your z/OS system. The extended sharing of PDSE data sets is
enabled in z/OS by specifying PDSESHARING(EXTENDED) in the IGDSMSxx member in the
SYS1.PARMLIB on each system in the sysplex. If extended PDSE sharing is not enabled when
SHARE is specified, the utility allocates the required IMS catalog data sets in exclusive mode,
which might cause conflicts with other IMS processes and application programs.

For more information about enabling extended PDSE sharing, see z/OS: Specifying Extended
PDSE Sharing in a Multiple-System Environment.

GSAMPCB
GSAM resources are included for MANAGEDACBS= running in DLI mode using PSB DFSCP001.
When GSAMPCB is specified, the IEFRDER batch log data set is not used by the catalog
members information gather task. Only the catalog update task writes to the batch log data
set for catalog database changes. GSAMPCB and DELETE are mutually exclusive.

gsamdbd

gsamdbd is the name of changed GSAM database. The specified database record is inserted into
the IMS catalog, and the application control block is written to the staging or active directory
based on the MANAGEDACBS control statement parameters that you specify.

You can use the gsamdbd variable with the STAGE or UPDATE parameter. However, LATEST,
UNCOND, DELETE, SHARE, and GSAMPCB are not supported if you specify the gsamdbd variable.

Because the gsamdbd variable identifies a GSAM resource, the GSAMPCB batch logging rule
applies only to the catalog update task that writes to the batch log data set for catalog database
changes.

Follow these steps if you want to change GSAM DBDs by using the UPDATE parameter and
gsamdbd:

1. Change the GSAM DBD source.
2. Run a DBDGEN to generate the GSAM DBD into DBDLIB.
3. Run the DFS3PU00 utility with MANAGEDACBS=(UPDATE,GSAM=gsamdbd).

Tip: Only the DBDLIB DD card is required for the DFS3PU00 utility. ACBLIB and PSBLIB are not
needed and are ignored if specified.

The new GSAM DBD instance will be inserted to the catalog, and the application control block
will be written to the IMS directory.

NODUPLIST
Do not print a list of resource instances that were not added. This parameter is the default.

NOISRTLIST
Do not print a list of inserted resource instances.

Import statistics report

The IMS Catalog Import utility creates an import statistics report for the record segments to be loaded or
updated in the IMS catalog. When the IMS Catalog Import utility runs in analysis-only mode, the report
reflects only the potential statistics if the IMS catalog were loaded or updated from the ACB libraries
currently being used as input to the utility.

The first section in the report is a summary of the segments that were inserted during the current
execution of the utility. For each segment type inserted in the IMS catalog, the summary includes the
following information organized into columns:

• The segment code (SC)
• The segment name, which generally corresponds to a macro in your DBD or PSB source files

350 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm

• The data set group (DSG) in the IMS catalog that the segment is stored in
• The parent segment of the listed segment
• The total number of segments of that type that are loaded into the IMS catalog
• The average number of segment instances of that type under the parent segment

The second section in the report shows both the numbers of existing DBD and PSB records that were
updated by the utility and the number of existing DBD and PSB records that were not updated because
the timestamp of the record matched the timestamp of the corresponding ACB member in the ACB library.
This section of the report also shows the number of DBD and PSB segments that do not need to be
inserted because their timestamps in the IMS catalog match their timestamps in the ACB library.

The rest of the sections in the report provide the storage estimates.

For the OSAM data sets, the storage sections of the report show the number of blocks of the specified
size. For the VSAM KSDSs, which include the indirect list data set (ILDS), the primary index data set, and
the secondary index data set, the report shows the number of VSAM records.

These numbers are estimates that reflect the amount of space needed to load the catalog records that
are built from the ACB libraries that you provide as input to the DFS3PU00 utility. If you are calculating
the amount of storage required for the IMS catalog data sets, provide plenty of additional space in your
calculations to allow for expansion.

If you have IMS create the IMS catalog data sets automatically, you can specify additional space as a
percentage of the estimates that are provided by the utility on the SPACEALLOC parameter in the IMS
catalog section of the DFSDFxxx PROCLIB member. The default value for this parameter is 500%.

In the report, the following abbreviations are used:
DSG

Data set group
L

A HALDB ILDS data set. The number of records shown represent the potential number of indirect list
entries (ILEs) that could be created if the IMS catalog is reorganized.

SC
Segment code. When loading a segment type, IMS assigns a segment code as a unique identifier (an
integer from 1 to 255). IMS assigns numbers in ascending sequence, starting with the root segment
type (number 1) and continuing through all dependent segment types in hierarchical sequence.

SEGS
Segments

X
HALDB partitioned primary index.

 CATALOG DFSCD000

 PARTITION DFSCD01

 NUMBER OF SEGMENTS INSERTED INTO THE CATALOG
 INSERTED AVERAGE
 SC SEGMENT SEGMENTS DSG PARENT SEGS/PARENT
 -- -------- -------- --- -------- -----------
 1 HEADER 4228 A
 2 DBD 2530 A HEADER 0.6
 3 CAPXDBD 7 D DBD 0.0
 5 DSET 2599 D DBD 1.0
 7 AREA 139 D DBD 0.1
 9 SEGM 16337 B DBD 6.5
 10 CAPXSEGM 1 D SEGM 0.0
 12 FLD 16426 C SEGM 1.0
 14 MAR 16426 C FLD 1.0
 17 LCHILD 2687 B SEGM 0.2
 20 XDFLD 134 B LCHILD 0.0
 33 PSB 1840 A HEADER 0.4
 35 PCB 9190 B PSB 5.0
 37 SS 75274 B PCB 8.2
 39 SF 1105 B SS 0.0
 41 DBDXREF 8886 D PSB 4.8

Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0) 351

 WITHIN DUPLICATES
 EXISTING NOT
 SEGMENT HEADER INSERTED
 ------- -------- ----------
 DBD 71 0
 PSB 72 0

 ESTIMATED SPACE REQUIREMENT TO HOLD INSERTED SEGMENTS
 DSG BLKSIZE BLOCKS
 --- ------- ------
 A 4096 596
 B 4096 9343
 C 4096 8214
 D 4096 236

 DSG RECORDS
 --- -------
 L 8886
 X 4230

 SECONDARY
 INDEX RECORDS
 --------- -------
 DFSCX000 8886

Library statistics report
The IMS Catalog Import utility calls the z/OS data set utility IEBCOPY to copy ACB, DBD, and PSB
libraries. The IEBCOPY utility provides statistics and messages for the copy operation. For more
information about the IEBCOPY utility, see the related link near the bottom of this topic.

Return codes

The IMS Catalog Import utility returns the following codes:

0
Successful completion of all operations

4
One or more warning messages were issued.

8 or greater
Program terminated due to severe errors

352 IMS: System Utilities

Chapter 9. IMS Catalog Directory Recovery utility
(DFS3RU00)

Use the IMS™ catalog Directory Recovery utility (DFS3RU00) to rebuild the IMS directory data sets and
recover the ACBs of IMS databases and programs to the directory by reading active resources from
the IMS catalog, or clean up the IMS directory data sets. The utility is used in an IMS-managed ACB
environment you are using DDL and cannot build IMS directory from an ACBLIB.

The DFS3RU00 utility has four basic functions:

• Rebuild IMS directory data sets
• Recover the ACBs for all IMS databases and programs
• Write online runtime blocks to the IMS directory data sets
• Clean up the IMS directory data sets

The functions of rebuilding, recovering, and writing are enabled by specify MBR=ALL in the SYSIN DD
control statement.

The DFS3RU00 utility can also be submitted to clean up the IMS directory data sets when the directory
online updates aborted abnormally.

In case of a disaster recovery scenario where both IMS catalog and the IMS directory data sets are lost,
you must recover the IMS catalog database first before running this utility to rebuild and restore the
directory data sets.

Subsections:

• “Restrictions” on page 353
• “Prerequisites” on page 353
• “Requirements” on page 353
• “Recommendations” on page 354
• “Input and Output” on page 354
• “JCL specifications” on page 354
• “Return codes” on page 355

Restrictions
The DFS3RU00 utility runs as DL/I batch region. The main storage databases (MSDB) and shared
secondary index databases are not supported.

Prerequisites
In case of disaster recovery, you must recover IMS catalog first. IMS catalog acts as input to the
DFS3RU00 utility.

Ensure that the DFS3RU00 utility does not clean up the directory data sets when either the IMPORT
DEFN SOURCE(CATALOG) command or the DDL definition activation process is in progress of updating
the directory data sets.

Requirements
The DFS3RU00 utility requires access to the DFSDFxxx member of the IMS.PROCLIB data set.

Before you run the DFS3RU00 utility, ensure that the IMS catalog DBDs (DFSCD000, DFSCX000) and
PSBs (DFSCP000, DFSCP001) are recovered, so that the utility can be rerun in case of recovery failure.
The DFS3RU00 utility writes the catalog DBDs and PSBs to the directory data sets. If the directory data

© Copyright IBM Corp. 1974, 2020 353

sets already exist, specify ACBMGMT=CATALOG in the DFSDFxxx member of the IMS.PROCLIB data set to
enable the IMS catalog and the IMS management of ACBs. Otherwise, specify ACBMGMT=ACBLIB.

Recommendations
When you clean up the directory data sets with the DFS3RU00 utility, enable internal resource lock
manage (IRLM) in the JCL and in the IMS system to avoid conflicts with the processes that update the
directory data sets.

If IRLM is not used, issue the QUERY MEMBER TYPE(IMS) SHOW() command to check the status of the
IMPORT and DDL definition activation processing.

Input and Output
The DFS3RU00 utility uses the following input:

• SYSIN DD statement
• CATALOG section of the DFSDFxxx member of the IMS.PROCLIB data set

The DFS3RU00 utility generates the following output:

• One or more IMS directory data sets that are recovered
• The bootstrap dataset

JCL specifications
EXEC statement

The following JCL shows the PARM parameters that you can use to run the DFS3RU00 utility. Use the
DFSDF= parameter to specify the three-character suffix of your DFSDFxxx member in the IMS.PROCLIB
data set.

//BATCH EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3RU00,DFSCP000,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=xxx')

To enable IRLM support, you can specify the PARM parameters on the EXEC statement as shown in the
following example:

// PARM=(DLI,DFS3RU00,DFSCP000,,,,,,,,,,,Y,Y,irlmid,,,,,,,,,,,'DFSDF=xxx')

DD statements

STEPLIB DD
Points to the IMS.SDFSRESL library, which contains the IMS nucleus and the required IMS modules.
If the STEPLIB DD statement is unauthorized because it contains unauthorized libraries that are
concatenated to IMS.SDFSRESL, you must include a DFSRESLB DD statement.

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules.

For IMS batch, SDFSRESL and any data set that is concatenated to it on the DFSRESLB DD statement
must be authorized by the Authorized Program Facility (APF). The JOBLIB DD and STEPLIB DD
statements do not need to be authorized for IMS batch.

PROCLIB DD
Specifies the DFSDFxxx member of the IMS.PROCLIB data set that defines the default retention
criteria for the records in the IMS catalog.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets. The IMS DD statement is ignored if the IMS-
management of ACBs is enabled.

IMSDBSDS DD
Optionally defines the IMS directory bootstrap data set (BSDS).

354 IMS: System Utilities

Use this DD statement to control the placement and size of the data set. If this statement is provided,
the utility does not delete an existing BSDS and then create a new one, but overwrites the content of
the existing data set.

The data set name must conform to the same naming convention as for a utility-created BSDS. The
data set must be DSORG=PS, RECFM=FB, LRECL=96.

If this statement is omitted, the utility dynamically deletes any preexisting BSDS and dynamically
creates a new one.

IMSDnnnn DD
Optionally defines the IMS directory data sets that are used to store the ACBs.

Use this DD statement for each IMS directory data set to control the number of data sets that are
used, and the placement and size of each data set. You can provide this DD statement for up to 20
data sets. The number of DD statements that start from IMSD0001 determines how many data sets
are used. The utility does not dynamically delete or create any of the directory data sets if IMSD0001
is specified.

You can specify only one data set on each DD statement. Concatenation is not allowed.

The data set name must conform to the same naming convention as for a system-created directory
data set. Each data set must be a PDS-E with DSORG=PO, RECFM=U, LRECL=0, BLKSIZE=32760,
DSNTYPE=LIBRARY. The data set must be empty when the utility begins processing the data set.

If the IMSD0001 DD is omitted, the utility dynamically deletes any preexisting directory data sets and
dynamically creates two new data sets to store the ACBs.

IEFRDER DD
Defines the primary IMS log data set.

DFSVSAMP DD
Defines the buffer pool parameters data set.

SYSPRINT DD
Defines the output report data set.

SYSIN DD
Defines the input control statement. The utility accepts the following SYSIN DD control statement:

MBR=ALL

By specifying MBR=ALL, the utility reads the metadata of all active IMS resources from the IMS
catalog, recovers the online runtime blocks, and writes them to the IMS directory data sets.

Return codes
The IMS Catalog Recovery utility completes execution with one of the following return codes:
0

No errors or exceptional conditions.
4

Errors in database type or IMS online block building failure. The DFS3RU00 utility does not support
MSDB and shared secondary index databases. To restore the ACBs of these access type databases
and programs that refer them or the ACBs for block builder failure resources, perform ACBGEN and
then run the Catalog Populate utility (DFS3PU00) to recover these members to directory data sets.

8
Errors in control statements.

12
See description in the job report.

20
One or more supported object types were not recovered.

Chapter 9. IMS Catalog Directory Recovery utility (DFS3RU00) 355

JCL examples

The following sample JCL recovers the ACBs for all databases and programs. Ellipses require replacement
with user values.

//BATCH EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3RU00,DFSCP000,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=001')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//IEFRDER DD ...
//DFSVSAMP DD ...
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 MBR=ALL

The following sample JCL cleans up directory data sets. The PSB name DFS3DCU0 must be specified on
the PARM= parameter list. No control card is needed.

//BATCH EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3RU00,DFS3DCU0,,,,,,,,,,,,Y,irlmid,,,,,,,,,,,'DFSDF=CT2')
//STEPLIB DD DSN=IMSTESTL.TNUC0,DISP=SHR
// DD DSN=IMSTESTL.TNUCT,DISP=SHR
// DD DSN=IMSBLD.I14RTSMM.CRESLIB,DISP=SHR
// DD DSN=IMSTESTG.IMSTESTS.DYNALLOC,DISP=SHR
// DD DSN=IMSTESTG.IMSTESTL.DYNALLOC,DISP=SHR
//DFSRESLB DD DSN=IMSTESTL.TNUC0,DISP=SHR
// DD DSN=IMSBLD.I14RTSMM.CRESLIB,DISP=SHR
// DD DSN=IMSTESTG.IMSTESTS.DYNALLOC,DISP=SHR
// DD DSN=IMSTESTG.IMSTESTL.DYNALLOC,DISP=SHR
//PROCLIB DD DSN=IMSVS.PROCLIB2,DISP=SHR
// DD DSN=USER.PRIVATE.PROCLIB,DISP=SHR
// DD DSN=IMSTESTG.I14RTSMM.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSOUT DD SYSOUT=A
//

Related concepts
Building the application control blocks (ACBGEN) (Database Administration)
Related tasks
Recovering the IMS catalog when IMS manages ACBs (Database Administration)
Cleaning up the IMS directory data sets (Database Administration)
Related reference
QUERY MEMBER command (Commands)

356 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_cat_db_backup_and_recov_managedacbs.htm#ims_cat_db_backup_and_recov_managedacbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_cat_db_cleanup_directory.htm#ims_cat_db_cleanup_directory
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.cr/imscmds/ims_querymember.htm#ims_cr2querymember

Chapter 10. IMS Catalog Library Builder utility
(DFS3LU00)

When the IMS management of ACBs is enabled, you can use the IMS Catalog Library Builder utility
(DFS3LU00) to create database descriptions (DBD), program specification blocks (PSB), and application
control blocks (ACB) for use by tools or processes that still require them. The utility builds these
resources by reading the IMS catalog.

The IMS Catalog Library Builder utility can also create DBD and PSB macro statements for input into the
DBD Generation and PSB Generation utilities.

If DDL (database definition language) is being used, but other processes still require DBD, PSB, and ACB
libraries, this utility can be used to update these libraries with the changes introduced by DDL.

Restrictions
No restrictions are documented for this utility.

Prerequisites
The IMS management of ACBs must be enabled.

Requirements
The output data sets must exist and contain enough free space to hold the members that are generated
by the utility.

Input and output
The DFS3LU00 utility reads the IMS catalog to create one or more of the following resources from the
definitions of the databases and program views that are stored in an IMS catalog:

• A library of the ACBs that are currently active in the IMS system.
• A library of DBDs for the databases that are currently active in the IMS system.
• A library of PSBs for the program views that are currently active in the IMS system.
• DBD macro statement definitions of the databases that are currently active in the IMS system. The

macro definitions can be used as input to the DBD Generation utility.
• PSB macro statement definitions of the program views that are currently active in the IMS system. The

macro definitions can be used as input to the PSB Generation utility.

The resources that the utility can create are selected by specifying control statement parameters on the
SYSIN DD statement.

For each control statement that is provided as input, the utility requires an output data set that is
identified by a DD statement of the same name as the control statement.

© Copyright IBM Corp. 1974, 2020 357

Figure 33. IMS Catalog Library Builder utility input and output

JCL specifications

The IMS Catalog Library Builder utility can generate DBD macro statements, PSB macro statements, and
ACB, DBD, and PSB libraries. Depending on the control statements and DD statements that you include in
the JCL, the utility can generate one, some, or all of these different types of output in a single execution.

The DD statements that you include must not contain concatenations.

In the JCL, the IMSCATHLQ parameter identifies the IMS catalog that contains the database and program
view definitions that the utility uses to build the DBD and PSB resources. You can specify either the
high-level qualifier of the IMS directory data sets of the IMS catalog or the name of a CATDSHLQ DFSMDA
member that defines the high-level qualifier of the IMS directory data sets. For an example of the JCL that
specifies a CATDSHLQ DFSMDA member, see JCL for specifying a CATDSHLQ DFSMDA member.

JCL for creating DBD macro statements

//***
//* THIS STEP FILLS THE DBDSOR LIBRARY
//***
//LUDBDSOR EXEC PGM=DFS3LU00,REGION=0M
//*
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//LUSYSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//DBDSOR DD DSN=IMS.DFS3LU00.DBDSOR,DISP=OLD,DCB=(RECFM=FB,LRECL=80)

358 IMS: System Utilities

//SYSIN DD *
 DBDSOR
 IMSCATHLQ=IMS.DFSCD000
/*

JCL for building PSB macro statements

//***
//* THIS STEP FILLS THE PSBSOR LIBRARY
//***
//LUPSBSOR EXEC PGM=DFS3LU00,REGION=0M
//*
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//LUSYSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//PSBSOR DD DSN=IMS.DFS3LU00.PSBSOR,DISP=OLD,DCB=(RECFM=FB,LRECL=80)
//SYSIN DD *
 PSBSOR
 IMSCATHLQ=IMS.DFSCD000
/*

JCL for building an ACB library

//***
//* THIS STEP FILLS THE ACBLIB LIBRARY
//***
//LUACBLIB EXEC PGM=DFS3LU00,REGION=0M
//*
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//LUSYSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//ACBLIB DD DSN=IMS.DFS3LU00.ACBLIB,DISP=OLD
//SYSIN DD *
 ACBLIB
 IMSCATHLQ=IMS.DFSCD000
/*

JCL for building a PSB library

//***
//* THIS STEP FILLS THE PSBLIB LIBRARY
//***
//LUPSBLIB EXEC PGM=DFS3LU00,REGION=0M
//*
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSLIB DD DISP=SHR,DSN=IMS.SDFSMAC
//SYSPRINT DD SYSOUT=A
//LUSYSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//PSBLIB DD DSN=IMS.DFS3LU00.PSBLIB,DISP=OLD
//SYSIN DD *
 PSBLIB
 IMSCATHLQ=IMS.DFSCD000
/*
//***
//* SYSAIN is used to compile the PSB source.
//***
//SYSAIN DD DSN=IMSTESTS.DFS3LU00.SYSAIN,DISP=OLD
//**
//* SYSLIN is used to link the compiled PSB objects into libraries.
//**
//SYSLIN DD DSN=IMSTESTS.DFS3LU00.SYSLIN,DISP=OLD
//*

Chapter 10. IMS Catalog Library Builder utility (DFS3LU00) 359

JCL for building a DBD library

//***
//* THIS STEP FILLS THE DBDLIB LIBRARY
//***
//LUDBDLIB EXEC PGM=DFS3LU00,REGION=0M
//*
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSLIB DD DISP=SHR,DSN=IMS.SDFSMAC
//SYSPRINT DD SYSOUT=A
//LUSYSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//DBDLIB DD DSN=IMS.DFS3LU00.DBDLIB,DISP=OLD
//SYSIN DD *
 DBDLIB
 IMSCATHLQ=IMS.DFSCD000
/*
//***
//* SYSAIN is used to compile the DBD source.
//***
//SYSAIN DD DSN=IMSTESTS.DFS3LU00.SYSAIN,DISP=OLD
//**
//* SYSLIN is used to link the compiled DBD objects into libraries.
//**
//SYSLIN DD DSN=IMSTESTS.DFS3LU00.SYSLIN,DISP=OLD
//*

JCL for specifying a CATDSHLQ DFSMDA member

In the following example, the data set that contains the DFSMDA member is concatenated to the
STEPLIB. The alias of the IMS catalog and the characters HLQ are specified on the IMSCATHLQ parameter.
This value matches the name of DFSMDA member that defines the high-level qualifier.

This method for specifying a CATDSHQ DFSMDA member in the DFS3LU00 utility JCL for building any type
of resource.

//***
//* THIS STEP FILLS THE ACBLIB LIBRARY
//***
//LUACBLIB EXEC PGM=DFS3LU00,REGION=0M
//*
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
// DD DSN=IMS.MDALIB,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//LUSYSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//ACBLIB DD DSN=IMS.DFS3LU00.ACBLIB,DISP=OLD
//SYSIN DD *
 ACBLIB
 IMSCATHLQ=DFSCHLQ
/*

DD statements

ACBLIB DD
Defines the output IMS ACBLIB data sets to contain members that the utility creates.

DBDLIB DD
Defines the output IMS DBDLIB data set to contains the members that the utility creates.

DBDSOR DD
Defines the output data set to contain the DBD source members that the utility creates.

You must specify the following DCB attributes with the DBDSOR DD statement:

• Organization : PO
• Record format . . . : F or FB

360 IMS: System Utilities

• Record length . . . : 80
• Block size : 80 or a multiple of 80 if RECFM=FB
• Data set name type : PDS

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC
modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

LUSYSPRT DD
Defines the output data set that holds status and summary statistical information that is written by
the utility. You can send this data set to SYSOUT or define it as a permanent data set.

The following example shows the types of status messages that can be written to the LUSYSPRT DD
statement for each member processed. The output of the compiler and linker contains additional
information.

 COMPILE SUCCESS FOR MEMBER : mbr_name
 LINK SUCCESS FOR MEMBER : mbr_name
 COMPILE FAILURE FOR MEMBER : mbr_name RC = rc
 LINK FAILURE FOR MEMBER : mbr_name RC = rc

If the utility runs to completion, the utility also writes summary statistics to the LUSYSPRT DD
statement. The following example shows the types of statistics that are written by the utility:

 Processed xxxxxxxx out of yyyyyyyy members
 Total catalog entries : xxxxxxxx
 Entry get failures : xxxxxxxxx
 Entry get successes : xxxxxxxxx
 xxxxxxxx compiles attempted : yyyyyyyy
 xxxxxxxx compiles completed : yyyyyyyy
 xxxxxxxx compiles failed : yyyyyyyy
 xxxxxxxx links attempted : yyyyyyyy
 xxxxxxxx links successful : yyyyyyyy
 xxxxxxxx links failed : yyyyyyyy
 xxxxxxxx members created : yyyyyyyy

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines various attributes
of the IMS catalog that are required by the utility.

PSBLIB DD
Defines the output IMS PSBLIB data set to contain the members that the utility creates.

PSBSOR DD
Defines the output data set to contain the PSB source members that the utility creates.

You must specify the following DCB attributes with the PSBSOR DD statement::

• Organization : PO
• Record format . . . : F or FB
• Record length . . . : 80
• Block size : 80 or a multiple of 80 if RECFM=FB
• Data set name type : PDS

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSABEND DD
Defines the dump data set.

Chapter 10. IMS Catalog Library Builder utility (DFS3LU00) 361

SYSAIN DD
When the DBDLIB or PSBLIB control statement is specified, defines an intermediate data set that
is used as input to the compiler that creates the DBDLIB or PSBLIB members. Define the data set
with LRECL=80,BLKSIZE=80,RECFM=F,DSORG=PS or LRECL=80, BLKSIZE=nn (a multiple
of 80), RECFM=FB, DSORG=PS.

SYSIN DD
Defines the input control statement data sets. They can be on a tape volume, direct-access device,
card reader, or be routed through the input stream. The input can be blocked as multiples of 80.
During execution, this utility can process as many control statements as required.

SYSLIB DD

When the DBDLIB or PSBLIB control statement is specified, identifies the IMS.SDFSMAC data set that
contains the IMS macro libraries.

SYSLIN DD
When the DBDLIB or PSBLIB control statement is specified, defines an intermediate data set that
is used as input to the binder that links the DBDLIB or PSBLIB members. Define the data set with
LRECL=80,BLKSIZE=80,RECFM=F,DSORG=PS or LRECL=80, BLKSIZE=nn (a multiple of
80),RECFM=FB, DSORG=PS.

SYSPRINT DD
Defines the output message data set.

When the SYSPRINT DD statement refers to a DASD or tape data set, you can control the block size
of this data set with the BLKSIZE subparameter of the DCB parameter. If specified, the BLKSIZE
value must be an exact multiple of 121 or a system ABEND013-20 can result. Omitting BLKSIZE
from a DASD data set causes a system-determined block size to be used. Regardless of what value is
specified for the LRECL parameter, the utility always uses a record length of 121.

Utility control statements
You can specify any combination of the following control parameters on the SYSIN DD statement for the
DFS3LU00 utility.

ACBLIB
Copies the ACBs that are active in the IMS system to an ACB library data set. The resulting ACB
library can be used by IMS systems, application programs, utilities, or other processes that require an
ACBLIB data set.

IMSCATHLQ=
A required control statement that specifies the high-level qualifier of the IMS directory data sets from
which the utility retrieves the ACB, DBD, and PSB resources.

If the high-level qualifier of the IMS directory data sets is defined by a CATDSHLQ DFSMDA member,
specify the alias name of the IMS catalog followed by HLQ. For example, IMSCATHLQ=DFSCHLQ.
This value must also match the value that is specified on the DDNAME parameter of the CATDSHLQ
DFSMDA member that defines the high-level qualifier.

DBDLIB
Creates database descriptor (DBD) members in a DBD library data set from the active database
definitions that are stored in the IMS catalog.

When the DBDLIB control statement is specified, the following additional DD statements are required:

• SYSAIN DD
• SYSLIB DD
• SYSLIN DD

MBR=
Specifies the name of a single resource for which the utility output is to be created. The specified
name must match the name of an active resource in the IMS catalog.

362 IMS: System Utilities

The type of resource that is specified on the MBR= parameter must be consistent with the output
type that is defined by the control statement that is specified with the MBR= parameter. For example,
if the DBDLIB or DBDSOR control statement is specified, the resource that is named on the MBR=
parameter must be a DBD.

The MBR= parameter can be specified only once per utility execution. If it is specified multiple times,
the utility creates only the resource that is specified on the last instance of the MBR= parameter.

PSBLIB
Creates program specification block (PSB) members in a PSB library data set from the active program
view (PSB) definitions that are stored in the IMS catalog.

When the PSBLIB control statement is specified, the following DD statements are also required:

• SYSAIN DD
• SYSLIB DD
• SYSLIN DD

DBDSOR
Creates macro statements for the DBD Generation utility from the active database definitions that are
stored in the IMS catalog.

PSBSOR
Creates macro statements for the PSB Generation utility from the active program view (PSB)
definitions that are stored in the IMS catalog.

Return codes
The IMS Catalog Library Builder utility returns the following codes:
0

There was a successful completion of all operations.
4

One or more warning messages were issued.
8

The program terminated due to severe errors.
12 or greater

The program terminated due to severe errors.

Chapter 10. IMS Catalog Library Builder utility (DFS3LU00) 363

364 IMS: System Utilities

Chapter 11. IMS Catalog Maintenance utility
(DFS3CM00)

Use the IMS Catalog Maintenance utility (DFS3CM00) to fix incorrect entities in the catalog such as header
timestamps and PARTYPE values.

The DFS3CM00 utility can be run in either a DL/I region or a BMP region. In the following example, the
second Y and the irlmnm value indicate IRLM support:

PARM=(DLI,DFS3CM00,DFSCP001,,,,,,,,,,,Y,Y,irlmnm,Y,,,,,,,,,,'DFSDF=001')

Note: The information used by this utility to perform fixes in the catalog is pulled from the directory, and
the utility does not fix anything in the directory, only in the catalog.

Subsections:

• “Restrictions” on page 365
• “Requirements” on page 365
• “Input and output” on page 365
• “JCL specifications” on page 365
• “Control statements” on page 366
• “Return codes” on page 367

Restrictions

This utility cannot fix the timestamps in the catalog header when run in a non-MACB environment.

Requirements

This utility requires access to both the catalog and the directory. The utility must be run with DFSCP001
PSB specified in the JCL.

Input and output

This utility always reads input from the SYSIN DD card in the JCL.

The output of the DFS3CM00 utility includes:

• A message for each object whose timestamp is fixed.
• A summary of total timestamps fixed.
• Error and warning messages for issues such as invalid input, missing instances, and missing objects.

JCL specifications
The execution parameters for the DFS3CM00 utility must reference the DFSDFxxx member of the
IMS.PROCLIB data set, as shown in the following example JCL.

//DFS3CM00 EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3CM00,DFSCP001,,,,,,,,,,,Y,Y,irlmnm,Y,,,,,,,,,
// ,'DFSDF=001')
//PROCLIB DD DISP=SHR,
// DSN=USER.PRIVATE.AUTOSRVR.PROCLIB
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR

© Copyright IBM Corp. 1974, 2020 365

//SYSIN DD *
TIMESTAMP
/*
//DFSVSAMP
DD

//SYSPRINT DD
SYSOUT=*
//SYSABEND DD SYSOUT=*
//IEFRDER DD

The DFSCP001 PSB is used to obtain update authority. The procedure should also include STEPLIB and
DFSRESLB DD statements for the IMS.SDFSRESL data set and IEFRDER and IEFRDER2 DD statements for
the IMS log data sets. The IMS DD statement is not required if IMS-management of ACBs is enabled. The
backout parameter BKO= should also be set when running the utility in a DLI region.

The utility can be run as BMP by specifying BMP and the IMS id in the PARM list, as shown in the following
example.

//DFS3CM00 EXEC PGM=DFSRRC00,
// PARM=(BMP,DFS3CM00,DFSCP001,,,,,,,,,,,imsid)

DD statements

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC
modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

DFSVSAMP
Defines the buffer pool parameters data set.

IEFRDER DD
Defines the primary IMS log data set.

IEFRDER2 DD
Defines the secondary IMS log data set.

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines various attributes
of the IMS catalog that are required by the utility.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.
The IMS DD statement is not required if IMS management of ACBs is enabled.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSABEND DD
Defines the dump data set.

SYSPRINT DD
Defines the output message data set.

Control statements
TIMESTAMP

Reads and fixes the catalog header timestamps, if any are determined to be incorrect or inconsistent
with those present in the directory.

366 IMS: System Utilities

PARTYPE
Fixes incorrect PARTYPE values.

ALL
Fixes both incorrect timestamps and incorrect PARTYPE values.

No input or blank input
Fixes both incorrect timestamps and incorrect PARTYPE values. This is the default.

RESOURCE_CHKP_FREQ=n
Specifies the number of objectsresources to process between checkpoints.
n can be a 1- to 8-digit numeric value ranging from 1 to 99999999. The default value is 100.

Return codes

The DFS3CM00 utility returns the following codes:

0
All operations completed successfully.

4
While fixing timestamps, the Catalog Maintenance utility could not find the expected directory
instance in the catalog.

8
An expected object was not found in the directory. The active or pending timestamp of an object in the
catalog was non-zero and not found in the corresponding active or staging directory.

12
Invalid input provided in SYSIN; unable to read the directory.

36
The Catalog Maintenance utility was unable to retrieve the HLQ for the catalog directory datasets. The
output will also include a DFS9113E message. This can happen if the utility was run in a non-MACB
environment.

Related reference
DFSDFxxx member of the IMS PROCLIB data set (System Definition)
“Application Control Blocks Maintenance utility (DFSUACB0)” on page 3
In IMS systems that use ACB libraries to manage runtime application control blocks, use the Application
Control Blocks (ACB) Maintenance utility to save instruction execution and direct-access wait time and
improve performance in application scheduling.

Chapter 11. IMS Catalog Maintenance utility (DFS3CM00) 367

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

368 IMS: System Utilities

Chapter 12. IMS Catalog Partition Definition Data Set
utility (DFS3UCD0)

The IMS Catalog Partition Definition Data Set utility (DFS3UCD0) creates and populates the IMS catalog
partition definition data set. This data set stores information about IMS catalog database partitions when
DBRC is not used to manage the database partitions.

Restrictions
No restrictions are documented for this utility.

Prerequisites
No prerequisites are documented for this utility.

Requirements
The utility creates the specified partition definition data set if it is empty. If the data set already contains
data, the existing information is overwritten.

Recommendations
Use DBRC to manage the IMS catalog partition information when possible.

Input and output
The DFS3UCD0 utility uses the following input and output data sets:

• The DFSHDBSC data set contains the input and output from the utility.
• The IMS DBDLIB data set is used as an input data set for the utility.
• The SYSPRINT data set that receives messages from the utility.
• The SYSIN data set that contains the utility control statements.

JCL specifications
EXEC statement

//S1 EXEC PGM=DF3UCD0

DD statements
JOBLIB/STEPLIB

The location of the IMS.SDFSRESL data set, which contains the executable modules for this utility.
DFSHDBSC

The data set name that is used for the input to and output from the utility. Only one data set name
is allowed and concatenated data sets are not valid. The DCB values for this data set are RECFM=F
and LRECL=80.

IMS
The IMS DBDLIB data set.

SYSPRINT
The data set that receives messages generated by the utility. The DCB parameters for the
SYSPRINT data set are RECFM=FB and LCRECL=133.

© Copyright IBM Corp. 1974, 2020 369

SYSIN
The data set that contains the input parameters for the utility. The DCB parameters for the SYSIN
data set are RECFM=FB and LRECL=80.

Only submit HALDB and PART statements with the SYSIN DD statement for this utility.

HALDB statement
This statement specifies the HALDB master name of the IMS catalog.

HALDB=(NAME=  name)

NAME
Specifies the name of the IMS catalog HALDB that you are defining in the IMS catalog partition
definition data set.

PART statement
This statement specifies the structure of the partition or partitions in the IMS catalog HALDB.

PART=(NAME=  name ,PART=  name ,DSNPREFIX=  prefix

,KEYSTCHAR=  value

,KEYSTHEX=  value

BLOCKSZE(

,

4096

value)

FBFF(

0

value)

FSPF(

0

value)

)

NAME
Identifies the name of the HALDB that this partition is being defined for.

PART
Specifies a HALDB partition name. This value can be up to 7 alphanumeric characters long. The
first character must be alphabetic.

DSNPREFIX
Specifies a data set name prefix for the partition data sets contained in the partition. This value
can be up to 37 characters and must be a valid JCL data set name.

KEYSTCHAR
This value is the HALDB partition high key value for this partition. The high key cannot be longer
than the root key. If the high key is shorter than the root key, the high key value is padded with
repeating X'FF' bytes up to the defined root key length. Each partition high key value must be
unique within a HALDB. This value can be up to 256 characters long.

Either this parameter or KEYSTHEX is required. This parameter is mutually exclusive with
KEYSTHEX.

KEYSTHEX
Specifies a HALDB partition high key value in hexadecimal format. It can be up to 512 characters
long. Either this parameter or KEYSTCHAR is required. This parameter is mutually exclusive with
KEYSTCHAR.

BLOCKSZE
Specifies the block size for OSAM data sets. This value must be an even number up to 32766.
This value is used for OSAM data sets only. The default value for this parameter is 4096. You
can specify up to 10 values for this parameter, one for each data set group defined in the DBD.
Separate multiple values with commas.

370 IMS: System Utilities

FBFF
Specifies that every nth control interval or block in this data set group is left as free space during
database load or reorganization operations. This value can be any whole number between 0 and
100 except 1. The default value is 0, which specifies that no free space is retained during load or
reorganization operations.

FSPF
Specifies the minimum percentage of free space that must be retained in this data set group. This
value can be any number between 0 and 99. The default is 0.

Return codes
This utility generates a DFS4353I message after it completes. The message contains one of the following
return codes:

0
Processing completed successfully.

40
The BPESTART macro did not complete successfully. The DFS4353I reason code field contains the
return code from the BPESTART macro.

44
Unable to obtain storage. The DFS4353I reason code indicates what storage could not be obtained:
1

BPEPARSE grammar
2

Parse output block
3

HALDB definition descriptor block
4

DBD record storage
48

An error occurred while parsing the utility SYSIN statement. The DFS4353I reason code field contains
the return code from the BPEPARSE macro.

52
An error occurred while validating the utility SYSIN statement.

56
An error occurred while reading the utility SYSIN statement using the BPERDPDS macro. The
DFS4353I reason code field contains the return code from the BPERDPDS macro.

60
An error occurred while opening SYSPRINT.

76
The HALDB partition definition data set (DFSHDBSC) could not be processed. The reason code
indicates when the processing error occurred:
72

(RC_OPENDEFDS) - An error occurred while opening the data set.
80

(RC_CLOSEDEFDS) - An error occurred while closing the data set.
84

(RC_RDJCBDEFDS) - An RDJFCB macro error occurred while processing the data set.
88

The DBDLIB could not be processed. The reason code indicates the underlying cause:
1

No IMS DD statement was found.

Chapter 12. IMS Catalog Partition Definition Data Set utility (DFS3UCD0) 371

2
An IMS DD open error occurred.

3
The specified database was not found in the DBDLIB.

4
The specified database is not a HALDB.

Sample JCL statements
//S1 EXEC PGM=DFS3UCD0,REGION=0M
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSHDBSC DD DSN=...,DISP=
//SYSPRINT DD SYSOUT=*
//IMS DD DSN=IMS.DBDLIB,DISP=SHR
//SYSIN DD *
HALDB=(NAME=DFSCD000)
PART=(NAME=DFSCD000,PART=xxxxxxxx,
 DSNPREFX=xxxxxxxx,
 KEYSTCHAR=xxxxxxxx)
/*

372 IMS: System Utilities

Chapter 13. IMS Catalog Populate utility (DFS3PU00)
Use the IMS Catalog Populate utility (DFS3PU00) to load, insert, or update DBD and PSB instances into
the database data sets of the IMS catalog from ACB library data sets. If the IMS management of ACBs is
enabled in the IMS system, the utility also adds the active application control blocks (ACBs) to the IMS
directory data set that is managed by IMS.

You can also use the DFS3PU00 utility to estimate the required sizes of the IMS catalog data sets without
updating the IMS catalog. The utility generates the size estimates by scanning the members in the input
ACB libraries.

Whether the DFS3PU00 utility runs in load mode, update mode, or analysis-only mode is determined by
the IMS catalog PSB that you specify in the utility JCL:

• Load mode is specified by PSB DFSCPL00.
• Update mode is specified by PSB DFSCP001.
• Analysis-only mode is specified by DFSCP000.

If the IMS management of ACBs is enabled, you must specify the MANAGEDACBS= control statement on
the SYSINP DD statement to make the generated ACBs available to the online IMS system. Depending on
the specification, the DFS3PU00 utility either adds the ACBs to the staging data set of the IMS catalog
for later activation or, if the IMS system is offline or you are setting up managed ACBs for the first time,
adds them directly to the IMS directory data sets. IMS loads the ACBs from the directory data sets during
startup.

If dynamic option (DOPT) PSBs are the only resource type in the input ACB libraries, the utility can add
the DOPT PSBs without taking the system offline. Some restrictions apply. See the SHARE keyword under
“Control statements” on page 381.

If any of the data sets for the IMS catalog have not been created, including those for the IMS directory,
the DFS3PU00 utility creates them automatically. The IMS directory, an internal IMS structure, is used
to hold the runtime control blocks for the DBD and PSB instances that are flagged as active in the IMS
catalog.

The amount of space that the utility allocates for the IMS catalog data sets is based on the members
in the input ACB libraries and the values that are specified on SPACEALLOC parameter in the catalog
section of the DFSDFxxx PROCLIB member. The amount of space that the utility allocates for the IMS
directory data sets, which are PDSE data sets, is also based on the size of the ACB library, but is increased
dynamically as needed.

The output of the DFS3PU00 utility includes a report that contains statistics about the record segments
that are loaded into the IMS catalog. The report includes information about the number and types of
segments, as well as an estimate of the amount of DASD storage that each data set group of the IMS
catalog will require. If you need to know how much DASD storage the IMS catalog data sets will use
before they are created, you can run the DFS3PU00 utility without populating the IMS catalog to generate
only the statistics report. To run the DFS3PU00 utility in analysis-only mode, specify DFSCP000 as the
PSB for the utility in the utility JCL.

After the utility evaluates the members in your ACB libraries, it produces a report. This report is the same
report that the DFS3PU00 utility produces when it loads the IMS catalog.

The DFS3PU00 utility creates the catalog records from the ACB members in one or more ACB libraries
and depending on your database types, the associated DBD and PSB members in DBD libraries and PSB
libraries. The records contain metadata for your application programs and databases.

The DFS3PU00 utility can run in a DL/I region, or if it is updating an existing IMS catalog, the DFS3PU00
utility can run in a BMP region. If you run the utility in a DL/I batch region and the IMS catalog is shared,

© Copyright IBM Corp. 1974, 2020 373

you must specify IRLM support in the EXEC parameters of the utility JCL. In the following example, the
second Y and irlmid value indicate IRLM support:

PARM=(DLI,DFS3PU00,DFSCP001,,,,,,,,,,,Y,Y,irlmid,,,,,,,,,,,'DFSDF=001')

As an alternative to running the DFS3PU00 utility, you can populate the IMS catalog by using the ACB
Generation and Catalog Populate utility (DFS3UACB). The DFS3UACB utility generates the ACB libraries
for your applications and databases and then populates the IMS catalog, both in the same job step.

Subsections:

• “Restrictions” on page 374
• “Prerequisites” on page 374
• “Requirements” on page 374
• “Recommendations” on page 375
• “Input and output” on page 375
• “JCL specifications” on page 376
• “Control statements” on page 381
• “IMS Catalog Populate utility statistics report” on page 385
• “Return codes” on page 387

Restrictions

The IMS Catalog Populate utility (DFS3PU00) cannot be run as a BMP in an ACBMGMT=ACBLIB
environment when the MANAGEDACBS=SETUP utility control statement is specified.

Prerequisites

Before the DFS3PU00 utility can load the metadata for new or changed application programs and
databases into the IMS catalog, the DBD generation, PSB generation, and ACB generation processes
must be complete for the new or changed application programs and databases.

If you are loading an IMS catalog for the first time, ensure that the following steps have been completed
before running the DFS3PU00 utility:

• The DBD and PSB load modules for the IMS catalog have been added to your DBD and PSB libraries.
• The ACB member for the IMS catalog has been generated and loaded into the IMS.ACBLIB data set.
• The IMS catalog HALDB master database and partitions have been defined in either the RECON data set

or, if the target IMS catalog is not supported by DBRC, in an IMS catalog partition definition data set.

Before you can use the SHARE option to add DOPT PSBs to an online IMS catalog, extended sharing
of PDSE data sets must be enabled in z/OS. For more information, see z/OS: Specifying Extended PDSE
Sharing in a Multiple-System Environment.

Requirements

The DFS3PU00 utility requires access to the following data sets:

• The IMS.PROCLIB data set that contains the DFSDFxxx member that enables the IMS catalog and
defines the alias name of the IMS catalog

• One or more IMS.ACBLIB data sets
• If ACB library members reference logically related databases, the IMS.DBDLIB data set
• If ACB library members reference GSAM databases, the IMS.DBDLIB data set and the IMS.PSBLIB data

set

374 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm

When the IMS.DBDLIB and IMS.PSBLIB data sets are included as input, they must be the DBD and PSB
libraries from which the input IMS.ACBLIB data set was built.

If any required members of the PSBLIB or DBDLIB data sets are not found, the utility issues an error
message, and the records for the referencing PSBs are not created in the IMS catalog. You can add the
missing catalog records later by supplying the necessary PSB or DBD members with the correct ACB
library and rerunning the DFS3PU00 utility in update mode by specifying the DFSCP001 PCB in the utility
JCL.

If the IMS management of ACBs is enabled, you must specify the MANAGEDACBS= control statement on
the SYSINP DD statement to make the generated ACBs available to the online IMS system.

When the IMS catalog is registered with DBRC, you are required to create an image copy of the IMS
catalog after an initial load of the IMS catalog. When the IMS catalog is not registered with DBRC, IMS
cannot require an image copy after an initial load; however, if an image copy is not created after an initial
load, the only way to recover the catalog is to reload it.

Recommendations

If you are updating an existing IMS catalog, create an image copy of the IMS catalog data sets when
the updates are complete. If the IMS catalog is registered with DBRC, you can use the DBRC command
GENJCL.IC to back up the catalog. If you have defined the IMS catalog in an IMS Catalog partition
definition data set, you must use standard image copy JCL.

The storage requirement is highly dependent on the total number of ACBLIB members because they have
to be kept in storage. Consider increasing the job's region size to prevent a GETMAIN failure that will
cause abend U1002 reason code 4 to be issued.

Input and output
The DFS3PU00 utility always reads input from the ACB library data sets that contain the ACB members for
your databases and application programs, and from the DFSDFxxx member of the IMS.PROCLIB data set.

If your databases use logical relationships, the IMS Catalog Populate utility also reads input from the
IMS.DBDLIB data set.

If you use GSAM databases and an ACB library member references a GSAM database, the DFS3PU00
utility also reads input from both the IMS.DBDLIB and the IMS.PSBLIB data sets.

The output of the DFS3PU00 utility includes:

• The record segments in the IMS catalog data set (DFSCD000).
• Messages and statistical information to the SYSPRINT data set.
• If MANAGEDACBS=SETUP is specified:

– New or updated record segments in the IMS catalog
– IMS directory data sets
– ACBs in the IMS directory data sets that correspond to the active DBD and PSB instances in the IMS

catalog
• If MANAGEDACBS=STAGE is specified:

– New or updated record segments in the IMS catalog
– ACBs in the staging data set of the IMS directory data sets

• If MANAGEDACBS=UPDATE is specified:

– New or updated record segments in the IMS catalog
– ACBs in the IMS directory data sets that correspond to the active DBD and PSB instances in the IMS

catalog

If any of the following database data sets do not exist, the DFS3PU00 utility creates them automatically:

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 375

• The DFSCD000 database data sets:

– Four data sets for the segments of the IMS catalog
– The indirect list data set (ILDS)
– The primary index data set

• The DFSCX000 secondary index data set.
• When the MANAGEDACBS=SETUP statement is specified, the IMS directory data sets, including the IMS

directory bootstrap data set.

Figure 34. IMS Catalog Populate utility input and output

JCL specifications

DFS3PU00 utility JCL statements

The execution parameters for the DFS3PU00 utility must reference the DFSDFxxx member of the
IMS.PROCLIB data set, as shown in the following example JCL.

At least one IMS.ACBLIB data set must be specified in the utility JCL by the IMSACB01 DD statement.
You can include additional ACBLIB data sets by concatenating them in a single DD statement or by
specifying additional IMSACBnn DD statements, as shown in the following example JCL by the IMSACB02
and IMSACB03 DD statements. The additional IMSACBnn ddnames must be consecutively numbered in
the last two characters positions.

376 IMS: System Utilities

Duplicate ACB members with duplicate names are handled differently depending on whether the ACB
libraries are concatenated on a single DD statement or are referenced individually by separate DD
statements. If you use cloned ACB libraries, but duplicate ACB members might be generated individually
in any of the libraries, reference each of the cloned ACB libraries in the utility JCL by using a separate DD
statement.

When ACB libraries are referenced individually by separate DD statements, the DFS3PU00 utility checks
the ACB generation time stamps of ACB members with duplicate names and uses them only if the ACB
generation time stamp is different from the previously processed ACB member with the same name. If the
time stamps are the same, the ACB member with the duplicate name is ignored.

However, when ACB libraries are concatenated in a single DD statement, the DFS3PU00 utility does not
check the ACB generation time stamps of ACB members with duplicate names. If duplicate member
names exist across the concatenated ACB libraries, only the first ACB member is used and any
subsequent ACB members with a duplicate name are ignored, even if the time stamps are different.

Your DLIBATCH or equivalent procedure should already include IMS DD statements for the PSB and DBD
libraries that were used to generate the ACB libraries. The procedure should also include STEPLIB and
DFSRESLB DD statements for the IMS.SDFSRESL data set and IEFRDER and IEFRDER2 DD statements for
the IMS log data sets.

The following is a sample of the JCL statements that can be used to perform an initial load of the IMS
catalog with the DFS3PU00 utility. The JCL specifies the IMS catalog PSB DFSCPL00, which loads records
to the IMS catalog. Any existing records are overwritten.

 //LOADCAT EXEC PGM=DFS3PU00,
 // PARM=(DLI,DFS3PU00,DFSCPL00,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=001')
 //STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
 //DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
 //IMS DD DSN=IMS.PSBLIB,DISP=SHR
 // DD DSN=IMS.DBDLIB,DISP=SHR
 //PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
 //SYSABEND DD SYSOUT=* Dump data set
 //SYSPRINT DD SYSOUT=* Messages, statistics
 //IEFRDER DD ... Log data set
 //DFSVSAMP DD ... Buffer pool parameters
 //IMSACB01 DD ... First ACBLIB
 // DD ... Optional concatenated ACBLIB
 //IMSACB02 DD ... Optional additional ACBLIBs
 //IMSACB03 DD
 //SYSINP DD * ISRTLIST DUPLIST /*

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 377

The following is a sample of the JCL statements that can be used to update the IMS catalog by running
the DFS3PU00 utility in a DL/I batch job. The JCL specifies the IMS catalog PSB DFSCP001, which inserts
records to the IMS catalog without replacing the entire catalog. IRLM support is not indicated.

 //UPDTCAT EXEC PGM=DFS3PU00,
 // PARM=(DLI,DFS3PU00,DFSCP001,,,,,,,,,,,Y,N,,,,,,,,,,
 // ,,'DFSDF=001')
 //STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
 //DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
 //IMS DD DSN=IMS.PSBLIB,DISP=SHR
 // DD DSN=IMS.DBDLIB,DISP=SHR
 //PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
 //SYSABEND DD SYSOUT=* Dump data set
 //SYSPRINT DD SYSOUT=* Messages, statistics
 //IEFRDER DD ... Log data set with catalog updates
 //DFSVSAMP DD ... Buffer pool parameters
 //IMSACB01 DD ... First ACBLIB
 // DD ... Optional concatenated ACBLIB
 //IMSACB02 DD ... Optional additional ACBLIBs
 //IMSACB03 DD

The following is a sample of the JCL statements that can be used to update the IMS catalog by running
the DFS3PU00 utility in a DL/I batch job. The JCL specifies the IMS catalog PSB DFSCP001, which
inserts records to the IMS catalog without replacing the entire catalog. IRLM support is indicated and is
necessary if authorization of the catalog database exists.

//UPDTCAT EXEC PGM=DFS3PU00,
// PARM=(DLI,DFS3PU00,DFSCP001,,,,,,,,,,,Y,Y,irlmid,,,,,,,,,
// ,,'DFSDF=001')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=* DUMP DATA SET
//SYSPRINT DD SYSOUT=* MESSAGES, STATISTICS
//IEFRDER DD ... LOG DATA SET WITH CATALOG UPDATES
//DFSVSAMP DD ... BUFFER POOL PARAMETERS
//IMSACB01 DD ... FIRST ACBLIB
// DD ... OPTIONAL CONCATENATED ACBLIB
//IMSACB02 DD ... OPTIONAL ADDITIONAL ACBLIBS

The following is a sample of the JCL statements that can be used to update the IMS catalog by running
the DFS3PU00 utility in a BMP job. The JCL specifies the IMS catalog PSB DFSCP001, which inserts
records to the IMS catalog without replacing the entire catalog.

In this example, imsid is the identifier of the IMS system on which the job is to be run.

//UPDTCAT EXEC PGM=DFS3PU00,
 // PARM=(BMP,DFS3PU00,DFSCP001,,,,,,,,,,,imsid,,,,,,)
 //STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
 //DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
 //IMS DD DSN=IMS.PSBLIB,DISP=SHR
 // DD DSN=IMS.DBDLIB,DISP=SHR
 //PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
 //SYSABEND DD SYSOUT=* Dump data set
 //SYSPRINT DD SYSOUT=* Messages, statistics
 //IEFRDER DD ... Log data set with catalog updates
 //DFSVSAMP DD ... Buffer pool parameters
 //IMSACB01 DD ... First ACBLIB
 // DD ... Optional concatenated ACBLIB
 //IMSACB02 DD ... Optional additional ACBLIBs
 //IMSACB03 DD

DD statements

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC

378 IMS: System Utilities

modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

DFSVSAMP
Defines the buffer pool parameters data set.

IEFRDER DD
Defines the primary IMS log data set.

IEFRDER2 DD
Defines the secondary IMS log data set.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.
The IMS DD statement is required only if the IMS ACB library members loaded into the IMS catalog
reference GSAM or logically related databases.

IMSACB01 DD
Defines an ACB library data set that contains the ACB members that are used to populate the IMS
catalog. This DD statement is required.

IMSACBnn DD
Defines additional optional input ACB library data sets. The ddnames of additional ACB libraries must
be consecutively numbered in the nn position.

The value of nn is determined by adding 1 to the value of nn from the preceding IMSACBnn ddname.
Valid values for nn are from 02 through 99.

For example, after the required IMSACB01 DD statement, subsequent DD statements would be
named IMSACB02, IMSACB03, IMSACB04, and so on.

If a break in the consecutive numbering of IMSACBnn ddnames occurs, the ACB library DD statements
after the break are ignored.

IMSDBSDS DD
Optionally defines the IMS directory bootstrap data set (BSDS).

Use this DD statement to control the placement and size of the data set. If this statement is provided,
the utility does not delete an existing BSDS and then create a new one, but overwrites the content of
the existing data set.

The data set name must conform to the same naming convention as for a utility-created BSDS. The
data set must be DSORG=PS, RECFM=FB, LRECL=96.

If this statement is omitted, the utility dynamically deletes any preexisting BSDS and dynamically
creates a new one.

IMSDnnnn DD
Optionally defines the IMS directory data sets that are used to store the ACBs.

Use this DD statement for each IMS directory data set to control the number of data sets that are
used, and the placement and size of each data set. You can provide this DD statement for up to 20
data sets. The number of DD statements that start from IMSD0001 determines how many data sets
are used. The utility does not dynamically delete or create any of the directory data sets if IMSD0001
is specified.

You can specify only one data set on each DD statement. Concatenation is not allowed.

The data set name must conform to the same naming convention as for a system-created directory
data set. Each data set must be a PDS-E with DSORG=PO, RECFM=U, LRECL=0, BLKSIZE=32760,
DSNTYPE=LIBRARY. The data set must be empty when the utility begins processing the data set.

If the IMSD0001 DD is omitted, the utility dynamically deletes any preexisting directory data sets and
dynamically creates two new data sets to store the ACBs.

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 379

IMSDG001 DD

An optional control statement to define an empty work data set to be used as an IMS.ACBLIB data
set for the IMS Catalog Populate utility (DFS3PU00). This data set is used to temporarily hold ACB
library members that reference a GSAM database. The DFS3PU00 utility then moves the ACB library
members into the IMS directory data sets after it copies the ACB library members from the libraries
specified on the IMSACBnn DD statement.

Provide this DD to obtain more control over the placement and size of the temporary data set. If this
DD is provided the DFS3PU00 utility does not dynamically create or delete a temporary data set.

This data set has the following attributes:

DSORG
Partitioned data set extended (PDSE)

DSNTYPE
LIBRARY

RECFM
U

LRECL
80

BLKSIZE
32760

If the IMS management of ACBs is not enabled, this statement is omitted.

If the data set is not a PDSE data set, the DFS4549E message is displayed.

If the data set is not empty when the DFS3PU00 utility begins processing, the content of the data set
is deleted.

If this DD statement is omitted, the DFS3PU00 utility dynamically creates a temporary data set and
deletes it after the utility completes processing.

IMSDSTAG DD
Optionally defines the IMS directory staging data set.

Provide this DD statement to control the placement and size of the data set. If this DD statement is
provided, the utility does not dynamically delete or create the staging data set.

When you name the data set, conform to the same naming convention as for the staging data
set. The data set must be a PDS-E with DSORG=PO, RECFM=U, LRECL=0, BLKSIZE=32760,
DSNTYPE=LIBRARY.

The data set must be empty when the utility begins processing the data set.

If this DD statement is omitted, the utility dynamically deletes any preexisting staging data set and
dynamically creates a new one.

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines various attributes
of the IMS catalog that are required by the utility.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSABEND DD
Defines the dump data set.

SYSINP DD
An optional control statement sequential data set with 80-character fixed-length records. Only
characters in positions 1 - 72 are read.

380 IMS: System Utilities

The control statement parameters, which are separated by blanks or commas, can be specified on
one or more records.

For a description of the control statements that you can specify with the SYSINP DD statement, see
“Control statements” on page 381.

SYSPRINT DD
Defines the output message data set.

When the SYSPRINT DD statement refers to a DASD or tape data set, you can control the block size
of this data set with the BLKSIZE sub-parameter of the DCB parameter. If specified, the BLKSIZE
value must be an exact multiple of 121 or a system ABEND013-20 can result. Omitting BLKSIZE
from a DASD data set causes a system-determined block size to be used. Regardless of what value is
specified for LRECL, the utility will always use a record length of 121.

Control statements
The following control statement parameters, which are separated by blanks or commas, can be specified
on one or more records by using the SYSINP DD statement.

DUPLIST
Specifies that the DFS3PU00 utility list each DBD or PSB resource in the input ACB library that is not
added to the IMS catalog because it is a duplicate of an instance that is already in the IMS catalog. For
each duplicate instance of a resource in the IMS catalog, the utility prints message DFS4436I.

If the MANAGEDACBS= statement is specified and the IMS management of ACBs is enabled, the
utility also lists each DBD or PSB resources that is not added to the IMS directory or the staging data
set because it is a duplicate of the instance of a resource that is already in the IMS directory.

If the UPDATE parameter is specified on the MANAGEDACBS= statement, the utility prints message
DFS4531I for each duplicate instance.

If LATEST is specified or accepted as the default with the UPDATE parameter, the utility also prints
message DFS4522I for each instance that is not added to the IMS directory because the instance of
the resource in the IMS directory has a later timestamp.

If the STAGE parameter is specified on the MANAGEDACBS= statement, the utility prints message
DFS4542I for each resource that is not copied to the staging data set because it is a duplicate
instance.

If LATEST is specified or accepted as the default with the STAGE parameter, the utility also prints
message DFS4539I for each instance that is not added to the staging data set because the instance of
the resource in the IMS directory has a later timestamp.

ERRORMAX=n
Terminate the IMS Catalog Populate utility when more than n messages indicate errors that prevent
certain DBDs and PSBs from having their metadata that is written to the IMS catalog. Duplicate
instances of metadata do not count toward this limit. If this option is omitted, there is no limit.

RESOURCE_CHKP_FREQ=n
Specifies the number of DBD and PSB resource instances to be inserted between checkpoints. n can
be a 1- to 8-digit numeric value of 1 to 99999999. The default value is 100.

SEGMENT_CHKP_FREQ=n
Specifies the number of segments to be inserted between checkpoints. When the number is reached,
IMS finishes inserting all of the segments for the resource instance that is currently being processed
before issuing the checkpoint. n can be a 1- to 8-digit numeric value of 1 to 99999999. The default
value is 1000.

Note: The first checkpoint frequency number to be reached will cause a checkpoint to be taken and
the counters will be reset to 0.

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 381

ISRTLIST

If the IMS management of ACBs is enabled, the utility also lists each DBD or PSB resources that is
either added to the IMS directory or saved to the staging data set for importing into the IMS directory
later.

The utility identifies the action taken for each resource by printing the following messages:
DFS4520I

The resource was added to the IMS directory as a new resource.
DFS4521I

This instance of the resource replaced an existing instance of the resource in the IMS directory.
DFS4537I

The resource was copied to the staging data set. When it is imported into the IMS directory later, it
will be inserted as a new resource in the IMS directory.

DFS4538I
The resource was copied to the staging data set. When it is imported into the IMS directory later, it
will replace an existing instance of the resource in the IMS directory.

MANAGEDACBS=
Use the MANAGEDACBS control statement to perform the following actions:

• Set up IMS to manage the runtime application control blocks (ACBs) for your databases and
program views.

• Update an IMS system that manages ACBs with new or modified ACBs from an ACB library data set.
• Save ACBs from an ACB library to a staging data set for later importing into an IMS system that

manages ACBs.

The MANAGEDACBS statement can be specified according to the following syntax diagram:

MANAGEDACBS= SETUP

(STAGE

,LATEST

,UNCOND ,DELETE ,GSAMPCB ,CATRSCS

)

(UPDATE

,LATEST

,UNCOND ,GSAMPCB ,SHARE

)

If you use the gsamdbd parameter, the MANAGEDACBS statement can be specified according to the
following syntax diagram:

MANAGEDACBS= SETUP

(STAGE ,GSAM=  gsamdbd)

(UPDATE ,GSAM=  gsamdbd)

The parentheses are required only if you specify multiple parameters on the MANAGEDACBS=
statement.

The following list describes the parameters that you can specify on the MANAGEDACBS= statement:

SETUP
Creates the IMS directory data sets that are required by IMS to manage application control blocks
(ACBs). Any existing instances of the IMS directory data sets are replaced.

Do not specify ACBMGMT=CATALOG in the CATALOG section of the DFSDFxxx PROCLIB member
until after you successfully run the utility with MANAGEDACBS=SETUP specified. You must create
the IMS directory and load it with the active ACBs before you enable the IMS management of
ACBs.

382 IMS: System Utilities

When SETUP is specified, the utility inserts the ACBs that are in the input ACB libraries into the
IMS directory data sets.

If the IMS catalog PSB DFSCP001 is specified in the utility JCL, the utility inserts any new or
modified DBDs or PSBs into the IMS catalog.

If the IMS catalog PSB DFSCPL00 is specified in the utility JCL, the utility deletes all existing
catalog records and reloads the IMS catalog.

When the utility adds an ACB to the IMS directory, it flags the corresponding DBD and PSB
instances in the IMS catalog as active.

Do not run the DFS3PU00 utility as a BMP with MANAGEDACBS=SETUP specified.

STAGE

Saves the ACBs from the input ACB libraries to a staging data set. ACBs saved in the staging
data set are not activated until you add them to the IMS system by issuing the IMPORT DEFN
SOURCE(CATALOG) command.

When STAGE is specified, the IMS catalog PSB DFSCP001 must be specified in the utility JCL.

If the staging data set exists when the MANAGEDACBS=STAGE control statement is specified,
the utility uses the existing staging data set. Any ACBs already in the staging data set are
preserved. To scratch and re-create the staging data set when you stage new resources, specify
MANAGEDACBS=(STAGE,DELETE). When DELETE is specified, any ACBs in the existing data set
are lost.

When STAGE is specified, the DFS3PU00 utility copies all ACBs in the ACB libraries that do not
already exist in the IMS system into the staging data set. If an ACB in the ACB library already
exists in the IMS system, the utility saves it to the staging data set based on whether timestamp of
the ACB meets the criteria of the UNCOND or LATEST parameter.

Do not specify STAGE when you do an initial load of the IMS catalog or before you enable the IMS
management of ACBs. The STAGE parameter is for staging updates to existing IMS directory data
sets only.

If you specify multiple parameters after MANAGEDACBS=, you must enclose them in parentheses.
For example, (STAGE,LATEST). If you specify only STAGE, you can omit the parentheses.

CATRSCS
When you use the STAGE option with the CATRSCS option, IMS catalog resources are added to
the staging directory data set.

DELETE
If the staging data set is not allocated to any online IMS system, scratch and recreate the
staging data set before adding the resources to the staging data set. Any ACBs in the existing
staging data set are lost.

GSAMPCB
GSAM resources are included for MANAGEDACBS= running in DLI mode using PSB DFSCP001.
When GSAMPCB is specified, the IEFRDER batch log data set is not used by the catalog
members information gather task. Only the catalog update task writes to the batch log data
set for catalog database changes. GSAMPCB and DELETE are mutually exclusive.

LATEST
If an ACB already exists in the IMS system, do not save an instance of the ACB in an ACB
library to the staging data set unless the instance in the ACB library has a later timestamp than
the ACB in the IMS system.

This is the default.

UNCOND
If an ACB already exists in the IMS system, save an instance of the ACB in an ACB library to
the staging data set unconditionally, unless the timestamp of the ACB in the ACB library is the
same as the timestamp of the ACB in the IMS system.

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 383

gsamdbd

gsamdbd is the name of changed GSAM database. The specified database record is inserted into
the IMS catalog, and the application control block is written to the staging or active directory
based on the MANAGEDACBS control statement parameters that you specify.

You can use the gsamdbd variable with the STAGE or UPDATE parameter. However, LATEST,
UNCOND, DELETE, SHARE, and GSAMPCB are not supported if you specify the gsamdbd variable.

Because the gsamdbd variable identifies a GSAM resource, the GSAMPCB batch logging rule
applies only to the catalog update task that writes to the batch log data set for catalog database
changes.

Follow these steps if you want to change GSAM DBDs by using the STAGE parameter and
gsamdbd. This process writes only the GSAM DBD to the staging directory.

1. Change the GSAM DBD source.
2. Run a DBDGEN to generate the GSAM DBD into DBDLIB.
3. Run the DFS3PU00 utility with MANAGEDACBS=(STAGE,GSAM=gsamdbd).

Tip: Only the DBDLIB DD card is required for the DFS3PU00 utility. ACBLIB and PSBLIB are not
needed and are ignored if specified.

The new GSAM DBD instance will be inserted to the catalog, and the application control block
will be written to the staging directory.

4. Run the IMPORT DEFN SOURCE(CATALOG) or IMPORT DEFN SOURCE(CATALOG)
NAME(gsamdb) command with or without OPTION(NOCHECK).

UPDATE
Updates existing IMS directory system data sets directly in exclusive mode. The ACBs are not
placed in the staging data set.

Recommendation: Shut down all IMS systems that use the IMS directory when you specify the
UPDATE parameter. When UPDATE is specified, the IMS Catalog Populate utility requires exclusive
access to the IMS directory.

Also, the utility does not notify online IMS systems when it updates the IMS directory.
Consequently, any IMS systems that are online when the utility updates the IMS directory must be
restarted to load the updated ACBs.

When UPDATE is specified, the DFS3PU00 utility inserts ACBs that are not already in the IMS
system into the IMS directory unconditionally. If an ACB exists in the IMS system, the instance
of the ACB is replaced depending on the timestamp of the instance in the ACB library and the
specification of the UNCOND or LATEST parameter.

Do not specify UPDATE when you do an initial load of the IMS catalog or before you enable the
IMS management of ACBs. The UPDATE parameter is for updating existing IMS directory data sets
only.

When UPDATE is specified, the IMS catalog PSB DFSCP001 must be specified in the utility JCL.

If you specify multiple parameters after MANAGEDACBS, you must enclose them in parentheses.
For example, (UPDATE,LATEST). If you specify only UPDATE, you can omit the parentheses.

By default, the system data set names that are allocated for IMS management of ACBs are derived
from the data set name prefix that is specified in the RECON data set when the first partition of
the IMS catalog is defined. To override this default, you can specify the SYSDSHLQ= parameter in a
TYPE=CATDSHLQ statement in the dynamic allocation (DFSMDA) macro.

LATEST
If an ACB already exists in the IMS system, do not replace it with an instance of the ACB from
an ACB library unless the instance in the ACB library has a later timestamp than the ACB in the
IMS system.

This is the default.

384 IMS: System Utilities

UNCOND
If an ACB already exists in the IMS system, replace it with an instance of the ACB from an ACB
library unconditionally, unless the timestamp of the ACB in the ACB library is the same as the
timestamp of the ACB in the IMS system.

SHARE
For dynamic option (DOPT) PSBs only, allocates the required IMS directory data sets in a
shared mode so that DOPT PSBs can be added to the IMS catalog without interrupting online
processing.

Do not specify SHARE if the utility is loading the IMS catalog, as indicated by the specification
of DFSCPL00, the IMS catalog load PSB, in the execution parameters of the utility JCL.

Do not specify SHARE if any resources in the input ACBLIB data sets are not DOPT PSBs.

Before you run the utility with the SHARE option specified, the extended sharing of PDSE
data sets must be enabled in your z/OS system. The extended sharing of PDSE data sets is
enabled in z/OS by specifying PDSESHARING(EXTENDED) in the IGDSMSxx member in the
SYS1.PARMLIB on each system in the sysplex. If extended PDSE sharing is not enabled when
SHARE is specified, the utility allocates the required IMS catalog data sets in exclusive mode,
which might cause conflicts with other IMS processes and application programs.

For more information about enabling extended PDSE sharing, see z/OS: Specifying Extended
PDSE Sharing in a Multiple-System Environment.

GSAMPCB
GSAM resources are included for MANAGEDACBS= running in DLI mode using PSB DFSCP001.
When GSAMPCB is specified, the IEFRDER batch log data set is not used by the catalog
members information gather task. Only the catalog update task writes to the batch log data
set for catalog database changes. GSAMPCB and DELETE are mutually exclusive.

gsamdbd

gsamdbd is the name of changed GSAM database. The specified database record is inserted into
the IMS catalog, and the application control block is written to the staging or active directory
based on the MANAGEDACBS control statement parameters that you specify.

You can use the gsamdbd variable with the STAGE or UPDATE parameter. However, LATEST,
UNCOND, DELETE, SHARE, and GSAMPCB are not supported if you specify the gsamdbd variable.

Because the gsamdbd variable identifies a GSAM resource, the GSAMPCB batch logging rule
applies only to the catalog update task that writes to the batch log data set for catalog database
changes.

Follow these steps if you want to change GSAM DBDs by using the UPDATE parameter and
gsamdbd:

1. Change the GSAM DBD source.
2. Run a DBDGEN to generate the GSAM DBD into DBDLIB.
3. Run the DFS3PU00 utility with MANAGEDACBS=(UPDATE,GSAM=gsamdbd).

Tip: Only the DBDLIB DD card is required for the DFS3PU00 utility. ACBLIB and PSBLIB are not
needed and are ignored if specified.

The new GSAM DBD instance will be inserted to the catalog, and the application control block
will be written to the IMS directory.

NODUPLIST
Do not print a list of resource instances that were not added. This parameter is the default.

NOISRTLIST
Do not print a list of inserted resource instances.

IMS Catalog Populate utility statistics report

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 385

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm

Each time the DFS3PU00 utility runs it creates a statistics report for the record segments to be loaded or
updated in the IMS catalog. When the DFS3PU00 utility runs in read-only mode, the report reflects only
the potential statistics if the IMS catalog were loaded or updated from the ACB libraries currently being
used as input to the utility.

To run the DFS3PU00 utility in analysis-only mode, specify DFSCP000 as the PSB for the utility in the
utility JCL.

The first section in the report is a summary of the segments that were inserted during the current
execution of the utility. For each segment type inserted in the IMS catalog, the summary includes the
following information organized into columns:

• The segment code (SC)
• The segment name, which generally corresponds to a macro in your DBD or PSB source files
• The data set group (DSG) in the IMS catalog that the segment is stored in
• The parent segment of the listed segment
• The total number of segments of that type that are loaded into the IMS catalog
• The average number of segment instances of that type under the parent segment

The second section in the report shows both the numbers of existing DBD and PSB records that were
updated by the utility and the number of existing DBD and PSB records that were not updated because
the time stamp of the record matched the time stamp of the corresponding ACB member in the ACB
library. This section of the report also shows the number of DBD and PSB segments whose ACBLIB time
stamps were already in the catalog and did not need to be inserted again.

The rest of the sections in the report provide the storage estimates.

For the OSAM data sets, the storage sections of the report show the number of blocks of the specified
size. For the VSAM KSDSs, which include the indirect list data set (ILDS), the primary index data set, and
the secondary index data set, the report shows the number of VSAM records.

These numbers are estimates that reflect the amount of space needed to load the catalog records that
are built from the ACB libraries that you provide as input to the DFS3PU00 utility. If you are calculating
the amount of storage required for the IMS catalog data sets, provide plenty of additional space in your
calculations to allow for expansion.

If you have IMS create the IMS catalog data sets automatically, you can specify additional space as a
percentage of the estimates that are provided by the utility on the SPACEALLOC parameter in the IMS
catalog section of the DFSDFxxx PROCLIB member. The default value for this parameter is 500%.

In the report, the following abbreviations are used:
DSG

Data set group
L

A HALDB ILDS data set. The number of records shown represent the potential number of indirect list
entries (ILEs) that could be created if the IMS catalog is reorganized.

SC
Segment code. When loading a segment type, IMS assigns a segment code as a unique identifier (an
integer from 1 to 255). IMS assigns numbers in ascending sequence, starting with the root segment
type (number 1) and continuing through all dependent segment types in hierarchical sequence.

SEGS
Segments

X
HALDB partitioned primary index.

 CATALOG DFSCD000

 PARTITION DFSCD01

 NUMBER OF SEGMENTS INSERTED INTO THE CATALOG

386 IMS: System Utilities

 INSERTED AVERAGE
 SC SEGMENT SEGMENTS DSG PARENT SEGS/PARENT
 -- -------- -------- --- -------- -----------
 1 HEADER 4228 A
 2 DBD 2530 A HEADER 0.6
 3 CAPXDBD 7 D DBD 0.0
 5 DSET 2599 D DBD 1.0
 7 AREA 139 D DBD 0.1
 9 SEGM 16337 B DBD 6.5
 10 CAPXSEGM 1 D SEGM 0.0
 12 FLD 16426 C SEGM 1.0
 14 MAR 16426 C FLD 1.0
 17 LCHILD 2687 B SEGM 0.2
 20 XDFLD 134 B LCHILD 0.0
 33 PSB 1840 A HEADER 0.4
 35 PCB 9190 B PSB 5.0
 37 SS 75274 B PCB 8.2
 39 SF 1105 B SS 0.0
 41 DBDXREF 8886 D PSB 4.8

 WITHIN DUPLICATES
 EXISTING NOT
 SEGMENT HEADER INSERTED
 ------- -------- ----------
 DBD 71 0
 PSB 72 0

 ESTIMATED SPACE REQUIREMENT TO HOLD INSERTED SEGMENTS
 DSG BLKSIZE BLOCKS
 --- ------- ------
 A 4096 596
 B 4096 9343
 C 4096 8214
 D 4096 236

 DSG RECORDS
 --- -------
 L 8886
 X 4230

 SECONDARY
 INDEX RECORDS
 --------- -------
 DFSCX000 8886

Return codes

The DFS3PU00 utility returns the following codes:

0
All operations completed successfully.

4
One or more records could not be loaded into the IMS catalog. Warning messages issued.

8
One or more records could not be loaded into the IMS catalog. Error messages issued.

Greater than 8
Program terminated due to severe errors.

Related tasks
Populating the IMS catalog using the IMS Catalog Populate utility (DFS3PU00) (System Definition)
Related reference
DFSDFxxx member of the IMS PROCLIB data set (System Definition)
“Application Control Blocks Maintenance utility (DFSUACB0)” on page 3
In IMS systems that use ACB libraries to manage runtime application control blocks, use the Application
Control Blocks (ACB) Maintenance utility to save instruction execution and direct-access wait time and
improve performance in application scheduling.

Chapter 13. IMS Catalog Populate utility (DFS3PU00) 387

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_catalog_definition_pop_dfs3pu00.htm#ims_catalog_definition_pop_dfs3pu00
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

388 IMS: System Utilities

Chapter 14. IMS Catalog Record Purge utility
(DFS3PU10)

Use the IMS Catalog Record Purge utility (DFS3PU10) to remove the segments that represent a DBD or
PSB instance, all instances of a DBD version, or an entire DBD or PSB record from the IMS catalog.

If ACBMGMT=CATALOG is specified in the DFSDFxxx member of the PROCLIB data set, IMS also
automatically removes from the IMS directory the DBDs and PSBs that are removed from the IMS catalog.
If ACBMGMT=CATALOG is not specified in the DFSDFxxx member, use the MANAGEDACBS statement
to enable the utility to remove from the IMS directory the DBDs and PSBs that are removed from the
IMS catalog. When ACBs are removed from the IMS directory, the ACBs are also removed from the IMS
directory staging data set.

The utility performs three basic functions, analysis, purge, and update, which can be run independently
or sequentially in a single execution of the utility. Use the MODE control statement to select the analysis
function, the purge function, or both. Use the UPDATE control statement to set or modify the retention
criteria of DBD and PSB records in the IMS catalog.

The analysis function of the utility evaluates the records in the IMS catalog by reading the user-defined
retention criteria to identify DBD and PSB instances that are eligible for deletion. When the DELDBVER
statement is specified, the utility identifies all instances of the specified DBD version as eligible for
deletion. The utility creates a report and DELETE statements for each DBD or PSB instance that can be
deleted.

The purge function of the utility deletes the DBD and PSB instances by processing the DELETE statements
without checking the retention criteria. You can add to or edit the DELETE statements to remove DBD and
PSB instances that would not otherwise be eligible for deletion. You can code DELDBVER statements to
remove all instances of a specified DBD version.

The update function of the utility sets or modifies the retention criteria in the header segment of individual
DBD and PSB records. The retention criteria in a header segment overrides any default retention criteria
that is specified the DFSDFxxx member of the IMS PROCLIB data set. If the update and analysis functions
are requested at the same time, the utility performs the updates before performing the analysis.

The DFS3PU10 utility issues a CHKP (checkpoint) call to commit updates to the IMS catalog after every
200 updates, and message DFS4518I is issued in the utility output.

The modes and functions of the utility are specified by the following control statements:

• MODE ANALYSIS | PURGE | BOTH
• DELDBVER
• UPDATE DBD | PSB
• DELETE
• MANAGEDACBS

The DFS3PU10 utility can run in a DL/I or DBB region or a BMP region.

Subsections:

• “Restrictions” on page 390
• “Prerequisites” on page 390
• “Requirements” on page 390
• “Recommendations” on page 390
• “Input and output” on page 390
• “JCL specifications” on page 390
• “SYSIN control statements” on page 391

© Copyright IBM Corp. 1974, 2020 389

• “SYSUT1 control statements” on page 395
• “Other usage information” on page 396
• “Example JCL” on page 396
• “Return codes” on page 397

Restrictions
No restrictions are documented for this utility.

Prerequisites
No prerequisites are documented for this utility.

Requirements
The DFS3PU10 utility requires access to the IMS.PROCLIB data set that contains the DFSDFxxx member
that enables the IMS catalog and defines the default retention criteria for the records in the IMS catalog.

If you run the DFS3PU10 utility in a DLI region and the IMS catalog is shared, you must specify IRLM
support in the EXEC parameters of the utility JCL.

Recommendations
First, run the utility to obtain the list of DBD and PSB instances that can be deleted based on the retention
criteria in effect for each DBD and PSB record. Then, examine the list to ensure that no DBD or PSB
instances are included that are still needed by your IMS applications. Finally, run the utility to purge the
unneeded DBD or PSB instances.

Input and output
The DFS3PU10 utility accepts the following input:

• The analysis and update functions read control statements from the SYSIN DD statement.
• The purge function reads control statements from the SYSUT1 data set.
• The analysis function reads the records in the IMS catalog.
• Both functions read from the CATALOG section of the DFSDFxxx member of the IMS.PROCLIB data set.

The DFS3PU10 utility generates the following output:

• The analysis function writes DELETE statements to the SYSUT1 data set.
• The analysis function writes a list of the DBD and PSB instances that are eligible for deletion to the

SYSPRINT data set.
• The purge function writes a list of the DBD and PSB instances that were deleted to the SYSPRINT data

set.
• The update function updates the header segments of DBD and PSB records in the IMS catalog.
• The purge function deletes segments or records from the IMS catalog.

JCL specifications
EXEC statement

The DFSDF= parameter specifies the three-character suffix of your DFSDFxxx member in the
IMS.PROCLIB data set.

//BATCH EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3PU10,DFSCP001,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=xxx')

390 IMS: System Utilities

To specify IRLM support, you can code the PARM parameter on the EXEC statement as shown in the
following example:

PARM=(DLI,DFS3PU10,DFSCP001,,,,,,,,,,,Y,Y,irlmid,,,,,,,,,,,'DFSDF=xxx')

To run the utility in a BMP region:

PARM=(BMP,DFS3PU10,DFSCP001,,,,,,,,,,,imsid,,,,,,)

DD statements

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC
modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

PROCLIB DD
Defines the IMS.PROCLIB data set that contains the DFSDFxxx member that defines the default
retention criteria for the records in the IMS catalog.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IEFRDER DD
Defines the primary IMS log data set.

DFSVSAMP
Defines the buffer pool parameters data set.

SYSPRINT
If the utility is run with MODE ANALYSIS specified, the SYSPRINT data set contains a list of the names
and timestamps of the DBD and PSB and PSB instances that are eligible for deletion based on the
retention criteria that is currently in effect. If the utility is run with MODE PURGE or MODE BOTH
specified, the SYSPRINT data set contains a list of the DBD and PSB instances that were deleted. The
DCB parameters for the SYSPRINT data set are RECFM=FBA and LRECL=121, but you do not have to
specify these parameters.

SYSIN
A physical sequential data set that contains the utility control statements that are read by the
analysis, purge, and update functions of the DFS3PU10 utility. The DCB parameters for the SYSIN
data set are RECFM=FB and LRECL=80, but you do not have to specify these parameters.

SYSUT1
A physical sequential data set that contains the DELETE control statements, DELDBVER control
statements, or both that are read by the purge function of the utility. The analysis function of the
utility writes DELETE statements to the SYSUT1 data set.

Except when MODE BOTH is specified, you can edit the contents of the SYSUT1 data set to modify the
generated DELETE statements or to add DELETE statements and DELDBVER statements.

The DCB parameters for the SYSUT1 data set are RECFM=FB and LRECL=80, but you do not have to
specify these parameters.

SYSIN control statements
The utility accepts the following types of control statements through the SYSIN DD statement:

• MODE statement

Chapter 14. IMS Catalog Record Purge utility (DFS3PU10) 391

• DELDBVER statement
• UPDATE statement
• MANAGEDACBS statement
• RESOURCE_CHKP_FREQ n

MODE statement
Specifies whether the utility executes the analysis function, the purge function, or both. The MODE
statement can be specified only once.

MODE ANALYSIS

PURGE

BOTH

ANALYSIS

Based on the retention criteria that is in effect for each record and any DELDBVER statements that
are included as input, the utility generates DELETE statements for the DBD and PSB instances that
are eligible for deletion. Nothing is deleted from the IMS catalog.

The retention criteria that are set in the HEADER segment of each catalog record is used to
determine eligibility for deletion. If the HEADER segment of a record does not contain any
retention criteria, the utility uses the retention criteria from the CATALOG section of the DFSDFxxx
member of the IMS.PROCLIB data set.

The DELETE statements are written to the SYSUT1 data set, overwriting any existing contents.
After the analysis is complete, you can review and, if necessary, edit the DELETE statements.

You can submit UPDATE statements with this mode. The UPDATE statements are processed
before the utility examines the catalog HEADER information.

PURGE

The utility reads the DELETE statements in the SYSUT1 data set and purges the matching DBD and
PSB instances from the database.

UPDATE statements are not allowed with this mode.

BOTH

The utility runs in ANALYSIS mode, determines which record instances are no longer needed
according to the current retention criteria, and then runs in PURGE mode to remove the identified
record instances.

You can submit UPDATE statements with this mode. The UPDATE statements are processed
before the utility takes any other action.

DELDBVER statement
Deletes all instances of the specified version of a DBD. When DELDBVER is specified, MODE ANALYSIS
or MODE BOTH must also be specified.

When MODE ANALYSIS is specified, the DELDBVER statement generates DELETE statements in the
SYSUT1 data set for all of the DBD instances of the specified version number of a DBD, regardless
of the retention criteria. The DBD instances that are proposed for deletion are also listed in the
SYSPRINT data set.

When MODE BOTH is specified, the DELDBVER statement deletes all instances of the specified DBD
version. The deleted DBD instances are listed in the SYSPRINT data set.

When MODE PURGE is specified, the DELDBVER statement cannot be specified in the SYSIN data set.

The DELDBVER statement can also be specified in the SYSUT1 data set. For more information, see
“SYSUT1 control statements” on page 395.

The following diagram shows the syntax of the DELDBVER statement.

392 IMS: System Utilities

DELDBVER member-name version-number

You can specify the following parameters on the DELDBVER statement:
member-name

The 8-character name of the DBD that you are deleting a version from.
version-number

The version number of the DBD that you are deleting. The value must match the version number
that is specified on the DBVER keyword in the DBD generation statement of the version that you
are deleting.

UPDATE statements
Use this statement to set the retention criteria for records in the catalog database. This information is
stored in the HEADER segment of the relevant catalog record.

You can submit any number of UPDATE statements. If a MODE statement is specified with one or
more UPDATE statements, the UPDATE statements are processed first.

If one or more UPDATE statements are specified without a MODE statement, the utility does not write
DELETE statements to the SYSUT1 data set or delete any DBD or PSB instances.

When MODE PURGE is specified, the UPDATE statement cannot be specified in the SYSIN data set.

UPDATE DBD

PSB

member-name instances

days

UPDATE DBD|PSB
Specify DBD or PSB. You can specify multiple UPDATE statements in the utility input.

member-name
The IMS resource name. These names are 8 characters, and wildcards are supported in the
following formats:

• You can update the retention criteria for all DBD or PSB resources by specifying only the
wildcard operator (*)

• You can update the retention criteria for DBD or PSB records that match a prefix value by
specifying the prefix and then the wildcard operator (ABC*)

Updates are processed in alphanumeric order. Later updates override earlier ones. For example, if
the following UPDATE statements are submitted:

UPDATE DBD DB* 1 365
UPDATE DBD * 1 20
UPDATE DBD DBOHIDK5 10 813

And your IMS catalog database contains records for the following resources:

DBD CUSTDB
DBD DB1XYZ
DBD DB2XYZ
DBD DB3XYZ
DBD DBOHIDK5
DBD DBVHDJ05
DBD EMHDB1

The utility processes the universal wildcard update first, assigning all DBD records the retention
values of VERSIONS=1 and DAYS=20. Then it processes the statement for DB*, assigning all
records with the DB prefix the retention values of VERSIONS=1 and DAYS=365. Finally, it
processes the statement for DBOHIDK5, assigning that specific resource the retention values
of VERSIONS=10 and DAYS=813. The later updates override the earlier updates.

Chapter 14. IMS Catalog Record Purge utility (DFS3PU10) 393

instances
The number of instances of a DBD or PSB that must be retained in the DBD or PSB record.

For DBD instances, if database versioning is used, this value is the number of instances of the DBD
that must be retained for each version of the DBD.

If this parameter is set to 1, any DBD or PSB instance other than the most recent instance is
eligible for deletion.

If the number of instances in the record or the DBD version is less than this value, no instances are
eligible for deletion.

If the number of instances in the record or the DBD version exceeds this value, the oldest
instances are eligible for deletion, but only if they are older than the days value, if it is set.

This value is stored in the RETNINST field of the HEADER segment in DBD and PSB records.

days
The number of days that an instance of a DBD or PSB must be retained before it can be purged
from the DBD or PSB record. Only DBD and PSB instances older than this number of days are
eligible for deletion.

If this parameter is omitted or set to 0 for a DBD or PSB record, the age of the DBD or PSB
instances is not used as a retention criterion. This value is stored in the RETNDAYS field of the
HEADER record segment.

Note: When a value greater than 0 is specified on the days parameter, a DBD or PSB instance is
eligible for deletion only if all of the following criteria are met:

• The age of the instance is greater than the days value
• The number of instances in the record or the DBD version is greater than the instances value
• The timestamp of the instance is older than the timestamps of the instances that are retained to

satisfy the instances value

For example, if the number of DBD or PSB instances in a record is less than the instances value, no
instances are eligible for deletion, even if the age of one or more of the instances is greater than
the days value. Similarly, if the number of instances in a record is greater than the instances value,
but the age of each instance in the record is less than the days value, no instances are eligible for
deletion.

MANAGEDACBS
Specifies whether deleting DBD and PSB instances from the IMS catalog causes the corresponding
DBD and PSB instances in the IMS directory to be deleted.

The MANAGEDACBS statement can be specified according to the following syntax diagram:

MANAGEDACBS

UPDATE

UPDATE
Deletes from the IMS directory the DBD and PSB instances that are deleted from the IMS catalog.
The MANAGEDACBS UPDATE statement is automatically generated if the IMS directory is active,
that is, if ACBMGMT=CATALOG is specified in the <CATALOG> section of the effective DFSDFxxx
PROCLIB member. If both the MANAGEDACBS UPDATE and MODE ANALYSIS statements are
specified, DBD and PSB instances are not deleted from the IMS directory.

RESOURCE_CHKP_FREQ n
Specifies the number of resource instances to be deleted or updated between checkpoints. n can be a
1- to 8-digit numeric value ranging from 1 to 99999999. The default value is 200.

394 IMS: System Utilities

SYSUT1 control statements
The control statements in the SYSUT1 data set are used by the DFS3PU10 utility to delete DBD and PSB
segment instances, DBD versions, or whole DBD or PSB records from an IMS catalog.

The analysis function of the DFS3PU10 utility generates control statements in the SYSUT1 data set, which
can then be used as input to the purge function.

If you specify MODE ANALYSIS, you can add to or edit the generated control statements in SYSUT1 before
executing the purge function. However, if you specify MODE BOTH, you cannot review or edit the control
statements before the purge function processes the SYSUT1 data set and deletes the segments and
records.

For processing when MODE PURGE is specified, you can code your own SYSUT1 data set or use the
SYSUT1 data set that was produced by the analysis function in a previous execution of the utility.

The following control statements can be specified in the SYSUT1 data set.

DELDBVER statement
Deletes all DBD instances of the specified version of a DBD.

The following diagram shows the syntax of the DELDBVER statement.
DELDBVER member-name version-number

You can specify the following parameters on the DELDBVER statement:
member-name

The eight-character name of the DBD from which you are deleting a version.
version-number

The version number of the DBD that you are deleting. The number that is specified here must
match the version number that is specified on the DBVER keyword in the DBD generation
statement of the version that you are deleting.

DELETE statements

Specifies a DBD or PSB instance or an entire DBD or PSB record to delete from the IMS catalog
database.

Important: In a managed ACBs environment, active or pending directory members cannot be deleted
when IMS is online if the utility is run as a BMP job.

The individual instances within each DBD or PSB record are differentiated by their DBD or PSB name
and their ACB generation timestamps.

The analysis function of the utility automatically generates the DELETE statements based on the
retention criteria that is currently in effect for each record and any DELDBVER statements in the
SYSIN data set.

When MODE ANALYSIS is specified, you can review and edit the contents of the SYSUT1 data set
before anything is deleted.

The eligibility of an instance for deletion is determined by the retention criteria that the utility reads
from either the HEADER segment of a record or from the CATALOG section of the DFSDFxxx member
of the IMS.PROCLIB data set.

During the purge mode, the utility does not check the retention criteria. If you manually code or edit
the DELETE statements, you can remove DBD and PSB instances that would not otherwise be eligible
for deletion.

The following syntax diagram shows the format of the DELETE statement:
DELETE DBD

PSB

member-name timestamp

Chapter 14. IMS Catalog Record Purge utility (DFS3PU10) 395

DELETE DBD|PSB
You can delete either DBD or PSB resource record instances.

member-name
The IMS name of the DBD or PSB resource. These names are 8 characters, and wildcards are
supported in the following formats:

• You can include all DBD or PSB resources by specifying only the wildcard operator (*).
• You can include DBD or PSB resources that match a prefix value by specifying the prefix and

then the wildcard operator (ABC*).

timestamp
The ACB timestamp that identifies the specific DBD or PSB instance to purge.

The timestamp is in the following format: yydddhhmmssth.

Tip: You can specify a wildcard operator (*) to delete an entire DBD or PSB record, including the
root segment and the header segments, from the IMS catalog.

Other usage information
If no retention criteria are stored in the RETNINST and RETNDAYS fields of the HEADER segment of a
DBD or PSB record, the utility uses the DFSDFxxx member of the IMS.PROCLIB data set to determine the
retention criteria.

If the RETNINST and RETNDAYS fields in the HEADER segment of the record both contain non-zero
values, the utility does not use the values in the DFSDFxxx member to determine which DBD and PSB
instances to purge. Instead, it uses the values from the RETNINST field (for the minimum number of
instances) and the RETNDAYS field (for the minimum number of days) of the HEADER segment.

Attention: If the value of RETNINST is 0 and the value of RETNDAYS is non-zero, the utility
generates a DELETE statement to purge all instances of the DBD or PSB from the record, including
the instance that corresponds to the active member of the ACB library.

You might want to configure the DAYS parameter in the DFSDFxxx member to set a minimum number of
days to retain catalog record instances, but selectively disable time-based retention for specific records.
In that case, use this utility to explicitly specify a value of at least 1 for the number of instances and 0 for
the number of days for those records.

For example, if the DFSDFxxx member contains the following retention information, no instances are
eligible for deletion unless there are more than five instances in a record, and at least one of those
instances is at least five days old.

RETENTION(INSTANCES=5,DAYS=5)

However, you can disable the time-based retention period for a subset of records in the IMS catalog by
using the UPDATE statement of the DFS3PU10 utility to set the DAYS value to 0 directly in the HEADER
segment of each record, as shown in the following example:

UPDATE DBD JK* 5 0

For each DBD record with the prefix JK, the preceding example sets RETNINST=5 and RETNDAYS=0. For
these records, the IMS Catalog Record Purge utility does not consider age when determining eligibility for
deletion. The utility generates DELETE statements for JK* DBD instances only if more than five instances
are stored for in each JK* DBD record. The oldest record instances are removed first.

If no RETENTION values are specified in the CATALOG section of the DFSDFxxx member, the defaults are
INSTANCES=2 and DAYS=0.

Example JCL
The following example of the utility JCL both updates the retention criteria and generates delete
statements for all of the eligible DBD and PSB instances.

396 IMS: System Utilities

In the UPDATE phase of utility execution, the example JCL updates the retention settings for all PSB
records and for the DBD records matching the prefix JK*.

In the ANALYSIS phase, the example JCL generates DELETE statements for all DBD and PSB instances
that are eligible for deletion. The DELDBVER statement generates DELETE statements for all of the DBD
instances of version 2 of the DBD JKDBA020. The utility writes the DELETE statements to the data set
referenced by the SYSUT1 data set. You can then edit this data set or use it directly as SYSUT1 input to a
separate run with MODE PURGE.

//BATCH EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3PU10,DFSCP001,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=001')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//SYSUT1 DD ... DELETE statements
//IEFRDER DD ... Log data set
//DFSVSAMP DD ... Buffer pool parameters
//SYSPRINT DD SYSOUT=* Analysis or purge report
//SYSIN DD * Control statements
MODE ANALYSIS
UPDATE PSB * 5 365
UPDATE DBD JK* 5 365
DELDBVER JKDBA020 2
RESOURCE_CHKP_FREQ 300

The following JCL shows how you can code DELETE and DELDBVER statements of your own to use as
SYSUT1 input to a run with MODE PURGE.

//BATCH EXEC PGM=DFSRRC00,
// PARM=(DLI,DFS3PU10,DFSCP001,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=001')
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//IEFRDER DD ... Log data set
//DFSVSAMP DD ... Buffer pool parameters
//SYSPRINT DD SYSOUT=* Analysis or purge report
//SYSIN DD * SYSIN control statements
 MODE PURGE
RESOURCE_CHKP_FREQ 300
/*
//SYSUT1 DD * SYSUT1 control statements
 DELETE DBD JKDBA600 1306514025679
 DELETE DBD * 1300112161055
 DELETE PSB * 1300112161055
 DELETE PSB PSBJKE05 *
 DELDBVER JKDBA020 2
/*

Return codes
The IMS Catalog Record Purge utility completes execution with one of the following return codes:

0
No errors or exceptional conditions.

4
Warnings only.

8
Errors in control statements.

12
Invalid combinations of control statements, as indicated by messages DFS4424E or DFS4433E.

20
An error occurred that generated one of the following messages

• DFS4420E

Chapter 14. IMS Catalog Record Purge utility (DFS3PU10) 397

• DFS4421E
• DFS4422E
• DFS4423E
• DFS4427E
• DFS4485E

24
The SYSPRINT DD statement was missing or invalid.

Related concepts
Removing DBD and PSB instances from the IMS catalog (Database Administration)
Related reference
CATALOG and CATALOGxxxx sections of the DFSDFxxx member (System Definition)

398 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dag/ims_catalog_definition_retain.htm#ims_catalog_definition_retain
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_dfsdfxxx_proclib_catalog.htm#ims_dfsdfxxx_proclib_catalog

Part 3. Analysis utilities and reports
Use the analysis utilities to collect and format analyses and reports about the IMS system.

Each topic introduces how the utility works, defines requirements and restrictions for its use, and
provides examples.

© Copyright IBM Corp. 1974, 2020 399

400 IMS: System Utilities

Chapter 15. Fast Path Log Analysis utility (DBFULTA0)
Use the Fast Path Log Analysis utility to prepare statistical reports for Fast Path, based on data that is
recorded on the IMS system log.

This utility is an offline utility and produces three data sets, one of which contains seven formatted
reports:

• Detail Listing of Exception Transactions
• Summary of Exception Detail by Transaction Code for IFP Regions
• Overall Summary of Transit Times by Transaction Code for IFP Regions
• Overall Summary of Resource Usage and Contentions for All Transaction Codes and PSBs
• Summary of Region Occupancy for IFP Regions by PST
• Summary of VSO Activity
• Recapitulation of the Analysis

These reports are useful for system installation, tuning, and troubleshooting. This utility is not related to
the IMS Monitor or the Log Transaction Analysis utility.

The following figure shows four intervals that are computed for a Fast Path transaction:

(A)
Input queue time—period from input exit to the get unique (GU) call of the application program

(B)
Processing time—period from the get unique (GU) call of the application program to sync point

(C)
Output queue time—period from sync point to entry to the output router

(D)
Output time—period from output router entry to dequeue time

Figure 35. Intervals for a Fast Path transaction

The maximum interval that can be recorded on the logs is 65.535 seconds. However, if in computing the
time span to be reported, the fields overflow, 9999 is displayed in the report, to indicate a computational
overflow. The fields of IN-Q, PROC, and OUTQ can represent 9.999 seconds at maximum.

The four intervals are computed and inserted into reserved fields in Fast Path log records and are thus
made part of the normal logging procedure. Intervals (A) and (B) appear in the input message (X'5901')
and the output message (X'5903') log records respectively. Intervals (C) and (D) appear in the dequeue
log record (X'5936'). Synchronization point takes place at the boundary between intervals (B) and (C).

The Fast-Path-Log-Analysis report includes additional performance-related data items from the Fast Path
log records. The kinds of data items contained in the log records that might be reported are:

• Input message (X'5901') log record

– The routing code for the transaction
– The input terminal's LTERM name for the transaction
– The balancing group queue count

© Copyright IBM Corp. 1974, 2020 401

• Synchronization point (X'5937') log record

– The number of VSO reads
– The number of VSO updates (CIs)
– The number of ADS reads
– The number of ADS updates (CIs)
– The number of DEDB calls made
– The number of MSDB calls made
– The number of control interval (CI) contentions
– The number of unit of work (UOW) contentions
– The number of common buffers used
– The number of waits for common buffers
– The number of waits for private buffers

The intervals (A), (B), (C), (D), and the performance-related items are combined with other logged
information to produce all the reports.

Subsections:

• “Restrictions” on page 402
• “Prerequisites” on page 402
• “Requirements” on page 402
• “Recommendations” on page 402
• “Input and output” on page 402
• “JCL specifications” on page 403
• “Utility control statements” on page 404
• “Return codes” on page 408

Restrictions

The Fast Path Log Analysis utility cannot use Common Queue Server (CQS) logs as input because CQS log
records have a different format from IMS log records.

Prerequisites

Currently, no prerequisites are documented for the DBFULTA0 utility.

Requirements

Currently, no requirements are documented for the DBFULTA0 utility.

Recommendations

Currently, no recommendations are documented for the DBFULTA0 utility.

Input and output

The Fast Path Log Analysis utility uses the following input:

• An IMS system log data set

402 IMS: System Utilities

• A control statement that contains the execution parameters

The Fast Path Log Analysis utility processing consists of the following two steps:

1. Constructing Fast Path transaction detail records (FPTDR)
2. Analyzing the FPTDRs and printing the reports

The basic unit of output from this utility is the FPTDR. One FPTDR is constructed for each Fast Path
transaction processed. An FPTDR is a 143-byte EBCDIC logical record consisting of the data associated
with a given transaction (compiled from one or more log records) and a sequence number that indicates
the order in which this transaction entered sync-point processing. The last log record that can supply data
for each FPTDR is the dequeue record for the transaction.

The basic FPTDR record is extended to 252 bytes when written to the Exception Traffic data set. The first
143 bytes are identical to the Total Traffic data set.

The Fast Path Log Analysis utility uses the FPTDRs to form the following three output data sets:

• Total Traffic, normally a tape or direct-access data set that contains every FPTDR. This data set can be
passed to a subsequent job step for sorting and printing, or for additional analysis.

This data set is optional.
• Exception Traffic, normally a direct-access or tape data set that contains only those FPTDRs that you

have set as exceptional and that therefore appear in the Detail Listing of Exception Transactions report.
This data set can be passed to a subsequent job step for sorting and printing, or for additional analysis.

This data set is optional.
• Formatted Reports, normally a printer output data set that consists of several reports formed by various

combinations of transaction detail records.

The Total Traffic and Exception Traffic data sets are provided to make it convenient for you to post process
performance data, formatted by the utility, without using the log data set. For example, inspection of
reports can indicate that the Total Traffic data set should be sorted and printed in physical line number
and terminal sequence, to analyze a problem possibly related to line activity. An internal DSECT within the
source code for DBFULTA0, FPDR, maps these records.

Records are written to the Total Traffic and Exception Traffic data sets in the order in which they are
completed—in the order of dequeue records for the normal transaction sequence. However, the sequence
number assigned for each transaction is determined by the order in which the transaction enters sync
point processing.

JCL specifications
The Fast Path Log Analysis utility executes as a standard operating system job. You must define an EXEC
statement, DD statements and Utility control statements defining input and output.

EXEC statement

Executes the Fast Path Log Analysis utility.

//EXEC PGM=DBFULTA0

DD statements

STEPLIB DD
Describes the program library that contains the DBFULTA0 load module.

//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR

SYSPRINT DD
Describes the data set that receives the printed output of DBFULTA0—reports, messages, and
parameter statement images. This DD statement is required.

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 403

//SYSPRINT DD SYSOUT=A

SYSUT1 DD
Describes the data set that receives the total traffic output of DBFULTA0. This is a sequential data set
consisting of every Fast Path transaction detail record formed by DBFULTA0. Each record is in EBCDIC
characters. The logical record length is 143 bytes. The block size specification is optional. The default
value for BLKSIZE is 1430.

//SYSUT1 DD DSN=&&TOTAL,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=2860

SYSUT2 DD
Describes the data set that receives the exception traffic output of DBFULTA0. This is a sequential
data set consisting of the Fast Path transaction detail records that are exceptions. It is a copy of the
Detail Listing of Exception Transactions with headings and carriage control characters suppressed.
The logical record length is 252 bytes. The block size specification is optional. The default value of
BLKSIZE is 2520.

//SYSUT2 DD DSN=&&EXCEP,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=5040

LOGTAPE DD
Describes the input log data set.

//LOGTAPE DD DSN=IMS33.LOG,DISP=OLD,VOL=SER=XXXXXX,UNIT=XXXX

SYSIN DD
Describes the input control data set. This data set is used to specify execution parameters. This DD
statement is optional. The following is a sample input stream.

//SYSIN DD *
START=09:59:59 24-hour notation, note colons
END=12:00:00
LINECNT=45 lines per page for reports
NOT-MESSAGE include transactions that are not IFPs
MAXDETAIL=5000 exceptions detail listing limit
CALLS
BUFFER
VSO
TT(*)=15.0
TT(TCODE1)=3.0
TT(TCODE2)=2.5
TT(TCODE3)=1.0

Utility control statements

Control statements in the SYSIN data set control the Fast Path Log Analysis utility. You can specify the
time period of Fast Path execution for which the analysis is to be performed. This is expressed as the
starting time (clock time) or an ending time. Transactions whose synchronization point time stamps fall
within this interval are processed. If you do not specify an interval, the entire log data set is processed.

After the log is processed up to the end time specified, scanning continues to find dequeue records
related to transactions that were processed during the specified analysis time interval.

Process multi-volume log data sets by specifying multiple volumes in the //LOGTAPE DD statement or by
concatenation of DD statements.

Transit time exception specification

You can limit the volume of printed output produced by specifying an exceptional transit time value for
each transaction code. Occurrences of transaction transit times that are less than the exceptional value
do not appear in the Detail Listing of Exception Transactions. You can specify a different exception transit
time for each unique transaction code. Also, you can specify a global value for all transaction codes that

404 IMS: System Utilities

are not individually specified. A separate summary report is produced for those transactions that exceed
the exception criteria.

A detail report of all the transactions processed from the log data set can be produced either by not
specifying an exceptional transit time (default=0) or by printing the total FPTDR data set in a subsequent
job step.

An upper limit can be placed on the number of transactions that are printed in the Detail-Listing-of-
Exception-Transactions report. This limit can be used to prevent the production of unexpectedly large
output listings.

Analysis parameter statement formats

All statements begin in column 1. The statements can appear in any order and are listed in the SYSPRINT
data set for verification.

Starting date specification (STARTDAY)

You can specify the date of the earliest transaction to be processed in Julian format. Transactions with an
earlier date are ignored. If the starting time is also specified, transactions with an earlier synchronization
point time on that day are also ignored. The format of this parameter is:

STARTDAY=YYDDD

YYDDD is the last two digits of the year and the sequential number of the day, running from 1 to 366.

The default value is the date IMS was started, from the type X'42' log record.

The IMS Fast Path Log Analysis utility (DBFULTA0) expects the STARTDAY= parameter if the START=
parameter is provided.

Ending date specification (ENDDAY)

You can specify the date of the latest transaction to be processed in Julian format. Transactions with a
later date are ignored. If the ending time is also specified, transactions with a later synchronization point
time on that day are also ignored. The format of this parameter is:

ENDDAY=yyddd

(yy represents the last two digits of the year, and ddd represents the sequential number of the day, from
001 to 365)

The default value, if ending time is specified, is the date IMS was started from the type X'42' log record. If
ending time is less than starting time, the default is one day later. If neither ending date nor ending time
are specified, the entire data set is processed.

The DBFULTA0 utility expects the ENDDAY= parameter if the END= parameter is specified.

Starting time specification (START)

You can specify the time of the earliest transaction to be processed. Transactions with an earlier sync-
point time are ignored. The format of this parameter is (in hours, minutes, and seconds for a 24-hour
clock):

START=HH:MM:SS[{+|-}HH:MM]

You only need to specify the optional time-zone information if the offset to the Universal Time
Coordinated on the day entered is different from the current offset, for example because of a daylight
savings time change.

The optional time-zone information following hh:mm:ss contains the following:

+ or -
Specifies the sign of the time-zone offset from UTC.

HH
Specifies the number of whole hours of offset from UTC.

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 405

MM
Specifies minutes of offset. MM can be 00, 15, 30, 45, or blank.

The default value is 00:00:00, which causes the analysis to begin with the first transaction on the log data
set.

Ending time specification (END)

You can specify the sync-point time of the latest transaction to be processed. Transactions with a later
synchronization point time will be ignored. The format of this parameter is (in hours, minutes, and
seconds for a 24-hour clock):

END=HH:MM:SS[{+|-}HH:MM]

You only need to specify the optional time-zone information if the offset to UTC on the day entered is
different from the current offset, for example because of a daylight savings time change.

The optional time-zone information following hh:mm:ss contains the following:

+ or -
Specifies the sign of the time-zone offset from UTC.

HH
Specifies the number of whole hours of offset from UTC.

MM
Specifies minutes of offset. MM can be 00, 15, 30, 45, or blank.

If the end date is not specified, the default value causes the analysis to end with the last transaction on
the log data set.

The date on the log data set is not explicitly specified by a parameter statement. The data is implicit with
the specification for the log data set that is in the JCL Requirements. The Julian date is read from the
log header record when execution begins, and this date is printed as part of the parameter summary for
verification.

Exceptional transit time specification (TT)

You can specify a time interval for each Fast Path transaction that you decide to consider exceptional for
reporting purposes. The format of this parameter is (in seconds and tenths of seconds):

TT (TRANCODE)=SS.T

The transaction code, up to eight characters, is enclosed in parentheses. You can specify as many
as 100 individual transaction codes. A global value of exceptional transit time is specified as follows:
TT(*)=SS.T (in seconds and tenths of seconds).

This value applies to all transaction codes that are not individually specified. Individual specification
overrides the global value. The default value for the global exceptional transit time is 0. A practical upper
limit of exceptional transit time is 65.5 seconds. This limitation results from the field size used to express
the time intervals (A), (B), and (C) in the Fast Path log records.

Not message-driven option (NON-MESSAGE or NOT-MESSAGE)

You can specify that transactions that are not IFPs (that is, BMPs, MPPs, utilities and DBCTL threads)
should be considered exceptions and be included in the Detail-Listing-of-Exception-Transactions report.
The accepted formats are:

NON-MESSAGE

or

NOT-MESSAGE

Both formats have the same result.

406 IMS: System Utilities

Detail-Listing-of-Exception-Transactions report size limitation (MAXDETAIL)

You can limit the number of lines printed in the Detail Listing of Exception Transactions. After this limit
is reached, the analysis continues; however, no further transactions are printed in the Detail Listing of
Exception Transactions.

The format of this parameter is:

MAXDETAIL=n

where n is an integer of no more than seven digits. The default value is 1000. The limitation of printed
output lines does not affect the number of exception detail records that are written to the exception detail
traffic data set (SYSUT2).

DL/I call specification (CALLS)

You can specify that the number of DL/I calls be printed. They are printed by call type (GU, REPL, and so
on). The format of this parameter is:

CALLS

Information about calls is obtained from type X'5937' log records.

Buffer use specification (BUFFER)

You can specify that the amount of buffer use, by type, be printed. The format of this parameter is:

BUFFER

The following information is collected about buffer use:

• The number of NBA buffers used (NBA)
• The number of overflow buffers used (OVFN)
• The number of times buffer stealing was invoked by this transaction (STEAL)
• The number of times the transaction waited for a buffer to become available (WAIT)
• The number of buffers sent to OTHREAD (OTHR)
• The number of buffers used by MSDB and SDEP processing (NRDB)

Information about buffer use is obtained from type X'5937' log records.

64-bit Fast Path buffer pool specification (FPBP64)

You can specify that the amount of 64-bit Fast Path buffer pool use, by type, be printed. The format of this
parameter is:

FPBP64

The following information is collected about 64-bit Fast Path buffer pool use for pool sizes 512 through 28
KB:

• The number of common buffers obtained by the thread during DL/I call processing
• The number of system buffers obtained by the thread during DL/I call processing
• The number of common buffers containing data which was written to a Fast Path database
• The number of system buffers containing data which was written to a Fast Path database
• The number of times a region waits for a buffer

Information about FPBP64 is obtained from type X'5945' log records.

Data space use specification (VSO)

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 407

You can specify that information on data space use, by transaction, be printed. The format of this
parameter is:

VSO

The following information is collected about data space use:

• The number of CI read requests satisfied from a data space (VGET)
• The number of CIs with updates to a data space (VPUT) This number represents the number of CIs that

would have been sent to OTHREAD if the areas were non-VSO.
• The number of CIs read from DASD into a data space (DGET)

Information about data space use is obtained from type X'5937' log records.

Printed page line count specification (LINECNT)

You can specify the number of lines printed per page for the printed reports. The format of this parameter
is:

LINECNT=n

where n is an integer greater than 5. The value specified applies to titles and headers so that 6 is the
minimum allowable value. The default value is 55 lines per page.

Each parameter statement is listed in the SYSPRINT data set exactly as it is read for verification. The
following example shows parameter statements read from the SYSIN data set and of how they are listed
in the SYSPRINT data set.

SPECIFIED INPUT PARAMETERS:

 ANALYSIS START TIME: 00:00:00 DATE: 2010187
 END TIME: 23:59:59
 A MAXIMUM OF 1000 EXCEPTIONAL TRANSACTIONS WILL BE LISTED.
 RATE CALCULATION ACTIVE: INTERVAL=86399 SECONDS.
 TRANSIT TIME EXCEPTION VALUES:
 EXCEPTION VALUE IN SEC.
 TRANSACTION CODE (IN-Q THRU OUT-Q)
 ___________ ____ _________________
 GLOBAL 0.0

After all parameter statements are read, the utility prints a summary display of either the parameters
supplied or the default values that are used for parameters not specified. If you specify both the START
and END parameters, then the line RATE CALCULATION ACTIVE will be displayed, and the Summary of
Region Occupancy Report will be generated. The following example shows the parameter display. Date
information is obtained from the log buffer control record (X'42').

LOG DATA SET ANALYSIS FOR IMS FAST PATH
PAGE 1
THE FOLLOWING PARAMETER CARDS WERE READ FROM SYSIN:
LINECNT=45

Return codes

User abend codes are not generated.

The following return codes are produced:

Code
Meaning

0
Successful completion of analysis

4
Analysis prematurely ended, partial results produced

408 IMS: System Utilities

8
Unable to perform analysis

12
Unable to open ddname SYSPRINT

Related reference
Log records (Diagnosis)

Fast Path report types
Fast Path reports provide details about transactions.

Format of total traffic and exception traffic data sets
The Fast Path Log Analysis utility gathers the Fast Path transaction detail records that are written to the
Total Traffic and Exception Traffic data sets. A single logical record is written for each FPTDR. The data
set organization is fixed blocked, with LRECL=143 for SYSUT1 (the Total Traffic data set) and LRECL=252
for SYSUT2 (the Exception Traffic data set). The BLKSIZE can be specified in the //SYSUT1 and //SYSUT2
DD statements, however, the default blocking factor is 10. The logical records are written in order of
the dequeuing record associated with each transaction. The data code is EBCDIC for all characters. The
format of each logical record is mapped by internal DSECT FPDR.

All leading zeroes of the edited fields are suppressed; however, there is always at least a single nonblank
digit to the left of a decimal point.

Fields that are unused (for example, the output time field of a record that has no dequeue information) are
set to blanks.

The synchronization point date and IMS release level fields are included in the SYSUT1 and SYSUT2 data
sets for informational purposes, but will not appear on formatted reports.

Decimal integer fields that contain overflow values are indicated by the value of all 9s. This method of
indicating overflow causes overflowed fields to sort high.

Detail-Listing-of-Exception-Transactions report

You define, with input parameters, what is considered to be an exceptional transit time value (TT input
parameter) for each IFP transaction. Transit time is defined as the sum of intervals A, B, and C (defined in
Figure 35 on page 401). Output time D is not included for this purpose. Any transaction with a transit time
that exceeds the specified exceptional value is included in the Detail Listing of Exception Transactions and
can be written on the SYSUT2 data set.

The following transactions are included in the report:

• Successfully processed IFP transactions with a transit time equal to or greater than the Exceptional
Transit Time Specification.

These include transactions for which a dequeue log record is not found. For these transactions the
output queue time, and therefore the total transit time, are unknown and are not formatted. This
condition is marked in the report by the characters NO DEQ under the TOTAL column.

• All IFP transactions with a synchronization point failure. These include invalid work prior to the first
message GU and invalid work done after a message GU has received a ‘QC' status code, or if the
transaction returns to IMS without receiving a ‘QC' status code.

• If you specify the "nonmessage" option, non-message-driven transactions are included.

You can limit the actual number of transactions reported with the MAXDETAIL input parameter. CALLS,
BUFFER, and VSO lines are omitted for transactions that are not processed at the IMS for which the Fast
Path Log Tape Analysis utility is run.

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 409

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dgr/ims_log_records.htm#ims_log_records

The following figure is an example of a Detail-Listing-of-Exception-Transactions report.

DETAIL LISTING OF EXCEPTION TRANSACTIONS: PAGE 3

 LEGEND

 __
 | |
 | RT: REGION TYPE; I=IFP, M=MPP, B=BMP, D=DBCTL, U=UTILITY |
 | PT: PROCESS TYPE; H=HSSP, R=REORG |
 | CONTENTIONS: CI; NO. OF WAITS FOR CI(S) |
 | UW; NO. OF WAITS FOR UOW (S) |
 | OB; NO. OF WAITS FOR OVERFLOW BUFFER LOCK |
 | BW; NO. OF WAITS FOR COMMON BUFFERS |
 | SF: SYNC FAILURE CODES - SEE UTILITY REFERENCE MANUAL |
 | BUF USE: TOTAL BUFFERS USED FROM THE COMMON POOL - INCLUDES |
 | NBA, OBA AND NRDB (NON-RELATED BUFFERS FOR SDEP/MSDB USE)|
 | |
 --
 DETAIL LISTING OF EXCEPTION TRANSACTIONS: PAGE 4

 SEQ TRANCODE SYNC POINT S ROUTING LOGICAL PST QUEUE TRANSIT TIMES(MSEC)- -OUT- DEDB ..ADS.. ..VSO.. MSDB BUF
CONTENTIONS R P
 NO. OR PSB TIME F CODE TERMINAL ID COUNT IN-Q PROC OUTQ TOTAL (SEC) CALL RD UPD RD UPD CALL USE CI
UW OB BW T T
 _______ ________ ___________ _ ________ ________ ___ _____ ____ ____ ____ _____ _____ ____ ___ ___ ___ ___ ____ ___ __
__ __ __ _ _
 9 TPCA 3:55:38.00 TPCA FPT05505 52 105 68 20 45 133 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 58 TPCA 3:55:38.03 TPCA FPT04203 8 113 73 38 41 152 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 1 TPCA 3:55:38.00 TPCA FPT07383 64 107 66 38 48 152 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 25 TPCA 3:55:38.01 TPCA FPT07447 46 104 70 23 36 129 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 92 TPCA 3:55:38.06 TPCA FPT05963 47 127 72 29 43 144 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 88 TPCA 3:55:38.06 TPCA FPT00939 15 124 67 50 45 162 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 150 TPCA 3:55:38.09 TPCA FPT02509 24 111 77 30 35 142 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2
 148 TPCA 3:55:38.09 TPCA FPT02570 13 110 79 40 37 156 0.1 5 3 1 4 2 0 5
0 0 0 0 I
 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0
TOTAL 5
 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0
 VSO - VGET 4 VPUT 0 DGET 2

The column headings of the Detail-Listing-of-Exception-Transactions report are:

SEQ NO.
Sequence in which this transaction entered sync point processing. Seven print positions are provided
for this column; therefore, if there are more than 9999999 transactions during the specified analysis
period, the sequence number wraps to 0.

TRANCODE OR PSB
The transaction code, or PSB name.

410 IMS: System Utilities

SYNC POINT TIME
The clock time at synchronization point processing.

S F
Synchronization failure reason code character for transactions that fail synchronization processing. A
nonblank character in this column indicates synchronization failure and, in the preceding figure, the
columns are blank. The following figure shows an example of a report with transactions that failed
synchronization processing.

DETAIL LISTING OF EXCEPTION
TRANSACTIONS: PAGE 4

 SEQ TRANCODE SYNC POINT S ROUTING LOGICAL PST QUEUE TRANSIT TIMES(MSEC)- -OUT- DEDB ..ADS.. ..VSO.. MSDB BUF
CONTENTIONS R P
 NO. OR PSB TIME F CODE TERMINAL ID COUNT IN-Q PROC OUTQ TOTAL (SEC) CALL RD UPD RD UPD CALL USE CI
UW OB BW T T
_______ ________ ___________ _ ________ ________ ___ _____ ____ ____ ____ _____ _____ ____ ___ ___ ___ ___ ____ ___ __
__ __ __ _ _
 1 PBVDSAGR 16:26:20.55 1 32 16 0 16 16 0 16 0
0 0 0 B
 CALLS - GU 0 GN 0 GNP 0 GHU 0 GHN 0 GHNP 0 REPL 0 ISRT 32 DLET 0 FLD 0 POS 0
TOTAL 32
 BUFFER - NBA= 16 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 0 NRDB= 0 PBUF= 0 PBWT= 0 ASIO= 0 AIOW=
0
 VSO - VGET 0 VPUT 16 DGET
16
 6 BMP255 16:27:08.37 L 1 42 13 0 0 0 0 10 0
0 0 0
 CALLS - GU 0 GN 0 GNP 0 GHU 0 GHN 21 GHNP 0 REPL 0 ISRT 0 DLET 21 FLD 0 POS 0
TOTAL 42
 BUFFER - NBA= 5 OVFN= 5 STEAL= 4 WAIT= 0 OTHR= 0 NRDB= 0 PBUF= 0 PBWT= 0 ASIO= 0 AIOW=
0
 VSO - VGET 0 VPUT 0 DGET
0
 7 BMP255 16:27:08.38 R 1 42 13 0 0 0 0 10 0
0 0 0
 CALLS - GU 0 GN 0 GNP 0 GHU 0 GHN 21 GHNP 0 REPL 0 ISRT 0 DLET 21 FLD 0 POS 0
TOTAL 42
 BUFFER - NBA= 5 OVFN= 5 STEAL= 4 WAIT= 0 OTHR= 0 NRDB= 0 PBUF= 0 PBWT= 0 ASIO= 0 AIOW=
0
 VSO - VGET 0 VPUT 0 DGET
0

The meaning of nonblank codes A through U is as follows:
A

MSDB verify failure
B

MSDB arithmetic overflow
C

DEDB sequential dependent area full
D

DEDB sequential dependent insert caused buffer overflow
E

DEDB sequential dependent buffer overflow three times
F

DEDB area not available for use
G

Dynamic MSDB area full
H

MSDB required segment not found
I

DEDB FLD calls; lock for a CI could not be obtained
J

DEDB FLD calls; deadlock occurred
K

DEDB FLD calls; overflow occurred

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 411

L
ROLB call

M
DEDB FLD calls; verify failed

N
DEDB FLD calls; segment in CI was deleted

O
Out of resources

P
Inflight condition in /ERE

Q
RESYNC abort requested

R
Resource deadlock

S
Out of space in data sets

U
Application program abend

Information relating to sync failures is obtained from type X'5938' log records.
ROUTING CODE

Identification of the balancing group.
LOGICAL TERMINAL

The input LTERM name for this transaction.
PST-ID

The PST number.
QUEUE COUNT

The number of transactions in the balancing group (BALG) queue when this transaction entered
synchronization point processing.

Transit Times in Milliseconds
IN-Q

Time interval A, input queue time in milliseconds.

The input queue time will be marked N/A for Shared EMH input/output transit time when the
transaction is:

1. Local only
2. Global only or local first transaction which is processed on other CPC while DBFULTA0 is

reading the log of the IMS backend.

PROC
Time interval B, processing time in milliseconds.

OUTQ
Time interval C, output queue time in milliseconds. Information relating to output queue time is
obtained from type X'5936' log records, the terminal output dequeue records.

The input queue time will be marked N/A for Shared EMH input/output transit time when the
transaction is:

1. Local only
2. Global only or local first transaction which is processed on other CPC while DBFULTA0 is

reading the log of the IMS backend.

412 IMS: System Utilities

TOTAL
The sum of time intervals A, B, C. This is the transit time as defined for the utility. The magnitude
of this sum exceeds the exception value for the transaction code.

OUT TIME
Time interval D, output time (to dequeue) in seconds.

DEDB CALL
The total number of DEDB calls.

ADS READS & UPDATES
The number of CIs read and updated.

VSO READS & UPDATES
The number of CIs read and updated from the data space.

MSDB CALL
The number of MSDB calls during this processing.

BUF USE
The total number of buffers used from the common buffer pool. This number includes non-related
buffers used for MSDBs and SDEPs.

CONTENTIONS
CI

The number of waits for CIs during this processing.
UW

The number of waits for UOWs during this processing.
OB

The number of waits for overflow buffer allocation. This number should never be greater than 1.
BW

The number of waits for common buffers.
RT

The region type, one of the following:
B

BMP
I

IFP
M

MPP
U

Utility
PT

The process type, one of the following:
G

Shared EMH global message processing
H

HSSP
R

Reorganization

The following lines are only obtained if the optional utility control statements are provided. However, the
information is always available in the extension to the FPTDR record in the SYSUT2 data set.

CALLS Line
The CALLS line contains the number of DL/I calls by type for DEDB calls. Information relating to CALLS
is obtained from type X'5937' log records.

The different types of DL/I calls are:

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 413

GU CALL
The number of GU calls

GN CALL
The number of GN calls

GNP CALL
The number of GNP calls

GHU CALL
The number of GHU calls

GHN CALL
The number of GHN calls

GHNP CALL
The number of GHNP calls

REPL CALL
The number of REPL calls

ISRT CALL
The number of ISRT calls

DLET CALL
The number of DLET calls

FLD CALL
The number of FLD calls

POS CALL
The number of POS calls

TOTAL
The number of DL/I calls during this processing

BUFFER Line
The BUFFER line contains the amount of buffer use by type. Information relating to BUFFER is
obtained from type X'5937' log records:

The different types of buffer use are:

NBA
The number of times a wait for NBA latch occurred during this processing.

OVFN
The number of overflow buffers used during this processing.

STEAL
The number of times buffer stealing is invoked by this transaction.

WAIT
The number of times the transaction waited for a buffer to become available.

OTHR
The number of buffers sent to OTHREAD.

NRDB
The number of buffers used by MSDB and SDEP processing.

PBUF
The number of private buffers used by HSSP or the High Speed DEDB Direct Reorganization utility
in a transaction (one unit of work).

PBWT
The number of waits for private buffers by HSSP or the High Speed DEDB Direct Reorganization
utility in a transaction (one unit of work).

ASIO
The number of UOW asynchronous read-aheads by HSSP or the High Speed DEDB Direct
Reorganization utility in a transaction (one unit of work).

414 IMS: System Utilities

AIOW
The number of UOW asynchronous read-aheads to complete by HSSP or the High Speed DEDB
Direct Reorganization utility in a transaction (one unit of work).

This number should be either zero or one.

VSO Line
The VSO line contains information on data space use by transaction. Information relating to VSO is
obtained from type X'5937' log records.

The type of information collected about data space use is as follows:
VGET

The number of CI read requests satisfied from a data space.
VPUT

The number of CIs with updates to a data space.

This number represents the number of CIs that would have been sent to OTHREAD if the areas
were non-VSO.

DGET
The number of CIs read from DASD into a data space.

SEMHB Line
The SEMHB line contains the transit time for Fast Path input and output messages on EMHQ.
Information relating to SEMHB is obtained from type X'5936' log records.

The type of information collected about data space use is as follows:

SHARED EMHB
Shared EMH global message processing.

IMSG TRANSIT
The time that a Fast Path input message spent on the EMHQ before an application GU. The time is
in milliseconds.

OMSG TRANSIT
The time that a Fast Path output message spent on the EMHQ before an application GU. The time
is in milliseconds.

You can specify exceptional transit time values separately for each Fast Path transaction code. A global
value can be specified that applies to all other unspecified transaction codes.

Summary-of-Exception-Detail-by-Transaction-Code (for IFP Regions) report

A summary is produced for the exceptional transactions selected for the Detail Listing of Exception
Transactions. However, only the exceptional IFP transactions are taken into account. None of the other
transaction types are included even if the NON-MESSAGE option is specified.

Transactions for which a dequeue record was not found are not included in this summary.

The following figure is an example of the Summary-of-Exception-Detail-by-Transaction-Code report.

 SUMMARY OF EXCEPTION DETAIL BY TRANSACTION CODE FOR IFP
REGIONS PAGE 6
 -------------- TRANSIT TIMES IN MILLI-SECONDS -------------- INPUT MSG
OUTPUT MSG
 TRANS -NO.OF- ----TOTAL--- --INPUT Q -- --PROCESS -- --OUTPUT Q-- LENG (CH) LENG
(CH)-
 CODE -TRANS- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG -MAX
-AVG -MAX
 ________ _______ _____ _____ _____ _____ _____ _____ _____ _____ ____ ____
____ ____
 TPCA 157837 381 889 293 682 40 405 47 325 94 94
100 100

The column headings for this report are:

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 415

TRANS CODE
The transaction code.

NO. OF TRANS
The number of occurrences of the transaction code for which a transit time value was computed.

TRANSIT TIMES
The average and maximum values of transit time intervals in milliseconds.

INPUT LENG
The average and maximum values of input message length.

OUTPUT LENG
The average and maximum values of output message length.

The averages are computed using the number of occurrences of the transaction code for which a transit
time value was computed.

Overall-Summary-of-Transit-Times-by-Transaction-Code (for IFP-Regions) report

A summary report is produced, by transaction code, for all IFP transactions found for the analysis period.
Transactions for which a dequeue record was not found are not included in the summary.

The format of this report is identical to that of the Summary of Exception Detail by Transaction Code for
IFP Regions. The following figure is an example of the overall summary of transit times by transaction
code for IFP regions.

 OVERALL SUMMARY OF TRANSIT TIMES BY TRANSACTION CODE FOR IFP
REGIONS: PAGE 7
 -------------- TRANSIT TIMES IN MILLI-SECONDS -------------- INPUT MSG
OUTPUT MSG
 TRANS -NO.OF- ----TOTAL--- --INPUT Q -- --PROCESS -- --OUTPUT Q-- LENG (CH) LENG
(CH)-
 CODE -TRANS- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG -MAX
-AVG -MAX
 ________ _______ _____ _____ _____ _____ _____ _____ _____ _____ ____ ____
____ ____
 TPCA 157837 381 889 293 682 40 405 47 325 94 94
100 100

Overall Summary of Resource Usage and Contentions for All Transaction Codes and
PSBs report

A summary report is produced for all transactions and PSBs that had their synchronization point
processing during the interval specified for the analysis. These include successfully processed and failed
transactions from MPP, BMP and utility regions, and DBCTL threads. Data is summarized by PSB name or
transaction code.

The following figure is an example of the overall summary of resource usage and contentions for all
transaction codes and PSBs.

 OVERALL SUMMARY OF RESOURCE USAGE AND CONTENTIONS FOR ALL TRANSACTION CODES AND PSBS: PAGE 8
 TRANCODE --NO.-- ------DEDB CALLS------- -MSDB-- ----ADS I/O---- ----VSO ACT---- -COMMON BUFFER- TOTL CONTENTIONS TRAN
LGNR STATS
 --OR---- ---OF-- -TOTAL- --GET-- --UPD-- -CALLS- --RDS-- --UPD-- --RDS - --UPD-- -----USAGE----- SYNC TOT TOT CI/ RATE
-NO. OF CI
 --PSB--- -TRANS- AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX WTS STL FAIL UOW OBA SEC /SEC
COMB LOG'D
 ________ _______ ____ ___ ___ ___ ____
____ _____
 TPCA 157837 5 5 1 1 2 2 0 0 3 3 1 1 4 4 2 2 5 5 0 0 0 0 0 106
1315 0 0

The column headings of this report are:

TRANCODE OR PSB
The transaction code or PSB.

416 IMS: System Utilities

NO. OF TRANS
The number of occurrences of the transaction code for which a transit time value was computed.

DEDB CALLS
The number of DEDB calls
TOTAL

The total number of DL/I calls during this processing
GET

The total number of "GET" DL/I calls during this processing (GU, GN, GNP, GHU, GHN, GHNP)
UPD

The total number of "UPDATE" DL/I calls during this processing (REPL, ISRT, DLET, FLD)
AVG

The average number of calls per processing interval
MAX

The maximum number of calls per processing interval
MSDB CALLS (AVG MAX)

The average and maximum numbers of MSDB calls per processing interval.
ADS I/O

The area data set I/O
RDS

The total number of "READ" DL/I calls (GU, GN, GNP, GHU, GHN, GHNP) during this processing for
an area data set

UPD
The total number of "UPDATE" DL/I calls (REPL, ISRT, DLET, FLD) during this processing for an
area data set

AVG
The average number of calls per processing interval

MAX
The maximum number of calls per processing interval

VSO ACT
The amount of VSO activity
RDS

The total number of CI read requests satisfied from a data space
UPD

The total number of CIs with updates to a data space
AVG

The average number of calls per processing interval
MAX

The maximum number of calls per processing interval
COMMON BUFFER USAGE

The amount of buffer usage
AVG

The average number of calls per processing interval
MAX

The maximum number of calls per processing interval
WTS

The total number of times a transaction waited for a buffer to become available
STL

The total number of times buffer stealing was invoked for the transaction

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 417

TOTL SYNC FAIL
The total number of occurrences of this transaction code that failed synchronization point processing.

CONTENTIONS
The number of control interval contentions
TOT UOW

The total number of times unit-of-work contentions occurred for this transaction code
TOT OBA

The total number of times overflow buffer area contentions occurred for this transaction code
CI/SEC

The total number of CI contentions per second for this transaction code. If the time interval is less
than one second, then it will default to one second

TRAN RATE/SEC
The average transaction rate for this transaction code. If the time interval is less than one second,
then it will default to one second

LGNR STATS
The statistics related to the LGNR specification
NO. OF CI COMB

The total number of times the LGNR specification was exceeded for this transaction code. This
number is either 0 or 1.

NO. OF CI LOG'D
The total number of times an entire CI was logged for this transaction code. This number is either
0 or 1 and will only be 1 if "NO. OF CI COMB" is also 1.

Summary-of-Region-Occupancy report

A summary report is produced of approximate region occupancy for IFP regions during a specified period.
If the time interval is less than one second, then it defaults to one second. This information can be used to
determine if an appropriate number of IFP regions are available for processing the workload.

This report is generated only if both the START and END parameters are specified for the utility. The
following example shows the sample summary of region occupancy (percent) for IFP regions by PST.

SUMMARY OF REGION OCCUPANCY (PERCENT) FOR IFP REGIONS BY
PST PAGE 9

 MEASUREMENT INTERVAL= 120 SECONDS.

REGION 1 HAD 70% OCCUPANCY WITH 84.4 SEC OF TOTAL PROCESS TIME DURING 978
TRANSACTIONS. RELATED PSB=TPC
REGION 2 HAD 67% OCCUPANCY WITH 81.1 SEC OF TOTAL PROCESS TIME DURING 922
TRANSACTIONS. RELATED PSB=TPC
REGION 3 HAD 68% OCCUPANCY WITH 82.2 SEC OF TOTAL PROCESS TIME DURING 956
TRANSACTIONS. RELATED PSB=TPC
REGION 4 HAD 67% OCCUPANCY WITH 81.3 SEC OF TOTAL PROCESS TIME DURING 926
TRANSACTIONS. RELATED PSB=TPC
REGION 5 HAD 69% OCCUPANCY WITH 83.4 SEC OF TOTAL PROCESS TIME DURING 972
TRANSACTIONS. RELATED PSB=TPC
REGION 6 HAD 67% OCCUPANCY WITH 80.7 SEC OF TOTAL PROCESS TIME DURING 919
TRANSACTIONS. RELATED PSB=TPC
REGION 7 HAD 70% OCCUPANCY WITH 84.1 SEC OF TOTAL PROCESS TIME DURING 978
TRANSACTIONS. RELATED PSB=TPC
REGION 8 HAD 68% OCCUPANCY WITH 82.5 SEC OF TOTAL PROCESS TIME DURING 942
TRANSACTIONS. RELATED PSB=TPC
REGION 9 HAD 66% OCCUPANCY WITH 80.4 SEC OF TOTAL PROCESS TIME DURING 944
TRANSACTIONS. RELATED PSB=TPC
REGION 10 HAD 70% OCCUPANCY WITH 84.8 SEC OF TOTAL PROCESS TIME DURING 958
TRANSACTIONS. RELATED PSB=TPC

418 IMS: System Utilities

Note: The PSB name may be "********" on the report if there is insufficient data on the log to determine
the PSB name.

Summary-of-VSO-Activity report

A summary report is produced of VSO performance statistics by area. This report is generated only if there
have been writes to the disk. The following figure is an example of this report.

 SUMMARY OF VSO ACTIVITY PAGE 12

 SHR(0/1) VSO VSO DASD DASD I/O
 AREA GETS PUTS GETS PUTS SCHED
 ________ ________ ________ ________ ________ ________

 BRANCH01 8092 8095 0 6012 2154
 TELLER01 8200 8198 0 8018 3752

 SHR(2/3) CF CF READ READ DASD DASD
 AREA GETS PUTS HIT XI GETS PUTS
 ________ _______ _______ ____ ____ _______ _______
 AREAFR01 1234567 1234567 99% 99% 1234567 1234567
 AREA2 1234567 1234567 N/A N/A 1234567 1234567

The column headings of the Summary-of-VSO-Activity report are:

VSO GETS
The total number of CI read requests satisfied from a data space.

VSO PUTS
The total number of CIs with updates to a data space. This number is the total number of CIs that
would have been sent to OTHREAD if the areas were non-VSO.

DASD GETS
The number of CIs read from DASD into a data space.

DASD PUTS
The number of CIs written from a data space to DASD.

I/O SCHED
The total number of I/Os scheduled.

CF GETS
The total number of CI read requests satisfied by a coupling facility.

CF PUTS
The total number of CIs with updates to a coupling facility.

READ-HIT
The percentage of searches of the pool and the number of times that buffers were found. This is only
valid for a lookaside pool.

READ-XI
The percentage of times a buffer was found in the pool and the number of times the buffer was invalid.
This is only valid for a lookaside pool.

DASD GETS
The number of CIs read from DASD into the coupling facility.

DASD PUTS
The number of CIs written from the coupling facility to DASD.

Recapitulation-of-the-Analysis report

The following figure is an example of the recapitulation of the analysis report.

 RECAPITULATION OF THE ANALYSIS: PAGE 13

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 419

 (1) TOTAL NUMBER OF FAST PATH TRANSACTIONS EXAMINED (SYSUT1).................157837
 (2) NO. OF TRANSACTIONS INCLUDED IN THE EXCEPTION DETAIL DATA SET (SYSUT2)...157837
 BREAKDOWN BY EXCEPTION TYPE:
 (2.1) TRANSIT TIME....................157837
 (2.2) IFP SYNC FAILURE.....................0
 (2.3) NO DEQUEUE RECORD....................0
 (2.4) MPP,BMP, DBCTL AND UTILITIES.......N/A
 (INC SYNC FAILURE)
 (3) NO. OF IFP TRANSACTIONS INCLUDED IN THE SUMMARY OF
 EXCEPTION DETAIL BY TRANSACTION (2.1)+(2.2)...................157837
 (4) NO. OF TRANSACTIONS OR PSBS INCLUDED IN THE PROFILE SUMMARY
 FOR ALL REGIONS (INC SYNC FAILURE) BY PSB OR TRANCODE.........157837
 (5) NO. OF IFP TRANSACTIONS INCLUDED IN THE OVERALL SUMMARY
 BY TRANSACTION (1)-(2.3)......................................157837
 (6) NO. OF TIMES COMBINING CONSTANT WAS DOUBLED...................................0
 (7) NO. OF TIMES ENTIRE CI LOGGED (LGNR EXCEEDED).................................0

The meanings of the headings are as follows:

Line (1)
Number of transactions in the analysis period that were examined and selected as a basis for the
statistical data reported by the utility. These include any transactions that were involved with Fast
Path resources, that is, from IFP, MPP, or BMP regions, or from DBCTL transactions. These are also the
transactions written to the total traffic output data set if the SYSUT1 DD statement was provided.

Line (2)
Number of exceptional transactions found and written to the SYSUT2 data set. These include:

• IFP transactions with a transit time equal or greater than the Exceptional Transit Time Specification
• All IFP transactions with a sync point failure
• All IFP transactions for which no dequeue records were found
• All non-message-driven Fast Path transactions if the option NON-MESSAGE was selected by the

user. These include MPP, BMP, utility, and DBCTL transactions.

Line (2.1)
Number of IFP transactions with a transit time equal or greater than the Exceptional Transit Time
Specification. The number must match the number of transactions reported in the column NO. OF
TRANS of the Summary-of-Exception-Detail-by-Transaction-Code-for-IFP report.

Line (2.2)
Number of IFP transactions with a synchronization point failure. The number must match the number
of transactions reported in the column SYNC FAIL of the Summary of Exception Detail by Transaction
Code for IFP Regions.

Line (2.3)
Number of IFP transactions in the analysis period for which dequeue records were not found.

Line (2.4)
Number of non-message-driven Fast Path transactions. These include all transactions from MPP, BMP
and utility regions, and from DBCTL threads found in the analysis period. This is reported only if the
NON-MESSAGE option was selected.

If the NON-MESSAGE option is not selected, the N/A (not applicable) characters are printed.

Line (3)
Number of IFP transactions as reported by the Summary of Exception Detail by Transaction Code
for IFP Regions. The number includes successfully processed transactions and transactions with a
synchronization point failure. It is the sum of the numbers reported in lines (2.1) and (2.2). It does not
include transactions for which no dequeue records were received.

Line (4)
Number of transactions included in the Overall Summary of Resource Usage and Contentions for All
Transaction Codes and PSBs report. The number must match the number in line (1).

420 IMS: System Utilities

Line (5)
Number of transactions included in the Overall Summary of Transit Times by Transaction Code for IFP
Regions. The number must match the number of transactions reported in the NO. OF TRANS column.

Line (6)
Total number of times the LGNR specification was exceeded for all transaction codes.

Line (7)
Total number of times the entire CI was logged for all transaction codes.

Chapter 15. Fast Path Log Analysis utility (DBFULTA0) 421

422 IMS: System Utilities

Chapter 16. File Select and Formatting Print utility
(DFSERA10)

Use the File Select and Formatting Print utility (DFSERA10) to assist in the examination and display of
data from the IMS log data set.

The utility can:

• Print or copy an entire log data set
• Print or copy from multiple log data sets based upon control statement input
• Print Operations Manager (OM) log records
• Select and print log records on the basis of sequential position in the data set
• Select and print external trace data sets
• Select and print log records based upon data contained within the record itself, such as the contents of

a time, date, or identification field
• Allow modules to special process any selected log records

Use a series of control statements to define the input and output options, selection ranges, and various
field and record selection criteria.

Subsections:

• “Restrictions” on page 423
• “Prerequisites” on page 423
• “Requirements” on page 423
• “Recommendations” on page 423
• “Input and output” on page 423
• “JCL specifications” on page 424
• “Utility control statements” on page 425

Restrictions

Currently, no restrictions are documented for the DFSERA10 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSERA10 utility.

Requirements

Currently, no requirements are documented for the DFSERA10 utility.

Recommendations

Currently, no recommendations are documented for the DFSERA10 utility.

Input and output

© Copyright IBM Corp. 1974, 2020 423

All data input is processed using QSAM and can reside on either tape or direct-access storage devices.
Data set organization must be physical sequential. The record format can be fixed or variable in length,
blocked or unblocked, or of undefined length. You can use multiple input and output data sets, and they
can reside on different device types.

The data set containing control information must have a record length of 80. These statements are
reproduced on the output print data set in the same format and sequence as they are processed. If error
conditions are encountered, error messages are produced following the statement to which they apply.

Output data can be formatted and printed on the SYSPRINT data set, copied to a specified data set
unchanged, or both.

Data to be printed is formatted into 32-byte segments and displayed in both hexadecimal and EBCDIC
forms, with the hexadecimal relative offset value preceding each segment.

The flow of control for the program passes through two major stages:

• Control statement processing, where construction of record test and selection parameters takes place
and control statement errors are diagnosed

• Record selection and output processing, where the input data is read, analyzed, and compared with the
selection parameters to determine the applicability of the record for output

The first phase reads and examines the parameter statements and constructs the required test or test
series to create a test group. This test group is then used in record selection when control passes to the
next phase of the program. The second phase reads the input data and determines the disposition by the
results of each test in the group. When the end of the input data is reached, either by encountering an
end-of-file condition or the satisfying the indicated record count, program control shifts back to phase
one, where the next group of tests is constructed.

JCL specifications

The File Select and Formatting Print utility executes as a standard operating system job. You must define a
JOB statement, an EXEC statement, and DD statements defining input and output.

EXEC statement

Must be in the format

// EXEC PGM=DFSERA10

Alternatively, the EXEC statement can be included in a cataloged procedure.

DD statements

STEPLIB DD
Defines a partitioned data set containing the EXIT routine modules. If EXIT routines are not used or if
the modules reside in LINKLIB, this statement is not required.

SYSPRINT DD
Describes the output data set to contain the formatted print records and control messages. It is
usually defined as SYSOUT=A.

The RECFM=FBA DCB parameter is specified for this data set. LRECL and block size can be provided
on the SYSPRINT DD statement and must be a multiple of 133. The default for both is 133.

Attention: If you specify a non-default LRECL and the EXITR option statement, you must
specify a EXITR module that supports the non-default LRECL. If the EXITR module does not
support the non-default LRECL, the default value of 133 must be used.

SYSIN DD
Describes the input control data set. This file must contain fixed-length 80-character records.

input or data DD
Defines the input data set to be examined to produce the formatted print records.

424 IMS: System Utilities

These data sets must be standard labeled files, either direct-access or tape. They can be of any record
format (F, FB, V, VB, VBS, or U), as long as they are of DSORG=PS.

If a file with RECFM=U is used, the DCB BLKSIZE parameter must be specified. These files are
processed using QSAM. Any file that QSAM supports can be described as input.

If a ddname is not specified in the CONTROL statement, the default ddname used is SYSUT1.

output or data DD
Defines the optional output data set to contain the selected records.

DFSERA10 sets the RECFM of this data set equal to the RECFM specified for the input data set. This is
also done for LRECL and BLKSIZE if not specified.

The default ddname used is SYSUT4.

Utility control statements

This utility uses three types of control statements. You can use an additional statement type to provide
titles or comments on the output listings. Keyword operands on these statements can be extended to
additional statements, to a maximum of 9, by placing a nonblank character in position 72 and continuing
the parameter in position 16 of the next statement. Each full keyword has an abbreviation that you can
use.

The CONTROL statement defines the ddnames used for the input and output data sets and the beginning
and ending limits of the data set being scanned. This statement is optional if the default parameter values
are satisfactory.

The OPTION statement defines the test or series of tests performed on the data of the candidate record to
determine its qualification for selection. You can execute one or more tests on each logical record by the
appropriate number of OPTION statements, creating the logical "OR" function. You can analyze records
with the logical "AND" function by creating a test series using the multifield test capability of the COND
parameter and the necessary number of OPTION statements. Use the operands COND=M and COND=E to
denote the beginning and ending, respectively, of a series for multifield testing of a record.

Each OPTION function has its own output processing defaults. If you use multiple OPTION functions to
create a multifield test series, final output processing is determined by the OPTION statement coded with
the COND=E keyword.

Use the END statement as a delimiter to separate one group of tests (made up of one or more
OPTION statements) from subsequent groups of tests on the next data set. When an END statement
is encountered in the control input stream, the construction of record selection parameters ceases and
the processing of input data records starts. Proper use of the END statement allows one execution of the
utility program to perform a varied number of tests on one or more IMS log data sets.

You can use the * or COMMENT statement to include any additional information in identifying tests or
data. Those statements have no effect on the utility program.

CONTROL statement

The CONTROL statement is optional. If it is not specified, the SYSUT1 input file is examined. The optional
output data set defined on the SYSUT4 DD statement is opened only if you specify the OPTION COPY
function in the current group of tests. This data set is used only if COND=E is also specified.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 425

CONTROL CNTL

SKIP= K=

0

aaa

,STOPAFT=

,H=

16777215

bbb

EOF

( bbb ,E)

,DDNAME=

,D=

SYSUT1

ddname

,DDNOUT=

,O=

SYSUT4

ddname

CONTROL or CNTL
Identifies the CONTROL statement.

SKIP= or K=
Defines the first record tested. All prior records are ignored.

If this keyword is not specified, a default value of zero is used and the first record on the input file is
tested.

aaa
Must be specified in the range of zero to 99999999, and cannot have embedded commas.

STOPAFT= or H=
Defines the last record to be tested. The current group of tests terminates when this value has been
reached by counting processed records.

If this keyword is not specified, a default value of 16777215 is used.

If the STOPAFT parameter uses the default value of 16777215 and message DFS707I indicating EOF
does not appear, the records after 16777215 have not been processed.

bbb
Must be specified in the range of 1 to 99999999, with no embedded commas. If the value zero is
specified, one record is processed.

EOF
Denotes end-of-file condition. Use of the EOF parameter allows record processing beyond the stated
maximum of 99999999 records.

E
Causes records to be counted for test sequence termination only if they satisfy selection criteria.
Otherwise, all records read (after the SKIP value) are counted.

DDNAME= or D=
Identifies the input data set for the current group of tests. A corresponding DD statement must be
supplied.

If this keyword is not specified, a default of SYSUT1 is used and the appropriate DD statement must
be supplied.

426 IMS: System Utilities

DDNOUT= or O=
Identifies the optional output data set for the current group of tests.

This keyword is used with the OPTION COPY function and is only required if a ddname other than the
default of SYSUT4 is required. (DDNOUT or the presence of SYSUT4 will not cause this data set to be
used; this data set will be used only if OPTION COPY is specified with COND=E.)

OPTION statement

The OPTION statement constructs one set of tests. One or more OPTION functions can be specified in any
combination desired to further define the selection criteria and output processing performed against each
input record. Except for EXITR and DDNAME keyword operands, omitting the keyword operands causes all
records processed by phase 2 of this program to be displayed on the SYSPRINT data set or transferred to
the specified output data set.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 427

OPTION PRINT

COPY

NEGOF OFFSET=

O=

1

aaa

PARM=(

,

 parm)

SYM= &xxxxxxxx

,FLDTYP=

,T=

X

C

,VALUE=

,V=

bbb

&xxxxxxxx

,FLDLEN=

,L=

1

ddd

STOPAFT=

H=

aaaaa

STARTAF=

B=

aaaaa

,COND=

,C=

E

A

M

T Y

N

MT Y

N

ET Y

N

,EXITR=

,E=

name

,DDNAME=

,D=

TRCPUNCH

DDNAME

,PRTSYS=

,P=

N

Y

A

428 IMS: System Utilities

I

IE

IM

ITY

ITN

IETY

IETN

IMTY

IMTN

Options

Each option has two distinct functions:

1. Determines starting position for OFFSET keyword
2. Determines output processing to be performed

If individual options are combined to form a multifield test, the use of OFFSET remains unchanged;
however, output processing is determined by the OPTION coded with the COND=E keyword.

PRINT
Causes all selected records to be displayed on the SYSPRINT data set.

COPY
Causes all selected records to be transferred to the specified output data set. These records can also
be displayed on the SYSPRINT data set by use of the PRTSYS keyword.

NEGOF
Causes the OFFSET keyword value to be used as a negative offset from the end of the log record. All
records selected using this function are displayed on the SYSPRINT data set.

Keywords

The following keywords are all optional:

OFFSET= or O=
Is used to define the location of the first byte of the field to be tested in the record. The default is
position one of the record.
aaa

Must be specified in the range from 1 up to and including the length of the record under test.
Maximum value is 32767 bytes. No checking is performed to determine if the logical record length
is exceeded.

If you use DSECTs to locate values in control records or blocks, you must adjust the starting value
for the OFFSET parameters. Most DSECTs start with a relative value of ZERO, while the value
specified in the OFFSET keyword is always expressed as relative to byte 1.

PARM=
Is used to pass parameters to the DFSERA70 exit routine.

SYM=
Is used to define a value as a symbol. This option replaces the VALUE keyword and must not be used
in the same element tests as the VALUE= keyword.
&xxxxxxxx

Is the unique name of a symbol. The '&' is the recognition character. The 'xxxxxxxx' is a 1- to
8-character symbol name. It must be unique for each SYM= specified. This symbol can be used for
a VALUE= option in one or many of the following elements in a test series.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 429

FLDTYP= or T=
Is used to define the type of data in the VALUE=field.
X

Defines the data to be treated as hexadecimal pairs. The test data is packed (2 bytes into one to
form hexadecimal equivalents). This is the default value.

Example: If VALUE=D9D6D6E3E2C5C7 (14 bytes) is specified with the FLDTYP=X parameter, the
resultant VALUE= is: ROOTSET in EBCDIC or D9D6D6E3E2C5C7 in hexadecimal; in either case, the
length is only 7 bytes.

C
Defines the data to be treated as EBCDIC. The test data is used as punched in the card, with no
alterations.

VALUE= or V=
Defines the characters of the test field. If FLDTYPE=X is specified, this data must be entered as
hexadecimal character pairs. For a "test under mask" condition, a single pair must represent the
hexadecimal value for the test. If FLDTYP=C is specified, this data must be entered as EBCDIC
characters. If the character of blank or comma is to be included in this parameter, FLDTYP=X must be
used with the appropriate hexadecimal equivalent.

Restriction: This option must not be used in the same element test as the SYM= keyword.

bbb
Cannot exceed 255 EBCDIC or 510 hexadecimal characters. The length of this field is determined
by the FLDLEN= keyword value and not by the number of "nonnull" characters in this field.

&xxxxxxxx
Is the symbol name of a preceding SYM= option. Each symbol has a value associated with it that is
determined by the SYM= option.

FLDLEN= or L=
Defines the number of characters to be used from the test field.
ddd

Represents the actual number of bytes to be used, not the number of characters specified in
the VALUE= keyword. The acceptable range of values for this field is 1 to and including 255. The
default is 1.

STOPAFT= or H=
Defines the number of records to be selected for a single test or a multifield test. This statement can
only be specified on the COND=E control statement for each element test.
aaaaa

Can be from 0 to 32767 elements.
STARTAF= or B=

Defines the number of selected records to be skipped for a single or a multifield test. This statement
can only be specified on the COND=E control statement for each element test.
aaaaa

Can be from 0 to 32767 elements.
COND= or C=

Defines the type of test and its relationship to other tests in the group. If this keyword is not specified,
the default is COND=E.
E

Marks the last (or only) element in a test series. Any OPTION control statements appearing after
this form a new series of tests. This allows various tests to be performed on each record and each
test series can be used on different fields within the record. Final output processing is determined
by the OPTION function defined with this keyword value.

I
Tests the VALUE= value. The record passes if the test fails. This option can stand alone or precede
the E, M, or T parameters.

430 IMS: System Utilities

M
Indicates that this is a multifield test. All tests in this series must be satisfied before final output
selection and processing of this record begins.

T
Causes the VALUE= byte to be used as a "test under mask" value, instead of a compare field. Only
the first byte (two hexadecimal characters if FLDTYP=X) of the VALUE= field is used. If FLDTYP=C
is used, the hexadecimal equivalent of the EBCDIC character is the test value. If this parameter is
used, the FLDLEN= keyword must not be specified and a default length of 1 is assumed.

Y
Indicates that, for the "test under mask" to be considered satisfied, there must be a bit in the
record test field for each corresponding bit of the test byte. This is equivalent to a "branch if ones"
test.

N
Indicates that, for the "test under mask" to be considered satisfied, there must not be a bit in the
record test field for any of the corresponding bits of the test byte. This is equivalent to a "branch if
zeros" test.

MT
Defines a "test under mask" OPTION but with the properties of a multifield test as described in the
M parameter. Because the T parameter assumes a default value of 1,e, the MT parameter must be
used for a multifield test that starts with a "test under mask" value.

ET
Indicates that a multifield test series ends with "test under mask" condition.

EXITR= or E=
Specifies the entry point name of an exit routine to be given control when a candidate record has
satisfied all selection criteria for the current test.

If multiple test groups have specified the same exit routine, an attempt is made to load the routine
into storage for each group; therefore, the routine should be re-enterable. Upon reaching end of file on
input, a final call is made to the exit routine. You can determine if end of file was reached by checking
for zeros in the parameter field.

Interface to the exit routine is as follows:

• ENTRY:

REGISTERS

R1
Contains a pointer to a parameter list.

R13
Points to an empty save area.

R14
Contains a return address.

R15
Contains the exit routine entry address.

PARMLIST

• The parameter list consists of two words, the first is a pointer to the candidate record; the second
(with the high order bit on) is a pointer to the SYSPRINT data set DCB.

EXIT:
Upon return from the exit routine, register 15 is used to determine whether or not processing is to
continue on this record.
A nonzero value indicates that no further processing is done on this record, and selection tests
start again against the next input record.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 431

A zero value indicates that this record is required, and output processing is now determined based
upon the last OPTION statement encountered containing the COND=E keyword.
If the EXITR keyword is omitted, processing continues as though a return code value of zero had
been received.

DDNAME= or D=
Defines the output data set used by the DL/I call trace log record retrieval routine (DFSERA50)
whenever it is specified as the user exit routine. A corresponding DD statement must be supplied.

If this keyword is not specified and DFSERA50 is the exit routine, a default of TRCPUNCH is used and
the appropriate DD statement must be supplied.

PRTSYS= or P=
Is used to display selected records on the SYSPRINT data set.
N

Indicates that no printing of selected records is done.
Y

Indicates that all records transferred to the output data set are also formatted and printed.

This keyword can only be used with OPTION COPY function. N is the default.

END statement

When you have defined all tests for the current input file, use the END statement to execute those tests.

END is entered at position 1. Positions 10 and on can be used for comments.

COMMENT statement

The COMMENT statement is optional. If used, the contents are displayed on the SYSPRINT data set.

Alternatively, you can use an asterisk (*) in position 1 to indicate a comment; however, comments inserted
using an asterisk are not displayed in the SYSPRINT data set.

Related reference
Printing Repository Server audit log records (Diagnosis)

Examples of the DFSERA10 utility
The following examples illustrate some of the ways you can use DFSERA10. Most of the examples refer
to the IMS log data set; however, you can use this utility with any data set that can be processed using
QSAM.

For clarity, all option keywords are specified in full form, and many are coded where the default could be
taken. Use of the short form and keyword defaults greatly reduces the input required.

Example 1

This example shows the JCL and control statements required to print or copy all log records from an IMS
log data set.

//EXAMPLE1 JOB
//*
// EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//*
//SYSUT1 DD DISP=(OLD,KEEP),DSN=IMSLOG,
// UNIT=TAPE,VOL=SER=123456
//SYSUT4 DD DISP=(NEW,PASS),DSN=EXAMPLE1.COPY1,
// UNIT=SYSDA,SPACE=(CYL,(3,1)),
// VOL=SER=IMSPAC
//*
//SYSPRINT DD SYSOUT=A

432 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dgr/ims_print_repo_log_records.htm#printingrepositoryserverauditlogrecords

//*
//SYSIN DD *

* CONTROL STATEMENT : DEFAULTS *
* INPUT = SYSUT1 *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. DEFAULT = ALL INPUT RECORDS *

OPTION PRINT
END

* CONTROL STATEMENT : DEFAULTS *
* INPUT = SYSUT1 *
* OUTPUT = SYSUT4 *
* SELECTION QUALIFIERS : *
* 1. DEFAULT = ALL INPUT RECORDS *

OPTION COPY
END
/*
//

Example 2

This example shows two ways of selecting and printing all log records of a specific type:

• Specifying one selection qualifier: TYPE X'16' IN 5TH BYTE = (ALL /SIGN ON/OFF)
• Specifying two selection qualifiers: TYPE X'16' IN 5TH BYTE = (LOG RECORD TYPE) and FLAG
X'01' IN 6TH BYTE = 1 (/SIGN ON - ONLY)

//EXAMPLE2 JOB
//*
// EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//*
//SYSPRINT DD SYSOUT=A
//*
//LOGIN DD DISP=(OLD,KEEP),DSN=IMSLOG,
// UNIT=TAPE,VOL=SER=123456
//*
//SYSIN DD *
--
* CONTROL STATEMENT : SPECIFIED *
* INPUT = LOGIN *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. TYPE X'16' IN 5TH BYTE = (ALL /SIGN ON/OFF) *
--
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E
END
--
* CONTROL STATEMENT : SPECIFIED *
* INPUT = LOGIN *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. TYPE X'16' IN 5TH BYTE = (LOG RECORD TYPE) *
* 2. FLAG X'01' IN 6TH BYTE = 1 (/SIGN ON - ONLY) *
--
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=M
OPTION PRINT OFFSET=6,FLDTYP=X,VALUE=01,COND=ETY
END
/*
//

Example 3

This example shows how to print or copy two log record types, each containing a field value (USERID)
common to both, but residing at different offsets depending upon the record type.

//EXAMPLE3 JOB
//*
// EXEC PGM=DFSERA10

Chapter 16. File Select and Formatting Print utility (DFSERA10) 433

//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//*
//SYSPRINT DD SYSOUT=A
//*
//LOGIN DD DISP=(OLD,KEEP),DSN=IMSLOG,
// UNIT=TAPE,VOL=SER=123456
//LOGOUT DD DISP=(NEW,PASS),DSN=EXAMPLE3.COPY1,
// SPACE(CYL,(3,1)),UNIT=SYSDA,
// VOL=SER=IMSPAC
//*
//SYSIN DD *
--
* CONTROL STATEMENT : SPECIFIED *
* INPUT = LOGIN *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. LOG RECORD TYPE X'16' *
* USERID IN 9TH BYTE (FROM BEGINNING OF RECORD) *
* 2. LOG RECORD TYPE X'50' *
* USERID IN 12TH BYTE (FROM END OF RECORD) *
--
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=M
OPTION PRINT OFFSET=9,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=E
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=M
OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=E
END
--
--
* CONTROL STATEMENT : SPECIFIED *
* INPUT = LOGIN *
* OUTPUT = LOGOUT *
* SELECTION QUALIFIERS : *
* * THE SAME AS FOR THE 'PRINT' AND 'NEGOF' OPTIONS *
* ABOVE, BUT SINCE THE 'COPY' OPTION DEFINES AN OUTPUT*
* DATA SET OTHER THAN SYSPRINT, THIS OPTION MUST BE *
* CODED WITH THE 'COND=E' KEYWORD. *
--
CONTROL CNTL DDNAME=LOGIN,DDNOUT=LOGOUT
OPTION PRINT OFFSET=9,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=M
OPTION COPY OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E
OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=M
OPTION COPY OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=E
END
/*
//

Example 4

This example selects all specified log record types, each containing a common userid value, and both
print and transfer these records to the specified output data set.

//EXAMPLE4 JOB
//*
// EXEC PGM=DFSERA10
//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//*
//LOGIN DD DISP=(OLD,KEEP),UNIT=TAPE
//LOGIN DD DISP=(OLD,KEEP),DSNAME=IMSLOG,
// UNIT=TAPE,VOL=SER=IMSPAC
//LOGOUT DD DISP=(NEW,PASS),DSNAME=EXAMPLE4.COPY1,
// SPACE=(CYL,(3,1)),UNIT=SYSDA,
// VOL=SER=IMSPAC
//*
//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *
* INPUT = LOGIN *
* OUTPUT = (SYSPRINT AND LOGOUT) *
* * SINCE MULTIFIELD TESTS ARE BEING USED, *
* AND CONSIST OF MULTIPLE OPTION FUNCTIONS, *
* FINAL OUTPUT PROCESSING OF THE SELECTED RECORD *
* IS BASED UPON THE 'COPY' OPTION AND 'PRTSYS=Y' *
* KEYWORD BEING CODED WITH 'COND=E'. *
* SELECTION QUALIFIERS : *
* 1. USERID = USERBBBB *
* 2. LOG RECORD TYPES (X'16',X'50',X'51',X'52') *

434 IMS: System Utilities

CONTROL CNTL DDNAME=LOGIN,DDNOUT=LOGOUT
OPTION PRINT OFFSET=9,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M
OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E
OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M
OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=E
OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERBBBB,GLDLEN=8,COND=M
OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=51,FLDLEN=1,COND=E
OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M
OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=52,FLDLEN=1,COND=E
END
/*
//

Example 5

This example copies selected log records to individual output data sets in one execution of DFSERA10. All
selected records are printed.

//EXAMPLE5 JOB
//*
// EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSNAME=IMS.SDFSRESL
//*
//SYSUT1 DD DISP=(OLD,KEEP),DSNAME=IMSLOG
//*
//SYSPRINT DD SYSOUT=A,UNIT=TAPE,VOL=SER=123456
//*
//LOGOUT1 DD DISP=(NEW,PASS),DSNAME=EXAMPLE5.COPY1,
// SPACE=(CYL,(3,1)),UNIT=SYSDA,
// VOL=SER=IMSPAC
//LOGOUT2 DD DISP=(NEW,PASS),DSNAME=EXAMPLE5.COPY2,
// SPACE=(CYL,(3,1)),UNIT=SYSDA,
// VOL=SER=IMSPAC
//LOGOUT3 DD DISP=(NEW,PASS),DSNAME=EXAMPLE5.COPY3,
// SPACE=(CYL,(3,1)),UNIT=SYSDA,
// VOL=SER=IMSPAC
//*
//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *
* INPUT = DEFAULT (SYSUT1) *
* OUTPUT = SYSPRINT AND (LOGOUT1,LOGOUT2,LOGOUT3) *
* SELECTION QUALIFIERS : *
* 1. LOG RECORD TYPE X'16' *
* 2. USERIDS = (USERAAAA,USERBBBB,USERCCCC) *

CONTROL CNTL DDNOUT=LOGOUT1
OPTION COPY OFFSET=9,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=M
OPTION COPY OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E,PRTSYS=Y
END

CONTROL CNTL DDNOUT=LOGOUT2
OPTION COPY OFFSET=9,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M
OPTION COPY OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E,PRTSYS=Y
END

CONTROL CNTL DDNOUT=LOGOUT3
OPTION COPY OFFSET=9,FLDTYP=C,VALUE=USERCCCC,FLDLEN=8,COND=M
OPTION COPY OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E,PRTSYS=Y
END
/*
//

Example 6

This example shows the JCL and control statements required to print record 158 of an OSAM image copy
data set and all type X'50' records on a log data set that refer to this block number (assuming unblocked
OSAM).

//EXAMPLE6 JOB
//*
// EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSNAME=IMS.SDFSRESL
//*
//SYSUT1 DD DISP=(OLD,KEEP),DSNAME=IMSLOG,

Chapter 16. File Select and Formatting Print utility (DFSERA10) 435

// UNIT=TAPE,VOL=SER=123456
//*
//SYSPRINT DD SYSOUT=A
//*
//IMAGFILE DD DISP=(OLD,KEEP),DSNAME=OSAMIMAG,
// UNIT=TAPE,VOL=SER=456789
//*
//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *
* INPUT = IMAGFILE *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. OSAM RBN = 0000009E (RECORD NO. 158) *

CONTROL CNTL STOPAFT=(1,E),DDNAME=IMAGFILE
OPTION PRINT OFFSET=1,FLDTYP=X,VALUE=0000009E,FLDLEN=4,COND=4
END

* CONTROL STATEMENT : DEFAULTS *
* INPUT = SYSUT1 *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. LOG RECORD TYPE X'50' *
* 2. DATABASE NAME = DATABAS1 *
* 3. FLAG X'04' IN 7TH BYTE = 0 (OSAM DATA SET) *
* 4. OSAM RBN = 0000009E *

OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=M
OPTION PRINT OFFSET=53,FLDTYP=C,VALUE=DATABAS1,FLDLEN=8,COND=M
OPTION PRINT OFFSET=7,FLDTYp=X,VALUE=04,COND=MTN
OPTION PRINT OFFSET=43,FLDTYP=X,VALUE=0000009E,FLDLEN=4,COND=E
END
/*
//

Example 7

This example shows the JCL and control statements required to print all type X'50' records, where the
database name (beginning with the 53rd byte) is not equal to DB01DS01, and to print all type X'25'
records.

The second set of control statements uses a symbolic keyword to select the database name, beginning
with the 9th byte of the first type X'25' record. Using the same symbolic name for the value in the next
control statement, all type X'50' records (except the first) that have the same database name are to be
printed beginning with the 53rd byte.

//EXAMPLE7 JOB
// EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSNAME=IMS.SDFSRESL
//*
//SYSPRINT DD SYSOUT=A
//*
//LOGIN DD DISP=(OLD,KEEP),DSNAME=IMSLOG,
// UNIT=TAPE,VOL=SER=123456
//*
//SYSIN DD *
--
* CONTROL STATEMENT : SPECIFIED *
* INPUT : LOGIN *
* OUTPUT : SYSPRINT *
* SELECTION QUALIFIERS: *
* 1. LOG RECORD TYPE X'50' *
* ¬= DB01DS01 STARTING IN THE 53rd BYTE *
* (DATABASE NAME) PRINT 5 LOG RECORDS *
* 2. LOG RECORD TYPE X'25' *
--
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=M
OPTION PRINT OFFSET=53,FLDTYP=C,VALUE=DB01DS01,FLDLEN=8,STOPAFT=5, X
 COND=IE
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=25,FLDLEN=1,COND=E
END
--
* CONTROL STATEMENT : SPECIFIED *
* INPUT : LOGIN *
* OUTPUT : SYSPRINT *

436 IMS: System Utilities

* SELECTION QUALIFIERS: *
* 1. LOG RECORD TYPE X'25' *
* DEFINE SYMBOL &DBNAME STARTING IN THE 9th BYTE *
* (DATABASE NAME) & PRINT 1 RECORD *
* 2. LOG RECORD TYPE X'50' *
* USE SYMBOL &DBNAME FOR DATABASE NAME STARTING *
* IN THE 53rd BYTE & SKIP THE FIRST SELECTED *
* RECORD *
--
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=25,FLDLEN=1,COND=M
OPTION PRINT OFFSET=9,FLDTYP=C,FLDLEN=8,SYM=&DBNAME,STOPAFT=1,COND=E,
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=M
OPTION PRINT OFFSET=53,FLDTYP=C,VALUE=&DBNAME,FLDLEN=8,STARTAF=1, X
 COND=E,
END
/*
//

Example 8

This example shows the JCL and control statements required to print an external trace data set.

//EXAMPLE8 JOB MSGLEVEL=(1,1)
//*
//PRTTAB EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//*
//SYSUT1 DD DISP=SHR,DSN=IMS.EXTERNAL.TRACE
//*
//SYSPRINT DD SYSOUT=A
//*
//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *
* INPUT = SYSUT1 *
* OUTPUT = SYSPRINT *
* SELECTION QUALIFIERS : *
* 1. Log record type X'67FA' in fifth and sixth *
* byte = (all trace log records) *

CONTROL CNTL SKIP=0
OPTION PRINT OFFSET=5,VALUE=67FA,FLDLEN=2,COND=E,EXITR=DFSERA60
END
/*
//

Example 9

This example shows the JCL and control statements required to print 67FF records from the IMS log.

//EXAMPLE9 JOB
//*
// EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//*
//SYSPRINT DD SYSOUT=A
//*
//LOGIN DD DISP=SHR,DSN=IMSLOG
//*
//SYSIN DD *
CONTROL CNTL DD=LOGIN
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=67FF,FLDLEN=2,COND=M
OPTION PRINT OFFSET=29,FLDTYP=X,VALUE=F0F8F3F2,FLDLEN=4,COND=E,EXITR=DFSERA30
END
/*
//

Example 10

This example shows the JCL and control statements required to print OM log records.

//EXAMPLE10 JOB
//*

Chapter 16. File Select and Formatting Print utility (DFSERA10) 437

//STEP1 EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//*
//SYSUT1 DD DCB=(BLKSIZE=32760),DSN=SYSLOG.OM.AUDIT.TRAIL.LOG,
// SUBSYS=(LOGR,IXGSEXIT)
//*
//SYSPRINT DD SYSOUT=A
//*
//SYSIN DD
CONTROL CNTL STOPAFT=EOF
OPTION PRINT EXITR=CSLULALE
END
/*
//

DFSERA10 utility modules
The File Select and Formatting Print utility calls several modules that pass return codes to the DFSERA10
utility.

The following topics provide additional information about these modules.

Record Format and Print module (DFSERA30)
Use the Record Format and Print Module (DFSERA30) to format trace and general purpose subrecord
types (X'00' and X'01') and SNAP subrecord types (X'FD' and X'FF').

Other log records are formatted in z/OS dump format. DFSERA30 is an exit routine of the File Select and
Formatting Print Utility (DFSERA10). Because this routine formats log records, it passes a return code
to DFSERA10. This return code tells DFSERA10 that the log record has been processed and requires no
additional processing.

For trace and SNAP subrecord types, the module creates log record leader information, followed by a
formatted printout of each element within the log record.

DFSERA30 translates the STCK value in each record that is dumped into a human-readable date and time
stamp, and prints this value on the record header line. Because this value is derived from the hardware
clock, you should be aware of the following:

• The time is in UTC (GMT), not local time.
• The hardware clock does not include any leap second adjustments that may be present on your system

(see CVT field CVTLSO). Thus, the time printed by DFSERA30 might be different from the time reported
by z/OS when the record was written. The difference is equal to the leap second adjustment amount.

Utility control statements
The following figure shows the control statements required to format type X'67' log records using the
DFSERA30 exit routine.

Column 1 Column 10 72

CONTROL CNTL
OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67aa, X
 COND=E,EXITR=DFSERA30 X
END
/*
//

In this figure, aa is the log record subtype.

aa=01
Specifies TRACE log record subtype

aa=FD
Specifies SNAP log record subtype

aa=FF
Specifies ABEND log record subtype

438 IMS: System Utilities

The following figure shows a sample DFSERA30 output. AE9004 is the storage address of the LXB at the
time the log record was created. The second column of each line is the relative offset from the LXB.

DFSERA30 -- FORMATTED LOG PRINT
⋮
INTERNAL TRACE RECORD
⋮
LXB
 AE9004 000000 807F0BC9 00093660 00AE9350 00AE92B0 00091E90 00AE991C 17000000 7F0C0000
 AE9024 000020 80000000 520821CE 0008229C 000820C6 80082194 012141CE 60000054 0A000000
 AE9044 000040 30000005 022140C6 600000CE 09000000 30000005 47000000 20000001 00000000
 AE9064 000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 AE9084 000080 TO AE90C4 0000C0 SAME AS ABOVE
 AE90E4 0000E0 00000000 0C419317 F1044193 17F10441 9337E218 D243F510 A314A8C3 419101A2
 AE9104 000100 02F30C41 93179101 A502F004 F30C4193 17F10441 93170000 00000000 00B66218

Deadlock report
The deadlock report contains information about the resources and resource owners for deadlocks
resulting from 777 and 123 pseudoabends and deadlocks in non-message-driven BMPs. (These result
in an 'FD' status code.)

When DFSERA30 encounters this deadlock block, it prints the block and produces a report based on the
data in the block. When excessive deadlocks occur, the deadlock block and the report based on it allow an
analysis of the resources that are involved in the deadlock.

When IMS abends an application with a 777 or 123 pseudoabend due to an external subsystem detected
deadlock, the deadlock report contains information to identify the subsystem, the job, and the unit of
recovery that received the deadlock.

Deadlock report for BMP region and MPP region

The following figure is an example of the DFSERA30 report for a simple deadlock involving a BMP region
and an MPP region. The MPP program, which is waiting for resource 1 of 2, is chosen as the victim. It is
requesting a root lock for key 'KK360'. The BMP program is the holder of this lock. The BMP program is
requesting a root lock for key 'KK130'. The MPP program is the holder of this lock.

DEADLOCK ANALYSIS REPORT - LOCK MANAGER IS IRLM

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM
01 OF 02 DHVNTZ02 08 00000BC4800501D7

KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK
KEY=(KK360)

 IMS-NAME TRAN/JOB PSB-NAME DBD/PCB# PST# RGN CALL LOCK LOCKFUNC STATE
WAITER SYS3 NQF1 PMVAPZ12 DLVNTZ02 0002 MPP GET GRIDX 30400358 06-P
BLCKER SYS3 DDLKBMP1 PLVAPZ22 0027 0003 BMP ---- ----- -------- 06-P

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME
02 OF 02 DHVNTZ02 08 00000924800501D7

KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK
KEY=(KK130)

 IMS-NAME TRAN/JOB PSB-NAME DBD/PCB# PST# RGN CALL LOCK LOCKFUNC STATE
WAITER SYS3 DDLKBMP1 PLVAPZ22 DLVNTZ02 0003 BMP GET GRIDX 30400358 06-P
BLCKER SYS3 NQF1 PMVAPZ12 0006 0002 MPP ---- ----- -------- 06-P

DEADLOCK ANALYSIS REPORT - END OF REPORT

In the example, X'30' is reported under LOCK as GRIDX. Familiarity and some understanding of DL/I
locking terminology and data organizations is needed for a full understanding of the formatted deadlock
information provided.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 439

How to read the report

The formatted report is summarized by lock name. It begins with lock 1 of n, showing the database name
being locked, the lock name length, and the lock name itself. The lock name is composed of codes that
provide information about the lock such as its relative block address (RBA), whether the lock occurred in a
full-function (FF) or Fast Path (DEDB) database, and—in the case of a DEDB—whether the lock occurred at
the control interval (CI) level or at the segment level.

In an FF database, the RBA is displayed in bytes 1–4 of the lock name. For example, in lock name
00000924800501D7, the RBA= 924.

Determining the RBA of a lock in an FP database is slightly more complex. The following table shows the
lock name of an FP database is broken down.

Table 22. Lock name in an FP database

Byte position Lock information

1 Lock ID

2-4 Relative Byte Address

5-6 DMCB Number

7 Area Number

8 Fast Path ID=C6

In an FP database, the first two digits (Byte 1) display the number "80" if the lock occurred at the segment
level. In this case, the next 3 bytes displayed indicate the 30 bit RBA. You must multiply the displayed
RBA by 4 to get the true RBA.

The first byte of the lock name is the lock ID which identifies the resource being locked. You can find the
DSECT in ADFSMAC(DBFEPST) which gives all the possible lock IDs for Fast Path locks.

 EPSTRSID DS 0F RESOURCE NAME
 EPSTLKID DC X'00' LOCK SUB ID
 EPSTCILK EQU X'00' CI LOCK
 EPSTSLLK EQU X'80' SLL LOCK - '80' ON &
 EPSTSLLL EQU X'40' - '40' OFF
 EPSTUWLK EQU X'E4' UOW LOCK, X'E4'=C'U'
 EPSTDULK EQU X'F0' DUMMY LOCK
 EPSTMDLK EQU X'F1' MSDB LOCK
 EPSTOVLK EQU X'F2' BUFFER OVERFLOW LOCK
 EPSTNRLK EQU X'F3' DBRC NOT REGISTERD DB
 EPSTARLK EQU X'F8' AREA LOCK
 EPSTCMLK EQU X'FF' COMMAND LOCK

If the lock occurred at the CI level, the first two digits indicate the code X'00'. In this case, the next 3
bytes displayed indicate the 24 bit RBA. You must multiply the displayed RBA by 256 (X'100') to get the
true RBA.

In addition, for any lock that occurred in an FP database, the last two digits (Byte 8) of the lock name
display the code "C6."

For example, the lock name 80000C02800101C6 occurred in an FP database at the segment level with
an RBA of '00003008'.

In many cases, the lock is for a database record for which the root key is known. The next lines provide
information about the root key for the database record being locked. The following are the possible report
statements for the root key.

• KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK

This statement is the most common. It indicates that the key that follows is the root key for the
database record involved in the lock. You see this report statement, for example, when a HIDAM or
PHIDAM root is retrieved using the index. The key is known when the lock on the root is requested.

440 IMS: System Utilities

• KEY FOR RESOURCE IS NOT AVAILABLE

This statement indicates that the key for the database record being locked is not available. You see this
report statement, for example, when a GN call for an HDAM or PHDAM database causes DL/I to lock
the next root anchor. When this lock request is one of the resources involved in the deadlock, it is not
possible to print the key associated with the lock.

• LOCKING PRIOR ROOT FOR HIDAM ROOT INSERT, KEY DISPLAYED IS FOR NEXT HIGHER
ROOT

This statement can occur when a root is inserted in HIDAM or PHIDAM and the root has twin forward
and backward pointers. You see this report statement, for example, if the keys 10 and 12 are present
and 11 is being inserted. The key displayed is key 12 but the lock is on key 10.

• LOCKING ON NEXT HIDAM ROOT FOR GN CALL, KEY DISPLAYED IS FOR PRIOR HIDAM ROOT

This statement can occur when using HIDAM or PHIDAM with twin forward and backward pointing, and
keys 10, 11, and 12 exist, and position is on key 10; a GN call requires a lock on 11. When the lock is
required, the key is not known, so the key of the prior root is displayed.

• LOCKING ON HDAM ANCHOR, KEY DISPLAYED IS HDAM KEY REQUESTED

This statement can occur when using HDAM or PHDAM. The item locked is the anchor. When the anchor
is locked, the key that will be retrieved is not known but the key that is requested is known, and it is
displayed.

The following report statement can be issued if the locks involve DEDB:

• SPECIAL INTERNAL LOCK FOR PROMOTE

Fast Path requests lock at READ (01) level or at EXCLUSIVE (04) level. This statement can occur when
a GU call is followed by a GHU call for the same segment. The resultant request for the lock to be
promoted from level 01 - 04 caused a deadlock.

The lock waiter and holder/owner information is printed next. Each waiting and holding work unit is
identified by IMSID, tranname or jobname, PSB name, PST number, and region type. The WAITER listed is
the work unit that the database key information pertains to.

There are some differences between the two lines of waiter and holder information. The current PCB
name, the DL/I call, and the lock request pertain only to the waiter. This information is not available for
the holder of the lock. The relative DBPCB number is printed for the holder of the lock.

The current DL/I call being processed is reported as one of the following calls:

GET
DL/I call was GU, GHU, GN, GHN, GNP, or GHNP. The captured information does not allow a
breakdown of the specific GET call function.

REPL
DL/I call was REPL.

ISRT
DL/I call was ISRT or ASRT.

DLET
DL/I call was DLET.

POS
DL/I call was POS call on MSDB.

The lock request function is reported under the columns for LOCK and LOCKFUNC. The first byte of the
LOCKFUNC is translated for convenience. The LOCKFUNC is the hexadecimal function, mode, state, and
flags as mapped by the LRHPARM DSECT.

The reason for translating the lock request function is to identify deadlocks caused by block level data
sharing, by application programs accessing data in a different order, or mixtures of both. For deadlock
purposes, the lock request functions can be summarized by the following calls, where x is usually L, X, B,
P, U, or W:

Chapter 16. File Select and Formatting Print utility (DFSERA10) 441

GBIDx
Get a block lock. Block level sharing only.

GZIDx
Get a data-set-busy lock. Used only to serialize data set opens, closes, and extensions. Any
involvement in a deadlock is probably an indication of an error in IMS code.

GXIDx
Get a data-set-extend lock. Used to serialize the extending of a data set. Block level sharing only and
probably a HISAM database.

GRIDx
Get a lock on the root of a database record.

GQCMx
Get a Q command code lock. This is an application-originated lock on specific data. The GQCM
function applies to full function only (Fast Path does not obtain a new lock when the Q command code
is issued).

GSEGx
Get a segment lock for a dependent segment. This is not used when IRLM is the lock manager.

GFPLL
Get a Fast Path lock.

Lock states

The lock state is the type or level of lock and is typically designated by a number. To manage the lock
states, IMS uses either the internal resource lock manager (IRLM) or the program isolation (PI) lock
manager. These two lock managers do not use the same states to reflect the level of the locks. The PI lock
manager supports four states and IRLM supports 11, though IMS uses only eight of them.

Sometimes the lock states are referred to with names rather than numbers. The names used for the four
PI-supported states are:

State 1
Read only

State 2
Read

State 3
Update

State 4
Exclusive

The following table is a matrix that describes the compatibility of the level of an incoming lock request
and the level that the lock is held at when using the PI lock manager. A compatible state is indicated by a
"C" (meaning that the lock request will be granted) and an incompatible state by an "X" (meaning that the
lock request will not be granted).

Table 23. PI lock compatibility matrix

Requested Level 1 2 3 4

Held at 1 C C C X

Held at 2 C C X X

Held at 3 C X X X

Held at 4 X X X X

The eight states provided by the IRLM and their characteristics are defined in two matrices. One is used to
determine resultant state and the other to determine compatibility for a requesting and holding work unit.

442 IMS: System Utilities

The concept of a resultant state requires some explanation. In simple terms, the resultant state is the lock
state that results from granting the current request or the "held at" state that a subsequent requestor will
see assuming that the current request is granted. Because the IRLM allows a resource to be locked more
than once by a given work unit, when a work unit locks a resource for the second time and specifies a
different state, the state in which the lock is finally held should be one that carries the privileges of the
second state without losing those conferred by the first.

Given a set of states with a strictly hierarchical privilege order, it would be sufficient to grant the higher
of the two states. However, to allow a locking protocol in which each higher state does not necessarily
include all the privileges of the preceding one, the matrix can specify that the resultant state is a third
state that confers the sum of the privileges of the other two states. The request is then processed as a
request for the third state. The following table is the resultant state matrix.

Table 24. IRLM resultant state matrix

Requested level 1 2 3 4 5 6 7 8

Held at 1 1 2 3 4 5 6 7 8

Held at 2 2 2 3 4 5 6 7 8

Held at 3 3 3 3 6 5 6 7 8

Held at 4 4 4 6 4 5 6 7 8

Held at 5 5 5 3 5 5 6 7 8

Held at 6 6 6 6 6 6 6 7 8

Held at 7 7 7 7 7 7 7 7 8

Held at 8 8 8 8 8 8 8 8 8

The following table shows the compatibility matrix with compatibility indicated by a "C" and
incompatibility by an "X".

Table 25. IRLM compatibility matrix

Requested level 1 2 3 4 5 6 7 8

Held at 1 C C C C C C C X

Held at 2 C C C C C C X X

Held at 3 C C C X X X X X

Held at 4 C C X C C X X X

Held at 5 C C X C X X X X

Held at 6 C C X X X X X X

Held at 7 C X X X X X X X

Held at 8 X X X X X X X X

For the IRLM, the state can have an attribute of private. The private attribute is only significant when using
block level data sharing. The private attribute has no impact on granting locks to different threads of a
single IMS. The private attribute indicates that the lock should be private (only granted) to this IMS.

Restriction: Any thread of another IMS sharing the data cannot be granted the lock.

Private is indicated with a '-P' following the lock state.

Block limits

Chapter 16. File Select and Formatting Print utility (DFSERA10) 443

A fixed-size block is used to hold the data for each resource in the deadlock cycle. This block is large
enough to hold the data for a cycle which involves nine resources. If the cycle involves more than nine
resources a message indicates this and only the first nine are reported.

There are a limited number of blocks to hold the data. If all the blocks are in use when a deadlock occurs,
a message indicates this and no deadlock information is provided for that deadlock.

Additional information gathered

The formatted deadlock report is a summarization of the complete data gathered and snapped to the log.
There are two macro DSECTs that map information in the raw data. These are the DIPENTRY DSECT and
the DLKDLD DSECT.

Anomaly in deadlock reporting

There is one deadlock situation where the report is different.

LOCK 1 LOCK 2
PST 1 owns STATE SHR PST 2 owns STATE UPD
PST 3 waits STATE UPD PST 1 waits STATE UPD
PST 2 waits STATE SHR

If application 3 on PST 3 had not interfered by asking for LOCK 1 at an incompatible state, there would
have been no deadlock, because PST 2 is asking for LOCK 1 in a compatible state with the owner PST 1.

The anomaly that occurs in the reporting of this deadlock is that LOCK 1 is listed twice. It is listed once
with PST 1 owning and PST 3 waiting, and it is listed again with PST 2 waiting and no holder information.
The report displays NOTAVAIL in the IMS-NAME field for the BLCKER.

Selecting only the deadlock element from a snap

Fewer elements are snapped on a 777 pseudo abend than for other pseudo abends; however, the snap
does include more elements than the deadlock block. It is possible to select only a specific element
from a snap. The following figure contains the DFSERA10 control statements to select only the deadlock
element from any pseudoabend snap.

//SYSIN DD *

* *
* CONTROL STATEMENT : DEFAULTS *
* INPUT = SYSUT1 *
* OUTPUT = SYSPRINT *
* *
* SELECTION QUALIFIERS : *
* 1. LOG RECORD TYPE OF X'67FF' *
* 2. NAME OF BLOCK WITHIN SNAP IS C'DEADLOCK' *
* *
* EXIT ROUTINE = DFSERA30 *
* *

OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FF,FLDTYP=X,COND=M
OPTION PRINT OFFSET=33,FLDLEN=8,VALUE=DEADLOCK,FLDTYP=C,COND=E, X
 EXITR=DFSERA30
END
/*
//

IMS-issued subsystem detected deadlocks

444 IMS: System Utilities

When IMS abends an application with U777 because of an external subsystem detected deadlock, the
Deadlock Report contains information to identify the subsystem, job, and Unit Of Recovery that received
the deadlock.

The following figure is an example of the DFSERA30 report for a deadlock detected by an external
subsystem.

PSEUDO ABEND RECORD ABEND NO = 0777 RECNO = 00000162 TIME 12:24:07.1 DATE 2006.292
DEADLOCK

EXTERNAL SUBSYSTEM SSOP DETECTED A DEADLOCK DURING NORMAL CALL
REGION TYPE : MPP
REGION NUMBER : 0001
JOB NAME : MPP1
PSB NAME : DCSQL7B
SMB NAME : TXSQL7B
RECOVERY TOKEN: E2E8E2F3404040400000000500000000

Related concepts
Locking mechanisms and database integrity in DB/DC and DCCTL (System Administration)

Program Isolation Trace Record Format and Print module (DFSERA40)
The Program Isolation (PI) Trace Format and Print module receives type X'67FA' log records as an exit
routine from the File Select and Formatting Print utility (DFSERA10) and formats the records on the
SYSPRINT data set.

This topic contains Product-sensitive Programming Interface information.

These log records are produced by the PI (program isolation) trace, trace PI enqueue and dequeue calls
to DFSLRH00, and also by DL/I calls to the DL/I analyzer. The DL/I analyzer processes all DL/I calls. When
tracing is active, the DL/I analyzer calls are traced. The standard ENQ/DEQ call is invoked by the DFSLR
macro instruction.

PI tracing is executed by the /TRACE command in an IMS online environment or by the OPTIONS
statement with LOCK=OUT specified.

In a data sharing environment, if the PI trace is active and being logged, the PI trace logger is activated by
the IMS lock manager (DFSLMGR0) and exits to the IRLM.

The PI Trace Record Format and Print module is loaded during the execution of the File Select and
Formatting Print utility and must reside in the LINKLIB or in a JOBLIB or STEPLIB data set.

Output
The following figure is a sample output from DFSERA40. The spacing of fields is altered.

DATE: 05/11/10
MODULE PST TIME (*=ET) CALLR ACT LEV WC WFC SEQN FDBK RC PC ID= (RBA DMB DCB SUF) CLS
TOKEN COMMENT

LRH0 01 GZIDB 0ABE
UNCHN 02 0AC0 61
LRH0 01 RZIDP 0AC1
PIEX 01 23:36:22.472 DLI TNFQ UPD 00 00 0AC3 0000 481075C5 8007 01

LRH0 01 TTLKX 0AC4
PIEX 01 23:36:22.472 DLI ENQ UPD 00 00 0AC5 0000 00000658 8006 01
00722050
LRH0 01 GRIDX 0AC6
PIEX 01 23:36:22.474 APP ENQ SHR 00 00 0ACA 0000 00000694 8006 01 0
007220DC
LRH0 01 GCCMX 0ACB
DLA0 01 23:36:22.493 GU 0ACE
8 DL/I CALL
PIEX 01 23:36:22.493 DLI IDEC UPD 00 00 0ACF 0000 00000658 8006 01
LRH0 01 RRIDX 0AD0
LRH0 01 GZIDB 0AC1
LRH0 01 RZIDB 0AD4
PIEX 01 23:36:22.495 DLI ENC UPD 00 00 0AD6 0000 00001108 8006 01
00722050
LRH0 01 GRIDX 0AD7
PIEX 01 23:36:22.496 DLI IDEQ UPD 00 00 0ADA 0000 00001108 8006 01
LRH0 01 RRIDX 0ADB

Chapter 16. File Select and Formatting Print utility (DFSERA10) 445

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/system_intro/ims_locking_over.htm#ims_locking_over

DLA0 03 23:36:23.614 GU 0ADE
1 DL/I CALL
LRH0 03 GZIDB 0AE4
LRH0 03 RZIDB 0AE7
PIEX 03 23:36:23.735 DLI TENQ UPD 00 00 0AE9 0000 48107105 8007 01
LRH0 03 TTLKX 0AEA
PIEX 03 23:36:23.736 DLI ENC UPD 00 00 0AEB 0000 00000408 8006 01
00722050
LRH0 03 GRIDX 0AEC
PIEX 03 23:36:23.737 APP ENQ SHR 00 00 0AF0 0000 00000428 8006 01 0
00722014
LRH0 03 GQCMX 0AF1
DLA0 03 23:36:23.834 GU 0AFS
2 DL/I CALL
PIEX 03 23:36:23.835 DLI IDEQ UPD 00 00 0AFA 0000 00000408 8006 01
LRH0 03 FRIDX 0AFP
LRH0 03 GZIDB 0AFC
LRH0 03 RZIDB 0AFF
PIEX 03 23:36:23.838 DLI ENQ UPD 00 00 0B01 0000 00001108 8006 01
00722050
LRH0 03 GRIDX 0B02
PIEX 03 23:36:23.840 DLI TDEQ UPD 00 00 0B05 0000 00001108 8006 01
LRH0 03 RRIDX 0B06
DLA0 02 23:36:27.257 GHU 0B0F
4 DL/I CALL
PIEX 02 23:36:27.257 DLI TDEQ UPD 00 00 0B10 0000 0000087C 8006 01
LRH0 02 RRIDX 0B11
LRH0 02 GZIDB 0B12
LRH0 02 RZIDB 0B15
PIEX 02 23:36:27.263 DLI TENQ UPD 00 00 0B17 0000 481071C5 8007 01
LRH0 02 TTLKX 0B18
PIEX 02 23:36:27.263 DLI ENQ UPD 00 00 0B19 0000 00000408 8006 01
007220A0
LRH0 02 GRIDX 0B1A
PIEX 02 23:36:27.265 DLI TENQ UPD 01 00 0B1E 1800 04 00000428 8006 01
00722014
PIEX 03 23:36:45.079 APP CEQ SHR 00 00 0B34 0000 0
LRH0 03 RQCML 0B35
PIEX 02 0:17.850* DLI UNK RD 0B37
6F SEQ2=0B1E
LRH0 02 TTLKL 0B38 04
DLA0 02 23:36:45.982 GHU 0B3A
5 DL/I CALL
PIEX 02 23:36:45.982 DLI TDEQ UPD 00 00 0B3B 0000 00000408 8006 01
LRH0 02 RRIDX 0B3C
LRH0 02 GZIDB 0B3D

LRH0 02 BZIDB 0B40
PIEX 02 23:36:45.986 DLI TENQ UPD 00 00 0B42 0000 481075C5 8007 01
LRH0 02 TTLKX 0B43
PIEX 02 23:36:45.986 DLI ENQ UPD 00 00 0B44 0000 00000658 8006 01
007220A0
LRH0 02 GRIDX 0B45

Explanation of column headings

DATE
Specifies the date PI trace started. The TIME field is relative to this date.

MODULE
Specifies the module that issued the DFSLR call to DFSLRH00 or the module that called the IRLM
or DFSFXC10. The four characters selected come from the xxxx portion of the full module name
DFSxxxx0.

PST
Specifies the program specification table (PST) number (from PSTPSTNR).

TIME
Specifies the time of the call as HHH:MM:SS.UUU, where UUU is milliseconds, relative to the date on
which tracing started. If the return code (RC) is 04 and PI trace timing is active at the time of the call,
the next record for this PST in this report shows the elapsed time of the enqueue wait in this field. The
time is indicated as MM:SS.UUU*, with the "*" indicating it is an elapsed time.

CALLR
Specifies the type of caller (DLI, FP, APP).

ACT
Specifies the action requested.

LEV
Specifies the level of control for this call.

446 IMS: System Utilities

RD
Read only

SH
Share

UPD
Update

EXC
Exclusive

WC
Number of PSTs that hold this resource in a state that caused this PST to wait.

WFC
Number of PSTs waiting for this PST to release this resource.

SEQN
Specifies the sequence number of the corresponding internal trace.

FDBK
Is 2 bytes of feedback information from either DFSFXC10 or the IRLM.

RC
Specifies the return code from DFSFXC10 or the IRLM.
00

Successful completion
04

Caller must IMS wait for control of the requested resource
08

Deadlock; request is disallowed. This transaction causes an internal pseudoabend, a backout, and
automatic rescheduling.

0C
Invalid call

PC
Specifies the PST post code following the enqueue wait. This field is only present when RC is 04 and
the TIME field has an "*" at the end.
60

Deadlock occurred. This transaction causes an internal pseudoabend, a backout, and automatic
rescheduling.

61
PST was removed from the PI wait chain for a PI lock on behalf of a /STO REG# ABDUMP
command.

6F
Control of the resource has been obtained.

ID=
Specifies an 8-byte identification of the resource being enqueued or dequeued. It contains a 4-byte
RBA, a 2-byte DMB number, a 1-byte DCB number, and a 1-byte SUF (suffix) field.

CLS
For APP types of callers, specifies the Q-command code class requested. For LMGR traces, specifies
the CLASS parameter.

CLS applies to full function only (Fast Path does not support lock class).

TOKEN
Is the address of the control block enqueued or locked on this call or, if the type of call is an unlock or
DEQ call, the address of the control block being passed to the lock manager.

COMMENT
Specifies 'DL/I CALL' if a trace is requested from DFSDLA00. Other comments are for LMGR traces.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 447

Utility control statements
The following figure shows the control statements required for DFSERA40.

Column 1 Column 10 Column 16 72

CONTROL CNTL
OPTION PRINT OFFSET=5,VALUE=67FA,FLDLEN=2, X
 COND=E,EXITR=DFSERA40
END
/*
//

DL/I Call Image Capture module (DFSERA50)
If trace data is sent to the IMS log data set, you can retrieve it using utility DFSERA10 and special DL/I
call image capture routine DFSERA50. DFSERA50 deblocks, formats, and numbers the DL/I Call Image
Capture records to be retrieved.

To use DFSERA50, insert a DD statement defining a sequential output data set in the DFSERA10
input stream. The default ddname for this DD statement is TRCPUNCH. The statement must specify
BLKSIZE=80. You can distinguish between output from several BMP applications because the first three
bytes of the trace entry sequence number are the PST number.

Utility control statements

The following figure shows the control statements for formatting the DL/I call image capture data (in a
format acceptable as input for the DL/I test program DFSDDLT0):

Column 1 Column 10 72

OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,FLDTYP=C,VALUE=psbname, X
 FLDLEN=8,COND=E,EXITR=DFSERA50,DDNAME=OUTDDN
END
/*
//

Use the DDNAME= parameter to name the DD statement used by DFSERA50. The data set defined on the
OUTDDN DD statement is used instead of the default TRCPUNCH DD statement. For this example, the DD
appears as:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

IMS Trace Table Record Format and Print module (DFSERA60)
The IMS Trace Table Record Format and Print module (DFSERA60) receives type X'67FA' log records from
the File Select and Formatting Print utility (DFSERA10) and formats the records on the SYSPRINT data
set. These log records are produced when you use the OPTION statement for the DFSVSAMP data set or
DFSVSMnn PROCLIB member to specify that trace table be written to the log.

DFSERA60 is loaded during execution of DFSERA10 and must reside in the LINKLIB or in a JOBLIB or
STEPLIB data set.

Utility control statements

The following figure shows the control statements required to invoke DFSERA60.

Column 1 Column 10 72

CONTROL CNTL
OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA, X
 COND=E,EXITR=DFSERA60

448 IMS: System Utilities

END
/*
//

Enhanced Select module (DFSERA70)
Use the Enhanced Select module (DFSERA70) to: produce expanded log records from compressed IMS
logs, select and format '5X' (DL/I 5X and fast path 5950) log records based upon data contained within
the record itself, such as the contents of a time, date, or identification field. These records are formatted
along with all log record types listed under the PARM TOKEN=description, and change the format of log
output to identify and emphasize some optional log fields.

You specify the search criteria for the routine as subparameters of the PARM= parameter of the OPTION
statement for the File Select and Formatting Print utility (DFSERA10). The possible subparameters of
PARM= are:

XFMT=
Extends the X'50' log record format to enhance the retrievability of certain data entries.
Y

Highlights the log data for certain types of processing by placing the data on a separate line and
adding identifiers for data entries. It applies to log data that describes the following types of
processing: data sharing, XRF buffer and lock tracking, space management, key, backout (undo),
and recovery (redo). If a type of processing is not relevant, the data section is omitted.

These data sections are added after the raw log data for the record. Each section includes
identifiers followed by hexadecimal log data, character log data, or both. They contain the
following entries, where X represents hexadecimal log data and C represents character log data:
Data sharing

DSHRDSSN XXXXXXXX DSHRLSN XXXXXXXXXXXX DSHRUSID
XXXXXXXX RACF-UID CCCCCCCC XXXXXXXXXXXXXXXX

XRF buffer and lock tracking

TRAKPLSZ XXXX TRAKBUFN XXXX TRAKHASH XXXXXXXX
TRAKLOCK XXXXXXXX TRAKFLGS XX XX

Space management

SMGTFLGS XX XX SMGTROFF XXXX SMGTRLEN XXXX

Key

KSDS Character string describing database action
LENGTH XXXX
One or more lines of mixed hexadecimal and character data

Undo

UNDO Character string describing database action
LENGTH XXXX OFFSET XXXX
One or more lines of mixed hexadecimal and character data

Redo

REDO Character string describing database action
LENGTH XXXX OFFSET XXXX
One or more lines of mixed hexadecimal and character data

N
Does not highlight the log data for data sharing, buffer and lock tracking, space management, key,
backout or recovery. The data is formatted as part of the raw data for the record.

N is the default.

Chapter 16. File Select and Formatting Print utility (DFSERA10) 449

PST=pst_number
Selects records for the PST number.

SYSID=system_id
Selects records for the system ID portion of recovery token.

TOKEN=token
Selects records for the hexadecimal token portion of recovery token. You can select the following
record types: X'07', X'08', X'0A', X'13', X'27', X'28', X'31', X'32', X'35', X'37', X'38', X'39', X'3D', X'41',
X'4C', X'50', X'56', X'59', X'5901', X'5903', X'5937', and X'5938'.

PSB=psb_name
Selects records for the PSB name.

DBD=dbd_name
Selects records for the DBD name.

RBA=rba_value
Selects records for the RBA (lrecl).

BLOCK=block_rba
Selects records for the RBA (block).

USERID=userid
Selects records for the userid.

KEY=ksds_key
Selects records for the key.

OFFSET=offset
Selects records that update a given offset of data in the buffer.

UNDO=undo_data
Selects records for backout data that matches the character string you specify. The maximum length
of the character string is 255 characters.

REDO=redo_data
Selects records with recovery data that matches the character string you specify. The maximum
length of the character string is 255 characters.

DATA=log_data
Selects records with data, including compressed data, anywhere in the record that matches (searches
all log records). The maximum length of the character string is 255 characters.

Each subparameter must be uppercase and not have any blanks. The subparameter data must be
character or decimal. Hexadecimal data must be preceded by an X and the data enclosed in single quotes
(for example, X'0123').

Once the record is selected, it can be written to tape or DASD.

When multiple subparameters are specified, all conditions must be met to select a record. Use multiple
routines to select records if some of the conditions have been met.

The log print formatting is done by DFSERA30. The format appears as if DFSERA30 was the routine
specified. DFSERA30 must be available for DFSERA70 to load.

Unrecognized characters or invalid parameter specifications are ignored by this routine.

Examples

These examples show how to use the DFSERA70 module to print records with regular or expanded data.

The following example shows the option for printing all records that include X'50' or X'5950' database
records and expanding the data in the X'5050' records.

OPTION PRINT EXITR=DFSERA70

450 IMS: System Utilities

The following example shows the option for printing only X'50' database records with expanded data.

OPTION PRINT O=5,V=50,EXITR=DFSERA70

The following example shows the option for printing X'50' database records with expanded data and 67
diagnostic records.

OPTION PRINT O=5,V=67,EXITR=DFSERA30
OPTION PRINT O=5,V=50,EXITR=DFSERA70

The following example shows the option for printing all records in regular format including X'50' or
X'5950' database records for a PST number of X'A' using a PSB named APPLPSB.

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=N,PST=X'A',PSB=APPLPSB)

The following example shows the option for printing all records in regular format including X'50' or
X'5950' database records at an RBA of X'2000' and an offset of X'200'.

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=N,RBA=X'2000',OFFSET=X'200')

The following example shows the option for printing, in extended format, all records that contain the
character string 'aaaa'.

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=Y,DATA=aaaa)

The following example shows the option for selecting all types of log records with the token
X'0001F8FF00000000' and printing the records in extended format.

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=Y,TOKEN=X'0001F8FF00000000')

The following example shows the option for selecting X'0A' log records with the token
X'0001F8E400000001' and printing the records in regular format.

OPTION PRINT O=5,V=0A,T=X,EXITR=DFSERA70,PARM=(XFMT=N,TOKEN=X'0001F8E400000001')

OM Audit Trail Format and Print module (CSLULALE)
To print the OM log records from the MVS™ system logger, use the IMS File Select and Formatting Print
utility (DFSERA10) with module CSLULALE.

JCL specifications

The following example shows the required JCL to print the log records from an MVS system log. This JCL
causes the MVS logger to invoke the default log stream subsystem exit routine, IXGSEXIT, to copy the log
records. The exit routine returns a maximum of 32760 bytes of data for each log record even though OM
supports larger log records. You can specify the name of a different exit routine, if necessary.

Use the following JCL to print the OM log records

//CSLERA10 JOB MSGLEVEL=1,MSGCLASS=A,CLASS=K
//STEP1 EXEC PGM=DFSERA10
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=SYSLOG.OM.AUDIT.TRAIL.LOG,
// SUBSYS=(LOGR,IXGSEXIT),
// DCB=(BLKSIZE=32760)
//SYSIN DD *
CONTROL CNTL H=EOF
OPTION PRINT EXITR=CSLULALE,PARM=(F=option)

Chapter 16. File Select and Formatting Print utility (DFSERA10) 451

END
//

DD statements

STEPLIB
DSN= points to IMS.SDFSRESL, which contains the IMS File Select and Formatting Print utility,
DFSERA10.

SYSPRINT
Describes the output data set to contain the formatted print records and control messages. It is
usually defined as SYSOUT=A.

The RECFM=FBA DCB parameter is specified for this data set. LRECL and block size can be provided
on the SYSPRINT DD statement and must be a multiple of 133. Any LRECL value between 133 and
32 760 can be specified. The default for block size and LRECL is 133.

SYSUT1
DSN= points to the OM log stream name. Use the same name that was specified in the OM startup
parameters, in the AUDITLOG= parameter in the CSLOIxxx PROCLIB member.

Limiting log data to a specified time range

You can limit the log records you print to those in a particular interval of time using the FROM and TO
parameters on the SUBSYS statement. For example, see the following DD card:

//SYSUT1 DD DSN=SYSLOG.OM.AUDIT.TRAIL.LOG,
// SUBSYS=(LOGR,IXGSEXIT,
// 'FROM=(2010/042,11:00:00),TO=(2010/042,12:00:00)'),
// DCB=(BLKSIZE=32760)

The DD card passes only log records from 11:00 to 12:00 on day 42 of the year 2010 to the DFSERA10
program. Dates and times specified are in GMT (Greenwich Mean Time). The seconds field of the time
values is optional.

To use local dates and times, add the LOCAL keyword to the statement, see the following DD card:

//SYSUT1 DD DSN=SYSLOG.OM.AUDIT.TRAIL.LOG,
// SUBSYS=(LOGR,IXGSEXIT,
// 'FROM=(2010/042,11:00:00),TO=(2010/042,12:00:00),LOCAL'),
// DCB=(BLKSIZE=32760)

Utility control statements

PARM=
Is used to pass parameters to the CSLULALE exit routine.
F=

Specifies the parameter name. Valid options include:
WRAP

Specifies wrapping of individual lines. WRAP is the default.
BYCOL

Specifies grouping lines by column.
BYRSC

Specifies grouping lines by resource
H=

Specifies the number of log records to print. H=EOF prints all log records.

452 IMS: System Utilities

Related reference
z/OS: IXGSEXIT - Log Stream Subsystem exit

Chapter 16. File Select and Formatting Print utility (DFSERA10) 453

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieae400/ixgsexit.htm

454 IMS: System Utilities

Chapter 17. IMS Monitor Report Print utility
(DFSUTR20)

Use the IMS Monitor Report Print utility (DFSUTR20) to take the data collected by the IMS Monitor
(DFSMNTR0) and print summary reports and distribution displays of the data.

The report formats and the nature of information in the reports are identical or similar to those printed by
the IMS DB Monitor Print utility (DFSUTR30).

Subsections:

• “Restrictions” on page 455
• “Prerequisites” on page 455
• “Requirements” on page 455
• “Recommendations” on page 455
• “Input and output” on page 455
• “JCL specifications” on page 456

Restrictions

The following restrictions apply to the IMS Monitor Report Print utility:

• If the Monitor does not collect the types of information usually found in a particular report, that report,
or the section of that report that would normally contain the information, is not produced. For example,
if no checkpoints occur, only the headings for checkpoint are printed.

• In any report for which data is captured at the start and end of the Monitor trace interval, the report
displays the data captured at these intervals, and their difference. Because data for these reports is
needed at both intervals, these reports are not generated if the IMS control region is terminated prior to
the termination of the Monitor trace.

• The Monitor must not be left on for more than 999 999 999 total DL/I calls if you plan to use Region
Summary, Region Wait, Run-Profile, or Call-Summary (DB) reports. After 999 999 999 DL/I calls,
truncation occurs in the various totals fields of these reports.

Most of the terms used in reports printed by the IMS Monitor Report Print utility (DFSUTR30) also appear
in reports printed by the IMS Monitor Report Print utility (DFSUTR20).

Prerequisites

Currently, no prerequisites are documented for the DFSUTR20 utility.

Requirements

Currently, no requirements are documented for the DFSUTR20 utility.

Recommendations

Currently, no recommendations are documented for the DFSUTR20 utility.

Input and output

© Copyright IBM Corp. 1974, 2020 455

The Monitor Report Print utility runs as a batch program, with a sequential data set on DASD or tape as
input. The contents of this data set are created by the IMS Monitor module (DFSMNTR0) in response to
a /TRACE SET ON MONITOR command during IMS online execution.

JCL specifications

EXEC statement

Specifies the program name. The statement must be in the form:

// EXEC PGM=DFSUTR20,REGION=4096K

JOB statement

Initiates the job.

DD statements

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required action modules.

//SYSPRINT DD
Specifies the output data set that is to contain the reports and control messages. It is usually coded
as SYSOUT=A. The DCB parameters for this data set are RECFM=FBA and LRECL=133. BLKSIZE can
be provided on the SYSPRINT DD statement and must be a multiple of 133. If the BLKSIZE is not
provided, a default value of 133 will be used.

//SYSUT1 DD
Specifies the input data set to be analyzed. It is a labeled sequential data set written by the monitor
module DFSMNTR0. (The ddname and dsname are IMSMON in the IMS procedure.)

//ANALYSIS DD
Specifies the Analysis Control data set. This file must be in card image format.

Analysis control data set

The Analysis Control data set determines which reports to print and allows for distribution redefinition for
the Distribution reports.

• If you are printing only the Call Summary report, include the ONLY DLI statement in the Analysis Control
data set for this run. The statement starts in card image column 1.

• To generate the Call Summary report, include the DLI statement in the Analysis Control data set for
this run. If this statement is not included, the default option is taken; that is, all reports except the Call
Summary report are printed. The statement starts in card image column 1.

• To generate the optional Distribution Appendix report, include the DIS statement anywhere in the
Analysis Control data set. If this statement is not included, only the summary reports are printed. The
statement starts in card image column 1.

If none of these options are selected, all reports except the Call Summary report and the Distribution
Appendix report will be printed.

Specifying distribution redefinition

The general format for specifying a user redefinition of a distribution is:

Dn n1,n2...

Dn
Starts in column 1 and is the distribution identifier (ID).

n1 through n9
Are each 8 digits or less, and each is a positive number between 0 and 99999999.

456 IMS: System Utilities

Each redefinition can occupy more than one statement, if necessary. The format for continuation
statements follows the z/OS rules:

• The last value on the first statement must be followed by a comma and at least one blank.
• The first value on the continuation statement cannot start before column 2 nor after column 10.
• Comments can be included if they are preceded by at least one blank.

Assume that the distribution for region elapsed execution time is identified as D1 and has a default
definition of:

0 1 2 3 30 300 3000 30000 3000000 30000000 INF

It can be redefined to be:

0 1 2 5 30 40 50 60 3000000 30000000 INF

This redefinition is accomplished by the following record in the Analysis Control data set:

D1 1,2,5,30,40,50,60,3000000,30000000

Because the numbers are positional parameters, the same redefinition could have been obtained by
specifying the following:

D1 ,,5,,40,50,60

Related concepts
IMS Monitor reports (System Administration)
Related reference
Database-Monitor Report Print utility (DFSUTR30) (Database Utilities)

Examples of the DFSUTR20 utility
The following JCL produces a complete set of reports, including the Call Summary report, from a tape with
a serial number of IMSDA1.

//TRACE JOB
//*
// EXEC PGM=DFSUTR20,REGION=512K
//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSUT1 DD DSNAME=IMSMON,DISP=(OLD,KEEP),
// UNIT=TAPE,VOL=SER=IMSDA1
//ANALYSIS DD *
DLI CALL REPORT
DISTRIBUTION
/*

The following example shows how the distributions for D30 and D2 are modified if the JCL is modified.

 .
 .
 .
//ANALYSIS DD *
DLI CALL REPORT
DISTRIBUTION
D30 8000,24000,50000,75000
D2 1000,2000,3000,4000,5000,6000,7000,8000,9000
/*

Chapter 17. IMS Monitor Report Print utility (DFSUTR20) 457

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/ims_reports/ims_imsmonrpt.htm#ims_imsmonrpt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dur/ims_dfsutr30.htm#ims_dfsutr30

458 IMS: System Utilities

Chapter 18. Log Transaction Analysis utility
(DFSILTA0)

Use the Log Transaction Analysis utility (DFSILTA0) to collect information about individual occurrences of
IMS transactions, based on records in the IMS log data set.

The information collected includes:

• Transaction identification
• Source
• Transaction program name
• Dependent region
• Priority
• Class of the transaction

Canceled messages are not used.

DFSILTA0 also accumulates:

• The time that each transaction is received
• The time of the message get unique (GU) call
• The time the transaction processing ends.
• The time the output message is placed on the output queue
• The time the output message starts to the terminal

From these times, DFSILTA0 calculates:

• Total response time
• Time on the input queue
• Processing time
• Time on the output queue

You can use this information to find bottlenecks in the system and to evaluate whether transaction
classes have been assigned correctly. If you are running the Statistical Analysis utility on a smaller portion
of the IMS log data, DFSILTA0 can provide a new log tailored to your specifications. DFSILTA0 is put into
IMS.SDFSRESL during IMS system definition.

Subsections:

• “Restrictions” on page 459
• “Prerequisites” on page 460
• “Requirements” on page 460
• “Recommendations” on page 460
• “Input and output” on page 460
• “JCL specifications” on page 460

Restrictions

The Log Transaction Analysis utility has the following restrictions:

• Log data sets from a batch region are not used.
• Canceled messages are not used.

© Copyright IBM Corp. 1974, 2020 459

• DFSILTA0 creates a queue entry in a GETMAIN storage pool for each transaction that falls within the
specified times or checkpoints. These queue entries are not freed nor are they reused until all the log
records necessary to complete an entry on the log transaction analysis report are found on the log.

• If a large number of transactions are enqueued but not processed for any reason, an increase in storage
usage and processor time can occur.

• Common Queue Server (CQS) logs cannot be used as input by the Log Transaction Analysis utility
because CQS log records have a different format from IMS log records.

• The utility works only with input log data sets created by the same release of IMS as the utility release
level.

Prerequisites

Currently, no prerequisites are documented for the DFSILTA0 utility.

Requirements

Currently, no requirements are documented for the DFSILTA0 utility.

Recommendations

Currently, no recommendations are documented for the DFSILTA0 utility.

Input and output

There are three types of input to DFSILTA0:

• IMS log data. This is required.
• Report title statement. This provides descriptive information for the optional title data set.
• Parameter. The optional input parameter ST=, which specifies what portion of the log data set is to be

examined for transactions.

All of the DD statements to generate output for the DFSILTA0 utility are optional. If you do not specify any
DD statements, the utility will waste CPU time and will not return any output. If you specify any of the DD
statements, DFSILTA0 can produce the following output:

• A new data set containing the IMS log records for the time period processed
• A detailed report in input sequence, if the PRINTER DD statements is specified
• A report that can be sorted to produce a sequenced report (if the REPORT DD statement is specified)
• A heading report (if the HEADING DD statement is specified)

The starting position and length of the field names on the Detailed Report Format are used in the optional
sort step to produce sequenced reports.

JCL specifications
The Log Transaction Analysis utility executes as a standard operating system job. You must define an
EXEC statement and DD statements.

EXEC statement

460 IMS: System Utilities

Executes the Log Transaction Analysis utility, DFSILTA0.

//STEP0 EXEC PGM=DFSILTA0,PARM='ST'=(hhmmss+HHMM,,mm)

ST=
Specifies starting and ending times. If the ST parameter is omitted, the default is the first checkpoint
encountered. The format of the ST= parameter is:

ST=ALL
 (hhmmss[{+|-}HHMM],
 c,mm,e)

Note that the ST= parameter has four positional parameters in addition to the ALL parameter. With the
exception of the ALL parameter, these parameters must be enclosed in parenthesis.

ALL
Specifies the complete log data set.

hhmmss
Specifies an hour, minute, and second. Only transactions that originate after the first checkpoint
occurring at or after this time are processed. The default is to process 10 minutes from this time.

Tip: This parameter is always assumed to refer to a time later than the first checkpoint on the
input log. If you want to process transactions starting with the first checkpoint on the log, do not
specify a value for this parameter.

{+|-}HHMM
Specifies the time-zone offset used to convert local time to Universal Time Coordinated (UTC)
time.
+ or -

Specifies the sign of the offset. Can be blank only if hh and mm are also blank. The time zone is
only needed if the offset to the UTC on the day entered is different from the current offset. One
example would be if the offset was due to a daylight saving time change.

HH
Specifies hours of offset, a number from 0 to 14 or blank only if mm is also blank

MM
Specifies minutes of offset; can be 00, 15, 30, 45, or blank

If an offset of +|-0000 is specified, the starting time is UTC. If no offset is supplied, the offset is
obtained from the z/OS offset.

C
Specifies the number of checkpoints to be processed before selection of transactions stops. C is a
number from 1 to 9.

MM
Specifies the number of minutes to select transactions. MM is a number between 0 and 99.

E
Specifies to end of data set from the specified start time. E is the default.

The Log Transaction Analysis utility scans records between checkpoints. Records before the first
checkpoint on an intermediate log data set would only be analyzed by reference to a checkpoint on a
previous log.

DD statements

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required utility modules.

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

HEADING DD
Describes the optional heading output data set.

Chapter 18. Log Transaction Analysis utility (DFSILTA0) 461

//HEADING DD SYSOUT=A

PRINTER DD
Describes the optional printed report output data set.

//PRINTER DD SYSOUT=A

REPORT DD
Describes the optional report output data set. This data set can pass to a sort step. Report entry
headings and any checkpoint records are not included in this data set.

//REPORT DD DSN=&&REPORT,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1))

LOGINxxx DD
Describes the input log data sets. The last three characters are optional. If more than five characters
are used, the last character will be used in the report as the system ID.

Log data from each IMS system must be allocated to a single DD statement. If multiple log data sets
from an IMS system are used, they must be contiguous and they must be concatenated in the order in
which they were created.

//LOGIN DD DSN=IMS.LOG,DISP=OLD,VOL=SER=XXXXXX,
// UNIT=YYYY

LOGOUT DD
Describes the optional log data set. This log data set can be used as input to the Statistical Analysis
utility.

The LOGOUT data set content is identical to that of LOGIN within the interval specified, except that
the type 6 record at the beginning of LOGIN is recopied.

//LOGOUT DD DSN=IMS.LOGOUT,DISP=(,PASS),
// VOL=SER=XXXXXX,UNIT=TAPE,DCB=(RECFM=VB,
// LRECL=6004,BLKSIZE=6008)

TITLE DD
Describes the optional title data set. This allows for the inclusion of descriptive information on each
page of the printer output data set.

//TITLE DD *
 * * * Descriptive information

The SORT step is optional. It is used to produce sequenced reports.

EXEC
Executes the sort program.

//STEP1 EXEC PGM=SORT

SYSOUT DD
Describes the message output data set for the sort.

//SYSOUT DD SYSOUT=A

SORTIN DD
Describes the input data set to the sort. It is the data set described by the REPORT DD statement.

//SORTIN DD DSN=&&REPORT,DISP=(OLD,DELETE)

SORTOUT DD
Describes the output data set to the sort. It is used for printing a sequenced report.

//SORTOUT DD SYSOUT=A

462 IMS: System Utilities

SORTWK01-12|DD
Describe the sort program's work data sets. At least three data sets must be used. They can be tape or
disk. For disk the format is:

//SORTWKnn DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

SYSIN DD
Describes the sort program's control data set. For a control data set in the input stream, the format is:

//SYSIN DD *

Example The following is a sample SORT control statement that provides a report sequenced by
message get unique (GU) schedule time within a region:

 SORT FIELDS=(67,7,CH,A,55,2,CH,A),SIZE=E500

Related concepts
Statistical-analysis, log-transaction reports, and analyzing log records (System Administration)
Related reference
“Statistical Analysis utility (DFSISTS0)” on page 471
Use the Statistical Analysis utility (DFSISTS0) to analyze the information in any of the IMS system logs,
except those from a batch region.

Chapter 18. Log Transaction Analysis utility (DFSILTA0) 463

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/ims_reports/ims_statloganlyz.htm#ims_statloganlyz

464 IMS: System Utilities

Chapter 19. Offline Dump Formatter utility
(DFSOFMD0)

Use the Offline Dump Formatter utility (DFSOFMD0) to format internal IMS control blocks in a dump that
is both independent of a failure and independent of the dumping process.

This utility allows you to tailor the dump to print and format only the data areas needed to analyze a
particular problem. Use the Offline Dump Formatter utility to:

• Establish the environment needed for offline dump formatting
• Read and check the dump format control statements
• Relocate or load the dump formatting modules
• Direct the offline dump formatting process

The Offline Dump Formatter utility is invoked as a verb exit from the Interactive Problem Control System
(IPCS).

The Offline Dump Formatter utility modules are included in the dumped storage to ensure that the
modules used for formatting the dump match the level of the dumped IMS control blocks. These modules
can be relocated from the dumped storage, or a fresh copy can be loaded from the program library.

The Offline Dump Formatter utility can be used even if you have more than one release level of IMS, or
if you are using any supported version of IMS. The load modules for the Offline Dump Formatter utility
are associated with aliases that allow IMS.SDFSRESL from different releases to be concatenated in IPCS
TASKLIB. The aliases are:
Alias

Load Module
DFSOF111

DFSOFMD0
DFSAB111

DFSABND0

The IPCS TASKLIB concatenation can contain multiple execution libraries.

Subsections:

• “Restrictions” on page 465
• “Prerequisites” on page 465
• “Requirements” on page 466
• “Recommendations” on page 466
• “Input and output” on page 466

Restrictions

The following restrictions apply to the Offline Dump Formatter utility:

• You cannot use the Offline Dump Formatter utility for batch regions that are not currently producing IMS
online formatted dumps, such as the Pre-reorganization utility and the Image Copy utility, because they
do not contain the required IMS control blocks for IMS dump formatting.

Prerequisites

Currently, no prerequisites are documented for the DFSOFMD0 utility.

© Copyright IBM Corp. 1974, 2020 465

Requirements

The following restrictions apply to the Offline Dump Formatter utility:

• The machine that executes this utility must be licensed to run IMS.
• The Offline Dump Formatter utility is conditionally assembled during IMS control block generation

because of dependencies on z/OS services for GETMAIN, ESTAE, and LOAD. If the DFSOFMD0 module is
loaded with LOAD SVC by IPCS, the module must be in the STEPLIB data set or in linklist libraries.

• The DFSOFMD0 module must be at the same release level as the IMS system it is formatting. It must
be assembled on a z/OS that is the same level as the z/OS it is formatting. This condition applies even if
you concatenate an IMS.SDFSRESL from a previous release.

• The version of IPCS you use to execute this utility must be compatible with the z/OS system that was
dumped.

• SYS1.DUMPxx data sets must be large enough to contain a complete dump of the IMS control region,
DL/I, DBRC, and IRLM address spaces for systems using the IMS SDUMP option.

• To format Fast Path Dumps, you need to use formatting modules from an IMS system generated with
Fast Path.

• If you are using IMS Shared Message Queues or Shared EMH Queues, then your SYS1.DUMPxx data sets
must be large enough to contain a dump of the CQS address space in addition to the address spaces. If
you are using the Common Service Layer (CSL), then your SYS1.DUMPxx data sets must be large enough
to contain a dump of the SCI address space in addition to the address spaces.

Recommendations

Currently, no recommendations are documented for the DFSOFMD0 utility.

Input and output

This utility requires the following input:

• An acceptable machine-readable dump, such as:

– SDUMP
– SYSMDUMP
– Stand-alone dump
– Dump requested by the z/OS DUMP command
– Any other machine readable dump of the IMS system address spaces

The dump must include key 0 and key 7 CSA, the CVT, SQA, and at least one of the CTL or DL/I SAS
address spaces. CSA is not required in a batch environment.

• An IMS dump format control data set or FMTIMS (options) specified on the IPCS VERBX control
statement.

• Execution of a proper VERBX control statement for IPCS.

The output for this utility is a formatted dump of specified sections of an IMS dump.

If you are using Offline Dump Formatter with an execution library that is from an earlier IMS release, a
formatter dialog initialization warning occurs if CSA is not included with batch SYSMDUMPs. Offline Dump
Formatter cannot determine the release levels for the concatenated program libraries, but continues
under the presumption that they are correctly concatenated.

466 IMS: System Utilities

Running the DFSOFMD0 utility
Using the IMS Dump Formatter gives you a menu-driven way to run the Offline Dump Formatter utility
without complicated editing of the DFSFRMAT file.

IPCS uses menus on the screen to run the IMS Dump Formatter. These menus allow you to specify the
information to be contained in the dump. The IMS Dump Formatter calls the Offline Dump Formatter
utility to perform the required formatting tasks. The output is returned in a format that you can read on
the terminal.

Running the utility in an IMS online environment
To use the Offline Dump Formatter utility in IMS DB/DC, DCCTL, or DBCTL environments, specify the IMS
start parameter option FMTO=D.

You can also use a SYSMDUMP DD statement.

Running the utility in an IMS batch environment

To format IMS batch job dumps offline in DBCTL, DB/DC, or DCCTL batch environments, you can request
a z/OS SYSMDUMP. z/OS creates a dump that can be formatted offline using the IMS Offline Dump
Formatter utility. Before using the utility, you must remove the SYSUDUMP or SYSABEND DD statement in
the IMS batch JCL procedures and insert a SYSMDUMP DD statement.

If the SYSMDUMP data set is too small, unavailable, or unusable, the operating system might be unable to
make a usable dump of the batch job.

IPCS execution

To use the Offline Dump Formatter utility under IPCS, you must provide an IMS user control statement.

Some examples of the IMS user control statement include:

VERBX DFSOFMD0 'jjjjjjjj[,R][,D]' verbx_options

VERBX DFSOFMD0 'jjjjjjjj[,R][,H],FMTIMS(ALL)' verbx_options

VERBX DFSOF320 'jjjjjjjj,FMTIMS(SCD)' verbx_options

VERBX DFSOF320 'jjjjjjjj[,R][,N],FMTIMS(AUTO,MIN)' verbx_options

VERBX IMSDUMP 'jjjjjjjj[,R][,D],FMTIMS(SAVEAREA,DISP)' verbx_options

VERBX IMSDUMP 'jjjjjjjj[,R][,D]' verbx_options

VERBX IMSDUMP 'IMSDUMMY,R,FMTIMS(LOG)' verbx_options

VERBX IMSDUMP 'IMSDUMMY,R,FMTIMS(SAP,2A723C80)' verbx_options

VERBX IMSDUMP 'IMSDUMMY,R,FIMTIMS(SAVEAREA,SUM)' verbx_options

The control statement parameters are:

jjjjjjjj
Indicates the job name or started task name of either the IMS CTL, DL/I, or the IMS batch address
space.

R
Indicates REFRESH, an optional parameter for requesting that the IMS dump formatter modules be
loaded from current program libraries. If you do not specify R, and invalid dumped formatter routines
still exist, the invalid routines might be loaded instead of the current libraries.

Chapter 19. Offline Dump Formatter utility (DFSOFMD0) 467

H
Indicates HALFLINE, an optional parameter to request that the IMS dump formatter be limited to the
width of a screen (that is, 80 characters per line).

N
Indicates NO HEADER, an optional parameter that reduces the header print volume when formatting
small data area dumps. The formatter skips the printed header and footer and suppresses the dump
content warning messages that describe missing IMS address spaces or address spaces that did not
finish initializing.

D
Indicates DEBUG, an optional parameter for requesting that the IMS offline formatter not create its
ESTAE and thereby allow a dump of any IMS dump formatter abend.

FMTIMS(options)
Specifies the FMTIMS verb. The FMTIMS verb must be specified in either the control statement or
in the IMS dump format control data set description (DFSFRMAT DD). FMTIMS permits a subset of
formatting options that describe the sections of the IMS dump to be formatted during the current pass
of IPCS. The DFSFRMAT DD description describes this subset.

verbx_options
Are valid IPCS VERBX command options.

If you do not specify FMTIMS in the user control statement, you must provide an IMS dump format control
statement with DFSFRMAT options specified.

The following example is of a TSO ALLOCATE command to provide IMS dump format control data set
information:

ALLOC FI(DFSFRMAT) SHR DA('dump.control.dsname')

DD statements

INDEX DD
Allows the dump index to print ahead of the formatted dump.

DFSFRMAT DD
Describes an IMS dump format control data set. The data set contains control statements that specify
the sections of the IMS dump to be formatted during the current pass of IPCS. If this statement is not
specified, the formatting option defaults to SUMMARY.

The IMS dump format control data set is a sequential data set that must be defined with a fixed or
fixed-blocked record format (RECFM=F or FB). The record length can be any valid size. The data set
contains an FMTIMS verb, followed by subset options describing the sections of IMS to be formatted.
You can request a short version of the formatted subset by adding the MIN parameter to the option
you select.

You can allow IMS to select the dump formatter options for you by specifying the AUTO option. When
you specify AUTO, IMS determines the options to use by looking at the ITASKs that are failing and
by selecting the appropriate sets of options for the required dump formatter output. You can specify
AUTO with MIN or SUM qualifiers. If you use MIN or SUM, the qualifier is added to each option that
AUTO selects.

Subset options can be specified in any combination and in any order. The following subset options can
be specified independently or can be qualified as shown, but require no additional arguments:

• ALL or (ALL,MIN)
• AOI Automated Operator Interface (Directed Message Manager)
• AUTO, or (AUTO,MIN), or (AUTO,SUM)
• CBT
• DB or (DB,MIN)
• DBRC

468 IMS: System Utilities

• DBRM Database Recovery Manager
• DC or (DC,MIN)
• DEDB or (DEDB,MIN)
• DISPATCH or (DISPATCH,MIN)
• EMH or (EMH,MIN)
• IRLM control block formatting
• LOG or (LOG,MIN)
• LUM
• MSDB or (MSDB,MIN)
• OTMA Open TM Access
• QM or (QM,MIN)
• RESTART
• SAVEAREA, or (SAVEAREA,MIN) or (SAVEAREA,SUM)
• SB or (SB,MIN)
• SCD or (SCD,MIN)
• SDE Storage Descriptor Element Blocks and Storage
• SMBS All SMBs
• SPST
• SUBS
• SUMMARY or (SUMMARY,MIN)
• SYSTEM or (SYSTEM,MIN)
• UTIL

The following subset options require additional arguments or qualifications as shown:

• (CBTE,cbteid)
• (CLB,address) or (CLB,nodename) or (CLB,lterm name) or (CLB,comm id)
• (DPST,address) or (DPST,number) or (DPST,name)
• (LLB,link number)
• (LUB,lu name)
• (POOL,poolid) or (POOL,poolid,MIN)
• (SAP,sapaddr) or (SAP,ecbaddr)
• (SYSPST,system pst address) or (SYSPST,system pst name)
• (TRACE,name) or (TRACE,name,MIN)

Related concepts
z/OS: MVS interactive problem control system (IPCS) introduction
Solving IMS problems by using the IMS Offline Dump Formatter (Diagnosis)

Chapter 19. Offline Dump Formatter utility (DFSOFMD0) 469

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac600/ipcsint.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.dgr/ims_odf_prob_solving.htm#IMSodfproblemsolving

470 IMS: System Utilities

Chapter 20. Statistical Analysis utility (DFSISTS0)
Use the Statistical Analysis utility (DFSISTS0) to analyze the information in any of the IMS system logs,
except those from a batch region.

The DFSISTS0 utility resides in IMS.SDFSRESL data set.

To run the Statistical Analysis utility on a selected portion of an IMS system log, a new log that is tailored
to your own specifications can be created by using the Log Transaction Analysis utility.

Subsections:

• “Restrictions” on page 471
• “Prerequisites” on page 471
• “Requirements” on page 471
• “Recommendations” on page 471
• “Input and output” on page 471
• “JCL specifications” on page 475
• “Utility control statements” on page 477

Restrictions

The Statistical Analysis has the following restrictions:

• Common Queue Server (CQS) logs cannot be used as input because CQS log records have a different
format from IMS log records.

• The utility works only with input log data sets created by the same release of IMS as the utility release
level.

Prerequisites

Currently, no prerequisites are documented for the DFSISTS0 utility.

Requirements

Currently, no requirements are documented for the DFSISTS0 utility.

Recommendations

Currently, no recommendations are documented for the DFSISTS0 utility.

Input and output

Log records

The following log records are used by the IMS Statistical Analysis utility:

01
Input message ready to be put on the destination message queue

© Copyright IBM Corp. 1974, 2020 471

03
Output message segment ready to be put on the destination message queue

07
An application program has been terminated

31
The application program issues a "get unique" to retrieve its next message

34
Message canceled and a portion of that message has been previously logged

35
Message has been put on the destination message queue

36
Message has been taken off the destination message queue

48
A variable-length padding log record

The following list provides a detailed explanation of each log record type.

Log Type 01
Log Type 01 record is written when a message is completely received by communications and is
ready to be put on the destination queue. The destination queue is either a Scheduler Message
Block (SMB) or Communications Name Table (CNT). The SMB destination means a transaction code
has been entered by the terminal operator, and an application program will be scheduled. A CNT
means a message switch will be done. If the terminal operator entered an LTERM and a message,
no application program is necessary. The message will be queued for output directly on the LTERM
named in the input message.

Log Type 03
When a segment of a message has been created by an application program and is ready to be put
on the destination message queue, the 03 record is written. The destination message queue can be
either on SMB or CNT. If SMB is the destination, a "program-to-program" message switch is called for
by the application program. If the segment is destined for a CNT, the application program is sending
an output message to an LTERM.

In a type 03 record, the date and time fields, PDATE and PTIME, are carried forward from the
01 record. When the statistics utilities are run, the 03 records and 36 records are correlated to
determine response time. The time reflected is from the time the message is put on the input queue
(obtained from the 03 record) until the message is released from the output queue (obtained from the
associated 36 record).

Log Type 07
This record is the application accounting record of the system. The type 07 record is written when an
application program terminates in a message processing or batch-message processing region.

Log Type 31
The 31 record is written when the application program issues a "get unique" to retrieve its next
message.

Log Type 34
A type 34 record is written when a message has been canceled and a portion of that message has
already been logged.

Log Type 35
The 35 record is written when a message (input or output) has been put on the destination queue.

If the message is very long and requires more than one input message buffer, the record has the date
and time in it. The date and time in the type 01 record is invalid under this condition.

Log Type 36
A type 36 record is written when a message has been sent in its entirety and the message is ready
to be released from the queue. On all devices except display devices, the message is ready to be
released from the queue as soon as the last segment is successfully sent to the terminal. Display

472 IMS: System Utilities

devices are different. If the display output is only a single page, the message is dequeued after the
last segment has been successfully sent.

For multiple pages of display output, the PAGEDEL option selected on the TERMINAL macro at system
definition time determines when the message is ready to be released from the queue. If you specify
option=PAGEDEL (or PAGEDEL=YES), the message is dequeued when you enter a question mark, PA2
key, or a new input transaction. Option=NPGDEL (or PAGEDEL=NO) requires you to enter a question
mark or PA2 key to take the message off the output queue and write the type 36 record.

The effect of option=NPGDEL (or PAGEDEL=NO) on response time can be dramatic. If you leave
the current message displayed for a long period or power off the video device, the message is not
removed from the output queue and the type 36 record is not written until terminal operations begin
again. Consequently, response time appears to require many hours or even days.

Log Type 48
A type 48 record is a variable-length padding log record that contains the time zone offset from GMT
time.

Reports

Reports are generated if the PRINTDCB DD statement is included. The different types of statistical reports
are described as follows:

• Messages Queued but Not Sent—by destination

The output message (X'03') appears on the log, but no record (X'36') appears to indicate that the
message was sent to the terminal. Output is sorted by symbolic terminal name.

• Messages—Program to Program—by destination

An output message (X'03') is sent to an SMB. Output is sorted by destination.
• Line-and-Terminal Report

The line-and-terminal report shows the line and terminal loading by time of day (which can be used to
determine the line and terminal utilization, peak traffic periods, and so forth).

The line-and-terminal report counts input messages (R), X'01', to IMS from each LTERM, and output
messages (S), X'03', to each LTERM from IMS.

– A message switch counts as two messages; one from the originating terminal, one to the destination
terminal.

– A broadcast message counts as one message from the originating terminal, and one message each to
the destination terminals.

The next four reports deal with transaction codes. If an output message is generated by a command
from a different terminal, the input prefix data is replaced by the message "THIS OUTPUT NOT RESULT
OF INPUT." An X'03' message generated by the system, independent of terminal input, has a transaction
code of IMSSYS. If an output message was generated by an input message that was not on the log or by
a command from the same terminal (for example, DISPLAY), the transaction code is NOTAVA; otherwise,
the transaction code can be found in the generating X'01' log record.

• Messages Queued but Not Sent—by transaction code

The output message (X'03') appears on the log, but no record (X'36') appears to indicate that the
message was sent to the terminal. Output is sorted by transaction code.

• Messages—Program to Program—by transaction code

An output message (X'03') was sent to an SMB. Output is sorted by transaction code.
• Transaction Report

This report shows loading by transaction code and by time of day.

– An "R" indicates the time of day an input message was inputted to IMS from each logical terminal.
– An "S" indicates the time of day an output message was outputted to each logical terminal.

Chapter 20. Statistical Analysis utility (DFSISTS0) 473

The report counts the same messages as the Line-and-Terminal Report. Input is sorted by transaction
code.

The transaction code column can contain the following entries:

(NOSORC)
The output message was generated by a command.

(NOTAVA)
The output message was generated by an input message that was not on the input log.

(IMSSYS)
The output message was generated by IMS.

• Transaction-Response Report

Measures two response times. The first line is response time from complete receipt of the input
message (enqueue time X'35') until the response message to the terminal is successfully dequeued
(X'36'). The second line is response time from complete receipt of the input message (enqueue time
X'35') until the response message to the terminal is started (GU time X'31').

There can be multiple responses from a single transaction, and they can include any output messages
from program-to-program switch transactions that are a result of the original input message.

The percentile report shows shortest response, longest response, and 25th, 50th, 75th, and 95th
percentile response. A response time within the nth percentile is greater than or equal to n% of the total
number of response times processed for that transaction code. For example, a 04.3S number under the
'75% RESPONSE' column means that 75% of the total responses for that transaction were equal to or
less than 04.3 seconds.

• Application-Accounting Report

Provides sufficient data to allow machine charges to be distributed among application programs or
transaction codes.

The following information is contained in this report:

– Counts of all requests to DL/I
– Amount of processor task time

All requests for services from DL/I, for access to messages or databases, are counted. These counts are
accumulated by program, by transaction code within program, and by priority within transaction code.

Counts of messages processed and of "get uniques" issued are included. The counts will be different
because "get unique" is a request for messages that may return several files and a non-zero return
code. The messages processed would not include the return code.

CPU time is set when a request for scheduling is made. The value is the maximum time for each
transaction, multiplied by the maximum number of transactions. The remaining time is requested prior
to the next request for scheduling. This time is the actual time the program executed. It does not
include any wait time for accessing data. This time can be incorrect if the application program is a BMP
and issues a TTIMER or STIMER macro.

Average processor time is the total message processor time, divided by the number of messages. It is
not rounded. The final average processor time is a recalculated average.

Number of bad completion codes reflects the number of times an application program terminates
abnormally or returns with a value other than zero in register 15.

• IMS-Accounting Report

Shows start and stop times for the IMS control region.

Message Select and Copy or List option

The execution of the Message Select and Copy or List is optional.

474 IMS: System Utilities

The Message Select and Copy or List program is executed if either of the IMSLOGO or IMSLOGP DD
statements is included.

Messages can be listed or copied in order of transaction, terminal, or time entered.

JCL specifications

EXEC statement

Executes the Statistical Analysis utility, DFSISTS0.

//STEP1 EXEC PGM=DFSISTS0,PARM='LINECNT=XX'

If LINECNT is not specified, the default is 36.

DD statements

STEPLIB DD
Describes the program library containing the utility programs. Its format is:

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//LOGINxxx DD
Describes the input log data sets. The last three characters are optional.

Log data from each IMS system must be allocated to a single DD statement. If multiple log data sets
from an IMS system are used, they must be contiguous and they must be concatenated in the order in
which they were created. The format of the LOGINxxx DD statement is:

//LOGIN DD DSNAME=IMSLOG,DISP=OLD,VOL=SER=XXXXXX,UNIT=TAPE

SORTWK01-32 DD
Describes the sort program's work data sets. The space defined can vary. The number of data sets
must be at least three. They can be on either tape or disk. For a disk sort, the format is:

//SORTWKnn DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

SORTLIB DD
Describes the library containing the sort program's modules. Its format is:

//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR

SORTOUT DD
Does not use the output data set. However, the DCB information must appear on the DD statement. Its
format is:

//SORTOUT DD DUMMY,DCB=*.LOGIN

SYSPRINT DD
Describes the output data set for control messages. Its format is:

//SYSPRINT DD SYSOUT=A

The next step is a sort, and all DD statements, with the exception of SORTIN and SORTOUT, are the
same as the previous sort.

PRINTDCB DD
Describes the report output, normally the output stream. It can be blocked or unblocked, because I/O
is performed using QSAM, with QSAM acquiring the buffers. This DD statement is optional. The format
of the PRINTDCB DD statement is:

Chapter 20. Statistical Analysis utility (DFSISTS0) 475

//PRINTDCB DD SYSOUT=A,DCB=(BLKSIZE=133,
// LRECL=133,RECFM=FA)

IMSLOGP DD
Describes the message select and list output. This DD statement is optional. The format of the
statement is the same as the PRINTDCB statement for DFSIST30.

IMSLOGO DD
Describes the message select and copy output. This DD statement is optional. The format of the
IMSLOGO DD statement is:

// IMSLOGO DD DSNAME=OUTPUT,UNIT=tttt,
// DISP=(NEW,KEEP),DCB=(RECFM=VB,
// LRECL=32756,BLKSIZE=32760)

The IMSLOGO DD statement specifies an output data set that contains the text segments from the
message records, type 01 and type 03 log records, used by the DFSISTS0 utility. The following table
shows the broken down sort fields that are contained in the first 93 bytes (X'5D') of each record.

Table 26. First 93 byte (X'5D') sort fields of the IMSLOGO DD statement

Offset (Hex) Length Description

0 4 Length of the IMSLOGO record

4 4 Gregorian date (YYYYMMDD)

8 1 The constant X'04'

9 9 Zeros

12 8 Time the input message was
created

1A 8 Time the output message was
created

22 2 Internal sequencing field

24 1 Type of message:
01

A message to IMS from an
external source, such as a
terminal

02
A program switch, where
one transaction invokes
another transaction

03
A message destined for an
external target, such as a
terminal

25 8 Zeros

2D 8 Transaction code

35 8 Input terminal ID

3D 4 Sequence number of this
message from the input terminal
ID

41 8 Message input time

476 IMS: System Utilities

Table 26. First 93 byte (X'5D') sort fields of the IMSLOGO DD statement (continued)

Offset (Hex) Length Description

49 8 Output terminal ID

51 4 Sequence number of this
message to the output terminal
ID

55 8 Message output time

Starting at offset X'5D' is the message text, starting with the 2-byte length. The message text is
truncated as necessary to fit into a record that cannot exceed the LRECL of the IMSLOGO data set,
32,756 bytes (X'7FF4').

Utility control statements

The Message Select and Copy or List program selects messages based on control statements read from
SYSIN. Messages selected are printed or copied onto an output data set. If the DD statement IMSLOGO is
included, an output data set is created. If the DD statement IMSLOGP is included, messages selected are
printed. Both DD statements can be included in a single run.

The following restrictions apply to the control statements:

• All control statements begin in position 1, with a keyword identifying that control statement.
• Following the keyword is a series of parameters, enclosed within parentheses and separated by

commas.
• Control statements cannot be continued beyond position 71.
• Multiple control statements with the same keyword, starting in position 1, are permitted.
• Within parentheses, all parameters are positional; missing parameters must be indicated by commas.
• Messages are selected if they fulfill at least one of the criteria specified by the control statement.

A group of names can be indicated by terminating the parameter with an *.

Example: INV* causes the names INV, INVENTORY, INVA, and INVB to be selected.

The name parameter ALL can be used to select all names rather than a specified name.

Transaction code control statement

The format of the transaction code control statement is:

TRANS CODE=(TRANSCOD,I,O),(TRANSA,I),(INV*,,O),(ALL,I,O)

• The first parameter is a transaction code from 1 to 8 characters.
• The second parameter, I, selects input messages with this code.
• The third parameter, O, selects output messages resulting from this code.
• A transaction code of ALL selects all transaction codes.
• An asterisk within the transaction code causes only characters preceding the asterisk to be compared

with the corresponding number of characters from the input transaction code to determine selection.
You can use this to select groups of transaction codes.

Symbolic terminal name control statement

Chapter 20. Statistical Analysis utility (DFSISTS0) 477

Examples of the symbolic terminal name control statement are:

SYM NAME=(TERMA,I,O,ALL),(TERM*,I,,ALL),(TERMINV,,O,ALL)
SYM NAME=(TERMPAY,I,O,TERMA)
SYM NAME=(ALL,,O,TERMA)

• The first parameter is a symbolic terminal name of a source of input messages that can be from 1 to 8
characters in length.

• The second parameter, I, selects input from this terminal.
• The third parameter, O, selects output generated by input from this terminal.
• The fourth parameter is a symbolic terminal name of a destination of output messages that can be from

1 to 8 characters in length.
• A symbolic terminal name of ALL selects all symbolic terminal names
• An asterisk within the terminal name causes only characters preceding the asterisk to be compared with

the corresponding number of characters from the input terminal name to determine selection. You can
use this to select groups of terminal names.

Time control statement

The format of the time control statement is:

TIME=(yyddd,hhmm[{+|-}HHMM],yyddd,hhmm[{+|-}HHMM])

• The first parameter is starting date—year (YY) and day of year (DDD).
• The second parameter is starting time—hours (HH) and minutes (MM) plus the optional time-zone offset

information—{+|-}HHMM.
• The third parameter is ending date—year (YY) and day of year (DDD).
• The fourth parameter is ending time—hours (HH) and minutes (MM) plus the optional time-zone offset

information—{+|-}HHMM.

The optional time-zone parameters used in the second and fourth parameters are as follows:

– The {+|-} is the sign of the time-zone offset from Universal Time Coordinated (UTC).
– The HH is the number of whole hours of offset from UTC.
– The MM is the minutes of offset; can be 00, 15, 30, 45, or blank.

• If you include the time control statement, only messages specified by a transaction code statement or a
terminal control statement and falling within the specified times are selected.

Nonprintable character control statement

The format of the nonprintable character control statement is:

NON PRINT=HEX

If you include this control statement, nonprintable characters are printed in hexadecimal, on two lines,
with one hexadecimal character above the other. If you do not include this statement, nonprintable
characters appear as blanks.

Message Select Output Order Statement

The format of the message select output order statement is:

ORDER=CREATE|SOURCE|DEST

When messages are listed, the default order is to list in order of the time of the first input message ("first"
means first of a group of messages that result from that message. This group usually consists of an input

478 IMS: System Utilities

message and its response, but intermediate program switches are included if they exist). This default
order is CREATE.

To list messages in order by LTERM of the first input message, one specifies SOURCE and to list messages
in order by the target of the initial message (the initial transaction for anything but a message switch), one
specifies DEST.

Related concepts
Statistical-analysis, log-transaction reports, and analyzing log records (System Administration)
Related reference
“Log Transaction Analysis utility (DFSILTA0)” on page 459
Use the Log Transaction Analysis utility (DFSILTA0) to collect information about individual occurrences of
IMS transactions, based on records in the IMS log data set.

Examples of the DFSISTS0 utility
The following examples show the output that is generated by running the Statistical Analysis utility
(DFSISTS0) with either the //PRINTDCB DD statement, the //IMSLOGP DD statement, or both.

JCL for the statistical analysis utility

The following figure is an example of the JCL for execution of the Statistical Analysis utility. This is a full
statistics, job-stream example with sorting by date that produces reports under date control. BLKSIZE
and LRECL in all data sets are dependent on the input log.

//STATS JOB 1,NAME,MSGCLASS=A,MSGLEVEL=1,PRTY=8
//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR
//*
//ST1 EXEC PGM=DFSISTS0
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//LOGIN DD DSN=IMSLOG,DISP=OLD,
// UNIT=TAPE,VOL=SER=LOGTAP
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTOUT DD DUMMY
//PRINTDCB DD SYSOUT=A
//IMSLOGP DD SYSOUT=A
//SYSIN DD *
TRANS CODE=(ALL,I,O)
NON PRINT=HEX
/*
//

Statistics reports examples
The following list includes the statistics reports produced by DFSISTS0. Examples of the reports follow.
The report date, which appears in the upper right corner of the following examples, will not appear unless
a sort by date is specified as it was in the examples. The reports produced are:

• Messages—Queued but Not Sent by Destination (“Messages—Queued But Not Sent (by destination)” on
page 480)

• Messages—Program to Program by Destination (“Messages—Program To Program (by destination)” on
page 480)

• Line and Terminal (“Line-and-Terminal Report” on page 481)
• Messages—Queued but Not Sent by Transaction Code (“Messages—Queued But Not Sent (by

transaction code)” on page 482)
• Messages—Program to Program by Transaction Code (“Messages—Program To Program (by transaction

code)” on page 483)

Chapter 20. Statistical Analysis utility (DFSISTS0) 479

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/ims_reports/ims_statloganlyz.htm#ims_statloganlyz

• Transaction (“Transaction Report” on page 483)
• Transaction Response (“Transaction-Response Report” on page 485)
• Application Accounting (“Application Accounting Report” on page 486)

Using the normalized scientific notation in examples
When the number in the statistics report is too large to fit in the designated space, IMS uses the
normalized scientific notation in place of the entire number.

In the normalized scientific notation, the character E is used to mean "times 10 raised to the power of X".

For example, 25,000 could also be written as 2.5E4 and 3.7E5 is equal to 370,000.

Messages—Queued But Not Sent (by destination)

 M E S S A G E S -- Q U E U E D B U T N O T S E N T D A T E
05/15/09 P A G E 00001
 TOTAL
 DESTINATION MESSAGES
 AZC0GH00 1
 CWARENS1 1
 DFSMTCNT 2
 F@MYDV21 1
 OQCCM211 1

Messages—Program To Program (by destination)

 M E S S A G E S -- P R O G R A M T O P R O G R A M D A T E
05/15/09 P A G E 00001
 TOTAL
 DESTINATION MESSAGES
 VGG034T1 2
 VJDBBAT 32
 VJDBI4T 3
 VJDBL1T 72
 VJDBL3T 4
 VJDBL4T 39
 VJDBMLR 11
 VJDBML2 14
 VJDBR1T 74
 VJMPCC1 1
 VJMPCC1B 8
 VJMPCC1C 4
 VJMPCC1D 7
 VJMPCC1E 5
 VJMPCC1F 3
 VJMPCC2 118
 VJMPCC3 8
 VODSWC 1
 VODSWT 73
 VOGSF07 4
 VOMPCC1 5
 VOMPCC1A 13
 VOMPCC1B 9
 VOMPCC1C 14
 VOMPCC1D 3
 VOMPCC1E 1
 VOMPCC1F 2
 VOMPCC2C 174
 VOMPCC3 2
 VOSSADD 72
 VOSSBIR 2
 VOSSFDI 17

480 IMS: System Utilities

 VOSSIHR 2
 VOSSLOG 2
 VOSSLPT 1
 VOSSNFH 38
 VOSSNMA 31
 VOSSSCR 9
 VOSSSMI 4
 VOSSSUP2 1
 VOSSTDC 1
 VOS027T1 2
 VOTABAD 8
 VOTAFDI 3
 VOTAFDO2 8
 VOTAMDS 12
 VOTANSA 1
 VOTAPAS 2
 VOTAPTA 2
 VOTARFT 1
 VOTASEB 10
 VOXPECIN 1
 YXCAJFX 1

Line-and-Terminal Report

 L I N E A N D T E R M I N A L R E P O R T D A T E 05/15/09 P A G E 00001
 TOTAL TOTAL AVG HOURLY DISTRIBUTION
 NODE R/S MESSAGES CHARACTERS SIZE 00-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17
17-18 18-19 19-24
AADUGNA4 R 5 8,675 1,735 0 0 0 0 0 0 2 3 0 0 0
0 0 0
 S 5 8,675 1,735 0 0 0 0 0 0 2 3 0 0 0
0 0 0
ACRADDO1 S 3 25,194 8,398 0 0 0 0 0 0 3 0 0 0 0
0 0 0
ADEHORN0 R 1 1,735 1,735 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 2 8,675 4,337 0 0 0 0 0 0 0 2 0 0 0
0 0 0
ADEHORN1 R 1 3,807 3,807 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 2 3,807 1,903 0 0 0 0 0 0 0 2 0 0 0
0 0 0
ADHOWAR0 R 2 5,718 2,859 0 0 0 0 0 0 1 1 0 0 0
0 0 0
 S 2 5,718 2,859 0 0 0 0 0 0 1 1 0 0 0
0 0 0
ADHOWAR3 R 1 1,886 1,886 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 11,316 11,316 0 0 0 0 0 0 1 0 0 0 0
0 0 0
ADHOWAR4 R 2 6,908 3,454 0 0 0 0 0 0 1 1 0 0 0
0 0 0
 S 2 6,908 3,454 0 0 0 0 0 0 1 1 0 0 0
0 0 0
ADOVALI0 R 2 3,454 1,727 0 0 0 0 0 0 2 0 0 0 0
0 0 0
ADUNCAN0 R 1 1,800 1,800 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 3,600 3,600 0 0 0 0 0 0 1 0 0 0 0
0 0 0
AJWHIT10 R 3 2,233 744 0 0 0 0 0 0 3 0 0 0 0
0 0 0
 S 2 253 126 0 0 0 0 0 0 2 0 0 0 0
0 0 0
AKCAMPB0 S 8 13,880 1,735 0 0 0 0 0 0 4 4 0 0 0
0 0 0
ALOPEZ2 R 4 5,852 1,463 0 0 0 0 0 0 2 2 0 0 0
0 0 0
ALUOMA1 R 1 1,758 1,758 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 2,158 2,158 0 0 0 0 0 0 1 0 0 0 0
0 0 0
AMRAMOS0 R 1 1,152 1,152 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 1 1,152 1,152 0 0 0 0 0 0 0 1 0 0 0
0 0 0
ASMYTH0 R 5 11,701 2,340 0 0 0 0 0 0 2 3 0 0 0
0 0 0
 S 5 12,224 2,444 0 0 0 0 0 0 2 3 0 0 0
0 0 0
ASUTTON2 R 6 10,173 1,695 0 0 0 0 0 0 3 3 0 0 0
0 0 0

Chapter 20. Statistical Analysis utility (DFSISTS0) 481

 S 6 15,447 2,574 0 0 0 0 0 0 3 3 0 0 0
0 0 0
ATFREVE0 R 3 4,762 1,587 0 0 0 0 0 0 3 0 0 0 0
0 0 0
AZC0GH00 S 4 8,632 2,158 0 0 0 0 0 0 0 4 0 0 0
0 0 0
BDUNKER0 R 7 9,821 1,403 0 0 0 0 0 0 6 1 0 0 0
0 0 0
BEWILLI0 R 3 9,372 3,124 0 0 0 0 0 0 2 1 0 0 0
0 0 0
 S 3 28,710 9,570 0 0 0 0 0 0 2 1 0 0 0
0 0 0
BMANZAN0 R 1 2,158 2,158 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 2,158 2,158 0 0 0 0 0 0 1 0 0 0 0
0 0 0
BRASMUS0 R 3 6,474 2,158 0 0 0 0 0 0 3 0 0 0 0
0 0 0
 S 3 6,474 2,158 0 0 0 0 0 0 3 0 0 0 0
0 0 0
BRICHIN0 R 1 1,758 1,758 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 3,807 3,807 0 0 0 0 0 0 1 0 0 0 0
0 0 0
BXSMI255 R 6 15,540 2,590 0 0 0 0 0 0 2 4 0 0 0
0 0 0
 S 6 15,540 2,590 0 0 0 0 0 0 2 4 0 0 0
0 0 0
CALLRVW0 R 2 1,988 994 0 0 0 0 0 0 0 2 0 0 0
0 0 0
 S 4 12,398 3,099 0 0 0 0 0 0 0 4 0 0 0
0 0 0
CBUNNEL0 R 2 3,454 1,727 0 0 0 0 0 0 0 2 0 0 0
0 0 0
CDESJAR0 R 5 8,229 1,645 0 0 0 0 0 0 2 3 0 0 0
0 0 0
CEWEBER1 R 4 6,768 1,692 0 0 0 0 0 0 0 4 0 0 0
0 0 0
CFERRAN4 R 1 503 503 0 0 0 0 0 0 1 0 0 0 0
0 0 0
CGALDE0 R 1 1,735 1,735 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 86,750 86,750 0 0 0 0 0 0 1 0 0 0 0
0 0 0
CGALDE1 R 1 1,735 1,735 0 0 0 0 0 0 0 1 0 0 0
0 0 0
CGOOLSB1 R 2 2,926 1,463 0 0 0 0 0 0 0 2 0 0 0
0 0 0
CGUCINS3 R 9 19,371 2,152 0 0 0 0 0 0 8 1 0 0 0
0 0 0
 S 9 19,371 2,152 0 0 0 0 0 0 8 1 0 0 0
0 0 0
CKLARSO0 R 1 503 503 0 0 0 0 0 0 0 1 0 0 0
0 0 0
CMENO0 R 1 3,807 3,807 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 3,807 3,807 0 0 0 0 0 0 1 0 0 0 0
0 0 0
COAAHS00 S 10 30,130 3,013 0 0 0 0 0 0 3 7 0 0 0
0 0 0
COJJHP00 S 4 8,632 2,158 0 0 0 0 0 0 4 0 0 0 0
0 0 0
COLAM030 R 20 31,330 1,566 0 0 0 0 0 0 9 11 0 0 0
0 0 0
CRUNNEL1 R 2 2,652 1,326 0 0 0 0 0 0 2 0 0 0 0
0 0 0

Note:

1. LINE RTN = Line Relative Terminal Number
2. R/S = Received/Sent

Messages—Queued But Not Sent (by transaction code)

 M E S S A G E S -- Q U E U E D B U T N O T S E N T D A T E
05/15/09 P A G E 00001
TRANSACTION TOTAL
 CODE MESSAGES
 VOMPCC1A 1
 VOS1SIGN 1

482 IMS: System Utilities

Messages—Program To Program (by transaction code)

 M E S S A G E S -- P R O G R A M T O P R O G R A M D A T E
05/15/09 P A G E 00001
TRANSACTION TOTAL
 CODE MESSAGES
 VJDBI4T 6
 VJDBL1T 144
 VJDBL3T 9
 VJDBL4T 88
 VJMPCC1 2
 VJMPCC1A 117
 VJMPCC1B 4
 VJMPCC1C 1
 VJMPCC1D 4
 VJMPCC1F 1
 VJMPCC3 2
 VOCITADD 5
 VOCITFCT 3
 VODSWT 73
 VOGSC02 3
 VOGSF05 3
 VOGSJFX 6
 VOMPCC1A 200
 VOMPCC1B 20
 VOMPCC2C 1
 VOSSADD 59
 VOSSCWL 1
 VOSSESO 11
 VOSSFDI 20
 VOSSIA 10
 VOSSNFH 10
 VOSSNMA 62
 VOSSSCR 9
 VOSSSMI 4
 VOSSSUP2 1
 VOSSTIM 1
 VOS019T1 30
 VOTABAD 3
 VOTAFDI 6
 VOTAFDO2 12
 VOTANSA 1
 VOTAPAS 2
 VOTARFT 1
 VOTATREB 1
 VOTATTE 1

Transaction Report

 T R A N S A C T I O N R E P O R T D A T E 05/15/09 P A G E 00001
TRANSACTION TOTAL TOTAL AVG HOURLY DISTRIBUTION
 CODE R/S MESSAGES CHARACTERS SIZE 00-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17
17-18 18-19 19-24
VGCAMSS R 1 1,524 1,524 0 0 0 0 0 0 0 1 0 0 0
0 0 0
VGGDCIS R 1 1,263 1,263 0 0 0 0 0 0 0 1 0 0 0
0 0 0
VGGDCMC R 2 2,888 1,444 0 0 0 0 0 0 1 1 0 0 0
0 0 0
VGGDEWRA R 2 3,640 1,820 0 0 0 0 0 0 0 2 0 0 0
0 0 0
VGGDISS R 4 2,136 534 0 0 0 0 0 0 3 1 0 0 0
0 0 0
VGGDRIP R 4 6,728 1,682 0 0 0 0 0 0 1 3 0 0 0
0 0 0
VGGDRIS R 1 1,718 1,718 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VGGDRMC R 4 6,868 1,717 0 0 0 0 0 0 3 1 0 0 0
0 0 0
VGGDSOIE R 5 8,316 1,663 0 0 0 0 0 0 2 3 0 0 0
0 0 0
VGGDTGM1 R 1 1,753 1,753 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VGGDTGS1 R 1 1,718 1,718 0 0 0 0 0 0 1 0 0 0 0

Chapter 20. Statistical Analysis utility (DFSISTS0) 483

0 0 0
VGGDTLOG R 47 62,741 1,334 0 0 0 0 0 0 24 23 0 0 0
0 0 0
VGGDTRAK R 5 7,960 1,592 0 0 0 0 0 0 5 0 0 0 0
0 0 0
VGG015T1 R 4 4,912 1,228 0 0 0 0 0 0 4 0 0 0 0
0 0 0
VGG022TC R 3 5,475 1,825 0 0 0 0 0 0 1 2 0 0 0
0 0 0
VGG022TE R 1 1,825 1,825 0 0 0 0 0 0 0 1 0 0 0
0 0 0
VGG022T1 R 7 5,879 839 0 0 0 0 0 0 3 4 0 0 0
0 0 0
VGG022T2 R 9 16,425 1,825 0 0 0 0 0 0 5 4 0 0 0
0 0 0
VGG043T1 R 7 10,789 1,541 0 0 0 0 0 0 3 4 0 0 0
0 0 0
VGS1SIGN R 13 3,289 253 0 0 0 0 0 0 6 7 0 0 0
0 0 0
VJCRLCRE R 1 674 674 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 412 412 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VJCRLREF R 1 681 681 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 1,996 1,996 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VJDBL4T S 2 3,002 1,501 0 0 0 0 0 0 0 2 0 0 0
0 0 0
VJMPCC1 R 1 7,164 7,164 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 1 576 576 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VJMPCC1A R 7 1,381 197 0 0 0 0 0 0 0 7 0 0 0
0 0 0
VJMPCC1B S 1 3,850 3,850 0 0 0 0 0 0 0 1 0 0 0
0 0 0
VJMPCC1C S 3 24,497 8,165 0 0 0 0 0 0 0 3 0 0 0
0 0 0
VJMPCC1E S 2 1,994 997 0 0 0 0 0 0 2 0 0 0 0
0 0 0
VJMPCC2 R 6 822 137 0 0 0 0 0 0 5 1 0 0 0
0 0 0
 S 1 923 923 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VJMPCC3 S 2 796 398 0 0 0 0 0 0 1 1 0 0 0
0 0 0
VJS1SIGN R 1 253 253 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 253 253 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VOCAMSS R 6 9,144 1,524 0 0 0 0 0 0 5 1 0 0 0
0 0 0
 S 23 35,052 1,524 0 0 0 0 0 0 15 8 0 0 0
0 0 0
VOCICIQ1 R 61 16,403 268 0 0 0 0 0 0 31 30 0 0 0
0 0 0
 S 61 119,302 1,955 0 0 0 0 0 0 30 31 0 0 0
0 0 0
VOCICIQ2 R 11 4,785 435 0 0 0 0 0 0 5 6 0 0 0
0 0 0
 S 11 55,131 5,011 0 0 0 0 0 0 5 6 0 0 0
0 0 0
VOCIEAU1 R 1 248 248 0 0 0 0 0 0 1 0 0 0 0
0 0 0
 S 1 408 408 0 0 0 0 0 0 1 0 0 0 0
0 0 0
VOCIGARM R 22 18,843 856 0 0 0 0 0 0 12 10 0 0 0
0 0 0
 S 22 8,002 363 0 0 0 0 0 0 12 10 0 0 0
0 0 0
VOCIGIQ1 R 28 7,532 269 0 0 0 0 0 0 13 15 0 0 0
0 0 0
 S 28 424,865 15,173 0 0 0 0 0 0 13 15 0 0 0
0 0 0
VOCIMWL1 R 1 311 311 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 1 63,211 63,211 0 0 0 0 0 0 0 1 0 0 0
0 0 0
VOCISRH1 R 30 8,278 275 0 0 0 0 0 0 16 14 0 0 0
0 0 0
 S 30 30,910 1,030 0 0 0 0 0 0 16 14 0 0 0
0 0 0
VOCITADD R 5 3,513 702 0 0 0 0 0 0 3 2 0 0 0
0 0 0
 S 5 7,659 1,531 0 0 0 0 0 0 3 2 0 0 0
0 0 0
VOCITFCT R 4 3,274 818 0 0 0 0 0 0 2 2 0 0 0
0 0 0
 S 4 8,082 2,020 0 0 0 0 0 0 2 2 0 0 0
0 0 0
VOCITIQ1 R 12 3,400 283 0 0 0 0 0 0 4 8 0 0 0
0 0 0

484 IMS: System Utilities

 S 12 26,918 2,243 0 0 0 0 0 0 4 8 0 0 0
0 0 0
VOCRLCRE R 1 674 674 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 1 412 412 0 0 0 0 0 0 0 1 0 0 0
0 0 0
VOCRLREF R 1 681 681 0 0 0 0 0 0 0 1 0 0 0
0 0 0
 S 1 1,996 1,996 0 0 0 0 0 0 0 1 0 0 0
0 0 0

Transaction-Response Report

 T R A N S A C T I O N R E S P O N S E R E P O R T D A T E 05/15/09 P A G E
00001
TRANSACTION TOTAL LONGEST 95% 75% 50%
25% SHORTEST
 CODE RESPONSES RESPONSE RESPONSE RESPONSE RESPONSE
RESPONSE RESPONSE
 VJCRLCRE 1 .11S .11S .11S .11S
.11S .11S
 1 .08S .08S .08S .08S
.08S .08S
 VJCRLREF 1 .03S .03S .03S .03S
.03S .03S
 1 .03S .03S .03S .03S
.03S .03S
 VJMPCC1A 9 5.02S 5.01S 5.01S .29S
.05S .04S
 9 .36S .31S .16S .06S
.03S .01S
 VJMPCC1C 1 .10S .10S .10S .10S
.10S .10S
 1 .02S .02S .02S .02S
.02S .02S
 VJMPCC1E 1 .01S .01S .01S .01S
.01S .01S
 1 .01S .01S .01S .01S
.01S .01S
 VJMPCC2 1 .01S .01S .01S .01S
.01S .01S
 1 .00S .00S .00S .00S
.00S .00S
 VJS1SIGN 1 .18S .18S .18S .18S
.18S .18S
 1 .00S .00S .00S .00S
.00S .00S
 VOCAMSS 23 .06S .03S .02S .01S
.01S .00S
 23 .06S .03S .02S .01S
.00S .00S
 VOCICIQ1 61 .42S .36S .17S .05S
.01S .00S
 61 .42S .36S .17S .05S
.01S .00S
 VOCICIQ2 11 .03S .03S .03S .02S
.01S .01S
 11 .03S .03S .03S .02S
.01S .01S
 VOCIEAU1 1 .03S .03S .03S .03S
.03S .03S
 1 .03S .03S .03S .03S
.03S .03S
 VOCIGARM 22 .31S .01S .00S .00S
.00S .00S
 22 .31S .01S .00S .00S
.00S .00S
 VOCIGIQ1 28 .20S .02S .02S .01S
.00S .00S
 28 .20S .02S .02S .01S
.00S .00S
 VOCIMWL1 1 .09S .09S .09S .09S
.09S .09S
 1 .09S .09S .09S .09S
.09S .09S
 VOCISRH1 30 .18S .14S .09S .05S
.00S .00S
 30 .18S .14S .09S .05S
.00S .00S

Chapter 20. Statistical Analysis utility (DFSISTS0) 485

 VOCITADD 5 .11S .10S .10S .09S
.08S .06S
 5 .11S .10S .10S .09S
.08S .06S
 VOCITFCT 4 .10S .06S .06S .06S
.05S .05S
 4 .10S .06S .06S .05S
.05S .05S
 VOCITIQ1 12 .17S .15S .12S .10S
.02S .00S
 12 .17S .15S .12S .10S
.02S .00S
 VOCRLCRE 1 .18S .18S .18S .18S
.18S .18S
 1 .08S .08S .08S .08S
.08S .08S
 VOCRLREF 1 .03S .03S .03S .03S
.03S .03S
 1 .00S .00S .00S .00S
.00S .00S
 VODSWD 132 .21S .04S .01S .00S
.00S .00S
 132 .20S .03S .00S .00S
.00S .00S
 VOGSC01 6 .31S .23S .21S .17S
.11S .06S
 6 .31S .23S .21S .17S
.11S .05S
 VOGSC02 3 1.05S .97S .97S .97S
.75S .75S
 3 .96S .74S .74S .74S
.48S .48S
 VOGSF05 26 .25S .08S .02S .01S
.01S .00S
 26 .24S .07S .01S .01S
.00S .00S
 VOGSF07 151 26.69S 1.13S .04S .02S
.01S .00S
 151 12.27S .04S .03S .02S
.01S .00S
 VOGSF10 1 .07S .07S .07S .07S
.07S .07S
 1 .03S .03S .03S .03S
.03S .03S
 VOGSF11 91 .17S .06S .02S .01S
.01S .00S
 91 .16S .04S .01S .01S
.00S .00S
 VOGSJFX 6 43.73S 23.72S 4.02S .03S
.01S .01S
 6 41.13S .09S .05S .03S
.01S .00S
 VOMPCC1 1 .00S .00S .00S .00S
.00S .00S
 1 .00S .00S .00S .00S
.00S .00S
 VOMPCC1A 87 6.32S .39S .05S .03S
.02S .01S
 87 6.32S .34S .04S .03S
.02S .00S
 VOMPCC1B 7 .38S .10S .09S .01S
.00S .00S
 7 .10S .10S .09S .00S
.00S .00S

Application Accounting Report

 A P P L I C A T I O N A C C O U N T I N G R E P O R T D A T E 05/15/09 P A G E 00002
PROGRAM TRANSACTION MESSAGE- - - - COUNTS DATA - - - - - - - - - BASE - - - - - - - - COUNTS CC OR RC TOT
PROG AVG
 NAME CODE PRI QTY GU GN ISRT GU GN GNP GHU GHN GHNP ISRT DLET REPL NOT 0 CPU
TIME TIME
VOSSBIR VOSSBIR 8 4 6 0 4 15 0 0 7 0 3 7 3 0 0
0.0S 0.002S
VOSSCHC VOSSCHC 9 9 13 0 6 54 9 0 19 0 7 18 8 0 0
0.0S 0.003S
VOSSCWL VOSSCWL 8 1 2 0 3 29 8 0 16 0 0 5 1 6 0
0.0S 0.019S
VOSSCWLR VOSSCWLR 8 2 3 0 2 10 16 0 4 0 0 2 2 0 0

486 IMS: System Utilities

0.0S 0.002S
VOSSEMAR VOSSEMAR 8 2 3 0 6 20 0 0 4 0 2 10 2 0 0
0.0S 0.005S
VOSSESO VOSSESO 8 20 26 0 24 126 0 0 42 0 0 1 0 35 0
0.0S 0.002S
VOSSFDI VOSSFDI 8 17 20 34 37 25 10 0 26 2 0 16 0 4 0
0.0S 0.002S
VOSSGIU VOSSGIU 8 1 2 0 6 91 94 20 37 0 0 10 1 24 0
0.0S 0.034S
VOSSGSR VOSSGSR 8 1 2 0 64 89 1,087 0 3 0 1 64 1 0 0
0.0S 0.044S
VOSSIAP VOSSIA 9 46 54 0 57 732 34 57 394 16 51 134 53 184 0
0.3S 0.007S
VOSSIHP VOSSIH 9 1 2 0 0 2 0 0 1 0 0 0 1 0 0
0.0S 0.002S
VOSSIHR VOSSIHR 8 2 4 2 4 5 16 0 9 0 0 2 1 2 0
0.0S 0.007S
VOSSLOG VOSSLOG 6 2 3 0 0 0 0 0 2 0 0 2 0 0 0
0.0S 0.001S
VOSSLRKR VOSSLRKR 8 74 77 0 74 295 438 0 581 73 1 148 74 0 0
0.2S 0.002S
VOSSNFH VOSSNFH 8 38 44 0 31 182 11 95 192 72 39 128 79 72 0
0.2S 0.007S
VOSSNMA VOSSNMA 8 28 35 56 84 0 0 0 0 0 0 0 0 0 0
0.0S 0.001S
VOSSSCR VOSSSCR 8 10 15 54 60 160 19 20 109 0 10 55 5 47 0
0.1S 0.015S
VOSSSMI VOSSSMI 8 2 4 8 10 0 0 0 0 0 0 0 0 0 0
0.0S 0.004S
VOSSSUP VOSSSUP2 8 1 2 0 2 4 1 0 10 2 0 7 1 4 0
0.0S 0.016S
VOSSTDCP VOSSTDC 6 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0.0S 0.000S
VOSSTIM VOSSTIM 8 1 2 0 2 5 0 0 2 0 0 3 0 1 0
0.0S 0.011S
VOS008B1 BMP/JBP 0 0 0 0 0 69 4,198 0 27 2.4E4 0 0 0 214 0
0.0S 0.000S
VOS019T VOS019T1 9 36 44 0 71 759 32 22 401 268 220 421 373 168 0
0.5S 0.016S
VOS027T VOS027T1 9 207 211 0 207 851 0 0 248 0 44 414 196 0 0
0.2S 0.001S
VOS033T VOS033T1 9 8 12 0 8 212 73 62 85 4 4 16 5 0 0
0.1S 0.013S
VOS038T VOS038T1 9 39 44 0 39 157 0 0 43 0 4 39 38 1 0
0.0S 0.001S
VOS039T VOS039T1 9 103 105 0 188 778 3,611 81 121 0 36 565 103 0 0
0.4S 0.003S
VOS041T VOS041T1 8 3 6 0 4 18 0 9 7 0 2 9 3 0 0
0.0S 0.005S
VOS042T VOS042T1 9 214 217 0 214 1,409 158 25 241 0 28 428 203 0 0
0.3S 0.001S
VOS043T VOS043T1 9 52 54 0 194 5,390 1.6E4 57 100 0 48 388 51 0 0
2.0S 0.038S
VOS1SGN VOS1SIGN 10 23 28 0 43 85 788 0 40 0 0 0 0 40 0
0.0S 0.002S
VOS102T VOS102T1 8 4 7 0 4 24 0 0 12 0 0 6 4 4 0
0.0S 0.004S
VOS104T VOS104T1 8 16 22 0 12 69 0 0 28 0 0 12 12 0 0
0.0S 0.002S
VOTAACTR VOTAACTR 8 7 12 0 7 28 0 0 7 0 0 7 7 0 0
0.0S 0.003S
VOTABAD VOTABAD 9 8 14 0 4 356 84 152 234 52 18 288 51 61 0
0.2S 0.031S
VOTADRP VOTADRPA 8 2 3 0 1 2 2,504 0 0 0 0 0 0 0 0
0.2S 0.129S
VOTAFDI VOTAFDI 8 3 4 2 10 7 0 2 9 6 1 10 6 2 0
0.0S 0.006S
VOTAFDO VOTAFDO2 8 8 13 17 23 51 5 4 75 46 10 60 47 23 0
0.1S 0.013S
VOTAFEB VOTAFEB 8 2 3 0 2 10 0 0 4 0 1 3 2 1 0
0.0S 0.005S
VOTAMDS VOTAMDS 8 12 20 0 0 0 0 0 0 0 0 0 0 0 0
0.0S 0.001S
VOTANSA VOTANSA 8 1 2 0 1 2 0 1 3 0 0 7 1 0 0
0.0S 0.015S
VOTAPAS VOTAPAS 9 2 4 0 3 8 0 1 11 10 2 17 10 3 0
0.0S 0.019S
VOTAPTA VOTAPTA 8 2 4 4 0 0 0 0 2 0 0 0 2 0 0
0.0S 0.002S
VOTARFT VOTARFT 8 2 4 7 4 7 0 0 11 6 2 11 4 2 0
0.0S 0.013S
VOTASEB VOTASEB 8 10 14 0 10 15 0 0 0 0 0 0 0 0 0
0.0S 0.001S
VOTATBL VOTATTE 12 1 2 0 2 38 5 3 10 0 1 19 1 2 0
0.0S 0.023S
VOTATEB VOTATREB 12 3 4 0 4 14 0 0 9 4 3 8 7 1 0
0.0S 0.004S
VOTATSR VOTATSR 8 1 2 0 2 5 0 0 5 2 1 3 0 0 0
0.0S 0.004S
VOTATST VOTATST 8 1 2 0 0 2 0 0 3 0 3 0 1 0 0
0.0S 0.003S
VOXPECI VOXPECIN 8 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0.0S 0.013S

Chapter 20. Statistical Analysis utility (DFSISTS0) 487

SYSTEM TOTALS 3,097 3,431 3,238 7,999 2.5E4 3.7E4 1.9E4 1.0E4 2.5E4 945 1.2E4 2,964 2,730 0
14.0S 0.004S
 I M S ACCOUNTING REPORT D A T E 05/15/09 P A G
E 00001

 START TIME 19:59:34
 STOP TIME 20:00:22
REPORT PERIOD IS FROM 05/15/09 TO 05/15/09.

END OF REPORTS

*
Second insert is counted for single user issued insert if all the following conditions are met:

1. New HIDAM or PHIDAM Root
2. Not Duplicate Key (II status not returned)

**
These dates will not appear unless the input to DFSIST30 is sorted with date control.

Message Select and Copy or List option report

The following figure shows an example of the report produced by the Message Select and Copy or List
option.

 MESSAGES

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC
PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS
DATE TIME
 THIS OUTPUT NOT RESULT OF INPUT DSWP5008 00017 PDSW5008
09.107 15.54.1
 3
OUTPUT SEG=001 LEN=0001*F*
INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC
PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS
DATE TIME
 THIS OUTPUT NOT RESULT OF INPUT DSWP5008 00019 PDSW5008
09.107 15.54.4
OUTPUT SEG=001 LEN=0009*88-3-2000*
 3 3 3 3
OUTPUT SEG=002 LEN=0248*WITHDRAWAL $300.00 FDEPOSIT $6704.62 FSAVINGS 444.44 FCHECKING $9800.50
F*
 3 3 3 3
 *OVERDRAFT $30.32FVISA $2020.20 FMASTER CHRGE $105.00 FCARLOAN $1040.00
F*
 3
 TRANSFER C-5 $50.00 FCHRISTMAS CLUB $94.60
INPUT TRANSACTION NODE SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC
PREFIX CODE NAME NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS
DATE TIME
 DE1Q DSWPOO56 00015 PDSW0056 09.107 15.53.51 DSWP0056 00016 PDSW0056
07.107 15.54.2
 03 0 18D
INPUT SEG=001 LEN=0016*1BDE1Q 3Y43A*
INPUT SEG=002 LEN=0230* 23(9) WITHDRAW OF $300DEPOSIT OF $6704.62SAVINGS DEPOSIT OF $444.44CHECKING
TRANSFER OF $9800.50OV*
 *ERDRAFT OF $30.32VISA ENTRY OF $2020.20MASTER CHARGE OF $105.00CAR LOAN OF
$140.00TRANSFER C-S OF $*1
 *50.00CHRISTMAS CLUB OF $94.60Y
INPUT TRANSACTION NODE SEQ SYMBOLIC
PREFIX CODE NAME NO ADDRESS DATE TIME
 DE1Q DSWP0084 00017 PDSW5008 09.107 15.54.25
 3
OUTPUT SEG=001 LEN=0031*+ DATA SUCCESSFULLY RECEIVED +F*
INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC
PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS
DATE TIME
 DE1Q2 DSWP016 00018 PDSW0116 09.107 15.54.36 DSWP0116 00016 PDSW0116
07.107 15.54.36

488 IMS: System Utilities

Notes:

1. Indicates a 230-character report message
2. Indicates a 31-character message generated by the transaction code "DE1Q" and transmitted to a

relative terminal DSWP0116.

Chapter 20. Statistical Analysis utility (DFSISTS0) 489

490 IMS: System Utilities

Part 4. Log utilities
Use the log utilities to produce an SLDS, to generate a data set from system log data sets, and to generate
a usable log data set from a log data set that contains errors or was not properly terminated.

Each topic introduces how the utility works, defines requirements and restrictions for its use, and
provides examples.

© Copyright IBM Corp. 1974, 2020 491

492 IMS: System Utilities

Chapter 21. Log Archive utility (DFSUARC0)
You can use the Log Archive utility (DFSUARC0) to produce an SLDS from a filled OLDS or a batch IMS
SLDS.

IMS DB writes log records on an SLDS that can be on tape or DASD. This allows an IMS batch user to log to
DASD, create an SLDS, and later copy that SLDS to DASD or tape.

The Log Archive utility provides the following optional functions. You must specify these functions with
utility control statements.

Creating an RLDS (recovery log data set)

You can request creation of an output data set containing all the log records needed for DB recovery.
The output data set is referred to as a recovery log data set (RLDS). If the input data set contains
records for DB recovery, the RLDS is known to DBRC and is used in place of the SLDS by GENJCL
when creating JCL for DB recovery and change accumulation. If the input data set contains no records
needed for DB recovery, the RLDS is a null data set. In this case DBRC records the data set name and
volume serial number of the SLDS, in place of the RLDS DSNAME and volume serial number, and then
uses the SLDS for GENJCL instead of the null RLDS.

Omitting log records on an SLDS

Generally, the SLDS should contain all the log records from the OLDS, but if you need to omit some
types of log records from the SLDS, these log records must be specified in an SLDS control statement,
using the NOLOG parameter. The SLDS must contain those records that might be needed for database
recovery and IMS restart. The Log Archive utility will issue an error message and terminate if a
required record type is specified to be omitted.

Copying log records into user data sets
The Log Archive utility can copy selected log records into multiple user data sets directly. In SYSIN
control statements, you can specify the log records to be selected and the ddname of the data set to
which the records are to be written.

Specifying user exit routines
You can specify multiple user exit routines for the archive utility. The Log Archive utility passes control
to each user exit routine at initialization, input log read, and termination time. User exit routines can
process the log records or create a data set.

Specifying forced end of volume (EOV)
To ensure that corresponding volumes in a dual SLDS on tape contain the same records (and
consequently are interchangeable), the number of blocks to be written on a volume can be specified.
EOV will be forced to both SLDSs when the specified number of log blocks have been written.

Subsections:

• “Restrictions” on page 494
• “Prerequisites” on page 494
• “Requirements” on page 494
• “Recommendations” on page 494
• “Input and output” on page 494
• “JCL specifications” on page 496
• “Utility control statements” on page 497
• “Return codes” on page 501

© Copyright IBM Corp. 1974, 2020 493

Restrictions

Currently, no restrictions are documented for the DFSUARC0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSUARC0 utility.

Requirements

Currently, no requirements are documented for the DFSUARC0 utility.

Recommendations

Currently, no recommendations are documented for the DFSUARC0 utility.

Input and output
The Log Archive utility has two types of input: OLDSs and SLDSs. The utility accepts only log data sets that
are created by the same release of IMS as the utility release level.

OLDS input

The OLDS used for input must have been successfully closed. The status in RECON for the input OLDS
must be 'ARCHIVE NEEDED'.

An error in a single OLDS causes the archive job to terminate. Run the Log Recovery utility to recover the
OLDS, and rerun the Log Archive utility.

If dual OLDSs were used during IMS online execution, both are used as input to the Log Archive utility.
If an error is encountered in the primary OLDS, the archive utility switches to the secondary OLDS. If the
record is found in the secondary OLDS, the archive job continues. If an error is encountered in the same
block, the archive job terminates. Run the Log Recovery utility to recover the OLDS, and rerun the Log
Archive utility. If one dual OLDS is not available, for example the status is not 'ARCHIVE NEEDED', only the
available OLDS is used as input. The unavailable OLDS is ignored.

If dual OLDSs are used as input and an error exists in the first block of the primary OLDS, the Log
Archive utility terminates unsuccessfully. Sequence errors are indicated on the first block of both OLDSs,
even though the secondary OLDS might be correct. The Log Archive utility uses the first block of the
primary OLDS as an anchoring point. If this block is in error, data collected from it cannot be verified by
comparison to the secondary OLDS. If errors exist on the first block of either OLDS, run the Log Recovery
utility to recover the OLDS, then rerun the Log Archive utility.

If multiple OLDSs are specified as the input OLDS, they must have been created consecutively. OLDSs
created by different IMS system executions cannot be input at one time.

If any OLDS in the input was terminated at a recovery point (a recovery point results at every /
DBRECOVERY and /DBDUMP command that forces an OLDS switch), the archive utility performs as follows:

• If at least one of the SLDSs and RLDSs is placed on DASD, the output data sets are closed and the
archive job terminates after processing any OLDS that terminates at a recovery point. Remaining OLDS
that might not have been processed are still in a state of ARCHIVE NEEDED.

• If all SLDSs and RLDSs are placed on tape, IMS forces end of volume for all SLDSs and RLDSs and the
archive job continues using the next volume for the SLDS and RLDS.

DBRC verifies the input OLDS. If there is an error in the OLDS specifications, the Log Archive utility
terminates with an error message.

494 IMS: System Utilities

SLDS input

The single SLDS used for input is the SLDS on DASD created in an IMS batch environment. Also, this
SLDS must have closed successfully. When DBRC=NO is specified in the EXEC parameter, tape SLDS input
is permitted. You can use the SLDS of a previous archive and archive it again; however, this is not an
intended use.

Dual SLDSs can be used as input. If an error is encountered in the primary SLDS, the Log Archive utility
switches to the secondary SLDS. If the record is found on the secondary SLDS, the archive job continues.
An error in a single SLDS or errors in the same block in dual SLDSs terminates the archive job. Run the Log
Recovery utility to recover the SLDS and rerun the Log Archive utility.

When the input is from a DASD SLDS created with DBRC present, the Log Archive utility will notify DBRC to
update the existing SLDS record with the new SLDS information. You must create the JCL for the archive
job of a batch SLDS.

Output

In addition to the SLDS, the optional RLDS, and the user data set produced as output, the Log Archive
utility also produces a listing in SYSPRINT. SYSPRINT contains the following:

• A listing of control statements
• A listing of checkpoint time stamp IDs
• A listing of descriptive messages
• A listing of the result of the archive

The following figure is an example of a SYSPRINT listing of control statements.

********LOG ARCHIVE UTILITY CONTROL STATEMENT********
SLDS -
 NOLOG(10,16,5F,67,69) FEOV(08000)
COPY DDNOUT1(DATASET1) -
 RECORD(OFFSET(5) FLDTYP(X) VALUE(16) FLDLEN(1) COND(E)) -
 RECORD(OFFSET(5) FLDTYP(X) VALUE(50) FLDLEN(1) COND(E)) -
 RECORD(OFFSET(5) FLDTYP(X) VALUE(51) FLDLEN(1) COND(E)) -
 RECORD(OFFSET(5) FLDTYP(X) VALUE(52) FLDLEN(1) COND(E))
EXIT NAME(UEXIT01)

The following figure is an example of a listing of checkpoint time stamp IDs.

 USER CHECKPOINT RECORD - yyyy.ddd hh:mm:ss.t CHKPT-id region-id prg-name (v1)(v2)
SYSTEM CHECKPOINT RECORD - yyyy.ddd hh:mm:ss.t chkpt-id (v1)(v2) CHECKPOINT XXX (RESTART TTT)

When checkpoint log records (X'18' and X'4001') are found, the SYSPRINT listing prints one of the
preceding output lines. Date, time, and checkpoint ID are shown for both. Region-ID and program name
are for X'18' records; checkpoint request type is for X'4001' records, where XXX is the type of checkpoint
requested in English. Also shown is the volume serial of the output primary SLDS volume (v1) and, if dual
output, the secondary SLDS volume (v2) to which the checkpoint is copied. Restart type is also given for
the first X'4001' record where TTT is the type of restart performed in English.

The following figure is an example of a SYSPRINT listing of descriptive messages.

*** END OF VOLUME FORCED ON SLDS. PRIMARY(volser) SECONDARY(volser) ***
*** WRITE ERROR ON SLDS|USER|RLDS ddname ***
*** OUT-OF-SPACE on SLDS|USER|RLDS ddname ***
*** NO RECORD FOUND FOR SLDS|USER|RLDS ddname ***

The following figure shows an example of a SYSPRINT listing of the result of the archive.

*** LOG ARCHIVE UTILITY (DFSUARC0) **hh:mm yy.ddd **
 COPIED LOG RECORDS

FROM DDNAME=ddname VOLSER=volser DDNAME=ddname VOLSER=volser

Chapter 21. Log Archive utility (DFSUARC0) 495

 (for primary input) (for secondary input)
 .
 . .
TO PRIMARY SLDS DSNAME=dsname
 VOLSER = volser volser volser
TO SECONDARY SLDS DSNAME=dsname
 VOLSER = volser volser volser

SLDS DOES NOT CONTAIN THE FOLLOWING LOG RECORDS:
 'xx' 'xx' 'xx' 'xx'

TO PRIMARY RLDS DSNAME=dsname
 VOLSER = volser volser volser
TO SECONDARY RLDS DSNAME=dsname
 VOLSER = volser volser volser

JCL specifications

The Log Archive utility runs as a z/OS batch job, and multiple log archive utility jobs can execute
concurrently. A job statement, an EXEC statement, and DD statements that define input and output are
required. When dual output is requested, the SLDS consists of primary and secondary data sets.

EXEC statement

Defines the utility to be run and optional execution parameters. Its format is:

//STEP EXEC PGM=DFSUARC0
 PARM= 'nnnn, DBRC=nnn, IMSPLEX=imsplex_name, DBRCGRP=xxx'

PARM=
Indicates the subsystem identifier and whether DBRC is specified.
nnnn

Indicates a 1- to 4-character IMS subsystem identifier and must be specified if the input data set
is an OLDS. This is the same value as the IMSID for the online IMS system that created the data in
the OLDS.

DBRC=YES|NO
DBRC=NO (or N) can be specified to explicitly declare that DBRC is not to be used for this
execution of this utility.

DBRC=YES (or Y) can be specified to explicitly declare that DBRC is to be used for the execution of
this utility.

If DBRC= is not specified, YES is the default.

IMSPLEX=imsplex_name
Indicates which IMSplex DBRC should join. IMSPLEX= is an optional parameter.

DBRCGRP=xxx
Specifies the DBRC group ID defined in the RECON data set used by the DBRC group.

DD statements

STEPLIB DD
Points to the program libraries that contains the Log Archive program and to any user exit routines.

DFSOLPnn DD (for primary OLDS)
DFSOLSnn DD (for secondary OLDS)

Describes the OLDS used for input. You can specify dual OLDSs. In the case of dual OLDSs, the
suffixes of the primary and secondary OLDS must match. The value of nn (the suffix) is 00 through 99
and must be the same ddname that was used when the log data was created by online execution. All
OLDSs used as input must have been used consecutively during an online execution.

If DBRC=Y, the OLDS DD statements can be specified in any sequence in the DD statements.

496 IMS: System Utilities

If DBRC=N, the OLDS DD statements must be specified in the sequence they were created, and dual
OLDS must be specified as a sequence of primary and secondary pairs.

You can specify between 2 and 99 read buffers for the DCB BUFNO keyword.

DFSSLDSP DD (for primary input SLDS)
DFSSLDSS DD (for secondary input SLDS)

Specifies the batch SLDS. Optionally, you can specify a dual SLDS for a batch SLDS. A SLDS and an
OLDS used for input are mutually exclusive. You can specify 2 through 99 read buffers.

DFSSLOGP DD (for primary output SLDS)
DFSSLOGS DD (for secondary output SLDS)

Defines the SLDS used for output. Its format will depend on the device type used. If the SLDS is on
DASD, you must allocate sufficient space to contain the log being archived. The SLDS block size can
be specified and can be different from the input data set block size. If not specified, the block size of
the input data set is used. The secondary SLDS is optional and specifies dual archiving. If the input is
a batch SLDS and the Log Archive utility is run with DBRC present, dual output can be created only if
dual SLDS records are already known to DBRC.

If dual SLDSs are being created, they can have different block sizes. However, if FEOV is specified, it
is ignored unless the block size of both data sets are equal and both are allocated to tape. If tape is
specified, it must have a standard label. You can specify 2 through 99 write buffers.

Restriction: Do not use the JCL parameter FREE=CLOSE on these DD statements. The data sets are
dynamically deallocated, and using FREE=CLOSE can produce unpredictable results.

ddname DD (for either RLDS or user output data set, or both)
Defines either a user data set or recovery log data set (RLDS) or both. If the data set is on DASD, you
must allocate sufficient space to contain the records being copied to it. The data set is created with
RECFM=VB. The block size can be specified and can be different from the block size of the input data
set, but it must be large enough to contain your longest record. If not specified, the block size of the
input data set is used. If dual data sets are being created, they can have different block sizes. You can
specify 2 through 99 write buffers.

SYSPRINT
Defines the output message data set.

SYSUDUMP
Defines the dump data set.

SYSIN DD
Specifies the control statements.

RECON1 DD
Defines the first DBRC (Database Recovery Control) RECON data set. This RECON1 data set must be
the same RECON1 data set used by the IMS control region.

RECON2 DD
Defines the second DBRC RECON data set. This RECON2 data set must be the same RECON2 data set
used by the IMS control region.

RECON3 DD
Defines the optional DBRC RECON data set used when an error is encountered in RECON1 or RECON2.
This RECON3 data set must be the same RECON3 data set used by the IMS control region.

Do not use these RECON data set ddnames if you are using dynamic allocation.

Utility control statements

All control statements are optional. Use the control statements when:

• Using user exit routines
• Creating an RLDS
• Placing certain records into a user data set

Chapter 21. Log Archive utility (DFSUARC0) 497

• Eliminating certain records from being copied to the SLDS
• Forcing duplicate tape output volumes

There are three types of control statements, and each statement consists of an operation code and
parameters. The rules for using the control statement are:

• Control statements can be placed in columns 1 to 72 in free format. Parameters can be in any sequence.
• Each operation code and parameter must be separated with a blank, a comma, or a comment.
• Multiple lines can be used for a control statement. Continuation characters (+ and -) can be placed

between columns 1 and 72. If (+) is used, the lines are concatenated without a blank. If (-) is used, the
lines are concatenated with a blank.

• The value of any parameter must be specified between single parentheses.

SLDS statement

An SLDS statement specifies log record types that are not written to the SLDS. It also specifies that
end-of-volume is forced for tape output volumes. If omitted, all log records are copied to the SLDS. Only
one SLDS control statement is allowed.

The format of the SLDS control statement is:

SLDS

NOLOG(

,

 n)

FEOV( nnnnn)

CMPRSNR(ALL
,

 dddddddd

)

NOLOG
Defines the log record types that are not to be copied to the SLDS. The value of a NOLOG
subparameter should be specified in hexadecimal, for example, SLDS NOLOG (19,1A,1B).

The SLDS must contain those records that might be needed for database recovery and for system
restart. The Log Archive utility issues an error message and terminates if a required record type is
specified to be omitted.

FEOV
Specifies duplicate output tape volumes. This parameter is only applicable in a dual tape SLDS
environment. It ensures that corresponding volumes in a multivolume data set contain the same
records (and consequently are interchangeable).

nnnnn indicates the number of blocks to be written to a tape SLDS. Each time the blocks are written, a
FEOV is issued for both the primary and secondary SLDSs. The block number is specified in 5 decimal
digits. If the block sizes of both SLDSs are not equal, the FEOV parameter is ignored.

CMPRSNR
Determines the disposition of the database update log records for nonrecoverable full-function
databases. Specifying CMPRSNR overrides the default behavior of copying the log records in to the
archive.
CMPRSNR(ALL)

Indicates that the log records are compressed. Compressing the records causes them to be
replaced by minimal size placeholder records.

498 IMS: System Utilities

CMPRSNR(dddddddd)
An 8-character string that indicates that the log records are compressed only if the database
name matches the dddddddd string.

COPY statement

The COPY statement is used to create an RLDS or a user data set during archive. The format for the COPY
statement is:

COPY DDNOUT1( nnnnnnnn)

DDNOUT2( nnnnnnnn)

A

DBRECOV

A

RECORD(OFFSET( aaa) FLDTYP (

X

C) VALUE( bbb) FLDLEN( ddd)

COND (
E

M

TY

TN

MTY

MTN

ETY

ETN

))

The following abbreviations can be used in place of the keywords in the COPY statement:

Keyword
Abbreviation

OFFSET
O

FLDTYP
T

VALUE
V

FLDLEN
L

COND
C

DDNOUT1
DDNOUT2

Identifies the ddnames of the data sets. DDNOUT2 only applies if dual copies are being created. The
DD statements must be included in the JCL. nnnnnnnn is a ddname value.

RECORD
Identifies the conditions for selecting a record to be written to the specified data set.
OFFSET(aaa)

Defines the beginning of the field to be tested in the record. The default is position one of the
record.

Chapter 21. Log Archive utility (DFSUARC0) 499

aaa is the value and can be in the range from 1 up to and including the length of the record under
test. Maximum value is 32767 bytes. No checking is performed to determine if the logical record
length is exceeded. The value specified in the OFFSET keyword is always expressed as relative to
byte 1.

FLDTYP(X)|(C)
Defines the type of data in the VALUE field. A value of X or C must be specified.

X defines the data to be treated as hexadecimal character pairs. The test data is packed, two bytes
into one, to form hexadecimal equivalents. X is the default.

C defines the data to be treated as EBCDIC.

VALUE(bbb)
Can be specified in hexadecimal if FLDTYP(X) is specified, or in EBCDIC if FLDTYP(C) is specified.
The value is specified between quotation marks in EBCDIC. The quotation mark notation is
required when the character string contains a separator of blank or comma. Any characters can be
specified within the quotation marks. (Double quotation marks within quotation marks represent a
single quotation mark.) If a minus sign is the last nonblank character, it is assumed that the value
is continued on the next line.

Restriction: The value of bbb cannot exceed 255 EBCDIC or 510 hexadecimal characters.

The length of this field is determined by the FLDLEN value and not by the number of "nonnull"
characters in this field.

FLDLEN(ddd)
Defines the number of characters to be used from the test field.

ddd represents the actual number of bytes to be used, not the number of characters specified in
VALUE. The acceptable range of values for this field is 1 to and including 255. The default is 1.

COND(x)
Defines the type of test and its relationship to other tests in the group. The default is COND(E). You
can specify COND(x) singularly or join multiple options together.
E

Marks the last (or only) element in a test series. Any record control statements appearing after
this form a new series of tests. This allows various tests to be performed on each record and
each test series can be used on different fields within the record.

M
Indicates this is a multifield test; more than one test is to be made on each input record. All
tests in this series must be satisfied before final output selection and processing of this record
can begin.

T
Causes the VALUE byte to be used as a "test under mask" value, instead of a compare field.
Only the first byte (two hexadecimal characters if FLDTYP(X)) of the VALUE field will be used.
If FLDTYP(C) is used, the hexadecimal equivalent of the EBCDIC character is the test value. If
this parameter is used, the FLDLEN keyword must not be specified and a default length of one
is assumed.

Y
Indicates that there must be a bit in the record test field for each corresponding bit of the test
byte for the "test under mask." This is equivalent to a "branch if ones" test.

N
Indicates that there must not be a bit in the record test field for any of the corresponding bits
of the test byte for the "test under mask." This is equivalent to a "branch if zeros" test.

MT
Defines a "test under mask" option with the properties of a multifield test. This parameter
must be used for a multifield test that starts with a "test under mask" value.

ET
Signifies that a multifield test series ends with a "test under mask" condition.

500 IMS: System Utilities

DBRECOV
Copies all log records needed for database recovery to the specified output data set. This output data
set is known to DBRC and is used by the GENJCL process in lieu of the created SLDS when creating
JCL for DB Recovery or Change Accumulation. This output data set is the recovery log data set (RLDS).
If there are no records needed for DB recovery, the RLDS is a null data set. In this case DBRC records
the DSNAME and volume serial number of the SLDS, in place of the RLDS DSNAME and volume serial
number, and uses the SLDS for GENJCL, instead of the null RLDS.

DDNOUT1 is a required parameter on a COPY control statement. You can specify as many RECORD
parameters as needed in a COPY control statement. If no RECORD parameter is specified, all log records
are copied to the specified data set.

On a given COPY statement, the RECORD parameter and the DBRECOV parameter are mutually exclusive.
You can specify multiple COPY control statements, but only one COPY statement with the DBRECOV
parameter is allowed.

Two COPY statements must not specify the same output data set.

EXIT statement

An EXIT statement specifies that a user exit routine is to be used.

The format of the EXIT statement is:

EXIT NAME( nnnnnnnn)

NAME(nnnnnnnn)
Specifies the member name of the user exit. The user exit routine is accessed with a LOAD from the
archive utility program; preferably binded into either JOBLIB or STEPLIB.

You can specify multiple EXIT control statements or multiple NAME parameters.

Return codes

The Log Archive utility provides the following return codes:

Code
Meaning

0
Archive processing completed successfully.

4
This return code is issued if one or both of the following events occur:

• Archive processing completed successfully, but not all OLDS were archived. A recovery point was
encountered and end of job was forced. Rerun the Log Archive utility for the remaining unarchived
OLDS. See SYSPRINT messages.

• An OLDS specified as input to the archive utility was already archived when this job ran. The
SYSPRINT messages identify the OLDS that were already archived.

8
Archive processing completed unsuccessfully. Messages DFS3263I or DFS3062I indicate the reason.

U3274
ABEND—DBRC internal failure. Message DFS3274I plus various DSPxxxxx messages indicate the
reason.

Chapter 21. Log Archive utility (DFSUARC0) 501

Examples of the DFSUARC0 utility
These examples show how to use the DFSUARC0 utility using the COPY control statement to create an
RLDS and FEOV to ensure consistency in the SLDS.

Example 1

The following example shows the JCL for the Log Archive utility using the COPY control statement to
create an RLDS:

//ARCHIVE JOB MSGCLASS=A,CLASS=A,MSGLEVEL=(1,1)
//*
//ARC1 EXEC PGM=DFSUARC0,PARM='SYSA'
//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR
/* COPY FROM 3 OLDS TO A SLDS */
/* RLDS AND A USER DATA SET ARE ALSO CREATED */
//DFSOLP00 DD DSN=OLP900,DISP=SHR,DCB=(BUFNO=20)
//DFSOLP01 DD DSN=OLP901,DISP=SHR,DCB=(BUFNO=20)
//DFSOLP02 DD DSN=OLP902,DISP=SHR
//DFSSLOGP DD DSN=SLDSP.D82001.N001,DISP=(,KEEP),
// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)
//RLDSDD1 DD DSN=RLDSP.D82001.N001,DISP=(,KEEP),
// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)
//USERDD1 DD DSN=USER.D82001.N001,DISP=(,KEEP),
// UNIT=3350,VOL=USER01,SPACE=(CYL,5)
//RECON1 DD DSN=RECON1,DISP=SHR
//RECON2 DD DSN=RECON2,DISP=SHR
//RECON3 DD DSN=RECON3,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSIN DD *
 COPY DDNOUT1 (RLDSDD1) DBRECOV
 /* THIS USER DATA SET CONTAINS */
 /* X'A5', X'A6', AND X'A7' LOG RECORDS */
 COPY DDNOUT1 (USERDD1) -
 RECORD (O(5) T(X) V(A5) L(1) C(E)) -
 RECORD (O(5) T(X) V(A6) L(1) C(E)) -
 RECORD (O(5) T(X) V(A7) L(1) C(E))
 EXIT NAME (UEXIT01)

Example 2

The following example shows the JCL for the Log Archive utility using FEOV to ensure consistency in the
SLDS.

//ARCHIVE2 JOB MSGCLASS=A,CLASS=A,MSGLEVEL=(1,1)
//*
//ARC2 EXEC PGM=DFSUARC0,PARM='SYSA'
//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR
//* COPY FROM 2 OLDS TO DUAL SLDS */
//DFSOLP02 DD DSN=OLP902,DISP=SHR
//DFSOLP00 DD DSN=OLP900,DISP=SHR
//DFSOLS00 DD DSN=OLS900,DISP=SHR
//DFSOLS02 DD DSN=OLS902,DISP=SHR
//DFSSLOGP DD DSN=SLDSP.D82001.N001,DISP=(,KEEP),
// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)
//DFSSLOGS DD DSN=SLDSS.D82001.N001,DISP=(,KEEP),
// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)
//RECON1 DD DSN=RECON1,DISP=SHR
//RECON2 DD DSN=RECON2,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSIN DD *
 SLDS FEOV (08000)
 /* THE SLDS ARE FORCED EOV AFTER 8000 LOG BLOCKS */
 /* ARE WRITTEN. */
/*

502 IMS: System Utilities

Chapter 22. Log Merge utility (DFSLTMG0)
Use the Log Merge utility (DFSLTMG0) to produce a data set by merging the system log data sets (SLDS)
from two or more IMS systems. The resulting data set is used as input to the Log Transaction Analysis
utility.

The Log Merge utility identifies log records based on a system clock value in the record, then merges them
in ascending order.

The Log Merge utility can merge up to nine IMS system logs. Each log is the output of a uniquely identified
IMS system running during the same time span. The order of input to the Log Merge utility is LOG01,
LOG02, LOG03, ..., LOG09.

DFSLTMG0 is placed in IMS.SDFSRESL during IMS system definition.

Subsections:

• “Restrictions” on page 503
• “Prerequisites” on page 503
• “Requirements” on page 503
• “Recommendations” on page 503
• “Input and output” on page 503
• “JCL specifications” on page 505

Restrictions

The Log Merge utility cannot use Common Queue Server (CQS) logs as input because CQS log records
have a different format from IMS log records.

Prerequisites

Currently, no prerequisites are documented for the DFSLTMG0 utility.

Requirements

Currently, no requirements are documented for the DFSLTMG0 utility.

Recommendations

Currently, no recommendations are documented for the DFSLTMG0 utility.

Input and output

The input to the Log Merge utility consists of logs from up to nine separate IMS systems and control
statements. A log from any single system can consist of a series of logs concatenated in time sequence.
Log records must be from IMS systems that are running on processors with a synchronized external or
internal clock to ensure that compatible system clock values between log records are produced. The
system clock value, called the time of day (TOD) clock, is an 8–byte field stored at the end of each log
record.

DFSLTMG0 produces as output a merged data set of log records made between the times specified with
START and STOP control statements. This time is the Universal Time Coordinated (UTC).

© Copyright IBM Corp. 1974, 2020 503

Restriction: Do not use merged output as input to the Database Recovery utility.

Controlling the log merge

To control the log output:

• Choose the required systems that take part in the logical link paths you are examining.
• Choose logs from the required systems you want to examine when using the Log Transaction Analysis

utility.
• Coordinate the series of input logs for each system so they cover a similar time span.
• Specify a start time and stop time for Log Merge utility control statements if you need to sample the

cross-system processing for a particular time interval.

You can give both start date (Julian) and time of day, or just time of day. These times apply to the first
system log specified by the LOG01 DD statement. Other log activity is collected if it falls between the
initial and final events present on the first log.

• Specify the control statement with the keyword listed under Log Record Selection to merge only certain
types of log records.

• Specify MSG to select log records that are suitable for the transaction analysis step. (ALL records is the
default, but this includes the DL/I activity for several systems in the utility input and this can cause
extended processing time.)

Control statement format

START
Used to specify a start time. This statement must be present.

Table 27. START statement format

Position Length Value

1 5 START

6 1 blank

7 Variable yyddd,hhmmsstt[{+|-}HHMM] where any trailing
digits of hhmmsstt can be omitted and the optional
time-zone information following hhmmsstt contains:
+ or -

Specifies the sign of the time-zone offset from
UTC (Universal Coordinated Time).

HH
Specifies the number of whole hours of offset
from UTC. HH can be a numeric value from 0 to
14.

MM
Specifies minutes of offset. MM can be 00, 15,
30, 45, or blank.

You only need to specify the optional time-zone
information if the offset to UTC on the day entered
is different from the current offset, for example due
to a daylight saving time change.

STOP
You must specify a stop time, which must be relative to the time field in LOG01.

504 IMS: System Utilities

Table 28. STOP statement format

Position Length Value

1 4 STOP

5 1 blank

6 Variable yyddd,hhmmsstt[{+|-}HHMM] where any trailing
digits of hhmmsstt can be omitted and the
optional time-zone information following hhmmsstt
contains:
+ or -

Specifies the sign of the time-zone offset from
UTC.

HH
Specifies the number of whole hours of offset
from UTC. HH can be a numeric value from 0 to
14.

MM
Specifies minutes of offset. MM can be 00, 15,
30, 45, or blank.

You only need to specify the optional time-zone
information if the offset to UTC on the day entered is
different from the current offset, for example due to
a daylight saving time change.

Log Record Selection
Use this control statement to merge only certain types of log records. The format is free-form, starting
in column 1. Any of the keywords in the following list can be used, in any combination desired, with
the following syntax restrictions:

• BLANK, following a keyword terminates processing of this control statement.
• COMMA, following a keyword continues processing of this control statement.

Keyword
Meaning

ALL
All log record types are selected (this is the default if no control statements are present).

MSG
Selects all log records necessary for the Log Transaction Analysis utility (DFSILTA0); X'01', X'03',
X'06', X'07', X'08', X'3x' series, X'40', X'42', X'47', X'48'.

3X
Selects all log records within the range; X'30' to X'3F'.

XX
Where XX is the log record type selected.

JCL specifications

EXEC statement

Executes the Log Merge utility DFSLTMG0.

//STEP0 EXEC PGM=DFSLTMG0

DD statements

Chapter 22. Log Merge utility (DFSLTMG0) 505

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required action modules.

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

PRINT DD
Indicates the SYSPRINT data set used for control statements and error messages.

//PRINT DD SYSOUT=A

LOG01 DD
Describes the first input log data set.

//LOG01 DD DSNAME=IMS.LOGA,DISP=OLD,
// VOL=SER=XXXXXX,UNIT=TAPE

LOG02 DD
Describes the second input log data set.

//LOG02 DD DSN=IMS.LOGB,DISP=OLD,
// VOL=SER=XXXXXX,UNIT=TAPE

LOGOUT DD
Describes the output data set.

//LOGOUT DD DSN=IMS.LOGOUT,DISP=(,PASS),
// VOL=SER=YYYYYY,UNIT=TAPE,
// DCB=(RECFM=VBS,LRECL=6000,BLKSIZE=6008)

SYSIN DD
Describes the control statement data set.

//SYSIN DD *
START 75332,0830
STOP 75332,1030
MSG

506 IMS: System Utilities

Chapter 23. Log Recovery utility (DFSULTR0)
Use the Log Recovery utility (DFSULTR0) to produce a usable log data set from a log data set that contains
read errors or that was not properly terminated.

The Log Recovery utility can recover both OLDSs and batch or online SLDSs.

This utility has four modes of operation:

CLS
Closes an OLDS from the write-ahead data set (WADS) or from the next OLDS.

CLS mode processes only OLDSs. To close SLDSs, use DUP mode. In CLS mode, a user-written Logger
user exit (LOGWRT) is invoked during the execution of the Log Recovery utility if the exit routine is
present. The Logger user exit (LOGWRT) is called once with an initialization call, once with a write call
for each log buffer of data that is written, and once with a termination call.

Restriction: The Log Recovery utility does not support calling multiple LOGWRT user exits.

DUP
Processes either SLDSs or OLDSs. DUP mode creates an interim log containing error ID records, or a
closed batch SLDS containing an end-of-file mark.

To safely close an SLDS, run DUP mode, then REP mode. Or, run DUP mode with a non-zero ERRC and
the log sequence number (LSN) returned when the original error occurred. The system might issue
message DFS616I, which includes the LSN, at the point of failure. If DFS616I is not issued, you must
run DUP mode followed by REP mode to safely close an SLDS.

Attention: Do not run DUP mode without an LSN to close SLDSs in a production environment,
unless you also run REP mode. Using DUP mode without also using an LSN or REP mode can
result in loss of data.

REP
Reads the interim log, replaces the error ID records with user-specified data, and creates a new log.

PSB
Permits the generation of an "active PSBs" report from a mix of OLDS and SLDS.

The valid data set attributes for the input log data set are:

• RECFM=VB
• BLKSIZE greater than 8
• LRECL greater than 4 and less than or equal to BLKSIZE minus 4

The Log Recovery utility detects the following types of errors:

• I/O errors while reading the input log data set
• Errors in the log record or log block length
• Sequence errors in the log record, the log block, or the OLDS write time stamp for OLDS recovery only
• Log record sequence errors for SLDS recovery only

Subsections:

• “Restrictions” on page 508
• “Prerequisites” on page 508
• “Requirements” on page 508
• “Recommendations” on page 508
• “Output” on page 510
• “JCL specifications” on page 514
• “Utility control statements” on page 516

© Copyright IBM Corp. 1974, 2020 507

• “Return codes” on page 519

Restrictions

The following restriction apply to the DFSULTR0 utility.

• If single logging is used and DBRC is active, only single logs can be presented as input to the Log
Recovery utility and only single logs can be created as output from DUP and REP mode. Otherwise,
DBRC abends result.

• If dual logging is used and DBRC is active, only dual logs can be presented as input to the Log Recovery
utility (except for PSB mode, which only accepts single log input). Otherwise, incorrect DBRC RECON
updates result. If dual logs are presented as input, dual logs must be created as output from DUP and
REP mode. You must correctly specify primary and secondary DSNAMEs on the DD statements.

Prerequisites

Before running the DFSULTR0 utility you must make sure that certain prerequisite tasks or conditions are
met.

You must close OLDS and SLDS before they can be used as input to any utility.

OLDS recovery

An OLDS must be closed before it can be archived or used as input to any utility. The OLDS in use is closed
automatically during normal shutdown or during an emergency restart. It must be closed using the Log
Recovery utility if an emergency restart cannot close it, or when the OLDS is not closed because a write
error is detected.

A stop time of zeros in the RECON indicates that the Log Recovery utility needs to be run in CLS mode. It
should be run before DUP if possible; however, it can be run after REP.

SLDS recovery

An SLDS must be closed before it can be used as input to any utilities or IMS restart. The Log Recovery
utility closes an SLDS created by a batch IMS system.

Requirements

Currently, no requirements are documented for the DFSULTR0 utility.

Recommendations

Currently, no recommendations are documented for the DFSULTR0 utility.

Input

The Log Recovery utility uses both single and dual logs for input. The utility accepts only input log data
sets that are created by the same release of IMS as the utility release level.

Single log input

In CLS mode, the utility:

508 IMS: System Utilities

1. Reads the input log.
2. Produces a usable log if no errors are encountered.
3. Produces a report of active PSBs when the WADS is used as input. Because only the input log is used

to generate the report, it may not be complete. PSB mode can be used to produce a complete report.

In DUP mode, the utility:

1. Reads the input log.
2. Creates a usable log if no errors are encountered.
3. Creates an interim log and an error listing if errors are encountered.

Using the interim log produced by DUP mode, and in REP mode, the utility:

1. Reads the interim log.
2. Copies good blocks to the output log.
3. Replaces error blocks with good ones based on user-specified control statements.
4. Produces a usable log.

In PSB mode, the utility:

1. Reads the input log.
2. Produces a report of active PSBs.

Dual log input

In the following discussion, the terms "primary" and "secondary" are used to identify the two logs of a
dual log data set.

In CLS mode, the utility:

1. Reads the input logs.
2. Produces a usable log if no errors are encountered at the same point on both OLDS. If an error is

encountered on one OLDS but not the other, an error listing with an error block ID of NONE is produced
and the utility continues processing. In this case, the OLDS pair produced may be usable as input to
an IMS restart or archive (which also tolerate errors on only one of a pair of OLDS), but DUP mode
processing is needed to remove the errors.

3. Produces a report of active PSBs when the WADS is used as input. Because only the input log is used
to generate the report, it may not be complete. PSB mode can be used to produce a complete report.

In DUP mode, the utility:

1. Reads the primary log and copies the contents to a new system log. If it encounters an error block,
DUP mode positions a read operation on the secondary log where the log error was encountered.
DUP mode then reads the secondary log and copies the contents to the same new system log. If an
error is now encountered on the secondary log (but not at the same position), DUP mode positions
a read operation on the primary log where the error was encountered. This process continues until a
complete new system log is produced. The following figure illustrates DUP mode and REP mode using
dual logging.

Chapter 23. Log Recovery utility (DFSULTR0) 509

Figure 36. DUP mode and REP mode when dual logging is used
2. Copies both error blocks onto the interim log and uniquely identifies the error blocks when it

encounters an error on both logs in the same position. The interim log data set contains all valid
log blocks, error blocks, and error ID records.

3. Produces a character and hexadecimal listing of the error blocks to be used as a guide for creating the
user-specified control statements required by REP mode.

Using dual logs for input, REP mode:

1. Reads the interim log created by DUP mode
2. Copies good blocks
3. Replaces error blocks with good ones based on control statements
4. Produces a usable log

If dual system log input is used and errors at the same position on both input logs are not encountered,
the log produced by DUP mode is correct and REP mode is not required.

Output

In addition to the usable log, active PSB report, and the interim log, the Log Recovery utility also produces
the following:

• Interim Log Error ID Record
• Error Block Listing (SYSPRINT)
• REP mode verification messages
• Dump of data record

Interim log error ID record

510 IMS: System Utilities

The following figure illustrates the error ID record on the interim log produced from dual log input. In this
example, BLK2 of both the primary and secondary logs has errors. On the interim log, the first error ID is
for BLK2B and the second error ID is for BLK2A. During REP mode, BLK2A or BLK2B is replaced with a
good block based on control statements. This example also shows the valid log after REP mode execution.

Figure 37. Error ID records on an interim log

Error block listing (SYSPRINT)

The error block listing contains the errors found during execution of CLS mode and DUP mode. It also
contains verification messages resulting from REP mode followed by a dump of the data record.

The following error listing is for both CLS mode and DUP mode.

pppppppppppppppppppp ON dddddddd BLOCK# bbbbbbb ** ERROR-ID=xnnnnn **
ssssssssssssssssssss--gghhiijj

The fields of the error block listing are:

pppppppppppppppppppp
Is a message prefix which identifies the type of error. The following types of errors are identified:
PERMANENT I/O ERROR

The SYNAD exit for the input log was entered with an error other than a data check or a length
error or consecutive data checks occurred.

DATA CHECK
The SYNAD exit for the input log was entered with a data check error.

END-OF-DATA
The EODAD exit for the input log was entered. This is not an error but rather an indication that
processing for this input data set has ended. If the swap to the alternate log is successful,
processing will continue on the alternate log.

BLOCK LENGTH ERROR
The length in the block descriptor word (BDW) is not valid.

Chapter 23. Log Recovery utility (DFSULTR0) 511

BLOCK TOD ERROR
The time-of-day (TOD) in the OLDS block suffix is not in ascending order.

BLOCK SEQ ERROR
The block sequence number in the OLDS block suffix is not in ascending order.

RECORD LENGTH ERROR
The length in a record RDW is not valid.

RECORD SEQ ERROR
The record sequence number is not in ascending order.

dddddddd
Is the ddname of the data set where the error is encountered. The following list shows possible
ddnames:
IEFRDER

The primary input SLDS.
IEFRDER2

The secondary input SLDS.
DFSOLP

The primary input OLDS.
DFSOLS

The secondary input OLDS.
bbbbbbb

Is the relative block number (in hexadecimal) of the block in error. Blocks are counted beginning with
the first block of the first input volume, starting with 0000001.

x
Is either an A or a B and identifies whether the error occurred on the current log or the alternate
log. When processing begins, the primary log is the current log and the secondary log is the alternate
log. If processing swaps to the alternate because of an error, these roles reverse and processing
continues. Errors on the alternate log are always reported before errors on the current log.

nnnnn
Is a sequential number which identifies the error.

xnnnnn is 'NONE ' when CLS mode processing on dual OLDS encounters an error on one OLDS but not
on the other at some point. The reason for the error listing under these conditions is to alert you to
a situation where you might want to use DUP mode to fix the errors even though the OLDS may be
usable for restart or archive without doing so.

ssssssssssssssssssss
Is a message suffix which further identifies the error. This suffix can be:
ORIGINAL BDW X'ssss'

The original block length in the BDW is not correct and has been changed. The variable ssss is the
original value expressed in hexadecimal notation.

RCD AT OFFST X'oooo'
A log record has an invalid length in the record descriptor word (RDW). The variable oooo is the
offset (relative to zero), in hexadecimal, from the beginning of the block to the RDW in error.

ffffffff TO tttttttt
A block sequence, block TOD, or record sequence error has occurred. The variable ffffffff is the
last good value (or assumed good value). The variable tttttttt is the value in error. After a sequence
error occurs, the block sequence number, the block TOD, and the first record sequence number in
the next block are assumed to be good, and thus begin a new sequence on which the remaining
records will be checked. The Log Recovery utility reports breaks in sequences of good data. You
must analyze the reports and determine what is valid data and what is invalid data.

gg
Is either blank or NS. This is the first of several special suffix values. NS applies only with dual SLDS
input. The two input logs do not start with the same block. It is not possible to swap to the 'alternate'

512 IMS: System Utilities

log (or write to the corresponding output data set) until the first block common to both input logs is
read.

hh
Is either blank or CE. This is the second of the special suffix values. CE indicates that this is a
consecutive error. A second through nth error has occurred without reading an intervening good block.

ii
Is either blank or SA. This is the third of the special suffix values. SA indicates that it is not possible
to swap to the alternate log because the alternate log has already either reached END-OF-DATA or
encountered a PERMANENT I/O ERROR.

jj
Is either blank or SO. This is the last of the special suffix values. SO indicates that during a swap
to the alternate log has either reached END-OF-DATA or encountered a PERMANENT I/O ERROR. In
this case processing would normally return to the original current log. However, the current log has
already reached END-OF-DATA or encountered a PERMANENT I/O ERROR. Therefore it is not possible
to return to the current log.

REP mode verification messages

During REP mode processing, a valid replacement of data on the interim log data set causes the following
message to be printed:

DATA REPLACED IN RECORD Axxxxx ... replacement data text...

Where xxxxx is the error ID.

An error in the control statement format causes the following message to be printed:

ERROR IN CONTROL STATEMENT FORMAT ... text of control statement...

Dump of data record

The dump of the data record following the verification messages is a hexadecimal representation of the
record. The hexadecimal representation is printed in four lines per print line of the data record.

• The first line consists of the position within the block in error (starting with 1), and the EBCDIC
representation of the bytes.

• The second line indicates the first byte of each log record, using an asterisk.
• The third line consists of the zone half representation.
• The fourth line consists of the digit half representation.

The following figure shows the format of the printed output.

000001 q RRE b // EBCDIC representation
 * // first byte of a log record
 2000020049 00DDC40809 // high-order hexadecimal digit
 00000D0008 029954024F // low-order hexadecimal digit

Active region messages

When WADS is specified in CLS mode, the active PSBs at the time of the system failure are printed. A line
is printed for each PSB active at the time of failure. If backout is required for the PSB, database names are
listed under the PSB line in the output. The following figure shows the format of this output.

***************** RECOVERY REQUIREMENTS **********************

PSB NAME RECOVERY TOKEN DATABASE DSID ACTION Required
PPPPPPPPP

Chapter 23. Log Recovery utility (DFSULTR0) 513

 EEEEEEEEHHHHHHHHHHHHHHHH

 DDDDDDDD
NNN MMMMMMMM
 SSSSSSSS

END OF REPORT

The fields in the report have the following meanings:

PPPPPPPP
The PSB name.

EEEEEEEE
The EBCDIC portion of the recovery token.

HHHHHHHHHHHHHHHH
The hexadecimal portion of the recovery token for eight bytes (16 characters).

DDDDDDDD
The database name.

SSSSSSSS
The database name status. If no database names are in the DDDDDDDD field, one of the following
messages appears:

No database names found
DBNAME list may be incomplete

NNN
The Fast Path data set ID number that indicates the area data set.

MMMMMMMM
The message issued. One of the following messages is issued:

Backout is required
Redo is required
Databases are in doubt

The Active-Region report is also produced in PSB mode.

JCL specifications

The following JCL is required to run DFSULTR0.

EXEC statement

Invokes the Log Recovery utility (DFSULTR0). The format must be:

//STEP EXEC PGM=DFSULTR0,PARM='IMSID=iiiiiiii,
// DBRC=ddd, IMSPLEX=imsplex_name, DBRCGRP=xxx'

IMSID=iiiiiiii
Indicates the IMSID of the on-line system that created the input OLDS.

Requirement: IMSID= is required for CLS mode. IMSID= is required for DUP mode with OLDS input
and DBRC=YES (specified or defaulted).

IMSID= is ignored if it is specified but not needed.

DBRC=YES|NO
Indicates that the DBRC= default is not established by the IMSCTRL macro during IMS system
definition.

DBRC=NO (or N) can be specified to explicitly declare that DBRC is not to be used for this execution of
this utility.

514 IMS: System Utilities

DBRC=YES (or Y) can be specified to explicitly declare that DBRC is to be used for this execution of
this utility. DBRC=YES is required (and the default) for CLS mode. DBRC=YES is optional for DUP and
REP modes.

Recommendation: If DUP mode is run with DBRC active, REP mode should also be run with DBRC
active.

IMSPLEX=imsplex_name
Indicates which IMSplex DBRC should join. IMSPLEX= is an optional parameter.

DBRCGRP=xxx
Specifies the DBRC group ID defined in the RECON data set used by the DBRC group.

To allow a parameter to default, the complete parameter (including the keyword) must be omitted from
the PARM field.

If no input parameters are specified, the default will be IMSID=(not specified) and DBRC=YES.

DD statements

The DD statements are only used if they are required for a given execution of the Log Recovery utility.

Restrictions:

• Specify OLDS input using the DFSOLP (and DFSOLS) DD statement.
• Specify SLDS input using the IEFRDER (and IEFRDER2) DD statement.
• Do not specify DFSOLP (and DFSOLS) DD statements in an execution that also contains an IEFRDER

(and IEFRDER2) DD statement.
• Do not specify DFSWADSn DD statements in an execution that also contains a DFSNOLP (and DFSNOLS)

DD statement.
• Do not specify DFSWADSn, DFSNOLP (and DFSNOLS), or any combination in an execution that also

contains an IEFRDER (and IEFRDER2) DD statement.
• Do not specify DFSPOLP (and DFSPOLS) DD statements in an execution that also contains a DFSNOLP

(and DFSNOLS) DD statement.
• Do not specify DFSWADSn DD statements in an execution that also contains the keyword NOWADS.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the Log Recovery utility's modules.

SYSPRINT DD
Defines the system messages data set.

SYSUDUMP DD
Defines the dump data set.

SYSUDUMP statements are not included in the examples at the end of this utility.

DFSOLP DD
Defines the primary, or only, input OLDS.

DFSOLS DD
Defines the secondary input OLDS. Include this statement only when dual OLDSs are used.

DFSWADSn DD
Defines the WADS data set, where n can be 0 through 9. All WADSs used during online execution
can be specified, but only those in use by the online system at the time of failure are required. This
DD statement is required when closing an OLDS from a WADS. If no WADS were in use by the online
system, no DFSWADSn DD statements are used.

DFSNOLP DD
Defines the primary, or only, next-OLDS. The next-OLDS is the OLDS written by the online IMS system
immediately after the OLDS having a write error.

Chapter 23. Log Recovery utility (DFSULTR0) 515

DFSNOLS DD
Defines the secondary next-OLDS. Include this statement only when dual OLDSs are used.

DFSPOLP DD
Defines the primary OLDS that the IMS online subsystem used before the specified OLDS which is
being closed. If there is no prior OLDS, this DD statement should not be used.

DFSPOLS DD
Defines the secondary OLDS that the IMS online subsystem used before the specified OLDS that is
being closed. Include this statement only when dual prior OLDS are used.

IEFRDER DD
Defines the primary, or only, input SLDS. All input SLDS logs for DUP mode should have the same
block size. IEFRDER is used to specify the concatenation of OLDS and SLDS logs for PSB mode. When
specifying a concatenation of logs, the names of the logs must be provided in ascending order.

IEFRDER2 DD
Defines the secondary input SLDS. Include this statement only when dual logs are used. Omit this
statement if you do not need the data sets. Do not use DD DUMMY or DSNAME=NULLFILE.

NEWRDER DD
Defines the primary, or only, output data set for the new or interim log.

NEWRDER2 DD
Defines the secondary output data set for the new or interim log. If DBRC is active and dual logs are
used as input, this statement is required. If DBRC is not active, this statement is not required. Do not
use DD DUMMY or DSNAME=NULLFILE.

RECON1 DD
Defines the first DBRC RECON data set. This statement is not required if dynamic allocation is used.

RECON2 DD
Defines the second DBRC RECON data set. This statement is not required if dynamic allocation is
used.

RECON3 DD
Defines the optional DBRC RECON data set used when an error is encountered in RECON1 or RECON2.
This RECON data set must be the same RECON data set used by the control region. This statement is
not required if dynamic allocation is used.

SYSIN DD
Defines the control data set containing the log recovery input control statements.

Utility control statements
Utility control statements for the Log Recovery utility differ depending on whether the CLS mode, DUP
mode, REP mode, or PSB mode is used.

CLS mode–Close an OLDS from the WADS or next OLDS

The format of this control statement is:

CLS

NOWADS LSN= xxxxxxxxxxxxxxxx

CLS
Indicates CLS mode.

Requirement: DBRC is required for CLS mode.

When closing from the WADS, if a prior OLDS is available, the suffix from the last block written to the
prior OLDS (the block sequence number is passed to DBRC at OLDS switch and stored in the RECON)
is obtained. The block suffix is used to establish a basis for sequence checking the OLDS being closed.

516 IMS: System Utilities

When closing from the WADS, either EOF or encountering the first error causes an attempt to close
the OLDS from the WADS. If a sequence error is found, CLS mode fails. A listing containing the block at
the first error is produced.

When closing from the next-OLDS, the sequence number of the first block of the next-OLDS (BSN) is
determined. The input OLDS is closed when block BSN-1 is found on the input OLDS. If either EOF or
an error is encountered before block BSN-1 is found, CLS mode fails.

NOWADS
Suppresses the use of WADS when closing the OLDS. When this keyword is used, the DFSWADSn DD
card must be removed from the JCL. Otherwise, user abend U3271 will result.

Attention: Use NOWADS only when WADS is unavailable. Do not use this keyword if possible;
log records can be lost, data integrity can be compromised, and recovery might not be
complete.

LSN=xxxxxxxxxxxxxxxx
An optional parameter used in DUP or CLS mode processing to specify a log sequence number that
must be encountered on the input log. If the utility would otherwise succeed (return code of 0 or 4)
but the last log sequence number encountered is less than xxxxxxxx, the utility ends with a return
code of 8, DBRC is not notified of a successful completion, and message DFS3271I is issued. The
value of xxxxxxxxxxxxxxxx must be 16 hexadecimal characters.

DUP mode–Recover an OLDS or SLDS (create an interim log)

The format of this control statement is:

DUP ERRC= nnnnn
LSN= xxxxxxxxxxxxxxxx

DUP
Indicates DUP mode.

ERRC=nnnnn
Is used to terminate DUP mode after a predefined number of I/O or sequence errors are detected on
the input log data set. nnnnn specifies the number of errors (00000 through 99999). If no value is
specified or the keyword is omitted, the default is 99999. This field must contain 5 digits, with leading
zeros.

If an nnnnn of 00000 is specified, DUP mode is terminated and the interim log is closed when the
first error is encountered. The error ID record and error blocks are not written on the interim log. REP
mode is not required.

ERRC=00000 is used to close an SLDS without having to run REP mode. A listing can be produced that
contains the block at the first error. When the first error is encountered, additional checks are made to
ensure that no newer data exists beyond the first error.

Attention: Use caution when running DUP ERRC=00000 in a production environment. Because
these checks are not foolproof, only specify ERRC=00000 if you clearly understand the risks
involved: closing the log in the middle of good data, for example, can destroy good data. It is
safer to run with a value of nnnnn greater than 00000 and to also run REP mode.

If an ERRC value greater than zero is specified, DUP mode is terminated when either EOF is
encountered or ERRC is reached (ERRC is tested before each block read). If errors are found, error
ID records and error blocks are written on the interim log and REP mode is required. A listing that
contains the errors found is produced.

Specify an ERRC value greater than zero when recovering an OLDS or SLDS.

LSN=xxxxxxxxxxxxxxxx
An optional parameter used in DUP or CLS mode processing to specify a log sequence number that
must be encountered on the input log. If the utility would otherwise succeed (return code of 0 or 4)
but the last log sequence number encountered is less than xxxxxxxx, the utility ends with a return

Chapter 23. Log Recovery utility (DFSULTR0) 517

code of 8, DBRC is not notified of a successful completion, and message DFS3271I is issued. The
value of xxxxxxxxxxxxxxxx must be 16 hexadecimal characters.

REP mode–Recover an OLDS or SLDS (create a new log)

This mode reads the interim log created by DUP mode, copies good blocks, and replaces error blocks
with good ones based on the REP control statements. (Only the primary input data set is read during REP
mode). The output log data set is a new OLDS or SLDS log. At least one control statement is required but
any number can be included.

The format of the control statement is:

REP SEQ= xnnnn POS= ppppp DAT=  dd

SKIP

CLOSE

REP
Indicates REP mode.

SEQ=xnnnnn
Indicates the identification number of the block to be changed. The number is provided in the DUP
mode listing output.

POS=pppppp
Indicates the starting position, relative to 1, of the data being replaced.
DAT=dd

dd is 2 to 50 hexadecimal characters (0 through 9, A through F) representing the replacement
data.

SKIP
Indicates the output log will not contain this block of data.

CLOSE
Indicates the output log will be closed immediately before this error block.

The REP mode CLOSE option should not be confused with the process of closing an OLDS from the WADS
or next-OLDS using CLS mode.

The following rules apply to use of the REP statement:

• At least one control statement must be supplied.
• Unless the log is closed at a prior block, each error block identified in the DUP mode output must have

at least one control statement supplied for it.
• When multiple REP statements are provided, the identification numbers (SEQ=) must be in ascending

block number sequence.
• If a block is identified as being in error even though the data is good, a control statement must be

supplied for the block. Replace the first 4 bytes of the good block with the existing data. This is usually
the case for the first block following an I/O error.

• If dual logs are used in DUP mode, supply a statement for only one of the two blocks in error, either
Annnnn or Bnnnnn. The block not selected is ignored and is not written to the output log.

• If the log being recovered is an OLDS which has not been properly closed from either the WADS or next
OLDS, the Log Recovery utility must be rerun in CLS mode using the output of REP mode as input.

PSB mode—Print report of active PSBs

518 IMS: System Utilities

PSB mode is used when a previous execution of this utility issued the following message:

DFS3272I X'47' LOG RECORD NOT FOUND.
ACTIVE PSB MESSAGES NOT GENERATED.

To get active region messages, the Log Recovery utility must be rerun in PSB mode. PSB mode can be
used at any time to determine which PSBs are active.

PSB mode should not be run with an OLDS that is open. An incomplete listing results.

The format of this control statement is:

PSB

PSB
Indicates PSB mode.

Return codes

The Log Recovery utility provides the following return codes:

Code
Meaning

0
Successful completion. If running CLS mode to terminate OLDS with WADS, ignore any error
messages.

4
The report may be incomplete. This occurs when Log Recovery does not find certain log records.

If Log Recovery did not find a complete set of 47 records, message DFS3272I is issued, the
report output will contain ACTIVE PSB MESSAGES NOT GENERATED, and no other report output is
generated. This is shown in the following message:

DFS3272I X'47' LOG RECORD NOT FOUND.
ACTIVE PSB MESSAGES NOT GENERATED.

If Log Recovery did not find a 5607 record for a unit of recovery of the PSB, the DB status for that unit
of recovery contains DBNAME LIST MAY BE INCOMPLETE.

In either case, you must include earlier log data so that the needed records are included. If you were
running CLS mode, you must run PSB mode to include any logs in addition to the last OLDS.

8
Unsuccessful completion. If the problem is due to a mismatch of the log release level and the utility
release level, message DFS3062I also accompanies this error code.

These return codes can be tested by the COND= parameter on the EXEC statement of a later job step.

Related reference
LOGWRT: Logger user exit (DFSFLGX0 and other LOGWRT exits) (Exit Routines)

Examples of the DFSULTR0 utility
These examples show how to use the DFSULTR0 utility to recover OLDS or SLDS in various modes.

Example 1

Chapter 23. Log Recovery utility (DFSULTR0) 519

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.err/ims_dfsflgx0.htm#ims_dfsflgx0

The following example shows how to close an OLDS from the WADS using CLS mode. The input data set is
closed in place. The DBRC RECON data set is updated with the "close time."

//EXAMPL01 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0,PARM='IMSID=iiiiiiii'
//*
//* NOTE - IMSID= is required
//* NOTE - Defaults are DBRC=YES
//* NOTE - DBRC=NO is not valid.
//*
//SYSPRINT DD SYSOUT=A
//DFSOLP DD Primary OLDS to be closed
//DFSOLS DD Secondary OLDS to be closed
//DFSPOLP DD Primary prior OLDS
//DFSPOLS DD Secondary prior OLDS
//DFSWADSn DD WADS used by on-line system
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
CLS

If no WADS were in use when the input OLDS or prior OLDS was created, remove the DFSWADSn DD
statement and add the NOWADS keyword to the control statement.

If no prior OLDS are available, remove the DFSPOLP (and DFSPOLS) DD statement.

Example 2

The following example shows how to close an OLDS from the next-OLDS using CLS mode. The input data
set is closed in place. The DBRC RECON data set is updated and the flag is turned off.

//EXAMPL02 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0,PARM='IMSID=iiiiiiii'
//*
//* NOTE - IMSID= is required
//* NOTE - Defaults are DBRC=YES
//* NOTE - DBRC=NO is not valid
//*
//SYSPRINT DD SYSOUT=A
//DFSOLP DD OLDS to be closed from next-OLDS
//DFSNOLP DD next-OLDS
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
CLS

Example 3

The following example shows how to use DUP mode as the first of two steps in the recovery of an OLDS.
The input data set is copied to an interim data set. Interim log records are created in the DBRC RECON.

//EXAMPL03 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0,PARM='IMSID=iiiiiiii'
//*
//* NOTE - IMSID= is required
//* NOTE - Defaults are DBRC=YES
//*
//SYSPRINT DD SYSOUT=A
//DFSOLP DD Primary OLDS to be recovered
//DFSOLS DD Secondary OLDS to be recovered
//NEWRDER DD Primary interim data set
//NEWRDER2 DD Secondary interim data set
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
DUP ERRC=nnnnn

If an ERRC value greater than zero is specified (the default is 99999), error blocks are written to the
output data set, and a listing is produced for the blocks in error. REP mode is required to correct the

520 IMS: System Utilities

errors and to remove error blocks. If no errors are found and the execution is successful, REP mode is not
required.

When ERRC=00000 is specified, NEWRDER (and NEWRDER2) is closed when EOF or the first error is
encountered on DFSOLP (and DFSOLS). If the execution is successful, REP mode is not required. If the
execution is unsuccessful, DUP mode should be rerun with an ERRC value greater than zero and REP
mode is required.

If the log being recovered is an OLDS which has not been properly closed from either the WADS or next
OLDS, the Log Recovery utility must be rerun in CLS mode using the output of REP mode as input (or the
output of DUP mode if no errors were detected).

Example 4

The following example shows how to use REP mode as the second of two steps in the recovery of an
OLDS. The input data set is copied to a new OLDS. During the copy process, error blocks are removed
and the blocks in error are corrected as directed by the REP control statements. The interim data set
information in the DBRC RECON is deleted. The original OLDS information in the DBRC RECON is replaced
by the output data set information.

//EXAMPL05 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0,PARM='IMSID=iiiiiiii'
//*
//* NOTE - IMSID= is required
//* NOTE - Defaults are DBRC=YES
//*
//SYSPRINT DD SYSOUT=A
//DFSOLP DD Primary interim data set
//DFSOLS DD Secondary interim data set
//NEWRDER DD Primary recovered OLDS
//NEWRDER2 DD Secondary recovered OLDS
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
REP SEQ=A00001 POS=000018 DAT=83 (EXAMPLE ONLY)
REP SEQ=A00002 SKIP
REP SEQ=A00003 CLOSE

If the log being recovered is an OLDS which has not been properly closed from either the WADS or next
OLDS, the Log Recovery utility must be rerun in CLS mode using the output of REP mode as input.

Example 5

The following example shows how to use DUP mode as the first of two steps in the recovery of an SLDS.
The input data set is copied to an interim data set. Interim log records are created in the DBRC RECON.

//EXAMPL04 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0
//* (PARM NOT REQUIRED - SEE NOTES BELOW)
//*
//* NOTE - IMSID= is ignored
//* NOTE - Defaults are DBRC=YES
//*
//SYSPRINT DD SYSOUT=A
//IEFRDER DD Primary SLDS to be recovered
//IEFRDER2 DD Secondary SLDS to be recovered
//NEWRDER DD Primary interim data set
//NEWRDER2 DD Secondary interim data set
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
DUP ERRC=nnnnn

If an ERRC value greater than zero is specified (the default is 99999), error blocks are written to the
output data set and a listing is produced for the blocks in error. REP mode is required to correct the
errors and to remove error blocks. If no errors are found and the execution is successful, REP mode is not
required.

Chapter 23. Log Recovery utility (DFSULTR0) 521

Example 6

The following example shows how to use REP mode as the second of two steps in the recovery of an
SLDS. The input data set is copied to a new SLDS. During the copy process, error blocks are removed
and the blocks in error are corrected as directed by the REP control statements. The interim data set
information in the DBRC RECON is deleted. The original SLDS information in the DBRC RECON is replaced
by the output data set information.

//EXAMPL06 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0
//* (PARM NOT REQUIRED - SEE NOTES BELOW)
//*
//* NOTE - IMSID= is ignored
//* NOTE - Defaults are DBRC=YES
//*
//SYSPRINT DD SYSOUT=A
//IEFRDER DD Primary interim data set
//IEFRDER2 DD Secondary interim data set
//NEWRDER DD Primary recovered SLDS
//NEWRDER2 DD Secondary recovered SLDS
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
REP SEQ=A00001 POS=000018 DAT=83 (EXAMPLE ONLY)
REP SEQ=A00002 SKIP
REP SEQ=A00003 CLOSE

Example 7

The following example shows how to generate a listing of "active PSBs" after having received message
DFS3272I X'47' LOG RECORD NOT FOUND. ACTIVE PSB MESSAGES NOT GENERATED. PSB mode is used.

//EXAMPL07 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0
//*
//* NOTE - IMSID= is ignored
//* NOTE - DBRC=YES is not valid
//* NOTE - Defaults are DBRC=NO
//*
//SYSPRINT DD SYSOUT=A
//*
//* NOTE - The first log data set in the IEFRDER DD statement should
be the latest log data set containing the X'47' record.
//*
//IEFRDER DD next or prior OLDS or SLDS
// DD next or prior OLDS or SLDS
// DD next or prior OLDS or SLDS
⋮
// DD latest OLDS or SLDS
//*
//*
//SYSIN DD *
PSB

The input logs must be concatenated in the sequence in which they were created, and there must not be
any overlap or gap in log record content.

Example 8

The following example shows how to generate a listing of "active PSBs" from a concatenation of input logs
(OLDS and SLDS). PSB mode is used.

//EXAMPL08 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0
//*
//* NOTE - IMSID= is ignored
//* NOTE - DBRC=YES is invalid
//* NOTE - Defaults are DBRC=NO
//*
//SYSPRINT DD SYSOUT=A

522 IMS: System Utilities

//IEFRDR DD OLDS or SLDS
⋮
 DD OLDS or SLDS
⋮
// DD OLDS or SLDS
//* (see note below)
//SYSIN DD *
PSB

Requirement: The input logs must be concatenated in the sequence in which they were created. If OLDS
and SLDS are mixed, there must not be any overlap in log record content.

Example 9

The following example shows how to close an SLDS created by IMS batch, using DUP mode and
ERRC=00000. The input data set is copied to, and closed in, the output data set. The input SLDS
information in the DBRC RECON is replaced by the output data set information.

//EXAMPL09 JOB
//*
//DFSULTR0 EXEC PGM=DFSULTR0
//* (PARM NOT REQUIRED - SEE NOTES BELOW)
//*
//* NOTE - IMSID= is ignored
//* NOTE - Defaults are DBRC=YES
//*
//SYSPRINT DD SYSOUT=A
//IEFRDER DD Primary SLDS to be closed
//IEFRDER2 DD Secondary SLDS to be closed
//NEWRDER DD Primary output SLDS
//NEWRDER2 DD Secondary output SLDS
//RECONn DD DBRC RECON data set(s)
//* (can be dynamically allocated)
//SYSIN DD *
DUP ERRC=00000

When ERRC=00000 is specified, NEWRDER (and NEWRDER2) is closed when EOF or the first error is
encountered on IEFRDER (and IEFRDER2). If the execution is successful, REP mode is not required. If
the execution is unsuccessful, DUP mode should be rerun with an ERRC value greater than zero and REP
mode is required.

If the input SLDS (IEFRDER, IEFRDER2) is a multiple volume tape data set, only the last volume needs
to be specified on the DD statement. In addition, the data set name (DSN) on the output DD statement
(NEWRDER, NEWRDER2) should be the same as the input. If the execution is successful, only the volume
information is replaced in the DBRC RECON. ERRC=00000 is required.

Chapter 23. Log Recovery utility (DFSULTR0) 523

524 IMS: System Utilities

Part 5. Service utilities
Use the service utilities to perform IMS maintenance and operational functions.

Each topic introduces how the utility works, defines requirements and restrictions for its use, and
provides examples.

© Copyright IBM Corp. 1974, 2020 525

526 IMS: System Utilities

Chapter 24. Batch SPOC utility (CSLUSPOC)
Use the Batch SPOC (Single Point of Control) utility to submit IMS operator commands to members of the
IMSplex.

In the Batch SPOC utility, the program parameters define the IMSplex environment and the input to the
utility is IMS operator commands. Output from the utility is command responses written to the SYSPRINT
file.

Subsections:

• “Restrictions” on page 527
• “Prerequisites” on page 527
• “Requirements” on page 527
• “Recommendations” on page 527
• “Input and output” on page 527
• “JCL specifications” on page 528
• “Return codes” on page 529

Restrictions

You must use commands that are supported by the OM API with the Batch SPOC utility. These commands
are all type-2 commands and a subset of type-1 commands only. For more on the supported commands,
see Commands and keywords supported by the OM API (Commands).

For SYSIN input with a fixed length record without a sequence number, do not use all numeric parameters
in the last 8 bytes of the record because the parameter will be considered a sequenced number and will
be truncated.

For SYSIN input with a variable length record, a sequence number is not allowed.

Prerequisites

Currently, no prerequisites are documented for the Batch SPOC utility.

Requirements

The Batch SPOC utility only works in an IMSplex environment.

Recommendations

Currently, no recommendations are documented for the Batch SPOC utility.

Input and output

The input for the Batch SPOC utility is the SYSIN DD statement. An example of a SYSIN DD statement is:

//SYSIN DD *
 QRY IMSPLEX SHOW(MEMBER,TYPE,STATUS)

You provide the SYSIN file that contains the commands that you want to execute. The commands are
executed serially. When one command completes, the next command is executed until all records from

© Copyright IBM Corp. 1974, 2020 527

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.cr/imscmdsintro/ims_cmdsuppomapi.htm#ims_cr1cmdsuppomapi

the SYSIN file are processed. Continuation of the SYSIN control statements is specified by a plus sign ('+')
or a minus sign ('-') as the last non-blank character of the line. A plus sign removes the leading spaces
from the next line; a minus sign keeps leading spaces.

Comments can be included within the SYSIN file. Use the following structure for comments:

• On a comment line, the comment begins with an asterisk (*) in column 1 and no command is on the
same line. For example:

* this is a comment

When a comment is on its own line, the Batch SPOC utility does not send the comment line to OM for
processing.

• On the same line as the command, the comment starts with a "/*" and ends with a "*/". For example:

/* this is a comment */

A comment in the following position is supported:

QRY IMSPLEX SHOW(ALL) /* This is a comment */

Comments in the following positions are not supported:

– A comment is in front of a command on the same line. For example:

/* This is a comment */ QRY IMSPLEX SHOW(ALL)

– A comment is in the middle of a command on the same line. For example:

QRY /* This is a comment */ IMSPLEX SHOW(ALL)

– Comments span over multiple lines in a block. For example:

/* This is comment line number 1,
this is comment line number 2 */

When a comment is after a command on the same line, the Batch SPOC utility sends the entire input
string to the Operations Manager (OM) and the comments are parsed by IMS.

The output of the Batch SPOC utility is formatted command responses located in the SYSPRINT file.

If more than one command is issued, the responses appear in the same order as the commands appear in
the SYSIN file. The default record length is 133. The command response is formatted in a similar format
to the TSO SPOC display. If the records are too long, they wrap to the next line. You can specify DCB
information in the JCL or in the data set allocation to allow longer records in the SYSPRINT file.

JCL specifications

The batch SPOC utility is invoked using standard JCL statements.

EXEC statement

The format of the EXEC statement is:

//SPOC EXEC PGM=CSLUSPOC,PARM=('IMSPLEX=plex,ROUTE=sysid,WAIT=05:00,F=option')

Parameter keywords

IMSPLEX
Required parameter that specifies the 1- to 5-character suffix of the IMSplex name.

528 IMS: System Utilities

F
Optional parameter that specifies the print format of the SPOC output. You can specify one of the
following values:
WRAP

Wraps to the next line as needed. This is the default.
BYCOL

Lines of data are grouped together by the column.
BYRSC

Lines of data are grouped together by the resource.
ROUTE

Optional parameter that specifies the SYSIDs of IMSplex members that are to execute the command.
If ROUTE is not specified, all members of the IMSplex will execute the command. If more than
one member is specified, enclose the list in parenthesis and separate the names with commas. For
example:

// PARM=('IMSPLEX=PLEX1,WAIT=30,ROUTE=(IMSZ,IMSA)')

If ROUTE=* is specified, the command is routed to all registered command processing clients in the
IMSplex. If ROUTE=% is specified, the command is routed to only one command processing client
in the IMSplex that is registered for the command and that has MASTER capability. The Operations
Manager chooses the command processing client.

WAIT
Optional parameter that specifies the wait time for individual commands. The wait value is in minutes
and seconds (MMM:SS) or just seconds (SSSSS). OM will return a single response as soon as a
response is received from all of the members of the IMSplex. If the interval expires, OM will return any
responses from IMSplex members, plus an indication that some did not reply. The Batch SPOC utility
will wait for each command to complete before issuing the next command. The default wait value is
five minutes (5:00). The WAIT time applies to every command in the SYSIN file. The user can specify
a wait time of zero seconds; in this case, the batch SPOC issues a command but does not wait for the
response.

Return codes

The following return codes are produced:

Code
Meaning

0
The utility completed successfully.

4
Warning messages were issued. Check the output file.

8
A problem was encountered. Check the output file. One or more IMS operator commands failed.
Rerun the utility with commands as needed.

12
Internal error. Batch SPOC utility could not process the command or command response. The error
message CSLM0142E that is returned has additional information.

Chapter 24. Batch SPOC utility (CSLUSPOC) 529

Examples of the Batch SPOC utility
These examples show how to use the Batch SPOC utility to create formatted command responses.

JCL example

The following example shows a simple invocation of a sample batch job with multiple commands but the
user may call the utility using other valid JCL.

//SPOCJOB JOB ,
// MSGCLASS=H,NOTIFY=&SYSUID,USER=&SYSUID//*
//SPOC EXEC PGM=CSLUSPOC,
// PARM=('IMSPLEX=PLEX1,ROUTE=IMS3,WAIT=30,F=WRAP')
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 QRY IMSPLEX SHOW(JOB,TYPE, +
 STATUS)

 QRY TRAN NAME(INV1*) SHOW(ALL) /* inventory appl */
/*EOF

Output example

If SYSPRINT is a SYSOUT file, the System Display and Search Facility (SDSF) can be used to view batch job
output. The following example shows a sample batch job output.

==
Log for. . : QRY IMSPLEX SHOW(JOB,TYPE,STATUS)

IMSplex : PLEX1
Routing : IMS3
Start time. . . . : 2010.132 15:36:28.11
Stop time : 2010.132 15:36:29.17
Return code . . . : 00000000
Reason code . . . : 00000000
Command master. . : SYS3

IMSplex MbrName CC Member JobName Type Status
CSLPLEX1 OM1OM 0 USRT002 USRT002 AOP ACTIVE
CSLPLEX1 OM1OM 0 OM1OM OM1 OM READY,ACTIVE
CSLPLEX1 OM1OM 0 RM1RM RM1 RM READY,ACTIVE
CSLPLEX1 OM1OM 0 SCI1SC SCI1 SCI READY,ACTIVE
CSLPLEX1 OM1OM 0 IMS3 IMS3 IMS READY,ACTIVE
CSLPLEX1 OM1OM 0 SYS1 SYS1 IMS READY,ACTIVE
===

Output example with no wait time specified

If no wait time, WAIT=0, is specified, the command response is not available and is not printed. The
SYSPRINT file only has short summary information for each command. The following example shows a
sample batch job output with no response.

==
Log for. . : QRY IMSPLEX SHOW(JOB,TYPE,STATUS)

IMSplex : PLEX1
Routing :
Start time. . . . : 2010.075 15:36:28.11
==

530 IMS: System Utilities

Chapter 25. Database Recovery Control utility
(DSPURX00)

Use the Database Recovery Control utility to issue commands that build and maintain the RECON data
set, add information to the RECON data set, and generate jobs for utilities.

Commands submitted to the Database Recovery Control utility have the same general format. Each
command is composed of a verb and a modifier (separated by a period) and then followed by parameters.

Additionally, the Database Recovery Control utility is used to upgrade a RECON data set from an earlier,
supported IMS version using the CHANGE.RECON UPGRADE command.

Subsections:

• “Restrictions” on page 531
• “Prerequisites” on page 531
• “Requirements” on page 531
• “Recommendations” on page 531
• “Input and output” on page 531
• “JCL specifications” on page 532

Restrictions

Currently, no restrictions are documented for the DSPURX00 utility.

Prerequisites

Currently, no prerequisites are documented for the DSPURX00 utility.

Requirements

Currently, no requirements are documented for the DSPURX00 utility.

Recommendations

Currently, no recommendations are documented for the DSPURX00 utility.

Input and output
The following figure shows the input and output requirements for the Database Recovery Control utility.
Notes that describe the input and output in more detail follow the figure.

© Copyright IBM Corp. 1974, 2020 531

Figure 38. Database Recovery Control utility input and output

Notes to the figure:

1. The DBRC command (input to the Database Recovery Control utility).
2. The RECON data set (input to the Database Recovery Control utility).
3. The PDS, which contains the JCL and control statements for the utility that DBRC uses to generate a

job (input to the Database Recovery Control utility).
4. The data set that contains the database descriptions for the databases that are under the control of

DBRC (occasional input to the Database Recovery Control utility). If the IMS management of ACBs is
enabled, the database descriptions are retrieved from the IMS catalog instead of the DBDLIB data set.

5. Jobs created by GENJCL commands (output from the Database Recovery Control utility).
6. The RECON data set, which might be updated by the utility (output from the Database Recovery

Control utility).
7. One or more of the following (output from the Database Recovery Control utility):

• A listing of the input commands.
• Informational messages associated with their execution or diagnostic messages explaining any

failures and return codes.
• A listing of each job that was created in the case of GENJCL commands.

JCL specifications
The Database Recovery Control utility runs as a standard z/OS job.

EXEC statement

Indicates the program to be executed.

532 IMS: System Utilities

You can specify three optional parameters, IMSPLEX, DBRCGRP, and READONLY, in the EXEC statement.
If you specify those parameters, it must use the following format:

EXEC PGM=DSPURX00

,PARM=

IMSPLEX=  plexname

,
1

DBRCGRP=  xxx

,
1

READONLY

Notes:
1 If you specify two or more optional parameters, they must be separated by a comma.

IMSPLEX
Specifies which IMSplex the DBRC should join.

The IMSPLEX parameter can be specified on all job steps that use DBRC.

DBRCGRP
Specifies the DBRC group ID defined in the RECON data set used by the DBRC group.

READONLY
Specifies that the user has read only authority. Any attempt at updating the statement while in
READONLY mode results in an error.

DD statements

STEPLIB
Points to IMS.SDFSRESL, which contains the IMS nucleus and the required action modules.

SYSPRINT
Defines the destination of DBRC diagnostic messages and the listing output. The destination can be a
tape or DASD data set, a printer, or it can be routed through the output stream (SYSOUT).

RECON
DD statements for RECON1, RECON2, and RECON3 are omitted so that the RECON data set is
allocated dynamically.

IMS
In IMS systems that use ACB, DBD, and PSB libraries, defines the IMS DBDLIB data set. When the IMS
management of ACBs is enabled, the IMS DD statement is ignored.

In an IMS system that uses ACB, DBD, and PSB libraries, the following commands require the IMS DD
statement:

• INIT.PART
• INIT.DBDS
• NOTIFY.REORG
• If you are initializing a HALDB,INIT.DB
• If you are changing a DBDS ddname or area name, CHANGE.DBDS
• If you are changing the KEYSTRNG value of a HALDB partition, CHANGE.PART

When the IMS management of ACBs is enabled, the preceding commands retrieve database
definitions from the IMS catalog that is either registered in the RECON data set or that is specified on
the command itself.

JCLPDS, or the DD name you supply with the JCLPDS parameter
Defines the PDS containing skeletal JCL members. It is required only for the GENJCL commands.

JCLOUT, or the DD name you supply with the JCLOUT parameter
Defines the data set which is to receive generated JCL. It is required only for the GENJCL commands.

Chapter 25. Database Recovery Control utility (DSPURX00) 533

SYSIN
Defines the source of input commands. SYSIN can be a tape or DASD data set, a card reader, or it can
be routed through the input stream (DD * or DD DATA.)

Related concepts
Data set naming conventions (System Administration)

Examples of the DSPURX00 utility
You can initialize the RECON data set and register one database with two DBDSs.

Inputs and outputs of the Database Recovery Control utility

The following figure is a sample job that initializes the RECON data set and registers one database with
two DBDSs.

 //INITRCON JOB
 //INIT04 EXEC PGM=DSPURX00
 //STEPLIB DD DSN=IMS.SDFSRESL
 //SYSPRINT DD SYSOUT=A
 //*
 //IMS DD DSN=IMS.DBDLIB
 //JCLPDS DD DSN=IMS.JCLPDS
 //JCLOUT DD DSN=IMS.JCLOUT
 //SYSIN DD *
 INIT.RECON SSID(IMS3)
 INIT.DB DBD(DBDESDS1) SHARELVL(2)
 INIT.DBDS DBD(DBDESDS1) DDN(DDNESDSA) GENMAX(3) -
 REUSE DSN(IMS.DBDESDS1.DDNESDSA.DSN) -
 ICJCL(MYIC) RECOVJCL(MYRECOV) -
 INIT.IC DBD(DBDESDS1) DDN(DDNESDSA) -
 ICDSN(IMS.*.ICDSN1)
 INIT.IC DBD(DBDESDS1) DDN(DDNESDSA) -
 ICDSN(IMS.*.ICDSN2) ICDSN2(IMS.*.ICDSN2)
 INIT.IC DBD(DBDESDS1) DDN(DDNESDSA) -
 ICDSN(IMS.*.ICDSN3)
 //*
 INIT.DBDS DBD(DBDESDS1) DDN(DDNESDSB) GENMAX(4) -
 NOREUSE DSN(IMS.DBDESDS1.DDNESDSB.DSN)
 //*
 INIT.CAGRP GRPNAME(CAGRP1) GRPMAX(2) REUSE -
 GRPMEM((DBDESDS1,DDNESDSA),(DBDESDS1,DDNESDSB))
 INIT.CA GRPNAME(CAGRP1) CADSN(IMS.*.CADSN1) -
 VOLLIST(CAVOL1,CAVOL2,CAVOL3) FILESEQ(4)
 INIT.CA GRPNAME(CAGRP1) CADSN(IMS.*.CADSN2) -
 VOLLIST(CAVOL4)
 /*

Invoking the utility using entry point DSPURXRT
You can use entry point DSPURXRT to specify alternate ddnames for the SYSPRINT, SYSIN, IMS, RECON1,
RECON2, and RECON3 data sets.

Use different ddnames if your calling program already uses these ddnames and you want the Database
Recovery Control utility to use different data sets.

If there is no RECON1 DD statement, the RECON data set is dynamically allocated. Also, substitution is
not allowed for the JCLOUT and JCLPDS DD statements.

Unless stated otherwise, programs that invoke DBRC do not need to pass to DBRC any parameters
specified on the EXEC statement. DBRC locates the parameter list passed by z/OS, so the invoking
program need not alter this parameter list.

Entry point DSPURXRT must be called in 31-bit mode. DBRC executes in 31-bit mode and returns to the
caller in 31-bit mode with the return code set in register 15. Up to two parameters can be passed on the
CALL:

534 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/dbrc_admin/ims_dbrc_dsnameconvenss.htm#ims_dbrc_dsnameconvenss

• The first parameter specifies the address of an option that can be specified in the PARM parameter
of the EXEC statement. The only option supported by the DSPURXRT entry point is READONLY, which
specifies whether or not the application needs read only access to the DBRC information.

• The second parameter specifies the address of a list of alternate ddnames for standard data sets that
are used during DSPURXRT entry point processing. If standard ddnames are to be used, the second
parameter points to either a halfword of binary zeros or is omitted.

Entry point DSPURXRT is invoked by your program through the ATTACH, LINK, or LOAD and CALL macro
instructions. Before issuing the invoking macro, the program initializes the appropriate registers and
operand list contents. The register contents follow standard linkage conventions:

• Register 1 contains the address of the argument list.
• Register 13 contains the address of a save area.
• Register 14 contains the address of the return point.
• Register 15 contains the address of the entry point DSPURXRT.

The argument list that is pointed to by register 1 consists of up to two pointers to parameters. In the
last word in the list, the high order bit is on, indicating that it is the last word. The first word is the
address of the options passed to entry point DSPURXRT. The option list consists of a halfword containing
the total length of the option list, including this halfword. If no option is to be passed, this length is
zero. The IMSPLEX= and DBRCGRP= options are supported only as parameters specified on an EXEC JCL
statement.

Figure 39. Registers and operand list contents needed to invoke the Database Recovery Control utility

In the figure, the second word is the address of the ddname list. The ddname is left justified and padded
on the right with blanks if necessary.

The ddname names are:

• A halfword containing the total length of the ddname list, including this halfword.
• A reserved halfword.
• An eight-byte field containing the ddname to be used in place of the SYSIN data set, or eight bytes of

blanks (X'40') if SYSIN is not to be substituted.
• An eight-byte field containing the ddname to be used in place of the SYSPRINT data set, or eight bytes

of blanks (X'40') if SYSPRINT is not to be substituted.

Chapter 25. Database Recovery Control utility (DSPURX00) 535

• An eight-byte field containing the ddname to be used in place of the IMS data set, or eight bytes of
blanks (X'40') if IMS is not to be substituted.

• An eight-byte field containing the ddname to be used in place of the RECON1 data set, or eight bytes of
blanks (X'40') if RECON1 is not to be substituted.

• An eight-byte field containing the ddname to be used in place of the RECON2 data set, or eight bytes of
blanks (X'40') if RECON2 is not to be substituted.

• An eight-byte field containing the ddname to be used in place of the RECON3 data set, or eight bytes of
blanks (X'40') if RECON3 is not to be substituted.

Related reference
z/OS: MVS ATTACH macro
z/OS: MVS CALL macro
z/OS: MVS LINK macro
z/OS: MVS LOAD macro

536 IMS: System Utilities

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa700/iea3a7_ATTACH_and_ATTACHX_____Create_a_new_task.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa700/call7.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa900/linkm.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa900/load.htm

Chapter 26. Dynamic SVC utility (DFSUSVC0)
Use the Dynamic Supervisor Call (SVC) utility to install an updated version of the IMS Type 2 SVC or DBRC
Type 4 SVC without requiring an IPL of the z/OS operating system by changing the z/OS SVC table to point
to a new copy of the SVC module.

Subsections:

• “Restrictions” on page 537
• “Prerequisites” on page 537
• “Requirements” on page 537
• “Recommendations” on page 538
• “Input and output” on page 538
• “JCL specifications” on page 538
• “Return codes” on page 539

Restrictions

The following restrictions apply to the Dynamic SVC utility:

• No IMS image (control region, batch, or utility) that uses the IMS Type 2 SVC can be active while
attempting to update the Type 2 SVC module. The same restriction does not apply to the DBRC Type 4
SVC module.

Prerequisites

The following prerequisites apply to the Dynamic SVC utility:

• The IMS.SDFSRESL must reflect the correct SVC number to be replaced. You can introduce an error
by pointing to the wrong library where a different SVC number (or even non-IMS SVC number) can be
associated with this library.

To specify the SVC numbers so that the numbers are contained in the IMS.SDFSRESL for the DFSUSVC0
utility, you must use the DFSIDEF0 module. To specify a type 2 SVC number for the DFSUSVC0 utility,
specify DFSIDEF TYPE=PARM,SVC2=xxx on the DFSIDEF macro of the DFSIDEF0 module, where xxx
is the type 2 SVC number. To specify a type 4 SVC number for the DFSUSVC0 utility, specify DFSIDEF
TYPE=PARM,SVC4=yyy on the DFSIDEF macro of the DFSIDEF0 module, where yyy is the type 4 SVC
number.

Warning: Check with your system administrator before using this utility.

Requirements

The following requirements apply to the Dynamic SVC utility:

• The JCL must contain a DFSRESLB DD statement that references an IMS.SDFSRESL.
• The updated SVC module (either IMS Type 2 SVC, DBRC Type 4 SVC, or both) must be in an

IMS.SDFSRESL specified on the DFSRESLB DD statement.
• The IMS.SDFSRESL that contains the SVC numbers and the new SVC modules must be an APF-

authorized library (standard IMS installation).
• The utility program must reside in an APF-authorized library (usually the IMS.SDFSRESL, but this is not

a requirement).

© Copyright IBM Corp. 1974, 2020 537

• All IMS SVCs must already be defined to z/OS.
• If you use the Dynamic SVC utility to install an updated version of an SVC, you must still add the IMS

type 2 SVC module to the z/OS nucleus and add the type 4 SVC module to either SYS1.LPALIB or to
an MLPA library. Otherwise, an IPL of z/OS regresses the IMS system to use the old version of the SVC
module. In this case, you would need to reinstall the new version of the IMS SVC module by using the
Dynamic SVC utility.

Recommendations

Currently, no recommendations are documented for the DFSUSVC0 utility.

Input and output

The input to this utility is either the updated IMS Type 2 SVC module, the updated DBRC Type 4 SVC
module, or both. The updated SVC modules must reside in the library that is pointed to by the DFSRESLB
DD statement.

The utility determines which SVCs to update and dynamically changes the z/OS SVC table to point to the
new SVC modules.

JCL specifications

The Dynamic SVC utility is executed as a standard z/OS job. You must supply the following:

• A JOB statement
• An EXEC statement
• DD statements that define inputs

EXEC statement

This utility runs as a z/OS job.

The EXEC statement must be in one of the following forms:

• //STEP001 EXEC PGM=DFSUSVC0 or
• //STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2)' or
• //STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(4)' or
• //STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2,4)'

The EXEC statement allows you to specify whether the IMS Type 2 SVC module, the DBRC Type 4 SVC
module, or both are to be updated. When SVCTYPE=(2) is specified, the IMS Type 2 SVC module is
updated. When SVCTYPE=(4) is specified, the DBRC Type 4 SVC is updated. When SVCTYPE=(2,4) is
specified, both the IMS Type 2 SVC and the DBRC Type 4 SVC module are updated. If a value is not
specified for the SVCTYPE= parameter, the IMS Type 2 SVC module is updated by default.

DD statements

STEPLIB DD
Points to an authorized library that contains the actual DFSUSVC0 utility. The authorized library should
be in your IMS.SDFSRESL).

//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,DISP=SHR

538 IMS: System Utilities

DFSRESLB DD
Points to an authorized library that contains the updated SVC modules and the IMS Type 2 and DBRC
Type 4 SVC numbers.

//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,DISP=SHR

Return codes

The following return codes are produced:

Code
Meaning

0
Dynamic installation was successful. All specified SVC routines were successfully updated.

8
The installation of at least one of the specified SVC routines failed.

Related tasks
Installing the type 2 SVC module (System Administration)

Examples of the DFSUSVC0 utility
These examples show how to use the DFSUSVC0 utility to replace the IMS Type 2 SVC and the DBRC Type
4 SVC.

The following figures show the JCL needed to replace the IMS Type 2 SVC and the DBRC Type 4 SVC.

Example for replacing IMS type 2 SVC

//SVCINIT JOB MSGLEVEL=1,TIME=1440
//STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2)'
//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,
// DISP=SHR
//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,
// DISP=SHR

Example for replacing DBRC type 4 SVC

//SVCINIT JOB MSGLEVEL=1,TIME=1440
//STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(4)'
//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,
// DISP=SHR
//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,
// DISP=SHR

Example for replacing both SVC modules

//SVCINIT JOB MSGLEVEL=1,TIME=1440
//STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2,4)'
//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,
// DISP=SHR
//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,
// DISP=SHR

Chapter 26. Dynamic SVC utility (DFSUSVC0) 539

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/system_admin/ims_svc_installtyp2.htm#ims_svc_installtyp2

540 IMS: System Utilities

Chapter 27. Global Online Change utility (DFSUOLC0)
Use the Global Online Change utility to initialize, recreate, or unlock the OLCSTAT data set.

To use the Global Online Change utility to initialize OLCSTAT data sets, you must first define either
MDBS=A or MDBS=B, even for an IMS that does not define the MODBLKS data sets. For an IMSplex to be
enabled for global online change, the Global Online Change utility must be used to initialize the OLCSTAT
before the first IMS in the IMSplex cold starts the first time. The Global Online Change utility can be used
to recreate the OLCSTAT data set after an error that renders the OLCSTAT data set unusable.

The Global Online Change commands, INITIATE OLC PHASE(PREPARE), followed by INITIATE OLC
PHASE(COMMIT), cause the inactive library to become the active library.

The OLCSTAT data set contains the global online change status, which includes the modify id, the active
online change libraries, a lock field, the last online change, and a list of IMS systems that are current with
the online change libraries. When an IFP region is running, OLC commit stops because of existing active
route code. Therefore, all IFP regions must be terminated before commit.

The Online Change Copy utility supports an OLCSTAT DD statement, to identify the global online change
status data set name. The OLCSTAT data set is comparable to the MODSTAT data set used by local Online
Change.

Attention: Use the recreate and unlock functions with extreme caution. Use the unlock function
only if a series of errors has left the OLCSTAT data set locked and no online change is in progress. If
you inadvertently destroy valid OLCSTAT data set contents, global online change and initialization
of additional IMS systems fail until the OLCSTAT data set is re-initialized.

Establish an OLCSTAT data set recovery procedure to deal with the loss of the OLCSTAT data set. After
every successful global online change, record the following data:

• The modify id
• The active online change library suffixes
• The list of IMS systems that are current with the online change libraries

If the OLCSTAT data set is destroyed, run the initialize function of the Global Online Change utility with the
recorded data to re-initialize the OLCSTAT data set.

The DFS3499 message, which identifies the current values of the online change libraries in the OLCSTAT
data set, follows the DFS994 checkpoint message. The DFS3410 message at initialization also identifies
the current online change libraries from the OLCSTAT data set.

DFSUOLC0 can also be used to update the IMS version in the OLCSTAT data set header. When you
upgrade to a new version of IMS that is higher than the previous level, the IMS version in the OLCSTAT
header will be automatically updated during IMS cold start. However, this automatic update will not be
completed if you fall back to a lower IMS level. In this case, the Global Online Change utility must be run
to update the IMS version in the OLCSTAT header to the lower IMS level.

If you use the UNL function to unlock the OLCSTAT data set, and all of the IMSs failed during a global
online change, you will need to start IMS. IMS will start because the OLCSTAT data set is no longer locked.

If you use the UNL function to unlock the OLCSTAT data set after the global online change command
master failed during online change while holding the OLCSTAT data set lock, the next global online change
command to issue depends upon the state of the online change.

• If the global online change passed the commit 1 phase where the OLCSTAT data set has been updated,
the online change is committed and the only command that can be issued is another INIT OLC
PHASE(COMMIT) command to complete the commit by cleaning up.

• If the global online change failed before commit phase 1 where the OLCSTAT data set is updated,
the global online change is not committed. Commit can be attempted again with an INIT OLC
PHASE(COMMIT) command, or the global online change can be aborted with a TERMINATE OLC
command.

© Copyright IBM Corp. 1974, 2020 541

To see the state of the global online change, issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS)
command to see the state of all the IMSs participating in the global online change. For more information,
see Handling errors for global online change commands (System Administration).

Subsections:

• “Restrictions” on page 542
• “Prerequisites” on page 542
• “Requirements” on page 542
• “Recommendations” on page 542
• “JCL specifications” on page 542

Restrictions

Currently, no restrictions are documented for the DFSUOLC0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSUOLC0 utility.

Requirements

Currently, no requirements are documented for the DFSUOLC0 utility.

Recommendations

Currently, no recommendations are documented for the DFSUOLC0 utility.

JCL specifications

The following JCL will run with the DFSUOLC procedure and invoke the utility with VERS=2, which is the
default.

//DFSUOLC0 JOB
//STEP1 EXEC DFSUOLC,FUNC=,ACBS=,MDBS=,FMTS=,MDID=,PLEX=
//SYSIN DD *
//

The following JCL will run with the DFSUOLC procedure and invoke the utility with VERS=1.

//DFSUOLC0 JOB
//STEP1 EXEC DFSUOLC,FUNC=,ACBS=,MDBS=,FMTS=,MDID=,PLEX=,VERS=1
//SYSIN DD *
//

Procedure statement

The JCL shown in the following figure shows the statements used to invoke the DFSUOLC procedure. The
procedure is built during SMP/E processing and placed in the ADFSPROC and SDFSPROC data sets.

//PROC FUNC=,ACBS=,MDBS=,FMTS=,MDID=,PLEX=,VERS=,SOUT=A,
// OLCPLEX=IMSPLEX,
// NODE2=IMS
//STEP1 EXEC PGM=DFSUOLC0,
// PARM=(&FUNC,&ACBS,&MDBS,&FMTS,&MDID,&PLEX,&VERS)
//STEPLIB DD DSN=&NODE2..SDFSRESL,DISP=SHR
//OLCSTAT DD &OLCPLEX..OLCSTAT,DISP=OLD

542 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/system_admin/ims_handlingerrorsforgoc.htm#ims_handlingerrorsforgoc

//SYSPRINT DD SYSOUT=&SOUT
//SYSIN DD DUMMY

EXEC statement

The format of the EXEC statement is:

PGM=DFSUOLC0,PARM=(&FUNC,&ACBS,&MDBS,&FMTS,&MDID,&PLEX,&VERS)

The Global Online Change utility (DFSUOLC0) supports the following parameters.

ACBS
Specifies the IMS JCL IMSACB DD statement suffix for the active ACB library. The suffix can be A or B.
A means IMSACBA is the DD statement of the active library. B means IMSACBB is DD statement of the
active library.

FMTS
Specifies the IMS JCL FORMAT DD statement suffix for the active MFS FORMAT library. The suffix can
be A or B. A means FORMATA is the DD statement of the active library. B means FORMATB is the
DD statement of the active library. FORMAT contains online MFS definitions to be used as the format
library by the online system. MFS-supported terminals and the MFS Language utility program require
their use. This parameter is required, even if no IMS in the IMSplex uses the MFS format library.

FUNC
Specifies the Global Online Change utility function to perform.
ADD

Add one or more IMS members to the list of IMS systems that are current with the online change
libraries. Add an IMS when the OLCSTAT data set suffered an error that made it unusable and you
are trying to recreate the OLCSTAT data set contents. The IMS systems to add must be specified
with the SYSIN DD card.

Add IMS systems that are current with the online change libraries; for example, IMS systems that
are currently up.

Attention: If you add an IMS that is not current with the online change libraries, and warm
start that IMS, the warm start might fail.

DEL
Delete one or more IMS systems from the list of IMS systems that are current with the online
change libraries.

Delete an IMS when you never intend to bring the IMS up again, so that the INITIATE OLC
command does not need to be specified with the FRCABND or FRCNRML keyword. The IMS
systems to delete must be specified with the SYSIN DD card.

INI
Function to initialize the OLCSTAT data set. ACBS, MDBS, FMTS, and MDID must also be specified.
An optional list of one or more IMS systems can be specified with the SYSIN DD statement. If no
IMS systems are specified with the SYSIN DD statement, the list of IMS systems is deleted from
the OLCSTAT data set.

The INI function is required before the first IMS in the IMSplex cold starts the first time to initialize
the OLCSTAT data set.

If the OLCSTAT record contents are lost and must be reconstructed, you must run the Global
Online Change utility INI function to construct its contents with the correct values for the online
change identifier and online change library ddnames. You might also want to add IMS systems
that are current with the online change libraries using the SYSIN DD statement. Keep track of the
current online change libraries and modify id so that you can reconstruct the OLCSTAT data set
contents in case of failure.

UNL
Function to reset the OLCSTAT data set lock after all IMS systems failed during online change.

Chapter 27. Global Online Change utility (DFSUOLC0) 543

The UNL function of the Global Online Change utility is required to reset the OLCSTAT data set
lock, in the case where all IMS systems in the IMSplex failed during an online change. Online
change sets a lock field in the OLCSTAT data set to prevent other IMS systems from initializing
during the online change. IMS initialization fails if a global online change is in progress (between
the prepare and commit phases), because the OLCSTAT data set lock is set. When an IMS tries to
initialize after all IMS systems failed during online change, IMS initialization is rejected because
the OLCSTAT data set lock is set. In this case, you must run the Global Online Change utility with
the UNL function to reset the OLCSTAT data set lock. No IMS can initialize until the OLCSTAT data
set lock is reset. The UNL function should rarely need to be used. It is needed only if all the IMS
systems fail during an online change.

MDBS
Specifies the IMS JCL MODBLKS DD statement suffix for the active MODBLKS data set. The suffix can
be A or B. A means MODBLKSA is the DD statement of the active library. B means MODBLKSB is the
DD statement of the active libraries.

If DRD is enabled, you can start IMS without defining MODBLKS DD cards. However, to use the Global
Online Change utility to initialize OLCSTAT data sets, you must first define either MDBS=A or MDBS=B,
even for an IMS that does not define the MODBLKS data sets. If the MODBLKS data sets are not
defined to IMS, the MODBLKS value in the OLCSTAT data set is ignored.

MDID
Specifies the modifyid (online change status identifier) for the INI function. This should be initialized
to zero to indicate that the number of global online changes performed is zero. The modifyid is used
to determine whether an IMS was down for one or more online changes and to determine the kind of
restart IMS can perform. The modifyid is used by IMS internal processing:

• To determine whether IMS must cold start.

If an IMS participated in the last global online change, its modifyid matches the modifyid in the
OLCSTAT data set. This IMS is allowed to warm start. If an IMS did not participate in the last global
online change, its modifyid does not match the modifyid in the OLCSTAT data set. It is permitted to
warm start if its restart type does not conflict with the last online change that was performed. If the
IMS was down for two or more global online changes, it must cold start.

• To recover security status during emergency restart processing.

PLEX
Specifies a 1-5 character identifier that specifies the z/OS cross-system coupling facility CSL IMSplex
group name for the UNL function. PLEX is required for the UNL function. All OM, RM, SCI, IMS, and
ODBM IMSplex members that are in the same IMSplex sharing group, sharing either databases or
message queues, must specify the same identifier. The same identifier must also be used for the
IMSPLEX= parameter in the CSLSIxxx, CSLOIxxx, CSLRIxxx and DFSCGxxx PROCLIB members.

SOUT
Specifies the class assigned to SYSOUT DD statements.

The STEPLIB DD statement identifies the IMS.SDFSRESL. The IMS.SDFSRESL contains the IMS
required modules. This IMS.SDFSRESL must be the highest level available in the IMSplex.

The SYSUDUMP DD statement defines the dump data set for this program.

The SYSPRINT DD statement defines the message output data set.

The OLCSTAT DD statement identifies the OLCSTAT (global online change status) data set name. The
OLCSTAT DD statement is required.

The SYSIN DD statement contains the list of IMS systems to define, add, or delete. Specify one IMS ID
per line.

The SYSIN DD statement specified with the ADD function adds one or more IMS systems to the
existing list of IMS systems in the OLCSTAT data set.

The SYSIN DD statement specified with the DEL function deletes one or more IMS systems from the
existing list of IMS systems in the OLCSTAT data set.

544 IMS: System Utilities

The SYSIN DD statement specified with the INI function defines a new list of IMS systems. If IMS
records already existed, they are wiped out.

VERS
Specifies the OLCSTAT version that is used to initialize the OLCSTAT. The valid values are 1 and 2. The
default value is 2.
1

Indicates that the OLCSTAT is to be initialized to Version 1 format for the header.

Use VERS=1 if there are one or more IMS Version 9 or IMS Version 10 systems in the OLCSTAT
along with IMS 15.2 systems.

2
Indicates that the OLCSTAT is to be initialized to Version 2 format for the header.

Use VERS=2 if all IMS systems in the OLCSTAT are IMS 15.2. VERS=2 is required to utilize the
TYPE(ACBMBR) member online change.

Related reference
“Online Change Copy utility (DFSUOCU0)” on page 573
Use the Online Change Copy utility (DFSUOCU0) as one step in the process of preparing an IMS or an
IMSplex for a local or global online change.

Examples of the DFSUOLC0 utility
These examples show how to use the DFSUOLC procedure to invoke the DFSUOLC0 utility to initialize the
OLCSTAT data set.

Parameters
You can specify the following execution parameters in the DFSUOLC procedure:

• NODE2
• OLCPLEX: specifies the data set qualifier or qualifiers for the OLCSTAT data set, which corresponds to

the IMSPLEX parameter of the IMSGEN macro.

NODE2 is described in Parameter descriptions for IMS procedures (System Definition)

Global Online Change utility example 1

The following example shows the JCL for the Global Online Change utility to initialize the OLCSTAT data
set before the first IMS cold starts the first time.

//DFSUOLC0 JOB
//STEP1 EXEC DFSUOLC,FUNC=INI,ACBS=A,MDBS=A,FMTS=A,MDID=0
//SYSIN DD *
/*
//

Global Online Change utility example 2

The following example shows the JCL for the Global Online Change utility that initializes the OLCSTAT data
set header. You should rarely need to include a list of IMS systems when initializing the OLCSTAT data set
header. For example, if the OLCSTAT data set became unusable, you would have to initialize the OLCSTAT
header. If you know which IMS systems are current with the online change libraries, you could include
those IMS systems in the list. If IMSIDs are not specified, no IMSID will be listed on the OLCSTAT data set
record.

//DFSUOLC0 JOB
//STEP1 EXEC DFSUOLC,FUNC=INI,ACBS=A,MDBS=A,FMTS=A,MDID=0
//SYSIN DD
IMSA
IMSB

Chapter 27. Global Online Change utility (DFSUOLC0) 545

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions

/*
//

Global Online Change utility example 3

The following example shows the JCL for the Global Online Change utility to initialize the OLCSTAT data
set to Version 1 before the IMS cold starts the first time.

//DFSUOLC0 JOB
//STEP1 EXEC DFSUOLC,FUNC=INI,ACBS=A,MDBS=A,FMTS=A,MDID=0,VERS=1
//SYSIN DD *
//

Global Online Change utility example 4

The following example shows the JCL for the Global Online Change utility that initializes the OLCSTAT
data set header to Version 1 and add the list of IMS 15.2 systems that are current with the online change
libraries.

//DFSUOLC0 JOB
//STEP1 EXEC DFSUOLC,FUNC=INI,ACBS=A,MDBS=A,FMTS=A,MDID=0,VERS=1
//SYSIN DD
IMSA
IMSB
//

546 IMS: System Utilities

Chapter 28. MFS Service utility (DFSUTSA0)
Use the MFS Service (MFSRVC) utility (DFSUTSA0) to control and maintain MFS intermediate text blocks
and control blocks after they have been processed and stored by the MFS Language utility (DFSUPAA0).

An intermediate text block (ITB) is a message, format, partition set, or table source language definition
that is stored in the IMS.REFERAL library. A control block is a message or format definition that is stored
in the IMS.FORMAT, IMS.FORMATA, IMS.FORMATB, or IMS.TFORMAT library.

The service utility performs the following functions:

• INDEX creates a special directory for faster access to IMS.FORMAT control blocks.
• DELETE deletes specified contents of the special index directory ($$IMSDIR).
• SCRATCH scratches specified contents of the IMS.FORMAT and IMS.REFERAL libraries and their

directories (SCRATCH also operates on IMS.TFORMAT).
• RELATE produces an interpreted listing of the contents of the IMS.REFERAL library.
• LIST produces an interpreted listing of either:

– The contents of the IMS.FORMAT or IMS.TFORMAT library
– The contents of the special index directory in the IMS.FORMAT library
– The contents of the MFS device characteristics table (DFSUDT0x) in the IMS.SDFSRESL library.

Subsections:

• “Restrictions” on page 547
• “Prerequisites” on page 548
• “Requirements” on page 548
• “Recommendations” on page 548
• “Input and output” on page 548
• “JCL specifications” on page 548
• “Utility control statements” on page 549
• “INDEX function description” on page 553
• “DELETE function description” on page 553
• “SCRATCH function description” on page 554
• “RELATE function description” on page 556
• “LIST function description” on page 557
• “Function descriptions parameters” on page 558
• “LIST the MFS device characteristics table” on page 559
• “LIST DEVCHAR output” on page 559
• “Return codes” on page 560

Restrictions

The following restrictions apply to this utility:

• Do not run the MFS Service utility concurrently with the MFS Language utility (MFSUTL procedure) if
they are accessing the same data set.

• Do not run the MFS Service utility concurrently with the IMS online control region if they are both
accessing the active format library.

© Copyright IBM Corp. 1974, 2020 547

Prerequisites

Currently, no prerequisites are documented for the DFSUTSA0 utility.

Requirements

Currently, no requirements are documented for the DFSUTSA0 utility.

Recommendations

Currently, no recommendations are documented for the DFSUTSA0 utility.

Input and output
Currently, there are no input or output statements for DFSUTSA0.

JCL specifications

The DFSUTSA0 utility requires a procedure statement, the EXEC statement, and the DD statements.

The following figure shows a one-step procedure for maintaining the MFS libraries. The procedure is built
during SMP/E processing and placed in the ADFSPROC and SDFSPROC data sets.

// PROC DEVCHAR=0,SYS2=,SOUT=A,
// NODE1=IMS,
// NODE2=IMS
//MFSRVC EXEC PGM=DFSUTSA0,REGION=4M,PARM='DEVCHAR=&DEVCHAR'
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*
//* PRINT FILES
//*
//SYSPRINT DD SYSOUT=&SOUT
//* DCB=(RECFM=VBA,LRECL=137)
//SYSSNAP DD SYSOUT=&SOUT
//* DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//SYSUDUMP DD SYSOUT=&SOUT
//*
//* REFERAL LIBRARY
//*
//REFIN DD DSN=&NODE1..&SYS2.REFERAL,DISP=OLD
//*
//* ON-LINE FORMAT LIBRARY
//*
//FORMAT DD DSN=&NODE1..&SYS2.FORMAT,DISP=SHR
//*
//*
//* //SYSIN DD * MUST BE SUPPLIED BY
//* USER WITH INPUT CONTROL CARD STREAM
//*
//* ALL DISP=OLD SPECIFICATIONS OF THIS
//* PROCEDURE ARE REQUIRED
//*
//*

Procedure statement

The procedure statement must be in the form:

DEVCHAR=0,SYS2=,SOUT=A

DEVCHAR=
Specifies the device characteristics table. The default is 0.

548 IMS: System Utilities

SOUT=
Specifies the SYSOUT class. The default is A.

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the operand must be enclosed in quotes and
must include a trailing period; for example, SYS2='IMSA.'.

Invoking the procedure example

The JCL statements to invoke the MFSRVC procedure are shown in the following example.

//MFSRVC JOB MSGLEVEL=1
// EXEC MFSRVC
//SYSIN DD *
 END
/*

SYSIN DD
Defines the input control statement data sets.

EXEC statement

The EXEC statement must be in the form:

PGM=DFSUTSA0,REGION=250K,PARM='DEVCHAR=&DEVCHAR'

REGION=
Specifies the region size for the execution of the MFS Service utility. The default is 4 MB.

PARM=
The PARM= field must be in the form:

PARM='DEVCHAR=&DEVCHAR'

where &DEVCHAR is the device characteristics table to be listed.

DD statements

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required action modules.

SYSPRINT DD
Defines the output message data set. It can be a printer or it can be routed through the output stream.
If DISP=(MOD,...) is specified, it can be a tape volume or a direct-access device. The output can be
blocked as a multiple of 121.

SYSIN
Refers to the input data set, which can be a sequential data set or a member of a partitioned data set.

SYSSNAP
Refers to a data set that is used to receive the output from a SNAP macro if certain severe errors are
detected.

Utility control statements

The control statements used by the MFS Service utility program utilize the same syntax and many of the
same keywords as the source statement input to the preprocessor.

Exception: An exception to this occurs when comments are placed on a statement or portion thereof.

Chapter 28. MFS Service utility (DFSUTSA0) 549

Requirement: Because of the extreme range of allowable operations with a FMT block or blocks,
the utility requires that comments on a statement be started with /* (for example, LIST ALL /* THIS
STATEMENT…).

Positional parameters

ALL
Where allowed, implies invocation of all functions supported for the associated operator. For example,
INDEX ALL implies the insertion of all MID, MOD, DIF, and DOF names that exist in IMS.FORMAT into
the special index directory ($$IMSDIR) to be used by the online control region for direct block access.

PDIR
Implies invocation of the associated operation against the PDS directory entries of IMS.FORMAT or,
when used with LIST or SCRATCH, the PDS directories of IMS.TFORMAT. For example, LIST PDIR
causes the contents of IMS.FORMAT or IMS.TFORMAT to be listed in interpreted format.

INDEX
Directs the invocation of an operation to the special index directory ($$IMSDIR) used by the online
control region.

REFER
Directs the invocation of an operation to IMS.REFERAL used by the MFS Language utility as an
historical intermediate text storage library.

FORMAT
Directs the invocation of an operation to IMS.FORMAT, or, when used with LIST or SCRATCH, to
IMS.TFORMAT.

DEVCHAR
Valid only with the LIST function. It causes the device characteristics table identified by the suffix
(DEVCHAR=suffix) in the EXEC parameter to be printed. If the EXEC parameter is not specified, the
contents of DFSUDT00 are printed.

Keywords

MSG=name | ALL
Directs the invocation of a function
name

Directs the invocation of a function to a specific message control block, MID or MOD. Name must
be specified as a 1- to 8-character alphanumeric value, the first character of which must be
alphabetic.

ALL
Directs the invocation of an operation to all message descriptors.

FMT=name | ALL
Directs the invocation of an operation
name

Directs the invocation of an operation to a specific device format.
ALL

Directs the invocation of an operation to all device formats. Unless further qualified, the operation
proceeds against all FMT control blocks in IMS.FORMAT.

The FMT control block can consist of multiple FMT control blocks (DIFs and the DOFs) in IMS.FORMAT
and, unless further qualified, the operation proceeds against all FMT control blocks with the same root
name. You can specify "name" as a 1- to 6-character alphanumeric value, the first character of which
must be alphabetic.

TBL=name
Directs the SCRATCH function to scratch a TBL ITB from the IMS.REFERAL library. The keyword is
valid only on the SCRATCH utility control statement and only if the REFER positional parameter is

550 IMS: System Utilities

specified. The names of all the TBLs that reside in IMS.REFERAL can be obtained through the Service
Utility RELATE function.

PDB=name
Directs the function to scratch a PDB ITB from the IMS.REFERAL library. The keyword is valid only on
the SCRATCH utility control statement and only if the REFER positional parameter is specified. The
names of all the PDBs that reside in IMS.REFERAL can be obtained through the Service Utility RELATE
function.

DEVCHAR=x
Causes the device characteristics table identified by the suffix following the "=" to be printed. This
parameter is only valid with the LIST function.

DEV=
Qualifies a specified FMT control block as applying either to a particular device, a secondary logic unit
type, or a remote program or to all (ALL).
Specify

Device
3270

3270 or SLU 2 display station
3270-A

For all 3270 or SLU 2 display stations that have been defined during IMS system definition using
the device symbolic name.

3270-A1,...,A15
For a single 3270 or SLU 2 display station that has been defined during IMS system definition
using the specific device symbolic name.

3270P
3270 printer

FIN
Finance application program

FIDS
Finance display component (6x40) (for example, 3604-1 or 3604-2)

FIDS3
Finance display component (12x40) (for example, 3604-3)

FIDS4
Finance display component (16x64) (for example, 3604-4)

FIDS7
Finance display component (24x80) (for example, 3604-7)

FIJP
Finance journal printer

FIPB
Finance passbook printer

FIFP
Finance administrative printer

DPM-A
For all SLU P devices that have been defined during system definition using this device symbolic
name.

DPM-B
For all ISC nodes that have been defined during system definition using this device symbolic
name.

DPM-A1,...,A15
SLU P

DPM-B1,...,B15
ISC nodes

Chapter 28. MFS Service utility (DFSUTSA0) 551

SCS1
The following console keyboard/printers: 3767; NTO; 3771; 3773; 3774; 3775; 3776; 3777; and
SLU 1 (print data set) or SLU 4.

SCS2
3521 card punch, 3501 card reader, 2502 card reader; and SLU 1 (transmit data set) or, SLU 4

ALL
All specified devices

MDL=1 | 2 | ALL
Determines FMT control block operation.
1

Restricts a FMT control block operation to control blocks for Model 1 3270/3270P stations.
2

Restricts a FMT control block operation to control blocks for Model 2 3270/3270P stations.
ALL

Directs FMT control block operation to control blocks for both Model 1 and Model 2 3270/3270P
stations.

This keyword applies only to 3270 and 3270P devices.

DIV=INPUT | OUTPUT | INOUT
Determines FMT control block operation.
INPUT

Restricts a FMT control block operation to DIFs.
OUTPUT

Restricts a FMT control block operation to DOFs.
INOUT

Indicates a FMT control block operation is to proceed for both DIFs and DOFs.
FEAT=IGNORE | n[nn] | (list) | ANY

Determines FMT control block operation.
IGNORE

Restricts a FMT control block operation to control blocks for which FEAT=IGNORE was specified
on the DEV statement to the MFS Language utility.

n[nn]
With either:

• A print line of 120, 126, or 132
• User-defined features 1—10

(list)
Restricts a FMT control block operation to control blocks with a specific feature combination. The
specifications allowed for "list" are as follows.

For DEV=FIFP:

DUAL
132
(DUAL,132)

For DEV=3270 or DEV=3270-An:

PEN ,PFK ,CARD
NOPEN DEKYBD NOCD
 NOPFK

Enter commas only where required to separate specifications that are actually coded. Feature
specifications do not depend on position. You must code at least one alternative. The same

552 IMS: System Utilities

feature value results, whether one, two, three, or none of the NOPEN, NOPFK, or NOCD
parameters are specified.

ANY
Directs FMT control block operation to all control blocks without restrictions on the feature
specification.

INDEX function description

The INDEX function places the specified names of control blocks (or sets of related control blocks) in a
special index directory ($$IMSDIR), that is used to provide quick online access to the control blocks.

label

INDEX

ALL

MSG= name

ALL

FMT= name

ALL
,DEV=

ALL

qualifier

A

A

,MDL=
1

ALL

1

2

,DIV=
INOUT

INPUT

OUTPUT

,FEAT=
ANY

IGNORE

n
nn

(list)

Notes:
1 MDL=only applies to 3270 and 3270P devices.

If $$IMSDIR has been created by the INDEX function, it is read into the MFS buffer pool during
initialization of the online IMS control region and made permanently resident there. If a requested control
block is not found in the MFS buffer pool, the MFS pool buffer manager next looks for an entry in
$$IMSDIR. The entry, if found, allows the MFS pool manager to issue a direct read for the control block.

Using the special index directory to replace two direct-access storage reads with one is a performance
advantage, but this advantage must be weighed against the storage cost in the online control region (14
bytes per control block indexed in the MFS buffer pool). Indexing only the most frequently used control
blocks, which might be a small percentage of the total, can be advisable.

DELETE function description

Chapter 28. MFS Service utility (DFSUTSA0) 553

The DELETE function specifies the names of a control block, or a set of control blocks, which are to be
deleted from the special index directory ($$IMSDIR) used by the online MFS pool manager.

label

DELETE

ALL

MSG= name

ALL

FMT= name

ALL
,DEV=

ALL

qualifier

A

A

,MDL=
1

ALL

1

2

,DIV=
INOUT

INPUT

OUTPUT

,FEAT=
ANY

IGNORE

n
nn

(list)

Notes:
1 MDL=only applies to 3270 and 3270P devices.

SCRATCH function description

The SCRATCH function scratches a message, format, partition set, or table ITB from IMS.REFERAL. Using
this function, you can also scratch a message descriptor, device format, or an index directory from
IMS.FORMAT or IMS.TFORMAT.

554 IMS: System Utilities

label

SCRATCH

INDEX

REFER,FMT=  name

REFER,MSG=  name

REFER,TBL=  name

REFER,PDB=  name

FORMAT,

MSG= name

ALL

FORMAT,

FMT = name

ALL
,DEV=

ALL

qualifier

A

A

,MDL=
1

ALL

1

2

,DIV=
INOUT

INPUT

OUTPUT

,FEAT=
ANY

IGNORE

n
nn

(list)

Notes:
1 MDL=only applies to 3270 and 3270P devices.

Effective use of the SCRATCH function requires an understanding of the relationship between the ITBs in
IMS.REFERAL and the control blocks in IMS.FORMAT or IMS.TFORMAT. As shown in the following figure,
a format set consists of a format and all associated messages where the SOR= parameter specifies
the format as a source, and DFSDF2 is a format that is specified as the source for messages DFSMI2,
DFSMO2, and DFSMO3. The ITB form of the format set is stored in IMS.REFERAL; the control block form is
stored in IMS.FORMAT. The format ITB can correspond to a number of device formats for different device
types and features.

Chapter 28. MFS Service utility (DFSUTSA0) 555

Figure 40. Relationships between ITBs in IMS.REFERAL and control blocks for 3270 format DFSDF2 and its
format set

When a control block is scratched from IMS.FORMAT, the action is temporary; that is, the control block is
restored to the staging library the next time any member of its format set is processed by the language
utility. Thus, if the DFSDF2 DIF for 3270-1 were scratched from IMS.FORMAT, and DFSDF2 or one of its
associated messages was later processed by the language utility, the DIF for 3270-1 would be placed in
IMS.FORMAT again.

Total elimination of a control block requires the removal of its ITB as well. The 3270-1 control blocks
for DFSDF2 could be deleted by recompiling the DFSDF2 format definition without the 3270-1 source
included.

Another method is to use the MFS Service utility and scratch all of the DFSDF2 ITBs from the referral data
set.

You can scratch the index directory using either DELETE ALL or SCRATCH INDEX.

Exception: The SCRATCH function does not apply to the MFS device characteristics table.

RELATE function description

The RELATE function provides a listing of all FMT, MSG, PDB, and TABLE ITBs in the IMS.REFERAL library.

label

RELATE

comments

FMT and MSG ITBs are related. Following each FMT ITB name, and indented three spaces, are the names
of the MSG ITBs which include a SOR= parameter referencing that FMT. The MSG ITB entries indicate
whether the message is INPUT or OUTPUT. A FMT ITB entry that does not exist in IMS.REFERAL, but is
referred to by one or more MSG ITBs, is designated as **NOT DEFINED to the right of the entry. The PDB
and TABLE ITBs are listed following the FMT and MSG ITBs.

The following figure shows the contents of IMS.REFERAL and the relationships between the FMT and MSG
ITBs. For example, the first entry shows DFSDF1 as a FMT name which has two MSGs associated with it:
DFSMI1 (an input MSG) and DFSMO1 (an output MSG).

 RELATE
 DFSDF1
 DFSMI1 INPUT

556 IMS: System Utilities

 DFSMO1 OUTPUT
 DFSDF2
 DFSDSPO1 OUTPUT
 DFSMI2 INPUT
 DFSMO2 OUTPUT

 DFSMO3 OUTPUT
 DFSM05 OUTPUT
 DFSDF3
 DFSMI4 INPUT
 DFSMO4 OUTPUT
 DSFDF5
 DFSMSTRI INPUT
 DFS1209I PROCESSING TERMINATED BY EOD ON SYSIN

LIST function description

The LIST function provides an interpreted listing of contents of the test library IMS.TFORMAT, the staging
library IMS.FORMAT, or the device characteristics table DFSUDT0X.

label

LIST

ALL

PDIR

INDEX

MSG= name

ALL

FMT= name

ALL
,DEV=

ALL

qualifier

DEVCHAR=  x

A

DEVCHAR=  x

A

,MDL=
1

ALL

1

2

,DIV=
INOUT

INPUT

OUTPUT

,FEAT=
ANY

IGNORE

n
nn

(list)

Notes:
1 MDL=only applies to 3270 and 3270P devices.

Chapter 28. MFS Service utility (DFSUTSA0) 557

Function descriptions parameters
For the staging library and the test library you can select the contents to be listed by qualifying the INDEX,
DELETE, SCRATCH, RELATE, and LIST control statement as follows:

ALL
Specifies both the PDS directory and the index directory. The default is ALL.

PDIR
Specifies the PDS directory.

INDEX
Specifies the index directory, $$IMSDIR.

MSG
Specifies the PDS directory entries for one or all message descriptors.

FMT
Specifies the PDS directory entries for one or more device formats.

A special case arises when the following chain of events occurs:

1. The Service Utility is started when the Index Directory ($$IMSDIR) does not exist.
2. The Index Directory is then created by the INDEX function.
3. LIST PDIR or LIST ALL is invoked.

In this case, the output containing the contents of the PDS directory does not include an entry for the
Index Directory. This case occurs because the Index Directory is maintained in storage and is not written
to the format library until the Service Utility ends.

The output listing contains a line for each control block with the following fields:

NAME
Represents the name of control block specified in the MSG or FMT statement.

TYPE
Represents the type of control block:
DIF

Device input format
DOF

Device output format
MSG

Message input or output control block
DEV

For FMT control blocks, represents the device type to which the control block applies.
MDL

For FMT control blocks, represents the model of the device type to which the control block applies.
This field is used with 3270 and 3270P devices.

TTR
Represents the location of the control block in IMS.FORMAT (hexadecimal). Valid only for entries from
IMS.FORMAT. Not valid for LIST INDEX.

SIZE
Represents the size of the control block in bytes (hexadecimal).

FEAT
For FMT control blocks, represents the hexadecimal uninterpreted representation of the device
type, model, and specific features for which the control block applies. Because this information is
appended to the FMT name in the library, this number determines the collating sequence of the
output listing.

FEATURES
For FMT control blocks, represents the specific device features for which the control block applies.

558 IMS: System Utilities

The following figure shows an example of the LIST function output listing for the control blocks described
in Figure 40 on page 556.

NAME TYPE DEV MDL TTR SIZE FEAT INTERPRETED FEATURES

DFSDF2 DIF 3270 1 000705 000001AE 007F IGNORE
DFSDF2 DOF 3270 1 000703 00000279 007F IGNORE
DFSDF2 DOF 3270P 1 00070B 000001A5 017F IGNORE
DFSDF2 DIF 3270 2 000709 000000B6 027F IGNORE
DFSDF2 DOF 3270 2 000707 00000296 027F IGNORE
DFSDF2 DOF 3270P 2 00070D 00000195 037F IGNORE
DFSMI2 MSG 00070F 0000005E
DFSMO2 MSG 000711 00000006
DFSMO3 MSG 000713 000000F3

LIST the MFS device characteristics table

For the device characteristics table DFSUDT0x created during IMS system definition, the LIST DEVCHAR
or DEVCHAR=0 or x, where x is the table suffix, provides an interpreted listing of all the entries of the
MFS device characteristics table indicated. The listing shows the device symbolic name of the 3270
or SLU 2 devices, screen size, and features for each entry in the table. If the suffix is not specified in
either the DEVCHAR parameter on the LIST statement or the PARM operand of the EXEC statement, table
DFSUDT00 is listed. If the suffix is not specified in the DEVCHAR parameter or the LIST statement, but
is specified in the EXEC statement, table DFSUDT0x (where x is the table suffix specified in the EXEC
statement) is listed. The examples in Figure 41 on page 559 and Figure 42 on page 559 are provided
for the LIST DEVCHAR function.

Figure 41. Example of a LIST DEVCHAR function with DEVCHAR=

//MFSRVC EXEC PGM=DFSUTSA0, PARM='DEVCHAR=3'
//SYSIN DD *
 LIST DEVCHAR=3
 LIST DEVCHAR=7

The first LIST statement lists the contents of the device characteristics table DFSUDT03.

The second LIST statement lists the contents of the device characteristics table DFSUDT07.

Figure 42. Example of a LIST DEVCHAR function

//MFSRVC EXEC PGM=DFSUTSA0
//SYSIN DD *
 LIST DEVCHAR=0
 LIST DEVCHAR=7

The first LIST statement lists the contents of the device characteristics table, DFSUDT00.

The second LIST statement lists the contents of the device characteristics table, DFSUDT07.

LIST DEVCHAR output
The output listing contains a line for each entry in the specified device characteristics table, which
provides the following fields:

Symbolic Name
Symbolic name defined for the 3270 display in the TYPE= operand of the IMS system definition TYPE
or TERMINAL macro.

Screen Size
Screen lines and columns of the 3270 display defined in the SIZE= operand of the IMS system
definition TYPE or TERMINAL macro.

Device Features
Features specified in the FEAT= operand of the IMS system definition TYPE or TERMINAL macro.

Chapter 28. MFS Service utility (DFSUTSA0) 559

The following figure is an example of a LIST DEVCHAR output.

SYMBOLIC SCREEN SIZE DEVICE
 NAME LINES COLS FEATURES

3270-A01 12 80 CARD,PFK,PEN
3270-A02 24 80 IGNORE
3270-A03 32 80 CARD,DEKYBD,PEN

Return codes
The error message ERR TYPE x IN REFERAL LIBRARY, FUNCT=RELATE is issued if a problem exists in the
MFS REFERAL library. The error types are:

1
Directory block length error

2
User appendage length error

3
Unknown block error

4
Duplicate DUMMY FORMAT error

5
Duplicate FORMAT error

6
TABLE block error

7
Message input block error

8
REFIN OPEN error

9
REFIN OPEN SYNAD taken

A
PDB block error

B
FORMAT block error

C
Message output block error

If an error is detected in the SYSIN, SYSPRINT, or REFIN <REFERAL> file, a return code is set to 4, 8 or 12
respectively.

If an error is detected on the RELATE function, the subsequent functions are ignored.

560 IMS: System Utilities

Chapter 29. Multiple Systems Verification utility
(DFSUMSV0)

Use the Multiple Systems Verification utility (DFSUMSV0) to verify the consistency and compatibility of
system definitions for IMS systems in a multisystem environment. Use this utility with IMS Multiple
Systems Coupling (MSC) for all MSC link types.

This utility identifies errors that can prevent IMS systems from performing properly.

If you do not use this utility, you must manually verify the compatibility of system definitions.

Subsections:

• “Restrictions” on page 561
• “Prerequisites” on page 561
• “Requirements” on page 562
• “Recommendations” on page 562
• “Input” on page 562
• “Output” on page 564
• “JCL specifications” on page 569
• “Utility control statements” on page 570
• “Return codes” on page 571

Restrictions

The following restrictions apply to the Multiple Systems Verification utility:

• It cannot detect errors associated with Intersystem Communication (ISC).
• It does not support CICS.
• It cannot detect errors associated with directed routing.
• From 2 to 936 IMS systems can be verified in any one execution of the verification utility.
• It cannot be used to verify IMS subsystems within a shared queues group. MSC links between IMS

subsystems in the same shared queues group are not supported and will cause message DFS2149 -
RESTART ABORTED.

• If the remote logical terminals (LTERMs) are incorrectly defined, the utility recognizes and issues error
messages only for the remote LTERMs, leaving the local LTERMs in the target area undetected.

• Only MSC descriptors associated with the MSC links defined within the IMS system being initialized are
processed by IMS. All other MSC descriptors are ignored.

• When verifying IMS systems with different release levels, use the utility from the latest release level.
• DFSUMSV0 cannot verify resources that are defined by dynamic resource definition (DRD). Alternately,

the /MSVERIFY command can be used to verify these resources.

Prerequisites

The following prerequisites apply to the Multiple Systems Verification utility.

Before executing this utility, you must resolve all IMS definition errors in all the multisystem control
blocks to be included in the total multisystem configuration. After all system definitions are complete, you
must bind all the multisystem control blocks from all the IMS multisystem definitions into IMS.SDFSRESL
or some other user-specified library. The utility then has access to the multisystem control blocks.

© Copyright IBM Corp. 1974, 2020 561

For problem determination, assembly listings of all the IMS multisystem control blocks should be
available when the utility is executed. Without the assembly listings, it will be difficult for you to resolve
inconsistencies and incompatibilities displayed as a result of the multisystem verification process.

Before the verification utility can be executed, the multisystem control block modules for all systems to
be verified must be loaded into IMS.SDFSRESL or some other user-specified library. The following figure
provides a sample job stream that can load the multisystem control block modules into IMS.SDFSRESL.

//STEP1 EXEC PGM=IEWL,PARM='SIZE=(500K),NCAL,LET,REUS,XREF,LIST'
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSNAME=IMS.SDFSRESL,DISP=OLD
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,10))
//SYSLIN DD *
 PLACE OBJECT MODULES HERE
 NAME DFSMSxxx(R)
/*

You must provide two or more object modules. A NAME statement identifying the preceding multisystem
control block module (replace xxx with the 3-digit control block name suffix) must follow each object
deck. If a library other than IMS.SDFSRESL is used, modify the //SYSLMOD statement accordingly.

Requirements

The following requirements apply to this utility.

The verification utility requires as input one or more control statements within a SYSIN data set.

Recommendations

The DFSUMSV0 utility has several recommendations related to its use and execution.

The Multiple Systems Verification utility should be run before attempting online executions to verify all
defined links and routing paths.

If the MSVERIFY parameter is specified with the SYSTEM keyword on the IMSCTRL macro, only the IMS
multisystem control block and verification utility are generated.

Input

This utility processes input in two phases:

• Input validation
• Multisystem control block verification

Input validation

After the input (control statements within a SYSIN data set) has been validated, a list of the valid
multisystem control block names is printed. The utility then determines if the multisystem control block
names are in the IMS.SDFSRESL PDS directory. The utility prints any control block names that are not
found in the directory. If any errors are detected, the utility terminates execution with a completion code
of 12. If no errors are found, the utility loads the multisystem control blocks into real storage.

Multisystem control block verification

The utility verifies the following specific portions of each multisystem control block:

• Partner IDs and assigned physical links
• Remote SYSID to Local SYSID Paths

562 IMS: System Utilities

• Remote and local transaction attributes
• Presence of corresponding logical terminals

Partner IDs and assigned physical links

The partner IDs in the logical link definitions are verified to ensure that a partner ID is:

• Not referenced in only one system
• Referenced in only two systems

Each partner ID, as defined with the PARTNER keyword on the MSLINK macro, is checked against every
other partner ID in every other multisystem control block. Appropriate messages are printed if any errors
are found. Logical links in error are treated as undefined in subsequent steps of the verification process.

When a partner ID is verified and there is also an MSPLINK (physical link) defined for this logical link in
both systems, the physical link attributes are verified for type and buffer size. The following are physical
link types:

• Real storage-to-real storage
• Channel-to-channel
• Virtual Telecommunications Access Method
• Transmission Control Protocol/Internet Protocol

If any physical link incompatibility is found, the attributes of both physical link definitions are displayed
to assist you in determining the error. If the MSPLINK is defined for only one logical link, an information
message is printed, indicating that the other end is undefined. In addition to the MSC physical and logical
links that are defined to IMS through system definitions, you can identify remote names to IMS through
an MSC descriptor. The MSC descriptor relates each remote resource with the link name of a generated
MSNAME macro.

Remote SYSID to local SYSID paths

The SYSID table entries for a SYSID are verified across all multisystem control blocks for that SYSID
number to determine if any path errors exist. A path error is an incomplete path between a multisystem
control block in which the SYSID is defined as remote and the multisystem control block in which the
SYSID is defined as local.

An incomplete path can occur for the following reasons:

• A SYSID in a multisystem control block for an intermediate system does not contain an address of an
MSNAME block (undefined SYSID).

• The MSNAME block is assigned to a logical link block that has a path back to itself without a local SYSID
(loop condition).

• The MSNAME block is associated with a logical link block that has an invalid partner ID. The partner ID
is invalid if it is not defined in any other multisystem control block or if it is defined in more than one
other multisystem control block.

• A SYSID number is defined as local in more than one system.
• A SYSID number is not defined as local in any system.

SYSIDs are scanned in numeric order until all logical link paths are verified. After a path is verified, the
utility might display warning messages. These messages identify which logical link numbers this SYSID
number-MSNAME should not be assigned to, because an invalid path to the local SYSID would result.

Remote and local transaction attributes

Each multisystem control block is scanned for remote transaction definitions. Each remote transaction
definition references a remote and local SYSID. Each remote transaction code is compared with the

Chapter 29. Multiple Systems Verification utility (DFSUMSV0) 563

transaction codes in the system where the remote SYSID is defined as local. If no matching transaction
code is found, an error message is printed. If a match is found, the attributes are verified in the two
multisystem control blocks.

The following transaction code attributes must be consistent between systems:

• Local
• Remote
• Recoverable
• Nonrecoverable
• Conversational
• Fixed scratchpad area
• Fixed scratchpad area length
• Non-inquiry
• Inquiry
• Single segment
• Multisegment
• Non-Fast Path

If a discrepancy in the transaction attributes occurs, an error message is printed. The attributes specified
for the transaction in both systems are displayed.

The return from the local transaction is checked to ensure a path exists out of the local system back to the
corresponding remote transaction. If an error exists, a message is printed.

Presence of corresponding logical terminals

Each multisystem control block is scanned for remote LTERM definitions. Each LTERM is associated with
an MSNAME block. Each MSNAME block contains remote and local SYSID definitions.

When a remote LTERM is found, the utility checks to ensure that a corresponding LTERM is defined
with the same name in the system where the remote SYSID for the MSNAME is defined as local. If no
corresponding LTERM definition is found, an error message is printed. If an LTERM is found, verification
continues.

For multisystem LTERMs defined during IMS system definition, the remote LTERM definition can be made
through the IMS system definition for the remote system or by the Extended Terminal Option (ETO) MSC
descriptors for the remote system. When you use ETO MSC descriptors, the remote LTERMs do not exist
until the initialization of the ETO feature on the remote IMS system. Therefore, an error message is printed
by this utility for the missing remote LTERM indicating that the LTERM might be a dynamic resource.

The utility checks the return path from the destination LTERM to ensure that a path exists out of the local
system back to the corresponding remote LTERM. If an error exists, a message is printed.

The return path to that system is the SYSID defined as local in the MSNAME block in the multisystem
control block in which the LTERM was defined as remote.

After all verification work is complete, the utility prints a path map as an aid in visualizing the
configuration of systems.

Output

The verification utility output includes information, warning, and error messages and a path map.

Because an error can cause other error conditions, messages with lower numbers should be analyzed and
corrected first. The path map is a summary, in matrix format, of the routing paths verified by the utility. It
is produced for the first 18 or fewer systems (in ascending sequence by multisystem control block name)

564 IMS: System Utilities

being verified. If more than 18 systems are being verified, verification for all systems occurs, appropriate
messages for all systems are provided, but the path map is provided only for the first 18 systems.

The following figure shows the error messages and sample path map for a configuration of three systems
with multisystem control block names of DFSMS001, DFSMS002, and DFSMS003. (For the sake of
simplicity, these names are used to refer to the specific systems in the rest of this discussion.) The
path map and error messages are extracted from a larger report, and not all error messages are shone.

The figure has three sections. The top section is a list of error messages and the middle and bottom
sections show the path map. The middle section relates SYSIDs to specific systems. The bottom section
relates partner IDs to logical links between specific systems.

Figure 43. Sample error messages and multisystem path map

Chapter 29. Multiple Systems Verification utility (DFSUMSV0) 565

566 IMS: System Utilities

Chapter 29. Multiple Systems Verification utility (DFSUMSV0) 567

Notes for the figure:

Letter
Meaning

A
The top row contains the multisystem control block names (not including the DFS prefix) of the
systems verified by execution of this utility.

568 IMS: System Utilities

B
The first column of the middle section of the figure contains all SYSIDs defined in the multisystem
configuration. An asterisk preceding the SYSID number indicates an error exists on this line of the
matrix.

C
Each entry in the middle section of the figure relates the SYSID (column B) to the multisystem control
block name (row A).

• Most entries contain the 4-digit suffix of the multisystem control block name of the system defined
as logically linked to the system (row A) and the 2-character partner ID defined for this logical link.

• A blank entry, such as SYSID 0041 for DFSMS002, indicates this SYSID was not defined for this
system. All entries for SYSIDs 0001 through 0007 are blank; this means these SYSIDs were not
specified in any of the multisystem control blocks.

• An entry specifying LOCAL, such as SYSID 0009 for DFSMS001, identifies this system as the system
in which this SYSID is defined as local.

• Errors are identified by asterisks. One asterisk preceding the SYSID indicates that one or more
errors were found for this printed line. If the suffix portion of an entry is replaced by two asterisks
(**), such as SYSID 0008 for DFSMS002, the verification utility found no partner for this system.
Three asterisks (***) indicate that more than two partners were found, such as SYSID 0017 for
DFSMS002. If a SYSID is defined as local for more than one system, the printed line is identified by
one asterisk and more than one entry on that line specifies LOCAL. SYSID 0010 contains an example
of this error.

D
The first column of the bottom section contains the physical link type:
CTC

Channel-to-channel adapter
MTM

Real storage-to-real storage
TCP

Transmission Control Protocol/Internet Protocol (TCP/IP)
VTAM®

Virtual Telecommunications Access Method

This column entry is either blank, if no physical link is defined, or assigned depending on the first
physical link encountered, for the logical link identified by E. An asterisk preceding the link type (or
alone, if no physical link is defined) indicates an error exists for this printed line.

E
Identifies the logical link in terms of partner ID and relative logical link number. The partner IDs relate
directly to those in the top part of the chart.

The verification utility relates partner systems by connecting them with a dashed line.

In the figure, partnerships AC, AJ, AK, SA, SB and SC are in error. These errors were identified in the
top part of the chart but are more clearly demonstrated in the bottom part. Partner ID BC has more
than two definitions; AX has just one definition.

JCL specifications

The DFSUMSV0 utility requires the procedure statement, the EXEC statement, and invoking the
procedure.

The following figure shows an example of the procedure used to execute the Multiple System Verification
utility. IMSMSV is created during SMP/E processing and is placed in the IMS.SDFSPROC.

// PROC DSN='IMS.SDFSRESL',
// REG=32K,CLASS=A,PARM='ALL',

Chapter 29. Multiple Systems Verification utility (DFSUMSV0) 569

// UNIT=SYSDA,SER=,DSM='IMS.MODBLKS'
//MSVERIFY EXEC PGM=DFSUMSV0,PARM='&ALL',REGION=®
//STEPLIB DD DSN=&DSM,DISP=SHR,UNIT=&UNIT,VOL=SER=&SER
 DD DSN=&DSN,DISP=SHR,UNIT=&UNIT,VOL=SER=&SER
//SYSOUT DD SYSOUT=&CLASS

Procedure statement

The procedure statement must be in the form:

PROC DSN='IMS.SDFSRESL',
 REG=32K,CLASS=A,ALL=ALL,
 UNIT=SYSDA,SER=,DSM='IMS.MODBLKS'

ALL=
Specifies that all messages, including the information message DFS2327I, are to be printed. The
default is ALL.

CLASS=
Specifies the SYSOUT class. The default is A.

DSM=
Specifies the data set name of IMS.MODBLKS.

DSN=
Specifies the data set name that contains the verification utility program (DFSMSV00) and its control
blocks. The default is IMS.SDFSRESL.

REG=
Specifies the region size for this execution. The default is 32 KB.

SER=
Specifies the volume serial number of the DASD that contains the data set specified by the DSN
parameter. SER= need not be specified if the data set is a cataloged data set.

UNIT=
Specifies the STEPLIB UNIT TYPE.

EXEC statement

The execution statement must be in the form of PGM=DFSUMSV0. The PARM= field must be in the form:

 PARM='&ALL',REGION=®

If PARM=ALL is specified in the EXEC statement for the utility execution, the information message
DFS2327I is printed as part of the utility output. This message warns you not to do an //ASSIGN of
the SYSID/MSNAME to the logical link referenced, because the assignment does not provide a path to the
local SYSID at this SYSID level.

The following figure shows the JCL required to execute the DFSUMSV0 utility.

//STEP1 EXEC IMSMSV
//SYSIN DD *
 INPUT FOR IMS MULTISYSTEM VERIFICATION UTILITY
/*

Utility control statements

The control statements must contain the 1- to 3-digit suffix supplied on the MSVID keyword of the
IMSCTRL macro. Each control statement can contain one or more such suffixes, specified in any
sequence. The input statement scan ends when a blank position is encountered; if position 1 is blank,

570 IMS: System Utilities

the input statement is treated as a comment statement. If more than one suffix is specified in a control
statement, each suffix following the first one must be separated from the preceding suffix by a comma.
Only the significant digits of a suffix need be specified.

Each suffix in a control statement must be complete in that statement and cannot be continued in the
next control statement.

Sample input data:

• 1,255,6,009,80,02,198 are valid.
• 0,677,0040,NYC,1A,0001,5,5 are invalid.

Each invalid entry is printed, and the type of error is identified.

For example:

0
Is not in the range from 1 to 676.

677
Is not in the range from 1 to 676.

0040
Is more than 3 digits.

NYC
Is nonnumeric.

5,5
Is duplicate input data.

Valid input for three systems:

 STATEMENT 1,5,255
 or
 STATEMENT 001,005,255
 or
 STATEMENT 255,01,5

Return codes
Code

Meaning
0

Only information and warning messages are printed
12

Errors detected that must be resolved before multisystem execution
Related reference
IMSCTRL macro (System Definition)
Related information
DFS2149 (Messages and Codes)

Chapter 29. Multiple Systems Verification utility (DFSUMSV0) 571

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_imsctrl_macro.htm#ims_imsctrl_macro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.mc/msgs/dfs2149.htm#dfs2149

572 IMS: System Utilities

Chapter 30. Online Change Copy utility (DFSUOCU0)
Use the Online Change Copy utility (DFSUOCU0) as one step in the process of preparing an IMS or an
IMSplex for a local or global online change.

The Online Change Copy utility copies a source library with your new definitions to a target library.
Issuing the Online Change command sequence to prepare and commit an online change causes the
inactive library to become the active library. Using a z/OS serialization service, this utility prevents other
utilities from updating the staging (source) or inactive (target) libraries while the copy is in progress. The
Online Change Copy Utility clears the target library and then invokes IEBCOPY to move the source library
contents.

The Online Change Copy utility can copy the contents of the staging libraries to the active libraries during
the installation of IMS, prior to the first cold start. To do this, the parameter for the output ddname must
be specified when invoking the utility, because the initial contents of IMS.MODSTAT (or OLCSTAT data set,
if global online change is enabled) will specify the active libraries.

The Online Change Copy utility (DFSUOCU0) can be used to create a backup copy of the active ACB library,
which can be used for fallback purposes. This backup copy is created by specifying all of the following
elements:

• The copy type parameter, TYPE=ACTVACB, which specifies that the Online Change Copy utility copies
the members from the active ACB library

Attention: The OLCSTAT library must be initiated before running the Online Change Copy utility
with TYPE=ACTVACB specified.

• The target library parameter, OUT=O, which specifies that the Online Change Copy utility copies the
content of an active ACB library to a library other than the inactive ACB library

• The IMSACBO DD statement, which specifies where the backup copy is created

In an IMSplex where IMS subsystems are not cloned and the libraries not shared, the Online Change Copy
utility might need to be executed on every IMS in the IMSplex. In an IMSplex where IMS subsystems are
cloned and the libraries are shared, the Online Change Copy utility might need to be executed only once
on one IMS.SDFSRESL at the highest IMS level.

Subsections:

• “Restrictions” on page 573
• “Prerequisites” on page 574
• “Requirements” on page 574
• “Recommendations” on page 574
• “JCL specifications” on page 574

Restrictions

The following restrictions apply to the Online Change Copy utility:

• If any of the ACBLIB, FORMAT, or MODBLKS libraries are shared among IMS systems, all systems must
use the same libraries during execution of this utility.

• In an XRF environment ACBLIBs, FORMATs, and MODBLKs data sets must be on shared non-duplexed
DASD for error protection. Make the same additions or changes to separate but duplicate copies of IMS
data sets.

• You cannot use the Online Change Copy utility to make additions or changes that require new IMS
modules to be added to the IMS.SDFSRESL data set.

© Copyright IBM Corp. 1974, 2020 573

• You cannot add, modify, or delete MSDBs using this utility. However, PSB related changes for MSDBs
can be made to the ACBLIBs, as long as no DBD changes are included.

• You cannot add, modify, or delete partitions of a HALDB database using this utility; only by using the
Partition Definition utility. However, PSB related changes for HALDB database can be made to the
ACBLIBs, as long as no DBD changes are included.

• If dynamic resource definition (DRD) is enabled (MODBLKS=DYN is specified in the DFSCGxxx
IMS.PROCLIB member or in the COMMON_SERVICE_LAYER section of the DFSDFxxx IMS.PROCLIB
member), the Online Change Copy utility might not be needed. Because the online change function is
disabled, you do not need to copy stored resource definitions to prepare for an online change. You can
use the Online Change Copy utility to copy stored resource definitions to a MODBLKS data set that will
be loaded by an IMS cold start.

If the Online Change Copy utility is canceled prior to completion, the status of the ACBLIB, FMTLIB, or
MODBLKS data set is unpredictable. The data set that is being changed by the utility is cleared as soon as
the utility has exclusive control of the data set, and then new information is written to the data set. If the
utility is canceled prior to its successful completion the information in the data set is not usable.

Prerequisites

Currently, no prerequisites are documented for the DFSUOCU0 utility.

Requirements

Three copies of the following libraries are required for online change:

ACBLIB
Database and program descriptors such as DMBs and PSBs

FORMAT
Control blocks produced by the MFS Language utility and service utility

MODBLKS
A subset of the control blocks for the resources to be modified

One copy of each library is used exclusively for offline functions. This library has no suffix and is called the
staging library.

The other two copies of each library have a suffix of A or B. Only one of these libraries is used by the IMS
online system at any one time. The one in use is referred to as the active library. The other is called the
inactive library.

The Online Change Copy utility can copy the contents of the staging library to the inactive library based
on the information in the MODSTAT data set (local online change) or the OLCSTAT data set (global online
change).

The same method of serialization prevents this utility from updating the active libraries while they are
being used by an IMS online system.

Recommendations

Create a backup copy of all the active ACB library members before you perform an ACB library member
online change operation.

JCL specifications
Procedure statement

574 IMS: System Utilities

The procedure statement must be in the following form to invoke the utility and to include optional
IEBCOPY parameters:

OLCUTL PROC TYPE=,IN=,OUT=,SOUT=A,SYS=,SYS2=,OLCGLBL='DUMMY,',OLCLOCL=

OLCGLBL=
OLCLOCL=

These parameters produce the OLCSTAT DD card or the MODSTAT/MODSTAT2 DD cards.
OLCGLBL='DUMMY,',OLCLOCL=

Built during SMP/E processing and placed in the ADFSPROC and SDFSPROC data sets. This parameter
results in the OLCUTL procedure being set up for local online change as the default with the following
DD statements:

//MODSTAT DD &OLCLOCL.DSN=IMS.&SYS.MODSTAT,DISP=SHR
//MODSTAT2 DD &OLCLOCL.DSN=IMS.&SYS.MODSTAT2,DISP=SHR
//OLCSTAT DD &OLCGLBL.DSN=IMSPLEX.OLCSTAT,DISP=OLD

For global online change, set the OLCGLBL= and OLCLOCL= parameters as follows:

OLCGLBL=,OLCLOCL='DUMMY,'

These parameters generate the following DD statements to be used for global online change:

//MODSTAT DD DUMMY,DSN=IMS.&SYS..MODSTAT,DISP=SHR
//MODSTAT2 DD DUMMY,DSN=IMS.&SYS..MODSTAT2,DISP=SHR
//OLCSTAT DD DSN=IMSPLEX.OLCSTAT,DISP=OLD

SOUT=
Specifies the class assigned to SYSOUT DD statements.

SYS=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Mandatory Shared" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period; for example, SYS='IMSA.'

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period; for example, SYS2='IMSA.'

EXEC statement

The EXEC statement determines which copy is made and which data sets are used for input and output.
The format of this statement can include optional IEBCOPY parameters specified in the order of WORK,
SIZE, LIST after the target library.

When you omit a parameter, include a comma in its place. For example, when you specify only the LIST
parameter without specifying WORK or SIZE, use the following syntax: ,,&LIST

The IEBCOPY options list, which contains the IEBCOPY keywords, equal signs, parameter values, and
commas, cannot exceed 64 bytes. The IEBCOPY parameters are passed to the IEBCOPY utility when the
utility is called.

The EXEC statement must be in the following form:

PGM=DFSUOCU0,PARM=(&TYPE,&IN,&OUT,&WORK,&SIZE,&LIST)

&TYPE
Specifies the type of library to be copied from the input library to the target library. The copy type can
be the ACB, ACTVACB, FORMAT, or MODBLKS library. ACTVACB is unique and different from the other
three.

Chapter 30. Online Change Copy utility (DFSUOCU0) 575

Parameter
Meaning

ACTVACB
Specifies that the active ACB library members are to be copied to create a backup fallback
purposes. When the &TYPE parameter ACTVACB is specified, no input library parameter (&IN) is
necessary or supported. If the &IN parameter is coded with the &TYPE parameter ACTVACB, IMS
issues an informational message (DFS3469I).

&IN
Defines the library ddnames to be used as input.
Parameter

Meaning
S

IMS staging library (IMSACB, FORMAT, or MODBLKS)
I

User input library (IMSACBI, FORMATI, or MODBLKSI)

The I parameter allows you to use an input library other than the staging library.

&OUT
Defines the library ddnames to be used for output.
Parameter

Meaning
A

IMS A library (IMSACBA, FORMATA, or MODBLKSA)
B

IMS B library (IMSACBB, FORMATB, or MODBLKSB)
G

Target library (inactive) determined by the utility, using the OLCSTAT data set. The target is
the library not currently in use by the IMS online system. The OLCSTAT data set can either be
allocated by the OLCSTAT DD statement, or dynamically by specifying the OLCSTAT dataset name
starting in column 1 of the SYSIN DD statement.

When G is specified with the ACTVACB parameter, the Online Change Copy utility copies the
contents of the active ACB library to the inactive ACB library.

In this case, the OLCUTL JCL must include a DD statement, which specifies the data set name for
the backup copy of the active ACB library.

O
User output library (IMSACBO, FORMATO, or MODBLKSO)

When O is specified with the ACTVACB parameter, the Online Change Copy utility copies the
contents of the active ACB library to a library other than the inactive ACB library.

In this case, the OLCUTL procedure JCL must include a DD statement with a data definition name
(ddname) of IMSACBO, which specifies the data set name for the backup copy of the active ACB
library.

The O parameter allows you to select a target data set other than the active or inactive data set.

U
Target library (inactive) determined by the utility, using the MODSTAT data set. The target is the
library not currently in use by the IMS online system.

Recommendations: During online operation, avoid using the A or B parameter for the output library
because an incorrect choice could cause IMS to overlay the active library.

Specify the U parameter for an IMS that supports local online change. G is recommended for an
IMSplex that supports global online change.

576 IMS: System Utilities

&WORK
Optional parameter that passes the work parameter to the IEBCOPY utility. The work parameter
passes the number of bytes of virtual storage to request for a work area to hold for directory entries,
internal tables, and I/O buffers.

&SIZE
Optional parameter that passes the size parameter to the IEBCOPY utility. The size parameter
specifies the maximum number of bytes of virtual storage that the IEBCOPY utility can use as a
buffer.

&LIST
Optional parameter that passes the list parameter to the IEBCOPY utility. LIST=NO suppresses
IEBCOPY IEB1541 messages that are issued for each member that is successfully copied.

DD statements

IMSACB DD
IMSACBA DD
IMSACBB DD

Defines the staging, active, or inactive ACBLIB.
IMSACBI DD

User-defined input ACBLIB.
IMSACBO DD

User-defined output ACBLIB.
FORMAT DD
FORMATA DD
FORMATB DD

Defines the staging, active, or inactive MFS format library.
FORMATI DD

User-defined input FORMAT library.
FORMATO DD

User-defined output FORMAT library.
OLCSTAT DD

Defines the global online change status data set name for an IMS enabled for global online change.
The OLCSTAT data set is similar to the MODSTAT data set used for local online change. The OLCSTAT
DD should not be defined if local online change is enabled, or if global online change is enabled and
the OLCSTAT data set is to be dynamically allocated.

The SYSIN DD statement may be specified for &OUT option G, in order to dynamically allocate the
OLCSTAT data set, rather than define it with the OLCSTAT DD statement. The OLCSTAT data set must
be defined as data after the SYSIN DD statement, starting in column 1.

If the OLCSTAT data set is defined with the OLCSTAT DD statement and the SYSIN DD statement, the
SYSIN DD statement is ignored.

If a multi-step batch job invokes the DFSUOCU0 utility in a step after a CSLUSPOC step that issues
INITIATE OLC commands, the DFSUOCU0 utility must allocate the OLCSTAT data set dynamically.

MODBLKS DD
MODBLKSA DD
MODBLKSB DD

Defines the staging, active, or inactive system definition library.
MODBLKSI DD

User-defined input MODBLKS library.
MODBLKSO DD

User-defined output MODBLKS library.

Chapter 30. Online Change Copy utility (DFSUOCU0) 577

MODSTAT DD
MODSTAT2 DD

Defines the local online change modify status data set names. This is the active data set (and inactive
data set, if XRF is used) that online IMS should use at initialization.

SYSUDUMP DD
Defines the dump data set for this program. The data set can reside on a printer, tape, or direct-access
device, or be routed through the output stream.

SYSPRINT DD
Defines the message output data set. The data set can reside on a printer, tape, or direct-access
device, or be routed through the output stream. This DD statement must always be included.

SYSUT3 DD
Defines a work data set that is required.

SYSUT4 DD
Same function as SYSUT3.

COPYCTL DD
Defines a copy control data set to be built prior to calling IEBCOPY.

Related reference
z/OS: IEBCOPY (Library Copy) program
“Global Online Change utility (DFSUOLC0)” on page 541
Use the Global Online Change utility to initialize, recreate, or unlock the OLCSTAT data set.

OLCUTL procedure
Use the OLCUTL procedure to invoke the DFSUOCU0 utility, specifying the parameters you select for the
library type, input library, output library, and IEBCOPY parameters.

Parameters
You can specify the following execution parameters in the OLCUTL procedure:

• NODE1
• NODE2
• OLCPLEX: specifies the data set qualifier or qualifiers for the OLCSTAT data set, which corresponds to

the IMSPLEX parameter of the IMSGEN macro.

NODE1 and NODE2 are described in Parameter descriptions for IMS procedures (System Definition)

Invoking the OLCUTL procedure

The following figure shows the OLCUTL statements used to invoke the Online Change Copy utility, OLCUTL
procedure.

Recommendation: OLCUTL clears the target library data set and then invokes IEBCOPY to move the
source library contents. If IEBCOPY abends because of insufficient space, the contents of the target
library are unpredictable. To avoid this, allocate equal amounts of space for source and target libraries.

// PROC TYPE=,IN=,OUT=,SOUT=A,SYS=,SYS2=,OLCGLBL='DUMMY,',OLCLOCL=,
// OLCPLEX=IMSPLEX,
// NODE1=IMS,
// NODE2=IMS
//S EXEC PGM=DFSUOCU0,PARM=(&TYPE,&IN,&OUT)
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//MODBLKS DD DSN=&NODE2..&SYS2.MODBLKS,DISP=SHR
//MODBLKSA DD DSN=&NODE2..&SYS2.MODBLKSA,DISP=SHR
//MODBLKSB DD DSN=&NODE2..&SYS2.MODBLKSB,DISP=SHR
//IMSACB DD DSN=&NODE1..&SYS2.ACBLIB,DISP=SHR
//IMSACBA DD DSN=&NODE1..&SYS2.ACBLIBA,DISP=SHR
//IMSACBB DD DSN=&NODE1..&SYS2.ACBLIBB,DISP=SHR
//FORMAT DD DSN=&NODE1..&SYS2.FORMAT,DISP=SHR
//FORMATA DD DSN=&NODE1..&SYS2.FORMATA,DISP=SHR
//FORMATB DD DSN=&NODE1..&SYS2.FORMATB,DISP=SHR

578 IMS: System Utilities

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idau100/iebcopy.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions

//MODSTAT DD &OLCLOCL.DSN=&NODE1..&SYS.MODSTAT,
// DISP=SHR
//MODSTAT2 DD &OLCLOCL.DSN=&NODE1..&SYS.MODSTAT2,
// DISP=SHR
//OLCSTAT DD &OLCGLBL.DSN=&OLCPLEX..OLCSTAT,
// DISP=OLD
//SYSUDUMP DD SYSOUT=&SOUT
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//COPYCTL DD DSN=&©CTL,DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(CYL,(1,1))

Copying the staging libraries

The following figure shows the JCL statements used to copy the staging libraries to the inactive libraries
indicated by MODSTAT data set.

//* COPY MODBLKS TO MODBLKSA
//*
//STEP01 EXEC PROC=OLCUTL,SOUT='*',TYPE=MODBLKS,IN=S,OUT=U,,,LIST=NO
//*
//* COPY ACBLIB TO ACBLIBA
//*
//STEP03 EXEC PROC=OLCUTL,SOUT='*',TYPE=ACB,IN=S,OUT=U
//*
//* COPY FORMAT TO FORMATA
//*
//STEP04 EXEC PROC=OLCUTL,SOUT='*',TYPE=FORMAT,IN=S,OUT=U
//*
//* COPY FORMAT TO FORMAT WITH IEBCOPY PARAMETERS SPECIFIED
//*
//STEP05 EXEC PROC=OLCUTL,SOUT='*',TYPE=FORMAT,IN=S,OUT=U,WORK=2M,SIZE=2M,LIST=NO
//*
//*

Backing up an active ACB library for Member OLC

The following figure shows how the active ACB library is copied to the inactive ACB library (OUT=G).

//DFSUOCU0 JOB LINK,MSGLEVEL=1,REGION=640K,CLASS=N,
 USER=USRID01
//STEP1 EXEC OLCUTL,TYPE=ACTVACB,OUT=G,SOUT=*,
// OLCLOCL='DUMMY,',OLCGLBL=,SYS=
//

The following figure shows how the active ACB library is copied to the ACB library that is specified on the
IMSACBO DD statement in the OLCUTL procedure (OUT=O).

//DFSUOCU0 JOB LINK,MSGLEVEL=1,REGION=640K,CLASS=N,
 USER=USRID01
//STEP1 EXEC OLCUTL,TYPE=ACTVACB,OUT=O,SOUT=*,
// OLCLOCL='DUMMY,',OLCGLBL=,SYS=
//
//

Initializing the IMS.MODSTAT data set
The INITMOD procedure initializes the IMS.MODSTAT data set, for an IMS enabled with local online
change. The MODSTAT data set must be initialized before the first IMS cold start or before any other cold
start if IMS.MODSTAT does not contain the current ddnames.

If IMS is enabled for global online change, it will not use the MODSTAT data set.

Recommendation: Do not define the MODSTAT DD cards if enabling global online change, and the
MODSTAT data sets will not have to be defined.

Chapter 30. Online Change Copy utility (DFSUOCU0) 579

The procedure is built during SMP/E processing and placed in the ADFSPROC and SDFSPROC data sets.

//INIT1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT2 DD DSN=&NODE1..&SYS.MODSTAT&SF,DISP=OLD
//SYSIN DD DUMMY
//SYSUT1 DD DISP=SHR,
// DSN=&NODE2..&SYS2.PROCLIB(DFSMREC)

Procedure statement

The procedure statement must be in the form:

PROC SYS=,SYS2=,SF=,SOUT=A,NODE1=IMS,NODE2=IMS

SYS=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Mandatory Shared" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period; for example, SYS='IMSA.'

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period; for example, SYS2='IMSA.'

SF=
Specifies the suffix for the MODSTAT data set name, either SF= or SF=2.

SOUT=
Specifies the class assigned to SYSOUT DD statements.

DFSMREC control statement

The INITMOD procedure uses this control statement to initialize the MODSTAT data sets. DFSMREC
contains the data for the MODSTAT record. This control statement is created by using the DFSPROCB JCL
that is built during SMP/E processing. The statement must be in the form:

0,MODBLKSA,IMSACBA,FORMATA

Values must be separated by commas, with no imbedded blanks.

0
Is the MODSTAT identifier, which is variable length with no limit. This positive value, initialized to
zero, is used by IMS internal processing for recovery of security status during emergency restart
processing. You can initialize it to zero at any IMS cold start.

MODBLKSA | MODBLKSB
Is the ddname for the active MODBLKS data set, either IMS.MODBLKSA or IMS.MODBLKSB data set
that contains the IMS system definition output.

If DRD is enabled, you can start IMS without defining MODBLKS DD cards. The INITMOD procedure
requires that you define either MODBLKSA or MODBLKSB to initialize the MODSTAT data set, even for
an IMS that does not define the MODBLKS data sets. If the MODBLKS data sets are not defined to
IMS, IMS ignores the MODBLKSA or MODBLKSB definition in the MODSTAT data set.

The INITMOD procedure requires that you define either MODBLKSA or MODBLKSB to initialize the
MODSTAT data set, even for an IMS that does not define the MODBLKS data sets.

IMSACBA | IMSACBB
Is the ddname in the IMS procedure for the active IMSACB data set, either IMS.ACBLIBA or
IMS.ACBLIBB library.

580 IMS: System Utilities

FORMATA | FORMATB
The ddname of the active FORMAT data set, either IMS.FORMATA or IMS.FORMATB data set contains
online MFS definitions to be used as the format library by the online system. MFS-supported terminals
and the MFS Language utility program require their use. When one of these libraries is active (that is,
in use by the online system), the contents of IMS.FORMAT is copied to the other, or inactive, library for
use in the next online change run. Their ddnames must be FORMATA and FORMATB, respectively. If
MFS is not defined, IMS ignores this ddname.

For DBCTL, you can start a DBCTL IMS without defining FORMAT DD cards. The INITMOD procedure
requires that you define either FORMATA or FORMATB to initialize the MODSTAT data set, even for a
DBCTL IMS that does not use the FORMAT data sets. A DBCTL IMS ignores the FORMATA or FORMATB
definition in the MODSTAT data set.

The INITMOD procedure requires that you define either FORMATA or FORMATB to initialize the
MODSTAT data set, even for an IMS that does not define the FORMAT data sets.

If the IMS.MODSTAT record contents are lost and must be reconstructed, or if you do not use default
initialization by the INITMOD procedure, you must run an IEBGENER job to construct its contents with the
proper values for the online change identifier and ddnames. The attributes for a new IMS.MODSTAT data
set should be RECFM=F and BLKSIZE=80.

The following figure shows initialization of the MODSTAT ID to 0, and the ddnames to MODBLKSA,
IMSACBA, and FORMATA.

//INIT1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=&SOUT
//SYSUT2 DD DSN=IMS.&SYS.MODSTAT&SF,DISP=OLD
//SYSIN DD DUMMY
//SYSUT1 DD DISP=SHR,
// DSN=IMS.&SYS2.PROCLIB(DFSMREC)
./ ADD NAME=DFSMREC
./ NUMBER NEW1=10,INCR=10
0,MODBLKSA,IMSACBA,FORMATA

Alternatively, you can override SYSUT1 and SYSUT2 DD statements of the INITMOD procedure to
accomplish the same purpose as the preceding IEBGENER sample job.

The DFS3499 message, which identifies the current values of the MODSTAT record, follows the DFS994
checkpoint message. The DFS3410 message at initialization also identifies the MODSTAT record data.

Chapter 30. Online Change Copy utility (DFSUOCU0) 581

582 IMS: System Utilities

Chapter 31. Spool SYSOUT Print utility (DFSUPRT0)
Use the Spool SYSOUT Print Utility (DFSUPRT0) to copy messages produced by the online control program
from its set of data sets to a system output device when a communication line is defined for Spool
SYSOUT during system definition.

Both the spool data sets and the system output device are processed using QSAM. Blocking factors for
spool data sets are determined by the online control program. System output device blocking can be
specified through JCL on the SYSPRINT DD statement.

Subsections:

• “Restrictions” on page 583
• “Prerequisites” on page 583
• “Requirements” on page 583
• “Recommendations” on page 583
• “Input and output” on page 583
• “JCL specifications” on page 584
• “Return codes” on page 585

Restrictions

The Spool SYSOUT Print utility does not support CICS.

Prerequisites

Currently, no prerequisites are documented for the DFSUPRT0 utility.

Requirements

Currently, no requirements are documented for the DFSUPRT0 utility.

Recommendations

After the print utility is started, let it complete before issuing a /START LINE command to make the
Spool SYSOUT available.

Input and output
Output from the print utility includes a page of status information, followed by the contents of the spool
data sets indicated as FULL and printed in chronological sequence.

Sample output

The following figure shows an example of the Spool SYSOUT Print utility output.

DFSUPRTO - SYSOUT PRINT UTILITY TIME 9:35:1 DATE 10.056

DDNAME STATUS CREATED TIME DATE DATASET NAME
SPOOL1 FULL 9:33:239 10.244 IMSTESTL.IMS01.SPOOL1
SPOOL2 INUS :00:000 0.000 IMSTESTL.IMS01.SPOOL2
SPOOL3 AVAL :00:000 0.000 IMSTESTL.IMS01.SPOOL3

© Copyright IBM Corp. 1974, 2020 583

The fields in the report have the following meaning:

DDNAME
The user-provided DDNAME.

STATUS
FULL—if data set is to be printed.

INUS—if being filled online.

AVAL—if not being used.

CREATED TIME
Time (24-hour clock) (HH:MM:SST) when the data set was marked FULL.

DATE
Julian date (YY.DDD) when the data set was marked FULL.

DATASET NAME
The DSNAME of the assigned data set.

System messages included in a spool data set always have unprintable control characters (typically the
new-line symbol, X'15').If a UCS printer is used as a SYSOUT device, these messages might print as
extraneous alphabetic characters (if fold-mode operation is specified in response to the UCS parameter
request).

JCL specifications

The DFSUPRT0 utility requires a procedure statement, the EXEC statement, and the DD statements.

The DFSWT000 procedure, shown in the following figure, executes the Spool SYSOUT Print utility program
(DFSUPRT0) as an online program for printing data sets created by the Spool SYSOUT option during
system definition. The utility program copies messages produced by the online control program from its
set of data sets to a system output device. The procedure is built during SMP/E processing and placed in
the ADFSPROC and SDFSPROC data sets.

// PROC SOUT=A,RGN=30K,SYS1=,SYS2=,
// NODE1=IMS,
// NODE2=IMS
//PRINT EXEC PGM=DFSUPRT0,REGION=&RGN
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1410
//SYSUDUMP DD SYSOUT=&SOUT
//*
//SPOOLn DD DISP=SHR,DSN=&NODE1..&SYS1.SYSO1
//SPOOLn DD DISP=SHR,DSN=&NODE1..&SYS1.SYSO2
//SPOOLn DD DISP=SHR,DSN=&NODE1..&SYS1.SYSO3
//*

Procedure statement

This statement must be in the form:

PROC SOUT=A,RGN=30K,SYS1=,SYS2=

SOUT=
Specifies the class assigned to SYSOUT DD statements.

RGN=
Specifies the size of the z/OS region to be allocated to the IMS control program.

SYS1=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Mandatory Replicate" in an XRF complex. When specified, the operand must be enclosed in quotes
and must include a trailing period; for example, SYS1='IMSA.'.

584 IMS: System Utilities

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the operand must be enclosed in quotes and
must include a trailing period; for example, SYS2='IMSA.'.

EXEC statement

This statement can be in the form:

EXEC PGM=DFSUPRT0

Or it can specify a procedure that contains the required JCL statement. A region size of 30KB is usually
adequate for execution.

DD statements

STEPLIB DD
Defines the library containing the print utility. This DD statement is usually
DSNAME=IMS.SDFSRESL,DISP=SHR.

SYSPRINT DD
Defines the system output device to which output is directed. The record format is VBM. If either no
block size or a block size less than 141 is specified, the default block size of 141 is assumed. Any
block size valid for QSAM and greater than 141 can be specified. Any logical record length can be
specified. If no logical record length is specified, the default is 4 less than the block size specified
(137 if block size default of 141 is used).

DFSUPRT0 supports output data sets in the cylinder managed area on extended address volumes
(EAVs). These data sets exceed 65535 tracks in size, have 3-byte relative track (TTT) extent sizes, and
were allocated with DSNTYPE = LARGE on the DD statement. Data sets on EAV volumes can be large
data sets that exceed 65535 tracks or smaller ones.

SPOOLnn DD
Describes the spool data set to be printed (where nn is any valid alphanumeric identifier). This
DD statement is normally DSNAME=IMS.SYSnn, where 'nn' is assigned by system definition. DCB
information either should not be coded or, if coded, must specify RECFM=VBM.

DFSUPRT0 supports input data sets in the cylinder managed area on extended address volumes
(EAVs). These data sets exceed 65535 tracks in size, have 3-byte relative track (TTT) extent sizes, and
were allocated with DSNTYPE = LARGE on the DD statement.

Return codes
Code

Meaning
0

Successful completion
4

No data sets allocated for printing
8

SYSPRINT DD statement missing
12

I/O error on SYSPRINT data set

Chapter 31. Spool SYSOUT Print utility (DFSUPRT0) 585

Examples of the DFSUPRT0 utility
You can invoke the DFSWTnnn procedure as a IMSWTnnn job which prints data sets created by the Spool
SYSOUT options.

IMSWTnnn member job class and message class are determined by the CLASS= and MSGCLASS=
parameters in the IMSWT000 member in the IMS.SDFSPROC data set.

This job executes procedure DFSWTnnn, which invokes the Spool SYSOUT utility program (DFSUPRT0) for
printing the Spool SYSOUT data set.

This job must be copied to the IMS.JOBS data set to run.

//SPRT0 JOB 1,IMS,CLASS=A,MSGCLASS=A,MSGLEVEL=1
// EXEC DFSWTnnn

586 IMS: System Utilities

Chapter 32. Time-Controlled Operations Verification
utility (DFSTVER0)

Use the Time-Controlled Operations (TCO) Verification utility (DFSTVER0) to ensure that your TCO script
members are free from errors. If you run the utility before you execute any script member online, the
utility detects any script member that would be detected during online execution.

The utility generates reports for the following:

• Errors
• Statistics
• Timer elements (time-schedule requests)
• Messages
• Summaries

Exception: Errors caused by insufficient storage are not detected.

Subsections:

• “Restrictions” on page 587
• “Prerequisites” on page 587
• “Requirements” on page 587
• “Recommendations” on page 587
• “Input and output” on page 587
• “JCL specifications” on page 588
• “Return codes” on page 588

Restrictions

The following restrictions apply to this utility:

You must add TCO script members to the TCO script library before executing the DFSTVER0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSTVER0 utility.

Requirements

Currently, no requirements are documented for the DFSTVER0 utility.

Recommendations

Currently, no recommendations are documented for the DFSTVER0 utility.

Input and output
You can verify more than one member at a time by assigning an input control statement for each member
you are verifying.

© Copyright IBM Corp. 1974, 2020 587

JCL specifications

The TCO Verification utility is executed as a standard z/OS job. The following are required:

• A JOB statement defined by you
• An EXEC statement
• DD statements

EXEC statement

The region size for execution of the utility is acquired in 4 KB increments for time-schedule request sets
and message sets. Each run of the utility, therefore, causes 8 KB to be acquired. Each timing element uses
32 bytes of the 4 KB of storage. The amount of storage messages use varies, depending on the number
of segments you specify. In the example job, more time-schedule requests and messages could be added
without increasing the storage.

The EXEC statement must be in the form:

// EXEC PGM=DFSTVER0

DD statements

STEPLIB DD
Points to IMS.SDFSRESL, where the TCO modules reside.

SYSPRINT DD
Describes the output data set that contains the reports the utility generates.

SYSUDUMP
Defines the dump data set.

SYSIN DD
Describes the input control data set, which contains the 80-character control statements. The TCO
script member names you are verifying with the utility are in columns 1 through 8 of each statement.

The CONT keyword with its parameter can be used to change the size of a message segment; the
default segment continuation count is 9. The CONT parameter is a 1- or 2-digit number between 1 and
99 that indicates the new segment continuation count for that particular script.

DFSTCF DD
Points to IMS.TCFSLIB, where the TCO script members reside. You can name the data set TCFSLIB or
any other valid dsname.

Return codes

The TCO Verification utility returns a code that indicates the verification processing status. These return
codes are:

Code
Meaning

0
No error found in the scripts being verified. The five output reports are generated for each script.

4
Error in the CONT parameter that was specified on the verification JCL.

6
Syntax errors in the script.

588 IMS: System Utilities

8
One of the following errors occurred:

• Unable to get storage
• Unable to open SYSIN data set
• Unable to open SYSPRINT data set
• No DFSTCF DD statement in Verification JCL

10
Error in I/O.

12
Script member not found.

14
Unable to open the script members data set.

If a return code greater than zero is received from the utility, one or more of the scripts being verified has
errors.

The DFSTVER0 utility reports are issued for reports that have no errors. Only the error report is issued
for scripts that have errors. However, depending on the type of error, it is possible that no error report is
generated.

Examples of the DFSTVER0 utility
These examples show how to use the DFSTVER0 utility to create a sample script member, verify
members, and create reports.

Sample script member example

The following figure is a sample script member (DFSTCF10).

/BRO LTERM CTRL
DFSTCF10 LOADED. 00001500
*TIME DFSTXITB S **** 00001600
/ASS LTERM LOG27403 TO LINE 31 PTERM 1 ; 00001700
/START LINE 2 PTERM ALL; 00001800
/START LINE 26 PTERM ALL; 00001900
/START LINE 18 PTERM ALL; 00002000
/STA DB MSDBLM01,MSDBLM02,MSDBLM03,MSDBLM04,MSDBLM05; 00002100
/STA DB MSDBLM06,MSDBLM07,MSDBLM08; 00002200
*TIME DFSTXITB S **** 00002300
/START REGION MSDBMTX3; 00002400
/START REGION MSDBMTY3; 00002500
/START REGION MSDBMTZ1; 00002600
*TIME DFSTXITB S **** 00002700
PTERM01 BEGIN PTERM1; 00002800
PTERM03 BEGIN PTERM3; 00002900
/STOP REGION 1; 00003000
*TIME DFSTXITB S **** 00003100
DFSTCF LOAD DFSTCF1A; 00003200
*TIME DFSTXITB 0004 S **** 00003300
*TIME DFSTXTIB 0004 S **** 00003400
/*

Verification example

The following figure is an example of the TCO verification utility procedure of members DFSTCF01,
DFSTCF02, and DFSTCF10.

//*
//* THIS JCL IS USED TO VERIFY THE USER SUPPLIED SCRIPTS
//*
// EXEC PGM=DFSTVER0
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//DFSTCF DD DSN=IMS.TCFSLIB,DISP=SHR

Chapter 32. Time-Controlled Operations Verification utility (DFSTVER0) 589

//SYSIN DD *
DFSTCF01 CONT 5
DFSTCF02 CONT 20
DFSTCF10 (ONE OR MORE CARDS SPECIFYING MEMBER NAMES TO BE VERIFIED)
/*

In this case, the three script members DFSTCF01, DFSTCF02, and DFSTCF10 are in IMS.TCFSLIB, referred
to in the DFSTCF DD statement. The DFSTVER0 utility, DFSTVER0, is found in IMS.SDFSRESL, referred to
in the STEPLIB DD statement. The reports generated by the utility are sent to the device you assign for
class A output.

Error report example

The following figure is an example of an error report generated by the TCO Verification utility. In the
report, the statement sequenced 00003400 (in the DFSTCF10 script member) had a misspelled exit
routine name. This exit routine could not be found in the IMS.SDFSRESL library, so it is reported as
an error here. The statement is eliminated from the time-schedule request table, which is in the timer
elements report.

ERROR REPORT FOR MEMBER DFSTCF10

DFS3360E USER EXIT DFSTXTIB REQUESTED NOT FOUND, SEQUENCE NUMBER= 00003400

Statistics report example

The following figure shows an example of a statistics report generated by the TCO Verification utility. The
only exit routine specified by any time request statement (that was found in IMS.SDFSRESL) is DFSTXITB.

 STATISTICS REPORT FOR MEMBER DFSTCF10 PROGRAM EXITS REQUIRED IN IMS.SDFSRESL
DFSTXITB

Timer-elements report example

The following figure shows an example of a timer-elements report generated by the TCO Verification
utility.

 TIMER ELEMENTS REPORT

 TIME OF ACTIVATION EXIT CALLED ATTRIBUTES PARM

 STARTUP DFSTXITB RES **** MSG SET
 STARTUP DFSTXITB RES **** MSG SET
 STARTUP DFSTXITB RES **** MSG SET
 STARTUP DFSTXITB RES **** MSG SET
 0957 DFSTXITB RES SNGL **** MSG SET

The columns in the report are as follows:

Time of Activation
Indicates either STARTUP or the time request is to be processed if this is an actual run.

Exit Called
Indicates the exit to be called for this time request.

Attributes
The following attributes are possible:
RES

Indicates a resident exit routine.

590 IMS: System Utilities

DYN
Indicates a dynamically loaded exit routine.

CONT
Indicates execution each day at the same time.

SNGL
Indicates a single execution.

PARM
Indicates either ****MSG SET, which indicates a message set for this time request, or the 16 bytes of
data specified in columns 56 through 71 for this time request in the script member.

Message-table report example

The following figure is an example of a message-table report generated by the TCO Verification utility.
The report indicates that the DFSTCF10 script member has five message sets. The asterisk in column 1
indicates a new message. Each message set is separated by a blank line.

 MESSAGE TABLE REPORT

 EACH LINE IS A SEGMENT
 * IN COLUMN 1 SIGNIFIES START OF NEW MESSAGE
 * IN COLUMN 121 SIGNIFIES SEGMENT IS TRUNCATED

 */BRO LTERM CTRL
 DFSTCF10 LOADED.

 */ASS LTERM LOG27403 TO LINE 31 PTERM 1 ;
 */START LINE 2 PTERM ALL;
 */START LINE 26 PTERM ALL;
 */START LINE 18 PTERM ALL;
 */STA DB MSDBLM01,MSDBLM02,MSDBLM03,MSDBLM04,MSDBLM05;
 */STA DB MSDBLM06,MSDBLM07,MSDBLM08;

 */START REGION MSDBMTX3;
 */START REGION MSDBMTY3;
 */START REGION MSDBMTZ1;

 *PTERM01 BEGIN PTERM1;
 *PTERM03 BEGIN PTERM3;
 */STOP REGION 1;

 *DFSTCF LOAD DFSTCF1A;

A message set is composed of one or more messages. A message set is either single-segment or multi-
segment. In the sample report:

• The first message set is a single multi-segment message.
• The second, third, and fourth message sets are multiple single-segment messages.
• The last message set is a single single-segment message.

Summary report example

The following figure is an example of a summary report generated by the TCO Verification utility. The
summary report lists the number of time-schedule requests and the number of messages found in a script
member. It also summarizes the number of exit routines specified in the time-schedule requests in the
member being verified and the amount of storage used.

SUMMARY REPORT

ELEMENTS # MSGS #EXIT ROUTINES STORAGE SIZE
 00005 00014 00001 08324

Chapter 32. Time-Controlled Operations Verification utility (DFSTVER0) 591

592 IMS: System Utilities

Part 6. Dynamic resource definition utilities
Use the dynamic resource definition (DRD) utilities to perform tasks such as creating a resource definition
data set (RDDS), copying the contents from one RDDS into another RDDS or into an IMSRSC repository,
and reformatting data to create an RDDS.

© Copyright IBM Corp. 1974, 2020 593

594 IMS: System Utilities

Chapter 33. Repository to RDDS utility (CSLURP20)
Use the Repository to RDDS utility (CSLURP20) to generate a resource definition data set (RDDS) from
an IMSRSC repository. This utility can also be used for backup or migration, or to copy resource and
descriptor definitions from one repository to another repository.

The RDDS that is generated is a non-system RDDS that can be used to import the resource and descriptor
definitions to IMS with the IMPORT command. The resource and descriptor definitions in the generated
RDDS can also be used as input to RDDS utilities such as DFSURDD0.

Subsections:

• “Restrictions” on page 595
• “Prerequisites” on page 595
• “Requirements” on page 595
• “Recommendations” on page 595
• “Interfaces” on page 595
• “Input and output” on page 595
• “JCL specifications” on page 596
• “Utility control statements” on page 597
• “Return codes” on page 597

Restrictions

Currently, no restrictions are documented for the CSLURP20 utility.

Prerequisites

Currently, no prerequisites are documented for the CSLURP20 utility.

Requirements

This utility makes connections with Resource Manager (RM) and Structured Call Interface (SCI). An active
SCI region must be available on the z/OS image where the utility executes. An active RM region and SCI
region must be available on a z/OS image within the sysplex, but it does not have to be the same z/OS
image as where the utility executes.

The version of RM must be for IMS Version 12 or later, and it must be enabled for the repository.

Recommendations

Currently, no recommendations are documented for the CSLURP20 utility.

Interfaces
CSLURP20 is an offline batch utility that is started through standard JCL.

Input and output

© Copyright IBM Corp. 1974, 2020 595

The input to the CSLURP20 utility is a repository that contains the IMS resource and descriptor definitions
and the RDDS data set name.

The output from the CSLURP20 utility is a non-system RDDS that contains the resource and descriptor
definitions from the repository for the requested IMS system.

The resource and descriptor definitions are overwritten in the specified RDDS data set.

The specified RDDS is formatted before data is written to it, so any existing contents in the RDDS are
eventually overwritten. The RDDS is not formatted until all the stored resource definitions are read by the
utility from the repository. The RDDS header contains the system type information from the repository.

The utility output contains a summary section that lists the number of resource definitions that are
written from the repository.

Messages issued by the utility are written to the SYSPRINT data set. If there is an error in processing
the output definitions, an error reading from the repository, or an error writing to the RDDS, the utility
terminates with a return code 8.

Errors in the CSLURP20 utility are reported in the SYSPRINT data set with CSL26xxE messages.

JCL specifications

You must define a JOB statement, an EXEC statement, and DD statements that define the input and
output.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=CSLURP20

DD statements

JOBLIB / STEPLIB DD
Points to IMS.SDFSRESL, which contains the executable modules for the utility. Concatenated data
sets are not valid.

RDDSDSN DD
Defines the DSN for the RDDS to be used as output from the utility. This DD statement is required.
Only one DSN can be specified for the RDDS. Concatenated data sets are not valid.

SYSPRINT DD
Defines the data set to receive messages generated by the utility. This DD statement is required. The
DCB parameters for the SYSPRINT data set are RECFM=FB, LRECL=133.

SYSIN DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the SYSIN data set are RECFM=FB, LRECL=80.

For example:

//SYSIN DD *
IMSPLEX(NAME=PLEX1 IMSID(IMS1))

The format of the input parameters for the SYSIN DD statement is as follows:
IMSPLEX(NAME=  plxnm IMSID( imsx))

NAME=
Specifies the IMSplex that the CSLURP20 utility uses for RM and SCI registration. This value
is 1 - 5 characters that is appended to the characters CSL, forming the IMSplex name. The

596 IMS: System Utilities

value specified must be the same value specified for IMSPLEX= in the RM and SCI regions. This
parameter is required and non-repeatable.

IMSID()
Specifies the IMS ID with the resource and descriptor definitions that the CSLURP20 utility
reads from the repository. This parameter is 1 - 4 characters. This parameter is required and
non-repeatable.

Utility control statements

Currently, no utility control statements are documented for the CSLURP20 utility.

Return codes

Errors in the CSLURP20 utility are reported in the SYSPRINT data set with CSL26xxE messages. Upon
completion, the utility terminates with one of the following return codes:

Code
Meaning

0
The utility is completed successfully.

8
The utility encountered a terminating error.

Related concepts
IMSRSC repository administration (System Administration)
Overview of the IMSRSC repository (System Definition)
Maintaining your dynamic resource definition environment (System Definition)
Related tasks
Falling back from using the IMSRSC repository (System Definition)
Importing resource and descriptor definitions from an RDDS by using the IMPORT command (System
Definition)
Recovering IMSRSC repository data sets when one or more IMS systems are down but an RM system is
active (Operations and Automation)
Creating resource and descriptor definitions in the IMSRSC repository (System Definition)
Related reference
CSL messages (Messages and Codes)

Examples of the CSLURP20 utility
These examples show sample JCL for running the Repository to RDDS utility (CSLURP20), and a summary
report example.

JCL example

The following sample JCL can be used to run the CSLURP20 utility.

//RPO2RDDS JOB ,USER,CLASS=A,MSGCLASS=X,NOTIFY=USER
//JOBLIB DD DSN=IMSV12.RESLIB
//STEP1 EXEC PGM=CSLURP20
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//***/
//* SPECIFY A VALID RDDSDSN */
//***/
//RDDSDSN DD DSN=TEST.NONSYS.RDDS,DISP=OLD
//*
//***/

Chapter 33. Repository to RDDS utility (CSLURP20) 597

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/system_admin/ims_admin_repo.htm#ims_admin_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_maintainyourdynamicresourcedefinitionenvironment.htm#maintainyourdynamicresourcedefinitionenvironment
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_backing_out_changes_made_with_drdcmds_coldstart_repo.htm#deletingresourcescreatedwiththeimportcommand_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_importingresourceanddescriptordefinitionsusingtheimportcommand_rdds.htm#importingresourceanddescriptordefinitionsfromanrdds
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_importingresourceanddescriptordefinitionsusingtheimportcommand_rdds.htm#importingresourceanddescriptordefinitionsfromanrdds
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.oag/ims_recover_repo_datasets_ims_down_rm_active.htm#recover_repo_datasets_ims_down_rm_active
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.oag/ims_recover_repo_datasets_ims_down_rm_active.htm#recover_repo_datasets_ims_down_rm_active
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_create_resourcedefs_repo.htm#create_resourcedefs_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.mc/nondfs/ims_cslmsgs.htm#ims_cslmsgs

//* IMSID MUST BE SPECIFIED ON SYSIN
//***/
//SYSIN DD *
 IMSPLEX(NAME=PLEX1 IMSID(IMS1))
/*
//

Sample summary output

The following example shows summary output for the CSLURP20 utility:

Sample Output for CSLURP20

CSL2603I CSLURP20 IS PROCESSING RDDS TEST.NONSYS.RDDS
CSL2618I CSLURP20 IS PROCESSING PLEX=CSLPLEX1, IMSID LIST FROM SYSIN IMS1
CSL2620I CSLURP20 SUCCESSFUL REGISTRATION WITH RM, RMNAME=RM1RM
CSL2625I CSLURP20 WRITE TO RDDS SUCCESSFUL FOR RDDSDSN=TEST.NONSYS.RDDS
 FROM REPOTYPE=IMSRSC REPONAME=IMS_REPOS

 **** SUMMARY ****

DB COUNT : 828
DBDESC COUNT : 0
PGM COUNT : 599
PGMDESC COUNT : 0
RTC COUNT : 89
RTCDESC COUNT : 0
TRAN COUNT : 664
TRANDESC COUNT : 0

Related concepts
Overview of dynamic resource definition (System Definition)

598 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd

Chapter 34. RDDS to Repository utility (CSLURP10)
Use the RDDS to Repository utility (CSLURP10) to copy the contents of a resource definition data set
(RDDS) to an IMSRSC repository.

This utility can be used to initially populate or update the repository with resource and descriptor
definitions from an RDDS.

When the CSLURP10 utility copies the contents of an RDDS to a repository, resource validation is
performed in Resource Manager (RM) as follows:

• When a new transaction or routing code definition is added to the repository, resource validation
checking is done to ensure a definition for the associated program either exists in the repository or is
being added to the repository with the CSLURP10 utility.

• When an existing program, transaction, or routing code definition is updated in the repository, resource
validation checking is done to ensure the attributes being updated do not conflict with the attributes
of any associated resource definitions. For example, if a transaction is being modified to Fast Path
exclusive FP(E), a check is made to ensure that the associated program is defined as FP(E).

Subsections:

• “Restrictions” on page 599
• “Prerequisites” on page 599
• “Requirements” on page 599
• “Recommendations” on page 600
• “Interfaces” on page 600
• “Input and output” on page 600
• “JCL specifications” on page 600
• “Utility control statements” on page 601
• “Return codes” on page 601

Restrictions

Currently, no restrictions are documented for the CSLURP10 utility.

Prerequisites

Currently, no prerequisites are documented for the CSLURP10 utility.

Requirements

The RDDS can be either a system or non-system RDDS, but must contain a valid set of resource definitions
from a successful export operation or from one of the RDDS creation utilities.

This utility makes connections with RM and Structured Call Interface (SCI). An active SCI region must be
available on the z/OS image where the utility runs. An active RM region and SCI region must be available
on a z/OS image within the sysplex, but it does not have to be the same z/OS image as where the utility
runs.

The version of RM must be for IMS Version 12 or later, and it must be enabled for the repository.

© Copyright IBM Corp. 1974, 2020 599

Recommendations

Currently, no recommendations are documented for the CSLURP10 utility.

Interfaces
The CSLURP10 utility is started through standard JCL.

Input and output

The input to the CSLURP10 utility is a system or non-system RDDS that contains IMS resource and
descriptor definitions. The RDDS must contain valid data from a successful export operation or have been
produced by one of the RDDS creation utilities.

If a non-system RDDS was created by the Create RDDS from Log Records utility (DFSURCL0) with
EXPORTNEEDED to hold only the new or modified resources that were not exported to the IMSRSC
repository before IMS was shut down or terminated and IMS needs to cold start, you can specify that
non-system RDDS on the RDDS to Repository utility (CSLURP10) to write the definitions to the repository
before IMS is cold started.

The output from the CSLURP10 utility is a repository updated with resource definitions copied from the
input RDDS.

If there are duplicate resource definitions, which might exist in a non-system RDDS, only the last
definition found in the input RDDS are written to the repository.

The utility output contains a summary section that lists the number of resource definitions that are
written to the repository and the number of duplicates that are found that are not written to the
repository.

Messages issued by the utility are written to the SYSPRINT data set. If there is an error in processing the
input definitions, or an error writing to the repository, the utility terminates with a return code 8.

Errors in the CSLURP10 utility are reported in the SYSPRINT data set with CSL26xxE messages.

JCL specifications

You must define a JOB statement, an EXEC statement, and DD statements that define the input and
output.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=CSLURP10,MEMLIMIT=4G

DD statements

JOBLIB / STEPLIB DD
Points to IMS.SDFSRESL, which contains the executable modules for the utility. Concatenated data
sets are valid.

RDDSDSN DD
Defines the DSN for the RDDS to be used as input to the utility. This DD statement is required. Only
one DSN can be specified for the RDDS. Concatenated data sets are not valid.

600 IMS: System Utilities

SYSPRINT DD
Defines the data set to receive messages generated by the utility. This DD statement is required. The
DCB parameters for the SYSPRINT data set are RECFM=FB, LRECL=133.

SYSIN DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the SYSIN data set are RECFM=FB, LRECL=80.

For example:

//SYSIN DD *
IMSPLEX(NAME=PLEX1 IMSID(IMS1,IMS2))

The format of the input parameters for the SYSIN DD statement is as follows:

IMSPLEX(NAME=  plxnm IMSID(

,

 imsx))

NAME=
Specifies the IMSplex that the CSLURP10 utility uses for RM and SCI registration. This value
consists of 1 - 5 characters that are appended to the characters CSL, forming the IMSplex name.
The value specified must be the same value specified for IMSPLEX= in the RM and SCI regions.
This parameter is required and non-repeatable.

IMSID()
Specifies the IMS IDs that the CSLURP10 utility populates in the repository. This parameter is 1
- 4 characters and is repeatable. There can be up to 32 IMS IDs that can be specified. If no IMS
ID is specified on the SYSIN DD, CSLURP10 defaults to use the IMS ID in the RDDS header. This
parameter is optional.

The resource and descriptor definitions in the RDDS apply to the list of IMS IDs specified in the
IMSID keyword. All the IMS systems specified have the same resource and descriptor definitions
from the RDDS. If the RDDS is from an MSC system, and multiple IMS IDs are specified, all IMS
systems have the same SIDR and SIDL definitions. The IMS of the specified IMS ID does not
have to be active when the utility is used to export or write the definitions from the RDDS to the
repository.

Utility control statements

Currently, no utility control statements are documented for the CSLURP10 utility.

Return codes

Errors in the CSLURP10 utility are reported in the SYSPRINT data set with CSL26xxE messages. On
completion, the utility terminates with one of the following return codes:

Code
Meaning

0
The utility is completed successfully.

8
The utility encountered a terminating error. The returned CSL26xxE message provides details on the
error.

Related concepts
IMSRSC repository administration (System Administration)
Overview of the IMSRSC repository (System Definition)

Chapter 34. RDDS to Repository utility (CSLURP10) 601

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sag/system_admin/ims_admin_repo.htm#ims_admin_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview

Exporting MODBLKS resource and descriptor definitions to an IMSRSC repository (System Definition)
Maintaining your dynamic resource definition environment (System Definition)
Related tasks
Creating resource and descriptor definitions in the IMSRSC repository (System Definition)
Related reference
CSL messages (Messages and Codes)

Examples of the CSLURP10 utility
These examples show sample JCL for running the RDDS to Repository utility (CSLURP10), and a summary
report example.

JCL example

The following sample JCL can be used to run the CSLURP10 utility.

//RDDS2RPO JOB ,USER,CLASS=A,MSGCLASS=X,NOTIFY=USER
//JOBLIB DD DSN=IMSV12.RESLIB
//STEP1 EXEC PGM=CSLURP10,MEMLIMIT=4G
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//***/
//* SPECIFY A VALID RDDS DSN FOR INPUT. CONCATENATION IS NOT */
//* ALLOWED. */
//***/
//RDDSDSN DD DSN=TEST.IMS.RDDS,DISP=SHR
//*
//***/
//* IMSID MAY BE SPECIFIED ON SYSIN OR WILL DEFAULT TO THE */
//* IMSID ON THE RDDS HEADER RECORD. WHEN USING SYSIN, COMMA */
//* SEPERATED IMSIDS MAY BE SPECIFIED. */
//***/
//SYSIN DD *
 IMSPLEX(NAME=PLEX1 IMSID(IMS1))
/*
//

Sample summary output

The following example shows summary output for the CSLURP10 utility:

Sample Output for CSLURP10

CSL2603I CSLURP10 IS PROCESSING RDDS TEST.IMS.RDDS
CSL2618I CSLURP10 IS PROCESSING PLEX=CSLPLEX1, IMSID LIST FROM SYSIN, IMS1
CSL2620I CSLURP10 SUCCESSFUL REGISTRATION WITH RM, RMNAME=RM1RM
CSL2600I CSLURP10 WRITE TO REPOSITORY WAS SUCCESSFUL FOR REPOTYPE=IMSRSC , REPONAME=IMS_REPOS

 **** SUMMARY ****

DB COUNT : 828
DBDESC COUNT : 0
PGM COUNT : 599
PGMDESC COUNT : 0
RTC COUNT : 89
RTCDESC COUNT : 0
TRAN COUNT : 664
TRANDESC COUNT : 0
DB DUPLICATES: 0
DBDESC DUPLICATES: 0
PGM DUPLICATES: 0
PGMDESC DUPLICATES: 0
RTC DUPLICATES: 0
RTCDESC DUPLICATES: 0
TRAN DUPLICATES: 0
TRANDESC DUPLICATES: 0

602 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_exporting_resources_drd_repo.htm#exportingresourceanddescriptordefinitionstotheimsrepository
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_maintainyourdynamicresourcedefinitionenvironment.htm#maintainyourdynamicresourcedefinitionenvironment
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_create_resourcedefs_repo.htm#create_resourcedefs_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.mc/nondfs/ims_cslmsgs.htm#ims_cslmsgs

Related concepts
Overview of dynamic resource definition (System Definition)

Chapter 34. RDDS to Repository utility (CSLURP10) 603

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd

604 IMS: System Utilities

Chapter 35. Copy RDDS utility (DFSURCP0)
Use the Copy RDDS utility (DFSURCP0) to copy the contents of a resource definition data set (RDDS) into
another RDDS.

Control statements are read to supply the IMSID associated with the new RDDS. RDDS copy activities are
counted and included in a summary report.

At the beginning of RDDS creation by the DFSURCP0 utility, the RDDS header record is written with a
status indicating initialization. If the utility completes successfully, the header is updated to reflect that
the RDDS is good, and the time at which the copy was made.

If the IMSID control statement is specified, the RDDS header indicates this IMSID. If this control
statement is not specified, the IMSID is retained from the original source RDDS.

If the RETAINTIME control statement is specified, the RDDS header contains the time stamp from the
original source RDDS. If this control statement is not specified, the time stamp reflects the time at which
the copy was completed.

The JCL to complete these steps can be manually created, or the ISPF panel will automatically generate
them if the DFSURCP0 utility is invoked.

Subsections:

• “Restrictions” on page 605
• “Prerequisites” on page 605
• “Requirements” on page 605
• “Recommendations” on page 605
• “Input and output” on page 605
• “JCL specifications” on page 606
• “Utility control statements” on page 606
• “Return codes” on page 607

Restrictions

Currently, no restrictions are documented for the DFSURCP0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSURCP0 utility.

Requirements

Currently, no requirements are documented for the DFSURCP0 utility.

Recommendations

Currently, no recommendations are documented for the DFSURCP0 utility.

Input and output

© Copyright IBM Corp. 1974, 2020 605

The input to the DFSURCP0 utility is a preexisting RDDS (the RDDSIN DD statement). Control statements
are read from the CONTROL data set.

The new copy of the resource definition records are written to an RDDS data set (the RDDSDSN DD
statement). Messages issued by the utility are written to the SYSPRINT data set. A summary report is
written to the REPORT data set.

JCL specifications

The DFSURCP0 utility executes as a standard operating system job. You must define a JOB statement, an
EXEC statement, and DD statements that define the input and output.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=DFSURCP0

DD statements

JOBLIB / STEPLIB DD
Points to IMS.SDFSRESL, which contains the executable modules for the utility. Concatenated data
sets are allowed.

RDDSIN DD
Defines the source RDDS that is copied to the target RDDS. This DD statement is required.

RDDSDSN DD
Defines the target RDDS that receives the resource definition records from the source RDDS. This DD
statement is required. The DCB parameters for the RDDSDSN data set must be the same as those
from the RDDSIN DD statement source RDDS.

SYSPRINT DD
Defines the data set that receives messages generated by the utility. This DD statement is required.
The DCB parameters for the SYSPRINT data set are RECFM=FBA, LRECL=133. BLKSIZE must be
provided on this DD statement.

REPORT DD
Defines the data set that contains the summary report generated by the utility. This DD statement is
required. The DCB parameters for the REPORT data set are RECFM=FBA,LRECL=133. BLKSIZE must
be provided on this DD statement.

The summary report includes information such as:

• Images of control statements supplied to the utility
• The data set names associated with the RDDSIN and RDDSDSN DD statements
• Numbers of entries read from the RDDSIN DD statement

CONTROL DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the CONTROL data set are RECFM=FB, LRECL=80.

Utility control statements

IMSID
Specifies the name of the IMS subsystem associated with the RDDS data set generated by the utility.
The name is the 4-character ID that is associated with the IMS subsystem.

606 IMS: System Utilities

RETAINTIME
Indicates from where to obtain the time stamp in the RDDS header. If the RETAINTIME control
statement is specified, the RDDS header contains the time stamp from the original source RDDS. If
this control statement is not specified, the time stamp is the time when the copy was performed.

Return codes

The following return codes are produced:

Code
Meaning

0
The utility completed successfully.

8
The utility encountered a terminating error.

Related concepts
Overview of dynamic resource definition (System Definition)

Examples of the DFSURCP0 utility
These examples show sample JCL for running the DFSURCP0 utility, and a summary report example.

JCL example

The following sample JCL can be used to run the utility.

//job name JOB CLASS=J,MSGCLASS=A,MSGLEVEL=(1,1)
//JOBLIB DD DSN=[library data set name],DISP=SHR
//S1 EXEC PGM=DFSURCP0
//RDDSIN DD DSN=[RDDS source data set name],DISP=SHR
//RDDSDSN DD DSN=[RDDS target data set name],DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=[Volume name],
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VB)
//SYSPRINT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//REPORT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//CONTROL DD *
IMSID=imid
/*

Sample summary output

The following example shows a sample summary report and describes how to interpret the report.

* ***
* RDDS COPY / DFSURCP0 DATE: 2011/125 TIME: 23:05 PAGE: 1
* ***
*
* CONTROL: IMSID=SYS3
* CONTROL: RETAINTIME
*
* RDDS INPUT DATA SET NAME :
* IMSTESTL.IMS1.RDDS1
*
* RDDS OUTPUT DATA SET NAME:
* IMSTESTL.IMS1.RDDS2
*
* IMSID USED : SYS3
*
* RDDS COPY TIME . . : 2011.126 05:33:40.605599-UTC

Chapter 35. Copy RDDS utility (DFSURCP0) 607

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd

* RDDS BLKSIZE . . . : 32760
*
* **
* RDDS COPY INFORMATION SUMMARY
*
* TOTAL # OF NON COMMENT CONTROL STATEMENTS READ . . : 2
* TOTAL # OF RDDS RECORDS READ : 28
* TOTAL # OF RDDS RECORDS WRITTEN. : 28
* TOTAL # OF RDDS RECORDS UPDATED : 1
* **

608 IMS: System Utilities

Chapter 36. Create RDDS from Log Records utility
(DFSURCL0)

Use the Create RDDS from Log Records utility (DFSURCL0) to create a non-system resource definition
data set (RDDS) from checkpoint log records (X'40') and type-2 command records (X'22'). The non-
system RDDS can contain all the resource definitions in IMS or a subset of definitions if the STARTTIME,
STOPTIME, or EXPORTNEEDED parameter is specified.

Control statements are supplied to the IMSID associated with the RDDS, and the checkpoint ID
associated with the checkpoint log records is reformatted to create the RDDS.

A checkpoint begins with a X'4001' record (beginning of checkpoint) and ends with a X'4098' record (end
of checkpoint). Only complete checkpoints, where the concatenation of log data sets that contain both
of these records, are considered for processing. If the first checkpoint record encountered by the utility
is not a X'4001', all checkpoint records are ignored until the first X'4001' record is encountered. If a
checkpoint is explicitly selected by the CHKPTID control statement, but the X'4001' record is not present,
message DFS3997E is generated and the utility fails. The last checkpoint on a log data set is implicitly
selected if no CHKPTID control statement is supplied. If a checkpoint is explicitly or implicitly selected
and the X'4098' record for this checkpoint is not found, message DFS3991E is generated and the utility
fails.

Time ranges can be specified by STARTTIME and STOPTIME control statements to restrict the part of the
log data sets that is considered. If no time ranges are specified, processing begins with the first record in
the concatenated log data sets and ends with the last record in the log data sets.

The STARTTIME and STOPTIME parameters are not directly used to specify the checkpoint. They are used
as the boundaries of the concatenated log data sets from which checkpoint and type-2 command log
records are evaluated. STARTTIME and STOPTIME are specified as Coordinated Universal Time (UTC), and
are converted to STCK values. These STCK values do not have to be specified exactly, time stamps are
padded to the correct level of precision.

The EXPORTNEEDED parameter can be specified to generate an RDDS with only the resource definitions
in the IMS log that have not been exported to the IMSRSC repository.

Definitions for the following resources and descriptors are not written to the RDDS:

• IMS-defined resources and descriptors
• HALDB partitions
• CPIC transactions
• IMS resources created by the DFSINSX0 exit routine that were not created with the export option

The header record and RDDS-formatted records are written to the RDDS data set. Lists of resources,
descriptors, and activities performed during the creation of the RDDS are counted and included in a
summary report.

At the beginning of RDDS creation by the DFSURCL0 utility, the header record is written with an
RDDHD_RDDSTAT value of INIT. If the utility completes successfully, the header is updated to contain
an RDDHD_RDDSTAT value of GOOD. If a STOPTIME parameter is specified, the value for RDDS_STCKE
reflects that value. Otherwise, the RDDS_STCKE value reflects the Store Time Clock (STCK) value for the
last log record that added to the RDDS.

Subsections:

• “Restrictions” on page 610
• “Prerequisites” on page 610
• “Requirements” on page 610
• “Recommendations” on page 610

© Copyright IBM Corp. 1974, 2020 609

• “Input and output” on page 611
• “JCL specifications” on page 611
• “Utility control statements” on page 612
• “Return codes” on page 613

Restrictions

Currently, no restrictions are documented for the DFSURCL0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSURCL0 utility.

Requirements

Currently, no requirements are documented for the DFSURCL0 utility.

Recommendations

• Often, a checkpoint does not need to be specified. If one is not specified, the utility selects the last
checkpoint in the concatenation of logs.

• If you want to find a specific checkpoint, use the CHKPTID parameter. The CHKPTID value is specified in
the format YYDDD/HHMMSS.

• When the STARTTIME and STOPTIME parameters are used, the range of log records to be evaluated is
smaller. Use the same checkpoint processing.

• For most processing, the STARTTIME and STOPTIME parameters are not required. The parameters
might be useful in the following situations:

– The STARTTIME parameter might be useful if you have concatenated large log data sets, or multiple
log data sets, and want to expedite processing so that the utility can skip data. The parameter is also
useful if the explicit checkpoint ID is unknown, but the time before when the checkpoint occurred is
known.

– The STOPTIME parameter might be useful if you want to exclude some X'22' records that occur after
the selected checkpoint.

Recommendation: When the EXPORTNEEDED parameter is specified, do not specify STARTTIME or
STOPTIME so that all the resource definitions that have not been exported to the IMSRSC repository can
be written to the RDDS.

The value specified by the STARTTIME and STOPTIME parameters must be based on STCK values from
the suffixes of log records. Do not use time values from the log records other than the suffix STCK because
other time values might differ based on their usage, or due to adjustment for leap seconds.

To determine appropriate STCK values, format log records by using the DFSERA30 module or use an
equivalent log formatting utility to display STCK values.

The following example shows how output from the DFSERA30 module can be used to determine the STCK
value.

DFSERA30 - FORMATTED LOG PRINT
22 RECORD - 2008-06-25 20:25:04.339239 UTC <-- STCK value
00000000 000000 00F80000 2208C023 C3D9C540 40404040
00000020 000020 00000000 2008177F 20253133 8995028D
00000040 000040 00000000 00000000 000000A0 00000008
00000060 000060 00000000 00000060 00000000 00000000

610 IMS: System Utilities

00000080 000080 8CF8C000 000A0700 00FF0000 00020000
000000A0 0000A0 00000000 00000000 00000000 00000000

When you specify the EXPORTNEEDED control statement on the Create RDDS from Log Records utility
(DFSURCL0), it is recommended that you run the same version of the DFSURCL0 utility as the version of
the IMS that produced the IMS logs being used as input. For example, use the IMS 14 DFSURCL0 utility
with IMS 14 log data sets. Otherwise, the results can be unpredictable.

Input and output

The input to the DFSURCL0 utility is the IMS log, which contains the log records that are used to create
the data in the RDDS. Control statements are read from the CONTROL data set (specified by the CONTROL
DD statement).

The DFSURCL0 utility converts the contents of the checkpoint log records (X'4004', X'4006', X'4007',
and X'4083') and type-2 command records (X'2208', X'2205', X'2206' and X'2207') into RDDS-formatted
records for the corresponding transaction, database, program, and routing code resources. A header and
the resource records are written to the RDDS data set (RDDSDSN DD statement). Messages issued by the
utility are written to the SYSPRINT data set. A summary report is written to the REPORT data set.

JCL specifications

The DFSURCL0 utility runs as a standard operating system job. You must define a JOB statement, an EXEC
statement, and DD statements.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=DFSURCL0

DD statements

JOBLIB / STEPLIB DD
Points to the IMS.SDFSRESL data set, which contains the executable modules for the utility.
Concatenated data sets are allowed.

SYSUT1 DD
Defines the IMS log data sets that are used as input to the utility. This DD statement is required.
Concatenated data sets are allowed.

RDDSDSN DD
Defines the RDDS that receives the resource definition records generated by the utility. This
DD statement is required. The DCB parameters for the RDDSDSN data set are LRECL=32756,
BLKSIZE=32760, and RECFM=VB.

WORKFILE DD
Defines the data set that holds intermediate report details until they are chosen for printing in the
REPORT DD statement. This DD statement is required. The DCB parameters for the WORKFILE data
set are RECFM=FBA, LRECL=133.

REPORT DD
Defines the data set that receives messages generated by the utility. This DD statement is required.
The DCB parameters for the REPORT data set are RECFM=FBA, LRECL=133.

CONTROL DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the CONTROL data set are RECFM=FB, LRECL=80.

Chapter 36. Create RDDS from Log Records utility (DFSURCL0) 611

Utility control statements

IMSID
Specifies the name of the IMS subsystem that is associated with the RDDS generated by the utility.
The value associated with this parameter is the 4-character ID associated with the IMS subsystem.
This parameter is optional. If this parameter is omitted, the IMSID is extracted from the X'4001'
checkpoint record.

CHKPTID
Selects the checkpoint that is used as the base for creating the RDDS data set. The checkpoint
records associated with this checkpoint ID are processed, and all subsequent X'22' records that
follow this checkpoint are processed until the next checkpoint ID, STOPTIME specification, or end of
log. This parameter is optional. If it is omitted, the last checkpoint ID that occurs in the log is used.

Values for checkpoint IDs can be found in multiple places, including:

• DFS3804I LATEST RESTART CHKPT messages in the IMS system log are produced each time IMS
takes a checkpoint. Extract the checkpoint ID from this message, the syntax for the CHKPTID
parameter matches the format of the checkpoint ID in the message

• X'4001' checkpoint records, where the checkpoint ID appears at offset X'0C'.

EXPORTNEEDED
Specifies that a non-system RDDS data set be created from the IMS log and any X'22' log records in
the IMS log for any resource definitions that have not yet been exported to the IMSRSC repository.

You can use the output non-system RDDS for one of the following purposes:

• It can be used on the CSLURP10 utility to write the definitions to the IMSRSC repository before an
IMS cold start.

• It can be specified on the IMPORT command after an IMS cold start from the IMSRSC repository.

If STARTTIME, STOPTIME, or both, are specified with the EXPORTNEEDED control statement, a non-
system RDDS is created with only the resource definitions that need to be exported to the repository
and also have a create or update time in the specified range of STARTTIME and STOPTIME.

The output non-system RDDS might not contain all the resource definitions in the IMS log and
therefore cannot be used for an IMS cold start.

In the case of an error of IMS terminating abnormally after an EXPORT command successfully wrote
resource definitions to the IMS but IMS did not take a system checkpoint, the resource definitions will
remain marked in the IMS log as need to be exported. In this scenario, if IMS must be cold started
and the DFSURCL0 utility with EXPORTNEEDED is issued, the RDDS that is generated by the utility will
contain the resource definitions from the last successful EXPORT command. Here is a timeline of the
scenario:

1. You create or update resources and descriptors.
2. You take an IMS checkpoint. Resources that were created in the previous step are written to the

IMS log with the "export needed" indicator.
3. You update some more resource definitions.
4. You export resource and descriptor definitions from IMS to the IMSRSC repository by using the

command EXPORT DEFN TARGET(REPO) OPTION(CHANGESONLY). All resources that were
created or modified in steps “1” on page 612 and “3” on page 612 are written to the repository.

5. IMS ends abnormally before another checkpoint is taken.
6. You run the DFSURCL0 utility with the EXPORTNEEDED control statement. An RDDS is created

from the IMS checkpoint in the log at step “2” on page 612 and log records at step “3” on page
612. The resources that have been exported at step “4” on page 612 will still exist in the RDDS
created by DFSURCL0.

7. To ensure that there have not been any changes after step “5” on page 612 because IMS had
to cold start, you must use the RDDS from step “6” on page 612 to ensure that the resource

612 IMS: System Utilities

definitions in the repository match the resource definitions in the IMS system before it ended
abnormally and had to cold start.

NODETAIL
Indicates that the names of the resources modified by data in the X'22' records and are not included
in the summary reports. This parameter is optional. If this parameter is omitted, the names of all the
modified resources are included in the report.

STARTTIME
Specifies the time stamp that is used to determine where on the log to begin processing. The STCK in
the suffix of the log records is used to determine the time on the record. Log records with an earlier
time stamp are ignored. Processing begins with the next begin checkpoint record (X'4001') following
the STARTTIME specification. If the time stamp occurs in the middle of a checkpoint (after the begin
checkpoint record), all subsequent checkpoint records and X'22' records are ignored until the next
begin checkpoint record is encountered.

This parameter is optional. If it is omitted, processing begins with the first record in the log. Specify
this parameter only if there is a specific reason you want to ignore records before the specified start
time.

If both the CHKPTID and STARTTIME parameters are specified, and the STARTTIME specifies a
time subsequent to the begin checkpoint record for the specified CHKPTID statement, the indicated
checkpoint is not found, and processing terminates with return code 8.

The format of the STARTTIME parameter is a 16-character string: YYYYDDDHHMMSSTHM. The
STARTTIME value must be specified in UTC. If the data is fewer than 16 characters, it is padded
on the right with zeros.

STOPTIME
Specifies the time stamp that is used to determine where on the log to stop processing. The STCK
value in the suffix of the log records is used to determine the time on the record. Log records with a
later time stamp are ignored. This parameter is optional. If it is omitted, the processing continues until
the last record contained in the log.
The format of the STOPTIME parameter is a 16-character string: YYYYDDDHHMMSSTHM. The
STOPTIME value must be specified in UTC. If the data is fewer than 16 characters, padding on the
right occurs:

• Any omitted values in HHMMSS are padded, as appropriate, from the value ‘235959'.
• Any other positions are padded with nines.

Return codes

The following return codes are produced:

Code
Meaning

0
The utility completed successfully.

8
The utility encountered a terminating error.

Related concepts
Overview of dynamic resource definition (System Definition)
Related tasks
Recovering IMSRSC repository data sets when one or more IMS systems are down but an RM system is
active (Operations and Automation)

Chapter 36. Create RDDS from Log Records utility (DFSURCL0) 613

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.oag/ims_recover_repo_datasets_ims_down_rm_active.htm#recover_repo_datasets_ims_down_rm_active
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.oag/ims_recover_repo_datasets_ims_down_rm_active.htm#recover_repo_datasets_ims_down_rm_active

Examples of the DFSURCL0 utility
These examples show sample JCL for running the DFSURCL0 utility and a summary report example.

JCL example

The following sample JCL can be used to run the utility:

//job name JOB CLASS=J,MSGCLASS=A,MSGLEVEL=(1,1)
//JOBLIB DD DSN=[library data set name],DISP=SHR
//S1 EXEC PGM=DFSURCL0
//SYSUT1 DD DSN=[Log data set name(s)],DISP=SHR
//RDDSDSN DD DSN=[RDDS data set name],DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=[Volume name],
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VB)
//WORKFILE DD DSN=[Workfile data set name),DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=[Volume name],
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//REPORT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//CONTROL DD *
IMSID=imid
CHKPTID=yyddd/hhmmss
EXPORTNEEDED
/*
//

Summary report example

The following example shows a sample summary report and describes how to interpret the report.

* ***
* RDDS CREATION / DFSURCL0 DATE: 2011/126 TIME: 11:48 PAGE: 1
* ***
*
* CONTROL: IMSID=SYS3
* CONTROL: CHKPTID=11126/113514
*
*
* RDDS DATA SET NAME:
* IMSTESTL.IMS1.RDDS2
*
* INPUT LOG DATA SET NAME(S):
* IMSTESTL.IMS01.OLDSP0
*
* ***
* RDDS CREATION UTILITY INFORMATION SUMMARY
*
* LIST OF CHKPTIDS CONTAINED ON LOG:
* CHKPTID: 11126/113514
* RDDS DATASET BUILT FROM CHKPTID: 11126/113514
* CREATED DB DBX
* CREATED DB DBY
* CREATED DB DBZ
* CREATED PGM PGMX
* CREATED PGM PGMY
* UPDATED PGM PGMY
* CREATED TRAN TRANX
* CREATED TRAN TRANY
* DELETED TRAN TRANY
* CREATED RTC RTCX
* CREATED RTC RTCY
* UPDATED RTC RTCX
* CHKPTID: 11126/114444
*
* IMSID USED: SYS3

614 IMS: System Utilities

*
*
* TIME STAMP ON FIRST LOG RECORD : 2011126183457995
* TIME STAMP ON LAST LOG RECORD: 2011126184444866
*
* TOTAL # OF NON COMMENT CONTROL RECORDS READ: 2
* TOTAL # OF LOG RECORDS READ: 703
* TOTAL # OF LOG RECORDS SKIPPED.: 0
*
* SUPPLIED CHKPTID: 11126/113514 WAS FOUND ON LOG AND PROCESSED
* STATISTICS FOR THIS CHKPTID:
*
* TRANSACTION MODEL : DFSDSTR1
* DATABASE MODEL : DFSDSDB1
* PGM MODEL : DFSDSPG1
* ROUTE CODE MODEL : DBFDSRT1
*
* RESULT OF PROCESSING CHECKPOINT AND TYPE-2 COMMAND RECORDS:
* TOTAL # OF TRAN RSC DEFS READ FROM CHKP RECS: 668
* TOTAL # OF TRAN RSC DEFS CREATED FROM X22 RECS: 2
* TOTAL # OF TRAN RSC DEFS UPDATED FROM X22 RECS: 0
* TOTAL # OF TRAN RSC DEFS DELETED FROM X22 RECS: 1
* TOTAL # OF TRAN RSC DEFS NOT EXPORTED FROM RECORDS . .: 0
* TOTAL # OF TRAN RSC DEFS WRITTEN TO RDDS: 669
*
* TOTAL # OF TRAN DESC DEFS READ FROM CHKP RECS: 1
* TOTAL # OF TRAN DESC DEFS CREATED FROM X22 RECS: 0
* TOTAL # OF TRAN DESC DEFS UPDATED FROM X22 RECS: 0
* TOTAL # OF TRAN DESC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF TRAN DESC DEFS NOT EXPORTED FROM RECORDS . .: 1
* TOTAL # OF TRAN DESC DEFS WRITTEN TO RDDS: 0
*
* TOTAL # OF DB RSC DEFS READ FROM CHKP RECS: 836
* TOTAL # OF DB RSC DEFS CREATED FROM X22 RECS: 3
* TOTAL # OF DB RSC DEFS UPDATED FROM X22 RECS: 0
* TOTAL # OF DB RSC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF DB RSC DEFS NOT EXPORTED FROM RECORDS . .: 0
* TOTAL # OF DB RSC DEFS WRITTEN TO RDDS: 839
*
* TOTAL # OF DB DESC DEFS READ FROM CHKP RECS: 1
* TOTAL # OF DB DESC DEFS CREATED FROM X22 RECS: 0
* TOTAL # OF DB DESC DEFS UPDATED FROM X22 RECS: 0
* TOTAL # OF DB DESC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF DB DESC DEFS NOT EXPORTED FROM RECORDS . .: 1
* TOTAL # OF DB DESC DEFS WRITTEN TO RDDS: 0
*
* TOTAL # OF PGM RSC DEFS READ FROM CHKP RECS: 605
* TOTAL # OF PGM RSC DEFS CREATED FROM X22 RECS: 2
* TOTAL # OF PGM RSC DEFS UPDATED FROM X22 RECS: 1
* TOTAL # OF PGM RSC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF PGM RSC DEFS NOT EXPORTED FROM RECORDS . .: 1
* TOTAL # OF PGM RSC DEFS WRITTEN TO RDDS: 606
*
* TOTAL # OF PGM DESC DEFS READ FROM CHKP RECS: 1
* TOTAL # OF PGM DESC DEFS CREATED FROM X22 RECS: 0
* TOTAL # OF PGM DESC DEFS UPDATED FROM X22 RECS: 0
* TOTAL # OF PGM DESC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF PGM DESC DEFS NOT EXPORTED FROM RECORDS . .: 1
* TOTAL # OF PGM DESC DEFS WRITTEN TO RDDS: 0
*
* TOTAL # OF RTC RSC DEFS READ FROM CHKP RECS: 94
* TOTAL # OF RTC RSC DEFS CREATED FROM X22 RECS: 2
* TOTAL # OF RTC RSC DEFS UPDATED FROM X22 RECS: 1
* TOTAL # OF RTC RSC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF RTC RSC DEFS NOT EXPORTED FROM RECORDS . .: 0
* TOTAL # OF RTC RSC DEFS WRITTEN TO RDDS: 96
*
* TOTAL # OF RTC DESC DEFS READ FROM CHKP RECS: 1
* TOTAL # OF RTC DESC DEFS CREATED FROM X22 RECS: 0
* TOTAL # OF RTC DESC DEFS UPDATED FROM X22 RECS: 0
* TOTAL # OF RTC DESC DEFS DELETED FROM X22 RECS: 0
* TOTAL # OF RTC DESC DEFS NOT EXPORTED FROM RECORDS . .: 1

Chapter 36. Create RDDS from Log Records utility (DFSURCL0) 615

* TOTAL # OF RTC DESC DEFS WRITTEN TO RDDS: 0
*
* TOTAL # OF RDDSDSN RECORDS WRITTEN : 217
* TOTAL # OF RESOURCE DETAIL LINES WRITTEN : 12
*
* CHECKPOINT LOG RECORDS:
* TOTAL # OF X4001 LOG RECORDS READ: 1
*
* SIZE OF X4004 RECORDS (BYTES): 3944
* TOTAL # OF X4004 LOG RECORDS READ: 43
* TOTAL # OF RESOURCE X4004 LOG RECORDS CREATED: 1
* TOTAL # OF DESCRIPTOR X4004 LOG RECORDS CREATED: 0
* TOTAL # OF X4004 LOG RECORDS DISCARDED : 1
* TOTAL # OF TRAN/(SMB) RECORDS WRITTEN: 43
*
* SIZE OF X4006 RECORDS (BYTES): 928
* TOTAL # OF X4006 LOG RECORDS READ: 106
* TOTAL # OF RESOURCE X4006 LOG RECORDS CREATED: 1
* TOTAL # OF DESCRIPTOR X4006 LOG RECORDS CREATED: 0
* TOTAL # OF X4006 LOG RECORDS DISCARDED : 1
* TOTAL # OF DB/(DDIR) RECORDS WRITTEN : 106
*
* SIZE OF X4007 RECORDS (BYTES): 964
* TOTAL # OF X4007 LOG RECORDS READ: 56
* TOTAL # OF RESOURCE X4007 LOG RECORDS CREATED: 1
* TOTAL # OF DESCRIPTOR X4007 LOG RECORDS CREATED: 0
* TOTAL # OF X4007 LOG RECORDS DISCARDED : 1
* TOTAL # OF PGM/(PDIR) RECORDS WRITTEN: 56
*
* SIZE OF X4083 RECORDS (BYTES): 1016
* TOTAL # OF X4083 LOG RECORDS READ: 10
* TOTAL # OF RESOURCE X4083 LOG RECORDS CREATED: 1
* TOTAL # OF DESCRIPTOR X4083 LOG RECORDS CREATED: 0
* TOTAL # OF X4083 LOG RECORDS DISCARDED : 1
* TOTAL # OF RTC/(RCTE) RECORDS WRITTEN: 10
*
* TOTAL # OF X4098 LOG RECORDS READ: 1
*
* TYPE-2 COMMAND LOG RECORDS:
* TOTAL # OF X22 LOG RECORDS READ: 12
* TOTAL # OF X2202 (DB UPD ACTCTYPE) RECS: 0
* TOTAL # OF X2205 (DB) RECORDS READ : 3
* TOTAL # OF X2206 (PGM) RECORDS READ: 3
* TOTAL # OF X2207 (RTC) RECORDS READ: 3
* TOTAL # OF X2208 (TRAN) RECORDS READ : 3
* TOTAL # OF X22 IMPORT RECORDS READ : 0
* TOTAL # OF IMPORT (DB) RECORDS READ : 0
* TOTAL # OF IMPORT (PGM) RECORDS READ : 0
* TOTAL # OF IMPORT (RTC) RECORDS READ : 0
* TOTAL # OF IMPORT (TRAN) RECORDS READ: 0
* TOTAL # OF OTHER X22 RECORDS READ: 0
*
* OTHER STATISTICS:
* TOTAL # OF X45FF LOG RECORDS READ: 2
*
* ***

In the summary report example:

• A control statement that contains keyword CHKPTID=11126/113514 is supplied to specify the
processed checkpoint.

• The subject log data set is identified.
• The log contained checkpoint 11126/113514 which was used to build the RDDS. The specific resources

that were created, updated, or deleted based upon the type-2 command log records are identified.
• The IMSID associated with the log was identified as SYS3.
• The time stamps on the first and last log records read are indicated.
• One control statement was read to direct utility processing.

616 IMS: System Utilities

• 703 log records were read.
• The checkpoint ID specified by the CHKPTID control statement was found on the log and was

processed.
• For the indicated checkpoint ID, a breakdown of the significant checkpoint records and their attributes

is presented:

– One X'4001' record was read.
– For the X'4004', X'4006', X'4007' and X'4083' records, respectively:

- The size of the records was indicated.
- The number of records read was indicated.
- The number of potential RDDS records created to contain new resources, based on data extracted

from type-2 command log records, was indicated.
- The number of potential RDDS records discarded from evaluation was indicated. Records are

discarded because:

• They contain only IMS internally defined resources and descriptors.
• All of the resources contained on the records were deleted as a result of processing type-2

command log records.
- The number of RDDS records written for the indicated resource type.

• One X'4098' record was read.
• Statistics related to the type-2 command records were presented:

– A total of 12 type-2 command log records were read.
– Based on data contained in the X'2205', X'2206', X'2207' and X'2208' resource records, respectively,

the following statistics were indicated:

- Number of records read
- Total number of resources written to the RDDS
- Number of resources created
- Number of resources updated
- Number of resources deleted

• Two X'45FF' records (system statistics records) were read.
• 217 records were written to the RDDS (identified by the RDDSDSN DD statement).
• 12 lines identifying the resources created, updated, and deleted were written to the summary report.

Chapter 36. Create RDDS from Log Records utility (DFSURCL0) 617

618 IMS: System Utilities

Chapter 37. Create RDDS from MODBLKS utility
(DFSURCM0)

Use the Create RDDS from MODBLKS utility (DFSURCM0) to extract data from the MODBLKS data set and
to reformat the data to create an RDDS.

Control statements are read to identify the IMSID associated with the resource definition data set (RDDS)
and the suffix associated with the MODBLKS members. Data from the DFSSMBx, DFSDDIRx, DFSPDIRx,
and DFSRCTEx MODBLKS PDS members is formatted for loading into the RDDS. An RDDS header record is
created. The header record and checkpoint-like records are written to the RDDS. RDDS creation activities
are counted and included in a summary report.

If a transaction has an edit routine assigned to it, for example by the EDIT parameter on the TRANSACT
macro, the DFSURCM0 utility identifies the routine by:

• Using a cross-reference file of transaction ID and edit routines created by the DFSURST0 utility
• Extracting information from the IMS nucleus module

Under certain situations, not all IMS subsystems contain all of the MODBLKS member types:

• SMB blocks are evaluated only for DB DC / DCCTL and are required.
• DDIR blocks are evaluated only for DB DC / DBCTL and are required.
• PDIR blocks are evaluated for all system types and are required.
• RCTE blocks are evaluated only for DB DC / DCCTL, but are found only on those systems that support

Fast Path.

The nucleus module (DFSVNUCx) is extracted from one of the following three sources, in the following
search order:

• SDFSRESL DD statement

An optional statement that identifies the IMS.SDFSRESL data set that contains the target nucleus if the
executable for running the DFSURCM0 utility is in the linklist, such that the JOBLIB and STEPLIB DD
statements are not coded in the JCL stream or the subject nucleus is contained in an IMS.SDFSRESL
data set other than the one specified in the JOBLIB or STEPLIB DD statements.

• STEPLIB DD statement

Identifies the IMS.SDFSRESL data set that contains the executable for the DFSURCM0 utility STEPLIB
DD statement.

• JOBLIB DD statement

Identifies the IMS.SDFSRESL data set that contains the executable for the DFSURCM0 utility.

If both the STEPLIB and JOBLIB DD statements are specified, STEPLIB overrides JOBLIB, and the
contents of STEPLIB are evaluated.

At the beginning of RDDS creation, the header record is written with an RDDHD_RDDSTAT value of INIT. If
the utility completes successfully, the header is updated to contain an RDDHD_RDDSTAT value of GOOD,
and the RDDS STCKE value is updated so that it reflects the run time of the utility.

The DFSURCM0 utility can be used to generate an RDDS from system generation macros by adding the
following preliminary steps:

• Pre-parse stage 1 to modify parameters and extract subsystem information using the DFSURST0 utility
• Perform a stage 1 IMS MODBLKS generation from IMS system macros to create stage 2
• Allocate work data sets (OBJLIB, MODBLKS)
• Edit stage 2 JCL to reference the work data sets allocated
• Run the generated stage 2 to create a MODBLKS-like data set

© Copyright IBM Corp. 1974, 2020 619

• Use the MODBLKS-like data set as input to DFSURCM0

The JCL statements that perform these steps can be manually created, or are automatically generated
when the "Create RDDS from MODBLKS" ISPF panel is invoked.

You can also use this utility to generate CREATE commands from MODBLKS or system generation macros
by completing the following tasks:

• Create an RDDS data set from MODBLKS or system generation macros.
• Use the RDDS Extraction utility to generate CREATE commands, using the created RDDS and the

OUTPUT=CMD control statement as input to the utility.

Subsections:

• “Restrictions” on page 620
• “Prerequisites” on page 620
• “Requirements” on page 620
• “Recommendations” on page 620
• “Input and output” on page 620
• “JCL specifications” on page 620
• “Utility control statements” on page 621
• “Return codes” on page 622

Restrictions

Currently, no restrictions are documented for the DFSURCM0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSURCM0 utility.

Requirements

Currently, no requirements are documented for the DFSURCM0 utility.

Recommendations

Currently, no recommendations are documented for the DFSURCM0 utility.

Input and output

The input to the DFSURCM0 utility is a MODBLKS or MODBLKS-like data set, with members that contain
lists of SMB, DDIR, PDIR, and RCTE resources. Control statements are read from the CONTROL data set.

The DFSURCM0 utility takes the resource definitions in the MODBLKS data set, converts them to the
definition format supported by the RDDS, and saves the new definitions in an RDDS. A header and the
resource definition records are written to an RDDS (specified by the RDDSDSN DD statement). Messages
issued by the utility are written to the SYSPRINT data set. A summary report is written to the REPORT
data set.

JCL specifications

620 IMS: System Utilities

The DFSURCM0 utility executes as a standard operating system job. You must define a JOB statement, an
EXEC statement, and DD statements that define the input and output.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=DFSURCM0

DD statements

JOBLIB / STEPLIB DD
Points to the IMS.SDFSRESL data set, which contains the executable modules for the utility. The data
set also contains the nucleus module DFSVNUCx, from which the names for any transaction input edit
routines are extracted. Concatenated data sets are allowed.

SDFSRESL DD
Points to the IMS.SDFSRESL data set, which contains the nucleus module DFSVNUCx, from which the
names for any transaction input edit routines are extracted. The data set might be the same data
set as that is referenced by the JOBLIB or STEPLIB DD statements. The IMS.SDFSRESL data set is
an optional data set. If it is omitted, the nucleus module is obtained from the JOBLIB or STEPLIB
DD. Only supply this DD statement if the IMS.SDFSRESL data set indicated is different from the one
supplied by the JOBLIB or STEPLIB DD statements, or if the executable modules for the DFSURCM0
utility are obtained from the linklist, in which case JOBLIB and STEPLIB DD statements are not
supplied.

MODBLKS DD
Defines the MODBLKS data set that is used as input to the utility. This DD statement is required.
Concatenated data sets are allowed.

RDDSDSN DD
Defines the RDDS that receives the resource definition records generated by the utility. This
DD statement is required. The DCB parameters for the RDDSDSN data set are LRECL=32756,
BLKSIZE=32760, RECFM=VB.

SYSPRINT DD
Defines the data set that receives messages generated by the utility. This DD statement is required.
The DCB parameters for the SYSPRINT data set are RECFM=FBA, LRECL=133. BLKSIZE must be
provided on this DD statement.

REPORT DD
Defines the data set that contains the summary report generated by the utility. This DD statement is
required. The DCB parameters for the REPORT data set are RECFM=FBA, LRECL=133. BLKSIZE must
be provided on this DD statement.

The summary report includes features and statistics such as:

• Images of control statements supplied to the utility
• Names and sizes of the MODBLKS data set member for each resource type
• Numbers of entries read from the MODBLKS data set for each resource type
• Numbers of records and resources written to the RDDS for each resource type

CONTROL DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the CONTROL data set are RECFM=FB, LRECL=80.

Utility control statements

Chapter 37. Create RDDS from MODBLKS utility (DFSURCM0) 621

The following control statements can be specified explicitly, or if the DFSURST0 utility is run before
running the DFSURCM0 utility, the control statements generated by DFSURST0 can be used as input to
DFURCM0.

If you want to use the control statements generated by DFSURST0, concatenate the data set indicated
by the OUTPARMS DD statement in the DFSURST0 JCL as the CONTROL DD statement in the DFSURCM0
utility JCL.

IMSID
Specifies the name of the IMS subsystem that is associated with the RDDS data set generated by
the utility. The value associated with this parameter is the 4-character ID associated with the IMS
subsystem.

SYSTYPE
Specifies a 1- to 4-character value for the type of IMS subsystem for which the RDDS is used. This
parameter is optional. The SYSTYPE default value is DBDC.

Valid SYSTYPE values are:

DBDC
DB/DC system

DB
DBCTL system

DC
DCCTL system

SUFFIX
Specifies a 1-character value for the suffix that is associated with the members in the MODBLKS data
set. This parameter can be abbreviated as SUF. This parameter is optional. The SUFFIX default value
is 0.

EDITRTN
Specifies a pairing of a transaction ID with the edit routine that is associated with it. Values occur
in pairs, with the value for transaction ID and edit routine name separated by a comma, with
no intervening spaces. This parameter is optional. For all transaction IDs without an EDITRTN
specification, no associated edit routine is identified.

The following example shows the EDITRTN parameter:

EDITRTN=ICS,DFSCSMB0

ICS is a transaction name, and DFSCSMB0 is an edit routine. Both were specified in stage 1 on the
TRANSACT macro as:

TRANSACT CODE=ICS,PRTY=(5,12,5),PROCLIM=10,100), MODE=SNGL,EDIT=,DFSCSMB0)

Return codes

The following return codes are produced:

Code
Meaning

0
The utility completed successfully.

8
The utility encountered a termination error.

Related concepts
Overview of dynamic resource definition (System Definition)

622 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd

Examples of the DFSURCM0 utility
These examples show sample JCL for running the DFSURCM0 utility and a summary report example.

JCL example

The following sample JCL statement can be used to run the utility.

//job name JOB CLASS=J,MSGCLASS=A,MSGLEVEL=(1,1)
//JOBLIB DD DSN=[library data set name],DISP=SHR
//S1 EXEC PGM=DFSURCM0
//MODBLKS DD DSN=[MODBLKS data set name],DISP=SHR
//RDDSDSN DD DSN=[RDDS data set name],DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=[Volume name],
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VB)
//SYSPRINT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//REPORT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//CONTROL DD *
IMSID=imid
SUF=x
/*

In the example, because the SDFSRESL DD statement is not supplied, nucleus module DFSVNUCV will be
obtained from the data set specified on the JOBLIB DD statement.

Summary report example

The following example shows a sample Summary report and describes how to interpret the report.

* **
* RDDS BUILD FROM MODBLKS / DFSURCM0 DATE: 2011/125 TIME: 22:33 PAGE: 1
* **
*
* CONTROL: IMSID=SYS3
* CONTROL: SYSTYPE=DBDC
* CONTROL: SUF=C
*
* RDDS DATA SET NAME:
* IMSTESTL.IMS1.RDDS1
*
* MODBLKS DATA SET NAME:
* IMSBLD.I12RTS1B.COMBLKS1
*
* IMSID USED . . : SYS3
* SUFFIX USED . . : C
* SYSTYPE USED . . : DBDC
*
* TRAN MEMBER NAME. : DFSSMB0C
* SIZE OF MEMBER : 122176
* SIZE OF MODBLKS BLOCK. . . : 184
* SIZE OF CHKP BLOCK : 184
* SIZE OF RSCX EXTENSION . . : 60
* TOTAL NUMBER OF BLOCKS . . : 664
* BLOCKS PER RDDS RECORD . . : 134
*
* DB MEMBER NAME. : DFSDDIRC
* SIZE OF MEMBER : 139104
* SIZE OF MODBLKS BLOCK. . . : 168
* SIZE OF CHKP BLOCK : 51
* SIZE OF RSCX EXTENSION . . : 60
* TOTAL NUMBER OF BLOCKS . . : 828
* BLOCKS PER RDDS RECORD . . : 64
*
* PGM MEMBER NAME. : DFSPDIRC

Chapter 37. Create RDDS from MODBLKS utility (DFSURCM0) 623

* SIZE OF MEMBER : 67200
* SIZE OF MODBLKS BLOCK. . . : 112
* SIZE OF CHKP BLOCK : 24
* SIZE OF RSCX EXTENSION . . : 60
* TOTAL NUMBER OF BLOCKS . . : 599
* BLOCKS PER RDDS RECORD . . : 88
*
* * BLOCK FOR DBF#FPU0 PDIR WAS REMOVED
*
* RTC MEMBER NAME. : DFSRCTEC
* SIZE OF MEMBER : 4272
* SIZE OF MODBLKS BLOCK. . . : 48
* SIZE OF CHKP BLOCK : 28
* SIZE OF RSCX EXTENSION . . : 60
* TOTAL NUMBER OF BLOCKS . . : 89
* BLOCKS PER RDDS RECORD . . : 88
*
* RDDS BUILD TIME : 2011.126 05:33:40.605599-UTC
* RDDS BLKSIZE : 32760
*
* **
* RDDS BUILD INFORMATION SUMMARY
*
* TOTAL # OF NON COMMENT CONTROL STATEMENTS READ . . : 3
* TOTAL # OF TRANSACT EDIT ROUTINE CONTROL STMTS . . : 0
* TOTAL # OF RDDS RECORDS WRITTEN. : 29
* TOTAL # OF TRAN ENTRIES IN MODBLKS : 664
* TOTAL # OF TRAN RDDS RECORDS WRITTEN : 5
* TOTAL # OF DB ENTRIES IN MODBLKS : 828
* TOTAL # OF DB RDDS RECORDS WRITTEN : 13
* TOTAL # OF PGM ENTRIES IN MODBLKS : 599
* TOTAL # OF PGM RDDS RECORDS WRITTEN : 7
* TOTAL # OF RTC ENTRIES IN MODBLKS : 89
* TOTAL # OF RTC RDDS RECORDS WRITTEN : 2
* **

In this example:

• The IMSID associated with the log was specified on a control statement as SYS3.
• The suffix associated with the modules in the MODBLKS data set was specified on a control statement

as C.
• The system type was specified on a control statement as DBDC.
• For each MODBLKS member associated with a resource processed, the following information was

presented:

– The resource type and the name of the associated MODBLKS member that was processed
– The size of the member was indicated:

- The size of the records
- The size of the block for each resource within the MODBLKS member
- The size of the block for each resource to be contained in an RDDS record
- The size of the block for the resource extension area associated with each resource in an RDDS

record
- The total number of resource blocks being created for this resource type in the RDDS data set
- The maximum number of resource blocks in the RDDS records being created for this resource type

• General statistics related to the processing of the utility were presented:

– Three control statements were read and processed.
– No control statements identifying transaction edit routines were specified.
– For each of the four resource types processed from the MODBLKS data set, the following information

was presented:

624 IMS: System Utilities

- The number of entries for the indicated resource type that were found in the corresponding
MODBLKS member

- The number of RDDS records that were written for this resource type

Chapter 37. Create RDDS from MODBLKS utility (DFSURCM0) 625

626 IMS: System Utilities

Chapter 38. DRD IMS SYSGEN stage 1 pre-parser
utility (DFSURST0)

Use the DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0) to reformat or extract selected
parameters from the macros contained in the stage 1 source code.

The DFSURST0 utility generates stage 2 JCL after running stage 1 by modifying the parameters on
selected stage 1 macro specifications and automates the collection of information about the IMS
subsystem.

Control statements are supplied to the utility to direct the modification of the statements in stage 1. Stage
1 source and copy members are read as input to the utility. These elements are combined, processed, and
written to an output file, which is subsequently used as input to the system generation process.

The stage 1 source code specifications for the following macros are modified by this utility:

IMSCTRL macro
The SYSTEM statement on the IMSCTRL macro is processed in the following manner:

1. The SYSTEM statement is modified to change the type of IMS generation being performed from
the original specification to MODBLKS. The original specification is one of the following types: ALL,
BATCH, CTLBLKS, MODBLKS, MSVERIFY, NUCLEUS, ON-LINE

2. The type of IMS system is extracted and formatted as a control statement to be used as input to
the DFSURCM0 utility. The type of IMS system is DB/DC, DBCTL, or DCCTL.

There is one occurrence of the IMSCTRL macro in the stage 1 source code.
IMSGEN Macro

The IMSGEN macro is processed in the following manner:

• The MODGEN statement on the IMSGEN macro is modified to specify a data set that contains z/OS
compile time system macros. This data set is concatenated to the SYSLIB DD statements in the
assemble steps in the stage 2 JCL generated by a successful run of stage 1.

• The OBJDSET statement on the IMSGEN macro is modified to specify a data set that is specified as
the SYSLIN DD statements in the assemble steps in the stage 2 JCL generated by a successful run of
stage 1.

• The USERLIB statement on the IMSGEN macro is modified to specify a data set that is specified
as the USERLIB DD statements in the MODBLKS link edit steps in the stage 2 JCL generated by a
successful run of stage 1.

• The second parameter of the NODE statement on the IMSGEN macro is modified to specify the
high-level qualifier of the MODBLKS data set that stores the link-edited results of a successful run of
stage 2.

• The third parameter of the NODE statement on the IMSGEN macro is modified to specify the
high-level qualifier of the following data sets:

– The ADFSMAC data set, which contains the IMS compile time macros that are concatenated into
the SYSLIB DD statements in the assemble steps in the stage 2 JCL generated by a successful run
of stage 1

– The ADFSLOAD data set, which contains IMS bind time routines that are identified by the
ADFSLOAD DD statements in the MODBLKS bind step in the stage 2 JCL generated by a
successful run of stage 1

• The SUFFIX value for the IMS subsystem is extracted from the IMSGEN macro and is formatted as a
control statement that is used as input to the DFSURCM0 utility.

There is one occurrence of the IMSGEN macro in the stage 1 source code.
TRANSACT macro

The TRANSACT macro is processed in the following manner:

© Copyright IBM Corp. 1974, 2020 627

• The CODE and EDIT statements on the TRANSACT macro are interrogated to determine the list of
transactions for which an edit macro is applied.

• The CODE statement determines the list of transaction IDs associated with an occurrence of the
TRANSACT macro.

• The EDIT statement determines the edit routine that is associated with the list of transaction IDs
indicated on the CODE statement.

• The stage 1 source code can have multiple occurrences of the TRANSACT macro. Although each
specification of the TRANSACT macro contains only one CODE specification, multiple transaction ID
scans can be associated with this specification. There is only one optional specification of the EDIT
statement for a TRANSACT macro specification.

Subsections:

• “Restrictions” on page 628
• “Prerequisites” on page 628
• “Requirements” on page 628
• “Recommendations” on page 628
• “Input and output” on page 628
• “JCL specifications” on page 629
• “Return codes” on page 630

Restrictions

Currently, no restrictions are documented for the DFSURST0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSURST0 utility.

Requirements

Currently, no requirements are documented for the DFSURST0 utility.

Recommendations

Currently, no recommendations are documented for the DFSURST0 utility.

Input and output

The input to the DFSURST0 utility is the data set that contains the stage 1 macro source for an IMS
subsystem. If the stage 1 source references the COPY members, the partitioned data set (PDS) that
contains these members is also used as input. Control statements are read from the CONTROL data set.

The DFSURST0 utility reads the stage 1 source, and writes a new version of the stage 1 source that
contains modifications to the specification for the selected statements. Control statements are generated
that contain data extracted from the stage 1 source that is available for subsequent use by other
DRD utilities. A cross reference of transactions and edit routines is created for subsequent use by the
DFSURCM0 utility. Messages issued by the utility and a summary report are written to the SYSPRINT data
set.

OUTPARMS generated control statements

628 IMS: System Utilities

The following control statements are generated by the DFSURST0 utility for use by the DFSURCM0 utility.

IMSID
The IMSID parameter specifies the name of the IMS subsystem associated with the RDDS data set
generated by the utility. The value associated with this parameter is the four-character ID associated
with the IMS subsystem.

SYSTYPE
The SYSTYPE parameter specifies the type of IMS subsystem associated with the RDDS data set
generated by the utility. It is a one to four-character value.

Valid Values are:

• DB - DBCTL system
• DC - DCCTL system
• DBDC - DB/DC system

SUFFIX
The SUFFIX parameter specifies the suffix associated with the members in the MODBLKS data set. It
is a one-character value.

EDITRTN
The EDITRTN parameter specifies a pairing of a transaction ID with the edit routine associated with it.
Values occur in pairs, with the value for transaction ID and edit routine name separated by a comma,
with no intervening spaces.

JCL specifications

The DFSURST0 utility executes as a standard operating system job. You must define a JOB statement, an
EXEC statement, and DD statements that define the input and output.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=DFSURST0

DD statements

JOBLIB / STEPLIB DD
Points to the IMS.SDFSRESL data set, which contains the executable modules for the utility.
Concatenated data sets are allowed.

STAGE1IN DD
Defines the stage 1 source macro data set that is used as input to the utility. This DD statement is
required. If the source is in a PDS member, the member name must be included on the DD statement.

COPYFILE DD
If COPY statements are coded in the stage 1 source identified by the STAGE1IN DD statement,
COPYFILE DD defines the PDS that contains stage 1 source macro members. This DD statement is
required only if COPY statements are coded.

OUTFILE DD
Defines the data set to receive the modified stage 1 source that is generated by the utility. This DD
statement is required. The DCB parameters for the OUTFILE data set are RECFM=FB, LRECL=80.
BLKSIZE must be provided on this DD statement.

OUTPARMS DD
Defines the data set that receives the control statements that are generated by the utility. This DD
statement is required. The DCB parameters for the OUTPARMS data set are RECFM=FB, LRECL=80.
BLKSIZE must be provided on this DD statement.

Chapter 38. DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0) 629

The data set referenced by this DD statement is used as the CONTROL DD statement in the
DFSURCM0 utility JCL stream.

SYSPRINT DD
Defines the data set that receives the messages and the summary report that are generated by
the utility. This DD statement is required. The DCB parameters for the SYSPRINT data set are
RECFM=FBA, LRECL=133. BLKSIZE must be provided on this DD statement.

CONTROL DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the CONTROL data set are RECFM=FB, LRECL=80.

Utility control statements

MODGEN
Specifies a data set that contains the z/OS compile time system macros that are concatenated into
the SYSLIB DD statements in the assemble steps in the stage 2 JCL generated by a successful run of
stage 1. The value is the 44-character name associated with this data set. This parameter is optional.
If it is omitted, the existing stage 1 specification for MODGEN is used. If there is no existing stage 1
specification, it defaults to SYS1.MODGEN.

USERLIB
Specifies a data set that specifies the USERLIB DD statements in the MODBLKS link-edit steps in the
stage 2 JCL generated by a successful run of stage 1. The value is the 44-character name associated
with this data set. This parameter is optional. If it is omitted, the existing stage 1 specification for
USERLIB is used.

OBJDSET
Specifies a data set that specifies the OBJDSET DD statements in the MODBLKS bind steps in the
stage 2 JCL generated by a successful run of stage 1. The value is the 44-character name associated
with this data set. This parameter is optional. If it is omitted, the existing stage 1 specification for the
second parameter of the NODE statement is used.

MODBLKSHLQ
Specifies the high-level qualifier of the MODBLKS data set that stores the bind results of a successful
run of stage 2. The value is the 44-character name associated with this data set. It is mapped to the
third parameter of the NODE statement in the stage 1 source generated by the utility.

Attention: This parameter is required to ensure that the system MODBLKS data set is not
inadvertently overwritten.

IMSHLQ
Specifies the high-level qualifier of the IMS ADFSMAC and ADFSLOAD data sets that are included in
the stage 2 JCL generated by a successful run of stage 1. The value is the part of the 44-character
name that precedes the lowest-level qualifier associated with this data set. It is mapped to the third
parameter of the NODE statement in the stage 1 source generated by the utility. This parameter
is optional. If it is omitted, the existing stage 1 specification for the third parameter of the NODE
statement is used.

ASM
Changes the value associated with the ASM statement on the IMSGEN macro in stage 1, which
specifies the Assembler JCL to be produced for the stage 2 assembly steps. The value replaces
the value associated with the ASM statement specification in stage 1. If multiple parameters are
specified, they must be enclosed in parentheses and separated by commas. This parameter is
optional. If it is omitted, the existing stage 1 specification for the ASM statement is used.

Return codes

The following return codes are produced:

630 IMS: System Utilities

Code
Meaning

0
The utility completed successfully.

8
The utility encountered a terminating error.

Related concepts
Overview of dynamic resource definition (System Definition)

Examples of the DFSURST0 utility
These examples show sample JCL for running the DFSURST0 utility and a summary report example.

JCL example

The following sample JCL can be used to run the utility.

//job name JOB CLASS=J,MSGCLASS=A,MSGLEVEL=(1,1)
//JOBLIB DD DSN=[library data set name],DISP=SHR
//S1 EXEC PGM=DFSURST0
//STAGE1IN DD DSN=[Stage 1 input data set name],DISP=SHR
//COPYFILE DD DSN=[Copy PDS data set name],DISP=SHR
//OUTFILE DD DSN=[Stage 1 output data setname],
// DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=[Volume name],
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//OUTPARMS DD DSN=[OUTPARMS control statements data setname],
// DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=[Volume name],
// SPACE=(TRK,(1,1),RLSE),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//SYSPRINT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)
//CONTROL DD *
 MODGEN=SYS1.MACLIB
 USERLIB=USERID.DFSURST0.USERLIB
 OBJDSET=USERID.DFSURST0.OBJDSET
 MODBLKSHLQ=USERID.DFSURST0
 IMSHLQ=IMSBLD.HMK1010
//*
//

In this example, because the ASM parameter is not supplied, the existing stage 1 specification for the
ASM statement is used.

Summary report example

The following example shows a sample Summary report and describes how to interpret the report.

DFSURST0 CONTROL: MODGEN=SYS1.MACLIB
DFSURST0 CONTROL: USERLIB=USERID.DFSURST0.USERLIB
DFSURST0 CONTROL: OBJDSET=USERID.DFSURST0.OBJDSET
DFSURST0 CONTROL: MODBLKSHLQ=USERID.DFSURST0
DFSURST0 CONTROL: IMSHLQ=IMSBLD.HMK1010
COPY MEMBER ARSALL PROCESSED
ORIGINAL IMSCTRL: ALL
 RECORDS PROCESSED . . .: 13
COPY MEMBER SAMPDBD PROCESSED
 RECORDS PROCESSED . . .: 15
COPY MEMBER IVP#DBD PROCESSED
 RECORDS PROCESSED . . .: 8
COPY MEMBER GENIDENT PROCESSED
 RECORDS PROCESSED . . .: 8
 DFSURST0: STAGE1 PRE-PARSER UTILITY: SUMMARY REPORT
 DATE: 2008/059 TIME: 16:46

Chapter 38. DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0) 631

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd

INPUT LOG DATA SET NAME(S)
USERID.STAGE1(ARSS1)
NUMBER OF CONTROL RECORDS READ: 5
NUMBER OF STAGE1 RECORDS READ: 1132
NUMBER OF COPY STATEMENTS READ: 4
NUMBER OF LINES FROM COPY MEMEBERS . .: 44
NUMBER OF EXCLUDED JCL STATEMENTS. . .: 0
NUMBER OF STAGE1 COMMENTS IGNORED. . .: 216
NUMBER OF STAGE1 RECORDS WRITTEN . . .: 1177
NUMBER OF IMSCTRL STATEMENTS: 1
NUMBER OF TRANSACT STATEMENTS.: 7
NUMBER OF IMSGEN STATEMENTS.: 1
NUMBER OF OUTPARM RECORDS WRITTEN. . .: 3

In this example:

• Images of the control statements that were supplied to the utility are displayed.
• The name of each COPY member that was read from the file indicated on the COPYFILE DD statement,

and the number of records read from the member, are displayed.
• Although it is always changed to MODBLKS by the utility, the original specification for the TYPE

parameter associated with the SYSTEM keyword on the IMSCTRL macro is ALL.
• The name of the data set that contains stage 1 system generation macros is member ARSS1 in data set

USERID.STAGE.
• Five control statements were read and processed.
• 1132 records were read from the stage 1 data set member identified.
• 4 COPY members were read from the file indicated on the COPYFILE DD statement.
• 44 records were read from the COPY members.
• The contents of the stage 1 data set member contained only stage 1 macros. No JCL was included in

the source. If there were any JCL in the source, such that the stage 1 macros were embedded following
a //SYSIN DD * statement, the JCL would be excluded from the modified stage 1 source created by
the utility.

• 216 comments were found in the stage 1 source. Although these were ignored for processing, they are
included in the modified stage 1 source created by the utility.

• 1177 records were written as the modified source.
• 1 IMSCTRL macro statement was found in the input stage 1 source.
• 7 TRANSACT macro statements were found in the input source.
• 1 IMSGEN macro statement was found in the input source.
• 3 records, for potential subsequent use as control statements for the DFSURCM0 utility, were written to

the file identified on the OUTPARM DD statement.

632 IMS: System Utilities

Chapter 39. RDDS Extraction utility (DFSURDD0)
Use the RDDS Extraction utility to convert the stored resource and descriptor definitions in a resource
definition data set (RDDS) to IMS stage 1 macro statements or IMS type-2 CREATE commands. The RDDS
Extraction utility can also be used to generate a report that lists the contents of the RDDS.

The RDDS Extraction utility is an offline batch utility.

Subsections:

• “Restrictions” on page 633
• “Prerequisites” on page 633
• “Requirements” on page 633
• “Recommendations” on page 633
• “Input and output” on page 633
• “JCL specifications” on page 634
• “Utility control statements” on page 634
• “Return codes” on page 635

Restrictions

Currently, no restrictions are documented for the DFSURDD0 utility.

Prerequisites

Currently, no prerequisites are documented for the DFSURDD0 utility.

Requirements

Currently, no requirements are documented for the DFSURDD0 utility.

Recommendations

Currently, no recommendations are documented for the DFSURDD0 utility.

Input and output

The input to the RDDS Extraction utility is an RDDS data set that contains resource and descriptor
definitions for an IMS. The RDDS must contain valid data from a successful export operation or be
produced by one of the Create RDDS utilities.

The generated stage 1 macro statements and the CREATE commands are written to the SYSOUT data set.
Messages that are issued by the utility are written to the SYSPRINT data set.

When you convert resource definitions to stage 1 macro statements, the output of the utility is DATABASE,
APPLCTN, RTCODE and TRANSACT macro statements that represent the resource definitions in the RDDS.
Resource descriptor definitions are not converted to stage 1 macro statements.

When you convert resource definitions to IMS type-2 CREATE commands, the output of the RDDS
Extraction utility is CREATE DB, CREATE DBDESC, CREATE PGM, CREATE PGMDESC, CREATE RTC,
CREATE RTCDESC, CREATE TRAN, and CREATE TRANDESC commands.

© Copyright IBM Corp. 1974, 2020 633

If you specify the LANG=ASSEM parameter on the APPLCTN macro or the CREATE PGM command and
the program definition is exported to an RDDS, the utility always generates LANG=COBOL on the APPLCTN
macro statement or LANG(COBOL) on the CREATE PGM command. The ASSEM and COBOL program
languages are treated the same by IMS.

In addition to converting resource and descriptor definitions to stage 1 macros or type-2 CREATE
commands, the utility can be used to generate a report that lists the contents of the RDDS. In addition
to the fields that are included when stage 1 macro statements and CREATE commands are generated,
specification of the OUTPUT=QUERY control statement in the SYSIN DD statement extracts the following
additional fields:

• The last time the resource or descriptor definition was accessed, created, updated, or imported
• The RDDS header information, including the RDDS data set name, status, type, and time-stamp

information

This report is written to the SYSOUT data set.

JCL specifications

The RDDS Extraction utility executes as a standard operating system job. You must define a JOB
statement, an EXEC statement, and DD statements that define the input and output.

EXEC statement

The format of the EXEC statement is:

//S1 EXEC PGM=DFSURDD0,MEMLIMIT=12G

The RDDS Extraction utility obtains 64-bit storage. The MEMLIMIT parameter must be specified on the
EXEC statement to ensure the total size of usable virtual storage above the bar is adequate. Set the
MEMLIMIT parameter to 12 GB or higher.

DD statements

JOBLIB / STEPLIB DD
Points to the IMS.SDFSRESL data set, which contains the executable modules for the utility. This DD
statement is required. Concatenated data sets are allowed.

RDDSDSN DD
Defines the RDDS that is used as input to the utility. This DD statement is required. Only one data set
can be specified for the RDDS. Concatenated data sets are not allowed.

SYSOUT DD
Defines the data set that receives the output that is generated by the utility. This DD statement is
required. The DCB parameters for the SYSOUT data set are LRECL=80, RECFM=FB.

The SYSOUT can be the IMS stage 1 macro statements, IMS type-2 CREATE commands, or the Query
report.

SYSPRINT DD
Defines the data set that receives the messages generated by the utility. This DD statement is
required. The DCB parameters for the SYSPRINT data set are RECFM=FB, LRECL=133.

SYSIN DD
Defines the source of the input parameters for the utility. This DD statement is required. The DCB
parameters for the SYSIN data set are RECFM=FB, LRECL=80.

Utility control statements

634 IMS: System Utilities

Output
The OUTPUT parameter specifies the format of the generated output. This parameter is required. The
following values are valid for the OUTPUT parameter:
MAC

Converts the data in the RDDS to IMS stage 1 macro statements.
CMD

Converts the data in the RDDS to type-2 CREATE commands.
QUERY

Generates the data in the RDDS as a report.

The Query report is divided into the following sections:

• A display of the contents of the RDDS Header
• A display of the attributes for each resource described in the RDDS
• A count of the total number of entries for each resource type
• A count of the total number of duplicate entries for each resource type

Return codes

The following return codes are produced:

Code
Meaning

0
The utility completed successfully.

4
The utility completed successfully; however, either no transactions were defined for an application or
no route codes were defined for a Fast Path-exclusive application.

8
An error occurred trying to open the SYSPRINT data set.

12
An error occurred trying to open the SYSOUT data set.

16
An error occurred trying to read the SYSIN data set.

20
An error occurred trying to parse the SYSIN data.

24
An error occurred trying to obtain storage using the MVS GETMAIN macro.

28
An error occurred trying to obtain a buffer from 64-bit storage.

32
An RDJFCB request failed to return the dsname of the RDDS data set.

36
More than one data set is defined for the RDDS.

40
An error occurred trying to open the RDDS data set that is defined on the RDDSDSN DD statement.

44
An error occurred trying to read the RDDS data set that is defined on the RDDSDSN DD statement.

48
The data set that is defined on the RDDSDSN DD statement is not an RDDS.

Chapter 39. RDDS Extraction utility (DFSURDD0) 635

52
The RDDS that is defined on the RDDSDSN DD statement does not contain data from a successful
export operation.

56
An error occurred trying to start the BPE limited function services (LFS).

Related concepts
Overview of dynamic resource definition (System Definition)

Examples for the DFSURDD0 utility
The following examples show two sets of sample JCL statements for running the RDDS Extraction utility
and a sample Query report.

JCL example with output set to MAC

The following sample JCL can be used to generate this utility with IMS stage 1 macro statements
specified as the output.

//job name JOB CLASS=J,MSGCLASS=A,MSGLEVEL=(1,1)
//JOBLIB DD DSN=library data set name,DISP=SHR
//S1 EXEC PGM=DFSURDD0,MEMLIMIT=12G
//RDDSDSN DD DSN=RDDS data set name,DISP=SHR
//SYSOUT DD DSN=output data set name,DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=Volume name,
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
OUTPUT=MAC
/*
//

JCL example with output set to QUERY

The following sample JCL can be used to generate this utility with the Query report specified as the
output.

//job name JOB CLASS=J,MSGCLASS=A,MSGLEVEL=(1,1)
//JOBLIB DD DSN=library data set name,DISP=SHR
//S1 EXEC PGM=DFSURDD0,MEMLIMIT=12G
//RDDSDSN DD DSN=RDDS data set name,DISP=SHR
//SYSOUT DD DSN=output data set name,DISP=(,CATLG,DELETE),
// UNIT=SYSDA,VOL=SER=Volume name,
// SPACE=(CYL,(1,1),RLSE),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
OUTPUT=QUERY
/*
//

Sample Query report

The following sample Query report is provided if OUTPUT=QUERY is specified in the SYSIN DD statement.

RDDS HEADER RECORD +
 HEADER_LENGTH(168) VERSION(1) STATUS(GOOD) +
 IMSID(SYS3) IMSTYPE(DBDC) SYSTEM_RDDS?(Y) +
 TIMESTAMP(2008.058 21:50:07.695470-UTC) +
 data set_NAME(USERID.TEST.RDDS2)
DB NAME(AUTODB) ACCTYPE(UPD) RESIDENT(N) GLOBAL DMB(0000) +
 LOCAL DMB(0001) MODELNAME() MODELTYPE() TMCR(2007.311 16:18:42.49-UTC) +
 TMAC() TMUP() TIMP()

636 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.2.0/com.ibm.ims152.doc.sdg/ims_overview_of_drd.htm#overview_of_drd

DB NAME(AUTODBH) ACCTYPE(UPD) RESIDENT(N) GLOBAL DMB(0000) +
 LOCAL DMB(0002) MODELNAME() MODELTYPE() TMCR(2007.311 16:18:42.49-UTC) +
 TMAC() TMUP() TIMP()
DB NAME(BANKATMS) ACCTYPE(EXCL) RESIDENT(N) GLOBAL DMB(0000) +
 LOCAL DMB(0003) MODELNAME() MODELTYPE() TMCR(2007.311 16:18:42.49-UTC) +
TMAC() TMUP() TIMP()
PGM NAME(EMHPSB2) BMPTYPE(N) DOPT(N) FP(E)GPSB(N) +
 RESIDENT(N) SCHDTYPE(PARALLEL) TRANSTAT(N) MODELNAME() +
 MODELTYPE() TMCR(2008.354 22:17:41.80-UTC) TMAC() +
 TMUP() TIMP()
TRAN NAME(EMHTX2) AOCMD(N) CLASS(1) CMTMODE(SNGL) +
 CONV(N) DCLWA(Y) DIRROUTE(N) EDITUC(Y) FP(E) INQ(N) +
 LPRI(1) MAXRGN(0) MSGTYPE(SNGLSEG) NPRI(1) PARLIM(65535) +
 PGM(EMHPSB2) PLCT(65535) PLCTTIME(6553500) RECOVER(Y) +
 REMOTE(N) RESP(Y) SEGNO(0) SEGSZ(0) SERIAL(N) +
 TRANSTAT(N) WFI(N) MODELNAME() MODELTYPE() TMCR(2008.354 22:17:42.74-UTC) +
 TMAC() TMUP() TIMP()
TRAN NAME(EMHTX3) AOCMD(N) CLASS(1) CMTMODE(SNGL) +
 CONV(N) DCLWA(Y) DIRROUTE(N) EDITUC(Y) FP(E) INQ(N) +
 LPRI(1) MAXRGN(0) MSGTYPE(SNGLSEG) NPRI(1) PARLIM(65535) +
 PGM(EMHPSB2) PLCT(65535) PLCTTIME(6553500) RECOVER(Y) +
 REMOTE(N) RESP(Y) SEGNO(0) SEGSZ(0) SERIAL(N) +
 TRANSTAT(N) WFI(N) MODELNAME() MODELTYPE() TMCR(2008.354 22:17:42.74-UTC) +
 TMAC() TMUP() TIMP()
* RTC NAME(EMHTX2) INQ(N) PGM(EMHPSB2) MODELNAME() MODELTYPE() +
 TMCR(2008.354 22:17:42.73-UTC) TMAC() TMUP() +
 TIMP()
RTC NAME(EMHTX22) INQ(N) PGM(EMHPSB2) MODELNAME() +
 MODELTYPE() TMCR(2008.354 22:17:42.73-UTC) TMAC() +
 TMUP() TIMP()
* RTC NAME(EMHTX3) INQ(N) PGM(EMHPSB2) MODELNAME() MODELTYPE() +
 TMCR(2008.354 22:17:42.73-UTC) TMAC() TMUP() +
 TIMP()
RTC NAME(EMHTX32) INQ(N) PGM(EMHPSB2) MODELNAME() +
 MODELTYPE() TMCR(2008.354 22:17:42.73-UTC) TMAC() +
 TMUP() TIMP()
TRAN NAME(TSTAD2R2) AOCMD(N) CLASS(1) CMTMODE(MULT) +
 CONV(N) DCLWA(Y) DIRROUTE(N) EDITUC(Y) INQ(N) +
 LCT(65535) LPRI(1) MAXRGN(0) MSGTYPE(MULTSEG) +
 NPRI(1) PARLIM(65535) PGM(AD2TP) PLCT(65535) +
 PLCTTIME(6553500) RECOVER(Y) REMOTE(N) RESP(Y) +
 SEGNO(0) SEGSZ(0) SERIAL(N) TRANSTAT(N) WFI(N) +
 MODELNAME() MODELTYPE() TMCR(2007.319 18:50:47.98-UTC) +
 TMAC() TMUP() TIMP(2008.012 01:13:32.20-UTC)
PGM NAME(APOL1) BMPTYPE(N) DOPT(Y) FP(N)GPSB(N) RESIDENT(N) +
 SCHDTYPE(SERIAL) TRANSTAT(N) MODELNAME() MODELTYPE() +
 TMCR(2007.319 18:50:47.28-UTC) TMAC() TMUP(2008.002 22:50:56.69-UTC) +
 TIMP(2008.012 01:13:32.20-UTC)
PGM NAME(FPPSB02) BMPTYPE(N) DOPT(N) FP(E)GPSB(N) +
 RESIDENT(Y) SCHDTYPE(PARALLEL) TRANSTAT(N) MODELNAME() +
 MODELTYPE() TMCR(2007.311 16:18:42.48-UTC) TMAC() +
 TMUP() TIMP()
**** SUMMARY ****
TRAN COUNT : 0
TRANDESC COUNT : 0
DB COUNT : 2045
DBDESC COUNT : 0
PGM COUNT : 5506
PGMDESC COUNT : 0
RTC COUNT : 0
RTCDESC COUNT : 0

TRAN DUPLICATES: 0
TRANDESC DUPLICATES: 0
DB DUPLICATES: 0
DBDESC DUPLICATES: 0
PGM DUPLICATES: 0
PGMDESC DUPLICATES: 0
RTC DUPLICATES: 0
RTCDESC DUPLICATES: 0

In the Query report example:

Chapter 39. RDDS Extraction utility (DFSURDD0) 637

• For each of the resource definitions and resource descriptor types, the following counts are displayed:

– The number of resources contained in the RDDS.
– The number of resource entries that have the same resource name as another entry in the RDDS.

• Two types of routing code-type records are included in the report:

– Routing codes that are the result of explicitly being included in the stage 1 input or CREATE command
– Routing codes that are associated with Fast Path-exclusive transactions. This type of routing code is

preceded by an asterisk (*) in the report.

638 IMS: System Utilities

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan, Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1974, 2020 639

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and Associated Guidance
Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or
as a result of service. Product-sensitive Programming Interface and Associated Guidance Information
is identified where it occurs, either by an introductory statement to a section or topic, or by a Product-
sensitive programming interface label. IBM requires that the preceding statement, and any statement in
this information that refers to the preceding statement, be included in any whole or partial copy made of
the information described by such a statement.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

640 Notices

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

To learn more, see IBM Privacy Statement.

Notices 641

https://www.ibm.com/privacy

642 IMS: System Utilities

Bibliography

This bibliography lists all of the publications in the IMS 15.2 library.

Title Acronym

IMS Version 15.2 Application Programming APG

IMS Version 15.2 Application Programming APIs APR

IMS Version 15.2 Commands, Volume 1: IMS Commands A-M CR1

IMS Version 15.2 Commands, Volume 2: IMS Commands N-V CR2

IMS Version 15.2 Commands, Volume 3: IMS Component and z/OS
Commands

CR3

IMS Version 15.2 Communications and Connections CCG

IMS Version 15.2 Database Administration DAG

IMS Version 15.2 Database Utilities DUR

IMS Version 15.2 Diagnosis DGR

IMS Version 15.2 Exit Routines ERR

IMS Version 15.2 Installation INS

IMS Version 15.2 Licensed Program Specifications LPS

IMS Version 15.2 Messages and Codes, Volume 1: DFS Messages MC1

IMS Version 15.2 Messages and Codes, Volume 2: Non-DFS Messages MC2

IMS Version 15.2 Messages and Codes, Volume 3: IMS Abend Codes MC3

IMS Version 15.2 Messages and Codes, Volume 4: IMS Component Codes MC4

IMS Version 15.2 Operations and Automation OAG

IMS Version 15.2 Release Planning RPG

IMS Version 15.2 System Administration SAG

IMS Version 15.2 System Definition SDG

IMS Version 15.2 System Programming APIs SPR

IMS Version 15.2 System Utilities SUR

© Copyright IBM Corp. 1974, 2020 643

644 IMS: System Utilities

Index

Special Characters
/TEST MFS command 168

Numerics
3270 Information Display System

copy function
remote terminals 232

selector pen
specifying 232

A
ACB (application control block) 3
ACB Generation and Catalog Populate utility (DFS3UACB)

BUILD statement
parameters 320
syntax 319

control statements
format 319
parameters 320
requirements 319
syntax 319

DD statements 317
DELETE statement

parameters 320
syntax 319

input 315
JCL 316
output 315
overview 313
prerequisites 314
recommendations 314
requirements 314
restrictions 314
return codes 327

ACB library
copying, with IMS catalog 331, 339

ACB Maintenance utility (DFSRRC00)
ACBGEN procedure 5
control statements

BUILD 8
BUILD DBD 8
DELETE 8
format 8
requirements 7

description 3
DFSACBCP control statement 7
examples 11
IMS.ACBLIB 3
input 5
JCL 5
output 5
return codes 11

ACBGEN 3

ACBGEN and Catalog Populate utility (DFS3UACB), See ACB
Generation and Catalog Populate utility (DFS3UACB)
ACBGEN procedure

DD statements 6
EXEC statement 6

ACBLIB data set
ACB Maintenance utility 3

ACCESS= parameter
DBD statement 39

accessibility
features ix
keyboard shortcuts ix

active region messages
Log Recovery utility (DFSULTR0) 513

alternate PCB statement, PSB generation 266
Analysis utilities and reports

Fast Path Log Analysis utility (DBFULTA0) 399
File Select and Formatting Print utility (DFSERA10) 399
IMS Monitor Report Print utility (DFSUTR20) 399
Log Transaction Analysis utility (DFSILTA0) 399
Offline Dump Formatter utility (DFSOFMD0) 399
Statistical Analysis utility (DFSISTS0) 399

AOI (Automated Operator Interface)
IOASIZE requirement 289

Application Control Block (ACB)
ACBLIB library 3
maintaining

control statements 7, 319
input and output 5
overview 3

prerequisites 4
recommendations 5
requirements 4
restrictions 3

Application Control Blocks Maintenance utility 3
application programs

BMP
database uncommitted updates restriction 263

metadata
ACB Generation and Catalog Populate utility
(DFS3UACB) 313
IMS catalog, loading 373
IMS catalog, maintenance 365
loading into IMS catalog 373

archive utility 493
AREA statement

format 61
keywords 61
parameter description 61
syntax 61

ATTR= operand (DFLD statement)
parameters

NODET/DET/IDET 232
NODISP|HI 233
NOMOD|MOD 233
NOPROT/PROT 232
STRIP|NOSTRIP 233

Index 645

ATTR= operand (DFLD statement) (continued)
parameters (continued)

YES, nn 234
specifying 232
with copy lock 232

ATTR= operand (MFLD statement)
specifying 186

attribute data
input message fields

ATTR= operand (MFLD statement) 186
output device fields

ATTR= operand (MFLD statement) 186
specifying 232

attribute simulation
specifying 232

Automated Operator Interface (AOI) 289

B
B= parameter

DFSERA10 OPTION statement 430
backup operations, MFS library 259
batch message processing (BMP)

application programs
database uncommitted updates restriction 263

batch mode (MFS Language utility) 254
Batch SPOC utility (CSLUSPOC)

description 527
examples

JCL example 530
Output example 530
Output example with no wait time specified 530

EXEC statement 528
input and output 527
JCL specifications 528
Parameter keywords 528
prerequisites 527
recommendations 527
requirements 527
restrictions 527
return codes 529

BLOCK= parameter
DATASET statement 53

BMP (batch message processing)
application programs

database uncommitted updates restriction 263

C
C= parameter

C= parameter
File Select and Formatting Print utility 430

catalog
ACB Generation and Catalog Populate utility
(DFS3UACB) 313
ACBGEN and population in a single step 313
copying 331, 339
DBRC, without 329, 369
defining 329, 369
IMS catalog utilities 311
loading 373
loading during ACBGEN 313
maintenance 365

catalog (continued)
populating 373
populating during ACBGEN 313
utilities

DFS3UCD0 329, 369
catalog database

purging records 389
segments, deleting 389

catalog Directory Recovery utility
DFS3RU00 353

Catalog Record Purge utility 389
catalog utilities

record purge utility 389
checkpoints

system
database uncommitted updates restriction 263

COMP= parameter
ACBGEN procedure 6

compilation statements
COPY 245
EJECT 250
END 250
EQU 246
equate processing 246
PRINT 249
RESCAN 247
RESCAN statement 247
SPACE 250
STACK statement 248
summary of statements 176
SYSIN 172
SYSLIB 172
SYSPRINT 172
TITLE 249
UNSTACK 248

COMPR= operand (DIV statement)
specifying 216

concatenated equates 247
COND= operand (LPAGE statement), specifying 179
COND= parameter

File Select and Formatting Print utility (DFSERA10) 430
control blocks

creation by MFS Language utility 252
MFS Language utility 167

CONTROL statement
File Select and Formatting Print utility (DFSERA10) 425

control statement listing
assembler listing 16
diagnostics 16

copy function
remote terminals 232

COPY option
File Select and Formatting Print utility (DFSERA10) 429

Copy RDDS utility (DFSURCP0)
DD statements 606
description 605
examples

JCL example 607
Sample summary output 607

EXEC statement 606
input and output 605
JCL specifications 606
prerequisites 605
recommendations 605

646 IMS: System Utilities

Copy RDDS utility (DFSURCP0) (continued)
requirements 605
restrictions 605
return codes 607
Utility control statements 606

COPY statement
Log Archive utility 499

COPY statement (language utility) 245
copying log records into user data sets 493
Create RDDS from Log Records utility (DFSURCL0)

DD statements 611
description 609
examples

JCL example 614
Summary report example 614

EXEC statement 611
input and output 611
JCL specifications 611
prerequisites 610
recommendations 610
requirements 610
restrictions 610
return codes 613
Utility control statements 612

Create RDDS from MODBLKS utility (DFSURCM0)
DD statements 621
description 619
examples

JCL example 623
Summary report example 623

EXEC statement 621
input and output 620
JCL specifications 620
prerequisites 620
recommendations 620
requirements 620
restrictions 620
return codes 622
Utility control statements 621

CSLULALE (OM Audit Trail Format and Print module)
DD statements 452
description 451
JCL specifications 451
Limiting log data to a specified time range 452
Utility control statements 452

CSLURP10 (RDDS to Repository utility)
DD statements 600
description 599
examples

JCL example 602
Sample summary output 602

EXEC statement 600
input and output 600
JCL specifications 600
prerequisites 599
recommendations 600
requirements 599
restrictions 599
return codes 601
utility control statements 601

CSLURP20 (Repository to RDDS utility)
DD statements 596
description 595
examples

CSLURP20 (Repository to RDDS utility) (continued)
examples (continued)

JCL example 597
Sample summary output 598

EXEC statement 596
input and output 595
JCL specifications 596
prerequisites 595
recommendations 595
requirements 595
restrictions 595
return codes 597
Utility control statements 597

CSLUSPOC (Batch SPOC utility)
description 527
examples

JCL example 530
Output example 530
Output example with no wait time specified 530

EXEC statement 528
input and output 527
JCL specifications 528
Parameter keywords 528
prerequisites 527
recommendations 527
requirements 527
restrictions 527
return codes 529

D
D= keyword

control statements
DFSERA10 CONTROL 426
DFSERA10 OPTION 432

Data Capture exit routine
EXIT= parameter 43

data entry database (DEDB)
DBD generation 28

Database Description (DBDs)
generating

DEDB databases 22
GSAM databases 20
HSAM databases 19
SHSAM databases 19

Database Description Generation utility
control statements, input order 24

database description rules, DBD generation 27
Database Descriptions (DBDs)

generating
HDAM and PHDAM databases 21
HDAM databases 21
HIDAM and PHIDAM databases 21
HISAM databases 20, 21
Index and PSINDEX databases 23
logical segment types 24
MSDBs 22
PHDAM databases 21
SHISAM databases 20

Database Recovery Control utility (DSPURX00)
description 531
examples 534
invoking the utility 534
prerequisites 531

Index 647

Database Recovery Control utility (DSPURX00) (continued)
recommendations 531
requirements 531
restrictions 531

databases
IMS catalog

copying 331, 339
metadata

ACB Generation and Catalog Populate utility
(DFS3UACB) 313
IMS catalog, loading 373
IMS catalog, maintenance 365
loading into IMS catalog 373

DATASET statement
database

GSAM 49
HDAM 49
HIDAM 50
HISAM 50
HSAM 51
INDEX 51
LOGICAL 52
MSDB 52

description 48
format 49
keywords 52
parameter description 52

DATXEXIT parameter
DBD statement 47

DBD (Database Description) generation
AREA statement

description 61
format 61
keywords 61
syntax 61

assembler listings 16
block size, specifying minimum for databases 53
coding conventions 27
control interval size, specifying minimum for databases
53
control statement formats

END 140
DATASET statement

description 48
dividing database into multiple data set groups 48
format 49
LABEL field 48

DBD statement 28
DBDGEN statement 140
DD statements 60
DEDB database 28
description rules 27
DFSCASE statement

description 136
keywords 137
parameters 137

DFSMAP statement
description 133
keywords 134
parameters 134

DFSMARSH statement
description 127
keywords 128
parameters 128

DBD (Database Description) generation (continued)
diagnostics 16
END statement 140
error conditions 18
examples

Fast Path DEDB 147
Fast Path MSDB 146
Fast Path secondary indexes 155
GSAM 145
HDAM 142
HIDAM 143
HISAM 142
HSAM 141
index generation 140, 144
logical relationships 148
secondary indexes 152
secondary indexing or logical relationships 140
shared secondary indexes 154

Fast Path database 28
Fast Path DEDB 22
Fast Path MSDB 22
FIELD statement

description 101
format 113
keywords 113

FINISH statement 140
GSAM (Generalized Sequential Access Method) 28
GSAM database 20
HDAM database 21, 28
HIDAM database 21, 28
HISAM database 20, 28
HSAM database 19, 28
index generation

logical 24
primary HIDAM 23
secondary index 23

input record structure 26
LABEL field 48
LCHILD statement

defining logical relationships 93
defining primary index relationship 94
defining secondary index relationships 94
description 93
format 97

MSDB database 28
output

assembler listing 16
diagnostics 16
example 17
load module 18
segment flag codes 16
types 16

overview of DBDGEN
consists of 15
control statements 15
databases used with 19

parameter descriptions 28
prerequisites 15
procedure 158
recommendations 15, 157
requirements 15
restrictions 15
SEGM statement

description 63

648 IMS: System Utilities

DBD (Database Description) generation (continued)
SEGM statement (continued)

keyword abbreviations 78
keywords 78
pointer keyword options and abbreviations 81

SHISAM database 20
SHSAM database 19
specifying options for DEDBs

DBDGEN statement 140
END statement 140
FINISH statement 140

summary of statement types 24
XDFLD statement

description 123
format 123
keywords 123

DBD generation input record structure (non-DEDB)
exception 25
requirement 26

DBD library
copying, with IMS catalog 331, 339

DBD= keyword
ACB Generation and Catalog Populate utility
(DFS3UACB) 320
ACB Maintenance utility 8

DBDGEN
procedure

JCL parameters 158
DBDGEN utility

control statements, input order 24
DBFULTA0 (Fast Path Log Analysis utility)

error processing 408
Fast Path report types 409
input and output 402
JCL requirements 403
overview 401
prerequisites 402
recommendations 402
reports

Detail-Listing-of-Exception-Transactions 409
Overall Summary of Resource Usage and
Contentions 416
Overall Summary of Transit Times 416
Recapitulation-of-the-Analysis 419
Summary-of-Exception-Detail-by-Transaction-Code
415
Summary-of-Region-Occupancy 418
Summary-of-VSO-Activity 419

requirements 402
restrictions 402
utility control statements 404

DBRC (Database Recovery Control) 531
DD statements

DFSUPRT0 585
DD1= parameter

AREA statement 61
DDNAME= keyword

control statements
DFSERA10 CONTROL 426
DFSERA10 OPTION 432

DDNOUT= keyword
DFSERA10 control statement 427

Deadlock reporting
for U777 and U123 abends 439

Deadlock reporting (continued)
resultant state of the lock 442

DEDB (data entry database)
defining

DBD generation 22
fields 102
segments 63

naming 28
DEDB (Data Entry Database)

defining
DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DELETE function (MFS Service utility DFSUTSA0) 553
Detail-Listing-of-Exception-Transactions

Report
Fast Path Log Analysis utility 409

DEV statement
FEAT= operand 204
FTAB= operand 201
PFK= operand 205
SLDI= operand 208
SLDP= operand 208
specifying 189
SUB= operand 208
VERSID= operand 208
VTAB= operand 207

device characteristics table 198
DFLD (device field statement)

iterative processing 183, 226
PASSWORD parameter 230
printing generated DFLD statements 225

DFS3CCE0
input 332
JCL 334, 343
output 332
prerequisites 332
recommendations 332
requirements 332
restrictions 332
return codes 339
statistics report, export 337

DFS3CCE0 utility
overview 331

DFS3CCI0
input 340
JCL 343
output 340
prerequisites 340
recommendations 340
requirements 340
restrictions 340
return codes 352
statistics report, import 350

DFS3CCI0 utility
overview 331

DFS3CM00
DD statements 366
input 365
output 365
overview 365

Index 649

DFS3CM00 (continued)
requirements 365
restrictions 365
return codes 367

DFS3LU00 357
DFS3PU00

DD statements 336, 378
input 375
JCL 376
output 375
overview 373
prerequisites 374
recommendations 375
requirements 374
restrictions 374
return codes 387
statistics report 385

DFS3PU10 (IMS Catalog Record Purge utility) 389
DFS3RU00 (catalog Directory Recovery utility) 353
DFS3UACB utility

DD statements 317
input 315
JCL 316
output 315
overview 313
prerequisites 314
recommendations 314
requirements 314
restrictions 314
return codes 327

DFS3UCD0 329, 369
DFSACBCP control statement 7
DFSCASE statement

keywords 137
parameters 137

DFSERA10 (File Select and Formatting Print utility)
control statements

COMMENT 432
CONTROL 425
description 425
END 432
OPTION 427

COPY option 429
examples 432
input 423
JCL requirements

DD statements 424
description 424

NEGOF option 429
optional keywords

B= 430
C= 430
COND= 430
D= 432
DDNAME= 432
E= 431
EXITR= 431
FLDLEN= 430
FLDTYP= 430
H= 430
L= 430
O= 429
OFFSET= 429
P= 432

DFSERA10 (File Select and Formatting Print utility) (continued)
optional keywords (continued)

PARM= 429
PRTSYS= 432
STARTAF= 430
STOPAFT= 430
SYM= 429
T= 430
V= 430
VALUE= 430

output 423
overview 423
prerequisites 423
PRINT option 429
recommendations 423
requirements 423
restrictions 423

DFSERA10 utility modules
DL/I Call Image Capture module (DFSERA50) 438
Enhanced Select module (DFSERA70) 438
IMS Trace Table Record Format and Print module
(DFSERA60) 438
OM Audit Trail Format and Print module (CSLULALE) 438
Program Isolation Trace Record Format and Print
module (DFSERA40) 438
Record Format and Print module (DFSERA30) 438

DFSERA30 (Record Format and Print Module)
additional information gathered 444
control statements 438
deadlock report 439
lock states 442
overview 438
reading the report 440
reporting anomaly 444
selecting only the deadlock block 444
special situations 443
subsystem detected deadlocks 444

DFSERA40 (Program Isolation Trace Record Format and
Print module)

control statements 448
output sample 445
overview 445

DFSERA40 (Program Isolation Trace Record Format and
Print Module)

deadlock report 439
DFSERA50 (DL/I Call Image Capture module)

control statements 448
overview 448

DFSERA60 (IMS Trace Table Record Format and Print
module)

control statements 448
overview 448

DFSERA70 (Enhanced Select exit routine)
examples 450
overview 449

DFSILTA0 (Log Transaction Analysis utility)
prerequisites 460
program inputs 460
program outputs 460
recommendations 460
requirements 460
restriction 459

DFSIST30 (Report Writer)
program modules

650 IMS: System Utilities

DFSIST30 (Report Writer) (continued)
program modules (continued)

Report Writer (DFSIST30) 473
reports produced, descriptions and examples

Line-and-Terminal report 473
Messages Queued But Not Sent (by destination)
473
Messages Queued But Not Sent (by transaction
code) 473
Messages, Program-to-Program (by destination)
473
Messages, Program-to-Program (by transaction
code) 473
Transaction-Response report 474

Statistical Analysis utility 473
DFSIST40 (Message Select and Copy or List)

Statistical Analysis utility 474
DFSISTS0 (Statistical Analysis utility)

examples 479
DFSISTS0 (Statistical Analysis utility)

prerequisites 471
recommendations 471
requirements 471
restrictions 471

DFSLTMG0 (Log Merge utility)
control statement format 504
controlling log merge 504
DD statements 506
input and output 503
JCL requirements 505
MSC (Multiple Systems Coupling) 503
overview 503
prerequisites 503
recommendations 503
requirements 503
restrictions 503

DFSMAP statement
keywords 134
parameters 134

DFSMARSH statement
keywords 128
parameters 128

DFSMNTR0, Data Communication Monitor 455
DFSMREC control statement 580
DFSOFMD0 (Offline Dump Formatter utility)

dump format control data set
DD statement 468
description 468
subset options 468

dump formatter 465
environments

DB batch 467
DB/DC 467
DBCTL 467
DCCTL 467
TM batch 467

input and output 466
IPCS 467
load modules 465
migration considerations 465
overview 465
prerequisites 465
recommendations 466
requirements 466

DFSOFMD0 (Offline Dump Formatter utility) (continued)
restrictions 465
SDUMP 467

DFSTVER0 (Time-Controlled Operations Verification utility)
EXEC statement 588
JCL specifications 588
output

description 587
error report 590
message-table report 591
statistics report 590
summary report 591
time-schedule request table 590
timer elements report 590

prerequisites 587
recommendations 587
requirements 587
restrictions 587

DFSUARC0 (Log Archive utility)
Batch DASD SLDS archive 493
control statements 497
COPY statement 499
copying log records into user data sets 493
creating an RLDS 493
DD statements 496
error processing 501
examples 502
EXIT statement 501
JCL requirements 496
OLDS input 494
omitting log records on SLDS 493
optional functions 493
overview 493
prerequisites 494
program output 495
recommendations 494
requirements 494
restrictions 494
RLDS (Recovery Log Data Set) 493
SLDS input 495
SLDS statement 498
specifying forced end of volume 493
specifying user exit routines 493

DFSUDT0x (device characteristics table)
device characteristics table 198
specifying screen size 198

DFSULTR0 (Log Recovery utility)
CLS mode 507
dual log input

CLS mode 509
DUP mode 509
REP mode 509

DUP mode 507
error block listing (SYSPRINT) 511
input 508
interim log error ID record 511
modes 510
OLDS recovery 508
overview 507
prerequisites 508
PSB mode 507
recommendations 508
REP mode 507
requirements 508

Index 651

DFSULTR0 (Log Recovery utility) (continued)
restrictions 508
single log input 508
SLDS recovery 508

DFSUMSV0 (Multiple Systems Verification utility)
EXEC statement 570
recommendations 562
requirements 562
utility control statements 570

DFSUOCU0 (Online Change Copy utility)
active library 574
cancellation 573
DD statements 577
DFSMREC control statement 580
EXEC statement 575
inactive library 574
INITMOD procedure 579
JCL 579
libraries used 574
MSDB 573
OLCUTL procedure 578
overview 573
prerequisites 574
procedure statement 574, 580
recommendations 574
requirements 574
restrictions 573
staging library 574

DFSUOLC0 (Global Online Change utility)
examples 545
JCL 542
OLCSTAT data set 541
overview 541
parameters 543
prerequisites 542
recommendations 542
requirements 542
restrictions 542

DFSUPAA0 (MFS Language utility)
compilation statements

ALPHA statement 245
COPY statement 246
EJECT statement 250
END statement 250
EQU statement 246
PRINT statement 249
RESCAN statement 247
SPACE statement 250
STACK statement 248
TITLE statement 249
UNSTACK statement 248

control blocks 167
Format definition statements

DEV statement 189
DFLD statement 227
DIV statement 209
DO statement 224
DPAGE statement 216
ENDDO statement 239
FMT statement 188
FMTEND statement 240
PPAGE statement 223
RCD statement 226

format set 167

DFSUPAA0 (MFS Language utility) (continued)
Message definition statements

DO statement 182
ENDDO statement 188
LPAGE statement 179
MFLD statement 182
MSG statement 177
MSGEND statement 188
PASSWORD statement 180
SEG statement 180

modes 167
Partition set definition statements

PD statement 241
PDB statement 240
PDBEND statement 243

prerequisites 168
recommendations 168
requirements 168
restrictions 168
standard mode (MFSUTL procedure)

phase 1 252
phase 2 253

Table definition statements
IF statement 243
TABLE statement 243
TABLEEND statement 245

test mode (MFSTEST procedure)
phase 1 preprocessor 258
phase 2 258
source statement preprocessor 258

DFSUPRT0 (Spool SYSOUT Print utility)
DD statements 585
prerequisites 583
recommendations 583
requirements 583
restrictions 583

DFSURCL0 (Create RDDS from Log Records utility)
DD statements 611
description 609
examples

JCL example 614
Summary report example 614

EXEC statement 611
input and output 611
JCL specifications 611
prerequisites 610
recommendations 610
requirements 610
restrictions 610
return codes 613
Utility control statements 612

DFSURCM0 (Create RDDS from MODBLKS utility)
DD statements 621
description 619
examples

JCL example 623
Summary report example 623

EXEC statement 621
input and output 620
JCL specifications 620
prerequisites 620
recommendations 620
requirements 620
restrictions 620

652 IMS: System Utilities

DFSURCM0 (Create RDDS from MODBLKS utility) (continued)
return codes 622
Utility control statements 621

DFSURCP0 (Copy RDDS utility)
DD statements 606
description 605
examples

JCL example 607
Sample summary output 607

EXEC statement 606
input and output 605
JCL specifications 606
prerequisites 605
recommendations 605
requirements 605
restrictions 605
return codes 607
Utility control statements 606

DFSURDD0 (RDDS Extraction utility)
DD statements 634
description 633
examples

JCL example 636
Sample Query report 636

EXEC statement 634
input and output 633
JCL specifications 634
prerequisites 633
recommendations 633
requirements 633
restrictions 633
return codes 635
Utility control statements 634

DFSURST0 (DRD IMS SYSGEN stage 1 pre-parser utility)
DD statements 629
description 627
examples

JCL example 631
Summary report example 631

EXEC statement 629
input and output 628
JCL specifications 629
prerequisites 628
recommendations 628
requirements 628
restrictions 628
return codes 630
Utility control statements 630

DFSUSVC0 (Dynamic SVC utility)
DD statements 538
error processing 539
examples 539
input 538
JCL requirements 538
output 538
overview 537
prerequisites 537
recommendations 538
requirements 537
restrictions 537
return codes 539

DFSUTB00
prerequisites 161
recommendations 162

DFSUTB00 (MFS Device Characteristics Table utility)
DD statements 163
requirements 161
running the utility 164

DFSUTR20 (IMS Monitor Report Print utility)
analysis control data set 456
definition of terms 455
input 455
JCL example 457
JCL requirements 456
overview 455
prerequisites 455
recommendations 455
requirements 455
restrictions 455

DFSUTSA0 (MFS Service utility)
DD statements 549
EXEC statement 549
prerequisites 548
recommendations 548
requirements 548
utility control statement keywords 550
utility control statement parameters 550

DFSWTnnn procedure (Spool SYSOUT Print utility
DFSUPRT0) 584
DIF (device input format)

language statements used to create
DEV 189
DFLD 227
DIV 209
DO 223
DPAGE 216
ENDDO 239
FMT 188
FMTEND 240
PPAGE 223
RCD 226
summary 175

DIV statement
COMPR= operand 216
HDRCTL= operand 213

dividing database into multiple data set groups
DBD generation 48

DL/I Call Image Capture module (DFSERA50)
control statements 448
File Select and Formatting Print utility (DFSERA10) 448
overview 448

DOF (device output format)
language statements used to create

DEV 189
DFLD 227
DIV 209
DO 223
DPAGE 216
ENDDO 239
FMT 188
FMTEND 240
PPAGE 223
RCD 226
summary 175

DRD
utilities 593

DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0)
DD statements 629

Index 653

DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0) (continued)
description 627
examples

JCL example 631
Summary report example 631

EXEC statement 629
input and output 628
JCL specifications 629
prerequisites 628
recommendations 628
requirements 628
restrictions 628
return codes 630
Utility control statements 630

DSPURX00 (Database Recovery Control utility)
examples 534
invoking the utility 534
prerequisites 531
recommendations 531
requirements 531
restrictions 531

dump format control data set
DD statement 468
description 468
subset options 468

dynamic resource definition (DRD)
utilities 593

Dynamic SVC utility (DFSUSVC0)
DD statements 538
error processing 539
examples 539
input 538
JCL requirements 538
output 538
overview 537
prerequisites 537
recommendations 538
requirements 537
restrictions 537
return codes 539

E
E= keyword

DFSERA10 OPTION control statement 431
EJECT statement (language utility) 250
END statement (language utility) 250
ENDDO statement

specifying to terminate
DFLD statements 239
MFLD statements 188

Enhanced Select exit routing (DFSERA70)
examples 450
overview 449

EQU statement (language utility statement) 246
equate processing 246
error block listing (SYSPRINT)

description of fields 511
examples

File Select and Formatting Print utility 432
selecting all log record types with token 451
selecting specific log record types with token 451

EXEC statement
MFS Device Characteristics Table (DFSUTB00) 162

EXEC statement (continued)
Spool SYSOUT Print utility (DFSUPRT0) 585
TCO Verification utility (DFSTVER0) 588

EXEC statement, operands
DEVCHAR= 170

EXIT= parameter
Data Capture exit routine 43
DBD statement 43

EXITR= keyword
DFSERA10 OPTION control statement 431

F
Fast Path

AREA statement
DEDB DBD generation record 26
description 61
format 49
keywords 61

DEDB DBD generation
description 22
examples 147
input record structure 26

DEDB PSB generation
alternate PCB statement 266

Log Analysis utility (DBFULTA0)
log intervals 401

MSDB DBD generation
description 22
examples 146

MSDB PSB generation
alternate PCB statement 266
examples 294

Fast Path DEDB
data entry database (DEDB)

DBD generation 28
Fast Path Log Analysis utility (DBFULTA0)

error processing 408
Fast Path report types 409
input and output 402
JCL requirements 403
overview 401
prerequisites 402
recommendations 402
reports

Detail-Listing-of-Exception-Transactions 409
Overall Summary of Resource Usage and
Contentions 416
Overall Summary of Transit Times 416
Recapitulation-of-the-Analysis 419
Summary-of-Exception-Detail-by-Transaction-Code
415
Summary-of-Region-Occupancy 418
Summary-of-VSO-Activity 419

requirements 402
restrictions 402
utility control statements 404

Fast Path MSDB
DEDB (data entry database)

DBD generation 28
main storage database (MSDB)

DBD generation 28
FEAT= operand (DEV statement), specifying 204
FIELD statement

654 IMS: System Utilities

FIELD statement (continued)
DEDB database 102
description 101
format 113
GSAM database 103
HDAM and PHDAM database 104
HIDAM and PHIDAM database 106
HISAM database 107
HSAM database 108
Index database 109
keywords 113
MSDB database 110
SHISAM database 111
SHSAM database 108

field tab
specifying 201

File Select and Formatting Print utility (DFSERA10)
control statements

COMMENT 432
CONTROL 425
description 425
END 432
OPTION 427

COPY option 429
DL/I Call Image Capture module (DFSERA50) 448
Enhanced Select exit routine (DFSERA70) 449
examples 432
IMS Trace Table Record Format and Print module
(DFSERA60) 448
input 423
JCL requirements

DD statements 424
description 424
examples 432, 436

NEGOF option 429
OPTION statement

PARM= parameter, subparameters of 449
optional keywords

B= 430
C= 430
COND= 430
D= 432
DDNAME= 432
E= 431
EXITR= 431
FLDLEN= 430
FLDTYP= 430
H= 430
L= 430
O= 429
OFFSET= 429
P= 432
PARM= 429
PRTSYS= 432
STARTAF= 430
STOPAFT= 430
SYM= 429
T= 430
V= 430
VALUE= 430

output 423
overview 423
prerequisites 423
PRINT option 429

File Select and Formatting Print utility (DFSERA10) (continued)
Program Isolation (PI) Trace Record Format and Print

Module (DFSERA40)
control statements 448
overview 445
sample 445

recommendations 423
Record Format and Print Module (DFSERA30)

control statements 438
description 438

requirements 423
restrictions 423

fill characters
input message fields

specifying 187
output device fields

specifying 178
FILL= operand

MFLD statement, specifying 187
MSG statement, specifying 178

FLDLEN= keyword
DFSERA10 OPTION control statement 430

FLDTYP= keyword
DFSERA10 OPTION control statement 430

FMT statement, specifying 188
FMTCPY control statement

MFSBTCH2 procedure 257
MFSUTL procedure 254

FMTEND statement, specifying 240
forced EOV

Log Archive utility 493
format set 167
FRSPC= keyword

DATASET statement 58
FTAB= operand (DEV statement)

specifying 201

G
Generation utilities

Application Control Blocks Maintenance utility 1
Database Description (DBD) Generation utility 1
MFS Device Characteristics Table utility (DFSUTB00) 1
MFS Language utility (DFSUPAA0) 1
Program Specification Block (PSB) generation utility 1

Global Online Change utility (DFSUOLC0)
examples 545
JCL 542
OLCSTAT data set 541
overview 541
parameters 543
prerequisites 542
recommendations 542
requirements 542
restrictions 542

GSAM (Generalized Sequential Access Method)
DBD generation

example 145
specification 20, 39

PCB generation
example 292

Index 655

H
H= statement

DFSERA10 OPTION control statement 430
HALDB (High Availability Large Database)

partitions
database uncommitted updates restriction 263

HDAM (Hierarchical Direct Access Method)
defining

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

HDAM database
DBD (Database Description) generation 28

HDRCTL= operand
DIV statement, specifying 213

HIDAM (Hierarchical Indexed Direct Access Method)
defining

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

HIDAM database
DBD (Database Description) generation 28

High Availability Large Database (HALDB)
partitions

database uncommitted updates restriction 263
HISAM (Hierarchical Indexed Sequential Access Method)

defining
DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

HISAM database
DBD (Database Description) generation 28

HSAM (Hierarchical Sequential Access Method)
defining

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

HSAM database
DBD (Database Description) generation 28

I
IF statement

specifying 243
IMS catalog

ACB Generation and Catalog Populate utility
(DFS3UACB) 313
ACB library

copying 331, 339
ACBGEN and population in a single step 313
copying 331, 339

IMS catalog (continued)
DBD library

copying 331, 339
DBRC, without 329, 369
defining 329, 369
loading 373
loading during ACBGEN 313
maintenance 365
populating 373
populating during ACBGEN 313
PSB library

copying 331, 339
purging records 389
segments, deleting 389
sizing 385
statistics 385
utilities

DFS3UCD0 329, 369
IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0)

overview 331
IMS Catalog Export utility (DFS3CCE0)

DD statements 336
input 332
JCL 334
output 332
overview 331
prerequisites 332
recommendations 332
requirements 332
restrictions 332
return codes 339
statistics report, export 337

IMS Catalog Import utility (DFS3CCI0
input 340
JCL 343
output 340
prerequisites 340
recommendations 340
requirements 340
restrictions 340
return codes 352
statistics report, import 350

IMS Catalog Import utility (DFS3CCI0)
DD statements

SYSINP 345
JCL 343
overview 339
SYSINP DD statement 345

IMS Catalog Library Builder utility (DFS3LU00) 357
IMS Catalog Maintenance utility (DFS3CM00)

DD statements 366
input 365
output 365
overview 365
requirements 365
restrictions 365
return codes 367

IMS Catalog Populate utility (DFS3PU00)
DD statements

MANAGEDACBS statement, SYSINP 324, 347, 382
SYSINP 318, 380

input 375
JCL 376
output 375

656 IMS: System Utilities

IMS Catalog Populate utility (DFS3PU00) (continued)
overview 373
prerequisites 374
recommendations 375
requirements 374
restrictions 374
return codes 387
statistics report 385
SYSINP DD statement

MANAGEDACBS statement 324, 347, 382
IMS Catalog Record Purge utility (DFS3PU10) 389
IMS catalog utilities 311
IMS Dump Formatter 467
IMS Monitor Report Print utility (DFSUTR20)

analysis control data set 456
definition of terms 455
input 455
JCL example 457
JCL requirements 456
overview 455
prerequisites 455
recommendations 455
requirements 455
restrictions 455

IMS Monitor Reports
DB/DC

Log Merge utility (DFSLTMG0) 503
Log Recovery utility (DFSULTR0) 507
Log Transaction Analysis utility (DFSILTA0) 459
Statistical Analysis utility (DFSISTS0) 471

Log Archive utility (DFSUARC0) 493
Offline Dump Formatter utility (DFSOFMD0) 465

IMS password
PASSWORD statement 180
specifying 230

IMS Trace Table Record Format and Print module
(DFSERA60)

control statements 448
File Select and Formatting Print utility (DFSERA10) 448
overview 448

IMS-issued subsystem detected deadlocks 444
IMS.FORMAT library

backup and restore operations 259, 260
IMS.REFERAL library

backup and restore operations 259, 260
IMSMSV procedure (Multiple Systems Verification utility
DFSUMSV0) 569
IMSWTnnn procedure (Spool SYSOUT Print utility
DFSUPRT0) 586
index database

DBD (Database Description) generation 28
Index database

defining
DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

INDEX DBD generation
logical DBD 24
overview 23
primary HIDAM index 23
secondary index 23

INDEX function (MFS Service utility DFSUTSA0) 553
INITMOD procedure

DFSMREC control statement 580
MODSTAT record 580
procedure statement 580

IPCS (Interactive Problem Control System)
IMS Dump Formatter 467
Offline Dump Formatter 467
Offline Dump Formatter, user control statement 467

iterative processing (MFLD/DFLD)
DO statement 183, 224
ENDDO statement 188, 239
PRINT GEN effects 249
RCD statement with DFLD 226

J
JUST= operand (MFLD statement), specifying 186
justification

specifying 186

K
keyboard shortcuts ix

L
L= keyword

DFSERA10 OPTION control statement 430
LABEL field

DBD generation 48
LCHILD statement

HDAM databases 95
HIDAM databases 96
HISAM databases 94
INDEX databases 97
PHDAM databases 96
PHIDAM databases 97
PSINDEX databases 98

legal notices
notices 639
trademarks 639, 640

LIST function (MFS Service utility DFSUTSA0) 557
literal fields

output message
length, password parameter 230
specifying length 185
truncating literals 225

Log Analysis utility
Fast Path (DBFULTA0) 401

Log Archive utility (DFSUARC0)
Batch DASD SLDS archive 493
control statements 497
COPY statement 499
copying log records into user data sets 493
creating an RLDS 493
DD statements 496
error processing 501
examples 502
EXIT statement 501
JCL requirements 496
OLDS input 494
omitting log records on SLDS 493

Index 657

Log Archive utility (DFSUARC0) (continued)
optional functions 493
overview 493
prerequisites 494
program output 495
recommendations 494
requirements 494
restrictions 494
RLDS (Recovery Log Data Set) 493
SLDS input 495
SLDS statement 498
specifying forced end of volume 493
specifying user exit routines 493

Log Merge utility (DFSLTMG0)
control statement format 504
controlling log merge 504
DD statements 506
input and output 503
JCL requirements 505
MSC (Multiple Systems Coupling) 503
overview 503
prerequisites 503
recommendations 503
requirements 503
restrictions 503

LOG parameter
DBD statement 45

log record
Statistical Analysis utility 471

Log Recovery utility (DFSULTR0)
active region messages 513
CLS mode 507
CLS mode error listing 511
control statements 516
creating a new log 518
creating an interim log 517
DD statements 515
dual log input

CLS mode 509
DUP mode 509
REP mode 509

Dump of data records 513
DUP mode 507
DUP mode error listing 511
error block listing (SYSPRINT) 511
error processing 519
examples 519
input 508
interim log error ID record 511
JCL requirements 514
modes 507, 510
OLDS recovery 508
output 510
overview 507
prerequisites 508
print active PSB reports 518
PSB mode 507
recommendations 508
REP mode 507
REP mode verification messages 513
requirements 508
restrictions 508
single log input 508
SLDS recovery 508

Log Transaction Analysis utility (DFSILTA0)
description 459
parameter descriptions 460
prerequisites 460
program inputs 460
program outputs 460
recommendations 460
requirements 460
restriction 459

Log utilities
Log Archive utility (DFSUARC0) 491
Log Merge utility (DFSLTMG0) 491
Log Recovery utility (DFSULTR0) 491

logical
links

multisystem control block 563
terminals

multisystem control block 564
LOGICAL parameter

DATASET statement 52
logical terminals, multisystem control block 561
LPAGE

operands
COND= 179
SOR= 179

output
conditional selection 179

LTH= operand (MFLD statement), specifying 185
LUSIZE= operand (PDB statement), specifying 240

M
main storage database (MSDB)

DBD generation 28
making changes online

Global Online Change Copy utility 541
Online Change Copy utility 573

MANAGEDACBS statement 324, 347, 382
marshal attributes 127
MBR=parameter

DBD generation 158
metadata

application
ACB Generation and Catalog Populate utility
(DFS3UACB) 313
loading into the IMS catalog 373

database
ACB Generation and Catalog Populate utility
(DFS3UACB) 313
loading into the IMS catalog 373

MFLD (message field statement)
ATTR= operand 186
FILL= operand 187
iterative processing 182, 183
JUST= operand 186
LTH= operand 185
printing generated MFLD statements 187

MFS Device Characteristics Table utility (DFSUTB00)
DD statements 163
description 161
EXEC statement

description 162
MFS descriptor format 161
MFSDCT procedure 162

658 IMS: System Utilities

MFS Device Characteristics Table utility (DFSUTB00) (continued)
prerequisites 161
PROC statement

description 162
recommendations 162
requirements 161
restrictions 161
running the utility 164

MFS Language utility
compilation statements

ALPHA 172
COPY 245
EJECT 250
END 250
EQU 246
RESCAN 247
SPACE 250
summary 176
SYSIN 172
SYSLIB 172
SYSPRINT 172
TITLE 249
UNSTACK 248

concatenated equates 247
MFS Language utility (DFSUPAA0)

batch mode
description 254
MFSBTCH1 procedure 255
MFSBTCH2 procedure 256

compilation statements
ALPHA statement 245
COPY statement 246
EJECT statement 250
END statement 250
EQU statement 246
PRINT statement 249
RESCAN statement 247
SPACE statement 250
STACK statement 248
TITLE statement 249
UNSTACK statement 248

control blocks 167
ddnames (MFSRVC)

FORMAT 172
REFIN 172
SYSIN 172
SYSPRINT 172
SYSSNAP 172

ddnames (MFSULT, MFSBTCH1, and MFSBTCH2)
DUMMY 171
FORMAT 171
REFIN 171
REFOUT 171
REFRD 171
SYSIN 171
SYSLIB 171
SYSUT3 171
SYSUT4 171
UTPRINT 172

description 167
FMTCPY control statement

MFSBTCH2 procedure 257
MFSUTL procedure 254

Format definition statements

MFS Language utility (DFSUPAA0) (continued)
Format definition statements (continued)

DEV statement 189
DFLD statement 227
DIV statement 209
DO statement 224
DPAGE statement 216
ENDDO statement 239
FMT statement 188
FMTEND statement 240
PPAGE statement 223
RCD statement 226

format set 167
JCL parameter descriptions

PCOMP= 168
PSUBS= 168
PXREF= 168

JCL requirements
MFSBACK procedure 259
MFSBTCH1 procedure 255
MFSBTCH2 procedure 256
MFSREST procedure 260
MFSTEST procedure 258
MFSUTL procedure 253

Message definition statements
DO statement 182
ENDDO statement 188
LPAGE statement 179
MFLD statement 182
MSG statement 177
MSGEND statement 188
PASSWORD statement 180
SEG statement 180

modes 167
Partition set definition statements

PD statement 241
PDB statement 240
PDBEND statement 243

prerequisites 168
recommendations 168
REFCPY control statement

MFSBTCH1 procedure 256
MFSULT procedure 254

requirements 168
restrictions 168
standard mode (MFSUTL procedure)

phase 1 252
phase 2 253
region parameter estimate 171

Table definition statements
IF statement 243
TABLE statement 243
TABLEEND statement 245

test mode (MFSTEST procedure)
description 257
phase 1 preprocessor 258
phase 2 258
region parameter estimate 171
source statement preprocessor 258

MFS Service utility (DFSUTSA0)
DD statements 549
DELETE function 553
description 547
EXEC statement 549

Index 659

MFS Service utility (DFSUTSA0) (continued)
INDEX function 553
LIST function

output 559
LIST function output 557
MFSRVC procedure 548
prerequisites 548
PROC statement

description 548
recommendations 548
RELATE function 556
requirements 548
restrictions 547
SCRATCH function 554
utility control statement keywords

FMT= 550
utility control statement parameters 550
utility control statements 549

MFSBACK procedure (MFS Language utility)
description 259
JCL requirements 259

MFSBTCH1 procedure (MFS Language utility)
description 255
JCL requirements 255

MFSBTCH2 procedure (MFS Language utility)
description 256
JCL requirements 256

MFSDCT
MFS Device Characteristics Table utility (DFSUTB00)
161

MFSREST procedure (MFS Language utility)
description 260
JCL requirements 260

MFSRVC procedure (MFS Service utility) 548
MFSTEST procedure (MFS Language utility)

JCL requirements 258
region parameter estimate 171
step 1 (phase 1) 258
step 1 (source statement preprocessor) 258
step 2 (phase 2) 258

MFSUTL procedure (MFS Language utility)
JCL requirements 253
region parameter estimate 171
step 1 (phase 1) 252
step 1 (preprocessor) 252
step 2 (phase 2) 253

MID (message input descriptor)
language statements used to create

DO 182
ENDDO 188
LPAGE 179
MFLD 182
MSG 177
MSGEND 188
PASSWORD 180
SEG 180
summary 175

MOD (message output descriptor)
language statements used to create

DO 182
ENDDO 188
LPAGE 179
MFLD 182
MSG 177

MOD (message output descriptor) (continued)
language statements used to create (continued)

MSGEND 188
PASSWORD 180
SEG 180
summary 175

MODEL= parameter
DATASET statement 52

modified data tag (MDT) 233
MODSTAT record, INITMOD procedure 580
MSC (Multiple Systems Coupling)

Log Merge utility
input 503
output 503

MSDB (Main Storage Database)
defining

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

MSDB DBD generation
description 22

MSG statement
FILL= operand 178

MSGEND statement
specifying 188

Multiple Systems Verification utility (DFSUMSV0)
description 561
EXEC statement 570
IMSMSV procedure 569
input validation 562
invoking the procedure 570
logical links 563
logical terminals 561, 564
MSC (Multiple Systems Coupling) 561
multisystem control block verification 562
multisystem path map 564
output messages 564
partner IDs 562
physical links 563
prerequisites 561
PROC statement

description 570
procedure for executing 569
processing phases 562
recommendations 562
requirements 562
restrictions 561
SYSID paths

description 563
local 563
remote 563

transaction code attributes
consistency between systems 563
description 563
local 563
remote 563

utility control statements
description 570

verification process 562
multisystem control blocks 562
multisystem path map, MSC 564

660 IMS: System Utilities

N
NAME parameter

DBD statement 39
NEGOF option

File Select and Formatting Program (DFSERA10) 429
NOLOG parameter

DBD statement 45
not message-driven option

Fast Path Log Analysis utility 406
null

compression, specifying 216
fill character

input message fields 187
output device fields 178

O
O= keyword

control statements
DFSERA10 CONTROL 427
DFSERA10 OPTION 429

Offline Dump Formatter utility (DFSOFMD0)
dump format control data set

DD statement 468
description 468
subset options 468

dump formatter 465
environments

DB batch 467
DB/DC 467
DBCTL 467
DCCTL 467
TM batch 467

input and output 466
IPCS 467
load modules 465
migration considerations 465
overview 465
prerequisites 465
recommendations 466
requirements 466
restrictions 465
SDUMP 467

OFFSET= keyword
DFSERA10 OPTION control statement 429

OLCSTAT data set
description 541
initializing 541
recover procedure 541

OLCUTL procedure, process 578
OLDS (online log data set)

dual OLDSs 494
input to Log Archive utility 494
recover points 494
recovery using the Log Recovery utility 508
termination 494

OM Audit Trail Format and Print module (CSLULALE)
DD statements 452
description 451
JCL specifications 451
Limiting log data to a specified time range 452
Utility control statements 452

omitting log records on SLDS

omitting log records on SLDS (continued)
Log Archive utility 493

Online Change Copy utility (DFSUOCU0)
active library 574
cancellation 573
DD statements 577
DFSMREC control statement 580
EXEC statement 575
inactive library 574
INITMOD procedure 579
JCL 579
libraries used 574
MSDB 573
OLCUTL procedure 578
overview 573
prerequisites 574
procedure statement 574, 580
recommendations 574
requirements 574
restrictions 573
staging library 574

Online Database Image Copy utility (DFSUICP0)
PSBGEN specifications required 309

operator control tables
language statements used to create

IF 243
TABLE 243
TABLEEND 245

OSAM data sets block size 56
output message

header
structure and content 213

Overall Summary of Resource Usage and Contentions for All
Transaction Codes and PSBs Report

Fast Path Log Analysis utility 416
Overall Summary of Transit Times by Transaction Code for

IFP Regions Report
Fast Path Log Analysis utility 416

OVFLW= parameter
DATASET statement 53

P
P= keyword

DFSERA10 OPTION control statement 432
PARM= keyword

DFSERA10 OPTION control statement 429
subparameters of

TOKEN= subparameter 450
XFMT= subparameter 449

partition set, language statements used to create
PD 241
PDB 240
PDBEND 242

Partitioned Hierarchical Direct Access Method (PHDAM) 145
Partitioned Hierarchical Indexed Direct Access Method
(PHIDAM) 145
partitions

database uncommitted updates restriction 263
PASSWD= parameter

DBD statement 42
PASSWORD parameter (DFLD statement), specifying 230
PASSWORD statement, specifying 180
password, IMS

Index 661

password, IMS (continued)
specifying 230

PCB statement
database PCB size 269
Full-function or Fast Path database 269
GSAM 281
SENSEG statement 283

PCBs (program control blocks)
DB

database uncommitted updates restriction 263
PD statement (partition definition)

specifying 241
PDB (partition descriptor block)

language statements used to create
PDBEND 176
summary 176

LUSIZE= operand 240
PDBEND statement, specifying 242
PFK= operand (DEV statement), specifying 205
PHDAM (Partitioned Hierarchical Direct Access Method)

DBD generation
example 145

defining
DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

PHIDAM (Partitioned Hierarchical Indexed Direct Access
Method)

DBD generation
example 145

defining
DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

physical links, MSC 563
PPAGE statement, specifying 223
PRINT option

File Select and Formatting Print utility (DFSERA10) 429
PRINT statement (language utility) 249
printed page format control

bottom margin 207
line density 208
top margin 207

PROC statement
MFS Device Characteristics Table utility (DFSUTB00)
162
Multiple Systems Verification utility (DFSUMSV0) 570
Spool SYSOUT Print utility (DFSUPRT0) 584

procedure
ACBGEN 5
DBDGEN 157
INITMOD 579
OLCUTL 578
PSBGEN 308

program control blocks (PCBs)
DB

database uncommitted updates restriction 263
program function keys (3270)

program function keys (3270) (continued)
specifying 205

Program Isolation (PI) Trace Record Format and Print
Module (DFSERA40)

control statements 448
output sample 445

Program Isolation Trace Record Format and Print module
(DFSERA40)

overview 445
Program Isolation Trace Record Format and Print Module

(DFSERA40)
deadlock report 439

program output
Log Archive utility 495

Program Specification Block (PSB) Generation utility
Fast Path databases

processing options 278
program tab function

fill character 178
protecting the screen

specifying parameter on DLFD statement 232
PRTSYS= keyword

DFSERA10 OPTION 432
PSB (Program Specification Block)

control statement formats
alternate PCB 266
END 291
Full-function or Fast Path database PCB 269
GSAM PCB 281
I/O PCB 266
PSBGEN 287
SENFLD 286
SENSEG 283

description 263
dynamic option

adding in IMS-managed ACB environments 13
examples

application database 299
Fast Path 294
Field Level Sensitivity 293
GSAM 292
logical database 295
sample hierarchic data structure 291
shared secondary index 304

execution 309
Full-function or Fast Path database PCB

PROCOPT parameter 269
generating

control statement formats 12, 13
control statements 266
overview 263

PCBNAME= parameter 293
PCBs (Program Communication Blocks) 263
specifying options for DEDBs

END statement 291
PSBGEN statement 287
SENSEG statement 283

PSB Generation utility
Fast Path databases

processing options 278
PSB library

copying, with IMS catalog 331, 339
PSB= keyword

662 IMS: System Utilities

PSB= keyword (continued)
ACB Generation and Catalog Populate utility
(DFS3UACB) 320

PSB= parameter
ACB Maintenance utility 8

PSBGEN
procedure 308
statement

maximum number of database PCBs 269
PSB generation 287

PSBGEN utility
generating

input and output 264
prerequisites 263
recommendations 264, 308
requirements 264
restrictions 263
Rules 264
six input/output statement types
264

PT (program tab) function
fill character 178

R
RCD statement, specifying 226
RDDS Extraction utility (DFSURDD0)

DD statements 634
description 633
examples

JCL example 636
Sample Query report 636

EXEC statement 634
input and output 633
JCL specifications 634
prerequisites 633
recommendations 633
requirements 633
restrictions 633
return codes 635
Utility control statements 634

RDDS to Repository utility (CSLURP10)
DD statements 600
description 599
examples

JCL example 602
Sample summary output 602

EXEC statement 600
input and output 600
JCL specifications 600
prerequisites 599
recommendations 600
requirements 599
restrictions 599
return codes 601
utility control statements 601

Recapitulation-of-the-Analysis
Report

Fast Path Log Analysis utility 419
RECFM= parameter

DATASET statement 58
RECON data set

upgrading 531
version migration 531

Record Format and Print Module (DFSERA30)
control statements 438
deadlock report 439
overview 438

Record Format and Print Module (DFSERS30)
additional information gathered 444
Deadlock report 439
File Select and Formatting Print utility (DFSERA10) 438
lock states 442
reading the report 440
reporting anomaly 444
resultant state of the lock 442
selecting only the deadlock block 444
special situations 443
subsystem detected deadlocks 444

RECORD= parameter
DATASET statement 57

REFCPY control statement
MFSBTCH1 procedure 256
MFSULT procedure 254

REL= parameter
DATASET statement 59

RELATE function (MFS Service utility DFSUTSA0) 556
Repository to RDDS utility (CSLURP20)

DD statements 596
description 595
examples

JCL example 597
Sample summary output 598

EXEC statement 596
input and output 595
JCL specifications 596
prerequisites 595
recommendations 595
requirements 595
restrictions 595
return codes 597
Utility control statements 597

RESCAN statement (language utility) 247
restore operations, MFS library 260
RGN= parameter

procedures
ACBGEN 6
DBDGEN 158

RLDS (Recovery Log Data Set)
creating 493
output to Log Archive utility 495

RMNAME= parameter
DBD statement 41

ROOT= parameter
AREA statement 62

S
SCA (system control area)

specifying 184
SCAN= parameter

DATASET statement 58
SCRATCH function (MFS Service utility DFSUTSA0) 554
screen formatting

specifying screen size 198
script member, error 587
SDUMP

Offline Dump Formatter 467

Index 663

SEARCHA= parameter
DATASET statement 58

secondary index
DBD generation 23

SEG statement
EXIT= operand 180
GRAPHIC= operand 180

SEGM statement
database

DEDB 63
GSAM 65
HDAM 65
HIDAM 67
HISAM 69
HSAM 71
INDEX 72
MSDB 73
PHDAM 73
PHIDAM 75
PSINDEX 77
SHSAM 78

description 63
format 78
keyword abbreviations 78
pointer keyword options and abbreviations 81

selecting
extended log formatting for X'50' log records

XFMT= subparameter 449
log records by recovery token

example of selecting all record types 451
example of selecting specific record types 451
TOKEN= subparameter 450

selector pen, 3270
specifying field detectability 232

SENSEG statement
PSB generation 283

Service utilities
Batch SPOC utility (CSLUSPOC) 525
Database Recovery Control utility (DSPURX00) 525
Dynamic SVC utility (DFSUSVC0) 525
Global Online Change utility (DFSUOLC0) 525
MFS Service utility (DFSUTSA0) 525
Multiple Systems Verification utility (DFSUMSV0) 525
Online Change Copy utility (DFSUOCU0) 525
Resource Definition Data Set Extraction utility
(DFSURDD0) 525
Spool SYSOUT Print utility (DFSUPRT0) 525
Time-Controlled Operations Verification utility
(DFSTVER0) 525

SHISAM (Simple Hierarchical Indexed Sequential Access
Method)

defining
DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

SHSAM (Simple Hierarchical Sequential Access Method)
defining

DFSCASE statement 136
DFSMAP statement 133
DFSMARSH statement 127

DFSCASE statement 136

SHSAM (Simple Hierarchical Sequential Access Method) (continued)
DFSMAP statement 133
DFSMARSH statement 127

single log input
Log Recovery utility 508

SIZE= parameter
AREA statement 61
DATASET statement 55

SKIP= parameter
File Select and Formatting Print utility (DFSERA10) 426

SLDI= operand (DEV statement), specifying 208
SLDP= operand (DEV statement), specifying 208
SLDS (system log data set)

batch archive 493
input to Log Archive utility 495
omitting log records on 493
output to Log Archive utility 495
recovery using the Log Recovery utility 508

SLDS (system log data set) statement
Log Archive utility 498

SLU
type 2, defining to operate with MFS

copy function 232
SOR= operand (LPAGE statement), specifying 179
SOUT= parameter

procedures
ACBGEN 5
DBDGEN 158

SPACE statement (language utility) 250
Specifying DBD generation

Fast Path secondary index database 23
full-function secondary index database 23
GSAM database 20
HIDAM and PHIDAM database 21
HISAM database 20
HSAM database 19, 22
Index and PSINDEX databases 23
Logical database 24
MSDB database

header information (BHDR) 22
SHISAM database 20
SHSAM database 19

Spool SYSOUT Print utility (DFSUPRT0)
blocking factors 583
DD statements 585
description 583
DFSWTnnn procedure 584
EXEC statement 585
IMSWTnnn procedure 586
prerequisites 583
PROC statement

description 584
recommendations 583
requirements 583
restrictions 583
sample output 583
system messages 583

STACK statement (MFS Language utility) 248
STARTAF= statement

DFSERA10 OPTION control statement 430
Statistical Analysis utility (DFSISTS0)

control statements 477
description 471
examples 479

664 IMS: System Utilities

Statistical Analysis utility (DFSISTS0) (continued)
input 471
JCL requirements

description 475
job-stream example 479

output 471
overview 471
prerequisites 471
program modules

Message Select and Copy or List (DFSIST40) 474
recommendations 471
reports produced, descriptions and examples

Application-Accounting report 474, 486
IMS-Accounting report 474, 486
Line-and-Terminal report 481
messages produced by Message Select and Copy
(DF) 477, 488
Messages Queued But Not Sent (by destination)
473, 480
Messages Queued But Not Sent (by transaction
code) 482
Messages, Program-to-Program (by destination)
480
Messages, Program-to-Program (by transaction
code) 483
Transaction report 485

requirements 471
restrictions 471
utility control statements

descriptions 477
nonprintable character 478
symbolic terminal name 477
time 478
transaction code 477

STOPAFT= statement
DFSERA10 OPTION control statement 430
File Select and Formatting Print utility (DFSERA10) 426

SUB= operand (DEV statement)
specifying 208

Summary-of-Exception-Detail-by-Transaction-Code (for
IFP Regions) Report

Fast Path Log Analysis utility 415
Summary-of-Region-Occupancy Report

Fast Path Log Analysis utility 418
Summary-of-VSO-Activity Report

Fast Path Log Analysis utility 419
SVC utility 537
SYM= option

DFSERA10 OPTION control statement 429
syntax diagram

how to read vii
SYS2= parameter

procedures
ACBGEN 6
DBDGEN 158

SYSID paths, MSC 563
SYSIN/SYSLIB record stacking and

unstacking
STACK statement 248
UNSTACK 248

SYSINP DD statement 318, 345, 380
SYSMDUMP

Offline Dump Formatter 467
SYSPRINT

SYSPRINT (continued)
Log Archive utility 495

SYSPRINT listing control
compilation statements 172
EJECT statement 250
PRINT statement 249
SPACE statement 250
TITLE statement 249

system checkpoints
database uncommitted updates restriction 263

system literals
other formats, CA parameter (MFLD statement) 184

T
T= keyword

DFSERA10 OPTION control statement 430
tabbing

field tabs 201
TABLE statement, specifying 243
TABLEEND statement, specifying 245
TCO Error Report

Time-Controlled Operations Verification utility
(DFSTVER0) 590

TCO script library
Time-Controlled Operations Verification utility
(DFSTVER0) 587

TCO Time-Schedule Request Table
Time-Controlled Operations Verification utility
(DFSTVER0) 590

TCO Verification procedure
Time-Controlled Operations Verification utility
(DFSTVER0) 588

TCO Verification utility (DFSTVER0)
DD statements 588

TCO-Message-Table Report
Time-Controlled Operations Verification utility
(DFSTVER0) 591

TCO-Statistics Report
Time-Controlled Operations Verification utility
(DFSTVER0) 590

TCO-Summary Report
Time-Controlled Operations Verification utility
(DFSTVER0) 591

TCO-Timer-Elements Report
Time-Controlled Operations Verification utility
(DFSTVER0) 590

Time-Controlled Operations Verification utility (DFSTVER0)
description 587
EXEC statement 588
JCL specifications 588
output

description 587
error report 590
message-table report 591
statistics report 590
summary report 591
timer elements report 590

prerequisites 587
recommendations 587
requirements 587
restrictions 587
return codes 588

time-schedule request table

Index 665

time-schedule request table (continued)
Time-Controlled Operations Verification utility
(DFSTVER0) 590

TITLE statement (language utility) 249
TOKEN= subparameter 450
trademarks 639, 640
transaction code attributes (MSC) 563
Transaction-Response report

Statistical Analysis utility (DFSISTS0)
reports 474

translation, character
input messages specifying 208

U
unprotecting the screen

specifying parameter on DLFD statement 232
UNSTACK statement (language utility) 248
UOW= parameter

AREA statement 62
utilities

Batch SPOC utility (CSLUSPOC) 527
catalog Directory Recovery utility (DFS3RU00) 353
Copy RDDS utility (DFSURCP0) 605
Create RDDS from Log Records utility (DFSURCL0) 609,
614
Create RDDS from MODBLKS utility (DFSURCM0) 619
CSLULALE (OM Audit Trail Format and Print module) 451
CSLURP10 (RDDS to Repository utility) 599
CSLURP20 (Repository to RDDS utility) 595
CSLUSPOC (Batch SPOC utility) 527
DBDGEN

control statements 15
databases used with 19
information specified in 15

DFS3UCD0 329, 369
DFSURCL0 (Create RDDS from Log Records utility) 609
DFSURCM0 (Create RDDS from MODBLKS utility) 619
DFSURCP0 (Copy RDDS utility) 605
DFSURDD0 (RDDS Extraction utility) 633
DFSURST0 (DRD IMS SYSGEN stage 1 pre-parser utility)
627
DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0)
627
Dynamic SVC utility (DFSUSVC0) 537
Fast Path Log Analysis utility (DBFULTA0) 401
File Select and Formatting Print utility (DFSERA10) 423
Global Online Change utility (DFSUOLC0) 541
IMS Monitor Report Print utility (DFSUTR20) 455
Log Archive utility (DFSUARC0) 493
Log Merge utility (DFSLTMG0) 503
Log Recovery utility (DFSULTR0) 507
Log Transaction Analysis utility (DFSILTA0) 459
MFS Device Characteristics Table utility (DFSUTB00)
161
MFS Language utility (DFSUPAA0) 167
MFS Service utility (DFSUTSA0) 547
Multiple Systems Verification utility (DFSUMSV0) 561
Offline Dump Formatter utility (DFSOFMD0) 465
OM Audit Trail Format and Print module (CSLULALE) 451
Online Change Copy utility (DFSUOCU0) 573
PSBGEN 263
RDDS Extraction utility (DFSURDD0) 633
RDDS to Repository utility (CSLURP10) 599

utilities (continued)
Repository to RDDS utility (CSLURP20) 595
Spool SYSOUT Print utility (DFSUPRT0) 583
Statistical Analysis utility (DFSISTS0) 471
Time-Controlled Operations Verification utility
(DFSTVER0) 587

V
V= parameter

DFSERA10 OPTION control statement 430
VALUE= parameter

DFSERA10 OPTION control statement 430
verification process

Multiple Systems Verification utility (DFSUMSV0) 562
VERSID= operand (DEV statement), specifying 208
version identification

specifying 208
VERSION parameter

DBD statement 46
VTAB= operand (DEV statement)

specifying 207

W
WADS (write-ahead data set)

CLS mode 507, 513
data set 515
NOWADS 517

X
XDFLD statement

description 123
format 123
HDAM database 124
HISAM database 123
keywords 123
parameter description 125
PHDAM database 124

XFMT= subparameter 449

666 IMS: System Utilities

IBM®

Product Number: 5635-A06
 5655-DS5
 5655-TM4

	Contents
	About this information
	Prerequisite knowledge
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS 15.2
	How to send your comments

	Part 1. Generation utilities
	Chapter 1. Application Control Blocks Maintenance utility (DFSUACB0)
	Examples of the ACB Maintenance utility
	Managing DOPT PSBs
	Managing DOPT PSBs in IMS systems that use ACB libraries
	Managing DOPT PSBs in IMS-managed ACB environments

	Chapter 2. Database Description (DBD) Generation utility
	DBD generation for database types
	DBD generation input record structure (except for DEDB DBDs)
	DEDB DBD generation input record structure
	DBD generation coding conventions

	DBDGEN statements
	DBD statements
	DATASET statements
	AREA statement
	SEGM statements
	LCHILD statements
	FIELD statements
	XDFLD statements
	DFSMARSH statements
	DFSMAP statements
	DFSCASE statements
	DBDGEN, FINISH, and END statements

	Examples of the DBDGEN utility
	Examples without secondary indexes or logical relationships
	Examples with logical relationships
	Examples with secondary indexes

	Running the DBDGEN procedure

	Chapter 3. MFS Device Characteristics Table utility (DFSUTB00)
	Running the DFSUTB00 utility

	Chapter 4. MFS Language utility (DFSUPAA0)
	Utility control statements and syntax rules
	Summary of control statements
	Message definition statements
	MSG statement
	LPAGE statement
	PASSWORD statement
	SEG statement
	DO statement
	MFLD statement
	Printing generated MFLD statements

	ENDDO statement
	MSGEND statement

	Format definition statements
	FMT statement
	DEV statement
	DIV statement
	DPAGE statement
	PPAGE statement
	DO statement
	RCD statement
	DFLD statement
	ENDDO statement
	FMTEND statement

	Partition set definition statements
	PDB statement
	PD statement
	PDBEND statement

	Table definition statements
	TABLE statement
	IF statement
	TABLEEND statement

	Compilation statements
	ALPHA statement
	COPY statement
	EQU statement
	Concatenated EQU statements

	RESCAN statement
	STACK statement
	UNSTACK statement
	TITLE statement
	PRINT statement
	SPACE statement
	EJECT statement
	END statement

	Running the utility in standard mode
	Running the utility in batch mode
	Running the utility in test mode
	MFS library backup procedure
	MFS restore procedure

	Chapter 5. Program Specification Block (PSB) Generation utility
	Utility control statements
	Alternate PCB statement
	Full-function or Fast Path database PCB statement
	Processing options for Fast Path databases

	GSAM PCB statement
	SENSEG statement
	SENFLD statement
	PSBGEN statement
	END statement

	Examples of the PSBGEN utility
	Running the PSBGEN procedure

	Part 2. IMS catalog utilities
	Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB)
	Chapter 7. IMS Catalog Alias Names utility (DFS3ALI0)
	Chapter 8. IMS Catalog Copy utilities (DFS3CCE0, DFS3CCI0)
	IMS Catalog Export utility (DFS3CCE0)
	IMS Catalog Import utility (DFS3CCI0)

	Chapter 9. IMS Catalog Directory Recovery utility (DFS3RU00)
	Chapter 10. IMS Catalog Library Builder utility (DFS3LU00)
	Chapter 11. IMS Catalog Maintenance utility (DFS3CM00)
	Chapter 12. IMS Catalog Partition Definition Data Set utility (DFS3UCD0)
	Chapter 13. IMS Catalog Populate utility (DFS3PU00)
	Chapter 14. IMS Catalog Record Purge utility (DFS3PU10)

	Part 3. Analysis utilities and reports
	Chapter 15. Fast Path Log Analysis utility (DBFULTA0)
	Fast Path report types

	Chapter 16. File Select and Formatting Print utility (DFSERA10)
	Examples of the DFSERA10 utility
	DFSERA10 utility modules
	Record Format and Print module (DFSERA30)
	Deadlock report

	Program Isolation Trace Record Format and Print module (DFSERA40)
	DL/I Call Image Capture module (DFSERA50)
	IMS Trace Table Record Format and Print module (DFSERA60)
	Enhanced Select module (DFSERA70)
	OM Audit Trail Format and Print module (CSLULALE)

	Chapter 17. IMS Monitor Report Print utility (DFSUTR20)
	Examples of the DFSUTR20 utility

	Chapter 18. Log Transaction Analysis utility (DFSILTA0)
	Chapter 19. Offline Dump Formatter utility (DFSOFMD0)
	Running the DFSOFMD0 utility

	Chapter 20. Statistical Analysis utility (DFSISTS0)
	Examples of the DFSISTS0 utility

	Part 4. Log utilities
	Chapter 21. Log Archive utility (DFSUARC0)
	Examples of the DFSUARC0 utility

	Chapter 22. Log Merge utility (DFSLTMG0)
	Chapter 23. Log Recovery utility (DFSULTR0)
	Examples of the DFSULTR0 utility

	Part 5. Service utilities
	Chapter 24. Batch SPOC utility (CSLUSPOC)
	Examples of the Batch SPOC utility

	Chapter 25. Database Recovery Control utility (DSPURX00)
	Examples of the DSPURX00 utility
	Invoking the utility using entry point DSPURXRT

	Chapter 26. Dynamic SVC utility (DFSUSVC0)
	Examples of the DFSUSVC0 utility

	Chapter 27. Global Online Change utility (DFSUOLC0)
	Examples of the DFSUOLC0 utility

	Chapter 28. MFS Service utility (DFSUTSA0)
	Chapter 29. Multiple Systems Verification utility (DFSUMSV0)
	Chapter 30. Online Change Copy utility (DFSUOCU0)
	OLCUTL procedure
	Initializing the IMS.MODSTAT data set

	Chapter 31. Spool SYSOUT Print utility (DFSUPRT0)
	Examples of the DFSUPRT0 utility

	Chapter 32. Time-Controlled Operations Verification utility (DFSTVER0)
	Examples of the DFSTVER0 utility

	Part 6. Dynamic resource definition utilities
	Chapter 33. Repository to RDDS utility (CSLURP20)
	Examples of the CSLURP20 utility

	Chapter 34. RDDS to Repository utility (CSLURP10)
	Examples of the CSLURP10 utility

	Chapter 35. Copy RDDS utility (DFSURCP0)
	Examples of the DFSURCP0 utility

	Chapter 36. Create RDDS from Log Records utility (DFSURCL0)
	Examples of the DFSURCL0 utility

	Chapter 37. Create RDDS from MODBLKS utility (DFSURCM0)
	Examples of the DFSURCM0 utility

	Chapter 38. DRD IMS SYSGEN stage 1 pre-parser utility (DFSURST0)
	Examples of the DFSURST0 utility

	Chapter 39. RDDS Extraction utility (DFSURDD0)
	Examples for the DFSURDD0 utility

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

