IMS
15.1.0

System Utilities
(2024-08-30 edition)

.||I

Note

Before you use this information and the product it supports, read the information in “Notices” on page
639.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.01.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.01.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADbOoUt this INFOrMAtION....cciiirieirititerieretereetereseasesessasesessesessssesessssesessssesessasesssases Vi

PrereqUISIte KNOWLEAGE. ...c.c.viiiiee ettt e ee e st e e s ba e e e be e e e beeeebaeeensteessaeeenseeeenseeesnnens vii
How new and changed information is identified........ccceiieiieicie e e vii
HOW 10 read SYNtaX ia@ramS.cccuieieieeeeciieeecieeeeiee e e etee e e te e e e tee e eteeeetaeesbaeeeasaeesssesesnsaeesnsaeesnsesesssenans vii
Accessibility fEatUres fOr IMS LD ... ittt ete e e ete e e te e e ate e e aae e s ate e e nseesaseeenssaeennsaean iX
HOW 10 SENA YOU COMMIEBNES....iiiiiiieciiieeiteeectee et e eeteeseteeeeereeesatee e steesesteessteeessseessseesnsseesnssesassseesnsseennn iX

Part 1. Generation UtilitieS. . coceeeiieririeiirieieereeeereseeceseseesesessasesessssesessssessssesessssesessnse L

Chapter 1. Application Control Blocks Maintenance utility (DFSUACBO)......ccccerevtireeriierneeniessieeneessneenes 3
Examples of the ACB MaintenanCe Utility......cccccueiiiieeiciee ettt 11
MaNAZING DOPT PSBS.....uiiiciiiiciieeeiiteeite et ettt eestte e s re e e ste e e e bae e s saeeeseeeessaeesseeansseeensseesssaesssessnees 12

Managing DOPT PSBs in IMS systems that use ACB Libraries......cccceecveeecieeecieeeiieecciee e 13
Managing DOPT PSBs in IMS-managed ACB enVirONMENTS.......cccueeeieeeeiieeeeieeeeieeeeieeeeveeeeveeens 13

Chapter 2. Database Description (DBD) Generation Utility.......ccccceeeeieeieiee e 15

DBD generation for database tYPeS......cuciiiicieiieieeccee ettt ettt et e eaaeeeans 19
DBD generation input record structure (except for DEDB DBDS)......cccevvveenieeriieeneenireeneesivesneenns 24
DEDB DBD generation input reCord StrUCUI.....cccuviieciiieeiieeciee ettt ee e rre e areeenae e 26
DBD generation COdiNg CONVENTIONS........ciiciiiecieecieeeccite e ecee e eiee e eree e ecveeeetee e sbee e saeeeenbeessnsaeeenseas 27

DBDGEN STatemMENtS..ccc ittt ettt et e et e e s st e e s st e e s s et e e s e nr e e e s e ennae 27
DBD STatEMIENTS. cciiiiiiiii ittt e et e et e e e e s e nr e e e e s e nree e e s senneee 28
DATASET STat@MENTS. ...ttt st e st e s s ee e e e s e ssre e e s e s nnaeeeean 48
AREA STAtEMENT ..ttt e et e s s et e s e et e e e e b e e e e s e enree e e s senneeee s 61
SEGM STaTEMENTS ...ttt ettt e s st e e s et e e s s ensee e e s s e nreeeesennnneeeas 63
LCHILD Stat@mMEntS. ... ettt ettt et e e s st e e s s et e e s s mra e e e s e s nsneeeeennnne 93
FIELD STat@mMENTS. .. ittt ettt et e st e e s st e e e s e e ee e s s mneeeeesnnee 101
XDFLD Stat@MENTS. ...eiiiiiitiee ettt ettt e s st e e s et e e e e s sre e e e s snmeeee e semneeeesennnet 123
DFSMARSH Stat@mMENTS.....uuuiiiiiiiiieiiiiieeeirrteee e essrrree e e e e e s s e s s eaaeaeaeeeesessesssnssssesaneneeeeas 127
DESMAP STatemMENTS.ccc ittt ettt e s st e s e e e s s et e e s nnee 133
DFSCASE STatemMENTS. .. ittt e e e s e e e 136
DBDGEN, FINISH, and END StatemeNntS.......cccccieiiciieiecieeeciee ettt e sereeseteeseveee s naeeeeneaeennes 140

Examples of the DBDGEN ULiLity....c.ueeecieeiecieiceiee ettt eeve e e te e e ete e e ae e s ate e s eaae e s aaneenes 140
Examples without secondary indexes or logical relationships.......cccceccveeecieeccieeccie e 140
Examples with logical relationShips.....cccieicieiciieecee et ettt e e rae e 148
Examples With SECONAArY INAEXES.......uiiciiiiiiieciee ettt e e e s eate e s eare e e savee s sraesnnseen 152

RUNNINg the DBDGEN PrOCEAUIE.....ccccuiiieiieeecieeectee et e estee e tee e aee e s ree e baeesabaessbaeessbaaesnsaeesnseeennses 157

Chapter 3. MFS Device Characteristics Table utility (DFSUTBOO)......c.ceeevueeeiiieeeeieeecieeeeieeeeeeeeevee e 161
RUNNING the DFSUTBOO ULiLity.receeseeeerieriereeiieseesieseesteseesessresressaesseessessnesreessessesssesseessesssessesssennes 164

Chapter 4. MFS Language utility (DFSUPAAD)......ccceeieriireertireeseeseesestesteessesreessesssessessssssesssessesssesseens 167
Utility control statements and SYNTaX FULES.....ccuviiciiieeiiieeeie et e vee e aae e nae e 172

Summary of CONtrol STAtEMENTS.......iiciieiieeee e e re e ee e s bee e e aee e e nes 175
Message definition StateMENTS.......ei i e e et e e 177
Format definition stat@mMeENtS.......cccuiii e e 188
Partition set definition StateMENTS.....c..cii e e 240
Table definition StAtEMENTS.....ccciii e e rr e e be e e e be e e e bee e eraeeeaes 243
ComMPIlation StAtEMENTS...cii it este e s te e et e e s ateesssteessteesseeesreaesans 245
Running the utility in standard MOGe.........eeeciiiiciiecee e e e e 251

Running the utility in BatCh MOde.......uiiiiiiiii s s s 254

Running the utility iN ST MOE .. .iiiieeee e s s e e s 257
(TSR o =Y YA o F= 11 (0 o3 o] o Yo Yo [[SR 259
TR =T (o] (=3 o] o Tot=Te [V TSRS 260
Chapter 5. Program Specification Block (PSB) Generation Utility.......ccecceereerieeneesieeceeeieesee e eieene 263
Utility CONTIOL STatEMENTS..cci ittt e e e sae e e e e e are e e e s e eabaeeesesnsaeeeeeensseneenannes 266
AlTternate PCB StAatEMENT....cii ittt s e e e s sbee e saee e s saeeesssaaesneeas 266
Full-function or Fast Path database PCB statement.......cccccceveviiiiiiieiiiieeinieeeniee e ssieesseee e 269

GSAM PCB STat@MENT ...ttt ettt e et e e s et e s s e re e e e e e snreeeeesnneeeeean 281
SENSEG STAt@MENT ...ttt et e ettt e e sttt e e s et e e e sesseee e s e snneeeeenanne 283
SENFLD StAt@MENT...cii ittt ettt e ettt e e e et e e s s e et e e s aeeteesesaneeeeeeeanneeas 286
PSBGEN STAt@MENT ...ttt ettt e et e e et e e s s et e e e s ee e e e s e neeeeeesanne 287

END STAt@MENT ...ttt ettt e e sttt e e s et e e e e s et e e e e e areee e e e neeeeeeenreeeeenan 291
Examples of the PSBGEN ULILTY.....ueeeieciiee ettt e e e e tte e e e e e e e e s e e e e e e e nnnee s 291
RUNNING the PSBGEN PrOCEAUIE......iiiiieiiiieectee sttt ettt be e e s e e s sbe e s s e e s sbe e s saeaessanas 308
Part 2. IMS catalog utilities.....ccccceieiiiiiiiiiiiiniiiieiiiiniiniiiieieieieiiene 311
Chapter 6. ACB Generation and Catalog Populate utility (DFS3UACB)......cccveereerrieerieeieeeesieeseee e 313
Chapter 7. IMS Catalog Alias Names utility (DFS3ALIO).....cccceecererieeieesieecieeseeseeeseeeeeeesreesaneseeesneeens 329
Chapter 8. IMS Catalog Copy utilities (DFS3CCEQ, DFS3CCIN)....cccueeverereeeieecreeereecreeseesveesseeseessseens 331
IMS Catalog Export utility (DFS3CCED)......cicveeciieirieeieereesieeteeseessteesseesseesseesseeeseessessnsesssessnsesssees 331
IMS Catalog Import utility (DFS3CCIO)..ccuiiieeeciieerieeieecieesieesteeseeesteeseessaeesseessaeesseessesesesssessnsesses 339
Chapter 9. IMS Catalog Directory Recovery utility (DFS3RUQQ)........cecvverierceenieeieeseesieeseee e eeee e 353
Chapter 10. IMS Catalog Library Builder utility (DFS3LUOQO)......ccecveerieeieerieeieeseeeeeeeveeseeesveeseeeseeens 357
Chapter 11. IMS Catalog Maintenance utility (DFS3CMOO0).....ccecverierieerieeieeseesieeieeseeeeeesreeeeeeeeas 365
Chapter 12. IMS Catalog Partition Definition Data Set utility (DFS3UCDO)......ccceeceeveercrerreenieeeeenenens 369
Chapter 13. IMS Catalog Populate utility (DFS3PUQD)......ccceciieieecieeeiecieerieesieereeeeeeveeseeeeeeesveesneeens 373
Chapter 14. IMS Catalog Record Purge utility (DFS3PUZL0).....ccccuereeeriercieeneeeieeseesreesreeseeesvessseeseeens 389
Part 3. Analysis utilities and reports.....c.cccccieiiieiieiiieiiieiiecieteitceeiestcestececesenes 399
Chapter 15. Fast Path Log Analysis utility (DBFULTAD)......ccceeeeereeecieeneeeieeseeseeesreeseeeseeesneessseessesenes 401
T A e AT =T o] B 1Y/ 01T PSR 409
Chapter 16. File Select and Formatting Print utility (DFSERALO)......ccceevieeiiiereeeieeceeeeeecee e evee e 423
Examples of the DFSERAZLO ULILitY..ccuuieeieeiiee ettt eeree e e eetee e e ee e e e e s e abe e e e s eareeessenneneasennns 432
DFSERAZLO ULty MOQULES...eeiiieiiiiee ettt eeteee ettt e e e e tre e e e e e abe e e s s enbeeeessnbeeeesesnsseaeeesnnseneeean 438
Record Format and Print module (DFSERA3D)....cc.cceciirieeieerieeieesreeeteesreeeeeesreesreesveesveesseenes 438
Program Isolation Trace Record Format and Print module (DFSERAZ4Q)........ccccevvveeveenvercienne 445

DL/I Call Image Capture module (DFSERASD)......c.cecireierceeeieecieeereeereesreeeeeesseeseeseeesseesnseenens 448

IMS Trace Table Record Format and Print module (DFSERABQ).......ccccueeveereerceerceeeee e see e 448
Enhanced Select module (DFSERATO)....cccuiiieecieeeieerieeseeeteesteeseesreesseessseesseesnseessessssesssesssnenns 449

OM Audit Trail Format and Print module (CSLULALE).......ccutivieeeeeeeeceeeee e eve e ee e 451
Chapter 17. IMS Monitor Report Print utility (DFSUTR20).......ccccciieeeieeecieeeiee et eeree e etee e vee e 455

Examples of the DFSUTR20 ULILITY..cccecuiiieiccciiee et crtee e e tee e e e te e e e s evre e e s e nnae e e s eennaaeee s 457

Chapter 18. Log Transaction Analysis utility (DFSILTAD).....cceeeereerrereieereesteesteeseeeseeesreeeeeeseeesnseenes 459

Chapter 19. Offline Dump Formatter utility (DFSOFMDO).....ccccuiiieiieeeiieecieeecteeecteeeereeeete e e veeeeaneeeas 465
RUNNING the DFSOFMDO ULILITY...eeieitiiiiieeiieeceiee sttt esste e sste e sete e s ee e sssteessaeeessneaessnsaesnee 467
Chapter 20. Statistical Analysis utility (DFSISTS0)......ccieiiieeeiieeeeiieeeieeeeteeeeteeeeieeeeeaeeeeeareeeereeeeseeeeneas 471
Examples of the DFSISTSO ULILITY...ueeieieiiiiee ettt ettt ssre s seee s iee s siee e svee s saee e saeeesnees 479
Part 4. Log Utilities...c.ccciviiuiieiiniiniiniiiiiiiiiiiiiiiieiieiieiiaiiniininecnesiesrestsssasssssscsesses 491
Chapter 21. Log Archive utility (DFSUARCO)....c.cuiiciieieeieeeieeceesee et eseesteesreesaeesaeessaeeseeesnaeenseesanesnseas 493
Examples of the DFSUARCO ULILITY..ccueeeieeiiieecciiiee e eeciieeeeeettte e s eecvee e e e esvee e e s eevanee s sensaeessensenessennns 502
Chapter 22. Log Merge Utility (DFSLTMGO)......eieuircieeeieerieeeeeesieeseeesteesseesseesseesseesssesssessssesssesssesssessnees 503
Chapter 23. Log Recovery utility (DFSULTRO)......cccterierrerrieesieeseeeiesseeseeesseesseesseesseesseessessnssessessseens 507
Examples of the DFSULTRO ULIlITY...c.ueircieieiieiiiieiciteeeiteesieessiee st e st e s seee s sveessreessseesssaessssaesnns 519
Part 5. Service Utilities....c..ccciruiiieiiiiiiiiiiiiniiiiiiiiiiiiiniiiiiniiiiiiinceeee. 525
Chapter 24. Batch SPOC utility (CSLUSPOC)......ccciie ettt ettt etee e etee e eteeeetee e e tee e eree e e ree e naaeeenes 527
Examples of the BatCh SPOC ULIlity...ccuueeeieciieee ettt e e e e e e e e e e e naaeeeeeas 530
Chapter 25. Database Recovery Control utility (DSPURXO0O0).....cccceieeiieeiieeeiee e et 531
Examples of the DSPURXOO ULILITY...cccueeeeieiiieee ettt ttee e st e e e s e vee e e s e ae e e e nraeeeeeas 534
Invoking the utility using entry point DSPURXRTcoiciiiiiiiiriieeeiteeete st ssveeseeeessveeesveeesnaessnee 534
Chapter 26. Dynamic SVC utility (DFSUSVCO)......ceicuieeeieeeeitieeereeeeteeeetee et e eeteeesaeeesseeessseseesseeesaneeas 537
Examples of the DFSUSVCO ULILITY..ccuuieie ettt rttee e e e tee e e e e aree e e s enee e e s s nnaaeaeean 539
Chapter 27. Global Online Change utility (DFSUOLCO).....cceeciiieeeiiecieeieeteeeieeteeseesveesveeseeeveesneeens 541
Examples of the DFSUOLCO ULILITY..ceuuieee ettt s e sttre e e e tee e e e enrae e e s s nrae e e e e nnaneeeean 545
Chapter 28. MFS Service Utility (DFSUTSAD)......uiieciieeeiee ettt eeteeeeteeeereeeereeeeseeeeaseeessseseeasesesnseesnnsesans 547
Chapter 29. Multiple Systems Verification utility (DFSUMSVO)......cccoeiiiiiiecieeeceeeccee et 561
Chapter 30. Online Change Copy utility (DFSUOCUD)......ccceeeiiriieeieeceeseeecieeseesteeseeeseeesreessnesseesseeans 573
(0] U I o] o Yo Yo LU TSR 578
Initializing the IMS.MODSTAT data SEt...cccciiiiiieiriee ittt see e see s s sree e s ee e s aee e ssbeeesneas 579
Chapter 31. Spool SYSOUT Print utility (DFSUPRTO).......ueeeiiieecieeeeieeeciee et e eeeeeeeiree e e e eeareeeeareeeeaneas 583
Examples of the DFSUPRTO ULILitY..cccuuieeieeciiie ettt ecte e s eereee s e tae e e e eeare e e e s e nraee e s eensanaeaeeas 586
Chapter 32. Time-Controlled Operations Verification utility (DFSTVERO)........cceecveeecieeeeieeeeieeeeieeenns 587
Examples of the DFSTVERO ULILITY...cccuuiee ettt e vtee e e eearne e e s are e e e s e raneeeenes 589
Part 6. Dynamic resource definition utilities........ccccevieieiiieiieiiiieniieiieneceniennene. 593
Chapter 33. Repository to RDDS utility (CSLURP20).....cccuiieeiieeiee ettt eaee et 595
Examples of the CSLURP20 ULILITY...cccuieeee ettt tte e s e e tte e e e et e e e e ra e e e e e enneeeeean 597
Chapter 34. RDDS to Repository utility (CSLURPZLO).....cccuiieeiieeiee ettt et et 599
Examples of the CSLURPZLO ULILITY...cccuueeee ettt re e s e tte e e s e ve e e e s e ra e e e e e eanneeeeean 602
Chapter 35. Copy RDDS utility (DFSURCPO)....ccctieeiiieeeieeeeteeecteeeeteeeeteeeetteeeeseeeesseeessseesessesesseesssseens 605

Examples of the DFSURCPO ULtyceeiiciiiieiceciiiee et cecttee s secttee e s e e caree e e s eenvae e e e s nraeessenseneesennnes 607

Chapter 36. Create RDDS from Log Records utility (DFSURCLO)......cceeeerieerierieeee et 609
Examples of the DFSURCLO Uityeeeeeccueeeieeieeee et eectee e sectee e e e e civee e e e evee e e s ennra e e s s e nsaeeesennsneas 614
Chapter 37. Create RDDS from MODBLKS utility (DFSURCMO).....ccuuieeiuiieeciiieeciieeeieeeeieeeeciveeecvve e 619
Examples of the DFSURCMO ULILITY....uuuieiieeiiee ettt eeitee e s eetee e e s e sare e e s e e nreee s sensaaeeeenas 623
Chapter 38. DRD IMS SYSGEN stage 1 pre-parser utility (DFSURSTO).....ccccevuerereerierieeneeseeesveesenens 627
Examples of the DFSURSTO ULILItY...cuueeeieciiiee et seciiee e s eeeee e s e eeerte e e s sente e e s senreaeesennssaeeesennes 631
Chapter 39. RDDS Extraction utility (DFSURDDO)......ccccutieiieeeiieeeecieeeecieeeecteeeeciteeecreeeeereeesseeeesaeeesneens 633
Examples for the DFSURDDO ULILitY..ccuuieerieiieee ettt reee et e e e e tte e e e s e e e e s e sveee e e e nnaneee s 636

N 0 4o = N 639
Programming interface iNformMation. ... e s e saees 640

= e (=10 =T OO O OO PURROPPRROPRPRNt 640
Terms and conditions for product doCUMENTAtION........uiiii it aree e 641
IBM ONliNg Privacy Stat@mMENt....cc ettt e cttte e e e etee e e e e eate e e s s eaaeeee s s ntaaeesesnsaneeeennnsenanaan 641
=11 FT0 Y= - ¥] 1) 643

About this information

These topics provide reference information for the utilities that you can use with the IMS system to
generate IMS resources, work with the IMS catalog, analyze IMS activity, manage IMS logging, run the
IMS Database Recovery Control (DBRC) facility, maintain IMS networking services, and use dynamic
resource definition (DRD).

This information is available in IBM® Documentation.

Prerequisite knowledge

Before using this information, you should understand z/0S®, and be familiar with IMS concepts, facilities,
and access methods. The prerequisite publications are:

« IMS Version 15 Communications and Connections
« IMS Version 15 Database Administration
« IMS Version 15 System Administration

To learn about z/0OS, see z/0S Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by a character (revision
marker) in the left margin. The first edition (-00) of Release Planning, as well as the Program Directory and
Licensed Program Specifications, do not include revision markers.

Revision markers follow these general conventions:

« Only technical changes are marked; style and grammatical changes are not marked.

« If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

« If atopicis changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

 Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item —»<

© Copyright IBM Corp. 1974, 2020 vii

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

« Optional items appear below the main path.
»— required_item >4
L optional_item J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

J_ optional_item T

»— required_item >4

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.
»— required_item >4
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

J_ default_choice T
optional_choice j

optional_choice

»— required_item

1]

« An arrow returning to the left, above the main line, indicates an item that can be repeated.

<
<

),.ﬁ

»— required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<
€

),.ﬁ

»— required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

»— required_item fragment-name

fragment-name

»— required_item >4
L optional_item —J

« InIMS, a b symbol indicates one blank position.

viii About this information

« Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

« Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS 15. These
features support:

« Keyboard-only operation.
« Interfaces that are commonly used by screen readers and screen maghnifiers.
« Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15 ISPF panels using TSO/E or ISPF, refer to the z/0S TSO/E
Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS 15 is available in IBM Documentation.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments

Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

« Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

« Send an email to imspubs@us.ibm.com. Be sure to include the book title and the publication number.
« Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

About this information ix

http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

x IMS: System Utilities

Part 1. Generation utilities

Use the generation utilities to generate and configure an IMS system.

Each topic introduces how the utility works, defines requirements and restrictions for its use, and
provides examples.

© Copyright IBM Corp. 1974, 2020

2 IMS: System Utilities

Chapter 1. Application Control Blocks Maintenance
utility (DFSUACBO)

In IMS systems that use ACB libraries to manage runtime application control blocks, use the Application
Control Blocks (ACB) Maintenance utility to save instruction execution and direct-access wait time and
improve performance in application scheduling.

This utility might not be used in IMS systems that manage runtime application control blocks by using the
catalog. It provides a facility for pre-building the required application control blocks offline; so that when
the application is scheduled, its application control blocks can be read directly, and control can be passed
promptly to the application program.

When an application program is scheduled for execution, IMS must first have available database
descriptor and PSB control blocks previously created. These control blocks can be created by the
DBDGEN and PSBGEN procedures.

These control blocks must then be merged and expanded into an IMS internal format called application
control blocks (ACBs). The merge and expansion process is called block building.

Application control blocks required for the DB/DC environment must be prebuilt, except for application
programs that use a GPSB. It is optional for the batch environment. Using IMS.ACBLIB in a batch
environment requires less virtual storage than building the ACBs dynamically from PSBLIB and DBDLIB.

The ACB Maintenance utility maintains the prebuilt blocks (ACB) library (IMS.ACBLIB). The ACB library

is a consolidated library of program (PSB) and database (DBD) descriptions. Through control statements,
you can direct the maintenance utility to build all control blocks for all PSBs, for a specific PSB, or for all
PSBs that reference a specific DBD.

The ACB Maintenance utility does not populate the IMS catalog. To populate the IMS catalog after the
ACB Maintenance utility builds the ACBs, use the IMS Catalog Populate utility (DFS3PUO0O).

As an alternative to running both the ACB Maintenance utility and the IMS Catalog Populate utility,
you can use the ACB Generation and Catalog Populate utility (DFS3UACB), which builds the ACBs and
populates the IMS catalog in a single job step.

Subsections:

« “Restrictions” on page 3

« “Prerequisites” on page 4

« “Requirements” on page 4

« “Recommendations” on page 5

« “Input and output” on page 5

« “JCL specifications” on page 6

« “Utility control statements” on page 7

« “Return codes” on page 11

Restrictions

You do not need to run ACB generation if your application program requires only an I/O PCB and one
modifiable alternate PCB. Such applications, typically used in a DCCTL environment, can use GPSBs to
define the resources necessary for execution.

You cannot predefine GSAM PSBs and DBDs using ACB generation because the control blocks for GSAM
are different from the standard IMS data set control blocks. PSBs that reference GSAM, as well as non-
GSAM databases, can be predefined using ACB generation to build the control block for the non-GSAM
databases.

© Copyright IBM Corp. 1974, 2020 3

The ACB Maintenance utility uses some IMS system resources but not the total system. IMS.PSBLIB and
IMS.DBDLIB are shared data sets. IMS.ACBLIB must be used exclusively. The utility can only be executed
using an ACB library which is not concurrently allocated to an active IMS system.

IMS.ACBLIB is modified and cannot be used for any other purpose during execution of this program.
IMS.ACBLIB is a partitioned data set and carries required linkage information in the directory. You can use
the operating system (IEHMOVE) and data set (IEBCOPY) utilities for maintenance purposes.

Do not add FP DBDs to the active ACBLIB between an abnormal termination and /ERE. FP DBDs added to
the active ACBLIB after abnormal termination of IMS are inaccessible after /ERE.

A Fast Path secondary index database supports only symbolic pointers. The ACB Maintenance utility
issues message DFS2292E when PTR=SYMB is not specified on a LCHILD statement for a HISAM or
SHISAM secondary index database. The primary DEDB database and its secondary index databases are
deleted from the ACBLIB.

A user partition group for a Fast Path secondary index must contain all HISAM secondary index databases
or all SHISAM secondary index databases in the same user partition group. The LCHILD statement
contains both HISAM and SHISAM secondary index databases in the same user partition group identified
in the DBD dbdname in the message. The primary DEDB database and its secondary index databases are
deleted from the ACBLIB.

When a SENSEG statement for a segment that is other than a direct parent segment of the target segment
along the physical path from the root segment or a child segment of the target segment in the PCB with
the PROCSEQD operand is specified, the ACB Maintenance utility detects the invalid SENSEG statement
specification. The ACB Maintenance utility issues a message DFS2295E. The PSB identified in message
DFS2295E is deleted in the ACBLIB.

User partitioning is requested for Fast Path HISAM secondary index databases or Fast Path SHISAM
secondary index databases. However, the user partition database specified in the PROCSEQD= parameter
on the PCB statement is not the first user partition in the user partition group as defined in the NAME=
parameter on the LCHILD statement in the primary DEDB database DBD. The ACB Maintenance utility
issues message DFS2366E. The primary DEDB database and its secondary index databases are deleted in
the ACBLIB.

A PSB has the PSELOPT= parameter specified on a PCB statement for a primary DEDB database and
there is no user partitioning requested. The primary DEDB database has only one secondary index
database specified in the NAME= parameter on a LCHILD statement in the primary DEDB DBD. The
ACB Maintenance utility issues message DFS2367E. The PSB identified in the message is deleted in the
ACBLIB.

Prerequisites

The ACB Maintenance utility does not change the PSB in IMS.PSBLIB or the DBD in IMS.DBDLIB. If
changes are made in either PSBs or DBDs that require changes in the associated PSB or DBD, you

must make these changes before running the utility. You can make additions, changes, and deletions to
IMS.ACBLIB without stopping IMS, by using the Online Change utility and commands.

Changes in PSBs might also require modifications to the affected application programs. For example, if a
DBD has a segment name changed, all PSBs which are sensitive to that segment must have their SENSEG
statements changed.

Application programs which use this database might also need to be modified.

Requirements

IMS conforms to z/OS rules for data set authorization. If an IMS job step is authorized, all libraries used
in that job step must be authorized. To run an IMS batch region as unauthorized, a non-authorized library
must be concatenated to IMS.SDFSRESL.

4 IMS: System Utilities

Recommendations

If the IMS catalog is enabled in your IMS system, specify an output data set with the ACBCATWK DD
statement so that the ACB Maintenance utility records a list of the ACB members it generates during

the current execution. Providing this record of generated ACB members as input to the DFS3PUOQO utility
significantly reduces the time required to populate the IMS catalog.

Input and output

The following figure shows the functional relationship of the I/O data sets and their naming requirements.
The ACB Maintenance utility receives input from IMS.DBDLIB data set, IMS.PSBLIB data set, SYSIN
control statements, COMPCTL IEBCOPY control statements, and SYSPRINT messages. The ACB
Maintenance utility outputs to the SYSUT3 and SYSUT4 IEBCOPY utility data sets, and the IMS.ACBLIB
data set.

In IMS systems that have enabled the IMS catalog, the ACB Maintenance utility can optionally output
a list of the generated ACB members to a data set referenced by the ACBCATWK DD statement. The
DFS3PUOO utility reads the list of generated ACB members as input to significantly reduce the time
required to populate the IMS catalog.

ACB generation procedure

The procedure is built during SMP/E processing and placed in the ADFSPROC and SDFSPROC data sets.

The following example shows the procedure for ACBLIB maintenance.

// PROC SOUT=A,COMP=,RGN=4M, SYS2=,

// NODE1=IMS,

// NODE2=IMS

//G EXEC PGM=DFSRRCGO,PARM="'UPB,&COMP',
// REGION=&RGN

//SYSPRINT DD SYSOUT=&SOUT
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//IMS DD DSN=&NODE1..&SYS2.PSBLIB,DISP=SHR
// DD DSN=&NODE1..&SYS2.DBDLIB,DISP=SHR
//IMSACB DD DSN=&NODE1..&SYS2.ACBLIB,DISP=0LD
//SYSUT3 DD UNIT=SYSDA,SPACE=(80, (100,100))
//SYSUT4 DD UNIT=SYSDA, SPACE=(256, (100,100)),
// DCB=KEYLEN=8
//COMPCTL DD DISP=SHR,

DSN=&NODE2. .&SYS2.PROCLIB(DFSACBCP)

In the figure, the high-level qualifier of the IMS data sets is IMS. This high-level qualifier is the default
provided by IMS generation. However, if the default value was not used in IMS generation at your
installation, the high-level qualifier for the IMS data set names might not be IMS.

ACB generation JCL statements

The following is a sample of the JCL statements that can be used to invoke the ACB generation procedure.

//ACBGEN JOB

// EXEC ACBGEN
//SYSIN DD *
BUILD PSB=(MYPSB)

The ACB generation procedure uses the following symbolic variables:

SOUT=
Specifies the SYSOUT class. The default is A.

Chapter 1. Application Control Blocks Maintenance utility (DFSUACBO) 5

COMP=
PRECOMP,POSTCOMP, in any combination, cause the required in-place compression. The default is
none.

RGN=
Specifies the region size for execution of the ACB utility. This region size depends on the size of the
blocks to be generated and typically varies from 100 to 150 KB. The default is 4 MB.

SYS2=
Specifies an optional second-level dsname qualifier. When specified, the parameter must include a
trailing period and be enclosed in quotes, for example:

SYS2="IMSA.'

JCL specifications
EXEC statement

The first part of the EXEC statement must be in the form:
PGM=DFSRRCOO
A parameter field must be in the form:

PARM="UPB, PRECOMP, POSTCOMP '

where PRECOMP requests the IMS.ACBLIB data set be compressed before blocks are built, and
POSTCOMP requests compression after the blocks are built. 'UPB' indicates that the block maintenance
utility is to receive control. This parameter is required. PRECOMP and POSTCOMP are optional and can be
used in any combination. Do not specify the POSTCOMP option if the ACBCATWK DD statement is used.

DD statements

ACBCATWK
Defines an optional work data set that contains a list of the ACB members that are written to the ACB
library during ACB generation.

The ACBCATWK data set is an output data set for the ACB Maintenance utility and an input data set for
the DFS3PUOQ utility.

You must specify a single ACBCATWK data set. Multiple data sets are not supported by the utility.

Specify the ACBCATWK data set to improve the performance of the DFS3PUOQO utility. The DFS3PUOO
utility uses the list of names to determine which records in the IMS catalog need to be inserted or
updated. If you do not specify the ACBCATWK data set, the DFS3PUOQO utility processes all members
in the ACB libraries that are referenced in the IMSACBxx DD statements.

COMPCTL DD
Defines the control input data set to be used by IEBCOPY if PRECOMP or POSTCOMP is specified.

If both PRECOMP and POSTCOMP are requested on the EXEC statement parameters, this data set
must be capable of being closed with a reread option.

This data set must contain the following control statement of the form:
COPY INDD=IMSACB,OUTDD=IMSACB

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS batch, SDFSRESL and any
data set that is concatenated to it on the DFSRESLB DD statement must be authorized through the
Authorized Program Facility (APF). This DD statement provides an authorized library for the IMS SVC

6 IMS: System Utilities

modules, which must be in an authorized library. The JOBLIB or STEPLIB statement does not need to
be authorized for IMS batch.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
Defines a single ACB library data set.
Restriction: This data set is modified and cannot be shared with other jobs.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS modules. If STEPLIB
is unauthorized by having unauthorized libraries that are concatenated to IMS.SDFSRESL, you must
include a DFSRESLB DD statement.

SYSIN DD
Defines the input control statement data sets. They can be on a tape volume, direct-access device,
card reader, or be routed through the input stream. The input can be blocked as multiples of 80.
During execution, this utility can process as many control statements as required.

SYSPRINT DD
Defines the output message data set.

When the SYSPRINT DD statement refers to a DASD or tape data set, you can control the block size
of this data set with the BLKSIZE subparameter of the DCB parameter. If specified, the BLKSIZE
value must be an exact multiple of 121 or a system ABEND013-20 can result. Omitting BLKSIZE
from a DASD data set causes a system-determined block size to be used. Regardless of what value is
specified for the LRECL parameter, the utility always uses a record length of 121.

SYSUT3 DD
Defines a work data set that is required if either PRECOMP or POSTCOMP is specified on the EXEC
statement.

SYSUT4 DD
Same function as SYSUT3.

DFSACBCP control statement

The following control statement is created by using the DFSPROCB JCL that is built by SMP/E processing.

COPY INDD=IMSACB,OUTDD=IMSACB

The ACB generation procedure uses DFSACBCP to compress ACBLIB.

Utility control statements

You specify control statements in the utility JCL to build or delete ACB members. The control statements
must conform to the following guidelines:

- A statement is coded as a card image and is contained in columns 1 - 71.
« The control statement can optionally contain a name, starting in column 1.

- To continue a statement, enter a non-blank character in column 72 and begin the statement on the next
line starting in column 16.

« The operation field must be preceded and followed by one or more blanks.

« The parameter is composed of one or more PSB or DBD names and must also be preceded and followed
by one or more blanks.

« Commas, parentheses, and blanks can be used only as delimiting characters.

- Comments can be written following the last parameter of a control statement, separated from the
parameter by one or more blanks.

Chapter 1. Application Control Blocks Maintenance utility (DFSUACBO) 7

ACB Maintenance utility syntax: BUILD format

»—m— BUILD 1—>
hame

W

» PSB= 1 psbname »<
BLDPSB=YES j
DBD=(dbdname
BLDPSB=NO

— PSB= T (fpsbname :
ALL

,BLDPSB=YES

[aiisitn|
L ,BLDPSB=NO ZJ
-
J

LDBD=(£ dbdname :)

CATRSCS NO

L CATRSCS=YES

Notes:

1 There is no first in, first out (FIFO) process for the ACB Maintenance utility SYSIN input control
statements. If both the BUILD PSB= and BUILD DBD= parameters are specified in the same
application control block (ACB) generation job SYSIN control statement, DBD= operands are passed to
the block builder utility program first. DFS05861 is issued if the DBD is not already in the ACBLIB data
sets, regardless of where DBD= operands are entered in the SYSIN control statements.

2 If you specify the parameters PSB=ALL and BLDPSB=NO in the same statement, IMS builds all of the
PSBs (BLDPSB=NO is ignored). Similarly, if you specify the BLDPSB=NO parameter for one DBD and
the BLDPSB=YES parameter on another DBD in the same ACBGEN job, IMS builds all the PSBs that
refer to the changed DBDs and ignores the BLDPSB=NO specification. Also, if you specify BLDPSB=NO,
no PSBs will be built for all SYSIN ACBGEN control cards.

In the following example, all of the PSBs that are associated with the CUSTOMER and ORDER DBDs are
rebuilt, even though BLDPSB=NO is specified for the CUSTOMER DBD:

BUILD DBD=(CUSTOMER) ,BLDPSB=NO
BUILD DBD=(ORDER),BLDPSB=YES

ACB Maintenance utility syntax: DELETE Format

»ﬁ_ DELETE
PSB=(psbname)

ACB Maintenance utility parameters

\4

BUILD
Specifies that blocks are built for the named PSBs, which refer to the named DBDs.

8 IMS: System Utilities

DELETE
Specifies that blocks are deleted from the ACBLIB data set. The named PSBs and all PSBs that refer to
the named DBDs are deleted.

Deleting a block from the ACBLIB data set does not delete the corresponding record in the IMS
catalog.

PSB=ALL
Specifies that blocks are built for all PSBs that currently reside in IMS.PSBLIB. You use this parameter
to create an initial IMS.ACBLIB. When the PSB=ALL parameter is specified, all PSBs and DBDs (and
any other modules) are deleted from the ACBLIB data set and their space is available for reuse. Then
an ACB generation is executed for every PSB in the PSBLIB data set. Do not use this parameter with a
DELETE statement.

Restriction: When you specify the BUILD PSB=ALL parameter on a SYSIN control statement, all PSBs
must reside in a single PSBLIB data set. No concatenated PSBLIBs are recognized on the IMS DD
statement.

Restriction: Specifying PSB=ALL with CATRSCS=NO (or defaulting to CATRSCS=NO) does not build or
update the IMS catalog PSBs and DBDs. If some PSBs or DBDs are not built or updated, message
DFS5008W is issued and those PSBs or DBDs are ignored.

PSB=(pshname)
Specifies that blocks are built or deleted for all PSBs that are named on this control statement. As
many of this type of control statement as required can be submitted. This parameter adds a new PSB
to IMS.ACBLIB or delete a PSB no longer in use. You can omit the parentheses if you supply a single
parameter.

DBD=(dbdname)
Specifies that blocks are built or deleted for this DBD and for all PSBs that reference this DBD either
directly or indirectly through logical relationships. The DBD to be built must already exist in the
IMS.ACBLIB data set. The referencing PSBs must already exist in the IMS.ACBLIB data set. PSBs
that are newly added to the IMS.PSBLIB data set must be referenced by PSB operands. Because
deleting a PSB does not delete any DBDs referenced by the PSB, this parameter can be used to delete
specific DBDs. However, deleting or building a DBD causes every PSB in the IMS.ACBLIB data set
that references the named DBD to be rebuilt or deleted based on the request type. You can omit the
parentheses if you supply a single parameter.

Example 1: PSB-a references DBD-a and DBD-b. A DBDGEN was done for DBD-a and DBD-b and the
updated DBDs are in DBDLIB (but not ACBLIB yet). By specifying DBD-a in an ACB generation, DBD-a
is rebuilt in ACBLIB and any referencing PSBs (in this case PSB-a) are also rebuilt. Even though PSB-a
has been rebuilt, the ACBLIB is not usable because DBD-b was not specifically rebuilt in ACBLIB.

For DBD-b to be rebuilt in ACBLIB, it must be explicitly specified in the ACB generation. Although

the referencing PSB is completely updated, the updated DBDs must be explicitly specified in the ACB
generation.

Every PSB processed by this program generates a member in the IMS.ACBLIB data set. DBDs
referenced by PSBs generate a member the first time the specific DBD is processed or any time a
DBD name appears on a control statement. All PSBs that reference the same DBD carry information in
their directory entries to connect the PSB to the referenced DBDs.

Logical DBDs do not have members in IMS.ACBLIB and cannot be referenced on BUILD or DELETE
control statements.

Example 2: The following examples illustrate uses of the BLDPSB parameter:

« The DBD named CUSTOMER was changed and all of the PSBs that refer to CUSTOMER need to be
rebuilt:

BUILD DBD=CUSTOMER,BLDPSB=YES

« The DBDs named ORDER and INVENTORY are changed and all of the PSBs that refer to these DBDs
need to be rebuilt:

Chapter 1. Application Control Blocks Maintenance utility (DFSUACBO) 9

BUILD DBD=(ORDER,INVENTORY) ,hBLDPSB=YES

When a DBD is replaced in IMS.DBDLIB, it must also be included in a BUILD DBD control statement.
This is the only valid way the DBD can be replaced in IMS.ACBLIB without doing a BUILD PSB=ALL.

If a BUILD PSB is performed that references a modified DBD on DBDLIB, the PSB replaced on

ACBLIB will contain the updated version of the DBD. If this BUILD PSB occurs before a BUILD

DBD for the changed DBD, ACBLIB will contain PSBs with different versions of the DBD. The PSBs
specified in the BUILD PSB will contain the updated DBD, while those not built will reference the old
DBD. When a DBD for a PSB on ACBLIB does not match the accessed database, the results will be
unpredictable. (For example, U852 abend occurs because segment codes have been added or deleted
in the changed DBD). Therefore, when DBDGEN is run for later use, do not build a PSB that refers to
the changed DBD unless the database reflects the change.

When a physical DBD is changed and is referenced in a BUILD DBD statement, all physical DBDs that
are logically related to the one that was changed (including primary indexes and secondary indexes)
must also be referenced in a BUILD DBD statement. However, DBDs that are logically related to these
DBDs do not need to be rebuilt.

The following figure illustrates the relationships between some physical databases, where A is the
changed DBD. The following relationships exist:

- Band C are logically related to A.

 Dis logically related to B.

 Eis logically related to C.

« D and E are not referenced in the BUILD DBD statement because they are not logically related to A.
A

e

Figure 1. Example of logically related physical databases

BLDPSB=YES | NO
Specifies whether ACBGEN rebuilds all PSBs that reference a changed DBD in the BUILD
DBD=(dbdname) statement.

YES
Indicates that ACBGEN rebuilds all PSBs that reference the changed DBD on the BUILD
DBD=(dbdname) statement. The default is BLDPSB=YES.

NO
Indicates that ACBGEN does not rebuild PSBs that reference the changed DBD if the changed DBD
does not change the physical structure of the database. For Fast Path DEDBs, the PSBs are rebuilt
only when the number of segments, the number of fields within the segments of the database, or
both are changed. For Fast Path MSDBs, the referencing PSBs are not rebuilt even if the database
has physical structure changes.

10 IMS: System Utilities

CATRSCS=YES | NO
Specifies whether ACBGEN builds all PSBs and DBDs of the IMS catalog.

YES
Indicates that ACBGEN builds all IMS catalog PSBs and DBDs.

NO
Indicates that ACBGEN does not build any of the IMS catalog PSBs and DBDs. The default is
CATRSCS=NO.

Return codes

The ACB generation procedure returns the following codes:

Code

Meaning
0

Successful completion of all operations
4

One or more warning messages issued
8

One or more blocks could not be built

16
Program terminated due to severe errors

Related concepts

Building the application control blocks (ACBGEN) (Database Administration)

Allocating ACBLIB data sets (System Definition)

Related reference

“ACB Generation and Catalog Populate utility (DFS3UACB)” on page 313

Use the ACB Generation and Catalog Populate utility (DFS3UACB) to generate ACB members in an
IMS.ACBLIB data set, create the corresponding metadata records in the IMS catalog, and, if your IMS
system manages ACBs, add the resulting ACBs as pending changes to the staging data set of the IMS
catalog, all in a single job step.

“IMS Catalog Populate utility (DFS3PUQO0)” on page 373

Use the IMS Catalog Populate utility (DFS3PUQO) to load, insert, or update DBD and PSB instances into
the database data sets of the IMS catalog from ACB library data sets. If the IMS management of ACBs is
enabled in the IMS system, the utility also adds the active application control blocks (ACBs) to the IMS
directory data set that is managed by IMS.

Examples of the ACB Maintenance utility

These examples show how to use the ACB Maintenance utility to create or delete blocks for PSBs.

Example of creating blocks for all PSBs

In this example, all blocks currently existing in IMS.ACBLIB are deleted and their space is reused to
create new blocks for all PSBs that currently reside in IMS.PSBLIB. This option will normally be used for
initial creation of the IMS.ACBLIB data set. If space is not yet allocated for ACBLIB, there should be a
space parameter and a DISP=NEW on the IMSACB DD statement.

//BLDBLKS JOB

//*
//STEP EXEC ACBGEN,SOUT=A
//SYSIN DD *
BUILD PSB=ALL
/*

Chapter 1. Application Control Blocks Maintenance utility (DFSUACBO0) 11

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets

Example of creating blocks for specific PSBs

This example creates blocks for PSB1, PSB2, and PSB3. All other PSBs in IMS.ACBLIB remain unchanged.
If any DBDs referenced by these PSBs do not exist in IMS.ACBLIB, they are added. In addition, DBD5 and
DBD6 are deleted from ACBLIB. IMS.ACBLIB is compressed after the blocks are built, and deletions are

performed.
//BLDBLKS JOB
//*
//STEP EXEC ACBGEN,SOUT=A,COMP=POSTCOMP
//SYSIN DD *

BUILD PSB=(PSB1,PSB2,PSB3)
DELETE DBD=(DBD5,DBD6)
/*

Example of deleting a PSB and rebuilding blocks

This example deletes PSB1 from the IMS.ACBLIB data set and causes all PSBs in the IMS.ACBLIB data
set that reference DBD4 to have their blocks rebuilt. If PSB1 referenced DBD4, it will not be rebuilt, since
PSB1 had just been deleted from IMS.ACBLIB. PSB1 is not deleted from IMS.PSBLIB. The IMS.ACBLIB is
compressed before and after the blocks have been built.

//BLDBLKS JOB

/1%
//STEP EXEC ACBGEN,SOUT=A, COMP='PRECOMP,POSTCOMP'
//SYSIN DD *

DELETE PSB=PSB1
BUILD DBD=DBD4
/*

Managing DOPT PSBs

How you manage dynamic option (DOPT) PSBs that are generated by the ACB Maintenance utility differs
depending on whether your IMS systems use ACB libraries or the IMS catalog as the repository for active
ACBs.

In IMS systems that use an ACB library, the blocks for the DOPT PSBs must be contained in an ACBLIB
data set concatenated after the primary ACBLIB data set.

In IMS systems that use the IMS catalog, the blocks for the DOPT PSBs are stored in the IMS catalog
along with all the other active ACB blocks. You do not need to concatenate any data sets.

The PSB definitions and the blocks that are generated for DOPT PSBs are no different than the blocks for
non-DOPT PSBs. The PSBs are defined as dynamic by the DOPT parameter in either an APPLCTN stage-1
system definition macro or in the IMS type-2 command CREATE PGM or UPDATE PGM.

If the programs that are associated with the PSBs are scheduled for a BMP or JBP dependent region, you
can also use the Program Creation user exit (PGMCREAT) to define the PSBs as dynamic by setting the
PGMCR_PF1_DOPTY bit in the PGMCREAT parameter list.

Related concepts
Declaring online application programs (System Definition)
Related reference

“IMS Catalog Populate utility (DFS3PU00)” on page 373

Use the IMS Catalog Populate utility (DFS3PUQO) to load, insert, or update DBD and PSB instances into
the database data sets of the IMS catalog from ACB library data sets. If the IMS management of ACBs is
enabled in the IMS system, the utility also adds the active application control blocks (ACBs) to the IMS
directory data set that is managed by IMS.

APPLCTN macro (System Definition)

CREATE PGM command (Commands)
PGMCREAT user exit routine type (Exit Routines)

12 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_declaring_online_apps.htm#declaring_online_apps
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_applctn_macro.htm#ims_applctn_macro
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.cr/imscmds/ims_createpgm.htm#ims_cr1createpgm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.err/ims_pgmcreat_procreatexit.htm#ims_pgmcreat_procreatexit

Managing DOPT PSBs in IMS systems that use ACB libraries

Using dynamic option (DOPT) PSBs in IMS systems that use ACB library (ACBLIB) data sets requires
concatenation of a primary ACBLIB data set. The first or primary data set in the ACBLIB data set
concatenation should contain the blocks for all non-dynamic (non-DOPT) PSBs. A subsequent DOPT
ACBLIB data set should contain blocks for all dynamic option (DOPT) PSBs.

Note: You must ensure that the active and inactive DOPT ACBLIB data sets have different names to
ensure that online change finds the changes made to the DOPT ACBLIB data sets.

The primary ACBLIB data set is the first DD statement of the concatenation. To BUILD a PSB or DBD into
the concatenated data sets, supply only one DD statement to the ACB Maintenance utility.

At system initialization time, all non-dynamic PSBs and all DBDs must have been built into either the
primary or DOPT ACBLIB data sets.

By transaction schedule time, the DOPT PSBs being scheduled must be built into the DOPT ACBLIB data
sets. Never build DOPT PSBs into the primary ACBLIB data sets.

If all PSBs in the system are DOPT PSBs, the primary ACBLIB should be a dummy PDS data set. The DOPT
ACBLIB should contain blocks for all DBDs and PSBs. Set the DIRCA size parameter in the BMP, MPP, or
IFP JCL.

If some, but not all, PSBs in the system are DOPT PSBs, both ACBLIB data sets will contain blocks for
DBDs and PSBs. When you BUILD a PSB into one ACBLIB data set, the blocks for the DBDs referenced by
the PSB are also built into that data set. If the DBD was already built into another ACBLIB data set, you
will have two sets of blocks for the DBD. When DL/I does a BLDL to use the blocks for the DBD, it uses the
set of blocks in the primary ACBLIB.

During the termination process of a program using DOPT PSBs, the PSBs are deleted from the PSB pool.

Related reference
DBLDL= parameter for procedures (System Definition)

Managing DOPT PSBs in IMS-managed ACB environments

When the IMS management of ACBs is enabled, the blocks for dynamic option (DOPT) PSBs that are
generated by the ACB Maintenance utility are stored in IMS in the same way as the blocks for other types
of PSBs: in the IMS catalog. IMS does not use an ACB library or require you to put the DOPT PSBs in a
separate, concatenated data set.

You add ACB blocks for new or modified DOPT PSBs that are generated by the ACB Maintenance utility to
the IMS catalog by providing the ACBLIB data set that contains them as input to the IMS Catalog Populate
utility (DFS3PU0O0).

If the input ACBLIB contains only DOPT PSBs, the IMS Catalog Populate utility can make the DOPT PSBs
available for immediate use without requiring you to issue the IMPORT DEFN command or restart IMS.

If the input ACBLIB contains DBDs and non-DOPT PSBs with the DOPT PSBs, you need to activate the
DOPT PSBs with the other resource types by issuing the IMPORT DEFN SOURCE(CATALOG) command or, if
the IMS Catalog Populate utility is run with the UPDATE option, by restarting IMS.
To add DOPT PSBs only:
1. Generate the DOPT PSBs into an ACBLIB data set
2. Remove any blocks for DBDs or non-DOPT PSBs from the ACBLIB data set
3. Prepare the JCL for the IMS Catalog Populate utility by specifying:
a) The ACBLIB that contains the DOPT PSBs on the IMSACBO1 DD statement.

If you concatenate ACBLIB data sets, do not include any ACBLIB data sets that contain DBDs or
non-DOPT PSBs.

b) The MANAGEDACBS control statement with the UPDATE and SHARE options.

If the SHARE option is specified when the input ACBLIB contains DBDs or non-DOPT PSBs, these
resources are not activated in the IMS systems. No IMS system can use the new resources until

Chapter 1. Application Control Blocks Maintenance utility (DFSUACBO) 13

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_proc_parms_dbldl.htm#ims_proc_parms_dbldl

either the system is restarted or some other event causes the system to load the resources into
memory.

Before you can use the SHARE option, your z/OS system must be configured to support extended
sharing of PDSE data sets. Specify PDSESHARING (EXTENDED) in the IGDSMSxx member of the
z/0OS SYS1.PARMLIB data set.

4. Run the IMS Catalog Populate utility.

When the UPDATE and SHARE options are specified, the IMS Catalog Populate utility adds the ACBs
for the DOPT PSBs to the IMS catalog directly without staging the resources first or requiring you to
issue the IMPORT DEFN SOURCE (CATALOG) command. The DOPT PSBs are added to the IMS catalog
data sets in a shared mode that allows the online IMS systems to continue to access the IMS catalog
while the IMS Catalog Populate utility adds the DOPT PSBs.

Related tasks

z/0S: Specifying Extended PDSE Sharing in a Multiple-System Environment
Related reference

IMS Catalog Populate utility (DFS3PU0O) (System Utilities)

14 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/pdsesh3.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sur/ims_catalog_pop_utility.htm#ims_catalog_pop_utility

Chapter 2. Database Description (DBD) Generation
utility

In IMS systems that use DBD libraries, use the Database Description Generation (DBDGEN) utility to
define a database so that it can be used by an application program.

This utility might not be used in IMS systems that manage runtime application control blocks by using the
catalog.

A database description (DBD) is a DL/I control block containing all of the database information needed by
an application program.

You create a database description (DBD) by coding special macro instructions. These macros become the
input to the DBDGEN utility.

You can use only one physical DBD to describe each physical database; otherwise, a user abend, such
as 0850, 0852, or 0853 occurs. At execution time, DL/I uses the DBD to create a set of internal control
blocks.

The DBDGEN utility defines each DBD with the following database information:
« Segment types

Physical and logical relationships between segment types

Database organization and access method

Physical characteristics of the database

Define the name and data options of selected exit routines

Metadata that describes the database and the data stored in the database
Subsections:

« “Restrictions” on page 15

« “Prerequisites” on page 15

- “Requirements” on page 15

« “Recommendations” on page 15

« “Input and output” on page 16

Restrictions

Currently, no restrictions are documented for the DBDGEN utility.

Prerequisites

Currently, no prerequisites are documented for the DBDGEN utility.

Requirements

There are strict rules for structuring DBDGEN input. A separate input set is required for each database.

Recommendations

Currently, no recommendations are documented for the DBD Generation utility.

© Copyright IBM Corp. 1974, 2020 15

Input and output

The DBDGEN program accepts several types of control statements.

- The DBD statement names the database being described and provides DL/I with information concerning
database organization.

« The DATASET statement is used only in non-DEDB DBDGEN input record structures. The DATASET
statement defines a data set group within a database. One or more DATASET statements follow the DBD
statement.

« The AREA statement is used only in DEDB DBDGEN input record structures. The AREA statement
defines an area within a database. One or more AREA statements follow the DBD statement.

- The SEGM statement defines the segments of the specified database. The SEGM statement is used with
the following statements:

- FIELD
— XDFLD
LCHILD
DFSMARSH
DFSMAP
DFSCASE
Each statement defines different aspects of a segment or the fields in a segment.
- The DBDGEN statement indicates the end of DBDGEN control statements.
« FINISH is an optional statement retained in the input stream for compatibility.

« The END statement indicates to the z/OS assembler that the end of the input statements has been
reached.

Three types of printed output and a load module, which becomes a member of the partitioned data
set named IMS.DBDLIB, are produced by a DBD generation. Each of these outputs is described in the
following sections.

Control statement listing
This is a listing of the input statement images to this job step.

Diagnostics

Errors discovered during the processing of each statement result in diagnostic messages. These
messages are printed immediately following the image of the last statement that is read. The message
can reference either the statement immediately preceding it or the preceding group of statements. It is
also possible that more than one message could be printed for each statement.

In this case, these messages follow each other on the output listing. After all the statements have been
read, a further check is made of the reasonableness of the entire deck. This might result in one or more
additional diagnostic messages.

Any discovered error results in the diagnostic messages being printed, the statements being listed, and
the other outputs being suppressed. However, all the statements are read and checked before the DBD
generation execution is terminated. The bind step of DBD generation is not processed if a statement error
has been found.

Assembler listing

An assembler language listing of the DBD macro expansion created by DBD generation execution is
provided. You can eliminate a printout of this listing by including an assembler language PRINT NOGEN
statement.

16 IMS: System Utilities

If the DBD generation is for a database that uses VSAM as the operating system access method, a

page in the assembler listing will provide recommended values for some of the parameters necessary

to define the data sets of the database to VSAM. CONTROLINTERVALSIZE and RECORDSIZE values

other than those recommended might be desired for special reasons, such as performance improvement.
RECORDSIZE needs to be changed appropriately for all ESDS definitions.

If the control interval size is not specified (see the SIZE parameter in the GSAM row in Table 4 on page
54), it defaults to the size recommended in this assembler listing. The following example shows the
output produced for a HISAM database. The parameters provided are in the format required for Access
Method Services statements. The first DEFINE provides parameters for the key sequenced data set
(KSDS) and the second DEFINE provides parameters for the entry sequenced data set (ESDS).

To provide a complete definition for a VSAM data set, you must add parameters for data set name (NAME),
space allocation (CYL), and volume assignment (VOLUMES) to those provided by DBD generation. Optional
parameters such as FREESPACE and WRITECHECK can be included if desired.

Example of Access Method Services parameters from DBD generation

If you use the /DBD command to allow an offline dump of a VSAM database, you must use SHARE
OPTIONS(3) in the VSAM DEFINE operation for the data sets of the database. The following figure shows
an example of Access Method Services parameters from DBD generation.

+xk,% k¥ k k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ ¥k k¥ k¥ k¥ k¥ k¥ k¥ x¥ *¥ *¥ *x %

+%, %
o, RECOMMENDED VSAM DEFINE CLUSTER PARAMETERS

+% , %

+k,% k& k kK k kK k kK k k¥ k k¥ k& k¥ k& k¥ k& k¥ k¥ k¥ k¥ k¥ k¥ * k¥ *x k¥ *x %
+*,*****************************
- *NOTE 1

+*, DEFINE CLUSTER (NAME(DDI3I1) -

k% INDEXED KEYS (6, 10) -

% RECORDSIZE (680,680) -

% DATA (CONTROLINTERVALSIZE (4096))

+%*,%x *NOTE 1: SHOULD SPECIFY DSNAME FOR DDI3I1
th,k ok Kk Kk ok ok kK ok ok K kK ok kK kK ok k Kk kK ok kK kK ok kK Kk k k Kk *x X
+k,k Kk ok ok ok ok ok Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk ok Kk Kk k k Kk Kk %

+%, % *NOTE 2

+%, % DEFINE CLUSTER (NAME(DDI301) NONINDEXED -
+%, % RECORDSIZE (680,680) -

+%, % CONTROLINTERVALSIZE (4096))

+%,% *NOTE 2: SHOULD SPECIFY DSNAME FOR DDI301
th,k k ok k ok k Kk %

Segment flag codes

Segment flags are printed in DBD generation output to confirm what has been generated by that particular
DBD generation. The flags, when interpreted, tell you which pointer options were generated; the segment
insert, delete, and replace rules specified; whether physical child pointers have been reserved in this
segment's prefix; and how many physical children are related to the segment. Segment flags appear

in the output as an assembler language defined constant (DC) statement. The constant is defined as 8
hexadecimal digits followed by the comment, SEGMENT FLAGS. Each pair of digits in the constant is a
hexadecimal byte. To interpret the constant, convert the first 6 digits to binary values, and the last 2 digits
to decimal values as shown in the following figure.

CONVERTED

BYTE VALUE DESCRIPTION

0 POINTER POSITIONS GENERATED:
1....... CTR (Counter)
AL, Physical twin forward
1., Physical twin forward and backward
PR Physical parent
P R Logical twin forward
PP i IS Logical twin forward and backwazrd
...... 1. Logical parent
Ao 1 Hierarchic forward

Chapter 2. Database Description (DBD) Generation utility 17

JA1....1 Hierarchic forward and backward
1 SEGMENT PROCESSING RULES:

10...... Insert physical

01...... Insert virtual

11...... Insert logical

.10, .. Insert nonsequential last

..01. ... Insert nonsequential first

B Insert nonsequential here at current position
..10.. Replace physical
..01.. Replace virtual

P Replace logical

...... 10 Delete physical

...... 01 Delete virtual

...... 11 Delete logical

...... 00 Bivirtual delete

2 . XX XXX Reserved
1ooon... Segment is paired
I Segment is a direct dependent in a FP DEDB
P Segment's parent has two physical child
pointers; hierarchic pointers were not specified

3 0-254 Number of physical children of this segment
pointed to by physical child pointers

Segment prefix format description

Convert the values to binary and decimal representations:

Byte 0O Byte 1 Byte 2 Byte 3
FE FD 08 0A
11111110 11111101 00001000 10

Byte O
Segment has counter, physical twin forward and backward, logical twin forward and backward,
physical parent, and logical parent pointers.

Byte 1
The insert and replace rules specified are logical, and the delete rule specified is virtual.
Nonsequenced inserts at current position.

Byte 2
Two 4-byte fields are reserved for physical child pointers in the parent of this segment.

Byte 3
This segment is the parent of 10 physical children.

Output from DBD generation contains the statement:
DC X'FEFDO8GA' SEGMENT FLAGS

Load module

DBD generation is a two-step operating system job. Step 1 is a macro assembly execution which produces
an object module that becomes input to Step 2. Step 2 is a bind of the object module, which produces a
load module that becomes a member of the IMS.DBDLIB library.

DBD generation error conditions

If operands or parameters other than those shown for each type of database are coded, or if operands or
parameters that are necessary are omitted, one or more of the following conditions can occur:

« DBD generation issues diagnostic messages that:

— Flag operands or parameters that are not shown for the type of database being defined

— Indicate that operands or parameters that are required for the type of database being defined were
omitted

18 IMS: System Utilities

- DBD generation completes, but DL/I ignores the control information that was generated by the
specification of operands or parameters that are not shown for the type of database that was defined.

- DBD generation completes, but DL/I is unable to create and access the defined database because (a)
conflicting control information was specified when attempting to interrelate databases, or (b) segment
relationships describing the application program's view of the database were not properly defined in the
DBD generation.

- DBD generation completes, and DL/I creates and accesses a database. However, the results provided
to you are not those you desired. This condition can occur because the default actions taken by DL/I in
response to finding missing or conflicting control information are actions that you had not considered
during DBD generation.

Related concepts
Coding database descriptions as input for the DBDGEN utility (Database Administration)

Building the application control blocks (ACBGEN) (Database Administration)
Allocating ACBLIB data sets (System Definition)

DBD generation for database types
The DBDGEN utility generates DBDs for a database based on the type of database that is using the utility.

The following types of databases use the DBDGEN utility:
« HSAM (including SHSAM)

« GSAM

« HISAM (including SHISAM)
- HDAM

- PHDAM

- HIDAM

- PHIDAM

- MSDB

- DEDB

« Index

— Primary HIDAM
— Secondary

« PSINDEX

- Logical

HSAM/SHSAM DBD generation

During DBD generation for an HSAM database, you specify:

« One data set group.

The ddname of an input data set that is used when an application retrieves data from the database.
« The ddname of an output data set that is used when loading the database.

« From 1 to 255 segment types for the database.

- From 0 to 255 fields within each segment type, with a maximum of 1000 fields within the database.
For an HSAM database, you cannot specify:

« The use of hierarchic or physical child or physical twin pointers between segments in the database
« The use of logical or index relationships between segments

Chapter 2. Database Description (DBD) Generation utility 19

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_codedbdescdbdgen.htm#ims_codedbdescdbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets

Optionally, you can define a simple HSAM (SHSAM) database that can contain only one fixed-length
segment type. In this case, no prefixes are built in occurrences of the segment type.

During DBD generation for an SHSAM database, you specify:

- One data set group.

« The ddname of an input data set that is used when an application retrieves data from the database.
« The ddname of an output data set that is used when loading the database.

« From 0 to 255 fields within the single segment type.

GSAM DBD generation

During DBD generation for a GSAM database, you specify:

« One data set group.

« The ddname of an input data set that is used when an application retrieves data from the database.
« The ddname of an output data set that is used when loading the database.

« Optionally, a SEGM statement that describes a virtual segment.

« Optionally, a FIELD statement that is defined with an external name only. These fields are not
searchable by IMS and therefore cannot be specified in an SSA. They are typically used to store field
metadata from a COBOL copybook that would otherwise not be defined in IMS.

You cannot specify:

- A SEGM statement that describes a physical segment
- A FIELD statement that describes an IMS-searchable field
« The use of logical or index relationships between segments

For variable length GSAM/BSAM database, IMS adds 2 bytes to the record length value in the GSAM
records passed by the application. This is done in order to accommodate the ZZ field that makes up the
BSAM Record Descriptor Word (RDW) when the record is written to the I/0 device.

The following figure shows that the four GSAM records (IMS segments) fit exactly in one 32,760 byte
block.

//IDASD DD DUMMY
//0DASD DD UNIT=SYSDA,VOL=SER=000000,DISP=(,KEEP),
/ SPACE=(TRK, (5,1)) ,DSN=GSAM.VARIABLE1,
/ DCB=(RECFM=VB,BLKSIZE=32760, LRECL=32756)
/SYSIN DD *,DCB=BLKSIZE=80
11111 DBDNAME
ISRT
V8187 DATA 1ST RECORD LOADED TO GSAM
ISRT
V8187 DATA 2ND RECORD LOADED TO GSAM
ISRT
V8187 DATA 3RD RECORD LOADED TO GSAM
ISRT
v8187 DATA A4TH RECORD LOADED TO GSAM

[l el el el el 72 BN

HISAM/SHISAM DBD generation

During DBD generation for a HISAM or SHISAM database, you specify:
« One data set group.

« The ddname of one VSAM key sequenced data set (KSDS) and one VSAM entry sequenced data set
(ESDS). HISAM supports only one data set group; you cannot have a secondary data set group with
HISAM databases.

20 IMS: System Utilities

Optionally, you can define a simple HISAM (SHISAM) database that can contain only one fixed-length
segment type. In this case, no prefixes are built in occurrences of the segment type. The logical record
length specified for a SHISAM database must be equal to or greater than the segment length specified.

At least one segment type and a maximum of 255 segment types for the database.

From 0 to 255 fields for each segment type, and a maximum of 1000 for the database, one of which
must be a unique sequence field in the root segment type for indexing root segment occurrences.

A maximum of 32 secondary index relationships (optional) per segment type, and a maximum of 2000
for the database.

Logical relationships (optional) using symbolic pointer options when a segment in a HISAM database
points to another segment in a HISAM database, and direct or symbolic pointer options when a segment
in a HISAM database points to a segment in an HDAM or HIDAM database.

Segment Edit/Compression exit routine routines, which are optional, to enable user-supplied routines to
manipulate each occurrence of a segment type to or from auxiliary storage.

Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data.
This exit routine can be used in SHISAM also.

Restriction: You cannot specify the use of hierarchic or physical child or physical twin pointers between
segments in a HISAM database.

HDAM/PHDAM DBD generation

During DBD generation for HDAM and PHDAM databases, you specify:

The name of the user-supplied randomizing module used for placement of root segment occurrences
One to 10 data set groups

How free space is to be distributed in each data set group

The ddname of an OSAM or ESDS data set for each data set group defined

At least one segment type for each data set group, and a maximum of 255 segment types for the
database

Segment Edit/Compression exit routine routines, which are optional, to enable user-supplied routines to
manipulate each occurrence of a segment type on their way to or from auxiliary storage

The use of hierarchic or physical child or physical twin pointers between segments in the database
Logical relationships (optional) between segments using direct address or symbolic pointer options
From 0 to 255 fields for each segment type, and a maximum of 1000 for the database

A maximum of 32 secondary index relationships (optional) per segment type and a maximum of 2000
for the database

Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data

DBDGEN for PHDAM

The ddnames and data sets are not part of DBDGEN for PHDAM databases. The remaining database
definition is purely for defining the hierarchical structure and relationships of the data.

DBDGEN does not define each individual partition.

HIDAM and PHIDAM DBD generation

During DBD generation for HIDAM and PHIDAM databases, you specify:

One to 10 data set groups
How free space is to be distributed in each data set group
The ddname of an OSAM or ESDS data set for each data set group defined (HDAM databases only)

Chapter 2. Database Description (DBD) Generation utility 21

- At least one segment type for each data set group, and a maximum of 255 segment types for the
database

« Segment Edit/Compression exit routine routines, which are optional, to enable user-supplied routines to
manipulate each occurrence of a segment type on their way to or from auxiliary storage

« A maximum of 32 secondary index relationships (optional) per segment type and a maximum of 1000
for the database

- The use of hierarchic or physical child or physical twin pointers between segments in the database
« Logical relationships (optional) between segments using direct address or symbolic pointer options

« From 0 to 255 fields for each segment type, and a maximum of 1000 for the database, one of which
must be a unique sequence field in the root segment type for indexing root segment occurrences

« Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data
DBDGEN for PHIDAM:

« The ddnames and data sets are not part of DBDGEN for PHIDAM databases. The remaining database
definition is purely for defining the hierarchical structure and relationships of the data.

- DBDGEN does not define each individual partition.

MSDB DBD generation

During DBD generation for an MSDB, you must specify:

« One database name

« One data set group

- One segment type for the database

« From 0 to 255 fields within the database

You cannot specify:

« Alogical or index relationship between segments
« Fields used with secondary indexes
« Fields defined as arrays or structures

If the DBD for an existing MSDB is changed, the header information (BHDR) might change, even though
the database segments are unchanged. This might result in message DFS25931 because of the attempted
load from the MSDBCPx data set. In this case, the headers in the MSDBCPn data sets are either invalid or
the wrong length. If ABND=y is specified in the MSDB PROCLIB member, it also causes a U1012 abend.
After modifying the DBD, load the MSDBs from an MSDBINIT data set by using the MSDBLOAD option for
either a warm start or a cold start to eliminate these problems.

DEDB DBD generation

During DBD generation for a DEDB, you must specify:
« One database name

« From 1 to 2048 areas within a database

« From 1 to 127 segment types for the database

From 0 to 255 fields for each segment type, with a maximum of 1000 fields within the database, one of
which must be a unique sequence field for the root segment type

The ddname or area name used to describe an area

Data Capture exit routine, which is optional, to enable Db2 for z/OS users access to updated IMS data

You can optionally specify up to eight subset pointers for each child type of the parent.

22 IMS: System Utilities

You cannot specify a logical or index relationship between segment types.

Index, PSINDEX DBD, and FPINDEX DBD generation

Primary HIDAM index DBD generation creates an index database composed of one index segment type
that indexes occurrences of the HIDAM root segment type. PHIDAM does not have a DBD for the primary
index. An index segment contains:

- The sequence field key of the root segment occurrence it indexes
« Inits prefix, a direct address pointer to the root segment occurrence

During DBD generation for a primary HIDAM index, you must specify:

« One database name.

One data set group. You must specify the ddname of one KSDS.
« One segment type.

- The index relationship required between the primary HIDAM index database and the root segment type
of a HIDAM database.

« One field within the segment type as a sequence field.
Restriction:

« You cannot specify any additional FIELD statements as you might for a secondary index.
 You cannot use DBDGEN to define individual partitions.
« Non-unique secondary index (PSINDEX) databases are not supported for HALDB.

Secondary index DBD generation creates a secondary index database made up of 1 to 16 index pointer
segment types. These are used to index target segment types in HISAM, SHISAM, HDAM, PHDAM,
HIDAM, or PHIDAM databases.

During DBD generation for a full-function secondary index, you must specify:

« One database name.

« One data set group. If all index pointer segment keys are unique, you must specify the ddname of one
KSDS. If index pointer segment keys are non-unique you must specify the ddnames of one KSDS and
one ESDS. A secondary index must use VSAM.

« One segment type.
 One field for each segment type.

For a Fast Path secondary index, the DBD statement specifies the name of the secondary index database
in the NAME= parameter. The ACCESS= parameter must specify one of the following values:

ACCESS=(INDEX,VSAM),FPINDEX=YES
A HISAM secondary index database on the DBD statement for the new Fast Path secondary index
database.

ACCESS=(INDEX,SHISAM),FPINDEX=YES
A SHISAM secondary index database on the DBD statement for the new Fast Path secondary index
database.

To define a primary DEDB database with secondary indexing, add LCHILD and XDFLD statements for the
indexing fields in the DBD of the primary DEDB database.

If a HISAM secondary index database or a SHISAM secondary index database has two or more user
partition databases defined in the NAME= parameter on the LCHILD statement, specify a user partition
selection exit in the PSELRTN= parameter on an XDFLD statement in the primary DEDB database. The
sample user partition selection exit is DBFPSE00. The PSELOPT=MULT|SNGL parameter can be specified
on an XDFLD statement or on a PCB statement with the PROCSEQD= parameter to control whether a

Chapter 2. Database Description (DBD) Generation utility 23

single user partition or multiple user partitions are used before a GB status code is returned to indicate
when the end of data is reached. The PSELOPT=MULT|SNGL must be explicitly specified on the PCB
statement with the PROCSEQD= parameter. There is no default of PSELOPT=MULT on the PCB statement
because its value overrides the PSELOPT=MULT|SNGL on the XDFLD statement.

Logical DBD generation

A logical DBD generation creates a logical database made up of logical segment types. A logical segment
type is a segment type defined in a logical database that represents a segment type or the concatenation
of two segment types defined in a physical database or databases.

During DBD generation for a logical database, you must specify:

- One database name.
« One logical data set group.

« From 1 to 255 segment types. Each defines the name of a logical segment type, and the name of the
segment type or types in physical databases that are to be processed when a call is issued to process
the logical segment type.

The logical relationships used to create a logical database must be defined in a physical database or
databases.

All fields required for segments in a logical database must have been defined in physical databases.

DBD generation input record structure (except for DEDB DBDs)

The DBDGEN program accepts control statements that must be added to the SYSIN input stream in a
specific order.

The following figure shows the rules for structuring DBD generation input.

24 IMS: System Utilities

Additional

Data Set Groups
END
FINISH
hY DBDGEN
. ! . - \ SEGM, FIELD,
Primary data setgroup — LCHILD. XDFLD.
' DFSMARSH,
DFSMAP,
and DFSCASE
/ statements
/
[
DATASET
DBD
PRINT

Figure 2. DBDGEN input record structure (except DEDB)

Exception: This input record structure applies to all DBDs except DEDB DBDs.

The PRINT statement is optional. If included, it is the first statement in the input deck. When PRINT

is not included, the DBD control statement is first in the input deck. One or more DATASET statements
follow the DBD statement. Each DATASET statement is followed by the SEGM, LCHILD, FIELD, XDFLD,
DFSMARSH, DFSMAP, and DFSCASE statements that might be defined in that data set group. At least one
SEGM statement must follow each DATASET statement. SEGM statements in the DBDGEN input set of
records must be placed in the same hierarchic order as the segments in the database being defined.

FIELD and LCHILD statements follow the SEGM statement to which they apply. When a FIELD statement
defines a sequence field within a segment, it must precede any XDFLD statements or any other FIELD
statements that follow a SEGM statement. LCHILD statements follow the SEGM that defines a logical
parent, HIDAM and PHIDAM root, and index target and index pointer segment types. When you are
defining a secondary index relationship, the LCHILD statement that establishes the relationship must

be followed by its corresponding XDFLD statements. No unrelated LCHILD statements can intervene
between the two. XDFLD statements follow a SEGM that defines an index target segment type for a
secondary index. A separate input set of records is required for each database.

If a DFSMARSH statement is used to define additional metadata for a field, the DFSMARSH statement
must follow the corresponding FIELD statement. IMS associates the DFSMARSH statement with the last
FIELD statement to precede the DFSMARSH statement in the input.

Chapter 2. Database Description (DBD) Generation utility 25

If DFSMAP and DFSCASE statements are used to define alternative field mappings with in a segment, the
FIELD statement referenced by the DEPENDSON parameter in the DFSMAP statement must precede the
DFSMAP statement in the input.

Requirement: The DBDGEN statement is required.

If FINISH is used, it precedes the END statement. END is the last statement in the input record structure.

DEDB DBD generation input record structure

The input record set structure for a DEDB DBD generation is essentially the same as for the other types of
DBD generation except that AREA statements are used instead of DATASET statements.

All AREA statements must immediately follow the DBD statement. The SEGM statements and their
associated FIELD statements follow the last AREA statement in hierarchic order. SEGM statements must
also be placed in the same hierarchic order as the segments in the database being defined.

For DEDB DBD generation:

« The data set group concept does not apply.

A secondary index is permitted.

Logical relationships between databases are not permitted.
LCHILD and XDFLD statements are permitted.
Sequential dependent segments cannot have dependents.

« A separate input set of records is required for each database.

The following figure shows the rules for structuring a DEDB DBD generation input set of records.

. END
A separateinputsetof
records is required for FINISH
each database. ODBDGEMN

SEGM statements
followed by their
——___ FIELD statements and
- any DFSMARSH,
DFSMAP and
DFSCASE
statements

* SEGM statementsin
DBEDGEM input set of
records must be placed
inthe same hierarchic
orderasthe segments
aretobeinthe data-
base beingdefined.

Figure 3. DEDB DBDGEN input record structure

26 IMS: System Utilities

DBD generation coding conventions

DBD generation statements are assembler language macro instructions. Each control statement must be
identified by an operation code, for example: record-type code

Related concepts
Writing MVS macro instructions

DBDGEN statements

The DBDGEN utility uses statement instruction types as input to define a database.

The following list describes the macro statements that the DBDGEN utility accepts:

PRINT
Controls printing of assembly listing if present. This statement is optional.

DBD
Defines database name. This statement is required for all database types.

All full-function database names and DEDB database names must be unique.

DATASET
Defines a data set group within a database.

AREA
Defines an area within a Fast Path DEDB database.

All DEDB area names must be unique.

SEGM
Defines a segment type within a data set group or area.

LCHILD
Defines a logical or index relationship between segment types.

FIELD
Defines a field within a segment type.

The maximum combined total of FIELD and XDFLD statements per DBD generation is 1000.

XDFLD
Defines fields used with secondary indexes

The maximum combined total of FIELD and XDFLD statements per DBD generation is 1000.

DFSMARSH
Defines marshalling attributes for a field.

DFSMAP
For defining alternative field mappings in a segment, DFSMAP statements associate DFSCASE
statements with the control field in the segment that identifies the particular DFSCASE statement
in effect in segment instance. This statement is required only when a segment uses alternative field
mappings.

DFSCASE
Defines a map case for a segment type that uses alternative field mapping. This statement is required
only when a segment uses alternative field mappings.

DBDGEN
The DBDGEN statement indicates the end of DBD generation statements used to define the DBD. This
statement is required.

FINISH
The FINISH statement is optional and is retained for compatibility.

END
The END statement indicates the end of input statements to the assembler. This statement is
required.

Chapter 2. Database Description (DBD) Generation utility 27

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.asma400/asmr1021180.htm

The following table shows the statement instruction types that are used as input to the DBDGEN utility to
define a database. Also included is the general use of each type of statement and the number of each type
used per DBD generation.

The set of DBDGEN statements that each database type requires can differ. In the table, the numbers
shown for each statement indicate whether the statement is required, optional, or does not apply for each
database type.

Table 1. DBD generation statement instruction summary

Macro

Number used per DBD generation

HSAM/ HISAM/ .
SHSAM GSAM HDAM PHDAM HIDAM PHIDAM MSDB DEDB Index PSINDEX Logical
PRINT 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1
DBD 1 1 1 1 1 1 1 1 1 1 1
DATASET 1 1 1/1-10 N/A 1-10 N/A 1 0 1 N/A 1
AREA 0 0 0 0 0 0 0 1-2048 O 0
SEGM 1-2553 0-1 1-255 1-255 1-255 1-255 1 1-127 11 11 1-255
LCHILD 0 0 0-255 0-255 1-255 1-255 0 0 11 11 0
FIELD 0-1000 0-100 1-1000 0-1000 1-1000 1-1000 0-255 1-1000 12 12 0
0
XDFLD 0 0 0-1000 0-1000 0-1000 0-1000 0 0-1000 O 0 0
DFSMARSH 0-1000 0-1,00 0-1000 0-1000 0-1000 0-1000 0-255 0-1000 12 12 0
0
DFSMAP Oor Oor Oor Oor Oor Oormore. Oor Oor Oor 0 or more. 0 or more.
more.No more. more.No more.No more.No No set more. more. more. No set No set
set limits Noset setlimits setlimits setlimits limits No set Noset Noset limits limits
limits. limits limits limits
DFSCASE Oor Oor Oor Oor Oor Oormore. Oor Oor Oor 0 or more. 0 or more.
more. No more. more.No more.No more.No No set more. more. more. No set No set
set limits Noset setlimits setlimits setlimits limits No set Noset Noset limits limits
limits. limits limits limits
DBDGEN 1 1 1 1 1 1 1 1 1 1 1
FINISH 1 1 1 1 1 1 1 1 1 1 1
END 1 1 1 1 1 1 1 1 1 1 1
Notes:

1. Maximum of 16 for a secondary index database.

2. Maximum of 1000 for a secondary index database.

3. A SHSAM database can only have one SEGM statement.

DBD statements

The DBD statement names the database being described and provides DL/I with information concerning
its organization. There can be only one DBD control statement in the control statement input deck.

The format of the DBD macro instruction for each database type is shown in the following examples.

DEDB database DBD statement

28 IMS: System Utilities

»— DBD — NAME=dbname1 ,ACCESS=DEDB —»

L DBVER= dbd_vers_number J

v

»— ,RMNAME= (mod,anch,,, XCI)
1
EXIT= (

NONE)—J

AC

e)

L JVERSION=" n'ZJ L ’ Cplo47 ‘
LENCODING= encoding
L ,REMARKS= comments J

A 4

A
,NOLOG
exitname j_ T B— D— E-»«
| S [
,LOG

REN

L ,NOLOG J
B

{ ,KEY j f_ ,NOPATH T f_ ,DATA j g

PATH —j L ,NODATA J
,NOCASCADE
,(CASCADE B)
(NOCASCADE B)

’

(2]

L

D
LC ,BEFORE D_J E ,DLET D_J
,NOBEFORE ,NODLET
E

f_ ,NOSSPCMD T f_ ,NOINPOS T j_ ,NOFLD T
- L ,SSPCMD —j L LINPOS —J L ,FLD —j A

Notes:

Chapter 2. Database Description (DBD) Generation utility 29

1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

GSAM database DBD statement

I_ NSAM T
»— DBD — NAME=(dbname1) — ,ACCESS= — (— GSAM ,BSAM) —>

_ENOIJ L B J
~— ,PASSWD= YES ,DATXEXIT= YES

Cp1047 lJ L ,REMARKS= comments J
“— ,ENCODING= —E encoding

A 4

30 IMS: System Utilities

HDAM database DBD statement

»— DBD — NAME= (dbname1)

»
»

L DBVER= dbd vers_number J

J— VSAM T
»— ,ACCESS= — (— HDAM ,OSAM) —

1
»— ,RMNAME=(mod)—>
L ,anch — ,rbn — ,bytes J

»
»

A 4

NO
,PASSWD= YES

- JT J
EXIT= (NONE) VERSION="' o

AC

x { (A) j [c}——
L Rl L LC"“"”IJ
,DATXEXIT= YES ,LENCODING= encoding

L ,REMARKS= comments J A

»
»

A 4

\ 4

>
>

A
. f_ ,NOLOG T
exitname @—@N
L ,LOG —j
,LOG
A T
L ,NOLOG J
B

,KEY ,NOPATH ,DATA
[AR
,NOKEY J ,PATH —j L ,NODATA J

s

(_/

(g}

5

>4
,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)

L
,CASCADE
1

:

TT]

Chapter 2. Database Description (DBD) Generation utility 31

,NOINPOS
E LINPOS 3
Notes:

1 Optional operands, such as anch and rbn, might be required by certain randomizing modules. See the
documentation for the randomizing module you are using.

2 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.

3 The default is an automatic DBDGEN time stamp.

4 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

5 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

HIDAM database DBD statement
»w— DBD — NAME=dbname1

»
»

L DBVER= dbd_vers_number J

I_ VSAM T
»— ,ACCESS= — (— HIDAM ,OSAM)

e IJ
,PASSWD= YES

L g 2 J L J
EXIT= (NONE) VERSION=' 11

AC

- { (A) j [c}—
il o |
,DATXEXIT= YES ,ENCODING= encoding

] L ,REMARKS= comments J A

»
»

A
‘ f_ ,NOLOG T
exitname @—@N
L ,LOG —j
,LOG
RER R
L ,NOLOG J
B

32 IMS: System Utilities

,KEY ,NOPATH ,DATA
bl [R
L NOKEY J PATH —j L ,NODATA J

’

o

|
,CASCADE
N i
,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)
D

E ,NOINPOS 3
LINPOS

Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

HISAM/SHISAM database DBD statement

,VSAM
[~/ 1,,

»— DBD — NAME=(dbname1) — ,ACCESS= — (L HISAM J
SHISAM

I IJ
,PASSWD= YES

» »
»

- I L ersonc o2
EXIT= (NONE) VERSION=' 77

AC

- E (A) : E J
,DATXEXIT= —E YES LENCODING= —E encoding

] L ,REMARKS= comments J A

Chapter 2. Database Description (DBD) Generation utility 33

L
f_ ,KEY j I_ ,NOPATH T f_ ,DATA j g

L
,CASCADE
[| e

,NOCASCADE

¥

,(CASCADE B)
,(NOCASCADE B)

D
,NOINPOS

,INPOS

Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

HSAM/SHSAM database DBD statement
»— DBD — NAME=dbname1 —»

»— ,ACCESS= HSAM _J L >
L . B
SHSAM VERSION=' 7 L I NO
,DATXEXIT=

YES
L Cp1047 lJ L ,REMARKS= comments J
,ENCODING= —E encoding

Notes:

1 The default is an automatic DBDGEN time stamp.

34 IMS: System Utilities

INDEX database DBD statement

»— DBD — NAME=(dbname1 { L J]) —>
,dbname2

,PROT

»— ,ACCESS=(INDEX, VSAM 1 f_ j)—
L SHISAM —J L ,NOPROT J L ,DOSCOMP J

_ENOIJ L _ENOIJ

— ,PASSWD= YES ,DATXEXIT= YES

— ,FPINDEX= {nul[,ENCODING= —E encoding
YES

»d

] L ,REMARKS= comments J A

Notes:

A 4

\ 4

1 A full-function secondary index must use VSAM. A Fast Path secondary index can use either VSAM or
HISAM.

LOGICAL database DBD statement

»w— DBD — NAME=dbname?1 — ,ACCESS=LOGICAL
,ENCODING= encoding

»d

] L ,REMARKS= comments J A

>
>

MSDB database DBD statement

»— DBD — NAME=dbname? — ,ACCESS=MSDB
,ENCODING= encoding

»d

] L ,REMARKS= comments J A

»
»

Chapter 2. Database Description (DBD) Generation utility 35

PHDAM database DBD statement

»— DBD — NAME= (dbname1)

L DBVER= dbd vers_number J

VSAM

»— ,ACCESS= — (— PHDAM f_

»— ,RMNAME=(mod

,OSAM

A 4

»
»

1
)—>»
L ,anch — ,rbn — ,bytes J

I IJ
,PASSWD= YES

»
»

A 4

L EXIT= 2 (

NONE

AC

. E (A) : @ J

) —J L VERSION=' ° J

] L ,PSNAME= psname J L

,DATXEXIT= —E

NO]J
YES

Y

L E Cp1047
,ENCODING= encoding

L ,LOG —j

LOG
R A
.NOLOG J

L
J—,KEYj I—,NOPATHT f_

,DATA
1,

- L ,NOKEY J ,PATH —j

(g

L
,CASCADE
1

:

% e
,NOCASCADE
L(CASCADE B)
(NOCASCADE B)

36 IMS: System Utilities

TT]

L,NODATA J A

lJ L ,REMARKS= comments J A

,NOLOG
exithname J_ T @—@N

D
,NOINPOS
E LINPOS 3
Notes:

1 Optional operands, such as anch and rbn, might be required by certain randomizing modules. See the
documentation for the randomizing module you are using.

2 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.

3 The default is an automatic DBDGEN time stamp.

4 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

5 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

PHIDAM database DBD statement
»w— DBD — NAME=dbname1

»
»

L DBVER= dbd_vers_number J

E VSAM T
»— ,ACCESS= — (— PHIDAM ,OSAM)

e IJ
,PASSWD= YES

L g 2 J L J
EXIT= (NONE) VERSION=' 11

AC

L E (A) J @)
L ,PSNAME= psname J L E NO lJ
,DATXEXIT= YES

L E Cpl1047 lJ L ,REMARKS= comments J
,ENCODING= encoding

»
»

A 4

A 4

Chapter 2. Database Description (DBD) Generation utility 37

. f_ ,NOLOG T
exitname IEI—@-N
L LOG —j

Il
J

,NOLO

o

,NOPATH ,DATA
R
,PATH —j L ,NODATA J

L
. J_ ,KEY j
L ,NOKEY J

—

(g

,CASCADE

o
A

L

:

,NOCASCADE
,(CASCADE B)

TT]

,(NOCASCADE B)

,NOINPOS

|

LINPOS
Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit routine on a DBD
statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

4 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

PSINDEX database DBD statement

f_ ,PROT j
1
»— DBD — NAME= dbname! — ,ACCESS=(PSINDEX,VSAM) —>

L ,NOPROT J

il NOIJ L il NOIJ
,PASSWD= YES ,DATXEXIT= YES

L ,PSNAME= psname J L E Cp1047 lJ
,ENCODING= encoding

» »d

] L ,REMARKS= comments J A

38 IMS: System Utilities

Notes:

1 A secondary index must use VSAM.

DBD statement parameter descriptions
DBD

Identifies this statement as the DBD control statement.
NAME=

Specifies the name of the database being described. The name can be from 1 to 8 alphanumeric
characters. Do not give a database the same name as an existing PSB or program view. Using an
existing name can cause unpredictable results.

If an existing name is used, an error occurs during ACB generation.

This name can be the same as that specified in the DD1 parameter of the first DATASET control
statement.

For a shared secondary index database, the names of up to 16 secondary index DBDs can be
specified.

DBVER=
A numeric value from 1 to 2147483647 that identifies a specific version of a DBD when multiple DBDs
are used by application programs to access the same database.

The value specified on the DBVER keyword must be one greater than the highest DBVER value of any
prior version of the DBD that is stored in the database record in the IMS catalog.

The DBVER keyword is optional. If the DBVER keyword is omitted, the version of the DBD is 0, even if
database versioning is not enabled.

The DBVER keyword is valid only for the following database types:

- DEDB

- HDAM

- HIDAM
« PHDAM
- PHIDAM

ACCESS=

Specifies the DL/I access method and the operating system access method to be used for this
database. This keyword also defines the secondary index database as a HALDB. The different access
methods are:

HSAM
Hierarchical sequential access method (HSAM). When HSAM is specified, and only one segment
type is defined in the HSAM database, this parameter defaults to SHSAM.

SHSAM
Simple HSAM database that contains only one fixed-length segment type. When a simple HSAM
database is defined, no prefix is required in occurrences of the segment type to enable IMS to
process the database.

GSAM
Generalized sequential access method (GSAM). BSAM or VSAM can be specified as the operating

system access method. VSAM is the default. When GSAM is specified, no SEGM control statement
is allowed in the DBD.

Chapter 2. Database Description (DBD) Generation utility 39

HISAM
Hierarchical index sequential access method (HISAM). VSAM can be specified as the operating
system access method. It is the default.

SHISAM
Simple HISAM database that contains only one fixed-length segment type. A simple HISAM
database can only be specified when VSAM is specified as the operating system access method.
When a simple HISAM database is defined, no prefix is required in occurrences of the segment
type to enable IMS to process the database.

HDAM
Hierarchical direct access method (HDAM). OSAM or VSAM can be specified as the operating
system access method. VSAM is the default.

PHDAM
Partitioned hierarchical direct access method (PHDAM). OSAM or VSAM can be specified as the
operating system access method. VSAM is the default.

HIDAM
Hierarchical indexed direct access method (HIDAM). OSAM or VSAM can be specified as the
operating system access method. VSAM is the default.

PHIDAM
Partitioned hierarchical indexed direct access method (PHIDAM). OSAM or VSAM can be specified
as the operating system access method. VSAM is the default.

MSDB
Main storage database (MSDB).

DEDB
Data entry database (DEDB).

INDEX
Creates the primary index to occurrences of the root segment type in a HIDAM database, or
creates a secondary index to a segment type in a HISAM, HDAM, or HIDAM database. For the
primary or secondary index to a HIDAM database, VSAM must be specified as the operating
system access method.

The INDEX parameter is also used to create a secondary index for a DEDB database. In such a
case, VSAM and SHISAM are both valid operating system access types.

The INDEX parameter is not used to define the primary index of a PHIDAM database.

PSINDEX
Creates the partitioned secondary index to a segment type in PHDAM and PHIDAM databases.
VSAM must be specified as the operating system access method. VSAM is the default.

LOGICAL
A logical database comprises logical concatenations of some or all of one or more physical
databases. Logical databases must reference existing physical databases.

PROT | NOPROT

Specifies if a secondary index database uses index pointer protection. This optional parameter
ensures the integrity of all fields in index pointer segments that are used by IMS. Use of this
parameter prevents an application program from doing a replace operation on any field within an
index pointer segment except for fields within the user data portion of index pointer segments. Delete
operations are still enabled for index pointer segments. If a delete is issued for an index pointer
segment, the index target segment pointer in the index pointer segment is deleted. However, the
index source segment that caused the index pointer segment to be created originally is not deleted.

If index pointer protection is not used, an application program can replace all fields within an index
pointer segment except the constant, search, and subsequence fields. Inserts to an index database
are invalid under all conditions.

By default, a secondary index database uses index pointer protection.

40 IMS: System Utilities

DOSCOMP
Indicates if this is a DLI/DOS index database. Must be specified if the database is an index, and it
was created using DLI/DOS. DLI/DOS index databases contain a segment code as part of the prefix.
Specifying that a database is a DLI/DOS index database causes IMS to expect this code to be present
in the defined database, and to process in a way that preserves this code. This includes providing a
segment code for new segments being inserted. DLI/DOS databases must use VSAM and cannot be
PHDAM, PHIDAM, or PSINDEX databases.

PSNAME=
Specifies the module that selects the HALDB partition for PSINDEX, PHDAM, or PHIDAM databases.
The parameter is a HALDB partition selection exit routine module name. This parameter is only valid
when the access type for the database is PSINDEX, PHDAM, or PHIDAM.

Exception: A user-provided HALDB partition selection routine is not needed if root key ranges define
HALDB partition membership.

RMNAME=

Specifies a module name that is used to manage the data that is stored in a DEDB or in the primary
data set group of an HDAM or PHDAM database. This parameter is only valid when the database
access type is HDAM, PHDAM, or DEDB. A randomizing module controls root segment placement in
or retrieval from the DEDB, HDAM, or PHDAM database. One or more modules, called randomizing
modules, can be utilized within the IMS system. A particular database has only one randomizing
module associated with it. A generalized module, which uses user-supplied parameters to perform
randomizing for a particular database, can be written to service several databases. The purpose of
a randomizing module is to convert a value supplied by an application program for root segment
placement in, or retrieval from, a DEDB, HDAM, or PHDAM database into a relative block number
and anchor point number. You can randomize within an area by selecting a two-stage randomizer.
When you select a two-stage randomizer, the number of root anchor points in an area can be changed
without having to stop all areas in the DEDB with the /DBRECOVERY command.

For PHDAM databases, the randomizer module names and values become the default for each
partition. You can set a different randomizer name and values for each partition during HALDB
partition definition. HALDB partition selection is done prior to invoking the randomizing module. The
randomizing module selects locations only within a partition.

mod
The module name is the 1- to 8-character alphanumeric name of a user-supplied randomizing
module that is used to store and access segments in this DEDB, PHDAM, or HDAM database.
Select a two-stage randomizer by specifying the randomizer name in the module name parameter
and 2 in the anchor point parameter.

anch
The purpose of the anch value is different depending on whether you are defining a Fast Path
DEDB database or a full-function HDAM or PHDAM database.

This parameter must be an unsigned decimal integer. The default value of this parameter is one.

For a DEDB database, the value of anch specifies the type of randomizer. A value of 1 indicates a
single-stage randomizer. A value of 2 indicates a two-stage randomizer. Any other value is invalid.

For HDAM and PHDAM databases, the value of anch specifies the number of root anchor points
desired in each control interval or block in the root addressable area of the HDAM or PHDAM
database. Typical values are from 1 to 5 and the value cannot exceed 255.

When accessing a HDAM or PHDAM database, if a user randomizing routine produces an anchor
point number greater than the number specified for this parameter, the highest-numbered anchor
point in the control interval or block is used. When a randomizing routine produces an IMS anchor
point number of zero, IMS uses anchor point one in the control interval or block.

rbn
Specifies the maximum relative block number value that you want to allow a randomizing module
to produce for this database. This parameter is for HDAM or PHDAM databases only. This value

Chapter 2. Database Description (DBD) Generation utility 41

determines the number of control intervals or blocks in the root addressable area of an HDAM

or PHDAM database. This parameter must be an unsigned decimal integer whose value does not
exceed 224-1. If this parameter is omitted, no upper limit check is performed on the relative

block number created by the randomizing module. If this parameter is specified, but the specified
randomizing module produces an relative block number greater than this parameter, the highest
control interval or block in the root addressable area is used by IMS. If a user randomizing module
produces a block number of zero, the control interval or block one is used by IMS.

In an HDAM or PHDAM data set, the first bit map is in the first block of the first extent of the data
set. In an HDAM or PHDAM database, the first control interval or block of the first extent of the
data set specified for each data set group is used for a bit map. In a VSAM data set, the second
control interval is used for the bit map and the first control interval is reserved. IMS adds one to
the block calculated by the randomizer.

bytes
Specifies the maximum number of bytes of database record that can be stored into the root
addressable area in a series of inserts unbroken by a call to another database record. This
parameter is for HDAM and PHDAM databases only. If this parameter is omitted, no limit is placed
on the maximum number of bytes of a database record that can be inserted into this database's
root segment addressable area. The bytes parameter must be an unsigned decimal integer whose
value does not exceed 224-1. When the maximum relative block number parameter is omitted,
this parameter is ignored. In this case, there is no limit on the number of bytes of a database
record that can be inserted into the root addressable area.

If this parameter is specified for an HDAM or PHDAM database and the length of the database
record is larger, the remainder of the record is inserted into the overflow area following the current
end-of-file (EOF). This operation requires that enough space be available after the current EOF to
contain the remainder of all database records that exceed the value of this parameter. If sufficient
space is not available in the overflow area following the current EOF, the database records are
inserted randomly in the database.

XcI
Specifies whether this DEDB uses the Extended Call Interface when making calls to the
randomizer. This option allows the randomizer to be called in three different ways. On initialization
of IMS or during a /START DB command, IMS will first load the randomizer and then make an
INIT call to the randomizer to invoke its initialization routines. During a /DBR DB command, IMS
will make a TERM call to the randomizer to invoke the termination routines before unloading the
randomizer. The normal randomizing call to the randomizer is made when the application issues a
GU or ISRT call on a root segment. The XCI option is only valid for DEDBs.

PASSWD=
Prevents accidental access of IMS databases by non-IMS programs.

YES
Specifying PASSWDYES causes DL/I to use the database name as the VSAM password when
opening any data set for this database. This parameter is only valid for databases that use VSAM
as the access method. You cannot use the database name as the password for the LOGICAL or
DEDB database types. When the user defines the VSAM data sets for this database using the
DEFINE statement of z/OS Access Method Services, the control level (CONTROLPW) or master
level (MASTERPW) password must be the same as the DBDNAME for this DBD. All data sets
associated with this DBD must use the same password.

For the IMS DB/DC system, all VSAM OPENSs bypass password checking and thus avoid operator
password prompting. For the IMS DB system, VSAM password checking is performed. In the
batch environment, operator password prompting occurs if automatic password protection is
not specified, and the data set is password protected at the control level (CONTROLPW) with
passwords not equal to the database name.

NO
Specifying PASSWDNO indicates that the database name should not be used as the VSAM
password. This is the default behavior.

42 IMS: System Utilities

EXIT=
Specifies that the Data Capture exit routine is used. You can specify multiple exit routine names on a
single DBD statement. You can select different data options for each exit routine. The order that you
list the exit routines within the parameter determines the order the exit routines are called for the
segment.

When specified on the DBD statement, the EXIT= parameter applies to all segments within the
physical database that do not have the EXIT= parameter on the SEGM statement. The following
physical databases are supported by this exit routine:

« HISAM
+ SHISAM
« HDAM

« PHDAM
- HIDAM
- PHIDAM
- DEDB

If the exit routine is not specified for a supported database organization or a supported segment type,
DBDGEN fails.

If the job name of a CCTL or ODBM address space is specified on the SUPPDCAPNAME= parameter,
which is in the DATABASE section of the DFSDFxxx member of the IMS PROCLIB data set, the exit
routine is not called for data updates invoked by the specified job, even if a Data Capture exit routine
is specified on the EXIT= parameter.

The EXIT= parameter can also be specified on the SEGM statement.

exit_name
Specifies the name of the exit routine that processes the data. This parameter is required. The
name must follow standard naming conventions. A maximum of 8 alphanumeric characters is
allowed. You can specify an asterisk (*) instead of an exit routine name to indicate that you want
logging only. If this is done, the logging parameter default is LOG. If you do specify an exit routine,
the logging parameter default is NOLOG. All of the following operands are optional.

KEY | NOKEY
Specifies whether the exit routine is passed the physical concatenated key. This key identifies the
physical segment that is updated by the application.
KEY

Specifies the exit routine is passed the physical concatenated key.

KEY is the default.

NOKEY
Can be specified when the physical concatenated key is not required for the exit routine.

DATA | NODATA
Specifies whether the physical segment data is passed to the exit routine for updating.

DATA
Specifies that the physical segment data is passed to the exit routine for updating. When DATA
is specified and a Segment Edit/Compression exit routine is also used, the data passed is
expanded data.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. Use NODATA to avoid
the overhead that is created from saving physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires data from segments in the physical root's hierarchical
path.

Chapter 2. Database Description (DBD) Generation utility 43

NOPATH
Indicates that the exit routine does not require data from segments in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time that is needed to
retrieve path data.

NOPATH is the default.

PATH
Can be specified when the data from each segment in the physical root's hierarchical path
must be passed to the exit routine for an updated segment. Use PATH to allow an application
to separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from segments in the path is needed to
compose the Db2 for z/OS primary key. The Db2 for z/OS primary key would then be used
in a propagation request for a dependent segment update. Typically, you need this kind
of segment information when the parent contains the key information and the dependent
contains additional data that would not fit in the parent segment.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several segments with one call; for example, you did not invoke the D command
code. In this case, additional processing is necessary if the application is to access each
segment with a separate call.

DLET | NODLET
Specifies whether X'99' log records are written for DLET calls.
Note: DLET or NODLET can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

DLET
X'99' log records are written for DLET calls.

DLET is the default.

NODLET
No X'99' log records are written for DLET calls.

BEFORE | NOBEFORE
Specifies whether the before data is included in X'99' log records for REPL calls.
Note: BEFORE or NOBEFORE can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

BEFORE
Before data is included in X'99' log records for REPL calls.

BEFORE is the default.

NOBEFORE
No before data is included in X'99' log records for REPL calls.

CASCADE | NOCASCADE
Specifies whether the exit routine is called when DL/I deletes this segment.

CASCADE
Indicates that the exit routine is called when DL/I deletes this segment because the
application deleted a parent segment. Using CASCADE ensures that data is captured for the
defined segment.

CASCADE is the default.

44 IMS: System Utilities

The CASCADE parameter has three suboptions. These suboptions control the way data

is passed to the exit routine. If you specify suboptions, you must enclose the CASCADE
parameter and the suboptions within parentheses.

KEY | NOKEY
Specifies whether the physical concatenated key is passed to the exit.
KEY

Passes the physical concatenated key to the exit. This key identifies the segment being
deleted by a cascade delete.

KEY is the default.
NOKEY

Can be used when the exit routine does not require the physical concatenated key of
the segment being deleted.

DATA | NODATA
Specifies whether segment data is passed to the exit routine for a cascade delete.
DATA

Passes segment data to the exit routine for a cascade delete. DATA also identifies the
segment being deleted when the physical concatenated key is unable to do so.

DATA is the default.
NODATA

Can be specified when the exit routine does not require segment data. NODATA

reduces the significant storage and performance requirements that result from saving
physical segment data.

NOPATH | PATH

Specifies whether the exit routine requires segment data in the physical root's hierarchical
path.

NOPATH

Indicates that the exit routine does not require segment data in the physical root's

hierarchical path. Use NOPATH to eliminate the substantial amount of path data
needed for a cascade delete.

NOPATH is the default.
PATH

Can be specified to allow an application to separately access several segments for a
cascade delete.

NOCASCADE

Indicates that the exit routine is not called when DL/I deletes this segment. Cascade delete is
not necessary when a segment without dependents is deleted.

Note: If any (CASCADE B) suboptions are specified with NOCASCADE in an EXIT= parameter,
they will be ignored, and the value for those suboptions will be set to NOxxxx.
LOG | NOLOG
Specifies whether data capture control blocks or data is written to the IMS system log.
LOG
Requests that the data capture control blocks and data be written to the IMS system log.

For more information, see Asynchronous data propagation (System Programming APIs).
NOLOG

Indicates that no data capture control blocks or data is written to the IMS system log.
NOSSPCMD | SSPCMD

An optional parameter that indicates whether command codes related to Fast Path subset

pointers (SSP) be captured. The default is NOSSPCMD. It is recommended that this option be
specified only on segments that involve subset pointers.

Chapter 2. Database Description (DBD) Generation utility 45

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

The following table indicates which command codes are captured for a given DL/I call:

Table 2. Command codes that are captured for DL/I calls
DL/I call Details

G* (get calls) M, S, W, Z. R is captured if at least one of M, S,
W, or Z is also on the same SSA, or along with
the PATH data if PATH is requested.

REPL M,S,W,Z
DLET Z
ISRT M, S, W, Z. R is captured if the segment is being

inserted or if it was specified on an SSA of a
segment not being inserted but PATH data is
requested.

NOINPOS | INPOS
An optional parameter to request that the next twin data be captured on an ISRT call. The default
is NOINPOS. The twin data of the twin that follows an inserted segment will be captured if INPOS
is specified and the following conditions are true:

« An ISRT of a non-unique segment is made.
e An ISRT rule of HERE is used.

If the new segment is the only twin instance or last in the twin chain, no twin data will be
captured.

NOFLD | FLD
An optional parameter to request that updates that are made by a DEDB FLD call be captured. This
option is valid only for a DEDB. The information captured is logged only in the X'9904' log records
if option LOG is specified. It is not passed to the Data Capture exit routine.

VERSION=
Specifies a character string used to identify the DBD. The exit routine is passed this character string so
it can determine the DBD version used to update the database.

character string
The character-string length can be up to 255 bytes. There are no checks to ensure that the proper
values have been inserted. Therefore, it is important that the variable-length character string be
updated whenever the DBD changes.

If you do not specify a character string, a 13-character time stamp is generated by DBDGEN. It
represents the date and time the DBDGEN was completed. Its format is:

MM/DD/YYHH .MM

Where:
MM
The month
DD
The day of the month
YY
The last two digits of the year
HH
The hour on a 24-hour clock

MM
The minutes

46 IMS: System Utilities

DATXEXIT=
Allows a user exit, DFSDBUX1, to be used by an application while processing this database. The
default is NO.

Allows the Data Conversion user exit routine (DFSDBUX1) to be used by an application while it is
processing this database. The default is DATXEXITNO.

If DATXEXITYES is specified, the user exit DFSDBUX1 is called at the beginning and at the end of each
database call. If DFSDBUX1 is not loaded, IMODULE is called to load it.

If DATXEXITNO is specified, the DFSDBUX1 user exit routine can be called, provided DFSDBUX1 is
located in the SDFSRESL. If DFSDBUX1 does not need to be called again for the database definition,
X'FF'is returned in the SRCHFLAG field in the JCB, and DFSDLAOO dynamically marks the database
definition as not requiring the exit. In this case, the user exit is not called again for that database
definition for the duration of the IMS session, unless the DMB is purged from the DMB pool.

FPINDEX=

Specifies whether an index database is a secondary index for a primary Fast Path DEDB database. By
default, an index database is not a secondary index.

Valid values are NO, null, and YES. NO and null are equivalent. The default is NO (or null).

ENCODING=
An optional 1- to 25-character field that specifies the default encoding of all character data in this
database.

The default code page is Cp1047, which specifies EBCDIC encoding.
This value cannot contain the following characters:

- Single or double quotation marks

- Blanks

« Less than (<) and greater than (>) symbols

« Ampersands (&)

This value can be overridden in individual segments or fields.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application’

« Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

Related concepts
Data Capture exit routines (Database Administration)

Chapter 2. Database Description (DBD) Generation utility 47

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_datacapexit.htm#ims_datacapexit

Related information
DBD770 (Messages and Codes)

DATASET statements

A DATASET statement defines a data set group within a database.

At least one DATASET statement is required for each DBD generation, except for HALDB, DEDB, and
LOGICAL databases. HALDB databases use the DSGROUP parameter on the SEGM statement instead
of DATASET statements to define data set groups. DEDB databases use AREA statements instead of
DATASET statements to define data set groups.

The maximum number of DATASET statements used depends on the type of databases. Some databases
can have only one data set group. Data Entry databases can have 1 to 2048 areas defined. HDAM and
HIDAM databases can be divided into 1 to 10 data set groups subject to the rules in “Rules for dividing a
database into multiple data set groups” on page 48.

In the DBDGEN input deck, a DATASET statement precedes the SEGM statements for all segments that
are to be placed in that data set group. The first DATASET statement of a DBD generation defines the
primary data set group. Subsequent DATASET statements define secondary data set groups.

Exception: The only exception to the order of precedence is when the LABEL field of a DATASET
statement is used. Refer to “Use of the LABEL field” on page 48 for this exception.

Comments must not be added to a subsequent labeled DATASET macro that has no operands.

Rules for dividing a database into multiple data set groups

HDAM and HIDAM databases can be divided into a maximum of 10 data set groups according to the
following restrictions. Each DATASET statement creates a separate data set group, except for the case
explained in “Use of the LABEL field” on page 48. The first DATASET statement defines the primary data
set group. Subsequent DATASET statements define secondary data set groups.

For HDAM or HIDAM databases, you can use DATASET statements to divide the database into multiple
data set groups at any level of the database hierarchy; however, the following restriction must be met. A
physical parent and its physical children must be connected by physical child or physical twin pointers,
as opposed to hierarchic pointers, when they are in different data set groups, as shown in the following
figure.

The connection between segment A (the root segment in the primary data set group), and segment

B (a first level dependent in the secondary data set group) must be made using a physical child. The
connection between segment C (a first level dependent in the primary data set group) and segment D (a
second level dependent in the secondary data set group) must also be made using a physical child. The
connection between multiple occurrences of segments B and D under one parent must be made using
physical twin pointers.

Use of the LABEL field

In HDAM or HIDAM databases, it is sometimes desirable to place segments in data set groups according
to segment size or frequency of access rather than according to their hierarchic position in the data
structure. To achieve this while still observing the DBD generation rule that the SEGM statements defining
segments must be arranged in hierarchic sequence, the LABEL field of the DATASET statement is used.

An identifying label coded on a DATASET statement is referenced by coding the same label on additional
DATASET statements. Only the first DATASET statement with the common label can contain operands
that define the physical characteristics of the data set group. All segments defined by SEGM statements
that follow DATASET statements with the same label are placed in the data set group defined by the first
DATASET statement with that label.

48 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.mc/msgs/dbd770.htm#dbd770

You can use this capability in much the same manner as the CSECT statement of assembler language,
with the following restrictions:

« Alabel used in the label field of a DATASET statement containing operands cannot be used on another
DATASET statement containing operands.

« Labels must be alphanumeric and must be valid labels for an assembler language statement.
« Unlabeled DATASET statements must have operands.

Table 3. Using the label field to group segment types

Label Operation Parameter

DBD NAME=HDBASE,ACCESS=HDAM, RMNAME=(RANDMODL,1,500,824)
DSG1 DATASET DD1=PRIMARY,BLOCK=1648

SEGM NAME=SEGMENTA,BYTES=100
DSG2 DATASET DD1=SECOND,BLOCK=3625

SEGM NAME=SEGMENTB,BYTES=50,PARENT=SEGMENTA
DSG1 DATASET

SEGM NAME=SEGMENTC,BYTES=100,PARENT=SEGMENTA
DSG2 DATASET

SEGM NAME=SEGMENTD,BYTES=50,PARENT=SEGMENTC

DBDGEN

FINISH

END

The segments named SEGMENTA and SEGMENTC exist in the first data set group. The segments named
SEGMENTB and SEGMENTD exist in the second data set group.

The format of the DATASET statement for each database type is shown in the following examples.

GSAM database DATASET Statement

- 1
,DD2= daname2 L ,BLOCK=(blkfact1) —J
,SIZE= size1 ,RECORD=(reclen1,reclen?2) ,DEVICE=3380

»— ,RECFM= recfm1 3 »q

L ,REMARKS= comments J)

»— DATASET — DD1=ddname1

Notes:

11f you do not specify a value, the DBDGEN utility generates the value used.
2 The DEVICE parameter is ignored.
3 RECFM is only valid for a GSAM database.

HDAM database DATASET statement

Chapter 2. Database Description (DBD) Generation utility 49

» L DATASET — DD1=ddname? >
1
2
label ,BLOCK= size0
3

,SIZE=(, size?)

A 4

»
»

L DEVICE=3380 4J L SCAN= cyls J L JFRSPC=(bff ,fspf) —J

L ,SEARCHA= 0
E 1
2

11f you have multiple DATASET statements with the same label, only the first one with the common
label can contain operands that define the physical characteristics of the data set group.

2 If you do not specify a value, the DBDGEN utility generates the value used.

3 For VSAM, the valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB,
8 KB, and multiples of 2 KB up to 28 KB.

4 The DEVICE parameter is ignored.

\ 4

»d

L ,REMARKS= comments J -

Notes:

HIDAM database DATASET statement

» L DATASET — DD1=ddname? >
1
label |BLOCK= size0 >
3

,SIZE=(sizeT)

L DEVICE=3380 4J L +SCAN= cyls J L [FRSPC=(bff ,fspf) —J

».

L ,SEARCHA= 0 L ,REMARKS= comments J A
E 1
2

11f you have multiple DATASET statements with the same label, only the first one with the common
label can contain operands that define the physical characteristics of the data set group.

2 If you do not specify a value, the DBDGEN utility generates the value used.
3 For VSAM, the valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB,
8 KB, and multiples of 2 KB up to 28 KB.

4 The DEVICE parameter is ignored.

A 4

»
»

A 4

Notes:

HISAM/SHISAM database DATASET statement

50 IMS: System Utilities

»— DATASET — DD1=ddname? — ,OVFLW= ddname3 1

\4

2
,BLOCK=(blkfact1 ,blkfact2)

2
,SIZE=(size1,size2) 3

) L .
L ,RECORD=(reclen1,reclen?2) ,DEVICE=3380

»d

] L ,REMARKS= comments J A

Notes:

A 4

11f a HISAM database has only one segment type defined, you do not need to specify OVFLW. OVFLW
is invalid in a simple HISAM database.

2 If you do not specify a value, the DBDGEN utility generates the value used.

3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB, 8 KB, and
multiples of 2 KB up to 28 KB.

4 The DEVICE parameter is ignored.

HSAM/SHSAM database DATASET statement

. J
L ,BLOCK=(bikfact1 ,blkfact2)

2
f_ ,DEVICE=3380 T
,RECORD=(reclen1,reclen2)

»d

] L,REMARKS= comments J A

Notes:

»— DATASET — DD1=ddname1 — ,DD2=ddname2

»
»

A 4

11f you do not specify a value, the DBDGEN utility generates the value used.
2 DEVICE parameter is ignored.

INDEX database DATASET statement

1
»— DATASET — DD1=ddname! — ,OVFLW= ddname3

v

2
,BLOCK=(blkfact1 ,blkfact2)

23
,SIZE=(size1,size2)

:) L .
L ,RECORD=(reclen1,reclen2) ,DEVICE=3380
L ,REMARKS= comments J

A 4

A 4

Notes:

Chapter 2. Database Description (DBD) Generation utility 51

11f the keys of all the index segments are unique, you do not need to specify OVFLW.

2 If you do not specify a value, the DBDGEN utility generates the value used.

3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB, 8 KB, and
multiples of 2 KB up to 28 KB.

4 The DEVICE parameter is ignored.

LOGICAL database DATASET statement

»— DATASET — LOGICAL L J »><
,REMARKS= comments

MSDB database DATASET statement

»— DATASET — ,REL=(NO) >«
M TERM L ,REMARKS= comments J
L ,fldnm J
M FIXED
L ,fidnm J
— DYNAMIC

L fidnm J

DATASET statement parameter description

DATASET
Identifies this as a DATASET control statement for a DL/I database.

LOGICAL
Indicates a logical database is being defined in this DBD generation. This parameter must be specified
if the ACCESS=LOGICAL parameter is specified on this DBD generation's DBD statement. If LOGICAL
is specified, all other operands are invalid; this must be the only DATASET statement for the DBD
generation. The SEGM statements that follow this statement can only specify NAME=, PARENT=,
and SOURCE= operands. No FIELD, XDFLD, or LCHILD statements can be used in a LOGICAL DBD
generation.

DD1=
Specifies the ddname of the primary data set in this data set group. ddnamel must be a 1- to
8-character alphanumeric name. IMS use of the data set indicated by this parameter depends on the
type of database being defined as shown in the following list:

Database Type
Use of the DD1= parameter

HSAM/SHSAM
ddname of input data set
GSAM
ddname of input data set
HISAM/SHISAM
ddname of primary data set in data set group
HIDAM
ddname of data set in data set group

HDAM
ddname of data set in data set group

52 IMS: System Utilities

MSDB

Parameter is invalid
DEDB

Name of defined area
INDEX

ddname of primary data set

LOGICAL
Parameter is invalid

For an HSAM, SHSAM, or GSAM database, this input data set is used when an application program
retrieves data from the database.

DEVICE=
Specifies the physical storage device type on which the data set in this area is stored. The default is
3380. If you code any other device, it will be ignored.

DD2=
Specifies the 1- to 8-character alphanumeric ddname of the output data set required for an HSAM or
SHSAM database and optional for a GSAM database. If it is omitted, ddnamel is assumed. This output
data set is used by IMS when loading the database.

label
An identifying label coded on a DATASET statement referenced by coding the same label on additional
DATASET statements. Only the first DATASET statement with the common label can contain operands
that define the physical characteristics of the data set group. All segments defined by SEGM
statements that follow DATASET statements with the same label are placed in the data set group
defined by the first DATASET statement with that label.

OVFLW=

Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in this data set group.
This parameter must be specified for:

- An INDEX database that contains index pointer segments with nonunique keys

« All data set groups of a HISAM database except when only one segment type is defined in the
HISAM database

The ddnames used in DD1, DD2, or OVFLW subparameters must be unique within an IMS system

or account. Nonunique ddnames in two or more DBDs might result in destruction of the database.
One situation that can result in destruction of a database is if both ddnames were inadvertently used
concurrently (both used in two different message regions of a data communications system or in two
PCBs of one PSB used in a batch DL/I region of a database only system).

The following restrictions apply:

« The OVFLW parameter is not allowed when a simple HISAM database is defined.

« When a HISAM database that contains only one segment type is defined, the OVFLW parameter
does not have to be specified.

« No OVFLW parameter on the DATASET statement is required for the index DBD because all index
segments are inserted in the key sequenced data set of the index.

 If ACCESS=(INDEX,SHISAM) is specified, then the OVFLW parameter is invalid.

BLOCK=
Is used to specify the blocking factors (blkfactl, blkfact2) to be used for data sets in a data set group
for HSAM, SHSAM, GSAM, HISAM, SHISAM, and INDEX databases, or is used to specify the block size
or control interval size without overhead (size0) for the data set in a data set group for HDAM and
HIDAM databases.

For HISAM, SHISAM, and INDEX databases that use VSAM as the access method, use the SIZE=
parameter to specify control interval size in place of the BLOCK= parameter. If the SIZE= keyword is
used for a HISAM, SHISAM, or INDEX database, the BLOCK= keyword is invalid.

The SIZE and BLOCK keywords are mutually exclusive for the following database access types:

Chapter 2. Database Description (DBD) Generation utility 53

- HDAM

- HIDAM
« HISAM
« INDEX
+ SHISAM

In cases where the RECORD= and BLOCK= operands are used, the resulting control interval size must
be a multiple of 512 when the resulting size is less than 8192 bytes. If the product of the record
length specified times the blocking factor specified plus VSAM overhead is not a multiple of 512 and
is less than 8192 bytes, the resulting control interval size is obtained by rounding the value up to

the next higher multiple of 512. Control interval sizes from 8192 to 30720 bytes (maximum allowed
size) must be in multiples of 2048 bytes. When the product of the RECORD= and BLOCK= operands
plus VSAM overhead is from 8192 to 30720 bytes but is not a multiple of 2048, the resulting control
interval size is obtained by rounding the value up to the next higher multiple of 2048.

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10 bytes. The maximum block
size for OSAM data sets is 32 KB.

For HDAM and HIDAM databases, the BLOCK= parameter is used to enable you to override DBDGEN's
computation of control interval or block size. However, in addition to the value specified in the
BLOCK= parameter, DBDGEN adds space for root anchor points, a free space anchor point, and access
method overhead. The block or control interval size that results can be determined by referring to the
equations in the description of the SIZE= parameter or by examining the output of DBDGEN. If SIZE=
is not specified and the access method is VSAM, DBDGEN calculates the best VSAM LRECL value by
equally distributing any unused space in the CI to each logical record in the CI. If SIZE= is specified or
the database is SHISAM, this is not done.

The following table explains the use of the BLOCK= and RECORD= operands.

Table 4. BLOCK and RECORD operands

Database type Use of BLOCK and RECORD operands

HSAM/SHSAM BLOCK=
blkfactl applies to input data set and should always be 1.

blkfact2 applies to output data set and should always be 1.

RECORD=
reclenl is the input record length.

reclen2 is the output record length.
HSAM/SHSAM is always unblocked; LRECL and BLKSIZE are equal.

GSAM BLOCK=
blkfactl applies to input/output data set.

blkfact2 is an invalid subparameter.

RECORD=
reclenl is the size of an LRECL length or maximum size for a variable
length record.

reclen2 is the minimum size for a variable length record.

SIZE=
sizel is the BLKSIZE for input/output data set.

size2 is an invalid subparameter.

54 IMS: System Utilities

Table 4. BLOCK and RECORD operands (continued)
Database type Use of BLOCK and RECORD operands

HISAM/SHISAM BLOCK=
blkfactl is the primary data set blocking factor.

blkfact2 is the overflow data set blocking factor.

RECORD=
reclen 1 is the data set logical record length.

reclen2 is the overflow data set logical record length.

HIDAM, HDAM BLOCK=
size0 is size without overhead of OSAM or VSAM data set group
RECORD=
Is ignored.
MSDB BLOCK= and RECORD= operands are invalid
DEDB BLOCK= and RECORD= operands are invalid.
INDEX BLOCK=

blkfactl is the primary data set blocking factor.
blkfact2 is the overflow data set blocking factor.

RECORD=
reclenl is the primary data set logical record length.

reclen2 is the overflow data set logical record length.

LOGICAL BLOCK= and RECORD= operands are invalid.

Note: When both reclenl and reclen?2 are specified in a DATASET statement, reclen2 must be equal
to or greater than reclenl, except for GSAM.

SIZE=
Overrides how the DBDGEN utility computes control interval or block size. If the value specified for
SIZE=is different from the control interval size defined to VSAM using the Access Method Services,
DL/I uses the value defined to VSAM.

For DL/I DBDs, you can effectively modify the DBD without a DBDGEN by redefining the control
interval size to VSAM using the Access Method Services. This allows you to migrate databases to new
devices without a DBDGEN. When used, no overhead is added to the values specified and the value
specified is not validated by IMS.

For VSAM data sets, when the values specified are less than 8192, they must be a multiple of 512. If
not a multiple of 512, DBDGEN rounds the value specified to the next higher multiple of 512 and issue
a warning message. Values specified in the range of 8192 to 30720 bytes (maximum allowed size)
must be a multiple of 2048. If not a multiple of 2048, DBDGEN rounds the value specified to the next
higher multiple of 2048 and issue a warning message.

For HISAM, SHISAM, primary HIDAM index, and secondary index databases, sizel specifies the
control interval or block size of the primary data set in a data set group, and size2 specifies the control
interval or block size of the overflow data set.

For HDAM and HIDAM databases, only the sizel parameter is used. The sizel parameter specifies the
control interval or block size of the data set in the data set group.

When SIZE is specified for a HISAM or INDEX database, the RECORD parameter must also be
specified; the size value specified must be a multiple of the record parameter in order to allow

Chapter 2. Database Description (DBD) Generation utility 55

VSAM to open the data sets involved. Following are equations that show the minimum block or control
interval size that you can specify for databases.

The maximum block size of OSAM data sets is 32768 bytes. An OSAM data set with an even length
block size has an 8-gigabyte size limit. If the database is saved with image copy, 32752 bytes is the
maximum amount that can be specified for the block size. Image copy processing module DFSUDMPO
adds 15 bytes to the block size for double-word alignment of its prefix, and the block size cannot
exceed 32768. If the DBDGEN utility specifies the block size, 32752 bytes is the maximum amount
specified.

Important: Calculating SIZE= for HISAM primary data set groups, primary HIDAM index data set
groups, and secondary index data set groups

For the primary data set group of a HISAM or INDEX database, the minimum control interval size that
can be specified for the primary data set is given by primary size and for the overflow data set by
overflow size. The overflow data set is not always required in the data set group.

« primary size 2 ROOTSEG + OVERHEAD + VSAM CONTROL

« overflow size > MAXSEG + OVERHEAD + VSAM CONTROL

ROOTSEG=

Maximum root segment size including the segment prefix. An INDEX VSAM root segment prefix
does not include a segment code, unless it was created using DL/I DOS.

OVERHEAD=
Number of bytes required is:
7
Used for OSAM, if the database has more then one physical segment type
3
Used for OSAM, if the database has only one physical segment type
4
Used for INDEX VSAM databases with nonunique root segment keys
0

Used for INDEX VSAM databases unique root segment keys, not created using DL/I DOS.
5 bytes for all other VSAM databases.

VSAM CONTROL=
Number of bytes required is:

0
Used for OSAM, if the blocking factoris 1
7
Used for VSAM if the blocking factor is 1
10
Used for all other cases
MAXSEG=

Length in bytes of the longest segment in this data set group including the segment prefix.
Calculating SIZE= for HDAM Primary Data Set Group

The minimum block or control interval size that you can specify for the primary data set group of an
HDAM database is dependent on whether or not the DBD statement rbn parameter of the RMNAME
parameter is specified.

- If rbnis specified, then the following two conditions must be met:

— size > (RAPs*4) + FSEAP + 2 + VSAM CONTROL
— size 2 MAXSEG + FSEAP + VSAM CONTROL
- If rbn is not specified, then the following condition must be met:

56 IMS: System Utilities

— size > MAXSEG + (RAPs*4) + FSEAP + VSAM CONTROL

RAPs=
Number of root anchor points specified for the root addressable area of the database.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

MAXSEG=
Length in bytes of the longest segment in this data set group including the segment prefix.

Calculating SIZE= for HDAM Secondary Data Set Groups
The block or control interval size specified must be:
size > MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=
Length in bytes of the longest segment in this data set group including the segment.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

Calculating SIZE= for HIDAM Data Set Groups

The minimum block or control interval size that you can specify for data set groups in a HIDAM
database is dependent on the access method specified. The block or control interval size of the
primary data set group is also dependent on the type of pointers specified for the root segment type.

If you specify forward-only hierarchic or physical twin pointers for the root segment type of a HIDAM
database, the block or control interval size specified for the primary data set group must be:

size 2 MAXSEG + FSEAP + RAP + VSAM CONTROL

Under any other conditions for primary or secondary data set groups, the block or control interval size
specified must be:

size 2 MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=
Length in bytes of the longest segment in this data set group including the segment prefix.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

RAP=
4 bytes for one root anchor point.

RECORD=(recleni,reclen2)
Specifies the data management logical record lengths to be used for this data set group. This
parameter is optional and cannot be specified if ACCESS=LOGICAL is used on the DBD statement.
reclenl and reclen2 must be numeric values. The value of reclen2 must always be equal to or greater
than the value of reclenl except for GSAM databases. The meaning of each of the parameter's
parameters depends on the type of database being defined.

For a simple HISAM (SHISAM) database, the logical record length specified must be the same as
the segment length specified. The minimum allowable logical record lengths for HISAM and INDEX
DBDs are the same as the minimum block or control interval sizes described for the DATASET SIZE=
parameter, except that VSAM CONTROL should be ignored. In addition, for both the VSAM KSDS and
ESDS for HISAM, and INDEX DBDs, the logical record length specified must also be an even value.

Chapter 2. Database Description (DBD) Generation utility 57

For VSAM primary index (INDEX, VSAM) databases, the overflow logical record length (reclen2)
parameter should not be defined, because all index segments are inserted into the key sequence
data set.

For a GSAM database, reclenl specifies the size of a logical record for a fixed-length record or the
maximum size for a variable-length or undefined record. The value of reclen2 specifies the minimum
size for a variable-length or undefined record. For variable length GSAM/BSAM database, IMS adds 2
bytes to the record length value in the GSAM records passed by the application. This is done in order
to accommodate the ZZ field that makes up the BSAM Record Descriptor Word (RDW) when the record
is written to the I/O device.

RECFM=
Specifies the format of the records in the data set. The record format is specified using the characters
defined as follows:

F
The records are fixed-length.

FB
The records are fixed-length and blocked.

\'
The records are variable-length.

VB
The records are variable-length and blocked.

u
The records are of undefined length.

This parameter is only valid for a GSAM database.

SCAN=cyls
Specifies the number of direct-access device cylinders to be scanned when searching for available
storage space during segment insertion operations. This parameter is optional. It is only used when
this DBD generation defines a HIDAM or HDAM database. If specified, cyls must be a decimal integer
whose value does not exceed 255. Typical values are from 0 to 5. The default value is 3. If SCAN=0 is
specified, only the current cylinder is scanned for space.

Scanning is performed in both directions from the current cylinder position. If a scan limit value
causes scanning to include an area outside of the current extent, IMS adjusts the scan limits so that
scanning does not exceed current extent boundaries. If space cannot be found for segment insertion
within the cylinder bounds defined by this parameter, space is used at the current end of the data set
group for the database.

FRSPC=
Specifies how free space is to be distributed in an HDAM or HIDAM database. The free block
frequency factor (fbff) specifies that every nth control interval or block in this data set group is left
as free space during database load or reorganization (where fbff=n). The range of fbff includes all
integer values from 0 to 100 except fbff=1. The fspf is the free space percentage factor. It specifies
the minimum percentage of each control interval or block that is to be left as free space in this data
set group. The range of fspf is from 0 to 99. The default value for fbff and fspf is 0. If the total of
the percentage of free space specified and any segment size exceeds the control interval or block
size, a warning message that flags oversized segments is issued by DBDGEN. When loading oversized
segments, the "fspf" specification is ignored and one control interval or block is used to load each
oversized segment.

When you specify the first parameter, FBFF, realize that a smaller value increases the frequency

of free space in the database. A value of 2, for example, would mean that after every piece of

data there would be a free space block. This causes system performance degradation when running
reorganization or load utilities because of the extra processing required for the free space blocks.

SEARCHA=
Specifies the type of HD space search algorithm that IMS uses to insert a segment into an HD
database.

58 IMS: System Utilities

Specifies that IMS chooses which HD space search algorithm to use. This is the default. For this
release, IMS uses the same algorithm it would use if you had specified SEARCHA=2.

1
Specifies that IMS uses the HD space search algorithm that does not search for space in the
second-most desirable block or CI.
2
Specifies that IMS uses the HD space search algorithm that includes a search for space in the
second-most desirable block or CI.
REL=

Defines whether an MSDB is a non-terminal-related (NO or TERM) or a terminal-related (FIXED and
DYNAMIC) MSDB. There is no ownership of segments in non-terminal-related MSDBs.

MSDBs with terminal-related keys are not supported for ETO in IMS V5 or above. Other types of
MSDBs are still supported.

With terminal-related MSDBs, each segment is assigned to a different LTERM. The LTERM name is the
segment key but is not contained in the segment. Each LTERM owns no more than one segment per
MSDB, and only the owner can alter a segment.

NO
Specifies a non-terminal-related MSDB without terminal-related keys. The key and the sequence
field are part of the segment.

TERM
Specifies a non-terminal-related MSDB with terminal-related keys. The key is the LTERM name
(not part of the segment) and there is no sequence field.

FIXED
Specifies a terminal-related fixed MSDB. The LTERM name is the segment key. Segment updates
are allowed. Segment insertions and deletions are not allowed.

DYNAMIC
Specifies a terminal-related dynamic MSDB. The LTERM name is the segment key. Segments can
be inserted and deleted. No more than one insertion or deletion can be made to the same MSDB
from a single LTERM within one sync processing interval.

search field name
Specifies a 1- to 8-character alphanumeric name. The name must not be the same as any other
field name defined in a FIELD statement.

Because a sequence field cannot be defined for an MSDB using an LTERM name as a segment

key (REL=TERM, FIXED, or DYNAMIC), a search field name is provided to allow qualified calls. The
only valid value in an SSA is an LTERM name. Therefore, the search field is treated as an 8-byte
character field and no further definition is provided.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS="'These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

Chapter 2. Database Description (DBD) Generation utility 59

« Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

Data sets in IMS data set groups

The DD statements for non-HALDB data sets in each IMS database must be provided with each job that
accesses the database. For databases used by message or batch message processing programs, you must
include DD statements in the JCL for the IMS control region. For databases used exclusively in the batch
processing environment, you must include DD statements in the JCL for the batch processing region. In a
z/OS online environment, databases can be dynamically allocated.

DD statements are not required for HALDB data sets, because they are dynamically allocated.

DD statements required for VSAM

When the operating system access method for a database is VSAM, one DD statement is required for each
KSDS and one for each ESDS. The parameters required on the DD statements have the following format:

//DDname DD DISP=SHR, DSNAME=

UNIT=, VOLSER=, and SPACE= parameters are not required because all VSAM data sets are cataloged.

For a HISAM database, two DD statements are required: one for the KSDS and one for the ESDS. If the
HISAM database has only one segment type defined, only the KSDS DD statement is required.

For an HDAM or HIDAM database, one DD statement is required for each data set group. For the primary
index of a HIDAM database one DD statement is required for the KSDS.

For secondary index databases with unique keys one DD statement is required for the KSDS.

For secondary index databases with nonunique keys, two DD statements are required; one for the KSDS
and one for the ESDS. Note that secondary index databases with nonunique keys are not supported for
HALDB. In addition to the DD statements defining VSAM data sets, a DD statement specifying a data
set containing parameters defining the IMS VSAM buffer pool must be provided for batch regions. The
DDNAME for this DD statement is DFSVSAMP. For online IMS execution, this information is provided in a
member of the IMS.PROCLIB data set with member name DFSVSMxx.

DD statements required for OSAM

For HSAM or SHSAM, you must provide a DD statement for either input or output in the following format:

//DDname DD DSNAME= ,UNIT= ,VOL=SER=
/! DISP= ,DCB=

Where the DD statement is for an HSAM or SHSAM output data set, the data set must be preallocated, or
the SPACE= parameter must be present when a direct-access storage device is used.
RECFM=FB is optional, but if used, must be specified at load time. RECFM=F must not be specified.

For an OSAM data set, the LRECL, BLKSIZE, and BUFL subparameters of the DCB parameter should be
omitted. This information is obtained from the DBD and cannot be overridden.

For HDAM or HIDAM, a DD statement is required for the OSAM data set of each data set group. The format
is as follows:

//dd1 DD DSNAME= ,UNIT= , VOL=SER= 0
// DISP= ,DCB=(DSORG=PS[,0PTCD=W])

60 IMS: System Utilities

When the HDAM or HIDAM database is being created, the OSAM data set must be preallocated, or the
SPACE= parameter must be present.

If a model DSCB is to be used to describe a generation data set, the LRECL, RECFM, and BLKSIZE
parameters must be omitted from the model DSCB. This information is obtained from the DBD and cannot
be overridden.

AREA statement

DEDB databases use an AREA statement to define an area within a database.

In the DBDGEN input deck for a DEDB, all AREA statements must be placed between the DBD statement
and the first SEGM statement. At least one AREA statement is required, but as many as 2048 AREA
statements can be used to define multiple areas.

Restriction: AREA statements are not allowed for HALDB databases. Partitions are defined outside
DBDGEN.

1
»— AREA — DD1=ddname! — ,SIZE=size1 — ,UOW=(number1 ,overflow1) —»

»— ,ROO0T=(number2 ,overflow?2) »<

L ,REMARKS= comments J A

Notes:

1 The valid parameter specifications for a DEDB SIZE keyword are 512 bytes, 1 KB, 2 KB, 4 KB, 8 KB,
and multiples of 4 KB up to 28 KB. To ensure future compatibility, use only CI sizes that are multiples
of 4 KB.

AREA statement parameter description

AREA
Identifies this statement as a DEDB AREA control statement.

DD1=
Specifies the ddname of the defined area. ddnamel must be a 1- to 8-character alphanumeric (A-Z,
0-9, #, @, $) name. This parameter can be an area name or a ddname for single area data sets but can
only be an area name for multiple area data sets. If the database is registered in DBRC, this parameter
should specify the area name.

DEVICE=
Specifies the physical storage device type on which the data set in this area is stored. The default is
3380. If you code any other device, it will be ignored.

SIZE=
Specifies the control interval. Size can be 512 bytes, 1 KB, 2 KB, 4 KB, and 8 KB and multiples of

4 KB up to 28 KB. For future compatibility, only CI sizes that are multiples of 4 KB should be used. No
default value is allowed.

Restriction: 4 KB cannot be specified with a 2319 device.

For DEDBs, the DBDGEN SIZE= must match the control interval size defined to VSAM, because IMS
uses this value in accessing the data set. If the control interval size is changed in the VSAM data set,
the DBD for that area must be changed to the new SIZE= value.

uows=
Specifies the number of control intervals in a unit of work (UOW). The UOW= parameter has two
operands, numberl and overflow1.

Chapter 2. Database Description (DBD) Generation utility 61

numberl

Specifies the number of control intervals in a unit of work (UOW). Its value must be from 2 to
32767.

overflowl
Specifies the number of control intervals in the overflow section of a UOW. Overflowl can be any
value greater than or equal to one but at least one less than the specified value for numberl.

The total number of root anchor points (RAPs) within one UOW is given by numberl minus overflowl.
Multiply the number of RAPs in one UOW by the number of UOWSs in the root addressable part to find
the total number of RAPs within an area.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS="'These remarks apply to the XYZ application’

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

ROOT=
Specifies characteristics of a DEDB area. The ROOT= parameter has two operands, number2 and
overflow2.

number2
Specifies the total space allocated to the root addressable part of the area and to the area
reserved for independent overflow. It is expressed in UOWs. The rest of the VSAM data set is
reserved for sequential dependent data. The value must be greater than 2 and less than 32767; it
cannot be larger than the amount of space actually in the VSAM data set.

overflow2
Specifies the space reserved for independent overflow in terms of UOWSs. It must be at least one
and must be less than the value specified for number2. Although independent overflow does not
contain UOWSs, the UOW size is used as the unit for space allocation.

The reorganization UOW is automatically allocated by the DEDB Initialization utility. VSAM space
definition should include this additional UOW. That is, the total space required is the root
addressable area, the independent overflow, and one additional UOW for reorganization. The
reorganization UOW is not used by the High-Speed DEDB Direct Reorganization utility, but may be
used by other functions of IMS.

Example: This example allocates 2048*64*936 bytes and leaves the rest of the area for
sequential dependent segments.

AREA DD1=XX,SIZE=2048,
uow=(64,14),
ROOT=(936,36)

62 IMS: System Utilities

Because there is only one root anchor point (RAP) per control interval, the total number of RAPs
within the area is given by: (64-14)*(936-36) = 45000 RAPs.

The amount of space allocated for independent overflow by DBDGEN can be increased while IMS is
online.

SEGM statements

The SEGM statement defines a segment type, the segment's position in a database hierarchy, the physical
characteristics of the segment, and how the segment is to be related to other segments.

Except for GSAM databases, at least one SEGM statement must immediately follow each DATASET
statement; the segment that is defined by the SEGM statement is placed in the data set group that is
defined by the DATASET statement. Except for MSDBs and DEDBs, a maximum of 255 SEGM statements
are allowed in a DBD generation. For an MSDB, only one SEGM statement can be specified. For a DEDB,
at least one and up to 127 SEGM statements must immediately follow the last AREA statement; no other
SEGM statements can be provided in the DBD generation. SEGM statements must be placed in the input
file in hierarchic sequence, and a maximum of 15 hierarchic levels can be defined.

For a GSAM database, you can specify one SEGM statement in the DBD generation. The SEGM statement
defines a virtual segment that you can use to define non-searchable fields that would otherwise be
mapped only in a COBOL copybook. The resulting field metadata is stored in the IMS catalog for use by
application programs and products that access the GSAM database through the IMS Universal drivers.

The SEGM statement is used with FIELD, XDFLD, and LCHILD statements to totally define a segment to
IMS. The FIELD statement defines fields within segments, the XDFLD statement defines fields used for
secondary indexing, and the LCHILD statement defines index or logical relationships between segments.

The format of the SEGM statement for each database type is shown in the following examples.

DEDB database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 63

»— SEGM — NAME=segname1

L ,EXTERNALNAME= external_name J

,SNGL
77,

»— ,PARENT= T ((segname2

0

| T

»
»

>

»— ,BYTES= T max bytes
(max bytes ,min bytes)

A 4

Sl ral

L FIRST

A 4

n—
L HERE J L ,SSPTR= J
,RULES=(, J_ LAST T) 3
J

LEx1T=4 (I

NONE
]

ol

A 4

»
»

5
L ,COMPRTN= — (— routinename

U

JNIT

~— DATA

L JNIT J J

Y

L Cp1047
,ENCODING= —E encoding

A
,NOLOG
exitname J_ T
,LOG
N
L ,NOLOG J
B

lJ L ,REMARKS= comments J B

L’Loe_j [B— D— E-»«

JKEY ,NOPATH ,DATA
L [A
L /NOK

EY J L ,PATH —j

c

64 IMS: System Utilities

L

,NODATA J A

v

— ,CASCADE —

D

,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)

LC ,BEFORE D_J E ,DLET D_J
,NOBEFORE ,NODLET

[

,NOSSPCMD ,NOINPOS ,NOFLD
[[S U

>

L ,SSPCMD —j L LINPOS —J L ,FLD —J h

Notes:

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

2TYPE=SEQ is required on SEGM statements for the sequential dependent type.

3 Required when a segment type does not have a unique sequence field. HERE is the default. When
using Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden. For DEDB direct dependent segment processing, HERE is the default.

4 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.

5 Used for Segment Edit/Compression exit routine.

6 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG. If you specify an exit routine name, the
default logging parameter is NOLOG.

7 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

GSAM database SEGM statement

,PARENT=0
»— SEGM — EXTERNALNAME= external name 1 j_ T >

L E Cpl1047 lJ L ,REMARKS= comments J
,ENCODING= encoding

Notes:

1 NAME= is invalid for GSAM. EXTERNALNAME is required.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

HDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 65

»— SEGM — NAME=seg 1

L ,EXTERNALNAME= external_name —J

,PARENT=0

-
t JPARENT= — ((—

DATA
,SOURCE=((segname, J— j b

,d)} >
L ,FREQ= frequency —J

2
— T
,BYTES=

[T
. L ,DBLE —J

JVIRTUAL

-
L

,PHYSICAL

L

max bytes
L (maxbytes ,min bytes)

L ,dbname1 —J

,POINTER=

,PTR= —I

— HIER /) [— ,— LTWIN j I_ JLPARNT 1 j
(,

HIERBWD L 3 J
,LTWINBWD

TWIN
TWINBWD
NOTWIN

[

1
,RULES= " (LLL,LAST)

L,RULES= r (

LLL
[

,LAST

LEx1T=5—([

NONE
e

[

£,

1 J 1 E
£ Ej b Do

Ll

L I—,DATA j
LCOMPRTN= 2 (— routi JKEY

J

R

t JENCODING=

H

Cp1047 j—J L ,REMARKS= comments —J
encoding

A

,NOLOG

exitname 7 J_ IE—@-N
L ,LOG —j
,LOG

S

L ,NOLOG —J
B

66 IMS: System Utilities

,KEY ,NOPATH ,DATA
bl [R

- L NOKEY J

o

L
,CASCADE
ol 1 s

PATH —j L,NODATA J -

’

D

>
,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)

E ,NOINPOS 3
LINPOS

Notes:

1 Optional for HDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

3 Required for HDAM logical relationships; otherwise, it is optional.

4 Required when a segment type does not have a unique sequence field. LAST is the default.

5 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.

6 Used for Segment Edit/Compression exit routine.

7 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.

8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

HIDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 67

»— SEGM — NAME-=seg 1

L ,EXTERNALNAME= exfernal name J

>

,PARENT=0

,SNGL

t ,PARENT= — ((— 2

[T
i L ,DBLE —J

)

L [— ,VIRTUAL j LJ
,(Ipsegname.)
L —J L ,dbname1 —J

,PHYSICAL

DATA
SOURCE=((segname, f— j ,at

2
— T , =
,BYTES= max bytes
L (max bytes ,min bytes)

)]

L ,FREQ= frequency —J -

1
HIER LTWIN ,LPARNT
,POINTER=
JPTR= _J HIERBWD LTWINBWD L ,CTR J L ,PAIRED —J
TWINBWD
NOTWIN
1
I ,RULES= " (LLL,LAST) 1

4
LLL ,LAST J
L ,RULES= 1— (I 1 1)

T

A\ 4

NONE
P i

el

L ,COMPRTN= 6

J— ,DATA j
,KEY

J

(routii

L e J L,_mﬁ_J

t E Cp1047 j—J L ,REMARKS= comments J
,ENCODING= encoding

,NOLOG
exitname J_ T @—@N

L LOG7—J

68 IMS: System Utilities

,KEY ,NOPATH ,DATA
bl [R

- L NOKEY J

o

L
,CASCADE
ol 1 s

,PATH —j L,NODATA J -

’

D

>
,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)

E ,NOINPOS 3
LINPOS

Notes:

1 Optional for HIDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

3 Required for HIDAM logical relationships; otherwise, it is optional.

4 Required when a segment type does not have a unique sequence field. LAST is the default. When
using Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden.

5 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.

6 Used for Segment Edit/Compression exit routine.

7 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.

8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

HISAM/SHISAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 69

»
»

»— SEGM — NAME=segname1
L ,EXTERNALNAME= external name —J

,PARENT=0

,PARENT= — (— segnameZ2)
,VIRTUAL
L J | J
(lpsegname. L J ,dbname1)
,PHYSICAL

A\ 4

(—’H

L,
J

DATA
2
— ,SOURCE=((segname, f_ j ,dbname)) L _J »
1 ,FREQ= frequency

,BYTES= max bytes

(max bytes ,min bytes)

A 4
v

r ,LPARNT
,POINTER= ()
JPTR= L ,CTR J L ,PAIRED J
1
,RULES= " (LLL,LAST)
- L,
LLL LAST 3
,RULES= 1_ (J 1 f_ T)
L L L I t,FIRST j
P P P ,HERE
\" \' \'}
B

>
»

~
v

ﬁ NONE ﬁ
LEXIT= 2 AC

<

{(A)]@

v

A 4

,DATA
5 , [6
,COMPRTN= —— (— routinename ,KEY)

R S

]

A 4

Cpl1047 L ,REMARKS= comments J

,ENCODING= Iencoding

70 IMS: System Utilities

>
>

,NOLOG
exitname 7 J_ T IE—@-N
,LOG —j

—

-

@

,LO
L
,NOLOG J

L
f_ ,KEY j I_ ,NOPATH T f_ ,DATA j g

(g

¥

L NOKEY J ,PATH —j L,NODATA J A

L
I_ ,CASCADE j g

D

>4
,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)

,NOINPOS

,INPOS

Notes:

1 Required for HISAM logical relationships; otherwise, it is optional.

2 The PARENT=keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

3 Required when a segment type does not have a unique sequence field. LAST is the default.

4 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.

5 Used for Segment Edit/Compression exit routine.

6 variable-length segments and segment edit/compression cannot be specified for a simple HISAM
database.

7 1f an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.

8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

HSAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 71

»— SEGM — NAME=segname1

»
»

L ,EXTERNALNAME= external_name J

0
1
»— ,PARENT= —TsagnameZ1 ,BYTES= maxbytes —»
L Cp1047 lJ L ,FREQ= frequency —J
,ENCODING= —E encoding

] L ,REMARKS= comments J A

Notes:

Y

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

INDEX database SEGM statement

»
>

»— SEGM — NAME=segname1 L J L J
,EXTERNALNAME= external name ,PARENT=0

»— ,BYTES= max bytes
L ,FREQ= frequency J L

»
»

f_ HERE T J
1
,RULES= LAST
L FIRST —J

L Cp1047 lJ L ,REMARKS= comments J
,ENCODING= —E encoding

Notes:

1 Required when a segment type does not have a unique sequence field. HERE is the default. When
using Fast Path sequential dependent segment processing, the insert rule of FIRST is always used and
cannot be overridden. For DEDB direct dependent segment processing, HERE is the default.

LOGICAL database SEGM statement

»— SEGM — NAME= segname?

I

L ,EXTERNALNAME= external name —J

1
> —
L _r ° i_J
,PARENT= segname2

DATA
»— ,SOURCE= — (— (segname, —E KEY l ,dbname), — ()—)—»
DATA J
gl _, I— KEY T , — dbname 2

L E Cpl047 j—J L ,REMARKS= comments J
,ENCODING= encoding

Notes:

72 IMS: System Utilities

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

2 Required when defining a concatenated segment type.

MSDB database SEGM statement

»— SEGM — NAME=segname1

L J ,BYTES= maxbytes —»
,EXTERNALNAME= external name

L Cp1047 lJ L ,REMARKS= comments J
,ENCODING= —E encoding

PHDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 73

»— SEGM — NAME= 17 >
L ,EXTERNALNAME= external_name —J

,PARENT=0

I_ ,SNGL
— ,PARENT= — ((— 2

e
,DBLE L(

N\ PSEY

I_ JVIRTUAL j
L J

,PHYSICAL

>—2— ,BYTES= T max bytes L J >
(max bytes ,min bytes) J ,FREQ= frequency

1
,LPARNT
LD,POINTER= TWIN 8 J— j
,PTR= —J TWINBWD L ,PAIRED —J

NOTWIN

1
I JRULES= " (LLL,LAST)

L,RULES=1_(Il H II [—,LAST“j)J
CTET T el
Ep— I

[EQ]]

—c —

— D —
M E—
— F —
— ¢ —
M H—

—1—

N

NONE
Le ™]

(A)

,DATA
L,COMPRTN= 6— (routir I— SKEY 7)*J
Caer S L'_mﬁ_J
,PAD

L Cp1047]—J L ,REMARKS= comments J
,ENCODING= —E encoding

74 IMS: System Utilities

¥

L
I_ ,CASCADE j g

>4
,NOCASCADE
,(CASCADE B)
,(NOCASCADE B)

,NOINPOS

,INPOS

Notes:

1 Optional for PHDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

3 Required for PHDAM logical relationships; otherwise, it is optional.

4 Required when a segment type does not have a unique sequence field. LAST is the default.

5 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.

6 Used for Segment Edit/Compression exit routine.

7 1f an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.

8 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will

be set to NOxxxx.

PHIDAM database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 75

»— SEGM — NAME= 1

L ,EXTERNALNAME= external_name —J

,PARENT=0

— PARENT= — ((—

2

,SNGL

2
»— — ,BYTES= T max bytes

(max bytes ,min bytes)

Y

[~/
L ome J L

J_ JVIRTUAL

(Jpseg

-

L ,PHYSICAL

_J L ,FREQ= frequency —J -

TWINBWD

,POINTER=
,PTR= _J_ E NOTWIN j
TWIN 3

1
LLPARNT
a [1

-

1
,RULES= " (LLL,LAST)

L ,PAIRED —J

LLL

[

L ,RULES= r (

JLasT® J
)

1 Ilg }
b b e

L ,DSGROUP — =(

-

(A)

J

7
L ,COMPRTN= —— (,

J— ,DATA T
SKEY

J

i

L ,ENCODING= —E

76 IMS: System Utilities

encoding

Cp1047]_J L ,REMARKS= comments —J

,NOLOG
exitname 8 J_ T IE—@-N
L ,LOG —j

,LOG
|
,NOLOG J

L
f_ ,KEY j I_ ,NOPATH T f_ ,DATA j g

- L NOKEY J L ,PATH —j L ,NODATA J A

c

¥

,CASCADE
[1

D

»<

LKEY

M ,(NOCASCADE B) —

“— ,(NOCASCADE B) —

E ,NOINPOS 3
LINPOS

Notes:

1 Optional for PHIDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

3 TWIN is not allowed for the root segment.

4 Required for PHIDAM logical relationships; otherwise, it is optional.

5 Required when a segment type does not have a unique sequence field. LAST is the default.

6 Used for the Data Capture exit routine. You can specify more than one exit routine on a SEGM
statement.

7 Used for Segment Edit/Compression exit routine.

8 If an exit routine name is not required because only logging is requested, specify the exit name as an
asterisk (*). The default logging parameter in this case is LOG.

9 Used to control the CASCADE options. If any (CASCADE B) suboptions are specified with
NOCASCADE in an EXIT= parameter, they will be ignored, and the value for those suboptions will
be set to NOxxxx.

PSINDEX database SEGM statement

Chapter 2. Database Description (DBD) Generation utility 77

»— SEGM — NAME=segname1

»
»

,EXTERNALNAME= external_name J L ,PARENT=0 J

»— ,BYTES= max bytes >
L ,FREQ= frequency J L E Cp1047 lJ
,ENCODING= encoding

»d

] L ,REMARKS= comments J A

SHSAM database SEGM statement

1
J_ ,PARENT=0 T
»— SEGM — NAME=segname1

L ,EXTERNALNAME= external_name J

L E Cp1047 lJ L ,FREQ= frequency J
,ENCODING= encoding

»d

] L ,REMARKS= comments J A

Notes:

»
»

»— ,BYTES= max bytes

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for the root segment type of a
database.

SEGM statement parameter description

For the SEGM statement, you can use the following abbreviations in place of keywords specified in the
macro definitions:

Table 5. Keyword abbreviations

Keyword Abbreviation

POINTER PTR

FIRST

LAST

HERE

KEY

DATA

VIRTUAL

T <|O|X|ZIT|— | ™M

PHYSICAL

SEGM
Identifies this statement as a segment definition statement.

78 IMS: System Utilities

NAME=
Specifies the name of the segment type being defined.

The specified name is used by DL/I and application programs in all references to this segment.
Duplicate segment names are not allowed within a DBD generation. The segnamel parameter must
be a 1- to 8-character alphanumeric value. Each character must be in the range of A through Z, or 0
through 9, or be the character $, #, or @.

Restriction: The first character of the name cannot be numeric.
GSAM databases do not support the NAME= parameter on the SEGM statement.

PARENT=
Specifies the names of the physical and logical parents of the segment type being defined, if any.

0
For root segment types, the PARENT= keyword must be omitted or PARENT=0 specified.

segname2
For dependent segment types, specifies the name of this segment's physical parent.

SNGL | DBLE
Specifies the type of physical child pointers to be placed in all occurrences of the physical parent
of the segment type being defined. SNGL and DBLE can be specified only for segments in PHDAM,
PHIDAM, HDAM, HIDAM, or DEDB databases and are ignored if the physical parent specifies
hierarchic pointers (PTR=HIER or HIERBWD).

SNGL causes a 4-byte physical child first pointer to be placed in all occurrences of the physical
parent of the segment type being defined. SNGL is the default.

DBLE causes a 4-byte physical child first pointer and a 4-byte child last pointer to be placed in all
occurrences of the physical parent of the segment type being defined.

Ipsegname
Specifies the name of the logical parent of the segment type being defined, if any. This operand is
used only during DBDGEN of a physical database, and it must be specified on SEGM statements
that define logical child segment types.

VIRTUAL | PHYSICAL
Specifies whether the concatenated key of the logical parent (LPCK) is stored as a part of the
logical child segment. Specify the parameter only for logical child segments. If PHYSICAL is
specified, the LPCK is stored with each logical child segment. If VIRTUAL is specified, the LPCK is
not stored in the logical child segment. PHYSICAL must be specified for a logical child segment
whose logical parent is in a HISAM database. It must be specified also for a logical child segment
that is sequenced on its physical twin chain through use of any part of the concatenated key of the
logical parent.

- PHDAM and PHIDAM

— PHYSICAL is the default for PHDAM and PHIDAM.

— If VIRTUAL is specified for PHDAM or PHIDAM, it is ignored, and PHYSICAL is used.
« HDAM and HIDAM

— VIRTUAL is the default for HDAM and HIDAM.

— Symbolic pointers in HDAM and HIDAM databases use the LPCK and require the PHYSICAL
specification.
dbnamel
Specifies the name of the database in which the logical parent is defined. If the logical parent is in
the same database as the logical child, dbnamel can be omitted.
BYTES=

Specifies the length of the data portion of a segment type in bytes using unsigned decimal
integers. This parameter is required. For segments that are logical children, this length includes the

Chapter 2. Database Description (DBD) Generation utility 79

concatenated key of the logical parent when either VIRTUAL or PHYSICAL is specified or defaulted to
in the PARENT parameter.

maxbytes and minbytes in fixed-length segments
For fixed-length segments, the maxbytes parameter specifies the amount of storage used for
the data portion of the segment. The minbytes parameter cannot be specified for a fixed-length
segment, including a fixed-length compressed segment. The maximum length specified for a
segment type must not exceed the maximum record length of the storage device used minus any
prefix or record overhead.

For VSAM, the maximum record length is 30713 bytes; for tape, the maximum is 32760 bytes.
The minimum length that can be specified for maxbytes must be large enough to contain all fields
defined for the segment type. If the segment is a logical child segment type, the length must be
sufficient to contain the concatenated key of the logical parent.

For an MSDB, the maxbytes value specifies the length of the data portion of a fixed-length
segment not to exceed 32000 bytes. The value specified must be a multiple of 4.

maxbytes and minbytes in variable-length segments
Defines a segment type as variable-length if the minbytes parameter is included. The maxbytes
field specifies the maximum length of any occurrence of this segment type. The maximum and
minimum allowable values for the maxbytes parameter are the same values as described for a
fixed-length segment.

If the segment is processed by a compression routine, set the maxbytes field to accommodate
control information to indicate whether the segment length can be longer than the specified
maximum definition in order to avoid an abend 0799. To allow for the expansion, add an arbitrary
value of 10 bytes to the maxbytes.

The minbytes parameter specifies the minimum amount of storage used by a variable-length
segment. The maximum value for minbytes is the value specified for maxbytes. The minimum
value for minbytes must be:

» For a segment type that is not processed by an edit/compression routine or is processed by an
edit/compression routine but the key compression option has not been specified, minbytes must
be large enough to contain the complete sequence field if a sequence field has been specified
for the segment type.

» For a segment type that is processed by an edit/compression routine that includes the key
compression option or a segment that is not sequenced, the minimum value is 4.

Because segments in an HSAM, SHSAM, or SHISAM database cannot be variable-length, the
minbytes parameter is invalid for these databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines the length of the segment
including the 2-byte length field, followed by user data specified by a FIELD statement. The value
of minbytes can be specified from a minimum of 4 bytes to a maximum of maxbytes; however, the
minbytes value must be large enough to contain this segment's sequence field (that is, minbytes

> START - 1 + BYTES of the sequence field following the SEGM statement). For example, the
smallest minbytes value for a segment with a 20-byte sequence field length and START =7 is
26.0n any given DL/I call, the actual segment length can fall anywhere between a length that
includes the sequence field and the value of maxbytes. The value of maxbytes must not exceed the
control interval size minus 120.

TYPE=
Describes the type of DEDB dependent segment. Must not be specified for root segments.

SEQ
Specifies that the segment is a sequential dependent segment type. Only one sequential
dependent segment is permitted per DEDB, and, if specified, it must be the first dependent
segment type.

DIR
Specifies that the segment is direct dependent segment type. DIR is the default.

80 IMS: System Utilities

FREQ=
Specifies the estimated number of times that this segment is likely to occur for each occurrence of
its physical parent. Value must be a whole, unsigned decimal number from 1 to 16777215. If this
segment is a root segment, "frequency" is the estimate of the maximum number of database records
that appear in the database that is being defined. The value of the FREQ= parameter when applied to
dependent segments is used to determine the logical record length and physical storage block sizes
for each data set group of the database.

The IF0110 ARITHMETIC OVERFLOW or IEV103 MULTIPLICATION OVERFLOW assembler error
message can occur when the DBDGEN utility is attempting to calculate a recommended logical record
length. If this error occurs during an HSAM, SHSAM, or HISAM DBD generation, you might want to
determine the logical record length and physical block size.

FREQ=is not valid for segments in Fast Path DEDB or MSDB databases.

INPOS|NOINPOS
An optional parameter to capture next twin data on an ISRT. The default is NOINPOS. The twin data of
the twin following an inserted segment is captured if INPOS is specified and the following conditions
are true:

« An ISRT of a non-unique segment is made.
« An ISRT rule of HERE is used.

If the new segment is the only twin instance or last in the twin chain, no twin data exists.

POINTER=
Specifies the pointer fields to be reserved in the prefix area of occurrences of the segment type that is
being defined. These fields are used to relate this segment to its immediate parent segments and twin
segments.

The use of the POINTER= parameter is primarily for HDAM, HIDAM, PHDAM, and PHIDAM databases.
In addition, it can be used for segment types that are defined in HISAM databases that participate in
logical relationships with segment types in HDAM or HIDAM databases.

Important: If a segment type is being defined in an HSAM or SHSAM database, the POINTER=
parameter must be omitted. If the segment type that is being defined is in a HISAM database and
does not participate in a logical relationship, omit the POINTER= parameter.

The following list describes some general attributes of the keyword options:

« Selected keyword options can be specified in any order, and must be separated by commas.
- A keyword option can be specified only once.

« All keywords are optional.

« One keyword option can be selected from each line.

- A keyword option or its abbreviation can be selected:

Table 6. POINTER= keywords and abbreviations

Keyword option Abbreviation
HIER H

HIERBWD HB

TWIN T

TWINBWD TB

NOTWIN NT

LTWIN LT
LTWINBWD LTB

Chapter 2. Database Description (DBD) Generation utility 81

Table 6. POINTER= keywords and abbreviations (continued)

Keyword option Abbreviation
PAIRED

LPARNT LP

CTR C

The keyword options of the POINTER= parameter have the following meanings:

HIER [H]
Reserves a 4-byte hierarchic forward pointer field in the prefix of occurrences of the segment type
being defined. HALDB does not support HIER.

HIERBWD [HB]
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic backward pointer field
in the prefix of occurrences of the segment type being defined. Hierarchic backward pointers
provide increased delete performance. HALDB does not support HIERBWD.

TWIN [T]
Reserves a 4-byte physical twin forward pointer field in the segment prefix being defined.

TWINBWD [TB]
Reserves a 4-byte physical twin forward pointer field and a 4-byte physical twin backward pointer
field in the segment prefix being defined. The twin backward pointers provide increased delete
performance.

Recommendation: This option is recommended for HIDAM and PHIDAM database root segments.

NOTWIN [NT]
Prevents space from being reserved for a physical twin forward pointer in the prefix of occurrences
of the segment type being defined.

NOTWIN can be specified for a dependent segment type if:

» The physical parent does not have hierarchic pointers specified.

« No more than one occurrence of the dependent segment type is stored as a physical child of any
occurrence of the physical parent segment type.

In addition, NOTWIN can be specified for the root segment type of HDAM and PHIDAM databases,
but only when the randomizing module does not produce synonyms (keys with different values
having the same block and anchor point).

When NOTWIN is specified for a dependent segment type and an attempt is made to load or insert
a second occurrence of the dependent segment as a physical child of a given physical parent
segment:

« An LB status code is returned when trying to insert the second occurrence during initial load.
- An II status code is returned when trying to insert the second occurrence after initial load.

Any attempt to load or insert a synonym is rejected with an LB or II status code.

LTWIN [LT]
Is used for virtually paired logical relationships only when defining a real logical child. Reserves a
4-byte logical twin forward pointer field in the prefix of occurrences of the logical child segment
type being defined. This parameter can only be specified if the segment type being defined is
a logical child and is being defined in an HDAM or HIDAM database. If PAIRED is specified, the
LTWIN parameter is invalid. HALDB does not support LTWIN.

LTWINBWD [LTB]
Is used for virtually paired logical relationships only when defining a real logical child. Reserves a
4-hyte logical twin forward pointer field and a 4-byte logical twin backward field in the prefix of
occurrences of the logical child segment type being defined. This parameter can only be specified

82 IMS: System Utilities

if the segment being defined is a logical child and is being defined in an HDAM or HIDAM database.
If PAIRED is specified, the LTWIN parameter is invalid. HALDB does not support LTWINBWD.

The use of LTWINBWD rather than LTWIN provides increased performance when deleting logical
child segments.

LPARNT [LP]
This parameter can be specified only when the segment type that is being defined is a logical child
and the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database. If the logical parent
is in a HISAM database, omit this parameter and specify PHYSICAL in the PARENT= parameter for
the segment that is being defined.

For HDAM, HIDAM, and HISAM databases, LPARNT reserves a 4-byte logical parent pointer field in
the prefix of occurrences of the segment type being defined.

For PHDAM and PHIDAM databases, LPARNT reserves a 28-byte extended pointer set in the prefix
of occurrences of the segment type being defined.

CTR[C]
Reserves a 4-byte counter field in the prefix of occurrences of the segment type being defined. A
counter is required if a logical parent segment in a HISAM, HDAM, or HIDAM database has logical
child segments which are not connected to it by logical child pointers. Counters are placed in all
segments requiring them automatically during DBD generation without the user specifying this
parameter. To avoid a later DBD generation, however, the user can anticipate future requirements
for counters and reserve a counter field in the prefix of occurrences of a segment type by using
this parameter. HALDB does not support CTR.

PAIRED
Indicates that this segment participates in a bidirectional logical relationship. This parameter is
specified for the following types:
« Avirtual logical child segment type

« Both physically paired logical child segment types in a bidirectional logical relationship
If PAIRED is specified, the LTWIN and LTWINBWD parameters are invalid.

POINTER= Parameter Default Values
The default option for the POINTER= parameter in any HIDAM or HDAM DBD is:

PTR=(TWIN,LTWIN, LPARNT)

LTWIN
Is a default if the name of a logical parent (Ipsegname) is specified, in the PARENT= parameter of
a SEGM statement.

LPARNT
Is a default if VIRTUAL is selected in the PARENT= parameter of a SEGM statement.

The default option for the POINTER= parameter in an INDEX, HISAM, HSAM, or SHSAM DBD is no
pointer fields.

If the POINTER= parameter is explicitly stated on a SEGM statement, the segment contains the
pointers specified and any pointers that are required by IMS for correct operation. For example,
LTWIN and LPARNT pointers are created as required. The default values are only used when

the parameter is omitted entirely. The following table illustrates use of the POINTER= parameter
parameters for various types of DBD generations.

Chapter 2. Database Description (DBD) Generation utility 83

Table 7. Use of POINTER= parameters (no logical relationship)

Segment definition

Physical segments contained in database type

Purpose Keyword
parameter

Logical segments
GSAM MSDB
DEDB

HSAM
SHSAM
SHISAM

HISAM

HDAM
HIDAM

PHDAM
PHIDAM

INDEX
PSINDEX

Pointer to next HIER
segment in
hierarchy

INVALID

VALID

IGN

VALID

IGN

IGN

Pointer to next and HIERBWD
previous segments
in hierarchy

INVALID

INVALID

IGN

VALID

IGN

IGN

Pointer to next TWIN
occurrence of
physical twins

INVALID

INVALID

IGN

VALID

VALID

IGN

Pointer to next TWINBWD
and previous

occurrence of

physical twins

INVALID

INVALID

IGN

VALID

VALID

IGN

Counter field in CTR
prefix

INVALID

INVALID

VALID

VALID

IGN

IGN

Pointer to next LTWIN
occurrence of
logical twin

INVALID

INVALID

IGN

VALID?

IGN

IGN

Pointer to next LTWINBWD
and previous

occurrence of

logical twins

INVALID

INVALID

IGN

VALID?

IGN

IGN

Pointer to logical ~ LPARNT
parent segment

INVALID

INVALID

VALID?

VALID3

VALID3

IGN

Logical PAIRED
relationship

between HS-HS or

HS-HD or HD-HD

INVALID

INVALID

VALID#

VALID®

VALID®

IGN

Key:

« INVALID — This parameter cannot be specified.

« IGN — This parameter can be specified but it is ignored.

« VALID — This parameter is valid and used as indicated in the following notes.

84 IMS: System Utilities

Table 7. Use of POINTER= parameters (no logical relationship) (continued)

Segment definition

Physical segments contained in database type

Purpose Keyword Logical segments HSAM HISAM HDAM PHDAM INDEX
parameter GSAM MSDB SHSAM HIDAM PHIDAM PSINDEX
DEDB SHISAM
Notes:

1. Used when a logical child segment being defined participates in a logical relationship. This should be
specified if the segment exists within HDAM, HIDAM, PHDAM or PHIDAM, and the logical parent relates to
the logical child with direct addresses (logical child pointers).

2. Can be used when a logical child segment is being defined in a HISAM database and the logical parent is
defined in an HDAM, HIDAM, PHDAM, or PHIDAM database.

3. Can be used when a logical child segment is being defined in an HDAM, HIDAM, PHDAM, or PHIDAM
database and the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.

4. Can be used when a logical child segment is being defined in a HISAM database and the logical parent
is defined in a HISAM, HDAM, HIDAM, PHDAM, or PHIDAM database, and the logical relationship is
bidirectional.

5. Used when a bidirectional logical relationship is being defined with two logical child segments, both
physically present or on the SEGM statement for a virtual logical child.

RULES=
Specifies the rules used for insertion, deletion, and replacement of occurrences of the segment type
being defined.

path type values
Specifies the path type that must be used to insert, delete, or replace a segment.

The first column applies to segment insertion, the second column applies to segment deletion,
and the third column applies to segment replacement. Each of the three columns can contain the
same or different characters, but you must select a value from each column for a total of three
values. These parameters are specified for logical child segments and for their physical and logical
parent segments. They should be omitted for all segment types that do not participate in logical
relationships. The values are: P specifies physical, L specifies logical, V specifies virtual, and B
specifies bidirectional virtual.

FIRST | LAST | HERE
Specifies where new occurrences of the segment type defined by this SEGM statement are
inserted into their physical database (establishes the physical twin sequence). This value is used
only when processing segments with no sequence field or with a nonunique sequence field. The
value is ignored when specified for a segment type with a unique sequence field defined.

Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do not apply to the initial
loading of a database and segments are loaded in the sequence presented in load mode. If a
unique sequence field is not defined for the HDAM root on initial load or HD reload, the insert rules
of FIRST, LAST, or HERE determine the sequence in which roots are chained. Thus the reload of an
HDAM or PHDAM database reverses the order of the unsequenced roots when HERE or FIRST is
used.

LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of FIRST is always used
and cannot be overridden. For direct dependent segment processing, you can specify FIRST, LAST,
or HERE. HERE is the default.

Chapter 2. Database Description (DBD) Generation utility 85

FIRST
For segments without a sequence field defined, a new occurrence is inserted before all
existing physical twins. For segments with a nonunique sequence field defined, a new
occurrence is inserted before all existing physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is inserted after all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted after all existing physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted immediately before
the physical twin on which position was established. If a position was not established on a
physical twin of the segment being inserted, the new occurrence is inserted before all existing
physical twins. For segments with a nonunique sequence field defined, a new occurrence is
inserted immediately before the physical twin with the same sequence field value on which
position was established. If a position was not established on a physical twin with the same
sequence field value, the new occurrence is inserted before all physical twins with the same
sequence field value. The insert position is dependent on the position established by the
previous DL/I call.

A command code of L (last) takes precedence over the insert rule specified causing a new
occurrence to be inserted according to the insert rule of LAST, for insert calls issued against a
physical path.

DSGROUP=
Specifies multiple data set groups for PHDAM and PHIDAM databases. The format is DSGROUP=c,
where c is equivalent to the letters A through J. This enables you to divide PHDAM and PHIDAM
databases into a maximum of ten data set groups. The default for every segment is A (single set for
data per partition). If specified on the root segment, it must be DSGROUP=A.

Restriction: Gaps in the A-J sequence are not allowed. For example, if DSGROUP=C is specified on
a SEGM statement, there must also be at least one SEGM statement with DSGROUP=B, and each
HALDB partition will have A, B, and C data sets.

SOURCE=
Is used for two purposes:

 To identify the real logical child segment type that is to be represented by the virtual logical child
segment type that is being defined

- To identify the segment type or types in physical databases that are represented by the segment
type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM databases because they
support only physical pairing.

When defining a virtual logical child the statement is:

r DATA j
»— SOURCE=((segname, ,dbname)) »<

segname
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be used in constructing the
segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical child.

When defining a segment type in a logical database the statement is:

86 IMS: System Utilities

»— SOURCE= —»

DATA DATA
»— (— (— segname —,—E KEYl,— dbname —), — (—segnt:zme,—E KEYl,— dbname —) —) »«

(segname, KEY | DATA,dbname)
The first occurrence refers to the segment in a physical database that is being defined as a logical
segment, or it refers to the logical child segment type in a physical database that is used for the
first portion of a concatenated segment type in this logical database.

segname
Is the name of the segment type in the physical database.

KEY
Specifies that the key portion of the segment specified in segname is to be placed in the key
feedback area. The segment must not be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

DATA
Specifies that the key portion of the segment specified in segname must be placed in the key
feedback area, and the segment must be placed in the user I/O area when a call is issued to
process the logical segment type that represents segname.

dbname
Specifies the name of the physical database that contains segname. The second occurrence of
(segname, KEY|DATA, dbname) refers to the logical or physical parent segment type in a physical
database that is used for the destination parent part of a concatenated segment in this logical
database. The description of each parameter for the second occurrence is the same as described
for the first occurrence.

When the first occurrence of (segname, KEY | DATA, dbname) refers to a virtual logical child, the
second occurrence, if specified, must refer to the real logical child's physical parent.

When the source segments is used to represent a concatenated segment, the KEY and DATA
parameters are used to control which of the two segments (or both) are placed in the user's I/O
area on retrieval calls. If DATA is specified, the segment is placed in the user's I/O area. If KEY

is specified, the segment is not placed in the user's I/0O area, but the sequence field key, if one
exists, is placed in the key feedback area of the PCB. The key of a concatenated segment is the
key of the logical child, either the physical twin sequence field or the logical twin sequence field,
depending on which path the logical child is accessed from. The KEY and DATA parameters apply
to retrieval type calls only.

On insert calls, the user's I/O area must always contain the logical child segment and, unless
the insert rule is physical, the logical parent segment. Even if KEY is specified for a segment,
the database containing that segment must be available to IMS when calls are issued against
the logical database containing the referenced segment. When the first occurrence of the
SOURCE= segment specification references a logical child, the second occurrence referencing
the destination parent for the concatenated segment should also be specified. If not explicitly
specified it is included with the KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their physical definition from
segments previously defined in one or more physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the SOURCE= parameter is
invalid.

SSPTR=
Specifies the number of subset pointers. You can specify from 0 to 8. When you specify 0 or if SSPTR
is not specified, you are not using a subset pointer.

EXIT=
Specifies that the Data Capture exit routine is used. You can specify multiple exit routine names on a
single SEGM statement. You can select different data options for each exit routine. The order you list
the exit routines within the parameter determines the order the exit routines are called.

Chapter 2. Database Description (DBD) Generation utility 87

When specified on the SEGM statement, the EXIT= parameter can either override the specification

on the DBD or limit the parameter to specific segments. The EXIT= parameter applies only to the
particular segments within the physical database specified. However, when applied to logical children
segments, the exit routine must be specified on the real logical child, not the virtual logical child. The
following physical databases are supported by this exit routine:

- HDAM

« HIDAM
« PHDAM
- PHIDAM
« HISAM
« SHISAM
- DEDB

If the exit routine is not specified for a supported database organization or a supported segment type,
DBDGEN fails.

If the job name of a CCTL or ODBM address space is specified on the SUPPDCAPNAME= parameter,
which is in the DATABASE section of the DFSDFxxx member of the IMS PROCLIB data set, the exit
routine is not called for data updates invoked by the specified job, even if a Data Capture exit routine
is specified on the EXIT= parameter.

The EXIT= parameter can also be specified on the DBD statement.

exit_name
Specifies the name of the exit routine that processes the data. This parameter is required. The
name must follow standard naming conventions. A maximum of 8 alphanumeric characters is
allowed. You can specify an asterisk (*) instead of an exit routine name to indicate that you want
logging only. If this is done, the logging parameter default is LOG. If you do specify an exit routine,
the logging parameter is NOLOG.

The following operands are optional.

NONE
Nullifies an exit routine specified on the DBD statement. It must be specified on the SEGM
statement to indicate the DBD exit name does not apply to that specific segment.

EXIT=NONE explicitly nullifies the exit specified on the DBD for virtual logical children.

LOG | NOLOG
Specifies whether data capture control blocks and data are to be written to the IMS system log.

LOG
Requests that the data capture control blocks and data be written to the IMS system log.

For more information, see Asynchronous data propagation (System Programming APIs).
NOLOG
Indicates that no data capture control blocks or data is written to the IMS system log.

KEY | NOKEY
Specifies whether the physical concatenated key is passed to the exit routine.

KEY
Specifies that the exit routine is passed the physical concatenated key. This key identifies the
physical segment updated by the application.

KEY is the default.

NOKEY
Specifies the physical concatenated key is not required for the exit routine.

DATA | NODATA
Specifies whether physical segment data is to be passed to the Data Capture exit routine for
updating.

88 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata

DATA
Passes physical segment data to the Data Capture exit routine for updating. When DATA is
specified and a Segment Edit/Compression exit routine is also being used, the data passed is
expanded data.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. Use NODATA to avoid
the overhead created from saving physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires data from segments in the physical root's hierarchical
path.

NOPATH
Indicates that the exit routine does not require data from segments in the physical root's
hierarchical path. NOPATH is an efficient way to avoid the processing time needed to retrieve
path data.

NOPATH is the default.

PATH
Can be specified when the data from each segment in the physical root's hierarchic path must
be passed to the exit routine for an updated segment. Use PATH to allow an application to
separately access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from segments in the path is needed to
compose the Db2 for z/OS primary key. The Db2 for z/OS primary key would then be used
in a propagation request for a dependent segment update. Typically, you need this kind
of segment information when the parent contains the key information and the dependent
contains additional data that would not fit in the parent segment.

You can also use PATH when additional processing is necessary. It could be that you are not
accessing several segments with one call; for example, you did not invoke the D command
code. In this case, additional processing is necessary if the application is to access each
segment with a separate call.

DLET | NODLET
Specifies whether X'99' log records are written for DLET calls.
Note: DLET or NODLET can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

DLET
X'99' log records are written for DLET calls.

DLET is the default.

NODLET
No X'99' log records are written for DLET calls.

BEFORE | NOBEFORE
Specifies whether the before data is included in X'99' log records for REPL calls.
Note: BEFORE or NOBEFORE can only be specified for a DEDB.

If you specify this parameter in the SEGM statement, it overrides the specification for the DBD
statement.

BEFORE
Before data is included in X'99' log records for REPL calls.

BEFORE is the default.

Chapter 2. Database Description (DBD) Generation utility 89

NOBEFORE
No before data is included in X'99' log records for REPL calls.

CASCADE | NOCASCADE
Specifies whether the exit routine is called when DL/I deletes this segment.

CASCADE
Indicates that the exit routine is called when DL/I deletes this segment because the
application deleted a parent segment. Using CASCADE ensures that data is captured for the
defined segment.

CASCADE is the default.

The CASCADE parameter has three suboptions. These suboptions control the way data
is passed to the exit routine. If you specify suboptions, you must enclose the CASCADE
parameter and the suboptions within parentheses.

KEY | NOKEY
Specifies whether the physical concatenated key is passed to the exit routine.

KEY
Passes the physical concatenated key to the exit routine. This key identifies the
segment being deleted by a cascade delete.

KEY is the default.

NOKEY
Can be used when the exit routine does not require the physical concatenated key of
the segment being deleted.

DATA | NODATA
Specifies whether segment data is to be passed to the exit routine.

DATA
Passes segment data to the exit routine for a cascade delete. DATA also identifies the
segment being deleted when the physical concatenated key is unable to do so.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. NODATA
reduces the significant storage and performance requirements that result from saving
physical segment data.

NOPATH | PATH
Specifies whether the exit routine requires segment data in the physical root's hierarchical
path.

NOPATH
Indicates the exit routine does not require segment data in the physical root's
hierarchical path. Use NOPATH to eliminate the substantial amount of path data
needed for a cascade delete.

NOPATH is the default.

PATH
Can be specified to allow an application to separately access several segments for a
cascade delete.

NOCASCADE
Indicates that the exit routine is not called when DL/I deletes this segment. Cascade delete is
not necessary when a segment without dependents is deleted.

Note: If any (CASCADE B) suboptions are specified with NOCASCADE in an EXIT= parameter,
they will be ignored, and the value for those suboptions will be set to NOxxxx.

90 IMS: System Utilities

NOSSPCMD | SSPCMD
An optional parameter that indicates whether command codes related to Fast Path subset
pointers (SSP) be captured. The default is NOSSPCMD. It is recommended that this option be
specified only on segments that involve subset pointers.

The following table indicates which command codes are captured for a given DL/I call:

Table 8. Command codes that are captured for DL/I calls
DL/I call Details

G* (get calls) M, S, W, Z. R is captured if at least one of M, S,
W, or Z is also on the same SSA, or along with
the PATH data if PATH is requested.

REPL M,S,W,Z
DLET Z
ISRT M, S, W, Z. R is captured if the segment is being

inserted or if it was specified on an SSA of a
segment not being inserted but PATH data is
requested.

NOINPOS | INPOS
An optional parameter to request that the next twin data be captured on an ISRT call. The default
is NOINPOS. The twin data of the twin that follows an inserted segment will be captured if INPOS
is specified and the following conditions are true:

« An ISRT of a non-unique segment is made.
e An ISRT rule of HERE is used.

If the new segment is the only twin instance or last in the twin chain, no twin data will be
captured.

NOFLD | FLD
An optional parameter to request that updates that are made by a DEDB FLD call be captured. This
option is valid only for a DEDB. The information captured is logged only in the X'9904' log records
if option LOG is specified. It is not passed to the Data Capture exit routine.

COMPRTN=
Selects a Segment Edit/Compression exit routine for either DEDB or full-function database.

For segment edit/compression of full-function database

Do not specify this keyword if the SOURCE keyword is used. The DL/I COMPRTN keyword is invalid
during DBDGEN for MSDB, HSAM, SHSAM, SHISAM, INDEX, and logical databases. It is also invalid
for logical child segments in any database. When used for a HISAM database, it must not change the
sequence field offset for HISAM root segments. In addition, the minimum segment length that can be
specified for a segment type where the segment edit/compression option is specified is 4 bytes.

Remember: If you are using a segment edit/compression exit routine and defined your segments

as variable-length, be aware that when a variable-length segment is compressed, it is padded with
null bytes up to the minimum segment length that was defined in the DBD. Minimum segment length
essentially overrides the compression; this enables you to provide additional space during load time
for segments that are heavily compressed.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This name must be a 1- to
8-character alphanumeric value, must not be the same as any other name in IMS.SDFSRESL, and
must not be the same as DBDNAME.

DATA
Specifies that the indicated exit routine condenses or modifies data fields only. Sequence fields
must not be modified, nor data fields that change the position of the sequence field in respect

Chapter 2. Database Description (DBD) Generation utility 91

to the start of the segment. DATA is the default value if a compression routine is named but no
parameter is selected.

KEY
Specifies that the exit routine can condense or modify any fields within the named segment. This
parameter is invalid for the root segment of a HISAM database.

INIT
Indicates that initialization and termination processing control is required by the segment exit
routine. When this parameter is specified, the edit/compression routine gains control after
database open and after database close.

max
Specifies the maximum number of bytes by which fixed-length segments can increase during
compression exits. You can specify from 1 to 32 767 bytes. The default for max is 10.

PAD
Indicates that the numeric value supplied by MAX should be used for padding and not for MAX.
The numeric range of 1 to 32 767 indicates a size to which an inserted segment will be padded
when the compression of that segment results in a length somewhat less than the PAD value.

For segment edit/compression of DEDB

routinename
Specifies the z/OS load module name of the user-supplied segment edit/compression exit routine.
The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA is the default.

Restriction: The KEY parameter is not supported for DEDB. If you specify the KEY parameter, an
error message is issued and DBDGEN is terminated.

INIT
Allows the segment compression exit routine to gain control immediately after the first area in the
database is opened and returns control immediately before the last area in the database is closed.
As long as the segment length is within the values specified by DBDGEN, no errors occur while
checking the field qualification for segment compression or expansion.

Restriction: The COMPRTN= keyword is prohibited on DEDB segments containing a unique key field
located at the end of the segment. If you use COMPRTN= to process these types of segments,
DBDGEN fails and message DGEN440 is issued.

ENCODING=
An optional 1- to 25-character field that specifies the encoding of the character data in the segment.

The value specified on the ENCODING keyword cannot contain the following characters:

- Single and double quotation marks

« Blanks

« Less than (<) and greater than (>) symbols

« Ampersands (&)

The value of the ENCODING parameter in the SEGM statement overrides the value of the ENCODING
parameter in the DBD statement for this segment. If the ENCODING parameter is not specified

on the SEGM statement, the default value is either the value of the ENCODING parameter on the

DBD statement or, if ENCODING was not specified on the DBD statement, the value Cp1047, which
specifies EBCDIC encoding.

This value can be overridden in individual fields by the ENCODING parameter in the DFSMARSH
statement.

EXTERNALNAME=
An optional alias for the NAME= parameter. Java™ application programs use the external name to refer
to the segment.

92 IMS: System Utilities

GSAM databases require the EXTERNALNAME parameter on the SEGM statement.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

The external names specified on the SEGM statement must be unique within a DBD.
The default value of the EXTERNALNAME parameter is the value of the NAME parameter.
Restriction: External names cannot be reserved SQL keywords or begin with DFS.

If the EXTERNALNAME parameter is not specified and a reserved SQL keyword is specified in the
NAME parameter, EXTERNALNAME accepts the NAME value as the default external name after
appending "_TBL" to the NAME value.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.
« Greater than (>) symbols.
« Ampersands (&).
Related concepts
Data Capture exit routines (Database Administration)
Origin of GSAM data set characteristics (Application Programming)

Related reference

“DATASET statements” on page 48
A DATASET statement defines a data set group within a database.

Segment edit/compression exit routines (Exit Routines)

Portable SQL keywords restricted by the IMS Universal JDBC drivers (Application Programming)
Related information

0799 (Messages and Codes)

LCHILD statements

The LCHILD statement defines a logical relationship between two segment types in a DEDB, HISAM,
HIDAM, HDAM, PHDAM, or PHIDAM database or a logical relationship between a segment type in any two
of these databases.

Restriction: Do not specify an LCHILD statement for the primary index of a PHIDAM database.

Logical relationships

Following any SEGM statement that defines a logical parent segment type in a DBDGEN input deck, there
must be one LCHILD statement for each segment type that is a logical child of that logical parent, except

Chapter 2. Database Description (DBD) Generation utility 93

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_datacapexit.htm#ims_datacapexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/ims_origingsamdataset.htm#ims_origingsamdataset
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.err/ims_dfscmpx0.htm#ims_dfscmpx0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.mc/msgs/0799.htm#imsabend0799

for virtual logical child segment types. These LCHILD statements establish the relationships between the
logical parent and its logical child segment types. The SOURCE= parameter of a SEGM statement that
defines a virtual logical child segment type establishes the same relationship between a logical parent
and a virtual logical child segment type.

HIDAM primary index relationship

Two LCHILD statements are used to establish the index relationship required between the HIDAM primary
index database and the root segment type of a HIDAM database.

Following the SEGM statement that defines the root segment type in a HIDAM database DBD generation,
there must be an LCHILD statement that names the index pointer segment type in an index database.
Following the SEGM statement that defines the index pointer segment type in a HIDAM Primary index
database DBD generation, there must be an LCHILD statement that names the root segment type in a
HIDAM database.

Secondary index relationships

Two LCHILD statements are used to establish each secondary index relationship.

Following a SEGM statement that defines an index target segment type, there must be one LCHILD
statement for each index pointer segment type that points to that index target segment type. Each
LCHILD statement following the SEGM for an index target segment type identifies the index pointer
segment type that points to the index target.

Fast Path DBDs support multiple LCHILD statements under a single SEGM statement. You can specify as
many LCHILD statements in the DEDB DBD as there are search fields of equal lengths from each source
segment to form multiple secondary index pointer segments that point to a single secondary index.

To define multiple secondary index segments with the same segment name for a single target segment
from a single source segment, define two or more LCHILD/XDFLD statement pairs under the SEGM
statement of a target segment.

A maximum of 255 LCHILD statements can occur in a single DBD generation. An LCHILD statement
can follow only a SEGM statement, FIELD statement, XDFLD statement, or another LCHILD statement.
Because logical relationships and index relationships must not be defined in an HSAM or SHSAM
database, LCHILD statements are invalid when ACCESS=HSAM or ACCESS=SHSAM.

Fast Path secondary indexes do not support PAIR and RULES operands on LCHILD statements. The
PAIR= and RULES= parameters on an LCHILD statement are used for logical relationships and are invalid
parameters on an LCHILD statement in a primary DEDB database DBD.

The format of the LCHILD statement for each database type is shown in the following examples.

HISAM database LCHILD statement

94 IMS: System Utilities

1 2
»— — LCHILD — NAME=(segname1,dbname)

,POINTER= SNGL

—
v

,PTR= —J DBLE 3_;
NONE 3

4
SYMB —

»
>

[
>

L ,PAIR= segname2 3 J L

,RULES=

am

LAST T J
3
FIRST
HERE J

»d

] L ,REMARKS= comments J A

Notes:

11f a HISAM secondary index database or a SHISAM secondary index database has two or more user
partition databases, specify two or more user partition secondary index database names in the NAME=

parameter.
2 Used for logical relationships or secondary indexing.
3 Used for logical relationships.

4 1f symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified
for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also. For Fast Path secondary indexing, the PTR=SYMB parameter must be explicitly
specified on an LCHILD statement because Fast Path secondary indexing only supports symbolic

pointers, and PTR=SNGL is the default.

HDAM database LCHILD statements

DBLE —

NONE >

1
»— LCHILD — NAME=(segname1,dbname)
2 J
%OINTER= SNGL
,PTR= —J E 2

3
SYMB —~

A 4

»
»

L 2 J LAST
,PAIR= segname2 2
,RULES= L FIRST _J

HERE

»d

] L ,REMARKS= comments J A

Notes:

1 Used for logical relationships or secondary indexing.
2 Used for HDAM, HISAM, and HIDAM logical relationships.

v

3 1f symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified

Chapter 2. Database Description (DBD) Generation utility 95

for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also.

PHDAM database LCHILD statements

1
»— LCHILD — NAME=(segname1,dbname)
2
%OINTER= NONE
,PTR= jT 3

INDX

L 2 J LAST
,PAIR= segname2 2
,RULES= FIRST
L HERE J

v

\ 4

»d

] L ,REMARKS= comments J A

Notes:

1 Used for logical relationships or secondary indexing.

2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 Required during a HIDAM DBD generation on the LCHILD statement that establishes the HIDAM
Primary index relationship. If PTR=INDX is specified for the target segment of a secondary index, PTR
must be omitted or specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.

HIDAM Database LCHILD Statements

»— LCHILD — NAME=(segname1,dbname)
TOINTER= INDX 1
PTR= —J 2

M SNGL —

~—
v

2
M DBLE —

2
M NONE —

_ SYMB 3_;

L 2 J LAST
,PAIR= segname2 2
,RULES= L FIRST _J

HERE

\ 4

»
>

»d

] L ,REMARKS= comments J A

Notes:

1 Required during a HIDAM DBD generation on the LCHILD statement that establishes the HIDAM
Primary index relationship. If PTR=INDX is specified for the target segment of a secondary index, PTR
must be omitted or specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.

2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 If symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified

96 IMS: System Utilities

for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also.

PHIDAM Database LCHILD Statements

Restriction: Do not enter an LCHILD statement for the primary index of a PHIDAM database.

»— LCHILD — NAME=(segname1,dbname) >

,POINTER= INDX

,PTR= —J L NONE _J
2 J LAST
L ,PAIR= segname2 L 2 J
,RULES= L FIRST _J

HERE

A 4

»d

] L ,REMARKS= comments J A

Notes:

1 Required during a HIDAM DBD generation on the LCHILD statement that establishes the HIDAM
Primary index relationship. If PTR=INDX is specified for the target segment of a secondary index, PTR
must be omitted or specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.

2 Used for HDAM, HISAM, and HIDAM logical relationships.

INDEX database LCHILD Statement for full-function secondary index databases

1
»»— LCHILD — NAME=(segname1,dbname)
%OINTER L SNGL
,PTR= —J SYMB —J

»— ,INDEX= fldname

\4

L ,REMARKS= comments J A

Notes:

1 Primary indexing and secondary indexing.

2 Required for primary index of HIDAM database.

3 1f symbolic pointing is specified for the index target segment type when defining its physical
database, specify symbolic pointing in the secondary index for that segment type. If SYMB is specified
for the target segment of a secondary index, the PTR=SYMB is specified on the LCHILD statement of
the INDEX DBD also.

INDEX database LCHILD Statement for DEDB secondary index databases

Chapter 2. Database Description (DBD) Generation utility 97

1
»— LCHILD
NAME=(segname1,dbname)

NAME=(segname1,(fdbna;e1)

,INDEX= fldname —»
2
,POINTERj— SYMB
,PTR=

L E NO lJ L ,REMARKS= comments J
,MULTISEG= YES

1 Primary indexing and secondary indexing.
2 Fast Path secondary indexes require symbolic pointers.

A 4

A 4

Notes:

PSINDEX database LCHILD statement

»— LCHILD — NAME=(segname1,dbname) J >
,PTR=

»— ,INDEX= fldname — ,RKSIZE= # L J >«
,REMARKS= comments

LCHILD statement parameter description
The following abbreviations can be used in place of keywords specified in the macro definition:

Keyword
Abbreviation

POINTER
PTR

FIRST
F

LAST
L

HERE
H

NAME=
The segnamel parameter specifies the name of the logical child, index pointer, index target, HIDAM
or PHIDAM root segment type that is to be associated with the segment type defined by the
preceding SEGM statement in the DBD generation input deck. The dbname parameter is the name
of the database that contains the segment type specified in segnamel. dbname can be omitted
when segnamel is defined in this DBD generation. Both segnamel and dbname must be one- to
eight-character alphanumeric values.

POINTER=
Specifies the pointers used in logical or index relationships. When the POINTER= keyword is omitted
from any index DBD generation, POINTER=SNGL is the default. You must specify POINTER=INDX

98 IMS: System Utilities

or SYMB for any LCHILD statement following an index target segment type; no default is provided
for this part of the index relationship. When the POINTER= keyword is omitted from an LCHILD
statement which establishes a unidirectional or physically paired bidirectional logical relationship,
POINTER=NONE is the default. When the POINTER= keyword is omitted or specified as NONE

for an LCHILD statement which establishes a virtually paired bidirectional logical relationship,
POINTER=SNGL is the default.

Restrictions:

« For PHDAM and PHIDAM databases, only the operands INDX and NONE are supported. All other
operands are treated as if errors are present.

» For DEDB secondary index databases, only the SYMB operand is supported.

SNGL
Is used for logical relationships, or index relationships implemented with direct address pointers.
SNGL specifies that a logical child first pointer field is to be reserved in each occurrence of the
segment type defined by the preceding SEGM statement in the DBDGEN input deck. When the
preceding SEGM defines a logical parent, the pointer field contains a direct address pointer to the
first occurrence of a logical child segment type. When the preceding SEGM defines the HIDAM
Primary index database segment type, the pointer field contains a direct address pointer to a
HIDAM database root segment. When the preceding SEGM defines an index pointer segment type
in a secondary index database, the pointer field contains a direct address pointer to an index
target segment.

DBLE
Is used to specify two 4-byte pointer fields, logical child first and logical child last, reserved in
the logical parent segment. The two pointers point to the first and last occurrences of logical child
segment type under a logical parent. The logical child last pointer is of value when the logical child
is not sequenced and the RULES= parameter is LAST.

NONE
Should be used when the logical relationship from the logical parent to the logical child segment
is not implemented or not implemented with direct address logical child pointers. In this case, the
relationship from logical parent to logical child does not exist or is maintained by using physically
paired segments. No pointer fields are reserved in the logical parent segment.

INDX
Is specified on the LCHILD statement in a HIDAM database used to establish the index
relationship between the HIDAM root segment type and the HIDAM Primary index during a HIDAM
database DBD generation. INDX can also be specified on the LCHILD statement in the DBD for the
target database that establishes the index relationship between an index target segment type and
a secondary index. In these cases, omit the PTR= parameter or specify PTR=SNGL on the LCHILD
statement of the primary or secondary index DBD. An LCHILD statement for a HIDAM primary
index must precede the LCHILD statements for secondary indexes.

Requirement: If the target database is a HALDB, the index database must be defined as a HALDB
index by use of the PSINDEX parameter in the DBD statement ACCESS parameter.

SYMB
Can be used in the DBD generation for the target database of a secondary index to specify that the
concatenated keys of the index target segments are to be placed in the index pointer segments
in lieu of a direct pointer. You must specify SYMB when the index target segment type is in a
HISAM database. SYMB is optional when the index target segment type is in an HDAM or HIDAM
database.

An additional use of the SYMB parameter in the INDEX DBDGEN is to prevent reserving space in
the prefix of index pointer segments for the 4-byte direct address index target segment pointer
that is not used when the index pointer is symbolic.

PAIR=
Is specified segname?2 for bidirectional logical relationships only. The segname2 parameter is the
name of the logical child segment that is, physically or virtually, paired with the logical child segment
specified in segnamel. The segname2 parameter must be a 1- to 8-character alphanumeric value.

Chapter 2. Database Description (DBD) Generation utility 99

Restriction: This parameter is not allowed for virtual pairing when using PHDAM and PHIDAM
databases, because they only support physical pairing.

INDEX=
Is specified on LCHILD statements for an Index DBD generation only. The fldname parameter
specifies the name of the sequence field of a HIDAM root segment type during DBD generation of
the primary index for a HIDAM database, or the name of an indexed field, defined through an XDFLD
statement in an index target segment type during DBD generation of a secondary index database. This
parameter is not needed for a primary index of a PHIDAM database.

RKSIZE=
Specifies the root key size of the target database. This parameter is required for partitioned secondary
index (PSINDEX) databases only, and is invalid for any other database type.

RULES=
Is used for logical relationships when no sequence field or a nonunique sequence field has been
defined for a virtual logical child. Under these conditions, the rule of FIRST, LAST, or HERE controls
the sequence in which occurrences of the real logical child in the logical relationship are sequenced
from the logical parent through logical child and logical twin pointers (this establishes the logical twin
sequence).

Restriction: This parameter is not allowed for virtual pairing when using PHDAM and PHIDAM
databases, because they only support physical pairing.

FIRST
Indicates that, if no sequence field is specified for the logical child, a new occurrence is inserted
before the first existing occurrence of the logical child. If a nonunique sequence field is specified
for the logical child, a new occurrence is inserted before all existing occurrences with the same
key.

LAST
Indicates that, if no sequence field is specified for the logical child, a new occurrence is inserted
after the last existing occurrence of the logical child. If a nonunique sequence field is specified for
the logical child, a new occurrence is inserted after all existing occurrences with the same keys.
LAST is the default option.

HERE

Indicates that the insert is dependent on the position established by the previous DL/I call. If

no sequence field is defined, the segment is inserted before the logical twin that position was
established on through the previous call. If no position was established by a previous call, the
new twin is inserted before all existing logical twins. If a nonunique sequence field is defined, the
segment is inserted before the logical twin with the same sequence field value on which position
was established by a previous call. If no position was established on a logical twin with the same
sequence field value, the segment is inserted before all twins with the same sequence field value.

When a new occurrence of a logical child is inserted from its physical parent, no previous position
exists for the logical child on its logical twin chain. Therefore, the new occurrence is placed before
all existing occurrences on the logical twin chain when no sequence field has been defined, or
before all existing occurrences with the same sequence field value when a nonunique sequence
field has been defined.

A command code of L (last) takes precedence over the insert rule specified, causing a new occurrence
to be inserted according to the insert rule of LAST, for insert calls issued against a logical path.

MULTISEG=
Identifies a set of LCHILD and XDFLD statements belonging to a multiple secondary index segment
group. Valid values for the MULTISEG= parameter are YES or NO. NO is the default.

YES
Identifies the LCHILD/XDFLD statement pair as a member of a multiple secondary index segment
group.

100 IMS: System Utilities

NO
Identifies the LCHILD/XDFLD statement pair not belonging to a multiple secondary index segment
group.

Restriction: The MULTISEG= parameter is valid only on a LCHILD statement for a DEDB database. If
MULTISEG= is specified for a database that is not a DEDB database, the DBDGEN utility terminates
with an error message.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

FIELD statements

The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.

The FIELD statement must meet the following conditions:

« A maximum of 1,000 FIELD statements that include the NAME parameter and XDFLD statements
combined can be defined for all segments in a DBD generation.

« A maximum of 20,000 XDFLD statements and all FIELD statements combined can be defined for all
segments in a DBD generation.

« A maximum of 255 FIELD statements and XDFLD statements combined can be defined for any segment
type.

A unique sequence field must be defined for the root segment types of HISAM, HIDAM, PHIDAM, HIDAM

Primary INDEX, SHISAM, DEDB, and non-terminal-related MSDB databases. Root segment types in an
HDAM database do not need a key field defined; if a key field is defined, it does not have to be unique.

The use of /SX to define unique secondary indexes in HDAM, HIDAM, PHDAM, and PHIDAM databases
causes a 4-byte RBA of the index source segment to be included as part of the key of the index record.
The use of /CK to define unique secondary indexes in HISAM, HDAM, HIDAM, PHDAM, and PHIDAM
databases does the same. In a PSINDEX, the /SX specification causes an 8-byte ILK to be used instead of
a 4-byte RBA.

PSINDEX entries also contain the root key of the target segment.
FIELD statements are used in DBD generation:

 To define fields of a segment type as that segment type is seen when it is accessed from its physical
parent segment.

Chapter 2. Database Description (DBD) Generation utility 101

- To define the fields of a real logical child segment type in a virtually paired logical relationship as seen
when that segment type is accessed from its logical parent. The FIELD statements must immediately
follow the SEGM statement defining the virtual logical child.

« To define system-related fields that are used for secondary indexing.

The “FIELD statement parameter descriptions” on page 113 are documented following the syntax
diagrams below.

The format of the FIELD statement for each database type is shown in the following syntax diagrams.

DEDB database FIELD statement

102 IMS: System Utilities

v

»— FIELD NAME=(fidname1 L J)
,SEQ,U

NAME=(fidname 1 L J) — ,EXTERNALNAME= external_name
,SEQ,U

EXTERNALNAME= exfernal name

T ,BYTES= bytes _J ,START= staripos
MAXBYTES= max_array,_bytes ,STARTAFTER= fleld_name

’

,RELSTART= relstartpos

L c L ,DATATYPE= ARRAY
,TYPE= { X BINARY
P BIT

BYTE
UBYTE
CHAR
DATE

~~—
v

M DECIMAL(pp,ss) —
M—— DOUBLE ———
FLOAT
INT
UINT

LONG
ULONG

OTHER

SHORT

M——-USHORT ——

M——-STRUCT ——

TIME
M TIMESTAMP —

~ XML J

>
»

A 4

,CASENAME= case_name J L ,DEPENDSON= fie/d_name J

>
»

A 4

>
»

A 4

L
L ,MINOCCURS= min_array,_elements J L ,MAXOCCURS= max_array._elements J
L

,PARENT= field_name J L ,REDEFINES= field_name J

A 4

»d

L ,REMARKS= comments J B

GSAM database FIELD statement

Chapter 2. Database Description (DBD) Generation utility 103

»— FIELD — EXTERNALNAME= exfternal name ,BYTES= byfes T’
,MAXBYTES= max_array,_bytes
,START= staripos >
,STARTAFTER= field_name j L c
,RELSTART= relstartpos TYPE= X
P

J L ,CASENAME= case_name J]

»
»

L ,DATATYPE= — ARRAY

BINARY

BIT
BYTE
—— UBYTE ——

X CHAR
DATE

— DECIMAL(pp,ss) —

DOUBLE ——
FLOAT
INT
UINT
LONG

M———ULONG ——
M———OTHER ——
M———- SHORT ——
M———USHORT ——

M——>STRUCT ——

TIME
M— TIMESTAMP —

- XML 4

»
»

A 4

L ,DEPENDSON-= field_name J L ,MINOCCURS= min_array,_elements J

\ 4

»
>

L ,MAXOCCURS= max array_elements J L ,PARENT= field_name J

»d

L ,REDEFINES= field_name J L ,REMARKS= comments J)

A 4

HDAM and PHDAM database FIELD statement

104 IMS: System Utilities

»— FIELD —

> NAME= (fidname1) >
Ry
,SEQ —E M
systrelfldname e
M NAME= (fidname 1) L,EXTERNALNAME= external name —
]
— ,SEQ —E M

1
systrelfldname

N EXTERNALNAME= exfernal_name 4
T ,BYTES= bytes ,START= starfpos
,MAXBYTES= max_array_bytes —J ,STARTAFTER= field_name

,RELSTART= re/staripos

v

L Cc L ,DATATYPE= ARRAY J
JTYPE= { 2 BINARY

X
P BIT
BYTE
UBYTE
CHAR
DATE

M DECIMAL(pp,ss) —
M—— DOUBLE ——
FLOAT

INT

UINT
LONG
ULONG
OTHER
SHORT

M——-USHORT ——
M——o-STRUCT ——
TIME

M—— TIMESTAMP —

N XML 4

>

,CASENAME= case_name J L ,DEPENDSON= field_name J

\ 4

>

,MINOCCURS= min_array,_elements J L,MAXOCCURS= max_array,_elements J

L
L
L ,PARENT= fleld_name —j L ,REDEFINES= fleld_name —j]
L

A 4

\ 4

»q

,REMARKS= comments J
Notes:

1 A system related field used for secondary indexing.
2 The TYPE=parameter is ignored for fields with a systrelfldname.

Chapter 2. Database Description (DBD) Generation utility 105

HIDAM and PHIDAM database FIELD statements

»»— FIELD —
> NAME= (fidname1) >
,SEQ M
1
systrelfldname
M NAME= (fidname 1) L,EXTERNALNAME= external name —
— ,SEQ M
1
systrelfldname
N EXTERNALNAME= exfernal_name 4
T ,BYTES= bytes ,START= starfpos
,MAXBYTES= max_array_bytes —J ,STARTAFTER= field_name

,RELSTART= re/staripos

L Cc L ,DATATYPE= ARRAY J
JTYPE= { 2 BINARY

X
P BIT
BYTE
UBYTE
CHAR
DATE

M DECIMAL(pp,ss) —

M———->DOUBLE —

FLOAT
INT

UINT

LONG
ULONG
OTHER
SHORT

M——-USHORT ——
M——o-STRUCT ——
TIME

M—— TIMESTAMP ——

N XML 4

\ 4

>

,CASENAME= case_name J L ,DEPENDSON= field_name J

>

A 4

,PARENT= field_name J L ,REDEFINES= field_name J

»q

L

] L,Mmoccures= min_array,_elements J L,MAXOCCURS= max_array, elements -
L
L

,REMARKS= comments J
Notes:

1 A system related field used for secondary indexing.

106 IMS: System Utilities

2 The TYPE=parameter is ignored for fields with a systrelfldname.

HISAM database FIELD statement

1
»— — FIELD —&

> NAME=

M NAME= (fidname 1

(fidname1

== |

2
systrelfldname

) ,EXTERNALNAME= external_name —
_E’ I_J
— ,SEQ M

2
systrelfldname

EXTERNALNAME= exfernal_name 4

T ,BYTES= bytes
MAXBYTES= max_array_bytes

5!

,START= startpos
—J ,STARTAFTER= field_name

,RELSTART= relstaripos

L c
,TYPE= { X 3
P

L ,DATATYPE= ARRAY J

M———"BINARY ——
BIT
BYTE
UBYTE
CHAR
DATE

M DECIMAL(pp,ss) —

M———DOUBLE ——

FLOAT
INT

UINT
LONG
ULONG
OTHER
SHORT

—— USHORT ——
\— STRUCT —
TIME

M TIMESTAMP —

b XML 4

,CASENAME= case_name J L ,DEPENDSON= field_name J

>

,PARENT= field_name J L ,REDEFINES= field_name J

,REMARKS= comments J

»q

L

" L inoccurs- min aray clments — L maxoccurs- max aray clemants —
L
L

>

Chapter 2. Database Description (DBD) Generation utility 107

1 0nly CK can be coded for the systrelfldname field.
2 A system related field used for secondary indexing.
3 The TYPE=parameter is ignored for fields with a systrelfldname.

HSAM/SHSAM database FIELD statement

108 IMS: System Utilities

»— FIELD —

"L

,MAXBYTES= max_array_bytes

M NAME=(fldname1

NAME=(fidname1)
,U
L_SEQL,M l ‘

) — ,EXTERNALNAME= external_name —
E U]
,— SEQ M

EXTERNALNAME= external_name 4

,BYTES= byfes

_J ,START= startpos

,STARTAFTER= field_name
,RELSTART= re/starfpos

v

L TYPE= {

x

(o]

ARRAY J
BINARY
BIT
BYTE
UBYTE
CHAR
DATE

L ,DATATYPE=

M DECIMAL(pp,ss) —
DOUBLE

FLOAT
INT
UINT
LONG
ULONG
OTHER
SHORT
USHORT

STRUCT
TIME
M— TIMESTAMP ——

- XML g

»
>

,CASENAME= case_name J L ,DEPENDSON= fle/d_name J

»

>
>

\ 4

L
L ,MINOCCURS= min_array_elements —J L ,MAXOCCURS= max_array_elements J -
L

,PARENT= field_name J L ,REDEFINES= fleld_name —J

L ,REMARKS= comments _J B

INDEX/PSINDEX database FIELD statement

Chapter 2. Database Description (DBD) Generation utility 109

»— FIELD —

\ 4

NAME=(fldname 1

U seoJ

[

[
M) — ,EXTERNALNAME= external_name

NAME=(fldname 1

L seoJ

EXTERNALNAME= external_name

’T ,BYTES= bytes _J
MAXBYTES= max_armay_byfes

,START= startpos

,STARTAFTER= fleld_name

,RELSTART= re/startpos

v

L c
,TYPE= { X
]

L ,DATATYPE=

ARRAY

BINARY

BIT

BYTE

UBYTE

CHAR

M DECIMAL(pp,ss) —]

DATE

DOUBLE

FLOAT

INT

UINT

LONG
ULONG

OTHER

SHORT

USHORT

STRUCT

TIME

\

M TIMESTAMP —

XML 4

»
>

\ 4

L,CASENAME= case name —J L ,DEPENDSON= fie/d_name —J

»
>

\ 4

A

] L,REMARKS= comments J B

MSDB database FIELD statement

110 IMS: System Utilities

,PARENT= fleld_name —J L,REDEFINES= field_name —j

>

L
L ,MINOCCURS= min_array._elements J L ,MAXOCCURS= max_array._elements —J
L

v

»»— FIELD —

A 4
v

NAME=(fldname1)
L ,SEQ — ,U J

L J) — ,EXTERNALNAME= external_name
)SEQ I ;U

EXTERNALNAME= external_name

L TYPE=

NAME=(fldname1

»— ,BYTES= bytes — ,START= staripos

\4

C
X
P
H
E

[>
» >

V—J L ,CASENAME= case_name J

L ,DATATYPE= — ARRAY

BINARY

BIT

BYTE

—— UBYTE ——

CHAR
DATE

— DECIMAL(pp,ss) —

DOUBLE ——

FLOAT

INT
UINT
LONG

M——>ULONG ——
M——-OTHER ——
M———SHORT ——
M———USHORT ——

— STRUCT —

TIME

M TIMESTAMP —

~ XML 7

»d

] L,REMARKS= comments J A

SHISAM database FIELD statement

Chapter 2. Database Description (DBD) Generation utility 111

»—1— FIELD —

> NAME= (fidname1)
=S
,SEQ —E M
systrelfldname 2
M NAME= (fldname1) ,EXTERNALNAME= external_name —
il
— ,SEQ —E M

2
systrelfldname

N EXTERNALNAME= exfernal_name g

T ,BYTES= bytes J ,START= startpos
MAXBYTES= max_array_bytes M ,STARTAFTER= field_name —]

5!

v

“—— ,RELSTART= relstarippos ——

C L ,DATATYPE= ARRAY
— ,TYPE= { X }3—’ M———BINARY ——
P BIT

BYTE
UBYTE
CHAR

DATE

— DECIMAL(pp,ss) —
M——— DOUBLE ——
FLOAT

INT
UINT
LONG
ULONG
OTHER
SHORT
M——- USHORT —

M——o-STRUCT —
TIME

M TIMESTAMP ——

~ XML 4

\ 4

>

,CASENAME= case_name J L ,DEPENDSON= field_name J

>

,PARENT= field_name J L ,REDEFINES= field_name J

1)

L

] L ,MINOCCURS= min_array,_elements J L ,MAXOCCURS= max_array._elements J
L
L

,REMARKS= comments J
Notes:

1 Only CK can be coded for the systrelfldname field.
2 A system related field used for secondary indexing.
3 The TYPE=parameter is ignored for fields with a systrelfldname.

112 IMS: System Utilities

FIELD statement parameter descriptions

BYTES=
Specifies the length of the field being defined in bytes. For fields other than system-related fields,
BYTES must be a valid self-defining term whose value does not exceed 255.

If a concatenated key or a portion of a concatenated key of an index source segment type is defined
as a system-related field, the value specified can be greater than 255, but must not exceed the length
of the concatenated key of the index source segment.

A case in which the byte length can be greater than 255 is when the column is defined as not
searchable by IMS. These columns cannot be defined as primary keys and cannot have the NAME
keyword specified.

The length of a /SX system-related field is always 4 bytes; therefore, when specified, the BYTES
parameter is disregarded.

If this field is defined as either a structure or an array by STRUCT or ARRAY, the value specified
on BYTES must be greater than or equal to the sum total of the bytes of all fields contained in the
structure or array.

When XML, the BYTES parameter is optional and the valid values for BYTES range from 0 to the
maximum size of the segment. If the BYTES parameter is omitted when XML, BYTES and MAXBYTES
are not allowed.

CASENAME=
The name of the map case that this field belongs to when alternative mappings are defined for the
fields in a segment. CASENAME is valid and required only to associate a FIELD statement with the
preceding DFSCASE statement that defines the map case to which this field belongs. The value of
CASENAME must match the value specified on the NAME parameter of the DFSCASE statement.
DATATYPE=
An optional 3- to 9-character alphanumeric field that specifies the external data type of the field.

If DECIMAL is specified on the DATATYPE parameter, the default INTERNALTYPECONVERTER is
signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP is specified on the DATATYPE parameter, you must specify

either LONG or CHAR on the INTERNALTYPECONVERTER parameter in the DFSMARSH statement

or specify a USERTYPECONVERTER. If a DFSMARSH statement is not included for this field,
INTERNALTYPECONVERTER=LONG is the default. When LONG is used, the value is stored on DASD as
the number of milliseconds since January 1, 1970.

If XML is specified on the DATATYPE parameter, the default INTERNALTYPECONVERTER is XML_CLOB,
which is the only valid value when DATATYPE=XML is specified.

If STRUCT or ARRAY is specified on the DATATYPE parameter, the default INTERNALTYPECONVERTER
is STRUCT or ARRAY, respectively, which are the only valid values when either one is specified on the
DATATYPE parameter.

For all other values for DATATYPE, the value is used as the default INTERNALTYPECONVERTER.

If TYPE=C, DATATYPE defaults to CHAR. For any other specification of the TYPE parameter, DATATYPE
defaults to BINARY.

If the DFSMARSH statement specifies USERTYPECONVERTER, the BYTES value is not validated for the
data type of BIT, BYTE, UBYTE, DOUBLE, FLOAT, INT, UINT, LONG, ULONG, and SHORT.

Valid values are:

ARRAY
When ARRAY is specified:

« The NAME parameter is not supported
« The EXTERNALNAME parameter is required

Chapter 2. Database Description (DBD) Generation utility 113

« The byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the array.

The MSDB database type does not support the ARRAY data type.

BINARY
If TYPE=P or TYPE=X is specified, BINARY is the default value of the DATATYPE parameter.

BIT
If you specify BIT, you must also specify BYTES=1.

If you specify BIT, you must also specify BYTES=1 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

BYTE
If you specify BYTE, you must also specify BYTES=1.

If you specify BYTE, you must also specify BYTES=1 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

UBYTE
If you specify UBYTE, you must also specify BYTES=1.

If you specify UBYTE, you must also specify BYTES=1 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

CHAR
If TYPE=C is specified, CHAR is the default value of the DATATYPE parameter.

DATE
When DATE is specified, you must also specify BYTES=8, unless you also specify
a DFSMARSH statement that includes either INTERNALTYPECONVERTER=CHAR or
USERTYPECONVERTER=convertername.

DECIMAL(pp,ss)

pp
Precision. A 1- to 2-byte numeric field greater than 0.

Sss
Scale. A 1- to 2-byte numeric field greater than or equal to 0. The value specified for ss cannot
be greater than the value of pp.

You must specify a value on the BYTES parameter that matches the decimal format that is used.

The default decimal format is sighed packed decimal. To calculate the required value of the BYTES
parameter for the signed packed decimal format, use the following formula: length = ceiling ((pp
+1)/2)

The default decimal format can be changed by specifying the INTERNALTYPECONVERTER
parameter.

When the zoned decimal format is used, as specified by
INTERNALTYPECONVERTER=ZONEDDECIMAL, use the following formula to calculate the value
of the BYTES parameter: length = pp

DOUBLE
If you specify DOUBLE, you must also specify BYTES=8.

If you specify DOUBLE, you must also specify BYTES=8 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

FLOAT
If you specify FLOAT, you must also specify BYTES=4.

114 IMS: System Utilities

If you specify FLOAT, you must also specify BYTES=4 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

INT
If you specify INT, you must also specify BYTES=4.

If you specify INT, you must also specify BYTES=4 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

UINT
If you specify UINT, you must also specify BYTES=4.

If you specify UINT, you must also specify BYTES=4 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

LONG
If you specify LONG, you must also specify BYTES=8.

If you specify LONG, you must also specify BYTES=8 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

ULONG
If you specify ULONG, you must also specify BYTES=8.

If you specify ULONG, you must also specify BYTES=8 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

OTHER
Specifies the use of a user-defined data type. When OTHER is specified, a DFSMARSH
statement must also be specified with a user-provided type converter specified on the
USERTYPECONVERTER parameter.

SHORT
If you specify SHORT, you must also specify BYTES=2.

If you specify SHORT, you must also specify BYTES=2 unless the DFSMARSH statement specifies
USERTYPECONVERTER.

USHORT
If you specify USHORT, you must also specify BYTES=2.

STRUCT
When STRUCT is specified, you cannot also specify the SEQ parameter if this structure field
contains a dynamic array field as a child. Dynamic array fields are defined with DATATYPE=ARRAY
and the DEPENDSON and MAXBYTES parameters, among others.

Also, the byte value specified on either the BYTES or MAXBYTES parameter must be equal to or
greater than the sum total of the bytes of all fields contained in the structure.

The MSDB database type does not support the STRUCT data type.

TIME
When TIME is specified, you must also specify BYTES=8, unless you also specify
a DFSMARSH statement that includes either INTERNALTYPECONVERTER=CHAR or
USERTYPECONVERTER=convertername.

TIMESTAMP
When TIMESTAMP is specified, you must also specify BYTES=8, unless you also
specify a DFSMARSH statement that includes either INTERNALTYPECONVERTER=CHAR or
USERTYPECONVERTER=convertername.

XML
Restriction: DATATYPE=XML is not supported when the NAME parameter is specified.

Chapter 2. Database Description (DBD) Generation utility 115

DEPENDSON
Specifies the name of a field that defines the number of elements in a dynamic array. The FIELD
statement of the referenced field must precede the FIELD statement that specifies the DEPENDSON
parameter. The name specified must be the value, whether explicitly defined or accepted by default,
of the EXTERNALNAME parameter in the definition of the referenced field.

The DEPENDSON parameter is valid only when ARRAY is also specified. DEPENDSON is required if the
values of MINOCCURS and MAXOCCURS are different.

The field referenced by the DEPENDSON parameter must be defined with one of the following
DATATYPE values:

« INT

« SHORT

« LONG

« UINT

« USHORT

« ULONG

« DECIMAL with either (pp) or (pp,ss) specified, where ss is either 0 or 00.

The MSDB database type does not support the DEPENDSON parameter.

EXTERNALNAME=
An optional alias for the NAME= parameter. Java application programs use the external name to refer
to the field. The external name is stored only in the IMS catalog, not in the database that you are
defining.

The EXTERNALNAME parameter is required only when either the NAME parameter is not specified or
the field is defined in a GSAM database. If the NAME parameter is not specified, you cannot search for
this field.

Specify an external name as a 1- to 128-character uppercase alphanumeric string. An external name
can include underscore characters.

External names must be unique within a segment.
The default value of the EXTERNALNAME parameter is the value of the NAME parameter.
Restriction: External names cannot be reserved SQL keywords or begin with DFS.

If EXTERNALNAME is not specified and a reserved SQL keyword is specified in the NAME parameter,
EXTERNALNAME accepts the NAME value as the default external name after appending "_COL" to the
NAME value.

For a list of reserved SQL keywords that are restricted by the IMS Universal drivers, see Portable SQL
keywords restricted by the IMS Universal JDBC drivers (Application Programming).

MorU
See the entry forU ox M later in this topic.

MINOCCURS=
For ARRAY only, a required numeric value that specifies the minimum number of elements in an
ARRAY. MINOCCURS must be lesser than or equal to MAXOCCURS.

MAXOCCURS=
For ARRAY only, a required numeric value that specifies the maximum number of elements in an
ARRAY. MAXOCCURS must be greater than or equal to MINOCCURS and not zero.

MAXBYTES=

Specifies the maximum size of a field in bytes when the byte-length of the field instance can vary
based on the number of elements in a dynamic array. MAXBYTES and BYTES are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum possible sum total of the byte
values of all fields nested under this field.

116 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

The MAXBYTES parameter is required and valid only in the following cases:

« The field is defined as a dynamic array. A field is a dynamic array when the number of elements in
the array can vary from one instance of the field to another. In the definition of a dynamic array,
the DEPENDSON parameter references another field in the segment definition that will define the
number of array elements for a given instance of the dynamic array.

« For afield defined as a static array or a structure that contains a nested field that is defined as a
dynamic array.

The MSDB database type does not support the MAXBYTES parameter.

NAME=fldname1
Specifies the name of this field within a segment type. The name specified can be referred to by an
application program in a DL/I call SSA. Field names must be unique within a segment definition. The
fldnamel value must be a 1- to 8-character alphanumeric value.

The NAME parameter is required on the following types of fields:

« Key-sequenced field types, which specify the SEQ parameter

« Field types that are referenced by a segment search argument (SSA)

« Field types that are referenced by in a SENFLD statement in a PSB

- Field types that are referenced by an XDFLD statement

For other field types, you can omit the NAME parameter when the EXTERNALNAME parameter is

specified. Omitting the NAME parameter can save storage in the data management block (DMB) of a
database. However, to be able to search on this field, you must specify the NAME parameter.

The NAME parameter cannot be specified on the following types of fields:

« Fields that are defined in a GSAM database. Use the EXTERNALNAME parameter instead.

- Fields that are defined as arrays. A field that is defined as an array includes ARRAY in the field
definition.

« Fields that are defined as array elements. A field that is an array element specifies the name of an
array field on the PARENT parameter in the FIELD statement.

« Fields that are defined as structures that contain one or more nested dynamic arrays. A field that is
defined as a structure includes DATATYPE=STRUCT in the field definition.

« Fields that are contained in a structure that also contains a dynamic array. A field that is contained
within a structure specifies the name of the structure field on the PARENT parameter in the FIELD
statement.

- Fields that follow a dynamic array in a segment. A field that follows a dynamic array specifies the
STARTAFTER parameter.

« Fields that include the RELSTART parameter to specify a starting position that is relative to the
starting position of another field.

« Fields defined with XML.
PARENT=

Specifies the name of a field that is defined as a structure or array in which this field is contained. The
referenced field must be defined with either DATATYPE=ARRAY or DATATYPE=STRUCT.

REDEFINES=
The name of the redefined field, as specified on the EXTERNALNAME parameter of the FIELD

statement that defines the redefined field. The value can be specified as a 1- to 128-character
alphanumeric string.

If the redefined field does not specify the EXTERNALNAME parameter, the value of the NAME
parameter can be used. If the redefined field specifies both the NAME and EXTERNALNAME parameters
with different values on each, the value of the EXTERNALNAME parameter must be used.

In the DBD generation input order, the FIELD statement of the field that is being redefined must
precede the FIELD statement that specifies the REDEFINES parameter.

Chapter 2. Database Description (DBD) Generation utility 117

This field must be the same length as the field that is being redefined, as specified on the BYTES
parameter in each FIELD statement.

You cannot redefine a field that has been defined as an ARRAY or that contains an ARRAY.
The MSDB database type does not support the REDEFINES parameter.

RELSTART=
Specifies the starting position of a field that is defined as an element of an array or, in some
circumstances, a structure. Valid values are from 1 to 32767.

The value specified on RELSTART is the starting byte offset of the field relative to the start of the array
or structure. For example, the first field in an array would typically specify RELSTART 1, even if the
array that contains the field starts at byte 50 of a segment.

For fields that specify an array field as a parent, RELSTART is required.

For fields that specify a structure as a parent, RELSTART is required if the structure field is defined
with RELSTART or STARTAFTER.

In the following example, the field DYNARRAY is a dynamic array. The field STRUCTO1 is a structure.
The fields FLD03 and FLD04 both specify STRUCTO1 as a parent. Because a dynamic array precedes
STRUCTO1 in the segment, the starting offsets of FLDO3 and FLDO4 can be specified only relative to
the start of STRUCTO1.

FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4

FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100
MINOCCURS=10,MAXOCCURS=50, DEPENDSON=ARRAYNUM

FIELD EXTERNALNAME=FLDO1,RELSTART=1,BYTES=2,PARENT=DYNARRAY

FIELD EXTERNALNAME=FLDO2,STARTAFTER=DYNARRAY,bBYTES=10

FIELD EXTERNALNAME=STRUCTO1,DATATYPE=STRUCT,STARTAFTER=FLDO2,BYTES=10

FIELD EXTERNALNAME=FLDO3,RELSTART=1,BYTES=5,PARENT=STRUCTO1

FIELD EXTERNALNAME=FLDO4,RELSTART=6,BYTES=5,PARENT=STRUCTO1

START, STARTAFTER, and RELSTART are mutually exclusive.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
guotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.
« Greater than (>) symbols.
« Ampersands (&).
SEQ
A subparameter of NAME, SEQ identifies this field as a sequence field in the segment type. FIELD

statements containing the keyword SEQ must be the first FIELD statements following a SEGM
statement in a DBD generation input deck.

118 IMS: System Utilities

If the sequence field of a real logical child segment consists of any part of the concatenated key of
the logical parent, you must specify the PHYSICAL parameter in the SEGM statement in order for the
logical child to include the concatenated key of the logical parent with the logical child in storage.

Generally, a segment can have only one sequence field. However, in the case of virtually paired
bidirectional logical relationships, multiple FIELD statements can be used to define a logical sequence
field for the virtual logical child segment type, as described as follows.

A sequence field must be specified for a virtual logical child segment type if, when accessing a logical
child segment from its logical parent, one requires real logical child segments to be retrieved in an
order determined by data in a field or fields of the real logical child segments. This sequence field
can include any part of the segment as it appears when viewed from the logical parent (that is, the
concatenated key of the physical parent of the real logical child followed by any intersection data).
Because it might be necessary to describe the sequence field of a logical child segment as accessed
from its logical parent segment in noncontiguous pieces, multiple FIELD statements with the SEQ
parameter present are permitted. Each statement must contain a unique fldnamel parameter.

You can define any sequence field as a qualification in an SSA, but all succeeding sequence fields

are considered as a part of the named field. Therefore, the length of the field named in the SSA is

the concatenated length of the specified field plus all succeeding sequence fields. This "scattered"
sequence field is permitted only when specifying the sequence field for a virtual logical child segment.
If the first sequence field is not included in a "scattered" sequence field in an SSA, DL/I treats the
argument as a data field specification rather than a sequence field specification. DL/I must examine
all segment instances on a twin chain when a data field specification is evaluated. When a sequence
field specification is evaluated the search continues along the twin chain until a sequence field value
that is higher than the SSA value is reached. The search stops at that point.

In an MSDB, the keyword SEQ must be specified if the DATASET statement specifies REL=NO (a
non-terminal-related MSDB without terminal-related keys); otherwise this keyword is invalid.

In a DEDB, SEQ must be used in the root segment and can be specified in any direct dependent
segment.

Restrictions:

« SEQ cannot be specified for the sequential dependent segment

« SEQ cannot be specified for a field that is defined as a structure that contains a field that is defined
as a dynamic array. Structure fields are defined by DATATYPE=STRUCT. Dynamic array fields are
defined by DATATYPE=ARRAY and the DEPENDSON and MAXBYTES parameters, among others.

START=
Specifies the starting position of the field being defined in terms of bytes relative to the beginning
of the segment. The value of START must be a numeric term whose value does not exceed 32767.
The starting position for the first byte of a segment is one. For variable-length segments, the first 2
bytes contain the length of the segment. Therefore the first actual user data field starts in byte 3.
Overlapping fields are permitted. When defining a logical child segment, the first n number of bytes
of the segment type is the concatenated key of the logical or physical parent. A field starting in
position one would define all or a portion of this field. A field starting in position n+1 would start with
intersection data.

START can be used for a system-related field, to describe a portion of the concatenated key as a

field in an index source segment type. If used in this way, START specifies the starting position of the
relevant portion of the concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be a numeric term whose
value does not exceed the length of the concatenated key plus one. Subtract the value specified in the
BYTES parameter. The starting position parameter for the /SX system-related field is disregarded.

START, STARTAFTER, and RELSTART are mutually exclusive.

When XML, the START parameter is optional and START 0 can be specified. If the START parameter is
omitted when XML, START 0 is the default.

Chapter 2. Database Description (DBD) Generation utility 119

STARTAFTER=

When the starting byte offset of a field cannot be calculated because the field starts after a dynamic
array, specifies the name of the field that directly precedes this field in the segment. The name cannot
be the name provided on the NAME keyword.

STARTAFTER is required and valid only when the starting position of a field cannot be calculated
because the field is preceded at a prior offset by a field defined as a dynamic array.

Dynamic arrays make it impossible to calculate the starting offsets of subsequent fields in a segment,
because the byte lengths of dynamic arrays can vary from one instance of a segment to another. The
columns of dynamic array fields can be identified by the inclusion of the DEPENDSON and MAXBYTES
parameters.

The STARTAFTER parameter cannot be specified on fields that define an array field as a parent.
Instead, specify the RELSTART parameter.

START, STARTAFTER, and RELSTART are mutually exclusive.
The STARTAFTER data is not returned if the GUR application is using IMS Universal Drivers (UDB).

systrelfldname
Defines a system-related field which can be used only for secondary indexing. There are two types of
system-related fields:

- All of or a portion of the concatenated key of an index source segment type defined by the preceding
SEGM statement. The name for this type of system-related field can be up to eight characters
long, and must begin with the three characters /CK. The fourth through eighth characters permit
unique identification of the field being defined, whose name must be unique among all other
fields defined in the segment type. This type of system-related field is defined to enable the use
of the concatenated key of an index source segment, or portions of the concatenated key in the
subsequence or duplicate data fields of index pointer segments.

The following are sample concatenated keys for a given index source segment type:

Root key (10 bytes)
Dependent key (3 bytes)

Dependent key (3 bytes)

Dependent key (3 bytes)

If three system-related fields were to consist of bytes 2 through 8 of the root key, byte 1 of the
second key and bytes 2 and 3 of the fourth key, the FIELD statements specifying these fields could
be as follows:

NAME=/CK1
BYTES=7
START=2

NAME=/CK2
BYTES=1
START=11

NAME=/CK3
BYTES=2
START=18

You can then specify the three system-related fields defined for use in the subsequence or duplicate
data fields of index pointer segments by including the names of the system-related fields in lists for
the subsequence or duplicate data fields on an XDFLD statement.

- The second type of system-related field is defined within an index source segment type to ensure
uniqueness of sequence field keys in a secondary index. The name specified for this type of
system-related field must begin with the characters /SX, and the name specified can be up to eight
characters in length. When this type of system-related field is defined in an index source segment
type, IMS generates a unique 4-byte value, and places it in the subsequence field of the index
pointer segment generated from an index source segment.

120 IMS: System Utilities

On an XDFLD statement, a /CK field can be included in the list of fields specified for either the
subsequence or DDATA fields or both of an index pointer segment. A /SX field can be included only in
the list of fields specified for the subsequence field of index pointer segments.

For Fast Path secondary indexing, only a /CK field is valid and the /SX field is not valid.

TYPE=
Determines the type of character that IMS uses to mask or pad the data in this field.

If the DATATYPE parameter is not explicitly set, the TYPE parameter also determines the default value
of DATATYPE; however, TYPE does not otherwise affect how data is stored, converted, or presented to
application programs.

For example, when application programs that use field-level sensitivity are not sensitive to this field,
IMS can mask the data in a field with either X'00', X'40, or, for MSDBs, halfword or fullword binary
data.

When an application program is sensitive to one or more fields in a segment, IMS masks fields if one
of the following conditions is met:

- On aninsert call, the segment contains fields that the application program is not sensitive to.

« On acall that replaces a variable-length segment with a segment that is longer than the existing
segment, the increased portion of the segment contains fields that the application program is not
sensitive to.

- On acall that retrieves a variable-length segment that does not contain the field.

If an alphanumeric field (TYPE=C) is partially present in the physical segment, the data is moved to
the field in the user's I/O area and padded on the right with blanks. Partially present hexadecimal or
packed decimal fields are replaced with the fill value when presented to the user.

All DL/I calls perform field comparisons on a byte-by-byte binary basis. No check is made by IMS to
ensure that the data contained within a field is of the type specified by this parameter, except when
the defined field is used with field sensitivity or is in an MSDB.

You can specify the following values on the TYPE parameter:

X
Specifies hexadecimal data. When X is specified, if IMS needs to fill unused bytes in the field, IMS
right justifies the value and fills the unused bytes to the left of the value with X'00". For example, a
3-byte value X'543210' in a 5-byte field is written out as X'0000543210".

Packed decimal data. When P is specified, if IMS needs to fill unused bytes in the field, IMS right
justifies the value and fills the unused bytes to the left of the value with X'00". For example, a
3-byte value X'54321C' in a 5-byte field is written out as X'000054321C".

Specifies alphanumeric data or a combination of types of data. When C is specified, if IMS needs
to fill unused bytes in the field, IMS left justifies the value and fills the unused bytes to the right
of the value with X'40". For example, a 3-byte value X'F5F4F3'in a 5-byte field is written out as
X'F5F4F34040".

Specifies binary fullword data.

An arithmetic field cannot be overlapped by another field in a segment definition; that is, another
field cannot be defined to start or end between the starting and ending byte offsets of a field that
specifies TYPE=F.

Specifies binary halfword data.

An arithmetic field cannot be overlapped by another field in a segment definition; that is, another
field cannot be defined to start or end between the starting and ending byte offsets of a field that
specifies TYPE=H.

Chapter 2. Database Description (DBD) Generation utility 121

For MSDB databases, types X, C, P, H, and F are valid, with the following rules applying:

« Only a C or X field can contain another field.

« Asingle field can have multiple definitions as long as no more than one definition is arithmetic
(types P, H, and F).

- If a field contains any part of an arithmetic field, it must contain the entire field.

« The sequence field must be TYPE=C or X.

« The sequence field cannot be part of any other field.

« SSA and FSA comparisons of arithmetic fields use arithmetic rather than logical compare
operations.

- Initial loading and call processing routines test for valid digits and X and P type fields.
 The following rules apply to the MSDB field length:

— TYPE=X: BYTES=11t0 256

— TYPE=P: BYTES=1to0 16

— TYPE=C: BYTES=1to 256

— TYPE=F. BYTES=4

— TYPE=H: BYTES=2

— Field types F and H must have explicit length specifications.

— Fields should be aligned on appropriate boundaries for performance optimization if they are

involved in compare or arithmetic operations and are a fullword or halfword long. The beginning
of the segment is aligned on a fullword boundary.

- If the systrelfldname in the field statement is defined as either /SX or /CK, the TYPE= parameter is
ignored and no type is set.

UorM
Subparameters of NAME, U and M qualify the type of sequence (SEQ) field that is being specified.

The parameter U indicates that only unique values are allowed in the sequence field of occurrences
of the segment type. For a dependent segment type, the sequence field of each occurrence under a
given physical parent segment must contain a unique value.

The parameter M indicates that duplicate values are allowed in the sequence field of occurrences of
the segment type. For a root segment type, the sequence field of each occurrence must contain a
unique value, except in HDAM. The root segment type in an HDAM database does not need a key field;
if a key field is defined, it does not have to be unique.

When no sequence field or a nonunique sequence field is defined for a segment, occurrences of the
segment are inserted according to the rule of FIRST, LAST, or HERE as specified on the SEGM or
LCHILD statement for that segment.

Recommendation: Use unique sequence fields for all segments that participate in a logical
relationship. This includes physical and logical parents as well as physical and logical child segments.
Multiple sequence fields for a virtual logical child segment type must be uniformly defined as either
unique or nonunique.

In a non-terminal-related MSDB without terminal-related keys, unique (U) values must be specified
for the root sequence field. In a DEDB, unique (U) values must be specified for the sequence field
of the root segment. A dependent segment in a DEDB does not require a key. However, if a key is
defined, it must be unique.

Related concepts

Defining DBD and PSB metadata to the generation utilities (Database Administration)
Related reference

“DFSMARSH statements” on page 127

122 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_cat_db_metadata_overview.htm#ims_cat_db_metadata_overview

The DFSMARSH statement defines the marshal attributes for a field.

XDFLD statements

Use the XDFLD statement only for secondary index relationships. The XDFLD statement defines the name
of an indexed field that is associated to an index target segment type, identifies the index source segment
type, and identifies the index source segment fields that are used in creating a secondary index.

In addition, information regarding suppressing the creation of index pointer segments is provided through
this statement.

Restriction: This statement cannot be used to reference a segment in a DBD where ACCESS=INDEX,
SHSAM, SHISAM, HSAM, or MSDB has been specified.

The XDFLD statement must meet the following conditions:

« A maximum of 32 XDFLD statements are allowed per SEGM statement.

« The number of XDFLD and all FIELD statements combined must not exceed 255 per SEGM statement,
and must not exceed 20,000 per DBD.

« The number of FIELD statements that include the NAME parameter and XDFLD statements combined
must not exceed 1,000 per DBD.

One XDFLD statement is required for each secondary index relationship. It must appear in the DBD
generation input deck for the indexed database after the LCHILD statement that references the index
pointer segment. Only FIELD statements for the index target segment can appear between the LCHILD
statement and the associated XDFLD statement in the input deck. The index target segment, which is the
segment defined by the preceding SEGM statement in the DBD generation input deck must not be either a
logical child segment type or a dependent of a logical child segment type.

The format of the XDFLD statement is for each database type is shown in the following examples.

HISAM/SHISAM database XDFLD statement

2

_’
L ,SEGMENT= segname J L ,CONST= char J

L ,SUBSEQ= /ist2 J L ,DDATA= /ist3 J L ,NULLVAL= value? J
L ,EXTRTN= name1 J L ,REMARKS= comments J]

»d
1|

»— XDFLD —1— NAME-= fldname

»— ,SRCH= /ist1

»
»

A 4

A 4

L ,EXTERNALNAME= external_name J

Notes:

1 An XDFLD statement is not allowed during DBD generation of a simple HISAM database.

2 The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE fields must not exceed 240
bytes.

Chapter 2. Database Description (DBD) Generation utility 123

DEDB database XDFLD

»— XDFLD —— NAME-= fldname 1 ,SRCH= /list1 —»

L ,SEGMENT= segname J
L ,SUBSEQ= /ist2 J L ,DDATA= /ist3 J L ,NULLVAL= value? J]

L ,EXTRTN= name1 J L ,PSELRTN= name J L E MULT]
,PSELOPT= SNGL

»d
L)

A 4

A 4

L ,REMARKS= comments J L ,EXTERNALNAME= external_name J

Notes:

1 The combined length of the SEARCH and SUBSEQUENCE fields must not exceed 240 bytes.

HDAM and HIDAM database XDFLD statement

1

_’
L ,SEGMENT= segname J L ,CONST= char J

L ,SUBSEQ= /ist2 J L ,DDATA= /ist3 J L ,NULLVAL= value? J
L ,EXTRTN= name1 J L ,REMARKS= comments J]

»— XDFLD — NAME= fldname

»— ,SRCH= /ist1

»
>

\ 4

\ 4

»d
>4

L L,EXTERNALNAME= external name J

Notes:

1 The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE fields must not exceed 240
bytes.

PHDAM and PHIDAM database XDFLD statement

»— XDFLD — NAME-= fldname ,SRCH= /ist1 —1—>

L ,SEGMENT= segname J
L ,SUBSEQ= /ist2 J L ,DDATA= /ist3 J L ,NULLVAL= value? J]
L L,EXTRTN= name1 J L ,REMARKS= comments J]

»d
1|

A 4

A 4

A 4

L ,EXTERNALNAME= external name J

Notes:
1 The combined length of the SEARCH and SUBSEQUENCE fields must not exceed 240 bytes.

124 IMS: System Utilities

XDFLD statement parameter description

NAME=
Specifies the name of the indexed data field of an index target segment. The name specified actually
represents the search field of an index pointer segment type as being a field in the index target
segment type. You can use the name specified to qualify SSAs of calls for an index target segment
type through the search field keys of index pointer segments. This enables accessing occurrences of
an index target segment type through a primary or secondary processing sequence based on data
contained in a secondary index. fldname must be a 1- to 8-character alphanumeric value.

Since the name specified is used to access occurrences of the index target segment type based on the
content of a secondary index, the name specified must be unique among all field names specified for
the index target segment type.

SEGMENT=
Specifies the index source segment type for this secondary index relationship. segname must be the
name of a subsequently defined segment type, which is hierarchically below the index target segment
type or it can be the name of the index target segment type itself. The segment name specified must
not be a logical child segment. If this parameter is omitted, the index target segment type is assumed
to be the index source segment.

CONST=
Specifies a character with which every index pointer segment in a particular secondary index is
identified. This parameter is optional. The purpose of this parameter is to identify all index pointer
segments associated with each secondary index when multiple secondary indexes reside in the same
secondary index database. Char must be a 1-byte self-defining term.

Restriction: CONST is not supported for HALDB or DEDB databases.

SRCH=
Specifies which field or fields of the index source segment you must use as the search field of a
secondary index. list1 must be a list of one to five field names defined in the index source segment
type by FIELD statements. If two or more names are included, they must be separated by commas
and enclosed in parentheses. The sequence of names in the list is the sequence in which the field
values are concatenated in the index pointer segment search field. The sum of the lengths of the
participating fields constitutes the index target segment indexed field length which must be reflected
in segment search arguments.

For Fast Path secondary indexes, you can use part of a concatenated key as a value for the SRCH
parameter by specifying the /CK operand, a starting byte, and a length in parentheses. For example,
SRCH=((/CK,1,3),(/CK,5,2),(/CK,9,2)) or SRCH=((/CK,1,3),FLDNM).

SUBSEQ=
Specifies which, if any, fields of the index source segment you must use as the subsequence field of
a secondary index. list2 must be a list of one to five field names defined in the index source segment
by FIELD statements. If two or more names are included, they must be separated by commas and
enclosed in parentheses. The sequence of names in the list is the sequence in which field values are
concatenated in the index pointer segment subsequence field. This parameter is optional.

For Fast Path secondary indexes, you can use part of a concatenated key as a value for the SUBSEQ
parameter by specifying the /CK operand, a starting byte, and a length in parentheses. For example,
SUBSEQ=((/CK,1,3),(/CK,5,2),(/CK,9,2)) or SUBSEQ=((/CK,1,3),FLDNM).

DDATA=
Specifies which, if any, fields of the index source segment you must use as the duplicate data field of
a secondary index. list3 must be a list of one to five field names defined in the index source segment
by FIELD statements. If two or more names are included, they must be separated by commas and
enclosed in parentheses. The sequence of names in the list is the sequence in which field values are
concatenated in the index pointer segment duplicate data field. This parameter is optional.

Chapter 2. Database Description (DBD) Generation utility 125

NULLVAL=
Suppresses the creation of index pointer segments when the index source segment data used in the
search field of an index pointer segment contains the specified value.

The valuel parameter must be a 1-byte self-defining term (X'10,C'Z', 5, or B'00101101") or the words
BLANK or ZERO. BLANK is equivalent to C' ' or X'40". ZERO is equivalent to X'00' or 0, but not C'0". If a
packed decimal value is required, it must be specified as a hexadecimal term with a valid number digit
and zone or sign digit (X'3F' for a packed positive 3 or X'9D' for negative 9).

No indexing is performed when each field of the index source segment specified in the SRCH=
parameter has the value of this parameter in every byte. For example, if the NULLVAL=C'9' were
specified, the associated index would have no entries indexed on the value C'9999...9".

There is a slight difference in the case of packed fields. For packed fields, each field that composes
the search field is considered to be a separate packed value.

Example: If the NULLVAL=X'9F' were specified in a case where the search field was composed of
three 2-byte packed source fields, there would be no index entries with the search field value of
X'999F999F999F' because all index entries containing a X'9F'would be suppressed.

Also, with the same NULLVAL=X'9F', if the search field were one 6-byte field, no indexing would be
performed whenever the value of the search field was X'99999999999F".

The only form of the sign that is checked is the form specified.
Example: If X'9C' is specified, X'9F' does not cause suppression.

If both the NULLVAL= and the EXTRTN= operands are specified, indexing of a segment is performed
only if neither causes suppression.

EXTRTN=
Specifies the name of a user-supplied index maintenance exit routine that is used to suppress the
creation of selected index pointer segments. The parameter (namel) must be the name of a user-
supplied routine which receives control whenever DL/I attempts to insert, delete or replace an index
entry because of changes occurring in the indexed database. This exit routine can inspect the affected
index source segment and decide whether an index pointer segment should be generated.

If both the NULLVAL= and the EXTRTN= operands are specified, indexing of a segment is performed
only if neither causes suppression.

EXTERNALNAME=
Acts as an optional alias for the NAME= parameter. Java application programs use the external name
to refer to the field. The external name is stored only in the IMS catalog, not in the database. The
EXTERNALNAME parameter is optional. The NAME parameter must be specified.

Specify an external name as a 1- 26 character uppercase alphanumeric string. The following
additional characters are also allowed:

« _(underscore)

- $

. #

@

External names must be unique within a segment.

The default value of the EXTERNALNAME parameter is the value of the NAME parameter.
Note: External names cannot be reserved SQL keywords or begin with DFS.

If EXTERNALNAME is not specified and a reserved SQL keyword is specified in the NAME parameter,
EXTERNALNAME accepts the NAME value as the default external name after appending "_IDX" to the
NAME value. For a list of reserved SQL keywords that are restricted by the IMS Universal drivers, see
Portable SQL keywords restricted by the IMS Universal JDBC drivers.

126 IMS: System Utilities

PSELRTN=
Identifies the name of a user partition selection exit routine when user partitioning is requested for
HISAM or SHISAM Fast Path secondary index databases.

PSELOPT=
Indicates how user partition databases in a user partition group are logically grouped for qualified
GN calls with no SSA processing before the end of data is reached on the user partition databases.
User partition databases are defined as part of a user partition group in the NAME= parameter on the
LCHILD statement. This parameter applies to Fast Path secondary index databases only.

The PSELOPT= parameter can also be specified on the PCB statement with the PROCSEQD=
parameter in a PSB. There is no default for the PSELOPT= parameter on the PCB statement with

the PROCSEQD= parameter. If the PSELOPT= parameter is specified on both the XDFLD statement
and the PCB statement with the PROCSEQD operand, the PSELOPT= parameter on the PCB statement
takes precedence.

MULT
Indicates the selected user partition and its subsequent user partition databases in a user data
partition group as they are physically defined in the NAME= parameter on the LCHILD statement of
the primary DEDB database DBD.

SNGL
Indicates that only the selected user partition database is used.

PSELOPT=MULT is the default for the PSELOPT= parameter on a XDFLD statement.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
guotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS="'These remarks apply to the 'XYZ' application'

 Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

DFSMARSH statements
The DFSMARSH statement defines the marshal attributes for a field.

In the input to the DBD Generation utility, the DFSMARSH statement must immediately follow the FIELD
statement to which it applies.

DFSMARSH statement syntax diagram for all database types

The format of the DFSMARSH statement for all database types is shown in the following syntax diagram.

Chapter 2. Database Description (DBD) Generation utility 127

»— DFSMARSH

ENCODING= encoding

»——— ,INTERNALTYPECONVERTER= CHAR
BIT
BINARY
BYTE
UBYTE
SHORT

v

—— USHORT ——

INT

UINT
LONG
ULONG
FLOAT

M——-DOUBLE ——

M PACKEDDECIMAL —
M—— ZONEDDECIMAL —
CLOB
BLOB

\— XML_CLOB —

ARRAY

— STRUCT ——

“— ,USERTYPECONVERTER= usertypeconverter — ,PROPERTIES= properties —’

Y] L JOVERFLOW= seg name J
_ ,ISSIGNED= —E N

L ,PATTERN= patfern J L ,REMARKS= comments J L ,URL= xm/_schema_url J -

\ 4

A 4

DFSMARSH statement parameter description

ENCODING=
An optional 1- to 25-character field that specifies the encoding of the character data in the field.
ENCODING is valid on the DFSMARSH statement only when INTERNALTYPECONVERTER=CHAR.

The value specified on the ENCODING keyword cannot contain the following characters:

- Single and double quotation marks

- Blanks

« Less than (<) and greater than (>) symbols
« Ampersands (&)

If the ENCODING parameter is not specified on the DFSMARSH statement, the default value is
determined by the value specified on the ENCODING parameter of either the SEGM statement or, if

128 IMS: System Utilities

ENCODING is not specified on the SEGM statement, the DBD statement. If the ENCODING parameter
is not specified on either the SEGM or DBD statement, the default value for the ENCODING parameter
is Cp1047, which specifies EBCDIC encoding.

INTERNALTYPECONVERTER=
Specifies the internal conversion routine that IMS uses to convert the IMS data into the data types
expected by the application program.

You are required to specify either INTERNALTYPECONVERTER or USERTYPECONVERTER, but not
both. INTERNALTYPECONVERTER or USERTYPECONVERTER are mutually exclusive.

When you code the INTERNALTYPECONVERTER parameter on the DFSMARSH statement, you must
explicitly code a value. You cannot leave the value blank or specify a null value.

Valid values for the INTERNALTYPECONVERTER parameter are:

ARRAY
BINARY
BIT
If you specify BIT, you must also specify BYTES=1 on the corresponding FIELD statement.
BLOB
BYTE
If you specify BYTE, you must also specify BYTES=1 on the corresponding FIELD statement.

UBYTE
If you specify UBYTE, you must also specify BYTES=1 and either DATATYPE=BYTE or
DATATYPE=UBYTE on the corresponding FIELD statement.

CHAR
CLOB

DOUBLE

If you specify DOUBLE, you must also specify BYTES=8 on the corresponding FIELD statement.
FLOAT

If you specify FLOAT, you must also specify BYTES=4 on the corresponding FIELD statement.
INT

If you specify INT, you must also specify BYTES=4 on the corresponding FIELD statement.

UINT
If you specify UBYTE, you must also specify BYTES=4 and either DATATYPE=INT or
DATATYPE=UINT on the corresponding FIELD statement.

LONG
If you specify LONG, you must also specify BYTES=8 on the corresponding FIELD statement.

ULONG
If you specify ULONG, you must also specify BYTES=8 and either DATATYPE=LONG or
DATATYPE=ULONG on the corresponding FIELD statement.

PACKEDDECIMAL

SHORT
If you specify SHORT, you must also specify BYTES=2 on the corresponding FIELD statement.

USHORT
If you specify USHORT, you must also specify BYTES=2 and either DATATYPE=SHORT or
DATATYPE=USHORT on the corresponding FIELD statement.

STRUCT
XML_CLOB
ZONEDDECIMAL

When you specify INTERNALTYPECONVERTER, you must also specify the DATATYPE parameter on the
FIELD statement to which this DFSMARSH statement applies.

Chapter 2. Database Description (DBD) Generation utility 129

The value specified on the INTERNALTYPECONVERTER parameter must be consistent with the

value specified on the DATATYPE parameter. In most cases, you must specify the same value on
INTERNALTYPECONVERTER that you specify on the DATATYPE parameter. The following table shows
the valid exceptions to this rule.

Table 9. Additional valid values based on DATATYPE values

DATATYPE value Valid INTERNALTYPECONVERTER values
BINARY BINARY, BLOB, CLOB, AND XML_CLOB
BYTE BYTE, UBYTE

DATE LONG, CHAR

DECIMAL(pp,ss) PACKEDDECIMAL, ZONEDDECIMAL, BINARY
INT INT, UINT

LONG LONG, ULONG

SHORT SHORT, USHORT

TIME LONG, CHAR

TIMESTAMP LONG, CHAR

XML XML_CLOB

If INTERNALTYPECONVERTER=LONG is specified when either DATE, TIME, or TIMESTAMP is specified
on the DATATYPE parameter, the value is stored on DASD as the number of milliseconds since January
1,1970.

If the DFSMARSH statement is not coded, IMS internally sets the value of the
INTERNALTYPECONVERTER parameter to a default value determined by the value of the DATATYPE
parameter on the field statement.

In most cases, the default value of INTERNALTYPECONVERTER is the same as the value of the
DATATYPE parameter. The following table shows the exceptions to this rule.

Table 10. Default values of INTERNALTYPECONVERTER when DFSMARSH statement not specified

DATATYPE value Default INTERNALTYPECONVERTER value
DATE LONG
DECIMAL(pp,ss) Signed PACKEDDECIMAL
TIME LONG
TIMESTAMP LONG
XML XML_CLOB
ISSIGNED=

Valid only for DATATYPE=DECIMAL.
Valid values are Y or N. The default is Y.

OVERFLOW=
A 1- to 8-character name of a dependent segment that can be used to store any portion of an XML
document that does not fit into the field that is defined to hold the XML document.

The parent of the dependent segment is the segment that contains the XML data field. The name of
the parent segment must be specified on the PARENT parameter of the SEGM statement that defines
the dependent segment.

The OVERFLOW parameter only applies to fields that specify DATATYPE=XML for XML_CLOB data.

130 IMS: System Utilities

PATTERN=
An optional 1- to 50-character field that specifies the pattern to use for the date, time, and timestamp
Java datatypes.

The PATTERN parameter applies only when DATE, TIME, or TIMESTAMP is specified on the DATATYPE
keyword in the FIELD statement and CHAR is specified on the INTERNALTYPECONVERTER keyword in
the DFSMARSH statement. PATTERN is invalid for other datatypes.

Patterns are case sensitive and must be enclosed in single quotation marks.

Except for single quotation marks that are used as delimiters for the keyword value, the value
specified on the PATTERN keyword cannot contain the following characters:

- Single and double quotation marks
« Less than (<) and greater than (>) symbols
« Ampersands (&)

The patterns you can specify are defined by the Java class java.text.SimpleDateFormat. The DBD
Generation utility does not check that the value entered on PATTERN conforms to the patterns defined
by Java.

For example, if you enter the Java format yyyy .MM. dd, the resulting time format is "2013.01.01".
PUREDBCS=Y|N

Specifies the use of the character field as the double byte character set.

Valid only for DATATYPE=CHAR. Valid values are Y or N. The default is Y.

PROPERTIES=
Specifies properties for a user type converter specified on the USERTYPECONVERTER parameter.
These properties are passed to the user type converter.

Valid only when USERTYPECONVERTER is specified.
The names and properties specified on the PROPERTIES keyword are case sensitive.
The following characters are not supported by the PROPERTIES keyword:

- Single and double quotation marks

- Blanks

« Less than (<) and greater than (>) symbols
« Ampersands (&)

The maximum length for a property name is 128 characters. The maximum length for a property value
is also 128 characters.

The format is:
PROPERTIES=(propertyl_name=propertyl_value,property2_name=property2_value)
For example,
PROPERTIES=(DOG=BUTCH, CAT=LUCY)

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment

Chapter 2. Database Description (DBD) Generation utility 131

string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.
« Greater than (>) symbols.
« Ampersands (&).

URL=

An optional 1- to 256-character field for the URL that references the XML schema that describes this
field. For example, URL=MySchema. xsd.

The value specified on the URL keyword cannot contain the following characters:

Single and double quotation marks

Blanks

Less than (<) and greater than (>) symbols
Ampersands (&)

The URL parameter applies only to fields that specify DATATYPE=XML for XML_CLOB data.

USERTYPECONVERTER=

A 1- to 256-character, fully-qualified Java class name of the user provided Java class to be used for
type conversion.

The value specified on the USERTYPECONVERTER keyword cannot contain the following characters:
- Single and double quotation marks

- Blanks

« Less than (<) and greater than (>) symbols

« Ampersands (&)

Mutually exclusive with INTERNALTYPECONVERTER.

For example,

USERTYPECONVERTER=class://com.ibm.ims.dli.types.PackedDateConverter

Examples of the DFSMARSH statement

The following series of examples show some possible uses of the DFSMARSH statement for various
DATATYPE and type converter specifications.

DATATYPE=DATE:

FIELD EXTERNALNAME=XDATE,
BYTES=8,
START=84,
DATATYPE=DATE

DFSMARSH ENCODING=Cp1047,
INTERNALTYPECONVERTER=CHAR,
PATTERN="'MMddyyyy"

DATATYPE=TIME:

FIELD EXTERNALNAME=XTIME,
BYTES=6,
START=92,
DATATYPE=TIME

132 IMS: System Utilities

DFSMARSH ENCODING=Cp1047,
INTERNALTYPECONVERTER=CHAR,
PATTERN="HHmmss'

DATATYPE=TIMESTAMP:

FIELD EXTERNALNAME=XTIMESTAMP,
BYTES=16,
START=84,
DATATYPE=TIMESTAMP
DFSMARSH ENCODING=Cp1047,
INTERNALTYPECONVERTER=CHAR,
PATTERN='MMddyyyyHHmmssEf"

DATATYPE=ZONEDDECIMAL.:

FIELD NAME=ORDPRICE,
BYTES=10,
START=21,
DATATYPE=DECIMAL (10,2)
DFSMARSH INTERNALTYPECONVERTER=ZONEDDECIMAL,
ISSIGNED=Y

DATATYPE=PACKEDDECIMAL.:

FIELD EXTERNALNAME=XPACKEDDEC1,
BYTES=4,
START=60,
DATATYPE=DECIMAL(7,2)
DFSMARSH INTERNALTYPECONVERTER=PACKEDDECIMAL,

ISSIGNED=Y
USERTYPECONVERTER=
FIELD EXTERNALNAME=PACKEDDATEFIELD,
BYTES=5,
START=40,

DATATYPE=DATE
DFSMARSH USERTYPECONVERTER=class://com.ibm.ims.dli.types.PackedDateConverter,
PROPERTIES=(pattern=MMddyyyy,isSigned=false)

Related tasks
Specifying data types for application programs (Database Administration)
Related reference

“FIELD statements” on page 101
The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.

Related information
com.ibm.ims.dli.types Package Javadoc

DFSMAP statements

The DFSMAP statement enables the alternate mapping of fields within a segment.

The DFSMAP statement defines a group of one or more map cases and relates the cases to a control field.
The control field identifies which map case is used in a given segment instance.

The format of the DFSMAP statement for all database types is shown in the following syntax diagram.

DFSMAP statement syntax diagram for all database types

»w— DFSMAP — NAME=map_name — ,DEPENDINGON= field name —»

»d

L REMARKS — = — remarks J L CTLSEGNM — = — ctrl_seg_name J)

»
»

Chapter 2. Database Description (DBD) Generation utility 133

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_cat_db_metadata_def_datatype.htm#ims_cat_db_metadata_def_datatype
https://www.ibm.com/docs/en/ims/latest?topic=adapter-comibmimsdlitypes-package

DFSMAP statement parameter description

CTLSEGNM=
An optional parameter that specifies the NAME of the segment whose key feedback data is used to
determine which map case is used for a given segment instance. The segment specified must be
in the hierarchical path of the current segment for its value to be stored in the IMS catalog. When
the CTLSEGNM parameter is specified, the DEPENDINGON= parameter must specify the name of the
control field that is within the key range of the segment that is specified in CTLSEGNM.

The CTLSEGNM= specifies a name as a 1 to 8-character uppercase alphanumeric string. Each
character must be in the range of A through Z, or 0 through 9, or be the character $, #, @. The

first character cannot be numeric. The same restrictions apply as those for the NAME= parameter of
the SEGM statement. The specified segment must be in the hierarchical path of the current segment.

Note:

« CTLSEGNM cannot be specified for GSAM, MSDB, logical and index databases.

- The CTLSEGNM parameter is ignored if the name of the segment specified is blank or if it is the
name of the current segment.

DEPENDINGON=
The external name of the control field within this segment that contains the value that determines
which map case is used for a given segment instance.

When the CTLSEGNM parameter is also specified, the external name of the control field must be

a field within the key range of the segment specified in CTLSEGNM. Otherwise, the external name

of the control field must be within this segment. When the CTLSEGNM parameter is also specified,
the validation of DEPENDINGON is deferred during DFSMAP processing and is completed after all

the SEGM statements are processed. If the control field does not contain a value that corresponds
to a CASEID in a DFSCASE statement for this map, this map is not used for this segment instance.

If the FIELD statement that defines the control field does not explicitly code the EXTERNALNAME

parameter, specify the value of the NAME parameter in the DEPENDINGON field.

NAME=
A required 1- to 128-character alphanumeric field that defines the name of this map. Blanks are not
supported.

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

134 IMS: System Utilities

Mapping example: DFSMAP and DFSCASE

The following example shows how mapping might be used in the DBD source to define a single segment
that is used to store data about three different types of insurance policy: an auto insurance policy, a
home insurance policy, and a boat insurance policy. Each policy type requires different fields to hold the
information that is unique to that policy type.

In the DBD source, the fields for each policy type are mapped by a different DFSCASE statement. The
three map cases in the example are named AUTOMAP, HOMEMAP, and BOATMAP. The fields that make
up the map defined by a given DFSCASE statement each specify the name of the DFSCASE statement
that they belong to on the CASENAME parameter in their FIELD statement. The DFSCASE statements are
grouped by the DFSMAP statement POLICYMAPS in the segment CUSTOMERPOLICY.

The value specified on the CASEID parameter of each map case uniquely identifies the map case and
serves as the control field value. When a segment instance is first inserted into the database, the ID of
the map case that the segment instance uses is inserted into the control field. In the example, the control
field is named POLICYTYPE. At run time, when an application program retrieves the segment from the
database, the application program must evaluate the control field value to determine the correct mapping
of the fields.

DBD NAME=POLICYDB,
ENCODING=CP1047,
ACCESS=(DEDB) ,
RMNAME= (RMOD3) ,
PASSWD=NO

AREA DD1=PLCYARO1,

DEVICE=3330,
SIZE=(2048),
uUow=(15,10),
ROOT=(10,5),
REMARKS="'AREA NUMBER 1 FOR POLICYDB DATABASE'

SEGM NAME=CUSTOMER,
PARENT=0,
BYTES=(390,20)

FIELD NAME=(CUSTKEY,SEQ,U),

BYTES=12,
START=1,
TYPE=C

SEGM NAME=POLICY,
EXTERNALNAME=CUSTOMERPOLICY,
ENCODING=CP1047,
PARENT=CUSTOMER,
BYTES=(900) ,
TYPE=DIR,
RULES=(LLL,HERE)

OO0O0O0O0 [eXeXe] e Ne] OO0O0O0 O0O0O0

FIELD EXTERNALNAME=POLICYTYPE,
BYTES=4,
START=1,
DATATYPE=CHAR
ok ok
* DFSMAP STATEMENT :
DFSMAP NAME=POLICYMAPS, C
DEPENDINGON=POLICYTYPE

OO0

DFSCASE NAME=AUTOMAP,
CASEID=AUTO,
CASEIDTYPE=C,
MAPNAME=POLICYMAPS,
REMARKS="'DEFINES THE FIELDS OF AN AUTO INSURANCE POLICY'

FIELD EXTERNALNAME=AUTOMAKE,
CASENAME=AUTOMAP,
BYTES=15,

START=5,
DATATYPE=CHAR

FIELD EXTERNALNAME=MODEL ,
CASENAME=AUTOMAP,
BYTES=15,

START=20,
DATATYPE=CHAR

O0O0O0 OO0 OoO0O0O0

Chapter 2. Database Description (DBD) Generation utility 135

FIELD EXTERNALNAME=YEAR,

CASENAME=AUTOMAP,

BYTES=4,

START=35,

DATATYPE=CHAR
B S S S e e T S e
* DFSCASE STATEMENT 2:

DFSCASE NAME=HOMEMAP,

CASEID=HOME,

CASEIDTYPE=C,

MAPNAME=POLICYMAPS,

REMARKS="'DEFINES THE FIELDS OF A HOME INSURANCE POLICY'

FIELD EXTERNALNAME=DWELLING_TYPE,

CASENAME=HOMEMAP,

BYTES=20,

START=5,

DATATYPE=CHAR

FIELD EXTERNALNAME=ROOMS,

CASENAME=HOMEMAP,

BYTES=5,

START=25,

DATATYPE=CHAR

FIELD EXTERNALNAME=SQ_FOOT,

CASENAME=HOMEMAP,

BYTES=6,

START=30,

DATATYPE=CHAR

O0O0O0

OO0 OO0O0 OoO0O0O0 OO0

DFSCASE NAME=BOATMAP,
CASEID=BOAT,
CASEIDTYPE=C,
MAPNAME=POLICYMAPS,
REMARKS="'DEFINES THE FIELDS OF A BOAT INSURANCE POLICY'

FIELD EXTERNALNAME=CLASS,
CASENAME=BOATMAP,
BYTES=10,

START=5,
DATATYPE=CHAR

FIELD EXTERNALNAME=LENGTH,
CASENAME=BOATMAP,
BYTES=6,

START=15,
DATATYPE=CHAR

FIELD EXTERNALNAME=BOATMAKE,
CASENAME=BOATMAP,
BYTES=10,

START=21,
DATATYPE=CHAR

OoO0O0O0 OO0 O0O0O0 OoO0O0O0

DBDGEN
FINISH
END

Related tasks

Defining alternative field maps for a segment (Database Administration)
Related reference

“FIELD statements” on page 101

The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.

“DFSCASE statements” on page 136
The DFSCASE statement defines a map case, which is a set of FIELD statements that together define an
optional, alternative field layout for a given byte range within a segment definition.

DFSCASE statements

The DFSCASE statement defines a map case, which is a set of FIELD statements that together define an
optional, alternative field layout for a given byte range within a segment definition.

Map cases that map the same byte range in a segment are grouped by a DFSMAP statement. The DFSMAP
statement also links the map cases to a separately defined control field in the segment definition.

136 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_cat_db_metadata_def_mapcases.htm#ims_cat_db_metadata_def_mapcases

Each map case has a unique ID. In an instance of the segment, the ID of the map case that is in effect is
stored in the control field when the segment is created.

Unless the IMS universal drivers are used, the field layouts that are defined by the map cases must

be defined to the application programs that access this byte range by a COBOL copybook or other
programming artifact. At the time a segment instance is accessed, the application programs determine
which copybook to use by checking the value of the control field.

When application programs access IMS through the IMS Universal drivers, no additional programming
artifacts are needed to define the field layouts to the application programs.

The format of the DFSCASE statement for all database types is shown in the following syntax diagram.

DFSCASE statement syntax diagram for all database types

X
»— DFSCASE — NAME=case_name — ,CASEID= case /D — ,CASEIDTYPE= —E C l»

»d

»— ,MAPNAME= map_name L J >
REMARKS= remarks

DFSCASE statement parameter description

CASEID
A 1- to 128-byte field that defines a unique identifier for the case.

A segment instance specifies the CASEID value in a user-defined control field when part or all of the
field structure of the segment is mapped by this case.

When CASEIDTYPE=C, the CASEID field can contain alphanumeric characters, _, @, $, and #. Single
quotation marks are supported, but not required. Blanks are not supported.

When CASEIDTYPE=X, the only valid characters in the CASEID parameter are 0-9 and A-F.

The length of the CASEID value must be supported by the length of the user-defined control field. If
CASEIDTYPE=C, the length of the CASEID value must be less than or equal to the value specified on
the BYTES parameter of the control field. If CASEIDTYPE=X, the length of the CASEID value must be
exactly equal to twice the value specified on the BYTES parameter of the control field.

A case ID must be unique within the map that the case belongs to.

CASEIDTYPE
Defines the data type of the value specified in the CASEID parameter. Valid values are C, which
specifies Cp1047 (EBCDIC character encoding) and X, which specifies hexadecimal.

Depending on whether C or X is specified on CASEIDTYPE, the valid length of the CASEID value is
calculated differently. The length is valid when it is consistent with the length specified on the BYTES
parameter of the field referenced by the DEPENDINGON parameter in the DFSMAP statement. For
CASEIDTYPE=C, the length of the CASEID value must be less than or equal to the value specified on
the BYTES parameter. For CASEIDTYPE=X, the length of the CASEID value must be exactly equal to
twice the value specified on the BYTES parameter.

MAPNAME
The name of the map that this case belongs to, as specified on the NAME parameter in the DFSMAP
statement. This field is required.

NAME
A required 1- to 128-character, alphanumeric field that defines the name of this case. Blanks are not
supported.

A case name must be unique within a segment.

Chapter 2. Database Description (DBD) Generation utility 137

REMARKS=
Optional user comments. A 1- to 256-character field.

If your comments contain special characters, such as commas or blank spaces, enclose the full
comment string in single quotation marks.

The value specified on the REMARKS keyword cannot contain the following characters:

- Single quotation marks, except when they are used to enclose the full comment string. If a single
quotation mark is entered before the end of the full comment string, the remainder of the comment
string is truncated. The following examples show correct and incorrect usages of single quotation
marks on the REMARKS keyword:

CORRECT
REMARKS='These remarks apply to the XYZ application'

INCORRECT
REMARKS='These remarks apply to the 'XYZ' application'

« Double quotation marks.
« Less than (<) symbols.

« Greater than (>) symbols.
« Ampersands (&).

Mapping example: DFSMAP and DFSCASE

The following example shows how mapping might be used in the DBD source to define a single segment
that is used to store data about three different types of insurance policy: an auto insurance policy, a
home insurance policy, and a boat insurance policy. Each policy type requires different fields to hold the
information that is unique to that policy type.

In the DBD source, the fields for each policy type are mapped by a different DFSCASE statement. The
three map cases in the example are named AUTOMAP, HOMEMAP, and BOATMAP. The fields that make
up the map defined by a given DFSCASE statement each specify the name of the DFSCASE statement
that they belong to on the CASENAME parameter in their FIELD statement. The DFSCASE statements are
grouped by the DFSMAP statement POLICYMAPS in the segment CUSTOMERPOLICY.

The value specified on the CASEID parameter of each map case uniquely identifies the map case and
serves as the control field value. When a segment instance is first inserted into the database, the ID of
the map case that the segment instance uses is inserted into the control field. In the example, the control
field is named POLICYTYPE. At run time, when an application program retrieves the segment from the
database, the application program must evaluate the control field value to determine the correct mapping
of the fields.

DBD NAME=POLICYDB,
ENCODING=CP1047,
ACCESS=(DEDB) ,
RMNAME=(RMOD3) ,
PASSWD=NO

AREA DD1=PLCYARO1,

DEVICE=3330,
SIZE=(2048),
uUow=(15,10),
ROOT=(10,5),
REMARKS="'AREA NUMBER 1 FOR POLICYDB DATABASE'

SEGM NAME=CUSTOMER,
PARENT=0,
BYTES=(390, 20)

FIELD NAME=(CUSTKEY,SEQ,U),

BYTES=12,
START=1,
TYPE=C

SEGM NAME=POLICY,
EXTERNALNAME=CUSTOMERPOLICY,
ENCODING=CP1047,
PARENT=CUSTOMER,
BYTES=(900) ,
TYPE=DIR,
RULES=(LLL,HERE)

OO0O0O0O0n OO0 e Xe] O0O0O0O0 OO0

138 IMS: System Utilities

* CONTROL FIELD:
B S S S T e T e e

FIELD

EXTERNALNAME=POLICYTYPE,

BYTES=4,
START=1,
DATATYPE=CHAR

[eXeXe]

DFSMAP

NAME=POLICYMAPS,
DEPENDINGON=POLICYTYPE

* DFSCASE STATEMENT 1:
B S S S e e T e e

DFSCASE

FIELD

FIELD

FIELD

NAME=AUTOMAP,
CASEID=AUTO,
CASEIDTYPE=C,
MAPNAME=POLICYMAPS,

REMARKS="'DEFINES THE FIELDS OF AN AUTO INSURANCE POLICY'

EXTERNALNAME=AUTOMAKE,
CASENAME=AUTOMAP,
BYTES=15,

START=5,
DATATYPE=CHAR
EXTERNALNAME=MODEL,
CASENAME=AUTOMAP,
BYTES=15,

START=20,
DATATYPE=CHAR
EXTERNALNAME=YEAR,
CASENAME=AUTOMAP,
BYTES=4,

START=35,
DATATYPE=CHAR

O0O0O0 OoO0O0O0 OO0 O0O0O0

B S S S e e e e e
* DFSCASE STATEMENT 2:

DFSCASE

FIELD

FIELD

FIELD

NAME=HOMEMAP,
CASEID=HOME,
CASEIDTYPE=C,
MAPNAME=POLICYMAPS,

REMARKS="'DEFINES THE FIELDS OF A HOME INSURANCE POLICY'
EXTERNALNAME=DWELLING_TYPE,

CASENAME=HOMEMAP,
BYTES=20,

START=5,
DATATYPE=CHAR
EXTERNALNAME=ROOMS,
CASENAME=HOMEMAP,
BYTES=5,

START=25,
DATATYPE=CHAR
EXTERNALNAME=SQ_FOOT,
CASENAME=HOMEMAP,
BYTES=6,

START=30,
DATATYPE=CHAR

OO0 O0O0O0 oO0O0O0 OO0

DFSCASE

FIELD

FIELD

FIELD

DBDGEN

NAME=BOATMAP,
CASEID=BOAT,
CASEIDTYPE=C,
MAPNAME=POLICYMAPS,

REMARKS="'DEFINES THE FIELDS OF A BOAT INSURANCE POLICY'

EXTERNALNAME=CLASS,
CASENAME=BOATMAP,
BYTES=10,

START=5,
DATATYPE=CHAR
EXTERNALNAME=LENGTH,
CASENAME=BOATMAP,
BYTES=6,

START=15,
DATATYPE=CHAR
EXTERNALNAME=BOATMAKE,
CASENAME=BOATMAP,
BYTES=10,

START=21,
DATATYPE=CHAR

OoO0O0O0 OO0 O0O0O0 OoO0O0O0

Chapter 2. Database Description (DBD) Generation utility 139

FINISH
END

Related tasks
Defining alternative field maps for a segment (Database Administration)
Related reference

“FIELD statements” on page 101
The FIELD statement defines a field within a segment type. Fields are referred to by PSBs when defining
sensitivity to the fields or by an application program in a DL/I call segment search argument.

“DFSMAP statements” on page 133
The DFSMAP statement enables the alternate mapping of fields within a segment.

DBDGEN, FINISH, and END statements

All DBD generation utility control statements must be followed by an END statement.

There are three additional utility statements. Two are required (DBDGEN and END) and one is optional
(FINISH).

The DBDGEN statement indicates the end of DBD generation statements used to define the DBD. This
statement is required. The following example shows the format of the DBDGEN statement for all database
types.

»— DBDGEN >«

The FINISH statement is optional and is retained for compatibility. The following example shows the
format of the FINISH statement for all database types.

E FINISH j

The END statement indicates the end of input statements to the assembler. This statement is required.
The following example shows the format of the END statement for all database types.

»— END >«

Examples of the DBDGEN utility

These examples show how to use the DBDGEN utility for DBD generation for different database types.

An application program through a database PCB can operate on any of the databases previously
described. The value of the DBDNAME= parameter on the database statement should equal the value
of the NAME= parameter on a DBD statement of DBD generation. The SENSEG statements following the
database statements in PSB generation should reference segments defined by SEGM statements in the
named DBD generation.

When a HIDAM database is used by an application program, the value of the DBDNAME= parameter on
the statement should equal the value of the NAME= parameter on the DBD statement for the HIDAM DBD
generation. The LCHILD statement in the HIDAM DBD provides IMS with the relationship to the necessary
INDEX DBD and index database. The INDEX DBD name should not be specified in the DBDNAME=
parameter of a database PCB.

Examples without secondary indexes or logical relationships

The DBD generation examples show the statements that are required to define HSAM, HISAM, HDAM,
HIDAM, primary HIDAM index, GSAM, MSDB, and DEDB databases without secondary indexes or logical
relationships.

Two data structures are shown in the following figure. One represents the hierarchic order of data used
in a payroll inventory data structure, which includes NAME, ADDRESS, and PAYROLL. The other structure

140 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_cat_db_metadata_def_mapcases.htm#ims_cat_db_metadata_def_mapcases

represents the hierarchic order of data used in a skills inventory data structure, which includes SKILL,
NAME, EXPERIENCE, and EDUCATION.

SKILL

NAME NAME

ADDRESS PAYROLL EXPR EDUC

Figure 4. Payroll and skills inventory data structures

HSAM DBD generation example

The following examples show the DBD generation statements that define the skills inventory and payroll
data structures as HSAM databases.

HSAM DBD generation of skills inventory database

DBD

NAME=SKILLINV,ACCESS=HSAM

DATASET DD1=SKILHSAM,DD2=HSAMOUT,BLOCK=1,

SEGM
FIELD
FIELD

SEGM
FIELD

SEGM
FIELD
FIELD

SEGM
FIELD
FIELD

DBDGEN
FINISH

END

RECORD=3000

NAME=SKILL,BYTES=31,FREQ=100, PARENT=0
NAME=TYPE,BYTES=21,START=1, TYPE=C
NAME=STDCODE,BYTES=10,START=22,TYPE=C

NAME=NAME, BYTES=20, FREQ=500, PARENT=SKILL
NAME=STDCLEVL,BYTES=20,START=1,TYPE=C

NAME=EXPR,BYTES=20, FREQ=10, PARENT=NAME
NAME=PREVJOB,BYTES=10,START=1, TYPE=C
NAME=CLASSIF,BYTES=10,START=11,TYPE=C

NAME=EDUC,BYTES=75, FREQ=5, PARENT=NAME
NAME=GRADLEVL,BYTES=10,START=1, TYPE=C
NAME=SCHOOL ,BYTES=65,START=11, TYPE=C

HSAM DBD generation of payroll database

DBD

NAME=PAYROLDB, ACCESS=HSAM

DATASET DD1=PAYROLL,DD2=PAYOUT,BLOCK=1,RECORD=1000,

SEGM

FIELD
FIELD
FIELD

SEGM
FIELD
FIELD

SEGM
FIELD
FIELD

NAME=NAME, BYTES=150, FREQ=1000, PARENT=0
NAME=(EMPLOYEE, SEQ,U) ,BYTES=60, START=1, TYPE=C
NAME=MANNBR,BYTES=15,START=61, TYPE=C
NAME=ADDR,BYTES=75,START=76, TYPE=C

NAME=ADDRESS,BYTES=200, FREQ=2, PARENT=NAME
NAME=HOMEADDR,BYTES=100,START=1, TYPE=C
NAME=COMAILOC,BYTES=100,START=101, TYPE=C

NAME=PAYROLL ,BYTES=100, FREQ=1, PARENT=NAME

NAME=HOURS ,BYTES=15,START=51, TYPE=P
NAME=BASICPAY,BYTES=15,START=1, TYPE=P

Chapter 2. Database Description (DBD) Generation utility 144

DBDGEN
FINISH
END

HISAM DBD generation example

The following examples show the DBD generation statements that define the skills inventory and payroll
data structures as HISAM databases.

HISAM DBD generation of skills inventory SKILLINV database

DBD NAME=SKILLINV,ACCESS=HISAM
DATASET DD1=SKLHISAM,OVFLW=HISAMOVF,

SEGM NAME=SKILL,BYTES=31,FREQ=100
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22, TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500, PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1, TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75, FREQ=5, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HISAM DBD generation of payroll database

DBD NAME=PAYROLDB, ACCESS=HISAM
DATASET DD1=PAYROLL,OVFLW=PAYROLOV,

SEGM NAME=NAME,BYTES=150, FREQ=1000, PARENT=0

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
FIELD NAME=MANNBR,BYTES=15,START=61, TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=ADDRESS,BYTES=200,FREQ=2, PARENT=NAME
FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C
FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1, PARENT=NAME
FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P
FIELD NAME=BASICPAY,BYTES=15,START=1, TYPE=P

DBDGEN
FINISH
END

HDAM DBD generation example

The following examples show the statements required to define the skills inventory data structure as
HDAM databases. The first example defines a database that uses hierarchic pointers, and the second
example defines a database that uses physical child and physical twin pointers. The third example defines
a database that uses the VERSION= and EXIT= parameters.

HDAM DBD generation of skills inventory SKILLINV database with hierarchic pointers

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(DFSHDC40,20,500,6824)
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=H,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME , BYTES=20, PTR=H, PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

142 IMS: System Utilities

SEGM NAME=EXPR,BYTES=20,PTR=H, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HDAM DBD generation of skills inventory database with physical child and physical twin pointers

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(DFSHDC40,20,500,824)
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME , BYTES=20, PTR=T, PARENT=((SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20, PTR=T, PARENT=((NAME, SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC, BYTES=75, PTR=T, PARENT= ((NAME, SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HDAM DBD generation of skills inventory SKILLINV database with EXIT= and VERSION= parameters

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(DFSHDC40,20,500,824) ,VERSION=CCCCCC
DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=A,BYTES=8, PTR=H, PARENT=0, EXIT=(EXITA)
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=B,BYTES=20, PTR=H, PARENT=SKILL, (EXIT=(EXITB, (CASCADE,bKEY))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=C,BYTES=8, PTR=H, PARENT=A, EXIT=((EXITA, PATH), (EXITC))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75, PTR=H, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH
END

HIDAM DBD generation example

A HIDAM database is indexed through the sequence field of its root segment type. In defining the

HIDAM and primary HIDAM index databases, an index relationship is established between the HIDAM
root segment type and the segment type defined in the primary HIDAM index database. The following
examples summarize the statements required to establish the index relationship between the HIDAM root
segment type and the index segment type in the primary HIDAM index database. Only those operands
pertinent to the index relationship are shown.

Primary HIDAM index relationship

HIDAM: INDEX:

DBD NAME=dbdl1,ACCESS=HIDAM DBD NAME=dbd2,ACCESS=INDEX

Chapter 2. Database Description (DBD) Generation utility 143

SEGM NAME=segl,BYTES=, SEGM NAME=seg2,BYTES=

POINTER=
LCHILD NAME=(seg2,dbd2), LCHILD NAME=(segl,dbdl),
PTR=INDX INDEX=£f1ld1
FIELD NAME=(f1ld1,SEQ,U), FIELD NAME=(£f1d2,SEQ,U),
BYTES=,START= BYTES=,START=

The following examples show the statements that define the skills inventory data structure as two HIDAM
databases. The first is defined with hierarchic pointers, and the second is defined with physical child and
physical twin pointers. Since a HIDAM database is indexed on the sequence field of its root segment type,
an INDEX DBD generation is required. The following example shows the statements for the two HIDAM
DBD generations and the index DBD generation.

INDEX DBD generation for HIDAM database SKILLINV

DBD NAME=INDEXDB,ACCESS=INDEX

DATASET DD1=INDXDB1,

SEGM NAME=INDEX,BYTES=21,FREQ=10000

LCHILD NAME=(SKILL,SKILLINV), INDEX=SKILL
FIELD NAME=(INDXSEQ,SEQ,U),BYTES=21,START=1
DBDGEN

FINISH

END

HIDAM DBD generation of skills inventory database with hierarchic pointers

DBD NAME=SKILLINV,ACCESS=HIDAM
DATASET DD1=SKLHIDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=H, PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C
LCHILD NAME=(INDEX, INDEXDB) ,PTR=INDX

SEGM NAME=NAME,BYTES=20,PTR=H, PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=H, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

HIDAM DBD generation of skills inventory SKILLINV database with physical child and physical twin
pointers

DBD NAME=SKILLINV,ACCESS=HIDAM
DATASET DD1=SKLHIDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
LCHILD NAME=(INDEX,INDEXDB) , PTR=INDX

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME , BYTES=20, PTR=T, PARENT=((SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME, SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C
SEGM NAME=EDUC,BYTES=75,PTR=T, PARENT=((NAME, SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

144 IMS: System Utilities

FINISH
END

PHDAM DBD generation example

The following example shows the DBD generation of skills inventory database with physical child and
physical twin pointers for a PHDAM database.

DBD NAME=SKILLINV,ACCESS=(PHDAM,0SAM) ,RMNAME=(DFSHDC40,20,500,824)
SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME , BYTES=20, PTR=T, PARENT=((SKILL,SNGL))

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C
SEGM NAME=EXPR, BYTES=20, PTR=T, PARENT=((NAME, SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC, BYTES=75, PTR=T, PARENT= ((NAME, SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

END

PHIDAM DBD generation example

The following example shows the DBD generation of skills inventory database with physical child and
physical twin pointers for a PHIDAM database. No index base definitions are required.

DBD NAME=SKILLINV,ACCESS=PHIDAM

SEGM NAME=SKILL,BYTES=31,PTR=T, PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME , BYTES=20, PTR=T, PARENT=((SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1, TYPE=C
SEGM NAME=EXPR,BYTES=20,PTR=T, PARENT=((NAME, SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T, PARENT=((NAME, SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

GSAM DBD generation example

The following example shows the DBD generation statements that define input and output data sets for a
GSAM database.

DBD NAME=CARDS, ACCESS=(GSAM, BSAM)

DATASET DD1=ICARDS,DD2=0CARDS, RECFM=F,RECORD=80
DBDGEN

FINISH

END

MSDB DBD generation examples

The following examples show the DBD generation statements necessary to define the three types of main
storage database DBDs.

Chapter 2. Database Description (DBD) Generation utility 145

DBD generation for a nonterminal-related MSDB without LTERM keys

DBD NAME=MSDBLMO2, ACCESS=MSDB

DATASET REL=NO

SEGM NAME=LDM, BYTES=4

FIELD NAME=(FIELDSEQ,SEQ,U),BYTES=1,START=1, TYPE=X
DBDGEN

FINISH

END

DBD generation for a nonterminal-related MSDB with LTERM keys

DBD NAME=MSDBLMO4 , ACCESS=MSDB

DATASET REL=(TERM,FIELDLDM)

SEGM NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDCO1,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDHO1,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDFO1,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDCO3,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDPO1,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDPO2,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDPO3,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDHO2,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDFO2,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDHO3,BYTES=2,START=50,TYPE=H
DBDGEN

FINISH

END

DBD generation for a fixed terminal-related MSDB

DBD NAME=MSDBLMO5,ACCESS=MSDB

DATASET REL=(FIXED,FIELDLDM)

SEGM NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDCO1,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDHO1,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDFO1,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDCO3,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDPO1,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDPO2,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDPO3,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDHO2,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDFO2,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDHO3,BYTES=2,START=50,TYPE=H
DBDGEN

FINISH

END

DBD generation for a dynamic terminal-related MSDB

DBD NAME=MSDBLMO6 , ACCESS=MSDB

DATASET REL=(DYNAMIC,FIELDLDM)

SEGM NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDXO01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDCO1,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDHO1,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDFO1,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDCO3,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDPO1,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDPO2,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDPO3,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDHO2,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDFO2,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDHO3,BYTES=2,START=50,TYPE=H
DBDGEN

FINISH

END

146 IMS: System Utilities

Data entry database DBD generations example

The following example shows the DBD generation statements necessary to define a data entry database

DBD.

DEDB1
AREAO

AREA1

AREA2

AREA3

AREA4

AREAS5

AREA6

AREA7

ROOTSE
ROOTLF
SDSEG

SDFLD
DDSEG

DDFLD1
DDFLD2

DBD
AREA

AREA

AREA

AREA

AREA

AREA

AREA

AREA

G SEGM
LD FIELD
SEGM

FIELD
SEGM

FIELD
FIELD
DBDGEN
FINISH
END

NAME=DEDBOOO1,ACCESS=DEDB, RMNAME=RMOD1

DD1=DB1AREAQ,
SIZE=1024,
ROOT=(10,5),
UowW=(15,10)
DD1=DB1AREA1,
SIZE=1024,
ROOT=(10,5),
Uow=(15,10)
DD1=DB1AREA2,
SIZE=1024,
ROOT=(10,5),
Uow=(15,10)
DD1=DB1AREA3,
SIZE=4096,
ROOT=(10,5),
UowW=(15,10)
DD1=DB1AREA4,

MODEL=1,SIZE=2048,

ROOT=(10,5),
Uow=(15,10)
DD1=DB1AREA5,
SIZE=4096,
ROOT=(10,5),
Uow=(15,10)
DD1=DB1AREA6,
SIZE=1024,
ROOT=(10,5),
UowW=(15,10)
DD1=DB1AREA7,
SIZE=2048,
ROOT=(10,5),
Uow=(15,10)

AREA ©

5 UOW'S/AREA
5 A.P.'S + 10
AREA 1

5 UOW'S/AREA
5 A.P.'S + 10
AREA 2

5 UOW'S/AREA
5 A.P.'S + 10
AREA 3

5 UOW'S/AREA
5 A.P.'S + 10
AREA 4

5 UOW'S/AREA
5 A.P.'S + 10
AREA 5

5 UOW'S/AREA
5 A.P.'S + 10
AREA 6

5 UOW'S/AREA
5 A.P.'S + 10
AREA 7

5 UOW'S/AREA
5 A.P.'S + 10

DEP.

DEP.

DEP.

DEP.

DEP.

DEP.

DEP.

DEP.

NAME=ROOTSEG1, PARENT=0,BYTES=(300,50)
NAME=(ROOTKEY1,SEQ,U) ,BYTES=8, START=3, TYPE=C
NAME=SDSEGNM1, PARENT=RO0TSEG1,BYTES=(300,50),

TYPE=SEQ

NAME=SDSCFLD1,BYTES=10,START=3,TYPE=C
NAME=DDSEGNM1, PARENT=ROOTSEG1,
BYTES=(40,15) ,TYPE=DIR

NAME=(DD1FLD1,SEQ,U) ,BYTES=4,START=6
NAME=DD1FLD2,BYTES=5,START=10, TYPE=P

DBD generation of DEDB subset pointers example

The following example shows the DBD generation statements necessary to define a DEDB with subset

pointers.

DBD NAME=DEDBDB, ACCESS=DEDB, RMNAME=DBFHD0O40
DD1=DEDBDD, SIZE=1024,

AREA

SEGM
FIELD
SEGM
FIELD
FIELD
SEGM
FIELD
SEGM
FIELD
SEGM
FIELD
DBDGEN
FINISH
END

ROOT=(10,5) ,U0W=(15,10)
NAME=A,BYTES=(48,27) ,PARENT=0

NAME=(A1,SEQ,U),BYTES=10,START=3, TYPE=C
NAME=B,BYTES=(24,11) ,PARENT=((A,SNGL)) , TYPE=DIR,SSPTR=5
NAME=(B1,SEQ,U) ,BYTES=5,START=3, TYPE=C

NAME=B2,BYTES=5,START=10, TYPE=C
NAME=C,BYTES=(34,32) ,PARENT=((B,DBLE)) ,RULES=(,HERE) , TYPE=DIR

NAME=(C1,SEQ,U),BYTES=20,START=3, TYPE=C
NAME=D,BYTES=(52,33) ,PARENT=((A,DBLE)), TYPE=DIR,SSPTR=3
NAME=(D1,SEQ,U) ,BYTES=2,START=3, TYPE=C

NAME=B,BYTES=(52,33) ,PARENT=((A,DBLE)) ,RULES=(,FIRST), TYPE=DIR

NAME=(B1,SEQ,U) ,BYTES=2,START=3, TYPE=C

OFLOW.

OFLOW.

OFLOW.

OFLOW.

OFLOW.

OFLOW.

OFLOW.

OFLOW.

Note: SSPTR=n, where n indicates the number of subset pointers

Chapter 2. Database Description (DBD) Generation utility 147

Examples with logical relationships

You can define three types of logical relationships: unidirectional, bidirectional physically paired, and
bidirectional virtually paired.

The following figure shows the three types of logical relationships that can be defined in IMS databases.
The tables that follow the figure define the statements that are required to define each type of
relationship. Only the operands pertinent to the relationship are shown, and it is assumed that each
type of relationship is defined between segments in two databases named DBD1 and DBD2.

DED1 DBD2 Logical Databases
Unidirectional
SEGA —* SEG3 SEGA
SEG2 SEG2 | BEG3
Bidirectional
Phigzically
Paired
+— And —»
SEG1 -— SEG3 SEGA SEG3
S5EG2 L SEG4 SEG2 | SEG3 SEGY SEG1
Virtually
Fairad
— And—"
SEG1 » SEG3 SEG1 SEG3
SEG2 *+—— SEG4 SEG2 | SEG3 SEG4 | SEE1

Figure 5. Comparison of unidirectional, physically paired bidirectional, and virtually paired bidirectional
logical relationships

The following tables show statements that are required to define each type of relationship. Only the
operands pertinent to the relationship are shown, and it is assumed that each type of relationship is
defined between segments in two databases named DBD1 and DBD2.

148 IMS: System Utilities

Table 11. Statements that are required to define unidirectional logical relationships

Statements for DBD1 Statements for DBD2
SEGM NAME=SEG1,PARENT= SEGM NAME=SEG3,PARENT=
,BYTES=, FREQ= ,BYTES=, FREQ=, POINTER=
,POINTER=,RULES= ,RULES=
SEGM NAME=SEG2 LCHILD NAME=(SEG2,DBD1)

,PARENT=((SEG1,)
,SEG3,PHYSICAL,DBD2))1

,BYTES=, FREQ=
,POINTER=(LPARNT)?
,RULES=

Note:

1. Specify symbolic or direct logical parent pointer. The direct-access pointer can be specified only
when the logical parent is in an HDAM, HIDAM, PHDAM or HIDAM database.

Table 12. Statements that are required to define physically paired bidirectional logical relationships

Statements for DBD1 Statements for DBD2
SEGM NAME=SEG1,PARENT= SEGM NAME=SEG3,PARENT=
,BYTES=,FREQ, = ,BYTES=, FREQ=
,POINTER=,RULES= ,POINTER=,RULES=
LCHILD NAME=(SEG4,DBD2) LCHILD NAME=(SEG2,DBD1)
,PAIR=SEG2 ,PAIR=SEG4
SEGM NAME=SEG2 SEGM NAME=SEG4
,PARENT=((SEG1,) ,PARENT=((SEG3,)
, (SEG3,PHYSICAL,DBD2))1 , (SEG1,PHYSICAL,DBD1))?!
,BYTES=, FREQ= ,BYTES=, FREQ=
,POINTER=(LPARNT,PAIRED)? ,POINTER=(LPARNT,PAIRED)!
,RULES= ,RULES=
Note:

1. Specify symbolic or direct logical parent pointer. The direct-access pointer can be specified only
when the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.

Table 13. Statements that are required to define virtually paired bidirectional logical relationship

Statements for DBD1 Statements for DBD2
SEGM NAME=SEG1,PARENT= SEGM NAME=SEG3,PARENT=
,BYTES=, FREQ= ,BYTES=, FREQ=
,POINTER=,RULES= ,POINTER=,RULES=

SEGM NAME=SEG4
, PARENT=SEG3
,POINTER=PAIRED
, SOURCE=((SEG2,DATA,DBD1))

Chapter 2. Database Description (DBD) Generation utility 149

Table 13. Statements that are required to define virtually paired bidirectional logical relationship

(continued)
Statements for DBD1 Statements for DBD2
SEGM NAME=SEG2 LCHILD NAME=(SEG2,DBD1)

,PARENT=((SEG1,) ,POINTER=SNGL3
, (SEG3, PHYSICAL,DBD2))? ,PAIR=SEG4
,BYTES=, FREQ= ,RULES=3
,POINTER=(LTWIN, LPARNT)2
,RULES=

Notes:

1. Specify symbolic or direct logical parent pointer. The direct-access pointer can be specified only
when the logical parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.
2. Specify LTWIN or LTWINBWD for logical twin pointers.

3. Specify DNGL or DBLE for logical child pointers. The LCHILD RULES= parameter is used when either
no sequence field or a nonunique sequence field has been defined for the virtual logical child or when
the virtual logical child segment does not exist.

In the Virtually Paired Bidirectional Logical Relationship area of the following figure, a HISAM database
can participate in a virtually paired logical relationship only when the real logical child is in an HDAM,
HIDAM, PHDAM, or PHIDAM database and its logical parent is in the HISAM database.

The following figure illustrates how logical relationships and logical databases are defined. Part 1 depicts
the physical data structures of a payroll database and a skills inventory database. Part 2 depicts the
logical relationship between the physical data structures, NAMEMAST (in the Payroll database) and
SKILNAME (in the Skills inventory database). Part 3 depicts the logical databases (SKILL and NAME) that
can be defined as a result of the logical relationships. The new databases contain segments from both the
NAMEMAST structure and the SKILNAME structure. Examples of DBD generation statements follow the
figure.

150 IMS: System Utilities

Part 1: Physical Databases

Payroll Database
MNAMEMAST

!—k—l

ADDRESS PAYROLL

Part 2: Logical Relationship

Payroll Database

Skillz Inventory Database

SKILMAST

SKILNAME

J

EXPR EDUC

Skills Inventory Database

MAMEMAST ‘ SKILMAST
.
MAMESKIL ADDRESS PAYROLL SKILMAME
EXFR EDUC
Part 3: Logical Databases
SKILL MNAME
| | |
MNAME ADDRESS PaYROLL SKILL
| | | |
ADDRESS PAYROLL EXPR EDUC EXPR EDUC

Figure 6. Logical relationship between physical databases and the resulting logical databases that can be

defined

DBD generation statements examples

The following example shows the DBD generation statements necessary to define:

« The payroll and skills inventory data structures depicted in Part 2 of the preceding figure as a HIDAM

and HDAM database with a virtually paired

bidirectional logical relationship between the two databases

« The logical data structures depicted in Part 3 of the preceding figure as logical databases

DBD NAME=PAYROLDB, ACCESS=HIDAM

DATASET DD1=PAYHIDAM,BLOCK=4096,SCAN=0

SEGM NAME=NAMEMAST , PTR=TWINBWD, RULES=(
BYTES=150

VW),

Chapter 2. Database Description (DBD) Generation utility 151

LCHILD NAME=(INDEX,INDEXDB) , PTR=INDX

LCHILD NAME=(SKILNAME,SKILLINV),b PAIR=NAMESKIL,PTR=DBLE

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C

FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=NAMESKIL,PARENT=NAMEMAST,PTR=PAIRED, X
SOURCE=((SKILNAME, DATA,SKILLINV))

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDLEVL,BYTES=20,START=22,TYPE=C

SEGM NAME=ADDRESS, BYTES=200, PARENT=NAMEMAST

FIELD NAME=(HOMEADDR,SEQ,U),BYTES=100,START=1, TYPE=C

FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL ,BYTES=100, PARENT=NAMEMAST

FIELD NAME=(BASICPAY,SEQ,U),BYTES=15,START=1,TYPE=P

FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P

DBDGEN

FINISH

END

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(DFSHDC40,20,500,6824)

DATASET DD1=SKILHDAM,BLOCK=4096,SCAN=0

SEGM NAME=SKILMAST,BYTES=31,PTR=TWINBWD

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=SKILNAME,
PARENT= ((SKILMAST,DBLE) , (NAMEMAST,P,PAYROLDB)),
BYTES=80, PTR=(LPARNT, LTWINBWD, TWINBWD) ,
RULES=(VVV)

FIELD NAME=(EMPLOYEE,SEQ,U),START=1,BYTES=60,TYPE=C

FIELD NAME=(STDLEVL),BYTES=20,START=61, TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T, X
PARENT= ((SKILNAME, SNGL))

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T, X
PARENT=((SKILNAME, SNGL))

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

X X X

DBD NAME=LOGICDB,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=SKILL,SOURCE=((SKILMAST, , SKILLINV))

SEGM NAME=NAME, PARENT=SKILL, X
SOURCE=((SKILNAME, ,SKILLINV), (NAMEMAST, ,PAYROLDB))

SEGM NAME=ADDRESS, PARENT=NAME, SOURCE=((ADDRESS, ,PAYROLDB))

SEGM NAME=PAYROLL , PARENT=NAME, SOURCE=((PAYROLL, ,PAYROLDB))

SEGM NAME=EXPR,PARENT=NAME, SOURCE=((EXPR, ,SKILLINV))

SEGM NAME=EDUC, PARENT=NAME, SOURCE=((EDUC, ,SKILLINV))

DBDGEN

FINISH

END

BD NAME=LOGIC1,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=NAME, SOURCE= ((NAMEMAST, , PAYROLDB))

SEGM NAME=ADDRESS, PARENT=NAME, SOURCE=((ADDRESS, ,PAYROLDB))

SEGM NAME=PAYROLL , PARENT=NAME, SOURCE=((PAYROLL, ,PAYROLDB))

SEGM NAME=SKILL,PARENT=NAME, X
SOURCE=((NAMESKIL, ,PAYROLDB) , (SKILMAST, ,SKILLINV))

SEGM NAME=EXPR, SOURCE=((EXPR, ,SKILLINV)), PARENT=SKILL

SEGM NAME=EDUC, SOURCE=((EDUC, ,SKILLINV)),PARENT=SKILL

DBDGEN

FINISH

END

Related concepts
Creating logical relationships (Database Administration)

Examples with secondary indexes

These examples show the statements that are required to establish a secondary index relationship
between a segment type in an indexed database and a segment type in a secondary index database.

The statements required when the index target and index source segment types are the same are shown
in the following table.

152 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_logrelation.htm#ims_logrelation

Table 14. Same index source and target segment types

Indexed DBD Index DBD

DBD NAME=DBD1,ACCESS= DBD NAME=DBD2,ACCESS=INDEX

SEGM-NAME1:SEG1,PARENT: SEGM.NAME:SEG3,PARENT:O,BYTES:

,BYTES
FIELD NAME=(FLD2,SEQ,...),BYTES= FIELD NAME=(FLD2,SEQ,...),BYTES=
FIELD NAME=FLD1,BYTES= ,START=1

,START

LCHILD NAME=(SEG3,DBD2), LCHILD NAME=(SEG1,DBD1),
POINTER?=INDX INDEX=XDNAME , POINTER2=SNGL

XDFLD NAME=XDNAME, SRCH=FLD1

Notes:

1. The index target segment type can be a root or a dependent segment type; it must not be either a
logical child segment type or a dependent of a logical child segment type. The index source segment
type must not be a logical child segment type.

2. The example is shown with direct pointers for the index pointer segment types in the index DBD.
If symbolic pointing is desired, POINTER=SYMB should be specified on both LCHILD statements;
symbolic pointing is required when the index target segment type is in a HISAM database.

In the following table, the index target and index source segment types are different. In both this table
and the preceding one, only those operands pertinent to the secondary index relationships are shown.

Table 15. Different index source and target segment types

Indexed DBD Index DBD

DBD NAME=DBD1,ACCESS=

SEGM.NAME1=SEG1,BYTES=,PARENT=

LCHILD NAME=(SEG4,DBD2),
POINTER2=INDX

XDFLD NAME=XDNAME, SEGMENT=SEG3,
SRCH=FLD3, ...

DBD NAME=DBD2,ACCESS=INDEX

SEGM NAME=SEG4 , PARENT=0,BYTES=

FIELD NAME=(FLD4,SEQ,...)
,START=1,BYTES=

LCHILD NAME=(SEG1,DBD1),
INDEX=XDNAME , POINTER2=SNGL

SEGM NAME=SEG2,BYTES=
, PARENT=SEG1

SEGM NAME1=SEG3
,PARENT=SEG2

FIELD NAME=FLD3,BYTES=
,START=

Notes:

1. The index target segment type can be a root or a dependent segment type. It must not be either a
logical child segment type or a dependent of a logical child segment type. The index source segment
type must not be a logical child segment type.

2. The example is shown with direct pointers for the index pointer segment types in the index DBD.
If symbolic pointing is desired, POINTER=SYMB should be specified on both LCHILD statements;
symbolic pointing is required when the index target segment type is in a HISAM database.

Chapter 2. Database Description (DBD) Generation utility 153

Example DBDs for full-function secondary index databases

The following figure shows a database, DTAL, that is indexed by two secondary index databases. The first
secondary index, X1, uses the same segment for its index target segment and index source segment; the
second secondary index, X2, has an index target segment that is different from its index source segment.

DBEDMNAME =DTA1 DEDMAME = X1

Target/Source Segment

X1SEG

F 3

DA

DB oc B Target Segment

‘ ‘ DEDMNAME=X2

DD DE «— X2SEG
Source
Segment

Figure 7. Database indexed by two secondary indexes
The following figure shows the DBD generation statement that defines the indexed database.

DBD NAME=DTA1,ACCESS=HDAM, RMNAME=(DFSHDC40, 20, 500,824)
DATASET DD1=D1

SEGM NAME=DA, PARENT=0, BYTES=15

FIELD NAME=(DAF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X1SEG,X1),PTR=INDX

XDFLD NAME=DAF1X,SRCH=DAF1

SEGM NAME=DB, PARENT=DA, BYTES=20
FIELD NAME=(DBF1,SEQ),BYTES=5,START=1
SEGM NAME=DC, PARENT=DA,BYTES=20
FIELD NAME=(DCF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X2SEG,X2),PTR=SYMB

XDFLD NAME=DCF1X,SRCH=DEF1, SEGMENT=DE
SEGM NAME=DD, PARENT=DC, BYTES=25
FIELD NAME=(DDF1,SEQ),BYTES=5,START=1
SEGM NAME=DE, PARENT=DC, BYTES=25
FIELD NAME=(DEF1,SEQ),BYTES=5,START=1
DBDGEN

FINISH

END

The following figure shows the DBD generation statement that defines the secondary index database X1.

DBD NAME=X1,ACCESS=INDEX

DATASET DD1=X1P

SEGM NAME=X1SEG, BYTES=5, PARENT=0

FIELD NAME=(X1F1,SEQ,U),START=1,BYTES=5
LCHILD NAME=(DA,DTA1),INDEX=DAF1X,POINTER=SNGL
DBDGEN

FINISH

END

154 IMS: System Utilities

The following figure shows the DBD generation statement that defines the secondary index database X2.

DBD NAME=X2,ACCESS=INDEX

DATASET DD1=X2P

SEGM NAME=X2SEG,BYTES=5, PARENT=0

FIELD NAME=(X2F1,SEQ,U),START=1,BYTES=5
LCHILD NAME=(DC,DTA1), INDEX=DCF1X,POINTER=SYMB
DBDGEN

FINISH

END

Example DBDs for Fast Path secondary index databases

The following example shows a HISAM secondary index database DBD using unique key pointer
segments.

DBDX DBD NAME=NAMESXDB, ACCESS= (INDEX, VSAM) , FPINDEX=YES
DATASET DD1=NAMEKSDS
SEGM NAME=NAMEXSEG, PARENT=0,BYTES=15

FIELD NAME= (NAMESKEY, SEQ,U) ,BYTES=10, START=1
LCHILD NAME=(COURSE , EDUCDB) , INDEX=NAMEINDX, PTR=SYMB
DBDGEN

FINISH

END

The following example shows a HISAM secondary index database DBD using non-unique key pointer
segments.

DBDX DBD NAME=NAMESXDB, ACCESS=(INDEX, VSAM) , FPINDEX=YES
DATASET DD1=NAMEKSDS, OVFLW=NAMEESDS
SEGM NAME=NAMEXSEG, PARENT=0,BYTES=15

FIELD NAME=(NAMESKEY, SEQ,M) ,BYTES=10, START=1
LCHILD NAME= (COURSE , EDUCDB) , INDEX=NAMEINDX, PTR=SYMB
DBDGEN

FINISH

END

The following example shows a SHISAM secondary index database DBD using unique key pointer
segments.

DBDX DBD NAME=NAMESXDB, ACCESS=(INDEX,SHISAM) , FPINDEX=YES
DATASET DD1=NAMEKSDS
SEGM NAME=NAMEXSEG, PARENT=0,BYTES=15

FIELD NAME=(NAMESKEY, SEQ,U) ,BYTES=10, START=1
LCHILD NAME=(COURSE, EDUCDB) , INDEX=NAMEINDX, PTR=SYMB
DBDGEN

FINISH

END

The following three examples illustrate DEDB DBD definitions with secondary indexes, multiple secondary
index segments, and a user partition defined.

The following example shows a primary DEDB database DBD with secondary indexing defined.

There are three secondary index databases defined for primary DEDB EDUCDB database: NAMESXDB,
CLASSXDB, and INSTSXDB secondary index databases. The target segment for NAMESXDB secondary
index is a root segment. The target segment, COURSE segment, for NAMESXDB is the same as the source
segment. The target segments for CLASSXDB and INSTSXDB secondary indexes are not a root segment.
The target segment, CLASS segment, for CLASSXDB is the same as the source segment. The target
segment, INSTRUCT segment, for INSTSXDB is not the same as the source segment, COURSE segment.

DBD1 DBD NAME=EDUCDB, ACCESS=DEDB, RMNAME=RMOD3
AREA NAME=EDAREA1,SIZE=1024,UOW=(100,10) ,R00T=(236,36)

SEGM NAME=COURSE, PARENT=0,BYTES=100
FIELD NAME=(COURNO, SEQ,U) ,BYTES=5,START=1
FIELD NAME=COURNAME, BYTES=10,START=15

LCHILD NAME=(NAMEXSEG,NAMESXDB) ,PTR=SYMB

Chapter 2. Database Description (DBD) Generation utility 155

XDFLD

SEGM
FIELD
FIELD

NAME=NAMEINDX, SRCH=COURNAME

NAME=CLASS,BYTES=50, PARENT=COURSE
NAME=(CLASSNO, SEQ, U) ,BYTES=4,START=7
NAME=CLASNAME,BYTES=10,START=15

LCHILD NAME=(CLASXSEG,CLASSXDB) ,PTR=SYMB

XDFLD

NAME=CLASINDX, SRCH=CLASNAME

LCHILD NAME=(INSTXSEG,INSTSXDB),PTR=SYMB

XDFLD

SEGM

FIELD
FIELD
FIELD

SEGM

FIELD
FIELD
FIELD
FIELD

DBDGEN
FINISH
END

The following example shows a DEDB database DBD with multiple secondary index segments defined.
The LCHILD statements define the same secondary index segment name (NAMEXSEG segment in the
secondary database) and the same secondary index database name (NAMESXDB database). The XDFLD
statements define the same sequence field name (NAMEINDX) for the secondary index segments with the
different search fields (COURNAME and COURSECT) from the same source segment (COURSE segment).

The target segment of COURSE can be located using either a secondary index of course name
(COURNAME) or a secondary index of course section number (COURSECT).

The search key lengths of the multiple secondary index segments (COURNAME and COURSECT) must be

NAME=INSTINDX,SEGMENT=INSTRUCT,SRCH=INSTNAME

NAME=INSTRUCT,BYTES=50, PARENT=CLASS
NAME=(INSTNO,SEQ,U) ,BYTES=6,START=1
NAME=INSTPHNO,BYTES=10,START=11
NAME=INSTNAME,BYTES=20,START=21

NAME=STUDENT ,BYTES=50, PARENT=CLASS
NAME=(STUDNO, SEQ,U) ,BYTES=6,START=1
NAME=STUDPHNO,BYTES=10,START=11
NAME=STUDNAME , BYTES=20,START=21
NAME=ENRLDATE,BYTES=6,START=41

identical. In this example, they are both 10 bytes.

DBD1 DBD
AREA

SEGM

FIELD
FIELD
FIELD

LCHILD
XDFLD
LCHILD
XDFLD

SEGM
FIELD
FIELD

SEGM

FIELD
FIELD
FIELD

SEGM
FIELD
FIELD
FIELD
FIELD
DBDGEN
FINISH
END

The following example shows a primary DEDB database DBD with secondary indexing defined using user
partitioning for a HISAM secondary index database or a SHISAM secondary index database. There are two
user partitions specified on the LCHILD statement: NAMSXDB1 and NAMSXDB2.

NAME=EDUCMDB, ACCESS=DEDB, RMNAME=RMOD3
NAME=EDMAREA1,SIZE=1024,U0W=(100,10) ,R00T=(236,36)

NAME=COURSE, PARENT=0,BYTES=100
NAME=(COURNO, SEQ,U) ,BYTES=5, START=1
NAME=COURNAME , BYTES=10,START=15
NAME=COURSECT,BYTES=10,START=25

NAME= (NAMEXSEG , NAMESXDB) , PTR=SYMB, MULTISEG=YES
NAME=NAMEINDX, SRCH=COURNAME
NAME= (NAMEXSEG , NAMESXDB) , PTR=SYMB, MULTISEG=YES
NAME=NAMEINDX, SRCH=COURSECT

NAME=CLASS,BYTES=50, PARENT=COURSE
NAME=(CLASSNO, SEQ, U) ,BYTES=4,START=7
NAME=CLASNAME,BYTES=10,START=15

NAME=INSTRUCT,BYTES=50, PARENT=CLASS
NAME=(INSTNO,SEQ,U) ,BYTES=6,START=1
NAME=INSTPHNO,BYTES=10,START=11
NAME=INSTNAME,BYTES=20,START=21

NAME=STUDENT ,BYTES=50, PARENT=CLASS
NAME=(STUDNO, SEQ,U) ,BYTES=6,START=1
NAME=STUDPHNO,BYTES=10,START=11
NAME=STUDNAME, BYTES=20,START=21
NAME=ENRLDATE,BYTES=6,START=41

156 IMS: System Utilities

PSELRTN=DBFPSEOQQ is the user partition selection exit. The user partition selection option is
PSELOPT=SNGL which indicates only the selected user partition database is used to access the primary
DEDB database in the user partition group. When subsequent qualified GN calls with no SSA using the
PCB with the PROCSEQD= parameter are issued, a GB status code is returned to an application to indicate
end of database after the last pointer segment in the selected user partition is used to access the
segment in the primary DEDB database.

DBD1 DBD NAME=EDUCUDB, ACCESS=DEDB, RMNAME=RMOD3
AREA NAME=EDUAREA1,SIZE=1024,U0W=(100,10) ,R00T=(236,36)

SEGM NAME=COURSE , PARENT=0,BYTES=100
FIELD NAME=(COURNO,SEQ,U),BYTES=5,START=1
FIELD NAME=COURNAME,BYTES=10,START=15

LCHILD NAME=(NAMEXSEG, (NAMESXB1,NAMSXDB2)) ,PTR=SYMB
XDFLD NAME=XNAME, SRCH=COURNAME , PSELRTN=DBFPSEOO, PSELOPT=SNGL

SEGM NAME=CLASS,BYTES=50, PARENT=COURSE
FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7
FIELD NAME=CLASNAME,BYTES=10,START=15

SEGM NAME=INSTRUCT,BYTES=50, PARENT=CLASS
FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
FIELD NAME=INSTPHNO,BYTES=10,START=11
FIELD NAME=INSTNAME,BYTES=20,START=21

SEGM NAME=STUDENT ,BYTES=50, PARENT=CLASS
FIELD NAME=(STUDNO,SEQ,U),BYTES=6,START=1
FIELD NAME=STUDPHNO,BYTES=10,START=11
FIELD NAME=STUDNAME,BYTES=20,START=21
FIELD NAME=ENRLDATE,BYTES=6,START=41

DBDGEN
FINISH
END

Related concepts
Creating secondary indexes (Database Administration)

Running the DBDGEN procedure

Running the DBDGEN procedure is a two step assemble and bind procedure that produces database
definition blocks. The procedure is built during SMP/E processing and named DFSDBDGN in the
ADFSPROC and SDFSPROC data sets. Use the DFSPROCB JCL to rename DFSDBDGN to DBDGEN.

Recommendations

Currently, no recommendations are documented for the DBD Generation utility.

JCL for the DBDGEN utility
The following example shows the JCL for the DBDGEN utility.

// PROC MBR=TEMPNAME, SOUT=A,RGN=0M, SYS2=,
// NODE1=IMS,

// NODE2=IMS

//C EXEC PGM=ASMA90, REGION=&RGN,

// PARM=(0BJECT, NODECK, NODBCS,

// 'SIZE (MAX,ABOVE) ')

//SYSLIB DD DSN=&NODE2..&SYS2.SDFSMAC, DISP=SHR
//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),

// SPACE=(80, (160,100) ,RLSE),

// DCB=(BLKSIZE=80,RECFM=F, LRECL=80)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,

// SPACE=(121, (300,300) ,RLSE, ,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// SPACE=(CYL, (10,5))

//L EXEC PGM=IEWL,PARM='XREF,LIST',

// COND=(0,LT,C),REGION=4M

//SYSLIN DD DSN=x.C.SYSLIN,DISP=(OLD,DELETE)

Chapter 2. Database Description (DBD) Generation utility 157

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_secindexes.htm#ims_secindexes

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,

// SPACE=(121, (90,90) ,RLSE)

//SYSLMOD DD DISP=SHR,

// DSN=&NODEZ1. .&SYS2.DBDLIB(&MBR)

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

// SPACE=(1024, (100,10) ,RLSE) ,DISP=(,DELETE)

Procedure to invoke the DBDGEN

To process a request for a DBDGEN, the DBD generation control statements must be created and
appended to the JCL (shown in the following figure) which invokes the DBDGEN procedure.

//DBDGEN JOB
// EXEC DBDGEN,MBR=
//C.SYSIN DD =

DBD
DATASET
SEGM
FIELD DBD generation control statements
LCHILD
XDFLD
DBDGEN
FINISH
END
/*

JCL parameters

MBR=
Is the name of the DBD to be generated. This name should be the same as the first name specified
for the NAME= keyword on the DBD statement. The first database name becomes the DBD member
name and, in the case of a shared secondary index, the additional names are added as aliases. When
a database PCB relates to this DBD generation, one of the names specified in the NAME= keyword
on the DBD statement must be the name used in the DBDNAME= keyword on the database PCB
statement. Except for a shared secondary index, the name used in the DBDNAME= keyword on the
database PCB statement must be the same as the name used in the MBR= keyword value.

RGN=
Specifies the region size for this execution. The default is 256 KB.

SOUT=
Specifies the class assigned to SYSOUT DD statements.

SYS2=
Specifies an optional second level dsname qualifier for those data sets which are designated as
"Optional Replicate" in an XRF complex. When specified, the parameter must be enclosed in quotes
and must include a trailing period; for example, SYS2='IMSA..

Step C
Step C is the assembly step. The following DD statement is needed for this step.

SYSIN DD
Defines the input data sets to step C. These DD statements must be provided when invoking the
procedure.

Step L
Step L is the bind step.

Example: This step can be run using AMODE=31, RMODE=24 instead of the default AMODE=24,
RMODE=24 by adding AMODE=31 to the bind EXEC statement PARM list as shown as follows:

//L EXEC PGM=IEWL,PARM='XREF,LIST,AMODE=31",
// COND=(0Q,LT,C),REGION=120K

158 IMS: System Utilities

If you do not specify different values for AMODE or RMODE, the default values are in effect. You must
always run the bind step with RMODE=24. The following DD statement is needed for this step.

IMS.DBDLIB DD
Defines an output partitioned data set, IMS.DBDLIB, for the binder.

Chapter 2. Database Description (DBD) Generation utility 159

160 IMS: System Utilities

Chapter 3. MFS Device Characteristics Table utility
(DFSUTBO00)

Use the Message Format Service Device Characteristics Table (MFSDCT) utility (DFSUTBOO) to define
new screen sizes in a descriptor member of the IMS.PROCLIB library without performing an IMS system
definition. These new screen size definitions are added to the screen sizes that were previously defined.

The MFSDCT (DFSUTBOQO) utility procedure consists of the following steps:
1. The DFSUTBOO program is executed to initiate several functions. The DFSUTBOO program:

« Reads one or two descriptor members from PROCLIB and uses only the new device descriptors as
input.

« Builds DCTENTRY statements for each device descriptor.

« Optionally loads an existing device characteristics table from JOBLIB/STEPLIB data sets (usually
from the IMS.SDFSRESL library) and then builds DCENTRY statements for each DCT entry.

« Invokes the assembler, passing the DCTENTRY statements and the DCTBLD and MFSINIT macros as
input.

« Readies the output from the assembler as an updated or new device characteristics table and
as a new set of default MFS format definitions. (This output is split into separate files for later
processing.)

. The assembler is invoked to assemble the new device characteristics table.
. The binder is invoked to bind the new device characteristics table into the IMS.SDFSRESL.
. Phase 1 of the MFS Language utility generates new default MFS format control blocks.

. Phase 2 of the MFS Language utility puts the new default MFS format control blocks into the
IMS.FORMAT library.

Subsections:

o b WON

« “Restrictions” on page 161

« “Prerequisites” on page 161

- “Requirements” on page 161

« “Recommendations” on page 162

« “JCL specifications” on page 162

« “Return codes” on page 163

Restrictions

The following restrictions apply to this utility:

« The utility ignores all other descriptors while reading the one or two descriptor members from PROCLIB.
« At least one device descriptor must be specified or the utility terminates.

Prerequisites

Currently, no prerequisites are documented for the DFSUTBOO utility.

Requirements

To run the DFSUTBOO utility you must satisfy MFS device description format requirements.

© Copyright IBM Corp. 1974, 2020 161

MFS device descriptors are used by the MFS Device Characteristics Table utility to update screen size in
the DCT and generate new MFS default formats without system definition.

Recommendations

Currently, no recommendations are documented for the DFSUTBOO utility.

JCL specifications

The MFSDCT procedure requires the procedure statement, the EXEC statement, DD statements, and MFS
device descriptions.

Procedure statement

The procedure statement must be in the form shown in the following example.

PROC RGN=4M,SOUT=A,SYS2=, PXREF=NOXREF,
PCOMP=NOCOMP , PSUBS=NOSUBS , PDTAG=NODIAG,
COMPR=NOCOMPRESS, COMPR2=COMPRESS,
LN=55, SN=8, DEVCHAR=0, COMPR3=NOCOMPREND,
DIRUPDT=UPDATE,DCTSUF=,
DSCTSUF=,DSCMSUF=, FMTMAST=N

In addition to the optional keyword parameters, you might need to specify the following parameters
depending on the other parameters you specify. (x is the alphanumeric suffix character that you are
appending to the member name.)

DCTSUF=x
Specifies the suffix character to be appended to DFSUDTO. The name DFSUDTOx identifies the device
characteristics table to which new definitions are added. This suffix character corresponds to the
value specified in the SUFFIX= keyword of the IMSGEN macro. If a suffix character is not specified, a
completely new device characteristics table is built from just the device descriptors.

DSCTSUF=x
Specifies the suffix character to be appended to DFSDSCT. The name DFSDSCTx identifies a descriptor
member. This suffix character corresponds to the value specified in the IMS procedure DSCT=
keyword. This parameter is required if DSCMSUF= is not specified.

DSCMSUF=x
Specifies the suffix character to be appended to DFSDSCM. The name DFSDSCMx identifies a

descriptor member. This suffix character corresponds to the value specified in the SUFFIX= keyword
of the IMSGEN macro. This parameter is required if DSCTSUF= is not specified.

FMTMAST=Y/N
Specifies whether (Y) or not (N) the IMS-provided support for MFS is to be used on the master
terminal.

EXEC statement

The EXEC statement determines that a device characteristics table is created. It also specifies the name
for the desired descriptor member and the name of the updated or new device characteristics table. Each
of the five steps in this procedure names a different program for execution.

The following figure shows the five steps of the MFSDCT (DFSUTBOO) utility.

//S1 EXEC PGM=DFSUTBOO, REGION=&RGN,

// PARM=('DCTSUF=&DCTSUF, DSCTSUF=&DSCTSUF '
// ' DSCMSUF=&DSCMSUF , DEVCHAR=&DEVCHAR ")
//S2 EXEC PGM=ASMA90, REGION=&RGN,

// PARM=('OBJECT,NODECK,NOLIST',

// COND=(0,LT)"

162 IMS: System Utilities

wn
w

EXEC PGM=IEWL,

PARM=('SIZE=880K,64K) ,NCAL,LET,REUS,XREF,LIST',
REGION=&RGN,

COND=(0,LT)

EXEC PGM=DFSUPAAO,REGION=&RGN,
PARM=(&PXREF , &PCOMP , &PSUBS , &PDIAG, &COMPR, ;
"LINECNT=&LN, STOPRC=&SN, DEVCHAR=&DEVCHAR") ,
COND=(0,LT)

EXEC PGM=DFSUNUBO,REGION=&RGN,

PARM= (&COMPR2 , &COMPR3, &DIRUPDT, ;
'DEVCHAR=&DEVCHAR") ,COND=((0O,LT,S1),
(0,LT,S2),(0,LT,S3),(8,LT,S4))

(%
IS

— e e e e N e
~— e e e N e
[72)
o1

DD statements

The following ddnames are used in step 1 of the MFSDCT procedure.

DCT
Defines the temporary data set for the updated or new device characteristics table as output from the
assembler with the ddname SYSLIN (step 2) and as input to the binder with ddname DCT (step 3).

DCTIN
Defines a temporary data set for the device characteristics table as input to the assembler (step 2).

DCTLNK
Defines the temporary data set for the bind control statements for step 3.

DEFLTS
Defines the temporary data set for the default MFS format definitions for MFS Language utility input
(step 4).

PROCLIB
Defines the libraries containing the descriptor members DFSDSCMx and DFSDSCTx.

STEPLIB
Defines the libraries containing the program DFSUTBOO and the device characteristics table specified
in the DCTSUF= parameter.

SYSIN
Defines the temporary file containing the generated DCENTRY statements.

SYSLIN
Defines the temporary data set for the updated or new device characteristics table as output from the
assembler (step 2) and as input to the binder with ddname DCT (step 3).

SYSLIB
Defines the libraries containing IMS and z/OS macros.

SYSPRINT
Defines the data set for all of the printed output from step 1, including error messages and output
from steps 2 and 3.

SYSPUNCH
Defines the temporary file containing the object module output from the assembler. The output is the
device characteristics table, followed immediately by the default MFS format definitions.

SYSUT1
Defines an assembler and binder work data set.

SYSLMOD
Defines the IMS.SDFSRESL data set to contain the new or modified device characteristics table.

Return codes

Return codes are based on the error message.

Chapter 3. MFS Device Characteristics Table utility (DFSUTB00) 163

Running the DFSUTBOO utility

You can invoke the MFS Device Characteristics Table utility by running the Message Format Service Device
Characteristics Table (MFSDCT) procedure.

Parameters

You can specify the following execution parameters in the MFSDCT procedure:

- NODE1
- NODE2

« NODE3: specifies the high-level qualifier of the IMS data sets, which corresponds to the third node
name specified in the NODE parameter of the IMSGEN macro.

NODEZ and NODE?2 are described in Parameter descriptions for IMS procedures (System Definition)

Message Format Service Device Characteristics Table procedure

STEPLIB
SYSLIB

— e e N N N N N e N N NN NN
~— e N N N N N N N NN
wn
=

//PROCLIB
//SYSIN
i

//SYSPUNCH

//SYSUTL
//SYSPRINT
/1
//SYSUDUMP
//DCTIN

/1
//DEFLTS
/1
//DCTLNK
i

/1

/152

/1

//
//SYSLIB

//
//SYSLIN
//

~
~

//
//SYSPRINT

//
//SYSUT1
//

PROC RGN=4M,SOUT=A,SYS2=, PXREF=NOXREF,
PCOMP=NOCOMP, PSUBS=NOSUBS , PDIAG=NODIAG,
COMPR=NOCOMPRESS, COMPR2=COMPRESS,
LN=55,SN=8, DEVCHAR=0, COMPR3=NOCOMPREND,
DIRUPDT=UPDATE,DCTSUF=,

DSCTSUF=, DSCMSUF=, FMTMAST=N,
NODE1=IMS,
NODE2=IMS,
NODE3=IMS

EXEC PGM=DFSUTBO®,REGION=&RGN,

PARM= (' DCTSUF=&DCTSUF, DSCTSUF=&DSCTSUF ',

' DSCMSUF=&DSCMSUF , DEVCHAR=&DEVCHAR'

'FMTMAST=&FMTMAST ")

DD DSN=&NODE2. .&SYS2.SDFSRESL,DISP=SHR

DD DSN=&NODE3. .ADFSMAC,DISP=SHR

DD DSN=SYS1.MACLIB,DISP=SHR

DD DSN=SYS1.MODGEN,DISP=SHR

DD DSN=SYS1.SDFSMAC,DISP=SHR

DD DSN=&NODE2. .&SYS2.PROCLIB,DISP=SHR

DD DSN=&&SYSIN,UNIT=SYSDA,

SPACE=(CYL, (1,1)),DCB=BLKSIZE=800

DD DSN=&&SYSPUNCH,UNIT=SYSDA,

SPACE=(CYL, (1,1)),DCB=BLKSIZE=800

DD UNIT=SYSDA,SPACE=(CYL, (1,1))

DD SYSOUT=&SOUT,

DCB=(RECFM=FBA, LRECL=133, BLKSIZE=1330)

DD SYSOUT=&SOUT

DD DSN=&&DCTIN,DISP=(NEW,PASS),

UNIT=SYSDA,SPACE=(CYL, (1,1))

DD DSN=&&DEFLTS,DISP=(NEW,PASS),

UNIT=SYSDA, SPACE=(CYL, (1,1))

DD DSN=&&DCTLNK,DISP=(NEW,PASS),

UNIT=SYSDA,SPACE=(TRK, (1,1)),

DCB=BLKSIZE=800

EXEC PGM=ASMA90,REGION=& RGN,
PARM="'0BJECT,NODECK,NOLIST',
COND=(0,LT)

DD DSN=&NODE3. .ADFSMAC,DISP=SHR

DD DSN=SYS1.MACLIB,DISP=SHR

DD DSN=SYS1.MODGEN,DISP=SHR

DD DSN=&&DCT,DISP=(NEW,PASS)

UNIT=SYSDA,SPACE=(CYL, (1,1)),

DCB=BLKSIZE=800<

DD SYSOUT=&SOUT,

DCB=(BLKSIZE=605),

SPACE= (605, (100,50) ,RLSE, ,ROUND)

DD UNIT=SYSDA,DISP=(,DELETE),

SPACE=(CYL, (15,15))

DD DSN=&&DCTIN,DISP=(OLD,DELETE)

EXEC PGM=IEWL,
PARM=('SIZE=(880K,64K)',NCAL,LET,REUS,
XREF,LIST),

REGION=&RGN,
COND=(0,LT)
DD SYSOUT=&SOUT,
DCB=(RECFM=FBA, LRECL=121,BLKSIZE=605),

164 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions

/ SPACE=(605, (10,10) ,RLSE, ,ROUND)
//SYSLMOD DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA, SEP=(SYSLMOD,SYSPUNCH)),

// SPACE=(CYL, (10,1))

//SYSLIN DD DSN=&&DCTLNK,DISP=(SHR,DELETE)
//DCT DD DSN=&&DCT,DISP=(SHR,DELETE)

//54 EXEC PGM=DFSUPAAO,REGION=&RGN,

// PARM=(&PXREF , &PCOMP , &PSUBS, &PDIAG, ;
// &COMPR, ' LINECNT=&LN, STOPRC=&SN ",

// 'DEVCHAR=&DEVCHAR"') ,COND=(0,LT)

//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//*SYSLIB - USER OPTION

//SYSIN DD DSN=&&DEFLTS,DISP=(OLD,DELETE)
//REFIN DD DSN=&NODE1..&SYS2.REFERAL,DISP=0LD
//REFOUT DD DSN=&NODE1..&SYS2.REFERAL,DISP=0LD
//REFRD DD DSN=&NODE1..&SYS2.REFERAL,DISP=0LD
//SYSTEXT DD DSN=&&TXTPASS,UNIT=SYSDA,

// SPACE=(CYL, (1,1)),DCB=BLKSIZE=800
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//DUMMY DD DISP=SHR,

// DSN=&NODE2. .&SYS2.PROCLIB(REFCPY)
//UTPRINT DD SYSOUT=&SOUT

//SYSPRINT DD SYSOUT=&SOUT,

// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT

//SEQBLKS DD DSN=&&BLKS,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(CYL, (1,1))

//S5 EXEC PGM=DFSUNUBO,REGION=&RGN,

// PARM= (&COMPR2, &COMPR3, &DIRUPDT, ;

// 'DEVCHAR=&DEVCHAR") ,COND=((0O,LT,S1),
// (0,LT,52),(0,LT,S3),(8,LT,S4))
//STEPLIB DD DSN=&NODE2..&SYS2.SDFSRESL,DISP=SHR
//SEQBLKS DD DSN=&&BLKS,DISP=(0LD,DELETE)
//UTPRINT DD SYSOUT=&SOUT,

// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=1330)
//SYSUDUMP DD SYSOUT=&SOUT

//FORMAT DD DSN=&NODE1..&SYS2.FORMAT,DISP=SHR
//DUMMY DD DISP=SHR,

// DSN=&NODE2. .&SYS2.PROCLIB(FMTCPY)
//SYSPRINT DD SYSOUT=&SOUT

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

Chapter 3. MFS Device Characteristics Table utility (DFSUTB00) 165

166 IMS: System Utilities

Chapter 4. MFS Language utility (DFSUPAAOQ)

Use the MFS Language utility (DFSUPAADO) to create and store the Message Format Service (MFS) control
blocks.

The intermediate text block (ITB) form of the control blocks is placed in the IMS.REFERAL library. The
control blocks are placed in the IMS.FORMAT library for use during normal IMS operation.

Definition: One format and all the messages that refer to it in their SOR= operand make up a format set.

The MFS Language utility has three modes of operation: standard, batch, and test. In all three modes,
the utility is executed offline, accepts the same control statements, and produces the same kinds of ITBs
and control blocks. The modes differ in their use of the MFS libraries. Accordingly, they use different
procedures.

In standard mode, ITBs written in IMS.REFERAL are converted to control blocks and placed in the staging
library, IMS.FORMAT, by the MFSUTL procedure. Because the control blocks are placed in the staging
library and not the active library, the standard mode can run concurrently with the online IMS control
region.

Batch mode differs from standard mode, in that the MFSBTCH1 procedure places the created control
blocks in a special library, IMS.MFSBATCH, for later transfer by the MFSBTCH2 procedure (in another job)
to the staging library, IMS.FORMAT.

In test mode, the MFSTEST procedure creates control blocks and places them in a separate
IMS.TFORMAT library. The control blocks can be tested without interfering with online operation and
can operate concurrently with the online IMS control region.

SMP/E processing generates the following procedures:

MFSUTL
A two-step standard mode execution procedure of the MFS Language utility for creating MFS online
control blocks and placing these blocks into the IMS.FORMAT library.

MFSBTCH1
A one-step batch mode execution procedure of the MFS Language utility for creating and
accumulating MFS online blocks.

MFSBTCH2
A one-step batch mode execution procedure of the MFS Language utility for placing the accumulated
MFS online control blocks (from MFSBTCH1) into the IMS.FORMAT library.

MFSBACK
A two-step execution procedure to back up the MFS libraries. If the optional MFSTEST facility is used,
MFSBACK contains an additional step to back up the test library.

MFSREST
A two-step execution procedure to restore the MFS libraries. If the optional MFSTEST facility is used,
MFSREST contains an additional step to restore the test library.

MFSRVC
A one-step execution procedure for maintaining the MFS libraries.

If MFSTEST mode is selected during system definition, an additional procedure is generated:

MFSTEST
A two-step test mode execution procedure of the MFS Language utility for creating MFS online blocks
and placing them into the IMS.TFORMAT library.

In addition to the procedures for creating new or replacement control blocks, the MFS Language utility
includes MFSBACK and MFSREST procedures for backup and restore operations in MFS libraries.

Delete and listing operations are performed by the service utility.

Subsections:

© Copyright IBM Corp. 1974, 2020 167

« “Restrictions” on page 168

» “Prerequisites” on page 168

« “Requirements” on page 168

« “Recommendations” on page 168

« “JCL specifications” on page 168

Restrictions

Do not execute the MFSTEST procedure concurrently with itself or any other program or procedure that
utilizes the MFS libraries. To test the control blocks in IMS.TFORMAT, the terminal operator enters the /
TEST MFS command. Then, test control blocks from IMS.TFORMAT (as well as online control blocks from
the active format library, if necessary) are read into a buffer for test operation. After successful testing,
the control blocks can be placed in the staging IMS.FORMAT library by recompiling the source statements
using the MFSUTL procedure.

Prerequisites

Currently, no prerequisites are documented for the DFSUPAAO utility.

Requirements

Currently, no requirements are documented for the DFSUPAAO utility.

Recommendations

Currently, no recommendations are documented for the DFSUPAAO utility.

JCL specifications

The DFSUPAAQO utility requires an EXEC statement and DD statements for the MFSUTL, MFSBTCH1, and
MFSTEST procedures.

When Step 1 (S1) executes (in the MFSUTL, MFSBTCH1, and MFSTEST procedures), the following
parameters can be specified in the PARM keyword of the EXEC statement.

PXREF= NOXREF | XREF
Specifies whether (XREF) or not (NOXREF) a sorted cross reference listing should be provided. The
default value is NOXREF. A sorted cross reference listing includes a list of all labels and related
references.

PCOMP= NOCOMP | COMP
Specifies whether (COMP or COMPOSITE) or not (NOCOMP) the composite or final version of the
statement, after error recovery or substitution has modified it, is printed. The default value is
NOCOMP. The composite statement reflects syntactic assumptions made during error recovery.
Semantic assumptions do not appear in the composite statement but are reflected in the intermediate
text blocks. If the repetitive generation function for MFLD/DFLD statements is used, COMP also
causes the generated statements to be printed; NOCOMP suppresses this printing.

PSUBS= NOSUBS | SUBS
Specifies whether (SUBS or SUBSTITUTE) or not (NOSUBS) the substitution variable and its equated
value are printed when the substitution variable is encountered in the operand field of a statement.
The default value is NOSUBS.

168 IMS: System Utilities

PDIAG= NODIAG | DIAG
Specifies whether (DIAG or DIAGNOSTIC) or not (NODIAG) the XREF, COMP, and SUBS options should
all be set on. In addition, diagnostic information is printed. The default value is NODIAG, which has no
effect on the XREF, COMP, and SUBS options but suppresses printing of the diagnostic information.

COMPR= NOCOMPRESS | COMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.REFERAL library is to be compressed
before new ITBs are added. The default value is NOCOMPRESS.

LN=55 | nn
Specifies how many lines per page should be printed. The default value is 55.

SN=08 | nn
Specifies the severity code compare value. MSG, FMT, and TABLE blocks whose error severity equals
or exceeds this value are not written to the IMS.REFERAL library. The default value is 08.

DEVCHAR=0 | x
Specifies the alphanumeric suffix character (x) to be appended to DFSUDTO. The name DFSUDTO
identifies the desired device characteristics table. This suffix character (x) corresponds to the value
specified in the SUFFIX= keyword of the IMSGEN macro. The default is zero (0).

In the execution of the MFSRVC procedure, one parameter can be specified. The DEVCHAR=0 or x

parameter specifies the alphanumeric suffix character (x) to be used for the device characteristics

table, when no suffix is specified in the LIST control statement parameter DEVCHAR. The default is
zero.

In the execution of Step 2 (52) in the MFSUTL and MFSBTCH2 procedures, three parameters can be
specified in the EXEC statement's PARM keyword:

COMPR2= COMPRESS | NOCOMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.FORMAT library is to be compressed
before new control blocks are added. The default value is COMPRESS.

COMPR3= COMPREND | NOCOMPREND
Specifies whether (COMPREND) or not (NOCOMPREND) the data set with the ddname of FORMAT is
compressed after all format blocks have been added/replaced and the index directory ($$IMSDIR)
has been updated.

DIRUPDT= UPDATE | NOUPDATE
Specifies whether (UPDATE) or not (NOUPDATE) the special index directory ($$IMSDIR) is
automatically updated after a block has been deleted from a format library. You can bypass the
$$IMSDIR update by specifying NOUPDATE. The default is UPDATE.

In the execution of Step 2 (52) in the MFSTEST procedure, the PARM='TEST' parameter must be specified.

Other EXEC statement parameters that can be specified are:

RGN=
Specifies the region size for this execution. The default is 360K.

SOUT=
Specifies the SYSOUT class. The default is A.

SNODE=
Specifies the node that can be assigned to the MFS utility data set name. The default value is IMS.

SOR=
Specifies the library name that can be assigned to the MFS utility library for SYSIN or SYSLIB. The
default value is NOLIB.

MBR=
Specifies the member name that can be assigned to the MFS utility member for SYSIN. The default is
NOMBR.

EXEC statement

EXEC statement parameters supported by the MFS Language utility have variable compilation control
functions.

Chapter 4. MFS Language utility (DFSUPAAQ) 169

The format of the EXEC statement is:

/S1 EXEC PGM=DFSUPAAO,REGION=&RGN,

/ PARM=(&PXREF , &PCOMP , &PSUBS, &PDIAG,
/ &COMPR, ' LINECNT=&LN, STOPRC=&SN ",

/ 'DEVCHAR=&DEVCHAR")

~

Parameters can be specified on the EXEC statement for the preprocessor and phase 1 to:
« Control the printed output

« Compress the reference library (IMS.REFERAL)

« Request diagnostic information

Indicate which MFS device characteristics table is to be used

 Prevent control blocks with a specified level of error from being written in IMS.REFERAL

Parameters can also be specified on the EXEC statement for phase 2 to specify whether IMS.FORMAT
and IMS.REFERAL should be compressed and whether $$IMSDIR should be automatically updated after
deletions.

The DEVCHAR parameter specifies the suffix of the MFS device characteristics table to be used. The
device characteristics table is accessed only if DEV TYPE=3270-An (where nis 1 to 15) is coded as input
to the MFS Language utility.

The EXEC statement parameters supported by the MFS Language utility have variable compilation control
functions. The parameters that can be specified are:

NOXREF | XREF
Specifies whether (XREF) or not (NOXREF) a sorted cross-reference listing should be provided. A
sorted cross-reference listing includes a list of all the labels and related references. The default is
NOXREF.

NOCOMP | COMP
Specifies whether (COMP or COMPOSITE) or not (NOCOMP) the composite or final version of the
statement, after error recovery or substitution has modified it, will be printed. A composite statement
reflects syntactic assumptions made during error recovery. Semantic assumptions do not appear in
composite statements but are reflected in the intermediate text blocks. The default is NOCOMP.

NOSUBS | SUBS
Specifies whether (SUBS or SUBSTITUTE) or not (NOSUBS) any statement containing a substitution
variable (EQU operand) is printed. The default is NOSUBS.

NODIAG | DIAG
Specifies whether (DIAG or DIAGNOSTIC) or not (NODIAG) the XREF, COMP, and SUBS options should
be set on and diagnostic information be printed. The default is NODIAG, which has no effect on the
setting of the XREF, COMP, and SUBS options but suppresses printing of the diagnostic information.

NOCOMPRESS | COMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.REFERAL library is to be compressed
before new ITBs are added. The default is NOCOMPRESS.

DIRUPDT= UPDATE | NOUPDATE
Specifies whether (UPDATE) or not (NOUPDATE) the special index directory ($$IMSDIR) will be
automatically updated after one or more blocks have been deleted from a format library. You can
bypass the $$IMSDIR update by specifying NOUPDATE. The default is UPDATE.

LINECNT=nn
Specifies how many lines per page should be printed. The default is 55.

STOPRC=nn
Specifies the severity code compare value. MSG, FMT, and TABLE blocks whose error severity equals
or exceeds this value will not be written to the IMS.REFERAL library. The default is 08.

170 IMS: System Utilities

DEVCHAR=n | x
Specifies the alphanumeric suffix character (x) used as the final character of the name of the device
characteristics table DFSUDTOx loaded when DEV TYPE=3270-An is encountered. The default is zero
(DFSUDTO00).

The definition statements are described in the sequence shown, with the DO and ENDDO compilation
statements where they would normally be coded—before and after the MFLD or DFLD statements. The
compilation statement formats are sequenced according to related function (if any)—ALPHA; COPY; EQU
and RESCAN (equate processing); STACK and UNSTACK (stacking SYSIN/SYSLIB records); TITLE, PRINT,
SPACE, and EJECT (SYSPRINT listing control); and END.

Estimating MFSUTL and MFSTEST region parameters

The following steps help you estimate the main storage requirements that you should specify in the RGN=
parameter of the EXEC statement invoking the MFSUTL and MFSTEST procedures.

1. Calculate statement base count. For the input to the MFS Language utility, determine the largest
(number of statements) device format to be processed and the largest message descriptor related to
the format. Add the total number of statements contained in these two control blocks to obtain the
statement base count.

For the processing of a specific user-supplied MSG or FMT ITB, the utility reprocesses all related MSG
or FMT ITBs saved from the IMS.REFERAL data set to ensure compatible linkage between all related
online blocks. These reprocessed ITBs must be analyzed as well for the process of obtaining the
statement base count.

2. Estimate Region Requirements. Multiply the statement base count by 214 and add 300000 to the
result. Round the resulting value to the next highest multiple of 2048. The result is an estimate of the
main storage requirements which should be specified in the RGN= parameter of the EXEC statement
invoking the MFSUTL and MFSTEST procedures.

Complex formats with a large number of literal DFLD statements in relation to the statement base
count can exceed the estimate.

DD statements

The data set names used in the MFSUTL, MFSBTCH1, MFSBTCH2, and MFSTEST procedures fit
installation needs. The ddnames used and the data sets they refer to are:

REFIN
REFOUT
REFRD
Refers to the MFS reference library, except when used in the MFSTEST procedure. In MFSTEST, REFIN
and REFRD refer to the MFS reference library; REFOUT is a temporary data set.
FORMAT
Refers to the MFS control block library. In MFSTEST, this ddname refers to the MFS test control block
library.
SYSLIB
Refers to an optional user library from which input can be copied.
SYSIN
Refers to the input data set, which can be a sequential data set or a member of a partitioned data set.
DUMMY
Refers to the IMS procedure library, which contains control statements used to compress the MFS
reference and control block libraries.
SYSUT3
SYSUT4
Are ddnames for data sets used during the data set compression as work data sets.

DUMMY, SYSUT3, and SYSUT4 can all be omitted if neither the MFS reference library nor the MFS control
block library is to be compressed.

Chapter 4. MFS Language utility (DFSUPAAOQ) 171

UTPRINT
Is used for messages during the compression of the MFR reference library, and is used for MFS error
and status messages during MFS Language utility Phase 2 processing.

The following ddnames refer to data sets used in the MFSRVC procedure. The data set names can be
altered to fit installation needs.

REFIN
Refers to the MFS reference library.

FORMAT
Refers to the MFS control block library.

SYSIN
Refers to the input data set, which can be a sequential data set or a member of a partitioned data set.

SYSSNAP
Refers to a data set that is used to receive the output from a SNAP macro if certain severe errors are
detected.

SYSPRINT
Refers to the destination of the output. If output is to be sent to a data set (instead of SYSOUT=), use
DISP=MOD for the data set.

Related concepts

MFS Device Characteristics table (Application Programming APIs)

Utility control statements and syntax rules

The control statements used by the MFS Language utility are divided into two major categories: definition
statements and compilation statements.

The control statements used by the MFS Language utility are divided into two major categories:

 Definition statements are used to define message formats, device formats, partition sets, and operator
control tables.

- Compilation statements are those used to control the compilation and SYSPRINT listings of the
definition statements.

Use the definition and compilation control statements to identify a particular function performed by the
utility and to specify various options.

The definition and compilation control functions are:
« SYSPRINT LISTING CONTROL

The following parameters are provided to format the compilation listing: XREF, SUBS, COMP, DIAG, and
LINECNT.

« SYSIN and SYSLIB RECORD STACKING and UNSTACKING

Control statements are provided to allow one or more SYSIN or SYSLIB records to be processed and
kept in processor storage for reuse later in the compilation. These statements are an alternative to the
COPY facility for groups of statements that are repeated.

MFLD and DFLD statements can be repetitively generated if preceded by a DO statement and followed
by an ENDDO statement. Repetitive DFLD generation supports increments to line and column position
information.

» ALPHA CHARACTER GENERATION

The ALPHA statement allows specification of additions to the set of characters as alphabetic.
- COPY

The COPY statement allows members of partitioned data sets to be copied into the input stream of the
utility preprocessor.

The control statements are written in assembler-like language with the following standard format:

172 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_mfsdevchartable.htm#ims_mfsdevchartable

Control statement syntax for the MFS Language utility
label operation operand comments

label
Identifies the statement; if it is shown as optional, it can be omitted. When included, the name must
begin in the first position of the statement (column 1) and must be followed by one or more blanks.
It can contain from one to eight alphanumeric characters (one to six, for the FMT label), the first of
which must be alphabetic.

operation
Identifies the type of control statement. It normally begins in column 10 and must be preceded and
followed by one or more blanks.

operand
Is made up of one or more parameters, which can be positional or keyword parameters. A positional
parameter in MFS control statements always appears in the first position of the operand, normally
starting in column 16. The position of a keyword parameter is not important. The parameters within
one operand are separated by commas. In the syntactical description of the control statements,
parameters preceded by commas are thus identified as keyword parameters. The operand field itself
must be preceded and followed by one or more blanks.

comments
Can be written in a utility control statement, but they must be separated from the last parameter of
the operand field by one or more blanks. (If the statement does not include an operand, the comment
should be separated from the statement by at least one blank.) A comment line begins with an
asterisk in column 1.

Continuation is accomplished by entering a nonblank character in column 72. If the current line is a
comment, then the continuation line can begin in any column.

Other considerations are as follows:

« There is no limit on the number of continuation lines.

There is no limit on the number of characters in the operand field. Individual operand items cannot
exceed 256 characters, excluding trailing and embedded second quote characters.

If a nonstandard character is detected in a literal, a severity 4 warning message is issued. The
nonstandard character is retained in the literal.

If the current line is a control statement, the continuation line must begin in column 16.
« Asingle ampersand is needed to generate one ampersand character in the literal.

In addition to the definition and compiler statement specifications, several parameters can be specified in
the EXEC statement PARM keyword to control the current compilation for the preprocessor and phase 1;
one parameter can be specified for phase 2.

The five special rules that follow use actual MFS code as examples.

1. If you code a statement such that an equal sign or a left parenthesis immediately precedes a comma,
you can omit the comma.

,FTAB=(,FORCE) could be coded as ,FTAB=(FORCE)

2. If you code a statement such that an equal sigh immediately precedes a single item enclosed in
parentheses, you can omit the parentheses.

,FTAB=(,FORCE) could be coded as ,FTAB=,FORCE
3. You can apply both Rule 1 and Rule 2, in either order, to a single item.
,FTAB=(,FORCE) could be coded as ,FTAB=FORCE

4. Under no condition can you specify a keyword without specifying at least one parameter immediately
after that keyword.

Neither ,FTAB= nor ,FTAB=,LDEL="**' is permitted.

Chapter 4. MFS Language utility (DFSUPAAQ) 173

5. Blanks are required between labels and statement type names, and between statement type names
and their parameters; they are not permitted elsewhere unless explicitly represented by the symbol b.

DEV ,PAGE is correct, but DEV,PAGE and ,FTAB= (,MIX) are incorrect.

Syntax errors

The MFS Language utility attempts to recover from syntax errors in source statements. No guarantee
exists for the correctness of the assumptions made in the recovery, and these assumptions can differ in
different releases of IMS. Assumptions made during recovery are based on (1) what is expected when the
incorrect item is encountered; (2) what could appear to the right of the item preceding the incorrect item;
and (3) what could appear to the left of the incorrect item.

During the process of error recovery, the following notation can be used in the diagnostic messages:

’
Indicates that the end of the source statement was encountered. The position marker points to the
position immediately following the last source item scanned.

L

Refers to a literal operand item.
Vv

Refers to an identifier operand item (alphabetic character optionally followed by alphanumeric
characters).

$1%
Refers to a numeric operand item.

AS
Refers to an alphanumeric operand item (numeric character optionally followed by alphanumeric
characters).

D
Refers to a delimiter operand item.

Most error recovery messages have a severity code of 4, indicating a warning level error. When an item is
deleted, or the syntax scan is aborted, the statement cannot be validly processed and a severity code of 8
is generated.

Invalid sequence of statements

The language utility preprocessor routines that process MSG, FMT, PDB, or TABLE definition statements
are organized hierarchically. A routine for a given level processes a statement at that level, reads the next
statement, then determines which routine will next receive control.

If the statement just read is the next lower level statement (for example, a DIV statement following a DEV
statement), the next lower level routine (for example, the DIV statement processor) is called.

If the statement just read is not the next lower level statement, control can be passed to one of the
following three routines:

« The next lower level routine to assume the missing statement (for example, the DIV processor if a DEV
statement is followed by a DPAGE statement)

« The same level routine if the statement just read is of the same level as the processor (for example, a
series of DFLD statements)

- The next higher level routine (the calling routine) if the statement just read is not the same or the
next lower level (for example, a DEV statement following a DFLD statement, an invalid statement, or a
statement out of sequence)

Thus, if the hierarchic structure of a MSG, FMT, PDB, or TABLE definition is invalid or a statement operator
is misspelled, case (3) will result in control being returned to successively higher level routines. At the
highest level, only a FMT, MSG, TABLE, PDB, or END statement will be accepted by the preprocessor.

174 IMS: System Utilities

Therefore, all statements before the next FMT, PDB, MSG, TABLE or END statement will be flushed (that
is, not processed) and flagged with the appropriate error message.

Summary of control statements

The definition of message formats, device formats, partition sets, and operator control tables is
accomplished with separate hierarchic sets of definition statements.

Message Definition Statement Set
Is used to define message formats. It includes the following statements:

MSG

Identifies the beginning of a message definition.
LPAGE

Identifies a related group of segment/field definitions.
PASSWORD

Identifies a field or fields to be used as an IMS password.
SEG

Identifies a message segment.
DO

Requests iterative processing of the subsequent MFLD statements.
MFLD

Defines a message field. Iterative processing of MFLD statements can be invoked by specifying
DO and ENDDO statements. To accomplish iterative processing, the DO statement is placed before
the MFLD statements and the ENDDO after the MFLD statements.

ENDDO
Terminates iterative processing of the preceding MFLD statements.

MSGEND
Identifies the end of a message definition.

Format Definition Statement Set
Is used to define device formats. It consists of the following statements:

FMT
Identifies the beginning of a format definition.
DEV
Identifies the device type and operational options.
DIV
Identifies the format as input, output, or both.
DPAGE
Identifies a group of device fields corresponding to an LPAGE group of message fields.
PPAGE
Identifies a group of logically related records that can be sent to a remote application program at
one time.
DO
Requests iterative processing of the subsequent RCD or DFLD statements.
RCD
Identifies a group of related device fields that are sent to a remote application program as a single
record.
DFLD

Defines a device field. Iterative processing of DFLD statements can be invoked by specifying DO
and ENDDO statements. To accomplish iterative processing, the DO statement is placed before
the DFLD statements and the ENDDO after the DFLD statements.

ENDDO
Terminates iterative processing of the previous RCD or DFLD statements.

Chapter 4. MFS Language utility (DFSUPAAQ) 175

FMTEND
Identifies the end of a format definition.

Partition Definition Statement Set
Is used to define partition sets (Partition Descriptor Blocks). It consists of the following statements:

PDB
Identifies the beginning of a partition set definition and allows the specification of several
parameters that describe it.

PD
Defines a Partition Descriptor, which contains the parameters necessary to describe a partition.

PDBEND
Identifies the end of a partition set definition.

TABLE Definition Statement Set
is used to define operator control tables. It includes the following statements:

TABLE
Identifies the beginning of a table definition.

IF
Defines a conditional test and resulting action.

TABLEEND
Identifies the end of a table definition.

Compilation Statements
Are used for variable functions. Compilation statements that are supported by the MFS Language
utility are listed in alphabetic order:

ALPHA
Defines a set of characters to be considered alphabetic for the purpose of defining field names
and literals.

COPY
Copies a member of the partitioned data set represented by the SYSLIB DD statement into the
input stream of the preprocessor.

DO
Requests iterative processing of MFLD or DFLD definition statements.
EJECT
Ejects SYSPRINT listing to the next page.
END
Defines the end of data for SYSIN processing.
ENDDO
Terminates iterative processing of MFLD, RCD, or DFLD definition statements.
EQU
Equates a symbol with a number, alphanumeric identifier, or literal.
PRINT
Controls SYSPRINT options.
RESCAN
Controls EQU processing.
SPACE
Skips lines on the SYSPRINT listing.
STACK
Delineates one or more SYSIN or SYSLIB records that are to be kept in processor storage for
reuse.
TITLE

Provides a title for the SYSPRINT listing.

176 IMS: System Utilities

UNSTACK
Retrieves previously stacked SYSIN or SYSLIB records.

Compilation statements are inserted at logical points in the sequence of control statements. For
example, TITLE could be first, and EJECT could be placed before each MSG, FMT, or TABLE statement.

Message definition statements

Message definition statements include the MSG statement, the LPAGE statement, the PASSWORD
statement, the SEG statement, the DO statement, the MFLD statement, the ENDDO statement, and the
MSGEND statement.

MSG statement

The MSG statement initiates and names a message input or output definition.

Format for MSG TYPE=INPUT or OUTPUT

»— label — MSG
INPUT lJ
TYPE= OUTPUT
»— ,SOR=(formatname ,) >
L IGNORE J L 1
,OPT= { 2
3

»
»

»d
1|

L ,NXT= msgcontrolblockname J

Format for MSG TYPE=OUTPUT only

IR ==

NULL
PT

Parameters

label
A one- to eight-character alphanumeric name must be specified. This label can be referred to in the
NXT operand of another message descriptor.

TYPE=
Defines this definition as a message INPUT or OUTPUT control block. The default is INPUT.

SOR=
Specifies the source name of the FMT statement which, with the DEV statement, defines the
terminal or remote program data fields processed by this message descriptor. Specifying IGNORE
for TYPE=OUTPUT causes MFS to use data fields specified for the device whose FEAT= operand
specifies IGNORE in the device format definition. For TYPE=INPUT, IGNORE should be specified only
if the corresponding message output descriptor specified IGNORE. If you use SOR=IGNORE, you must
specify IGNORE on both the message input descriptor and the message output descriptor.

OPT=
Specifies the message formatting option used by MFS to edit messages. The default is 1.

Chapter 4. MFS Language utility (DFSUPAAQ) 177

NXT=
Specifies the name of a message descriptor to be used to map the next expected message as a result
of processing a message using this message descriptor. If TYPE=INPUT, NXT= specifies a message
output descriptor. If TYPE=OUTPUT, NXT= specifies a message input descriptor. For ISC output, NXT=
becomes the RDPN in the ATTACH FM header.

If TYPE=OUTPUT and the formatname specified in the SOR= operand contains formats for 3270 or
3270P device types, the msgcontrolblockname referred to by NXT= must use the same formatname.

PAGE=
Specifies whether (YES) or not (NO) operator logical paging (forward and backward paging) is to be
provided for messages edited using this control block. This operand is valid only if TYPE=OUTPUT. The
default is NO, which means that only forward paging of physical pages is provided.

FILL=
Specifies a fill character for output device fields. This operand is valid only if TYPE=OUTPUT. The
default is C' . The fill specification is ignored unless FILL=NONE is specified on the DPAGE statement
in the FMT definition. For 3270 output when EGCS fields are present, only FILL=PT or FILL=NULL
should be specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only when data is
sent to the field, and thus does not erase the DFLD if the application program message omits the
MFLD. For DPM-Bn, if OFTAB is specified, FILL=is ignored and FILL=NULL is assumed.

cl 1
Character ' ' is the default used to fill device fields. The blank character is interpreted as is X'40'
which is a valid printable character.

c'c
Character 'c' is used to fill device fields. For 3270 display devices, any specification with a
value less than X'3F' is changed to X'00' for control characters or to X'40' for other nongraphic
characters. For all other devices, any FILL=C'c' specification with a value less than X'3F' is ignored
and defaulted to X'3F' (which is equivalent to a specification of FILL=NULL).

If you specify C'c' as X'36', it changes to either X'0' or X'40' as X'36' is not a valid printable
character.

NULL
Specifies that fields are not to be filled. For devices other than 3270 and SLU 2 display,
‘compacted lines' are produced when message data does not fill device fields.

PT
Is identical to NULL except for 3270 and SLU 2 display. For 3270 and SLU 2 display, PT specifies
that output fields that do not fill the device field (DFLD) are followed by a program tab character to
erase data previously in the field.

Related reference
MFS output message formats (Application Programming)

178 IMS: System Utilities

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/java_mfsoutputmessageformats.htm#java_mfsoutputmessageformats

LPAGE statement

The optional LPAGE statement defines a group of segments comprising a logical page.

Format for MSG TYPE=OUTPUT

- L label J L LPAGE — SOR= dpagename J

L L,COND=(mfldname s >) value' —) J
mfldname (pp) — <—]
—>—

segoffset

»
»

v

< —

M =—

— =

»d
>4

\ 4

L ,NXT= msgcontrolblockname J L ,PROMPT=(dffidname ,' literal ") J

Format for MSG TYPE=INPUT

L label J L E)] J
LPAGE — SOR=(dpagename)

[
>

>4

L ,NXT=msgcontrolblockname J

Parameters

label
A one- to eight-character alphanumeric name can be specified to uniquely identify this statement.

SOR=
Specifies the name of the DPAGE statement that defines the device format for this logical page. If
TYPE=INPUT and more than one DPAGE can be used as a source of data to create an input message,
more than one dpagename can be specified.

COND=
Describes a conditional test that, if successful, specifies that the segment and field definitions
following this LPAGE are to be used for output editing of this logical page. The specified portion
of the first segment of a logical page is examined to determine if it is greater than (>), less than (<),
greater than or equal to (=), less than or equal to (<), equal to (=), or not equal to (#) the specified
literal value to determine if this LPAGE is to be used for editing. COND= is not required for the last
LPAGE statement in the MSG definition.

The area examined can be defined by a field name (mfldname), an offset in a field (mfldname(pp)
where pp is the offset in the named field), or an offset in the segment (segoffset). If the mfldname(pp)
form is used, pp must be greater than or equal to 1. The length of the compare is the length of the
specified literal. If OPT=3 is specified on the previous MSG statement, the area to be examined must
be within one field as defined on an MFLD statement.

If segoffset is used, it is relative to zero, and the specification of that offset must allow for LLZZ of the
segment (that is, the first data byte is at offset 4).

Chapter 4. MFS Language utility (DFSUPAAQ) 179

If pp is used, the offset is relative to 1 with respect to the named field (that is, the first byte of data in
the field is at offset 1, not zero).

If the mfldname specified is defined with ATTR=YES, the pp offset must be used. The minimum offset
specified must be 3. That is, the first byte of data in the field is at offset 3, following the two bytes of
attributes.

If ATTR=nn is specified, the minimum offset must be one plus twice nn. Thus, if ATTR=2 is specified,
pp must be at least 5, and, if ATTR=(YES,2) is specified, pp must be at least 7.

If the conditional tests for all LPAGEs fail, the last LPAGE in this MSG definition is used for editing.

If LPAGE selection is to be specified using the command data field, that is, /FORMATmodname...
(data), the MFLD specified in the LPAGE COND=mfldname parameter should be within the first 8 bytes
of the associated LPAGEs of the MOD.

NXT=
Specifies the name of the message descriptor to be used to map the next message if this logical page
is processed. This name overrides any NXT=msgcontrolblockname specified on the preceding MSG
statement.

PROMPT=
Specifies the name of the DFLD into which MFS should insert the specified literal when formatting the
last logical page of an output message. If FILL=NULL is specified once the prompt literal is displayed,
it can remain on the screen if your response does not cause the screen to be reformatted.

PASSWORD statement

The PASSWORD statement identifies one or more fields to be used as an IMS password or password
phrase.

When used, the PASSWORD statement and its associated MFLDs must precede the first SEG statement

in an input LPAGE or MSG definition. Up to 8 MFLD statements can be specified after the PASSWORD
statement but the total password length must not exceed 100 characters. The fill character must be X'40".
For option 1 and 2 messages, the first 8 characters of data after editing are used for the IMS password.
For option 3 messages, the data content of the first field after editing is used for the IMS password.

A password for 3270 input can also be defined in a DFLD statement. If both password methods are used,
the password specified in the MSG definition is used.

Format

»i— PASSWORD T blanks j—N
label comments

Parameters

label
A one- to eight-character alphanumeric name can be specified to uniquely identify this statement.

SEG statement

The SEG statement delineates message segments and is required only if multisegment message
processing is required by the application program.

Output message segments cannot exceed your specified queue buffer length. Only one segment should
be defined for TYPE=INPUT MSGs when the input message destination is defined as a single segment
command or transaction. If more than one segment is defined, and the definition is used to input a
single segment command or transaction, care must be used to ensure that your input produces only one
segment after editing.

180 IMS: System Utilities

Format for MSG TYPE=INPUT

»ﬁ SEG L J
label EXIT=(exitnum ,exitvect)

Format for MSG TYPE=OUTPUT

E YES
»i— SEG — ,GRAPHIC= NO
label

Parameters

label
A 1- to 8-character name can be specified to uniquely identify this statement.

EXIT=
Describes the segment edit exit routine interface for this message segment. exitnum is the exit routine
number and exitvect is a value to be passed to the exit routine when it is invoked for this segment.
exitnum can range from 0 to 127. exitvect can range from 0 to 255. Unless NOSEGEXIT is specified on
the DIV statement (for DPM devices only), the SEG exit is invoked when processing completes for the
input segment.

GRAPHIC=
Specifies for MSG TYPE=INPUT whether (YES) or not (NO) IMS should perform upper case translation
on this segment if the destination definition requests it (see the EDIT= parameter of the TRANSACT
or NAME macro). The default is YES. If input segment data is in nongraphic format (packed decimal,
EGCS, binary, and so forth), GRAPHIC=NO should be specified. When GRAPHIC=NO is specified,
FILL=NULL is invalid for MFLDs within this segment.

[YES
,GRAPHIC= NO lb(

The following list shows the translation that occurs when GRAPHIC=YES is specified and the input
message destination is defined as requesting upper case translation:

Before Translation
After Translation

a through z
A through Z

X'81' through X'89'
X'C1' through X'C9'

X'91' through X'99'
X'D1' through X'D9'

X'A2' through X'A9'
X'E2' through X'E9'

If FILL=NULL is specified for any MFLD in a segment defined as GRAPHIC=YES, the hexadecimal
character X'3F' is compressed out of the segment. If GRAPHIC=NO and FILL=NULL are specified in
the SEG statement, any X'3F' in the non-graphic data stream is compressed out of the segment and
undesirable results might be produced. Non-graphic data should be sent on output as fixed length
output fields and the use of FILL=NULL is not recommended in this case.

For MSG TYPE=OUTPUT, the GRAPHIC= keyword applies only for DPM. It specifies whether (YES) or
not (NO) nongraphic control characters (X'00' to X'3F') in the data from the IMS application program
are to be replaced by blanks. The default value is YES. If NO is specified, MFS allows any bit string
received from an IMS application program to flow unmodified through MFS to the remote program.

Chapter 4. MFS Language utility (DFSUPAAOQ) 181

Restriction: When GRAPHIC=NO is specified, IMS application programs using Options 1 and 2 cannot
omit segments in the middle of an LPAGE, or truncate or omit fields in the segment using the null
character (X'3F").

DO statement

The DO statement causes repetitive generation of MFLD statements between the DO and ENDDO
statements.

DO is optional, but a message that includes a DO must include a subsequent ENDDO.

Format
»i— DO — count >4
label L 01 ﬂ
,SUF= —Enumber
Parameters
label

A one- to eight-character alphanumeric name can be specified. It is not used.

count
Specifies how many times to generate the following MFLD statements. The maximum count that can
be specified is 99; if more than 99 is specified, the 2 rightmost digits of the specified count are used
(for example, 03 would be used if 103 were specified) and an error message is issued.

SUF=
Specifies the 1- or 2-digit suffix to be appended to the MFLD label and dfldname of the first group
of generated MFLD statements. The default is 01. MFS increases the suffix by 1 on each subsequent
generation of statements.

If the specified suffix exceeds 2 digits, MFS uses the rightmost 2 digits.

If the specified count is such that the generated suffix eventually exceeds 2 digits, MFS reduces the
count to the largest legitimate value. For example, if count equals 8 and SUF=95, invalid suffixes of
100, 101, and 102 would result. In this instance, MFS reduces count to 5, processes the statement,
and issues an error message.

MFLD statement

The MFLD statement defines a message field as it will be presented to an application program as part of a
message output segment.

At least one MFLD statement must be specified for each MSG definition.

182 IMS: System Utilities

Format for MSG TYPE=INPUT

S O
label L (dfldname | literal ')J L .‘l.

,LTH=

»
>

]
T

LL]J L("0) ! ;

L YES J L ,nn J
FILL— X'40'
EX hh'
NULL

J L LEXIT=(exitnum ,exitvect) J
Format for MSG TYPE=OUTPUT

L]]
label dfldname —— L 1 1J
,LTH= nn

——— (difidname | literal ') —

A 4

\ 4

N (dfidname ,system-literal) —]

- (,SCA) J

Lo L = T

Parameters

label
A one-to eight-character alphanumeric name can be specified. label is required if it is referred to
in the COND operand of the previous LPAGE statement. It can be used to uniquely identify this
statement. If the MFLD is between the DO and ENDDO statements, label is restricted to 6 characters
or less. DO statement processing appends a 2-digit suffix (a sequence number, 01 to 99) to the label
and prints the label as part of the generated MFLD statement. If label is more than 6 characters and
iterative generation is used, the label is truncated at 6 characters, and the 2-digit sequence number is
added to make the 8-character name. No error message is issued if this occurs.

dfldname
Specifies the device field name (defined using the DEV or DFLD statement) from which input data is
extracted or into which output data is placed. If this parameter is omitted when defining a message
output control block, the data supplied by the application program is not displayed on the output
device. If the repetitive generation function of MFS is used (DO and ENDDO statements), dfldname
should be restricted to 6 characters maximum length. When each repetition of the statement is
generated, a 2-character sequence number (01 to 99) is appended to dfldname. If the dfldname
specified here is greater than 6 bytes and repetitive generation is used, dfldname is truncated at 6
characters and a 2-character sequence number is appended to form an 8-character name. No error
message is provided if this occurs. This parameter can be specified in one of the following formats:

Chapter 4. MFS Language utility (DFSUPAAQ) 183

dfldname
Identifies the device field name from which input data is extracted or into which output data is
placed.

'literal’
Can be specified if a literal value is to be inserted in an input message.

(dfldname, 'literal")
If TYPE=OUTPUT, this describes the literal data to be placed in the named DFLD. When this form
is specified, space for the literal must not be allocated in the output message segment supplied by
the application program.

If TYPE=INPUT, this describes the literal data to be placed in the message field when no data

for this field is received from the device. If this dfldname is used in the PFK parameter of a DEV
statement, this literal is always replaced by the PF key literal or control function. However, when
this dfldname is specified in the PFK parameter, but the PF key is not used, the literal specified in
the MFLD statement is moved into the message field. When physical paging is used, the literal is
inserted in the field but is not processed until after the last physical page of the logical page has
been displayed.

In both cases, if the LTH= operand is specified, the length of the literal is truncated or padded as
necessary to the length of the LTH= specification. If the length of the specified literal is less than
the defined field length, the literal is padded with blanks if TYPE=OUTPUT and with the specified
fill character (FILL=) if TYPE=INPUT. If no fill character is specified for input, the literal is padded
with blanks (the default). The length of the literal value cannot exceed 256 bytes.

(dfldname,system-literal)
Specifies a name from a list of system literals. A system literal functions like a normal literal
except that the literal value is created during formatting prior to transmission to the device. The
LTH=, ATTR=, and JUST= operands cannot be specified. When this form is specified, space for the
literal must not be allocated in the output message segment supplied by the application program.

The following table shows the system literals and their associated lengths and formats.

Table 16. Lengths and formats of system literals

Produces literal of:

System literal name Length Format Notes
LTSEQ 5 nnnnn 1
LTNAME 8 aaaaaaaa 1
TIME 8 HH:MM:SS

DATE1 or YYDDD 6 YY.DDD

DATE2 or MMDDYY 8 MM/DD/YY

DATE3 or DDMMYY 8 DD/MM/YY

DATE4 or YYMMDD 8 YY/MM/DD

DATE1Y4 or YYYYDDD 8 YYYY.DDD

or DATEJUL

DATE2Y4 or 10 MM/DD/YYYY
MMDDYYYY or

DATEUSA

DATE3Y4 or 10 DD/MM/YYYY
DDMMYYYY or

DATEEUR

184 IMS: System Utilities

Table 16. Lengths and formats of system literals (continued)

Produces literal of:

System literal name Length Format Notes
DATEA4Y4 or 10 YYYY/MM/DD

YYYYMMDD or

DATEISO

LPAGENO 4 nnnn 2
LTMSG 14 MSG WAITING Qx 3
Notes:

1. LTSEQ is the output message sequence number for the logical terminal. The value created is
the logical terminal dequeue count plus 1. The first output message after an IMS cold start
or /NRESTART BUILDQ has a sequence number of 00001. Certain IMS-created messages do
not change this number.

LTNAME is the logical terminal (LTERM) name of the LTERM for which this message is being
formatted.

Messages generated by the IMS control region in response to terminal input (error messages,
most command responses) do not have an LTSEQ or an LTNAME. These messages use the
IMS message output descriptor DFSMO1. In these instances, the values provided are 00000
and blanks, respectively.

2. LPAGENO specifies that the current logical page number of the message be provided as a
system literal. This number corresponds to the page number you entered for an operator
logical page request. The literal produced is a 4-digit number with leading zeros converted to
blanks.

3. LTMSG specifies that when this output message is sent to the terminal, the literal 'MSG
Waiting Qx' (where x is message queue number 1, 2, 3, or 4) is sent in the LTMSG field if there
are messages in the queue for the terminal. If there are no messages in the queues, other
than the current queue, blanks are sent in the LTMSG field.

Usually the message waiting is sent when the current message is dequeued. If the message
is waiting in Q1, it is sent. If the message is in Q2 and the terminal is in exclusive mode, it is
sent (when any other messages from Q1 are sent). If the message is in Q2 and conversational
status does not prevent it from being sent or if the message is in Q3 or Q4 and the exclusive
or conversational status does not prevent it from being sent, it is sent. If a message is

waiting to be sent on another queue and the terminal is in conversation, the conversation

can be held to view the message; if the terminal is in exclusive mode, the message can be
viewed when the terminal is taken out of exclusive mode. If you are entering response mode
transactions, the message can be viewed before entering response mode transaction input
from the terminal.

This system literal is recommended for conversational mode. It is not recommended for ISC
subsystems.

(,SCA)
Defines this output field as the system control area which is not displayed on the output device.
There can be only one such field in a logical page (LPAGE) and it must be in the first message
segment of that page. If no logical pages are defined, only one SCA field can be defined
and it must be in the first segment of the output message. This specification is valid only if
TYPE=OUTPUT was specified on the previous MSG statement.

Chapter 4. MFS Language utility (DFSUPAAQ) 185

LTH=
Specifies the length of the field to be presented to an application program on input or received from
an application program on output. Default or minimum value is 1. Maximum value is 8000. (The
maximum message length must not exceed 32767.)

The form (pp,nn) can be used when defining an input field; however, a field name must be specified

in the first positional parameter if the (pp,nn) form is used. The value supplied for pp specifies which
byte in the input data field is to be considered the first byte of data for the message field. For example,
a pp of 2 specifies that the first byte of input data is to be ignored, and the second byte becomes the
first byte of this field. The value of pp must be greater than or equal to 1. The value supplied for nn
specifies the length of the field to be presented to an application program.

If (,SCA) is specified in the positional parameter, the specified LTH= value must be at least 2.

LTH= can be omitted if a literal is specified in the positional operand (TYPE=INPUT), in which case,
length specified for literal is used. If LTH= is specified for a literal field, the specified literal is either
truncated or padded with blanks to the specified length. If the MFLD statement appears between a
DO and an ENDDO statement, a length value is printed on the generated MFLD statement, regardless
of whether LTH= is specified in the MFLD source statement.

JUST=
Specifies that the data field is to be left-justified (L) or right-justified (R) and right- or left- truncated
as required, depending upon the amount of data expected or presented by the device format control
block. The default is L.

ATTR=
Specifies whether (YES) or not (NO) the application program can modify the 3270 attributes and the
extended attributes (nn).

If YES, 2 bytes must be reserved for the 3270 attribute data to be filled in by the application program
on output and to be initialized to blanks on input. These 2 bytes must be included in the LTH=
specification.

The value supplied for nn is the number of extended attributes that can be dynamically modified. The
value of nn can be a number from 1 to 6. An invalid specification will default to 1. Two additional
bytes per attribute must be reserved for the extended attribute data to be filled in by the application
program on output and to be initialized to blanks on input. These attribute bytes must be included in
the MFLD LTH= specification.

The following example shows valid specifications for ATTR= and the number of bytes that must be
reserved for each different specification:

MFLD ,ATTR=(YES,nn)

2 + (2 x nn)
MFLD ,ATTR=(NO,nn)
2 x nn
MFLD ,ATTR=(nn)
2 x nn
MFLD ,ATTR=YES
2
MFLD ,ATTR=NO
0]

ATTR=YES and nn are invalid if a literal value has been specified through the positional parameter in
an output message.

The attributes in a field sent to another IMS ISC subsystem are treated as input data by MFS
regardless of any ATTR= specifications in the format of the receiving subsystem. For example, a
message field (MFLD) defined as ATTR=(YES,1),LTH=5 would contain the following:

OOAOGC2F1C8C5D3D3D6

186 IMS: System Utilities

If the MFLD in the receiving subsystem is defined as LTH=9 and without ATTR=, the application
program receives:

OOAOC2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=13 and ATTR=(YES,1), the application
program receives:

4040404000A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=5 and ATTR=(YES,1), the application
program receives:

4040404000A0C2F1C8

The input SEG statement should be specified as GRAPHIC=NO to prevent translation of the attribute
data to uppercase.

FILL=
Specifies a character to be used to pad this field when the length of the data received from the device
is less than the length of this field. This character is also used to pad when no data is received for this
field (except when MSG statement specifies option 3.) This operand is only valid if TYPE=INPUT. The
default is X'40".
X'hh'
Character whose hexadecimal representation is hh is used to fill fields. FILL=X'3F' is the same as
FILL=NULL.
C'c'
Character cis used to fill fields.
NULL
Causes compression of the message segment to the left by the amount of missing data in the field.

EXIT=
Describes the field edit exit routine interface for this message field. The exit routine number is
specified in exitnum, and exitvect is a value to be passed to the exit routine when it is invoked for
this field. The value of exitnum can range from 0 to 127. The value of exitvect can range from 0 to
255. The address of the field as it exists after MFS editing, (but before NULL compression for option
1 and 2), is passed to the edit exit routine, along with the vector defined for the field. (If NOFLDEXIT
is specified for a DPM device, the exit routine will not be invoked.) The exit routine can return a code
with a value from 0 to 255. MFS maintains the highest such code returned for each segment for use by
the segment edit routine. EXIT= is invalid if 'literal' is specified on the same MFLD statement.

Printing generated MFLD statements
The generated MFLD statements can be printed in a symbolic source format by specifying COMP in the
parameter list of the EXEC statement.

This provides a means of seeing the results of the MFLD statement generation without having to interpret
the intermediate text blocks.

The following items are printed for each generated MFLD statement:

« The generated statement sequence number followed by a + (plus sign) to indicate that the MFLD
statement was generated as a result of DO statement processing.

« The MFLD statement label, if present, including the appended suffix.
« The statement operator, MFLD.
« dfldname, if present, including the appended suffix.

« For ECGS literals, the G, SO, and SI is not present. Literals are truncated if there is insufficient room
to print all specifications. Truncation is indicated by a portion of the literal followed by an ellipsis (...)
representing the truncated portion.

Chapter 4. MFS Language utility (DFSUPAAQ) 187

The system literal name, if present.

If both dfldname and a literal are present, they are enclosed in parentheses.
(,SCA), if present.

The field length, in the form LTH=nnnn (or LTH=(pppp,nnnn), if present).

« JUST=L or R, if present.

« ATTR=YES, if present.

e ATTR=nn, if present.

No other operands are printed, even if specified on the source MFLD statement.

ENDDO statement
The ENDDO statement terminates the group of MFLD statements that are to be repetitively generated.

The generated MFLD statements are printed immediately following the ENDDO statement. ENDDO is
required when a DO statement has been specified.

label comments

label
A one- to eight-character alphanumeric name can be specified. It is not used.

MSGEND statement

The MSGEND statement terminates a message input or output definition and is required as the last
statement in the definition.

If this is the end of the job submitted, it must also be followed by an END compilation statement.

label comments

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Format definition statements

Format definition statements include the FMT statement, the DEV statement, the DIV statement, the
DPAGE statement, the PPAGE statement, the DO statement, the RCD statement, the DFLD statement, the
ENDDO statement, and the FMTEND statement.

FMT statement

The FMT statement initiates and names a format definition that includes one or more device formats
differing only in the device type and features specified in the DEV statement.

Each device format included in the format definition specifies the layout for data sent to or received from
a device or a remote program.

Format

»— label — FMT T blanks j—N
comments

188 IMS: System Utilities

Parameters

label
A required one- to six-character alphanumeric name that is referred to by message descriptors in the
SOR= operand of MSG statements.

The name specified for label becomes part of the member name used for the resulting device output
format and device input format blocks that are stored in the IMS.FORMAT library.

If DEV TYPE=DPM-An, and DIV OPTIONS=MSG, the name specified for label is sent to the remote
program as the data name in the output message header.

If DEV TYPE=DPM-Bn, and DIV OPTIONS=(MSG,DNM), the name specified for label is sent to the
other subsystem as the data structure name in the DD FM header.

DEV statement

The DEV statement defines device characteristics for a specific device or data formats for a specific device
type.

The DFLD statements following this DEV statement are mapped using the characteristics specified until
the next DEV or FMTEND statement is encountered. For DPM devices, the DEV statement specifies the
DPM program type number and (optionally) a feature set number.

Important: Read the TYPE= operand description before using the DEV statement.

Chapter 4. MFS Language utility (DFSUPAAQ) 189

Format for 3270 display

label 2
— (3270,_£j_l)_/

~———— 3270-An —~

v

L ,FEAT= IGNORE

[y

O 00 N o g R W N

10

NOCD t ,NOPFK ,NOPEN J

,DEKYBD

L, I—CARDj f—,PFKj J—,PENj .
L noco L

] L ,PEN= dfldname —J L ,CARD= dffldname —j L ,SYSMSG= dfldiabel —J

L ,DSCA= X'value' J
L number J

,PFK=(dfidname , { ‘literal' J)
NEXTPP
NEXTMSG
NEXMSGP
NEXTLP

ENDMPPI

{ integer= ‘literal ']

NEXTPP

NEXTMSG
NEXMSGP
NEXTLP
ENDMPPI

»>

] L ,SUB= tXIhﬁj—J L ,PDB= pdbname —J)
C'¢

190 IMS: System Utilities

»
>

Format for 3270 printers

»i— DEV — TYPE=
label

»
»

3270P

2
(3270P, —E 1 l)

120

L ,FEAT=

—— 126 —
—— 132 —

— IGNORE —

,WIDTH= number

1

2
3
4
5
6
7

8

9}

— 10 —

Y

,DEFN

\ 4

Lo 0 E }

)J

,SPACE

»d

L ,DSCA= T X'value'
number

>4

Format for Finance workstations (3600 or 4700)

label

M 36DS —
M 36DS3 —
M 36DS4 —
M 36DS7 —

M— 36IP —

M— 36PB —

—— 3600 ——>«

— 36FP —

Chapter 4. MFS Language utility (DFSUPAAQ) 191

Format for DEV TYPE=FIN

»i_ DEV — TYPE=FIN >
label E RECORD]
,MODE= STREAM

L ,FORCE J
,FTAB=(r T)
'tabchars' t ,MIX j
X'value' JALL

,LDEL= ‘ldelchars '
X'value'
NONE

Format for DEV TYPE=FIDS, FIDS3, FIDS4, FIDS7

label FIDS3 ,DSCA= T X'value' j—j
FIDS4 number

FIDS7

L,FEAE I—IGNORETJ

Y

Y

»
»

»d
L)

192 IMS: System Utilities

Format for DEV TYPE=FIJP, FIPB, FIFP

»i— DEV — TYPE=FIN FIJP
label E FIPB}
FIFP

Ly ——]

L number J M———— ,SPACE ——

»
»

— FLOAT —

M———— BJECT —

<
<

=

(ENDPP)
(BGNMSG)
(ENDMSG)
L ,DSCA= T X' value' j—j L ,FORMS=I /Itela/l—J
number
IGNORE
1
,FEAT= DUAL
1
132
1
“— (DUAL,132) —~

Notes:
1 FIFP only

Chapter 4. MFS Language utility (DFSUPAAQ) 193

Format for SCS1

label L

,FEAT= 1

IGNORE
]

O 0 9 0 oA W N

L
|

<FOR INPUT>

L ,FORMS=' fiteral' —J <FOR OUTPUT>

<FOR INPUT>

E RECORD]
,MODE= STREAM

\ 4

>
>

,FORCE
L JFTAB=(r T) J

X'value' LALL

Y

L k%l
,LDEL= ‘ldelchars'
X'value'

NONE

>d
>4

Y

L > J
,WIDTH= number

<FOR OUTPUT>

194 IMS: System Utilities

L

,CARD= dfldname J

»
»

v

¥

v

55

L ,PAGE=(

[1
L number —J b~—————SPACE ——MMM

<
» €

(BGNPP) J
— EJECT (f_ j J

(ENDPP)

(BGNMSG)
(ENDMSG)

L ,DSCA= T X'value' j—j L _E 132 1J
number ,WIDTH= number

L=

S|)
e — L am :
h ONLINE j L HT=(ht:j) J

12 —

A\ 4

A 4

T

M t6 —
M t8 —

—— t9 —

— t10 —

L NTAB=(tm,bm) —J h ,SLDI=rn j
,SLDP=nn
VT=(t1)

M t2 —

A 4

M t4 —
— t5 —
— t7 —

M 110 —

— 111 —

Chapter 4. MFS Language utility (DFSUPAAQ) 195

Format for SCS2

label L

,FEAT=

IGNORE
]

' <FOR INPUT> '
<FOR OUTPUT>

<FOR INPUT>

E RECORD]
,MODE= STREAM

\ 4

O 00 N o0 o A W N

|
|

'tabcharsj t ,MIX
X'value' ALL

»

,FORCE
L ,FTAB=(r T

3

>
>

J

>

Y

X'value'
NONE
<FOR OUTPUT>

,LDEL= Idelchars ' JWIDTH= —Enumber

,DEFN
— PAGE=(J_ > ﬁ I_ T
L number J h,FLOAT j
,SPACE

[»d
>

L | J
,WIDTH= number

196 IMS: System Utilities

)_J

L ,DSCA=

L X'value' J
number

v

Format for DPM-An

label L J
,FEAT= 1

\4

r IGNORE T
2
3
4
5
6
7
8
9
- 10 —
> <FOR INPUT>
L MeS J
,VERSID= I_)(' Valun
‘chars'
<FOR INPUT>

L NONE
,LDEL= 'ldelchars'
'value'

L ,FORCE J
,FTAB=(f_ T)
t‘tabchars' t ,MIX j
X'value' ,ALL

[RECORD j
,MODE= STREAM

<FOR OUTPUT>

A 4

A 4

»d

L ,DSCA= T X' value' j—j L ,FORMS= \literal ! J
number

Chapter 4. MFS Language utility (DFSUPAAQ) 197

Format for DPM-Bn

label L r IGNORE T J
,FEAT= 1

\4

O 00 N o0 o A~ W N

L
|

v

[RECORD] L MFS
,MODE= STREAM JVERSID= 'value'

'chars'
<FOR INPUT>
. <FOR OUTPUT> l

<FOR INPUT>

L NONE
,LDEL= 'ldelchars'
'value'

L ,FORCE J
,FTAB=(r T)
t‘tabcharsj t ,MIX j
X'value' JALL

<FOR OUTPUT>
L ,DSCA= T X' value' j—j
number
Parameters
label
An optional one- to eight-character alphanumeric name that uniquely identifies this statement.
TYPE=

Specifies the device type and model number of a device using this format description. The 3284-3
printer attached to a 3275 is supported only as TYPE=3270P. The model humber specified when
defining a format for a 3284-3 is the model number of the associated 3275.

198 IMS: System Utilities

TYPE=3270-An specifies a symbolic name for 3270 and SLU 2 displays with the screen size defined
during IMS system definition, feature numbers n=1-15. This specification causes the MFS Language
utility to read the MFS device characteristics table (DFSUDTOx) to extract the screen size.

TYPE=DPM-Bn specifies the device as an ISC node. The device type specified by n must agree with
the specification of the component (COMPT=) on the system definition TERMINAL macro.

Based on the device and model used, specify:

TYPE=
Device-Model

3270,1
3275-1

3276-1,11 (defined at IMS system definition as 3270 model 1)
3277-1

3278-1 (defined at IMS system definition as 3277 model 1)
SLU 2 (480 characters)

3270,2
3275-2 SLU 2 (1920 characters)

(any display defined during IMS system definition as 'mod 2' with screen area of 1920 characters)

3270-An
3270-An (applies to any 3270 or SLU 2 display defined as TYPE=3270-An during IMS system
definition)

Examples of 3270 devices that can be defined as 3270-An and the recommended standard of
associating screen sizes with the device type symbolic name follow:

Device
Screen size and definition

3180
24x80 screen size defined as 3270-A2

327X-1,11
12x80 screen size defined as 3270-A1

327X-2,12
24x80 screen size defined as 3270-A2

327X-3,13
32x80 screen size defined as 3270-A3

327X-4,14
43x80 screen size defined as 3270-A4

3278-5
27x132 screen size defined as 3270-A7

3290
62x160 screen size defined as 3270-A8

or
24x80 screen size defined as 3270-A2

5550
3270 Kanji Emulation or 3270 PC with 24x80 screen size defined as 3270-A2

3270P,1
3284-1

3286-1
3287 (with 480 character print feature and not attached as SLU 1 or SLU 4)
3289 (with 480 character print feature and not attached as SLU 1 or SLU 4)

Chapter 4. MFS Language utility (DFSUPAAQ) 199

3270P,2
3284-2

3286-2
3287 (with 1920 character print feature and not attached as SLU 1 or SLU 4)
3289 (with 1920 character print feature and not attached as SLU 1 or SLU 4)

FIN
Finance application program (input only)

FIDS
Finance display component (6x40; for example, 3604-1 or -2)

FIDS3
Finance display component (12x40; for example, 3604-3)

FIDS4
Finance display component (16x64; for example, 3604-4)

FIDS7
Finance display component (24x80; for example, 3604-7)

FIJP
Finance journal printer

FIPB
Finance passbook printer

FIFP
Finance administrative printer

scsi
The following console keyboard printers:

NTO

3771

3773

3774

3775

3776

5553

5557

SLU 1 (with a print data set or bulk printer)
SLU 4

3289 and 3287 when attached to IMS as SLU 1

SCS2
3521 card punch

3501 card reader

2502 card reader

SLU 1 (transmit data set)
SLU 4

DPM-An
SLU P (nis value 1-15)

DPM-Bn
ISC (nis value 1-15)

MODE=
Specifies the manner in which field scanning is to occur. Default value is RECORD. MODE= is valid for
DPM-An input only, and for DPM-Bn input and output. For DPM-Bn, if the input and output modes are
not the same, each DIV statement must be preceded by a DEV statement.

200 IMS: System Utilities

RECORD
Specifies that fields are defined as occurring within specific records (a line from a device, a
transmission from a remote program) that is transmitted from the device or program. For DPM-Bn,
Record mode must be specified for variable length, variable blocked (VLVB) format records.

STREAM
Specifies that fields are defined as a contiguous stream of fields—record boundaries do not affect
the MFS scan. Fields can be split across records and fields can be entered from any record
provided they are entered in the defined sequence. For DPM-Bn, Stream mode must be specified
for chained request/response units (RUs).

FTAB=

Specifies the field tab (FTAB) characters that you or a remote program can use to terminate an input
field when either the length of the data entered is less than the defined field length, or no data for the
field exists:

« For FIN, DPM-An, and DPM-Bn, a maximum of eight FTAB characters or 16 hexadecimal digits can
be specified, and at least one character (or two hexadecimal digits) should be specified.

« For SCS1, up to four FTAB characters or eight hexadecimal digits can be specified; the characters
NL, LF, HT, and VT are always FTAB characters and do not need to be specified.

« For SCS2, up to three FTAB characters or six hexadecimal digits can be specified. The characters NL,
CR, LF, HT, and VT are always FTAB characters and do not have to be specified; however, they are
received by MFS only if the Hollerith code is punched in the card if the input is from the card reader.

If no FTAB characters are defined, each device input field is considered to be of its defined length. In
Record mode, when the end of a record is reached, the current field is terminated and all subsequent
fields defined for that record are processed with no device data (message fill). In Stream mode, all
transmissions that comprise the input message are treated as a stream of data fields unaffected by
transmission boundaries. If FTABs are not defined or are not used for DPM input, each input field

is considered to be of defined length except when NULL=DELETE is specified. With NULL=DELETE, if
trailing nulls are encountered in a field or an entire field is null, the field is padded to defined length
using the message fill character.

If FTAB characters are defined in this operand, either FORCE, MIX, or ALL can also be specified. The
default is FORCE.

FORCE
Specifies that an FTAB is not required until you or a remote program enters an FTAB character. In
record mode, if an FTAB is used for one field, the remaining fields of the current record must be
terminated with an FTAB, regardless of length. In stream mode, if an FTAB is used for one field,
the remaining fields in the message must be terminated with an FTAB.

MIX
Specifies that an FTAB is never required but can be used to terminate any input field when data is
less than the defined field length.

ALL
Specifies that an FTAB must be used to terminate all fields, regardless of length, except for certain
mode (MODE=) dependent conditions. In record mode, an FTAB is not required for the last field
defined or entered in the record. In stream mode, an FTAB is not required for the last field defined
or entered in the message.

LDEL=

Specifies two characters or four hexadecimal digits, which, if entered as the last two characters of a
record of input data, cause the record to be discarded. A specification of NONE causes IMS to bypass
record delete processing, except for the first record, which is always deleted if the last two characters
are asterisks (**). NONE is the default for DPM devices. For other devices, the default is **.

PAGE=

Specifies output parameters as follows:

Chapter 4. MFS Language utility (DFSUPAAQ) 201

number
For printer devices, number defines the number of print lines on a printed page; for card devices,
number defines the number of cards to be punched per DPAGE or physical page (if pp parameter is
used in the DFLD statements). This value is used for validity checking. The number specified must
be greater than or equal to 1 and less than 256. The default is 55.

If VTAB= is specified for SCS1 printers, then the minimum value for PAGE= is 3.

DEFN
Specifies that lines/cards are to be printed/punched as defined by DFLD statements (no lines/
cards are to be removed or added to the output page).

SPACE
Specifies that each output page contains the exact number of lines/cards specified in the number
parameter.

FLOAT
Specifies that lines/cards with no data (all blank or NULL) after formatting are to be deleted.

For 3270P and SCS1 devices, some lines having no data (that is, all blank or null) must not be
deleted under the following circumstances:

« The line contains one or more set line density (SLDx=) specifications.
- Afield specified as having extended attributes spans more than one line.

EJECT
Specifies that a forms eject operation should be performed for printer devices. EJECT is valid only
when TYPE=FIJP, FIPB, FIFP, or SCS1. If EJECT is specified for SCS1, MFS assumes the Vertical
Forms Control feature is present. The default for the sublist is BGNPP.

The sublist specifies when ejects are to be performed:

BGNPP

Specifies that an eject is to be performed before each physical page of output.
ENDPP

Specifies that an eject is to be performed after each physical page is printed.
BGNMSG

Specifies that an eject is to be performed before any data in the message is printed.

ENDMSG
Specifies that an eject is to be performed after all message data is printed.

DSCA=
Specifies a default system control area (DSCA) for output messages using this device format.
The DSCA supersedes any SCA specified in a message output descriptor if there are conflicting
specifications. Normally, the functions specified in both SCAs are performed. If the DSCA= operand is
specified for SCS1 or SCS2, it is ignored. If the DSCA= operand is specified for 3270P, it is ignored,
except for the bit setting for "sound device alarm". If this bit is specified on the DSCA/SCA option, it is
sent to the device. For TYPE=DPM-An or DPM-Bn, DSCA/SCA information is sent to a remote program
or ISC subsystem only if a DFLD definition requests it.

The value specified here must be a decimal number not exceeding 65535 or X'hhhh'. If the number is
specified, the number is internally converted to X'hhhh'.

The two bytes of the DSCA field should be defined as shown in the following table and Table 19 on
page 203.

The following table shows the DSCA bit settings for 3270 display or SLU 2 devices or TYPE=DPM-An or
DPM-Bn.

Table 17. Bit settings for DSCA field for 3270 Display, SLU 2 Devices, TYPE=DPM-An, or DPM-Bn

Byte Bit Setting
0 0-7 Should be 0.

202 IMS: System Utilities

Table 17. Bit settings for DSCA field for 3270 Display, SLU 2 Devices, TYPE=DPM-An, or DPM-Bn
(continued)

Byte Bit Setting
1 0 Should be 1.
1 Force format write (erase device buffer and write all required data).
2 Erase unprotected fields before write.
3 Sound device alarm.
4 Copy output to candidate pointer. Bits 1-4 are ignored for DPM-Bn.
5 B'0'- For 3270, protect the screen when output is sent. For DPM, demand

paging can be performed. B'1'- For 3270, do not protect the screen when
output is sent. For DPM-B, autopaging can be performed.

6-7 Should be 0, except for the 3290 in partitioned format mode.

If byte 1 bit 5 is set to B'1' (unprotect screen option) for a 3275 display, and both input and output
occur simultaneously (contention), the device is disconnected. For non-3275 devices, the SCA option
is ignored. If byte 1 bit 5 is set to B'0’, the application program can request autopaged output by
setting the SCA value to B'1". This request is honored only if present in the first segment of the first
LPAGE of the output message.

If a nonzero value is specified for byte 0, or for bit 6 or 7 in byte 1, MFS overrides the specified value
with zero, except for the 3290 in partitioned format mode.

For the 3290 in partitioned format mode, byte 1 bit 6 has special significance. If the DOF of the output
message is the same as the DOF of the last message, then byte 1 bit 6 of the DSCA is checked for

the erase/not erase partitions option before the output message is sent. The following table shows
meanings of the bit 6 settings.

Table 18. 3290 partitioned format mode bit setting

Byte Bit Setting Meaning
1 6 B'1' Erase all partitions before sending output message.
B'0111' Do not erase existing partitions.

The default is B'0' (do not erase). If bit 6 is defined, all existing partitions are erased and the output
is sent according to the specified partition paging option. If bit 6 is not defined, the output is sent
according to the specified partition paging option and partitions that do not receive output remain in
the state they were in before output was sent.

The following table shows the DSCA bit settings for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FI1JP, FIPB, or
FIFP.

Table 19. Bit settings for DSCA field for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or FIFP

Byte Bit Setting
0 0-7 Should be 0.
1 0 Should be 1.
1-2 Not applicable for FIN output devices.
3 Set 'device alarm' in output message header.
4 Not applicable for FIN output devices.
5-7 Should be 0.

Chapter 4. MFS Language utility (DFSUPAAQO) 203

For FIN devices, if a nonzero value is specified for byte 0, or for bits 1, 2, 5, 6, or 7 in byte 1, MFS
overrides the specified value with zero.

Bits 1, 2, and 4 in byte 1 only function for 3270 and SLU 2 and are therefore not applicable to FIN. If
set on, and the message is edited for an FIN output device, they are ignored.

For 3270 and FIN devices, the function specified is performed. For DPM devices, the specification is
supplied to the remote program in a user-defined device field (DFLD).

FEAT=
Specifies features for this device or program group.

IGNORE
Specifies that device features are to be ignored for this device.

120 | 126 | 132
Specifies line length for 3284, and 3286 device types (TYPE=3270P).

CARD
Specifies that the device has a 3270 operator identification card reader. NOCD specifies the
absence of the CARD feature.

DEKYBD
Specifies data entry keyboard feature. This feature implies PFK feature; therefore, PFK is invalid if
DEKYBD is specified. NOPFK implies the absence of PFK and DEKYBD features.

PFK
Specifies that the device has program function keys. NOPFK specifies the absence of the PFK and
DEKYBD features.

PEN
Specifies the selector light pen detect feature. NOPEN specifies the absence of the PEN feature.

DUAL
Specifies that the FIFP device has the dual independent forms feed feature.

132
Specifies that the FIFP device has the expanded print line feature.

1]2]3]4]|516]7]8]9|10
Specifies customer-defined features for the SCS1, SCS2, 3270P, DPM-An, or DPM-Bn device type.

For SCS1, SCS2, and 3270P devices, FEAT= allows grouping of devices with special device
characteristics. For example, FEAT=1 could group devices with a maximum of 80 print positions and
no VFC, and FEAT=2 could group devices with 132 print positions and the VFC feature. FEAT=IGNORE
should be specified to group together devices with a minimum set of device capabilities. For 3270P
devices, when WIDTH= is specified, FEAT=(1...10) must also be specified. If FEAT=(1...10) is specified
but WIDTH= is not specified, WIDTH= defaults to 120.

For DEV TYPE=DPM-An or DPM-Bn, FEAT= specifies a user-defined group of device formats so that
programs with common features and dependencies can be selected together.

When IGNORE is specified, no other values should be coded in the FEAT= operand. When
FEAT=IGNORE is not specified in the TERMINAL macro during system definition, the MSG statement
must specify IGNORE in the SOR= operand for the device format with the IGNORE specification.
Unless FEAT=IGNORE is used, FEAT= must specify exactly what was specified in the TERMINAL
macro during IMS system definition. If it does not, the DFS057 error message is issued. When
FEAT=IGNORE or 1-10 is specified for 3270 devices, the operands PEN=, CARD=, and PFK= can still
be specified. When TYPE=3270P and FEAT=IGNORE, MFS allows a line width of 120 characters.

CARD, PFK, DEKYBD, and PEN feature values are valid only for 3270 displays. DUAL is valid only if
TYPE=FIFP. If the FEAT= operand is omitted, the default features are CARD, PFK, and PEN for 3270
displays; the default line width is 120 for TYPE=3270P and 80 for TYPE=FIFP.

1,2,3,4,5,6,7,8,9,and 10 are valid values only for 3270, 3270P, 3270-An, SCS1, SCS2, DPM-An,
and DPM-Bn (for DEV TYPE=). For 3270 displays, the FEAT= specifications of 1 to 5 can be used to
group devices with specific features or hardware data stream dependencies.

204 IMS: System Utilities

Restriction: This keyword is optional and cannot be used with any other feature specification for 3270
displays.

When using the same format for both the 3290 and the 3180, you must specify a different value on
the FEAT= operand for each device type. The FEAT parameter values selected for each device must
also be specified on the TERMINAL macro in the IMS system definition.

For FIN, FIDS, FIDS3, FIDS4, FIDS7, FIJP, and FIPB, FEAT is always IGNORE. For FIFP, IGNORE is
used unless 132 and DUAL are specified.

Feature operand values can be specified in any order, and only those values desired need be
specified. The underlined values do not have to be specified because they are defaults. Only one
value in each vertical list can be specified.

Examples: Some of the uses of the FEAT= specification are:

- TYPE=DPM-A1,FEAT=1 could group device formats with DPAGE paging option and simulated
attributes.

« TYPE=DPM-A5, FEAT=2 could group device formats with no paging option and bit string attributes
(which are not interpreted by MFS).

- TYPE=DPM-B1, FEAT=IGNORE could identify device formats with PPAGE paging option and a
minimum set of program requirements.

PFK=
Defines an input field name to contain program function key literal or control function data (first
subparameter) and, in positional or keyword format, either the literal data to be placed in the
specified field, or the control function to be performed when the corresponding function key is
entered (remaining subparameters).

The name of the first subparameter (the input field name that will contain the program function key
literal or control function data) can be referred to by an MFLD statement and must not be used as the
label of a DFLD statement within this DEV definition. The remaining subparameters can be specified in
positional or keyword format. If the subparameters are in keyword format, the integer specified must
be from 1 to 36, inclusive, and not duplicated. Only one PFK= operand format (positional or keyword)
can be specified on a DEV statement. This operand is valid only for 3270 displays. At the time the
actual format blocks are created, each literal is padded on the right with blanks to the length of the
largest literal in the list. The maximum literal length is 256 bytes.

If the device supports the IMS copy function, then PFK12 invokes the copy function and the definition
of PFK12 in the DEV statement is ignored; otherwise, the definition of PFK12 is honored.

If FEAT=NOPFK is specified, it is changed to PFK. The maximum number of user-defined PFKs is 36.
Control functions that can be specified are:

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output message. If no output message
is in progress, no explicit response is made.

NEXTMSG—MESSAGE ADVANCE
Specifies a request to dequeue the output message in progress (if any) and to send the next
output message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any), and send the next output
message or return an information message indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE

Specifies a request for the next logical page of the current message.
ENDMPPI—END MULTIPLE PAGE INPUT

Specifies the end of a multiple physical page input message.

PEN=
Defines an input field name to contain literal data when an immediate light pen detection of a field
with a space or null designator character occurs. The literal data is defined on the DFLD statement

Chapter 4. MFS Language utility (DFSUPAAQ) 205

with the PEN= operand. (See PEN= operand on the DFLD statement.) This name can be referred to by
an MFLD statement and must not be used as the label of a DFLD statement within this DEV definition.
The PEN= operand is valid only for 3270 displays. If FEAT=NOPEN is specified, it is changed to PEN.

If an immediate detect occurs on a field defined with a space or null designator character, and either
another field has been selected or modified or has the MOD attribute, or the PEN= operand is not
defined for the DFLD, a question mark (?) is inserted in the PEN= field name.

If no immediate detection occurs or the immediate detect occurs on a field defined with an
ampersand (&) designator character, the PEN= operand is padded with the fill specified in the MFLD
statement.

CARD=
Defines the input field name to receive operator identification card data when that data is entered.
This name can be referenced by an MFLD statement and must not be used as the label of a DFLD
statement within this DEV definition. This operand is valid only if a 3270 display or SCS1 is specified.
If FEAT=NOCD is specified for a 3270 display, it is changed to CARD. All control characters are
removed from magnetic card input before the data is presented to the input MFLD that refers to this
card field name.

For 3270 displays, an unprotected field large enough to contain the magnetic card data and control
characters must be defined through a DFLD statement. Position the cursor to this field and insert the
card in the reader to enter card information. The card data is logically associated with the CARD= field
name, not the name used in the DFLD statement.

For device TYPE=SCS1, only card data with the operator ID (OID) character is associated with this
field name. Cards with the OID character can be entered at any time during data entry. MFS treats
data without the OID character as if it were data entered from the keyboard.

SYSMSG=
Specifies the label of the DFLD statements that define the device field in which IMS system messages
are to be displayed. This operand is valid only if a 3270 display is specified. A DFLD with this label
should be defined for each physical page within each DPAGE defined within this DEV definition. DFLDs
for SYSMSG should be at least LTH=79 to prevent message truncation. The referenced DFLD can also
be referenced by an MFLD statement.

FORMS=
Specifies a 1- to 16-byte literal. For the FIN, this literal is included in the output message header for
each message sent to the device using this FMT. The data can be used by the FIN application program
to ensure that special forms required for a given message are mounted on the device and that page
size and forms alignment are established.

For SCS1 output to SLU 1 print data set components or SLU 4, this literal names the data set to receive
IMS output. For 3770 programmable models defined to IMS as SLU 1 or SLU 4, however, the literal

is ignored by the terminal and all print data set output goes to the SYS.INTR data set. For all SCS1
output to 3770 (nonprogrammable), SLU 1 non-PDS components or SLU 4, the literal is ignored.

For DEV TYPE DPM-An, this literal is included in the output message header. If the DPAGE or PPAGE
paging option is specified, the literal is part of the special forms output message header sent as a
separate transmission, followed (after a paging request from the remote program) by the DPAGE or
PPAGE output message header and data records. If the default MSG option is selected, the output
message header with literal is sent as the first record, followed by data records.

WIDTH=
Specifies the maximum line width for this DEV type as one of:

« Number of print positions per line of input or output data
« Number of punch positions per card of input or output data
« Card width for card reader input data

The defaults are 132 for SCS1 input and output, 80 for SCS2 input and output, and 120 for 3270P
output. A specified number cannot exceed 255 for SCS1 and 249 for SCS2. Line width is specified

206 IMS: System Utilities

relative to column 1, regardless of whether a left margin value is specified in the HTAB= keyword
(SCS1 and SCS2 only). The width specified must be greater than or equal to 1.

For 3270P devices, if WIDTH is specified, then FEAT=(1...10) must also be specified. If FEAT=(1...10)
is specified, and WIDTH= is not specified, WIDTH= defaults to 120.

HTAB=
Specifies when TYPE=SCS1:

« Where on the device MFS should set horizontal tab stops

« Whether and when MFS should insert tab control characters in the output message to cause
horizontal tabbing

- Where on the device MFS should position the left margin

If HTAB=is not specified, no horizontal tabbing is done and the left margin position is assumed to be
column 1.

SET | ONLINE | OFFLINE
Specifies that MFS should set horizontal formatting controls for the device. When MFS sets
horizontal format controls for the device, the following characteristics are established: maximum
line width, left and right margins, and horizontal tab stops. The default is SET when the HTAB=
keyword is present.

SET
Specifies that MFS should set horizontal tab stops but should not insert tab control characters
into the output message. You can then use horizontal tabbing on subsequent input.

ONLINE
Specifies that MFS should set horizontal tab stops at the specified (HT=) locations and insert
tab control characters during online processing.

OFFLINE
Specifies that MFS should set horizontal tab stops at the specified (HT=) locations and insert
tab control characters during offline compilation of the format.

1 | lm (left margin)
Specifies the column position of the left margin. The default is 1. The value specified must be less
than the WIDTH= value.

HT=
Specifies from 1 to 10 horizontal tab stop locations. The values specified must be relative to
position 1, equal to or greater than the left margin value, and less than the WIDTH= value.

VT=
Specifies that MFS should insert tab control characters at the specified locations. From 1 to 11
vertical tab stop locations can be specified. If VTAB= is specified, the VT= values specified must
be relative to line 1 and equal to or less than the bottom margin specified on the VTAB= keyword.
If VTAB= is not specified, the VT= values must be equal to or less than the page depth specified
in the PAGE= keyword. The maximum value is 255. If a value greater than 255 is specified, 255 is
assumed and no error message is generated. VT= is valid only when TYPE=SCS1. If PAGE=(n,FLOAT)
is specified, VT=is invalid.

X'00' is accepted as a valid tab stop only if VTAB= is also specified.

Together with VTAB= and PAGE=, VT= comprises a data stream to set the vertical format of the page.
tm on the VTAB= keyword must be greater than or equal to 1 and less than t1 on the VT= keyword.
bm on the VTAB= keyword must be greater than or equal to t11 on the VT= keyword and less than or
equal to the maximum page length specified on the PAGE= keyword.

VTAB=
For SCS1 printers, specifies top (tm) and bottom (bm) page margins. Together with VT= and PAGE=,
VTAB= comprises a data stream to set the vertical format of the page. tm must be greater than or
equal to 1 and less than t1 on the VT= keyword. The maximum tm is 253.

Chapter 4. MFS Language utility (DFSUPAAQ) 207

bm must be greater than or equal to t11 on the VT= keyword and less than or equal to the maximum
page length specified on the PAGE= keyword. bm must be at least two greater than tm. If VTAB=is
specified, then the PAGE= value must be 3 or greater.

A form feed (FF) is inserted after the set vertical format (SVF) data stream if the top margin (tm)
specified on the VTAB= keyword is not equal to 1.

If PAGE=(n,FLOAT) is specified, VTAB=is invalid.

SLDI=
For SCS1 printers, specifies the line density for an output message in lines per inch. (See also SLDP=).
SLDI= can also be specified on the DFLD statement. The SLDI= value must be from 1 through 72 and
consistent with the architecture of the device for which it is specified (see the appropriate device or
component manual).

If SLDI=is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDI= specification is encountered, but after any
vertical tabs and new line characters.

Restriction: You cannot specify both SLDI= and SLDP= on the DEV statement.

The SLDI= specification within the message changes the line density from that set at the beginning of
the message, and this latter line density remains in effect until explicitly reset.

SLDP=
For SCS1 printers, specifies the line density for an output message in points per inch. (See also
SLDI=). SLDP= can also be specified on the DFLD statement. The SLDP= value must be from 1
through 72 and consistent with the architecture of the device for which it is specified (see the
appropriate device or component manual).

If SLDP=is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDP= specification is encountered, but after any
vertical tabs and new line characters.

Restriction: You cannot specify both SLDP= and SLDI= on the DEV statement.

The SLDP= specification within the message changes the line density from that set at the beginning of
the message, and this latter line density remains in effect until explicitly reset.

Tip: When you define set line density (SLDx) keywords, ensure that forms alignment is maintained. If
SLDx=is improperly defined, loss of forms alignment can occur.

VERSID=
Specifies any two-character or 2-byte hexadecimal value as the version ID. If MFS is specified or if the
VERSID keyword is not specified, MFS calculates the version ID. MFS is the default.

The version ID is calculated by MFS and is based on the date and time stamp that an FMT definition
has compiled. The value is printed on the MFS Language utility output so you can refer to it in format
definitions.

SUB=

Specifies the character used by MFS to replace any X'3F' characters in the input data stream. No
translation occurs if this parameter is specified as X'3F' or this parameter is not specified, or the input
received bypasses MFS editing. The specified SUB character should not appear elsewhere in the data
stream; therefore, it should be nongraphic.
X'hh'

Character whose hexadecimal representation is 'hh' replaces all X'3F'in the input data stream.
C'c'

Character 'c' replaces all X'3F' in the input data stream.

208 IMS: System Utilities

PDB=
(For the 3290 or 3180 in partitioned format mode) specifies the name of the Partition Descriptor
Block that is used to describe the partition set for an output or input message. This parameter is valid
only for DEV statements that specify TYPE=3270-An.

Related concepts
MFS message formats (Application Programming APIs)

DIV statement

The DIV statement defines device formats within a DIF or DOF. The formats are identified as input, output,
or both input and output, and can consist of multiple physical pages.

For DEV TYPE=SCS1, SCS2, or DPM-AN, two DIV statements can be defined: DIV TYPE=OUTPUT and DIV
TYPE=INPUT. For all other device types, only one DIV statement per DEV is allowed.

Format for DEV TYPE=SCS1, or SCS2 and DIV TYPE=INPUT

"Twad L J ”
label TYPE=INPUT L _E MSG 1J
,OPTIONS= DPAGE

Format for DEV TYPE=3270 or 3270-An

T
label INOUT

TYPE= OUTPUT

Format for DEV TYPE=FIN

T L e |

[oomr J
,OPTIONS= DPAGE

Format for DEV TYPE=SCS1, SCS2, 3270P, FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB,
or FIFP and DIV TYPE=OUTPUT

T
label L
TYPE=

OUTPUT
I_ 7 ,COMPR= FIXED

FET

Format for DEV TYPE=DPM-An

"Toad ”
label _E INPUT
TYPE= OUTPUT

Chapter 4. MFS Language utility (DFSUPAAQ) 209

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_appprogwithmfs.htm#ims_appprogwithmfs

-
>

»
>

L ,NOSPAN J
,RCDCTL=(I_ T)
k 256 ﬂ
nnnnn

B
— ,NULL= DELETE

A 4
v

A\ 4

FLDEXIT ,SEGEXIT ,MSG
“— ,OPTIONS=(I_ j I_ j I_ j

—
-
—

,NOSEGEXIT J L ,DPAGE

NOFLDEXIT

>
>

2 ,SPAN
L ,RCDCTL=(f_ * j I_ j) J
L nnnnn J L ,NOSPAN J

A 4

FIXED
L,HDRCTL=(J_ j f_ T)J
LVARIABLE—J

A 4

J

MSG ,SIM
Lo ™

kDpAGE j U oswz - L own J

PPAGE

Y

COMPR— FIXED

=l

Format for DEV TYPE=DPM-Bn

T
label _E INPUT
TYPE= ouTPUT — B|

210 IMS: System Utilities

J

»
»

-
>

»
>

L ,NOSPAN T J
,RCDCTL=()

-
=

L f_ FLDEXIT j f_ ,SEGEXIT j f_ ,MSG j f_ ,DNM j J
,OPTIONS=()
L NOFLDEXIT J L ,NOSEGEXIT J L ,DPAGE J L ,NODNM J

»d

L ,DPN= dfldname —J L ,RDPN= dfldname J L ,RPRN= dfidname —J)

L ,NOSPAN J
,RCDCTL=(J_ T)
% 256 ﬂ
nnnnn

= a=a==—=g

,PPAGE

»
»

A 4

A 4

>
>

A 4

»
»

A 4

L ,DPN= — (' — literal —') —J]
L ,dfldname J

L ,PRN= — ('— literal —')—J]
L ,dfldname J

L ,RPRN= — (" — fiteral — ")J
L ,dfldname J
L,OFTAB=(

-

L ,COMPR= FIXED J

tSHORT
ALL

A 4

A 4

»
»

A 4

»
»

A 4

Chapter 4. MFS Language utility (DFSUPAAOQ) 211

Parameters

label
A one- to eight-character alphanumeric name can be specified to uniquely identify this statement.

TYPE=
Describes an input only format (INPUT), an output only format (QUTPUT), or both (INOUT).

If DIV TYPE=OUTPUT or TYPE=INPUT is specified, certain DEV statement keywords are applicable.

For example, specifying WIDTH=80 for DEV TYPE=SCS1 indicates that fields can be printed in
columns 1 through 80 on output and received from columns 1 through 80 on input. Specifying
WIDTH=80 for DEV TYPE=SCS2 indicates that both the card reader and card punch have the same
number of punch positions. Specifying WIDTH=80 and HTAB=(SET,5) for DEV TYPE=SCS1 indicates
that fields can be printed in columns 5 through 80 and received from columns 5 through 80 on input.
In this case DFLD POS=(1,5) or POS=5 on input is the same as if you specified column 1 and a left
margin position at 1. You enter data the same way, regardless of where the left margin is currently set.

RCDCTL=
This parameter is valid only if MODE=RECORD is specified on the DEV statement. For DEV TYPE=DPM-
An or DPM-Bn only, RCDCTL specifies the maximum length of an input or output transmission record.
For DPM-An, RCDCTL specifies whether (SPAN) or not (NOSPAN) fields can span records. The RCDCTL
number cannot be larger than 32000 and should not be less than the length of the message output
header (For DPM-An, see HDRCTL discussion.) The default value is 256. RCDCTL creates record
definitions even if RCD statements are used in the same format definition.

- For DEV TYPE=DPM-An or TYPE=Bn and DIV TYPE=INPUT

For an input format definition, fields must not span record boundaries, and therefore must be within
the length specified by the RCDCTL value. NOSPAN is the default.

« For DEV TYPE=DPM-An or Bn and DIV TYPE=OUTPUT

The RCDCTL size specified should be less than or equal to the output buffer size specified in the
OUTBUF= macro at IMS system definition. If the RCDCTL size is greater than the OUTBUF value
specified, one record might require multiple output transmissions and might produce undesirable
results in the remote program. If fields do not exactly fit in the defined records, and NOSPAN has
been specified, records might not be completely filled.

The RCDCTL also specifies whether (SPAN) (for DPM-An only) or not (NOSPAN) a field can span
record boundaries. If SPAN is specified (for DPM-An only), some fields can span a record boundary
(but never a PPAGE boundary), and the remote program must include logic to associate the partial
fields or deal with them separately.

If NOSPAN is specified, every field is entirely contained within a record and no field will have a
length greater than the RCDCTL value specified.

The first data field is the first field of the message for OPTIONS=MSG. The first data field is the first
field of the DPAGE or PPAGE for OPTIONS=DPAGE and PPAGE respectively. If the first data field
does not fit in the same record as the output message header, and if OPTIONS=DPAGE or PPAGE
has been specified, the first data record will be sent in the next transmission. The output message
header will be transmitted by itself (as is always the case for OPTIONS=MSG).

NULL=
For DEV TYPE=DPM-An and DIV TYPE=INPUT only, NULL= specifies whether MFS is to ignore (KEEP)
or search for and replace (DELETE) trailing nulls in fields. If NULL=DELETE is specified, MFS searches
input message fields for trailing nulls or for fields that are all nulls, and replaces the nulls with the fill
character specified in the message definition.

OPTIONS=
For DIV TYPE=INPUT, the OPTIONS keyword specifies the exit routines to be called, the type of paging
or delivery requested, and, for DPM-Bn only, the selection of the DPAGE data name to be used to map
data.

212 IMS: System Utilities

For DIV TYPE=OUTPUT, the OPTIONS= keyword specifies the type of paging or delivery requested, the
type of attribute processing requested, and, for DPM-Bn only, the selection of the DPAGE data name to
be used to map data.

For DPM output messages, the option selection determines how records are constructed for
transmission to the remote program or ISC subsystem and effects the distribution of processing and
logic between the IMS application program and the remote program or ISC subsystem.

- For DEV TYPE=DPM-An or TYPE=DPM-Bn and DIV TYPE=INPUT

FLDEXIT|NOFLDEXIT

SEGEXIT|NOSEGEXIT
Input data from this device type can be partially edited by the remote program before it is sent
to IMS. For input format definitions, this parameter specifies whether (FLDEXIT and SEGEXIT)
or not (NOFLDEXIT and NOSEGEXIT) exit routines specified in the MSG definition MFLD and SEG
statements, respectively, are to be called for this DPM format. If NOFLDEXIT or NOSEGEXIT is
specified, the corresponding exit routine is bypassed. FLDEXIT and SEGEXIT are the defaults.

MSG
Specifies that an input message can be created from a single DPAGE.

DPAGE
Specifies that an input message can be created from multiple DPAGEs. If multiple DPAGE input
is not requested in MFS definitions, messages can not be created from more than one DPAGE. In
this case:

If a single DPAGE is transmitted and contains more data than defined for the DPAGE selected,
the input message is rejected and an error message is issued.

If multiple DPAGEs are transmitted, the input message is rejected and an error message is
issued.

NODNM (DPM-An only)

DNM/NODNM (DPM-Bn only)
When a data name (DNM) is specified or defaulted to (DPM-Bn only), a specific DPAGE is
selected to map the current or only data transmission when:

The DPAGE data name is supplied as the DSN parameter in the message header, and
The DPAGE data name matches a defined DPAGE data name.

If these conditions are not met, the last defined DPAGE name is used to map the data, unless
the DPAGE is defined as conditional.

When no data name (NODNM) is specified (for either DPM-An or -Bn) MFS selects a specific
DPAGE by performing a conditional test on the data received and the COND= parameter.
« For DEV TYPE=SCS1, SCS2, FIN, and DIV TYPE=INPUT
MSG
Specifies that an input message can be created from a single DPAGE.

DPAGE
Specifies that an input message can be created from multiple DPAGEs. If multiple DPAGE input
is not requested in MFS definitions, messages can not be created from more than one DPAGE. In
this case:

— If asingle DPAGE is transmitted and contains more data than defined for the DPAGE selected,
the input message is rejected and an error message is sent to the other subsystem.

— If multiple DPAGEs are transmitted, the input message is rejected and an error message is
sent to the other subsystem.

« For DEV TYPE=DPM-An or TYPE=DPM-Bn and DIV TYPE=OUTPUT

Chapter 4. MFS Language utility (DFSUPAAQ) 213

MSG
Is the default and specifies that IMS will transmit all the DFLDs within a message together as
a single message group. The message is preceded by an output message header. All DFLDs are
transmitted. For DPM-Bn, the data structure name is optional in the header.

DPAGE
Specifies that IMS will transmit all DFLDs that are grouped in one logical page together. The
logical page will be transmitted in one or more records. If PPAGE statements are defined with
the DPAGE, each PPAGE statement begins a new record. An additional logical page will be sent
when a paging request is received from the remote program. Each logical page is preceded by
an output message header, and the label on the DPAGE is placed in the header. For DPM-Bn,
the data structure name is optional in the DD header and depends on the specification of DNM/
NODNM.

PPAGE
Specifies that IMS will transmit the DFLDs that are grouped in one presentation page (PPAGE)
together in one chain. The presentation page will be transmitted in a group of one or more
records. An additional presentation page will be sent when a paging request is sent to IMS from
the remote program. Each presentation page is preceded by an output message header, and the
label on the PPAGE statement is placed in the header. For DPM-Bn, the data structure name is
optional in the DD header and depends on the specification of DNM/NODNM.

SIM/NOSIM2
Specifies whether (SIM) or not (NOSIM2) MFS is to simulate attributes. SIM, the default,
indicates that MFS is to simulate the attributes specified by the IMS application program
and place the simulated attributes in corresponding DFLDs that are defined with ATTR=YES
or YES,nn. The first byte of the field is used for the simulated attributes. If the MFLD does
not supply 3270 attribute information (by means of the ATTR=YES or YES,nn operand) for the
corresponding DFLD specifying ATTR=YES or YES,nn, a blank is sent in the first byte of the field.
The application designer of the remote program or ISC subsystem is responsible for interpreting
the simulated attribute within the remote program or ISC subsystem.

If NOSIM2 is specified, MFS sends a 2-byte bit string to the remote program or subsystem. This
bit string is sent exactly as received from the IMS application program. 3270 extended bytes,

if any (ATTR=YES,nn), are always sent as received from the application program and follow the
2-byte string of 3270 attributes. If the MFLD does not supply attribute information, binary zeros
are sent in the two bytes preceding the data for the field.

See ATTR= on the DFLD statement for additional information.

DNM (DPM-An only)
Can be used with the FORMS= keyword on the DEV statement to specify a literal in the message
header. This parameter is optional.

DNM/NODNM (DPM-Bn only)
If DNM is specified or defaulted to, MFS includes the following in the DD header:
— The FMT name, if OPTIONS=MSG
— The DPAGE name, if OPTIONS=DPAGE
— The PPAGE name, if OPTIONS=PPAGE

If NODNM is specified, no data structure name (DSN) is supplied in the DD header.

HDRCTL=
Specifies, for DEV TYPE=DPM-An and DIV TYPE=OUTPUT only, the characteristics of the output
message header.

FIXED
Specifies that a fully padded output message header is to be sent to the remote program. The
structure of the fixed output message header is the same for all DPM output messages built using
this FMT definition. The base DPM output message header has a length of 7, and includes the
version ID.

214 IMS: System Utilities

VARIABLE
Specifies that MIDNAME and DATANAME will have trailing blanks omitted and their length fields
adjusted accordingly. If MIDNAME is not used, neither the MIDNAME field nor its length is present.

nn
Specifies the minimum length of the header, that is, the base header without MFS fields. The
default is 7, which is the length of the base message header for DPM. Specifying other than 7
might cause erroneous results in the remote program.

The parameters referenced as RDPN=, DPN=, PRN=, and RPRN= refer to both the ISC ATTACH function
management header and the equivalent ISC SCHEDULER function management header.

RDPN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return destination process
name (RDPN) to be supplied in the input message MFLD referencing this dfldname. If dfldname is not
specified, no RDPN is supplied in the input message.

DPN=
For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the DPN in the
output ATTACH message header. The literal cannot exceed 8 characters. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as the DPN in the output
ATTACH message header. If no output message MFLD reference to the dfldname exists, the 'literal'
is used. If the data in the MFLD referencing the dfldname is greater than 8 characters, the first 8
characters are used.

PRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested primary resource name (PRN)
to be supplied in the input message MFLD referencing this dfldname. If the dfldname is not specified,
no PRN is supplied in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the PRN in the
output ATTACH message header. The literal cannot exceed 8 characters. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as the PRN in the output
ATTACH message header. If no output message MFLD reference to the dfldname exists, the 'literal'
is used. If the data in the MFLD referencing the dfldname is greater than 8 characters, the first 8
characters are used.

RPRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return primary resource
name (RPRN) to be supplied in the input message MFLD referencing this dfldname. If dfldname is not
specified, no RPRN is supplied in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this literal as the suggested
return primary resource name (RPRN) in the output ATTACH message header. The literal cannot
exceed 8 characters. If the dfldname is also specified, the data supplied in the MFLD referencing this
dfldname is used as the RPRN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, the 'literal' is used. If the data in the MFLD referencing the dfldname
is greater than 8 characters, the first 8 characters are used.

OFTAB=
Directs MFS to insert output field tab separator characters in the output data stream for the message.
If OPTIONS=DNM and OFTAB, then the OFTAB character is placed in the DD header and an indicator is
set to MIX or ALL. If OPTIONS=NODNM, then no DD header is sent.
X'hh'
Character whose hexadecimal representation is "hh" is used as the output field tab separator
character. Specification of X'3F' or X'40' is invalid.
C'c'
Character "c" is used as the output field tab separator character. Specification of C""b is invalid.

Restriction: The character specified cannot be present in the data stream from the IMS
application program. If it is present, it is changed to a blank (X'40").

Chapter 4. MFS Language utility (DFSUPAAQ) 215

If an output field tab separator character is defined, either MIX or ALL can also be specified.
Default value is MIX.

MIX
Specifies that the output field tab separator character is to be inserted into each individual field
with no data or with less data than the defined DFLD length.

ALL
Specifies that the output field tab separator character is to be inserted into all fields, regardless of
data length.

COMPR=
Requests MFS to remove trailing blanks from short fields, fixed-length fields, or all fields presented by
the application program.

For DPM-AN devices, trailing blanks are removed at the end of a segment if all of the following
conditions are true:

1. FILL=NULL or FILL=PT is specified.
2. GRAPHIC=YES is specified for the current segment being mapped.
3. OPT=1 or OPT=2 is specified in the MSG segment.

If conditions 1, 2, and 3 are met, replacement of trailing blanks occurs as follows:

FIXED
Specifies that trailing blanks from fixed-length fields are to be replaced by nulls.

SHORT
Specifies that trailing blanks fields shortened by the application program are to be replaced by
nulls.

ALL
Specifies that trailing blanks from all fields are to replaced by nulls.

The trailing nulls are then compressed at the end of the record. See the description of the FILL=
operand for additional information.

For DPM-BN devices, trailing blanks are removed if all of the following conditions are true:
1. OFTAB is specified on the current DIV statement, or FILL=NULL or FILL=PT is specified.
2. GRAPHIC=YES is specified for the current segment being mapped.

3. OPT=1 or OPT=2 is specified in the MSG segment.

If conditions 1, 2, and 3 are met, the removal of trailing blanks occurs as follows:

FIXED
Specifies that trailing blanks are to be removed from fixed-length fields.

SHORT
Specifies that trailing blanks are to be removed from fields shortened by the application program.

ALL
Specifies that trailing blanks are to be removed from all fields.

DPAGE statement
The DPAGE statement defines a logical page of a device format.

This statement can be omitted if none of the message descriptors referring to this device format (FMT)
contains LPAGE statements and if no specific device option is required.

216 IMS: System Utilities

Format for DEV TYPE=DPM-An, or DPM-Bn and DIV TYPE=INPUT

»i— DPAGE >
label L COND=(offset, >=) value' —) J

d nm A Vv

Format for DEV TYPE=DPM-An and DIV TYPE=OUTPUT

T 0 ~
label J— X'40' T J
FILL= X' hh'

c'c
NONE
NULL

Format for DEV TYPE=DPM-Bn and DIV TYPE=OUTPUT

label J— X'40' T J
FILL= X'hh'

c'¢
NONE
NULL

L MIX J
LOFTAB=()

] T

Chapter 4. MFS Language utility (DFSUPAAQ) 217

Format for DEV TYPE=3270-An

v

&

T
label L E
CURSOR=((— 111,ccc

y €

.

\ 4

U o J

L [
,FILL= X' hh'

c'¢
NONE
NULL

L ,ACTVPID= dfldname J -

A 4

Format for DEV TYPE=3270

J L,MULT=YESJ L,PD=pdname—j]

A

.

T
label E
CURSOR=((— 111,ccc

[
>

L PT J L,MULT=YES J -
,FILL= J_ X'/7hj

c'¢
NONE
NULL

Format for DEV TYPE=3270P

T
label J— X'40' T J
FILL= X' hh'

c'¢
NONE
NULL

»d
L)

218 IMS: System Utilities

U o J

v

Format for DEV TYPE=FIN

»i— DPAGE >
label L COND=(offset, >=) value' —) J

[} ANV

d

Format for DEV TYPE=FIDS, FIDS3, FIDS4, or FIDS7

T 0
label J— X'40' T J
FILL= X' hh'

c'c
NONE
NULL

L CURSOR=(L (— 111,ccc])~J

Cowd

]\ E ABSOLUTE j J
,ORIGIN=(RELATIVE)
Format for DEV TYPE=FIJP or FIPB

"Taad
label J— X'40' T J
FILL= X' hh'

c'¢
NONE
NULL

»
>

»
»

A 4

\ 4

»d
L)

Chapter 4. MFS Language utility (DFSUPAAQ) 219

Format for DEV TYPE=FIFP

"Twad
label J— X'40' T J
FILL= X'hh'

c'c¢
NONE
NULL

»
»

»d

]\ LEFT
SELECT=(RIGHT)

DUAL

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=INPUT

Tl 7T -
label COND=(offset, >=) value' —)

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=OUTPUT

»i— DPAGE >«
label J— X'40' T J
FILL= X' hh'

c'c
NONE
NULL

Parameters

label
A 1- to 8-byte alphanumeric name can be specified for this device format that contains LPAGE SOR=
references, or if only one DPAGE statement is defined for the device. If multiple DEV statements are
defined in the same FMT definition, each must contain DPAGE statements with the same label.

For device type DPM-An and DIV statement OPTIONS=DPAGE, this name is sent to the remote
program as the data name in the output message header. If the label is omitted, MFS generates a
diagnostic name and sends it to the remote program in the header. If the DPAGE statement is omitted,
the label on the FMT statement is sent in the output message header. If OPTIONS=DNM, the label on
the FMT statement is sent as the DSN in the DD header.

COND=
Specifies a conditional test to be performed on the first input record. The offset specified is relative
to zero. The specification of the offset must allow for the LLZZ field of the input record (for example,
the first data byte is at offset 4). If the condition is satisfied, the DFLDs defined following this DPAGE
will be used to format the input. When no conditions are satisfied, the last defined DPAGE will be used

220 IMS: System Utilities

only if the last defined DPAGE does not specify COND=. If the COND= parameter is specified for the
last DPAGE defined and the last defined DPAGE condition is not satisfied, the input message will be
rejected. Multiple LPAGE definitions are allowed in message input definitions.

If this keyword is specified, and OPTIONS=NODNM is specified on the DIV statement, this
specification is used for DPAGE selection. If this keyword is specified and OPTIONS=DNM is specified
on the DIV statement, the COND= specification is ignored and the data structure name from the DD
header is used for DPAGE selection.

Lowercase data entered from Finance, SCS1, or SCS2 keyboards is not translated to uppercase when
the COND= comparison is made. Therefore, the literal operand must also be in lowercase.

FILL=
Specifies a fill character for output device fields. Default value for all device types except the 3270
display is X'40'; default for the 3270 display is PT. For 3270 output when EGCS fields are present,
only FILL=PT or FILL=NULL should be specified. A FILL=PT erases an output field (either a 1- or
2-byte field) only when data is sent to the field, and thus does not erase the DFLD if the application
program message omits the MFLD. For DPM-Bn, if OFTAB is specified, FILL=is ignored and FILL=NULL
is assumed.

NONE
Must be specified if the fill character from the message output descriptor is to be used to fill the
device fields.
X'hh'
Character whose hexadecimal representation is 'hh' will be used to fill the device fields.
c'c
Character 'c' will be used to fill the device fields.
NULL

Specifies that fields are not to be filled. For devices other than the 3270 display, 'compacted lines'
are produced when message data does not fill the device fields.

For DPM-An devices, trailing nulls (X'3F') are removed from all records transmitted to the
remote program or subsystem. Trailing nulls are removed up to the first non-null character. Null
characters between non-null characters are transmitted. If the entire record is null, but more
data records follow, a record containing a single null is transmitted to the remote program. If
the entire record is null and more records follow, if OPTIONS=MSG or DPAGE, or in a PPAGE, if
OPTIONS=PPAGE, then all null records are deleted to the end of that DPAGE or PPAGE.

PT
Is identical to NULL except for the 3270 display. For the 3270 display, specifies that output fields
that do not fill the device field (DFLD) are followed by a program tab character to erase data
previously in the field; otherwise, this operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is changed to X'00' for
control characters or to X'40' for other nongraphic characters. For all other devices, any FILL=X'hh'
or FILL=C'c' specification with a value less than X'3F' is ignored and defaulted to X'3F' (which is
equivalent to a specification of FILL=NULL).

MULT=YES
Specifies that multiple physical page input messages will be allowed for this DPAGE.

CURSOR=

Specifies the position of the cursor on a physical page. Multiple cursor positions might be required

if a logical page or message consists of multiple physical pages. The value lll specifies line number,
ccc specifies column; both lll and ccc must be greater than or equal to 1. The cursor position must
either be on a defined field or defaulted. The default Ill,ccc value for 3270 displays is 1,2. For Finance
display components, if no cursor position is specified, MFS will not position the cursor—the cursor

is normally placed at the end of the output data on the device. For Finance display components, all
cursor positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program with cursor information
on input and allowing the application program to specify cursor position on output.

Chapter 4. MFS Language utility (DFSUPAAQ) 221

Tip: Use the cursor attribute facility (specify ATTR=YES in the MFLD statement) for output cursor
positioning.

The dfld parameter specifies the name of a field containing the cursor position. This name can

be referenced by an MFLD statement and must not be used as the label of a DFLD statement in

this DEV definition. The format of this field is two binary halfwords containing line and column
number, respectively. When this field is referred to by a message input descriptor, it will contain

the cursor position at message entry. If referred to by a message output descriptor, the application
program places the desired cursor position into this field as two binary halfwords containing line and
column, respectively. Binary zeros in the named field cause the specified lll,ccc to be used for cursor
positioning during output. During input, binary zeros in this field indicate that the cursor position is not
defined. The input MFLD referring to this dfld should be defined within a segment with GRAPHIC=NO
specified or should use EXIT=(0,2) to convert the binary numbers to decimal.

ORIGIN=
Specifies page positioning on the Finance display for each physical page defined. Default value is
ABSOLUTE.
ABSOLUTE
Erases the previous screen and positions the page at line 1 column 1. The line and column
specified in the DFLD statement will become the actual line and column of the data on the screen.
RELATIVE
Positions the page starting on column 1 of the line following the line where the cursor is
positioned at time of output. Results might be undesirable unless all output to the device is
planned in a consistent manner.
OFTAB=
Directs MFS to insert the output field tab separator character specified on this DPAGE statement for
the output data stream of the DPAGE being described.
X'hh'
Character whose hexadecimal representation is 'hh' is used as the output field tab separator
character. Specification of X'3F' or X'40' is invalid.
Clcl
Character 'c' is used as the output field tab separator character. Specification of C' ' is invalid.

Restriction: The character specified cannot be present in data streams from the IMS application
program. If it is present, it is changed to a blank (X'40").

If the output field tab separator character is defined, either MIX or ALL can also be specified.
Default value is MIX.
MIX
Specifies that an output field tab separator character is to be inserted into each individual field
with no data or with data less than the defined DFLD length.
ALL
Specifies that an output field tab separator character is to be inserted into all fields, regardless of
data length.
SELECT=
Specifies carriage selection for a FIFP device with FEAT=DUAL specified in the previous DEV
statement. It is your responsibility to ensure that proper forms are mounted and that left margins
are set properly. Default value is LEFT.
LEFT
Causes the corresponding physical page defined in this DPAGE to be directed to the left platen.
RIGHT
Causes the corresponding physical page defined in this DPAGE to be directed to the right platen.
DUAL

Causes the corresponding physical page defined in this DPAGE to be directed to both the left and
right platens.

222 IMS: System Utilities

PD=
(for the 3180 and 3290 in partition formatted mode) Specifies the name of the partition descriptor of
the partition associated with the DPAGE statement. This parameter maps a logical page of a message
to or from the appropriate partition. The name of the PD must be contained within the PDB statement
specified in the DEV statement.

ACTVPID=
(for the 3290 in partition formatted mode) Specifies the name of an output field in the message
containing the partition identification number (PID) of the partition to be activated. This dfldname
must be referenced by an MFLD statement and must not be used as the label of a DFLD statement in
the DEV definition. The application program places the PID of the partition to be activated in this field.
The PID must be in the format of a two byte binary number ranging from X'0000' to X'000F".

Do not specify this operand for the 3180. Because only one partition is allowed for this device, you
need not specify an active partition.

PPAGE statement

The PPAGE statement, valid only for device types of DPM-An or DPM-Bn, defines the beginning of a
presentation page.

A presentation page is the unit of data delivered to the remote program in response to a paging

request when OPTIONS=PPAGE has been specified in the DIV statement for this definition. For DPM-Bn
MODE=RECORD only, if OPTIONS=MSG or DPAGE has been specified, paging is as described for those
options under the DIV statement, and the PPAGE statement then defines the beginning of a new record
(that is, it is equivalent to a RCD statement).

For an input DPAGE, only one PPAGE statement is allowed, and it must be placed between the DPAGE
statement and the first DFLD statement. For an output DPAGE, if two consecutive PPAGE statements
appear in the DPAGE for a message defined with OPTIONS=PPAGE, only an output message header with
the PPAGE label as its data name is sent to the remote program, except OPTIONS=(PPAGE,DNM) for DPM-
Bn. For DPM-Bn, a PPAGE statement without a DFLD statement is not allowed when OPTIONS=(PPAGE,
NODNM) is specified for DIV TYPE=OUTPUT. A warning message is issued, and the PPAGE statement is
ignored. For OPTIONS=MSG or DPAGE, consecutive PPAGE statements are ignored.

Format

»i— PPAGE, comments -»<
label

Parameters

label
A one- to eight-character alphanumeric name should be specified. For OPTIONS=PPAGE, this label is
sent as the data name for DPM-An or as the data structure name for DPM-Bn in the message output
header or DD header to identify the data structure of this presentation page to the remote program.
If no label is specified, MFS generates a diagnostic label that is sent to the remote program in the
header.

Tip: Specify a user-defined label because the MFS-generated name can change whenever the MFS
definitions are recompiled.

The label specified should be unique, at least within a given FMT definition, and preferably within an
IMS system if the remote program uses this label to identify the appropriate DSECT for formatting the
data included in this presentation page.

Chapter 4. MFS Language utility (DFSUPAAQ) 223

DO statement

The DO statement causes repetitive generation of DFLD and RCD statements between the DO and ENDDO
statements.

When DO is used, there are restrictions in the naming of DFLDs.

Format

1 ,MAX
»i— DO — count (1 J l >
label N—— ,line-increment —] L ,column-increment J

— ,position-incremenft —

L _fjj L F”"ETJ
,SUF= number ,BOUND= FIELD

Parameters

label
A one- to eight-character alphanumeric name can be specified. It is not used.

count
Specifies how many times to generate the statements.

line-increment
Specifies how much to increase the line position after the first cycle. The first cycle uses the lll value
specified in the POS= keyword of the DFLD statement. The default is 1. This parameter is not specified
for DEV type DPM-An or DPM-Bn.

position-increment
Specifies how much to increase the position parameter after the first cycle. The first cycle uses the
nnn value specified in the POS= operand of the DFLD statement. The position increment is used for
an input device format when MODE=STREAM is specified. This parameter is not specified for DEV type
DPM-An or DPM-Bn.

MAX
Specifies that the line increment to be used at the end of each cycle and the column values in
the DFLDs are to remain the same for each cycle. This parameter is not used if MODE=STREAM is
specified for the device format or if DEV type is DPM-An or DPM-Bn; if present, it is ignored.

column-increment
Specifies how much to increase the column position after the first cycle. The first cycle uses the ccc
value specified in the POS= keyword of the DFLD statement. The default is MAX. This parameter is
not used for DEV type DPM-An or DPM-Bn, or when MODE=STREAM is specified for the device format,
because it is ignored.

SUF=
Specifies the 2-digit suffix to be appended to the dfldname of the first group of generated DFLD
statements. The default is 01. MFS increments the suffix by one on each subsequent generation of
statements.

If the specified suffix exceeds 2 digits, MFS uses the rightmost 2 digits.

If the specified count is such that the generated suffix eventually exceeds 2 digits, MFS reduces the
count to the largest legitimate maximum value. For example, if count equals 8 and SUF=95, invalid

suffixes of 100, 101, and 102 would result. In this instance, MFS reduces the count to 5, processes
the statement, and issues an error message.

224 IMS: System Utilities

BOUND=
Specifies when updates to line position and column position are to occur. The default is LINE. This
parameter is not used if MODE=STREAM is specified for the device format or if DEV type is DPM-An or
DPM-Bn; if present, it is ignored.

LINE
Specifies that all fields be inspected before the repetition is performed. If the column increment
would cause any field in the group of DFLD statements to not fit on a line, the column position
value for all fields is reset to the initial value, and the line position values are increased by the
line-increment value.

FIELD
Specifies that each time the statement is repeated, the column position value is increased by the
column-increment value. If MAX is specified, or the new column position value reaches device line
length capacity, the line position value is increased by the line-increment value and the column
position value is reset to its initial value.

Example of line and column increment

The following example demonstrates how to increment lines and columns:

DO 20,1,38
Al DFLD P0S=(9,6) ,LTH=6
Bl DFLD P0S=(9,27),LTH=3

In this example, Al and B1 are increasing by line increment (1) and column increment (38). Generation
would proceed in the following fashion by a compiler:

 Add the column increment to each column value in the set, resulting in positions (9,44) and (9,65).

« Test to see if any field using these new column values would exceed the line size limitation for this
device. In this example, assume a limitation of 80 for a 3270 Model 2.

- Since there is no violation of line width, generate A2 and B2 using the new column values and the same
line value.

« Add the column increment again, resulting in positions (9,82) and (9,103).

« Since the fields would exceed line width, the column values are reset to the original values of (9,6) and
(9,27) and the line increment is applied. The resulting positions are now (10,6) and (10,27).

- Generate A3 and B3 using the new line values, with column values as in the original statements.

Generation continues in this manner until the count of 20 iterations is reached.

Printing generated DFLD statements

The generated DFLD statements can be printed in a symbolic source format by specifying COMP in the
parameter list of the EXEC statement. This provides a means of seeing the results of the DFLD statement
generation without having to interpret the intermediate text blocks.

The following items are printed for each generated DFLD statement:

« The generated statement sequence number followed by a plus sign (+) to indicate that the DFLD
statement was generated as a result of DO statement processing.

« The DFLD statement label, if present, including the appended suffix.
« The statement operator, DFLD.

« For EGCS literals, the G, SO, and SI are not present. Literals are truncated if there is insufficient room
to print all specifications. Truncation is indicated by a portion of the literal with three periods (...),
representing the truncated portion.

« ATTR=(YES,nn), if present.
« ATTR=YES, if present.

Chapter 4. MFS Language utility (DFSUPAAQ) 225

ATTR=nn, if present.

ATTR=(...), if attributes are present.
EATTR=(...), if present.

The RECORD or STREAM form of the POS= keyword, with the line and column or stream position
updated by the respective increments. This is not printed if DEV type is DPM-An or DPM-Bn.

« SCA, if present.
« The field length, in the form of LTH=nnnn.

No other operands are printed, even if specified on the source DFLD statement.

For device type DPM-An or DPM-Bn, the RCD statement can appear between a DO and ENDDO statement.
If it does, a new record boundary is created for each repetitive generation of the DFLD field following the
RCD statement. For example, the following sequence causes the DFLDs A01, BO1, and C0O1 to be in record
1, while A02, B02, and C02 are in record 2, and A03, B03, and C03 are in record 3.

DO 3

RCD

DFLD LTH=10
DFLD LTH=10
DFLD LTH=10
ENDDO

O w>X>

Alternatively, the RCD statement can immediately precede the DO statement. If it does, a new record
boundary begins with the first DFLD after the DO statement and does not end until the ENDDO statement
(or the maximum record length) is reached. For example, the following sequence causes the DFLD D01 to
begin a new record, in which E01, D02, and E02 also occur.

RCD
DO 2
D DFLD LTH=10
E DFLD LTH=10
ENDDO
RCD statement

The RCD statement, valid for DEV TYPE=DPM-An or DPM-Bn only, can be used to influence the placement
of DFLDs in records.

The RCD statement precedes a DFLD statement and initiates a new transmission record for delivery to a
remote program. DFLDs following the RCD statement are included into the transmission record until the
next RCD statement or the maximum record length is reached (or, if NOSPAN is specified, until a field will
not be fully contained in the current record).

The RCD statement can be placed after the PPAGE, DO, DFLD, or ENDDO statements. If a RCD statement
is immediately followed by another, only the first one is effective.

The RCD statement is invalid for STREAM mode.

Format

»i— RCD, comments »<
label

Parameters

label
A one- to eight-character alphanumeric name can be specified. It is not used.

226 IMS: System Utilities

DFLD statement

The DFLD statement defines a field within a device format which is read from or written to a terminal or
remote program.

Only those areas which are of interest to the IMS or remote application program should be defined. Null
space in the format does not need to be defined.

Format for DEV TYPE=3270 or 3270-An

»i— DFLD ,POS=(M,ccc ﬁ—) —>
label BSSWORﬂ PP

‘literal !

L J ,PEN= ‘literal !
,LTH=nnn M— NEXTPP —

—>

A 4

M— NEXTMSG —
M NEXTMSGP —
M— NEXTLP —

— ENDMPPI —~

Y

==

»
»

A 4

,OPCTL= tablename J

A 4

L JEATTR=([B}—) -

HD ,CD M~ ,PX'00' —

M HBLINK —| }—— BLUE— | ,Px'h#' —

M— HREV —A ,RED — PC'¢ —

—HAUL— PNk — }— EGCS —

— ,GREEN — _ EGcs'mn —
—— TURQ —

M ,YELLOW —

~— ,NEUTRAL —

A

,NODET ,NORM ,NOMOD ,STRIP
I G S G et S S U

- ,DET j BODISj L ,MOD —j L ,NOSTRIP J
,IDET ,HI

Chapter 4. MFS Language utility (DFSUPAAQ) 227

¥

M——oVDFLD —— M ,OUTL — t ,MIX ﬂ
M VMFILLVMFLD — M ,OUTL' hh' — ,MIXD

M—— \VMFILL — M ,BOX —

 VMFLD —— | RIGHT —
—— ,LEFT —

M— ,UNDER —

~—— ,OVER —~

Format for DEV TYPE=3270P

»i— DFLD ,POS=(/Ml,ccc) >
label L ‘literal' J L PP J L ,LTH= nnn J

L NO
LATTR=
YES

] L,EATTR=()—j"

HD ,CD ,PX'00'
M HBLINK — M ,BLUE — ,PX' hh'
M— HREV — ,RED PC'e

— HUL— ___ PINK —

— ,GREEN —
—— TURQ —

M— ,YELLOW —

— ,NEUTRAL —

Format for DEV TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIFP, FIJP, and FIPB

»i— DFLD ,POS=(/Ml,ccc) >
label L ‘literal ' J L PP J L ,LTH= nnn J

L o
LATTR=
YES

228 IMS: System Utilities

Format for DEV TYPE=FIN

1
»i— DFLD POS —— =(M,ccc) >
label L PP J L ,LTH= nnn J

2
POS =nnn

»
»

L ,OPCTL= fablename J A

Notes:

1 MODE=RECORD only
2 MODE=STREAM only

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=OUTPUT

»i— DFLD ,POS=(/,ccc) >
label L ‘literal' J L PP J L ,LTH= nnn J

»d

L NO
LATTR=
YES

Format for SCS1 only
h ,SLDI= nnj L ,EATTR=([A}—) J
,SLDP=nn HD ,CD
M HBLINK — M ,BLUE —
M HREV — 'RED
— HUL— ,PINK
— ,GREEN —
—— TURQ ——
— ,YELLOW —
\— ,NEUTRAL —
A
» —><
,PX'00" MIX —{ —— ,0UTL —
PX' Ah' MIX'nn'— | — ,OUTL hh' —
,pC'c! ,MIXS — ,BOX
,ECGS MIX'nn'— | — RIGHT —

M ,LEFT —

M— ,UNDER —

~—— ,OVER —~

Chapter 4. MFS Language utility (DFSUPAAQ) 229

Format for DEV TYPE=SCS1 or SCS2 and DIV TYPE=INPUT

1
»i— DFLD POS —— =(M,ccc) >
label L PP J L ,LTH= nnn J

2
POS =nnn

»
»

L ,OPCTL= fablename J A

Notes:

1 MODE=RECORD only
2 MODE=STREAM only

Format for DEV TYPE=DPM-An or DPM-Bn and DIV TYPE=INPUT

»i— DFLD <
label L ,LTH=nnn J L ,OPCTL= tablename —J

Format for DEV TYPE=DPM-An or DPM-Bn and DIV TYPE=OUTPUT

Tl L -
label M PASSWORD — ,LTH= nnn

\literal !

— SCA —~

NO
L JATTR=(j_ T) J

Lyes J Lo

»
»

Parameters

label
A one- to eight-character alphanumeric name can be specified. This label (dfldname) can be referred
to by a message descriptor in transferring data to and from a terminal or remote program. If the
repetitive generation function of MFS is used (DO and ENDDO statements), this dfldname should be
restricted to 6 characters maximum length. When each repetition of the statement is generated, a
2-digit sequence number (01 to 99) is appended to the label. If the label specified here is greater than
6 characters and repetitive generation is used, the label is truncated at 6 characters, and a 2-digit
sequence number is appended to form the 8-character name. No error message is provided if this
occurs.

If PASSWORD, SCA, or 'literal' is specified, label is not valid, and specification of a label will result in
an error message. If a DPN, PRN, RDPN, or RPRN dfldname is specified on the DIV statement, the
dfldname cannot be used as a DFLD label for the current DIV statement.

PASSWORD
Identifies this field as the location of the IMS password field for input messages.

IMS supports mixed case or upper case passwords up to 8 characters, and password phrases up to
100 characters.

Tip: Use the PASSWORD capability in the input message definition. If you specify PASSWORD you
cannot refer to the field described by this DFLD statement with a message descriptor. Additionally, if
you specify PASSWORD you must omit label.

230 IMS: System Utilities

'literal'
Specifies a literal character string to be presented to the device. The length of literal cannot exceed
256 bytes for 3270 display devices, 40 bytes for FIDS and FIDS3, 64 bytes for FIDS4, 80 bytes for
FID57, 256 bytes for 3270P, and line width for all printer and punch devices. For DPM, the length of
literal cannot exceed the value specified in the RCDCTL operand.

For 3270 displays, literal fields have the PROT attribute whether specified or not; the NUM attribute is
assumed if ALPHA is not specified.

Restriction: If you specify literal you cannot refer to the field described by this DFLD statement with a
message descriptor. Additionally, if you specify literal you must omit label.

SCA
Specifies, for DPM definitions only, that SCA information, when sent by the IMS application program or
specified in the DSCA, is to be sent in this DFLD.

If SCA is specified, label must not be specified.

POS=
Defines the first data position of this field in terms of line (lll), column (ccc), and physical page (pp) of
the display format. If pp is omitted, 1 is assumed.

For DEV TYPE=FIN,FIDS,FIDS3,FIDS4, FIDS7,FIJP,FIPB,FIFP,SCS1, or SCS2

Ul,ccc
Specifies the record number and position within the record of this field. This form is required if
MODE=RECORD. lll and ccc must be greater than or equal to 1.

nnn
Specifies the starting position of this field in STREAM mode input. If not specified, this field
starts immediately following the preceding field, or at the left margin if this is the first field. If
MODE=STREAM has been specified, and POS= is specified, this form is required. nnn must be
greater than or equal to 1.

ll,cce,pp
Specifies the line, column, and optionally, the physical page number for an output field. lll, ccc,
and pp must be greater than or equal to 1.

For DEV TYPE=3270, 3270-An, or 3270P

ll,cce,pp
Specifies the line, column, and optionally, the physical page number for an output field. /!, ccc, and
pp must be greater than or equal to 1.

For 3270 displays, POS=(1,1) must not be specified. Fields must not be defined such that they
wrap from the bottom to the top.

Restriction: On some models of 3270s, the display screen cannot be copied when a field starting
on line 1, column 2, has both alphabetic and protect attributes.

For DEV TYPE=DPM-An or DPM-Bn

For DPM devices
The POS= keyword is ignored.

LTH=
Specifies the length of the field. This operand should be omitted if ‘literal’ is specified in the positional
parameter, in which case the length of literal is used as the field length. Unpredictable output
formatting can occur if this operand is used in conjunction with a ‘literal’ and the two lengths are
different. The specified LTH= cannot exceed the physical page size of the device.

The maximum allowable length for all devices except 3270, 3604 display, and DPM with
RCDCT=NOSPAN is 8000 characters. For 3270 displays, the maximum length is one less than screen
size. For example, for a 480-character display, the maximum length is 479 characters. For a FIDS
display component, the maximum length is 240 characters; for a FIDS3, the maximum length is 480
characters; for a FIDS4, the maximum length is 1024 characters; for a FIDS7, the maximum length is

Chapter 4. MFS Language utility (DFSUPAAQ) 231

1920. A length of 0 must not be specified. For DPM, if RCDCT=NOSPAN is specified, the length must
be less than or equal to the RCDCTL value, if RCDCTL is less than 8000. If SCA and LTH= are both
specified, LTH must be 2.

POS= and LTH= do not include the attribute character position reserved for a 3270 display device or

a DFLD with ATTR=YES specified. The inclusion of this byte in the design of display/printer formats is
necessary because it occupies the screen/printed page position preceding each displayed/printed field
even though it is not accessible by an application program.

When defining DFLDs for 3270 printers, a hardware ATTRIBUTE character is not used. Therefore, fields
must be defined with a juxtaposition that does not allow for the attribute character unless ATTR=YES

is specified. However, for printers defined as 3270P the last column of a print line (based on FEAT=,
WIDTH=, or the device default width) cannot be used. The last column of the line is reserved for carriage
control operations performed by IMS. Thus, if the print line specifies 120 (FEAT=120) and the DFLD
specifies POS=(1,1),LTH=120 then 119 characters are printed on line 1 and one character on line 2.

For DPM definitions, if OPTIONS=NOSIM2 is specified on the DIV statement, and ATTR=YES or YES,nn is
specified, 2 bytes plus the extended attributes are added to the length of the DFLD. The first two bytes
are reserved for the binary 3270 attribute, (protect, numeric, and so forth.) If OPTIONS=SIM is specified,
1 byte or 1 byte plus the extended attributes is added to the length of the DFLD with ATTR=YES or YES,nn.
The first byte of the field is thus reserved for the simulated attribute.

Detectable fields (DET or IDET) must include four positions in POS and LTH for a 1-byte detection
designator character and 3 pad characters, unless the detectable field is the last field on a display line, in
which case only one position for the detection designator character is required. The detection designator
character must precede field data, and pad characters (if required) follow field data. Detection designator
and required pad characters must be supplied by the application program or MFLD literal with the field
data. Pad characters can also be required in the preceding field on the device.

ATTR=
Defines the display attributes of this field for each of the listed DEV TYPE, DIV TYPE combinations:

e For DEV TYPE=3270 or 3270-An

Attribute keywords can be specified in any order and only those desired need be specified. The
underlined keywords do not have to be specified, because they are defaults.

When two user-defined fields are separated by two or more characters, MFS generates an undefined
field to represent that space in the display buffer. The display attributes for an undefined field are
NUM, PROT, and NODISP.

ALPHA | NUM
Specifies whether the field should have the numeric attribute. The numeric attribute specifies
that the Numeric Lock feature (automatic upshift of data entry keyboard) will be used by the
3275/3277 or 3276/3278. If NUM and PROT are specified for the field, the auto-skip feature
is used. That is, upon entry of a character into the last character location of an unprotected
field, the cursor automatically skips the field with the NUM and PROT attribute specifications
and is positioned to the first character location of the next unprotected field. If an undefined
field, as described in the ATTR= parameter, follows the filled unprotected field, the auto-skip
feature is used. This parameter, in conjunction with the PROT parameter, is used to lock the
COPY function. See "PROT" for details.

NOPROT | PROT
Specifies whether the field is protected from modification by you. For literal fields, PROT is used
and specification of NOPROT is ignored.

The IMS copy function on remote 3270 terminals can be locked by setting the attribute value
of protect and alpha for an attribute byte in line 1 and column 1 of a display. When the copy
function is locked, it cannot be used to copy the contents of a display to a printer. The "Local
Copy Function" available on the 3274 and 3276 control units is not locked by the attribute
setting. The "Local Copy Function" is invoked by the print key.

232 IMS: System Utilities

NODET | DET | IDET
Specifies the detectability of the field through light pen operations. DET specifies a deferred
detectable field, while IDET indicates an immediately detectable field. You must provide
appropriate designator and pad characters as discussed under the LTH= operand. Note that
the 3270 display devices place restrictions on the number of detectable or mixed detectable
and nondetectable fields that can precede that last detectable field on a given line.

NORM|NODISP|HI
Specifies the field's display intensity as normal (NORM), high intensity (HI), or nondisplayable
(NODISP). If NODISP is specified, DET or IDET cannot be specified.

When defining a high-intensity (HI) field, including a detection designator character as the first
data byte causes the high-intensity (HI) field to be detectable.

NOMOD|MOD
defines whether or not the field-modified-attribute byte should be assumed for this field. MOD
causes the terminal to assume the field has been modified by you even though it was not (that
is, the modified data tag (MDT) is set in the field-modified-attribute byte). This should not be
confused with the PROT attribute which prevents modification by you. MOD is ignored for literal
fields.

When MOD is specified, each time MFS sends output for this physical page, the modified
attribute is set (unless overridden by dynamic attribute modification).

STRIP|NOSTRIP
Specifies whether the pen detect designator byte preceding the input field should be stripped
(STRIP) before presentation to the application program. If an EGCS attribute is defined for
a light-pen-detectable field, you should specify ATTR=NOSTRIP on the DFLD statement and
design the application program to bypass or remove the two designator characters from the
input data. If ATTR=STRIP is specified or defaulted, MFS will only remove the first designator
character and the last character in the field could be lost (truncated).

For DIV TYPE=OUTPUT and DEV TYPE=3270P, FIDS, FIDS3, FIDS4, FIDS7, FIFP, FIJP, FIPB, FIS1,
or SCS2

Attribute keywords specify whether (YES) or not (NO) the first byte of this field will be used to
display attribute information when the output message includes attribute information for the field.
The default is NO. If ATTR=YES is specified, the LTH= and POS= keywords do not have to allow for
the simulated attribute byte because the MFS preprocessor adjusts the keyword values internally.
The action taken when ATTR=YES is specified is:

CURSOR
(FIDS, FIDS3, FIDS4, and FIDS7 ABSOLUTE output only). The cursor will be positioned to the
first position of this field.

NODISP
No data sent regardless of other attributes
HI
An asterisk (*) is placed in the first byte
MODIFIED
An underscore character (_) is placed in the first byte

HI and MODIFIED
An exclamation point (!) is placed in the first byte
If attribute information is not provided from the output message, the first byte is a blank.
For DIV TYPE=OUTPUT, DEV TYPE=DPM-An, and DEV TYPE=DPM-Bn, 3270P, FIDS, FIDS3, FIDS4,
FIDS7, FIFP, FIJP, FIPB, FIS1, or SCS2

Attribute keywords specify whether (YES) or not (NO) the first one or two bytes of this field carries
existing 3270 attributes and whether extended attributes (nn) are present. The keywords can be
used in various combinations as follows:

Chapter 4. MFS Language utility (DFSUPAAQ) 233

YES
Specifies that the first one or two bytes of this field are used to convey the existing 3270
attributes (in simulated or binary form depending upon the specification of SIM or NOSIM2
respectively on the DIV statement) from the IMS application program to the remote program.
(SIM causes MFS to simulate an attribute. NOSIM2 causes MFS to pass the bits exactly as
entered.)

Thus, if ATTR=YES is specified and OPTIONS=SIM or OPTIONS= is not specified, one byte is
added to the length of the DFLD. If OPTIONS=NOSIM2, two bytes are added to the length of the
DFLD. These bytes are reserved as the attribute bytes to be transmitted to the remote program.

NO
Specifies that the first one or two bytes of this field will not be used to convey the existing 3270
attributes (in simulated or binary form respectively) from the IMS application program to the
remote program. This is the default.

nn
Is the number of extended attributes that can be dynamically modified, and is a number from
1 to 4. An invalid specification is defaulted to 1. Two additional bytes are added to the length
of the DFLD for each attribute specified (2 x nn). The additional bytes, which just precede the
data, either can (YES) or must not (NO) follow the bytes reserved for the existing 3270 attribute
bytes. These bytes are used to convey the extended attributes (in binary form) from the IMS
application program to the remote program. The attributes are always transmitted as presented
from the IMS application program. They are never simulated or validated.

YES,nn
When used in combination, YES,nn specifies that both attributes and extended attributes are
to be transmitted. In this case, and depending upon the specification of SIM and NOSIM2 as
described:.

When specified with SIM, specifies that 3270 simulated attributes (1 byte) plus extended
attributes (2 x nn bytes) of this field are to be transmitted from the IMS application program
to the remote program. The total number of bytes used to convey all of these attributes to the
remote programis 1 + (2 x nn)

When specified with NOSIM2, specifies that 3270 attributes in binary form (2 bytes) plus
extended attributes (2 x nn bytes) of this field are to be transmitted from the IMS application
program to the remote program. The total number of bytes used to convey all of these
attributes, which are all in binary form, to the remote program is 2 + (2 x nn).

NO,nn
When used in combination, NO,nn specifies that only extended attributes are transmitted. Thus,
the number of bytes transmitted, in binary form, is (2 x nn) only.

Valid specifications and the number of bytes that must be reserved are:

For DIV ,OPTION=NOSIM2 then:

DFLD ,ATTR=(YES, nn) 2 + (2 x nn)

DFLD ,ATTR=(NO, nn) 2 x nn

DFLD ,ATTR=(,nn) 2 x nn

DFLD ,ATTR=YES 2

DFLD ,ATTR=NO 0

For DIV ,0PTION=SIM or not specified then:
DFLD ,ATTR=(YES, nn) 1+ (2 x nn)

DFLD ,ATTR=(NO, nn) 2 x nn

DFLD ,ATTR=YES 1

DFLD ,ATTR=NO 0

EATTR=
Is valid for output DFLDs only and defines the extended attributes of this field for DEV TYPE=3270,
3270-An, 3270P, or SCS1.

Not all extended attributes apply to all device types. To ensure that your specifications for your device
types are correct, refer to the component description manual for your device.

The operands specify:

234 IMS: System Utilities

Additional field highlighting
- Field color

- Field outlining

 Input control

- Validation to be performed

« Local ID of the programmed symbol buffer
Characters are selected from the programmed symbol buffer and placed in the field. These operands
can be specified in any order. When the device default value is selected for an operand, it is used

to hold a place in the data stream to permit application program modification of the attribute so
specified.

To specify the additional highlighting for the field use the following:

HD
device default

HBLINK
blink

HREV
reverse video

HUL
underline

To specify the field's color use the following:

- BLUE

« RED

« PINK

« GREEN

« TURQ(uoise)

« YELLOW

- CD

- NEUTRAL

The last two operands are used as follows:

(o)
Used to specify the default.

NEUTRAL
Used to specify device-dependent. The particular color displayed for NEUTRAL is device-
dependent. In general, NEUTRAL is white on displays and black on printers with single-plane
programmed symbols and as multicolored on displays or printers with tri-plane programmed
symbols.

The following five operands—PX'00', PX'hh', PC'c', EGCS, and EGCS'hh'—are mutually exclusive. That
is, a field can be specified as having one of these characteristics, but not a combination thereof. For
all 3270 devices, MFS does not verify that any specified character set has been properly loaded. The
programmed symbol buffers can be loaded by an IMS application program using the MFS bypass.
PX'00'|PX'hh'|PC'c'
Specifies a value that must correspond to the local ID specified for a programmed symbol buffer
already loaded or to the EGCS programmed symbol buffer.
PX'00"
Is the same as no specification, except that it allows an application program to specify a
programmed symbol buffer for the field through dynamic modification of the programmed
symbol attribute.

Chapter 4. MFS Language utility (DFSUPAAQ) 235

PX'hh'
Is a hexadecimal character in the range X'40' through X'FE".
PC'c'
Is a hexadecimal character within the range X'40' through X'FE".
EGCS|EGCS'hh'

Is valid only on output DFLDs for the 3270 display. SCS1 device types can specify EGCS only and
not EGCS 'hh'.

When an extended graphic character set literal is specified on a DFLD statement, the extended
graphic character set attribute is forced—that is, you do not have to code EATTR=EGCS'hh' for
3270 displays or EATTR=EGCS for SCS1 device types. For 3270 displays, a programmed symbol
value of X'F8' is set.

Restriction: The IMS application program cannot modify the SCS1 DFLD extended graphic
character set attribute.

When defining an EGCS field for a 3283 Model 52, the length must be an even number. If the EGCS
field spans device lines, WIDTH= and POS= should be specified so that an even number of print
positions are reserved on each of the device lines.

EGCS
Specifies the field attribute for the field as Extended Graphic Character Set. Also specifies the
field attribute for the field as Double Byte Character Set.

EGCS'hh'
'hh' is the programmed symbol value that is used. The value for 'hh' can be any hexadecimal
value from X'40' through X'FE' or X'00". If 'hh' is omitted from the extended graphic character
set specification for a 3270 display, a programmed symbol value of X'F8' is assumed. 'hh' is
ignored if specified for an SCS1 device.

To define an EBCDIC field that can be dynamically modified by the IMS application program
to accept extended graphic character set data, the programmed symbol attribute should be
specified as EGCS'00".

VDFLD|VMFILL|VMFLD|VMFILL,VMFLD
Defines the type of validation for the field as follows:

VDFLD
Default

VMFILL
Mandatory fill
VMFLD
Mandatory field
VMFILL,VMFLD
A combination of mandatory fill and mandatory field

If a field is defined as protected (ATTR=PROT) or if it is a literal with validation attributes specified,
then the validation attribute specifications are reset and a message is issued.

The following are used to specify field outlining;:
OUTL'hh'
Field outlining with field outlining value 'hh'

OUTL
Device default

BOX
Box

RIGHT, LEFT, UNDER, OVER
Lines that can be specified individually or in combination

236 IMS: System Utilities

Field outlining value 'hh' is a two-digit hexadecimal number between X'00' and X'OF". If any other
value is specified, the device default, X'00', is assumed. The following table shows the values for the

field outlining patterns.

Table 20. Field outlining values

Value UNDER RIGHT OVER LEFT
00

01 X

02 X

03 X

04 X

05 X X

06 X

07 X X X

08 X
09 X X
0A X X
0B X X
oC X X
0D X X X
OE X X
OF X X X X

Field outlining for 3270 displays and SCS1 printers can be dynamically modified by code in an
application program. The position of left, right, over, and underlines differ according to the device.

The following is a brief description of field outlining for the IBM 5550 family (as 3270) of devices.

3270 display

Left and right lines are printed in the position of the 3270 basic attribute byte. The overline of the
current line and the underline of the preceding line are the same line.

The underline for the 24th line is the same line as the line separating the application program area

and your message area.

SCS1 printer

Left and right lines are printed in the byte reserved by MFS before and after the current field. The
overline of the current line and the underline of the preceding line are the same line. When an
underline is specified in the last line of the page, an underline is drawn in the last line of the page,
and an overline is drawn on the first line of the next page.

If one byte space exists between two adjacent fields, the right line of the first field is the same line

as the left line of the second field.

MIX|MIXD|MIX'nn'|MIXS|MIXS'nn'
Specify a DBCS/EBCDIC mixed field.

3270 display
MIX

DBCS/EBCDIC mixed field

Chapter 4. MFS Language utility (DFSUPAAQ) 237

MIXD
device default

Input control for the 3270 display can be dynamically modified by the application program.

SCS1 printer

MIX
DBCS/EBCDIC mixed field with SO/SI blank print option.

MIXS
DBCS/EBCDIC mixed field with SO/SI blank print suppress option.

MIX'nn'
‘nn'is the maximum number of SO/SI pairs. DBCS/EBCDIC mixed field with SO/SI blank
print option.

MIXS'nn'

‘nn'is the maximum number of SO/SI pairs. DBCS/EBCDIC mixed field with SO/SI blank
print suppress option.

The 'nn'is buffer information used by MFS message editor and must be a two-digit decimal
number between 01 and 31. If MIX or MIXS is specified, the MFS default is calculated as follows:

MIX
DFLD length divided by 5 plus 1, or 31, whichever is smaller.

MIXS
DFLD length divided by 3 plus 1, or 31, whichever is smaller.

When a field spans continuation lines, the number 'nn' obtained from the field length with either of
the methods plus 1, is assigned to each line.

With the SCS1 printer, when DBCS/EBCDIC mixed data spanning across continuation lines is split
at a DBCS character, MFS replaces the last character with a blank and places that character at the
beginning of the next line. As a result, one print position is lost.

PEN=
Specifies a literal to be selected or an operator control function to be performed when this field
is detected. If (1) 'literal'is specified, (2) the field is defined as immediately detectable (ATTR=
operand), and (3) contains the null or space designator character, the specified literal is placed in the
field referred to by the PEN operand of the preceding DEV statement when the field is detected (if
no other device fields are modified). If another field on the device is modified, a question mark (?) is
provided instead of the literal. Literal length must not exceed 256 bytes.

If (1) a control function is specified, (2) the field is defined as immediately detectable (ATTR=
operand), and (3) contains the null or space designator character, the specified control function is
performed when the field is detected and no other device fields are modified. If another field on
the device is modified, a question mark (?) is provided and the function is not performed. Control
functions that can be specified are:

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output message. If no output message
is in progress, no explicit response is made.

NEXTMSG—MESSAGE ADVANCE
specifies a request to dequeue the output message in progress (if any) and to send the next output
message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any), and send the next output
message or return an information message indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of a multiple physical page input message.

238 IMS: System Utilities

ENDMPPI is valid only if data has been received and will not terminate multiple page input (MPPI)
in the absence of data entry.

OPCTL=
Specifies the name of a table, defined by a TABLE statement, that is to be checked for operator
control requests when this device field is received. OPCTL processing occurs when the input device
data is processed. If a control function is selected, in most cases the control function is performed
immediately; no IMS input message is created.

SLDI=
For SCS1 printers, specifies the line density for an output message in lines per inch. (See also SLDP=.)
SLDI= can also be specified on the DEV statement. SLDI= is validated for a value from 1 through
72. The value specified must be consistent with the architecture of the device for which this value is
specified (see the appropriate device or component manual).

If SLDI= is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDI= specification is encountered, but after any
vertical tabs and new line characters. The SLDI= specification within the message changes the line
density from that set at the beginning of the message, and this latter line density remains in effect
until explicitly reset.

SLDP=
For SCS1 printers, specifies the line density for an output message in points per inch. (See also
SLDI=.) SLDP= can also be specified on the DEV statement. SLDP= is validated for a value from 1
through 72. The value specified must be consistent with the architecture of the device for which this
value is specified (see the appropriate device or component manual).

If SLDP= is specified both on the DEV statement and the DFLD statement, two SLD data streams are
created. One is sent at the beginning of a message to set the line density. The second is sent within
the message, just prior to the field on which the SLDP= specification is encountered, but after any
vertical tabs and new line characters. The SLDP= specification within the message changes the line
density from that set at the beginning of the message, and this latter line density remains in effect
until explicitly reset.

A Attention: Be careful, when defining set line density (SLDx) keywords, to ensure that forms
alignment is maintained. If SLDx= is improperly defined, the forms might not align properly. Also,
note that SLDI= and SLDP= are mutually exclusive. Neither SLDI= nor SLDP= can occur on a DFLD
statement between a DO and an ENDDO statement.

Related reference
MFS output message formats (Application Programming)

ENDDO statement
The ENDDO statement terminates the group of DFLD statements that are to be repetitively generated.

The generated DFLD statements are printed immediately following the ENDDO statement. An ENDDO
statement is required for each DO statement entered in this definition.

Format

»i— ENDDO T blanks j—N
label comments

Parameters

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Chapter 4. MFS Language utility (DFSUPAAQ) 239

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apg/java_mfsoutputmessageformats.htm#java_mfsoutputmessageformats

FMTEND statement

The FMTEND statement terminates a device format definition and is required as the last statement in the
device format definition.

If this is the end of the input to SYSIN processing, the FMTEND statement must be followed by an END
compilation statement.

Format

»i— FMTEND T blanks j—N
label comments

Parameters

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Partition set definition statements

Partition set definition statements include the PDB statement, the PD statement, and the PDBEND
statement.

PDB statement

The PDB statement initiates and defines a partition set (a Partition Descriptor Block) for 3290 and 3180
devices in partitioned format mode.

The PDB statement contains several parameters that describe certain characteristics of the entire
partition set. Its name is referenced by the PDB keyword of a DEV statement if a partition set is required
to format logical pages of a message.

At least one PD statement must be specified within each PDB. Note, however, that for a 3180 in
partitioned format mode, only one PD statement should be specified within each PDB. This is because
only one partition can be specified for the 3180. There are additional differences in specifications that can
be made for the partitioned 3180 and 3290.

Format

»— label — PDB — LUSIZE= ﬂcalpe/s ,horizontalpels) L J >
I ,SYSMSG= pdname

(rows,columns)

L 1 L J_ ROWCOL T J
,PAGINGOP= { 2 ,LUDEFN= PELS
3

Parameters

label
A one- to eight-character alphanumeric name (pdbname) for the PDB must be specified.

LUSIZE=
Describes the physical size of the Logical Unit display for which the PDB is defined. If LUDEFN=PELS,
the size is specified in picture elements (pels). If LUDEFN=ROWCOL, the size is specified in rows and
columns (this is the default value). For the 3180, LUSIZE must be specified in terms of rows and
columns.

240 IMS: System Utilities

SYSMSG=
Specifies the partition name (pdname) for displaying system messages. The system message partition
should have only one field defined. This DFLD sh