IMS
15.1.0

Application Programming
(2024-08-30 edition)

.||I

Note

Before you use this information and the product it supports, read the information in “Notices” on page
885.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.01.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.01.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADbOoUt this INFOrMAtION....ccieiiiieirieiterieretereeeereseasesessasesessesessssesessssesessssesessnsesasses XVII

PrereqUISIte KNOWLEBAZE.uii ettt et e e e rtee e e te e e e bee e s bae e e bae e s baeeebeeeeabaeesnseeennses Xvii
How new and changed information is identified.........cccueieiiiciiecccee e Xvii
HOW 10 read SYNtaX dia@ramS. .. .cccuuieeciieeiieeciie et e et et e eeate e e re e e ate e e abee e abee e abeeesasaeesnsaeennseeannseesnnsens Xvii
Accessibility features fOr IMS L. ...t e e e e e e e e e e e s tee e s bee e sabaeseataeesnsaeennreas XixX
HOW 10 SENA YOU COMMIEBNTS....uiiiiiiieeiiieecieeectteeetee e re e e tee e e beeesbeeesbaeesbaeesabaseesbaeaesseeesnseeesnsessenseesansens XixX

Part 1. Application programming design.......ccccccieuiiuiiniiniiniieiieiieniececscnensecresnaneeee 1

Chapter 1. Designing an application: INtrodUcCtory CONCEPLS....cccuiiieciiiecciieecee et et e e et e e aee s 3
Storing and processing information in @ database......c.ceeecveeeciiieiiieccee e 3
Database hierarChy EXamMPLES.......uuicciii ettt e e e e e te e e sabe e e e abee e s abeeesasaeesnsaeennees 5

Your program's VieW Of the data........ceccuieeciiecece et 9
Processing @ database FECOIM.....c.cuuiiiiiiiiiiiecciee ettt e e b e e e saae e e ste e e aaeeesaaesnnneean 11

Tasks for developing an apPLliCALION.......c.uiicciie et e e e e ree e e be e e e bee e s baeeeaes 12
Chapter 2. Designing an application: Data and loCal VIEWS..........eeeeieeeeieeieieecciee et seaee e 15
An overview of appliCation dESIN......uiicciii et e e etae e s sae e e s bae e e aae e eaaeeeaes 15
Identifying appliCation data.......cccciiieciieccieecce ettt e e e e e e e b e e e e e e e sb e e enaeeenaeean 17
LiSting data ElEMENTS......uvii et e e e s te e e e bee e s bae e e be e e e abae e s naae e e nraeenneeas 17
NAMING Aata BLEMENTS.....iiiiieeetieeeee et e e e e e ar e e e bae e e abe e s ree e e saeesnsaeseneeesnnees 19
Documenting appliCatioN Aata......c.ueeccuieieiieeeiie e e re e e s e e e e e e e e rae e s baeeenraeean 20
DESIZNING A LOCAL VIBW...eiiiiiieieiiiecciee et ettt e e tee et e e tee s s ateeeeatee e saaessssaeesssaeeessaeesssasannseeesnsesennseeas 21
Analyzing data relationNShiPS....c..i i e e e e e 22

LOCAL VIEBW BXAMPLES...iicciiieiieiieeiiie et e ettt e et e ettt e e te e e te e e aaee e abae s asaeessbaeesasaesanseeesnsaeannsaeannseeennses 28
Chapter 3. Analyzing IMS application processing reqUIreMENTES......cccueeecieeeiieeeiieeecieeecee e e eae e 35
Defining IMS application reqUIrEMENTS.....cccciii ittt et e e te e e e e e e rree e raeeseneaeennes 35
Accessing databases with your IMS application program.........c.eecceeeeceeeeceeeecieeeeieeeeceeeeeeeeeesaneeenns 36
Accessing data: the types of programs you can write for your IMS application........ccccecevveeiveeennenn. 39

(B SR ot o] ol o] 0Tt ST-Y=1 1 o = USRS 39

LI o F=Y (ol T o e Yol =Y | = SRR 40
Processing messages: Message Processing Programs........ueccueeeeieeeeieeenieeeesieeesssseesssseessssessssees 40
Processing messages: IMS Fast Path Programs.......ccceccieeiciiecciee et eireessveeescveeesvnee e 41

Batch message proCesSiNg: BMPS......uiiiieeceeceeeecte et rte e s sae e s eae e e ate e e aae e s naeesneeas 42

Java MesSage ProCESSING: IMPS.... ..ttt rre e e rre e e stte e e ste e e ate e e saaeesssteeesaseesnnseesnssaeennseas 45

Java batCh ProCeSSING: JBPS.......cii ettt ree e re e te e e s ree e s bae e e bee e ebeeeensaaeenseeeennes 45

IMS programming integrity and recovery CONSIiderations........cceeccueeeeceeeeceeeecieeecee e eee e ee e 45
How IMS protects data integrity: COmMmIit POINTS......cccciiiieiiiieeeeccee e e e 45
Planning for program recovery: checkpoint and restart.........cccceeccueeeicieeccieeccee e 48

Data availability CONSIAEIatioNS......ccccuiiiciieeeiie ettt ste e e e e e e e e e e bee e s aeeesbaeesnsaeens 52

Use of STAE or ESTAE and SPIE in IMS Programs.......cccceeecceeiecieeeeiieeeeiieeesiseeesseeessnessssesssssasennes 53
Dynamic allocation for IMS databasSes.....ccuuiiiieiiiiieciiiecciee e e e rae e e e 54
Chapter 4. Analyzing CICS application processing reqUir€MeNntS........ccccueeeeveeeeiieeeiireeeeieeesseeesveeseveeens 55
Defining CICS application reqUIrEMENTS.......cccciiiiciee ettt e ere e eee e e etee e e eaee e s bee e e eaee e ereeesnneas 55
Accessing databases with your CICS application program.........ccecueeeeieeecieeecieeeesieeeeeeeesveeeevee e 56
Writing a CICS program to access IMS databases.......cccuiieiieieiiieciieeccie ettt 58
Writing @ CICS ONLINE PrOSIramM .. . uiiiccieeeeieeeeiteeeeiteeeeteeeeteeesteeeeteeesseeeeseeessasessasessesassesesssasannes 58

Using data sharing for your CICS Program......cccueccceeecieeeeieeeeiteeeeiteeeesteeesteeeeseeesseessssessssesssssassnnees 59

Scheduling and terminating a PSB (CICS online programs ONLY)......ccccceeeeereeeseeseeeseeeseesseesseesseenns 59

Linking and passing control to other programs (CICS online programs only).......ccccceeeeerveecveerneennne 60
How CICS distributed transactions @CCeSS IMS.......couiiiiiiieiiiieeniecrte st svee s s aee s 60
Maximizing the performance of your CICS SYSTEML...ccccuiiiiiieiriieiriieirteeree st 61
Programming integrity and database recovery considerations for your CICS program..........ccceeuuee.. 61
How IMS protects data integrity for CICS onling programs.........ceeeecveeeeieersiieessieessseeessseesssveeens 61
Recovering databases accessed by batch and BMP programs.......cccceccveeviieeinieennieesnieeesseee e 62
Data availability considerations for your CICS Programi....cccccecueeereeerreeesnieeessieeesnenessseeesssenesssseessnnes 65
Unavailability of @ database.....cuuuc it ae e e 65
Unavailability of some data in a database.......ccuueeeeeiiiieiccciee e e 66
The SETS or SETU and ROLS fUNCLIONS. ...cieuiiiiiieieiieieee et sre s siee s siee s s iee s ssaeesssaeeesnees 67
Use of STAE or ESTAE and SPIE in IMS batch programs........ccccvcieeriieeniieeniieessieessieesseeesseeessneeens 67
Dynamic allocation fOor IMS databases......ccuuiiiieciiiieicccieee et e e ecree e e e ebee e e s e sbrae e s e esreeeeeennnns 67
Chapter 5. Gathering requirements for database OPLiONS.....cccviiviiiiriiiieiiieeeeeee e 69
ANALYZING A8 ACCESS..eiiiiiiieiieiiite ittt sttt e sste e sste e s ete e s s teesebteesesteesastaessteesssteesaseaessnsassansessane 69
B =0t A= Tl ol =T TR 70

S Y=Te LU L=T) =1 = o oL 74
Accessing z/OS files through IMS: GSAM. ...ttt s st 75
Accessing IMS data through z/OS: SHSAM and SHISAM......ccoiiiiiiiniieitecee et 75
Understanding how data structure conflicts are resolved........ccceivirvieinieinieeiee e, 76
Using different fields: field-level SENSITIVITY ...t 76
Resolving processing conflicts in a hierarchy: secondary iNdeXing.......ccccoeveerrviiernveeinveesnseeennnne 77
Creating a new hierarchy: logical relationShips......cocciiiriieiniiiinieeee e 81
Providing dat@ SECUNITY....uiiiiiiieieieeeet ettt s e e s be e e s saee e s bee e ssaeeesbeaesaseesseaesssnesnnens 84
Keeping a program from accessing the data: data Sensitivity.....cccocccevreceeiniieiniieinceeenee e 85
Preventing a program from updating data: processing OptionS.......ccceeceeereeeerieeenieeesseeesseeesnens 87
Y- To IV T oYU) T 0l =Y =1) Y2 ORI 89
Chapter 6. Gathering requirements for message processing OPLiONS.......cuvvveeirvieeirieernieerrieesseeeseieeens 91
Identifying onling SECUNItY rEQUITEMENTS. .. .uiiiiiiieieeriie ettt et see e s sre e s saee e s sare e ssaeeessareessaeas 91
Analyzing screen and MeSSagE FOMMALS....ciiciiiiiiiiiiiie et s essaee e s eaeeessneeesane 93
AN OVEIVIEW OF MFS .. ittt ettt ee e st e e s bt e e sbee e sbeeesabeeesbaessseeessaeesnns 93

AN OVEIVIEW OF DASIC @IT...uiiiiciiiiiiieeiiee ettt e s e s sate e s ate e sesbeessabaesseaessnsaesas 94
Editing considerations in your @appliCatioN......c..ciecieieiieiriieinieereeeeire e seee e siee s aee e snee s 94
Gathering requirements for conversational ProCESSING......ccuiirciieiriieiriieierte e ereeeereeeseeeeseeeseaee 95
What happens in @ CONVEISATION.......ciii i ettt tee e e eee e e e erre e e e eereeeeseesseeeeeesnseneeesanns 95
DESIZNING & CONVEISALION....iiiiiiiiiiieieite ittt sttt st e s sttt e sseeesssteesssteesssteesssteessseaesasseessssaessssessssessnns 95
Important points about the scratchpad area (SPA)......occuii ettt eevee e 96
Recovery considerations in CONVEISAtIONS.uiicciiieeiecieeeeeeciteeeeecrtee e e esrtreeeeebeeeeeeesteeeeesnseeseeas 96
Identifying output message desStiNatioNS.......iicciiiiieiiiiee et sbee e s aees 97
The originating tErMINALc.viiiciee ettt e s tte e sate e ssate e sssbeesseeesnseesnsaens 97

To other programs and tErMINALS......c.eiiiciieiiie et see e see e s see e s sbeesssbeesssreesnnes 98
Chapter 7. Designing an application fOr APPC........ii ittt sttt e s sae e s see e s aaessaeeesnaeas 101
OVErvIiEW OF APPC @nd LU 6.2......oiiieiiiieiieieiteeeite ettt siee st s et e e sta e e s ba e s sta e e ssbaeessaeesssaeessseeesnneeenn 101
APPLICATION PrOZram tYPES. .cuiiiiiiieicite sttt sttt e st e s st e s sate e s s beessateessabeesssbeessssaesssseesnssaesnsseenn 101
JAY o] o] 1Toz=N o] a e o] =Tt {1V =TT SRR 102
(070 g\ Y= Lo o TN 1Y/ o 1TSS 104
(006 01V =T - LA (0] A=) €= (T USSP STTSRR 104
SYNCNTONIZATION LEVEL ettt e e e stre e e e et te e e e e s abee e e e enbeeeesensseeeesessanaeann 104
INTrodUCTION T0 FESOUICE MBCOVETY....uviiiiieciiieeeeeittieeeeectteeeeeertreeeeesssaeeesessssaeessesseeessesnssseesasssseneesannes 105
Summary of z/OS Resource ReCOVEry SErviCeS SUPPOI....uiiiccciieeeeecrieeeeeeiireeeserteeeeseensereesesssneseens 108
BT A] o TUN (=To JRS3Y o Tl oo 11 o | U STN 109
Application programming interface for LU tyPe 6.2......cooiiiiiiiiniiieiiiccieessiee e see e 110
LU 6.2 partner Program AESIEN.....ccueeieieeierieeiiieeeiieesseeeesteessseeessseeessseesssseesssseessssesessseesssseesssseessssens 111
LU 6.2 TLOW QIa8IramS..ciciieieiieeiiieieieessieessieessieessteesssteessbeessstaessasaessssaessssaessnsaessssasssssaessssanannes 111
TNt Y DL ettt e st e st e s ate e s ara e s arae s 131

DFSAPPC MESSAZE SWITCIN...uiiiieiieiiiiee ittt site s siee s siee e sree s st e e sbee e sbee e sabeessseessaseeesanes 133

Chapter 8. Testing an IMS appliCation PrOo8ram........ccceeecieiriiieirieeeeieeenieeesrreeesieessreeesseeessreessseessanees 135
Recommendations for testing an IMS Program........ccceiecieeriieiniiessiieeseeesieeessieeesreessseessveessaveas 135
Testing DL/I call sequences (DFSDDLTO) before testing your IMS program........cceeceeveeecveesveeseenns 135
USIiNg BTS 10 t€ST YOUr IMS PrOSrami. e uciiciieieiieiriteiritessieessieessreesseeessveessseesssseessssaesssseessseesnnes 136
Tracing DL/I calls with image capture for your IMS program........cccceevveerrieeinsieennnieessnieessieessseeesnnee 136

Using image capture With DFSDDLTO...cccuuiiiiiieiiiieriitesiieesseeessiieessieeesseeessneeesssseessnseesssssessnseesas 136
Restrictions on using iMage Capture OULPUL.....cuiiiciei ittt ettt ssiee e ssree e sane e sreeesane 137
RUNNING iMAage CAPIUIE ONLINE..ciuiiiieiieieiieeete ettt sttt sae e e s e e e sba e e sbaeesbaeesneeeen 137
Running image capture as a batCh JOD.. ... 138
Retrieving image capture data from the log data Set......ccecveviciiiiiiiiiiiiiicee e 138
Requests for monitoring and debugging your IMS program........ccceevevieernrieernnieesnrieessneeessreeessseeesnnee 139
Retrieving database statistics: the STAT Call....ciirviiieiiiiiiieee e 139
Writing Information to the system log: the LOG reqUEST.......cceevriiiiriiiiniieeeieecee e 151
What to do when your IMS program terminates abnormally.......ccoccceveiiiiniiinniiinniiececceeeeen, 151

Chapter 9. Testing a CICS appliCation Programi.....ccccicieeirrieeirrieeieieessieessieesssreesseeessseesssessssesssseessnns 155
Recommendations for testing @ CICS Program......ccueicieererieeiniieeiniieessieessieesseeesseeessseessssesssseeesnns 155
TESHING YOUT CICS PrOSIaM..ccicceieeiciieeeiiieeriiteesitteesteesssreeesseeesseeesseesssseessssaeessseesssseesssseesssseesssseessnees 155

Tracing DL/I calls With iMage CaplUre. .. iii ittt e seaee e ssaeeessneaesans 156
Requests for monitoring and debugging your CICS Program.......cccceceeereeeerieeenieeesseeessreesssneessnes 159
What to do when your CICS program terminates abnormally.......cccccecveercieiniieniiienniieenciee e 159

Chapter 10. Documenting your appliCation Program........cceeeieerevieeinrieessiieessieesseeesssesssseeessseesssseessns 163
Documentation for Other ProgrammMErS.. ... i riiieeiite sttt ettt e s e s e e s sbeessabeessaseas 163
Documentation fOr €N USEIS.....c.ui ettt sttt s s e 163

Part 2. Application programming for IMS DB........ccccccctuiiniininincnecnecnecnecresceneess 165

Chapter 11. Writing your application programs for IMS DB.......cccceeviieiriiiiniieenieenie e esseeessee e 167
Programming SUIAELINES.cuiiiiiiiieiie ettt sre e s e e s s et e e s ba e s ssbaeesbaeesasaeesasaessssaeens 167
Segment SEArch argUmMENS (SSAS)...icuiiciieeeeeeeeeeeeseeee et este e e e s e e steesaeeeteesseesteesseeensaesseeensenn 168

SSA BUIABLINES. ..vieiiiteeiieeecie ettt sttt e st e st e sttt e s s be e s abeesssbeesssbeessabeesssseessaseeesssaesssseessnses 170
Multiple qualification STAtEMENTS...cccceiieee et e e e rre e e s e e areee e e ennes 171
SSAS and COMMANG COUBS....uiiiiiiiiiiieiiiee st seie e eite e sttt e s etteesrteessbaeesbeeessseeesaseeesseeesaseeesaseeesans 174
Considerations for coding DL/I calls and data areas.......ccceceeeevieerriiieiniiiensiieenieeesseeesieeesveeeseeeens 175
Preparing to run your CICS DL/I Call Programi....ccccccieeieiiernieeisieessieessieessseessseessseessseessseesssees 176
Examples of how to code DL/I calls and data areas.......ccceeeeeevieeeececiieee e eecvvee e eeree e e e eveeee e 177
Coding a batch program in assembler [aNgUABE.......cccvvviirieiiiieiriiiee et see e see e iee s 177
Coding a CICS online program in assembler langUagEe.......couvuierriiernieeiniieenieeeneeesieessveessneas 178
Coding a batch program in C laNBUAEE.cueiveuiiiiiieeiieeete st srte e siee e ssreeesbeesssraeesraeesraeesane 180
Coding a batch program in COBOL.....ucuuiiiiiiiriiiiniiieeiieesieesste e st e sseeesseeesseeessaeeessaeessaeeesnaeas 182
Coding a CICS online program in COBOL......ccuuiiiiiiiiiiiiiieeeiieessieessie e st e st e ssieeessseeesssseessssees 184
CodiNg @ PrOZram iN JAVA.....ciieceeirrieeiriiee et seieeeseeessteessteesseeessteessseeessseesssssesssssesssseesssseessnsens 188
Coding a batch program in PasCal........ccccieieiriiieiiiieiecciee ettt ssee et e s see e s e s 188
Coding a batch Program in PL/ ... ittt ssee e e s sae e s sae e s ae e s saaeessasaessaeas 190
Coding a CICS onling Program iN PL/ ...ttt st st e st e sseeesseeesssseessseeessnseessnseens 192

Chapter 12. Defining application program elements for IMS DB........ccccvvviiiiiviiiiniieinieeeniee e sseeeenns 195
Formatting DL/I calls for [anguage iNterfaCes......cccvivircieiriieieiecete ettt sre e 195
Assembler language application ProgrammMiNg.....cccccvcueeieieereiieereiieereieesereeseeeeseeeessseeeseseeesaseeesane 195
C language application ProgrammMiNg.......ccceecueeerrieriieeriieessieesseeesseeesseeessseesssseessssnesssssessssnesnnees 198
COBOL application ProgrammMiNg.....ccccecueerereernieernieessieesseeessseessseesssseessssessssseessssessssseesssseesssseees 201
Java application programming for IMS.........coiiiiiiiiiiiieic et eee e s eee e seaeeessnaeesane 203
Pascal application ProgrammMiNg.....c.ccicueeieieeirieeieieeeeieessieessteesseeesseeessseeessseeessseeesaseeessssaessseeesans 204
Application programming fOr PL/T......couiiiiiiiiiiieiiee sttt e st e sste e s e e s steesssteessssee s beesnssaesas 206

SPECITYiNG the I/O PCB MASK...iiccutiiriiiiriieieiieieiteesttessite s st e essteessbaessbaessssaesssaeesasaeessaesssseeessseeenn 208

SPecCifying the DB PCB MaSK......cuiiiiiiiiiieirieecitcste sttt et s st s s e e s s e s s e e e s baeesnneas 212
SPECITYING the AIB MASK....iiiciiiiiiiieiiieeiteet ettt sttt re e s sbe e e s saae e ssateesbeaessbaesseeesnnseenn 214
Specifying the AIB mask for ODBA appliCatioNS......cccuieriiieriiiieniiieenieesneessieessveesssieessveeessveessans 216
Specifying the UIB (CICS onling programs ONLY).......ccceeeeecueereeriieeseesieeseesseesseeseessseesssssssesssessses 219
SPECITYING the I/0 @rEaS...uuiiiciiiriiieecite sttt ettt e st e s saee e s sateesssteesasbeesasteesssseesasseesnnsaesnnseens 221
Formatting segment search arguments (SSAS).....cvicierverrierieereeste e e seeeseesee e e eseeeseeesseesseeeseas 222
SSA COUING FULES...teeeiieiiiiieeiee ettt ettt ettt e ettt e s ate e sttt e sseeesaseeessteesasseesasseesssaesassaesnnseenan 222

SSA COAING FOIMMIALS..utiiiciieeiiiei ittt ettt s rte e ssrte e s bee e ssbteesbaeesabeeesbeeesstessseeessseeesseeesane 223

Data areas in GSAM databases......cccuiiiiiiiiiiiiiieceite ettt te e s ste e e sbe e s s te e s s reeeas 226
ALB T DL INEEITACE ¢ttt ectteeectee ettt ettt ertee st e e s bt e e s bt e e sbeeesbeeesaseeesbaeesasaessaseeesaseeesasanenan 226
Language SPECITIC ENTIY POINTS...uiiiiciiiiiiieirie ettt et e st e s ste e s sbe e s sbeessseeesssteessssaessnsaesnsseesnns 227
Program communication blOCK (PCB) liStS....cuiecuiiieiiieecieesiecceesee e e ste et seee s saae e 230
THE AERTDLL INTEITACE. ..ttt ettt ittt ettt ettt ee e s ee e st e e s bee s sbee e s bt e e ssbeeesasaessaseessnseeesnses 231
LanNgUAEE ENVIFONMIENTS. . uiiiiiiiieiieieite ettt ettt ettt e sttt e stee s s bt e e s beeesbaeesbaeessaeessaeessseesseeesseeessseeenn 232
Special DL/I situations for IMS DB programmMing........ceeceeeerieeieiieerniieessiieessiseesssseesssseesssseesssseesssseees 233
Application programming with the IMS Catalog.....ccccevcieiriiiiiiiiirieece e 234
Chapter 13. Database versioning and application programming.......cccccceeecveeriveerrneenireesseeesseeesseeens 237
Chapter 14. Establishing a DL/I interface from COBOL OF PL/L...cccccutiviiiiriiieniiieeiieesrieesseeessieeessieeens 239
Chapter 15. Current position in the database after each call.......cccoceviiiiiicciie e 241
Current position after SUCCESSTUL CallS.......uuiiiieciiiieiceeee e e ree e e e 241
POSItion after retrieVal CallS.......cuiiiiiiiiie et e st e s ee e s saee e s e 243

oL 1AL A 1= L= T] PSPPSR 243
POSITION @B REPL..c.eviiiiiieeeiteeeiiteeite ettt sttt et e s iae e s te e s be e s aba e ssataessaeeessasaesnnsaesnasens 245

oL AT I L= T] o [PSPPSR 245
Current position after UNSUCCESSTUL CaLlS.......uuiiiiiciiiee e aree e 246
MULLIPLE PrOCESSING. ceiivieiiciietieiee sttt eete e sttt e sttt e sette s sette s s sbte e sbteesbaessbeessseesssseessseeesssaessseessseesnnsees 249
Advantages of using Multiple POSITIONING.....cccciiiiiiiiiiie et 253
LU oY SN S o O 2 1SR 255
Chapter 16. Using IMS application program SYNC POINTS......cuccieirviieirieeinieeinieeeseeessreesseeesseeesseeesns 257
(070] §a Y0 01 0] o Tod =1 TSR 257
Two-phase commit in the SynChronization ProCeSS......uiii i ciiiee it e e eaees 258

L LT o) il 1T oT0 1YY o USRS 260
DBCTL SiNgle-phase COMMIt..ciiiiiiiiiieiiieeieiee st srte e st e ssreessteeseeeessseeessaeeessseeessseeessnsessassaesans 260
SYNC-POINT LOZ FECONUS. . uviiiiieiiiiieiitee sttt e ettt e sste e sttt essbteessbteessbeeesasaeesbeeessaesssaeesseeessseesssseessnns 261
Sync points with a data-propagation MaNAEET.......ccieiriieriiiirrite et e st e s sreessbeessbeessaeeeas 261
Chapter 17. Recovering databases and maintaining database integrity.......ccccoevevrrveeinieenniecinieeenee, 263
ISSUING CRECKPOINTS .o vtiiiiiiiiiiiecte ettt e s be e st e s be e s be e sssbeessabeesssseesnsseessaseessnses 263
Restarting your program from the latest checkpoint.......ccccvvciiiriiiiiiieiceee e, 263
Maintaining database integrity (IMS batch, BMP, and IMS online regions).......cccevvveeceeneeecveesveenne 264
Backing out to a prior commit point: ROLL, ROLB, and ROLS........c.ccccevriiiriiieriieeniieesieessienn 264
Backing out to an intermediate backout point: SETS, SETU, and ROLS........cccccccevvviiinviieinieenne 267
Reserving segments for the exclusive use of your Programe........cccveeveieernieennieessieessieessveesseeeens 270
Chapter 18. Secondary indexing and logical relationships......ccecvviecieiiiierniieere e 271
How secondary indexing affects yoUr Program........ccciiiieriieeinieeniieessieessieesseeesseeessreessreessaeees 271
SSAS With SECONAANY INAEXES...ciiiiiiiee ettt e e ecree e e e eete e e e eente e e s eenbaeeesesnsseeeeesnsseesanan 271
Multiple qualification statements with secondary iNdeXes........ccceccuvveeeeeciiieeeiccciiiee e 272

DL/I returns with SECONAAIY INAEXES.......uuiiiieeiiieeeiecttee e e ecctte e e ecree e e e eeree e e e eerteeesseenseeessesnseneeseas 274
Status codes fOr SECONAAINY INUEXES...ciiicciiieeeecciiee et e e e e e ctre e e e e erae e e e e s abae e s senbaeeeseeasseeeas 274
Processing segments in logical relationShips....c..ciu it 274
How logical relationships affect your programming..........cccceeveeiivieeinieninieeeniee e sseee e e 276
Status codes for logical relatioNShiPS....cc.iiiiiiiieiiiieee e 277

vi

Chapter 19. HALDB selective partition ProCESSING.....ccuvircieiriieeriieerieeesieeessieeessieeesreessseesssseessseessanes 279

Chapter 20. Processing GSAM databasSes......cuuiiiiiiiriiiiniiiiniieeerieessiesssireesseessseesssieeessaeeessseeessneeesneas 283
ACCESSING GSAM datAbDASES...ciiuiiiiiiiiiieeeie ettt ettt e e sraee e s bt e e ssbeeesbaeesbaeessseeesaseeesane 283
PCB Masks fOr GSAM databases.....cccuiiiiiiiiiiiiniiieeitessie sttt e s e st e s sbe e s sabe e s e e ssaeee s 283
Retrieving and iNSErting GSAM FECOIUS.....ccuiiriiiiiiieeriieeecte ettt srte e ste e ssreeesbeeessraeesbaesssaeesane 285
Explicit open and close Calls 10 GSAM. ... e i e e e aee e e e naae s 287
(Y AN = Tolo] o I (o T4 ya T | £ TSRS 287
GSAM /O AIBAS.cuuuuuuuuieeeeeee i ee e eee et e et e ee ettt eeetaeeaa b esssssseseaeesasseeeseeesssesssssssssarasaassnsasssessasesasaanns 288
GSAM STAUS COUBS...uiiiiiiiiiitieiiitee ettt ettt srt e et e e st e e sbe e e sbeeesbeeesbaeesbaeesssaeessaeessaesssaessssaeenns 288
Symbolic CHKP and XRST With GSAM.... ettt ettt e s e e tre e e s ee e e e s senra e e e e e aaaeeeenns 289
GSAM COAING CONSIABIAtIONS...uviiieiieiriieiriee ettt et e et esste e s saee e s ste e ssbessssteessaeeessstaesnnseesnseassnnens 289
Origin of GSAM data set CharaCleriStiCS...iuiuiiiiiiiiiiee ettt seree e seree e sbee e sreeesans 290
DD statement DISP parameter for GSAM data SEtS.....cciivcciiieieeciieee et 291
Extended checkpoint restart for GSAM data SEtS......ccviiicciiieiicciie e 292
Concatenated data sets USEd by GSAM......oi ettt rrrre e e e e e e nreeeeean 293
Specifying GSAM data set attribULES......cii i 293
DLI, DBB, and BMP region types and GSAM........coiiiiiiiinieieitecsiteesieessieesssveessreessseessveessaes 294
Chapter 21. Processing Fast Path databases......ccuuieiiiriieiniiiiiieccieceeeee e s 295
Fast Path database CallS.....cuiiiiiiiiiiiiiieieiteeete ettt e st e s be e s sbae s sbe e e sbaeesabaeesane 296
Main storage databases (MSDBS).....c.cccueecieereeeieeieeetessieeseeesreeseesseesseesseeeseesssesseesseesnsesssessssesnses 297
Restrictions on USING Calls fOr MSDBS......cicviiiiiiiiiieiieeceiee sttt et eee e st e sseeessateessaeeesnee 297
Data entry databases (DEDBS).......cccciieeciieeciieeeieeeeteeeeteeeeateeeeteeessseeeeaseseesseeeessesessseseesseesassessnnseenn 298
Updating segments: REPL, DLET, ISRT, and FLD......ccccctiriiiiiiiieeiiieeiriee e e sseeesieeesseessveeesveeesvees 298
Checking the contents of a field: FLD/VERIFYcoiiiiiiiiiiiniieiieeesieeseite e s ssveessaeessvee e 299
Changing the contents of a field: FLD/CHANGE.........cccciiriiiiriieinte et esve e s see e s 301
Example of using FLD/VERIFY and FLD/CHANGE.........cooccttiiiiiiiteeieecriee e esve e 302
Commit-point processing in MSDBS and DEDBS.......cccccevvuieiiiteiniieinieessieessieeesseessveessseesssnens 302
Processing DEDBs (IMS and CICS With DBCTL)..c.cuceceervueeieeeieeireeneeesieeseeseeesseessesssessnsesssessnsesnses 304
Processing Fast Path DEDBs with subset pointer command cOdes.........ccoevveerriieericieeniiieennineenn. 304
Processing DEDBsS with @ SECONAArY INAEX....uiiiiiiiriiieiiiieriieesrieessieessieessiee e e s sreessreesseee s 308
Retrieving location with the POS call (for DEDB ONLY)....cccveeeeevieisienieeeesee e eee e svee e eeeeas 316
Commit-point processing in @ DEDB......c.ccuiiiiiiiriiierieeeieeesit et sie e s sbe e s e s e e s be e s saveas 319

[l o] goTot= Tty o T4 o] A [o] o U PTUPRST 319

[W o] goTot= T3y o T o] o] A o] o USSP 319
Calls with dependent segments fOr DEDBS.......ccovciiiiiieiiiien et see et siee s e sree s s iee s 320
DEDB DL/I calls to extract DEDB infOrmMatioN........eeeeeeeeeeeeeeeeee ettt 321
AL_LEN Callvtiutieiieeieesiesie et esttessteseteeste st esseesteesseesteesseesnseesseessseenseessssensessssssnsessssesnsessseesnsenns 325

D) 0 Y S 325
DS_LEN Calluriitiieieecieeeieeceesie et esee et s sttesteeste e s te e seesseeesseesseeesseesseesaseesseesnseesseesnseeseesnsesnseesneenn 325

Y] Y) % 1| RS 326
DEDBINFO Calluviitiieieesieieieeieeetesiieesieesteesteeseessteeseessseesseessseesseessseesseesssesssessssssnseessessnsessseesnsens 326
D] IS 1 B 327
Fast Path coding CONSIAEIAtIONS.ccuiiiiiieiiiieiete ettt ettt e s be e s sbe e e sbeeessbaessasaeens 327
Chapter 22. Writing ODBA appliCation ProgramsS..... ..o ueevrieeriieeriieernieessieessseessseesssseesssseesssseesssseesas 329
General application program flow of ODBA application programs........ccceeeceeeereeeesieeeesseeesseeesseeeens 329
SEIVEI PrOZraM STIUCTUIE. ...eiiiiieeieee ettt ettt e et e e et e e s s nee e e s s e et e eeseesbeeesesnneeeeesnneeeeenn 332
Db2 for z/OS stored procedures Use 0f ODBA.........oo it 333
Best practices for Db2 for z/OS stored procedures with ODBA.........oooocciieiieecieee e 334
Design best practices for ODBA Db2 for z/OS stored procedures........cceeveeeercieerceeescveesieenns 334
Writing Db2 for z/OS stored procedures that use ODBA.......ccooviiiiriiiinieceeeeeee e 336
Stopping Db2 for z/OS stored procedure threads..........ccceveveeieiieiriienniesee e eee e 336
Testing an ODBA appliCation ProSrami.....c..cc e ieeriieerrieesiieesrieessree st e ssreessteessreessseessseesssseesssses 337
Tracing DL/I calls with image capture to test your ODBA Program.......ccccceerveeeenieeeenieeessieeesnnnes 338
Using image capture with DFSDDLTO to test your ODBA Program......cccecceeeeeveeercreeesseessseessnees 338

vii

viii

RUNNING iMAage CaAPIUIE ONLINE..ciiiiieiieieiieeete ettt te e e s e e e s ba e e sbaeessaeesneeeen 339

Retrieving image capture data from the log data Set......ccocvueviiiiiiiiiiiiieircee e 339
Requests for monitoring and debugging your ODBA Programi.....cccceeceeerreeerieessseesssreesssreessnes 340

What to do when your ODBA program terminates abnormally........ccocceeieveiiiieiniieiniieeniieensieenne 340
Recommended actions after an abnormal termination of an ODBA program......c..cccceeevveennen. 340
Diagnosing an abnormal termination of an ODBA Program.......cccccecveeriieeriieeriieesseeesseeessneens 341
Chapter 23. Programming with the IMS support for DRDA........covciiiiiieenieeeieee et steesveeesveeesveee e 343
DDM commands for data operations with the IMS support for DRDA..........ccceeeeciieeeccceeee e, 344

Part 3. Application programming for IMS TM......cccccceceiuirniiniininincnecnecressecneceeesc 347

Chapter 24. Defining application program elements for IMS TM......ccccvvveiriieiniiennseecnee e 349
Formatting DL/I calls for [anguage iNterfaCes......cccuvircieiriiiiriieeeie ettt s seee s 349
Application programming for assembler laNGUABE......coccuiiviiiiriiiiiiiteecieeee e 349
Application programming fOr C LlanGUAEE.c.ueiecuiiiriiieeiieeere sttt ssee e ssiee e s see e s saee e ssaeeessaeeas 352
Application programming fOr COBOL.......ciiiuiiiiiieriiieiiieesiieessieessieesseeessseessseesssseesssseesssseessseesas 355
Java application programming for IMS.........coiiiiiiiiiiiieeersee e s seee e ssaee e seaeeessraeesane 357
Application programming fOr PaSCal.......ccciiiiiiiiiiiiiiiieiniieiitessite st e s s sre e s sbe e s ba e s ssee s 357
Application programming fOr PL/T......cou ittt s st esste e ssre e sste e ssabe e s sbee s sbaesnnseesas 360
Relationship Of CAlls t0 PCB 1Y PES....uiii i iiiieieectiiee ettt ee e eettee e eeetee e s eette e e e s e abee e e s s abaee e s e eansaeesseansens 362
SPECITYiNG the I/O PCB MASK...iiicuiiieiiiiiiieieiieieite sttt ssit e s st essseeessreessbeessssaesssaeesasaessssaesssseeesseeens 363
Specifying the alternate PCB MasSK.....cccvvciiiriiiiiieiciteerte st st siee st e st e s s e s saeessae e s sasaessaeas 367
SPECITYING the AIB MASK....iiiiiiiiiiiieiiieetteett ettt re e s sbe e e s sbee e ssbaeessteessstaesseeesnenenn 367
SPECITYING the I/0 @rEaS....uiiiciiiiiiierciie sttt sttt et e st e s saee e s ateesssteesssbeesssteesssseesasseesnsaesnseenn 370
ALB T DL INEEITACE ¢ tttiictteeeciee ettt ettt ettt e st e e s bt e e s bt e e sbeeesbeeesbeeessaeesaseessseeesseessasanennse 370
Specifying language-specifiC €NTrY POINTS....ccciiiiiiiiiiieiree ettt sae e s e s sbeessaeas 371
Program communication blOCK (PCB) liStS....cuiecuiiieieiiecieesieeeeeee s et sre e see s sree e 373
LanNZUAEE ENVIFONMENTS. . uiiiiiiiiiiieieiteeeitt e ettt eeieeesrte s sttt e s sbeeesbeeessbaeesbeeessaeesseeessseesseeesseeesssseenn 374
Special DL/I situations for IMS TM Programming........cccceeccueereiieeriiieeriiieesoieeseeeeseeeeseseesssseessaeessane 375

Chapter 25. Message processing With IMS TM.. ..ottt sttt e s e ssreessbeessareeeas 377
HOW YOUT Program PrOCESSES MESSAZES. . .uuuurrrertereeeeetiaraaarnnrreetteeeesaessesaaanreereeeeeesassessasansnsseeeeeeeesess 377

=TS = o A o= J O O T PP P PSP RUPUPPTRRRPP 377
When a MeSSaZE iS PrOCESSEA....cciviiiiiiieiiiieirite ettt esiteesteeestee e stee s sbeessbeessbeesssaessssaesssaesnnes 380
Results 0f @ MESSAZE: I/O PCB.....iiciiiicieieiee ittt st ste s site e siee s ssaee s sbee e sbee e sbeessseessaseeesans 381
HOW IMS TM ©dITS MESSAZES. .. uviiiiiieiriieiiiieieiteesrtessttessteessteessteessteeessteessssaesssseesssseesssseesssseesnnes 381
Printing OULPUL MESSAEES. i uviiiiiiiiiieeiiiee st e srtee st e serteessteesesteeseseeesssteesssteessteesasteesaseeesaseassane 382
USING BASIC EQIT....uiiiiiiiiiiiieiiieeeciee sttt ste e s site e ssate e s s e e ssaae e s sseessseaesnseesssaesssaesansaenn 382
Using Intersystem Communication Edif.......cciirciiiiiiiiniiiiniiceiecsiecsee e 383
USING MESSAZE FOIMATL SEIVICE....iiiiiiiieiieiiiee ettt e ssie e st e sste e ssteeseateesssteessstaessseaessseaessseeesnne 383
Using LU 6.2 User Edit exit routing (Optional).......ccccveeeerceerieiiiesie et sve e svee e 390
Message processing considerations for DB2........iiiiiiiiriieiniieiniieseeeesee e esree e ssree e ssree s ssaeeesnees 390
Sending messages to other terminals and ProgramsS.......ccuiveieeiiiieiniieeinieeeriee e e ssreesseeeeeaee 391
Sending messages t0 Other tErMINALS......cciiv e s 391
Sending messages to other IMS application Programs........cceecveeieieernrieeiniieeesieessieesseeesseeeennee 393
How the VTAM I/0 facility affects your VTAM terminal.......cccccvverieeciieeicccieee e 395
Communicating with other IMS TM systems using Multiple Systems Coupling........cccceveverrveennnne. 395
Implications of MSC for program COUING......uuivcuiiiiiieiiiieeeiiee et see e srre e sree s sreeesreeesbaeesveeeeas 395
Receiving messages from other IMS TM SYSTEMS...cccuiiiriiieiriieiiienree st see e 396
Sending messages to alternate destinations in other IMS TM systems......cccccvvveeinvieeeniieennnnen. 397
IMS CONVErSAtioNal PrOCESSING...ciecviiiriieiiietiriteertee et e st e s st e s see e s ste e ssateessaeeessseeessseeessseeesnseeesnnes 398
A CONVETrSATIONAL EXAMPLE. . .uiiiiiciiiiee ettt ec e e e e ere e e e eeee e e e e e tte e e e seabeaeeseensaneesesnseeeseannes 398
CoNVErSAtioNAl STIUCTU...ciiiiiiiiiieiciee ettt st e st e st e e s s be e s s sbeessabaesssbaeesasaenas 399
RepLlying 10 the tErMINAL....cii i re e s e s s e e s e e e abae s 403
Conversational processing using ROLB, ROLL, and ROLS........ccccovviiiniieiniieeiniiesereessieesseeeeenee 403
Passing the conversation to another conversational program........cceceevrceernieennieeenieeesieeeennnes 404

Message switching in APPC CONVEISAtIONS......iiviiiiiiiieiiieeriieessieessieessieessieeesseeesssreesssseesnnseess 406

Processing conversations With APPC.........iiiiiiiiiiiieneessee sttt iee s bee e s e s saee e sneas 407
ENding the APPC CONVEISAtION.....iiiiiiiiiiieieiieseiteeeiee st e s ste e sste e s see e s see e s steessabeessseaessssaessssaesnns 408
Coding a conversational PrOZramMi.......cccueercieeriieeeiteeerteeereeessreeesraeessreeessraeesssaesssseessssaessssaeesnne 408
Standard IMS appliCation PrOZramS.....ccuiiieviiteriiieriitersieessieessreessreesssbeessbeesssseessseessseessases 408
Modified IMS appliCation PrOSramS......ccuiiiecieeieiteirieeieiee st e st e st e sseeesseeesseeessseeesssseessseaesnns 409
CPI-C driven appliCation PrOogramsS....cuic i ueeriieeeiieeeiieessiieesseeesseeessareessaeesssseesssseesssseesssseessnnens 409

Processing conversations With OTMA......cooiiiiiiiiieteree et e s ae e s be e s beesssaeeas 410

Backing out to a prior commit point: ROLL, ROLB, and ROLS calls......cccccccevrvieirniiienniienneeseieeeene 410
Comparison of ROLB, ROLL, aNd ROLS........uiiiiiiee ettt eeeee et e e e vere e e e e snnae e e e 411
SRS 412
0 = USSP 412
0 S TSP 413

Backing out to an intermediate backout point: SETS/SETU and ROLS........cccccccevrieeinieennieeenieeenne 414

Writing MesSSage-ariVEN PrOSIaMS. .c.uii i ueeriieeriieeriteesateesssteesssseessseeesssseesssseesssseessssesssseesssssessssees 416

Coding DC calls and data aras.....ccueiicieiieiiiiiieesiiee sttt siee s siee s sbee s st e s sbee e sbeessbeessaseessans 416
Before COAING YOU PrOSIaM.. . ccuiiiiiieieieeieieeeeieessteesseeeeseeessteessateessseeessasaessseesssseeesnseessnssessnsens 417
MPP COE EXAMPLES...ciiieiiieieectiee e et ee e eectree e e eere e e e e e te e e e s e are e e e eeabeeeesesnbaeeeseensaeeeesassensessnnsenes 417
Message processing considerations for DB2........c.civiiirriiernieenniieensieessieessieessveessseesssneessneas 423

Chapter 26. IMS SPOOL AP ettt ee e e e et e e e e e rte e e s e s sbeeeeesnbeeeeeeanstaeeaeesseeeasennssnnannn 425

Managing the IMS Spool API oVerall deSi8N......ciicciiiicieiiiieiiieeeiee et bee e s 425
IMS SPOOL APT dESIZN.ciiiiiiiiiiiiiiieieite ettt s ettt e st e s st e e ste e s sateessbeeessbeeessteessssaesssseessssaessssaesnns 425
Sending data to the JES SP00L data SEtS.....ccciiiiiiiiiiieiieerieecte et ae e 425
IMS Spool API performance CONSIAEIratiONS......c.uuieiiecuiieeeeciieee e eecrree e e et e e e eearee e e e e cabeee e e eeaseeeeas 426
IMS Spool API application coding CONSIAErationsS.......ccccueieriiiriieeniieeniieescee e eseeesaeeessaeeens 427

UNderstanding ParSing EITOFS. ...cucuiiirieeriieeriieessitessteessseessseessseessseesssseesssseesssseesssseesssseesssseessssens 429
DiIagNOSIS EXAMPLES. ciiuuiiiiiiieieite et ettt st e st e st e s st e s s bee s s bt e s s bt e s s beeesbeeeesbeeessbeeesreeesreeesanes 430

Understanding alloCation EITOIS......iuiiiiiiiieriiieriitessie et e st e st e s sae e st essbeessabeessabaessabeessaseessasens 432

Understanding dynamic output for print data SetS......uciiiiiiiiiiiiiiiieesieesiec e 433

Sample programs USING the SPOOL APcoi ittt e s e s ba e s vae s 434

Chapter 27. IMS MeSSage FOIMAt SEIVICE.....iiiiiiiiiiieiiiterrieerrie st e st e st essaeessbeesssteessaseesssseessaseesas 437

Advantages Of USING MFES...... .ttt sttt et e s te e s s be e s s abe e s s abeessabeesssbaesssseesnsseess 437

MFES CONTIOLBLOCKS. ...ttt et e s te e s s ate e s sateessateesssseessnsaesnns 438
[R =Y T T] (=SSR 438
Relationship between MFS control blocks and screen format........ccccveeeeeciieeeicccieee e 442

OVErVIEW OFf MFS COMPONENTS...cciiiiiiieecctiiee e eccttee e e et e e e eere e e e e etee e e s e breeeesenseeeeesanseseesesnsssneassnnnes 444

Devices and logical units that operate With MFS.........cooiiiiiiiiiiieeeeee e 444

Using distributed presentation management (DPM).......ocuiicierieiceenee et ee e ee e 446

Chapter 28. Callout requests for SErviCes OF data.......ccveeeciieeeeecieee e e e e e e e e e eraee e e e 449

(OF: 11 Lo 0} d ¢=To [U=To A=Y o] o] o T=Tod o 1= F0 R 450

T g ToI o o] o TSI o1 (0] o olo Y USSR 452

Implementing the synchronous callout fTUNCHION......coccuiiiiiiiiiiiec e 453

Control data in synchronous CalloUt rEQUESTS.......cuviiee it rre e e e e e aree e e s e naeee e 456

Implementing the asynchronous callout fUNCHION......c.ciiviiiriiii e 457

Part 4. Application programming for EXEC DLI.........cccccetucininncnecnecnecrecsecsescecsacessc 459

Chapter 29. Writing your application programs for EXEC DLL.......ccceovciiiriiieiniiieiniieenieeesieeesieessveeeenee 461
Programming SUIAELINES.cuiiiiiiiieie ettt e st e s s be e s s ba e s ssbaeesbaessasaessasaessssaeenns 461
Coding a program in @ssembler laNGUAEE.uivriiiirieirteerite ettt e s s e sbeeesbeeessaeeas 462
Coding a program iN COBOL.....iuuiiiiiiiiiieieiiecie ettt s ste e st e s see e s ssee e ssteessaeeesssteessasaessssaesnns 465
Coding @ Program iN PL L. i iieieieeieiteeeieessiee st esste e s ste e s ste e sssteessseeesssteessssaessssaesssseesssseesns 468
CodiNgG @ Proram N Cu..eveeeeiieieiieeeiiteeeiteesrte e et e e st e e steeesteessteeesbaeessaesssaessssaessseessssasessseesnnee 471
Preparing your EXEC DLI program for @XECULION......ccutiiiiteriiieirieessieeesieeesiee e e s seeessveessaeessaeeas 475

Translator, compiler, and binder options required for EXEC DLI.......cccceeeeeciieeeeeciiieeeeecieeee e 476

Chapter 30. Defining application program elemMents........ccccvieviiiriiieniieeniieeeee e eeee e ssee e seeeessaeee s 477
Specifying an application interface bloCK (AIB)......cceecieeierceenierceeseeete e ste e see e e seeeseeesraeens 477
Specifying the DL/T interface bloCK (DIB)....c.cccuieceeriieciiecieecieeseecteeseeeeteeseeesteesveesveesseesee e seesneean 477
Defining a key fe@dbacK @r@a.......cicciiiiiieieiieicieeete ettt e s re e s s re e s sba e e sbae e sraeeeane 480
DETINING I/O AIEaS...uiiiiciieiiiieiiiee ettt et e st e s ste e s steessabeessaeeessaeeessstaesssteessseeesssteesnseeesnseessnseessnsens 481

Chapter 31. EXEC DLI commands for an application program......cccccceeeeeerieesnieesnieessseesssveesssseesssnes 483
PCBS @NA PSB...iiiiiiieeeiee sttt ettt s ettt e s ate e ssate e s st e e s sste e s steessbaesasbeesantaesastee s nbaesantaesanraenn 483

Chapter 32. Recovering databases and maintaining database integrity.......ccccevevriveiinveeniieciieeeenee, 485
Issuing checkpoints in @ batch or BMP Program....ccccecieeecieeriieeniieesiieessieeesseeeessseesssseeessseesssseessane 485
Restarting your program and checking for POSItioN........cccvirciiinieeiriie et 486
Backing out database updates dynamically: the ROLL and ROLB commands.......cccccceeveveerrueennnnen. 486
Using intermediate backout points: the SETS and ROLS commands.........cceevveeirveeinieeennieeesneeesnnne 486

Chapter 33. Processing Fast Path databases......cuuiviiiriieiiiiiiiiecciecce e s 487
Processing Fast Path DEDBs with subset pointer OptionS........ccucveeeiieiiiiieiiieecee e 487

Preparing t0 USE SUDSET POINTEIS....ciiiiiiiiieeieeeiteee ettt e s e s sabe e s sare e s sareas 489
DESIZNAtiNg SUDSET POINTEIS..ciiiiiiiiiieiiiieeeite sttt et et e st e e sbe e s sbe e s sabeessstaessstaessasaessnsaesnnee 489
YUl o111 A oYe [al £=T o] o] £ o] o TSR 489
Subset POINTET STATUS COUBS....oiiiiiiii it rtee e e e s e e e s e b e e e e e eenbeeeeeseseeneeans 496
THe POS COMMEANG....iiiiiiiiiiiitieie ettt ettt e st e s s tee e s bt e s sba e e sbe e e sbaeessbaeesssaeessaessnsaessnsaessnseesnns 496
Locating a specific sequential dependent SEZMENTt.......cocciviriieiriieiniieeneeree e 497
Locating the last inserted sequential dependent SEgMeNt.......coccvevviiiiiieeinieeeniee e, 497
Identifying free space with the POS command.......ccocccerieiiiiiieiniieinieesee e 498
BTN o] geTo=t T 1] o= Ao o) Ao s PP 498

Chapter 34. Comparing command-level and call-level programs.......cccoccevveveiiriieeniiiecenieessie e 499
DL/I Calls fOr IMS @Nd CICS.... oottt e e s e e e e e e e e e e e e e e s e e e e e e esassa s b s saesseseesesaasanes 499
Comparing EXEC DLI commands and DL/T CallS....cuuivcieiriieiiiieeiieenieeesieeeseeesieessveessieessvne s 499
Comparing command cOdes and OPLIONS.....ccuuiiriiiiriiieeiiteete ettt see e ssee e s siee e s sare e s saee e ssaeeessaeeas 501

Chapter 35. Data availability @eNhanCemMEeNts........cc.uviiiiccieee e 503

Part 5. Application programming for SQL.......cccccceiruirnirenrnciesiniinincnecsecsecsessessess 505

Chapter 36. SQL considerations and restrictions for COBOL.........cuiieeciieiieciiieececiieeeeecreee e eeeieee e 507

Chapter 37. Writing application programs for SQL........iuvutiiiveeirieeiiieeiiieesseeesseeesseeeseeessreeessaeeesnees 509

Coding SQL statements in application programs: General information......ccccccevvveeirvieenncceennieennnne 509
Defining the items that your program can use to check whether an SQL statement executed

LU ool Y13 LU] 2SR 509

Defining SQL deSCriPIOr ArBaS...cicuiiiiiieiriieieitessitessitesste e st e ssttessbeessbeessseeessaesssbeesssaesssees 510

Declaring host variables and indicator Variables.........couviiiiieiriiinieeeeesee e 510

Using SQL statements in your appliCatioN.......ccceieveeiiieiinienirieceiee st ssee e ssee e s 511

Checking the execution of SQL StatemMENtS.....cccueiiciiiiiieiriee et saee e sreeeeaee 521

Coding SQL statements in COBOL application programsS.......ccccvvceeerceernieessineessineeesieeessseeesssseessnnes 524

Defining the SQL communications area in COBOL........civviiiiiieiniieiiieeneeeseeesieeesieessveessneas 524

Defining SQL descriptor areas in COBOL......cccviiiiieeiiieiiiieeesteessieessieeessieeessieesssreesssneessseessnees 524

Declaring host variables and indicator variables in COBOL.........ccccvvvieiriieinieeenieeenieeeseeeesnens 525

Equivalent SQL and COBOL data tYPeS....cuicecuiieeieiiiieeeecctieeeeecrtre e e ecrteeeesenteeessesnsaseesesnssseesennnes 531

SQL statements in COBOL PrOSramS....ccueeieueeiriieieiiterniieessseesssseesssseesssseesssseesssseesssseesssseesssseesns 533

SQL aggregate functions supported for COBOL......cccuiiiiiiiriiiiniiieniieeeieeesee e sieeessaeeessaeeens 536

Adding and MOITYING AAta.....cocciiiiiiiiieiee ettt e s e e s s e e s sbe e s sabeessseeesssseessssaesnns 538

INSEITING FOWS.c. eiiiiiiieieiie ettt ettt et e et e et e s sate e s s te e s sabeessateesssteeessbaesssbeeesssaesassaesnssaesassaesnsseesnnee 538

Updating SEEMENT ata..cccuiiiiiiiiiiieiiieertessee sttt e s s e e s s bee s s e e s s beeesbeessanes 539

Deleting data from SEEMENTS...c.cuiii ettt et s e s sae e e ssabe e sssbeessseessnsaesas 540
FAXolor= Y=Y o= -\ - DO USSP STTST 541
Retrieving data by using the SELECT Statement........covciiiriiiiiiieiciiecciteceiee e 541
Retrieving a set Of rOWS DY USING @ CUMSOT....ccuuiiiiiiiiiiieiiiie sttt st e s e s e e s e e s saree s 545
Commit OF Ol DACK data....ccoeeiiiieeeeee e see e 548
Preparing an application 10 ruN 0N IMSottt e s 548
Processing SQOL StatEmMENTS....iii ittt e st e s ee e s s ae e s sate e searaesan 548

Part 6. Java application development for IMS........ccccciiieiiiieninceniececennececrecneceens. 351

Chapter 38. IMS solutions for Java developmeENT OVEINVIEW.......c..uuieiieciiieeecciieeececreee e cveee e s e cnvee e e 553
Chapter 39. Comparison of hierarchical and relational databases........cccceccueeeieeciieee e 555
Chapter 40. Programming with the IMS Universal driVers.......ccoeeieeiniieiniieinieesee e sseeesee e 559
IMS UNIVErSal AriVErS OVEIVIEW...ccuviiiiieiiiieeiiieeseieessiteessieessieeeseatessbeessbeeesbeessseessaseessnseessnseessnnes 559
Distributed and local connectivity with the IMS Universal drivers.......cccecvveeeiecciveeeeecceeeeeeeanns 560
Configuring JAXB With JIDK 9 OF higher...ccuuiiiciiiiiiieieieectecrte ettt 563
Comparison of IMS Universal drivers programming approaches for accessing IMS.................. 564
Support for variable-length database segments with the IMS Universal drivers.......ccccccceuueene. 565
Support for flattening COMPLEX STTUCTUIES......iiiiiieieiieeeteeete et be e e saee s 566
Generating the runtime Java metadata ClassS.......cciiviiirieiiiiieeeceec e 567
Hospital database EXAMPLE.. ... it e e et e e e e e be e e e s enbeee e e e baeeeeeeannes 568
Programming using the IMS Universal Database resource adapter......cccceveerrvieerniieeeniieenieessieeenns 571
Overview of the IMS Universal Database resource adapter.......ccooeeeeccieeeeccciieee e eeeveeee e 571
Transaction types and programming interfaces supported by the IMS Universal Database
ST o U (o= Y=Ta =T o) £ SR 571
Software configurations supported by the IMS Universal Database resource adapter............. 572
Connecting to IMS with the IMS Universal Database resource adapter.....ccccccevcverrceenrieennnnen. 573
Sample EJB application using the IMS Universal Database resource adapter CCI
PrOgramMING INTEITACE. .. ettt sste e s saee e s s teessaaeessseessseesnnsaesan 584
Accessing IMS data with the DLIInteractionSpec Class.....cceicieeceeecieeceesie e 585
Accessing IMS data with the SQLInteractionSpec Class.....cciecieeceeecieeceesiecceesee e 589
Accessing IMS data with the IMS Universal JCA/IDBC driVer.....coccieieieeievieeinieennieeesieessieeenns 592
Programming with the IMS Universal IDBC driVer.....c.civiiiiriiieniieeesieessieessieeeseeesseeesseeessveessaeas 594
Supported drivers fOr JDBC... .o i cccieeee ettt e eeetre e e eecree e e s e ebee e e e eebteeeseesteaeeeesnssneesennssenassanns 594
Connecting to IMS using the IMS Universal IDBC driVer......ccceeevveirniieeriiieennieesnieesneeesseeessneens 595
Sample application for the IMS Universal IDBC driVer......ccccviieeeeciiiieeeciiee e cecveee e eeeeeee e 607
Using ByteBuffers with the IMS Universal IDBC DriVer.....cccvivcieiriieeeiieeniiieeeieeeseeeesseeessveesnns 608
Using the removelnvalidCaseFieldS PropPerty... i ieirieerriieriieeniee st ssre e s essreessreesseee s 609
Using the expandArrayResUlLSEt PrOPertY.....ccuciiiiciiiiriieiriteerite st aae s 611
Writing SQL queries to access an IMS database with the IMS Universal JDBC driver............... 613
Writing DL/I calls to access an IMS database with the IMS Universal JDBC driver..........c....... 629
IMS Universal JDBC driver SUPPOIt FOr XML.....uuiiiiicciiiee et eetiee e eeettee e evee e e e vaee e e e 631
Data transformation SUPPOIt fOr IDBC....cc.uuiiieieeiiiee ettt e et e eeree e e e e eaaae e e s e nre e e s eennees 636
Programming with the IMS Universal DL/ driVer.......ueiiieiriieiniiennieeenieeesieessieeesieessveessveessaveas 641
Basic steps in writing a IMS Universal DL/I driver application.......ccoeceeeeieeiniieeiniieeeniieesnieeene 642
Java packages for IMS Universal DL/I driver SUPPOIt......ccoccueeiiieeriiiereiiessieessieessreesseeessseeens 642
Connecting to an IMS database by using the IMS Universal DL/I drivVer.....ccccceveieirieeerceennnnen. 643
IMS Universal DL/I driver interfaces for executing DL/I 0perations.....c.ccccveveeirveeeinieesnseeesnnnen. 645
Inspecting the PCB status code and related information using the
com.ibm.ims.dli.AIB iNterfaCe...ccciiiriiiiiiiieeece e et ens 664
Committing or rolling back DL/I tranSactionS.......cecueiecieieiieieiieeeiteeesieeesreeesveeessieesseeessseeesane 665
Accessing dynamic arrays with the Universal Drivers using the DBArrayElementSet class...... 667
Configuring the IMS Universal drivers for SSL SUPPOI.....cocciiiriieriieeriiee st ssieessveessveesseeessaeeeeas 668

xi

xii

Configuring the IMS Universal Database resource adapter for SSL support in a container-

LA F=Yot=Te =T YT o] o aT=T) SRS PRPRUPP 669
Configuring IMS Universal drivers for SSL support in a stand-alone environment..................... 669
Tracing IMS Universal drivers appliCatioNS.......ciivcieiriiiiriieieite ettt e s ee e s sae e s seee s 670
Chapter 41. Programming Java dependent FEZIONS.cccueircieiriieiniieirieeesieeesieeesreeeseeessreessveessaeeas 673
Overview of the IMS Java dependent FEZIONS.cccuviirieiiiiieriiiee e ste e sseeesseeesree e sreessreessseessans 673
Programming with the IMS Java dependent region resource adapter.....ccccccevcieercveeriieesiveesineens 674
Developing JMP applications with the IMS Java dependent region resource adapter.............. 675
Developing JBP applications with the IMS Java dependent region resource adapter............... 683

IMS Java dependent region resource adapter support for ICAL callout with control data........ 690
Programming With the Callout APL..........coiiiiiiieiieecee ettt st e s see e ssaeeesnee 692
Program switching in IMP and JBP appliCations......c.cccvviiiiiiiinniienieecrieeesiee e ssie e see e 694

IBM Enterprise PL/I for z/OS and Java language interoperability.......cccoccerrveeiniieiniieiniiennieeeenen, 701
IBM Enterprise COBOL for z/OS interoperability with IMP and JBP applications........cccccceveeeeenneee 702
IBM Enterprise COBOL for z/OS backend applications in a JMP or JBP region.........cccecveevruneen. 703

IBM Enterprise COBOL for z/OS frontend applications in a IMP or JBP region......cccccceeeuveennnen. 703
Accessing Db2 for z/OS databases from JMP or JBP applications.....ccccceveveernieennieenniieensieessneens 703
Chapter 42. 31-bit COBOL and 64-bit Java interoperability......cccccccveeeieeciieeeeecieee et 705

Part 7. PL/I top-down development for IMS Enterprise Suite SOAP Gateway
LAV =TT Vo - U b B |

Chapter 43. WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I

£=T 0] 0] F= 1 £ 713
Chapter 44. Sample of a generated PL/I application template.......cceceeiniiiiiiiiiniieiniieeree e 715
Chapter 45. Trace output for WSDL-t0-PL/I segmentation APIS......cccccovvuiiriieiniieennieesnieeeseeesseee e 717
Chapter 46. Limitations and restrictions of the segmentation APIS........ccccovviiiriiiniieinieeeree e 719

Part 8. IMS Transaction Manager Resource Adaptercccccecencrecrecrennecreciecnannnens 721

Chapter 47. IMS Transaction Manager Resource Adapter OVEIVIEW.......cocueevrieeriieeriveessieessveesseeenns 723
Components of the IMS TM reSOUIrCE adaPler...uiiiecuiieiiceiiieeecciiee e eectre e e e ecrre e e e e sreee e e e raeee e eesaneeas 723
Runtime process of the IMS TM resource adapier ..cuuiiiieciieeeeeciieee e cecree e e e eerre e e e sreee e s eenees 724
IMS TM resource adapter fEATUIES. ... uuiie ettt et e e e et e e e e are e e e seare e e e s e nbaeeeeeennseeeeean 724

New features in IMS TM Resource Adapter Version 15......cccuueeeeeciieeeeeciiiee e ecieee e eereee s e eneeeas 725
YU o] o Yo ne=Te [o1 F- U (o] o 41T 726
Supported software CONTIGUIATIONS.......iiiiiiiiiie et ee e s ee e s e s saee e s nees 726
Requirements for the IMS TM reSoUrCe adapter.....ccuiiiiieciiiee et e e reee e s e naae s 727
Restrictions for the IMS TM resSoUrCe adapter......ccivccciiieeieciieeeeeecieee e eecrre e e e cvree e e eeesaee e e s eensaeeeeenns 728
WebSphere Application Server platform configurations and communication protocol

folo] a YT 1= =Yt To T3 TSP SURPTRURRI 728

Chapter 48. Installing the IMS TM resource adapter runtime COMPONENT.....cccccevrviieriiieirrieersieereeeenn 731

Preparing to use the IMS TM reSoUrCe adapler.....ccuviriieirrieeiriieeinieesrieesereessreeseeeesseeesseeessseeesnnee 731
Potential migration issues for the IMS TM resource adapter....cc.ccccvvveerrieenncieennieeenieeessees e 732
Updating the IMS TM reSoUrCE adapter.....cuiiiiieiieiriieiniieeeieessieessreesseeessseessseessbaessseesssseesas 732

Extracting the compressed file for installation on distributed platforms........cccoccevvveinieennieennnnen. 733

Extracting the compressed file for installation on z/OS........ccoiiiiiiiiiniiiee e 734

Verifying file contents for the IMS TM resource adapter runtime component.......cccocccevveeerrineennne 734

Installing the resource adapter on WebSphere Application Server....cccccveevnceeinceesncee e, 735
Creating a connection factory in WebSphere Application Server.......ccvevevieeeiieeniveenseensineenn. 736

Installing the resource adapter on WebSphere Liberty SErvers......cocccvveeirieeinieeinieesneeeseee e 737

Configuring the connection factory for WebSphere Liberty servers......ccoccccvvvveinveeinieennieennnne 738

Verifying installation by using the installation verification program.......cccceecvevviieeniiennieeeseeeenne, 739
Prerequisites for runniNg the IVP ... ittt s 739
Deploying the IVP EAR file in the Java EE application SErver.......ccocveeviieeriieeriieensieessiee s 740
Running the IMS TM resource adapter IVP......co ittt s e s s e s 741

Running the IMS TM resource adapter callout IVP SAmMPLeoccviiiiiiiiniiieniieeeieceieceeeesee e 742
Deploying the sample application on WebSphere Application Server to process callout

LT 0 LUT=T] X PPPPPRR 743
Deploying the sample application on WebSphere Liberty servers to process callout requests 745
Running the IMS host callout IVP appliCation......ccceeriiiiiieerniieniieeneessiee e esiee e 746
Installing IMS TM resource adapter service and UPdates.....cueeceeirreeeiiiieenniieesrieeeneesseee e 747
Configuring for resource Workload FOULING......c.ciiriiiiriitinieeceee et see e s saee e s aees 748
Chapter 49. Developing an application for use with the IMS TM resource adapter........cccceevveerneeennnen. 751
Interacting with the IMS Transaction ManagEr.......cucuiiviiiiiniieinieeree st sree s see st e s bee s saees 751
Programming MOAELS.uiiiiiiiiiieieiiecete ettt s e st e s sbe e s sbe e e sbaesssbaesssbaeesssaeesnseeanns 752
Commit mode and SYNC LeVEL PrOCESSING.....ccccieiriiieiriieirieereeeree et e e e see e s see e s sbeessaeeessaeees 782
SOCKET CONMNECTIONS. . .iiiiiieiiiieietie ettt ettt e st e e s te e s s bt e s sabeessateeessbeessssaessssaessssaessssaessssaesns 783
IMSInteractionSpec property CONfIGUIratioN......ccuciiiiiiiiriiierreeeree e 790
Submitting comMmMaNdS 10 IMS....coiiiiicece e s e s s s e s sbe e e naes 791
Configuring IMS cONNECTION fACIOMES...uuiiiiiiiiiiieicte ettt e s be e s s be e s sre e e sraeesane 791
TCP/IP conNeCtionNS t0 IMS CONNECT...uu ittt eeeesasaaaaaaaas 792
|\ R ole] T aT=Tox o] a R £=Tod o] Y78 RS 793
Input and oUtPUL MESSAZE TOMMALS....uiiiiiiiiiiiiriee ettt e saee e s e e s saee e saeeesaeeeen 793
Measuring IMS TM resource adapter PErfOrMaNCe.......cuviviierriieiniieerte et eereesee e sbeeeseee s 797
Securing interactions with the IMS Transaction Manager.......coccuvvrierniiienniiennee et esee e 797
IMS TM reSOUrCe adapter SECUITY...uuiiiiciieeeeeciieeeeeeitereeeecttee e s e srreeeeesssbeeeeesnreeeeeesseeeessesssenesaans 797
Container-managed EIS SISNON......ciiiiiiiriiieieiteeeieeeeiteeeeessteesstee e s sbeessbaesssaessssaessssaeesssaesnnne 799
Component-managed EIS SISN0N......cciiiiiiiiiiiieiieenriee st ssie e sseeessieeesseeessaeeessaeeessseaesssseesnasens 802
Secure Sockets Layer (SSL) SUPPOIT.....coc i eeeeeiee et eetee et e tee e ree e e eaee e e tee e e aeeeesee e e saeeenneas 804
Changing RACE PasSSWOIUS....cccctiiiiieiriteiriteeeitteessrteeseeeesieessteessbeesseeessasaesssseesssseesssasssssnesnnees 808
Securing message retrieval from IMS hold QUEUES........cccuiiiriiiriiiiiie e 809
Enabling support for distributed network security credentials........cccceevvvieriiiieniieeniiieeniieenneeen. 810
IMS TM resource adapter tIMEOULS.......uiiii e ccctiee et etee e e e ecee e e e e ebte e e e eerreeessesreeeesesnssneenaan 814
EXECULION TiMBOULS..ciiiiiiieitei ettt ettt et e s st e s st e e s ste e s s abe e s sabeessabeessaseessaseesnnseas 815
S ToTol (=1 B 4] 41T o 1E) £ T OO PP USRS 817
Other tYPES OF tIMEBOULS...ciiiiiiee et e e e ee e e s et re e e e e esbe e e e eenbeeeeeesnseseeesnnssenesans 819
(0001 V=T - LA o) aF= Y W o o= =T SO ST 820
Client-managed and IMS Connect-managed conversation state programming models........... 821
Orphaned IMS CONVEISATION.....ccccciiieeeeciiieeeeeciie e e e ecte e e e e cteee e s e sabeeeeeessteeeeeesseeeesennseseeeennssenesanns 821
Business process choreography appliCationS.......cceivceeiriiiiniieiniie sttt e s e e 822
Enabling your Java client for IMS conversational transactions.......ccccceeveeeirieeinieennieesscieeennne 822
Processing global tranSaCTIONS......c.uiiiciiiirei ittt et s ee e s see e s ee e s ee e s saee e s aeeesneas 824
Global transaction support with two-phase COMMIt.......c.eeeieeciiieieecee e 824
Global transaction and two-phase commit SUPPOIt PrOCESS....ccevccvieeeeeeiiieee e e erre e e 825
Global transaction support in client apPLiCATIONS......ccciccciiieeiecieee e e ree e e 826
Two-phase commit environment recomMmMENdatioNS........uuieieeeiiieee e e e e 827
(@14 1= o d =Yg F- ot 4o a =1 U1 o] oo i SRR 827
Common Client INtEerface (CCI)....cciiiiircieeieeceeeiescteese e st e steesteestee s ae e reesaeessseessaeenseesseesnseessnesnsenns 828
SF-1001 o] (=R 6{03 NF=Y o7 o] L ToF=1 { o] [oXo Lo [= TSR 830
Y= Y001 o] (=3 UaTe N UL (] o = USSR 831
Chapter 50. Running your application on a stand-alone WebSphere Application Server.........cccocue.... 833
Installing your EAR file 0n WebSPRhEre SEIVEIS.......iii ittt 833
Chapter 51. DIiagnoSing PrODLEMIS. ..o ittt sttt sttt e s e s s e s s e e s sbeessbeeesbeesssseessanens 835
DiagnOoSING IVP failUIES..ccuiiiiiiei ettt sttt st st e s s be e s s bt e s sbe e s sabeeesabeessaseessaseesnaseas 835

Diagnosing problems accessing IMS from Java appliCationsS........cccevcveercieeniieensieeniieesieesseeennne 836

Diagnosing problems with callout reQUESTS......covcuiiiiiiiiriiieeteceee e 837

Java exceptions that iNVOLVe OULPUL MESSAZES.....ciuviiiriiiiiiiierieeete ettt srreessireesbee e sreeesseeeas 837
Logging and tracing IMS TM resource adapter information.....ccccccveveernieennieeinieeeneecsee e 838
Logging and tracing in WebSphere Application SErver........ciiiiicieiicieecie e 838
Logging and tracing in WebSphere LIDerty.....ccccvvciiiicieiiieiniecste sttt 839
Creating a stand-alone Logger with output sent to a fil€....cccvvvciieriiiiiniiiiiiccecee e, 839
ANAlyZING the TraCe data. . cuii ittt e s s ae e s s be e s s e e s s be e e sareas 840
IMS TM resource adapter messages and EXCEPLIONS.civciiircieieiieeriieeeeeeeieeesreeessreeesreeesreeenaee 842
Other eXCeptions and EITOr MESSAEES. ...uutircriiirrteiriteerrteesrrteessrteessreeessseeessseeessseesssseessssessssseessssesssns 867
0 00 Y0101 - U PRRPRRN 867

LA 1010 PRI 867
HWSPLAASDE. ...ttt e e ette e e e e e e e e e s e e a e e e e e e eeeeeesessasnsseseaeeeaeeseesasansnnssrssrannaeeeens 868
HWSSSLOOE.......ccceieieeteeete et eete et e stee et e teeste e beesste e beesseessseesseessseesseeenseasseeanseenseesnsesnseesseennseen 868
Chapter 52. Reference iNfOrMatioN.........ccciiiiei et e e e s ree e e e e erae e e s e e nre e e s eenbeeeeeeeasseaens 871
YooY aYaT=Totd o ol £- Yot do) VAN o] fo] o 1=T o {]= T TSRS 871
SN 1T oY D (o =Y o TSR 871
CMO dedicated (CMODEICAtE).....cccueeieereeeieeceeeeeereee e ee e eeete e e e s steesbe e seeebeesseeeseesseeenseenns 871
Data store name (dataStorENAME).....ccueeciircieeieecie ettt eee et eee et e s rae e re e s e e sneeeseeenes 872
Group NAME (SrOUPNAIME)....iiciieciieiieeieeseeeteesreeete et esteesteesseeeseesseesseesseesnseesessssesnsessseeansesees 872
HOSt NAME (NOSTNGME)iiiiiieieeeeee ettt ettt ete e st e st e e be e st e e seessteeseesseeensaesseeansenns 872
PasSSWOId (PASSWOI)....ccuuieieiieeeiiieeeeiee et e ettt e ettt e eetteeeetteeeeaseeeesseeeesseeeessessassesssseeeassesaasseesasseennn 872
Password phrase (PasSWOIdPRIASE)....cc.uiiciieieiieeeiie ettt eete e et e e te e e eate e e reeeesteeeensaeenes 872
Port NUMDBEr (POItNUMDED) ..o ittt ettt e e e e e e te e e et e e e et e e e sreeeessaeeensaeenes 872
SSL enabled (SSLENGDLEA)....cuiiiircieeieeciee ettt see st te e s ae e sae e s te et e s st e e seesnaeenaeessaeeneaenseas 872
SSL encryption type (SSLENCIYPHIONTYPE) . .eicuiieceiieeeieeeeteeeetee e teeeetee e te e e ree e tee e ree e aeeeeaneas 872
SSL keystore name (SSLKEYSOreNAME).....ccccuiiieciiieeiieeeiie et et e e ete e e ette e e etae e e eaee e e aeee e saeeennnas 873
SSL keystore password (SSLKeyStorePassword)........eocueeeeieeeeiieeeeiiieecieeeciee et e vee e vee e reeens 873
SSL truststore name (SSLTrUStSTOrENAME)...ccuiicieeiieceeeieeceeete e see e ee e este e e e st e eaeesaaeeneeas 874
SSL truststore password (SSLTrustStorePassword)........ccceeeceeeecieeecieeceiee et 874
SSL ProtoCOL (SSLPIOTOCOL) .. uuiiiciiieeteecetee ettt ettt et e e re e et e e e tb e e e aaeeeaseeeesseeeessesesnseseanseaans 874
USEI NAME (USEINGMIE).c.uuiiiieeitieeieeiteeeieseteeseeeseesseessseessaesseesseesssesseessesesseesseesssessseessessseessenns 874
IMS interaction SPeCifiCation PrOPEItIES....ccuiiei i ciieeeeccttee et eerre e e e e crrr e e e eerre e e s sebaeeeeeeasseeeeean 874
Alternate client ID (QltCLENTID).....ccciieieeceeeieeieesteete et e ete e e e s e e ete e s e e seeereesaaeebeesseeeneeenaeenes 874
Async output available (asyncOUtputAvailable).........coocciieeciieciieecee e 875
Callout request type (CalloUtREQUESTTYPE) ... iiiciiieeieeeceee ettt ettt e e e e bee et e s 875
Conversation ended (CONVENAE).....ccuiiiiieieeiiiee ettt ee e s eae e aae e s 875
ConVversation ID (CONVID)....ccciiciieeieeiieeeieerieestessteesteesteesreestessseessseeseesseessseesseeenseesseesnsesssessnsenn 875
Commit Mode (COMMITMOUE)......uiiiieeieecieeeee ettt e e s ee e e e s te e s re e sraeereesraeenees 876
CMO reSpPONSE (CMORESPONSE)....uiieeiieeerieeetieeeiteeeeiteeeeiseeeeiseeeessesessesasseeessssassesassssassssesnsesann 876
Execution timeout (EXECULIONTIMEOUL).....iicieiieeceecieceeeee et eseeete et e sae e eseeete e s reessaeesaaeeneean 876
Ignore PURG call (ISNOrePURGECALL)......ccceerieecieeeiecteeeeecteesiee sttt e ste e ste s aeeteesae e eee e e e eseaeeeas 877
IMS request type (IMSREQUESTTYPE)....iiiiiieecieeecieeeetee et e ettt e et e et e e te e e bee e ssee e sseeeessesennseeas 877
Interaction verb (interactionVerh).......o et 878
Lterm Name (LLEMMNAMIE)....uii i cceecieeceeste et est et e st e te e te e s eesteesreesate e seesaseeseesnseenseesseesnseenses 879
MapP NAME (MAPNAIME) ... uiiiieiieeeiieeeciee ettt eeteeeeteeeeiteeeeteeeeseeesseeessesassssseassesaessesasssasasnsesassseann 879
Purge async output (PUrEEASYNCOULPUL)...eeccieereeeieeceeeieeceeeteete et esteesreesee e e e sreeereesreeenseenees 880

8 T o ULt (=T (o 1U 1= T TP 880
Reroute Name (FEROULENGME)...c..uiiciieieecieecteeieeseeete et e eee e eesre e ete e s e e steebeesaaeebeesseeeneeesneanes 880
Resume tpipe network security credentials (resumeTpPipeNSC).....ccccuveeeceeeeciieeccee et 881
Socket timeout (SOCKETTIMEOUL).....iiciieieectiece ettt ee et e e et e e re e e eeeaeesnaeens 881
Synchronous callout correlator token (syncCalloutCorrelatorToken)........cceeecveeecieeecieeecneenas 881
Synchronous callout status code (syncCalloutStatusCode)........ccceeeueeeeceeeccieeeecie e 881
SYNC LEVEL (SYNCLEVELD)...ei ettt ettt ettt e e tte e e tre e et e e e b e e e abe e e ataeeeabaasnsaaeneeas 881
Transaction expiration (franSEXPIration)........cceeccieeecieeecie ettt e ctee e eaee e e e e e ree e eaeeas 882
Transaction tracking ID (1rCKID)...cuueicueieiereieeeeeeieesee et esteeete et esraeeteesseeseeesseesnseeseesnseeseesseenns 882
Use conversation ID (USECONVID).....cciiciierieriieeieeieeeee st eseesseeesreeseeessesssseenseesssesseessessnsessneenn 883

N AT WY ol Y o T=Tod) Tof= Y o [T SR 883

xiv

[\ 0] 1 o= - S 885

Programming interface iNfOrmMation. ...t e s e saees 886
T AAEMAIKS .ttt etteeectee ettt ettt ettt e ettt e s bt e e e bt e e s bt e e sbeee s beeesabeessasteesasaeesasaesssteesseeesasaeesasaeesnseeesnn 886
Terms and conditions for product doCUMENTAtION........uiiiieciiiie e e e e ree e 887
IBM ONliNE Privacy Stat@mMENt....cc i eiieeecccieee ettt e e ctee e e s ette e e e e ette e e s e enreee s s nsaeeesesnsaneeeennnsenensan 887
=11 FT0 Y= - ¥] 1) 889
INO@X . teuireiiiniineiinenieiraiirenieesiaesrasressrssssestassssssssssssssssssssssassssssssssassssssssssssssssssanss 891

XV

About this information

These topics provide guidance information for writing application programs that access IMS databases
or IMS transactions. The following topics describe how to gather and analyze program requirements,
and how to develop and debug IMS application programs. They also describe how to use different
programming languages to issue DL/I calls, and include information about the IMS solutions for SQL and
Java™ development. They also describe how to use different programming languages to issue EXEC DL/I
calls. Application programming interface (API) information is in IMS Version 15 Application Programming
APIs.

This information is available in IBM® Documentation.

Prerequisite knowledge

This information is a guide to IMS application programming for any of the following environments:
« IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)

« IMS Transaction Manager (IMS TM)

CICS® EXEC DLI

« WebSphere® Application Server for z/0S°®

« WebSphere Application Server for distributed platforms
« Java dependent regions (JMP and JBP)
« Any environment for stand-alone Java application development

This book provides guidance information for writing application programs that access IMS databases or
process IMS messages. It also describes how to use different programming languages to make DL/I,
EXEC DLI, or JDBC calls that interact with IMS. API (application programming interface) information is in
IMS Version 15 Application Programming APIs.

To learn about z/0S, see z/0S Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by a character (revision
marker) in the left margin. The first edition (-00) of Release Planning, as well as the Program Directory and
Licensed Program Specifications, do not include revision markers.

Revision markers follow these general conventions:

« Only technical changes are marked; style and grammatical changes are not marked.

« If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

« If atopicis changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

© Copyright IBM Corp. 1974, 2020 xvii

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

- Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item -»<

« Optional items appear below the main path.
»— required_item >«
L optional_item —J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

f_ optional_item W
»— required_item >

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N

required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.

»— required_item <
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

f_ default_choice
»— required_item

optional_choice j

optional_choice

- An arrow returning to the left, above the main line, indicates an item that can be repeated.

»— required_item L repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

»— required_item L repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

xviii About this information

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

fragment-name

»— required_item >
L optional_item —J

« In IMS, a b symbol indicates one blank position.

« Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

« Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS 15. These
features support:

« Keyboard-only operation.
« Interfaces that are commonly used by screen readers and screen maghnifiers.
« Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15 ISPF panels using TSO/E or ISPF, refer to the z/0S TSO/E
Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS 15 is available in IBM Documentation.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments

Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

About this information xix

http://www.ibm.com/able

e Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation

topic.
« Send an email to imspubs@us.ibm.com. Be sure to include the book title and the publication number.
« Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xx IMS: Application Programming

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

Part 1. Application programming design

To design an application program for IMS, you need to identify the application data and analyze
requirements for application processing. You may also need to perform other tasks, such as gathering
requirements for database and message processing options, and testing an application program.

© Copyright IBM Corp. 1974, 2020

2 IMS: Application Programming

Chapter 1. Designing an application: Introductory
concepts

This section provides an introduction to designing application programs. It explains some basic concepts
about processing a database, and gives an overview of the tasks covered in this information.

Storing and processing information in a database

The advantages of storing and processing data in a database are that all of the data needs to appear only
once and that each program must process only the data that it needs.

One way to understand this is to compare three ways of storing data: in separate files, in a combined file,
and in a database.

Storing data in separate files

If you keep separate files of data for each part of your organization, you can ensure that each program
uses only the data it needs, but you must store a lot of data in multiple places simultaneously. Problems
with keeping separate files are:

« Redundant data takes up space that could be put to better use
« Maintaining separate files can be difficult and complex

For example, suppose that a medical clinic keeps separate files for each of its departments, such as the
clinic department, the accounting department, and the ophthalmology department:

« The clinic department keeps data about each patient who visits the clinic, such as:

Identification number

Name

Address

Illnesses

Date of each illness

Date patient came to clinic for treatment
Treatment given for each illness

Doctor that prescribed treatment
Charge for treatment

- The accounting department also keeps information about each patient. The information that the
accounting department might keep for each patient is:

Identification number
Name

Address

Charge for treatment
Amount of payments

- The information that the ophthalmology department might keep for each patient is:

Identification number

Name

Address

Illnesses relating to ophthalmology

Date of each illness

Names of members in patient's household

Relationship between patient and each household member

© Copyright IBM Corp. 1974, 2020 3

If each of these departments keeps separate files, each department uses only the data that it needs, but
much of the data is redundant. For example, every department in the clinic uses at least the patient's
number, name, and address. Updating the data is also a problem, because if a department changes a
piece of data, the same data must be updated in each separate file. Therefore, it is difficult to keep the
data in each department's files current. Current data might exist in one file while defunct data remains in
another file.

Storing data in a combined file

Another way to store data is to combine all the files into one file for all departments to use. In the medical
example, the patient record that would be used by each department would contain these fields:

Identification number

Name

Address

Illnesses

Date of each illness

Date patient came to clinic for treatment
Treatment given for each illness

Doctor that prescribed treatment

Charge for treatment

Amount of payments

Names of members in patient's household
Relationship between patient and each household member

Using a combined file solves the updating problem, because all the data is in one place, but it creates a
new problem: the programs that process this data must access the entire file record to get to the part
that they need. For example, to process only the patient's number, charges, and payments, an accounting
program must access all of the other fields also. In addition, changing the format of any of the fields
within the patient's record affects all the application programs, not just the programs that use that field.

Using combined files can also involve security risks, because all of the programs have access to all of the
fields in a record.

Storing data in a database

Storing data in a database gives you the advantages of both separate files and combined files: all the data
appears only once, and each program has access to the data that it needs. This means that:

« When you update a field, you do it in one place only.

« Because you store each piece of information only in one place, you cannot have an updated version of
the information in one place and an out-of-date version in another place.

« Each program accesses only the data it needs.
« You can prevent programs from accessing private or secured information.

In addition, storing data in a database has two advantages that neither of the other ways has:

« If you change the format of part of a database record, the change does not affect the programs that do
not use the changed information.

« Programs are not affected by how the data is stored.

Because the program is independent of the physical data, a database can store all the data only once and
yet make it possible for each program to use only the data that it needs. In a database, what the data
looks like when it is stored is different from what it looks like to an application program.

4 IMS: Application Programming

Database hierarchy examples

Inan IMS DB, arecord is stored and accessed in a hierarchy. A hierarchy shows how each piece of data in
a record relates to other pieces of data in the record.

IMS connects the pieces of information in a database record by defining the relationships between the
pieces of information that relate to the same subject. The result is a database hierarchy.

Medical hierarchy example

The medical database shown in following figure contains information that a medical clinic keeps about its
patients. The hierarchies used in the medical hierarchy example are used with full-function databases and
Fast Path data entry databases (DEDBSs).

PATIENT

I |
ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 1. Medical hierarchy

Each piece of data represented in the figure above is called a segment in the hierarchy. Each segment
contains one or more fields of information. The PATIENT segment, for example, contains all the
information that relates strictly to the patient: the patient's identification number, name, and address.

Definitions: A segment is the smallest unit of data that an application program can retrieve from the
database. A field is the smallest unit of a segment.

The PATIENT segment in the medical database is the root segment. The segments below the root
segment are the dependents, or children, of the root. For example, ILLNESS, BILLING, and HOUSHOLD
are all children of PATIENT. ILLNESS, BILLING, and HOUSHOLD are called direct dependents of PATIENT;
TREATMNT and PAYMENT are also dependents of PATIENT, but they are not direct dependents, because
they are at a lower level in the hierarchy.

A database record is a single root segment (root segment occurrence) and all of its dependents. In the
medical example, a database record is all of the information about one patient.

Definitions: A root segment is the highest-level segment. A dependent is a segment below a root
segment. A root segment occurrence is a database record and all of its dependents.

Each database record has only one root segment occurrence, but it might have several occurrences at
lower levels. For example, the database record for a patient contains only one occurrence of the PATIENT
segment type, but it might contain several ILLNESS and TREATMNT segment occurrences for that patient.

The tables that follow show the layouts of each segment in the hierarchy.

The segment’s field names are in the first row of each table. The number below each field name is the
length in bytes that has been defined for that field.

« PATIENT Segment
The following table shows the PATIENT segment.
It has three fields:

— The patient’s number (PATNO)
— The patient’s name (NAME)
— The patient's address (ADDR)

Chapter 1. Designing an application: Introductory concepts 5

PATIENT has a unique key field: PATNO. PATIENT segments are stored in ascending order based on the
patient number. The lowest patient number in the database is 00001 and the highest is 10500.

Table 1. PATIENT segment

Field name Field length
PATNO 10

NAME 5

ADDR 30

« ILLNESS Segment
The following figure shows the ILLNESS segment.
It has two fields:

— The date when the patient came to the clinic with the illness (ILLDATE)
— The name of the illness (ILLNAME)

The key field is ILLDATE. Because it is possible for a patient to come to the clinic with more than one
illness on the same date, this key field is non-unique, that is, there may be more than one ILLNESS
segment with the same (an equal) key field value.

Usually during installation, the database administrator (DBA) decides the order in which to place the
database segments with equal or no keys. The DBA can use the RULES keyword of the SEGM statement
of the DBD to specify the order of the segments.

For segments with equal keys or no keys, RULES determines where the segment is inserted. Where
RULES=LAST, ILLNESS segments that have equal keys are stored on a first-in-first-out basis among
those with equal keys. ILLNESS segments with unique keys are stored in ascending order on the date
field, regardless of RULES. ILLDATE is specified in the format YYYYMMDD.

Table 2. ILLNESS segment

Field name Field length
ILLDATE 8
ILLNAME 10

 TREATMNT Segment
The following table shows the TREATMNT segment.
It contains four fields:
— The date of the treatment (DATE)
— The medicine that was given to the patient (MEDICINE)
— The quantity of the medicine that the patient received (QUANTITY)
— The name of the doctor who prescribed the treatment (DOCTOR)

The TREATMNT segment’s key field is DATE. Because a patient may receive more than one treatment on
the same date, DATE is a non-unique key field. TREATMNT, like ILLNESS, has been specified as having
RULES=LAST. TREATMNT segments are also stored on a first-in-first-out basis. DATE is specified in the
same format as ILLDATE—YYYYMMDD.

Table 3. TREATMNT segment

Field name Field length
DATE 8
MEDICINE 10

6 IMS: Application Programming

Table 3. TREATMNT segment (continued)

Field name Field length
QUANTITY 4
DOCTOR 10

« BILLING Segment

The following table shows the BILLING segment. It has only one field: the amount of the current bill.

BILLING has no key field.

Table 4. BILLING segment

Field name

Field length

BILLING

6

« PAYMENT Segment

The following table shows the PAYMENT segment. It has only one field: the amount of payments for the

month. The PAYMENT segment has no key field.

Table 5. PAYMENT segment

Field name

Field length

PAYMENT

6

« HOUSHOLD Segment

The following table shows the HOUSHOLD segment.

It contains two fields:

— The names of the members of the patient's household (RELNAME)

— How each member of the household is related to the patient (RELATN)

The HOUSHOLD segment’s key field is RELNAME.

Table 6. HOUSHOLD segment

Field name Field length
RELNAME 10
RELATN 8

Bank account hierarchy example

The bank account hierarchy is an example of an application program that is used with main storage
databases (MSDBs). In the medical hierarchy example, the database record for a particular patient
comprises the PATIENT segment and all of the segments underneath the PATIENT segment. In an MSDB,
such as the one in the bank account example, the segment is the whole database record. The database
record contains only the fields that the segment contains.

The two types of MSDBs are related and nonrelated. In related MSDBs, each segment is "owned" by one
logical terminal. The "owned" segment can only be updated by the terminal that owns it. In nonrelated
MSDBs, the segments are not owned by logical terminals. The following examples of a related MSDB and
a nonrelated MSDB illustrate the differences between the two types of databases.

Related MSDBs

Related MSDBs can be fixed or dynamic. In a fixed related MSDB, you can store summary data about a
particular teller at a bank. For example, you can have an identification code for the teller's terminal. Then

Chapter 1. Designing an application: Introductory concepts 7

you can keep a count of that teller's transactions and balance for the day. This type of application requires
a segment with three fields:

TELLERID
A two-character code that identifies the teller

TRANCNT
The number of transactions the teller has processed

TELLBAL
The balance for the teller

The following table shows what the segment for this type of application program looks like.

Table 7. Teller segment in a fixed related MSDB

TELLERID TRANCNT TELLBAL

Some of the characteristics of fixed related MSDBs include:

 You can only read and replace segments. You cannot delete or insert segments. In the bank teller
example, the teller can change the number of transactions processed, but you cannot add or delete any
segments. You never need to add or delete segments.

« Each segment is assigned to one logical terminal. Only the owning terminal can change a segment, but
other terminals can read the segment. In the bank teller example, you do not want tellers to update the
information about other tellers, but you allow the tellers to view each other’s information. Tellers are
responsible for their own transactions.

- The name of the logical terminal that owns the segment is the segment's key. Unlike non-MSDB
segments, the MSDB key is not a field of the segment. It is used as a means of storing and accessing
segments.

A logical terminal can only own one segment in any one MSDB.

In a dynamic related MSDB, you can store data summarizing the activity of all bank tellers at a single
branch. For example, this segment contains:

BRANCHNO
The identification number for the branch

TOTAL
The bank branch's current balance

TRANCNT

The number of transactions for the branch on that day
DEPBAL

The deposit balance, giving the total dollar amount of deposits for the branch
WTHBAL

The withdrawal balance, giving the dollar amount of the withdrawals for the branch

The following table shows what the branch summary segment looks like in a dynamic related MSDB.

Table 8. Branch summary segment in a dynamic related MSDB

BRANCHNO TOTAL TRANCNT DEPBAL WTHBAL

How dynamic related MSDBs differ from fixed related MSDBs:

- The owning logical terminal can delete and insert segments in a dynamic related MSDB.

« The MSDB can have a pool of unassigned segments. This kind of segment is assigned to a logical
terminal when the logical terminal inserts it, and is returned to the pool when the logical terminal
deletes it.

Nonrelated MSDBs

8 IMS: Application Programming

A nonrelated MSDB is used to store data that is updated by several terminals during the same time period.
For example, you might store data about an individuals' bank accounts in a nonrelated MSDB segment, so
that the information can be updated by a teller at any terminal. Your program might need to access the
data in the following segment fields:

ACCNTNO
The account number

BRANCH
The name of the branch where the account is

TRANCNT
The number of transactions for this account this month

BALANCE
The current balance

The following table shows what the account segment in a nonrelated MSDB application program looks
like.

Table 9. Account segment in a nonrelated MSDB

ACCNTNO BRANCH TRANCNT BALANCE

The characteristics of nonrelated MSDBs include:

« Segments are not owned by terminals as they are in related MSDBs. Therefore, IMS programs and Fast
Path programs can update these segments. Updating segments is not restricted to the owning logical
terminal.

 Your program cannot delete or insert segments.

- Segment keys can be the name of a logical terminal. A nonrelated MSDB exists with terminal-related
keys. The segments are not owned by the logical terminals, and the logical terminal name is used to
identify the segment.

« If the key is not the name of a logical terminal, it can be any value, and it is in the first field of the
segment. Segments are loaded in key sequence.

Your program's view of the data

IMS uses two kinds of control blocks to enable application programs to be independent of your method of
storing data in the database, the database description (DBD), and the database program communication
block (DB PCB).

Database Description (DBD)

A database description (DBD) is physical structure of the database. The DBD also defines the appearance
and contents, or fields, that make up each of the segment types in the database.

For example, the DBD for the medical database hierarchy shown in "Medical hierarchy example"
describes the physical structure of the hierarchy and each of the six segment types in the hierarchy:
PATIENT, ILLNESS, TREATMNT, BILLING, PAYMENT, and HOUSHOLD.

Related Reading: For more information on generating DBDs, see IMS Version 15 Database Utilities.

Database Program Communication Block (DB PCB)

A database program communication block (DB PCB) is a control block that defines an application
program's view of the database. An application program often needs to process only some of the
segments in a database. A PCB defines which of the segments in the database the program is allowed to
access—which segments the program is sensitive to.

Chapter 1. Designing an application: Introductory concepts 9

The data structures that are available to the program contain only segments that the program is sensitive
to. The PCB also defines how the application program is allowed to process the segments in the data
structure: whether the program can only read the segments, or whether it can also update them.

To obtain the highest level of data availability, your PCBs should request the fewest number of sensitive
segments and the least capability needed to complete the task.

All the DB PCBs for a single application program are contained in a program specification block (PSB). A
program might use only one DB PCB (if it processes only one data structure) or it might use several DB
PCBs, one for each data structure.

Related Reading: For more information on generating PSBs, see IMS Version 15 Database Utilities.

The following figure illustrates the concept of defining a view for an application program. An accounting
program that calculates and prints bills for the clinic's patients would need only the PATIENT, BILLING,
and PAYMENT segments. You could define the data structure shown in the following figure in a DB PCB for
this program.

PATIENT

BILLIMNG

PAYTIAENT

Figure 2. Accounting program's view of the database

A program that updates the database with information on patients' illnesses and treatments, in contrast,
would need to process the PATIENT, ILLNESS, and TREATMNT segments. You could define the data
structure shown in the following figure in a DB PCB for this program.

10 IMS: Application Programming

PATIENT

ILLNESS

TREATMNT

Figure 3. Patient illness program's view of the database

Sometimes a program needs to process all of the segments in the database. When this is true, the
program's view of the database as defined in the DB PCB is the same as the database hierarchy that is
defined in the DBD.

An application program processes only the segments in a database that it requires; therefore, if you
change the format of a segment that is not processed, you do not change the program. A program is
affected only by the segments that it accesses. In addition to being sensitive to only certain segments
in a database, a program can also be sensitive to only certain fields within a segment. If you change a
segment or field that the program is not sensitive to, it does not affect the program. You define segment
and field-level sensitivity during PSBGEN.

Definition: Field-level sensitivity is when a program is sensitive to only certain fields within a segment.

Related Reading: For more information, see IMS Version 15 Database Administration.

Processing a database record

To process the information in the database, your application program communicates with IMS in three
ways: by passing control, by communicating processing requests, and by exchanging information using
DL/I calls.

« Passing control—IMS passes control to your application program through an entry statement in your
program. Your program returns control to IMS when it has finished its processing.

When you are running a CICS online program, CICS passes control to your application program, and
your program schedules a PSB to make IMS requests. Your program returns control to CICS. If you are
running a batch or BMP program, IMS passes control to your program with an existing PSB scheduled.

« Communicating processing requests—You communicate processing requests to IMS in one of two ways:

— InIMS, you issue DL/I calls to process the database.

— In CICS, you can issue either DL/I calls or EXEC DLI commands. EXEC DLI commands more closely
resemble a higher-level language than do DL/I calls.

« Exchanging information using DL/I calls—Your program exchanges information in two areas:

— ADL/I call reports the results of your request in a control block and the AIB communication block
when using one of the AIB interfaces. For programs written using DL/I calls, this control block is
the DB PCB. For programs written using EXEC DLI commands, this control block is the DLI interface
block (DIB). The contents of the DIB reflect the status of the last DL/I command executed in the
program. Your program includes a mask of the appropriate control block and uses this mask to check
the results of the request.

Chapter 1. Designing an application: Introductory concepts 11

— When you request a segment from the database, IMS returns the segment to your I/O area. When you
want to update a segment in the database, you place the new value of the segment in the I/O area.

An application program can read and update a database. When you update a database, you can replace,
delete, or add segments. In IMS, you indicate in the DL/I call the segment you want to process, and
whether you want to read or update it. In CICS, you can indicate what you want using either a DL/I call or
an EXEC DLI command.

Tasks for developing an application

The following tasks are involved in developing an IMS application, and the programs that are part of the
application.

Designing the application
Application program design varies from place to place, and from one application to another.

Therefore, this information does not try to cover the early tasks that are part of designing an application
program. Instead, it covers only the tasks that you are concerned with after the early specifications for the
application have been developed. The tasks for designing the application are:

- Analyzing Application Data Requirements

Two important parts of application design are defining the data that each of the business processes in
the application requires and designing a local view for each of the business processes.

- Analyzing Application Processing Requirements

When you understand the business processes that are part of the application, you can analyze the
requirements of each business process in terms of the processing that is available with different types
of application programs.

- Gathering Requirements for Database Options

You then need to look at the database options that can most efficiently meet the requirements, and
gather information about your application's data requirements that relates to each of the options.

- Gathering Requirements for Message Processing Options

If your application communicates with terminals and other application programs, look at the message
processing options and the requirements they satisfy.

For more information about designing a CICS application, see CICS Transaction Server for z/0S CICS
Application Programming Guide.

Developing specifications

Developing specifications involves defining what your application will do, and how it will be done. The
task of developing specifications is not described in this information because it depends entirely on the
specific application and your standards.

Implementing the design

When the specifications for each of the programs in the application are developed, you can structure and
code the programs according to those specifications. The tasks of implementing the design are:

« Writing the Database Processing Part of the Program

When the program design is complete, you can structure and code your requests and data areas based
on the programming specifications that have been developed.

- Writing the Message Processing Part of the Program

If you are writing a program that communicates with terminals and other programs, you need to
structure and code the message processing part of the program.

12 IMS: Application Programming

« Analyzing APPC/IMS Requirements

The LU 6.2 feature of IMS TM enables your application to be distributed throughout the network.
- Testing an Application Program

When you finish coding your program, test it by itself and then as part of a system.
« Documenting an Application Program

Documenting a program continues throughout the project and is most effective when done
incrementally. When the program is completely tested, information must be suppled to those who use
and maintain your program.

Chapter 1. Designing an application: Introductory concepts 13

14 IMS: Application Programming

Chapter 2. Designing an application: Data and local
views

Designing an application that meets the requirements of end users involves a variety of tasks and,
usually, people from several departments. Application design begins when a department or business area
communicates a need for some type of processing. Application design ends when each of the parts of

the application system—for example, the programs, the databases, the display screens, and the message
formats—have been designed.

An overview of application design

The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

The purpose of this overview is to give you a frame of reference so that you can understand where the
techniques and guidelines explained in this section fit into the process. The order in which you perform
the tasks described here, and the importance you give to each one, depend on your settings. Also, the
individuals involved in each task, and their titles, might differ depending on the site. The tasks are as
follows:

- Establish your standards

Throughout the design process, be aware of your established standards. Some of the areas that
standards are usually established for are:

Naming conventions (for example, for databases and terminals)

Formats for screens and messages
Control of and access to the database

Programming and conventions (for common routines and macros)

Setting up standards in these areas is usually an ongoing task that is the responsibility of database and
system administrators.

« Follow your security standards

Security protects your resources from unauthorized access and use. As with defining standards,
designing an adequate security system is often an ongoing task. As an application is modified or
expanded, often the security must be changed in some way also. Security is an important consideration
in the initial stages of application design.

Establishing security standards and requirements is usually the responsibility of system administration.
These standards are based on the requirements of your applications.

Some security concerns are:

— Access to and use of the databases
— Access to terminals

Distribution of application output

Control of program modification

Transaction and command entry
- Define application data

Identifying the data that an application requires is a major part of application design. One of the tasks
of data definition is learning from end users what information will be required to perform the required
processing.

« Provide input for database design

© Copyright IBM Corp. 1974, 2020 15

To design a database that meets the requirements of all the applications that will process it, the
database administrator (DBA) needs information about the data requirements of each application. One
way to gather and supply this information is to design a local view for each of the business processes in
your application. A local view is a description of the data that a particular business process requires.

« Design application programs

When the overall application flow and system externals have been defined, you define the programs
that will perform the required processing. Some of the most important considerations involved in this
task are: standards, security requirements, privacy requirements, and performance requirements. The
specifications you develop for the programs should include:

— Security requirements

— Input and output data formats and volumes
— Data verification and validation requirements
— Logic specifications

— Performance requirements

— Recovery requirements

— Linkage requirements and conventions

— Data availability considerations

In addition, you might be asked to provide some information about your application to the people
responsible for network and user interface design.

« Document the application design process

Recording information about the application design process is valuable to others who work with the
application now and in the future. One kind of information that is helpful is information about why you
designed the application the way you did. This information can be helpful to people who are responsible
for the database, your IMS system, and the programs in the application—especially if any part of the
application must be changed in the future. Documenting application design is done most thoroughly
when it is done during the design process, instead of at the end of it.

« Convert an existing application

One of the main aspects in converting an existing application to IMS is to know what already exists.
Before starting to convert the existing system, find out everything you can about the way it works
currently. For example, the following information can be of help to you when you begin the conversion:
— Record layouts of all records used by the application

— Number of data element occurrences for each data element

— Structure of any existing related databases

Related concepts

“Providing data security” on page 84

You can control the security of data accessed by your IMS application programs through data sensitivity
and processing options.

“Identifying online security requirements” on page 91

Security in an online system means protecting the data from unauthorized use through terminals. It also
means preventing unauthorized use of both the IMS system and the application programs that access the
database. For example, you do not want a program that processes paychecks to be available to everyone
who can access the system.

“Identifying application data” on page 17
Two important aspects of application design are identifying the application data and describing the data
that a particular business process requires.

“Designing a local view” on page 21

16 IMS: Application Programming

A local view is a description of the data that an individual business process requires.

Identifying application data

Two important aspects of application design are identifying the application data and describing the data
that a particular business process requires.

One of the steps of identifying application data is to thoroughly understand the processing the user wants
performed. You need to understand the input data and the required output data in order to define the data
requirements of the application. You also need to understand the business processes that are involved in
the user's processing needs. Three of the tasks involved in identifying application data are:

- Listing the data required by the business process
« Naming the data
« Documenting the data

When analyzing the required application data, you can categorize the data as either an entity or a data
element.

Definitions: An entity is anything about which information can be stored. A data element is the smallest
named unit of data pertaining to an entity. It is information that describes the entity.

Example: In an education application, "students" and "courses" are both entities; these are two subjects
about which you collect and process data. The following table shows some data elements that relate to
the student and course entities. The entity is listed with its related data elements.

Table 10. Entities and data elements

Entity Data elements

Student Student Name

Student Number

Course Course Name

Course Number

Course Length

When you store this data in an IMS database, groups of data elements are potential segments in the
hierarchy. Each data element is a potential field in that segment.

Related concepts

“An overview of application design” on page 15

The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Listing data elements
To identify application data, you list its data elements.

For example, to identify application data, consider a company that provides technical education to its
customers. The education company has one headquarters office, called Headquarters, and several local
education centers, called Ed Centers.

A class is a single offering of a course on a specific date at a particular Ed Center. One course might have
several offerings at different Ed Centers; each of these is a separate class. Headquarters is responsible for
developing all the courses that will be offered, and each Ed Center is responsible for scheduling classes
and enrolling students for its classes.

Suppose that one of the education company's requirements is for each Ed Center to print weekly current
rosters for all classes at the Ed Center. The current roster is to give information about the class and the

Chapter 2. Designing an application: Data and local views 17

students enrolled in the class. Headquarters wants the current rosters to be in the format shown in the
following figure.

CHICAGO 01/04/04
TRANSISTOR THEORY 41837
10 DAYS
INSTRUCTOR(S): BENSON, R.J. DATE: 01/14/04
STUDENT CUST LOCATION STATUS ABSENT GRADE
1.ADAMS, J.W. XYZ SOUTH BEND, IND CONF
2.BAKER, R.T. ACME BENTON HARBOR, MICH WAIT
3.DRAKE, R.A. XYZ SOUTH BEND, IND CANC
33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF
CONFIRMED = 30
WAIT-LISTED = 1
CANCELED = 2

Figure 4. Current roster for technical education example

To list the data elements for a particular business process, look at the required output. The current roster
shown in the previous figure is the roster for the class, "Transistor Theory" to be given in the Chicago Ed
Center, starting on January 14, 2004, for ten days. Each course has a course code associated with it—in
this case, 41837. The code for a particular course is always the same. For example, if Transistor Theory is
also offered in New York, the course code is still 41837. The roster also gives the names of the instructors
who are teaching the course. Although the example only shows one instructor, a course might require
more than one instructor.

For each student, the roster keeps the following information: a sequence number for each student, the
student's name, the student's company (CUST), the company's location, the student's status in the class,
and the student's absences and grade. All the above information on the course and the students is input
information.

The current date (the date that the roster is printed) is displayed in the upper right corner (01/04/04). The
current date is an example of data that is output only data; it is generated by the operating system and is
not stored in the database.

The bottom-left corner gives a summary of the class status. This data is not included in the input data.
These values are determined by the program during processing.

When you list the data elements, abbreviating them is helpful, because you will be referring to them
frequently when you design the local view.

The data elements list for current roster is:
EDCNTR

Name of Ed Center giving class
DATE

Date class starts

CRSNAME
Name of course

CRSCODE
Course code

LENGTH
Length of course
INSTRS
Names of instructors teaching class

STUSEQ#
Student's sequence number

18 IMS: Application Programming

STUNAME
Student's name

CUST
Name of student's company

LOCTN
Location of student's company

STATUS
Student's status in class—confirmed, wait list, or cancelled

ABSENCE
Number of days student was absent

GRADE
Student's grade for the course

After you have listed the data elements, choose the major entity that these elements describe. In

this case, the major entity is class. Although a lot of information exists about each student and some
information exists about the course in general, together all this information relates to a specific class. If
the information about each student (for example, status, absence, and grade) is not related to a particular
class, the information is meaningless. This holds true for the data elements at the top of the list as well:
The Ed Center, the date the class starts, and the instructor mean nothing unless you know what class they
describe.

Naming data elements

Some of the data elements your application uses might already exist and be named. After you have listed
the data elements, find out if any of them exist by checking with your database administrator (DBA).

Before you begin naming data elements, be aware of the naming standards that you are subject to.

When you name data elements, use the most descriptive names possible. Remember that, because other
applications probably use at least some of the same data, the names should mean the same thing to
everyone. Try not to limit the name's meaning only to your application.

Recommendation: Use global names rather than local names. A global name is a name whose meaning is
clear outside of any particular application. A local name is a name that, to be understood, must be seen in
the context of a particular application.

One of the problems with using local names is that you can develop synonyms, two names for the same
data element.

For example, in the current roster example, suppose the student's company was referred to simply as
"company" instead of "customer". But suppose the accounting department for the education company
used the same piece of data in a billing application—the name of the student's company—and referred
to it as "customer". This would mean that two business processes were using two different names for
the same piece of data. At worst, this could lead to redundant data if no one realized that "customer"
and "company" contained the same data. To solve this, use a global name that is recognized by both
departments using this data element. In this case, "customer" is more easily recognized and the better
choice. This name uniquely identifies the data element and has a specific meaning within the education
company.

When you choose data element names, use qualifiers so that each name can mean only one thing.

For example, suppose Headquarters, for each course that is taught, assigns a number to the course as

it is developed and calls this number the "sequence number". The Ed Centers, as they receive student
enrollments for a particular class, assign a number to each student as a means of identification within the
class. The Ed Centers call this number the "sequence number". Thus Headquarters and the Ed Centers
are using the same name for two separate data elements. This is called a homonym. You can solve the
homonym problem by qualifying the names. The number that Headquarters assigns to each course can
be called "course code" (CRSCODE), and the number that the Ed Centers assign to their students can be
called "student sequence number" (STUSEQ#).

Chapter 2. Designing an application: Data and local views 19

Homonym
One word for two different things.

Choose data element names that identify the element and describe it precisely. Make your data element
names:
Unique

The name is clearly distinguishable from other names.

Self-explanatory
The name is easily understood and recognized.

Concise
The name is descriptive in a few words.

Universal
The name means the same thing to everyone.

Documenting application data

After you have determined what data elements a business process requires, record as much information
about each of the data elements as possible.

This information is useful to the DBA. Be aware of any standards that you are subject to regarding data
documentation. Many places have standards concerning what information should be recorded about data
and how and where that information should be recorded. The amount and type of this information varies
from place to place. The following list is the type of information that is often recorded.

The descriptive name of the data element
Data element names should be precise, yet they should be meaningful to people who are familiar and
also to those who are unfamiliar with the application.

The length of the data element
The length of the data element determines segment size and segment format.

The character format
The programmer needs to know if the data is alphanumeric, hexadecimal, packed decimal, or binary.

The range of possible values for the element
The range of possible values for the element is important for validity checking.

The default value
The programmer also needs the default value.

The number of data element occurrences
The number of data element occurrences helps the DBA to determine the required space for this data,
and it affects performance considerations.

How the business process affects the data element
Whether the data element is read or updated determines the processing option that is coded in the
PSB for the application program.

You should also record control information about the data. Such information should address the following
guestions:

- What action should the program take when the data it attempts to access is not available?

- If the format of a particular data element changes, which business processes does that affect? For
example, if an education database has as one of its data elements a five-digit code for each course, and
the code is changed to six digits, which business processes does this affect?

« Where is the data now? Know the sources of the data elements required by the application.
« Which business processes make changes to a particular data element?

« Are there security requirements about the data in your application? For example, you would not want
information such as employees' salaries available to everyone?

« Which department owns and controls the data?

20 IMS: Application Programming

One way to gather and record this information is to use a form similar to the one shown in the following
table. The amount and type of data that you record depends on the standards that you are subject to. For
example, the following table lists the ID number, data element name, length, the character format, the
allowed, null, default values, and the number of occurrences.

Table 11. Example of data elements information form

Data
element Char. Null Default
ID# name Length format Allowed values values value Number of occurrences
5 Course 5 bytes Hexa- 0010090000 00000 N/A There are 200 courses
Code decimal in the curriculum. An
average of 10 are new
or revised per year. An
average of 5 are dropped
per year.
25 Status 4 bytes Alpha- CONF WAIT blanks WAIT 1 per student
numeric CANC
36 Student 20 bytes Alpha- Alpha only blanks N/A There are 3t0 100
Name numeric students per class with
an average of 40 per
class.

A data dictionary is a good place to record the facts about the application's data. When you are analyzing
data, a dictionary can help you find out whether a particular data element already exists, and if it does,
its characteristics. With the IBM OS/VS DB/DC Data Dictionary, you can determine online what segments
exist in a particular database and what fields those segments contain. You can use either tool to create
reports involving the same information.

Designing a local view

A local view is a description of the data that an individual business process requires.
It includes the following:

« Alist of the data elements

- A conceptual data structure that shows how you have grouped data elements by the entities that they
describe

« The relationships between each of the groups of data elements

Definitions: A data aggregate is a group of data elements. When you have grouped data elements

by the entity they describe, you can determine the relationships between the data aggregates. These
relationships are called mappings. Based on the mappings, you can design a conceptual data structure for
the business process. You should document this process as well.

Related concepts

“An overview of application design” on page 15

Chapter 2. Designing an application: Data and local views 21

The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Analyzing data relationships

When you analyze data relationships, you are developing conceptual data structures for the business
processes in your application.

This process, called data structuring, is a way to analyze the relationships among the data elements a
business process requires, not a way to design a database. The decisions about segment formats and
contents belong to the DBA. The information you develop is input for designing a database.

Data structuring can be done in many different ways.

Grouping data elements into hierarchies

The data elements that describe a data aggregate, the student, might be represented by the descriptive
names STUSEQ#, STUNAME, CUST, LOCTN, STATUS, ABSENCE, and GRADE. We call this group of data
elements the student data aggregate.

Data elements have values and names. In the student data elements example, the values are a particular
student's sequence number, the student's name, company, company location, the student's status in the
class, the student's absences, and grade. The names of the data aggregate are not unique—they describe
all the students in the class in the same terms. The combined values, however, of a data aggregate
occurrence are unique. No two students can have the same values in each of these fields.

As you group data elements into data aggregates and data structures, look at the data elements that
make up each group and choose one or more data elements that uniquely identify that group. This is the
data aggregate's controlling key, which is the data element or group of data elements in the aggregate that
uniquely identifies the aggregate. Sometimes you must use more than one data element for the key in
order to uniquely identify the aggregate.

By following the three steps explained in this section, you can develop a conceptual data structure for a
business process's data. However, you are not developing the logical data structure for the program that
performs the business process. The three steps are:

1. Separate repeating data elements in a single occurrence of the data aggregate.
2. Separate duplicate values in multiple occurrences of the data aggregate.
3. Group each data element with its controlling keys.

Step 1. separating repeating data elements

Look at a single occurrence of the data aggregate. The following table shows what this looks like for the
class aggregate; the data element is listed with the class aggregate occurrence.

Table 12. Single occurrence of class aggregate

Data element Class aggregate occurrence
EDCNTR CHICAGO

DATE(START) 1/14/96

CRSNAME TRANSISTOR THEORY

CRS CODE 41837

LENGTH 10 DAYS

INSTRS multiple

STUSEQ# multiple

22 IMS: Application Programming

Table 12. Single occurrence of class aggregate (continued)

Data element Class aggregate occurrence
STUNAME multiple
CUST multiple
LOCTN multiple
STATUS multiple
ABSENCE multiple
GRADE multiple

The data elements defined as multiple are the elements that repeat. Separate the repeating data
elements by shifting them to a lower level. Keep data elements with their controlling keys.

The data elements that repeat for a single class are: STUSEQ#, STUNAME, CUST, LOCTN, STATUS,
ABSENCE, and GRADE. INSTRS is also a repeating data element, because some classes require two
instructors, although this class requires only one.

When you separate repeating data elements into groups, you have the structure shown in the following
figure.

In the following figure, the data elements in each box form an aggregate. The entire figure depicts a data
structure. The data elements include the Course aggregate, the Student aggregate, and the Instructor
aggregate.

The following figure shows these aggregates with the keys indicated with leading asterisks (*).

Course aggregate

*EDCNTR
*DATE
CRSMNAME
*CRSCODE
LENGTH
Student Instructor
aggregate aggregate
*STUSEQ# “INSTRS

STUNAME
CUST
LOCTN
ABSEMCE
GRADE
STATUS

Figure 5. Current roster after step 1

The keys for the data aggregates are shown in the following table.

Table 13. Data aggregates and keys for current roster after step 1

Data aggregate Keys
Course aggregate EDCNTR, DATE, CRSCODE

Chapter 2. Designing an application: Data and local views 23

Table 13. Data aggregates and keys for current roster after step 1 (continued)

Data aggregate Keys
Student aggregate EDCNTR, DATE, CRSCODE, STUSEQ#
Instructor aggregate EDCNTR, DATE, CRSCODE, INSTRS

The asterisks in the previous figure identify the key data elements. For the Class aggregate, it takes
multiple data elements to identify the course, so you need multiple data elements to make up the key.
The data elements that comprise the Class aggregate are:

Controlling key element, STUSEQ#
STUNAME

CUST

LOCTN

« STATUS

« ABSENCE

- GRADE

The data elements that comprise the Instructor aggregate are:
« Key element, INSTRS

The Course aggregate and the Instructor aggregate inherit the following keys from the root segment,
Course aggregate:

« EDCNTR
- DATE
» CRSCODE

After you have shifted repeating data elements, make sure that each element is in the same group as its
controlling key. INSTRS is separated from the group of data elements describing a student because the

information about instructors is unrelated to the information about the students. The student sequence
number does not control who the instructor is.

In the example shown in the previous figure, the Student aggregate and Instructor aggregate are both
dependents of the Course aggregate. A dependent aggregate's key includes the concatenated keys of all
the aggregates above the dependent aggregate. This is because a dependent's controlling key does not
mean anything if you do not know the keys of the higher aggregates. For example, if you knew that a
student's sequence number was 4, you would be able to find out all the information about the student
associated with that number. This number would be meaningless, however, if it were not associated with
a particular course. But, because the key for the Student aggregate is made up of Ed Center, date, and
course code, you can deduce which class the student is in.

Step 2. isolating duplicate aggregate values

Look at multiple occurrences of the aggregate—in this case, the values you might have for two classes.
The following table shows multiple occurrences (2) of the same data elements. As you look at this table,
check for duplicate values. Remember that both occurrences describe one course.

Table 14. Multiple occurrences of class aggregate

Data element list Occurrence 1 Occurrence 2
EDCNTR CHICAGO NEW YORK
DATE(START) 1/14/96 3/10/96
CRSNAME TRANS THEORY TRANS THEORY

24 IMS: Application Programming

Table 14. Multiple occurrences of class aggregate (continued)

Data element list Occurrence 1 Occurrence 2
CRSCODE 41837 41837
LENGTH 10 DAYS 10 DAYS
INSTRS multiple multiple
STUSEQ# multiple multiple
STUNAME multiple multiple
CUsT multiple multiple
LOCTN multiple multiple
STATUS multiple multiple
ABSENCE multiple multiple
GRADE multiple multiple

The data elements defined as multiple are the data elements that repeat. The values in these elements
are not the same. The aggregate is always unique for a particular class.

In this step, compare the two occurrences and shift the fields with duplicate values (TRANS THEORY and
so on) to a higher level. If you need to, choose a controlling key for aggregates that do not yet have keys.

In the previous table, CRSNAME, CRSCODE, and LENGTH are the fields that have duplicate values. Much
of this process is intuitive. Student status and grade, although they can have duplicate values, should not
be separated because they are not meaningful values by themselves. These values would not be used

to identify a particular student. This becomes clear when you remember to keep data elements with
their controlling keys. When you separate duplicate values, you have the structure shown in the following

figure.

Chapter 2. Designing an application: Data and local views 25

Course aggregate

*CRSCODE
CRSNAME
LENGTH

'Glass aggregate

"EDCNTR
"DATE

Student Instructor
aggregate aggregate

* STUSEQ# *INSTRS
STUNMAME

CUST

LOCTN

ABSENCE

GRADE

STATUS

Figure 6. Current roster after step 2

Step 3. grouping data elements with their controlling keys

This step is often a check on the first two steps. (Sometimes the first two steps have already done what
this step instructs you to do.)

At this stage, make sure that each data element is in the group that contains its controlling key. The data
element should depend on the full key. If the data element depends only on part of the key, separate the
data element along with the partial (controlling) key on which it depends.

In this example, CUST and LOCTN do not depend on the STUSEQ#. They are related to the student, but
they do not depend on the student. They identify the company and company address of the student.

CUST and LOCTN are not dependent on the course, the Ed Center, or the date, either. They are separate
from all of these things. Because a student is only associated with one CUST and LOCTN, but a CUST and
LOCTN can have many students attending classes, the CUST and LOCTN aggregate should be above the
student aggregate.

The following figure shows these aggregates and keys indicated with leading asterisks (*) and shows what
the structure looks like when you separate CUST and LOCTN.

26 IMS: Application Programming

Course aggregate

“CRSCODE
CRSNAME
LENGTH
Customer/Location
aggregate l Class aggregate
*CUST *EDCNTR
‘LOCTN “DATE
Student Instructor
aggregate aggregate
* STUSEQ# ‘INSTRS
STUNAME
STATUS
ABSENCE
GRADE

Figure 7. Current roster after step 3

The keys for the data aggregates are shown in the following table.

Table 15. Data aggregates and keys for current roster after step 3

Data aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

Customer aggregate CUST, LOCTN

Student aggregate (when viewed from the customer aggregate in "Current

roster after step 3"instead of from the course aggregate,
in "Current roster after step 2") CUST, LOCTN, STUSEQ,
CRSCODE, EDCNTR, DATE

Instructor aggregate CRSCODE, EDCNTR, DATE, INSTRS

Deciding on the arrangement of the customer and location information is part of designing a database.
Data structuring should separate any inconsistent data elements from the rest of the data elements.

Determining mappings

When you have arranged the data aggregates into a conceptual data structure, you can examine the
relationships between the data aggregates. A mapping between two data aggregates is the quantitative
relationship between the two.

The reason you record mappings is that they reflect relationships between segments in the data structure
that you have developed. If you store this information in an IMS database, the DBA can construct a
database hierarchy that satisfies all the local views, based on the mappings. In determining mappings, it
is easier to refer to the data aggregates by their keys, rather than by their collected data elements.

The two possible relationships between any two data aggregates are:

Chapter 2. Designing an application: Data and local views 27

« One-to-many

For each segment A, one or more occurrences of segment B exist. For example, each class maps to one
or more students.

Mapping notation shows this in the following way:

Class «— . . Student

« Many-to-many
Segment B has many A segments associated with it and segment A has many B segments associated
with it. In a hierarchic data structure, a parent can have one or more children, but each child can be

associated with only one parent. The many-to-many association does not fit into a hierarchy, because in
a many-to-many association each child can be associated with more than one parent.

Related Reading: For more information about analyzing data requirements, see IMS Version 15
Database Administration.

Many-to-many relationships occur between segments in two business processes. A many-to-many
relationship indicates a conflict in the way that two business processes need to process those data
aggregates. If you use the IMS full-function database, you can solve this kind of processing conflict by
using secondary indexing or logical relationships.

The mappings for the current roster are:
- Course «— . . Class

For each course, there might be several classes scheduled, but a class is associated with only one
course.

« Class «— . » Student

A class has many students enrolled in it, but a student might be in only one class offering of this course.
- Class «— . . Instructor

A class might have more than one instructor, but an instructor only teaches one class at a time.
« Customer/location «—— . . Student

A customer might have several students attending a particular class, but each student is only associated
with one customer and location.

Related concepts

“Understanding how data structure conflicts are resolved” on page 76

The order in which application programs need to process fields and segments within hierarchies is
frequently not the same for each application. When the DBA finds a conflict in the way that two or more
programs need to access the data, three options are available to solve these problems. Each of the
following options solves a different kind of conflict.

Local view examples

The following examples show how to design local views including the schedule of courses, the instructor
skills report, and the instructor schedules.

Each example shows the following parts of designing a local view:

1. Gather the data. For each example, the data elements are listed and two occurrences of the data
aggregate are shown. Two occurrences are shown because you need to look at both occurrences when
you look for repeating fields and duplicate values.

2. Analyze the data relationships. First, group the data elements into a conceptual data structure using
these three steps:

a. Separate repeating data elements in a single occurrence of the data aggregate by shifting them to a
lower level. Keep data elements with their keys.

28 IMS: Application Programming

b. Separate duplicating values in two occurrences of the data aggregate by shifting those data
elements to a higher level. Again, keep data elements with their keys.

c. Group data elements with their keys. Make sure that all the data elements within one aggregate
have the same key. Separate any that do not.

3. Determine the mappings between the data aggregates in the data structure you have developed.

Example 1: schedule of courses

Headquarters keeps a schedule of all the courses given each quarter and distributes it monthly.
Headquarters wants the schedule to be sorted by course code and printed in the format shown in the
following figure.

COURSE SCHEDULE

COURSE: TRANSISTOR THEORY COURSE CODE: 418737
LENGTH: 10 DAYS PRICE: $280
DATE LOCATION

APRIL 14 BOSTON

APIRL 21 CHICAGO

NOVEMBER 18 LOS ANGELES

Figure 8. Schedule of courses

1. Gather the data. The following table lists the data elements and two occurrences of the data
aggregate.

Table 16. Course schedule data elements

Data elements Occurrence 1 Occurrence 2
CRSNAME TRANS THEORY MICRO PROG
CRSCODE 41837 41840
LENGTH 10 DAYS 5 DAYS
PRICE $280 $150

DATE multiple multiple
EDCNTR multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by shifting them to a
lower level, as shown in the following table

Chapter 2. Designing an application: Data and local views 29

Course aggregate

*CRSCODE
CRSNAME
LENGTH
PRICE

Class aggregate
L]

"EDCNTHR
"DATE

Figure 9. Course schedule after step 1

b. Next, separate duplicate values in two occurrences of the data aggregate by shifting the data
elements to a higher level.

This data aggregate does not contain duplicate values.
c. Group data elements with their controlling keys.

Data elements are grouped with their keys in the present structure. No changes are necessary for
this step.

The keys for the data aggregates are shown in the following table.

Table 17. Data aggregates and keys for course schedule after step 1

Data aggregate Keys
Course aggregate CRSCODE
Class aggregate CRSCODE, EDCNTR, DATE
3. When you have developed a conceptual data structure, determine the mappings for the data
aggregates.
The mapping for this local view is: Course «—— . .. Class

Example 2: instructor skills report

Each Ed Center needs to print a report showing the courses that its instructors are qualified to teach. The
report format is shown in the following figure.

INSTRUCTOR SKILLS REPORT

INSTRUCTOR COURSE CODE COURSE NAME
BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY
41850 CIRCUIT DESIGN
41852 LOGIC THEORY
éEYNOLDS, P. W. 41840 MICRO PROG
41850 CIRCUIT DESIGN

Figure 10. Instructor skills report

30 IMS: Application Programming

1. Gather the data. The following table lists the data elements and two occurrences of the data
aggregate.

Table 18. Instructor skills data elements

Data elements Occurrence 1 Occurrence 2
INSTR REYNOLDS, P.W. MORRIS, S. R.
CRSCODE multiple multiple
CRSNAME multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by shifting to a higher
level as shown in the following figure.
Instructor aggregate

"INSTH

l Course aggregate

*CRSCODE
CRSMAME

Figure 11. Instructor skills after step 1
b. Separate any duplicate values in the two occurrences of the data aggregate.

No duplicate values exist in this data aggregate.
c. Group data elements with their keys.

All data elements are grouped with their keys in the current data structure. There are no changes to
this data structure.

3. Determine the mappings for the data aggregates.

The mapping for this local view is: Instructor «— . .. Course

Example 3: instructor schedules

Headquarters wants to produce a report showing the schedules for all the instructors. The following figure
shows the report format.

INSTRUCTOR SCHEDULES

INSTRUCTOR COURSE CODE ED CENTER DATE
BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/14/96
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 3/10/96
LOGIC THEORY 41852 BOSTON 3/27/96
CIRCUIT DES 41840 CHICAGO 4/21/96
REYNOLDS, B. H. MICRO PROG 41850 NEW YORK 2/25/96
CIRCUIT DES 41850 LOS ANGELES 3/10.96

Figure 12. Instructor schedules

1. Gather the data. The following table lists the data elements and two occurrences of the data
aggregate.

Chapter 2. Designing an application: Data and local views 31

Table 19. Instructor schedules data elements

Data elements Occurrence 1 Occurrence 2
INSTR BENSON, R. J. MORRIS, S. R.
CRSNAME multiple multiple
CRSCODE multiple multiple
EDCNTR multiple multiple
DATE(START) multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by shifting data
elements to a lower level as shown in the following figure.
Instructor aggregate

‘INSTR
lCﬂurse aggregate

CRSMNAME
"*CRSCODE
"EDCNTR
"DATE

Figure 13. Instructor schedules step 1

b. Separate duplicate values in two occurrences of the data aggregate by shifting data elements to a
higher level as shown in the following figure.

In this example, CRSNAME and CRSCODE can be duplicated for one instructor or for many
instructors, for example, 41837 for Benson and 41850 for Morris and Reynolds.

Instructor aggregate
“INSTR

l Course aggregate

‘CRSCODE
CRSNAME

l Class aggregate

*EDCNTR
‘DATE

Figure 14. Instructor schedules step 2
c. Group data elements with their keys.

32 IMS: Application Programming

All data elements are grouped with their controlling keys in the current data structure. No changes
to the current data structure are required.

3. Determine the mappings for the data aggregates.
The mappings for this local view are: Instructor +—— . . Course Course «—— . .. Class

An analysis of data requirements is necessary to combine the requirements of the three examples
presented in this section and to design a hierarchic structure for the database based on these

requirements.

Related Reading: For more information on analyzing data requirements, see IMS Version 15 Database
Administration.

Chapter 2. Designing an application: Data and local views 33

34 IMS: Application Programming

Chapter 3. Analyzing IMS application processing
requirements

Use the following information to plan for writing application programs for IMS environments.

Defining IMS application requirements

One of the steps of application design is to decide how the business processes, or tasks, that the end
user wants performed can be best grouped into a set of programs that efficiently performs the required
processing.

To analyze processing requirements, consider:
« When the task must be performed

— Will the task be scheduled unpredictably (for example, on terminal demand) or periodically (for
example, weekly)?

« How the program that performs the task is executed

— Will the program be executed online, where response time is crucial, or by batch job submission,
where a slower response time is acceptable?

« The consistency of the processing components

— Does the action the program is to perform involve more than one type of program logic? For example,
does it involve mostly retrievals and only one or two updates? If so, you should consider separating
the updates into a separate program.

— Does this action involve several large groups of data? If it does, it might be more efficient to separate
the programs by the data they access.

- Any special requirements about the data or processing

Security
Should access to the program be restricted?

Recovery
Are there special recovery considerations in the program's processing?

Availability
Does your application require high data availability?

Integrity
Do other departments use the same data?

Answers to questions like these can help you decide on the number of application programs that the
processing will require, and on the types of programs that perform the processing most efficiently.
Although rules dealing with how many programs can most efficiently do the required processing do not
exist, here are some suggestions:

 As you look at each programming task, examine the data and processing that each task involves. If
a task requires different types of processing and has different time limitations (for example, daily as
opposed to different times throughout the month), that task might be more efficiently performed by
several programs.

« As you define each program, it is a good idea for maintenance and recovery reasons to keep it as simple
as possible. The simpler a program is—the less it does—the easier it is to maintain, and to restart after
a program or system failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available. The more limited the access requested, the more likely the data is
to be available.

© Copyright IBM Corp. 1974, 2020 35

Similarly, if the data that the application requires is physically in one place, it might be more efficient to
have one program do more of the processing than usual. These are considerations that depend upon the
processing and the data of each application.

« Documenting each of the user tasks is helpful during the design process, and in the future when others
will work with your application. Be sure you are aware of standards in this area. The kind of information
that is typically kept is when the action is to be executed, a functional description, and requirements for
maintenance, security, and recovery.

For example, for the current roster process described previously, you might record the information
shown in the following form. How frequently the program is run is determined by the number of classes
(20) needed by the Education Center each week.

Documenting user task descriptions: current roster example

USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE:Included in Education DB maintenance.

SECURITY: None.

RECOVERY:After a failure, the ability to start printing a particular
class roster starting from a particular sequential student numbex.

Accessing databases with your IMS application program

When designing your program, consider the type of database it must access. The type of database
depends on the operating environment.

The program types you can run and the different types of databases you can access in a DB batch, TM
batch, DB/DC, DBCTL, or DCCTL environment are shown in the following table.

36 IMS: Application Programming

Table 20. Program and database options in IMS environments

Type of program you
Environment canrun Type of database that can be accessed

DB/DC BMP Db2 for z/OS

DEDB and MSDB
Full function
z/0S files

IFP Db2 for z/OS
DEDB
Full function

JBP Db2 for z/OS
DEDB
Full function

JMP Db2 for z/0OS
DEDB
Full function

MPP Db2 for z/OS
DEDB and MSDB
Full function

DB Batch DB Batch Db2 for z/OS

Full function
GSAM
z/0OS files

DBCTL BMP (Batch-oriented) Db2 for z/OS
DEDB
Full function
GSAM
z/0S files

JBP Db2 for z/OS
DEDB
Full function

DCCTL BMP Db2 for z/0OS
GSAM
z/0S files

IFP Db2 for z/OS

JMP Db2 for z/0OS

MPP Db2 for z/0S

Chapter 3. Analyzing IMS application processing requirements 37

Table 20. Program and database options in IMS environments (continued)

Type of program you
Environment canrun Type of database that can be accessed
TM Batch TM Batch Db2 for z/OS
GSAM
z/0S files

The types of databases that can be accessed are:

- IMS Databases
There are two types of IMS databases: full-function and Fast Path.
— Full-function databases

Full-function databases are hierarchic databases that are accessed through Data Language I (DL/I)
call interface and can be processed by these types of application programs: IFP, IMP, JBP, MPP, BMP,
and DB batch. DL/I calls make it possible for IMS application programs to retrieve, replace, delete,
and add segments to full-function databases.

JMP and JBP applications use JDBC to access full-function databases in addition to DL/I.

If you use data sharing, online programs and batch programs can access the same full-function
database concurrently.

Full-function database types include: HDAM, HIDAM, HSAM, HISAM, PHDAM, PHIDAM, SHSAM, and
SHISAM.

— Fast Path databases
Fast Path databases are of two types: MSDBs and DEDBs.

- Main storage databases (MSDBs) are root-segment-only databases that reside in virtual storage
during execution.

- Data entry databases (DEDBs) are hierarchic databases that provide a high level of availability for,
and efficient access to, large volumes of detailed data.

MPP, BMP, and IFP programs can access Fast Path databases. In the DBCTL environment, BMP
programs can access DEDBs but not MSDBs. JMP and JBP programs can access DEDBs but not
MSDBs.

- Db2 for z/0OS databases
Db2 for z/OS databases are relational databases that can be processed by IMS batch, BMP, IFP, JBP,
JMP, and MPP programs. An IMS application program might access only DL/I databases, both DL/I
and Db2 for z/OS databases, or only Db2 for z/OS databases. Relational databases are represented to
application programs and users as tables, and are processed using a relational data language called
Structured Query Language (SQL).

Note: Programs running in 64bit JIMP and JBP regions cannot access Db2 for z/OS databases.

Related Reading: For information on processing Db2 for z/OS databases, see DB2° for z/OS Application
Programming and SQL Guide.

- 2/0S Files

BMPs (in DB/DC, DBCTL, and DCCTL environments) are the only type of online application program that
can access z/0S files for their input or output. Batch programs can also access z/0S files.

« GSAM Databases (Generalized Sequential Access Method)

Generalized Sequential Access Method (GSAM) is an access method that makes it possible for BMPs
and batch programs to access a sequential z/OS data set as a simple database. A GSAM database can
be accessed by z/0OS or by IMS.

38 IMS: Application Programming

Accessing data: the types of programs you can write for your IMS
application

You must decide what type of program to use: batch programs, message processing programs (MPPs),
IMS Fast Path (IFP) applications, batch message processing (BMP) applications, Java Message Processing
(IMP) applications, or Java Batch Processing (JBP) applications. The types of programs you can use
depend on whether you are running in the batch, DB/DC, or DBCTL environment.

DB batch processing

These topics describe DB batch processing and can help you decide if this batch program is appropriate
for your application.

Data that a DB batch program can access

A DB batch program can access full-function databases, Db2 for z/OS databases, GSAM databases, and
z/OS files. A DB batch program cannot access DEDBs or MSDBs.

Using DB batch processing

Batch programs are typically longer-running programs than online programs. You use a batch program
when you have a large number of database updates to do or a report to print. Because a batch program
runs by itself—it does not compete with any other programs for resources like databases—it can run
independently of the control region. If you use data sharing, DB batch programs and online programs can
access full-function databases concurrently. Batch programs:

 Typically produce a large amount of output, such as reports.

« Are not executed by another program or user. They are usually scheduled at specific time intervals (for
example, weekly) and are started with JCL.

« Produce output that is not needed right away. The turnaround time for batch output is not crucial, as it
usually is for online programs.

Recovering a DB batch program
Include checkpoints in your batch program to restart it in case of failure.
Issuing checkpoints

Issue checkpoints in a batch program to commit database changes and provide places from which to
restart your program. Issuing checkpoints in a batch program is important, because commit points do not
occur automatically, as they do in MPPs, transaction-oriented BMPs, and IFPs.

Issuing checkpoints is particularly important in a batch program that participates in data sharing with
your online system. Checkpoints free up resources for use by online programs. You should initially include
checkpoints in all batch programs that you write. Even though the checkpoint support might not be
needed then, it is easier to incorporate checkpoints initially than to try to fit them in later. And it is
possible that you might want to convert your batch program to a BMP or participate in data sharing.

To issue checkpoints (or other system service calls), you must specify an I/O PCB for your program. To
obtain an I/O PCB, use the compatibility option by specifying CMPAT=YES in the PSBGEN statement in
your program's PSB.

GSAM DB's are not backed out but are repositioned during the BMP's restart process through the XRST
call. The XRST call repositions the dataset pointers to the checkpoint ID specified in the call. When the
application starts-up, it will pick-up from that point and go forward. The checkpoint ID specified in the
XRST call should be the same one that the non-GSAM DBs would have been backed out to, through either
dynamic or batch backout.

Recommendation: For PSBs used by DB batch programs, always specify CMPAT=YES.

Chapter 3. Analyzing IMS application processing requirements 39

Backing out database changes

The type of storage medium for the system log determines what happens when a DB batch program
terminates abnormally. You can specify that the system log be stored on either DASD (direct access
storage device) or tape.

System log on DASD

If the system log is stored on DASD, using the BKO execution parameter you can specify that IMS is to
dynamically back out the changes that the program has made to the database since its last commit point.

Related Reading: For information on using the BKO execution parameter, see IMS Version 15 System
Definition.

Dynamically backing out database changes has the following advantages:

- Data accessed by the program that failed is available to other programs immediately. If batch backout
is used, other programs cannot access the data until the IMS Batch Backout utility has been run to back
out the database changes.

- If data sharing is being used and two programs are deadlocked, one of the programs can continue
processing. Otherwise, if batch backout is used, both programs fail.

IMS performs dynamic backout for a batch program when an IMS-detected failure occurs, for example,
when a deadlock is detected. Logging to DASD makes it possible for batch programs to issue the SETS,
ROLB, and ROLS system service calls. These calls cause IMS to dynamically back out changes that the
program has made.

Related Reading: For information on the SETS, ROLB, and ROLS calls, see the information about
recovering databases and maintaining database integrity in IMS Version 15 Database Administration.

System log on tape

If a batch application program terminates abnormally and the batch system log is stored on tape, you
must use the IMS Batch Backout utility to back out the program's changes to the database.

Related concepts

“When to use checkpoint calls” on page 49
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

TM batch processing
A TM batch program acts like a DB batch program with the following differences.

« It cannot access full-function databases, but it can access Db2 for z/OS databases, GSAM databases,
and z/0S files.

- To issue checkpoints for recovery, you need not specify CMPAT=YES in your program's PSB. (The CMPAT
parameter is ignored in TM batch.) The I/O PCB is always the first PCB in the list.

» You cannot dynamically back out a database because IMS does not own the databases.

The IEFRDER log DD statement is required in order to enable log synchronization with other external
subsystems, such as DB2 for z/OS.

Processing messages: Message Processing Programs

A Message Processing Program (MPP) is an online program that can access full-function databases,
DEDBs, MSDBs, and Db2 for z/OS databases. Unlike BMPs and batch programs, MPPs cannot access
GSAM databases. MPPs can only run in DB/DC and DCCTL environments.

Using an MPP

The primary purpose of an MPP is to process requests from users at terminals and from other application
programs. Ideally, MPPs are very small, and the processing they perform is tailored to respond to
requests quickly. They process messages as their input, and send messages as responses.

40 IMS: Application Programming

Message
Data that is transmitted between any two terminals, application programs, or IMS systems. Each
message has one or more segments.

MPPs are executed through transaction codes. When you define an MPP, you associate it with one or
more transaction codes. Each transaction code represents a transaction the MPP is to process. To process
a transaction, a user at a terminal enters a code for that transaction. IMS then schedules the MPP
associated with that code, and the MPP processes the transaction. The MPP might need to access the
database to do this. Generally, an MPP goes through these five steps to process a transaction:

1. Retrieve a message from IMS.

2. Process the message and access the database as necessary.
3. Respond to the message.

4. Repeat the process until no messages are forthcoming.

5. Terminate.

When an MPP is defined, a system administrator makes decisions about the program's scheduling and
processing. For each MPP, a system administrator specifies:

 The transaction's priority

« The number of messages for a particular transaction code that the MPP can process in a single
scheduling

« The amount of time (in seconds) in which the MPP is allowed to process a single transaction

Defining priorities and processing limits gives system administration some control over load balancing and
processing.

Although the primary purpose of an MPP is to process and reply to messages quickly, it is flexible in how
it processes a transaction and where it can send output messages. For example, an MPP can send output
messages to other terminals and application programs.

Related concepts

“Gathering requirements for database options” on page 69

After designing hierarchies for the databases that your application will access, the DBA evaluates
database options in terms of which options will best meet application requirements. Whether these
options are used depends on the collected requirements of the applications. To design an efficient
database, the DBA needs information about the individual applications.

Processing messages: IMS Fast Path Programs

An IMS Fast Path Program (IFP) is similar to an MPP: Its main purpose is to quickly process and reply to
messages from terminals. Like an MPP, an IFP can access full-function databases, DEDBs, MSDBs, and
Db2 for z/OS databases. IFPs can only be run in DB/DC and DCCTL environments.

Using an IFP

You should use an IFP if you need quick processing and can accept the characteristics and constraints
associated with IFPs.

The main differences between IFPs and MPPs are as follows:

« Messages processed by IFPs must consist of only one segment. Messages that are processed by MPPs
can consist of several segments.

« IFPs bypass IMS queuing, allowing for more efficient processing. Transactions that are processed by
Fast Path's EMH (expedited message handler) are on a first-in, first-out basis.

IFPs also have the following characteristics:

« They run in transaction response mode. This means that they must respond to the terminal that sent
the message before the terminal can enter any more requests.

Chapter 3. Analyzing IMS application processing requirements 41

« They process only wait-for-input transactions. When you define a program as processing wait-for-
input transactions, the program remains in virtual storage, even when no additional messages are
available for it to process.

Restrictions:

< An IMS program cannot send messages to an IFP transaction unless it is in another IMS system that is
connected using Intersystem Communication (ISC).

« MPPs cannot pass conversations to an IFP transaction.

Recovering an IFP

IFPs must be defined as single mode. This means that a commit point occurs each time the program
retrieves a message. Because of this, you do not need to issue checkpoint calls.

Batch message processing: BMPs

BMPs are application programs that can perform batch-type processing online and access the IMS
message queues for their input and output. Because of this and because of the data available to them,
BMPs are the most flexible of the IMS application programs. The two types of BMPs are: batch-oriented
and transaction-oriented.

Batch processing online: batch-oriented BMPs

A batch-oriented BMP performs batch-type processing in any online environment. When run in the DB/DC
or DCCTL environment, a batch-oriented BMP can send its output to the IMS message queue to be
processed later by another application program. Unlike a transaction-oriented BMP, a batch-oriented BMP
cannot access the IMS message queue for input.

Data a batch-oriented BMP can access

In the DBCTL environment, a batch-oriented BMP can access full-function databases, Db2 for z/0OS
databases, DEDBSs, z/0S files, and GSAM databases. In the DB/DC environment, a batch-oriented BMP
can access all of these types of databases, as well as Fast Path MSDBs. In the DCCTL environment, this
program can access Db2 for z/OS databases, z/OS files, and GSAM databases.

Using a batch-oriented BMP

A batch-oriented BMP can be simply a batch program that runs online. (Online requests are processed
by the IMS DB/DC, DBCTL, or DCCTL system rather than by a batch system.) You can even run the same
program as a BMP or as a batch program.

Recommendation: If the program performs a large number of database updates without issuing
checkpoints, consider running it as a batch program so that it does not degrade the performance of
the online system.

To use batch-oriented BMPs most efficiently, avoid a large amount of batch-type processing online. If
you have a BMP that performs time-consuming processing such as report writing and database scanning,
schedule it during non-peak hours of processing. This will prevent it from degrading the response time of
MPPs.

Because BMPs can degrade response times, your response time requirements should be the main
consideration in deciding the extent to which you will use batch message processing. Therefore, use
BMPs accordingly.

Recovering a batch-oriented BMP

Issuing checkpoint calls is an important part of batch-oriented BMP processing, because commit points
do not occur automatically, as they do in MPPs, transaction-oriented BMPs, and IFPs. Unlike most batch
programs, a BMP shares resources with MPPs. In addition to committing database changes and providing

42 IMS: Application Programming

places from which to restart (as for a batch program), checkpoints release resources that are locked for
the program.

If a batch-oriented BMP fails, IMS and Db2 for z/OS back out the database updates the program has made
since the last commit point. You then restart the program with JCL. If the BMP processes z/OS files, you
must provide your own method of taking checkpoints and restarting.

Converting a batch program to a batch-oriented BMP

If you have IMS TM or are running in the DBCTL environment, you can convert a batch program to a
batch-oriented BMP.

- If you have IMS TM, you might want to convert your programs for these reasons:

— BMPs can send output to the message queues.
— BMPs can access DEDBs and MSDBs.

— BMPs simplify program recovery because logging goes to a single system log. If you use DASD for the
system log in batch, you can specify that you want dynamic backout for the program. In that case,
batch recovery is similar to BMP recovery, except, of course, with batch you need to manage multiple
logs.

— Restart can be done automatically from the last checkpoint without changing the JCL.
- If you are using DBCTL, you might want to convert your programs for these reasons:

— BMPs can access DEDBs.

— BMPs simplify program recovery because logging goes to a single system log. If you use DASD for the
system log in batch, you can specify that you want dynamic backout for the program. In that case,
batch recovery is similar to BMP recovery, except, of course, with batch you need to manage multiple
logs.

« If you are running sysplex data sharing and you either have IMS TM or are using DBCTL, you might want
to convert your program. This is because using batch-oriented BMPs helps you stay within the sysplex
data-sharing limit of 32 connections for each OSAM or VSAM structure.

If you use data sharing, you can run batch programs concurrently with online programs. If you do not
use data sharing, converting a batch program to a BMP makes it possible to run the program with BMPs
and other online programs.

Also, if you plan to run your batch programs offline, converting them to BMPs enables you to run them
with the online system, instead of waiting until the online system is not running. Running a batch
program as a BMP can also keep the data more current.

- If you have IMS TM or are using DBCTL, you can have a program that runs as either a batch program or a
BMP.

Recommendation: Code your checkpoints in a way that makes them easy to modify. Converting a

batch program to a BMP or converting a batch program to use data sharing requires more frequent
checkpoints. Also, if a program fails while running in a batch region, you must restart it in a batch region.
If a program fails in a BMP region, you must restart it in a BMP region.

The requirements for converting a batch program to a BMP are:

« The program must have an I/O PCB. You can obtain an I/O PCB in batch by specifying the compatibility
(CMPAT) option in the program specification block (PSB) for the program.

Related Reading: For more information on the CMPAT option in the PSB, see IMS Version 15 System
Utilities.
« BMPs must issue checkpoint calls more frequently than batch programs.

Related concepts
“When to use checkpoint calls” on page 49

Chapter 3. Analyzing IMS application processing requirements 43

Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

Batch message processing: transaction-oriented BMPs

Transaction-oriented BMPs can access z/0S files, GSAM databases, Db2 for z/OS databases, full-function
databases, DEDBs, and MSDBs.

Data a transaction-oriented BMP can access

Unlike a batch-oriented BMP, a transaction-oriented BMP can access the IMS message queue for input
and output, and it can only run in the DB/DC and DCCTL environments.

Using a transaction-oriented BMP

Unlike MPPs, transaction-oriented BMPs are not scheduled by IMS. You schedule them as needed and
start them with JCL. For example, an MPP, as it processes each message, might send an output message
giving details of the transaction to the message queue. A transaction-oriented BMP could then access the
message queue to produce a daily activity report.

Typically, you use a transaction-oriented BMP to simulate direct update online: Instead of updating
the database while processing its transactions, an MPP sends its updates to the message queue. A
transaction-oriented BMP then performs the updates for the MPP. You can run the BMP as needed,
depending on the number of updates. This improves response time for the MPP, and it keeps the data
current. This can be more efficient than having the MPP process its transactions if the response time of
the MPP is very important. One disadvantage in doing this, however, is that it splits the transaction into
two parts which is not necessary.

If you have a BMP perform an update for an MPP, design the BMP so that, if the BMP terminates
abnormally, you can reenter the last message as input for the BMP when you restart it. For example,
suppose an MPP gathers database updates for three BMPs to process, and one of the BMPs terminates
abnormally. You would need to reenter the message that the terminating BMP was processing to one of
the other BMPs for reprocessing.

BMPs can process transactions defined as wait-for-input (WFI). This means that IMS allows the BMP to
remain in virtual storage after it has processed the available input messages. IMS returns a QC status
code, indicating that the program should terminate when one of the following occurs:

« The program reaches its time limit.

« The master terminal operator enters a command to stop processing.

« IMS is terminated with a checkpoint shutdown.

You specify WFI for a transaction on the WFI parameter of the TRANSACT macro during IMS system
definition.

A batch message processing region (BMP) scheduled against WFI transactions returns a QC status code
(no more messages) only for the following commands: /PSTOP REGION, /DBD, /DBR, or /STA.

Like MPPs, BMPs can send output messages to several destinations, including other application programs.

Recovering a transaction-oriented BMP

Like MPPs, with transaction-oriented BMPs, you can choose where commit points occur in the program.
You can specify that a transaction-oriented BMP be single or multiple mode, just as you can with an MPP.
If the BMP is single mode, issuing checkpoint calls is not as critical as in a multiple mode BMP. In a single
mode BMP, a commit point occurs each time the program retrieves a message.

Related concepts

“Identifying output message destinations” on page 97
An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB

44 IMS: Application Programming

and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

“When to use checkpoint calls” on page 49
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

Java message processing: JMPs

A IMP application program is similar to an MPP application program, except that IMP applications must
be written in Java or object-oriented COBOL. Like an MPP application, a JMP application is started when
there is a message in the message queue for the JMP application and IMS schedules the message for
processing.

JMP applications can access IMS data or Db2 for z/OS data using JDBC. JMP applications run in JMP
regions which have JVMs (Java Virtual Machines).

Related concepts

“Overview of the IMS Java dependent regions” on page 673

The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.

Java batch processing: JBPs

A JBP application program is similar to a non-message-driven BMP application program, except that JBP
applications must be written in Java, object-oriented COBOL, or object-oriented PL/I.

JBP applications can access IMS data or Db2 for z/OS data using JDBC. JBP applications run in JBP
regions which have JVMs.

Related concepts

“Overview of the IMS Java dependent regions” on page 673

The IMS Java dependent regions are two types of IMS dependent regions that provide a Java Virtual
Machine (JVM) environment for Java applications: Java message processing (JMP) regions and Java batch
processing (JBP) regions.

IMS programming integrity and recovery considerations

IMS provides support for protecting data integrity for application programs.

How IMS protects data integrity: commit points

When an online program accesses the database, it is not necessarily the only program doing so. IMS and
Db2 for z/OS make it possible for more than one application program to access the data concurrently
without endangering the integrity of the data.

To access data concurrently while protecting data integrity, IMS and Db2 for z/OS prevent other
application programs from accessing segments that your program deletes, replaces, or inserts, until your
program reaches a commit point. A commit point is the place in the program's processing at which it
completes a unit of work. When a unit of work is completed, IMS and Db2 for z/OS commit the changes
that your program made to the database. Those changes are now permanent and the changed data is now
available to other application programs.

What happens at a commit point

When an application program finishes processing one distinct unit of work, IMS and Db2 for z/OS consider
that processing to be valid, even if the program later encounters problems. For example, an application
program that is retrieving, processing, and responding to a message from a terminal constitutes a unit of
work. If the program encounters problems while processing the next input message, the processing it has
done on the first input message is not affected. These input messages are separate pieces of processing.

Chapter 3. Analyzing IMS application processing requirements 45

A commit point indicates to IMS that a program has finished a unit of work, and that the processing it has
done is accurate. At that time:

- IMS releases segments it has locked for the program since the last commit point. Those segments are
then available to other application programs.

« IMS and Db2 for z/OS make the program's changes to the database permanent.

« The current position in all databases except GSAM is reset to the start of the database.

If the program terminates abnormally before reaching the commit point:

« IMS and Db2 for z/OS back out all of the changes the program has made to the database since the last
commit point. (This does not apply to batch programs that write their log to tape.)

- IMS discards any output messages that the program has produced since the last commit point.

Until the program reaches a commit point, IMS holds the program's output messages so that, if the
program terminates abnormally, users at terminals and other application programs do not receive
inaccurate information from the abnormally terminating application program.

If the program is processing an input message and terminates abnormally, the input message is not
discarded if both of the following conditions exist:

1. You are not using the Non-Discardable Messages (NDM) exit routine.

2. IMS terminates the program with one of the following abend codes: U0777, U2478, U2479, U3303.
The input message is saved and processed later.

Exception: The input message is discarded if it is not terminated by one of the abend codes
previously referenced. When the program is restarted, IMS gives the program the next message.

If the program is processing an input message when it terminates abnormally, and you use the NDM exit
routine, the input message might be discarded from the system regardless of the abend. Whether the
input message is discarded from the system depends on how you have written the NDM exit routine.

Related Reading: For more information about the NDM exit routine, see IMS Version 15 Exit Routines.
- IMS notifies the MTO that the program terminated abnormally.

- IMS and Db2 for z/OS release any locks that the program has held on data it has updated since the last
commit point. This makes the data available to other application programs and users.

Where commit points occur
A commit point can occur in a program for any of the following reasons:

« The program terminates normally. Except for a program that accesses Fast Path resources, normal
program termination is always a commit point. A program that accesses Fast Path resources must reach
a commit point before terminating.

« The program issues a checkpoint call. Checkpoint calls are a program's means of explicitly indicating to
IMS that it has reached a commit point in its processing.

« If a program processes messages as its input, a commit point might occur when the program retrieves a
new message. IMS considers this commit point the start of a new unit of work in the program. Retrieving
a new message is not always a commit point. This depends on whether the program has been defined
as single mode or multiple mode.

— If you specify single mode, a commit point occurs each time the program issues a call to retrieve a
new message. Specifying single mode can simplify recovery, because you can restart the program
from the most recent call for a new message if the program terminates abnormally. When IMS
restarts the program, the program begins by processing the next message.

— If you specify multiple mode, a commit point occurs when the program issues a checkpoint call
or when it terminates normally. At those times, IMS sends the program's output messages to
their destinations. Because multiple-mode programs contain fewer commit points than do single
mode programs, multiple mode programs might offer slightly better performance than single-mode
programs. When a multiple mode program terminates abnormally, IMS can only restart it from a

46 IMS: Application Programming

checkpoint. Instead of reprocessing only the most recent message, a program might have several
messages to reprocess, depending on when the program issued the last checkpoint call.

The following table lists the modes in which the programs can run. Because processing mode is not
applicable to batch programs and batch-oriented BMPs, they are not listed in the table. The program type
is listed, and the table indicates which mode is supported.

Table 21. Processing modes

Program type Single mode only Multiple mode only Either mode
MPP X

IFP X

Transaction-oriented BMP X

You specify single or multiple mode on the MODE parameter of the TRANSACT macro.
Related Reading: For information on the TRANSACT macro, see IMS Version 15 System Definition.

See the following figure for an illustration of the difference between single-mode and multiple-mode
programs. A single-mode program gets and processes messages, sends output, looks for more messages,
and terminates if there are no more. A multiple-mode program gets and processes messages, sends
output, but has a checkpoint before looking for more messages and terminating. For a single-mode
program, the commit points are when the message is obtained and the program terminates. For multiple-
mode, the commit point is at the checkpoint and when the program terminates.

Single-mode program Multiple-mode program

Get a message v Get a message

\
Process message \“\\ Process message

.
Send output message \\\ Send output message
Commit —_

More messages? _— points & Checkpoint

— N\
Terminate «— \\ More messages?

A Terminate

Figure 15. Single mode and multiple mode

Db2 for z/OS does some processing with multiple- and single-mode programs that IMS does not. When a
multiple-mode program issues a call to retrieve a new message, Db2 for z/OS performs an authorization
check. If the authorization check is successful, Db2 for z/OS closes any SQL cursors that are open. This
affects the design of your program.

The Db2 for z/OS SQL COMMIT statement causes Db2 for z/OS to make permanent changes to the
database. However, this statement is valid only in TSO application programs. If an IMS application
program issues this statement, it receives a negative SQL return code.

Chapter 3. Analyzing IMS application processing requirements 47

Planning for program recovery: checkpoint and restart

Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Dh2 for z/OS handles recovery of Db2 for z/OS data.

Related concepts

“Introducing checkpoint calls” on page 48

Checkpoint calls indicate to IMS that the program has reached a commit point. They also establish places
in the program from which the program can be restarted. IMS has symbolic checkpoint calls and basic
checkpoint calls.

“When to use checkpoint calls” on page 49
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

“Specifying checkpoint frequency” on page 51
You should specify checkpoint frequency in your program so that you can easily modify it when the
frequency needs to be adjusted.

Introducing checkpoint calls

Checkpoint calls indicate to IMS that the program has reached a commit point. They also establish places
in the program from which the program can be restarted. IMS has symbolic checkpoint calls and basic
checkpoint calls.

A program might issue only one type of checkpoint call.

« MPPs and IFPs must use basic checkpoint calls.
« BMP, JMP, and batch programs can use either symbolic checkpoint calls or basic checkpoint calls.

Programs that issue symbolic checkpoint calls can specify as many as seven data areas in the program to
be checkpointed. When IMS restarts the program, the Restart call restores these areas to the condition
they were in when the program issued the symbolic checkpoint call. Because symbolic checkpoint calls
do not support z/0S files, if your program accesses z/0S files, you must supply your own method of
establishing checkpoints.

You can use symbolic checkpoint for either Normal Start or Extended Restart (XRST).
For example, typical calls for a Normal start would be as follows:

« XRST (I/0O area is blank)

« CHKP (I/0O area has checkpoint ID)

- Database Calls (including checkpoints)

« CHKP (final checkpoint)

For example, typical calls for an Extended Restart (XRST) would be as follows:
« XRST (I/0 area has checkpoint ID)

« CHKP (I/0O area has new checkpoint ID)

- Database Calls (including checkpoints)

« CHKP (final checkpoint)

The restart call, which you must use with symbolic checkpoint calls, provides a way of restarting a
program after an abnormal termination. It restores the program's data areas to the way they were when
the program issued the symbolic checkpoint call. It also restarts the program from the last checkpoint the
program established before terminating abnormally.

All programs can use basic checkpoint calls. Because you cannot use the restart call with the basic
checkpoint call, you must provide program restart. Basic checkpoint calls do not support either z/OS or
GSAM files. IMS programs cannot use z/OS checkpoint and restart. If you access z/OS files, you must
supply your own method of establishing checkpoints and restarting.

In addition to the actions that occur at a commit point, issuing a checkpoint call causes IMS to:

48 IMS: Application Programming

 Inform Db2 for z/OS that the changes your program has made to the database can be made permanent.
Db2 for z/OS makes the changes to Db2 for z/OS data permanent, and IMS makes the changes to IMS
data permanent.

- Write a log record containing the checkpoint identification given in the call to the system log, but only
if the PSB contains a DB PCB. You can print checkpoint log records by using the IMS File Select and
Formatting Print program (DFSERA10). With this utility, you can select and print log records based on
their type, the data they contain, or their sequential positions in the data set. Checkpoint records are
X'18' log records.

Related Reading: For more information about the DFSERAL0 program, see IMS Version 15 System
Utilities.

« Send a message containing the checkpoint identification that was given in the call to the system console
operator and to the IMS master terminal operator.

« Return the next input message to the program's I/O area, if the program processes input messages. In
MPPs and transaction-oriented BMPs, a checkpoint call acts like a call for a new message.

Restriction: Do not specify CHKPT=EQV on any DD statement in order to take an IMS checkpoint because
of unpredictable results.

Related concepts

“Planning for program recovery: checkpoint and restart” on page 48

Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Db2 for z/OS handles recovery of Db2 for z/OS data.

When to use checkpoint calls
Issuing Checkpoint calls is most important in programs that do not have built-in commit points.

The decision about whether your program should issue checkpoints, and if so, how often, depends on
your program. Generally, these programs should issue checkpoint calls:

« Multiple-mode programs
« Batch-oriented BMPs (which can issue either SYNC or CHKP calls)
Most batch programs

« Programs that run in a data sharing environment
« JMP applications

You do not need to issue checkpoint calls in:

» Single-mode BMP or MPP programs

« Database load programs

« Programs that access the database in read-only mode, as defined with the PROCOPT=GO option (during
a PSBGEN), and are short enough to restart from the beginning

« Programs that have exclusive use of the database

Checkpoints in MPPs and transaction-oriented BMPs

The mode type of the program is specified on the MODE keyword of the TRANSACT macro during IMS
system generation. The modes are single and multiple.

« In single-mode programs

In single mode programs (MODE=SNGL was specified on the TRANSACT macro during IMS system
definition), a Get Unique to the message queue causes an implicit commit to be performed.

« In multiple-mode programs

In multiple-mode BMPs and MPPs, the only commit points are those that result from the checkpoint
calls that the program issues and from normal program termination. If the program terminates
abnormally and it has not issued checkpoint calls, IMS backs out the program's database updates

Chapter 3. Analyzing IMS application processing requirements 49

and cancels the messages it created since the beginning of the program. If the program has issued
checkpoint calls, IMS backs out the program's changes and cancels the output messages it has created
since the most recent checkpoint.

Consider the following when issuing checkpoint calls in multiple-mode programs:

— How long it would take to back out and recover that unit of processing. The program should issue
checkpoints frequently enough to make the program easy to back out and recover.

— How you want the output messages grouped. checkpoint calls establish how a multiple-mode
program's output messages are grouped. Programs should issue checkpoint calls frequently enough
to avoid building up too many output messages.

Depending on the database organization, issuing a checkpoint call might reset your position in the
database.

Related Reading: For more information about losing your position when a checkpoint is issued, see IMS
Version 15 Database Administration.

Checkpoints in batch-oriented BMPs
Issuing checkpoint calls in a batch-oriented BMP is important for several reasons:

« In addition to committing changes to the database and establishing places from which the program can
be restarted, checkpoint calls release resources that IMS has locked for the program.

« A batch-oriented BMP that uses DEDBs or MSDBs might terminate with abend U1008 if a SYNC or CHKP
callis not issued before the application program terminates.

« If a batch-oriented BMP does not issue checkpoints frequently enough, it can be abnormally
terminated, or it can cause another application program to be abnormally terminated by IMS for any of
these reasons:

— If a BMP retrieves and updates many database records between checkpoint calls, it can tie up large
portions of the databases and cause long waits for other programs needing those segments.

Exception: For a BMP with a processing option of GO or exclusive, IMS does not lock segments for
programs. Issuing checkpoint calls releases the segments that the BMP has locked and makes them
available to other programs.

— The space needed to maintain lock information about the segments that the program has read and
updated exceeds what has been defined for the IMS system. If a BMP locks too many segments, the
amount of storage needed for the locked segments can exceed the amount of available storage. If
this happens, IMS terminates the program abnormally. You must increase the program's checkpoint
frequency before rerunning the program. The available storage is specified during IMS system
definition.

Related Reading: For more information on specifying storage, see IMS Version 15 System Definition.

You can limit the number of locks for the BMP by using the LOCKMAX=n parameter on the PSBGEN
statement. For example, a specification of LOCKMAX=5 means the application cannot obtain more
than 5000 locks at any time. The value of n must be between 0 and 255. When a maximum lock limit
does not exist, 0 is the default. If the BMP tries to acquire more than the specified number of locks,
IMS terminates the application with abend U3301.

Related Reading: For more information about this abend, see IMS Version 15 Messages and Codes,
Volume 3: IMS Abend Codes.

Checkpoints in batch programs

Batch programs that update databases should issue checkpoint calls. The main consideration in deciding
how often to take checkpoints in a batch program is the time required to back out and reprocess the
program after a failure. A general recommendation is to issue one checkpoint call every 10 or 15 minutes.

If you might need to back out the entire batch program, the program should issue the checkpoint call at
the beginning of the program. IMS backs out the program to the checkpoint you specify, or to the most

50 IMS: Application Programming

recent checkpoint, if you do not specify a checkpoint. If the database is updated after the beginning of the
program and before the first checkpoint, IMS is not able to back out these database updates.

For a batch program to issue checkpoint calls, it must specify the compatibility option in its PSB
(CMPAT=YES). This generates an I/O PCB for the program, which IMS uses as an I/O PCB in the
checkpoint call.

Another important reason for issuing checkpoint calls in batch programs is that, although they may
currently run in an IMS batch region, they might later need to access online databases. This would
require converting them to BMPs. Issuing checkpoint calls in a BMP is important for reasons other than
recovery—for example, to release database resources for other programs. So, you should initially include
checkpoints in all batch programs that you write. Although the checkpoint support might not be needed
then, it is easier to incorporate checkpoint calls initially than to try to fit them in later.

To free database resources for other programs, batch programs that run in a data-sharing environment
should issue checkpoint calls more frequently than those that do not run in a data-sharing environment.

Related concepts

“DB batch processing” on page 39

These topics describe DB batch processing and can help you decide if this batch program is appropriate
for your application.

“Batch processing online: batch-oriented BMPs” on page 42

A batch-oriented BMP performs batch-type processing in any online environment. When run in the DB/DC
or DCCTL environment, a batch-oriented BMP can send its output to the IMS message queue to be
processed later by another application program. Unlike a transaction-oriented BMP, a batch-oriented BMP
cannot access the IMS message queue for input.

“Batch message processing: transaction-oriented BMPs” on page 44
Transaction-oriented BMPs can access z/0S files, GSAM databases, Db2 for z/OS databases, full-function
databases, DEDBs, and MSDBs.

“Planning for program recovery: checkpoint and restart” on page 48
Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Dh2 for z/OS handles recovery of Db2 for z/OS data.

Specifying checkpoint frequency

You should specify checkpoint frequency in your program so that you can easily modify it when the
frequency needs to be adjusted.

You can do this by:

« Using a counter in your program to keep track of elapsed time, and issuing a checkpoint call after a
certain time interval.

 Using a counter to keep track of the number of root segments your program accesses, and issuing a
checkpoint call after a certain number of root segments.

 Using a counter to keep track of the number of updates your program performs, and issuing a
checkpoint call after a certain number of updates.

Related concepts
“Planning for program recovery: checkpoint and restart” on page 48

Chapter 3. Analyzing IMS application processing requirements 51

Recovery in an IMS application program that accesses Db2 for z/OS data is handled by both IMS and Db2
for z/OS. IMS coordinates the process, and Db2 for z/OS handles recovery of Db2 for z/OS data.

Data availability considerations

The following information describes the conditions that could cause data to become unavailable in a full-
function database and the program calls that allow your program to manage data under these conditions.

Dealing with unavailable data

The conditions that make the database unavailable for both read and update are:

The /LOCK command for a database was issued.

The /STOP command for a database was issued.
The /DBRECOVERY command was issued.
Authorization for a database failed.

The conditions that make the database available only for read and not for update are:

« The /DBDUMP command has been issued.
« Database ACCESS value is RD (read).

In addition to unavailability of an entire database, other situations involving unavailability of a limited
amount of data can also inhibit program access. One such example would be a failure situation involving
data sharing. The active IMS system knows which locks were held by a sharing IMS system at the time
the sharing IMS system failed. Although the active IMS system continues to use the database, it must
reject access to the data which the failed IMS system locked upon failure. This situation occurs for both
full-function and DEDB databases.

The two situations where the program might encounter unavailable data are:

« The program makes a call requiring access to a database that was unavailable at the time the program
was scheduled.

« The database was available when the program was scheduled, but limited amounts of data are
unavailable. The current call has attempted to access the unavailable data.

Regardless of the condition causing the data to be unavailable, the program has two possible approaches
when dealing with unavailable data. The program can be insensitive or sensitive to data unavailability.

« When the program is insensitive, IMS takes appropriate action when the program attempts to access
unavailable data.

« When the program is sensitive, IMS informs the program that the data it is attempting to access is not
available.

If the program is insensitive to data unavailability, and attempts to access unavailable data, IMS aborts
the program (3303 pseudo-abend), and backs out any updates the program has made. The input message
that the program was processing is suspended, and the program is scheduled to process the input
message when the data becomes available. However, if the database is unavailable because dynamic
allocation failed, a call results in an AI (unable to open) status code.

If the program is sensitive to data unavailability and attempts to access unavailable data, IMS returns a

status code indicating that it could not process the call. The program then takes the appropriate action.

A facility exists for the program to initiate the same action that IMS would have taken if the program had
been insensitive to unavailable data.

IMS does not schedule batch programs if the data that the program can access is unavailable. If the batch
program is using block-level data sharing, it might encounter unavailable data if the sharing system fails
and the batch system attempts to access data that was updated but not committed by the failed system.

The following conditions alone do not cause a batch program to fail during initialization:
- APCB refers to a HALDB.

52 IMS: Application Programming

» The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not allowed. If the program is
sensitive to unavailable data, such a call results in the status code BA; otherwise, such a call results in
message DFS3303I, followed by ABENDU3303.

Scheduling and accessing unavailable databases

By using the INIT, INQY, SETS, SETU, and ROLS calls, the program can manage a data environment
where the program is scheduled with unavailable databases.

The INIT call informs IMS that the program is sensitive to unavailable data and can accept the status
codes that are issued when the program attempts to access such data. The INIT call can also be used to
determine the data availability for each PCB.

The INQY call is operable in both batch and online IMS environments. IMS application programs can use
the INQY call to request information regarding output destination, session status, the current execution
environment, the availability of databases, and the PCB address based on the PCBNAME. The INQY call
is only supported by way of the AIB interface (AIBTDLI or CEETDLI using the AIB rather than the PCB
address).

The SETS, SETU, and ROLS calls enable the application to define multiple points at which to preserve
the state of full-function (except HSAM) databases and message activity. The application can then return
to these points at a later time. By issuing a SETS or SETU call before initiating a set of DL/I calls to
perform a function, the program can later issue the ROLS call if it cannot complete a function due to data
unavailability.

The ROLS call allows the program to roll back its IMS full-function database activity to the state that it
was in prior to a SETS or SETU call being issued. If the PSB contains an MSDB or a DEDB, the SETS and
ROLS (with token) calls are invalid. Use the SETU call instead of the SETS call if the PSB contains a DEDB,
MSDB, or GSAM PCB.

The ROLS call can also be used to undo all update activity (database and messages) since the last commit
point and to place the current input message on the suspend queue for later processing. This action is
initiated by issuing the ROLS call without a token or I/O area.

Restriction: With Db2 for z/OS, you cannot use ROLS (with a token) or SETS.

Related information
3303 (Messages and Codes)

Use of STAE or ESTAE and SPIE in IMS programs

IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP, BMP) regions, and the
batch regions. In the control region, STAE or ESTAE routines ensure that database logging and various
resource cleanup functions are complete.

In the dependent region, STAE or ESTAE routines are used to notify the control region of any abnormal
termination of the application program or the dependent region itself. If the control region is not

notified of the dependent region termination, resources are not properly released and normal checkpoint
shutdown might be prevented.

In the batch region, STAE or ESTAE routines ensure that database logging and various resource cleanup
functions are complete. If the batch region is not notified of the application program termination,
resources might not be properly released.

Two important aspects of the STAE or ESTAE facility are that:

« IMS relies on its STAE or ESTAE facility to ensure database integrity and resource control.
« The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship between the program and
the STAE or ESTAE facility.

Chapter 3. Analyzing IMS application processing requirements 53

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.mc/msgs/3303.htm#imsabend3303

Generally, do not use the STAE or ESTAE facility in your application program. However, if you believe that
the STAE or ESTAE facility is required, you must observe the following basic rules:

« When the environment supports STAE or ESTAE processing, the application program STAE or ESTAE
routines always get control before the IMS STAE or ESTAE routines. Therefore, you must ensure that
the IMS STAE or ESTAE exit routines receive control by observing the following procedures in your
application program:

— Establish the STAE or ESTAE routine only once and always before the first DL/I call.
— When using the STAE or ESTAE facility, the application program should not alter the IMS abend code.

— Do not use the RETRY option when exiting from the STAE or ESTAE routine. Instead, return a
CONTINUE-WITH-TERMINATION indicator at the end of the STAE or ESTAE processing. If your
application program specifies the RETRY option, be aware that IMS STAE or ESTAE exit routines will
not get control to perform cleanup. Therefore, system and database integrity might be compromised.

« The application program STAE or ESTAE exit routine must not issue DL/I calls (DB or TM) because the
original abend might have been caused by a problem between the application and IMS. A problem
between the application and IMS could result in recursive entry to STAE or ESTAE with potential loss of
database integrity, or in problems taking a checkpoint. This also could result in a hang condition or an
ABENDUOO069 during termination.

Related concepts

“What to do when your IMS program terminates abnormally” on page 151

When your program terminates abnormally, you can take the following actions to simplify the task of
finding and fixing the problem.

Dynamic allocation for IMS databases

Use the dynamic allocation function to specify the JCL information for IMS databases in a library instead
of in the JCL of each batch or online job.

If you use dynamic allocation, do not include JCL DD statements for any database data sets that have
been defined for dynamic allocation. Check with the DBA or comparable specialist to determine which
databases have been defined for dynamic allocation.

Related Reading: For additional information on the definitions for dynamic allocation, see the description
of the DFSMDA macro in IMS Version 15 System Definition.

54 IMS: Application Programming

Chapter 4. Analyzing CICS application processing
requirements

IMS supports application programs running in a CICS environment

Defining CICS application requirements

One of the steps of application design is to decide how the business processes, or tasks can be best
grouped into a set of programs that will efficiently perform the required processing.

Some of the considerations in analyzing processing requirements are:
« When the task must be performed

— Will it be scheduled unpredictably (for example on terminal demand) or periodically (for example,
weekly)?

« How the program that performs the task is executed

— Will it be executed online, where response time is more important, or by batch job submission, where
a slower response time is acceptable?

« The consistency of the processing components

— Does this action the program is to perform involve more than one type of program logic? For example,
does it involve mostly retrievals, and only one or two updates? If so, you should consider separating
the updates into a separate program.

— Does this action involve several large groups of data? If it does, it might be more efficient to separate
the programs by the data they access.

- Any special requirements about the data or processing

Security
Should access to the program be restricted?

Recovery
Are there special recovery considerations in the program's processing?

Integrity
Do other departments use the same data?

Answers to questions like these can help you decide on the number of application programs that the
processing will require, and on the types of programs that perform the processing most efficiently.
Although rules dealing with how many programs can most efficiently do the required processing do not
exist, here are some suggestions:

« As you look at each programming task, examine the data and processing that each task involves. If a
task requires different types of processing and has different time limitations (for example, weekly as
opposed to monthly), that task may be more efficiently performed by several programs.

« As you define each program, it is a good idea for maintenance and recovery reasons to keep programs
as simple as possible. The simpler a program is—the less it does—the easier it is to maintain, and to
restart after a program or system failure. The same is true with data availability—the less data that is
accessed, the more likely the data is to be available; the more limited the data accessed, the more likely
the data is to be available.

Similarly, if the data that the application requires is physically in one place, it might be more efficient to
have one program do more of the processing than usual. These are considerations that depend on the
processing and the data of each application.

« Documenting each of the user tasks is helpful during the design process, and in the future when
others will work with your application. Be sure you are aware of the standards in this area. The kind

© Copyright IBM Corp. 1974, 2020 55

of information that is typically kept is when the task is to be executed, a functional description, and
requirements for maintenance, security, and recovery.

For example, for the Current Roster process described previously, you might record the information
shown in the following form. How frequently the program is run is determined by the number of classes
(20) for which the Ed Center will print current rosters each week.

Example: Current roster task description

USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE: Included in Education DB maintenance.

SECURITY: None.

RECOVERY: After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your CICS application program

When designing your program, consider the type of data it must access. The type of data depends on the
operating environment.

The data from IMS and Db2 for z/OS databases, and z/0S files, that is available to CICS online and IMS
batch programs is shown in the following table.

Table 22. The data that your CICS program can access

Db2 for z/0S
Type of program IMS databases databases z/0S files
CICS online Yes? Yes? Yes3
DB batch Yes Yes3 Yes

Notes:

1. Except for Generalized Sequential Access Method (GSAM) databases. GSAM enables batch programs
to access a sequential z/OS data set as a simple database.

2. IMS does not participate in the call process.
3. Access through CICS file control or transient data services.

Also, consider the type of database your program must access. As shown in the following table, the type
of program you can write and database that can be accessed depends on the operating environment.

56 IMS: Application Programming

Table 23. Program and database options in the CICS environments

Type of program you
Environment! can write Type of database that can be accessed

DB batch DB batch Db2 for z/0S2
DL/I Full-function
GSAM
z/0S files

DBCTL BMP Db2 for z/OS
DEDBs
Full-function
GSAM
z/0OS files

CICS online Db2 for z/0S2
DEDBs
Full-function
z/0S files (access through CICS file control or
transient data services)

Notes:

1. A CICS environment, or CICS remote DL/I environment also exists and is also referred to as function
shipping. In this environment, a CICS system supports applications that issue DL/I calls but the CICS
system does not service the requests itself. The CICS environment "function ships" the DL/I calls to
another CICS system that is using DBCTL. For more information on remote DL/I, see CICS Transaction
Server for z/0S IMS Database Control Guide.

2. IMS does not participate in the call process.

The types of databases that can be accessed are:
« Full-Function Databases

Full-function databases are hierarchic databases that are accessed through Data Language I (DL/I).
DL/I calls enable application programs to retrieve, replace, delete, and add segments to full-function
databases. CICS online and BMP programs can access the same database concurrently (if participating
in IMS data sharing); an IMS batch program must have exclusive access to the database (if not
participating in IMS data sharing).

All types of programs (batch, BMPs, and online) can access full-function databases.

- Fast Path DEDBs
Data entry databases (DEDBs) are hierarchic databases for, and efficient access to, large volumes of
detailed data. In the DBCTL environment, CICS online and BMP programs can access DEDBs.

- Db2 for z/0S Databases
Db2 for z/OS databases are relational databases. Relational databases are represented to application
programs and users as tables and are processed using a relational data language called Structured

Query Language (SQL). Db2 for z/OS databases can be processed by CICS online transactions, and by
IMS batch and BMP programs.

Related Reading: For information on processing Db2 for z/OS databases, see DB2 for z/OS Application
Programming and SQL Guide.

« GSAM Databases

Chapter 4. Analyzing CICS application processing requirements 57

Generalized Sequential Access Method (GSAM) is an access method that enables BMPs and batch
programs to access a "flat" sequential z/OS data set as a simple database. A GSAM database can be
accessed by z/0OS or CICS.

« z/0S Files

CICS online and IMS batch programs can access z/OS files for their input, processing, or output. Batch
programs can access z/0S files directly; online programs must access them through CICS file control or
transient data services.

Related concepts

“Using data sharing for your CICS program” on page 59
If you use data sharing, your programs can participate in IMS data sharing. Under data sharing, CICS
online and BMP programs can access the same DL/I database concurrently.

Writing a CICS program to access IMS databases

The types of programs you can use depend on whether you are running in the DBCTL environment. Within
the different environments, the type of program you write depends on the processing your application
requires. Each type of program answers different application requirements.

Related concepts

“IMS solutions for Java development overview” on page 553

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Writing a CICS online program

Use the following information to decide if an online program is appropriate for your application.

Data that a CICS online program can access

CICS online programs run in the DBCTL environment and can access IMS full-function databases, Fast
Path DEDBs, Db2 for z/OS databases, and z/0OS files.

Online programs that access IMS databases are executed in the same way as other CICS programs.

Using a CICS online program

An online program runs under the control of CICS, and it accesses resources concurrently with other
online programs. Some of the application requirements online programs can answer are:

« Information in the database must be available to many users.

« Program needs to communicate with terminals and other programs.
« Programs must be available to users at remote terminals.

« Response time is important.

The structure of an online program, and the way it receives status information, depend on whether it is a
call- or command-level program. However, both command- and call-level online programs:

« Schedule a PSB (for CICS online programs). A PSB is automatically scheduled for batch or BMP
programs.

« Issue either commands or calls to access the database. Online programs cannot mix commands and
calls in one logical unit of work (LUW).

« Optionally, terminate a PSB for CICS online programs.

e Issue an EXEC CICS RETURN statement when they have finished their processing. This statement
returns control to the linking program. When the highest-level program issues the RETURN statement,
CICS regains control and terminates the PSB if it has not yet been terminated.

Because an online application program can be used concurrently by several tasks, it must be quasi-
reentrant.

58 IMS: Application Programming

An online program in the DBCTL environment can use many IMS system service requests.

DL/I database or system service requests must refer to one of the program communication blocks (PCBs)
from the list of PCBs passed to your program by IMS. The PCB that must be used for making system
service requests is called the I/O PCB. When present, it is the first PCB in the list of PCBs.

For an online program in the DBCTL environment, the I/O PCB is optional. To use the I/O PCB, you must
indicate this in the application program when it schedules the PSB.

Before you run your program, the program specification blocks (PSBs) and database descriptions (DBDs)
the program uses must be converted to internal control block format using the IMS ACBGEN utility. PSBs
specify the characteristics of an application program. DBDs specify the physical and logical characteristics
of IMS databases.

Related Reading: For more information on performing an ACBGEN and a PSBGEN, see IMS Version 15
System Utilities.

Because an online program shares a database with other online programs, it may affect the performance
of your online system.

Related concepts

“Maximizing the performance of your CICS system” on page 61

When you write programs that share data with other programs (for example, a program that will
participate in IMS data sharing or a BMP), be aware of how your program affects the performance of
the online system.

“Distributed and local connectivity with the IMS Universal drivers” on page 560
The IMS Universal drivers support distributed (type-4) and local (type-2) connectivity to IMS databases.

Using data sharing for your CICS program

If you use data sharing, your programs can participate in IMS data sharing. Under data sharing, CICS
online and BMP programs can access the same DL/I database concurrently.

Batch programs in a data-sharing environment can access databases used by other batch programs, and
by CICS and IMS online programs. With data sharing, you can share data directly and your program's
requests need not go through a mirror transaction.

Related Reading: For more information on sharing a database with an IMS system, see IMS Version 15
System Administration.

Related concepts

“Accessing databases with your CICS application program” on page 56

When designing your program, consider the type of data it must access. The type of data depends on the
operating environment.

Scheduling and terminating a PSB (CICS online programs only)

Before your online program issues any DL/I calls, it must indicate to IMS its intent to use a particular PSB
by issuing either a PCB call or a SCHD command. In addition to indicating which PSB your program will
use, the PCB call obtains the address of the PCBs in the PSB. When you no longer need a PSB, you can
terminate it using the TERM request.

In a CICS online program, you use a PCB call or SCHD command (for command-level programs) to obtain
the PSB for your program. Because CICS releases the PSB your program uses when the transaction ends,
your program need not explicitly terminate the PSB. Only use a terminate request if you want to:

 Use a different PSB
- Commit all the database updates and establish a logical unit of work for backing out updates
» Free IMS resources for use by other CICS tasks

A terminate request causes a CICS sync point, and a CICS sync point terminates the PSB. For more
information about CICS recovery concepts, see the appropriate CICS publication.

Chapter 4. Analyzing CICS application processing requirements 59

Do not use terminate requests for other reasons because:

« A terminate request forces a CICS sync point. This sync point releases all recoverable resources and
IMS database resources that were enqueued for this task.

If the program continues to update other CICS resources after the terminate request and then
terminates abnormally, only those resources that were updated after the terminate request are backed
out. Any IMS changes made by the program are not backed out.

« IMS lock management detects deadlocks that occur if two transactions are waiting for segments held by
the other.

When a deadlock is detected, one transaction is abnormally terminated. Database changes are backed
out to the last TERM request. If a TERM request or CICS sync point was issued prior to the deadlock,
CICS does not restart the transaction.

Related Reading: For a complete description of transaction restart considerations, see CICS
Transaction Server for z/0OS Recovery and Restart Guide.

- Issuing a terminate request causes additional logging.

« If the terminal output requests are issued after a terminate request and the transaction fails at this
point, the terminal operator does not receive the message.

The terminal operator may assume that the entire transaction failed, and reenter the input, thus
repeating the updates that were made before the terminate request. These updates were not backed
out.

Linking and passing control to other programs (CICS online
programs only)

Use CICS to link your program to other programs without losing access to the facilities acquired in the
linking program.

For example:

 You could schedule a PSB and then link to another program using a LINK command. On return from that
program, the PSB is still scheduled.

« Similarly, you could pass control to another program using the XCTL command, and the PSB remains
scheduled until that program issues an EXEC CICS RETURN statement. However, when you pass control
to another program using XCTL, the working storage of the program passing control is lost. If you want
to retain the working storage for use by the program being linked to, you must pass the information in
the COMMAREA.

Recommendation: To simplify your work, instead of linking to another program, you can issue all DL/I
requests from one program module. This helps to keep the programming simple and easy to maintain.

Terminating a PSB or issuing a sync point affects the linking program. For example, a terminate request or
sync point that is issued in the program that was linked causes the release of CICS resources enqueued in
the linking program.

How CICS distributed transactions access IMS

CICS can divide a single, logical unit of work into separate CICS transactions and coordinate the sync
point globally. If such CICS transactions access DBCTL, locking and buffer management issues might
occur.

To IMS, the transactions are separate units of work, on different DBCTL threads, and they do not share
locks or buffers. For example, if a global transaction runs, obtains a database lock, and reaches the
commit point, CICS does not process the synchronization point until the other transactions in the CICS
unit of recovery (UOR) are ready to commit. If a second transaction in the same CICS UOR requests the
same lock as that held by the first transaction, the second transaction is held in a lock wait state. The first
transaction cannot complete the sync point and release the lock until the second transaction also reaches

60 IMS: Application Programming

the commit point, but this cannot happen because the second transaction is in a lock wait state. You must
ensure that this type of collision does not occur with CICS distributed transactions that access IMS.

Maximizing the performance of your CICS system

When you write programs that share data with other programs (for example, a program that will
participate in IMS data sharing or a BMP), be aware of how your program affects the performance of
the online system.

A BMP program, in particular, can affect the performance of the CICS online transactions. This is because
BMP programs usually make a larger number of database updates than CICS online transactions, and

a BMP program is more likely to hold segments that CICS online programs need. Limit the number of
segments held by a BMP program, so CICS online programs need not wait to acquire them.

One way to limit the number of segments held by a BMP or batch program that participates in IMS

data sharing is to issue checkpoint requests in your program to commit database changes and release
segments held by the program. When deciding how often to issue checkpoint requests, you can use one
or more of the following techniques:

- Divide the program into small logical units of work, and issue a checkpoint call at the end of each unit.

« Issue a checkpoint call after a certain number of DL/I requests have been issued, or after a certain
number of transactions are processed.

In CICS online programs, release segments for use by other transactions to maximize the performance of
your online system. (Ordinarily, database changes are committed and segments are released only when
control is returned to CICS.) To more quickly free resources for use by other transactions, you can issue

a TERM request to terminate the PSB. However, less processing overhead generally occurs if the PSB is
terminated when control is returned to CICS.

Related concepts

“Writing a CICS online program” on page 58
Use the following information to decide if an online program is appropriate for your application.

“Taking checkpoints in batch and BMP programs” on page 62
You can take checkpoints in batch and BMP programs. Checkpoints are important for recovery and for
integrity.

Programming integrity and database recovery considerations for
your CICS program

IMS provides support for protecting data integrity for CICS online programs

How IMS protects data integrity for CICS online programs
IMS can protect the data integrity for CICS online programs.

IMS protects the integrity of the database for programs that share data by:

« Preventing other application programs with update capability from accessing any segments in the
database record your program is processing, until your program finishes with that record and moves to a
new database record in the same database.

- Preventing other application programs from accessing segments that your program deletes, replaces, or
inserts, until your program reaches a sync point. When your program reaches a sync point, the changes
your program has made to the database become permanent, and the changed data becomes available
to other application programs.

Exception: If PROCOPT=GO has been defined during PSBGEN for your program, your program can
access segments that have been updated but not committed by another program.

- Backing out database updates made by an application program that terminates abnormally.

Chapter 4. Analyzing CICS application processing requirements 61

You may also want to protect the data your program accesses by retaining segments for the sole use
of your program until your program reaches a sync point—even if you do not update the segments.
(Ordinarily, if you do not update the segments, IMS releases them when your program moves to a new
database record.) You can use the Q command code to reserve segments for the exclusive use of your
program. You should use this option only when necessary because it makes data unavailable to other
programs and can have an impact on performance.

Recovering databases accessed by batch and BMP programs
You can plan for recovering databases accessed by batch or BMP programs.

CICS recovers databases accessed by CICS online programs in the same way it handles other recoverable
CICS resources. For example, if an IMS transaction terminates abnormally, CICS and IMS back out all
database updates to the last sync point.

For batch or BMP programs, do the following:

« Take checkpoints in your program to commit database changes and provide places from which your
program can be restarted.

 Provide the code for or issue a request to restart your program.

You may also want to back out the database changes that have been made by a batch program that has
not yet committed these changes.

To perform these tasks, you use system service calls, described in more detail in the appropriate
application programming information for your environment.

Requesting an I/0 PCB in batch programs

For your program to successfully issue any system service request, an I/O PCB must have been previously
requested.

Related concepts

“Developing JBP applications with the IMS Java dependent region resource adapter” on page 683
JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Taking checkpoints in batch and BMP programs

You can take checkpoints in batch and BMP programs. Checkpoints are important for recovery and for
integrity.

Taking checkpoints in batch and BMP programs is important for two reasons:

« Recovery: Checkpoints establish places in your program from which your program could be restarted,
in the event of a program or system failure. If your program abnormally terminates after issuing a
checkpoint request, database changes will be backed out to the point at which the checkpoint request
was issued.

« Integrity: Checkpoints also commit the changes that your program has made to the database.

In addition to providing places from which to restart your program and committing database changes,
issuing checkpoint calls in a BMP program or in a program participating in IMS data sharing releases
database segments for use by other programs.

When a batch or BMP program issues a checkpoint request, IMS writes a record containing a checkpoint
ID to the IMS system log.

When your application program reaches a point during its execution where you want to make sure that
all changes made to that point have been physically entered in the database, issue a checkpoint request.
If some condition causes your program to fail before its execution is complete, the database must be
restored to its original state. The changes made to the database must be backed out so that the database
is not left in a partially updated condition for access by other application programs.

62 IMS: Application Programming

If your program runs a long time, you can reduce the number of changes that must be backed out by
taking checkpoints in your program. Then, if your program terminates abnormally, only the database
updates that occurred after the checkpoint must be backed out. You can also restart the program from the
point at which you issued the checkpoint request, instead of having to restart it from the beginning.

Issuing a checkpoint call cancels your position in the database.

Issue a checkpoint call just before issuing a Get Unique call, which reestablishes your position in the
database record after the checkpoint is taken.

Types of checkpoints

The two types of checkpoint calls are basic and symbolic. Both types commit your program's changes to
the database and establish places from which your program can be restarted:

Batch and BMP programs can issue basic checkpoint calls using the CHKP call. When you use basic
checkpoint calls, you must provide the code for restarting the program after an abnormal termination.

Batch and BMP programs can also issue symbolic checkpoint calls. You can issue a symbolic checkpoint
call by using the CHKP call. Like the basic checkpoint call, the symbolic checkpoint call commits changes
to the database and establishes places from which the program can be restarted. In addition, the
symbolic checkpoint call:

« Works with the Extended Restart call to simplify program restart and recovery.

- Lets you specify as many as seven data areas in the program to be checkpointed. When you restart
the program, the restart call restores these areas to the way they were when the program terminated
abnormally.

Specifying a checkpoint ID

Each checkpoint call your program issues must have an identification, or ID. Checkpoint IDs must be 8
bytes in length and contain printable EBCDIC characters.

When you want to restart your program, you can supply the ID of the checkpoint from which you want
the program to be started. This ID is important because when your program is restarted, IMS searches
for checkpoint information with an ID matching the one you have supplied. The first matching ID that IMS
finds becomes the restart point for your program. This means that checkpoint IDs must be unique both
within each application program and among application programs. If checkpoint IDs are not unique, you
cannot be sure that IMS will restart your program from the checkpoint you specified.

One way to make sure that checkpoint IDs are unique within and among programs is to construct IDs in
the following order:

« Three bytes of information that uniquely identifies your program.

- Five bytes of information that serves as the ID within the program, for example, a value that is increased
by 1 for each checkpoint command or call, or a portion of the system time obtained at program start by
issuing the TIME macro.

Specifying checkpoint frequency

To determine the frequency of checkpoint requests, you must consider the type of program and its
performance characteristics.

In batch programs

When deciding how often to issue checkpoint requests in a batch program, you should consider the time
required to back out and reprocess the program after a failure. For example, if you anticipate that the
processing your program performs will take a long time to back out, you should establish checkpoints
more frequently.

If you might back out of the entire program, issue the checkpoint request at the very beginning of the
program. IMS backs out the database updates to the checkpoint you specify. If the database is updated

Chapter 4. Analyzing CICS application processing requirements 63

after the beginning of the program and before the first checkpoint, IMS is not able to back out these
database updates.

In a data-sharing environment, also consider the impact of sharing resources with other programs on your
online system. You should issue checkpoint calls more frequently in a batch program that shares data
with online programs, to minimize resource contention.

Itis a good idea to design all batch programs with checkpoint and restart in mind. Although the
checkpoint support may not be needed initially, it is easier to incorporate checkpoint calls initially than to
try to fit them in later. If the checkpoint calls are incorporated, it is easier to convert batch programs to
BMP programs or to batch programs that use data sharing.

In BMP programs

When deciding how often to issue checkpoint requests in a BMP program, consider the performance of
your CICS online system. Because these programs share resources with CICS online transactions, issue
checkpoint requests to release segments so CICS online programs need not wait to acquire them.

Printing checkpoint log records

You can print checkpoint log records by using the IMS File Select and Formatting Print Program
(DFSERA10). With this utility, you can select and print log records based on their type, the data they
contain, or their sequential positions in the data set. Checkpoint records are type 18 log records. IMS
Version 15 System Utilities describes this program.

Related concepts

“Maximizing the performance of your CICS system” on page 61

When you write programs that share data with other programs (for example, a program that will
participate in IMS data sharing or a BMP), be aware of how your program affects the performance of
the online system.

Backing out database changes

If your program terminates abnormally, the database must be restored to its previous state and
uncommitted changes must be backed out. Changes made by a BMP or CICS online program are
automatically backed out. Database changes made by a batch program might or might not be backed
out, depending on whether your system log is on DASD.

For a batch program

What happens when a batch program terminates abnormally and how you recover the database depend
on the storage medium for the system log. You can specify that the system log is to be stored on either
DASD or on tape.

« When the system log is on DASD

You can specify that IMS is to dynamically back out the changes that a batch program has made to the
database since its last commit point by coding BKO=Y in the JCL. IMS performs dynamic backout for a
batch program when an IMS-detected failure occurs, such as when a deadlock is detected (for batch
programs that share data).

DASD logging also makes it possible for batch programs to issue the rollback (ROLB) system service
request, in addition to ROLL. The ROLB request causes IMS to dynamically back out the changes the
program has made to the database since its last commit point, and then to return control to the
application program.

Dynamically backing out database changes has the following advantages:

— Data accessed by the program that failed is immediately available to other programs. Otherwise, if
batch backout is not used, data is not available to other programs until the IMS Batch Backout utility
has been run to back out the database changes.

64 IMS: Application Programming

— If two programs are deadlocked, one of the programs can continue processing. Otherwise, if batch
backout is not used, both programs will fail. (This applies only to batch programs that share data.)

Instead of using dynamic backout, you can run the IMS Batch Backout utility to back out changes.
« When the system log is on tape

If a batch application program terminates abnormally and the system log is stored on tape, you must
use the IMS Batch Backout utility to back out the program's changes to the database.

Related Reading: For more information, see IMS Version 15 Database Utilities.

For BMP programs

If your program terminates abnormally, the changes the program has made since the last commit point
are backed out. If a system failure occurs, or if the CICS control region or DBCTL terminates abnormally,
DBCTL emergency restart backs out all changes made by the program since the last commit point. You
need not use the IMS Batch Backout utility because DBCTL backs out the changes. If you need to back out
all changes, you can use the ROLL system service call to dynamically back out database changes.

Restarting your program

If you issue symbolic checkpoint calls (for batch and BMP programs), you can use the Extended Restart
system service request (XRST) to restart your program after an abnormal termination.

The XRST call restores the program's data areas to the way they were when the program terminated
abnormally, and it restarts the program from the last checkpoint request the program issued before
terminating abnormally.

If you use basic checkpoint calls (for batch and BMP programs), you must provide the necessary code to
restart the program from the latest checkpoint in the event that it terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning data in an HDAM
database. Your program writes a database record containing repositioning information to the HDAM
database. It updates this record at intervals. When the program terminates, the database record is
deleted. At the completion of the XRST call, the I/O area always contains a checkpoint ID used by the
restart. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed by 4 blanks. If the 8-byte
1D consists of all blanks, then XRST will return the 14-byte time-stamp ID. Also, check the status code in
the PCB. The only successful status code for an XRST call is a row of blanks.

Related concepts

“Developing JBP applications with the IMS Java dependent region resource adapter” on page 683
JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Data availability considerations for your CICS program

The data that a program needs to access may sometimes be unavailable. Use the following functions
when data is not available.

Unavailability of a database
The conditions that make an entire database unavailable for both read and update are the following.

« A STOP command has been issued for the database.
« A DBRECOVERY (DBR) command has been issued for the database.
« DBRC authorization for the database has failed.

The conditions that make a database available for read but not for update are:

« A DBDUMP command has been issued for the database.

Chapter 4. Analyzing CICS application processing requirements 65

« The database access value is RD (read).

In a data-sharing environment, the command or error that created any of these conditions may have
originated on the other system which is sharing data.

Whether a program is scheduled or whether an executing program can schedule a PSB when the database
is unavailable depends on the type of program and the environment:

« A batch program

IMS does not schedule a batch program when one of the databases that the program can access is not
available.

In a non-data sharing environment, DBRC authorization for a database may fail because the database
is currently authorized to a DB/DC environment. In a data-sharing environment, a CICS or a DBCTL
master terminal global command to recover a database or to dump a database may make the database
unavailable to a batch program.

The following conditions alone do not cause a batch program to fail during initialization:

— A PCB refers to a HALDB.
— The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not allowed. If the program is
sensitive to unavailable data, such a call results in the status code BA; otherwise, such a call results in
message DFS3303]I, followed by ABENDU3303.

« An online or BMP program in the DBCTL environment.

When a program executing in this environment attempts to schedule with a PSB containing one or more
full-function databases that are unavailable, the scheduling is allowed. If the program does not attempt
to access the unavailable database, it can function normally. If it does attempt to access the database,
the result is the same as when the database is available but some of the data in it is not available.

Unavailability of some data in a database

In addition to the situation where the entire database is unavailable, there are other situations where a
limited amount of data is unavailable. One example is a failure situation involving data sharing where the
IMS system knows which locks were held by a sharing IMS at the time the sharing IMS system failed. This
IMS system continues to use the database but rejects access to the data that the failed IMS system held
locked at the time of failure.

A batch program, an online program, or a BMP program can be operating in the DBCTL environment. If
so, the online or BMP programs may have been scheduled when an entire database was not available.
The following options apply to these programs when they attempt to access data and either the entire
database is unavailable or only some of the data in the database is unavailable.

Programs executing in these environments have an option of being sensitive or insensitive to data
unavailability.

- When the program is insensitive to data unavailability and attempts to access unavailable data, the
program fails with a 3303 abend. For online programs, this is a pseudo-abend. For batch programs, it is
areal abend. However, if the database is unavailable because dynamic allocation failed, a call results in
an Al (unable to open) status code.

« When the program is sensitive to data unavailability and attempts to access unavailable data, IMS
returns a status code indicating that it could not process the request. The program can then take the
appropriate action. A facility exists for the program to then initiate the same action that IMS would have
taken if the program had been insensitive to unavailable data.

The program issues the INIT call or ACCEPT STATUS GROUP A command to inform IMS that it is
sensitive to unavailable data and can accept the status codes issued when the program attempts to
access such data. The INIT request can also be used to determine data availability for each PCB in the
PSB.

66 IMS: Application Programming

The SETS or SETU and ROLS functions

The SETS or SETU and ROLS requests allow an application to define multiple points at which to preserve
the state of full-function databases.

The application can then return to these points at a later time. By issuing a SETS or SETU request before
initiating a set of DL/I requests to perform a function, the program can later issue the ROLS request if it
cannot complete the function due possibly to data unavailability.

ROLS allows the program to roll back its IMS activity to the state prior to the SETS or SETU call.

Restriction: SETS or SETU and ROLS only roll back the IMS updates. They do not roll back the updates
made using CICS file control or transient data.

Additionally, you can use the ROLS call or command to undo all database update activity since the last
checkpoint.

Use of STAE or ESTAE and SPIE in IMS batch programs

IMS uses STAE or ESTAE routines in the IMS batch regions to ensure that database logging and various
resource cleanup functions are completed.

Two important aspects of the STAE or ESTAE facility are that:

« IMS relies on its STAE or ESTAE facility to ensure database integrity and resource control.
« The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship between the program and
the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your batch application program. However, if you believe
that the STAE or ESTAE facility is required, you must observe the following basic rules:

- When the environment supports STAE or ESTAE processing, the application program STAE or ESTAE
routines always get control before the IMS STAE or ESTAE routines. Therefore, you must ensure that
the IMS STAE or ESTAE exit routines receive control by observing the following procedures in your
application program:

— Establish the STAE or ESTAE routine only once and always before the first DL/I call.
— When using the STAE or ESTAE facility, the application program must not alter the IMS abend code.

— Do not use the RETRY option when exiting from the STAE or ESTAE routine. Instead, return a
CONTINUE-WITH-TERMINATION indicator at the end of the STAE or ESTAE processing. If your
application program does specify the RETRY option, be aware that IMS STAE or ESTAE exit
routines will not get control to perform cleanup. Therefore, system and database integrity may be
compromised.

- The application program STAE/ESTAE exit routine must not issue DL/I calls because the original abend
may have been caused by a problem between the application and IMS. This would result in recursive
entry to STAE/ESTAE with potential loss of database integrity or in problems taking a checkpoint.

Dynamic allocation for IMS databases

Use the dynamic allocation function to specify the JCL information for IMS databases in a library instead
of in the JCL of each batch job or in the JCL for DBCTL.

If you use dynamic allocation, do not include JCL DD statements for any database data sets that
have been defined for dynamic allocation. Check with the database administrator (DBA) or comparable
specialist at to determine which databases have been defined for dynamic allocation.

Related Reading: For more information on the definitions for dynamic allocation, see the DFSMDA macro
in IMS Version 15 System Definition.

Chapter 4. Analyzing CICS application processing requirements 67

68 IMS: Application Programming

Chapter 5. Gathering requirements for database
options

After designing hierarchies for the databases that your application will access, the DBA evaluates
database options in terms of which options will best meet application requirements. Whether these
options are used depends on the collected requirements of the applications. To design an efficient
database, the DBA needs information about the individual applications.

Related concepts

“Processing messages: Message Processing Programs” on page 40

A Message Processing Program (MPP) is an online program that can access full-function databases,
DEDBs, MSDBs, and Db2 for z/OS databases. Unlike BMPs and batch programs, MPPs cannot access
GSAM databases. MPPs can only run in DB/DC and DCCTL environments.

Analyzing data access

The DBA chooses a type of database, based on how the majority of programs that use the database will
access the data.

IMS databases are categorized according to the access method used. The types of databases that can be
defined are as follows:

« Hierarchical Direct Access Method (HDAM)

« Partitioned Hierarchical Direct Access Method (PHDAM)

« Hierarchical Indexed Direct Access Method (HIDAM)

« Partitioned Hierarchical Indexed Direct Access Method (PHIDAM)
« Main Storage Database (MSDB)

« Data Entry Database (DEDB)

« Hierarchical Sequential Access Method (HSAM)

« Hierarchical Indexed Sequential Access Method (HISAM)

« Generalized Sequential Access Method (GSAM)

« Simple Hierarchical Sequential Access Method (SHSAM)

« Simple Hierarchical Indexed Sequential Access Method (SHISAM)

Important: PHDAM and PHIDAM are the partitioned versions of the HDAM and HIDAM database types,
respectively. The corresponding descriptions of the HDAM and HIDAM database types therefore apply to
PHDAM and PHIDAM.

Some of the information that you can gather to help the DBA to decide the type of database to set up are
as follows:

- To access a database record, a program must first access the root of the record. How will each program
access root segments?

Isit:

— Directly

— Sequentially
— Both

« The segments within the database record are the dependents of the root segment. How will each
program access the segments within each database record?

Isit:
— Directly

© Copyright IBM Corp. 1974, 2020 69

— Sequentially
— Both

It is important to note the distinction between accessing a database record and accessing segments
within the record. A program might access database records sequentially, but after the program is
within a record, the program might access the segments directly. These are different, and can influence
the choice of the access method to use.

- To what extent will the program update the database?
Isit:
— By adding new database records?
— By adding new segments to existing database records?
— By deleting segments or database records?

Again, note the difference between updating a database record and updating a segment within the
database record.

Direct access

The advantage of direct access processing is that you can get good results for both direct and sequential
processing. Direct access means that by using a randomizing routine or an index, IMS can find any
database record that you want, regardless of the sequence of database records in the database.

IMS full function has four direct access methods.

- HDAM and PHDAM process data directly by using a randomizing routine to store and locate root
segments.

« HIDAM and PHIDAM use an index to help them provide direct processing of root segments.

The direct access methods use pointers to maintain the hierarchic relationships between segments of a
database record. By following pointers, IMS can access a path of segments without passing through all
the segments in the preceding paths.

Some of the requirements that direct access satisfies are:

- Fast direct processing of roots using an index or a randomizing routine

« Sequential processing of database records with HIDAM and PHIDAM using the index
« Fast access to a path of segments using pointers

In addition, when you delete data from a direct-access database, the new space is available almost
immediately. This gives you efficient space utilization; therefore, reorganization of the database is often
unnecessary. Direct access methods internally maintain their own pointers and addresses.

A disadvantage of direct access is that you have a larger IMS overhead because of the pointers. But if
direct access fulfills your data access requirements, it is more efficient than using a sequential access
method.

Primarily direct processing: HDAM

HDAM is efficient for a database that is usually accessed directly but sometimes sequentially. HDAM

uses a randomizing routine to locate its root segments and then chains dependent segments together
according to the pointer options chosen. The z/OS access methods that HDAM can use are Virtual Storage
Access Method (VSAM) and Overflow Storage Access Method (OSAM).

Important: PHDAM is the partitioned version of the HDAM database type. The corresponding descriptions
of the HDAM database type therefore apply to PHDAM.

The requirements that HDAM satisfies are:

« Direct access of roots by root keys because HDAM uses a randomizing routine to locate root segments
« Direct access of paths of dependents

70 IMS: Application Programming

- Adding new database records and new segments because the new data goes into the nearest available
space

« Deleting database records and segments because the space created by a deletion can be used by any
new segment

HDAM characteristics
An HDAM database:

 Can store root segments anywhere. Root segments do not need to be in sequence because the
randomizing routine locates them.

« Uses a randomizing routine to locate the relative block number and root anchor point (RAP) within the
block that points to the root segment.

« Accesses the RAPs from which the roots are chained in physical sequence. Then the root segments that
are chained from the root anchors are returned. Therefore, sequential retrieval of root segments from
HDAM is not based on the results of the randomizing routine and is not in key sequence unless the
randomizing routine put them into key sequence.

- May not give the desired result for some calls unless the randomizing module causes the physical
sequence of root segments to be in the key sequence. For example, a GU call for a root segment that is
qualified as less than or equal to a root key value would scan in physical sequence for the first RAP of
the first block. This may result in a not-found condition, even though segments meeting the qualification
do exist.

For dependent segments, an HDAM database:

« Can store them anywhere
« Chains all segments of one database record together with pointers

An Overview of how HDAM works
This topic contains Diagnosis, Modification, and Tuning information.

When a database record is stored in an HDAM database, HDAM keeps one or more RAPs at the beginning
of each physical block. The RAP points to a root segment. HDAM also keeps a pointer at the beginning of
each physical block that points to any free space in the block. When you insert a segment, HDAM uses
this pointer to locate free space in the physical block. To locate a root segment in an HDAM database, you
give HDAM the root key. The randomizing routine gives it the relative physical block number and the RAP
that points to the root segment. The specified RAP number gives HDAM the location of the root within a
physical block.

Although HDAM can place roots and dependents anywhere in the database, it is better to choose HDAM
options that keep roots and dependents close together.

HDAM performance depends largely on the randomizing routine you use. Performance can be very good,
but it also depends on other factors such as:

« The block size you use
« The number of RAPs per block

« The pattern for chaining together different segments. You can chain segments of a database record in
two ways:

— In hierarchic sequence, starting with the root
— In parent-to-dependent sequence, with parents having pointers to each of their paths of dependents

To use HDAM for sequential access of database records by root key, you need to use a secondary index or
a randomizing routine that stores roots in physical key sequence.

Chapter 5. Gathering requirements for database options 71

Direct and sequential processing: HIDAM

HIDAM is the access method that is most efficient for an approximately equal amount of direct and
sequential processing.

Important: PHIDAM is the partitioned version of the HIDAM database type. The corresponding
descriptions of the HIDAM database type therefore apply to PHIDAM.

The z/0S access methods it can use are VSAM and OSAM. The specific requirements that HIDAM satisfies
are:

« Direct and sequential access of records by their root keys

Direct access of paths of dependents

Adding new database records and new segments because the new data goes into the nearest available
space

Deleting database records and segments because the space created by a deletion can be used by any
new segment

HIDAM can satisfy most processing requirements that involve an even mixture of direct and sequential
processing. However, HIDAM is not very efficient with sequential access of dependents.

HIDAM characteristics

For root segments, a HIDAM database:

« Initially loads them in key sequence

- Can store new root segments wherever space is available

- Uses an index to locate a root that you request and identify by supplying the root's key value
For dependent segments, a HIDAM database:

« Can store segments anywhere, preferably fairly close together
« Chains all segments of a database record together with pointers

An overview of how HIDAM works
This topic contains Diagnosis, Modification, and Tuning information.

HIDAM uses two databases. The primary database holds the data. An index database contains entries for
all of the root segments in order by their key fields. For each key entry, the index database contains the
address of that root segment in the primary database.

When you access a root, you supply the key to the root. HIDAM looks up the key in the index to find the
address of the root and then goes to the primary database to find the root.

HIDAM chains dependent segments together so that when you access a dependent segment, HIDAM uses
the pointer in one segment to locate the next segment in the hierarchy.

When you process database records directly, HIDAM locates the root through the index and then locates
the segments from the root. HIDAM locates dependents through pointers.

If you plan to process database records sequentially, you can specify special pointers in the DBD for the
database so that IMS does not need to go to the index to locate the next root segment. These pointers
chain the roots together. If you do not chain roots together, HIDAM always goes to the index to locate a
root segment. When you process database records sequentially, HIDAM accesses roots in key sequence
in the index. This only applies to sequential processing; if you want to access a root segment directly,
HIDAM uses the index, and not pointers in other root segments, to find the root segment you have
requested.

72 IMS: Application Programming

Main storage database: MSDB

Use MSDBs to store the most frequently-accessed data. MSDBs are suitable for applications such as
general ledger applications in the banking industry.

Recommendation: Use DEDBs instead of MSDBs when you develop new Fast Path databases. Terminal-
related MSDBs and non-terminal-related MSDBs with terminal-related keys are no longer supported.
Although non-terminal-related MSDBs with non-terminal-related-keys are still supported, you should
consider converting any existing MSDBs to DEDBs. You can use the MSDB-to-DEDB Conversion utility.

MSDB characteristics

MSDBs reside in virtual storage, enabling application programs to avoid the I/O activity that is required to
access them. The two kinds of MSDBs are terminal-related and non-terminal-related.

In a terminal-related MSDB, each segment is owned by one terminal, and each terminal owns only one
segment. One use for this type of MSDB is an application in which each segment contains data associated
with a logical terminal. In this type of application, the program can read the data (perhaps for reporting
purposes), but cannot update it. A non-terminal-related MSDB stores data that is needed by many users
during the same time period. It can be updated and read from all terminals (for example, a real time
inventory control application, where reduction of inventory can be noted from many cash registers).

An overview of how MSDBs work
This topic contains Diagnosis, Modification, and Tuning information.

MSDB segments are stored as root segments only. Only one type of pointer, the forward chain pointer, is
used. This pointer connects the segment records in the database.

Data entry database: DEDB

DEDBs are designed to provide access to and efficient storage for large volumes of data. The primary
requirement a DEDB satisfies is a high level of data availability.

DEDB characteristics

DEDBs are hierarchic databases that can have as many as 15 hierarchic levels, and as many as

127 segment types. They can contain both direct and sequential dependent segments. Because the
sequential dependent segments are stored in chronological order as they are committed to the database,
they are useful in journaling applications.

DEDBs support a subset of functions and options that are available for a HIDAM or HDAM database. For
example, a DEDB does not support logically related segments or access with primary indexes. Access with
secondary indexes is supported.

An overview of how DEDBs work
This topic contains Diagnosis, Modification, and Tuning information.

A DEDB can be partitioned into multiple areas, with each area containing a different collection of database
records. The data in a DEDB area is stored in a VSAM data set. Root segments are stored in the root-
addressable part of an area, with direct dependents stored close to the roots for fast access. Direct
dependents that cannot be stored close to their roots are stored in the independent overflow portion of
the area. Sequential dependents are stored in the sequential dependent portion at the end of the area so
that they can be quickly inserted. Each area data set can have up to seven copies, making the data easily
available to application programs.

Chapter 5. Gathering requirements for database options 73

Sequential access

When you use a sequential access method, the segments in the database are stored in hierarchic
sequence, one after another, with no pointers.

IMS full-function has two sequential access methods. Like the direct access methods, one has an index
and the other does not:

« HSAM only processes root segments and dependent segments sequentially.

« HISAM processes data sequentially but has an index so that you can access records directly. HISAM is
primarily for sequentially processing dependents, and directly processing database records.

Some of the general requirements that sequential access satisfies are:

- Fast sequential processing
« Direct processing of database records with HISAM

« Small IMS overhead on storage because sequential access methods relate segments by adjacency
rather than with pointers

The three disadvantages of using sequential access methods are:

« Sequential access methods give slower access to the right-most segments in the hierarchy, because
HSAM and HISAM must read through all other segments to get to them.

« HISAM requires frequent reorganization to reclaim space from deleted segments and to keep the logical
records of a database record physically adjoined.

 You cannot update HSAM databases. You must create a new database to change any of the data.

Sequential processing only: HSAM

HSAM is a hierarchic access method that can handle only sequential processing. You can retrieve data
from HSAM databases, but you cannot update any of the data. The z/OS access methods that HSAM can
use are QSAM and BSAM.

HSAM is ideal for the following situations:

 You are using the database to collect (but not update) data or statistics.
« You only plan to process the data sequentially.

HSAM characteristics

HSAM stores database records in the sequence in which you submit them. You can only process records
and dependent segments sequentially, which means the order in which you have loaded them. HSAM
stores dependent segments in hierarchic sequence.

An overview of how HSAM works
This topic contains Diagnosis, Modification, and Tuning information.

HSAM databases are very simple databases. The data is stored in hierarchic sequence, one segment after
the other, and no pointers or indexes are used.

Primarily sequential processing: HISAM

HISAM is an access method that stores segments in hierarchic sequence with an index to locate root
segments. It also has an overflow data set. Store segments in a logical record until you reach the end

of the logical record. When you run out of space on the logical record, but you still have more segments
belonging to the database record, you store the remaining segments in an overflow data set. The access
methods that HISAM can use are VSAM and OSAM.

HISAM is well-suited for:

74 IMS: Application Programming

« Direct access of record by root keys
« Sequential access of records
« Sequential access of dependent segments

The situations in which your processing has some of these characteristics but where HISAM is not
necessarily a good choice, occur when:

« You must access dependents directly.
 You have a high number of inserts and deletes.

« Many of the database records exceed average size and must use the overflow data set. The segments
that overflow into the overflow data set require additional I/0.

HISAM characteristics
For database records, HISAM databases:

« Store records in key sequence
« Can locate a particular record with a key value by using the index

For dependent segments, HISAM databases:

« Start each HISAM database record in a new logical record in the primary data set

- Store the remaining segments in one or more logical records in the overflow data set if the database
record does not fit in the primary data set

An overview of how HISAM works
This topic contains Diagnosis, Modification, and Tuning information.

HISAM does not immediately reuse space. When you insert a new segment, HISAM databases shift
data to make room for the new segment, and this leaves unused space after deletions. HISAM space is
reclaimed when you reorganize a HISAM database.

Accessing z/0S files through IMS: GSAM

GSAM enables IMS batch application programs and BMPs to access a sequential z/OS data set as a simple
database. The z/OS access methods that GSAM can use are BSAM and VSAM. A GSAM database is a z/0OS
data set record that is defined as a database record. The record is handled as one unit; it contains no
segments or fields and the structure is not hierarchic. GSAM databases can be accessed by z/0S, IMS,
and CICS.

In a CICS environment, an application program can access a GSAM database from either a Call DL/I (or
EXEC DLI) batch or batch-oriented BMP program. A CICS application cannot, however, use EXEC DLI to
process GSAM databases; it must use IMS calls.

You commonly use GSAM to send input to and receive output from batch-oriented BMPs or batch
programs. To process a GSAM database, an application program issues calls similar to the ones it issues
to process a full-function database. The program can read data sequentially from a GSAM database, and it
can send output to a GSAM database.

GSAM is a sequential access method. You can only add records to an output database sequentially.

Accessing IMS data through z/0S: SHSAM and SHISAM

Two database access methods give you simple hierarchic databases that z/OS can use as data sets,
SHSAM and SHISAM.

These access methods can be particularly helpful when you are converting data from z/OS files to an IMS
database. SHISAM is indexed and SHSAM is not.

Chapter 5. Gathering requirements for database options 75

When you use these access methods, you define an entire database record as one segment. The segment
does not contain any IMS control information or pointers; the data format is the same as it is in z/OS data
sets. The z/OS access methods that SHSAM can use are BSAM and QSAM. SHISAM uses VSAM.

SHSAM and SHISAM databases can be accessed by z/OS access methods without IMS, which is useful
during transitions.

Understanding how data structure conflicts are resolved

The order in which application programs need to process fields and segments within hierarchies is
frequently not the same for each application. When the DBA finds a conflict in the way that two or more
programs need to access the data, three options are available to solve these problems. Each of the
following options solves a different kind of conflict.

- When an application program does not need access to all the fields in a segment, or if the program
needs to access them in a different order, the DBA can use field level sensitivity for that program.
Field-level sensitivity makes it possible for an application program to access only a subset of the fields
that a segment contains, or for an application program to process a segment's fields in an order that is
different from their order in the segment.

« When an application program needs to access a particular segment by a field other than the segment's
key field, the DBA can use a secondary index for that database.

- When the application program needs to relate segments from different hierarchies, the DBA can use
logical relationships. Using logical relationships can give the application program a logical hierarchy
that includes segments from several hierarchies.

Related concepts

“Determining mappings” on page 27

When you have arranged the data aggregates into a conceptual data structure, you can examine the
relationships between the data aggregates. A mapping between two data aggregates is the quantitative
relationship between the two.

Using different fields: field-level sensitivity

Field-level sensitivity applies the same kind of security for fields within a segment that segment
sensitivity does for segments within a hierarchy: An application program can access only those fields
within a segment, and those segments within a hierarchy to which it is sensitive.

Field-level sensitivity also makes it possible for an application program to use a subset of the fields that
make up a segment, or to use all the fields in the segment but in a different order. If a segment contains
fields that the application program does not need to process, using field-level sensitivity enables the
program not to process them.

Example of field-level sensitivity

Suppose that a segment containing data about an employee contains the fields shown in the following
table. These fields are:

« Employee number: EMPNO
« Employee name: EMPNAME
Birthdate: BIRTHDAY
Salary: SALARY

Address: ADDRESS

Table 24. Physical employee segment

Employee Number | Employee Name Birthdate Salary Address

EMPNO EMPNAME BIRTHDAY SALARY ADDRESS

76 IMS: Application Programming

A program that printed mailing labels for employees' checks each week would not need all the data in the
segment. If the DBA decided to use field-level sensitivity for that application, the program would receive
only the fields it needed in its I/O area. The I/O area would contain the EMPNAME and ADDRESS fields.
The following table shows what the program's I/0O area would contain.

Table 25. Employee segment with field-level sensitivity

Employee Name Address

EMPNAME ADDRESS

Field-level sensitivity makes it possible for a program to receive a subset of the fields that make up a
segment, the same fields but in a different order, or both.

Another situation in which field-level sensitivity is very useful is when new uses of the database involve
adding new fields of data to an existing segment. In this situation, you want to avoid re-coding programs
that use the current segment. By using field-level sensitivity, the old programs can see only the fields that
were in the original segment. The new program can see both the old and the new fields.

Specifying field-level sensitivity

You specify field-level sensitivity in the PSB for the application program by using a sensitive field
(SENFLD) statement for each field to which you want the application program to be sensitive.

Related reference
SENFLD statement (System Utilities)

Resolving processing conflicts in a hierarchy: secondary indexing

Sometimes a database hierarchy does not meet all the processing requirements of the application
programs that will process it.

Secondary indexing can be used to solve two kinds of processing conflicts:

« When an application program needs to retrieve a segment in a sequence other than the one that has
been defined by the segment's key field

« When an application program needs to retrieve a segment based on a condition that is found in a
dependent of that segment

To understand these conflicts and how secondary indexing can resolve them, consider the examples of
two application programs that process the patient hierarchy, shown in the following figure. Three segment
types in this hierarchy are:

- PATIENT contains three fields: the patient's identification number, name, and address. The patient
number field is the key field.

« ILLNESS contains two fields: the date of the illness and the name of the illness. The date of the illness is
the key field.

« TREATMNT contains four fields: the date the medication was given; the name of the medication; the
quantity of the medication that was given; and the name of the doctor who prescribed the medication.
The date that the medication was given is the key field.

Chapter 5. Gathering requirements for database options 77

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sur/ims_psbgensenfldstmt.htm#ims_psbgensenfldstmt

PATIENT

ILLNESS

TREATMNT

Figure 16. Patient hierarchy

Retrieving segments based on a different key

When an application program retrieves a segment from the database, the program identifies the segment
by the segment's key field. But sometimes an application program needs to retrieve a segment in a
sequence other than the one that has been defined by the segment's key field. Secondary indexing makes
this possible.

Note: A new database type, the Partitioned Secondary Index (PSINDEX), is supported by the High
Availability Large Database (HALDB). PSINDEX is the partitioned version of the secondary index database
type. The corresponding descriptions of the secondary index database type therefore apply to PSINDEX.

For example, suppose you have an online application program that processes requests about whether an
individual has ever been to the clinic. If you are not sure whether the person has ever been to the clinic,
you will not be able to supply the identification number for the person. But the key field of the PATIENT
segment is the patient's identification number.

Segment occurrences of a segment type (for example, the segments for each of the patients) are stored
in a database in order of their keys (in this case, by their patient identification numbers). If you issue
arequest for a PATIENT segment and identify the segment you want by the patient's name instead of

the patient's identification number, IMS must search through all of the PATIENT segments to find the
PATIENT segment you have requested. IMS does not know where a particular PATIENT segment is just by
having the patient's name.

To make it possible for this application program to retrieve PATIENT segments in the sequence of
patients' names (rather than in the sequence of patients' identification numbers), you can index the
PATIENT segment on the patient name field and store the index entries in a separate database. The
separate database is called a secondary index database.

Then, if you indicate to IMS that it is to process the PATIENT segments in the patient hierarchy in the
sequence of the index entries in the secondary index database, IMS can locate a PATIENT segment if

you supply the patient's name. IMS goes directly to the secondary index and locates the PATIENT index
entry with the name you have supplied; the PATIENT index entries are in alphabetical order of the patient
names. The index entry is a pointer to the PATIENT segment in the patient hierarchy. IMS can determine
whether a PATIENT segment for the name you have supplied exists, and then it can return the segment to
the application program if the segment exists. If the requested segment does not exist, IMS indicates this
to the application program by returning a not-found status code.

Related reading: For more information on HALDB, see IMS Version 15 Database Administration.

Three terms involved in secondary indexing are:

78 IMS: Application Programming

Pointer segment
The index entry in the secondary index database that IMS uses to find the segment you have
requested. In the previous example, the pointer segment is the index entry in the secondary index
database that points to the PATIENT segment in the patient hierarchy.

Source segment
The segment that contains the field that you are indexing. In the previous example, the source
segment is the PATIENT segment in the patient hierarchy, because you are indexing on the name field
in the PATIENT segment.

Target segment
The segment in the database that you are processing to which the secondary index points; it is the
segment that you want to retrieve.

In the previous example, the target segment and the source segment are the same segment—the
PATIENT segment in the patient hierarchy. When the source segment and the target segment are different
segments, secondary indexing solves the processing conflict.

The PATIENT segment that IMS returns to the application program's I/O area looks the same as it would if
secondary indexing had not been used.

The key feedback area is different. When IMS retrieves a segment without using a secondary index, IMS
places the concatenated key of the retrieved segment in the key feedback area. The concatenated key
contains all the keys of the segment's parents, in order of their positions in the hierarchy. The key of the
root segment is first, followed by the key of the segment on the second level in the hierarchy, then the
third, and so on—with the key of the retrieved segment last.

But when you retrieve a segment from an indexed database, the contents of the key feedback area after
the request are a little different. Instead of placing the key of the root segment in the left-most bytes of
the key feedback area, DL/I places the key of the pointer segment there. Note that the term "key of the
pointer segment," as used here, refers to the key as perceived by the application program—that is, the key
does not include subsequence fields.

For example, suppose index segment A shown in the following figure is indexed on a field in segment C.
Segment A is the target segment, and segment C is the source segment.

A 4+— Target segment

¢ #+—— Source segment

Figure 17. Indexing a root segment

When you use the secondary index to retrieve one of the segments in this hierarchy, the key feedback
area contains one of the following:

- If you retrieve segment A, the key feedback area contains the key of the pointer segment from the
secondary index.

- If you retrieve segment B, the key feedback area contains the key of the pointer segment, concatenated
with the key of segment B.

- If you retrieve segment C, the key of the pointer segment, the key of segment B, and the key of segment
C are concatenated in the key feedback area.

Chapter 5. Gathering requirements for database options 79

Although this example creates a secondary index for the root segment, you can index dependent
segments as well. If you do this, you create an inverted structure: the segment you index becomes the
root segment, and its parent becomes a dependent.

For example, suppose you index segment B on a field in segment C. In this case, segment B is the target
segment, and segment C is the source field. The following figure shows the physical database structure
and the structure that is created by the secondary index.

A B

| I

B = Target segment

C =+— Source segment A »

Figure 18. Indexing a dependent segment

When you retrieve the segments in the secondary index data structure on the right, IMS returns the
following to the key feedback area:

- If you retrieve segment B, the key feedback area contains the key of the pointer segment in the
secondary index database.

« If you retrieve segment A, the key feedback area contains the key of the pointer segment, concatenated
with the key of segment A.

- If you retrieve segment C, the key feedback area contains the key of the pointer segment, concatenated
with the key of segment C.

Retrieving segments based on the qualification of a dependent segment

Sometimes an application program needs to retrieve a segment, but only if one of the dependents of the
segment meet certain qualifications.

For example, suppose that the medical clinic wants to print a monthly report of the patients who have
visited the clinic during that month. If the application program that processes this request does not use
a secondary index, the program has to retrieve each PATIENT segment, and then retrieve the ILLNESS
segment for each PATIENT segment. The program tests the date in the ILLNESS segment to determine
whether the patient has visited the clinic during the current month, and prints the patient's name if the
answer is yes. The program continues retrieving PATIENT segments and ILLNESS segments until it has
retrieved all the PATIENT segments.

But with a secondary index, you can make the processing of the program simpler. To do this, you index the
PATIENT segment on the date field in the ILLNESS segment. When you define the PATIENT segment in the
DBD, you give IMS the name of the field on which you are indexing the PATIENT segment, and the name of
the segment that contains the index field. The application program can then request a PATIENT segment
and qualify the request with the date in the ILLNESS segment. The PATIENT segment that is returned to
the application program looks just as it would if you were not using a secondary index.

In this example, the PATIENT segment is the target segment; it is the segment that you want to retrieve.
The ILLNESS segment is the source segment; it contains the information that you want to use to

qualify your request for PATIENT segments. The index segment in the secondary database is the pointer
segment. It points to the PATIENT segments.

80 IMS: Application Programming

Creating a new hierarchy: logical relationships

When an application program needs to associate segments from different hierarchies, logical
relationships can make that possible.

Logical relationships can solve the following conflicts:

« When two application programs need to process the same segment, but they need to access the
segment through different hierarchies

- When a segment's parent in one application program's hierarchy acts as that segment's child in another
application program

Accessing a segment through different paths

Sometimes an application program needs to process the data in a different order than the way it is
arranged in the hierarchy.

For example, an application program that processes data in a purchasing database also requires access to
a segment in a patient database:

« Program A processes information in the patient database about the patients at a medical clinic: the
patients' illnesses and their treatments.

- Program B is an inventory program that processes information in the purchasing database about
the medications that the clinic uses: the item, the vendor, information about each shipment, and
information about when and under what circumstances each medication is given.

The following figure shows the hierarchies that Program A and Program B require for their processing.
Their processing requirements conflict: they both need to have access to the information that is contained
in the TREATMNT segment in the patient database. This information is:

- The date that a particular medication was given
« The name of the medication

« The quantity of the medication given

« The doctor that prescribed the medication

To Program B this is not information about a patient's treatment; it is information about the disbursement
of a medication. To the purchasing database, this is the disbursement segment (DISBURSE).

The following figure shows the hierarchies for Program A and Program B. Program A needs the PATIENT
segment, the ILLNESS segment, and the TREATMNT segment. Program B needs the ITEM segment, the
VENDOR segment, the SHIPMENT segment, and the DISBURSE segment. The TREATMNT segment and
the DISBURSE segment contain the same information.

Chapter 5. Gathering requirements for database options 81

Program A Program B
PATIENT ITEM
\
ILLMESS VENDOR
\
TREATMNT SHIPMENT
DISBURSE

Figure 19. Patient and inventory hierarchies

Instead of storing this information in both hierarchies, you can use a logical relationship. A logical
relationship solves the problem by storing a pointer from where the segment is needed in one hierarchy
to where the segment exists in the other hierarchy. In this case, you can have a pointer in the

DISBURSE segment to the TREATMNT segment in the medical database. When IMS receives a request
for information in a DISBURSE segment in the purchasing database, IMS goes to the TREATMNT segment
in the medical database that is pointed to by the DISBURSE segment. The following figure shows the
physical hierarchy that Program A would process and the logical hierarchy that Program B would process.
DISBURSE is a pointer segment to the TREATMNT segment in Program A's hierarchy.

82 IMS: Application Programming

Program A Program B
PATIENT ITEM
ILLMESS VENDOR
TREATMMNT SHIPMENT
'\\
™
™
™
\\‘\ DISBURSE

Figure 20. Logical relationships example

To define a logical relationship between segments in different hierarchies, you use a logical DBD. A logical
DBD defines a hierarchy that does not exist in storage, but can be processed as though it does. Program B
would use the logical structure shown in the previous figure as though it were a physical structure.

Inverting a parent-child relationship

Another type of conflict that logical relationships can resolve occurs when a segment's parent in one

application program acts as that segment's child in another application program.

- The inventory program, Program B, needs to process information about medications using the
medication as the root segment.

« A purchasing application program, Program C, processes information about which vendors have sold
which medications. Program C needs to process this information using the vendor as the root segment.

The following figure shows the hierarchies for each of these application programs.

Chapter 5. Gathering requirements for database options 83

Program B Program C

supplies database purchasing database
ITEM VEMDOR
|
VENDOR ITEM

Figure 21. Supplies and purchasing hierarchies

Logical relationships can solve this problem by using pointers. Using pointers in this example would mean
that the ITEM segment in the purchasing database would contain a pointer to the actual data stored in
the ITEM segment in the supplies database. The VENDOR segment, however, would actually be stored

in the purchasing database. The VENDOR segment in the supplies database would point to the VENDOR
segment that is stored in the purchasing database.

The following figure shows the hierarchies of these two programs.

Program B Program C
supplies database purchasing database
ITEM v\ E VEMDOR

/ N\
VENDOR ITEM

Figure 22. Program B and program C hierarchies

If you did not use logical relationships in this situation, you would:

« Keep the same data in both paths, which means that you would be keeping redundant data.
- Have the same disadvantages as separate files of data:

— You would need to update multiple segments each time one piece of data changed.
— You would need more storage.

Providing data security

You can control the security of data accessed by your IMS application programs through data sensitivity
and processing options.

Data sensitivity
Controls what data a particular program can access.

Processing options
Controls how a particular program can process data that it can access.

84 IMS: Application Programming

Providing data availability

Specifying segment sensitivity and processing options also affects data availability. You should set

the specifications so that the PCBs request the fewest SENSEGS and limit the possible processing
options. With data availability, a program can continue to access and update segments in the database
successfully, even though some parts of the database are unavailable.

The SENSEG statement defines a segment type in the database to which the application program is
sensitive. A separate SENSEG statement must exist for each segment type. The segments can physically
exist in one database or they can be derived from several physical databases. If an application program is
sensitive to a segment that is below the root segment, it must also be sensitive to all segments in the path
from the root segment to the sensitive segment.

Related Reading: For more information on using field-level sensitivity for data security and using the
SENSEG statement to limit the scope of the PCBs, see IMS Version 15 Database Administration.

Related concepts

“An overview of application design” on page 15

The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Keeping a program from accessing the data: data sensitivity
An IMS program can only access data to which it is sensitive.
You can control the data to which your program is sensitive on three levels:

- Segment sensitivity can prevent an application program from accessing all the segments in a particular
hierarchy. Segment sensitivity tells IMS which segments in a hierarchy the program is allowed to access.

- Field-level sensitivity can keep a program from accessing all the fields that make up a particular
segment. Field-level sensitivity tells IMS which fields within a particular segment a program is allowed
to access.

« Key sensitivity means that the program can access segments below a particular segment, but it cannot
access the particular segment. IMS returns only the key of this type of segment to the program.

You define each of these levels of sensitivity in the PSB for the application program. Key sensitivity is
defined in the processing option for the segment. Processing options indicate to IMS exactly what a
particular program may or may not do to the data. You specify a processing option for each hierarchy that
the application program processes; you do this in the DB PCB that represents each hierarchy. You can
specify one processing option for all the segments in the hierarchy, or you can specify different processing
options for different segments within the hierarchy.

Segment sensitivity and field-level sensitivity are defined using special statements in the PSB.

Segment sensitivity

You define what segments an application program is sensitive to in the DB PCB for the hierarchy that
contains those segments.

For example, suppose that the patient hierarchy shown in the following figures. The patient hierarchy is
like a subset of the medical database.

Chapter 5. Gathering requirements for database options 85

PATIENT

I |
ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 23. Medical database hierarchy

PATIENT is the root segment and the parent of the three segments below it: ILLNESS, BILLING, and
HOUSHOLD. Below ILLNESS is TREATMNT. Below BILLING is PAYMENT.

To make it possible for an application program to view only the segments PATIENT, ILLNESS, and
TREATMNT from the medical database, you specify in the DB PCB that the hierarchy you are defining
has these three segment types, and that they are from the medical database. You define the database
hierarchy in the DBD; you define the application program's view of the database hierarchy in the DB PCB.

Field-level sensitivity

In addition to providing data independence for an application program, field-level sensitivity can also act
as a security mechanism for the data that the program uses.

If a program needs to access some of the fields in a segment, but one or two of the fields that the program
does not need to access are confidential, you can use field-level sensitivity. If you define that segment for
the application program as containing only the fields that are not confidential, you prevent the program
from accessing the confidential fields. Field-level sensitivity acts as a mask for the fields to which you
want to restrict access.

Key sensitivity

To access a segment, an application program must be sensitive to all segments at a higher level in the
segment's path. In other words, in the following figure, a program must be sensitive to segment B in order
to access segment C.

For example, suppose that an application program needs segment C to do its processing. But if segment
B contains confidential information (such as an employee's salary), the program is not able to access that
segment. Using key sensitivity lets you withhold segment B from the application program while giving the
program access to the dependents of segment B.

When a sensitive segment statement has a processing option of K specified for it, the program
cannot access that segment, but the program can pass beyond that segment to access the segment's
dependents. When the program does access the segment's dependents, IMS does not return that
segment; IMS returns only the segment's key with the keys of the other segments that are accessed.

86 IMS: Application Programming

Figure 24. Sample hierarchy for key sensitivity example

Preventing a program from updating data: processing options

During PCB generation, you can use five options of the PROCOPT parameter (in the DATABASE macro) to
indicate to IMS whether your program can read segments in the hierarchy, or whether it can also update
segments.

From most restrictive to least restrictive, these options are:
G
Your program can read segments.

R
Your program can read and replace segments.

Your program can insert segments.
D
Your program can read and delete segments.
A
Your program can perform all the processing options. It is equivalent to specifying G, R, I, and D.

Related Reading: For a thorough description of the processing options see, IMS Version 15 System
Utilities.

Processing options provide data security because they limit what a program can do to the hierarchy or to a
particular segment. Specifying only the processing options the program requires ensures that the program
cannot update any data it is not supposed to. For example, if a program does not need to delete segments
from a database, the D option need not be specified.

When an application program retrieves a segment and has any of the just-described processing options,
IMS locks the database record for that application. If PROCOPT=G is specified, other programs with

the option can concurrently access the database record. If an update processing option (R, I, D, or A)

is specified, no other program can concurrently access the same database record. If no updates are
performed, the lock is released when the application moves to another database record or, in the case of
HDAM, to another anchor point.

The following locking protocol allows IMS to make this determination. If the root segment is updated,
the root lock is held at update level until commit. If a dependent segment is updated, it is locked at
update level. When exiting the database record, the root segment is demoted to read level. When a
program enters the database record and obtains the lock at either read or update level, the lock manager

Chapter 5. Gathering requirements for database options 87

provides feedback indicating whether or not another program has the lock at read level. This determines
if dependent segments will be locked when they are accessed. For HISAM, the primary logical record is
treated as the root, and the overflow logical records are treated as dependent segments.

When using block-level or database-level data sharing for online and batch programs, you can use
additional processing options.

Related Reading:

 For a special case involving HISAM delete byte with parameter ERASE=YES see, IMS Version 15
Database Administration.

« For more information on database and block-level data sharing, see IMS Version 15 System
Administration.

E option

With the E option, your program has exclusive access to the hierarchy or to the segment you use it with.
The E option is used in conjunction with the options G, I, D, R, and A. While the E program is running, other
programs cannot access that data, but may be able to access segments that are not in the E program's
PCB. No dynamic enqueue by program isolation is done, but dynamic logging of database updates will be
done.

GO option

When your program retrieves a segment with the GO option, IMS does not lock the segment. While the
read without integrity program reads the segment, it remains available to other programs. This is because
your program can only read the data (termed read-only); it is not allowed to update the database. No
dynamic enqueue is done by program isolation for calls against this database. Serialization between the
program with PROCOPT=GO and any other update program does not occur; updates to the same data
occur simultaneously.

If a segment has been deleted and another segment of the same type has been inserted in the same
location, the segment data and all subsequent data that is returned to the application may be from a
different database record.

A read-without-integrity program can also retrieve a segment even if another program is updating the
segment. This means that the program need not wait for segments that other programs are accessing.
If a read-without-integrity program reads data that is being updated by another program, and that
program terminates abnormally before reaching the next commit point, the updated segments might
contain invalid pointers. If an invalid pointer is detected, the read-without-integrity program terminates
abnormally, unless the N or T options were specified with GO. Pointers are updated during insert, delete
and backout functions.

N option

When you use the N option with GO to access a full-function database or a DEDB, and the segment you
are retrieving contains an invalid pointer, IMS returns a GG status code to your program. Your program can
then terminate processing, continue processing by reading a different segment, or access the data using a
different path. The N option must be specified as PROCOPT=GON, GON, or GONP.

T option

When you use the T option with GO and the segment you are retrieving contains an invalid pointer, the
response from an application program depends on whether the program is accessing a full-function or
Fast Path database.

For calls to full-function databases, the T option causes DL/I to automatically retry the operation. You can
retrieve the updated segment, but only if the updating program has reached a commit point or has had

its updates backed out since you last tried to retrieve the segment. If the retry fails, a GG status code is
returned to your program.

88 IMS: Application Programming

For calls to Fast Path DEDBs, option T does not cause DL/I to retry the operation. A GG status code is
returned. The T option must be specified as PROCOPT=GOT, GOT, or GOTP.

GOx and data integrity

For a very small set of applications and data, PROCOPT=GOx offers some performance and parallelism
benefits. However, it does not offer application data integrity. For example, using PROCOPT=GOT in an
online environment on a full-function database can cause performance degradation. The T option forces
a re-read from DASD, negating the advantage of very large buffer pools and VSAM hiperspace for all
currently running applications and shared data. For more information on the GOx processing option for
DEDBs, see IMS Version 15 System Utilities.

Related concepts

“Read without integrity” on page 89

Database-level sharing of IMS databases provides for sharing of databases between a single update-
capable batch or online IMS system and any number of other IMS systems that are reading data that are
without integrity.

Read without integrity

Database-level sharing of IMS databases provides for sharing of databases between a single update-
capable batch or online IMS system and any number of other IMS systems that are reading data that are
without integrity.

A GE status code might be returned to a program using PROCOPT=GOx for a segment that exists in a
HIDAM database during control interval (CI) splits.

In IMS, programs that use database-level sharing include PROCOPT=GOx in their DBPCBs for that data.
For batch jobs, the DBPCB PROCOPTSs establish the batch job's access level for the database. That is,

a batch job uses the highest declared intent for a database as the access level for DBRC database
authorization. In an online IMS environment, database ACCESS is specified on the DATABASE macro
during IMS system definition, and it can be changed using the /START DB ACCESS=R0 command. Online
IMS systems schedule programs with data availability determined by the PROCOPTs within those program
PSBs being scheduled. That data availability is therefore limited by the online system's database access.

The PROCOPT=GON and GOT options provide certain limited PCB status code retry for some recognizable
pointer errors, within the data that is being read without integrity. In some cases, dependent segment
updates, occurring asynchronously to the read-without-integrity IMS instance, do not interfere with the
program that is reading that data without integrity. However, update activity to an average database does
not always allow a read-without-integrity IMS system to recognize a data problem.

What read without integrity means

Each IMS batch or online instance has OSAM and VSAM buffer pools defined for it. Without locking to
serialize concurrent updates that are occurring in another IMS instance, a read without integrity from a
database data set fetches a copy of a block or CI into the buffer pool in storage. Blocks or CIs in the buffer
pool can remain there a long time. Subsequent read without integrity of other blocks or CIs can then fetch
more recent data. Data hierarchies and other data relationships between these different blocks or CIs can
be inconsistent.

For example, consider an index database (VSAM KSDS), which has an index component and a data
component. The index component contains only hierarchic control information, relating to the data
component CI where a given keyed record is located. Think of this as the way that the index component CI
maintains the high key in each data component CI. Inserting a keyed record into a KSDS data component
CI that is already full causes a CI split. That is, some portion of the records in the existing CI are moved to
a new CI, and the index component is adjusted to point to the new CI.

For example, suppose the index CI shows the high key in the first data CI as KEY100, and a split occurs.
The split moves keys KEY051 through KEY100 to a new CI; the index CI now shows the high key in the
first data CI as KEY050, and another entry shows the high key in the new CI as KEY100.

Chapter 5. Gathering requirements for database options 89

A program that is reading is without integrity, which already read the "old" index component CI into

its buffer pool (high key KEY100), does not point to the newly created data CI and does not attempt

to access it. More specifically, keyed records that exist in a KSDS at the time a read-without-integrity
program starts might never be seen. In this example, KEYO51 through KEY100 are no longer in the first
data CI even though the "old" copy of the index CI in the buffer pool still indicates that any existing keys
up to KEY100 are in the first data CI.

Hypothetical cases also exist where the deletion of a dependent segment and the insertion of that same
segment type under a different root, placed in the same physical location as the deleted segment, can
cause simple Get Next processing to give the appearance of only one root in the database. For example,
accessing the segments under the first root in the database down to a level-06 segment (which had been
deleted from the first root and is now logically under the last root) would then reflect data from the other
root. The next and subsequent Get Next calls retrieve segments from the other root.

Read-only (PROCOPT=GO) processing does not provide data integrity.

Data set extensions
IMS instances with database-level sharing can open a database for read without integrity.

After the database is opened, another program that is updating that database can make changes to the
data. These changes might result in logical and physical extensions to the database data set. Because
the read-without-integrity program is not aware of these extensions, problems with the RBA (beyond
end-of-data) can occur.

Related concepts

“Preventing a program from updating data: processing options” on page 87

During PCB generation, you can use five options of the PROCOPT parameter (in the DATABASE macro) to
indicate to IMS whether your program can read segments in the hierarchy, or whether it can also update
segments.

90 IMS: Application Programming

Chapter 6. Gathering requirements for message
processing options

One of the tasks of application design is providing information about your application's requirements to
the people in charge of designing and administering your IMS system.

Restriction: This information applies to DB/DC and DCCTL environments only.

Related concepts

“Programming with the IMS Java dependent region resource adapter” on page 674

IMS provides a set of Java APIs called the IMS Java dependent region resource adapter to develop Java
applications to run on the IMS Java dependent regions.

Identifying online security requirements

Security in an online system means protecting the data from unauthorized use through terminals. It also
means preventing unauthorized use of both the IMS system and the application programs that access the
database. For example, you do not want a program that processes paychecks to be available to everyone
who can access the system.

The security mechanisms that IMS provides are signon, terminal, and password security.

Related reading: For an explanation of how to establish these types of security, see IMS Version 15
System Administration.

Limiting access to specific individuals: signhon security

Signon security is available through Resource Access Control Facility (RACF®) or a user-written security
exit routine. With signon security, individuals who want to use IMS must be defined to RACF or its
equivalent before they are allowed access.

When a person signs on to IMS, RACF or security exits verify that the person is authorized to use IMS
before access to IMS-controlled resources is allowed. This signon security is provided by the /SIGN ON
command. You can also limit the transaction codes and commands that individuals are allowed to enter.
You do this by associating an individual's user identification (USERID) with the transaction codes and
commands.

LU 6.2 transactions contain the USERID.

Related reading: For more information on security, see IMS Version 15 Communications and Connections.

Limiting access for specific terminals: terminal security

Use terminal security to limit the entry of a transaction code to a particular terminal or group of terminals
in the system. How you do this depends on how many programs you want to protect.

To protect a particular program, you can either authorize a transaction code to be entered from a list of
logical terminals, or you can associate each logical terminal with a list of the transaction codes that a user
can enter from that logical terminal. For example, you could protect the paycheck application program

by defining the transaction code associated with it as valid only when entered from the terminals in the
payroll department. If you wanted to restrict access to this application even more, you could associate the
paycheck transaction code with only one logical terminal. To enter that transaction code, a user needs to
be at a physical terminal that is associated with that logical terminal.

Restriction: If you are using the shared-queues option, static control blocks representing the resources
needed for the security check need to be available in the IMS system where the security check is being
made. Otherwise, the security check is bypassed.

Related reading: For more information on shared queues, see IMS Version 15 System Administration.

© Copyright IBM Corp. 1974, 2020 921

Limiting access to the program: password security

Another way you can protect the application program is to require a password when a person enters the
transaction code that is associated with the application program you want to protect. If you use only
password security, the person entering a particular transaction code must also enter the password of the
transaction before IMS processes the transaction.

If you use password security with terminal security, you can restrict access to the program even more.
In the paycheck example, using password security and terminal security means that you can restrict
unauthorized individuals within the payroll department from executing the program.

Restriction: Password security for transactions is only supported if the transactions that are needed for
the security check are defined in the IMS system where the security check is being made. Otherwise, the
security check is bypassed.

Allowing access to security data: authorization security

RACF has a data set that you can use to store user-unique information. The AUTH call gives application
programs access to the RACF data set security data, and a way to control access to application-defined
resources. Thus, application programs can obtain the security information about a particular user.

How IMS security relates to Db2 for z/0S security

An important part of Db2 for z/OS security is the authorization ID. The authorization ID that IMS uses for a
program or a user at a terminal depends on the kind of security that is used and the kind of program that
is running.

For MPPs, IFPs, and transaction-oriented BMPs, the authorization ID depends on the type of IMS security:

- If signon is required, IMS passes the USERID and group name that are signed-on to Db2 for z/0OS.

« If signon is not required, Db2 for z/OS uses the name of the originating logical terminal as the
authorization ID.

For batch-oriented BMPs, the authorization ID is dependent on the value specified for the BMPUSID=
keyword in the DFSDCxxx PROCLIB member:

- If BMPUSID=USERID is specified, the value from the USER= keyword on the JOB statement is used.
 If USER=is not specified on the JOB statement, the program's PSB name is used.

- If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the program's PSB name is
used. If PSBNAME is not defined to RACF, the Userid of the current Address Space will be used; this
will be the Home Dependent Region one, or the Control Region one if LSO=Y or if PARDLI=1 has been
specified for the BMP. Userid of the current Address Space will be used also if DFSBSEXO has returned
RCO8.

Supplying security information

When you evaluate your application in terms of its security requirements, you need to look at each
program individually. When you have done this, you can supply the following information to your security
personnel.

 For programs that require signon security:
— List the individuals who should be able to access IMS.
 For programs that require terminal security:

— List the transaction codes that must be secured.

— List the terminals that should be allowed to enter each of these transaction codes. If the terminals
you are listing are already installed and being used, identify the terminals by their logical terminal
names. If not, identify them by the department that will use them (for example, the accounting
department).

92 IMS: Application Programming

 For programs that require password security:

— List the transaction codes that require passwords.
« For commands that require security:

— List the commands that require signon or password security.

Related concepts

“An overview of application design” on page 15

The application design process varies from place to place and from application to application. The
overview that is given in this section and the suggestions about documenting application design and
converting existing applications are not the only way that these tasks are performed.

Analyzing screen and message formats

When an application program communicates with a terminal, an editing procedure translates messages
from the way they are entered at the terminal to the way the program expects to receive and process
them.

The decisions about how IMS will edit your program's messages are based on how your data should be
presented to the person at the terminal and to the application program. You need to describe how you
want data from the program to appear on the terminal screen, and how you want data from the terminal
to appear in the application program's I/O area. (The I/O area contains the segments being processed by
the application program.)

To supply information that will be helpful in these decisions, you should be familiar with how IMS edits
messages. IMS has two editing procedures:

« Message Format Service (MFS) uses control blocks that define what a message should look like to the
person at the terminal and to the application program.

« Basic edit is available to all IMS application programs. Basic edit removes control characters from input
messages and inserts the control characters you specify in output messages to the terminal.

Related reading: For information on defining IMS editing procedures and on other design considerations
for IMS networks, see IMS Version 15 Communications and Connections.

An overview of MFS

MFS uses four kinds of control blocks to format messages between an application program and a
terminal. The information you gather about how you want the data formatted when it is passed between
the application program and the terminal is contained in these control blocks.

The two control blocks that describe input messages to IMS are:

« The device input format (DIF) describes to IMS what the input message is to look like when it is entered
at the terminal.

« The message input descriptor (MID) tells IMS how the application program expects to receive the input
message in its I/O area.

By using the DIF and the MID, IMS can translate the input message from the way that it is entered at the
terminal to the way it should appear in the program's I/0 area.

The two control blocks that describe output messages to IMS are:

« The message output descriptor (MOD) tells IMS what the output message is to look like in the program's
I/0O area.

« The device output format (DOF) tells IMS how the message should appear on the terminal.

To define the MFS control blocks for an application program, you need to know how you want the data to
appear at the terminal and in the application program's I/O area for both input and output.

Chapter 6. Gathering requirements for message processing options 93

An overview of basic edit

Basic edit removes the control characters from an input message before the application program receives
it, and inserts the control characters you specify when the application program sends a message back to
the terminal.

To format output messages at a terminal using basic edit, you need to supply the necessary control
characters for the terminal you are using.

If your application will use basic edit, you should describe how you want the data to be presented at the
terminal, and what it is to look like in the program's I/0 area.

Editing considerations in your application

Before you describe the editing requirements of your application, be sure that you are aware of your
standards concerning screen design. Make sure that the requirements that you describe comply with
those standards.

Provide the following information about your program's editing requirements:

« How you want the screen to be presented to the person at the terminal for the person to enter the input
data. For example, if an airline agent wants to reserve seats on a particular flight, the screen that asks
for this information might look like this:

FLIGHT#:
NAME:
NO. IN PARTY:

« What the data should look like when the person at the terminal enters the input message.

« What the input message should look like in the program's I/0 area.

« What the data should look like when the program builds the output message in its I/O area.
« How the output message should be formatted at the terminal.

« The length and type of data that your program and the terminal will be exchanging.

The type of data you are processing is only one consideration when you analyze how you want the data
presented at the terminal. In addition, you should weigh the needs of the person at the terminal (the
human factors aspects in your application) against the effect of the screen design on the efficiency of
the application program (the performance factors in the application program). Unfortunately, sometimes
a trade-off between human factors and performance factors exists. A screen design that is easily
understood and used by the person at the terminal may not be the design that gives the application
program its best performance. Your first concern should be that you are following whatever are your
established screen standards.

A terminal screen that has been designed with human factors in mind is one that puts the person at the
terminal first; it is one that makes it as easy as possible for that person to interact with IMS. Some of
the things you can do to make it easy for the person at the terminal to understand and respond to your
application program are:

« Display a small amount of data at one time.
« Use a format that is clear and uncluttered.
 Provide clear and simple instructions.

« Display one idea at a time.

Require short responses from the person at the terminal.

 Provide some means for help and ease of correction for the person at the terminal.
At the same time, you do not want the way in which a screen is designed to have a negative effect on
the application program's response time, or on the system's performance. When you design a screen with

performance first in mind, you want to reduce the processing that IMS must do with each message. To
do this, the person at the terminal should be able to send a lot of data to the application program in one

94 IMS: Application Programming

screen so that IMS does not have to process additional messages. And the program should not require
two screens to give the person at the terminal information that it could give on one screen.

When describing how the program should receive the data from the terminal, you need to consider the
program logic and the type of data you are working with.

Gathering requirements for conversational processing

When you use conversational processing, the person at the terminal enters some information, and an
application program processes the information and responds to the terminal. The person at the terminal
then enters more information for an application program to process. Each of these interactions between
the person at the terminal and the program is called a step in the conversation. Only MPPs can be
conversational programs; Fast Path programs and BMPs cannot be conversational.

Definition: Conversational processing means that the person at the terminal can communicate with the
application program.

What happens in a conversation

A conversation is defined as a dialog between a user at a terminal and IMS through a scratchpad area
(SPA) and one or more application programs.

During a conversation, the user at the terminal enters a request, receives the information from IMS,
and enters another request. Although it is not apparent to the user, a conversation can be processed by
several application programs or by one application program.

To continue a conversation, the program must have the necessary information to continue processing.
IMS stores data from one step of the conversation to the next in a SPA. When the same program or

a different program continues the conversation, IMS gives the program the SPA for the conversation
associated with that terminal.

In the preceding airline example, the first program might save the flight number and the names of the
people traveling, and then pass control to another application program to reserve seats for those people
on that flight. The first program saves this information in the SPA. If the second application program did
not have the flight number and names of the people traveling, it would not be able to do its processing.

Designing a conversation

The first part of designing a conversation is to design the flow of the conversation. If the requests from the
person at the terminal are to be processed by only one application program, you need only to design that
program. If the conversation should be processed by several application programs, you need to decide
which steps of the conversation each program is to process, and what each program is to do when it has
finished processing its step of the conversation.

When a person at a terminal enters a transaction code that has been defined as conversational, IMS
schedules the conversational program (for example, Program A) associated with that transaction code.
When Program A issues its first call to the message queue, IMS returns the SPA that is defined for that
transaction code to Program A's I/O area. The person at the terminal must enter the transaction code
(and password, if one exists) only on the first input screen; the transaction code need not be entered
during each step of the conversation. IMS treats data in subsequent screens as a continuation of the
conversation started on the first screen.

After the program has retrieved the SPA, Program A can retrieve the input message from the terminal.
After it has processed the message, Program A can either continue the conversation, or end it.

To continue the conversation, Program A can do any of the following:

 Reply to the terminal that sent the message.

« Reply to the terminal and pass the conversation to another conversational program, for example
Program B. This is called a deferred program switch.

Chapter 6. Gathering requirements for message processing options 95

Definition: A deferred program switch means that Program A responds to the terminal and then passes

control to another conversational program, Program B. After passing control to Program B, Program A
is no longer part of the conversation. The next input message that the person at the terminal enters
goes to Program B, although the person at the terminal is unaware that this message is being sent to a
second program.

Restriction: A deferred program switch is disallowed if the application is involved in an inbound
protected conversation. The application will receive an X6 status code if it attempts to perform a
deferred program switch in this environment.

Pass control of the conversation to another conversational program without first responding to the
originating terminal. This is called an immediate program switch.

Definition: An immediate program switch lets you pass control directly to another conversational

program without having to respond to the originating terminal. When you do this, the program that you
pass the conversation to must respond to the person at the terminal. To continue the conversation,
Program B then has the same choices as Program A did: It can respond to the originating terminal and
keep control, or it can pass control in a deferred or immediate program switch.

Restriction: An immediate program switch is disallowed if the application is involved in an inbound
protected conversation. The application will be abended with a U711 if it attempts to perform an
immediate program switch in this environment.

To end the conversation, Program A can do either of the following:

Move a blank to the first byte of the transaction code area of the SPA and then return the SPA to IMS.

Respond to the terminal and pass control to a nonconversational program. This is also called a deferred
program switch, but Program A ends the conversation before passing control to another application
program. The second application program can be an MPP or a transaction-oriented BMP that processes
transactions from the conversational program.

Important points about the scratchpad area (SPA)

When program A passes control of a conversation to program B, program B needs to have the data that
program A saved in the SPA in order to continue the conversation. IMS gives the SPA for the transaction to
program B when program B issues its first message call.

The SPA is kept with the message. When the truncated data option is on, the size of the retained SPA is
the largest SPA of any transaction in the conversation.

For example, if the conversation starts with TRANA (SPA=100), and the program switches to a TRANB
(SPA=50), the input message for TRANB will contain a SPA segment of 100 bytes. IMS adjusts the size of
the SPA so that TRANB receives only the first 50 bytes.

Recovery considerations in conversations

Because a conversation involves several steps and can involve several application programs, consider the
following items.

96 IMS:

One way you can make recovery easier is to design the conversation so that all the database updates
are done in the last step of the conversation. This way, if the conversation terminates abnormally, IMS
can back out all the updates because they were all made during the same step of the conversation.
Updating the database during the last step of the conversation is also a good idea, because the input
from each step of the conversation is available.

Although a conversation can terminate abnormally during any step of the conversation, IMS backs out
only the database updates and output messages resulting during the last step of the conversation. IMS
does not back out database updates or cancel output messages for previous steps, even though some
of that processing might be inaccurate as a result of the abnormal termination.

Certain IMS system service calls can be helpful if the program determines that some of its processing
was invalid. These calls include ROLB, SETS, SETU, and ROLS. The Roll Back call (ROLB) backs out all
of the changes that the program has made to the database. ROLB also cancels the output messages

Application Programming

that the program has created (except those sent with an express PCB) since the program's last commit
point.

The SETS, or SETU, and ROLS (with a token) calls work together to allow the application program to set
intermediate backout points within the call processing of the program. The application program can set
up to nine intermediate backout points. Your program needs to use the SETS or SETU call to specify a
token for each point. A subsequent ROLS call, using the same token, can back out all database changes
and discard all nonexpress messages processed since that SETS or SETU call.

Definition: A token is a 4-byte identifier.

« The program can use an express PCB to send a message to the person at the terminal and to the
master terminal operator. When the application program inserts messages using an express PCB, IMS
waits until it has the complete message, rather than for the occurrence of a commit point, to transmit
the message to its destination. (In this context, "insert" refers to a situation in which the application
program sends the message and it is received by IMS; "transmit" refers to a situation in which IMS
begins sending the message to its destination.) Therefore, when IMS has the complete message, it will
be transmitted even if the program abnormally terminates. Messages sent with an express PCB are sent
to their final destinations even if the program terminates abnormally or issues a ROLB call.

- To verify the accuracy of the previous processing, and to correct the processing that is determined to be
inaccurate, you can use the Conversational Abnormal termination routine, DFSCONEO.

Related reading: For more information on DFSCONEOQ, see IMS Version 15 Exit Routines.

 You can write an MPP to examine the SPA, send a message notifying the person at the terminal of the
abnormal termination, make any necessary database calls, and use a user-written or system-provided
exit routine to schedule it.

Related concepts

“To other programs and terminals” on page 98

When you want to send an output message to a terminal other than, or in addition to, the terminal that
sent the input message, you use an alternate PCB. You can set the alternate PCB for a specific logical
terminal when the program's PSB is generated, or you can define the alternate PCB as being modifiable.
A program can change the destination of a modifiable alternate PCB while the program is running, so you
can send output messages to several alternate destinations.

Identifying output message destinations

An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB
and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

Definition: An alternate PCB is a data communication program communication block (DCPCB) that you
define to describe output message destinations other than the terminal that originated the input message.

Related concepts

“Batch message processing: transaction-oriented BMPs” on page 44

Transaction-oriented BMPs can access z/0S files, GSAM databases, Db2 for z/OS databases, full-function
databases, DEDBs, and MSDBs.

The originating terminal

To send a message to the logical terminal that sent the input message, the program uses an I/O PCB. IMS
puts the name of the logical terminal that sent the message in the I/O PCB when the program receives the
message.

As a result, the program need not do anything to the I/O PCB before sending the message. If a program
receives a message from a batch-oriented BMP or CPI Communications driven program, no logical
terminal name is available to put into the I/O PCB. In these cases, the logical terminal name field contains
blanks.

Chapter 6. Gathering requirements for message processing options 97

Related concepts

“Identifying output message destinations” on page 97

An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB
and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

To other programs and terminals

When you want to send an output message to a terminal other than, or in addition to, the terminal that
sent the input message, you use an alternate PCB. You can set the alternate PCB for a specific logical
terminal when the program's PSB is generated, or you can define the alternate PCB as being modifiable.
A program can change the destination of a modifiable alternate PCB while the program is running, so you
can send output messages to several alternate destinations.

The application program might need to respond to the originating terminal before the person at the
originating terminal can send any more messages. This might occur when a terminal is in response mode
or in conversational mode:

« Response mode can apply to a communication line, a terminal, or a transaction. When response mode
is in effect, IMS does not accept any input from the communication line or terminal until the program
has sent a response to the previous input message. The originating terminal is unusable (for example,
the keyboard locks) until the program has processed the transaction and sent the reply back to the
terminal.

If a response-mode transaction is processed, including Fast Path transactions, and the application does
not insert a response back to the terminal through either the I/O PCB or alternate I/O PCB, but inserts

a message to an alternate PCB (program-to-program switch), the second or subsequent application
program must respond to the originating terminal and satisfy the response. IMS will not take the
terminal out of response mode.

If an application program terminates normally and does not issue an ISRT call to the I/O PCB, alternate
I/O PCB, or alternate PCB, IMS sends system message DFS20821 to the originating terminal to satisfy
the response for all response-mode transactions, including Fast Path transactions.

You can define communication lines and terminals as operating in response mode, not operating in
response mode, or operating in response mode only if processing a transaction that is been defined
as response mode. You specify response mode for communication lines and terminals on the TYPE
and TERMINAL macros, respectively, at IMS system definition. You can define any transaction as a
response-mode transaction; you do this on the TRANSACT macro at IMS system definition. Response
mode is in effect if:

— The communication line has been defined as being in response mode.
— The terminal has been defined as being in response mode.
— The transaction code has been defined as response mode.

- Conversational mode applies to a transaction. When a program is processing a conversational
transaction, the program must respond to the originating terminal after each input message it receives
from the terminal.

In these processing modes, the program must respond to the originating terminal. But sometimes the
originating terminal is a physical terminal that is made up of two components—for example, a printer and
a display. If the physical terminal is made up of two components, each component has a different logical
terminal name. To send an output message to the printer part of the terminal, the program must use a
different logical terminal name than the one associated with the input message; it must send the output
message to an alternate destination. A special kind of alternate PCB is available to programs in these
situations; it is called an alternate response PCB.

Definition: An alternate response PCB lets you send messages when exclusive, response, or
conversational mode is in effect. See the next section for more information.

98 IMS: Application Programming

Alternate response PCB

The destination of an alternate response PCB must be a logical terminal—you cannot use an alternate
response PCB to represent another application program. When you use an alternate response PCB during
response mode or conversational mode, the logical terminal represented by the alternate response PCB
must represent the same physical terminal as the originating logical terminal.

In these processing modes, after receiving the message, the application program must respond by issuing
an ISRT call to one of the following:

The I/O PCB.
An alternate response PCB.

An alternate PCB whose destination is another application program, that is, a program-to-program
switch.

An alternate PCB whose destination is an ISC link. This is allowed only for front-end switch messages.
Related reading: For more information on front-end switch messages, see IMS Version 15 Exit Routines.

If one of these criteria is not met, message DFS20821 is sent to the terminal.

Express PCB

Consider specifying an alternate PCB as an express PCB. The express designation relates to whether a
message that the application program inserted is actually transmitted to the destination if the program
abnormally terminates or issues a ROLL, ROLB, or ROLS call. For all PCBs, when a program abnormally
terminates or issues a ROLL, ROLB, or ROLS call, messages that were inserted but not made available
for transmission are cancelled while messages that were made available for transmission are never
cancelled.

Definition: An express PCB is an alternate response PCB that allows your program to transmit the
message to the destination terminal earlier than when you use a nonexpress PCB.

For a nonexpress PCB, the message is not made available for transmission to its destination until the
program reaches a commit point. The commit point occurs when the program terminates, issues a CHKP
call, or requests the next input message and when the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS has the complete message, it makes the message available for
transmission to the destination. In addition to occurring at a commit point, it also occurs when the
application program issues a PURG call using that PCB or when it requests the next input message.

You should provide the answers to the following questions to the data communications administrator to
help in meeting your application's message processing requirements:

« Will the program be required to respond to the terminal before the terminal can enter another message?

Will the program be responding only to the terminal that sends input messages?

If the program needs to send messages to other terminals or programs as well, is there only one
alternate destination?

What are the other terminals to which the program must send output messages?

Should the program be able to send an output message before it terminates abnormally?

Related concepts

“Recovery considerations in conversations” on page 96
Because a conversation involves several steps and can involve several application programs, consider the
following items.

“Identifying output message destinations” on page 97

An application program can send messages to another application program or to IMS terminals. To send
output messages, the program issues a call and references the I/O PCB or an alternate PCB. The I/O PCB
and alternate PCBs represent logical terminals and other application programs with which the application
program communicates.

Chapter 6. Gathering requirements for message processing options 99

100 IMS: Application Programming

Chapter 7. Designing an application for APPC

Advanced Program-to-Program Communication (APPC) is IBM's preferred protocol for program-to-
program communication. Application programs can be distributed throughout the network and
communicate with each other in many hardware architectures and software environments.

Related Reading: For more information on APPC, see:

« IMS Version 15 Communications and Connections, which includes an overview of APPC for LU 6.2
devices and CPI Communications concepts.

Overview of APPC and LU 6.2

APPC allows application programs using APPC protocols to enter IMS transactions from LU 6.2 devices.
The LU 6.2 application program runs on an LU 6.2 device supporting APPC.

APPC creates an environment that allows:

« Remote LU 6.2 devices to enter IMS local and remote transactions

- IMS application programs to insert transaction output to LU 6.2 devices with no coding changes to
existing application programs

« New application programs to make full use of LU 6.2 device facilities

« Data integrity provided by IMS and in LU 6.2 environments that do not have a distributed sync-point
function

Application program types

APPC/IMS is part of IMS TM that uses the CPI communications interface to communicate with application
programs.

APPC/IMS supports the following types of application programs for LU 6.2 processing:

« Standard DL/I
« Modified standard DL/I
« CPI Communications driven

Standard DL/I application program

A standard DL/I application program does not issue any CPI Communications calls or establish any
CPI-C conversations. This application program can communicate with LU 6.2 products that replace other
LU-type terminals using the IMS API. A standard DL/I application program does not need to be modified,
recompiled, or bound, and it executes as it currently does.

Modified standard DL/I application program

A modified standard DL/I application program is a standard DL/I online IMS TM application program
that uses both DL/I calls and CPI Communications calls. It can be an MPP, BMP, or IFP that can access
full-function databases, DEDBs, MSDBs, and Db2 for z/OS databases.

A modified standard DL/I application program uses CPI Communications (CPI-C) calls to provide support
foran LU 6.2 and non-LU 6.2 mixed network. The same application program can be a standard DL/I on
one execution, when the CPI Communications ALLOCATE verb is not issued, and a modified standard DL/I
on a different execution when the CPI Communications ALLOCATE verb is issued.

A modified standard DL/I application program receives its messages using DL/I GU calls to the I/O
PCB and issues output responses using DL/I ISRT calls. CPI Communications calls can also be used to
allocate new conversations and to send and receive data for them.

© Copyright IBM Corp. 1974, 2020 101

Related Reading: For a list of the CPI Communications calls, see CPI Communications Reference.

Use a modified standard DL/I application program when you want to use an existing standard DL/I
application program to establish a conversation with another LU 6.2 device or the same network
destination. The standard DL/I application program is optionally modified and uses new functions,

new application and transaction definitions, and modified DL/I calls to initiate LU 6.2 application
programs. Program calls and parameters are available to use the IMS-provided implicit API and the CPI
Communications explicit API.

CPI Communications driven program

A CPI Communications driven application program uses Commit and Backout calls, and CPI
Communications interface calls or LU 6.2 verbs for input and output message processing. This application
program uses the CPI Communications explicit API, and can access full-function databases, DEDBs,
MSDBs, and Db2 for z/OS databases. An LU 6.2 device can activate a CPI Communications driven
application program only by allocating a conversation.

Unlike a standard DL/I or modified standard DL/I application program, input and output message
processing for a CPI Communications driven program uses APPC/MVS™ buffers and bypasses IMS
message queueing. Because these application programs do not use the IMS message queue, they can
control their own execution with the partner LU 6.2 system. An IMS APSB call enables you to allocate a
PSB for accessing IMS databases and alternate PCBs.

The application program uses the Common Programming Interface Resource Recovery (CPI-RR) SRRCMIT
verb to initiate an IMS sync point and the CPI-RR SRRBACK verb for backout. CPI Communications

driven application programs use the CPI-RR calls to initiate IMS sync point processing prior to program
termination.

A CPI Communications driven application program is able to:

« Access any type of database

« Receive and send large messages like the standard DL/I and modified standard DL/I application
programs

« Control the flow of input and output with CPI Communications calls

« Allocate multiple conversations with partner LU 6.2 devices

« Cause synchronization with conversation partners

« Use the IMS implicit API (for example, IMS queue services)

« Use IMS services (for example, sync point at program termination) regardless of the API that is used

Application objectives

Each application type has a different purpose, and its ease-of-use varies depending on whether the
program is a standard DL/I, modified standard DL/I, or a CPI Communications driven application program.

The following table lists the purpose and ease-of-use for each application type (standard DL/I, modified
standard DL/I, and PI-C driven). This information must be balanced with IMS resource use.

Table 26. Using application programs in APPC

Purpose of application Ease of use
program i .
Standard DL/I program Modified standard DL/I PI-C driven program
program
Inquiry Easy Neutral Very Difficult
Data Entry Easy Easy Difficult
Bulk Transfer Easy Easy Neutral
Cooperative Difficult Difficult Desirable

102 IMS: Application Programming

Table 26. Using application programs in APPC (continued)

Purpose of application Ease of use
program e .
Standard DL/I program Modified standard DL/I PI-C driven program
program
Distributed Difficult Neutral Desirable
High Integrity Neutral Neutral Desirable
Client Server Easy Neutral Very Difficult

Choosing conversation attributes

The LU 6.2 transaction program indicates how the transaction is to be processed by IMS. Two processing
modes are available: synchronous and asynchronous.

Synchronous conversation

A conversation is synchronous if the partner waits for the response on the same conversation used to
send the input data.

Synchronous processing is requested by issuing the RECEIVE_AND_WATIT verb after the SEND_DATA verb.
Use this mode for IMS response-mode transactions and IMS conversational-mode transactions.

Example:

MC_ALLOCATE TPN(MYTXN)

MC_SEND_DATA 'THIS CAN BE A RESPONSE MODE'
MC_SEND_DATA 'OR CONVERSATIONAL MODE'
MC_SEND_DATA 'IMS TRANSACTION'
MC_RECEIVE_AND_WAIT

Asynchronous conversation

A conversation is asynchronous if the partner program normally deallocates a conversation after sending
the input data. Output is sent to the TP name of DFSASYNC.

Asynchronous processing is requested by issuing the DEALLOCATE verb after the SEND_DATA verb. Use
asynchronous processing for IMS commands, message switches, and non-response, non-conversational
transactions.

Example:

MC_ALLOCATE TPN(OTHERTXN)

MC_SEND_DATA 'THIS MUST BE A MESSAGE SWITCH, IMS COMMAND'
MC_SEND_DATA 'OR A NON-RESP NON-CONV TRANSACTION'
MC_DEALLOCATE

Asynchronous output delivery

Asynchronous output is held on the IMS message queue for delivery. When the output is enqueued, IMS
attempts to allocate a conversation to send this output. If this fails, IMS holds the output for later delivery.
This delivery can be initiated by an operator command (/ALLOC), or by the enqueue of a new message for
this LU 6.2 destination.

MSC synchronous and asynchronous conversation

MSC remote application messages from both synchronous and asynchronous APPC conversations can be
queued on the multiple systems coupling (MSC) link. These messages can then be sent across the MSC
link to a remote IMS for processing.

Chapter 7. Designing an application for APPC 103

Related concepts

“LU 6.2 flow diagrams” on page 111
The following diagrams show the flows for transactions that are sent from an LU 6.2 device.

Conversation type

The APPC conversation type defines how data is passed on and retrieved from APPC verbs.
It is similar in concept to file blocking and affects both ends of the conversation.
APPC supports two types of conversations:

Basic conversation
This low-conversation allows programs to exchange data in a standardized format. This format is a
stream of data containing 2-byte length fields (referred to as LLs) that specify the amount of data to
follow before the next length field. The typical data pattern is:

LL, data, LL, data

Each grouping of LL, data is referred to as a logical record. A basic conversation is used to send
multiple segments with one verb and to receive maximum data with one verb.

Mapped conversation
This high-conversation allows programs to exchange arbitrary data records in data formats approved
by application programmers. One send verb results in one receive verb, and z/OS and VTAM® handle
the buffering.

Related Reading: For more information on basic and mapped conversations, see

» Systems Network Architecture: LU 6.2 Reference: Peer Protocols and
« Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2

Conversation state

CPI Communications uses conversation state to determine what the next set of actions will be.
Examples of conversation states are:
RESET
The initial state before communications begin.
SEND
The program can send or optionally receive.
RECEIVE
The program must receive or abort.
CONFIRM
The program must respond to a partner.

The basic rules for APPC verbs are:

The program that initiates the conversation speaks first.

Only one APPC verb can be outstanding at time.
« Programs take turns sending and receiving.

The state of the conversation determines the verbs a program can issue.

Synchronization level

The APPC synchronization level defines the protocol that is used when changing conversation states.

APPC and IMS support the following synchronization level values:

104 IMS: Application Programming

SYNCLVL=NONE
Specifies that the programs do not issue calls or recognize returned parameters relating to
synchronization.

SYNCLVL=CONFIRM
Specifies that the programs can perform confirmation processing on the conversation.

SYNCLVL=SYNCPT
Specifies that the programs participate in coordinated commit processing on resources that are
updated during the conversation under the z/OS Resource Recovery Services (RRS) recovery platform.
A conversation with this level is also called a protected conversation.

Additionally, either IMS or RRS can be specified as the synchronization point manager.

RRS=Y
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or CONFIRM are processed with IMS
as the synchronization point manager.

If AOS=B or AOS=Y, transactions with SYNCLVL=SYNCPT are processed with RRS as the
synchronization point manager.

In a shared message queue environment where the front-end IMS system is also the back-end IMS
system, transactions with SYNCLVL=SYNCPT are processed with RRS as the synchronization point
manager.

In a non-shared message queue environment, transactions with SYNCLVL=SYNCPT are processed
with RRS as the synchronization point manager.

Restriction: The AOS= setting is applicable to shared message queue environment only.

RRS=N
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or CONFIRM are processed with IMS
as the synchronization point manager.

If the back-end IMS system has RRS=N specified, transactions with SYNCLVL=SYNCPT are processed
only at the front-end IMS system. However, if the front-end IMS system also has RRS=N specified,
transactions with SYNCLVL=SYNCPT are not processed at all.

Allocating a conversation with SYNCLVL=SYNCPT requires the RRS as the synchronization point manager.
RRS controls the commitment of protected resources by coordinating the commit or backout request with
the participating owners of the updated resources, the resource managers. IMS is the resource manager
for DL/I, Fast Path data, and the IMS message queues. The application program decides whether the
data is to be committed or aborted and communicates this decision to the synchronization point manager.
The synchronization point manager then coordinates the actions in support of this decision among the
resource managers.

Related concepts
Activating protected conversations (Communications and Connections)

Introduction to resource recovery

Most customers maintain computer resources that are essential to the survival of their businesses. When
these resources are updated in a controlled and synchronized manner, they are said to be protected
resources or recoverable resources. These resources can all reside locally (on the same system) or be
distributed (across nodes in the network). The protocols and mechanisms for regulating the updating of
multiple protected resources in a consistent manner is provided in z/OS with z/OS Resource Recovery
Services (RRS).

Participants in resource recovery

As shown in the following figure, the Resource Recovery environment is composed of three participants:
< Sync-point manager

- Resource managers

Chapter 7. Designing an application for APPC 105

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.ccg/ims_cpic_dsp_pcv_activatepcv.htm#ims_cpic_dsp_pcv_activatepcv

 Application program

RRS is the sync-point manager, also known as the coordinator. The sync-point manager controls the
commitment of protected resources by coordinating the commit request (or backout request) with the
resource managers, the participating owners of the updated resources. These resource managers are
known as participants in the sync-point process. IMS participates as a resource manager for DL/I, Fast
Path, and Db2 for z/OS data if this data has been updated in such an environment.

The final participant in this resource recovery protocol is the application program, the program accessing
and updating protected resources. The application program decides whether the data is to be committed
or aborted and relates this decision to the sync-point manager. The sync-point manager then coordinates
the actions in support of this decision among the resource managers.

|=
ARS
™ sync point
manager
h
Y
Resource Resource
manager manager
[F 3
L 4
L)
. Application -
program

Figure 25. Participants in resource recovery

Two-phase commit protocol

As shown in the following figure, the two-phase commit protocol is a process involving the sync-point
manager and the resource manager participants to ensure that of the updates made to a set of resources
by a third participant, the application program, either all updates occur or none. In simple terms, the
application program decides to commit its changes to some resources; this commit is made to the
sync-point manager that then polls all of the resource managers as to the feasibility of the commit call.
This is the prepare phase, often called phase one. Each resource manager votes yes or no to the commit.

After the sync-point manager has gathered all the votes, phase two begins. If all votes are to commit

the changes, then the phase two action is commit. Otherwise, phase two becomes a backout. System
failures, communication failures, resource manager failures, or application failures are not barriers to the
completion of the two-phase commit process.

The work done by various resource managers is called a unit of recovery (UOR) and spans the time from
one consistent point of the work to another consistent point, usually from one commit point to another. It
is the unit of recovery that is the object of the two-phase commit process.

106 IMS: Application Programming

LOR I35

slate BARS/MVS IMS Application
- Connect 1]
IN_RESET Express protected 4—» B
interast — -
— Return [4]
IN_FLIGHT — — g
— Return a
SARCMIT 4 B
IN_PREPARE Prepare —
IN_DOUBT
Viote commit -+ B
Commit — o
IN_COMMIT
Commit complete +— m
IN_RESET . Raturn E

Figure 26. Two-phase commit process with one resource manager

Notes:

1.
2.

O 00 N O o AW

The application and IMS make a connection.

IMS expresses protected interest in the work started by the application. This tells RRS that IMS will
participate in the 2-phase commit process.

. The application makes a read request to an IMS resource.

. Control is returned to the application following its read request.

. The application updates a protected resource.

. Control is returned to the application following its update request.

. The application requests that the update be made permanent by way of the SRRCMIT call.
. RRS calls IMS to do the prepare (phase 1) process.

. IMS returns to RRS with its vote to commit.

10.
11.
12.

RRS calls IMS to do the commit (phase 2) process.
IMS informs RRS that it has completed phase 2.
Control is returned to the application following its commit request.

Local versus distributed

The residence of the participants involved in the recovery process determines whether that recovery

is considered local or distributed. In a local recovery scenario, all the participants reside on the

same single system. In a distributed recovery scenario, the participants are scattered over multiple
systems. The following figure shows the communication between Resource Manager participants in a
distributed resource recovery. There is no conceptual difference between a local and distributed recovery
in the functions provided by RRS. However, to distribute the original sync-point manager's function to

Chapter 7. Designing an application for APPC 107

involve remote sync-point managers, a special resource manager is required. The APPC communications
resource manager provides this support in the distributed environment.

Resource
manager 2

[=
BRS/MVS
Sync-point
manager
r
¥ ¥
[= | 0 I
Rezource Communications
manager 1 resource
manager
F3
"
= || C
I
|
| Application RRS/MVS
" prograrm synec-paint
| manager
|
|
b
h 4
| 1
Communications
resource
manager
F3
r
-
- Application
program

Figure 27. Distributed resource recovery

Summary of z/0S Resource Recovery Services support

z/0S Resource Recovery Services (RRS) provides a system resource recovery platform so that
applications running on z/OS can access local and distributed resources and have system coordinated
recovery management of these resources.

The support includes:

« A synchronization point manager to coordinate the two-phase commit process

- Implementation of the SAA Commit and Backout callable services for use by application programs

« A mechanism to associate resources with an application instance

- Services for resource manager registration and participation in the two-phase commit process with RRS

- Services to allow resource managers to express interest in an application instance and be informed of
commit and backout requests

« Services to enable resource managers to obtain system data to restore their resources to consistent

state

108 IMS: Application Programming

« A communications resource manager (called APPC/PC for APPC/Protected Conversations) so that
distributed applications can coordinate their recovery with participating local resource managers

Restrictions:
« Extended Recovery Facility (XRF)

Running protected conversations in an IMS-XRF environment does not guarantee that the alternate
system can resume and resolve any unfinished work started by the active system. This process is not
guaranteed because a failed resource manager must re-register with its original RRS system if the
RRS is still available when the resource manager restarts. Only if the RRS on the active system is not
available can an XRF alternate can register with another RRS in the sysplex and obtain the incomplete
unit of recovery data of the failing active.

Recommendation: Because IMS retains indoubt units-of-recovery indefinitely until they are resolved,
switch back to the original active system as soon as possible to pick up unit-of -recovery information to
resolve and complete all the work of the resource managers involved. If this is not possible, the indoubt
units-of-recovery can be resolved using commands.

« Batch and non-message-driven BMPs in a DBCTL Environment

Distributed Sync Point does not support the IMS batch environment. In a DBCTL environment, inbound
protected conversations are not possible. However, a BMP in a DBCTL environment can allocate an
outbound protected conversation, which will be supported by Distributed Sync Point and RRS.

Distributed sync point

The Distributed Sync Point support enables IMS and remote application programs (APPC or OTMA) to
participate in protected conversations with coordinated resource updates and recoveries. Before this
support, IMS acted as the sync-point manager. In this new scenario, z/OS manages the sync-point
process on behalf of the conversation participants: the application program and IMS (now acting as a
resource manager).

z/0OS implements a system resource recovery platform, the z/OS Resource Recovery Services (RRS).
RRS supports the Common Programming Interface - Resource Recovery (CPI-RR), an element of the
SAA Common Programming Interface that defines resource recovery and provides for the coordinated
management of resource recovery for both local and distributed resources. In addition to RRS,

a communications resource manager (called APPC/PC for APPC/Protected Conversations) provides
distribution of the recovery.

In the APPC environment, a protected conversation is initiated when the application program allocates
an APPC conversation with SYNC_LEVEL=SYNCPT. Both IMS and APPC are resource managers in this
scenario. In the OTMA environment, some additional code is required because OTMA is not a resource
manager. The additional code needed is an OTMA adapter, IBM supplied or equivalent. This adapter
indicates to IMS (in the OTMA message prefix) that this message is part of a protected conversation, and
thus IMS and the adapter are participants in the coordinated commit process as managed by RRS.

Application programmers can now develop APPC application programs (local and remote) and remote
OTMA application programs that use RRS as the sync-point manager, rather than IMS. This enhancement
enables resources across multiple platforms to be updated and recovered in a coordinated manner.

Distributed sync point concepts
The Distributed Sync Point support entails:

« Changes in IMS that allow it to function as a resource manager under RRS

« Changes to the application program environment that support using applications in protected
conversations

« Changes to some commands that aid the user

Chapter 7. Designing an application for APPC 109

Impact on the network

Network traffic will increase as a result of the conversation participants and the sync-point manager
communicating with each other.

Application programming interface for LU type 6.2

IMS application programs can use the IMS implicit LU 6.2 API to access LU 6.2 devices. This API provides
compatibility with non-LU 6.2 device types so that the same application program can be used from both
LU 6.2 and non-LU 6.2 devices.

The API adds to the APPC interface by supplying IMS-provided processing for the application program.
You can use the explicit CPI Communications interface for APPC functions and facilities for new or
rewritten IMS application programs.

Implicit API

The implicit API accesses an APPC conversation indirectly. This API uses the standard DL/I calls (GU,
ISRT, PURG) to send and receive data. It allows application programs that are not specific to LU 6.2
protocols to use LU 6.2 devices.

The API uses new and changed DL/I calls (CHNG, INQY, SETO) to utilize LU 6.2. Using the existing IMS
application programming base, you can write specific applications for LU 6.2 using this API and not using
the CPI Communications calls. Although the implicit API uses only some of the LU 6.2 capabilities, it can
be a useful simplification for many applications. The implicit API also provides function outside of LU 6.2,
like message queueing and automatic asynchronous message delivery.

IMS generates all CPI Communications calls under the implicit APL. The application interaction is strictly
with the IMS message queue.

The remote LU 6.2 system must be able to handle the LU 6.2 flows. APPC/MVS generates these flows
from the CPI Communications calls issued by the IMS application program using the implicit API. An IMS
application program can use the explicit API to issue the CPI Communications directly. This is useful with
remote LU 6.2 systems that have incomplete LU 6.2 implementations, or that are incompatible with the
IMS implicit API support.

The existing API is extended so that:

= Asynchronous LU 6.2 output is created by using alternate PCBs that reference LU 6.2 destinations. The
DL/I CHNG call can supply parameters to specify an LU 6.2 destination. Default values are used for
omitted parameters.

- An application program can retrieve the current conversation attributes such as the conversation type
(basic or mapped), the sync_level (NONE, CONFIRM, or SYNCPT), and asynchronous or synchronous
conversation.

« A terminal message switch can be used to and from LU 6.2 devices.

Explicit API

The explicit API (the CPI Communications API) can be used by any IMS application program to access an
APPC conversation directly.

IMS resources are available to the CPI Communications driven application program only if the application
issues the APSB (Allocate PSB) call. The CPI Communications driven application program must use the
CPI-RR SRRCMIT and SRRBACK verbs to initiate an IMS sync point or backout, or if SYNCLVL=SYNCPT

is specified, to communicate the sync point decision to the z/OS Resource Recovery Services sync point
manager.

Related Reading: For a description of the SRRCMIT and SRRBACK verbs, see SAA CPI Resource Recovery
Reference.

110 IMS: Application Programming

LU 6.2 partner program design

The flow of a transaction that is sent from an LU 6.2 device differs, depending on the conversation
attributes and synchronization levels. Different results occur, and the partner system takes actions
accordingly.

LU 6.2 flow diagrams
The following diagrams show the flows for transactions that are sent from an LU 6.2 device.
The following figures show:

« The flow between a synchronous or asynchronous LU 6.2 application program and an IMS application
program in a single (local) IMS system

« The flow between a synchronous or asynchronous LU 6.2 application program in a single (local) IMS
system and an IMS application program in a remote IMS system across a multiple systems coupling
(MSC) link

« A backout scenario with SYNC_LEVEL=SYNCPT

Differences in buffering and encapsulation of control data with user data may cause variations in

the flows. The control data are the 3 returned fields from the Receive APPC verb: Status_received,
Data_received, and Request_to_send_received. Any variations based on these differences will not affect
the function or use of the flows.

Chapter 7. Designing an application for APPC 111

IMS Application Local IMS System

Sched Exit

Receive
OK,Data
Receive
OK,Send

Sched Transaction

GU IOPCB «
GN |IOPCB —
'‘QD' STATUS +—
—

GUIGEGENN—» SendData

Flush
Sync point
Deallocate

Remote LU 6.2

APPC VTAM Application

Allocate
Sync = None
TPMN=A

Send_Data

Receive and Wait

> OK,Data

Receive

Deallocate_
MNormal

Figure 28. Flow of a local IMS synchronous transaction when Sync_level=None

Figure 29 on page 113 shows the flow of a local synchronous transaction when Sync_level is Confirm.

112 IMS: Application Programming

Remote LU 6.2
IMS Application Local IMS System APPC VTAM Application

+—— Allocate
Sync = Confirm

TPMN=B
Send_Data
Sched Exit + Receive and Wait
Receive —
OK,Data
Receive -
OK Confirm_,Send
Confirmed —
Sched Transaction
GU IOPCEB +—
GNIOPCE —»
QD' STATUS «+——
ISRT IOPCE —=
. Send Data
= Confirm g OK,Data
> Receive
Confirm
OK - Confirmed
Sync point Receive
Deallocate ol Deallocate
Sync=Mone Mormal

Figure 29. Flow of a local IMS synchronous transaction when Sync_level=Confirm

Figure 30 on page 114 shows the flow of a local asynchronous transaction when Sync_level is None.

Chapter 7. Designing an application for APPC 113

Remote LU 6.2
IMS Application Local IMS System APPC VTAM Application

Allocate
Sync = Mone
TPN=C

Send_Data

rs

s

Sched Exit Deallocate

&

OK

L 3

Receive

OK.Data -
Receive
Deallocate -~

Mormal
Sched Transaction

GUIOPCE +—
ISRT IOPCE =~ —»

EXIT — Sync point

Allocate
Sync=Confirm —
TPN=DFSASYNGC

Send_Data e
DFSASYNC

Accept

¥

Deallocate

SyncLevel Receive

kL

OK,Data
Receive

v

Confirm_
Deallocate

OK Confirmed

r

Figure 30. Flow of a local IMS asynchronous transaction when Sync_level=None

Figure 31 on page 115 shows the flow of a local asynchronous transaction when Sync_level is Confirm.

114 IMS: Application Programming

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
Allocate
#+— Sync = Confirm
TPMN=D
- Send_Data
Sched Exit + Deallocate
Receive SyncLevel
QK,Data -
Receive
Confirm_ .-
Deallocate
Make Recoverable
Confirmed * Ok
Sched Transaction
GU IOPCE +—
ISRT IOPCB ’
EXIT — Sync point
Allocate
Sync=Confirm —
TPN=DFSASYNC
Send_Data —
DFSASYNC
Deallocate . Accept
SynclLevel Raceive
- * OK,Data
Receive
> Confirm_
Deallocate
oK « Confirmed

Figure 31. Flow of a local IMS asynchronous transaction when Sync_level=Confirm

The following figure shows the flow of a local conversational transaction When Sync_level is None.

Chapter 7. Designing an application for APPC 115

Remote LU 6.2

IMS Application Local IMS Systerm APPC VTAM Application
Allocate
- Sync = None
TPN=E
-+ Send Data
Sched Exit + Receive_and_Wait
Receive
OK,Data -+
Receive
OK, Send -~
Sched Transaction
GU IOPCEB +—
ISRT IOPCB —*
GUIOPCE — Send_Data * OK, Data
Receive
Sync point —» OK, Send
-+ Send_Data
Ok, Data - Receive_and_ Wait
Receive
OK, Send +~—
'bb' Status =~ +——
ISRT IOPCE —*
Blank SPA
Exit —— Send_Data * OK, Data
Flush Receive
Sync Point
Deallocate » Deallocate
Mormal

Figure 32. Flow of a local IMS conversational transaction when Sync_level=None

The following figure shows the flow of a local IMS command when Sync_level is None.

116 IMS: Application Programming

Remote LU 6.2

IMS Application Local IMS Systerm APPC VTAM Application
Allocate
- Sync = Mone
TPN=E

-+~ Send_Data

Sched Exit Receive_and_Wait

rF

Receive -
Ok, Data
Receive -—

OK, Send

Process IMS
Command

Send_Data -

b 4

Deallocate OK, Data
Receive

— Deallocate

Mormal

Figure 33. Flow of a local IMS command when Sync_level=None

The following figure shows the flow of a local asynchronous command when Sync_level is Confirm.

Chapter 7. Designing an application for APPC 117

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
Allocate
- Sync = Mone
TPN=/DIS

- Send_Data

Sched Exit < Deallocate
Receive
OK.Data -
Receive
Confirm -+
Deallocate
Confirmed » oK
Process IMS
Command
Allocate
Sync = Confirm —»
TPMN=DFSCMD
Send_Data ™
Deallocate > Accept
SyncLevel
Receive
— OK, Data
Receive
- Confirm_
Deallocate
0K <+ Confirmed

Figure 34. Flow of a local IMS asynchronous command when Sync_level=Confirm

The following figure shows the flow of a message switch When Sync_level is None.

118 IMS: Application Programming

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
Allocate
+— Sync = None
TPN=DFSAPPC

-— Send_Data

F 3

Receive_and
_Wait

Sched Exit

Receive -
OK,Data
Receive -

Ok, Send

Process
Message
Switch

Deallocate

k4

Deallocate

Mormal

Figure 35. Flow of a message switch when Sync_level=None

Synchronous is used to verify that no error has occurred while processing DFSAPPC. If an error occurred,
the error message returns before DEALLOCATE.

The following figure shows the flow of a CPI-C driven program when Sync_level is None.

Chapter 7. Designing an application for APPC 119

Remote LU 6.2

IMS Application Local IMS Systemm APPC VTAM Application
Allocate

+— Sync = Mone
TPN=F

e Send_Data

Sched Exit . Receive_and
_Wait
Schedule
Transaction
Accept -
SRRCMIT —* Sync Point
Deallocate * Deallocate
Mormal
Exit

Figure 36. Flow of a local CPI communications driven program when Sync_level=None

The following figure shows the flow of a remote synchronous transaction when Sync_level is None.

120 IMS: Application Programming

Remote IMS

System Local IMS System

Incoming FMHS
with TPN=TRAMNX

Call Input Message
Rnutir';% exil routine
DFSNPRTO

Locate the application
program name that
will axecute in
the remote IMS

Engueus the message
I its associated
remaote application
program gquaue

Send messa

Call Link Receive Routing arross MSG Ik

exit routine DFSCMLRO

Locate the application
program of TRAMNX

Schedule TRHAMNX

TRANX runs and insarts
output to IOPCE

Send output across »

MSC link Receive cutput from

remote IMS program

Relay output to the
LU'E.2 prograrm

Send output to the
LU 6.2 program

Deallocata

Remote LU 6.2
Application

Allocate LU=
IMS LU Name
Sync = None
TPMN=TRAMX, ...

-— Send_Data

+— Receive_and_Wait

Figure 37. Flow of a remote IMS synchronous transaction when Sync_level=None

The following figure shows the flow of a remote asynchronous transaction when Sync_level is None.

Chapter 7. Designing an application for APPC 121

Remota IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=

IMS LU Name
Sync = None
TPM=TRANX, ...

-— Send_Data

Deallocate Type=

Incoming FIMHS ™
with TPNZTRANX Sync_Level

Call lnput Message
qutir':_%m{it routine
DFSMPRTO
Locate the application
program name that

will execute in
the remote IMS

Enguaua the messagea
to its assocliated
remate application
program queue

Send message
- across MSC [ink

Call Link Racaive Routing
axit routine DFSCMLRO

Locate the ication
program af TRANX

Schedule TRANX
TRANX runs and insars
output to IOPCE

Send output across I

MSC link Receive output from

remote IMS program

Relay output to the

LU E.2 program
TPN=DFSASYNC,
Sync=Confirm »
Send output 1o the »
LU 6.2 program

Confirm ——#
+—— Confirmed

Deallocate Type= »
Sync_Leval

Figure 38. Flow of a remote IMS asynchronous transaction when Sync_level=None

The following figure shows the flow of a remote asynchronous transaction when Sync_level is Confirm.

122 IMS: Application Programming

Remote IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=
-— IMS LU Mame

Sync = Confirm

TPMN=TRAMNX, . ..

«+— Send Data

! Deallocate Type=

Incoming FMHS Sync_Level
with TPMN=TRAMNX

Call Input Message
F’mulinl'l_%,e:it routine
DFSMNPRTO

Locate tha application
program name that
will execute in
the remote IMS

Engueue the message
Io its associated
remote application
program quaua

Sand message
Il aecross MSC [Tk

Call Link Receive Routing
exit routine DFSCMLRD

Locate the application
program of TRANX

Schedule TRAMNX

TRAMX rung and inserts
output to IOPCE

Send oulput across —
MSS lirike
Receive output from
remaote IMS program

Allocate a new convarsation
with the LU &.2 program

with TPN=DFSAS 5 ’
Sync=Confirm

Send outpul 1o the >
LU 6.2 program

Confirm ——»

4— Confirmed

Deallocate Type= -
Sync_Level

Figure 39. Flow of a remote IMS asynchronous transaction when Sync_level=Confirm

The following figure shows the flow of a remote synchronous transaction when Sync_level is Confirm.

Chapter 7. Designing an application for APPC 123

Remote IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=
-~ IMS LU Mame

Sync = Confirm

TPMN=TRAMNX, . ..

+— Send_Data

+— Deallocate Type=

Incaming FMHS
with TPNSTRANX Symo_Level

Call Input Message
Finutug%a:n routing
DFSNPRTO

Locate the application
program name that
will executa in
the remote IMS

Engueus the message
o itz associated
remote application
program queusa

Sand message
— across M3SC link

Call Link Receive Routing
exit routine DFSCMLAD

Locate the application
program of TRANX

Schedule TRAMNX

TRAMNX rung and inserts
output to IOPCE

Send oulput across S
MSE litke)
Recaive output from
remote IMS program

FRelay output to the
LLI'6.2 program

Send output to the >
LUl 8.2 progeam

Confirm —
4— Confirmed

Deallocate >

Figure 40. Flow of a remote IMS synchronous transaction when Sync_level=Confirm

The scenarios shown in the following figure provide examples of the two-phase process for the supported
application program types. The LU 6.2 verbs are used to illustrate supported functions and interfaces
between the components. Only parameters pertinent to the examples are included. This does not imply
that other parameters are not supported.

The following figure shows a standard DL/I program commit scenario when Sync_Level=Syncpt.

124 IMS: Application Programming

Standard DL Ramote LU 6.2
Program IMS LU APPC VTAM Application

..'l Allocate
Syne Level =Syncpt

Sched Exit +—p
) - Send
Recalve
OK, Data -
-+ Recaive and Wait
Recaive —
OK, Send_Recaived +—
GU IOPCE —* Sched Transaction
GMN IOPCE —
QD' STATUS . a—
ISRT IOPCE~ —» E
GU IOPCE — - Recaive
Send Data —
> OK Data
Receive_and Walt —p Deallocate
o Type=3ync_Leavel
- SRRCMIT
Status Raceived
=Take Synept I
Deallocate
ATRCMIT

Return_Code=0K =~ —»

Deallocata * Retwrn_Code=0kK

Figure 41. Standard DL/I program commit scenario when Sync_Level=Syncpt

Notes:

HSync_Level=Syncpt triggers a protected resource update.

EAThis application program inserts output for the remote application to the IMS message queue.
The GU initiates the transfer of the output.

The remote application sends a Confirmed after receiving data (output).

IMS issues ATRCMIT (equivalent to SRRCMIT) to start the two-phase process.

The following figure shows a CPI-C driven commit scenario when Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 125

Ramote LU 6.2

CPI-C Driven Program APPC VTAM Application
‘ Allocate
Syne Leval =Syncpt a
Sched Exit o+
Sechedule

CPI-C driven program

Accapl_Convarsation

h 4

- Send H
Racaiva *
0K, Data -

- Prepare_to_Receive
Receive >

0K, Send_Recelved

Y

| Recaive
Send Data *
— OK, Data
Racaive_and_Wail *
Deallocate
Type=Sync_Lewval
- Commit B
Status Received L '
=Take_Syncpt_Deallocate ~ .
SARCMIT - [4]
Return_Code=0kK * B
— Return_Code=0K

Deallocata

Figure 42. CPI-C driven commit scenario when Sync_Level=Syncpt

Notes:

[Sync_Level=Syncpt triggers a protected resource update.
The programs send and receive data.

The remote application decides to commit the updates.

I The CPI-C program issues SRRCMIT to commit the changes.
The commit return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when Sync_Level=Syncpt.

126 IMS: Application Programming

Standard DL Remaota LU 6.2
Program IMS LU APPC VTAM Application

"‘E Allocate
Sync Leval =Syncpt

Sched Exit a4 »
+— Send
Receive —
0K, Data -—
L Recaive
Recelva e ’
OK, Send -
Sched Transaction
GU IOPCB —
GN IOPCB - H
‘00" STATUS -
ISAT IOPCE -k
GU IOPCB —
: Send Data —
- 0K, Data
Recaive gmd Wait ——»
1£ Backout
Srake, Backowt. [¢ 8
ATRBACK
: gﬁ:gmﬂd B Rc-Backed Out
Deallocate

Figure 43. Standard DL/I program U119 backout scenario when Sync_Level=Syncpt

Notes:
FSync_Level=Syncpt triggers a protected-resource update.
This application program inserts output for the remote application to the IMS message queue.
The GU initiates the transfer of the output.
The remote application decides to back out any updates.
IMS abends the application with a U119 to back out the application.
A The backout return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 127

Standard DL Remota LU 6.2

Program IMS LU APPC VTAM Application
+— Allocate 1]
Sched Exit s Sync Leval =Syncpt
- Sand
Recaive -
0K, Data -
- Recaive
Recaive — ’
OK,Send -
Sched Transaction
GU IOPCE —
GM IOPCE —
‘0D STATUS o —
ISRAT IOPCE —
GU IOPCE — [2|
: Send Data — B
Receive_and_Wait ——m
: - Confirmed 4]
Recaive_and_Wait — B
-+ SARBack [i |
ABENDUO711 ——» :
RAC=Backed Out B
Deallocate

Figure 44. Standard DL/I program U0711 backout scenario when Sync_Level=Syncpt

Notes:

FSync_Level=Syncpt triggers a protected-resource update.

This application program inserts output for the remote application to the IMS message queue.
The GU initiates the transfer of the output.

The remote application sends a Confirmed after receiving data (output).

H IMS issues ATBRCVW on behalf of the DL/I application to wait for a commit or
backout.

A The remote application decides to back out any updates.
IMS abends the application with U0711 to back out the application.
K] The backout return code is returned to the remote application.

The following figure shows a standard DL/I program ROLB scenario when Sync_Level=Syncpt.

128 IMS: Application Programming

Standard DL/
Program

GU IOPCE
GM IOPCE
'al STATUS
ISAT IOPCE

ROLB

IMS LU

Schad Exit

Raceive
Ok, Data

Receive
OK, Send
Sched Transaction

Remaote LU 6.2
APPC VTAM Application
Allocate 1]
Sync Level =Syncpl
-+ Sand
-+ Recelve

Figure 45. Standard DL/I program ROLB scenario when Sync_Level=Syncpt

Notes:

HSync_Level=Syncpt triggers a protected-resource update.
This application program inserts output for the remote application to the IMS message queue.

The following figure shows multiple transactions in the same commit when Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 129

Standard DL/ Standard DL Remote LU 6.2

Program Program IMS LU APPC VTAM Application
" Allocate
({Conversation 1)
) Sync Level =
Sched Exit -—w Syncpt
- Send

Recalve E—

QK. Data e
Recalve_and B

Recaive — Wait
OK Send_ 4+—
Recaived
GU IOPCE »
GM IOPCE [3
Qb STATUS -« B
ISAT IOPCE 3
GU IOPCB > ‘ Rincala

Send Data —w
4+—— OK, Data
Recalve_and

—
Wait Allocate
“—— [Conversation 2)
Sync Lewvel =
Schad Exit 4—w Syncpt
-+ Send]
Recaive —
OK, Data -+
‘ &:flm and
Recaive — B
OK, Send_
Recaived

GUIOPCE —»

GMIOPCE ——»
‘00 STATUS +——

ISAT IOPCB —»

GUIOPCE —» *— Receive
Send Data —m

Reacel d +— OK, Data
sCalve_an >

Wait

Status Recaived
=Take_Syncpt *

ATRCMIT —»

Return_Coda= — Return_Code=
Ok Ok

+— SRRCMIT

Figure 46. Multiple transactions in same commit when Sync_Level=Syncpt

Notes:

An allocate with Sync_Level=Syncpt triggers a protected resource update with Conversation 1.
The first transaction provides the output for Conversation 1.

An allocate with Sync_Level=Syncpt triggers a protected resource update with Conversation 2.
I The second transaction provides the output for Conversation 2.

The remote application issues SRRCMIT to commit both transactions.

I IMS issues ATRCMIT to start the two-phase process on behalf of each DL/I application.

Related concepts
“Application objectives” on page 102

130 IMS: Application Programming

Each application type has a different purpose, and its ease-of-use varies depending on whether the
program is a standard DL/I, modified standard DL/I, or a CPI Communications driven application program.

Integrity tables

The following tables show the message integrity of conversations, results of processing when integrity is
compromised, and how IMS recovers APPC messages.

The following table shows the results, from the viewpoint of the IMS partner system, of normal
conversation completion, abnormal conversation completion due to a session failure, and abnormal
conversation completion due to non-session failures. These results apply to asynchronous and
synchronous conversations and both input and output. This table also shows the outcome of the message,
and the action that the partner system takes when it detects the failure. An example of an action, under
"LU 6.2 Session Failure," is a programmable work station (PWS) resend.

Table 27. Message integrity of conversations

Conversation attributes Normal LU 6.2 session failurel Other failure?

Synchronous
Sync_level=NONE

Input: Reliable
Output: Reliable

Input: PWS resend
Output: PWS resend

Input: Reliable
Output: Reliable

Synchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Synchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=NONE

Input: Ambiguous
Output: Reliable

Input: Undetectable
Output: Reliable

Input: Undetectable
Output: Reliable

Asynchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Notes:

1. A session failure is a network-connectivity breakage.

2. A non-session failure is any other kind of failure, such as invalid security authorization.

3. IMS resends asynchronous output if CONFIRM is lost; therefore, the PWS must tolerate duplicate output.

The following table shows the specifics of the processing windows when integrity is compromised (the
message is either lost or its state is ambiguous). The table indicates the relative probability of an
occurrence of each window and whether output is lost or duplicated.

A Sync_level value of NONE does not apply to asynchronous output, because IMS always uses
Sync_level=CONFIRM for such output.

Chapter 7. Designing an application for APPC 131

Table 28. Results of processing when integrity is compromised

State of window,
before accepting

Probability of

Possible action
while sending

Probability of
action while

Conversation attributes transaction window state response sending response
Synchronous ALLOCATE to Medium Can !ose or send Medium
Sync_level=NONE PREPARE_TO_ duplicate output.
- RECEIVE return
Synchronous PREPARE_TO_ Small CON.FIRM to IMS Small
Sync_level=CONFIRM RECEIVE to receipt. Can cause
- PREPARE_TO_ duplicate output.
RECEIVE return
Synchronous PREPARE_TO_ Small CON.FIRM to IMS Small
Sync_level=SYNCPT RECEIVE to receipt. Can cause
- PREPARE_TO_ duplicate output.
RECEIVE return
Asynchronous Sllolclate to High CON.FIR(I\:/IED to IMS Small
Ssync._level=NONE eallocate rece{pt. an cause
duplicate output.
2
Asynchronous PREPARE_TO_ Small CON.FIRMED to IMS Small
Sync_level=CONFIRM RECEIVE to receipt. Can cause
- PREPARE_TO_ duplicate output.
RECEIVE return
PREPARE_TO Small? CONFIRMED to IMS
Asynchronous - - .
Sy?]lc lervel=léYNCPT RECEIVE to receipt. Can cause
- PREPARE_TO_ duplicate output.

RECEIVE return

Notes:

1. The term window refers to a period of time when certain events can occur, such as the consequences

described in this table.

2. Can be recoverable.

The following table indicates how IMS recovers APPC transactions across IMS warm starts, XRF
takeovers, APPC session failures, and MSC link failures.

Table 29. Recovering APPC messages

IMS warm start APPC (LU 6.2) MSC LINK
Message type (NRE or ERE) XRF takeover session fail failure
Local Recoverable Tran., Non
Resp., Non C tion - APPC . . .
esp., on Lonversation Discarded (2) Discarded (4) Discarded (6) N/A (9)
Sync. Conv. Mode - APPC Async. R q R q R 401 N/A (9
Conv. Mode ecovere ecovere ecovered (1) /A (9)
Local Recoverable Tran., Conv.
Resp. mode - APPC Sync. . . .
(()::)n\(jsl\pf)lorc?g-i\PPC Asyrzl(?CConv Discarded (2) Discarded (4) Discarded (6) N/A (9)
:) " N/A (8) N/A (8) N/A (8) N/A (8,9)
Mode
L [NonR ble Tran., - . .
ACE’CPaC S)c/)rr:c ?Z%?K/erl\?lofe _raArll:’PC Discarded (2) Discarded (6) N/A (9)
. ; Discarded (2) Discarded (4) Recovered (1) N/A (9)

Async. Conv. Mode

132 IMS: Application Programming

Table 29. Recovering APPC messages (continued)

Message type

IMS warm start

(NRE or ERE)

XRF takeover

APPC (LU 6.2)
session fail

MSC LINK
failure

Remote Recoverable Tran., Non
Resp., Non Conv. - APPC Sync.

Conv. Mode - APPC Async. Conv.

Mode

Discarded (2,5)
Recovered

Discarded (3,5)
Recovered

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Remote Recoverable Tran.,
Conv. or Resp. mode - APPC

Sync. Conv. Mode - APPC Async.

Conv. Mode

Discarded (2,5)
N/A (8)

Discarded (3,5)
N/A (8)

Recovered (1)
N/A (8)

Recovered (7)
N/A (8)

Remote Non Recoverable Tran.,
- APPC Sync. Conv. Mode -

Discarded (2,5)
Discarded (2,5)

Discarded (3,5)
Discarded (3,5)

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

APPC Async. Conv. Mode

Note:

1. This recovery scenario assumes the message was enqueued before failure; otherwise, the message is
discarded.

2. The message is discarded during IMS warm-start processing.

3. The message is discarded when the MSC link is restarted and when the message is taken off the queue (for
sending across the link).

4. The message is discarded when the message region is started and when the message is taken off the queue
(for processing by the application program).

5. For all remote MSC APPC transactions, if the message has already been sent across the MSC link to the
remote system when the failure occurs in the local IMS, the message is processed. After the message is
processed by the remote application program and a response message is sent back to the local system,
it is enqueued to the DFSASYNC TP name of the LU 6.2 device or program that submitted the original
transaction.

6. At sync point, the User Message Control Error exit routine (DFSCMUXO0) can prevent the transaction from
being aborted and the output message can be rerouted (recovered).

For more information about this exit routine, see IMS Version 15 Exit Routines.

7. The standard MSC Link recovery protocol recovers all messages that are queued or are in the process of
being sent across the MSC link when the link fails.

8. IMS conversational-mode and response-mode transactions cannot be submitted from APPC asynchronous
conversation sessions. APPC synchronous conversation-mode must be used.

9. MSC link failures do not affect local transactions.

DFSAPPC message switch
DFSAPPC is an LU 6.2 descriptor that provides an IMS system service.
It allows LU 6.2 application programs to send messages to the following:

« Application programs (transactions)
« IMS-managed local or remote LTERMs (message switches)
e LU name and TP name

Messages sent with the LTERM= option are directed to IMS-managed local or remote LTERMs. Messages
sent without the LTERM= option are sent to the appropriate LU 6.2 application or IMS application
program.

Chapter 7. Designing an application for APPC 133

Because the LTERM can be an LU 6.2 descriptor name, the message is sent to the LU 6.2 application
program as if an LU 6.2 device had been explicitly selected.

With DFSAPPC, message delivery is asynchronous. If a message is allocated and the allocate fails, the
message is held on the IMS message queue until it can be successfully delivered.

Example: In the LU 6.2 conversation example, an IMS application issues a DFSAPPC message switch to
its partner with the LU name FRED and TPN name REPORT. REPI is the user data.

DFSAPPC (TPN=REPORT LU=FRED) REP1

You can use a 17-byte network-qualified name in the LU= field.

Restriction: LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG call inan LU 6.2
conversation. The LU 6.2 conversation can only be associated with the IOPCB. The application sends

a message on the existing LU 6.2 conversation (synchronous) or has IMS create a new conversation
(asynchronous) using the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation, only
the IOPCB represents the original LU 6.2 conversation.

Related Reading: For more information about DFSAPPC, see IMS Version 15 Communications and
Connections.

134 IMS: Application Programming

Chapter 8. Testing an IMS application program

You should perform a program unit test on your IMS application program to ensure that the program
correctly handles its input data, processing, and output data. The amount and type of testing you do
depends on the individual program.

Recommendations for testing an IMS program

Before you start testing your program, be aware of your established test procedures.
To start testing, you need the following three items:

» Test JCL.

- Atest database. Never test a program using a production database because the program, if faulty, might
damage valid data.

« Test input data. The input data that you use need not be current, but it should be valid. You cannot be
sure that your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly handle all the
situations that it might encounter. To thoroughly test the program, try to test as many of the paths that the
program can take as possible.

Recommendations:

- Test each path in the program by using input data that forces the program to execute each of its
branches.

« Be sure that your program tests its error routines. Again, use input data that will force the program to
test as many error conditions as possible.

« Test the editing routines your program uses. Give the program as many different data combinations as
possible to make sure it correctly edits its input data.

Testing DL/I call sequences (DFSDDLTO) before testing your IMS
program

The DL/I test program, DFSDDLTO, is an IMS application program that executes the DL/I calls you specify
against any database.

Restriction: DFSDDLTO does not work if you are using a coordinator controller (CCTL).

An advantage of using DFSDDLTO is that you can test the DL/I call sequence you will use prior to coding
your program. Testing the DL/I call sequence before you test the program makes debugging easier,
because by the time you test the program, you know that the DL/I calls are correct. When you test the
program, and it does not execute correctly, you know that the DL/I calls are not part of the problem if you
have already tested them using DFSDDLTO.

For each DL/I call that you want to test, you give DFSDDLTO the call and any SSAs that you are using
with the call. DFSDDLTO then executes and gives you the results of the call. After each call, DFSDDLTO
shows you the contents of the DB PCB mask and the I/O area. This means that for each call, DFSDDLTO
checks the access path you have defined for the segment, and the effect of the call. DFSDDLTO is helpful
in debugging because it can display IMS application control blocks.

To indicate to DFSDDLTO the call you want executed, you use four types of control statements:

Status statements establish print options for DFSDDLTO's output and select the DB PCB to use for the
calls you specify.
Comment statements let you choose whether you want to supply comments.

Call statements indicate to DFSDDLTO the call you want to execute, any SSAs you want used with the
call, and how many times you want the call executed.

© Copyright IBM Corp. 1974, 2020 135

Compare statements tell DFSDDLTO that you want it to compare its results after executing the call
with the results you supply.

In addition to testing call sequences to see if they work, you can also use DFSDDLTO to check the
performance of call sequences.

Using BTS to test your IMS program

IMS Batch Terminal Simulator for z/OS (BTS) is a valuable tool for testing programs because you can use
it to test call sequences. The documentation that BTS produces is helpful in debugging. You can also test
online application programs without actually running them online.

Restriction: BTS does not work if you are using a CCTL or running under DBCTL.

Related reading: For information about how to use BTS, see IMS Batch Terminal Simulator for z/0OS User's
Guide.

Tracing DL/I calls with image capture for your IMS program

The DL/I image capture program (DFSDLTRO) is a trace program that can trace and record DL/I calls
issued by all types of IMS application programs.

Restriction: The image capture program does not trace calls to Fast Path databases.
You can run the image capture program in a DB/DC or a batch environment to:
» Test your program

If the image capture program detects an error in a call it traces, it reproduces as much of the call as
possible, although it cannot document where the error occurred, and cannot always reproduce the full
SSA.

 Produce input for DFSDDLTO

You can use the output produced by the image capture program as input to DFSDDLTO. The image
capture program produces status statements, comment statements, call statements, and compare
statements for DFSDDLTO.

« Debug your program

When your program terminates abnormally, you can rerun the program using the image capture
program, which can then reproduce and document the conditions that led to the program failure.
You can use the information in the report produced by the image capture program to find and fix the
problem.

Using image capture with DFSDDLTO

The image capture program produces the following control statements that you can use as input to
DFSDDLTO.

« Status statements

When you invoke the image capture program, it produces the status statement. The status statement it
produces:

— Sets print options so that DFSDDLTO prints all call trace comments, all DL/I calls, and the results of all
comparisons.

— Determines the new relative PCB number each time a PCB change occurs while the application
program is executing.

- Comments statement

The image capture program also produces a comments statement when you invoke it. The comments
statements give:

— The time and date IMS started the trace

136 IMS: Application Programming

— The name of the PSB being traced

The image capture program also produces a comments statement preceding any call in which IMS finds
an error.

« Call statements

The image capture program produces a call statement for each DL/I call the application program issues.
It also generates a CHKP call when it starts the trace and after each commit point or CHKP request.

« Compare statements

The image capture program produces data and PCB comparison statements if you specify COMP on the
TRACE command (if you run the image capture program online), or on the DLITRACE control statement
(if you run the image capture program as a batch job).

Restrictions on using image capture output
The status statement of the image capture call is based on relative PCB position.

When the PCB parameter LIST=NO has been specified, the status statement may need to be changed to
select the PCB as follows:
- If all PCBs have the parameter LIST=YES, the status statement does not need to be changed.

« If all PCBs have the parameter LIST=NO, the status statement needs to be changed from the relative
PCB number to the correct PCB name.

- If some PCBs have the parameter LIST=YES and some have the parameter LIST=NO, the status
statement needs to be changed as follows:

— The PCB relative position is based on all PCBs as if LIST=YES.

— For PCBs that have a PCB name, the status statement can be changed to use the PCB name based on
a relative PCB number.

— For PCBs that have LIST=YES and no PCB name, change the relative PCB number to refer to the
relative PCB number in the user list by looking at the PCB list using LIST=YES and LIST=NO.

Running image capture online

When you run the image capture program online, the trace output goes to the IMS log data set. To run the
image capture program online, you issue the IMS TRACE command from the IMS master terminal.

If you trace a BMP or an MPP and you want to use the trace results with DFSDDLTO, the BMP or MPP
must have exclusive write access to the databases it processes. If the application program does not have
exclusive access, the results of DFSDDLTO may differ from the results of the application program. When
you trace a BMP that accesses GSAM databases, you must include an //IMSERR DD statement to get a
formatted dump of the GSAM control blocks.

The following diagram shows the TRACE command format:

[P
»—/ — TRACE — SET OFF PSB — psbname >«

NOCOMP
L |

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one PSB at the same time
by issuing a separate TRACE command for each PSB.

Chapter 8. Testing an IMS application program 137

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and PCB compare statements
to be used as input to DFSDDLTO.

Running image capture as a batch job

To run the image capture program as a batch job, you use the DLITRACE control statement in the
DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:

« Whether you want to trace all of the DL/I calls the program issues or trace only a certain group of calls.
« Whether you want the trace output to go to:

A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart information may not
be directly reproducible when you use the trace output with DFSDDLTO.

When you run DFSDDLTO in an IMS DL/I or DBB batch region with trace output, the results are the same
as the application program's results, but only if the database has not been altered.

For information on the format of the DLITRACE control statement in the DFSVSAMP DD data set, see the
topic "Defining DL/I call image trace" in IMS Version 15 System Definition.

Retrieving image capture data from the log data set

If the trace output is sent to the IMS log data set, you can retrieve it by using utility DFSERAL10 and a DL/I
call trace exit routine, DFSERA50. DFSERA50 deblocks, formats, and numbers the image capture program
records that are to be retrieved.

To use DFSERASOQ, you must insert a DD statement defining a sequential output data set in the DFSERA10
input stream. The default ddname for this DD statement is TRCPUNCH. The statement must specify
BLKSIZE=80.

For example, you can use the following examples of DFSERAL0 input control statements in the SYSIN
data set to retrieve the image capture program data from the log data set:

« Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

- Print selected image capture program records by PSB name:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F, COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

« Format image capture program records (in a format that can be used as input to DFSDDLTO):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F, COND=M
OPTION PRINT EXITR=DFSERA50,0FFSET=25,FLDTYP=C

VALUE=psbname, FLDLEN=8, DDNAME=0OUTDDN, COND=E

Remember: The DDNAME= parameter names the DD statement to be used by DFSERA50. The data set
that is defined on the OUTDDN DD statement is used instead of the default TRCPUNCH DD statement. For
this example, the DD is:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

138 IMS: Application Programming

Requests for monitoring and debugging your IMS program
You can use the STAT and LOG requests to help you in debugging your program.

« The Statistics (STAT) call retrieves database statistics.
« The Log (LOG) call makes it possible for the application program to write a record on the system log.

The enhanced OSAM and VSAM STAT calls provide additional information for monitoring performance and
fine tuning of the system for specific needs.

When the enhanced STAT call is issued, the following information is returned:
« OSAM statistics for each defined subpool

« VSAM statistics that also include hiperspace statistics

« OSAM and VSAM count fields that have been expanded to 10 digits

Retrieving database statistics: the STAT call

The STAT call is helpful in debugging a program because it retrieves IMS database statistics. It is also
helpful in monitoring and fine tuning for performance. The STAT call retrieves OSAM database buffer pool
statistics and VSAM database buffer subpool statistics.

This topic contains Product-sensitive Programming Interface information.
When you issue the STAT call, you indicate:

« AnI/O area into which the statistics are to be returned.

« A statistics function, which is the name of a 9-byte area whose contents describe the type and format of
the statistics you want returned. The contents of the area are defined as follows:

— The first 4 bytes define the type of statistics desired (OSAM or VSAM).
— The 5th byte defines the format to be returned (formatted, unformatted, or summary).
— The remaining 4 bytes are defined as follows:

- The normal or enhanced STAT call contains 4 bytes of blanks.

- The extended STAT call contains the 4-byte parameter ' E1 ' (a 1-byte blank, followed by a 2-byte
character string, and then another 1-byte blank).

Related reference
STAT call (Application Programming APIs)

Format of OSAM buffer pool statistics

For OSAM buffer pool statistics, the values are possible for the stat-function parameter and for the format
of the data that is returned to the application program. If no OSAM buffer pool is present, a GE status
code is returned to the program.

DBASF

This function value provides the full OSAM database buffer pool statistics in a formatted form. The
application program I/O area must be at least 360 bytes. Three 120-byte records (formatted for printing)
are provided as two heading lines and one line of statistics. The following diagram shows the data format.

BLOCK FOUND READS BUFF 0SAM BLOCKS NEwW CHAIN
REQ 1IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES
nnnnnnn nnnnnnn nNNNN - NNNNNNN NANNNNN NNNNNNN NNNNN— NNNNN

WRITTEN LOGICAL PURGE RELEASE

AS NEW CYL REQ REQ ERRORS
FORMAT

nNNNNNN NNNNANN NNNNNNN nNNNAN.— nn/nn

Chapter 8. Testing an IMS application program 139

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_statcall.htm#ims_statcall

BLOCK REQ
Number of block requests received.

FOUND IN POOL
Number of times the block requested was found in the buffer pool.

READS ISSUED

Number of OSAM reads issued.
BUFF ALTS

Number of buffers altered in the pool.
OSAM WRITES

Number of OSAM writes issued.
BLOCKS WRITTEN

Number of blocks written from the pool.
NEW BLOCKS

Number of new blocks created in the pool.
CHAIN WRITES

Number of chained OSAM writes issued.

WRITTEN AS NEW
Number of blocks created.

LOGICAL CYL FORMAT
Number of format logical cylinder requests issued.

PURGE REQ
Number of purge user requests.

RELEASE REQ
Number of release ownership requests.

ERRORS
Number of write error buffers currently in the pool or the largest number of errors in the pool during
this execution.

DBASU

This function value provides the full OSAM database buffer pool statistics in an unformatted form. The
application program I/O area must be at least 72 bytes. Eighteen fullwords of binary data are provided:

Word
Contents

1
A count of the number of words that follow.
2-18
The statistic values in the same sequence as presented by the DBASF function value.

DBASS

This function value provides a summary of the OSAM database buffer pool statistics in a formatted form.
The application program I/0 area must be at least 180 bytes. Three 60-byte records (formatted for
printing) are provided. The following diagram shows the data format.

DATA BASE BUFFER POOL: SIZE nnnnnnn
REQL nnnnn REQ2 nnnnn READ nnnnn WRITES nnnnn LCYL nnnnn
PURG nnnnn OWNRR nnnnn ERRORS nn/nn

SIZE
Buffer pool size.

REQ1
Number of block requests.

140 IMS: Application Programming

REQ2
Number of block requests satisfied in the pool plus new blocks created.

READ
Number of read requests issued.
WRITES
Number of OSAM writes issued.
LCYL
Number of format logical cylinder requests.
PURG
Number of purge user requests.
OWNRR
Number of release ownership requests.
ERRORS
Number of permanent errors now in the pool or the largest number of permanent errors during this
execution.

Format of VSAM buffer subpool statistics

Because there might be several buffer subpools for VSAM databases, the STAT call is iterative when
requesting these statistics. If more than one VSAM local shared resource pool is defined, statistics are
retrieved for all VSAM local shared resource pools in the order in which they are defined. For each local
shared resource pool, statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest buffer size are provided.
For each succeeding call (without intervening use of the PCB), the statistics for the subpool with the
next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool statistics always follow
statistics of the data subpools. Index subpool statistics are also retrieved in ascending order based on the
buffer size.

The final call for the series returns a GA status code in the PCB. The statistics returned are totals for all
subpools in all local shared resource pools. If no VSAM buffer subpools are present, a GE status code is
returned to the program.

VBASF

This function value provides the full VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 360 bytes. Three 120-byte records (formatted for printing)
are provided as two heading lines and one line of statistics. Each successive call returns the statistics for
the next data subpool. If present, statistics for index subpools follow the statistics for data subpools.

The following diagram shows the data format.

BUFFER HANDLER STATISTICS
BSIZ NBUF RET RBA RET KEY ISRT ES ISRT KS BFR ALT BGWRT SYN PTS
nnNK nnn nnnnnnn nnnNNNN NNNNNNN NNNNNNN NNNNNNN NNNNNNN. NNNNNNN

VSAM STATISTICS POOLID: xxxx
GETS SCHBFR FOUND READS USR WTS NUR WTS ERRORS
nNNNNNN NNNNNNN NNNNNNN NNNNNNN NNNNNNN. NNNRNNN.— nn/nn

POOLID
ID of the local shared resource pool.

BSIZ
Size of the buffers in this VSAM subpool. In the final call, this field is set to ALL.

NBUF
Number of buffers in this subpool. In the final call, this is the number of buffers in all subpools.

Chapter 8. Testing an IMS application program 141

RET RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RET KEY
Number of retrieve-by-key calls received by the buffer handler.

ISRTES
Number of logical records inserted into ESDSs.

ISRT KS
Number of logical records inserted into KSDSs.

BFR ALT
Number of logical records altered in this subpool. Delete calls that result in erasing records from a
KSDS are not counted.

BGWRT

Number of times the background-write function was executed by the buffer handler.
SYN PTS

Number of Synchronization calls received by the buffer handler.
GETS

Number of VSAM GET calls issued by the buffer handler.
SCHBFR

Number of VSAM SCHBFR calls issued by the buffer handler.
FOUND

Number of times VSAM found the control interval already in the subpool.
READS

Number of times VSAM read a control interval from external storage.
USR WTS

Number of VSAM writes initiated by IMS.
NUR WTS

Number of VSAM writes initiated to make space in the subpool.
ERRORS

Number of write error buffers currently in the subpool or the largest number of write errors in the
subpool during this execution.

VBASU

This function value provides the full VSAM database subpool statistics in a unformatted form. The
application program I/O area must be at least 72 bytes. Eighteen fullwords of binary data are provided for
each subpool:

Word
Contents
1
A count of the number of words that follow.
2-18
The statistic values in the same sequence as presented by the VBASF function value, except for
POOLID, which is not included in this unformatted form.

VBASS

This function value provides a summary of the VSAM database subpool statistics in a formatted form. The
application program I/0 area must be at least 180 bytes. Three 60-byte records (formatted for printing)
are provided.

142 IMS: Application Programming

The following diagram shows the data format.

DATA BASE BUFFER POOL: BSIZE nnnnnnn POOLID xxxx Type Xx
RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SYN PTS nnnnn
NMBUFS nnn VRDS nnnnn FOUND nnnnn VWTS nnnnn ERRORS nn/nn

BSIZE
Size of the buffers in this VSAM subpool.
POOLID
ID of the local shared resource pool.
TYPE
Indicates a data (D) subpool or an index (I) subpool.
RRBA
Number of retrieve-by-RBA requests.
RKEY
Number of retrieve-by-key requests.
BFALT
Number of logical records altered.
NREC
Number of new VSAM logical records created.
SYN PTS
Number of sync point requests.
NMBUFS
Number of buffers in this VSAM subpool.
VRDS
Number of VSAM control interval reads.
FOUND
Number of times VSAM found the requested control interval already in the subpool.
VWTS
Number of VSAM control interval writes.
ERRORS
Number of permanent write errors now in the subpool or the largest number of errors in this
execution.

Format of enhanced/extended OSAM buffer subpool statistics

The enhanced OSAM buffer pool statistics provide additional information generated for each defined
subpool. Because there might be several buffer subpools for OSAM databases, the enhanced STAT call
repeatedly requests these statistics. The first time the call is issued, the statistics for the subpool with
the smallest buffer size is provided. For each succeeding call (without intervening use of the PCB), the
statistics for the subpool with the next-larger buffer size is provided.

The final call for the series returns a GA status code in the PCB. The statistics returned are the totals for
all subpools. If no OSAM buffer subpools are present, a GE status code is returned.

Extended OSAM buffer pool statistics can be retrieved by including the 4-byte parameter 'bE1b' following
the enhanced call function. The extended STAT call returns all of the statistics returned with the
enhanced call, plus the statistics on the coupling facility buffer invalidates, OSAM caching, and sequential
buffering IMMED/SYNC read counts.

Restriction: The extended format parameter is supported by the DBESO, DBESU, and DBESF functions
only.

Chapter 8. Testing an IMS application program 143

DBESF

This function value provides the full OSAM subpool statistics in a formatted form. The application program
I/0O area must be at least 600 characters. For OSAM subpools, five 120-byte records (formatted for
printing) are provided. Three of the records are heading lines and two of the records are lines of subpool
statistics.

The following example shows the enhanced stat call format:

BUFFER HANDLER 0SAM STATISTICS FIXOPT=X/X POOLID: xxxx

BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT
PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS

nnlK nnnnnnnn nnnnnnnnnn nNNNNNNNNN NNNNNNNANND - NNNANNNANN. NNNNNNANAN.— NNNNANANNN. NANANANNNN— NANANNNNNN
nnnnnnnnnn nnnNNNNNNN NNNNNNNNNN . NNNNNNNNNN - NNNNNNNNAN.— NNNANNNNNN nnnnnnn/nnnnnnn

The following example shows the extended stat call format:

BUFFER HANDLER OSAM STATISTICS STG CLS= FIXOPT=N/N POOLID:

BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT
PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nnlK nnnnnnn5 nnnnnnnnn® nnnnnnnnn® nnnnnnnnn® nnnnnnnnNn® nnnnnnNnnNN0® nnnnnnnnNn® nnnnnnNnnNn0® nnnnnnnnn®
nnnnnnnnnn nNNNNNNNNN~ NNNNNNNNNN— NNNNNNNNNN. - NDNNNNNNNN— NNNNNNNNNN nnnnnnn/nnnnnnn
CF-READS EXPCTD-NF CFWRT-PRI CFWRT-CHG STGCLS-FULL XI-CNT VECTR-XI SB-SEQRD SB-ANTICIP
nNNNNNNNNN NNNNNNNNNN— NNNNNNNNNND NNNNNNNNNN - NNNNNNNNNN.—— NNNNNNNNNN nNNNNNNNNN - NNNNNNNNNN.—— NNNNNNNNNN
FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer prefix and data buffers are
fixed.
POOLID
ID of the local shared resource pool.

BSIZ
Size of the buffers in this subpool. Set to ALL for total line. For the summary totals (BSIZ=ALL), the
FIXOPT and POOLID fields are replaced by an OSM= field. This field is the total size of the OSAM
subpool.

NBUFS
Number of buffers in this subpool. This is the total number of buffers in the pool for the ALL line.

LOCATE-REQ
Number of LOCATE-type calls.

NEW-BLOCKS
Number of requests to create new blocks.

ALTER-REQ
Number of buffer alter calls. This count includes NEW BLOCK and BYTALT calls.

PURGE-REQ

Number of PURGE calls.
FND-IN-POOL

Number of LOCATE-type calls for this subpool where data is already in the OSAM pool.
BUFRS-SRCH

Number of buffers searched by all LOCATE-type calls.
READ-REQS

Number of READ I/0O requests.
BUFSTL-WRT

Number of single block writes initiated by buffer steal routine.
PURGE-WRTS

Number of blocks for this subpool written by purge.
WT-BUSY-ID

Number of LOCATE calls that waited due to busy ID.

WT-BUSY-WR
Number of LOCATE calls that waited due to buffer busy writing.

144 IMS: Application Programming

WT-BUSY-RD
Number of LOCATE calls that waited due to buffer busy reading.

WT-RLSEOWN

Number of buffer steal or purge requests that waited for ownership to be released.
WT-NO-BFRS

Number of buffer steal requests that waited because no buffers are available to be stolen.
ERRORS

Total number of I/O errors for this subpool or the number of buffers locked in pool due to write errors.
CF-READS

Number of blocks read from CF.
EXPCTD-NF

Number of blocks expected but not read.
CFWRT-PRI

Number of blocks written to CF (prime).
CFWRT-CHG

Number of blocks written to CF (changed).

STGGLS-FULL
Number of blocks not written (STG CLS full).

XI-CNTL
Number of XI buffer invalidate calls.

VECTR-XI
Number of buffers found invalidated by XI on VECTOR call.

SB-SEQRD
Number of immediate (SYNC) sequential reads (SB stat).

SB-ANTICIP
Number of anticipatory reads (SB stat).

DBESU
This function value provides full OSAM statistics in an unformatted form. The application program I/0
area must be at least 84 bytes. Twenty-one fullwords of binary data are provided for each subpool:

Word
Contents

1
A count of the number of words that follow.

2-19
The statistics provided in the same sequence as presented by the DBESF function value.

20
The POOLID provided at subpool definition time.

21
The second byte contains the following fix options for this subpool:

- X'04' = DATA BUFFER PREFIX fixed
- X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL), for word 21, contain the total size of the OSAM pool.

22-30
Extended stat data in same sequence as on DBESF call.

Chapter 8. Testing an IMS application program 145

DBESS

This function value provides a summary of the OSAM database buffer pool statistics in a formatted form.
The application program I/O area must be at least 360 bytes. Six 60-byte records (formatted for printing)
are provided. This STAT call is a restructured DBASF STAT call that allows for 10-digit count fields. In
addition, the subpool header blocks give a total of the number of OSAM buffers in the pool.

The following shows the data format:

DATA BASE BUFFER POOL: NSUBPL nnnnnn NBUFS nnnnnnnn
BLKREQ nnnnnnnnnn INPOOL nnnnnnnnnn READS nnnnnnnnnn
BUFALT nnnnnnnnnn WRITES nnnnnnnnnn BLKWRT nnnnnnnnnn
NEWBLK nnnnnnnnnn CHNWRT nnnnnnnnnn WRTNEW nnnnnnnnnn
LCYLFM nnnnnnnnnn PURGRQ nnnnnnnnnn RLSERQ nnnnnnnnnn
FRCWRT nnnnnnnnnn ERRORS nnnnnnnn/nnnnnnnn

NSUBPL

Number of subpools defined for the OSAM buffer pool.
NBUFS

Total number of buffers defined in the OSAM buffer pool.
BLKREQ

Number of block requests received.
INPOOL

Number of times the block requested is found in the buffer pool.
READS

Number of OSAM reads issued.
BUFALT

Number of buffers altered in the pool.
WRITES

Number of OSAM writes issued.
BLKWRT

Number of blocks written from the pool.
NEWBLK

Number of blocks created in the pool.
CHNWRT

Number of chained OSAM writes issued.
WRTNEW

Number of blocks created.
LCYLFM

Number of format logical cylinder requests issued.
PURGRQ

Number of purge user requests.
RLSERQ

Number of release ownership requests.
FRCWRT

Number of forced write calls.
ERRORS

Number of write error buffers currently in the pool or the largest number of errors in the pool during
this execution.

DBESO

This function value provides the full OSAM database subpool statistics in a formatted form for online
statistics that are returned as a result of a /DIS POOL command. This call can also be a user-application

146 IMS: Application Programming

STAT call. When issued as an application DL/I STAT call, the program I/O area must be at least 360 bytes.
Six 60-byte records (formatted for printing) are provided.

Example: The following shows the enhanced stat call format:

OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn

Example: The following shows the extended stat call format:

0OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn
CFREAD nnnnnnnnnn CFEXPC nnnnnnnnnn CFWRPR nnnnn/nnnnn
CFWRCH nnnnnnnnnn STGCLF nnnnnnnnnn XIINV nnnnn/nnnnn
XICLCT nnnnnnnnnn SBSEQR nnnnnnnnnn SBANTR nnnnn/nnnnn

POOLID
ID of the local shared resource pool.

BSIZE
Size of the buffers in this subpool. Set to ALL for summary total line. For the summary totals
(BSIZE=ALL), the FX=field is replaced by the OSAM= field. This field is the total size of the 0SAM
buffer pool. The POOLID is not shown. For the summary totals (BSIZE=ALL), the FX= field is replaced
by the OSAM= field. This field is the total size of the OSAM buffer pool. The POOLID is not shown.

NBUF
Number of buffers in this subpool. Total number of buffers in the pool for the ALL line.

FX=
Fixed options for this subpool. Y or N indicates whether the data buffer prefix and data buffers are
fixed.

LCTREQ
Number of LOCATE-type calls.

NEWBLK
Number of requests to create new blocks.

ALTREQ
Number of buffer alter calls. This count includes NEW BLOCK and BYTALT calls.

PURGRQ
Number of PURGE calls.
FNDIPL
Number of LOCATE-type calls for this subpool where data is already in the OSAM pool.

BFSRCH
Number of buffers searched by all LOCATE-type calls.

RDREQ
Number of READ I/O requests.
BFSTLW
Number of single-block writes initiated by buffer-steal routine.

PURGWR
Number of buffers written by purge.

WBSYID
Number of LOCATE calls that waited due to busy ID.

WBSYWR
Number of LOCATE calls that waited due to buffer busy writing.

Chapter 8. Testing an IMS application program 147

WBSYRD
Number of LOCATE calls that waited due to buffer busy reading.

WRLSEO
Number of buffer steal or purge requests that waited for ownership to be released.
WNOBRF
Number of buffer steal requests that waited because no buffers are available to be stolen.
ERRORS
Total number of I/O errors for this subpool or the number of buffers locked in pool due to write errors.
CFREAD
Number of blocks read from CF.
CFEXPC
Number of blocks expected but not read.
CFWRPR
Number of blocks written to CF (prime).
CFWRCH
Number of blocks written to CF (changed).
STGCLF
Number of blocks not written (STG CLS full).
XIINV
Number of XI buffer invalidate calls.
XICLCT
Number of buffers found invalidated by XI on VECTOR call.
SBSEQR
Number of immediate (SYNC) sequential reads (SB stat).
SBANTR

Number of anticipatory reads (SB stat).

Format of enhanced VSAM buffer subpool statistics

The enhanced VSAM buffer subpool statistics provide information on the total size of VSAM subpools in
virtual storage and in hiperspace. All count fields are 10 digits.

Because there might be several buffer subpools for VSAM databases, the enhanced STAT call repeatedly
requests these statistics. If more than one VSAM local shared resource pool is defined, statistics are
retrieved for all VSAM local shared resource pools in the order in which they are defined. For each local
shared resource pool, statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest buffer size are provided.
For each succeeding call (without intervening use of the PCB), the statistics for the subpool with the
next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool statistics always follow
the data subpools statistics. Index subpool statistics are also retrieved in ascending order based on the
buffer size.

The final call for the series returns a GA status code in the PCB. The statistics returned are totals for all
subpools in all local shared resource pools. If no VSAM buffer subpools are present, a GE status code is
returned to the program.

VBESF

This function value provides the full VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 600 bytes. For each shared resource pool ID, the first

call returns five 120-byte records (formatted for printing). Three of the records are heading lines and two
of the records are lines of subpool statistics.

148 IMS: Application Programming

The following shows the data format:

BUFFER HANDLER STATISTICS / VSAM STATISTICS FIXOPT=X/X/X POOLID: xxxx

BSIZ NBUFFRS HS-NBUF RETURN-RBA RETURN-KEY ESDS-INSRT KSDS-INSRT BUFFRS-ALT BKGRND-WRT SYNC-POINT ERRORS
VSAM-GETS SCHED-BUFR VSAM-FOUND VSAM-READS USER-WRITS VSAM-WRITS HSRDS-SUCC HSWRT-SUCC HSR/W-FAIL
nnlK nnnnnn nnnNNNn NNNNNNNNNND NNNNNNNNAN. - NNNNNNNNNN - NNNNNNNNNN. - ANNNNNNNNN NNNNNNNNNN. - NNANNNNNNN NNNNNN/nnnnnn
NNNNNNNNNN NNNNNNNNNN NNNNNNNNAN NNNANNNNNN NNNNNNNNAN NNNNNNNNNN NNNNNNNNNN NNNANNNNNAN NRNN/nnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer prefix, the index buffers, and
the data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ
Size of the buffers in this subpool. Set to ALL for total line. For the summary totals (BSIZ=ALL), the
FIXOPT and POOLID fields are replaced by a VS= field and a HS= field. The VS= field is the total size of
the VSAM subpool in virtual storage. The HS= field is the total size of the VSAM subpool in hiperspace.
NBUFFRS
Number of buffers in this subpool. Total number of buffers in the VSAM pool that appears in the ALL
line.
HS-NBUF
Number of hiperspace buffers defined for this subpool.

RETURN-RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RETURN-KEY
Number of retrieve-by-key calls received by the buffer handler.

ESDS-INSRT
Number of logical records inserted into ESDSs.

KSDS-INSRT
Number of logical records inserted into KSDSs.

BUFFRS-ALT
Number of logical records altered in this subpool. Delete calls that result in erasing records from a
KSDS are not counted.

BKGRND-WRT
Number of times the background write function was executed by the buffer handler.

SYNC-POINT
Number of Synchronization calls received by the buffer handler.

ERRORS
Number of write error buffers currently in the subpool or the largest number of write errors in the
subpool during this execution.

VSAM-GETS

Number of VSAM Get calls issued by the buffer handler.
SCHED-BUFR

Number of VSAM Scheduled-Buffer calls issued by the buffer handler
VSAM-FOUND

Number of times VSAM found the control interval in the buffer pool.
VSAM-READS

Number of times VSAM read a control interval from external storage.
USER-WRITS

Number of VSAM writes initiated by IMS.
VSAM-WRITS

Number of VSAM writes initiated to make space in the subpool.
HSRDS-SUCC

Number of successful VSAM reads from hiperspace buffers.

Chapter 8. Testing an IMS application program 149

HSWRT-SUCC
Number of successful VSAM writes from hiperspace buffers.
HSR/W-FAIL
Number of failed VSAM reads from hiperspace buffers/number of failed VSAM writes to hiperspace

buffers. This indicates the number of times a VSAM READ/WRITE request from or to hiperspace
resulted in DASD I/O.

VBESU

This function value provides full VSAM statistics in an unformatted form. The application program I/0 area
must be at least 104 bytes. Twenty-five fullwords of binary data are provided for each subpool.

Word
Contents
1
A count of the number of words that follow.
2-23
The statistics provided in the same sequence as presented by the VBESF function value.
24
The POOLID provided at the time the subpool is defined.
25
The first byte contains the subpool type, and the third byte contains the following fixed options for this
subpool:

- X'08' = INDEX BUFFERS fixed
 X'04' = DATA BUFFER PREFIX fixed
- X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL) for word 25 and word 26 contain the virtual and hiperspace pool
sizes.

VBESS

This function value provides a summary of the VSAM database subpool statistics in a formatted form. The
application program I/O area must be at least 360 bytes. For each shared resource pool ID, the first call
provides six 60-byte records (formatted for printing).

The following shows the data format:

VSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnnK TYPE Xx FX=X/X/X

RRBA nnnnnnnnnn RKEY nnnnnnnnnn BFALT nnnnnnnnnn
NREC nnnnnnnnnn SYNC PT nnnnnnnnnn NBUFS nnnnnnnnnn
VRDS nnnnnnnnnn FOUND nnnnnnnnnn VWTS nnnnnnnnnn
HSR-S nnnnnnnnnn HSW-S nnnnnnnnnn HS NBUFS nnnnnnnn
HS-R/W-FAIL nnnnn/nnnnn ERRORS nnnnnn/nnnnnn
POOLID
ID of the local shared resource pool.
BSIZE
Size of the buffers in this VSAM subpool.
TYPE
Indicates a data (D) subpool or an index (I) subpool.

FX
Fixed options for this subpool. Y or N indicates whether the data buffer prefix, the index buffers, and
the data buffers are fixed.

RRBA
Number of retrieve-by-RBA calls received by the buffer handler.

150 IMS: Application Programming

RKEY
Number of retrieve-by-key calls received by the buffer handler.

BFALT

Number of logical records altered.
NREC

Number of new VSAM logical records created.
SYNC PT

Number of sync point requests.
NBUFS

Number of buffers in this VSAM subpool.
VRDS

Number of VSAM control interval reads.
FOUND

Number of times VSAM found the requested control interval already in the subpool.
VWTS

Number of VSAM control interval writes.
HSR-S

Number of successful VSAM reads from hiperspace buffers.
HSW-S

Number of successful VSAM writes to hiperspace buffers.
HS NBUFS

Number of VSAM hiperspace buffers defined for this subpool.
HS-R/W-FAIL

Number of failed VSAM reads from hiperspace buffers and number of failed VSAM writes to
hiperspace buffers. This indicates the number of times a VSAM READ/WRITE request to or from
hiperspace resulted in DASD I/O.

ERRORS
Number of permanent write errors now in the subpool or the largest number of errors in this
execution.

Writing Information to the system log: the LOG request
An application program can write a record to the system log by issuing the LOG call.

When you issue the LOG request, you specify the I/O area that contains the record you want written to the
system log. You can write any information to the log that you want, and you can use different log codes to
distinguish between different types of information.

Related Reading: For information about coding the LOG request, see the appropriate application
programming reference information.

What to do when your IMS program terminates abnormally

When your program terminates abnormally, you can take the following actions to simplify the task of
finding and fixing the problem.

« Record as much information as possible about the circumstances under which the program terminated
abnormally.

« Check for certain initialization and execution errors.

Recommended actions after an abnormal termination of an IMS program

Many places have guidelines on what you should do if your program terminates abnormally. The
suggestions given here are common guidelines:

Chapter 8. Testing an IMS application program 151

« Document the error situation to help in investigating and correcting it. The following information can be
helpful:

— The program's PSB name

— The transaction code that the program was processing (online programs only)
— The text of the input message being processed (online programs only)

— The call function

— The name of the originating logical terminal (online programs only)

— The contents of the PCB that was referenced in the call that was executing

— The contents of the I/O area when the problem occurred

— If a database call was executing, the SSAs, if any, that the call used

— The date and time of day

- When your program encounters an error, it can pass all the required error information to a standard
error routine. You should not use STAE or ESTAE routines in your program; IMS uses STAE or ESTAE
routines to notify the control region of any abnormal termination of the application program. If you call
your own STAE or ESTAE routines, IMS may not get control if an abnormal termination occurs.

« Online programs might want to send a message to the originating logical terminal to inform the person
at the terminal that an error has occurred. Unless you are using a CCTL, your program can get the logical
terminal name from the I/O PCB, place it in an express PCB, and issue one or more ISRT calls to send
the message.

« An online program might also want to send a message to the master terminal operator giving
information about the program's termination. To do this, the program places the logical terminal name
of the master terminal in an express PCB and issues one or more ISRT calls. (This is not applicable if
you are using a CCTL.)

« You might also want to send a message to a printer so that you will have a hard-copy record of the error.
« You can send a message to the system log by issuing a LOG request.

- Some places run a BMP at the end of the day to list all the errors that have occurred during the day. If
your shop does this, you can send a message using an express PCB that has its destination set for that
BMP. (This is not applicable if you are using a CCTL.)

Diagnosing an abnormal termination of an IMS program

If your program does not run correctly when you are testing it or when it is executing, you need to isolate

the problem. The problem might be anything from a programming error (for example, an error in the way

you coded one of your requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run, terminates abnormally,
or gives incorrect results.

IMS program initialization errors

Before your program receives control, IMS must have correctly loaded and initialized the PSB and

DBDs used by your application program. Often, when the problem is in this area, you need a system
programmer or DBA (or your equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that they generate.

IMS program execution errors
If you do not have any initialization errors, check:

1. The output from the compiler. Make sure that all error messages have been resolved.
2. The output from the binder:

« Are all external references resolved?
« Have all necessary modules been included?

152 IMS: Application Programming

- Was the language interface module correctly included?
« Is the correct entry point specified?
3. Your JCL:

« Is the information that described the files that contain the databases correct? If not, check with your
DBA.

« Have you included the DL/I parameter statement in the correct format?

« Have you included the region size parameter in the EXEC statement? Does it specify a region or
partition large enough for the storage required for IMS and your program?

« Have you declared the fields in the PCB masks correctly?

- If your program is an assembler language program, have you saved and restored registers correctly?
Did you save the list of PCB addresses at entry? Does register 1 point to a parameter list of fullwords
before issuing any DL/I calls?

« For COBOL for z/OS and PL/I for MVS and VM, are the literals you are using for arguments in DL/I
calls producing the results you expect? For example, in PL/I for MVS and VM, is the parameter count
being generated as a half-word instead of a fullword, and is the function code producing the required
4-byte field?

« Use the PCB as much as possible to determine what in your program is producing incorrect results.

Related concepts

“Use of STAE or ESTAE and SPIE in IMS programs” on page 53

IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP, BMP) regions, and the
batch regions. In the control region, STAE or ESTAE routines ensure that database logging and various
resource cleanup functions are complete.

Chapter 8. Testing an IMS application program 153

154 IMS: Application Programming

Chapter 9. Testing a CICS application program

You should perform a program unit test on your CICS application program to ensure that the program
correctly handles its input data, processing, and output data. The amount and type of testing you do
depends on the individual program.

Recommendations for testing a CICS program

When you are ready to test your program, be aware of your established test procedures before you start.

To start testing, you need the following three items:

» Test JCL.

« Atest database. When you are testing a program, do not execute it against a production database
because the program, if faulty, might damage valid data.

« Test input data. The input data that you use need not be current, but it should be valid data. You cannot
be sure that your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly handle all the
situations that it might encounter.

To thoroughly test the program, try to test as many of the paths that the program can take as possible. For
example:

- Test each path in the program by using input data that forces the program to execute each of its
branches.

« Be sure that your program tests its error routines. Again, use input data that will force the program to
test as many error conditions as possible.

« Test the editing routines your program uses. Give the program as many different data combinations as
possible to make sure it correctly edits its input data.

Testing your CICS program

You can use different tools to test a CICS program, depending on the type of program.

The following table summarizes the tools that are available for online DBCTL, batch, and BMP programs.

Table 30. Tools you can use for testing your program

Tool Online (DBCTL) Batch BMP
Execution Diagnostic Facility (EDF) Yes! No No
CICS dump control Yes No No
CICS trace control Yes Yes No
DFSDDLTO No Yes? Yes?
DL/I image capture program Yes Yes Yes
Notes:

1. For online, command-level programs only.

2. For call-level programs only. (For a command-level batch program, you can use DL/I image capture
program first, to produce calls for DFSDDLTO.)

© Copyright IBM Corp. 1974, 2020 155

Using the Execution Diagnostic Facility (command-level only)

You can use the Execution Diagnostic Facility (EDF) to test command-level programs online. EDF can
display EXEC CICS and EXEC DLI commands in online programs; it cannot intercept DL/I calls.

With EDF you can:

- Display and modify working storage; you can change values in the DIB.

« Display and modify a command before it is executed. You can modify the value of any argument, and
then execute the command.

- Modify the return codes after the execution of the command. After the command has been executed,
but before control is returned to the application program, the command is intercepted to show the
response and any argument values set by CICS.

You can run EDF on the same terminal as the program you are testing.

Related Reading: For more information about using EDF, see "Execution (Command-Level) Diagnostic
Facility" in CICS Transaction Server for z/OS CICS Application Programming Reference.

Using CICS dump control

You can use the CICS dump control facility to dump virtual storage areas, CICS tables, and task-related
storage areas. For more information about using the CICS dump control facility, see the CICS application
programming reference manual that applies to your version of CICS.

Using CICS trace control

You can use the trace control facility to help debug and monitor your online programs in the DBCTL
environment. You can use trace control requests to record entries in a trace table. The trace table can be
located either in virtual storage or on auxiliary storage. If it is in virtual storage, you can gain access to it
by investigating a dump; if it is on auxiliary storage, you can print the trace table. For more information
about the control statements you can use to produce trace entries, see the information about trace
control in the application programming reference manual that applies to your version of CICS.

Tracing DL/I calls with image capture

DL/I image capture program (DFSDLTRO) is a trace program that can trace and record DL/I calls issued by
batch, BMP, and online (DBCTL environment) programs. You can also use the image capture program with
command-level programs, and you can produce calls for use as input to DFSDDLTO.

You can use the image capture program to:
« Test your program

If the image capture program detects an error in a call it traces, it reproduces as much of the call as
possible, although it cannot document where the error occurred, and cannot always reproduce the full
SSA.

« Produce input for DFSDDLTO (DL/I test program)

You can use the output produced by the image capture program as input to DFSDDLTO. The image
capture program produces status statements, comment statements, call statements, and compare
statements for DFSDDLTO. For example, you can use the image capture program with a command-level
program, to produce calls for DFSDDLTO.

« Debug your program

When your program terminates abnormally, you can rerun the program using the image capture
program. The image capture program can then reproduce and document the conditions that led to
the program failure. You can use the information in the report produced by the image capture program
to find and fix the problem.

156 IMS: Application Programming

Using image capture with DFSDDLTO

The image capture program produces the following control statements that you can use as input to
DFSDDLTO:

« Status statements

When you invoke the image capture program, it produces the status statement. The status statement it
produces:

— Sets print options so that DFSDDLTO prints all call trace comments, all DL/I calls, and the results of all
comparisons.

— Determines the new relative PCB number each time a PCB change occurs while the application
program is executing.

- Comments statement

The image capture program also produces a comments statement when you invoke it. The comments
statements give:

— The time and date IMS started the trace
— The name of the PSB being traced

The image capture program also produces a comments statement preceding any call in which IMS finds
an error.

« Call statements

The image capture program produces a call statement for each DL/I call or EXEC DLI command the
application program issues. It also generates a CHKP call when it starts the trace and after each commit
point or CHKP request.

« Compare statements

If you specify COMP on the DLITRACE control statement, the image capture program produces data and
PCB comparison statements.

Running image capture online

When you run the image capture program online, the trace output goes to the IMS log data set. To run the
image capture program online, you issue the IMS TRACE command from the z/OS console.

If you trace a BMP and you want to use the trace results with DFSDDLTO, the BMP must have exclusive
write access to the databases it processes. If the application program does not have exclusive access, the
results of DFSDDLTO may differ from the results of the application program.

The following diagram shows TRACE command format:

|
»w—/ — TRACE — SET OFF PSB — psbname >«

1 I_NOCOMPT J
COMP

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one PSB at the same time,
by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and PCB compare statements
to be used with DFSDDLTO.

Chapter 9. Testing a CICS application program 157

Running image capture as a batch job

To run the image capture program as a batch job, you use the DLITRACE control statement in the
DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:

« Whether you want to trace all of the DL/I calls the program issues or trace only a certain group of calls.
« Whether you want the trace output to go to:
A sequential data set that you specify

The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart information may not
be directly reproducible when you use the trace output with DFSDDLTO.

When you run DFSDDLTO in an IMS DL/I or DBB batch region with trace output, the results are the same
as the application program's results, but only if the database has not been altered.

For information on the format of the DLITRACE control statement in the DFSVSAMP DD data set, see the
topic "Defining DL/I call image trace" in IMS Version 15 System Definition.

Example of DLITRACE

This example shows a DLITRACE control statement that traces the first 14 DL/I calls or commands that
the program issues, sends the output to the IMS log data set, and produces data and PCB comparison
statements for DFSDDLTO.

//DFSVSAMP DD *
DLITRACE LOG=YES,STOP=14,COMP
/*

Special JCL requirements

The following are special JCL requirements:

//IEFRDER DD
If you want log data set output, this DD statement is required to define the IMS log data set.

//DFSTROUT DD|anyname
If you want sequential data set output, this DD statement is required to define that data set. If you
want to specify an alternate DDNAME (anyname), it must be specified using the DDNAME parameter
on the DLITRACE control statement.

The DCB parameters on the JCL statement are not required. The data set characteristics are:
- RECFM=F
- LRECL=80

Notes on using image capture

« If the program being traced issues CHKP and XRST calls, the checkpoint and restart information may not
be directly reproducible when you use the trace output with the DFSDDLTO.

« When you run DFSDDLTO in an IMS DL/I or DBB batch region with trace output, the results are the same
as the application program's results provided the database has not been altered.

Retrieving image capture data from the log data set

If the trace output is sent to the IMS log data set, you can retrieve it by using utility DFSERA10 and a DL/I
call trace exit routine, DFSERA50. DFSERA50 deblocks, formats, and numbers the image capture program
records to be retrieved. To use DFSERA5O0, you must insert a DD statement defining a sequential output

158 IMS: Application Programming

data set in the DFSERAL0 input stream. The default ddname for this DD statement is TRCPUNCH. The
card must specify BLKSIZE=80.

For example, you can use the following examples of DFSERAL0 input control statements in the SYSIN
data set to retrieve the image capture program data from the log data set:

« Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

« Print selected image capture program records by PSB name:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

« Format image capture program records (in a format that can be used as input to DFSDDLTO):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,0FFSET=25,FLDTYP=C

VALUE=psbname, FLDLEN=8, DDNAME=0OUTDDN, COND=E

The DDNAME= parameter is used to name the DD statement used by DFSERA50. The data set defined on
the OUTDDN DD statement is used instead of the default TRCPUNCH DD statement. For this example, the
DD appears as:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your CICS program

You can use the STAT and LOG requests to help you in debugging your program.

« The statistics (STAT) request retrieves database statistics. STAT can be issued from both call- and
command-level programs.

« The log (LOG) request makes it possible for the application program to write a record on the system log.
You can issue LOG as a command or call in a batch program; in this case, the record is written to the
IMS log. You can issue LOG as a call or command in an online program in the DBCTL environment; in this
case, the record is written to the DBCTL log.

What to do when your CICS program terminates abnormally

Whenever your program terminates abnormally, you can take some actions to simplify the task of finding
and fixing the problem.

First, you can record as much information as possible about the circumstances under which the program
terminated abnormally; and second, you can check for certain initialization and execution errors.

Recommended actions after an abnormal termination of CICS

Many places have guidelines on what you should do if your program terminates abnormally. The
suggestions given here are some common guidelines:

« Document the error situation to help in investigating and correcting it. Some of the information that can
be helpful is:

The program's PSB name

The transaction code that the program was processing (online programs only)

The text of the input screen being processed (online programs only)
The call function

Chapter 9. Testing a CICS application program 159

— The terminal ID (online programs only)
— The contents of the PCB or the DIB
— The contents of the I/O area when the problem occurred

— If a database request was executing, the SSAs or SEGMENT and WHERE options, if any, the request
used

— The date and time of day

« When your program encounters an error, it can pass all the required error information to a standard
error routine.

« An online program might also want to send a message to the master terminal destination (CSMT) and
application terminal operator, giving information about the program's termination.

« You can send a message to the system log by issuing a LOG request.

Diagnosing an abnormal termination of CICS

If your program does not run correctly when you are testing it or when it is executing, you need to isolate
the problem. The problem might be anything from a programming error (for example, an error in the way

you coded one of your requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run, terminates abnormally,
or gives incorrect results.

CICS initialization errors

Before your program receives control, IMS must have correctly loaded and initialized the PSB and

DBDs used by your application program. Often, when the problem is in this area, you need a system
programmer or DBA (or your equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that they generate.

CICS execution errors
If you do not have any initialization errors, check the following in your program:

1. The output from the compiler. Make sure that all error messages have been resolved.
2. The output from the binder:

- Are all external references resolved?

« Have all necessary modules been included?

« Was the language interface module correctly included?

« Is the correct entry point specified (for batch programs only)?
3. Your JCL:

« Is the information that described the files that contain the databases correct? If not, check with your
DBA.

» Have you included the DL/I parameter statement in the correct format (for batch programs only)?

« Have you included the region size parameter in the EXEC statement? Does it specify a region or
partition large enough for the storage required for IMS and your program (for batch programs only)?

4. Your call-level program:

« Have you declared the fields in the PCB masks correctly?

- If your program is an assembler language program, have you saved and restored registers correctly?
Did you save the list of PCB addresses at entry? Does register 1 point to a parameter list of full words
before issuing any DL/I calls?

« For COBOL for z/OS and PL/I for MVS and VM, are the literals you are using for arguments in DL/I
calls producing the results you expect? For example, in PL/I for MVS and VM, is the parameter count

160 IMS: Application Programming

being generated as a half word instead of a fullword, and is the function code producing the required
4-byte field?

« Use the PCB as much as possible to determine what in your program is producing incorrect results.
5. Your command-level program:

« Did you use the FROM option with your ISRT or REPL command? If not, data will not be transferred to
the database.

« Check translator messages for errors.

Chapter 9. Testing a CICS application program 161

162 IMS: Application Programming

Chapter 10. Documenting your application program

Many places establish standards for program documentation; make sure you are aware of your
established standards.

Documentation for other programmers

Documenting a program is not something you do at the end of the project; your documentation will be
much more complete, and more useful to others, if you record information about the program as you
structure and code it. Include any information that might be useful to someone else who must work with
your program.

The reason you record this information is so that people who maintain your program know why you
chose certain commands, options, call structures, and command codes. For example, if the DBA were
considering reorganizing the database in some way, information about why your program accesses the
data the way it does would be helpful.

Information you can include for other programmers includes:

« Flowcharts and pseudocode for the program
« Comments about the program from code inspections
- A written description of the program flow

Information about why you chose the call sequence you did, such as:

— Did you test the call sequence using DFSDDLTO?

— In cases where more than one combination of calls would have had the same results, why did you
choose the sequence you did?

— What was the other sequence? Did you test it using DFSDDLTO?
Any problems you encountered in structuring or coding the program

« Any problems you had when you tested the program
- Warnings about what should not be changed in the program

All this information relates to structuring and coding the program. In addition, you should include the
documentation for end users with the documentation for programmers.

Ultimately, you must determine the level of detail necessary and the most suitable form for documenting
the program. These documentation guidelines are provided as suggestions.

Documentation for end users

In addition to documenting the design of the application, you should record information about how the
program is used.

The amount of information that users need and how much of it you should supply depends upon whom
the users of the program are and what type of program it is.

At a minimum, include the following information for those who use your program:
- What one needs in order to use the program, for example:

— For online programs, is there a password?
— For batch programs, what is the required JCL?
« The input that one needs to supply to the program, for example:
— For an MPP, what is the MOD name that must be entered to initially format the screen?

— For a CICS online program, what is the CICS transaction code that must be entered? What terminal
input is expected?

© Copyright IBM Corp. 1974, 2020 163

— For a batch program, is the input in the form of a tape, or a disk data set? Is the input originally output
from a previous job?

« The content and form of the program's output, for example:

— Ifitis areport, show the format or include a sample listing.
— For an online application program, show what the screen will look like.

 For online programs, if decisions must be made, explain what is involved in each decision. Present the
choices and the defaults.

If the people that will be using your program are unfamiliar with terminals, they will need a user's guide
also. This guide should give explicit instructions on how to use the terminal and what a user can expect
from the program. The guide should contain discussions of what should be done if the task or program
abends, whether the program should be restarted, or if the database requires recovery. Although you
may not be responsible for providing this kind of information, you should provide any information that is
unique to your application to whomever is responsible for this kind of information.

164 IMS: Application Programming

Part 2. Application programming for IMS DB

IMS provides support for writing application programs to access the IMS database.

© Copyright IBM Corp. 1974, 2020 165

166 IMS: Application Programming

Chapter 11. Writing your application programs for
IMS DB

You can write application programs in High Level Assembler language, C language, COBOL, Java, Pascal,
and PL/I to access data in the IMS DB.
Related concepts

“IMS solutions for Java development overview” on page 553

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Programming guidelines

The number, type, and sequence of the IMS requests your program issues affects the efficiency of your
program. A program that is poorly designed can still run if it is coded correctly. IMS will not find design
errors for you. The suggestions that follow will help you develop the most efficient design possible for
your application program.

When you have a general sequence of calls mapped out for your program, look over the guidelines on
sequence to see if you can improve it. An efficient sequence of requests results in efficient internal

IMS processing. As you write your program, keep in mind the guidelines explained in this section. The
following list offers programming guidelines that will help you write efficient and error-free programs.

« Use the most simple call. Qualify your requests to narrow the search for IMS.
« Use the request or sequence of requests that will give IMS the shortest path to the segment you want.

« Use as few requests as possible. Each DL/I call your program issues uses system time and resources.
You may be able to eliminate unnecessary calls by:

— Using path requests when you are replacing, retrieving, or inserting more than one segment in the
same path. If you are using more than one request to do this, you are issuing unnecessary requests.

— Changing the sequence so that your program saves the segment in a separate I/O area, and then gets
it from that I/O area the subsequent times it needs the segment. If your program retrieves the same
segment more than once during program execution, you are issuing unnecessary requests.

— Anticipating and eliminating needless and nonproductive requests, such as requests that result in GB,
GE, and II status codes. For example, if you are issuing GN calls for a particular segment type, and
you know how many occurrences of that segment type exist, do not issue the GN that results in a GE
status code. Keep track of the number of occurrences your program retrieves, and then continue with
other processing when you know you have retrieved all the occurrences of that segment type.

— Issuing an insert request with a qualification for each parent, rather than issuing Get requests for the
parents to make sure that they exist. If IMS returns a GE status code, at least one of the parents does
not exist. When you are inserting segments, you cannot insert dependent segments unless the parent
segments exist.

- Commit your updates regularly. IMS limits full-function databases so that only 300 databases at a
time can have uncommitted updates. Logically related databases, secondary indexes, and HALDB
partitions are counted towards this limit. The number of partitions in HALDB databases is the most
common reason for approaching the 300 database limit for uncommitted updates. If the PROCOPT
values allow a BMP application to insert, replace, or delete segments in the databases, ensure that the
BMP application does not update a combined total of more than 300 databases and HALDB partitions
without committing the changes.

« Keep the main section of the program logic together. For example, branch to conditional routines, such
as error and print routines in other parts of the program, instead of branching around them to continue
normal processing.

 Use call sequences that make good use of the physical placement of the data. Access segments in
hierarchic sequence as often as possible, and avoid moving backward in the hierarchy.

© Copyright IBM Corp. 1974, 2020 167

 Process database records in order of the key field of the root segments. (For HDAM and PHDAM
databases, this order depends on the randomizing routine that is used. Check with your DBA for this
information.)

« Avoid constructing the logic of the program and the structure of commands or calls in a way that
depends heavily on the database structure. Depending on the current structure of the hierarchy reduces
the program's flexibility.

« Minimize the number of segments your program locks. You may need to take checkpoints to release
the locks on updated segments and the lock on the current database record for each PCB your program
uses. Each PCB used by your program has the current database record locked at share or update level.
If this lock is no longer required, issuing the GU call, qualified at the root level with a greater-than
operator for a key of X'FF' (high values), releases the current lock without acquiring a new lock.

Do not use the minimization technique if you use a randomizer that puts high values at the end of the
database and you use secondary indexes. If there is another root beyond the supposed high value key,
IMS returns a GE to allow the application to determine the next step. A secondary index might not work
because the hierarchical structure is inverted, and although the key is past the last root in the index, it
might not be past the last root in the database.

Using PCBs with a processing option of get (G) results in locks for the PCB at share level. This allows
other programs that use the get processing option to concurrently access the same database record.
Using a PCB with a processing option that allows updates (I, R, or D) results in locks for the PCB at
update level. This does not allow any other program to concurrently access the same database record.

Related concepts

“Reserving segments for the exclusive use of your program” on page 270

You may want to reserve a segment and prohibit other programs from updating the segment while you are
using it. To some extent, IMS does this for you through resource lock management. The Q command code
lets you reserve segments in a different way.

Segment search arguments (SSAs)

Segment search arguments (SSAs) specify information for IMS to use in processing a DL/I call. Regardless
of the datatype for the field specified in a SSA, the SSA treats the field as a binary type and does a binary
comparison.

A DL/I call with one or more SSAs is a qualified call, and a DL/I call without SSAs is an unqualified call.

Unqualified SSAs
Contains only a segment name.

Qualified SSAs
Includes one or more qualification statements that name a segment occurrence. The C command and
a segment occurrence's concatenated key can be substituted for a qualification statement.

You can use SSA to select segments by name and to specify search criteria for specific segments. Specific
segments are described by adding qualification statements to the DL/I call. You can further qualify your
calls by using command codes.

Unqualified SSAs

An unqualified SSA gives the name of the segment type that you want to access. In an unqualified SSA,
the segment name field is 8 bytes and must be followed by a 1-byte blank. If the actual segment name
is fewer than 8 bytes long, it must be padded to the right with blanks. An example of an unqualified SSA
follows:

PATIENTbb

168 IMS: Application Programming

Qualified SSAs

To qualify an SSA, you can use either a field or the sequence field of a virtual child. A qualified SSA
describes the segment occurrence that you want to access. This description is called a qualification
statement and has three parts. The following table shows the structure of a qualified SSA.

Table 31. Qualified SSA structure

SSA Component Field Length
Segment name 8

(1
Field name 8
Relative operator 2

Field value Variable

) 1

Using a qualification statement enables you to give IMS information about the particular segment
occurrence that you are looking for. You do this by giving IMS the name of a field within the segment and
the value of the field you are looking for. The field and the value are connected by a relational operator
(R.0. in the previous table) which tells IMS how you want the two compared. For example, to access the
PATIENT segment with the value 10460 in the PATNO field, you could use this SSA:

PATIENTb (PATNObb=b10460)

Alternatively, if the DL/I call uses command code O, you can use a 4-byte starting offset position and
4-byte data length instead of an 8-byte field name. The starting offset is relative to the physical segment
definition and starts with 1. The maximum length that can be retrieved is the maximum segment size

for the database type, and the minimum length is 1. The two fields are specified in the following format:
'ooo0lll1l". 0000 is the offset position and llll is the length of the data that you want to retrieve. You can
use this approach to search for and retrieve data without a field definition.

The qualification statement is enclosed in parentheses. The first field contains the name of the field (F1d
Name in the previous table) that you want IMS to use in searching for the segment. The second field
contains a relational operator. The relational operator can be any one of the following:

« Equal, represented as
=b
b=
EQ
« Greater than, represented as
>b

b>
GT

« Less than, represented as
<b

b<
LT

« Greater than or equal to, represented as

>=
=>
GE
 Less than or equal to, represented as

Chapter 11. Writing your application programs for IMS DB 169

<=
=<
LE
« Not equal to, represented as

_=
="

NE

The third field (F1d Value in the previous table) contains the value that you want IMS to use as the
comparative value. The length of F1d Value must be the same length as the field specified by F1d
Name.

You can use more than one qualification statement in an SSA. Special cases exist, such as in a virtual
logical child segment when the sequence field consists of multiple fields.

Sequence fields of a virtual logical child

As a general rule, a segment can have only one sequence field. However, in the case of the virtual
logical-child segment type, multiple FIELD statements can be used to define a noncontiguous sequence
field.

When specifying the sequence field for a virtual logical child segment, if the field is not contiguous, the
length of the field named in the SSA is the concatenated length of the specified field plus all succeeding
sequence fields. The following figure shows a segment with a noncontiguous sequence field.

Sequence field Sequence field
A B
10 bytes | 11bytes
Segment
AB=21 bytes

Figure 47. Segment with a noncontiguous sequence field

If the first sequence field is not included in a "scattered" sequence field in an SSA, IMS treats the
argument as a data field specification, rather than as a sequence field.

Related reading: For more information on the virtual logical child segment, refer to IMS Version 15
Database Administration.

Related concepts

“Specifying segment search arguments using the SSAList interface” on page 646

The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

SSA guidelines

Using SSAs can simplify your programming, because the more information you can give IMS to do the
searching for you, the less program logic you need to analyze and compare segments in your program.

Using SSAs does not necessarily reduce system overhead, such as internal logic and I/Os, required to
obtain a specific segment. To locate a particular segment without using SSAs, you can issue DL/I calls
and include program logic to examine key fields until you find the segment you want. By using SSAs in
your DL/I calls, you can reduce the number of DL/I calls that are issued and the program logic needed to
examine key fields. When you use SSAs, IMS does this work for you.

Recommendations:

 Use qualified calls with qualified SSAs whenever possible. SSAs act as filters, returning only the
segments your program requires. This reduces the number of calls your program makes, which
provides better performance. It also provides better documentation of your program. Qualified SSAs

170 IMS: Application Programming

are particularly useful when adding segments with insert calls. They ensure that the segments are
inserted where you want them to go.

« For the root segment, specify the key field and an equal relational operator, if possible. Using a key
field with an equal-to, equal-to-or-greater-than, or greater-than operator lets IMS go directly to the root
segment.

- For dependent segments, it is desirable to use the key field in the SSA, although it is not as important as
at the root level. Using the key field and an equal-to operator lets IMS stop the search at that level when
a higher key value is encountered. Otherwise IMS must search through all occurrences of the segment
type under its established parent in order to determine whether a particular segment exists.

- If you often must search for a segment using a field other than the key field, consider putting a
secondary index on the field.

For example, suppose you want to find the record for a patient by the name of "Ellen Carter". As a
reminder, the patient segment in the examples contains three fields: the patient number, which is the key
field; the patient name; and the patient address. The fact that patient number is the key field means that
IMS stores the patient segments in order of their patient numbers. The best way to get the record for
"Ellen Carter" is to supply her patient number in the SSA. If her number is 09000, your program uses this
call and SSA:

GUbbbbbbPATIENTb (PATNObbb=b09000)

If your program supplies an invalid number, or if someone has deleted Ellen Carter's record from the
database, IMS does not need to search through all the PATIENT occurrences to determine that the
segment does not exist.

However, if your program does not have the number and must give the name instead, IMS must search
through all the patient segments and read each patient name field until it finds "Ellen Carter" or until it
reaches the end of the patient segments.

Related concepts

“Secondary indexing and logical relationships” on page 271

Secondary indexing and logical relationships are techniques that can change your application program's
view of the data. The DBA makes the decision about whether to use these options.

Multiple qualification statements

When you use a qualification statement, you can do more than give IMS a field value with which to
compare the fields of segments in the database. You can give several field values to establish limits for
the fields you want IMS to compare.

You can use a maximum of 1024 qualification statements on a call.

Connect the qualification statements with one of the Boolean operators. You can indicate to IMS that you
are looking for a value that, for example, is greater than A and less than B, or you can indicate that you are
looking for a value that is equal to A or greater than B. The Boolean operators are:

Logical AND
For a segment to satisfy this request, the segment must satisfy both qualification statements that are
connected with the logical AND (coded * or &).

Logical OR
For a segment to satisfy this request, the segment can satisfy either of the qualification statements
that are connected with the logical OR (coded + or |).

One more Boolean operator exists and is called the independent AND. Use it only with secondary indexes.

For a segment to satisfy multiple qualification statements, the segment must satisfy a set of qualification
statements. A set is a number of qualification statements that are joined by an AND. To satisfy a set, a
segment must satisfy each of the qualification statements within that set. Each OR starts a new set of
qualification statements. When processing multiple qualification statements, IMS reads them left to right
and processes them in that order.

Chapter 11. Writing your application programs for IMS DB 171

When you include multiple qualification statements for a root segment, the fields you name in the
qualification statements affect the range of roots that IMS examines to satisfy the call. DL/I examines the
qualification statements to determine the minimum acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on the key field with an
operator of equal-to, greater-than, or equal-to-or-greater-than, IMS starts at the first root of the database
and searches for a root that meets the qualification.

If each set contains at least one statement that is qualified on the key field with an equal-to, greater-
than, or equal-to-or-greater-than operator, IMS uses the lowest of these keys as the starting place for
its search. After establishing the starting position for the search, IMS processes the call by searching
forward sequentially in the database, similar to the way it processes GN calls. IMS examines each root it
encounters to determine whether the root satisfies a set of qualification statements. IMS also examines
the qualification statements to determine the maximum acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on the key field with

an operator of equal-to, less-than-or-equal-to, or less-than, IMS determines that no maximum key value
exists. If each set contains at least one statement that is qualified on the key field with an equal-to,
less-than, or equal-to-or-less-than operator, IMS uses the maximum of these keys to determine when the
search stops.

IMS continues the search until it satisfies the call, encounters the end of the database, or finds a key value
that exceeds the maximum. If no maximum key value is found, the search continues until IMS satisfies
the call or encounters the end of the database.

Examples: Shown below are cases of SSAs used at the root level:

ROOTKEYb
=b10&FIELDBb
b=XYZ+ROOTKEYb
=10&FIELDBb

b

=ABC

In this case, the minimum and maximum key is 10. This means that IMS starts searching with key 10 and
stops when it encounters the first key greater than 10. To satisfy the SSA, the ROOTKEY field must be
equal to 10, and FIELDB must be equal to either ABC or XYZ.

ROOTKEYb
=>10&RO0TKEYb
<20

In this case, the minimum key is 10 and the maximum key is 20. Keys in the range of 10 to 20 satisfy the
SSA. IMS stops the search when it encounters the first key greater than 20.

ROOTKEYb
10&RO0TKEYb
=<20+RO0OTKEYb
=>110&RO0TKEYb
=<120

In this case, the minimum key is 10 and the maximum key is 120. Keys in the range of 10 to 20 and 110 to
120 satisfy the call. IMS stops the search when it encounters the first key greater than 120. IMS does not
scan from 20 to 110 but skips forward (using the index for HIDAM or PHIDAM) from 20 to 110. Because of
this, you can use ranges for more efficient program operation.

When you use multiple qualification statement segments that are part of logical relationships, additional
considerations exist.

Related concepts
“Multiple qualification statements with secondary indexes” on page 272

172 IMS: Application Programming

When you qualify a call using the name of an indexed field, you can include multiple qualification
statements.

Example of how to use multiple qualification statements

The following example shows how you can use multiple qualification statements.

Given the sample Medical database, we want to answer the following question:
Did we see patient number 04120 during 1992?

To find the answer to this question, you need to give IMS more than the patient’s name; you want IMS to
search through the ILLNESS segments for that patient, read each one, and return any that have a date in
1992. The call you would issue to do this is:

GU PATIENTb (PATNObbbEQG4120)
ILLNESSb(ILLDATEb>=19920101&ILLDATED<=19921231)

In other words, you want IMS to return any ILLNESS segment occurrences under patient number 04120
that have a date on or after January 1, 1992, and on or before December 31, 1992, joined with an AND
connector. Suppose you wanted to answer the following request:

Did we see Judy Jennison during January of 1992 or during July of 1992? Her patient number is
05682.

You could issue a GU call with the following SSAs:

GU PATIENTb (PATNObEQ®5682)
ILLNESSb (ILLDATEb>=19920101&ILLDATEb<=19920131|ILLDATEb>=19920701&ILLDATEL<=19920731)

To satisfy this request, the value for ILLDATE must satisfy either of the two sets. IMS returns any ILLNESS
segment occurrences for the month of January 1992, or for the month of July 1992.

Multiple qualification statements for HDAM, PHDAM, or DEDB

For HDAM (Hierarchical Direct Access Method), PHDAM (partitioned HDAM), or data entry database
(DEDB) organizations, a randomizing exit routine usually does not store the root keys in ascending key
sequence. For these organizations, IMS determines the minimum and maximum key values. The minimum
key value is passed to the randomizing exit routine, which determines the starting anchor point.

The first root off this anchor is the starting point for the search. When IMS encounters a key that exceeds
the maximum key value, IMS terminates the search with a GE status code. If the randomizing routine
randomized so that the keys are stored in ascending key sequence, a call for a range of keys will return all
of the keys in the range. However, if the randomizing routine did not randomize into key sequence, the call
does not return all keys in the requested range. Therefore, use calls for a range of key values only when
the keys are in ascending sequence (when the organization is HDAM, PHDAM, or DEDB).

Recommendations:

« When the organization is HDAM, PHDAM, or DEDB, use calls for a range of key values only when the keys
are in ascending sequence.

« When the organization is HDAM, PHDAM or DEDB, do not use calls that allow a range of values at the
root level.

While not recommended, a sequential search of the database can be accomplished with the use of
command codes A and G when making GN/GHN database calls. Command code A will clear positioning
and cause the call to start at the beginning of the database. Command code G will prevent randomization
and cause a sequential search of the database when used with SSAs that specify a range of values

at the root level. The returned segments may not be in sequential order depending on how they were
randomized.

To search the database sequentially, you can use the use the following segment search argument (SSA)
together with SSAs that specify a range of values at the root level.

Chapter 11. Writing your application programs for IMS DB 173

key field > hex zeros & key field < all f's key

The returned segments may not be in sequential order depending on how they were randomized.
For more details about HDAM or PHDAM databases, see IMS Version 15 Database Administration.

SSAs and command codes

SSAs can also include one or more command codes, which can change and extend the functions of DL/I
calls.

For information on command codes, see the topic "General Command Codes for DL/I Calls" in IMS Version
15 Application Programming APIs.

IMS always returns the lowest segment in the path to your I/O area. If your program codes a D command
code in an SSA, IMS also returns the segment described by that SSA. A call that uses the D command
code is called a path call.

For example, suppose your program codes a D command code on a GU call that retrieves segment F and
all segments in the path to F in the hierarchy shown in the following figure.

—
M-

n

Figure 48. D command code example

The call function and the SSAs for the call look like this:

GU Abbbbbbb
*D
Cbbbbbbb
*D
Ebbbbbbb
Fbbbbbbb

A command code consists of one letter. Code the command codes in the SSA after the segment name
field. Separate the segment name field and the command code with an asterisk, as shown in the following
table.

Table 32. Unqualified SSA with command code

SSA Component Field Length
Seg Name 8

* 1

Cmd Code Variable

b 1

174 IMS: Application Programming

Your program can use command codes in both qualified and unqualified SSAs. However, command codes
cannot be used by MSDB calls. If the command codes are not followed by qualification statements, they
must each be followed by a 1-byte blank. If the command codes are followed by qualification statements,
do not use the blank. The left parenthesis of the qualification statement follows the command code
instead, as indicated in the following table.

Table 33. Qualified SSA with command code

SSA Component Field Length
Seg Name 8
* 1
Cmd Code Variable
(1
8

Field name or, if the O cmd code is specified,
either the field name or the field position and length

Relational Operator (R.0.) 2
Field Value Variable
) 1

By giving IMS the field position within the segment and the value of the field you are looking for, the field
position and the value are connected by a relational operator which tells IMS how you want the two to be
compared. The field position can be either a searchable field name as defined in the DBD or a position and
length when using command code O.

If your program uses command codes to manage subset pointers in a DEDB, enter the number of the
subset pointer immediately after the command code. Subset pointers are a means of dividing a chain of
segment occurrences under the same parent into two or more groups or subsets. Your program can define
as many as eight subset pointers for any segment type. Using an application program, your program can
then manage these subset pointers.

Related concepts

“Processing Fast Path DEDBs with subset pointer command codes” on page 304

Subset pointers and the command codes you use with them are optimization tools that significantly
improve the efficiency of your program when you need to process long segment chains.

Considerations for coding DL/I calls and data areas

If you have made all the design decisions about your program, coding the program is a matter of
implementing the decisions that you have made. In addition to knowing the design and processing
logic for your program, you need to know about the data that your program is processing, the PCBs it
references, and the segment formats in the hierarchies your program processes.

You can use the following list as a checklist to make sure you are not missing any information. If you are
missing information about data, IMS options being used in the application program, or segment layouts
and the application program's data structures, obtain this information from the DBA or the equivalent
specialist at your installation. Be aware of the programming standards and conventions that have been
established at your installation.

Program design considerations:

« The sequence of calls for your program.
« The format of each call:

— Does the call include any SSAs?
— If so, are they qualified or unqualified?

Chapter 11. Writing your application programs for IMS DB 175

— Does the call contain any command codes?
« The processing logic for the program.
 The routine the program uses to check the status code after each call.
« The error routine the program uses.

Checkpoint considerations:

« The type of checkpoint call to use (basic or symbolic).

« The identification to assign to each checkpoint call, regardless of whether the Checkpoint call is basic or
symbolic.

- If you are going to use the symbolic checkpoint call, which areas of your program to checkpoint.
Segment considerations:

- Whether the segment is fixed length or variable length.

« The length of the segment (the maximum length, if the segment is variable length).

« The names of the fields that each segment contains.

- Whether the segment has a key field. If it does, is the key field unique or non-unique? If it does not,
what sequencing rule has been defined for it? (A segment's key field is defined in the SEQ keyword of
the FIELD statement in the DBD. The sequencing rule is defined in the RULES keyword of the SEGM
statement in the DBD.)

« The segment's field layouts:
— The byte location of each field.
— The length of each field.
— The format of each field.

Data structure considerations:

« Each data structure your program processes has been defined in a DB PCB. All of the PCBs your
program references are part of a PSB for your application program. You need to know the order in which
the PCBs are defined in the PSB.

« The layout of each of the data structures your program processes.

« Whether multiple or single positioning has been specified for each data structure. This is specified in the
POS keyword of the PCB statement during PSB generation.

« Whether any data structures use multiple DB PCBs.

Preparing to run your CICS DL/I call program

You must perform several steps before you run your CICS DL/I call program.

Refer to the appropriate CICS reference information:

- For information on translating, compiling, and binding your CICS online program, see the description of
installing application programs in CICS Transaction Server for z/OS CICS System Definition Guide.

« Forinformation on which compiler options should be used for a CICS online program, as well as for CICS
considerations when converting a CICS online COBOL program with DL/I calls to Enterprise COBOL, see
CICS Transaction Server for z/OS CICS Application Programming Guide.

176 IMS: Application Programming

Examples of how to code DL/I calls and data areas

You can code DL/I calls and data areas in assembler language, C, COBOL, Pascal, Java, and PL/I.

Coding a batch program in assembler language

The following code example shows how to write an IMS program to access the IMS database in assembler
language.

The numbers to the right of the program refer to the notes that follow the program. This kind of program
can run as a batch program or as a batch-oriented BMP.

Sample assembler language program

PGMSTART CSECT NOTES
* EQUATE REGISTERS 1
* USEAGE OF REGISTERS
R1 EQU 1 ORIGINAL PCBLIST ADDRESS
R2 EQU 2 PCBLIST ADDRESS1
R5 EQU 5 PCB ADDRESSS
R12 EQU 12 BASE ADDRESS
R13 EQU 13 SAVE AREA ADDRESS
R14 EQU 14
R15 EQU 15
*
USING PGMSTART,R12 BASE REGISTER ESTABLISHED 2
SAVE (14,12) SAVE REGISTERS
LR 12,15 LOAD REGISTERS

ST R13,SAVEAREA+4 SAVE AREA CHAINING
LA R13, SAVEAREA NEW SAVE AREA

USING PCBLIST,R2 MAP INPUT PARAMETER LIST

USING PCBNAME,R5 MAP DB PCB

LR R2,R1 SAVE INPUT PCB LIST IN REG 2

L R5,PCBDETA LOAD DETAIL PCB ADDRESS

LA R5,0(R5) REMOVE HIGH ORDER END OF LIST FLAG 3

CALL ASMTDLI, (GU, (R5) ,DETSEGIO,SSANAME) , VL 4
*
*

L R5,PCBMSTA LOAD MASTER PCB ADDRESS

CALL ASMTDLI, (GHU, (R5) ,MSTSEGIO,SSAU),VL 5
*
*

CALL ASMTDLI, (GHN, (R5),MSTSEGIO),VL 6

CALL ASMTDLI, (REPL, (R5),MSTSEGIO),VL

L R13,4(R13) RESTORE SAVE AREA
RETURN (14,12) RETURN BACK 7
*
* FUNCTION CODES USED
*
GU DC CL4'GU'
GHU DC CL4'GHU'
GHN DC CL4'GHN'
REPL DC CL4'REPL' 8
*
* SSAS

*
SSANAME DS 0C
DC CL8'ROOTDET'

DC cLa' (!
DC CL8'KEYDET' 9
DC CcL2' ='
NAME DC CL5" '
DC cH'
*
SSAU DC CL9 'ROOTMST '+

MSTSEGIO DC CL100"' '
DETSEGIO DC CL100"' '
SAVEAREA DC 18F'0"

* 10
PCBLIST DSECT

PCBIO DS A ADDRESS OF I/0 PCB

PCBMSTA DS A ADDRESS OF MASTER PCB

Chapter 11. Writing your application programs for IMS DB 177

PCBDETA DS A ADDRESS OF DETAIL PCB 11
*
PCBNAME DSECT

DBPCBDBD DS CL8 DBD NAME

DBPCBLEV DS CL2 LEVEL FEEDBACK

DBPCBSTC DS CL2 STATUS CODES

DBPCBPRO DS CL4 PROC OPTIONS

DBPCBRSV DS F RESERVED

DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK

DBPCBMKL DS F LENGTH OF KEY FEEDBACK

DBPCBNSS DS F NUMBER OF SENSITIVE SEGMENTS IN PCB
DBPCBKFD DS C KEY FEEDBACK AREA

END PGMSTART

Note:

1. The entry point to an assembler language program can have any name. Also, you can substitute
CBLTDLI for ASMTDLI in any of the calls.

2. When IMS passes control to the application program, register 1 contains the address of a variable-
length fullword parameter list. Each word in this list contains the address of a PCB that the
application program must save. The high-order byte of the last word in the parameter list has the
0 bit set to a value of 1 which indicates the end of the list. The application program subsequently
uses these addresses when it executes DL/I calls.

. The program loads the address of the DETAIL DB PCB.
. The program issues a GU call to the DETAIL database using a qualified SSA (SSANAME).
. The program loads the address of the HALDB master PCB.

. The next three calls that the program issues are to the HALDB master. The first is a GHU call that
uses an unqualified SSA. The second is an unqualified GHN call. The REPL call replaces the segment
retrieved using the GHN call with the segment in the MSTSEGIO area.

(o) TS 2 B~ V)

You can use the parmcount parameter in DL/I calls in assembler language instead of the VL
parameter, except for in the call to the sample status-code error routine.

7. The RETURN statement loads IMS registers and returns control to IMS.
8. The call functions are defined as four-character constants.
9. The program defines each part of the SSA separately so that it can modify the SSA's fields.

10. The program must define an I/O area that is large enough to contain the largest segment it is to
retrieve or insert (or the largest path of segments if the program uses the D command code). This
program's I/O areas are 100 bytes each.

11. A fullword must be defined for each PCB. The assembler language program can access status codes
after a DL/I call by using the DB PCB base addresses.

This example assumes that an I/O PCB was passed to the application program. If the program is a
batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so that the I/O
PCB is included. Because the I/O PCB is required for a batch program to make system service calls,
CMPAT=YES should always be specified.

Restriction: The IMS language interface module (DFSLIO00) must be bound to the compiled assembler
language program.
Coding a CICS online program in assembler language

The following code example in assembler language shows how you define and establish addressability to
the UIB.

The numbers to the right of the program refer to the notes that follow the program. This program can run
in a CICS environment using DBCTL.

Sample call-level assembler language program (CICS online)

PGMSTART DSECT NOTES
UIBPTR DS F

178 IMS: Application Programming

IOAREA DS 0CL40
AREA1 DS CL3
AREA2 DS CL37

DLIUIB
USING UIB,8
PCBPTRS DSECT
* PSB ADDRESS LIST
PCBIPTR DS F
PCB1 DSECT
USING PCB1,6

DBPC1DBD DS CL8
DBPC1LEV DS CL2
DBPC1STC DS CL2
DBPC1PRO DS CL4
DBPC1RSV DS F
DBPC1SFD DS CL8
DBPCIMKL DS F
DBPCAINSS DS F
DBPC1KFD DS 0CL256
DBPCINM DS 0CL12
DBPCINMA DS 0CL14
DBPCAINMP DS CL17
ASMUIB CSECT

B SKIP
PSBNAME DC CL8"'ASMPSB'
PCBFUN DC CL4'PCB'
REPLFUN DC CL4'REPL'
TERMFUN DC CLA'TERM'
GHUFUN DC CL4'GHU'
SSA1 DC CL9'AAAA4444"
GOODRC DC XL1'00'
GOODSC DC cL2' '

SKIP DS OH
* SCHEDULE PSB AND OBTAIN PCB ADDRESSES
CALLDLI ASMTDLI, (PCBFUN,PSBNAME,UIBPTR)
L 8,UIBPTR
CLC UIBFCTR,X'00'
BNE ERRORL
* GET PSB ADDRESS LIST
L 4,UIBPCBAL
USING PCBPTRS,4
* GET ADDRESS OF FIRST PCB IN LIST
L 6,PCB1PTR
* ISSUE DL/I CALL: GET A UNIQUE SEGMENT
CALLDLI ASMTDLI, (GHUFUN,PCB1,I0AREA,SSA1) [6 |
CLC UIBFCTR,GOODRC
BNE ERROR2
CLC DBPC1STC,GOODSC
BNE ERROR3
* PERFORM SEGMENT UPDATE ACTIVITY
MVC AREAL,.......
MVC AREA2,.......
* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION
CALLDLI ASMTDLI, (REPLFUN,PCB1,I0AREA,SSA1) Ex
CLC UIBFCTR,GOODRC
BNE ERROR4
CLC DBPC1STC,GOODSC
B TERM
ERRORL DS OH
* INSERT ERROR DIAGNOSTIC CODE
B TERM
ERROR2 DS OH
* INSERT ERROR DIAGNOSTIC CODE
B TERM
ERROR3 DS OH
* INSERT ERROR DIAGNOSTIC CODE
B TERM
ERROR4 DS OH
* INSERT ERROR DIAGNOSTIC CODE
ERROR5 DS OH
i INSERT ERROR DIAGNOSTIC CODE
B TERM
TERM DS OH
* RELEASE THE PSB

CALLDLI ASMDLI, (TERMFUN)
EXEC CICS RETURN
END ASMUIB 9,10

Note:

Chapter 11. Writing your application programs for IMS DB 179

1. The program must define an I/O area that is large enough to contain the largest segment it is to
retrieve or insert (or the largest path of segments if the program uses the D command code).

2. The DLIUIB statement copies the UIB DSECT.

3. A fullword must be defined for each DB PCB. The assembler language program can access status
codes after a DL/I call by using the DB PCB base addresses.

4. This is an unqualified SSA. For qualified SSA, define each part of the SSA separately so that the
program can modify the fields of the SSA.

5. This call schedules the PSB and obtains the PSB address.
6. This call retrieves a segment from the database.

CICS online assembler language programs use the CALLDLI macro, instead of the call statement, to
access DL/I databases. This macro is similar to the call statement. It looks like this:

CALLDLI ASMTDLI, (function,PCB-name,ioarea, SSA1,...SSAn),VL

7. CICS online programs must check the return code in the UIB before checking the status code in the
DB PCB.

8. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call.
The data is replaced by the contents of the I/O area referenced in the call.

9. This call releases the PSB.
10. The RETURN statement loads IMS registers and returns control to IMS.

Related reading: For more information on installing CICS application programs, see CICS Transaction
Server for z/OS CICS Application Programming Reference.

Related reference

“Specifying the UIB (CICS online programs only)” on page 219

The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Coding a batch program in C language

The following code example shows how to write an IMS program to access the IMS database in C
language.

The numbers to the right of the program refer to the notes that follow the program.

Sample C language program

#pragma runopts(env(IMS),plist(IMS)) NOTES
#include <ims.h>
#include <stdio.h>
main() %
/* */

/* descriptive statements */

/* */

I0_PCB_TYPE *I0_PCB = (IO_PCB_TYPE*)PCBLIST[O];

struct §PCB_STRUCT(10)3% *mast_PCB = __pchlist[1];

struct {PCB_STRUCT(20)} *detail PCB = __pcblist[2];
const static char func_GU[4] = "GU ";

const static char func_GN[4] = "GN ";

const static char func_GHU[4] = "GHU ";

const static char func_GHN[4] = ”GHN’”;
const static char func_GNP[4] = "GNP ";

const static char func_GHNP[4] = "GHNP";
const static char func_ISRT[4] = "ISRT";
const static char func_REPL[4] = "REPL";

const static char func_DLET[4] = "DLET";
char qual_ssa[8+1+8+2+6+1+1]; /% initialized by sprintf
/*below. See the */
/xexplanation for =/
/*sprintf in note 7 for the x/
/*meanings of 8,1,8,2,6,1 —x/
/*the final 1 is for the */

180 IMS: Application Programming

static const char unqual_ssa[]= "NAME

/*trailing '\0' of string x/

/% 12345678_ %/

struct §

%t mast_seg_io_area;

struct §

— | 6|
%t det_seg_io_area;

/* */

/* Initialize the qualifier */

/* */

sprintf(qual_ssa,
"8.8s5(8.8s6.6s5)",
"ROOT", "KEY", "=", "vvvwv");

/* */

/* Main part of C batch program */

/* */

ctdli(func_GU, detail_PCB,

&det_seg_io_area,qual_ssa); Ea
ctdli(func_GHU, mast_PCB,

&mast_seg_io_area,qual_ssa); IER
ctdli(func_GHN, mast_PCB,

&mast_seg_io_area);
ctdli(func_REPL, mast_PCB,

&mast_seg_io_area;

5

Note:

1. The env(IMS) establishes the correct operating environment and the plist(IMS) establishes the
correct parameter list when invoked under IMS. The ims.h header file contains declarations for PCB
layouts, __pcblist, and the ctdli routine. The PCB layouts define masks for the PCBs that the program
uses as structures. These definitions make it possible for the program to check fields in the PCBs.
The stdio.h header file contains declarations for sprintf (used to build up the SSA).

2. After IMS has loaded the application program's PSB, IMS gives control to the application program
through this entry point.

3. The C run-time sets up the __pcblist values. The order in which you refer to the PCBs must be the
same order in which they have been defined in the PSB. (Values other than "10" and "20" can be
used, according to the actual key lengths needed.) These declarations can be done using macros,
such as:

#tdefine I0_PCB (IO_PCB_TYPE %) (__pcblist[0])

#tdefine mast_PCB (__pcbhlist[1])

#define detail PCB (__pcblist[2])
This example assumes that an I/O PCB was passed to the application program. When the program is
a batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so that the I/O
PCB is included. Because the I/O PCB is required for a batch program to make system service calls,
CMPAT=YES should always be specified for batch programs.

4. Each of these areas defines one of the call functions used by the batch program. Each character
string is defined as four alphanumeric characters, with a value assigned for each function. (If the
[4]s had been left out, 5 bytes would have been reserved for each constant.) You can define other
constants in the same way. Also, you can store standard definitions in a source library and include
them by using a #include directive.

Instead, you can define these by macros, although each string would have a trailing null ("\0").
5. The SSA is put into a string (see note 7). You can define a structure, as in COBOL, PL/I, or Pascal, but

using sprintf is more convenient. (Remember that C strings have trailing nulls that cannot be passed

Chapter 11. Writing your application programs for IMS DB 181

to IMS.) Note that the string is 1 byte longer than required by IMS to contain the trailing null, which is
ignored by IMS. Note also that the numbers in brackets assume that six fields in the SSA are equal to
these lengths.

6. The I/0 areas that will be used to pass segments to and from the database are defined as structures.
7. The sprintf function is used to fill in the SSA. The "%-8.8s" format means "a left-justified string of
exactly eight positions". The "%2.2s" format means "a right-justified string of exactly two positions".

Because the ROOT and KEY parts do not changg, this can also be coded:

sprintf(qual_ssa,
"ROOT (KEY =%-6.6s)", "vvvvv");
/* 12345678 12345678 */

8. This call retrieves data from the database. It contains a qualified SSA. Before you can issue a call
that uses a qualified SSA, initialize the data field of the SSA. Before you can issue a call that uses
an unqualified SSA, initialize the segment name field. Unlike the COBOL, PL/I, and Pascal interface
routines, ctdli also returns the status code as its result. (Blank is translated to 0.) So, you can code:

switch (ctdli(....)) %
case 0: ... /% everything ok x/

break;
case 'AB': ...

break;
case 'IX': ...

break;
default:

You can pass only the PCB pointer for DL/I calls in a C program.
9. This is another call with a qualified SSA.

10. This call is an unqualified call that retrieves data from the database. Because it is a Get Hold call, it
can be followed by REPL or DLET.

11. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call.
The data is replaced by the contents of the I/O area that is referenced in the call.

12. The end of the main routine (which can be done by a return statement or exit call) returns control to
IMS.

Restriction: IMS provides a language interface module (DFSLIOQ0) that is an interface between IMS and
the C language. This module must be made available to the application program at bind time.

Coding a batch program in COBOL
The following code example shows how to write an IMS program to access the IMS database in COBOL.

The numbers to the right of the program refer to the notes that follow the program. This kind of program
can run as a batch program or as a batch-oriented BMP.

Sample COBOL program

Identification Division.

Program-ID. BATCOBOL.

Environment Division.

Data Division.

Working-Storage Section.
01 Func-Codes.

05 Func-GU Picture XXXX Value 'GU '.
05 Func-GHU Picture XXXX Value 'GHU '.
05 Func-GN Picture XXXX Value 'GHN ‘'

05 Func-GHN Picture XXXX Value 'GHN '.
05 Func-GNP Picture XXXX Value 'GNP '.
05 Func-GHNP Picture XXXX Value 'GHNP'.
05 Func-REPL Picture XXXX Value 'REPL'.
05 Func-ISRT Picture XXXX Value 'ISRT'.

182 IMS: Application Programming

05 Func-DLET Picture XXXX Value 'DLET'.

05 Parmcount Picture S9(5) Value +4 Comp-5.

01 Unqual-SSA.
05 Seg-Name Picture X(08) Value ' '
05 Filler Picture X Value ' '.

01 Qual-SSA-Mast.
05 Seg-Name-M Picture X(08) Value 'ROOTMast'.
05 Begin-Paren-M Picture X Value '('.
05 Key-Name-M Picture X(08) Value 'KeyMast
05 Kel-Oper-M Picture X(05) Value ' ='.
05 Key-Value-M Picture X(06) Value 'VVVVVV'.
05 End-Paren-M Picture X Value ')'.

01 Qual-SSA-Det.
05 Seg-Name-D Picture X(08) Value 'ROOTDET '.
05 Begin-Paren-D Picture X Value '('.
05 Key-Name-D Picture X(08) Value 'KEYDET '
05 Rel-Oper-D Picture X(05) Value ' ='.
05 Key-Value-D Picture X(06) Value 'VVVVVV'.
05 End-Paren-D Picture X Value ')'.

01 Det-Seg-In.
05 Datal Picture X.
05 Data2 Picture X.

01 Mast-Seg-In.
05 Datal Picture X.
05 Data2 Picture X.

linkage section.

01 IO-PCB.
05 Filler Picture X(10).
05 I0-Status-Code Picture XX.
05 Filler Picture X(20).

01 DB-PCB-Mast.
05 Mast-Dbd-Name Picture X(8).
05 Mast-Seg-Level Picture XX.
05 Mast-Status-Code Picture XX.
05 Mast-Proc-0Opt Picture XXXX.

05 Filler Picture S9(5) Comp-5.
05 Mast-Seg-Name Picture X(8).
05 Mast-Len-KFB Picture S9(5) Comp-5.
05 Mast-Nu-Senseg Picture S9(5) Comp-5.
05 Mast-Key-FB Picture X(256).

01 DB-PCB-Detail.
05 Det-Dbd-Name Picture X(8).

05 Det-Seg-Level Picture XX.
05 Det-Status-Code Picture XX.

05 Det-Proc-Opt Picture XXXX.

05 Filler Picture S9(5) Comp-5.
05 Det-Seg-Name Picture X(8).

05 Det-Len-KFB Picture S9(5) Comp-5.
05 Det-Nu-Senseg Picture S9(5) Comp-5.
05 Det-Key-FB Picture X(256).

Procedure Division using I0-PCB DB-PCB-Mast DB-PCB-Detail.
Call 'CBLTDLI' using Func-GU DB-PCB-Detail
Det-seg-in Qual-SSA-Det.

Call 'CBLTDLI' using Parmcount Func-ghu DB-PCB-Mast
Mast-seg-in Qual-SSA-Mast.

Céll "CBLTDLI' using Func-GHN DB-PCB-Mast
Mast-seg-in.

Call 'CBLTDLI' using Func-REPL DB-PCB-Mast
Mast-seg-in.

Géback.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or 01-level working
storage entry. Each picture clause is defined as four alphanumeric characters and has a value
assigned for each function. If you want to include the optional parmcount field, you can initialize
count values for each type of call. You can also use a COBOL COPY statement to include these
standard descriptions in the program.

Chapter 11. Writing your application programs for IMS DB 183

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a call that requires an
unqualified SSA, it moves the segment name to this area. If a call requires two or more SSAs, you may
need to define additional areas.

3. A 01-level working storage entry defines each qualified SSA that the application program uses.
Qualified SSAs must be defined separately, because the values of the fields are different.

4. A 01-level working storage entry defines I/O areas that are used for passing segments to and from
the database. You can further define I/0 areas with sub-entries under the 01-level. You can use
separate I/0 areas for each segment type, or you can define one I/O area that you use for all
segments.

5. A 01-level linkage section entry defines a mask for each of the PCBs that the program requires. The
DB PCBs represent both input and output databases. After issuing each DL/I call, the program checks
the status code through this linkage. You define each field in the DB PCB so that you can reference it
in the program.

6. This is the standard procedure division statement of a batch program. After IMS has loaded the PSB
for the program, IMS passes control to the application program. The PSB contains all the PCBs that
are defined in the PSB. The coding of USING on the procedure division statement references each of
the PCBs by the names that the program has used to define the PCB masks in the linkage section. The
PCBs must be listed in the order in which they are defined in the PSB.

The previous code example assumes that an I/O PCB was passed to the application program. When
the program is a batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN
so that the I/O PCB is included. Because the I/O PCB is required for a batch program to make system
service calls, CMPAT=YES should always be specified for batch programs.

The entry DLITCBL statement is only used in the main program. Do not use it in called programs.

7. This call retrieves data from the database by using a qualified SSA. Before issuing the call, the
program must initialize the key or data value of the SSA so that it specifies the particular segment to
be retrieved. The program should test the status code in the DB PCB that was referenced in the call
immediately after issuing the call. You can include the parmcount parameter in DL/I calls in COBOL
programs, except in the call to the sample status-code error routine. It is never required in COBOL.

8. This is another retrieval call that contains a qualified SSA.
9. This is an unqualified retrieval call.

10. The REPL call replaces the segment that was retrieved in the most recent Get Hold call. The segment
is replaced with the contents of the I/O area that is referenced in the call (MAST-SEG-IN).

11. The program issues the GOBACK statement when it has finished processing.

Related reading: For information on how to use these procedures, see IMS Version 15 System Definition.

Binding COBOL code to the IMS language interface module

IMS supplies a language interface module (DFSLI000). This module must be bound to the batch program
after the program has been compiled. It gives a common interface to IMS.

If you use the IMS-supplied procedures (IMSCOBOL or IMSCOBGO), IMS binds the language interface
with the application program. IMSCOBOL is a two-step procedure that compiles and binds your program.
IMSCOBGO is a three-step procedure that compiles, binds, and executes your program in an IMS batch
region.

Coding a CICS online program in COBOL

The following code examples are skeleton online programs in Enterprise COBOL. They show examples of
how to define and set up addressability to the UIB.

The numbers to the right of the programs refer to the notes that follow them. This kind of program can run
in a CICS environment using DBCTL.

184 IMS: Application Programming

Sample COBOL program that can run in CICS

Identification Division.

Program-ID. CBLUIB.

Environment Division.

Data Division.

Working-Storage Section.
01 Func-Codes.

05 Psb-Name Picture X(8) Value 'CBLPSB .

05 Func-PCB Picture X(4) Value 'PCB '.

05 Func-TERM Picture X(4) Value 'TERM'.
05 Func-GHU Picture X(4) Value 'GHU '.

05 Func-REPL Picture X(4) Value 'REPL'.

05 SSA1 Picture X(9) Value 'AAAA4444 '.

05 Success-Message Picture X(40).

05 Good-Status-Code Picture XX Value ' '.
05 good-return-code Picture X Value low-Value.

01 MessageO.
05 Messagel Picture X(38).
05 Message2 Picture XX.

01 Dli-IO-Area.
05 Areal Picture X(3).
05 Area2 Picture X(37).

Procedure Division.
* Schedule the psb and address the uib
Call 'CBLTDli' using Func-PCB Psb-Name
address of Dliuib.
If Uibfctr is not equal low-Values then
* Insert error diagnostic code
Exec CICS return end-exec
End-if.
Set address of pch-addresses to pcbaddr.
* Issue DL/I Call: get a unique segment
Set address of pcbl to pcb-address-list(1).

Call 'CBLTD1i' using Func-GHU Pcbhl
Dli-io-area ssal.
If uibfctr is not equal good-return-code then
* Insert error diagnostic code

Exec CICS return end-Exec
End-if.
If pchl-status-code is not equal good-status-code then
* Insert error diagnostic code
Exec CICS return end-Exec
End-if.
* Perform segment update activity
Move 'aaa' to areal.
Move 'bbb' to area2.
* Issue DL/I Call: replace segment at current position
Call 'CBLTDli' using Func-REPL Pchl
Dli-io-area ssal
If uibfctr is not equal good-return-code then
* Insert error diagnostic code
Exec CICS return end-Exec
End-if.
If pchl-status-code is not equal good-status-code then
* Insert error diagnostic code
Exec CICS return end-Exec
End-if.
* Release the psbh
Call 'CBLTD1i' using Func-TERM.
* Other application Function EXA
Exec CICS return end-Exec.
Goback.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or 01-level working storage
entry. Each picture clause is defined as four alphanumeric characters and has a value assigned for
each function. If you want to include the optional parmcount field, initialize count values for each type
of call. You can also use the COBOL COPY statement to include these standard descriptions in the
program.

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a call that requires an
unqualified SSA, it can either initialize this area with the segment name or move the segment name to
this area. If a call requires two or more SSAs, you may need to define additional areas.

Chapter 11. Writing your application programs for IMS DB 185

. An 01-level working storage entry defines I/O areas that are used for passing segments to and
from the database. You can further define I/O areas with sub-entries under the 01-level. You can
use separate I/0O areas for each segment type, or you can define one I/O area that you use for all
segments.

. One PCB layout is defined in the linkage section. The PCB-ADDRESS-LIST occurs n times, where n is
greater than or equal to the number of PCBs in the PSB.

. The PCB call schedules a PSB for your program to use. The address of the DLIUIB parameter returns
the address of DLIUIB.

. This unqualified GHU call retrieves a segment from the database and places it in the I/O area that is
referenced by the call. Before issuing the call, the program must initialize the key or data value of the
SSA so that it specifies the particular segment to be retrieved.

. CICS online programs should test the return code in the UIB before testing the status code in the DB
PCB.

. The REPL call replaces the segment that was retrieved in the most recent Get Hold call with the data
that the program has placed in the I/O area.

. The TERM call terminates the PSB the program scheduled earlier. This call is optional and is only issued
if a sync point is desired prior to continued processing. The program issues the EXEC CICS RETURN
statement when it has finished its processing. If this is a RETURN from the highest-level CICS program,
a TERM call and sync point are internally generated by CICS.

Sample call-level 0S/VS COBOL program for CICS online (obsolete with Enterprise COBOL)

Identification Division. NOTES
Program-ID. CBLUIB.

Environment Division.

Data Division.

Working-Storage Section.
01 Func-Codes.

05 Psb-Name Picture X(8) Value 'CBLPSB ‘.
05 Func-PCB Picture X(4) Value 'PCB '.
05 Func-TERM Picture X(4) Value 'TERM'.
05 Func-GHU Picture X(4) Value 'GHU '.
05 Func-REPL Picture X(4) Value 'REPL'.
05 SSA1 Picture X(9) Value 'AAAA4444 '.

05 Success-Message Picture X(40).

05 Good-Status-Code Picture XX Value ' '.

05 Good-Return-Code Picture X Value low-Value.
01 MessageO.

05 Messagel Picture X(38).
05 Message2 Picture XX.
01 Dli-IO-Area.
05 Areal Picture X(3).
05 Area2 Picture X(37).
Linkage Section.
01 BllCells.
05 FIller Picture S9(8) Comp-5.
05 Uib-Ptr Picture S9(8) Comp-5.
05 B-Pch-Ptrs Picture S9(8) Comp-5.
05 Pchl-Ptr Picture S9(8) Comp-5.
Copy D1iUib. 5,6

01 Overlay-Dliuib Redefines Dliuib.
05 Pcbaddr usage is pointer.

05 Filler Picture XX.
01 Pcb-Ptzrs.
05 B-Pcbl-Ptr Picture 9(8) Comp-5.
01 Pchl.
05 Pch1-Dbd-Name Picture X(8).
05 Pcbl-Seg-Level Picture XX.
05 Pcbl-Status-Code Picture XX.
05 Pch1-PROC-OPT Picture XXXX.
05 FIller Picture S9(5) Comp-5.
05 Pcbl-Seg-Name Picture X(8).
05 Pchl-Len-KFB Picture S9(5) Comp-5.
05 Pcb1-NU-ENSeg Picture S9(5) Comp-5.
05 Pcbhl1-KEY-FB Picture X(256).
Procedure Division. Ea

Call 'CBLTDLI' using Func-PCB Psb-Name Uib-ptr.
If Uibfctr is not equal low-values then
* Insert error diagnostic Code

186 IMS: Application Programming

Exec CICS Return end-Exec
End-if.
Move Uibpcbal to B-Pcb-Ptrs.
Move B-Pcbl-Ptr to Pcbl-Ptr.

* Issue DL/I Call: get a unique segment
Call 'CBLTDLI' using Func-GHU Pcbl
Dli-io-area ssal.
Service reload Uib-ptzr
If Uibfctr is not equal Good-Return-Code then
* Insert error diagnostic Code
Exec CICS Return end-Exec
End-if.

If Pcbl-Status-Code is not equal Good-Status-Code then
* Insert error diagnostic Code
Exec CICS Return end-Exec
End-if.

* Perform segment update activity
Move 'aaa' to areal.
Move 'bbb' to area2.
* Issue DL/I Call: replace segment at current position
Call 'CBLTDLI' using Func-REPL Pcbl
Dli-io-area ssal.
If Uibfctr is not equal Good-Return-Code then
* Insert error diagnostic Code
Exec CICS Return end-Exec
End-if.

If Pchl-Status-Code is not equal Good-Status-Code then
* Insert error diagnostic Code
Exec CICS Return end-Exec
End-if.

* Release the PSB
Call 'CBLTDLI' using Func-TERM. 12,13
Exec CICS Return end-Exec.

Note:

1.

You define each of the DL/I call functions the program uses with a 77-level or 01-level working
storage entry. Each picture clause is defined as four alphanumeric characters and has a value
assigned for each function. If you want to include the optional parmcount field, you can initialize
count values for each type of call. You can also use the COBOL COPY statement to include these
standard descriptions in the program.

. A 9-byte area is set up for an unqualified SSA. Before the program issues a call that requires an

unqualified SSA, it can either initialize this area with the segment name or move the segment name to
this area. If a call requires two or more SSAs, you may need to define additional areas.

. An 01-level working storage entry defines I/O areas that are used for passing segments to and from

the database. You can further define I/O areas with 02-level entries. You can use separate I/0O areas
for each segment type, or you can define one I/0 area to use for all segments.

. The linkage section must start with a definition of this type to provide addressability to a parameter

list that will contain the addresses of storage that is outside the working storage of the application
program. The first 02-level definition is used by CICS to provide addressability to the other fields in
the list. A one-to-one correspondence exists between the other 02-level names and the 01-level data
definitions in the linkage section.

. The COPY DLIUIB statement will be expanded.

6. The UIB returns the address of an area that contains the PCB addresses. The definition of PCB

pointers is necessary to obtain the actual PCB addresses. Do not alter the addresses in the area.

. The PCBs are defined in the linkage section.
. The PCB call schedules a PSB for your program to use.
. This unqualified GHU call retrieves a segment from the database and places it in the I/O area that is

referenced by the call. Before issuing the call, the program must initialize the key or data value of the
SSA so that it specifies the particular segment to be retrieved.

Chapter 11. Writing your application programs for IMS DB 187

10. CICS online programs should test the return code in the UIB before testing the status code in the DB
PCB.

11. The REPL call replaces the segment that was retrieved in the most recent Get Hold call with the data
that the program has placed in the I/O area.

12. The TERM call terminates the PSB that the program scheduled earlier. This call is optional and is only
issued if a sync point is desired prior to continued processing.

13. The program issues the EXEC CICS RETURN statement when it has finished its processing. If this is
areturn from the highest-level CICS program, a TERM call and sync point are internally generated by
CICS.

Related reading: For more information about installing application programs, see CICS Transaction Server
for z/OS CICS Application Programming Guide.

Related reference

“Specifying the UIB (CICS online programs only)” on page 219

The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Coding a program in Java
IMS provides support for developing applications using the Java programming language.

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Related concepts

“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Coding a batch program in Pascal

The following code sample is a skeleton batch program in Pascal. It shows you how the parts of an IMS
program that is written in Pascal fit together. The numbers to the right of the program refer to the notes
that follow the program.

Restriction: Pascal is not supported by CICS.

segment PASCIMS; NOTES
1
type 2
CHAR2 = packed array [1..2] of CHAR;
CHAR4 = packed array [1..4] of CHAR;
CHAR6 = packed array [1..6] of CHAR;
CHARn = packed array [1..n] of CHAR;
DB_PCB_TYPE = recoxrd 3
DB_NAME : ALFA;
DB_SEG_LEVEL : CHARZ2;
DB_STAT_CODE : CHAR2;
DB_PROC_OPT : CHAR4;
FILLER : INTEGER;
DB_SEG_NAME : ALFA;
DB_LEN_KFB : INTEGER;
DB_NO_SENSEG : INTEGER;
DB_KEY_FB : CHARn;
end;
procedure PASCIMS (var SAVE: INTEGER; 4
var DB_PCB_MAST: DB_PCB_TYPE;
var DB_PCB_DETAIL : DB_PCB_TYPE);
REENTRANT ;
procedure PASCIMS;
type 5
QUAL_SSA_TYPE = recozxd
SEG_NAME : ALFA;
SEQ_QUAL . CHAR;
SEG_KEY_NAME : ALFA;
SEG_OPR : CHAR2;

188 IMS: Application Programming

SEG_KEY_VALUE: CHAR6;
SEG_END_CHAR : CHAR;
end;
MAST_SEG_IO_AREA_TYPE = record
(* Field declarations *)
end;
record
(* Field declarations *)
end;
var 6
MAST_SEG_IO_AREA : MAST_SEG_IO_AREA_TYPE;
DET_SEG_IO_AREA : DET_SEG_IO_AREA_TYPE;

DET_SEG_IO_AREA_TYPE

const 7
GU = 'GU ';
GN = 'GN ';
GHU = 'GHU ';
GHN = 'GHN ';
GHNP = 'GHNP';
ISRT = "ISRT';
REPL = 'REPL';
DLET = 'DLET';

QUAL_SSA = QUAL_SSA_TYPE('ROOT','(','KEY',' ="',
'vvvvv', ") ') ;
UNQUAL_SSA = 'NAME '

procedure PASTDLI; GENERIC; 8
begin
PASTDLI (const GU, 9

var DB_PCB_DETAIL;
var DET_SEG_IO_AREA;
const QUAL_SSA);

PASTDLI (const GHU, 10
var DB_PCB_MAST,
var MAST_SEG_IO_AREA,
const QUAL_SSA);

PASTDLI (const GHN, 11
var DB_PCB_MAST,
var MAST_SEG_IO_AREA);

PASTDLI (const REPL, 12
var DB_PCB_MAST,
var MAST_SEG_IO_AREA);

end;
13
Note:

1. Define the name of the Pascal compile unit.

2. Define the data types that are needed for the PCBs used in your program.

3. Define the PCB data type that is used in your program.

4. Declare the procedure heading for the REENTRANT procedure that is called by IMS. The first word
in the parameter list should be an INTEGER, which is reserved for VS Pascal's usage. The rest of the
parameters are the addresses of the PCBs that are received from IMS.

5. Define the data types that are needed for the SSAs and I/O areas.

6. Declare the variables used for the I/O areas.

7. Define the constants, such as function codes and SSAs that are used in the PASTDLI DL/I calls.

8. Declare the IMS interface routine by using the GENERIC directive. GENERIC identifies external
routines that allow multiple parameter list formats. A GENERIC routine's parameters are "declared"
only when the routine is called.

9. This call retrieves data from the database. It contains a qualified SSA. Before you can issue a call that
uses a qualified SSA, you must initialize the data field of the SSA. Before you can issue a call that uses
an unqualified SSA, you must initialize the segment name field.

10. This is another call that has a qualified SSA.

11. This call is an unqualified call that retrieves data from the database. Because it is a Get Hold call, it
can be followed by a REPL or DLET call.

12. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call;

the data is replaced by the contents of the I/O area that is referenced in the call.

Chapter 11. Writing your application programs for IMS DB 189

13. You return control to IMS by exiting from the PASCIMS procedure. You can also code a RETURN
statement to exit at another point.

Restriction: You must bind your program to the IMS language interface module (DFSLIO00) after
compiling your program.
Coding a batch program in PL/I

The following code example is a skeleton batch program in PL/I. It shows you how the parts of an IMS
program that is written in PL/I fit together.

The numbers to the right of the program refer to the notes that follow. This kind of program can run as a
batch program or as a batch-oriented BMP.

Restriction: IMS application programs cannot use PL/I multitasking. This is because all tasks operate as
subtasks of a PL/I control task when you use multitasking.

Sample PL/I program

/* */ NOTES
/* ENTRY POINT */
/* */
DLITPLI: PROCEDURE (IO_PTR_PCB,DB_PTR_MAST,DB_PTR_DETAIL)
OPTIONS (MAIN);
/* */
/* DESCRIPTIVE STATEMENTS */
/* */
DCL IO_PTR_PCB POINTER;
DCL DB_PTR_MAST POINTER;
DCL DB_PTR_DETAIL POINTER;
DCL FUNC_GU CHAR(4) INIT('GU ');
DCL FUNC_GN CHAR(4) INIT('GN ');
DCL FUNC_GHU CHAR(4) INIT('GHU ');
DCL FUNC_GHN CHAR(4) INIT('GHN ');
DCL FUNC_GNP CHAR(4) INIT('GNP ");
DCL FUNC_GHNP CHAR(4) INIT('GHNP');
DCL FUNC_ISRT CHAR(4) INIT('ISRT');
DCL FUNC_REPL CHAR(4) INIT('REPL");
DCL FUNC_DLET CHAR(4) INIT('DLET");
DCL 1 QUAL_SSA STATIC UNALIGNED,
2 SEG_NAME CHAR(8) INIT('ROOT ")
2 SEG_QUAL CHAR(1) INITC('('),
2 SEG_KEY_NAME CHAR(8) INIT('KEY "),
2 SEG_OPR CHAR(2) INIT(' ='),
2 SEG_KEY_VALUE CHAR(6) INIT('vvvvv'),
2 SEG_END_CHAR CHAR(1) INIT(')');
DCL 1 UNQUAL SSA STATIC UNALIGNED,
2 SEG_NAME_U CHAR(8) INIT('NAME "),
2 BLANK CHAR(1) INIT(' ');
DCL 1 MAST_SEG_IO_AREA,
2 —_—
2 R
2 _
DCL 1 DET_SEG_IO_AREA,
2 R
2 _
2 —_—
DCL 1 10_PCB BASED (IO_PTR_PCB),
2 FILLER CHAR(10),
2 STAT CHAR(2);
DCL 1 DB_PCB_MAST BASED (DB_PTR_MAST),
2 ~ MAST_DB_NAME CHAR(8),
2 MAST_SEG_LEVEL CHAR(2),
2 MAST_STAT_CODE CHAR(2),
2 MAST_PROC_OPT CHAR(4),
2 FILLER FIXED BINARY (31,0),
2 MAST_SEG_NAME CHAR(8),
2 MAST_LEN_KFB FIXED BINARY (31,0),
2 MAST_NO_SENSEG FIXED BINARY (31,0),
2 MAST_KEY_FB CHAR (%) ;
DCL 1 DB_PCB_DETAIL BASE (DB_PTR_DETAIL),
2 DET_DB_NAME CHAR(8),
2 DET_SEG_LEVEL CHAR(2),
2 DET_STAT_CODE CHAR(2),
2 DET_PROC_OPT CHAR(4),
2 FILLER FIXED BINARY (31,0),

190 IMS: Application Programming

2 DET_SEG_NAME CHAR(8),
2 DET_LEN_KFB FIXED BINARY (31,0),
2 DET_NO_SENSEG FIXED BINARY (31,0),
2 DET_KEY_FB CHAR (%) ;
DCL THREE FIXED BINARY (31,0) INITIAL(3); 6 |
DCL FOUR FIXED BINARY (31,0) INITIAL(4);
DCL FIVE FIXED BINARY (31,0) INITIAL(5);
DCL SIX FIXED BINARY (31,0) INITIAL(6);
/* */
/% MAIN PART OF PL/I BATCH PROGRAM */
/* */
CALL PLITDLI (FOUR,FUNC_GU,DB_PCB_DETAIL,DET_SEG_IO_AREA, QUAL_SSA);
IF DET_STAT_CODE = GOOD_STATUS_CODE THEN DO;
CALL PLITDLI (FOUR,FUNC_GHU,DB_PCB_MAST,MAST_SEG_IO_AREA,QUAL_SSA); Ex
IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;
CALL PLITDLI (THREE,FUNC_GHN,DB_PCB_MAST,MAST_SEG_IO_AREA);
IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;
CALL PLITDLI (THREE,FUNC_REPL,DB_PCB_MAST,MAST_SEG_IO_AREA);
IF MAST_STAT_CODE A= GOOD_STATUS_CODE THEN DO;
/* INSERT REPLACE DIAGNOSTIC MESSAGE x/
END;
END;
ELSE DO;
/* INSERT GHN DIAGNOSTIC MESSAGE */
END;
END;
ELSE DO;
/% INSERT GHU DIAGNOSTIC MESSAGE */
END;
END;
ELSE DO;
/* INSERT GU DIAGNOSTIC MESSAGE */
END;
RETURN;

END DLITPLI;

Note:

1. After IMS has loaded the PSB of the application program, IMS gives control to the application
program through this entry point. PL/I programs must pass the pointers to the PCBs, not the names,
in the entry statement. The entry statement lists the PCBs that the program uses by the names that
it has assigned to the definitions for the PCB masks. The order in which you refer to the PCBs in the
entry statement must be the same order in which they have been defined in the PSB.

The code example assumes that an I/O PCB was passed to the application program. When the
program is a batch program, CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so
that the I/O PCB is included. Because the I/O PCB is required for a batch program to make system
service calls, CMPAT=YES should always be specified for batch programs.

2. Each of these areas defines one of the call functions used by the batch program. Each character
string is defined as four alphanumeric characters, with a value assigned for each function. You can
define other constants in the same way. Also, you can store standard definitions in a source library
and include them by using a %INCLUDE statement.

3. A structure definition defines each SSA the program uses. The unaligned attribute is required for
SSAs. The SSA character string must reside contiguously in storage. You should define a separate
structure for each qualified SSA, because the value of the data field for each SSA is different.

4. The I/O areas that are used to pass segments to and from the database are defined as structures.

5. Level-01 declaratives define masks for the PCBs that the program uses as structures. These
definitions make it possible for the program to check fields in the PCBs.

6. This statement defines the parmcount that is required in DL/I calls that are issued from PL/I
programs (except for the call to the sample status-code error routine, where it is not allowed). The
parmcount is the address of a 4-byte field that contains the number of subsequent parameters in the
call. The parmcount is required only in PL/I programs. It is optional in the other languages. The value
in parmcount is binary. This example shows how you can code the parmcount parameter when three
parameters follow in the call:

DCL THREE FIXED BINARY (31,0) INITIAL(3);

Chapter 11. Writing your application programs for IMS DB 191

7. This call retrieves data from the database. It contains a qualified SSA. Before you can issue a call
that uses a qualified SSA, initialize the data field of the SSA. Before you can issue a call that uses an
unqualified SSA, initialize the segment name field. Check the status code after each DL/I call that you
issue.

Although you must declare the PCB parameters that are listed in the entry statement to a PL/I
program as POINTER data types, you can pass either the PCB name or the PCB pointer in DL/I calls in
a PL/I program.

8. This is another call that has a qualified SSA.

9. This is an unqualified call that retrieves data from the database. Because it is a Get Hold call, it can be
followed by REPL or DLET.

10. The REPL call replaces the data in the segment that was retrieved by the most recent Get Hold call;
the data is replaced by the contents of the I/O area referenced in the call.

11. The RETURN statement returns control to IMS.

Binding PL/I code to the IMS language interface module

IMS provides a language interface module (DFSLIO00) which gives a common interface to IMS. This
module must be bound to the program.

If you use the IMS-supplied procedures (IMSPLI or IMSPLIGO), IMS binds the language interface module
to the application program. IMSPLI is a two-step procedure that compiles and binds your program.
IMSPLIGO is a three-step procedure that compiles, binds, and executes your program in a DL/I batch
region. For information on how to use these procedures, see IMS Version 15 System Definition.

Coding a CICS online program in PL/I

The following code example is a skeleton CICS online program in PL/I. It shows you how to define and
establish addressability to the UIB.

The numbers to the right of the program refer to the notes that follow. This kind of program can runin a
CICS environment using DBCTL.

Sample call-level PL/I program (CICS online)

PLIUIB: PROC OPTIONS(MAIN); NOTES
DCL PSB_NAME CHAR(8) STATIC INIT('PLIPSB ');

DCL PCB_FUNCTION CHAR(4) STATIC INIT('PCB ');
DCL TERM_FUNCTION CHAR(4) STATIC INIT('TERM');
DCL GHU_FUNCTION CHAR(4) STATIC INIT('GHU ');
DCL REPL_FUNCTION CHAR(4) STATIC INIT('REPL')
DCL SSA1 CHAR(9) STATIC INIT('AAAA4444 '),

DCL PARM_CT_1 FIXED BIN(31) STATIC INIT(1);
DCL PARM_CT_3 FIXED BIN(31) STATIC INIT(3);
DCL PARM_CT_4 FIXED BIN(31) STATIC INIT(4);

’

=

DCL GOOD_RETURN_CODE BIT(8) STATIC INIT('0®'B)
DCL GOOD_STATUS_CODE CHAR(2) STATIC INIT(' '
%INCLUDE DLIUIB;
DCL 1 PCB_POINTERS BASED(UIBPCBAL),

2 PCB1_PTR POINTER;
DCL 1 DLI_IO_AREA,

2 AREA1 CHAR(3),

2 AREA2 CHAR(37);
DCL 1 PCB1 BASED(PCB1_PTR),
PCB1_DBD_NAME CHAR(8),
PCB1_SEG_LEVEL CHAR(2),
PCB1_STATUS_CODE CHAR(2),
PCB1_PROC_OPTIONS CHAR(4),
PCB1_RESERVE_DLI FIXED BIN (31,0),

);

g EE

PCB1_SEGNAME_FB CHAR(8),
PCB1_LENGTH_FB_KEY FIXED BIN(31,0),
PCB1_NUMB_SENS_SEGS FIXED BIN(31,0),
PCB1_KEY_FB_AREA CHAR(17);
/* SCHEDULE PSB AND OBTAIN PCB ADDRESSES x/

CALL PLITDLI (PARM_CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR);
IF UIBFCTR = GOOD RETURN CODE THEN DO;

/* ISSUE DL/I CALL: GET A UNIQUE SEGMENT =x/

CALL PLITDLI (PARM_CT_4,GHU_FUNCTION,PCB1,DLI_IO_AREA,SSAl);

NDNNNNNNDNDN

E

192 IMS: Application Programming

IF UIBFCTR = GOOD_RETURN_CODE& PCB1_STATUS_CODE = GOOD_STATUS_CODE THEN DO;
/* PERFORM SEGMENT UPDATE ACTIVITY x/

AREAL = 2
AREA2 = 2
/* ISSUE DL/I: REPLACE SEGMENT AT CURRENT POSITION */
PLITDLI (PARM_CT_3,REPL_FUNCTION,PCB1,DLI_IO_AREA);

IF UIBFCTR ~= GOOD_RETURN_CODE

| PCB1_STATUS_CODE ~= GOOD_STATUS_CODE THEN DO;
/* INSERT REPL ERROR DIAGNOSTIC CODE =/

END;
END;
ELSE DO;

/* INSERT GHU ERROR DIAGNOSTIC CODE %/
END;

END;
ELSE DO;

/* ANALYZE UIB PROBLEM %/
/* ISSUE UIB DIAGNOSTIC MESSAGE x/

END;

/* RELEASE THE PSB */

CALL PLITDLI(PARM_CT_1,TERM_FUNCTION);

EXEC CICS RETURN;

END PLIUIB;

Note:

1. Each of these areas defines the DL/I call functions the program uses. Each character string is defined
as four alphanumeric characters and has a value assigned for each function. You can define other
constants in the same way. You can store standard definitions in a source library and include them by
using a %INCLUDE statement.

2. A structure definition defines each SSA the program uses. The unaligned attribute is required for SSA.

The SSA character string must reside contiguously in storage. If a call requires two or more SSA, you
may need to define additional areas.

3. The %INCLUDE DLIUIB statement will be expanded.
4. The UIB returns the address of an area containing the PCB addresses. The definition of PCB pointers

0 N o0 o

10.

11.
12.

is necessary to obtain the actual PCB addresses. Do not alter the addresses in the area.

. The I/O areas that are used to pass segments to and from the database are defined as structures.
. The PCBs are defined based on the addresses that are passed in the UIB.

. The PCB call schedules a PSB for your program to use.

. This unqualified GHU call retrieves a segment from the database. The segment is placed in the I/O

area that is referenced in the call. Before issuing the call, the program must initialize the key or data
value of the SSA so that it specifies the particular segment to be retrieved.

. CICS online programs must test the return code in the UIB before testing the status code in the DB

PCB.

The REPL call replaces the segment that was retrieved in the most recent Get Hold call. The I/O area
that is referenced in the call contains the segment to be replaced.

The TERM call terminates the PSB that the program scheduled earlier.
The program issues the EXEC CICS RETURN statement when it has finished processing.

Related reading: For more information about installing application programs, see CICS Transaction Server
for z/OS CICS Application Programming Guide.

Related reference
“Specifying the UIB (CICS online programs only)” on page 219

The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Chapter 11. Writing your application programs for IMS DB 193

194 IMS: Application Programming

Chapter 12. Defining application program elements
for IMS DB

Use these specific parameters and formats for making DL/I calls through the language interfaces for your
applications program written in assembler language, C language, COBOL, Pascal, and PL/I.

Formatting DL/I calls for language interfaces

When you use DL/I calls in assembler language, C language, COBOL, Pascal, or PL/I, you must call the
DL/I language interface to initiate the functions specified with the DL/I calls.

IMS offers several interfaces for DL/I calls:

« Alanguage-independent interface for any programs that are Language Environment® conforming
(CEETDLI)

« Language-specific interfaces for all supported languages (xxxTDLI)

« A non-language-specific interface for all supported languages (AIBTDLI)

Java makes use of the all three DL/I language interfaces, but the usage is internal and no calls are
necessary to initiate the functions specified with the DL/I calls.

Related concepts

“IMS solutions for Java development overview” on page 553
You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Assembler language application programming

Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with IMS databases.

In assembler language programs, all DL/I call parameters that are passed as addresses can be passed in
a register, which, if used, must be enclosed in parentheses.

Format

»— CALL —~— ASMTDLI,(

L J function)—
parmcount , M ,dbpcb A ————

T
8]

. C J

— AIBTDLIL(function, — aib
L parmcount , J
B

C,VLj

© Copyright IBM Corp. 1974, 2020 195

»— ,jfoarea >4

€.

M——o ,foken ————

M ,statfunction —

,rsa

—— ,roofssa ——

B
»— ,i/oarea length ,— i/o area >4
,arealength ,area
Cc
»— ,psbname , — uibptr >«
L ,sysserve J
Notes:
Parameters
parmcount
Specifies the address of a 4-byte field in user-defined storage that contains the number of parameters
in the parameter list that follows parmcount. Assembler language application programs must use
either parmcount or VL.
function

Specifies the address of a 4-byte field in user-defined storage that contains the call function. The call
function must be left-justified and padded with blanks (such as GUbb).

db pch
Specifies the address of the database PCB to be used for the call. The PCB address must be one of the
PCB addresses passed on entry to the application program in the PCB list.

tp pch
Specifies the address of the I/O PCB or alternate PCB to be used for the call. The PCB address must
be one of the PCB addresses passed on entry to the application program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined storage.

i/o area
Specifies the address of the I/0 area in user-defined storage that is used for the call. The I/O area
must be large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the I/O area length
(specified in binary).

area length
Specifies the address of a 4-byte field in user-defined storage that contains the length (specified in
binary) of the area immediately following it in the parameter list. Up to seven area lengths or area
pairs can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed. Up to seven area lengths
or area pairs can be specified.

196 IMS: Application Programming

token
Specifies the address of a 4-byte field in user-defined storage that contains a user token.

stat function
Specifies the address of a 9-byte field in user-defined storage that contains the stat function to be
performed.

ssa
Specifies the address in user-defined storage that contains the SSAs to be used for the call. Up to 15
SSAs can be specified, one of which is rootssa.

rootssa
Specifies the address of a root segment search argument in user-defined storage.

rsa
Specifies the address of the area in user-defined storage that contains the record search argument.

psh name
Specifies the address in user-defined storage of an 8-byte PSB name to be used for the call.

uibptr
Specifies the address in user-defined storage of the user interface block (UIB).

sysserve
Specifies the address of an 8-byte field in user-defined storage to be used for the call.

VL
Signifies the end of the parameter list. Assembler language programs must use either parmcount or
VL.

Example of a DL/I call format
Using the DL/I AIBTDLI interface:

CALL AIBTDLI, (function,aib,i/o area,ssal),VL
Using the DL/I language-specific interface:
CALL ASMTDLI, (function,db pcb,i/o area,ssal),VL

Related concepts

“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Chapter 12. Defining application program elements for IMS DB 197

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

C language application programming

Application programs in C use the following format, parameters, and DL/I calls to communicate with IMS

databases.
Format
1
»— —~— rc=CTDLI(L J function); >«
parmcount, M——,dbpcb A ———
M ,fppcb
-
. c J
M———— rc=AIBTDLI(— parmcount ,— function, — aib
— CEETDLI(L J function o
parmcount , M———,dbpch A ———
M ,i/opcb
-
T
A
»— ,jfoarea >4
Z ,ssa :
M——o,foken ——
M ,statfunction —
,rsa
—— ,roofssa ——
B
»— ,i/oarea length ,— i/o area >4
,arealength ,area
C
»— ,psbname , — uibptr >«
L ,sysserve J
Notes:

1 For AIBTDLI, parmcount is required for C applications.

198 IMS: Application Programming

Parameters

rc
This parameter receives the DL/I status or return code. It is a two-character field shifted into the 2
low-order bytes of an integer variable (int). If the status code is two blanks, 0 is placed in the field.
You can test the rc parameter with an if statement. For example, if (xrc == 'IX').Youcanalso
use rc in a switch statement. You can choose to ignore the value placed in rc and use the status
code returned in the PCB instead.

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the number of
parameters in the parameter list that follows parmcount.

function
Specifies the name of a character (4) variable, left justified in user-defined storage, that contains the
call function to be used. The call function must be left-justified and padded with blanks (such as
GUbb)

db pcb
Specifies the name of a pointer variable that contains the address of the database to be used for the
call. The PCB address must be one of the PCB addresses passed on entry to the application program
in the PCB list.

tp pch
Specifies the name of a pointer variable that contains the address of the I/O PCB or alternate PCB
to be used for the call. The PCB address must be one of the PCB addressed passed on entry to the
application program in the PCB list.

aib
Specifies the name of the pointer variable that contains the address of the structure that defines the
application interface block (AIB) in user-defined storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character string that defines the
I/0 area in user-defined storage used for the call. The I/O area must be large enough to contain all of
the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the length of
the area immediately following it in the parameter list. Up to seven area lengths or area pairs can be
specified.

area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage to be checkpointed. Up to seven area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that contains the stat function to
be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains the SSAs to be used
for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search argument in user-
defined storage.

Chapter 12. Defining application program elements for IMS DB 199

rsa
Specifies the name of a character variable that contains the record search argument for a GU call or
where IMS should return the rsa for an ISRT or GN call.

psb name
Specifies the name of a character (8) variable containing the PSB name to be used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the structure that defines the
user interface block (UIB) that is used in user-defined storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to be used for the call.

I/0 area

In C, the I/O area can be of any type, including structures or arrays. The ctdli declarations in ims.h do not
have any prototype information, so no type checking of the parameters is done. The area may be auto,
static, or allocated (with malloc or calloc). You need to give special consideration to C-strings because
DL/I does not recognize the C convention of terminating strings with nulls (' \0") Instead of the usual
strcpy and stremp functions, you may want to use memcpy and memcmp.

Example of a DL/I call format
Using the DL/I CEETDLI interface:

#include <leawi.h>

CEETDLI (function,db pcb,i/o area,ssal);

Using the DL/I AIBTDLI interface:

int rc;

Tc=AIBTDLI (paxmcount, function,aib,i/o area,ssal);
Using the DL/I language-specific interface:

#include <ims.h>
int ICc;

£c=CTDLI (function,db pcb,i/o area,ssal);

Related concepts

“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

200 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

COBOL application programming

Application programs in COBOL use the following format, parameters, and DL/I calls to communicate with
IMS databases.

Format

»— CALL —

»——— 'CBLTDLI' — USING

v

L J function
parmcount M——dbpcb A ———

M tp pch

\ C J

M———"'AIBTDLI' — USING L J function — aib
parmcount

“— 'CEETDLI' — USING

L J function
parmcount M——dbpcb A ——

M tp pcb

A

»— /0 area >«

€.

token

M stat function —

rsa

—— rootssa ——

»— /o area length — i/o area >4

area lengtharea

c

»— psb name — uibptr L J >«
sysserve

Note: All apostrophes (') can be replaced by quotation marks (") and can be done regardless of the
APOST/QUOTE compiler (or CICS translator) option.

Chapter 12. Defining application program elements for IMS DB 201

Parameters

parmcount
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount. If you define this field as COMP-5
rather than COMP, COMP-4, or BINARY, then it can contain the maximum possible values regardless of
the COBOL TRUNC compiler option setting.

function
Specifies the identifier of a usage display (4) byte data item, left justified in user-defined storage that
contains the call function to be used. The call function must be left-justified and padded with blanks
(such as GUbb).

db pcb
Specifies the identifier of the database PCB group item from the PCB list that is passed to the
application program on entry. This identifier will be used for the call.

tp pch
Specifies the identifier of the I/O PCB or alternate PCB group item from the PCB list that is passed to
the application program on entry. This identifier will be used for the call.

aib
Specifies the identifier of the group item that defines the application interface block (AIB) in user-
defined storage.

i/o area
Specifies the identifier of a major group item, table, or usage display data item that defines the I/O
area length in user-defined storage used for the call. The I/O area must be large enough to contain all
of the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
I/0 area length (specified in binary). If you define this field as COMP-5 rather than COMP, COMP-4, or
BINARY, then it can contain the maximum possible values regardless of the COBOL TRUNC compiler
option setting.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined storage that contains the
length (specified in binary) of the area immediately following it in the parameter list. Up to seven
area lengths or area pairs can be specified. If you define this field as COMP-5 rather than COMP,
COMP-4, or BINARY, then it can contain the maximum possible values regardless of the COBOL
TRUNC compiler option setting.

area
Specifies the identifier of the group item that defines the user-defined storage to be checkpointed. Up
to seven area lengths or area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item in user-defined storage that contains a
user token.

stat function
Specifies the identifier of a usage display (9) byte data item in user-defined storage that contains the
stat function to be performed.

ssa
Specifies the identifier of a usage display data item in user-defined storage that contains the SSAs to
be used for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the identifier of a usage display data item that defines the root segment search argument in
user-defined storage.

rsa
Specifies the identifier of a usage display data item that contains the record search argument.

202 IMS: Application Programming

psh name

Specifies the identifier of a usage display (8) byte data item containing the PSB name to be used for
the call.

uibptr
Specifies the identifier of the group item that defines the user interface block (UIB) that is used in
user-defined storage.

sysserve

Specifies the identifier of a usage display (8) byte data item in user-defined storage to be used for the
call.

Example of a DL/I call format
Using the DL/I CEETDLI interface:

CALL "CEETDLI' USING function,db pcb,i/o area,ssal.
Using the DL/I AIBTDLI interface:

CALL "AIBTDLI' USING function,aib,i/o area,ssal.
Using the DL/I language-specific interface:

CALL "CBLTDLI' USING function,db pcbh,i/o area,ssal.

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Java application programming for IMS

IMS provides support for developing applications using the Java programming language.

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Related concepts
“IMS solutions for Java development overview” on page 553

Chapter 12. Defining application program elements for IMS DB 203

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

You can write Java applications to access IMS databases and process IMS transactions by using the
drivers and resource adapters of the IMS solutions for Java development.

Pascal application programming

Application programs in Pascal use the following format, parameters, and DL/I calls to communicate with

IMS databases.
Format
»—— PASTDLI — (—]A]); >
——— VAR — db pcb
M VAR — tp pcb
5
L D)
— AIBTDLI — (—A}—,— VAR — aib, /
8]
A
» CONST — function »«
L CONST — parmcount — , J
B
»— VAR //oarea ><
M——,CONST foken ———
M ,CONST statfunction —
M——- VAR rsa —
~——— VAR roofssa ———
Cc
»— VAR i/oarea length ,— VAR ifoarea ><
,VAR area length VAR area
D

»— VAR psbname , — VAR uibptr L _J >4
,VAR sysserve

Parameters

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the number of
parameters in the parameter list that follows parmcount.

204 IMS: Application Programming

function
Specifies the name of a character (4) variable, left justified in user-defined storage, that contains the
call function to be used. The call function must be left-justified and padded with blanks (such as
GUbb).

db pch
Specifies the name of a pointer variable that contains the address of the database PCB defined in the
call procedure statement.

tp pch
Specifies the name of a pointer variable that contains the address of the I/O PCB or alternate PCB
defined in the call procedure statement.

aib
Specifies the name of the pointer variable that contains the address of the structure that defines the
application interface block (AIB) in user-defined storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character string that defines the
I/0 area in user-defined storage used for the call. The I/O area must be large enough to contain all of
the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that contains the length of
the area immediately following it in the parameter list. Up to seven area lengths or area pairs can be
specified.

area
Specifies the name of the pointer variable that contains the address of the structure that defines the
user-defined storage to be checkpointed. Up to seven area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that contains the stat function to
be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains the SSAs to be used
for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search argument in user-
defined storage.

rsa
Specifies the name of a character variable that contains the record search argument.

psb name
Specifies the name of a character (8) variable containing the PSB name to be used for the call.
uibptr
Specifies the name of a pointer variable that contains the address of the structure that defines the
user interface block (UIB) that is used in user-defined storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to be used for the call.

Chapter 12. Defining application program elements for IMS DB 205

Example of a DL/I call format
Using the DL/I AIBTDLI interface:

AIBTDLI(CONST function,
VAR aib,
VAR i/o area,
VAR ssal);

Using the DL/I language-specific interface:

PASTDLI(CONST function,
VAR db pcbh,
VAR i/o area,
VAR ssal);

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Application programming for PL/I

Application programs in PL/I use the following format, parameters, and DL/I calls to communicate with
IMS databases.

Restriction: For the PLITDLI interface, all parameters except parmcount are indirect pointers; for the
AIBTDLI interface, all parameters are direct pointers.

Format
»»— CALL —~— PLITDLI — (— parmcount , — function); >«
M———,dbpch A ——
M ,ippcb
-
. C J
M——— AIBTDLI — (— parmcount ,— function, — aib
“— CEETDLI — (— parmcount ,— function J
M ,dbpcb A ———
— .fppcb
-
I W=
A

206 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

»— ,jfoarea >4

€.

M——o ,foken ————

M ,statfunction —

,rsa

—— ,roofssa ——

»— ,i/oarea length ,— i/o area >4

,arealength ,area

c

»— ,psbname , — uibptr L >«
,sysserve —J

Parameters

parmcount
Specifies the name of a fixed binary (31-bit) variable that contains the number of arguments that
follow parmcount.

function
Specifies the name of a fixed-character (4-byte) variable left-justified, blank padded character string
containing the call function to be used (such as GUbb).

db pchb
Specifies the structure associated with the database PCB to be used for the call. This structure is
based on a PCB address that must be one of the PCB addresses passed on entry to the application
program.

tp pch
Specifies the structure associated with the I/O PCB or alternate PCB to be used for the call.
aib
Specifies the name of the structure that defines the AIB in your application program.
i/o area
Specifies the name of the I/0 area used for the call. The I/O area must be large enough to contain all
the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable that contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable that contains the length of the area immediately
following it in the parameter list. Up to seven area lengths or area pairs can be specified.

area
Specifies the name of the area to be checkpointed. Up to seven area lengths or area pairs can be
specified.

token
Specifies the name of a character (4) variable that contains a user token.

stat function
Specifies the name of a character (9) variable string containing the stat function to be performed.

Chapter 12. Defining application program elements for IMS DB 207

ssa
Specifies the name of a character variable that contains the SSAs to be used for the call. Up to 15
SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that contains a root segment search argument.

rsa
Specifies the name of a character variable that contains the record search argument.

psh name
Specifies the name of a character (8) containing the PSB name to be used for the call.

uibptr
Specifies the name of the user interface block (UIB).

sysserve
Specifies the name of a character (8) variable character string to be used for the call.

Example of a DL/I call format
Using the DL/I CEETDLI interface:

CALL CEETDLI (parmcount,function,db pcb,i/o area,ssal);
Using the DL/I AIBTDLI interface:

CALL AIBTDLI (parmcount,function,aib,i/o area,ssal);
Using the DL/I language-specific interface:

%INCLUDE CEEIBMAW;
CALL PLITDLI (parmcount,function,db pch,i/o area,ssal);

Related reference
DL/I calls for database management (Application Programming APIs)
DL/I calls for IMS DB system services (Application Programming APIs)

Specifying the I/0 PCB mask

After your program issues a call with the I/O Program Communications Block (I/O PCB), IMS returns
information about the results of the call to the I/O PCB. To determine the results of the call, your program
must check the information that IMS returns.

Issuing a system service call requires an I/O PCB. Because the I/0 PCB resides outside your program, you
must define a mask of the PCB in your program to check the results of IMS calls. The mask must contain
the same fields, in the same order, as the I/O PCB. Your program can then refer to the fields in the PCB
through the PCB mask.

The following table shows the fields that the I/O PCB contains, their lengths, and the applicable
environment for each field.

Table 34. I/O PCB mask

Descriptor Byte DB/DC DBCTL DCCTL DB Batch TM Batch
Length

Logical terminal name ? 8 X

Reserved for IMS 2 2 X X

Status code 3 2 X X X X X

208 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Table 34. I/0 PCB mask (continued)

Descriptor

Byte DB/DC DBCTL DCCTL DB Batch TM Batch
Length

8-Byte Local date and
time 4

Date 4
Time 4 X
Input message sequence 4
number 3
Message output descriptor 8 X X
name ¢
Userid 7 8
Group name 8 8
12-Byte Time Stamp ?
Date 4
Time 6 X X
UTC Offset 2
Userid Indicatorl? 1 X X
Reserved for IMS2 3

Note:

1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your program retrieves an
input message, IMS places the name of the logical terminal that sent the message in this field. When
you want to send a message back to this terminal, you refer to the I/O PCB when you issue the ISRT
call, and IMS takes the name of the logical terminal from the I/O PCB as the destination.

. Reserved for IMS

These fields are reserved.
. Status Code
IMS places the status code describing the result of the DL/I call in this field. IMS updates the status

code after each DL/I call that the program issues. Your program should always test the status code
after issuing a DL/I call.

The three status code categories are:

» Successful status codes or status codes with exceptional but valid conditions. This category does
not contain errors. If the call was completely successful, this field contains blanks. Many of the
codes in this category are for information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program receives this status
code, it should terminate.

« Programming errors. The errors in this category are usually ones that you can correct. For example,
an AD status code indicates an invalid function code.

« I/O or system errors.

Chapter 12. Defining application program elements for IMS DB 209

For the second and third categories, your program should have an error routine that prints
information about the last call that was issued program termination. Most installations have a
standard error routine that all application programs at the installation use.

4. Local Date and Time

The current local date and time are in the prefix of all input messages except those originating from
non-message-driven BMPs. The local date is a packed-decimal, right-aligned date, in the format
yyddd. The local time is a packed-decimal time in the format hhmmsst. The current local date and
time indicate when IMS received the entire message and enqueued it as input for the program,
rather than the time that the application program received the message. To obtain the application
processing time, you must use the time facility of the programming language you are using.

For a conversation, for an input message originating from a program or for a message received using
Multiple System Coupling (MSC), the time and date indicate when the original message was received
from the terminal.

Note: Be careful when comparing the local date and time in the I/O PCB with the current time
returned by the operating system. The I/O PCB date and time may not be consistent with the current
time. It may even be greater than the current time for the following reasons:

» The time stamp in the I/O PCB is the local time that the message was received by IMS. If the local
time was changed after the message arrived, it is possible for the current time to appear to be
earlier than the I/O PCB time. This effect would be likely to occur in the hour immediately after the
fall time change, when the clock is set back by one hour.

« The time stamp in the I/O PCB is derived from an internal IMS time stamp stored with the message.
This internal time stamp is in Coordinated Universal Time (UTC), and contains the time zone offset
that was in effect at the time the message was enqueued. This time zone offset is added to the
UTC time to obtain the local time that is placed in the I/O PCB. However, the time zone offset that
is stored is only fifteen minutes. If the real time zone offset was not an integer multiple of fifteen
minutes, the local time passed back in the I/O PCB will differ from the actual time by plus or minus
7.5 minutes. This could cause the I/O PCB time to be later than the current time. See IMS Version
15 Operations and Automation for further explanation.

Concerns about the value in the local time stamp in the I/O PCB can be reduced by using the
extended time stamp introduced in IMS V6. The system administrator can choose the format of the
extended time stamp to be either local time or UTC. In some situations, it may be advantageous for
the application to request the time in UTC from the operating system and compare it to the UTC form
of the extended time stamp. This is an option available in installations where there is no ETR to keep
the IMS UTC offset in sync with the z/OS UTC offset over changes in local time.

5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages except those originating
from non-message-driven BMPs. This field contains the sequence number IMS assigned to the input
message. The number is binary. IMS assigns sequence numbers by physical terminal, which are
continuous since the time of the most recent IMS startup.

6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a message output descriptor
(MOD), IMS places its name in this area. If your program encounters an error, it can change the
format of the screen and send an error message to the terminal by using this field. To do this, the
program must change the MOD name by including the MOD name parameter on an ISRT or PURG call.

Although MFS does not support APPC, LU 6.2 programs can use an interface to emulate MFS. For
example, the application program can use the MOD name to communicate with IMS to specify how an
error message is to be formatted.

Related reading: For more information on the MOD name and the LTERM interface, see IMS Version
15 Communications and Connections.

7. Userid

210 IMS: Application Programming

The use of this field is connected with RACF signon security. If signon is not active in the system, this
field contains blanks.

If signon is active in the system, the field contains one of the following:

- The user's identification from the source terminal.
« The LTERM name of the source terminal if signhon is not active for that terminal.

» The authorization ID. For batch-oriented BMPs, the authorization ID is dependent on the value
specified for the BMPUSID= keyword in the DFSDCxxx PROCLIB member:

— If BMPUSID=USERID is specified, the value from the USER= keyword on the JOB statement is
used.
— If USER=is not specified on the JOB statement, the program's PSB name is used.

— If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the program's PSB
name is used. If PSBNAME is not defined to RACF, the Userid of the current Address Space will
be used; this will be the Home Dependent Region one, or the Control Region one if LSO=Y or if
PARDLI=1 has been specified for the BMP. Userid of the current Address Space will be used also
if DFSBSEXO has returned RC08.

Related Reading: For more information about authorizing resource use in a dependent region,
see IMS Version 15 System Administration.

. Group Name

The group name, which is used by DB2 to provide security for SQL calls, is created through IMS
transactions.

Three instances that apply to the group name are:

« If you use RACF and signon on your IMS system, the RACROUTE SAF (extract) call returns an
eight-character group name.

- If you use your own security package on your IMS system, the RACROUTE SAF call returns any
eight-character name from the package and treats it as a group name. If the RACROUTE SAF call
returns a return code of 4 or 8, a group name was not returned, and IMS blanks out the group name
field.

« If you use LU 6.2, the transaction header can contain a group name.

Related reading: See IMS Version 15 Communications and Connections for more information on LU
6.2.

. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal packed-decimal format.
The time stamp has the following parts:
Date

yyyydddf

This packed-decimal date contains the year (yyyy), day of the year (ddd), and a valid packed-
decimal + sign such as (£).
Time
hhmmssthmiju
This packed-decimal time consists of hours, minutes, and seconds (hhmmss) and fractions of the

second to the microsecond (thmiju). No packed-decimal sign is affixed to this part of the time
stamp.

UTC Offset
aqq$

The packed-decimal UTC offset is prefixed by 4 bits of attributes (a). If the 4th bit of (a) is 0,
the time stamp is UTC; otherwise, the time stamp is local time. The control region parameter,

Chapter 12. Defining application program elements for IMS DB 211

TSR=(U/L), specified in the DFSPBxxx PROCLIB member, controls the representation of the time
stamp with respect to local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to be added to UTC or local time to
convert to local or UTC time respectively.

The offset sign ($) follows the convention for a packed-decimal plus or minus sign.

Field 4 on the I/O PCB Mask always contains the local date and time. For a description of field 4,
see the notes for the previous table.

Related reading: For a more detailed description of the internal packed-decimal time-format, see
IMS Version 15 System Utilities.

10. Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the INQY call. The Userid
Indicator contains one of the following:

« U - The user's identification from the source terminal during signon
e L-The LTERM name of the source terminal if signon is not active

« P -The PSBNAME of the source BMP or transaction

« O - Other name

The value contained in the Userid Indicator field indicates the contents of the userid field.

Specifying the DB PCB mask

IMS describes the results of the calls your program issues in the DB PCB that is referenced in the call. To
determine the success or failure of the DL/I call, the application program includes a mask of the DB PCB
and then references the fields of the DB PCB through the mask.

A DB PCB mask must contain the fields shown in the following table. (Your program can look at, but not
change, the fields in the DB PCB.) The fields in your DB PCB mask must be defined in the same order and
with the same length as the fields shown here. When you code the DB PCB mask, you also give it a name,
but the name is not part of the mask. You use the name (or the pointer, for PL/I) when you reference each
of the PCBs your program processes. A GSAM DB PCB mask is slightly different from other DB PCB masks.

Of the nine fields, only five are important to you as you construct the program. These are the fields that
give information about the results of the call. They are the segment level number, status code, segment
name, length of the key feedback area, and key feedback area. The status code is the field your program
uses most often to find out whether the call was successful. The key feedback area contains the data from
the segments you have specified; the level number and segment name help you determine the segment
type you retrieved after an unqualified GN or GNP call, or they help you determine your position in the
database after an error or unsuccessful call.

Table 35. DB PCB mask

Descriptor Byte Length DB/DC DBCTL DCCTL DBBatch TM Batch

Database name 1 8 X X X

Segment level number 2

Status code 3

Processing options 4

Reserved for IMS 5

Segment name ©

Alo|lb~]pd|INM|DN
X[X| X| X| X| X
X[X| X| X| X| X
X[X| X| X| X| X

Length of key
feedback area 7

212 IMS: Application Programming

Table 35. DB PCB mask (continued)

Descriptor Byte Length DB/DC DBCTL DCCTL DBBatch TM Batch
Number of sensitive 4 X X X

segments 8

Key feedback area ? var length X X X
Note:

1. This contains the name of the database. This field is 8 bytes long and contains character data.
2. Segment Level Number

This field contains numeric character data. It is 2 bytes long and right-justified. When IMS retrieves
the segment you have requested, IMS places the level number of that segment in this field. If you

are retrieving several segments in a hierarchic path with one call, IMS places the number of the
lowest-level segment retrieved. If IMS is unable to find the segment that you request, it gives you the
level number of the last segment it encounters that satisfied your call.

3. Status Code

After each DL/I call, this field contains the two-character status code that describes the results of the
DL/I call. IMS updates this field after each call and does not clear it between calls. The application
program should test this field after each call to find out whether the call was successful.

When the program is initially scheduled, this field contains a data-availability status code, which
indicates any possible access constraint based on segment sensitivity and processing options.

Related Reading: For more information on these status codes, see the topic "INIT Call" in IMS Version
15 Application Programming APIs.

During normal processing, four categories of status codes exist:

« Successful or exceptional but valid conditions. If the call was completely successful, this field
contains blanks. Many of the codes in this category are for information only. For example, GB means
that IMS has reached the end of the database without satisfying the call. This situation is expected in
sequential processing and is not usually the result of an error.

« Errors in the program. For example, AK means that you have included an invalid field name in a
segment search argument (SSA). Your program should have error routines available for these status
codes. If IMS returns an error status code to your program, your program should terminate. You can
then find the problem, correct it, and restart your program.

« I/O or system error. For example, an AO status code means that there has been an I/0O error
concerning OSAM, BSAM, or VSAM. If your program encounters a status code in this category,
it should terminate immediately. This type of error cannot normally be fixed without a system
programmer, database administrator, or system administrator.

« Data-availability status codes. These are returned only if your program has issued the INIT call
indicating that it is prepared to handle such status codes. "Status Code Explanations" in IMS Version
15 Messages and Codes, Volume 4: IMS Component Codes describes possible causes and corrections
in more detail.

4. Processing Options

This is a 4-byte field containing a code that tells IMS what type of calls this program can issue. It is

a security mechanism in that it can prevent a particular program from updating the database, even
though the program can read the database. This value is coded in the PROCOPT parameter of the PCB
statement when the PSB for the application program is generated. The value does not change.

5. Reserved for IMS

This 4-byte field is used by IMS for internal linkage. It is not used by the application program.
6. Segment Name

Chapter 12. Defining application program elements for IMS DB 213

After each successful call, IMS places in this field the name of the last segment that satisfied the call.
When a retrieval is successful, this field contains the name of the retrieved segment. When a retrieval
is unsuccessful, this field contains the last segment along the path to the requested segment that
would satisfy the call. The segment name field is 8 bytes long.

When a program is initially scheduled, the name of the database type is put in the SEGNAME field. For
example, the field contains DEDB when the database type is DEDB; GSAM when the database type is
GSAM; HDAM, or PHDAM when the database type is HDAM or PHDAM.

7. Length of Key Feedback Area

This is a 4-byte binary field that gives the current length of the key feedback area. Because the key
feedback area is not usually cleared between calls, the program needs to use this length to determine
the length of the relevant current concatenated key in the key feedback area.

8. Number of Sensitive Segments

This is a 4-byte binary field that contains the number of segment types in the database to which the
application program is sensitive.

9. Key Feedback Area

At the completion of a retrieval or ISRT call, IMS places the concatenated key of the retrieved segment
in this field. The length of the key for this request is given in the 4-byte field. If IMS is unable to satisfy
the call, the key feedback area contains the key of the segment at the last level that was satisfied. A
segment's concatenated key is made up of the keys of each of its parents and its own key. Keys are
positioned left to right, starting with the key of the root segment and following the hierarchic path.

IMS does not normally clear the key feedback area. IMS sets this length of the key feedback area to
indicate the portion of the area that is valid at the completion of each call. Your program should not
use the content of the key feedback area that is not included in the key feedback area length.

Related concepts

“Data areas in GSAM databases” on page 226

Generalized Sequential Access Method (GSAM) databases are available only to application programs

that can run as batch programs, batch-oriented BMPs, transaction-oriented BMPS, or JBPs. The program
communication block (PCB) mask and the record search argument (RSA) that you use in a GSAM database
call have special formats.

Specifying the AIB mask

The application interface block (AIB) is used by your program to communicate with IMS, when your
application does not have a PCB address or the call function does not use a PCB.

The application program can use the returned PCB address, when available, to inspect the status code in
the PCB and to obtain any other information needed by the application program. The AIB mask enables
your program to interpret the control block defined. The AIB structure must be defined in working storage,
on a fullword boundary, and initialized according to the order and byte length of the fields as shown in the
following table. The table’s notes describe the contents of each field.

Table 36. AIB fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB ™
Batch Batch

AIB identifier ! 8 X X X X X
DFSAIB allocated length 2 4 X X X X X
Subfunction code 3 8 X X X X X
Resource name 14 8 X X X X X
Resource name 2 ° 8 X X X X X
Reserved ¢ 8

214 IMS: Application Programming

Table 36. AIB fields (continued)

Descriptor Byte Length DB/DC DBCTL DCCTL DB ™
Batch Batch

;/Iaximum output area length 4 X X X X X
Output area length used 8 4 X X X X X
Resource field ? 4 X X X X X
Optional area length 10 4 X X X X X
Reserved 11 4 X X X X X
Return code 12 4 X X X X X
Reason code 13 4 X X X X X
Error code extension 14 4 X X X

Resource address 1 15 4 X X X X X
Resource address 2 16 4 X X X X X
Resource address 3 7 4 X X X X X
User defined token 18 16 X X X X X
Return token 19 8 X X X

Reserved 2° 16

AIB Identifier (AIBID)
This 8-byte field contains the AIB identifier. You must initialize AIBID in your application program to
the value DFSAIBbb before you issue DL/I calls. This field is required. When the call is completed, the
information returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your program. You must initialize
AIBLEN in your application program before you issue DL/I calls. The minimum length required is 128
bytes. When the call is completed, the information returned in this field is unchanged. This field is
required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a subfunction. You must
initialize AIBSFUNC in your application program before you issue DL/I calls. When the call is
completed, the information returned in this field is unchanged.

Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies depending on the call. You
must initialize AIBRSNM1 in your application program before you issue DL/I calls. When the call is
complete, the information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of passing the PCB address
in the call list, this field contains the PCB name. The PCB name for the I/O PCB is IOPCBbb. The PCB
name for other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name 2 (AIBRSNM2)
This 8-byte field contains the name of a resource. The resource varies depending on the call. You must
initialize AIBRSNM2 in your application program before you issue DL/I calls.

Reserved
This 8-byte field is reserved.

Chapter 12. Defining application program elements for IMS DB 215

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was specified in the call list. You
must initialize AIBOALEN in your application program for all calls that return data to the output area.
When the call is completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all calls that return data to the
output area. When the call is completed this field contains the length of the I/O area used for this call.

Resource Field (AIBRSFLD)
This 4-byte field contains a resource. The resource varies depending on the call. You must initialize
AIBRSFLD in your application program before you issue DL/I calls.

Optional Area Length (AIBOPLEN)
This 4-byte field contains a resource. The resource varies depending on the call. You must initialize
AIBOPLEN in your application program before you issue DL/I calls.

Reserved
This 4-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the return code in AIBRETRN and
the reason code in AIBREASN.

Resource Address 1 (AIBRSA1)
When the call is completed, this 4-byte field contains call-specific information. For PCB related calls
where the AIB is used to pass the PCB name instead of passing the PCB address in the call list, this
field returns the PCB address.

Resource Address 2 (AIBRSA2)
When the call is completed, this 4-byte field contains call-specific information.

Resource Address 3 (AIBRSA3)
When the call is completed, this 4-byte field contains call-specific information.

User Defined Token (AIBUTKN)
This 16-byte field contains a user defined token. The token varies depending on the call.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I call. The usage is specific to the
DL/I call for which the token was returned.

Reserved
This 16-byte field is reserved.

Specifying the AIB mask for ODBA applications

The following table describes the fields for specifying the application interface block (AIB) mask for ODBA
applications.

The notes that follow describe the contents of each field.

Table 37. AIB fields for use of ODBA applications

AIB Fields Byte DB/DC IMS DB DCCTL DB Batch TM Batch
Length

AIB identifier 8 X X X X X

DFSAIB allocated length 4 X X

Subfunction code 8 X X X X X

216 IMS: Application Programming

Table 37. AIB fields for use of ODBA applications (continued)

AIB Fields Byte DB/DC IMS DB DCCTL DB Batch TM Batch
Length
Resource name #1 8 X X X X X
Resource name #2 8
Reserved 1 8
Maximum output area length 4 X X X X X
Output area length used 4 X X X X X
Reserved 2 12
Return code 4 X X X X X
Reason code 4 X X
Error code extension 4 X
Resource address #1 4 X X X X X
Resource address #2 4
Resource address #3 4
AIB return token 8 X X X
Reserved 3 32
Reserved for ODBA 136
AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in your application program to
the value DFSAIBbb before you issue DL/I calls. This field is required. When the call is completed, the
information returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your program. You must initialize
AIBLEN in your application program before you issue DL/I calls. The minimum length required is 264
bytes for ODBA. When the call is completed, the information returned in this field is unchanged. This
field is required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a subfunction. You must
initialize AIBSFUNC in your application program before you issue DL/I calls. When the call is
completed, the information returned in this field is unchanged.

Resource Name (AIBRSNM1) #1
This 8-byte field contains the name of a resource. The resource varies depending on the call. You

must initialize AIBRSNM1 in your application program before you issue DL/I calls. When the call is
complete, the information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of passing the PCB address
in the call list, this field contains the PCB name. The PCB name for the I/O PCB is IOPCBbb. The PCB
name for other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name (AIBRSNM2) #2
Specify a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is a 4-character ID.

Reserved 1
This 8-byte field is reserved.

Chapter 12. Defining application program elements for IMS DB 217

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was specified in the call list. You
must initialize AIBOALEN in your application program for all calls that return data to the output area.
When the call is completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all calls that return data to the
output area. When the call is completed this field contains the length of the I/O area used for this call.

Reserved 2
This 12-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the return code in AIBRETRN and
the reason code in AIBREASN.

Resource Address (AIBRSA1) #1
When the call is completed, this 4-byte field contains call-specific information. For PCB related calls
where the AIB is used to pass the PCB name instead of passing the PCB address in the call list, this
field returns the PCB address.

Resource Address (AIBRSA2) #2
This 4-byte field is reserved for ODBA.

Resource Address (AIBRSA3) #3
This 4-byte token, returned on the APSB call, is required for subsequent DLI calls and the DPSB call
related to this thread.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I call. The usage is specific to the
DL/I call for which the token was returned.

Reserved 3
This 32-byte field is reserved.

Reserved for ODBA
This 136-byte field is reserved for ODBA.

The application program can use the returned PCB address, when available, to inspect the status code in
the PCB and to obtain any other information needed by the application program.

COBOL AIB Mask Example

01 AIB.

02 AIBRID PIC x(8).

02 AIBRLEN PIC 9(9) USAGE BINARY.
02 AIBRSFUNC PIC x(8).

02 AIBRSNM1 PIC x(8).

02 AIBRSNM2 PIC x(8).

02 AIBRSNM3 PIC x(8).

02 AIBOALEN PIC 9(9) USAGE BINARY.
02 AIBOAUSE PIC 9(9) USAGE BINARY.
02 AIBRESV2 PIC x(12).

02 AIBRETRN PIC 9(9) USAGE BINARY.
02 AIBREASN PIC 9(9) USAGE BINARY.
02 AIBERRXT PIC 9(9) USAGE BINARY.
02 AIBRESA1l USAGE POINTER.

02 AIBRESA2 USAGE POINTER.

02 AIBRESA3 USAGE POINTER.

02 AIBRESV4 PIC x(40).

02 AIBRSAVE OCCURS 18 TIMES USAGE POINTER.
02 AIBRTOKN OCCURS 6 TIMES USAGE POINTER.
02 AIBRTOKC PIC x(16).

218 IMS: Application Programming

02 AIBRTOKV PIC x(16).
02 AIBRTOKA OCCURS 2 TIMES PIC 9(9) USAGE BINARY.

Assembler AIB Mask Example

DFSAIB DSECT
AIBID DS CL8'DFSAIB'
AIBLEN DS F
AIBSFUNC DS CL8
AIBRSNM1 DS CL8
AIBRSVM2 DS CL8
AIBRSNM3 DS CL8
DS 2F
AIBOALEN DS
AIBOAUSE DS
DS
DS
DS
AIBRETRN DS
AIBREASN DS
AIBRRXT DS
AIBRSA1 DS
AIBRSA2 DS
AIBRSA3 DS
DS 10F
AIBLL EQU *-DFSAIB
AIBSAVE DS 18F
AIBTOKN DS 6F
AIBTOKC DS CL16
AIBTOKV DS XL16
AIBTOKA DS 2F
AIBAERL EQU *-DFSAIB

T

> T T TITINTT

Specifying the UIB (CICS online programs only)

The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

When you issue the PCB call to obtain a PSB for your program, a UIB is created for your program. As with
any area outside your program, you must include a definition of the UIB and establish addressability to it.
CICS provides a definition of the UIB for all programming languages:

- In COBOL programs, use the COPY DLIUIB statement.
e In PL/I programs, use a %INCLUDE DLIUIB statement.

- In assembler language programs, use the DLIUIB macro.

Three fields in the UIB are important to your program: UIBPCBAL, UIBFCTR, and UIBDLTR. UIBPCBAL
contains the address of the PCB address list. Through it you can obtain the address of the PCB you want
to use. Your program must check the return code in UIBFCTR (and possibly UIBDLTR) before checking the
status code in the DB PCB. If the contents of UIBFCTR and UIBDLTR are not null, the content of the status
code field in the DB PCB is not meaningful. The return codes are described in the topic "CICS-DL/I user
interface block return codes" in IMS Version 15 Messages and Codes, Volume 4: IMS Component Codes.

Immediately after the statement that defines the UIB in your program, you must define the PCB address
list and the PCB mask.

The following code example shows how to use the COPY DLIUIB statement in a VS COBOL II program:

Defining the UIB, PCB address list, and the PCB mask for VS COBOL II

LINKAGE SECTION.
COPY DLIUIB.

01 OVERLAY-DLIUIB REDEFINES DLIUIB.
02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.

01 PCB-ADDRESSES.

Chapter 12. Defining application program elements for IMS DB 219

02 PCB-ADDRESS-LIST

USAGE IS POINTER OCCURS 10 TIMES.

01 PCB1.
02 PCB1-DBD-NAME PIC X(8).
02 PCB1-SEG-LEVEL PIC XX.

The COBOL COPY DLIUIB copybook

01 DLIUIB.
*

02 UIBPCBAL PIC S9(8) COMP.
*

02 UIBRCODE.
*

03 UIBFCTR PIC X.

88 FCNORESP VALUE
88 FCNOTOPEN VALUE
88 FCINVREQ VALUE
88 FCINVPCB VALUE
*
03 UIBDLTR PIC X.
88 DLPSBNF VALUE
88 DLTASKNA VALUE
88 DLPSBSCH VALUE

88 DLLANGCON VALUE
88 DLPSBFAIL VALUE

88 DLPSBNA VALUE
88 DLTERMNS VALUE
88 DLFUNCNS VALUE
88 DLINA VALUE

Address of the PCB addr list
DL/I return codes
Return codes

Additional information

The values placed in level 88 entries are not printable. They are described in the topic "CICS-DL/I User
Interface Block Return Codes" in IMS Version 15 Messages and Codes, Volume 4: IMS Component Codes.
The meanings of the field names and their hexadecimal values are shown below:

FCNORESP

Normal response Value X'00'
FCNOTOPEN

Not open Value X'0C'
FCINVREQ

Invalid request Value X'08'
FCINVPCB

Invalid PCB Value X'10'
DLPSBNF

PSB not found Value X'01'
DLTASKNA

Task not authorized Value X'02'
DLPSBSCH

PSB already scheduled Value X'03'
DLLANGCON

Language conflict Value X'04'
DLPSBFAIL

PSB initialization failed Value X'05'
DLPSBNA

PSB not authorized Value X'06'
DLTERMNS

Termination not successful Value X'07'

DLFUNCNS
Function unscheduled Value X'08'

220 IMS: Application Programming

DLINA
DL/I not active Value X'FF'

The following code example shows how to define the UIB, PCB address list, and PCB mask for PL/I.

Defining the UIB, PCB address list, and the PCB mask for PL/I

DCL UIBPTR PTR; /* POINTER TO UIB */
DCL 1 DLIUIB UNALIGNED BASED(UIBPTR),
/* EXTENDED CALL USER INTFC BLKx/

2 UIBPCBAL PTR, /* PCB ADDRESS LIST */
2 UIBRCODE, /* DL/I RETURN CODES */
3 UIBFCTR BIT(8) ALIGNED, /* RETURN CODES */
3 UIBDLTR BIT(8) ALIGNED; /* ADDITIONAL INFORMATION */

The following code example shows how to define the UIB, PCB address list, and PCB mask for assembler
language.

Defining the UIB, PCB address list, and the PCB mask for assembler language

DLIUIB DSECT

uIB DS OF EXTENDED CALL USER INTFC BLK
UIBPCBAL DS A PCB ADDRESS LIST
UIBRCODE DS 0XL2 DL/I RETURN CODES
UIBFCTR DS X RETURN CODE
UIBDLTR DS X ADDITIONAL INFORMATION

DS 2X RESERVED

DS OF LENGTH IS FULLWORD MULTIPLE
UIBLEN EQU *-UIB LENGTH OF UIB

Related reference

“Coding a CICS online program in COBOL” on page 184

The following code examples are skeleton online programs in Enterprise COBOL. They show examples of
how to define and set up addressability to the UIB.

“Coding a CICS online program in PL/I” on page 192
The following code example is a skeleton CICS online program in PL/I. It shows you how to define and
establish addressability to the UIB.

“Coding a CICS online program in assembler language” on page 178
The following code example in assembler language shows how you define and establish addressability to
the UIB.

“Language specific entry points” on page 227
In your application program written in assembler language, C, COBOL, Pascal, or PL/I, control is passed
from IMS through an entry point.

Specifying the I/0 areas

Use an I/0 area to pass segments between the application program and IMS.

What the I/O area contains depends on the type of call you are issuing:

« When you retrieve a segment, IMS places the segment you requested in the I/O area.
« When you add a new segment, you first build the new segment in the I/O area.

- Before modifying a segment, your program must first retrieve it. When you retrieve the segment, IMS
places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can be fixed length

or variable length. Only one difference is important to the application program: a message segment
containing a 2-byte length field (or 4 bytes for the PLITDLI interface) at the beginning of the data area of
the segment.

The I/O area for IMS calls must be large enough to hold the largest segment your program retrieves from
or sends to IMS.

Chapter 12. Defining application program elements for IMS DB 221

If your program issues any Get or ISRT calls that use the D command code, the I/O area must be large
enough to hold the largest path of segments that the program retrieves or inserts.

Formatting segment search arguments (SSAs)

Segment search arguments in your assembler language, C language, COBOL, Java, Pascal, and PL/I
application programs must be coded according to the following rules and formats.

SSA coding rules
Use the following rules for coding a segment search argument.

« Define the SSA in the data area of your program.
« The segment name field must:
— Be 8 bytes long. If the name of the segment you are specifying is less than 8 bytes long, it should be
left justified and padded on the right with blanks.

— Contain a segment name that has been defined in the DBD that your application program uses. In
other words, make sure you use the exact segment name, or your SSA will be invalid.

— Or, if the DL/I call uses command code O, the segment field name is the starting offset and length
of the data that you want to retrieve. The starting offset is relative to the physical segment definition
and starts with 1. The maximum length that can be retrieved is the maximum segment size for the
database type, and the minimum length is 1. The two fields are specified instead of a standard field
name in the following format: '0ooolll1l"'. 0000 is the offset position and [lll is the length of the data
that you want to retrieve.

- If the SSA contains only the segment name, byte 9 must contain a blank.
« If the SSA contains one or more command codes:

— Byte 9 must contain an asterisk (*).

— The last command code must be followed by a blank unless the SSA contains a qualification
statement. If the SSA contains a qualification statement, the command code must be followed by
the left parenthesis of the qualification statement.

- If the SSA contains a qualification statement:

— The qualification statement must begin with a left parenthesis and end with a right parenthesis.

— There must not be any blanks between the segment name or command codes, if used, and the left
parenthesis.

— The field name must be 8 bytes long. If the field name is less than 8 bytes, it must be left justified and
padded on the right with blanks. The field name must have been defined for the specified segment
type in the DBD the application program is using.

— The relational operator follows the field name. It must be 2 bytes long and can be represented
alphabetically or symbolically. The following table lists the relational operators.

Table 38. Relational operators

Symbolic Alphabetic Meaning

=bh= EQ Equal to

>=or=> GE Greater than or equal to
<=or =< LE Less than or equal to
>b> GT Greater than

<b< LT Less than

== OF =~ NE Not equal to

222 IMS: Application Programming

— The comparative value follows the relational operator. The length of this value must be equal to
the length of the field that you specified in the field name. This length is defined in the DBD. The
comparative value must include leading zeros for numeric values or trailing blanks for alphabetic
values as necessary. The comparative value cannot include any parenthesis.

- If you are using multiple qualification statements within one SSA (Boolean qualification statements), the
qualification statements must be separated by one of these symbols:

*or &
Dependent AND

+or |
Logical OR

#
Independent AND

One of these symbols must appear between the qualification statements that the symbol connects.
« The last qualification statement must be followed by a right parenthesis.

An SSA created by the application program must not exceed the space allocated for the SSA in the PSB.

Related reading: For additional information about defining the PSB SSA size, see the explanation of the
PSBGEN statement in IMS Version 15 Database Utilities.

SSA coding formats

Use the following formats to code segment search arguments in assembler language, C language, COBOL,
Pascal, and PL/I.

Assembler language SSA definition examples

The following code example shows how you would define a qualified SSA without command codes. If you
want to use command codes with this SSA, code the asterisk (*) and command codes between the 8-byte
segment name field and the left parenthesis that begins the qualification statement.

* CONSTANT AREA

SSANAME DS OCL26

ROOT DC CL8'ROOT '
DC cLa' ('
DC CL8'KEY '
DC cL2' ='

NAME DC CLn'vv...v'
DC cL1')!'

This SSA looks like this:

ROOTbbbb (KEYbbbbbb=vv. . .v)

C language SSA definition examples

An unqualified SSA that does not use command codes looks like this in C:

const struct §
char seg_name_u[8];
char blank[1];
%t unqual_ssa = {"NAME P

You can use an SSA that is coded like this for each DL/I call that needs an unqualified SSA by supplying
the name of the segment type you want during program execution. Note that the string size declarations
are such that the C null terminators do not appear within the structure.

You can, of course, declare this as a single string:

const char unqual_ssa[] = "NAME " /* 8 chars + 1 blank =/

Chapter 12. Defining application program elements for IMS DB 223

DL/I ignores the trailing null characters.
You can define SSAs in any of the ways explained for the I/0 area.

The easiest way to create a qualified SSA is using the sprintf function. However, you can also define it
using a method similar to that used by COBOL or PL/I.

The following is an example of a qualified SSA without command codes. To use command codes with
this SSA, code the asterisk (*) and command codes between the 8-byte segment name field and the left
parenthesis that begins the qualification statement.

struct §

seg_name char[8];
seg_qual char[1];
seg_key_name char[8];
seg_opr char[2];

seg_key_value chazr[n];
seg_end_char char[1];
} qual_ssa = {IIROOT II' II(II' IIKEY II' n =II' “VV...VV“, II)II};

Another way is to define the SSA as a string, using sprintf. Remember to use the preprocessor directive
#include <stdio.h>.

char qual_ssa[8+1+8+2+6+1+1]; /% the final 1 is for the =«/
/* trailing '\0' of string =/
sprintf(qual_ssa,

IIéOOTII , IIKEYII , II=II , “VVVVV“) ;
Alternatively, if only the value were changing, the sprintf call can be:

sprintf(qual_ssa,
"ROOT (KEY =, "vvvvv'");
/* 12345678 12345678 */

In both cases, the SSA looks like this:

ROOTbbbb (KEYbbbbbb=vv..v)

COBOL SSA definition examples
An unqualified SSA that does not use command codes looks like this in COBOL:

DATA DIVISION.
WORKING-STORAGE SECTION.

01 UNQUAL-SSA.

02 SEG-NAME PICTURE X(08) VALUE '........ Yo
02 FILLER PICTURE X VALUE ' '.

By supplying the name of the segment type you want during program execution, you can use an SSA
coded like the one in this example for each DL/I call that needs an unqualified SSA.

Use a 01 level working storage entry to define each SSA that the program is to use. Then use the name
you have given the SSA as the parameter in the DL/I call, in this case:

UNQUAL-SSA,

The following SSA is an example of a qualified SSA that does not use command codes. If you use
command codes in this SSA, code the asterisk (*) and the command code between the 8-byte segment
name field and the left parenthesis that begins the qualification statement.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 QUAL-SSA-MAST.

02 SEG-NAME-M PICTURE X(08) VALUE 'ROOT o
02 BEGIN-PAREN-M PICTURE X VALUE '('.
02 KEY-NAME-M PICTURE X(08) VALUE 'KEY Yo

224 IMS: Application Programming

02 REL-OPER-M PICTURE X(02) VALUE ' =".
02 KEY-VALUE-M PICTURE X(n) VALUE 'vv...v'.
02 END-PAREN-M PICTURE X VALUE ')'.

The SSA looks like this:

ROOTbbbb (KEYbbbbbb=vv. . .v)

Pascal SSA definition examples

An unqualified SSA that does not use command codes looks like this in Pascal:

type
STRUCT = record
SEG_NAME : ALFA;
BLANK : CHAR;
end;
const
UNQUAL_SSA = STRUCT('NAME',"' ');

You can also declare this SSA as a single string:

const
UNQUAL_SSA = 'NAME Y

The SSA shown in the following example is a qualified SSA that does not use command codes. If you use
command codes in this SSA, code the asterisk (*) and the command code between the 8-byte segment
name field and the left parenthesis that begins the qualification statement.

type
STRUCT = record
SEG_NAME : ALFA;
SEG_QUAL : CHAR;
SEG_KEY_NAME : ALFA;
SEG_OPR : CHAR;
SEG_KEY_VALUE : packed array[l..n] of CHAR;
SEG_END_CHAR : CHAR;
end;
const
QUAL_SSA = STRUCT('ROOT',"'(','KEY',"' =","'vw...v',")");

This SSA looks like this:

ROOTbbbb (KEYbbbbbb=vv. . .v)

PL/I SSA definition examples

An unqualified SSA that does not use command codes looks like this in PL/I:

DCL 1 UNQUAL_SSA STATIC UNALIGNED,
2 SEG_NAME_U CHAR(8) INIT('NAME ")
2 BLANK CHAR(2) INIT(' ');

You can use a SSA that is coded like this for each DL/I call that needs an unqualified SSA by supplying the
name of the segment type you want during program execution.

In PL/I you define SSAs in structure declarations. The unaligned attribute is required for SSA data
interchange with IMS. The SSA character string must reside contiguously in storage. For example,
assignment of variable key values might cause IMS to construct an invalid SSA if the key value has
changed the aligned attribute.

A separate SSA structure is required for each segment type that the program accesses because the value
of the key fields differs among segment types. After you have initialized the fields (other than the key
values), the SSA should not need to be changed again. You can define SSAs in any of the ways explained
for the I/O area.

Chapter 12. Defining application program elements for IMS DB 225

The following is an example of a qualified SSA without command codes. If you use command codes in
this SSA, code the asterisk (*) and command codes between the 8-byte segment name field and the left
parenthesis that begins the qualification statement.

DCL 1 QUAL_SSA STATIC UNALIGNED,
2 SEG_NAME CHAR(8) INIT('ROOT oF
2 SEG_QUAL CHAR(1) INIT('('),
2 SEG_KEY_NAME CHAR(8) INIT('KEY),
2 SEG_OPR CHAR(2) INIT(' ='),
2 SEG_KEY_VALUE CHAR(n) INIT('vv...v'),
2 SEG_END_CHAR CHAR(2) INIT(')');

This SSA looks like this:

ROOTbbbb (KEYbbbbbb=vv. . .v)

Related concepts

“Specifying segment search arguments using the SSAList interface” on page 646

The SSAList interface represents a set of a list of segment search arguments used to specify the
segments to target in a particular database call.

Data areas in GSAM databases

Generalized Sequential Access Method (GSAM) databases are available only to application programs

that can run as batch programs, batch-oriented BMPs, transaction-oriented BMPS, or JBPs. The program
communication block (PCB) mask and the record search argument (RSA) that you use in a GSAM database
call have special formats.

GSAM DB PCB masks are slightly different from other DB PCB masks. The fields that are different are the
length of the key feedback area and the key feedback area. Also, an additional field exists that gives the
length of the record being retrieved or inserted when using undefined-length records.

The RSA is an 8-byte token for basic format data sets or 12-byte token for large format data sets that can
be returned on GN and ISRT calls. The application program can save the RSA for use in a subsequent GU
call.

Related concepts

“Processing GSAM databases” on page 283

GSAM databases are available to application programs that can run online in IMS batch message
processing (BMP) regions (message-driven or non-message-driven) or Java batch processing (JBP)
regions or standalone in DLIBATCH regions.

Related reference

“Specifying the DB PCB mask” on page 212

IMS describes the results of the calls your program issues in the DB PCB that is referenced in the call. To
determine the success or failure of the DL/I call, the application program includes a mask of the DB PCB
and then references the fields of the DB PCB through the mask.

AIBTDLI interface

Use AIBTDLI as the interface between your application program and IMS.

Restriction: No fields in the application interface block (AIB) can be used by the application program
except as defined by IMS.

When you use the AIBTDLI interface, you specify the program communication block (PCB) requested for
the call by placing the PCB name (as defined by PSBGEN) in the resource name field of the AIB. You

do not specify the PCB address. Because the AIB contains the PCB name, your application program can
refer to the PCB name rather than the PCB address. Your application program does not need to know
the relative PCB position in the PCB list. At completion of the call, the AIB returns the PCB address that
corresponds to the PCB name passed by the application program.

226 IMS: Application Programming

The names of DB PCBs and alternate PCBs are defined by the user during PSBGEN. All I/O PCBs are
generated with the PCB name bbb. For a generated program specification block (GPSB), the I/O PCB is
generated with the PCB name IOPCBbbb, and the modifiable alternate PCB is generated with the PCB
name TPPCB1bb.

The ability to pass the PCB name means that you do not need to know the relative PCB number in the
PCB list. In addition, the AIBTDLI interface enables your application program to make calls on PCBs that
do not reside in the PCB list. The LIST= keyword, which is defined in the PCB macro during PSBGEN,
controls whether the PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use the AIBTDLI
interface. Upon call completion, IMS updates the AIB. Allocate at least 128 bytes of storage for the AIB.

Related concepts

“PCB masks for GSAM databases” on page 283

For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.

Related reference

“Application programming for PL/I” on page 360

Application programs in PL/I use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.

“Application programming for Pascal” on page 357
Application programs in Pascal use the following format, parameters, and DL/I calls to communicate with
the IMS Transaction Manager.

“Application programming for C language” on page 352
Application programs in C use the following format, parameters, and DL/I calls to communicate with the
IMS Transaction Manager.

“Application programming for assembler language” on page 349
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with the IMS Transaction Manager.

“Assembler language application programming” on page 195
Application programs in assembly language use the following format, parameters, and DL/I calls to
communicate with IMS databases.

Language specific entry points

In your application program written in assembler language, C, COBOL, Pascal, or PL/I, control is passed
from IMS through an entry point.

Your entry point must refer to the PCBs in the order in which they have been defined in the PSB. When
you code each DL/I call, you must provide the PCB you want to use for that call. In all cases except CICS
online, the list of PCBs that the program can access is passed to the program at its entry point. For CICS
online, you must first schedule a PSB as described in the topic "System Service Call: PCB" in IMS Version
15 Application Programming APIs.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI), such as Java application
interfaces, use the PCB name rather than the PCB structure and do not require the PCB list to be passed
at entry to the application.

In a CICS online program, you do not obtain the address of the PCBs through an entry statement, but
through the user interface block (UIB).

Leave the value blank if the application has been enabled for the IBM Language Environment® for z/0S &
VM.

Chapter 12. Defining application program elements for IMS DB 227

Assembler language entry point

You can use any name for the entry statement to an assembler language DL/I program. When IMS passes
control to the application program, register 1 contains the address of a variable-length fullword parameter
list. Each word in the list contains the address of a PCB. Save the content of register 1 before you
overwrite it. IMS sets the high-order byte of the last fullword in the list to X'80' to indicate the end of the
list. Use standard z/OS linkage conventions with forward and backward chaining.

C language entry point

When IMS passes control to your program, it passes the addresses, in the form of pointers, for each of the
PCBs that your program uses. The usual argc and argv arguments are not available to a program that is
invoked by IMS. The IMS parameter list is made accessible by using the __pcblist macro. You can directly
reference the PCBs by __pchlist[0], __pcblist[1], or you can define macros to give these more meaningful
names. Note that I/O PCBs must be cast to get the proper type:

(IO_PCB_TYPE *) (__pchlist[0])
The entry statement for a C language program is the main statement.

#pragma runopts(env(IMS),plist(IMS))
#include <ims.h>

main ()
?

The env option specifies the operating environment in which your C language program is to run. For
example, if your C language program is invoked under IMS and uses IMS facilities, specify env(IMS). The
plist option specifies the format of the invocation parameters that is received by your C language program
when it is invoked. When your program is invoked by a system support services program, the format of the
parameters passed to your main program must be converted into the C language format: argv, arge, and
envp. To do this conversion, you must specify the format of the parameter list that is received by your C
language program. The ims.h include file contains declarations for PCB masks.

You can finish in three ways:

« End the main procedure without an explicit return statement.
« Execute a return statement from main.

« Execute an exit or an abort call from anywhere, or alternatively issue a longjmp back to main, and then
do a normal return.

One C language program can pass control to another by using the system function. The normal rules for
passing parameters apply; in this case, the arge and argv arguments can be used to pass information. The
initial __pcblist is made available to the invoked program.

COBOL entry point

The procedure statement must refer to the I/O PCB first, then to any alternate PCB it uses, and finally
to the DB PCBs it uses. The alternate PCBs and DB PCBs must be listed in the order in which they are
defined in the PSB.

PROCEDURE DIVISION USING PCB-NAME-1 [,...,PCB-NAME-N]

In previous versions of IMS, USING might be coded on the entry statement to reference PCBs. However,
IMS continues to accept such coding on the entry statement.

Recommendation: Use the procedure statement rather than the entry statement to reference the PCBs.

228 IMS: Application Programming

Pascal entry point

The entry point must be declared as a REENTRANT procedure. When IMS passes control to a Pascal
procedure, the first address in the parameter list is reserved for Pascal's use, and the other addresses
are the PCBs the program uses. The PCB types must be defined before this entry statement. The IMS
interface routine PASTDLI must be declared with the GENERIC directive.

procedure ANYNAME (var SAVE: INTEGER;
var pcbl-name: pcbl-name-typel[;

var pcbn-name: pcbn-name-type]); REENTRANT;
procedure ANYNAME;
(* Any local declarations %)
procedure PASTDLI; GENERIC;
begin
(* Code for ANYNAME %)
end;

PL/I entry point

The entry statement must appear as the first executable statement in the program. When IMS passes
control to your program, it passes the addresses of each of the PCBs your program uses in the form of
pointers. When you code the entry statement, make sure you code the parameters of this statement as
pointers to the PCBs, and not the PCB names.

anyname: PROCEDURE (pcbl_ptr [,..., pcbn_ptr]) OPTIONS (MAIN);

RETURN;

The entry statement can be any valid PL/I name.

CEETDLI, AIBTDLI, and AERTDLI interface considerations
The following considerations apply for CEETDLI, AIBTDLI, and AERTDLI.
The considerations for CEETDLI are:

« For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW include file. Alternatively,
you can declare it yourself, but it must be declared as an assembler language entry (DCL CEETDLI
OPTIONS(ASM);).

« For C language application programs, you must specify env(IMS) and plist(IMS); these specifications
enable the application program to accept the PCB list of arguments. The CEETDLI function is defined in
<leawi.h>; the CTDLI function is defined in <ims.h>.

The considerations for AIBTDLI are:

« When using the AIBTDLI interface for C/MVS, Enterprise COBOL, or PL/I language application programs,
the language run-time options for suppressing abend interception (that is, NOSPIE and NOSTAE) must
be specified. However, for Language Environment-conforming application programs, the NOSPIE and
NOSTAE restriction is removed.

« The AIBTDLI entry point for PL/I programs must be declared as an assembler language entry (DCL
AIBTDLI OPTIONS(ASM);).

« For C language applications, you must specify env(IMS) and plist(IMS); these specifications enable the
application program to accept the PCB list of arguments.

The considerations for AERTDLI are:

« When using the AERTDLI interface for C/MVS, COBOL, or PL/I language application programs, the
language run-time options for suppressing abend interception (that is, NOSPIE and NOSTAE) must
be specified. However, for Language Environment-conforming application programs, the NOSPIE and
NOSTAE restriction is removed.

« The AERTDLI entry point for PL/I programs must be declared as an assembler language entry (DCL
AERTDLI OPTIONS(ASM);).

Chapter 12. Defining application program elements for IMS DB 229

« For C language applications, you must specify env(IMS) and plis(IMS). These specifications enable the
application program to accept the PCB list of arguments.

« AERTDLI must receive control with 31 bit addressability.

Related reference

“Specifying the UIB (CICS online programs only)” on page 219

The interface between your CICS online program and DL/I passes additional information to your program
in a user interface block (UIB). The UIB contains the address of the PCB list and any return codes your
program must examine before checking the status code in the DB PCB.

Program communication block (PCB) lists

In your application program, code your PCB or GPSB list in the following format.

PCB list format

The following example shows the general format of a PCB list.

[IOPCB]

[Alternate PCB ... Alternate PCB]
[DB PCB ... DB PCB]

[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB is required for most system service calls. An I/O PCB
or alternate PCB is required for transaction management calls. (Alternate PCBs can exist in IMS TM.) DB
PCBs for DL/I databases are used only with the IMS Database Manager under DBCTL. GSAM PCBs can be
used with DCCTL.

Format of a GPSB PCB list
A generated program specification block (GPSB) takes this format:

[IOPCB]
[Alternate PCB]

A GPSB contains only an I/0 PCB and one modifiable alternate PCB. (A modifiable alternate PCB enables
you to change the destination of the alternate PCB while the program is running.) A GPSB can be used by
all transaction management application programs, and permits access to the specified PCBs without the
need for a specific PSB for the application program.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is IOPCB. The name of the
alternate PCB is TPPCB1bb. The minimum size of the I/O work area that IMS generates for GPSBs in a
DBCTL environment is 600 bytes.

PCB summary

If you intend to issue system service requests, be aware of the differences between I/O PCBs and
alternate PCBs in various types of application programs.

DB Batch Programs
If CMPAT=Y is specified in PSBGEN, the I/O PCB is present in the PCB list; otherwise, the I/O PCB is
not present, and the program cannot issue system service calls. Alternate PCBs are always included in
the list of PCBs that IMS supplies to the program.

BMPs, MPPs, and IFPs
The I/O PCB and alternate PCBs are always passed to BMPs, MPPs, and IFPs.

The PCB list always contains the address of the I/O PCB, followed by the addresses of any alternate
PCBs, followed by the addresses of the DB PCBs.

230 IMS: Application Programming

CICS Online Programs with DBCTL
If you specify the IOPCB option on the PCB call, the first PCB address in your PCB list is the I/O PCB,
followed by any alternate PCBs, followed by the addresses of the DB PCBs.

If you do not specify the I/O PCB option, the first PCB address in your PCB list points to the first DB
PCB.

The following table summarizes the I/O PCB and alternate PCB information.

Table 39. I/O PCB and alternate PCB information summary

CALLDL/I

Environment I/0 PCB address in PCB list Alternate PCB address in PCB

list
MPP Yes Yes
IFP Yes Yes
BMP Yes Yes
DB Batch? No Yes
DB Batch? Yes Yes
TM Batch3 Yes Yes
CICS DBCTL? No No
CICS DBCTLS Yes Yes

Notes:

1. CMPAT = N specified.

. CMPAT =Y specified.

. CMPAT = Option. Default is always to Y, even when CMPAT = N is specified.
. SCHD request issued without the IOPCB or SYSSERVE option.

. SCHD request issued with the IOPCB or SYSSERVE for a CICS DBCTL request or for a function-shipped
request which is satisfied by a CICS system using DBCTL.

The AERTDLI interface

You can make database calls with AIBs in your ODBA applications using the AERTDLI interface.

g b W N

Requirement: Allocate 264 bytes of storage for the AIB.

When you use the AERTDLI interface, the AIB used for database calls must be the same AIB as used

for the APSB call. Specify the PCB that is requested for the call by placing the PCB name (as defined

by PSBGEN) in the resource name field of the AIB. You do not specify the PCB address. Because the

AIB contains the PCB name, your application can refer to the PCB name rather than to the PCB address.
The AERTDLI call allows you to select PCBs directly by name rather than by a pointer to the PCB. At
completion of the call, the AIB returns the PCB address that corresponds to the PCB name that is passed
by the application program.

For PCBs to be used in a AERTDLI call, you must assign a name in PSBGEN, either with PCBNAME= or
with the name as a label on the PCB statement. PCBs that have assigned names are also included in the
positional pointer list, unless you specify LIST=NO. During PSBGEN, you define the names of the DB PCBs
and alternate PCBs. All I/O PCBs are generated with the PCB name IOPCBbbb.

Because you pass the PCB name, you do not need to know the relative PCB number in the PCB list.

In addition, the AERTDLI interface enables your application program to make calls on PCBs that do not
reside in the PCB list. The LIST= keyword, which is defined in the PCB macro during PSBGEN, controls
whether the PCB is included in the PCB list.

Chapter 12. Defining application program elements for IMS DB 231

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use the AERTDLI
interface. When the call is completed, the AIB is updated by IMS. Because some of the fields in the AIB
are used internally by IMS, the same APSB AIB must be used for all subsequent calls for that PSB.

Language environments

IBM Language Environment provides the strategic execution environment for running your application
programs written in one or more high level languages.

It provides not only language-specific run-time support, but also cross-language run-time services for
your applications, such as support for initialization, termination, message handling, condition handling,
storage management, and National Language Support. Many of Language Environment's services

are accessible explicitly through a set of Language Environment interfaces that are common across
programming languages; these services are accessible from any Language Environment-conforming
program.

Language Environment-conforming programs can be compiled with the following compilers:

« IBM C++/MVS
- IBM COBOL
-« IBMPL/I

By default, the Language Environment infrastructure uses the 31-bit addressing mode. By specifying
JVM=64, the Language Environment is changed to use the 64-bit addressing mode. By specifying
JVM=3164, the dependent region will initialize a 31-bit Language Environment and a secondary 64-bit
Language Environment to support 31-bit COBOL and 64-bit Java interoperability.

Language Environment supports C, C++, and assembly language interoperability in a 64-bit addressing
mode, but does not support COBOL and PL/I interoperability in a 64-bit addressing mode. Do not switch
to JVM=64 if your Java application invokes either COBOL or PL/I. If the regions are switched to use
JVM=64 inadvertently, and incompatible interoperable applications are running, the application might
receive system or user abends.

The CEETDLI interface to IMS

The language-independent CEETDLI interface to IMS is provided by Language Environment. It is the only
IMS interface that supports the advanced error handling capabilities provided by Language Environment.
The CEETDLI interface supports the same functionality as the other IMS application interfaces, and it has
the following characteristics:

« The parmcount variable is optional.

 Length fields are 2 bytes long.

« Direct pointers are used.

Related reading: For more information about Language Environment, see z/0S Language Environment
Programming Guide.

LANG= option on PSBGEN for PL/I compatibility

For IMS PL/I applications running in a compatibility mode that uses the PLICALLA entry point, you must
specify LANG=PLI on the PSBGEN. Your other option is to change the entry point and add SYSTEM(IMS)
to the EXEC PARM of the compile step so that you can specify LANG=blank or LANG=PLI on the PSBGEN.
The following table summarizes when you can use LANG=blank and LANG=PLI.

Table 40. Using LANG= option in a Language Environment for PL/I compatibility

Compile exec statement is Entry point name is PLICALLA
PARM=(...,SYSTEM(IMS)... Valid LANG= value
Yes Yes LANG=PLI

232 IMS: Application Programming

Table 40. Using LANG= option in a Language Environment for PL/I compatibility (continued)

Compile exec statement is Entry point name is PLICALLA

PARM=(...,SYSTEM(IMS)... Valid LANG= value

Yes No LANG=blank or LANG=PLI

No No Note: Not valid for IMS PL/I
applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility with Language Environment. If a PL/I application using
PLICALLA entry at bind time is bound using Language Environment with the PLICALLA entry, the bind will
work; however, you must specify LANG=PLI in the PSB. If the application is re-compiled using PL/I for
z/0S & VM Version 1 Release 1 or later, and then bound using Language Environment Version 1 Release 2
or later, the bind will fail. You must remove the PLICALLA entry statement from the bind.

Special DL/I situations for IMS DB programming

Special cases during application programming for IMS DB include usage of the GUR call, program
scheduling against HALDBs, mixed language programming, using the extended addressing capabilities
of z/0S, and setting COBOL compiler options for preloaded programs.

GUR call

The get unique record (GUR) DL/I call is a special case because it always accesses the IMS catalog
database. When the catalog is enabled, IMS dynamically attaches the catalog PCB on behalf of your
application program. Your application program can use the GUR call to get catalog data in the form of a
single XML instance document for a particular catalog record. You can also issue other DL/I read calls to
process the catalog database in the same way as any other database. The GUR call is provided to reduce
the number of processing steps required to retrieve a complete catalog record for a DBD or PSB.

Restriction: The use of SSA command codes is not allowed.

Application program scheduling against HALDBs

Application programs are scheduled against HALDBs the same way they are against non-HALDBs.
Scheduling is based on the availability status of the HALDB master and is not affected by individual
partition access and status.

The application programmer needs to be aware of changes to the handling of unavailable data for
HALDBs. The feedback on data availability at PSB schedule time shows the availability of the HALDB
master, not of the partitions. However, the error settings for data unavailability of a partition at the first
reference to the partition during the processing of a DL/I call are the same as those of a non-HALDB,
namely status code BA or pseudo ABENDU3303.

For example, if you issue the IMS /DBR command to half of the partitions to take them offline, the
remaining partitions are available to the programs.

When an application program accesses a partition, that partition is considered to be in use by the
application for the duration of that instance of the application. DBDUMP, DBRECOVERY, and START
commands can operate against a partition currently not in use. The command is not processed for any
partition that is being accessed by a BMP. A DFS05651 message is issued for partitions that are in use
by a BMP. An exception to this rule is a partition where the accessing BMP issued a CHKP call and has
not issued any subsequent DL/I calls. If an application attempts to access data from a stopped partition,
a pseudo abend ABENDU3303 results or the application receives a BA status code. If the partition is
started with the STA DB command before the application attempts to access data in that partition again,
the DL/I call is processed successfully.

Chapter 12. Defining application program elements for IMS DB 233

Mixed-language programming

When an application program uses the Language Environment language-independent interface, CEETDLI,
IMS does not need to know the language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS determines the language
of the calling program according to the entry name that is specified in the CALL statement. That is, IMS
assumes that the program is:

- Assembler language when the application program uses CALL ASMTDLI
« Clanguage when the application program uses rc=CTDLI

« COBOL when the application program uses CALL CBLTDLI

 Pascal when the application program uses CALL PASTDLI

« PL/I when the application program uses CALL PLITDLI

For example, if a PL/I program calls an assembler language subroutine and the assembler language
subroutine makes DL/I calls by using CALL ASMTDLI, the assembler language subroutine should use the
assembler language calling convention, not the PL/I convention.

In this situation, where the I/0 area uses the LLZZ format, LL is a halfword, not the fullword that is used
for PL/I.

Extended addressing capabilities of z/0S

The two modes in z/OS with extended addressing capabilities are: the addressing mode (AMODE) and
the residency mode (RMODE). IMS places no constraints on the RMODE and AMODE of an application
program. The program can reside in the extended virtual storage area. The parameters that are
referenced in the call can also be in the extended virtual storage area.

COBOL compiler options for preloaded programs

If you compile your COBOL program with the VS COBOL II compiler and preload it, you must use the
COBOL compiler options RES and RENT.

Application programming with the IMS catalog

The IMS catalog database is accessible to standard IMS DB application programs when it is enabled for
your IMS system.

Information in the IMS catalog

The IMS catalog database stores application and database metadata in a format that is accessible

to standard IMS DB application programs. This information includes database definitions, program
specifications, and user comments. Any application program can read this information, but the catalog
database is write-protected and can be updated only by authorized system utilities such as the IMS
catalog populate utility (DFS3PUQOQ).

By default, the IMS catalog is named DFSCD00O. The DFSC prefix is replaced with an alias prefix if one is
defined to IMS.

Information in the IMS catalog secondary index

The IMS catalog secondary index contains a single segment type, DBDPSB. It is logically linked to the
DBDXREF segment type in the IMS catalog database, which is included in all catalog records for IMS
PSBs. You can use the catalog secondary index to determine which IMS programs reference a specific
user database without processing the entire IMS catalog.

By default, the IMS catalog is named DFSCX000. The DFSC prefix is replaced with an alias prefix if one is
defined to IMS.

234 IMS: Application Programming

IMS catalog PSBs and PCBs for application programs

IMS does not require user PSBs to contain a PCB for the IMS catalog database or secondary index.

The catalog PSBs DFSCP000, DFSCP002, and DFSCP003 are dynamically attached to any user PSB that
makes a DL/I call to the catalog database or issues an INIT DB QUERY call. Each PSB is intended for use
by a different type of application program:

DFSCP000

High-level assembler and COBOL applications
DFSCP002

PL/I applications
DFSCP003

PASCAL applications
Restriction: The IMS catalog PSBs are not dynamically attached to generated PSBs or GSAM-only PSBs.
The following PCBs are included to support different catalog processing models:

DFSCATO00
The primary PCB to access all data in the DFSCD00O (IMS catalog) database. Use this PCB to perform
standard catalog processing.

DFSCATSX
This PCB provides a SENSEG for the DBDXREF segment type in catalog PSB records and uses
PROCSEQ=DFSCX000. Use this PCB to perform faster processing of the catalog database via the
catalog secondary index.

DFSCATXO0
This PCB provides a SENSEG for the DBDPSB segment type in catalog secondary index records. Use
this PCB to process the catalog secondary index directly.

All catalog PCBs are resident. All catalog processing is performed with PROCOPT=GP.

IMS automatically increases the space allocated for the user PSB to attach the catalog PSBs. 96 bytes

of additional space are allocated for each user PSB in the PSB CSA storage pool. The catalog PSB itself
occupies 12kb in the DLIPSB pool and 500 bytes CSAPSB pool for each user PSB that is using the catalog
PSBs. You might need to increase the size of your storage pools, up to the maximum size of the catalog
PSB in each pool multiplied by the number of user PSBs that concurrently access the catalog.

GUR call

Your application program can use the Get Unique Record (GUR) DL/I call to get catalog data in the form
of a single XML instance document for a particular catalog record. You can also issue other DL/I read calls
to process the catalog database in the same way as any other IMS database. The GUR call is provided to
reduce the number of processing steps required to retrieve a complete catalog record for a DBD or PSB.

Restriction: The use of SSA command codes is not allowed.

Related concepts

Format of records in the IMS catalog database (Database Administration)
IMS catalog secondary index (Database Administration)

Related reference

“Special DL/I situations for IMS DB programming” on page 233

Special cases during application programming for IMS DB include usage of the GUR call, program
scheduling against HALDBs, mixed language programming, using the extended addressing capabilities
of z/0S, and setting COBOL compiler options for preloaded programs.

GUR call (Application Programming APIs)

Chapter 12. Defining application program elements for IMS DB 235

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_cat_db_format.htm#formatofrecordsintheimscatalog
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_cat_db_sx.htm#ims_cat_db_sx
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_gurcall.htm#ims_gurcall

236 IMS: Application Programming

Chapter 13. Database versioning and application
programming

When database versioning is enabled in an IMS system, IMS can maintain multiple versions of the
structural definition of a database so that existing application programs can continue to access a
database after the database is modified to support new application programs.

When a new version of a database is defined, the database administrator specifies a version number for
the new database definition. The version number is then used to request access to that version of the
database.

When multiple version of a database are available, if a specific database version is not specified for an
application program, IMS provides access to the current version of the database by default. The current
version of a database has the highest version number and contains the latest changes to the database.
This IMS system default can be changed so that IMS provides access to version 0 of the database instead.

The IMS system default can be overridden at the program specification block (PSB) level by specifying the
DBLEVEL parameter in the PSBGEN statement during PSB generation.

If an application program requires a specific database version, that version number can be specified
explicitly either on the DBVER parameter of a PCB statement when the PCB is defined or at runtime by
issuing the DL/I INIT VERSION call.

If the requested version of a database definition cannot be found or if database versioning is not

enabled when a version is requested, IMS terminates the program with abend 3303 and issues message
DFS3303I, which contains details regarding the cause of the abend. Optionally, application programs can
issue the INIT STATUS GROUPA call to receive a BA status code instead of abend 3303.

Attention: When a new version of a database is created, before application programs update the
new version of the database, confirm that the prior versions of the database can still be accessed.

Database versioning supports only certain changes to a database definition. If unsupported
changes are made to a database, application programs will not be able to access the prior versions
of the database. Only the current version of the database is accessible.

For most database types, the unsupported changes are not detected until an application program
that uses a prior version of the database is scheduled. However, if the HALDB alter function is used
to apply the structural changes to a HALDB database, IMS detects unsupported database changes
during alter processing.

If a new version of a database contains unsupported changes, either all application programs need
to be updated to use the database structure of the new version or the database definition needs to
be changed to remove the unsupported structure change.

Batch application programs and database versioning

You can enable database versioning for offline DL/I batch application programs that run in DLIBATCH or
DBBBATCH regions by specifying DBVERSION=Y in a DFSDFxxx member in the IMS.PROCLIB data set.

The DLIBATCH or DBBBATCH application programs reference the DFSDFxxx member by specifying the
DFSDF=xxx parameter in the EXEC statement of their JCL. For example:

//STEP1 EXEC PGM=DFSRRCOO,REGION=0M,
// PARM:(DLIIDFSDDLTOIPSBCJKO3IIOllIIIIIIBCHlIIYIYIIIIIIIIIIIIIIIIIIIII
// ,rr0. DFSDF=C35")

Important: DLIBATCH application programs use PSB and DBD libraries instead of an ACB library. When

using database versioning, DLIBATCH application programs must use the DBD library that contains the
DBD member that matches the current physical database structure.

© Copyright IBM Corp. 1974, 2020 237

Related concepts

Database versioning (Database Administration)

Related tasks

Altering the definition of an online HALDB database (Database Administration)

Related reference
INIT call (Application Programming APIs)
PSBGEN statement (System Utilities)

238 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_db_versioning.htm#ims_database_versioning
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.dag/ims_db_alter.htm#ims_dbalter
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_hinitcall.htm#ims_hinitcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sur/ims_psbgenpsbgenstmt.htm#ims_psbgenpsbgenstmt

Chapter 14. Establishing a DL/I interface from COBOL
or PL/I

To establish a DL/I interface from COBOL or PL/I, use either the CBLTDLI procedure or the PLITDLI
procedure.

CBLTDLI
The following control statements are necessary to establish a COBOL to DL/I interface. The block size of
the following members must be less than or equal to 3200.

LIBRARY SDFSRESL (CBLTDLI) DL/I LANGUAGE INTERFACE
LIBRARY SDFSRESL (DFHEIO1) HLPI LANGUAGE INTERFACE
LIBRARY SDFSRESL (DFHEI1) HLPI LANGUAGE INTERFACE

PLITDLI
The following control statements are necessary to establish a PL/I to DL/I interface. The blocksize of the
following members must be less than or equal to 3200.

LIBRARY SDFSRESL (PLITDLI) DL/I LANGUAGE INTERFACE
LIBRARY SDFSRESL (DFHEIO1) HLPI LANGUAGE INTERFACE
LIBRARY SDFSRESL (DFHEI1) HLPT LANGUAGE INTERFACE
ENTRY PLICALLA

PLITDLI is valid when using the PL/I Optimizing Compiler.

© Copyright IBM Corp. 1974, 2020 239

240 IMS: Application Programming

Chapter 15. Current position in the database after
each call

Positioning means that DL/I tracks your place in the database after each call that you issue. By tracking
your position in the database, DL/I enables you to process the database sequentially.

Current position after successful calls

Position is important when you process the database sequentially by issuing GN, GNP, GHN, and GHNP
calls.

Current position is where IMS starts its search for the segments that you specify in the calls.

This section explains current position for successful calls. Current position is also affected by an
unsuccessful retrieval or ISRT call.

Before you issue the first call to the database, the current position is the place immediately before the
first root segment occurrence in the database. This means that if you issue an unqualified GN call, IMS
retrieves the first root segment occurrence. It is the next segment occurrence in the hierarchy that is
defined by the DB PCB that you referenced.

Certain calls cancel your position in the database. You can reestablish this position with the GU call.
Because the CHKP and SYNC (commit point) calls cancel position, follow either of these calls with a GU
call. The ROLS and ROLB calls also cancel your position in the database.

When you issue a GU call, your current position in the database does not affect the way that you code

the GU call or the SSA you use. If you issue the same GU call at different points during program execution
(when you have different positions established), you will receive the same results each time you issue the
call. If you have coded the call correctly, IMS returns the segment occurrence you requested regardless of
whether the segment is before or after the current position.

Exception: If a GU call does not have SSAs for each level in the call, it is possible for IMS to return a
different segment at different points in your program. This is based on the position at each level.

For example, suppose you issue the following call against the data structure shown in the following figure.

GU Abbbbbbb (AKEYbbbbbA1)
Bbbbbbbb (BKEYbbbb=bB11)
Dbbbbbbb (DKEYbbbbbD111)

The structure in the figure contains six segment types: A, B, C, D, E, and F. Figure 49 on page 242 shows
one database record, the root of which is Al.

© Copyright IBM Corp. 1974, 2020 241

AKEY = Al
BKEY = B13
BKEY =B12
B E
BKEY = B11 EKEY = E11
CKEY = C112
Cc D B
CKEY =C111 DKEY = D111 FKEY = F111

Figure 49. Current position hierarchy

When you issue this call, IMS returns the D segment with the key D111, regardless of where your position
is when you issue the call. If this is the first call your program issues (and if this is the first database
record in the database), current position before you issue the call is immediately before the first segment
occurrence in the database—just before the A segment with the key of Al. Even if current position is past
segment D111 when you issue the call (for example, just before segment F111), IMS still returns the
segment D111 to your program. This is also true if the current position is in a different database record.

When you issue GN and GNP calls, current position in the database affects the way that you code the call
and the SSA. That is because when IMS searches for a segment described in a GN or GNP call, it starts
the search from current position and can only search forward in the database. IMS cannot look behind
that segment occurrence to satisfy a GN or GNP. These calls can only move forward in the database when
trying to satisfy your call, unless you use the F command code, the use of which is described in the topic
"F Command Code" in IMS Version 15 Application Programming APIs.

If you issue a GN call for a segment occurrence that you have already passed, IMS starts searching at the
current position and stops searching when it reaches the end of the database (resulting in a GB status
code), or when it determines from your SSA that it cannot find the segment you have requested (GE status
code).

Current position affects ISRT calls when you do not supply qualified SSAs for the parents of the segment
occurrence that you are inserting. If you supply only the unqualified SSA for the segment occurrence, you
must be sure that your position in the database is where you want the segment occurrence to be inserted.

Related concepts

A command code (Application Programming APIs)

G command code (Application Programming APIs)

“Current position after unsuccessful calls” on page 246

IMS establishes another kind of position when you issue retrieval and ISRT calls. This is position on
one segment occurrence at each hierarchic level in the path to the segment that you are retrieving or
inserting. Not every DL/I call that your program issues will be completely successful. When a call is
unsuccessful, you should understand how to determine your position in the database after that call.

242 IMS: Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_acmdcode.htm#ims_acmdcode
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_gcmdcode.htm#ims_gcmdcode

Position after retrieval calls

After you issue any kind of successful retrieval call, position immediately follows the segment occurrence
you just retrieved or the lowest segment occurrence in the path if you retrieved several segment
occurrences using the D command code. When you use the D command code in a retrieval call, a
successful call is one that IMS completely satisfies.

For example, if you issue the following call against the database shown in the previous figure, IMS returns
the C segment occurrence with the key of C111. Current position is immediately after C111. If you then
issue an unqualified GN call, IMS returns the C112 segment to your program.

GU Abbbbbbb (AKEYbbbbEQA1)
Bbbbbbbb (BKEYbbbbEQB11)
Cbbbbbbb (CKEYbbbbEQC111)

Your current position is the same after retrieving segment C111, whether you retrieve it with GU, GN, GNP,
or any of the Get Hold calls.

If you retrieve several segment occurrences by issuing a Get call with the D command code, current
position is immediately after the lowest segment occurrence that you retrieved. If you issue the GU call
as shown in the example above, but include the D command code in the SSA for segments A and B, the
current position is still immediately after segment C111. C111 is the last segment that IMS retrieves for
this call. With the D command code, the call looks like this:

GU Abbbbbbb (AKEYbbbbEQA1)
Bbbbbbbb (BKEYbbbbEQB11)
Cbbbbbbb*D (CKEYbbbbEQC111)

You do not need the D command code on the SSA for the C segment because IMS always returns to your
I/0 area the segment occurrence that is described in the last SSA.

Position after DLET

After a successful DLET call, position immediately follows the segment occurrence you deleted. This is
true when you delete a segment occurrence with or without dependents.

For example, if you issue the call shown in the following code example to delete segment C111, current
position is immediately after segment C111. Then, if you issue an unqualified GN call, IMS returns
segment C112.

GHU Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb (BKEYbbbb=bB11)
Cbbbbbbb (CKEYbbbb=bC111)

DLET

The following figure shows what the hierarchy looks like after this call. The successful DLET call has
deleted segment C111.

Chapter 15. Current position in the database after each call 243

AKEY = A1
BKEY =B13
BKEY = B12

B E

BKEY = B11 EKEY = E11
1 |

C D F

CKEY =C112 DKEY = D111 FKEY = F111

Figure 50. Hierarchy after deleting a segment

When you issue a successful DLET call for a segment occurrence that has dependents, IMS deletes

the dependents, and the segment occurrence. Current position still immediately follows the segment
occurrence you deleted. An unqualified GN call returns the segment occurrence that followed the segment
you deleted.

For example, if you delete segment B11 in the hierarchy shown in the previous figure, IMS deletes its
dependent segments, C112 and D111, as well. Current position immediately follows segment B11, just
before segment B12. If you then issue an unqualified GN call, IMS returns segment B12. The following
figure shows what the hierarchy looks like after you issued this call.

A
AKEY = A1
BKEY =B13
B E
BKEY =B12 EKEY = E11

F

FKEY = F111

Figure 51. Hierarchy after deleting a segment and dependents

244 IMS: Application Programming

Because IMS deletes the segment's dependents, you can think of current position immediately following
the last (lowest, right-most) dependent. In the example in the first figure, this immediately follows
segment D111. But if you then issue an unqualified GN call, IMS still returns segment B12. You can think
of position in either place—the results are the same either way. An exception to this can occur fora DLET
that follows a GU path call, which returned a GE status code.

Related concepts

“Current position after unsuccessful calls” on page 246

IMS establishes another kind of position when you issue retrieval and ISRT calls. This is position on
one segment occurrence at each hierarchic level in the path to the segment that you are retrieving or
inserting. Not every DL/I call that your program issues will be completely successful. When a call is
unsuccessful, you should understand how to determine your position in the database after that call.

Position after REPL

A successful REPL call does not change your position in the database. Current position is just where it was
before you issued the REPL call.

It immediately follows the lowest segment that is retrieved by the Get Hold call that you issued before the
REPL call.

For example, if you retrieve segment B13 in the previous figure using a GHU instead of a GU call, change
the segment in the I/O area, and then issue a REPL call, current position immediately follows segment
B13.

Position after ISRT

After you add a new segment occurrence to the database, current position immediately follows the new
segment occurrence.

For example, in the following figure, if you issue the following call to add segment C113 to the database,
current position immediately follows segment C113. An unqualified call would retrieve segment D111.

ISRT Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb (BKEYbbbb=bB11)
Cbbbbbbb

If you are inserting a segment that has a unique key, IMS places the new segment in key sequence. If
you are inserting a segment that has either a non-unique key or no key at all, IMS places the segment
according to the rules parameter of the SEGM statement of the DBD for the database. the topic "ISRT
Call" in IMS Version 15 Application Programming APIs explains these rules.

If you insert several segment occurrences using the D command code, current position immediately
follows the lowest segment occurrence that is inserted.

For example, suppose you insert a new segment B (this would be B14), and a new C segment occurrence
(C141), which is a dependent of B14. The following figure shows what the hierarchy looks like after these
segment occurrences are inserted. The call to do this looks like this:

ISRT Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb

*D
Cbbbbbbbb

You do not need the D command code in the SSA for the C segment. On ISRT calls, you must include the
D command code in the SSA for the only first segment you are inserting. After you issue this call, position
immediately follows the C segment occurrence with the key of C141. Then, if you issue an unqualified GN
call, IMS returns segment E11.

If your program receives an II status code as a result of an ISRT call (which means that the segment you
tried to insert already exists in the database), current position is just before the duplicate of the segment
that you tried to insert.

Chapter 15. Current position in the database after each call 245

AKEY = Al
BKEY =B14
BKEY =B13
BKEY =B12

B E

BKEY = B11 EKEY = E11
CKEY =C112

C D c F

CKEY = C111 DKEY = D111 CKEY = G141 FKEY = F111

Figure 52. Hierarchy after adding new segments and dependents

Current position after unsuccessful calls

IMS establishes another kind of position when you issue retrieval and ISRT calls. This is position on
one segment occurrence at each hierarchic level in the path to the segment that you are retrieving or
inserting. Not every DL/I call that your program issues will be completely successful. When a call is
unsuccessful, you should understand how to determine your position in the database after that call.

You need to know how IMS establishes this position to understand the U and V command codes described
in the topic "General Command Codes for DL/I Calls" in IMS Version 15 Application Programming APIs.
Also, you need to understand where your position in the database is when IMS returns a not-found status
code to a retrieval or ISRT call.

Position after an unsuccessful DLET or REPL call

DLET and REPL calls do not affect current position. Your position in the database is the same as it
was before you issued the call. However, an unsuccessful Get call or ISRT call does affect your current
position.

To understand where your position is in the database when IMS cannot find the segment you have
requested, you need to understand how DL/I determines that it cannot find your segment.

In addition to establishing current position after the lowest segment that is retrieved or inserted, IMS
maintains a second type of position on one segment occurrence at each hierarchic level in the path to the
segment you are retrieving or inserting.

For example, in the following figure, if you had just successfully issued the GU call with the SSA shown
below, IMS has a position established at each hierarchic level.

GU Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb (BKEYbbbbbbB11)
Cbbbbbbb (CKEYbbbb=bC111)

Now DL/I has three positions, one on each hierarchic level in the call:

« One on the A segment with the key A1

246 IMS: Application Programming

- One on the B segment with the key B11
« One on the C segment with the key C111

A
AKEY = A1
BKEY = B13
BKEY =B12
B E
BKEY = B11 EKEY = E11
CKEY = C112
C D F
CKEY = C111 DKEY = D111 FKEY = F111

Figure 53. DL/I positions

When IMS searches for a segment occurrence, it accepts the first segment occurrence it encounters that
satisfies the call. As it does so, IMS stores the key of that segment occurrence in the key feedback area.

Position after an unsuccessful retrieval or ISRT call

Current position after a retrieval or ISRT call that receives a GE status code depends on how far IMS

got in trying to satisfy the SSA in the call. When IMS processes an ISRT call, it checks for each of the
parents of the segment occurrence you are inserting. An ISRT call is similar to a retrieval call, because
IMS processes the call level by level, trying to find segment occurrences to satisfy each level of the call.
When IMS returns a GE status code on a retrieval call, it means that IMS was unable to find a segment
occurrence to satisfy one of the levels in the call. When IMS returns a GE status code on an ISRT call, it
means that IMS was unable to find one of the parents of the segment occurrence you are inserting. These
are called not-found calls.

When IMS processes retrieval and ISRT calls, it tries to satisfy your call until it determines that it cannot.

When IMS first tries to find a segment matching the description you have given in the SSA and none exists
under the first parent, IMS tries to search for your segment under another parent. How you code the SSA

in the call determines whether IMS can move forward and try again under another parent.

For example, suppose you issue the following GN call to retrieve the C segment with the key of C113 in the
hierarchy shown in the previous figure.

Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb (BKEYbbbb=bB11)
Cbbbbbbb (CKEYbbbb=bC113)

When IMS processes this call, it searches for a C segment with the key equal to C113. IMS can only look
at C segments whose parents meet the qualifications for the A and B segments. The B segment that is
part of the path must have a key equal to B11, and the A segment that is part of the path must have a key
equal to Al. IMS then looks at the first C segment. Its key is C111. The next C segment has a key of C112.

Chapter 15. Current position in the database after each call 247

IMS looks for a third C segment occurrence under the B11 segment occurrence. No more C segment
occurrences exist under B11.

Because you have specified in the SSA that the A and B segment occurrences in C's path must be equal
to certain values, IMS cannot look for a C segment occurrence with a key of C113 under any other A or B
segment occurrence. No more C segment occurrences exist under the parent B11; the parent of C must
be B11, and the parent of B11 must be Al. IMS determines that the segment you have specified does not
exist and returns a not-found (GE) status code.

When you receive the GE status code on this call, you can determine where your position is from the key
feedback area, which reflects the positions that IMS has at the levels it was able to satisfy, in this case, A1
and B11.

After this call, current position immediately follows the last segment occurrence that IMS examined in
trying to satisfy your call, in this case, C112. Then, if you issue an unqualified GN call, IMS returns D111.

The current position after this call is different if A and B have non-unique keys. Suppose A's key is unique
and B's is non-unique. After IMS searches for a C113 segment under B11 and is unable to find one, IMS
moves forward from B11 to look for another B segment with a key of B11. When IMS does not find one,
DL/I returns a GE status code. Current position is further in the database than it was when both keys were
unique. Current position immediately follows segment B11. An unqualified GN call would return B12.

If B is an unkeyed segment, there can be no position at B level. Position is set after the highest segment
matching SSA qualification, in this case, Al.

If A and B both have non-unique keys, current position after the previous call immediately follows
segment Al. Assuming no more segment Als exist, an unqualified GN call would return segment A2. If
other Als exist, IMS tries to find a segment C113 under the other Als.

But suppose you issue the same call with a greater-than-or-equal-to relational operator in the SSA for
segment B:

GU Abbbbbbb (AKEYbbbb=>bA1)
Bbbbbbbb (BKEYbbbb=>B11)
Cbbbbbbb (CKEYbbbb=>bC113)

IMS establishes position on segment A1 and segment B11. Because Al and B11 satisfy the first two

SSAs in the call, IMS stores their keys in the key feedback area. IMS searches for a segment C113 under
segment B11. None is found. But this time, IMS can continue searching, because the key of the B parent
can be greater than or equal to B11. The next segment is B12. Because B12 satisfies the qualification for
segment B, IMS places B12's key in the key feedback area. IMS then looks for a C113 under B12 and does
not find one. The same thing happens for B13: IMS places the key of B13 in the key feedback area and
looks fora C113 under B13.

When IMS finds no more B segments under A1, it again tries to move forward to look for B and C
segments that satisfy the call under another A parent. But this time it cannot; the SSA for the A segment
specifies that the A segment must be equal to Al. (If the keys were non-unique, IMS could look for
another Al segment.) IMS then knows that it cannot find a C113 under the parents you have specified
and returns a GE status code to your program.

In this example, you have not limited the search for segment C113 to only one B segment, because you
have used the greater-than-or-equal-to operator. The position is further than you might have expected,
but you can tell what the position is from the key feedback area. The last key in the key feedback area is
the key of segment B13. The current position of IMS immediately follows segment B13. If you then issue
an unqualified GN call, IMS returns segment E11.

Each of the B segments that IMS examines for this call satisfies the SSA for the B segment, so IMS places
the key of each in the key feedback area. But if one or more of the segments IMS examines does not
satisfy the call, IMS does not place the key of that segment in the key feedback area. This means that

the position in the database might be further than the position reflected by the key feedback area. For
example, suppose you issue the same call, but you qualify segment B on a data field in addition to the key
field. To do this, you use multiple qualification statements for segment B.

248 IMS: Application Programming

Assume the data field you are qualifying the call on is called BDATA. Assume the value you want is 14, but
that only one of the segments, B11, contains a value in BDATA of 14:

GN Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb (BKEYbbbb>=B11xBDATAbbb=b14)
Cbbbbbbb (CKEYbbbb=bC113)

After you issue this call, the key feedback area contains the key for segment B11. If you continue issuing
this call until you receive a GE status code, the current position immediately follows segment B13, but the
key feedback area still contains only the key for segment B11. Of the B segments IMS examines, only one
of them (B11) satisfies the SSA in the call.

When you use a greater-than or greater-than-or-equal-to relational operator, you do not limit the search.
If you get a GE status code on this kind of call, and if one or more of the segments IMS examines does
not satisfy an SSA, the position in the database may be further than the position reflected in the key
feedback area. If, when you issue the next GN or GNP call, you want IMS to start searching from the
position reflected in the key feedback area instead of from its real position, you can either:

« Issue a fully qualified GU call to reestablish position to where you want it.

« Issue a GN or GNP call with the U command code. Including a U command code on an SSA tells IMS
to use the first position it established at that level as qualification for the call. This is like supplying an
equal-to relational operator for the segment occurrence that IMS has positioned on at that level.

For example, suppose that you first issue the GU call with the greater-than-or-equal-to relational operator
in the SSA for segment B, and then you issue this GN call:

GN Abbbbbbb*U
Bbbbbbbb*U
Cbbbbbbbb

The U command code tells IMS to use segment Al as the A parent, and segment B11 as the B parent. IMS
returns segment C111. But if you issue the same call without the U command code, IMS starts searching
from segment B13 and moves forward to the next database record until it encounters a B segment. IMS
returns the first B segment it encounters.

Related concepts

“Position after DLET” on page 243

After a successful DLET call, position immediately follows the segment occurrence you deleted. This is
true when you delete a segment occurrence with or without dependents.

Multiple processing

The order in which an application program accesses segments in a hierarchy depends on the purpose of
the application program. Some programs access segments directly, others sequentially. Some application
programs require that the program process segments in different hierarchic paths, or in different
database records, in parallel.

If your program must process segments from different hierarchic paths or from different database
records in parallel, using multiple positioning or multiple PCBs can simplify the program's processing.
For example:

« Suppose your program must retrieve segments from different hierarchic paths alternately: for
example, in the following figure, it might retrieve B11, then C11, then B12, then C12, and so on. If
your program uses multiple positioning, IMS maintains positions in both hierarchic paths. Then the
program is not required to issue GU calls to reset position each time it needs to retrieve a segment from
a different path.

« Suppose your program must retrieve segments from different database records alternately: for
example, it might retrieve a B segment under A1, and then a B segment under another A root segment.
If your program uses multiple PCBs, IMS maintains positions in both database records. Then the
program does not have to issue GU calls to reset position each time it needs to access a different
database record.

Chapter 15. Current position in the database after each call 249

Al

B13
B12 ci2

B11 C11

Figure 54. Multiple processing

Multiple positioning

When you define the PSB for your application program, you have a choice about the kind of positioning
you want to use: single or multiple. All of the examples used so far, and the explanations about current
position, have used single positioning.

Specify the kind of position you want to use for each PCB on the PCB statement when you define the PSB.
The POS operand for a DEDB is disregarded. DEDBs support multiple positioning only.

Single positioning
IMS maintains position in one hierarchic path for the hierarchy that is defined by that PCB. When you
retrieve a segment, IMS clears position for all dependents and all segments on the same level.

Multiple positioning
IMS maintains position in each hierarchic path in the database record that is being accessed. When
you retrieve a segment, IMS clears position for all dependents but keeps position for segments at the
same level. You can process different segment types under the same parent in parallel.

For example, suppose you issue these two calls using the hierarchy shown in the following figure:

GU Abbbbbbb (AKEYbbbb=bA1)
Bbbbbbbb (BKEYYbbbb=bB11)
Cbbbbbbb (CKEYYbbbb=bC111)

GN Ebbbbbbb (EKEYYbbbb=bE11)

250 IMS: Application Programming

AKEY = Al
BKEY = B13
BKEY =B12
B E
BKEY = B11 EKEY = E11
CKEY = C112
Cc D B
CKEY =C111 DKEY = D111 FKEY = F111

Figure 55. Multiple positioning hierarchy

After issuing the first call with single positioning, IMS has three positions established: one on A1, one on
B11, and one on C111. After issuing the second call, the positions on B11 and C111 are canceled. Then
IMS establishes positions on A1 and E11.

After issuing the first call with single and multiple positioning, IMS has three positions established: one
on Al, one on B11, and one on C111. However, after issuing the second call, single positioning cancels
positions on B11 and C111 while multiple positioning retains positions on B11 and C111. IMS then
establishes positions on segments Al and E11 for both single and multiple positioning.

After issuing the first call with multiple positioning, IMS has three positions established (just as with
single positioning): one on A1, one on B11, and one on C111. But after issuing the second call, the
positions on B11 and C111 are retained. In addition to these positions, IMS establishes position on
segments Al and E11.

A‘I Berrrrrrrsrrs s s s ey Y e r mry m Y AI
B13 c13 B23
B12 Ci2 B22
B11 o1 ‘ B21 c21
|
D112 E112
D111 Ei11 E121 D221 E221

Figure 56. Single and multiple positioning hierarchy

Chapter 15. Current position in the database after each call 251

The examples that follow compare the results of single and multiple positioning using the hierarchy in the
following figure.

Table 41. Results of single and multiple positioning with DL/I calls

Result of Single Result of Multiple

Sequence Positioning Positioning
Example 1
GU (where AKEY equals A1) Al Al
GNP B B11 B11
GNP C C11 C11
GNP B Not found B12
GNP C C12 C12
GNP B Not found B13
GNP C C13 C13
GNP B Not found Not found
GNP C Not found Not found
Example 2
GU A (where AKEY equals A1) Al Al
GNB B11 B11
GNC C11 C11
GNB B21 B12
GNC Cc21 C12
Example 3
GU A (where AKEY equals A1) Al Al
GNC C11 C11
GNB B21 B11
GNB B22 B12
GNC Cc21 C12
Example 4
GU A (where AKEY equals A1) Al Al
GNB B11 B11
GNC C11 C11
GND D111 D111
GNE E111 E111
GNB B21 B12
GND D221 D112
GNC C under next A C12
GNE E under next A E121

252 IMS: Application Programming

Multiple positioning is useful when you want to examine or compare segments in two hierarchic paths. It
lets you process different segment types under the same parent in parallel. Without multiple positioning,
you would have to issue GU calls to reestablish position in each path.

Advantages of using multiple positioning

The advantages of using multiple positioning include the following:

« You might be able to design your program with greater data independence than you would using single
positioning. You can write application programs that use GN and GNP calls, and GU and ISRT calls with
missing levels in their SSAs, independent of the relative order of the segment types being processed.
If you improve your program's performance by changing the relative order of segment types and all of
the application programs that access those segment types use multiple positioning, you could make
the change without affecting existing application programs. To do this without multiple positioning, the
program would have to use GN and GNP calls, and GU and ISRT calls with incompletely specified SSAs.

= Your program can process dependent segment types in parallel (it can switch back and forth between
hierarchic paths without reissuing GU calls to reset position) more efficiently than is possible with single
positioning. You indicate to IMS the hierarchic path that contains the segments you want in your SSAs in
the call. IMS uses the position established in that hierarchic path to satisfy your call. The control blocks
that IMS builds for each kind of positioning are the same. Multiple positioning does not require more
storage, nor does it have a big impact on performance.

Remember: Multiple positioning might use more processor time than single positioning, and that multiple
positioning cannot be used with HSAM databases.

How multiple positioning affects your program

Multiple positioning affects the order and structure of your DL/I calls.
GU and ISRT

The only time multiple positioning affects GU and ISRT calls is when you issue these calls with missing
SSAs in the hierarchic path. When you issue a GU or ISRT call that does not contain an SSA for each level
in the hierarchic path, IMS builds the SSA for the missing levels according to the current position:

« If IMS has a position established at the missing level, the qualification IMS uses is derived from that
position, as reflected in the DB PCB.

« If no position is established at the missing level, IMS assumes a segment type for that level.

 If IMS moves forward from a position that is established at a higher level, it assumes a segment type for
that level.

Because IMS builds the missing qualification based on current position, multiple positioning makes it
possible for IMS to complete the qualification independent of current positions that are established for
other segment types under the same parent occurrence.

DLET and REPL with multiple positioning

Multiple positioning does not affect DLET or REPL calls; it only affects the Get Hold calls that precede
them.

Qualified GN and GNP calls

When your program issues a GN or GNP call, IMS tries to satisfy the call by moving forward from current
position. When you use multiple positioning, more than one current position exist: IMS maintains a
position at each level in all hierarchic paths, instead of at each level in one hierarchic path. To satisfy GN
and GNP calls with multiple positioning, IMS moves forward from the current position in the path that is
referred to in the SSA.

Mixing qualified and unqualified GN and GNP calls

Chapter 15. Current position in the database after each call 253

Although multiple positioning is intended to be used with qualified calls for parallel processing and
data independence, you may occasionally want to use unqualified calls with multiple positioning. For

example, you may want to sequentially retrieve all of the segment occurrences in a hierarchy, regardless
of segment type.

Tip: Limit unqualified calls to GNP calls in order to avoid inconsistent results. Mixing qualified and

unqualified SSAs may be valid for parallel processing, but doing so might also decrease the program's
data independence.

The following rules apply to mixing qualified and unqualified GN and GNP calls:

1. When you issue an unqualified GN or GNP, IMS uses the position that is established by the preceding
call to satisfy the GN or GNP call. For example:

Your program issues these calls: DL/I returns these segments:
GU A (where AKEY = Al) Al

GNB B11

GNE E11

GN F111

When your program issues the unqualified GN call, IMS uses the position that is established by the last
call, the call for the E segment, to satisfy the unqualified call.

2. After you successfully retrieve a segment with an unqualified GN or GNP, IMS establishes position in
only one hierarchic path: the path containing the segment just retrieved. IMS cancels positions in other
hierarchic paths. IMS establishes current position on the segment that is retrieved and sets parentage
on the parent of the segment that is retrieved. If you issue a qualified call for a segment in a different
hierarchic path after issuing an unqualified call, the results are unpredictable. For example:

Your program issues these calls: DL/I returns these segments:
GU A (where AKEY = Al) Al

GNB B11

GNE E11

GN F111

GN B

unpredictable

When you issue the unqualified GN call, IMS no longer maintains a position in the other hierarchic path,
so the results of the GN call for the B segment are unpredictable.

3. If you issue an unqualified GN or GNP call and IMS has a position established on a segment that the
unqualified call might encounter, the results of the call are unpredictable. Also, when you issue an

unqualified call and you have established position on the segment that the call "should" retrieve, the
results are unpredictable.

For example:

Your program issues these calls: DL/I returns these segments:
GU A (where AKEY = A1) Al

GNE E11

GND D111

GN B B12

GNB B13

254 IMS: Application Programming

Your program issues these calls: DL/I returns these segments:

GN E11 (The only position IMS has is the one
established by the GN call.)

In this example, IMS has a position established on E11. An unqualified GN call moves forward from the
position that is established by the previous call. Multiple positions are lost; the only position IMS has is
the position that is established by the GN call.

To summarize these rules:

1. To satisfy an unqualified GN or GNP call, IMS uses the position established in the last call for that PCB.

2. If an unqualified GN or GNP call is successful, IMS cancels positions in all other hierarchic paths.
Position is maintained only within the path of the segment retrieved.

Resetting position with multiple positioning

To reset position, your program issues a GU call for a root segment. If you want to reset position in the
database record you are currently processing, you can issue a GU call for that root segment, but the GU
call cannot be a path call.

Example: Suppose you have positions established on segments B11 and E11. Your program can issue
one of the calls below to reset position on the next database record.

Issuing this call causes IMS to cancel all positions in database record Al:

GU AbbbbbbbAKEYbbbb=bA2)

Or, if you wanted to continue processing segments in record A1, you issue this call to cancel all positions
in record Al:

GU AbbbbbbbAKEYbbbb=bA1)

Issuing this call as a path call does not cancel position.

Multiple DB PCBs

When a program has multiple PCBs, it usually means that you are defining views of several databases,
but this also can mean that you need several positions in one database record. Defining multiple PCBs for
the same hierarchic view of a database is another way to maintain more than one position in a database
record.

Using multiple PCBs also extends what multiple positioning does, because with multiple PCBs you can
maintain positions in two or more database records and within two or more hierarchic paths in the same
record.

For example, suppose you were processing the database record for Patient A. Then you wanted to look at
the record for Patient B and also be able to come back to your position for Patient A. If your program uses
multiple PCBs for the medical hierarchy, you issue the first call for Patient A using PCB1 and then issue
the next call, for Patient B, using PCB2. To return to Patient A's record, you issue the next call using PCB1,
and you are back where you left off in that database record.

Using multiple PCBs can decrease the number of Get calls required to maintain position and can
sometimes improve performance. Multiple PCBs are particularly useful when you want to compare
information from segments in two or more database records. However, the internal control block
requirements increase with each PCB that you define.

You can use the AIBTDLI interface with multiple PCBs by assigning different PCBNAMEs to the PCBs
during PSB generation. Just as multiple PCBs must have different addresses in the PSB PCBLIST, multiple
PCBs must have different PCBNAMEs when using the AIBTDLI interface. For example, if your application
program issues DL/I calls against two different PCBs in a list that identifies the same database, you

Chapter 15. Current position in the database after each call 255

achieve the same effect with the AIBTDLI interface by using different PCBNAMEs on the two PCBs at PSB
generation time.

256 IMS: Application Programming

Chapter 16. Using IMS application program sync
points

IMS application programs can (and should) take checkpoints. These checkpoints and system sync points
can affect IMS operations.

Commit process

During the synchronization point (sync point) processing for an application, IMS creates a log record to
establish commitment of database changes and availability of output messages. The commit process
is not complete until IMS physically writes this log record to the OLDS because an incomplete set of
database change and message records exist on the log for system restart.

The commit processes work differently for full-function and Fast Path applications. For full-function, IMS
makes database changes in the buffer pool at the time of a DL/I call, and can write the changes to disk
before the commit point. If you restart the system, IMS backs out these uncommitted changes by using
the log. IMS stores inserted message segments in the message queue and must similarly discard them.

For Fast Path, IMS keeps all changes in memory until it physically logs the commit record. Only then does
IMS write database changes to DASD and send output messages. Because no changes appear on external
storage (except for the log) until the commit record is written, IMS does not perform backout processing
for the database. IMS discards the updates in memory. With Fast Path, system restart ensures that IMS
writes committed updates to DASD and sends output messages.

Relationship between checkpoints and sync points

IMS tracks all checkpoints and sync points. IMS usually uses a sync point during recovery, but returns to
the checkpoint in the following situations: In the following figure, for example, if a system-wide failure
occurs in the DB/DC environment just after the MTO takes a system checkpoint but just before program B
commits (assuming that program A has not made any updates since its last commit), IMS must return to
the system checkpoint before Beta started.

« For a full recovery in the DB/DC environment, IMS returns to the earliest of either the checkpoint before
the current checkpoint or the checkpoint before the first uncommitted application program update.

« For a full recovery in the DBCTL environment, IMS always returns to the checkpoint before the first
uncommitted application program update.

- For a full recovery in the DCCTL environment, IMS always returns to the checkpoint before the latest
system checkpoint.

« Inthe DB/DC or DCCTL environments, if a BUILDQ is requested on the restart, IMS returns to the last
SNAPQ or DUMPQ checkpoint. IMS returns to this checkpoint even if it is older than the checkpoint
normally needed for the restart.

© Copyright IBM Corp. 1974, 2020 257

Tirne

L 4

MTO
IS IME system raquasts
starts checkpoints chackpoint
Program Program Program
A bagins A commits A ands
Program
B begins
M3
L J L J L L L L 4 abends
| i I I I I Bl
| T T T T T Ll
Log g P P 5 P P 5

L Restart system from this checkpaoint
Figure 57. Independence of system checkpoints and application sync points

Synchronization point processing in CPI Communications-driven programs

For CPI Communications-driven programs running under Advanced Program-to-Program
Communications for IMS (APPC/IMS), the application programs control their own sync point processing.
An application program can issue certain CPI Resource Recovery calls: SRRCMIT calls to commit data and
SRRBACK calls to back out data. The protected resources managed by IMS (local) include:

- IMS TM message-queue messages
- IMS DB databases
« Db2 for z/OS databases

The highest level of synchronization supported for a conversation is SYNCPT, so CPI Communications-
driven applications can have protected conversations.

Sync point and resource manager

IMS can be either the sync point manager or the resource manager, depending on the setting of the sync
point level. For SYNCLVL=NONE or CONFIRM and AOS=B, S, or X, IMS is the sync point manager and the
resource manager, but for RRS=Y and SYNCLVL=SYNCPT, z/OS Resource Recovery Services (RRS) is the
sync point manager and IMS is the resource manager. For RRS=N, IMS is the sync point manager.

Two-phase commit in the synchronization process

Application programs in a DBCTL, DCCTL, DB/DC, APPC/IMS, or OTMA environment can be involved in a
two-phase commit process to record a sync point. At the completion of a two-phase commit, the resource
manager commits database and message changes.

The two phases are:

1. Phase 1, in which the sync-point coordinator directs sync point preparation and asks the connected
resource managers whether updates to connected databases can be committed.

The sync-point coordinator can be:
- An IMS DB/DC subsystem for its resource managers and attached databases.
« An IMS DCCTL subsystem for attached databases.

« A Coordinator Controller (CCTL) subsystem for units of work associated with the CCTL region. IMS DB
acts as a resource manager when connected to a CCTL and also when accessed by ODBA application
programs through the Open Database Access (ODBA) interface.

258 IMS: Application Programming

= z/0OS Resource Recovery Services (RRS) for its protected conversations with APPC/IMS applications
programs or OTMA clients. IMS acts as a resource manager when connected to RRS.

2. Phase 2, in which the sync-point coordinator directs commit or abort processing and states that the
resources must either be committed or aborted.

In the DBCTL environment, if an application program makes no update DL/I calls or makes only
inquiry-type DL/I calls, the CCTL requests a "forget" response to Phase 1 (if forget processing has
been enabled). This means that only a limited Phase 2 occurs for that application program because no
database resources have been altered. See IMS Version 15 Exit Routines for details on how to enable
forget processing.

The sync-point coordinator can request an abort without a Phase 1.

The following figure shows the two phases of the sync-point cycle for an IMS DBCTL environment and
describes the activities taking place.

Synec-point coordinator Resource manager
Sync-point coordinator
recaives sync-point
requast (MNote 1)
Bagins phase 1 - in=flight wnit
! recovary
prepara PREPARE raguast - &
FORGET (fCCTLIe Entersphaszal
syne-point coordinatar)
Writes fo a log
Ratains locks
¥
Sync-paint coordinalor Respanse to PREPARE
“'-'-'”195 toa log request (Nota 2) in-daubt wnit
T f res
Bagins phasa 2 * o Mectvary
COMMIT request
. 4
Enters phase 2
slulis Writes fo a log
* Aeleases lock
Respanse fo B DAZEE HICKE commit
COMMIT request
Syne-paint coordinator
writes o a log
* . 4
Notes:

1. If the resource manager indicates that it cannot commit the updates, the sync-point coordinator
should abort the unit of recovery, and the rest of this figure does not apply.

2. If the sync-point coordinator tells the resource manager to commit the updates, then it must commit.

Figure 58. Two-phase commit process

Chapter 16. Using IMS application program sync points 259

Unit of recovery

A unit of recovery (UOR) is the work done by a thread (connection between a resource-manager control
region and a sync-point coordinator) during a sync-point interval, that is between two sync points.

In-flight unit of recovery

The unit of recovery is said to be in-flight from its creation or its last sync point until the resource manager
logs the end of Phase 1. If a resource manager fails before or during Phase 1 and is subsequently
restarted, IMS aborts all database updates.

In-doubt unit of recovery for DBCTL connected to CCTL

From the time that the resource manager issues its response to the PREPARE request (the completion of
Phase 1), to the time it receives a COMMIT or ABORT request from the CCTL, units of recovery are said to
be in-doubt. When the resource manager is restarted after a failure, it tells the CCTL which in-doubt UORs
exist, if any. The CCTL then takes action to resolve these in-doubt UORs. This is called resolve in-doubt
processing, or resynchronization. If a CCTL cannot resolve all in-doubt UORs, you can use IMS or CCTL
commands to display the units of recovery and take appropriate actions for committing or aborting them.

Recovery tokens for DBCTL connected to CCTL

A recovery token is a 16-byte identifier for each unit of recovery. The resource manager validates the
recovery token to protect against duplication of units of recovery. In the DBCTL environment, you can
display the recovery token using the IMS /DISPLAY CCTL command. The recovery token is the primary
identifier used by DBRC, which performs unit-of-recovery management. DBRC keeps track of backouts
that are appropriate for the Batch Backout utility to perform.

Recoverable in-doubt structure

An IMS DBCTL subsystem builds a recoverable in-doubt structure (RIS) for each in-doubt UOR when any
of the following occurs:

« ACCTL fails
« ACCTL thread fails
- Aresource manager fails

The resource manager uses a recoverable in-doubt structure during reconnecting to the CCTL if in-doubt
UORs existed when either the CCTL or the resource manager failed. IMS logs all recoverable in-doubt
structures during system checkpoints.

A recoverable in-doubt structure contains the following information:

« The recovery token in a residual recovery element (RRE)
« Changed data records in an in-doubt extended error queue element (IEEQE)
« Anindication of data that is inaccessible because of unresolved in-doubt UORs

« Links to other recoverable in-doubt structures using extended error queue element (EEQE) queue
elements (EQELSs)

DBCTL single-phase commit

A CCTL communicating with just one resource manager (IMS DBCTL subsystem) can request a sync point
using just a single phase. If the CCTL communicates with more than one resource manager, it must use
the two-phase commit process.

When the CCTL decides to commit a UOR, it can request a single-phase sync point. Single-phase commit
can affect the recoverability of in-doubt data. A transaction is only in-doubt for the short time between
the sync-point request and DBCTL’'s commit. IMS can recover in-doubt data after a thread failure during
single-phase commit, but cannot recover in-doubt data after a subsystem failure.

260 IMS: Application Programming

Sync-point log records

During the two-phase commit process, IMS creates log records to establish the commitment of database
changes. All these log records can be used by the IMS Change Accumulation and recovery utilities.

All online log records involving the sync-point cycle contain a recovery token. This token ensures that IMS
can recover and restart each unit of recovery. The sequence of log records for a unit of recovery reveals
the sync-point cycle that it followed.

IMS logs the following records during the sync-point process:

Log record
Description
X'08'
Schedule record
X'07'
Unschedule (terminate) record
X'0A08'
CPI Communications-driven application program schedule record
X'0A07'
CPI Communications-driven application program unschedule (terminate) record
X'5945'
Fast Path 64-bit buffer usage
X'5937"
Fast Path start commit
X'5938'
Fast Path start abort
X'5610'
Start of Phase 1
X'5611"
End of Phase 1
X'3730'
Start of Phase 2 Commit
X'5612'
End of Phase 2 Commit
X'3801"
Start of abort
X'4Cco1'
End of abort
X'5607'
Start unit of recovery
X'5613'
Recoverable in-doubt structure created
X'5614'
Recoverable in-doubt structure deleted

Sync points with a data-propagation manager

When using a data-propagation manager (such as the IMS DataPropagator) to update Db2 for z/0OS
databases synchronously with IMS DL/I databases, the updates to the Db2 for z/OS databases are
committed (or aborted) at the same time as the IMS updates. This provides consistency between the
database management subsystems. IMS DB/DC, DCCTL, and DBCTL (BMP regions only) support the IMS
Data Capture exit routine.

Chapter 16. Using IMS application program sync points 261

Restriction: In an IMS DBCTL environment, the data-propagation manager is available only for BMP
regions.

For more information about the IMS DataPropagator, go to the following web URL: http://www.ibm.com/
software/data/db2imstools/imstools/imsdprop.html

262 IMS: Application Programming

Chapter 17. Recovering databases and maintaining
database integrity

You can issue checkpoints, restart programs, and maintain database integrity in your application
programs.

Java applications running in Java batch processing (JBP) regions can issue symbolic checkpoint and
restart calls by using the IMS Java dependent region resource adapter.

Related concepts

“Developing JBP applications with the IMS Java dependent region resource adapter” on page 683
JBP applications are similar to JMP applications, except that JBP applications do not receive input
messages from the IMS message queue. Unlike batch message processing (BMP) applications, JBP
applications must be non-message-driven applications.

Issuing checkpoints

Two kinds of checkpoint (CHKP) calls exist: the basic CHKP and the symbolic CHKP. All IMS programs and
CICS shared database programs can issue the basic CHKP call; only BMPs and batch programs can use
either call.

IMS Version 15 Application Programming APIs explains when and why you should issue checkpoints in
your program. Both checkpoint calls cause a loss of database position when the call is issued, so you
must reestablish position with a GU call or some other method. You cannot reestablish position in the
middle of non-unique keys or nonkeyed segments.

Restriction: You must not specify CHKPT=EQV on any DD statement to take an IMS checkpoint.

Some differences exist if you issue the same call sequence against a full-function database or a DEDB,
and an MSDB.

Depending on the database organization, a CHKP call can result in the database position for the PCB being
reset. When the CHKP call is issued, the locks held by the program are released. Therefore, if locks are
necessary for maintaining your database position, the position is reset by the CHKP call. Position is reset
in all cases except those in which the organization is either GSAM (locks are not used) or DEDB, and the
CHKP call is issued after a GC status code. For a DEDB, the position is maintained at the unit-of-work
boundary.

Issuing a CHKP resets the destination of the modifiable alternate PCB.

Related Reading: For more information on CHKP calls, see the topic "CHKP (Basic) Call" and the topic
"CHKP (Symbolic) Call" in IMS Version 15 Application Programming APIs .

Related concepts

“Commit-point processing in MSDBs and DEDBs” on page 302
Your existing application programs can use either the MSDB commit view or the default DEDB commit
view.

Restarting your program from the latest checkpoint

If you use basic checkpoints instead of symbolic checkpoints, provide the necessary code to restart the
program from the latest checkpoint if the program terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning information in a HDAM
or PHDAM database. With this method, your program writes a database record containing repositioning
information to the database each time a checkpoint is issued. Before your program terminates, it should
delete the database record.

© Copyright IBM Corp. 1974, 2020 263

For more information on the XRST call, see the topic "XRST Call" in IMS Version 15 Application
Programming APIs.

Maintaining database integrity (IMS batch, BMP, and IMS online
regions)

IMS uses these DL/I calls to back out database updates: ROLB, ROLL, ROLS, SETS, and SETU.

The ROLB and ROLS calls can back out the database updates or cancel the output messages that the
program has created since the program's most recent commit point. A ROLL call backs out the database
updates and cancels any non-express output messages the program has created since the last commit
point. It also deletes the current input message. SETS allows multiple intermediate backout points to be
noted during application program processing. SETU operates like SETS except that it is not rejected by
unsupported PCBs in the PSB. If your program issues a subsequent ROLS call specifying one of these
points, database updates and message activity performed since that point are backed out.

CICS online programs with DBCTL can use the ROLS and SETS or SETU DL/I calls to back out database
changes to a previous commit point or to an intermediate backout point.

Backing out to a prior commit point: ROLL, ROLB, and ROLS

When a program determines that some of its processing is invalid, some calls enable the program to
remove the effects of its incorrect processing. These are the Roll Back calls: ROLL, ROLS using a DB PCB
(or ROLS without an I/O area or token), and ROLB.

When you issue one of these calls, IMS:

« Backs out the database updates that the program has made since the program's most recent commit
point.

« Cancels the non-express output messages that the program has created since the program's most
recent commit point.

The main difference between these calls is that ROLB returns control to the application program after
backing out updates and canceling output messages, ROLS does not return control to the application
program, and ROLL terminates the program with an abend code of U0778. ROLB can return the first
message segment to the program since the most recent commit point, but ROLL and ROLS cannot.

The ROLL and ROLB calls, and the ROLS call without a specified token, are valid when the PSB contains
PCBs for GSAM data sets. However, segments inserted in the GSAM data sets since the last commit point
are not backed out by these calls. An extended checkpoint-restart can be used to reposition the GSAM
data sets when restarting.

You can use a ROLS call either to back out to the prior commit point or to back out to an intermediate
backout point that was established by a prior SETS call. This section refers only to the form of the ROLS
call that backs out to the prior commit point. For information about the other form of ROLS, see 'Backing
out to an intermediate backout point: SETS, SETU, and ROLS".

The table below summarizes the similarities and the differences between the ROLB, ROLL, and ROLS
calls.

Table 42. Comparison of ROLB, ROLL, and ROLS

Actions Taken: ROLB ROLL ROLS
Back out database updates since the last commit point. X X X
Cancel output messages created since the last commit point. x1 X1 x1
Delete from the queue the message in process. Previous messages (if X

any) processed since the last commit point are returned to the queue to
be reprocessed.

264 IMS: Application Programming

Table 42. Comparison of ROLB, ROLL, and ROLS (continued)
Actions Taken: ROLB ROLL ROLS

Return the first segment of the first input message issued since the most X2
recent commit point.

U3303 abnormal termination. Returns the processed input messages to X3
the message queue.

U0778 abnormal termination. No dump. X

No abend. Program continues processing. X

Notes:

1. ROLB, ROLL, or ROLS calls cancel output messages that are sent with an express PCB unless the
program issued a PURG. For example, if the program issues the call sequence that follows, MSG1
would be sent to its destination because PURG tells IMS that MSG1 is complete and the I/O area
now contains the first segment of the next message (which in this example is MSG2). MSG2, however,
would be canceled.

ISRT EXPRESS PCB, MSG1

PURG EXPRESS PCB, MSG2
ROLB I/0 PCB

Because IMS has the complete message (MSG1) and because an express PCB is being used, the
message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call parameters.
3. The transaction is suspended and requeued for subsequent processing.

ROLL call

A ROLL call backs out the database updates and cancels any non-express output messages the program
has created since the last commit point. It also deletes the current input message. Any other input
messages that were processed since the last commit point are returned to the queue to be reprocessed.
IMS then terminates the program with an abend code U0778. This type of abnormal termination
terminates the program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function, ROLL.

You can use the ROLL call in a batch program. If your system log is on DASD, and if dynamic backout has
been specified through the use of the BKO execution parameter, database changes made since the last
commit point will be backed out; otherwise they will not. One reason for issuing ROLL in a batch program
is for compatibility.

After backout is complete, the original transaction is discarded if it can be, and it is not re-executed.

IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying the TPI to notify remote transaction
programs. Issuing the APPC/MVS verb causes all active conversations (including any that are spawned by
the application program) to be DEALLOCATED TYP(ABEND_SVC).

ROLB call

The advantage of using a ROLB call is that IMS returns control to the program after executing a ROLB call,
so the program can continue processing. The parameters for the ROLB call are:

 The call function, ROLB
« The name of the I/O PCB or AIB
The total effect of the ROLB call depends on the type of IMS application program that issued it.

 For current IMS application programs:

Chapter 17. Recovering databases and maintaining database integrity 265

After IMS backout is complete, the original transaction is represented to the IMS application program.
Any resources that cannot be rolled back by IMS are ignored; for example, output that is sent to an
express alternate PCB and a PURG call that is issued before the ROLB call.

« For modified IMS application programs:

The same consideration for the current IMS application program applies. The application program must
notify any spawned conversations that a ROLB was issued.

« For CPI-C driven IMS application programs:

Only IMS resources are affected. All database changes are backed out. Any messages that are inserted
to non-express alternate PCBs are discarded. Also, any messages that are inserted to express PCBs that
have not had a PURG call are discarded. The application program must notify the originating remote
program and any spawned conversations that a ROLB call was issued.

MPPs and transaction-oriented BMPs

If the program supplies the address of an I/O area as one of the ROLB parameters, the ROLB call acts

as a message retrieval call and returns the first segment of the first input message issued since the most
recent commit point. This is true only if the program has issued a GU call to the message queue since the
last commit point; it if has not, it was not processing a message when it issued the ROLB call.

If the program issues GN call to the message queue after issuing a ROLB call, IMS returns the next
segment of the message that was being processed when the ROLB call was issued. If no more segments
exist for that message, IMS returns a QD status code.

If the program issues a GU call to the message queue after the ROLB call, IMS returns the first segment
of the next message to the application program. If no more messages exist on the message queue for the
program to process, IMS returns a QC status code.

If you include the I/0 area parameter, but you have not issued a successful GU call to the message queue
since the last commit point, IMS returns a QE status code to your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the same thing for you. If the
program has issued a successful GU call in the commit interval and then issues a GN call, IMS returns a
QD status code. If the program issues a GU call after the ROLB call, IMS returns the first segment of the
next message or a QC status code, if no more messages exist for the program.

If you have not issued a successful GU call since the last commit point, and you do not include an I/O area
parameter on the ROLB call, IMS backs out the database updates and cancels the output messages that
were created since the last commit point.

Batch programs

If your system log is on DASD, and if dynamic backout has been specified through the use of the BKO
execution parameter, you can use the ROLB call in a batch program. The ROLB call does not process
messages as it does for MPPs; it backs out the database updates made since the last commit point and
returns control to your program. You cannot specify the address of an I/O area as one of the parameters
on the call; if you do, an AD status code is returned to your program. You must, however, have an I/O
PCB for your program. Specify CMPAT=YES on the CMPAT keyword in the PSBGEN statement for your
program's PSB.

ROLS call

You can use the ROLS call in two ways to back out to the prior commit point and return the processed
input messages to IMS for later reprocessing:

« Have your program issue the ROLS call using the I/O PCB but without an I/O area or token in the call.
The parameters for this form of the ROLS call are:

The call function, ROLS

266 IMS: Application Programming

The name of the I/O PCB or AIB

« Have your program issue the ROLS call using a database PCB that has received one of the data-
unavailable status codes. This has the same result as if unavailable data were encountered and the INIT
call was not issued. A ROLS call must be the next call for that PCB. Intervening calls using other PCBs
are permitted.

On a ROLS call with a TOKEN, message queue repositioning can occur for all non-express messages,
including all messages processed by IMS. The processing uses APPC/MVS calls, and includes the initial
message segments. The original input transaction can be represented to the IMS application program.
Input and output positioning is determined by the SETS call. This positioning applies to current and
modified IMS application programs but does not apply to CPI-C driven IMS programs. The IMS application
program must notify all remote transaction programs of the ROLS.

On a ROLS call without a TOKEN, IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND), specifying

the TPI. Issuing this verb causes all conversations associated with the application program to be
DEALLOCATED TYPE(ABEND_SVC). If the original transaction is entered from an LU 6.2 device and IMS
receives the message from APPC/MVS, a discardable transaction is discarded rather than being placed on
the suspend queue like a non-discardable transaction.

The parameters for this form of the ROLS call are:

e The call function, ROLS
« The name of the DB PCB that received the BA or BB status code

In both of the these parameters, the ROLS call causes a U3303 abnormal termination and does not return
control to the application program. IMS keeps the input message for future processing.

Related concepts

Administering APPC/IMS and LU 6.2 devices (Communications and Connections)
Related reference

Program Specification Block (PSB) Generation utility (System Utilities)

ROLB call (Application Programming APIs)

Backing out to an intermediate backout point: SETS, SETU, and ROLS

You can use a ROLS call either to back out to an intermediate backout point that was established by a
prior SETS or SETU call, or to back out to the prior commit point.

The ROLS call that backs out to an intermediate point backs out only DL/I changes. This version of the
ROLS call does not affect CICS changes that use CICS file control or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing of the application
program and then backout database changes to any of these points. Up to nine intermediate backout
points can be set. The SETS call specifies a token for each point. IMS then associates this token with the
current processing point. A subsequent ROLS call using the same token backs out all database changes
and discards all non-express messages that were performed after the SETS call with the same token. The
following figure shows how the SETS and ROLS calls work together.

In addition, to assist the application program in managing other variables that it may want to reestablish
after a ROLS call, user data can be included in the I/O area of the SETS call. This data is then returned
when the ROLS call is issued with the same token.

Chapter 17. Recovering databases and maintaining database integrity 267

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_rolbcall.htm#ims_rolbcall

—1— Program starts

SETS Token=n

GHU
REPL
ISTR MSG1-Segment 1 to VO PCB

» SETS Token=8

Backs out EEEJT
program to ISAT MSG1-Segment 2 to 1/O PCB

SETS Token=B

ROLS Token=BE

Figure 59. SETS and ROLS calls working together

SETS and SETU calls

The SETS call sets up to nine intermediate backout points or cancels all existing backout points. With
the SETS call, you can back out pieces of work. If the necessary data to complete one piece of work is
unavailable, you can complete a different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB, and include an I/O area and a
token. The I/O area has the format LLZZuser-data, where LL is the length of the data in the I/O area
including the length of the LLZZ portion. The ZZ field must contain binary zeros. The data in the I/O area is
returned to the application program on the related ROLS call. If you do not want to save some of the data
that is to be returned on the ROLS call, set the LL that defines the length of the I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword, as it is for the other
languages. The content of the LL field for PLITDLI is consistent with the I/O area for other calls using the
LLZZ format. The content is the total length of the area, including the length of the 4-byte LL field, minus
2.

A 4-byte token associated with the current processing point is also required. This token can be a new
token for this program execution, or it can match a token that was issued by a preceding SETS call. If the
token is new, no preceding SETS calls are canceled. If the token matches the token of a preceding SETS
call, the current SETS call assumes that position. In this case, all SETS calls that were issued subsequent
to the SETS call with the matching token are canceled.

The parameters for this form of the SETS call are:

« The call function, SETS

« The name of the I/O PCB or AIB

« The name of the I/0 area containing the user data

« The name of an area containing the token

For the SETS call format, see the topic "SETS/SETU Call" in IMS Version 15 Application Programming APIs.

To cancel all previous backout points, the call is issued using the I/O PCB but does not include an I/0 area
or a token. When an I/O area is not included in the call, all intermediate backout points that were set by
prior SETS calls are canceled.

The parameters for this form of the SETS call are:

268 IMS: Application Programming

» The call function, SETS
« The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit-point processing causes all outstanding
SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the program accesses an attached
subsystem, a partial backout is not possible. In that case, the SETS call is rejected with an SC status code.
If the SETU call is used instead, it is not rejected because of unsupported PCBs, but will return an SC
status code as a warning that the PSB contains unsupported PCBs and that the function is not applicable
to these unsupported PCBs.

Related reading: For status codes that are returned after the SETS call and the explanations of those
status codes and the response required, see IMS Version 15 Application Programming APISs.

ROLS

The ROLS call backs out database changes to a processing point set by a previous SETS or SETU call, or to
the prior commit point. The ROLS call then returns the processed input messages to the message queue.

To back out database changes and message activity that have occurred since a prior SETS call, issue the
ROLS call using the I/O PCB, and specify an I/O area and token in the call. If the token does not match a
token that was set by a preceding SETS call, an error status is returned. If the token matches the token
of a preceding SETS call, the database updates made since this corresponding SETS call are backed out,
and all non-express messages that were inserted since the corresponding SETS are discarded. SETS that
are issued as part of processing that was backed out are canceled. The existing database positions for all
supported PCBs are reset.

If aROLS callis in response to a SETU call, and if there are unsupported PCBs (DEDB, MSDB, or GSAM)

in the PSB, the position of the PCBs is not affected. The token specified by the ROLS call can be set by
either a SETS or SETU call. If no unsupported PCBs exist in the PSB, and if the program has not used an
attached subsystem, the function of the ROLS call is the same regardless of whether the token was set by
a SETS or SETU call.

If the ROLS call is in response to a SETS call, and if unsupported PCBs exist in the PSB or the program
used an attached subsystem when the preceding SETS call was issued, the SETS call is rejected with
an SC status code. The subsequent ROLS call is either rejected with an RC status code, indicating
unsupported options, or it is rejected with an RA status code, indicating that a matching token that was
set by a preceding successful SETS call does not exist.

If the ROLS call is in response to a SETU call, the call is not rejected because of unsupported options.
If unsupported PCBs exist in the PSB, this is not reflected with a status code on the ROLS call. If the
program is using an attached subsystem, the ROLS call is processed, but an RC status is returned as a
warning indicating that if changes were made using the attached subsystem, those changes were not
backed out.

The parameters for this form of the ROLS call are:
 The call function, ROLS

* The name of the I/O PCB or AIB

« The name of the I/O area to receive the user data
« The name of an area containing the 4-byte token

Related reading: For status codes that are returned after the ROLS call and the explanations of those
status codes and the response require, see IMS Version 15 Messages and Codes, Volume 4: IMS
Component Codes.

Related concepts
“Backing out to a prior commit point: ROLL, ROLB, and ROLS calls” on page 410

Chapter 17. Recovering databases and maintaining database integrity 269

When a program determines that some of its processing is invalid, you can use these calls to remove the
effects of its incorrect processing: Roll Back calls ROLL, ROLS using a database PCB, ROLS with no I/O
area or token, and ROLB.

Reserving segments for the exclusive use of your program

You may want to reserve a segment and prohibit other programs from updating the segment while you are
using it. To some extent, IMS does this for you through resource lock management. The Q command code
lets you reserve segments in a different way.

Restriction: The Q command code is not supported for MSDB organizations or for a secondary index that
is processed as a database.

Resource lock management and the Q command code both reserve segments for your program's use,
but they work differently and are independent of each other. To understand how and when to use the Q
command code and the DEQ call, you must understand resource lock management.

The function of resource lock management is to prevent one program from accessing data that another
program has altered until the altering program reaches a commit point. Therefore, you know that if you
have altered a segment, no other program (except those using the GO processing option) can access
that segment until your program reaches a commit point. For database organizations that support the Q
command code, if the PCB processing option allows updates and the PCB holds position in a database
record, no other program can access the database record.

The Q command code allows you to prevent other programs from updating a segment that you have
accessed, even when the PCB that accessed the segment moves to another database record.

Related reading: For more information on the Q command code, see the topic "Q command code" in IMS
Version 15 Application Programming APIs.

270 IMS: Application Programming

Chapter 18. Secondary indexing and logical
relationships

Secondary indexing and logical relationships are techniques that can change your application program's
view of the data. The DBA makes the decision about whether to use these options.

Examples of when you use these techniques are:

« If an application program must access a segment type in a sequence other than the sequence specified
by the key field, secondary indexing can be used. Secondary indexing also can change the application
program's access to or view of the data based on a condition in a dependent segment.

- If an application program requires a logical structure that contains segments from different databases,
logical relationships are used.

Related concepts

“SSA guidelines” on page 170

Using SSAs can simplify your programming, because the more information you can give IMS to do the
searching for you, the less program logic you need to analyze and compare segments in your program.

How secondary indexing affects your program

One instance of using a secondary index occurs when an application program needs to select database
records in a sequence other than that defined by the root key.

IMS stores root segments in the sequence of their key fields. A program that accesses root segments out
of the order of their key fields cannot operate efficiently.

You can index any field in a segment by defining an XDFLD statement for the field in the DBD for the
database. If the Get call is not qualified on the key but uses some other field, IMS must search all the
database records to find the correct record. With secondary indexing, IMS can go directly to a record
based on a field value that is not in the key field.

For more information about secondary indexes and examples, see IMS Version 15 Database
Administration.

SSAs with secondary indexes

If your program uses a secondary index, you can use the name of an indexed field in your SSAs. When you
do this, IMS goes directly to the secondary index and finds the pointer segment with the value you specify.
Then IMS locates the segment that the index segment points to in the primary database and returns the
segment to your program.

To use an indexed field name in the SSA, follow these guidelines:

- Define the indexed field, using the XDFLD statement, in the DBD for the primary database during DBD
generation.

e Use the name that was given on the XDFLD statement as the field name in the qualification statement.

« Specify the secondary index as the processing sequence during PSB generation. Do this by specifying
the name of the secondary index database on the PROCSEQ parameter for a full-function secondary
index database or the PROCSEQD parameter for a Fast Path secondary index database on the PCB
during PSB generation.

If you modify the XDFLD of the indexed segment (using the REPL call), you lose any parentage that you
had established before issuing the REPL call. The key feedback area is no longer valid after a successful
REPL call.

For example, to index the PATIENT segment on the NAME field, the segment must have been defined on
the XDFLD statement in the DBD for the medical database. If the name of the secondary index database is

© Copyright IBM Corp. 1974, 2020 271

INDEX, you specify PROCSEQ=INDEX in the PCB. To issue a qualification that identifies a PATIENT by the
NAME field instead of by PATNO, use the name that you specified on the XDFLD statement. If the name of
the XDFLD is XNAME, use XNAME in the SSA, as follows:

In the DBD:
XDFLD NAME=XNAME

In the PSB:
PROCSEQ=INDEX for full-function secondary index databases or PROCSEQD=INDEX for Fast Path
secondary index databases

In the program:
GU PATIENTb(XNAMEbbb=bJBBROKEbbb)

A qualified GU/GN segment name with SSA using the primary key field for target=root segment is
supported when a primary DEDB database is accessed through its secondary index using a PCB with
the PROCSEQD= parameter.

A qualified GU/GN segment name with SSA using the primary key field for target=dependent segment is
not supported. An AC status code is returned for the qualified Get call when a primary DEDB database is
accessed through its secondary index using a PCB with the PROCSEQD= parameter.

Multiple qualification statements with secondary indexes

When you qualify a call using the name of an indexed field, you can include multiple qualification
statements.

You can use two AND operators to connect the qualification statements:

*or &
When used with secondary indexing, this AND is called the dependent AND. To satisfy the call,
IMS scans the index once and searches for one pointer segment in the index that satisfies both
qualification statements.

This is called the independent AND. You use it only with secondary indexing. When you use the
independent AND to satisfy the call, IMS scans the index twice and searches for two or more different
pointer segments in the index that point to the same target segment.

The distinction between the two ANDs applies only when the indexed field (the one defined as XDFLD in
the DBD) is used in all qualifications. If one of the qualification statements uses another field, both ANDs
work like the dependent AND.

The next two sections give examples of the dependent and independent AND. Although the examples
show only two qualification statements in the SSA, you can use more than two. No set limit exists for the
number of qualification statements you can include in an SSA, but a limit on the maximum size of the SSA
does exist. You specify this size on the SSASIZE parameter of the PSBGEN statement. For information on
this parameter, see IMS Version 15 System Utilities.

The dependent AND

When you use the dependent AND, IMS scans the index only once. To satisfy the call, it must find one
pointer segment that satisfies both qualification statements.

For example, suppose you want to list patients whose bills are between $500 and $1000. To do this, you
index the PATIENT segment on the BILLING segment, and specify that you want IMS to use the secondary
index as the processing sequence. The following figure shows the three secondary indexing segments.

272 IMS: Application Programming

XDFLD=XBILLING

T PATIENT Target
segment
;_,.-T'
Pointer INDEX j/f"'
segments [XBILLING=1200 | +~
| XBILLING=700 }/
| XBILLING=450 | e BILLING Source
segment

e .

Figure 60. Example of using the dependent AND

You then use this call:

GU PATIENT (XBILLING>=00500%XBILLING<=01000)

To satisfy this call, IMS searches for one pointer segment with a value between 500 and 1000. IMS
returns the PATIENT segment that is pointed to by that segment.

The independent AND

For example, suppose you want a list of the patients who have had both tonsillitis and strep throat. To
get this information, you index the PATIENT segment on the ILLNAME field in the ILLNESS segment,
and specify that you want IMS to use the secondary index as the processing sequence. In this example,
you retrieve the PARENT segments based on a dependent's (the ILLNESS segment's) qualification. The
following figure shows the four secondary indexing segments.

—_— » PATIENT Target
e segment
L
Pointer INDEX Vayd

segments | mwam&mmmuns/
[XILLNAME=STREPTHRT
| XILLNAME=MEASLES | ILLNESS = Source
| XILLNAME=FLU | segment

Figure 61. Example of using the independent AND

You want IMS to find two pointer segments in the index that point to the same PATIENT segment, one
with ILLNAME equal to TONSILLITIS and one with ILLNAME equal to STREPTHRT. Use this call:

GU PATIENTb (XILLNAME=TONSILITIS#XILLNAME=bSTREPTHRT)

This call retrieves the first PATIENT segment with ILLNESS segments of strep throat and tonsillitis. When
you issue the call, IMS searches for an index entry for tonsillitis. Then it searches for an index entry for
strep throat that points to the same PATIENT segment.

Chapter 18. Secondary indexing and logical relationships 273

When you use the independent AND with GN and GNP calls, a special situation can occur. If you repeat a
GN or a GNP call using the same qualification, it is possible for IMS to return the same segment to your
program more than once. You can check to find out whether IMS has already returned a segment to you
by checking the key feedback area.

If you continue issuing a GN call until you receive a not-found (GE) status code, IMS returns a segment
occurrence once for each independent AND group. When IMS returns a segment that is identical to one
that was already returned, the PCB key feedback area is different.

Related concepts

“Multiple qualification statements” on page 171

When you use a qualification statement, you can do more than give IMS a field value with which to
compare the fields of segments in the database. You can give several field values to establish limits for
the fields you want IMS to compare.

DL/I returns with secondary indexes

The term "key of the pointer segment" refers to the key as perceived by the application program. That is,
the key does not include subsequent fields. IMS places this key in the position where the root key would
be located if you had not used a secondary index—in the left-most bytes of the key feedback area.

The PATIENT segment that IMS returns to the application program's I/O area looks just as it would if

you had not used secondary indexing. The key feedback area, however, contains something different. The
concatenated key that IMS returns is the same, except that, instead of giving you the key for the segment
you requested (the key for the PATIENT segment), IMS gives you the search portion of the key of the
secondary index (the key for the segment in the INDEX database).

If you try to insert or replace a segment that contains a secondary index source field that is a duplicate of
one that is already reflected in the secondary index, IMS returns an NI status code. An NI status code is
returned only for batch programs that log to direct-access storage. Otherwise, the application program is
abnormally terminated. You can avoid having your program terminated by making sure a duplicate index
source field does not exist. Before inserting a segment, try to retrieve the segment using the secondary
index source field as qualification.

Status codes for secondary indexes

If a secondary index is defined for a segment and if the definition specifies a unique key for the secondary
index (most secondary indexes allow duplicate keys), your application program might receive the NI
status code in addition to regular status codes.

This status code can be received for a PCB that either uses or does not use the secondary index as
a processing sequence. See IMS Version 15 Messages and Codes, Volume 4: IMS Component Codes for
additional information about the NI status code.

Processing segments in logical relationships

Sometimes an application program needs to process a hierarchy that is made up of segments that already
exist in two or more separate database hierarchies. Logical relationships make it possible to establish
hierarchic relationships between these segments. When you use logical relationships, the result is a new
hierarchy—one that does not exist in physical storage but that can be processed by application programs
as though it does exist. This type of hierarchy is called a logical structure.

One advantage of using logical relationships is that programs can access the data as though it exists in
more than one hierarchy, even though it is only stored in one place. When two application programs need
to access the same segment through different paths, an alternative to using logical relationships is to
store the segment in both hierarchies. The problem with this approach is that you must update the data in
two places to keep it current.

Processing segments in logical relationships is not very different from processing other segments. The
following examples are taken from a scenario for an inventory application program that processes data in
a purchasing database, but which also needs access to a segment in a patient database.

274 IMS: Application Programming

For example, the hierarchy that an inventory application program needs to process contains four segment
types:

- An ITEM segment containing the name and an identification number of a medication that is used at a
medical clinic

« AVENDOR segment that contains the name and address of the vendor who supplies the item

« ASHIPMENT segment that contains information such as quantity and date for each shipment of the
item that the clinic receives

- A DISBURSE segment that contains information about the disbursement of the item at the clinic, such
as the quantity, the date, and the doctor who prescribed it

The TREATMNT segment in the medical database contains the same information that the inventory
application program needs to process in the DISBURSE segment. Rather than store this information

in both hierarchies, you can store the information in the TREATMNT segment, and define a logical
relationship between the DISBURSE segment in the item hierarchy and the TREATMNT segment in the
patient hierarchy. Doing this makes it possible to process the TREATMNT segment through the item
hierarchy as though it is a child of SHIPMENT. DISBURSE then has two parents: SHIPMENT is DISBURSE's
physical parent, and TREATMNT is DISBURSE's logical parent.

Three segments are involved in this logical relationship: DISBURSE, SHIPMENT, and TREATMNT. The
following figure shows the item hierarchy on the right. The DISBURSE segment points to the TREATMNT
segment in the patient hierarchy shown on the left. (The patient hierarchy is part of the medical
database.)

ITEM
PATIENT VEMDOR
ILLNESS SHIPMENT

TREATMNT <—— DISBURSE

Figure 62. Patient and item hierarchies

Three types of segments are found in a logical relationship:

« TREATMNT is called the logical parent segment. It is a physical dependent of ILLNESS, but it can
be processed through the item hierarchy because a path is established by the logical child segment
DISBURSE. The logical parent segment can be accessed through both hierarchies, but it is stored in only
one place.

« SHIPMENT is called a physical parent segment. The physical parent is the parent of the logical child in
the physical database hierarchy.

« DISBURSE is called a logical child segment. It establishes a path to the TREATMNT segment in the
PATIENT hierarchy from the SHIPMENT segment in the ITEM hierarchy.

Because a logical child segment points to its logical parent, two paths exist through which a program can
access the logical parent segment:

- When a program accesses the logical parent segment through the physical path, it reaches this logical
parent segment through the segment's physical parent. Accessing the TREATMNT segment through
ILLNESS is accessing the logical parent segment through its physical path.

« When a program accesses the logical parent segment through the logical path, it reaches this logical
parent segment through the segment's logical child. Accessing the TREATMNT segment through
SHIPMENT is accessing the logical parent segment through its logical path.

Chapter 18. Secondary indexing and logical relationships 275

When a logical parent segment is accessed through the logical child, the logical child is concatenated with
both the data from its logical parent segment and any data the user has chosen to associate with this
pairing (intersection data) in a single segment I/0 area, like this:

Logical child Logical parent
Concatenated key Intersection data {LL) Data
I Oftset '—‘I

Figure 63. Concatenated segment

LL is the length field of the logical parent if this segment is a variable-length segment.

How logical relationships affect your programming

The calls you issue to process segments in logical relationships are the same calls that you use to process
other segments. However, the processing is different depending on how the logical segment looks in your
I/0 area, what the DB PCB mask contains after a retrieve call, and how you can replace, delete, and insert
physical and logical parent segments.

Because it is possible to access segments in logical relationships through the logical path or the physical
path, the segments must be protected from being updated by unauthorized programs.

When DBAs define logical relationships, they define a set of rules that determine how the segments can
be deleted, replaced, and inserted. Defining these rules is a database design decision. If your program
processes segments in logical relationships, the DBA (or the person at your installation responsible for
database design) should tell you:

- What segments look like in your I/O area when you retrieve them
- Whether your program is allowed to update and insert segments
- What to do if you receive a DX, IX, or RX status code

The requirements for inserting a logical child segment are:

« Inload mode, the logical child can be inserted only under its physical parent. You do not supply the
logical parent in the I/O area.

- In update mode, the format of the logical child is different, depending on whether it is accessed from its
physical parent or from its logical parent.
— If accessed from its physical parent, the logical child's format is the concatenated key of the logical
parent followed by intersection data.

— If accessed from its logical parent, the logical child's format is the concatenated key of the physical
parent, followed by intersection data.

« The logical child can be inserted or replaced, depending on the insert rule for the logical or physical
parent. Unless the insert rule of the logical or physical parent is PHYSICAL, the logical or physical parent
must be supplied in the I/O area following the logical child.

Related concepts
“Multiple qualification statements” on page 171

276 IMS: Application Programming

When you use a qualification statement, you can do more than give IMS a field value with which to
compare the fields of segments in the database. You can give several field values to establish limits for
the fields you want IMS to compare.

Status codes for logical relationships
These status codes apply specifically to segments that are involved in logical relationships.

These are not all of the status codes that you can receive when processing a logical child segment or

a physical or logical parent. If you receive one of these status codes, it means that you are trying to
update the database in a way that you are not allowed to. Check with the DBA or person responsible for
implementing logical relationships at your installation to find out what the problem is.

DX
IMS did not delete the segment because the physical delete rule was violated. If the segment is a
logical parent, it still has active logical children. If the segment is a logical child, it has not been
deleted through its logical path.

IX
You tried to insert either a logical child segment or a concatenated segment. If it was a logical
child segment, the corresponding logical or physical parent segment does not exist. If it was a
concatenated segment, either the insert rule was physical and the logical or physical parent does not
exist, or the insert rule is virtual and the key of the logical or physical parent in the I/O area does not
match the concatenated key of the logical or physical parent.

RX
The physical replace rule has been violated. The physical replace rule was specified for the
destination parent, and an attempt was made to change its data. When a destination parent has
the physical replace rule, it can be replaced only through the physical path.

Chapter 18. Secondary indexing and logical relationships 277

278 IMS: Application Programming

Chapter 19. HALDB selective partition processing

You can restrict the processing of DL/I calls to a single HALDB partition or a range of HALDB partitions

by using a DD statement with the ddname DFSHALDB to pass control statements. DFS HALDB must be
provided in the JCL of the batch job, the BMP (Batch Message Processing dependent online region), or the
JBP (Java Batch Processing dependent online region).

Control Statements for HALDB selective partition processing
»— HALDB PCB= — (nnnn » — PPPPPPP) >«
L dddddddd —J L NUM=yyy J

Each HALDB control statement must have a PCB keyword that contains the required parameters. The
required parameters for an individual control statement must be on one line; no continuation is allowed.
The input can consist of multiple HALDB control statements. There should be no duplication of DB PCB
numbers. In the event of a duplication, the control statement that has been read the most recently
overrides the previous statement.

Any HALDB control statement that is syntactically correct results in an entry within a table. The maximum
number of entries in the table is 20. All subsequent statements that are read, even though syntactically
correct, are ignored and result in a U0201 abend, unless a statement is a duplicate of an entry that is
already in the table.

Parameter descriptions for HALDB selective partition processing
nnnn

The DB PCB number as the relative number of the DB PCB defined in the PSB.
dddddddd

The DB PCB label or name.

PPPPpPppP
The partition name. This parameter is required.

NUM=yyy
The range of consecutive partitions that this PCB is restricted to using, starting with the named
partition. The range of consecutive partitions is defined as the partition selection order, which is the
next partition selected starting from the target partition named in the DFSHALDB statement. The
next partition is determined using either the high keys defined for the HALDB or the processing order
defined by the partition selection exit. This parameter is optional.

The following examples show how to use HALDB selective partition processing statements.

DFSHALDB for single partition restriction
HALDB PCB=(4,POHIDKA)
HALDB PCB=(PCBNUM2,POHIDJA)

DFSHALDB for range partition restriction

HALDB PCB=(3,PVHDJ5A,NUM=4)
HALDB PCB=(PCBNUM7,PVHDJ5B,NUM=3)

Report generated for HALDB selective partition processing

When you use HALDB selective partition processing, a report called “HALDB Selective Partition
Processing” is generated in the SYSHALDB data set. This report shows the control statements that have
been issued and the reason for accepting or rejecting each statement. Control statements that have

© Copyright IBM Corp. 1974, 2020 279

been validated and accepted are shown as “Syntactically correct.” Other messages that might appear for
syntactically correct statements, and their accompanying messages, are shown in the following table:

Table 43. Messages provided in the report generated for HALDB selective partition processing

Message

Explanation

Duplicate, overrides previous statement

A HALDB statement for the same PCB was
already found. The current statement overrides the
previous HALDB statement.

Ignored, number of valid statements exceeds 20

More than 20 HALDB statements were provided,
but only 20 statements are allowed. Reduce the
number of HALDB statements to 20 or fewer, and
run the job again. This message results in an abend
u0201.

NUM parameter must be non-zero numeric

The partition range specified in the NUM keyword
must be a non-zero value from 1 to 999.

NUM value exceeds three digits

The partition range specified in the NUM keyword
must be a non-zero value from 1 to 999.

An equal sign must follow NUM keyword

An equal sign must follow the NUM keyword in the
HALDB statement. Add an equal sign to the HALDB
statement.

The NUM keyword is missing

A comma was found after the partition name, but
the NUM keyword was not present. Either verify the
syntax of the positional parameters in the HALDB
statement, or add the NUM keyword and the range
of partitions for the restriction.

NUM parameter is missing

The NUM keyword was found, but the NUM
parameter value was not present. Either verify the
syntax of the positional parameters in the HALDB
statement, or add the NUM keyword and the range
of partitions for the restriction.

For HALDB control statements that are not syntactically correct (statements that are processed and
rejected), the messages and explanations that are issued are shown in the following table:

Table 44. Messages provided in the report generated for syntactically incorrect HALDB statements

Message

Explanation

No HALDB statement type

The DFSHALDB data set did not contain a HALDB
statement. Add a HALDB statement to prevent this
error.

A space must follow HALDB statement type

The HALDB statement requires a space after
HALDB and before the PCB keyword.

PCB keyword missing

The required keyword PCB was not found. The PCB
keyword must be present to process the HALDB
statement successfully.

Equal sign must follow PCB keyword

An equal sign did not follow the PCB keyword. The
equal sign must follow the PCB keyword to process
the HALDB statement successfully.

280 IMS: Application Programming

Table 44. Messages provided in the report generated for syntactically incorrect HALDB statements
(continued)

Message Explanation

Open parenthesis must follow equal sign An open parenthesis did not follow PCB=. The open
parenthesis must follow the PCB= to process the
HALDB statement successfully.

Second parameter may be missing The HALDB partition must be provided. Either add
the partition name, or verify that the syntax of the
positional parameters is correct.

First parameter exceeds four digits The DB PCB number cannot exceed a four-digit
value. Change the DB PCB number to the correct
DB PCB number.

Delimiter is not a comma A comma is missing between parameter values.
The comma is used as a delimiter for the positional
parameters. Either add the comma, or verify that
the syntax of the positional parameters is correct.

Partition name must start with an alpha The HALDB partition name must begin with a
alphabetic character. Add the partition name or
verify the syntax of the positional parameters is
correct.

Delimiter is not a close parenthesis A closing parenthesis is missing from the HALDB
statement. Add a closing parenthesis around the
PCB parameters.

Partition name exceeds seven characters The HALDB partition name must be seven or fewer
characters. Either add the partition name, or verify
that the syntax of the positional parameters is
correct.

Invalid character in partition name The HALDB partition name contains an invalid
character. Either add the partition name, or verify
that the syntax of the positional parameters is

correct.

Statement contains all spaces The HALDB statement is missing. Add a valid
HALDB statement.

Invalid statement input A HALDB statement was found, but it does not

appear to be complete. Verify the syntax of the
HALDB statement and the positional parameters
specified.

Space must follow close parenthesis A space must follow the closing parenthesis. Add a
space after the closing parenthesis.

First parameter missing The PCB number or label is missing. Either add the
PCB name or label, or verify that the syntax of the
positional parameters is correct.

Comma and part name missing Only the PCB number or label was provided in
the HALDB statement. Either add the partition
name, or verify that the syntax of the positional
parameters is correct.

Chapter 19. HALDB selective partition processing 281

(continued)

Table 44. Messages provided in the report generated for syntactically incorrect HALDB statements

Message

Explanation

Partition name is missing

The HALDB partition name must be provided in
the HALDB statement. Either add the partition
name, or verify that the syntax of the positional
parameters is correct.

Partition name starts with numeric

The HALDB partition name must begin with an
alphabetic character. Either add the partition
name, or verify that the syntax of the positional
parameters is correct.

First parameter must not be zero

The PCB number must be a non-zero number. Add
a non-zero number for the DB PCB number.

Comment statement

An asterisk was found in column one of the
HALDB statement. This statement was skipped and
considered a comment.

After all of the statements are validated, the job abnormally terminates with an abend code of U0201.

282 IMS: Application Programming

Chapter 20. Processing GSAM databases

GSAM databases are available to application programs that can run online in IMS batch message
processing (BMP) regions (message-driven or non-message-driven) or Java batch processing (JBP)
regions or standalone in DLIBATCH regions.

If your application program accesses GSAM databases, as you design your program consider that:

« An IMS program can retrieve records and add records to the end of the GSAM database, but the
program cannot delete or replace records in the database.

« You use separate calls to access GSAM databases. (Additional checkpoint and restart considerations are
involved in using GSAM.)

 Your program must use symbolic CHKP and XRST calls if it uses GSAM. Basic CHKP calls cannot
checkpoint GSAM databases.

« When an IMS program uses a GSAM database, the program treats it like a sequential file. The physical
z/0S access methods that GSAM databases support are BSAM on direct access and tape devices and
VSAM on direct-access storage devices (DASD). VSAM data sets must be non-keyed and non-indexed
entry-sequenced (ESDS). GSAM does not support temporary, SYSIN, or SYSOUT files.

- Because GSAM is a sequential non-hierarchic database, it has no segments, keys, or parentage.

Java application programs running in JBP regions can access GSAM databases by using the IMS Java
dependent region resource adapter.

Related concepts

“Data areas in GSAM databases” on page 226

Generalized Sequential Access Method (GSAM) databases are available only to application programs

that can run as batch programs, batch-oriented BMPs, transaction-oriented BMPS, or JBPs. The program
communication block (PCB) mask and the record search argument (RSA) that you use in a GSAM database
call have special formats.

Related reference

“Accessing GSAM data from a JBP application” on page 686
GSAM data are frequently referred to as z/OS data sets or as flat files. This kind of data is non-hierarchical
in structure. You can access data from GSAM databases from a JBP application.

Accessing GSAM databases

The calls you use to access Generalized Sequential Access Method (GSAM) databases are different from
those you use to access other IMS databases, and you can use GSAM databases for input and output.

For example, your program can read input from a GSAM database sequentially and then load another
GSAM database with the output data. Programs that retrieve input from a GSAM database usually retrieve
GSAM records sequentially and then process them. Applications that send output to a GSAM database
must add output records to the end of the database as the program processes the records. You cannot
delete or replace records in a GSAM database, and any records that you add must go at the end of the
database.

PCB masks for GSAM databases

For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.

Calls to GSAM databases can use either the AIBTDLI or the PCB interface.

The DB PCB mask for a GSAM database serves the same purpose as it does for other IMS databases. The
program references the fields of the DB PCB through the GSAM DB PCB mask. The GSAM DB PCB mask
must contain the same fields as the GSAM DB PCB and must be of the same length.

© Copyright IBM Corp. 1974, 2020 283

Some differences exist between a DB PCB for a GSAM database and one for other IMS databases. Some
of the fields are different, and the GSAM DB PCB has one field that the other PCBs do not. Because GSAM
is not a hierarchical database, some fields in a PCB mask for other IMS databases do not have meanings
in a GSAM PCB mask. The fields that are not used when you access GSAM databases are:

« The second field: segment level number
« The sixth field: segment name
 The eighth field: number of sensitive segments

Even though GSAM does not use these fields, you must define them in the order and length shown in the
following table in the GSAM DB PCB mask.

When you code the fields in a DB PCB mask, name the area that contains all the fields as you do for a DB
PCB. The entry statement associates each DB PCB mask in your program with a DB PCB in your program's
PSB based on the order of the PCBs in the PSB. The entry statement refers to the DB PCB mask in your
program by the name of the mask or by a pointer.

When you code the entry statement in:

« COBOL, Java, Pascal, C, and assembler language programs, the entry statement must list the names of
the DB PCB masks in your program.

« PL/I programs, the entry statement must list the pointers to the DB PCB masks in your program.

The first PCB name or pointer in the entry statement corresponds to the first PCB. The second name or
pointer in the entry statement corresponds to the second PCB, and so on.

Table 45. GSAM DB PCB mask

Descriptor Byte length DB/DC DBCTL DCCTL DB batch TM batch
Database namel 8 X X X X X
Segment level number? 2 N/A N/A N/A N/A N/A
Status code3 2
Processing options? 4
Reserved for IMS® 4 X X X X X
Segment name® 8 N/A N/A N/A N/A N/A
Length of key feedback 4 X X X X X
area and undefined-length
records area’
Number of sensitive 4 N/A N/A N/A N/A N/A
segments®
Key feedback area?® 8or12 for X X X X X
large data
sets.
Length of undefined-length 4 X X X X X
records0
Note:

1. Database Name. The name of the GSAM DBD. This field is 8 bytes and contains character data.
2. Segment Level Number. Not used by GSAM, but you must code it. It is 2 bytes.

3. Status Code. IMS places a two-character status code in this field after each call to a GSAM database.
This code describes the results of the call. IMS updates this field after each call and does not clear
it between calls. The application program should test this field after each call to find out whether the
call was successful. If the call was completed successfully, this field contains blanks.

284 IMS: Application Programming

4. Processing Options. This is a 4-byte field containing a code that tells IMS the types of calls this
program can issue. It is a security mechanism in that it can prevent a particular program from
updating the database, even though the program can read the database. This value is coded in the
PROCOPT parameter of the PCB statement when generating the PSB for the application program. The
value does not change. For GSAM, the values are G, GS, L, or LS.

5. Reserved for IMS. This 4-byte field is used by IMS for internal linkage. It is not used by the
application program.

6. Segment Name. This field is not used by GSAM, but it must be coded as part of the GSAM DB PCB
mask. It is 8 bytes.

7. Length of Key Feedback Area and Undefined-Length Records Area. This is a 4-byte field that
contains the decimal value of 12 (or 16 for large format data sets). This is the sum of the lengths of
the Key Feedback Area and Undefined-Length Records Area.

8. Number of Sensitive Segments. This field is not used by GSAM, but it should be coded as part of the
GSAM DB PCB mask. This field is 4 bytes.

9. Key Feedback Area. After a successful retrieval call, GSAM places the address of the record that is
returned to your program in this field. This is called a record search argument (RSA). You can use it
later if you want to retrieve that record directly by including it as one of the parameters on a GU call.
This field is 8 bytes for basic format data sets or 12 bytes for large format data sets.

10. Undefined-Length Records Area. If you use undefined-length records (RECFM=U), the length in
binary of the record you are processing is passed between your program and GSAM in this field. This
field is 4 bytes long. When you issue a GU or GN call, GSAM places the binary length of the retrieved
record in this field. When you issue an ISRT call, put the binary length of the record you are inserting
in this field before issuing the ISRT call.

Related concepts

“AIBTDLI interface” on page 226
Use AIBTDLI as the interface between your application program and IMS.

“GSAM record formats” on page 287

GSAM records are nonkeyed. For variable-length records you must include the record length as the first
2 bytes of the record. Undefined-length records, like fixed-length records, contain only data (and control
characters, if needed).

Retrieving and inserting GSAM records

GSAM records can be retrieved sequentially or directly. You can also add GSAM records to a new data set
or add new records to the end of an existing data set in the database.

To retrieve GSAM records sequentially, use the GN call. The only required parameters are the GSAM PCB
and the I/0 area for the segment. To process the whole database, issue the GN call until you get a GB
status code in the GSAM PCB. This status code means that you have reached the end of the database.
GSAM automatically closes the database when you reach the end of it. To add records to a new data set or
to add new records to the end of an existing data set in the database, use the ISRT call. GSAM adds the
records sequentially in the order in which you supply them.

You can retrieve records directly from a GSAM database by supplying a record search argument (RSA) to
the GSAM database. An RSA is like a segment search argument (SSA), but it contains the exact address of
the record that you want to retrieve. The specific contents and format of the RSA depend on the access
method that GSAM is using. For BSAM tape data sets and VSAM data sets, the RSA contains the relative
byte address (RBA). For BSAM disk data sets, the RSA contains the disk address and uses the relative
track and record format.

You can change your application programs to accommodate for extra 4 bytes when retrieving a record for
a large format data set by using the INIT call with an I/O area containing the character string of RSA12.
The INIT RSA12 call is coded in a GSAM application program before any calls to the GSAM database are
coded. When a GSAM application issues the INIT RSA12 call, it tells IMS that the program can accept a
12-byte RSA when retrieving a record for large format data sets. The INIT RSA12 call must be issued by
any application that uses large format data sets. Failure to issue the INIT RSA12 call for large format data

Chapter 20. Processing GSAM databases 285

sets might cause an unexpected result. In the absence of an INIT RSA12 call, IMS continues to pass back
an 8-byte RSA when retrieving a record for a basic format data set.

The following table provides more details about the format of the RSA for basic format data sets:

Table 46. Format of the RSA for basic format data sets

Position Address
Positions 1-4 « BSAM (DASD) relative track and record (TTRZ) for
the block in the buffer.

« BSAM RBA.
« VSAM RBA.

Position 5 Relative data set of the concatenated data set. The
first data set numberis 1.

Position 6 Relative volume of the data set. The first volume of
datasetis 1.

Positions 7 and 8 The current displacement.

The following table provides more details about the format of the RSA for large format data sets:

Table 47. Format of the RSA for large format data sets

Position Address
Positions 1-4 « BSAM (DASD) relative track and record (TTTR) for
the block in the buffer.
« BSAM RBA.
Position 5 Zone byte
Position 6 Relative data set of the concatenated data set. The

first data set number is 1.

Position 7 Relative volume of the data set. The first volume of
data setis 1.

Positions 8-10 Null bytes. Not used.

Positions 11-12 The current displacement.

Before you can supply an RSA in a GU call to a GSAM database, that RSA must have previously been

returned to you as a result of a GN or ISRT call. For GSAM to return an RSA, the GN or ISRT call must be
issued with a fourth parameter that points to an 8-byte (basic format data set) or 12-byte (large format
data set) RSA save area in your program. Save this RSA until you want to retrieve that particular record.

To retrieve that particular record, issue a GU call for the record and specify the address of its RSA as a
fourth parameter of the GU call. GSAM returns the record to the I/O area that you named as one of the call
parameters.

Restriction: Retrieve records directly from a GSAM database on DASD only. When using buffered I/0,
buffer definitions for the output PCB may affect performance.

Resetting the position in a GSAM Database
You can use the GU call to reset the position in the GSAM database.

You can reset the position to the start of the GSAM database or to a specific record in the GSAM database:

286 IMS: Application Programming

- To reset the position to the start of the GSAM database using basic format data sets, issue a GU call with
an RSA that consists of a fullword with a binary value of 1, followed by a fullword with a binary value of
0.

« To reset the position to the start of the GSAM database using large format data sets, issue a GU call with
an RSA that consists of a fullword with a binary value of 1, followed by two fullwords with a binary value
of 0.

« Toreset the position to a specific record in the GSAM database, issue a GU call with an RSA that contains
the saved RSA value from a prior ISRT or GN call for that record.

Related reference

“GSAM coding considerations” on page 289
The calls your program uses to access GSAM databases are not the same as the DL/I calls. The system
service calls that you use with GSAM are symbolic CHKP and XRST.

INIT call (Application Programming APIs)

Explicit open and close calls to GSAM

IMS opens the GSAM data set when the first call is made and closes the data set when the application
program terminates. Therefore, the application program does not usually need to make explicit open or
close calls to GSAM.

However, explicit OPEN and CLSE calls are useful if:

- the application program loads a GSAM data set, and then in the same step reads the data set using
GSAM (for example, to sort the data set). The application program should issue the GSAM CLSE call
after the load is complete.

- the GSAM data set is an output data set, and it is possible that when the program executes it does not
make GSAM ISRT calls. A data set is not created. Subsequent attempts to read the nonexistent data set
(using GSAM or not) will likely result in an error. To avoid this situation, explicitly open the data set. DL/I
closes the data set when the step terminates. Closing the data set prevents the possibility of attempting
to read an empty data set.

- the GSAM data set is an output data set, and data exists beyond the EOF address in the dataset control
block (DSCB). The previous job/step may have ended abnormally before the DSCB could be updated. If
the program is restarted, but does not make GSAM ISRT calls, the EOF will not be updated at job/step
termination when DL/I closes the data set. This could strand any data that exists past the EOF address.
To avoid this situation, explicitly open the data set so that the DSCB can be updated with the correct
EOF address.

The explicit OPEN or CLSE call need not include an I/O area parameter. Depending on the processing

option of the PCB, the data set is opened for input or output. You can specify that an output data

set contain either ASA or machine control characters. Including an I/O area parameter in the call and

specifying OUTA in the I/O area indicates ASA control characters. Specifying OUTM specifies machine
control characters.

GSAM record formats

GSAM records are nonkeyed. For variable-length records you must include the record length as the first
2 bytes of the record. Undefined-length records, like fixed-length records, contain only data (and control
characters, if needed).

If you use undefined-length records, record length is passed between your program and GSAM in the
4-byte field that follows the key feedback area of the GSAM DB PCB. It is called the undefined-length
records area. When you issue an ISRT call, supply the length. When you issue a GN or GU call, GSAM
places the length of the returned record in this field. The advantage of using undefined-length records is
that you do not need to include the record length at the beginning of the record, and records do not need
to be of fixed length. The length of any record must be less than or equal to the block size (BLKSIZE) and
greater than 11 bytes (an z/OS convention).

Chapter 20. Processing GSAM databases 287

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims15.doc.apr/ims_hinitcall.htm#ims_hinitcall

If you are using VSAM, you can use blocked or unblocked fixed-length or variable-length records. If you
are using BSAM, you can use blocked or unblocked fixed-length, variable-length, or undefined-length
records. Whichever you use, be sure to specify this on the RECFM keyword in the DATASET statement of
the GSAM DBD. You can override this in the RECFM statement of the DCB parameter in the JCL. You can
also include carriage control characters in the JCL for all formats.

Related concepts

“PCB masks for GSAM databases” on page 283

For the most part, you process GSAM databases in the same way that you process other IMS databases.
You use calls that are very similar to DL/I calls to communicate your requests. GSAM describes the results
of those calls in a GSAM DB PCB.

“Origin of GSAM data set characteristics” on page 290
For an input data set, the record format (RECFM), logical record length (LRECL), and block size (BLKSIZE)
are based on the input data set label.

GSAMI/0 areas

If you provide an optional I/O area, it must contain one of these values.

« INP for an input data set

« OUT for an output data set

« OUTA for an output data set with ASA control characters

« OUTM for an output data set with machine control characters

For GN, ISRT, and GU calls, the format of the I/O area depends on whether the record is fixed-length,
undefined-length (valid only for BSAM), or variable-length. For each kind of record, you have the option of
using control characters.

The formats of an I/0 area for fixed-length or undefined-length records are:

- With no control characters, the I/O area contains only data. The data begins in byte 0.
« With control characters, the control characters are in byte 0 and the data begins in byte 1.

If you are using undefined-length records, the record length is passed between your program and GSAM
in the PCB field that follows the key feedback area. When you are issuing an ISRT call, supply the length.
When you are issuing a GN or GU call, GSAM places the length of the returned record in this field. This
length field is 4 bytes long.

The formats for variable-length records differ because variable-length records include a length field,
which other records do not have. The length field is 2 bytes. Variable-length I/0 areas, like fixed-length
and undefined-length I/0 areas, can have control characters.

« Without control characters, bytes 0 and 1 contain the 2-byte length field, and the data begins in byte 2.

« With control characters, bytes 0 and 1 still contain the length field, but byte 2 contains the control
characters, and the data starts in byte 3.

GSAM status codes

Your program should test for status codes after each GSAM call, just as it does after each DL/I or system
service call.

If, you find that you have an error and terminate your program after checking the status codes, be sure to
note the PCB in error before you terminate. The GSAM PCB address is helpful in determining problems.
When a program that uses GSAM terminates abnormally, GSAM issues PURGE and CLSE calls internally,
which changes the PCB information.

Status codes that have specific meanings for GSAM are:

AF
GSAM detected a BSAM variable-length record with an invalid format. Terminate your program.

288 IMS: Application Programming

AH
You have not supplied an RSA for a GU call.

Al
There has been a data management OPEN error.

Al
One of the parameters on the RSA that you supplied is invalid.

AM

You have issued an invalid request against a GSAM database.
AO

An I/0 error occurred when the data set was accessed or closed.

GB
You reached the end of the database, and GSAM has closed the database. The next position is the
beginning of the database.

IX
You issued an ISRT call after receiving an Al or AO status code. Terminate your program.

Symbolic CHKP and XRST with GSAM

To checkpoint GSAM databases, use symbolic CHKP and XRST calls.

By using GSAM to read or write the data set, symbolic CHKP and XRST calls can be used to reposition the
data set at the time of restart, enabling you to make your program restartable. When you use an XRST
call, IMS repositions GSAM databases for processing. CHKP and XRST calls are available to application
programs that can run as batch programs, batch-oriented BMPs, or transaction-oriented BMPs.

Restriction: When restarting GSAM databases:

« You cannot use temporary data sets with a symbolic CHKP or XRST call.
« A SYSOUT data set at restart time may give duplicate output data.
« You cannot restart a program that is loading a GSAM or VSAM database.

« The GSAM database data set must have the same data set format (BASIC or LARGE) as when the
symbolic CHKP call was issued.

When IMS restores the data areas specified in the XRST call, it also repositions any GSAM databases

that your program was using when it issued the symbolic CHKP call. If your program was loading GSAM
databases when the symbolic CHKP call was issued, IMS repositions them (if they are accessed by BSAM).
If you make a copy of the GSAM data set for use as input to the restart process, ensure that the short
blocks are written to the new data set as short blocks, for example, using IEBGENER with RECFM=U for
SYSUT1. You can also do the restart using the original GSAM data set.

During GSAM XRST processing, a check is made to determine if the GSAM output data set to be
repositioned is empty, and if the abending job had previously inserted records into the data set.

GSAM coding considerations

The calls your program uses to access GSAM databases are not the same as the DL/I calls. The system
service calls that you use with GSAM are symbolic CHKP and XRST.

The following table summarizes GSAM database calls. The five calls you can use to process GSAM
databases are:

« CLSE
* GN
- GU
« ISRT
« OPEN

Chapter 20. Processing GSAM databases 289

The COBOL, PL/I, Pascal, C, and assembler language call formats and parameters for these calls are the
same and are described in the following table. GSAM calls do not differ significantly from DL/I calls, but
GSAM calls must reference the GSAM PCB, and they do not use SSAs.

Java application programs running in Java batch processing (JBP) regions can access GSAM databases by
using the IMS Java dependent region resource adapter.

Table 48. Summary of GSAM calls

Call Formats Meaning Use Options Parameters

CLSE Close Explicitly closes GSAM None function, gsam pcb
database

GNbb Get Next Retrieves next sequential Can supply function, gsam pcb, i/o
record address for RSA area [,rsa name]

to be returned

GUbb Get Unique Establishes position in None function, gsam pch, i/o
database or retrieves a area, rsa name
unique record
ISRT Insert Adds new record at end of Can supply function, gsam pch, i/o
database address for RSA area [,rsa name]
to be returned
OPEN Open Explicitly opens GSAM Can specify function, gsam pcb [, open
database printer or punch option]
control
characters

Related reference

“Accessing GSAM data from a JBP application” on page 686

GSAM data are frequently referred to as z/OS data sets or as flat files. This kind of data is non-hierarchical
in structure. You can access data from GSAM databases from a JBP application.

Origin of GSAM data set characteristics

For an input data set, the record format (RECFM), logical record length (LRECL), and block size (BLKSIZE)
are based on the input data set label.

If this information is not provided by a data set label, the DD statement or the DBD specifications are
used. The DD statement has priority.

An output data set can have the following characteristics:

« Record format

Logical record length
Block size

Other JCL DCB parameters
« DNS type

Specify the record format on the DATASET statement of the GSAM DBD. The options are:

- Vfor variable

VB for variable blocked
F for fixed

FB for fixed blocked

U for undefined

290 IMS: Application Programming

The V, F, or U definition applies and is not overridden by the DCB=RECFM= specification on the DD
statement. However, if the DD RECFM indicates blocked and the DBD does not, RECFM is set to blocked. If
the DD RECFM of A or M control character is specified, it applies as well.

Unless an undefined record format is used, specify the logical record using the RECORD= parameter of
the DATASET statement of DBDGEN, or use DCB=LRECL=xxx on the DD statement. If the logical record
is specified on both, the DD statement has priority. Refer to the following table for the maximum record

length

Table 49. BSAM and VSAM logical record lengths for GSAM data sets by record format

Record Format BSAM logical record length VSAM logical record length
Fixed/Fixed Block 32760 bytes 32760 bytes
Variable/Variable Blocked 32756 bytes 32756 bytes

Undefined 32760 bytes not supported

Specify block size using the BLOCK= or SIZE= parameter of the DATASET statement of DBDGEN, or use
DCB=BLKSIZE=xxx on the DD statement. If block size is specified on both, the DD statement has priority.
If the block size is not specified by the DBD or the DD statement, the system determines the size based on
the device type, unless the undefined record format is used.

The other JCL DCB parameters that can be used, include:

- CODE

« DEN

« DNSTYPE

« TRTCH

« MODE

e STACK

« PRTSP, which can be used if RECFM does not include A or M

- DCB=BUFNO=X, which, when used, causes GSAM to use X number of buffers

Restriction: Do not use BFALN, BUFL, BUFOFF, FUNC, NCP, and KEYLEN.

Related concepts

“GSAM record formats” on page 287

GSAM records are nonkeyed. For variable-length records you must include the record length as the first
2 bytes of the record. Undefined-length records, like fixed-length records, contain only data (and control
characters, if needed).

DD statement DISP parameter for GSAM data sets

The DD statement DISP parameter varies, depending on whether you are creating input or output data
sets and how you plan to use the data sets.

Attention: Specifying the DISP=0LD or DISP=SHR parameter for a normal start with non-empty
data sets will overwrite the existing records from the beginning of the data set.

« For input data sets, use the DISP=0LD parameter.
- For output data sets, consider the following options:

— To create an output data set allocated by the DD statement, set DISP=NEW.

— To add new records to an empty data set when performing normal start or a restart after failure, set
DISP=MOD, DISP=SHR, or DISP=0LD.

— When restarting the step, set DISP=0LD for existing data sets and DISP=MOD for empty data sets.

Chapter 20. Processing GSAM databases 291

— To add new records to an existing non-empty data set when performing a restart after failure, set
DISP=MOD, DISP=SHR, or DISP=0LD. These parameters add new records from the restart point on
the existing data set.

— To add new records to the end of an existing non-empty data set when performing normal start, set
DISP=MOD.

Extended checkpoint restart for GSAM data sets
If you are using extended checkpoint restart for GSAM data sets, these recommendations may apply.

« Do not use passed data sets.

« Do not use backward references to data sets in previous steps.

« Do not use DISP=MOD to add records to an existing tape data set.
« Do not use DISP=DELETE or DISP=UNCATLG.

« Use DFSMS striped data sets under the following conditions:

— When the data sets is managed by SMS.
— When the data sets are likely to exceed the system extent limit for volumes.
- Additionally, keep in mind that:

— No attempt is made to reposition a SYSIN, SYSOUT, or temporary data set.

— No attempt is made to reposition any of the concatenated data sets for a concatenated DD statement
if any of the data sets are a SYSIN or SYSOUT.

— If you are using concatenated data sets, specify the same number and sequence of data sets at
restart time and checkpoint time.

— GSAM/VSAM load mode restrictions apply to both non-striped and striped data sets.

— If the PSB contains an open GSAM VSAM output data set when the symbolic checkpoint call is issued,
the system returns an AM status code in the database PCB as a warning. This means that the data set
is not repositioned at restart and the checkpoint has completed normally.

— Ifan ISRT call is issued after a CLSE call and the GSAM data set is defined as DISP=0LD, all CHKP
calls made prior to the CLSE call will contain invalid reposition information. Ensure a CHKP call is
issued after a CLSE all when using DISP=0LD to avoid an abend U0271 after an extended restart
(XRST).

Copying GSAM data sets between checkpoint and restart

To position GSAM data sets when restarting non-striped GSAM DASD data sets, use the relative track and
record format (TTRZ or TTTRZ for large format data sets).

GSAM uses the TTRZ or TTTRZ on the volume to position non-striped GSAM DASD data sets when
restarting. For a tape data set, the relative record on the volume is used. The relative record on the tape
volume cannot be changed.

To copy non-striped DASD data sets between checkpoint and restart:

« Copy the data set to the same device type.

« Avoid any reblocking by using the undefined record format (RECFM=U) for both the input and the output
data set.

Each copied volume contains the same number of records as the original volumes.

Note: GSAM uses the relative block number (RBN) to reposition striped DASD data sets. When data sets
that are managed by SMS are used with GSAM databases, you cannot control how each volume is copied.
After the data set is copied, unlike with non-striped DASD data sets, you do not need to ensure that the
TTRZ or the TTTRZ of the restart record is unchanged.

292 IMS: Application Programming

Converting data sets from non-striped data sets to striped data sets

Convert GSAM/BSAM non-striped data sets to striped data sets before you must perform an extended
restart when a system allocation limit is exceeded or a system X'37' error condition occurs. Non-striped
data sets that are not managed by SMS extend beyond their initial primary or secondary allocation only
by volume, but with non-striped GSAM/BSAM multiple volume data sets that are managed by SMS, the
resulting new space allocation takes effect for all of the volumes in the data set.

If you copy non-striped data sets that are managed by SMS after you change the space allocation values,
the number of records in the new volumes will be different from the number of records in the old volume.
The new primary and secondary allocation values are used with non-striped data sets. As the data is
copied, all of the space that is allocated on the new volume is used before the data is copied to the next
volume.

If an error condition (system X'37' or system allocation limit exceeded) occurs during the processing of

a GSAM/BSAM non-striped data set, and the data set is converted to a striped data set after the error
occurs, a restart after failure will not complete successfully. Because the issued checkpoint saved a TTRZ
ora TTTRZ value in the log record for repositioning, the log record for striped data sets will be used by
GSAM restart after failure, which requires a relative block number (RBN) to perform the repositioning.

Concatenated data sets used by GSAM

GSAM can use concatenated data sets, which may be on unlike device types, such as DASD and tape, or
on different DASD devices. Logical record lengths and block sizes can differ, and it is not required that the
data set with the largest block size be concatenated first.

The maximum number of concatenated data sets for a single DD statement is 255. The number of buffers
determined for the first of the concatenated data sets is used for all succeeding data sets. Generation
data groups can result in concatenated data sets.

Specifying GSAM data set attributes

When specifying GSAM data set attributes, the following settings are recommended.

« On the DBD, specify RECFM. (It is required.)

« On the DATASET statement, specify the logical record length using RECORD=. If the data set can
become larger than 65535 tracks on a DASD volume and you want the data set to not span multiple
volumes, specify the DSNTYPE=LARGE parameter.
