Vibration analysis (or vibration monitoring) is a powerful diagnostic tool for identifying, monitoring and preventing mechanical failures in rotating and reciprocating machinery. It’s an essential component of predictive maintenance programs, allowing technicians to detect developing problems in equipment before they lead to costly unplanned downtime or catastrophic failures.
Vibration analysis—a component of condition monitoring systems—utilizes vibration sensors to measure frequencies in an asset and detect abnormalities that may indicate a problem. At its core, vibration analysis is the study of the oscillatory motions of machines and their components around an established equilibrium point. These oscillations can result from a number of issues, including imbalances, misalignments, looseness, bent shafts and bearing defects, among others.
By measuring and analyzing machine vibrations, technicians can better assess the health and performance of equipment, enabling them to pinpoint issues and implement corrective actions. And since rotating and reciprocating components (e.g., motors, compressors, pumps, etc.) tend to vibrate more intensely and more loudly as they age, analyzing changes in vibration can help maintenance managers monitor machine conditions in real-time and proactively identify asset wear and damage.
Vibrations are multidimensional, so vibration testing requires an understanding of various parameters. The primary parameters are amplitude, frequency and phase:
Vibration analyzers can use these factors—along with others like waveform shape and harmonic content—to identify specific machine faults and their severity.
There are also two major types of vibrations:
In today’s competitive industrial landscape, ensuring the smooth operation and longevity of your machinery is paramount. Following a step-by-step vibration analysis process can help you leverage machine vibrations to better understand equipment and system health.
To conduct a vibration analysis, start by gathering data about the equipment and/or structure you will analyze. Be sure to identify the location and type of sensors you will need for vibration measurements, including any amplitude and frequency ranges, as the sensors will serve as your data collectors throughout the process. It is also important to gather information about the operating conditions of the equipment, such as speed, load and temperature.
The next step in the process is measuring vibrations from the chosen machinery. Vibration analysis typically involves measuring the vibration amplitude of an asset or system.
In this case, you will rely on an accelerometer attached to key vibration sites to take measurements. Accelerometers (e.g., Piezoelectric accelerometers, proximity probes, Laser Doppler vibrometers, etc.) use high-frequency responses to measure the acceleration of a vibrating object in three directions: up-and-down, side-to-side and front-to-back.
You can also measure vibrations using velocity sensors and displacement sensors. Velocity sensors measure the velocity of a vibrating object, offering a mid-frequency response ideal for monitoring overall machine health. Displacement sensors, on the other hand, measure the displacement of a vibrating object, providing a low-frequency response suitable for detecting structural issues and imbalances.
Once you’ve collected all the relevant data, it’s time to analyze it. The analysis stage will require you to use computer algorithms and software to identify vibration patterns and data trends, and you’ll need to compare the data to established standards and guidelines.
Maintenance teams can utilize a variety of techniques to analyze vibration data, including the following:
A successful analysis will require vibration analysts to understand the specific frequencies associated with various mechanical issues. Some common fault frequencies include the following:
Once you identify potential issues in the interpretation stage, set alarm thresholds that trigger a response when vibrations exceed them. These thresholds can be based on industry standards, historical data or manufacturer recommendations. The most commonly used types of alarm thresholds are absolute thresholds, trending thresholds and statistical thresholds.
When a system or asset exceeds the alarm threshold, the maintenance manager should take appropriate action to address the issue. This may involve scheduling maintenance, adjusting operating parameters or conducting further analysis to pinpoint the cause of the problem.
Implementing vibration analysis as part of a predictive maintenance program offers numerous benefits:
The versatility of vibration analysis makes it a useful methodology across a wide range of industries and equipment types.
Manufacturing plants use vibration analysis to monitor the condition of motors (including electric motors), gearboxes, conveyors and machine tools. The vibration data can be used to optimize production processes, reduce the risk of equipment failure and improve overall plant efficiency.
In the automotive industry, vibration analysis plays a significant role in designing, developing and testing components. Analyzing the vibration characteristics of engines, transmissions and suspension systems can help engineers optimize their designs for improved real-world performance and reliability and increased passenger comfort.
In the aerospace industry, vibration analysis enables engineers to identify and address issues like excessive vibration, resonance or material fatigue to enhance the reliability and longevity of aircraft systems. And in the wind power sector, vibration analysis helps turbine operators monitor turbine health in order to identify blade imbalances, gearbox failures and/or bearing defects.
Vibration analysis is an invaluable tool in the world of predictive maintenance, offering organizations the ability to detect machine faults early on. Understanding the principles of vibration analysis and using advanced software like IBM Maximo Application Suite can help maintenance teams significantly improve the reliability, efficiency and safety of their equipment.
IBM Maximo is an integrated platform that helps manufacturing companies optimize asset performance and streamline day-to-day operations. With Maximo, teams can set up meters for observing and measuring asset health and connect those meters to vibration sensors installed on key assets, helping them more easily store and access machine data.
Using an integrated AI-powered, cloud-based platform, Maximo offers CMMS, EAM and APM capabilities that produce advanced vibration data analytics and help managers make smarter, more data-driven maintenance decisions.
As industries continue to evolve and adopt new technologies, vibration analysis will remain at the forefront of maintaining machine health and ensuring optimal performance. By leveraging IBM Maximo’s advanced features and capabilities, companies can transform maintenance operations to keep pace with the ever-shifting manufacturing landscape.
Identify the best asset performance management (APM) software that fits your needs.
Learn how your organization can achieve significant value by using IBM Maximo to manage its fleet of assets.
Increase uptime, improve productivity, reduce maintenance costs and build more resilient operations with IBM's unified asset management solution.
Discover how Sund & Bælt uses IBM's Maximo software to monitor and manage its critical infrastructures.
Learn how VPI pushes forward on the path to net zero with IBM Maximo software.
Transport for London keeps the public moving safely, reliably and sustainably when it centralizes its maintenance efforts on IBM Maximo software.