August 8, 2023 By Yasmin Rajabi 2 min read

In recent years, the rapid adoption of Kubernetes has emerged as a transformative force in the world of cloud computing. Organizations across industries have been drawn to Kubernetes’ promises of scalability, flexibility and streamlined application deployment. However, while Kubernetes offers an array of benefits in terms of application management and development efficiency, its implementation is not without challenges. As more businesses migrate to Kubernetes-driven environments, an unintended consequence has become increasingly apparent: a surge in cloud costs. The very features that make Kubernetes so attractive are also contributing to a complex and dynamic cloud infrastructure, leading to new cost drivers that demand careful attention and optimization strategies.

For example, inaccurate resource requests set on workload resources in Kubernetes can lead to massive over-provisioning of resources, causing significant increases in cloud costs. When resource requirements are overestimated, Kubernetes will scale the underlying infrastructure, leading to waste. This inefficient utilization can create workload scheduling issues, hamper cluster performance and trigger additional scaling events, further amplifying expenses. Mitigating these issues, particularly at scale, has proven to be a tremendous challenge.

Furthermore, right-sizing workload resources in Kubernetes is challenging at scale due to the sheer volume and diversity of applications. Each has varying resource demands, making it complex to accurately determine optimal resource allocations for efficient utilization and cost-effectiveness. As the number of deployments increases, manual monitoring and adjustment become impractical, necessitating automated tools and strategies to achieve effective right-sizing across the entire cluster.

Modernization requires continuous optimization

To continuously right-size Kubernetes workload resources at scale, three key elements are crucial. First, resource utilization needs to be continuously tracked across all workloads deployed on a cluster, enabling continuous assessment of resource needs accurately. Next, machine learning capabilities play a vital role in optimizing resource allocations by analyzing historical data and predicting future resource demands for each deployment. Lastly, automation is needed to proactively deploy changes and reduce toil on developers. These technologies ensure that Kubernetes resources are efficiently utilized, leading to cost-effectiveness and optimal workload performance across the entire infrastructure.

StormForge Optimize Live delivers intelligent, autonomous optimization at scale

StormForge Optimize Live combines automated workload analysis with machine learning and automation to continuously optimize workload resource configurations at enterprise scale.

Optimize Live is deployed as a simple agent, automatically scans your Kubernetes cluster for all workload types and analyzes their usage and settings with machine learning. Right-sizing recommendations are generated as patches and are updated continuously as new recommendations come in.

These recommendations can be implemented quickly and easily by integrating the recommendations into your configuration pipeline, or they can be implemented automatically, putting resource management on your Kubernetes cluster on autopilot.

StormForge users see much-improved ROI in their cloud-native investments while eliminating manual tuning toil—freeing up engineering bandwidth for higher-value initiatives.

Now available in the IBM Cloud catalog

Sign up for a 30-day free trial of StormForge Optimize Live to get started.

Deploy StormForge Optimize Live on IBM Cloud Kubernetes Service clusters via the IBM Cloud catalog
Was this article helpful?
YesNo

More from Cloud

A major upgrade to Db2® Warehouse on IBM Cloud®

2 min read - We’re thrilled to announce a major upgrade to Db2® Warehouse on IBM Cloud®, which introduces several new capabilities that make Db2 Warehouse even more performant, capable, and cost-effective. Here's what's new Up to 34 times cheaper storage costs The next generation of Db2 Warehouse introduces support for Db2 column-organized tables in Cloud Object Storage. Db2 Warehouse on IBM Cloud customers can now store massive datasets on a resilient, highly scalable storage tier, costing up to 34x less. Up to 4 times…

Manage the routing of your observability log and event data 

4 min read - Comprehensive environments include many sources of observable data to be aggregated and then analyzed for infrastructure and app performance management. Connecting and aggregating the data sources to observability tools need to be flexible. Some use cases might require all data to be aggregated into one common location while others have narrowed scope. Optimizing where observability data is processed enables businesses to maximize insights while managing to cost, compliance and data residency objectives.  As announced on 29 March 2024, IBM Cloud® released its next-gen observability…

The recipe for RAG: How cloud services enable generative AI outcomes across industries

4 min read - According to research from IBM®, about 42% of enterprises surveyed have AI in use in their businesses. Of all the use cases, many of us are now extremely familiar with natural language processing AI chatbots that can answer our questions and assist with tasks such as composing emails or essays. Yet even with widespread adoption of these chatbots, enterprises are still occasionally experiencing some challenges. For example, these chatbots can produce inconsistent results as they’re pulling from large data stores…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters