A SAN (storage area network) is a tightly coupled, dedicated network of storage devices that provides a shared pool of storage and appears to each user on the network as if it were connected directly to the computer. A SAN connects via Fibre Channel and uses switches to manage storage data traffic. It is designed for quick, low-latency data access and easy scalability.
NAS (network-attached storage) refers to a file-level storage server connected to a computer network, providing data access to a group of users on that network. A NAS system connects via an Ethernet network and has redundant data structures for resiliency. It’s designed to be an affordable and easy-to-maintain network storage option.
SAN storage solutions are block storage-based, meaning data is split into storage volumes that can be formatted with different protocols, such as iSCSI or Fibre Channel Protocol (FCP). A SAN can include hard disks or virtual storage nodes and cloud resources, known as virtual SANs or vSANs.
SAN configurations are made up of three distinct layers:
When User A wants to collaborate on a file with User B, who is at another location, they will look up the file on a networked device, triggering a request to access a file made at the host layer. The request is then processed through a server across the network, or fabric layer, using data access protocols. The data is then retrieved from the data pool within the storage layer. User A can make changes, and because SANs deliver low-latency data storage and updates, User B can access the file, see the changes and add their own changes in real time.
Another approach to SAN storage is through a vSAN (i.e., a virtual storage area network). Instead of storing data on hardware like a data drive, vSANs provide storage on virtual machines (VMs), often hosted on a server. VMs are the fundamental units in cloud computing, allowing companies the ability to run and scale applications and workloads effectively and efficiently. A vSAN taps into the flexibility, scalability and security of cloud computing for shared storage and data access throughout an organization and at various locations.
NAS storage systems are file storage-based, meaning the data is stored in files that are organized in folders under a hierarchy of directories and subdirectories. Unlike direct attached storage — which can be accessed by one device — the NAS file system provides file storage and sharing capabilities between devices.
A NAS system is built using the following elements:
When a user makes a request for a file stored on a NAS, the request is sent to the NAS box, the request is managed by the operating system and software, while the data is retrieved using protocols, such as SMB (server message block) — an application-level protocol used for shared access to files — or NFS (network file system) — which allows users to view, store and update files in a remote system. The data is then sent in packets to the user’s device using the TCP/IP protocol via a central server, or switch.
Both SAN and NAS systems are network-based storage solutions aimed at providing multiple users 24/7 access to data on-premises and remotely. Here are some differences between the two approaches.
There are times when NAS is the better choice, depending on the company’s needs and application:
Low-latency and scalability make SANs the preferred choice in these cases:
Companies today have a wide range of storage technologies to choose from. That’s why it’s important to understand the different options, their functionality and the right use cases for the different storage methods. IBM offers a number of storage solutions to address today’s modern business needs.
To learn more about the power of SAN, read our overview of storage area networks and IBM’s SAN solutions.
Network-attached storage plays an important role in maintain business data reliably. IBM’s NAS solutions, offered through Tivoli Storage Manager, help businesses protect themselves against data failures.
Want to learn more about your data storage options? Read our overview — “What Is Data Storage?” — to compare options and learn about the solutions IBM offers.
Explore the essentials of data security and understand how to protect your organization's most valuable asset—data. Learn about the different types, tools and strategies that will help safeguard sensitive information from emerging cyberthreats.
This on-demand webinar will guide you through best practices for increasing security, improving efficiency and ensuring data recovery with an integrated solution designed to minimize risk and downtime. Don’t miss insights from industry experts.
Learn how to overcome your data challenges with high-performance file and object storage, designed to enhance AI, machine learning and analytics processes while ensuring data security and scalability.
Learn about the types of flash memory and storage and explore how businesses are using flash technology to enhance efficiency, reduce latency and future-proof their data storage infrastructure.
Learn how IBM FlashSystem boosts data security and resilience, protecting against ransomware and cyberattacks with optimized performance and recovery strategies.
Unlock the power of cyber resilience and sustainability with IBM FlashSystem. Explore how autonomous data storage can help you secure your data, reduce costs, and elevate operational efficiency.
Virtualize your storage environment and manage it efficiently across multiple platforms. IBM Storage Virtualization helps reduce complexity while optimizing resources.
Accelerate AI and data-intensive workloads with IBM Storage for AI solutions.