My IBM Log in

September 11, 2020 By Jennifer Clemente 3 min read

When it comes to driving change in business priorities and practices, data and AI can be an industry leader’s best ally – and that in turn, can be better for the environment.

Greater transparency and deeper insights introduce much-needed changes to the way organizations produce, sell, transport and consume, with the aim of dramatically reducing harm to the planet.

The fashion industry is well-suited to transform its notoriously wasteful manufacturing practices with AI. The second-most-polluting sector after oil and gas, fashion consumes thousands of liters of water to produce a single item of clothing that takes more than 200 years to biodegrade.

What’s worse, many fast-fashion seasons occur monthly, leaving 80% of a season’s garments out of fashion in weeks. A whopping 24% of all products remain unsold – even after deep discounts on those unsold at full price. The industry churns out USD 300 billion in unsold inventory that ends up in giant landfills. It’s a problem amplified by our socially distanced “one-click” shopping habits.

Lacking the ability to try before we buy, 40% of us are likely to return impulsive purchases to the retailer. This is costly to the merchant and creates significant additional transportation and CO2 emissions. But using AI to help customers purchase items that fit their physical dimensions and their preferred style, merchants can slash their return rate dramatically.

Waste not want not. Are fall wellies in your cart?

Overseeing 20 fashion brands for women, men, teens and children such as Jack & Jones and Vero Moda, Bestseller wanted to recover a 2019 dip in popularity of its ONLY brand while at the same time, face the elephant in the room – sustainability.

At the corporate level, Bestseller launched its “Fashion FWD” initiative to drive sustainable fashion. To support this worldwide effort, Bestseller India saw a high-value opportunity to develop and digitize smarter design and planning tools to minimize waste early in the creative process. By designing and producing apparel that more accurately matches market demand, the clothing company could reduce the high economic and environmental costs of unsold inventory, answering such questions as:

  • Why aren’t these boots selling better?
  • What impact would changing the price have?
  • How do these boots sell across various stores?
  • How have similar products from prior collections performed?

Together with IBM® Garage™, Bestseller launched Fabric.ai, the fashion industry’s first AI project aimed to increase sell-through rate and reduce unsold inventory. Fabric AI is an IBM Cognitive Enterprise innovation project delivered by IBM Services®. A managed platform as a service (PaaS) offering that met Bestseller India’s requirements, the solution is deployed to the IBM Cloud® Kubernetes Service.

IBM Garage ran an intensive IBM Garage Enterprise Design Thinking Workshop to help Bestseller India experts create a roadmap for co-creation, beginning with user research. From there, the project focused on creating intelligent workflows for key business processes. IBM Watson® AI tools predict the best products to incorporate into new offerings, determine the right product mix for each store and improve the efficiency of the supply chain.

Fashion.ai unveils the mystery of fashion trends

Integrating IBM Watson APIs – Natural Language Search, Visual Browse and Visual Search – into existing workflows, Fabric.ai is an explainable sales analysis and forecasting asset that examines sales to help predict future sales for new products at different stages of product design and development.

Explainable sales forecasting models not only improve the trustworthiness of model outputs but also provide transparency for all stakeholders involved in product development and launches –improving accountability and fostering a collaborative environment among stakeholders with competing needs. Secondly, designers, buyers, planners and merchandisers benefit from explainable AI-based interventions during preseason, in-season and end-of-season decision making. For example, for markdowns, Fabric.ai provides designers with information about the product’s probable success down to the attribute level. This means the client receives advice about products to mark down, when and by how much.

Other Fabric.ai features:

  • Compares new products with similar products from the past season to reveal how these products may performed in the future.
  • Forecasts sell-through rate for new products based on product attributes and/or product images.
  • Uses explainable sales analysis for past seasons to reveal why the product did – or did not – sell well.
  • Provides what-if-analysis of product attributes to enable designers and buyers to make informed decisions for product attributes.
  • Delivers customized data to help designers, merchandisers and buyers choose optimal assortments with their domains.

In this presentation, hear from Bestseller how IBM data and AI enhances Bestseller’s brand and brings sustainable fashion forward.

Power digital transformation with new ways of working, leading technologies and multidisciplinary experts. See how IBM Garage works.

Was this article helpful?
YesNo

More from Business transformation

Attention new clients: exciting financial incentives for VMware Cloud Foundation on IBM Cloud

4 min read - New client specials: Get up to 50% off when you commit to a 1- or 3-year term contract on new VCF-as-a-Service offerings, plus an additional value of up to USD 200K in credits through 30 June 2025 when you migrate your VMware workloads to IBM Cloud®.1 Low starting prices: On-demand VCF-as-a-Service deployments begin under USD 200 per month.2 The IBM Cloud benefit: See the potential for a 201%3 return on investment (ROI) over 3 years with reduced downtime, cost and…

Empower your technical staff with hands-on technology training

2 min read - With a vast amount of technology training and education available today, it’s difficult to know what deserves your attention and what’s just a marketing ploy. Furthermore, most training and education in technology is only offered through text or video, meaning that the learner doesn’t have an opportunity to apply the theory that they are learning. This naturally reduces the effectiveness of the training. Few programs offer to integrate and weave new training into the pre-existing training that is offered within…

7 customer experience trends in 2024

6 min read - Customer experience (CX) defines a customer’s journey with a company, including both direct and indirect touchpoints. Businesses that place the emotional needs of the buyer persona at the forefront of the customer experience strategy fosters great relationships. Forrester reports that customer experience is a high priority for about 75% of global business and technology professionals and their organizations. However, finding ways to increase customer engagement and brand loyalty can be a challenge. Here are seven customer experience trends that can…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters
Overview Annual report Corporate social responsibility Inclusion@IBM Financing Investor Newsroom Security, privacy & trust Senior leadership Careers with IBM Website Blog Publications Automotive Banking Consumer Good Energy Government Healthcare Insurance Life Sciences Manufacturing Retail Telecommunications Travel Our strategic partners Find a partner Become a partner - Partner Plus Partner Plus log in IBM TechXChange Community LinkedIn X Instagram YouTube Subscription Center Participate in user experience research Podcasts United States — English Contact IBM Privacy Terms of use Accessibility