Lately, we have been bombarded by 5G advertisements from telecommunications companies and service providers. And why not? Innovation in artificial intelligence (AI) applications has exploded with the advent and adoption of edge computing, and 5G has redefined the landscape of edge computing. It is fueling and accelerating the adoption of edge and AI technologies. Practical applications of 5G can be seen in the current pandemic environment in myriad examples. Billed as offering high bandwidth and low latency, these examples span many uses cases, from remote learning and gaming to sports viewing.
The combination of edge computing with 5G technology creates opportunities to enhance digital experiences, improve performance, and support data security. This blog post hopes to provide an introduction to 5G from an edge computing perspective.
Please make sure to check out all the installments in this series of blog posts on edge computing:
We have seen in earlier blog posts that edge computing enables new business opportunities across multiple industries. To understand what or how 5G enhances these use cases, let’s first get familiar with some 5G-related terminology:
To meet the requirements for scale, throughput, latency, and reliability, 5G architecture has adopted Network Function Virtualization (NFV) and native cloud standards/technologies to streamline network and service deployment, operations, and management.
Leveraging 5G features like enhanced Mobile Broadband (eMBB), Ultra Reliable Low Latency Communications (URLLC), and massive Machine Type Communications (mMTC), edge computing use cases broadly fall into five categories, as shown in Figure 1. These categories represent a subset of all Multi-access Edge Computing (MEC) applications.
Let’s elaborate each of these categories:
Given that 5G is closely related to telecom, a topology is best illustrated by a telco network topology with 5G and edge computing components, as depicted in Figure 2.
Some of the key components that make up the above topology are as follows:
As shown above in Figure 2, sensors and other far edge devices (as they are sometimes referred to) capture relevant information. Edge devices may also perform processing of data before sending it to the MEC, while sensors will transmit data as-is to the MEC. A 5G network will transmit the data through the radio heads and vRAN to the application running on the MEC. The application may also run on the core network or other backhaul components instead of the MEC, but such applications will have higher latency than those running on the MEC.
Previous blogs have described how a product like IBM Edge Application Manager (IEAM) can autonomously deploy workloads to remote edge nodes and can manage these workloads. This is done from a management hub cluster running Red Hat OpenShift Container Platform or other Kubernetes-based clusters. The IEAM management hub is designed specifically for edge node management to minimize deployment risks and to fully manage the service software lifecycle on edge nodes autonomously.
True 5G applications are latency sensitive and telco’s network edge Public/Private MEC enables new edge nodes for deployment. IEAM’s policy-based configuration function not only simplifies the placement of workloads, but does it autonomously and at scale.
With 5G and smart edge computing devices, we expect to see a surge in data at the edge, and data combined with AI can fuel innovation. The ability to harness the power of data and edge computing by leveraging real-time edge analytics is revolutionizing the digital landscape.
The IBM Cloud architecture center offers up many hybrid and multicloud reference architectures, including AI frameworks. Look for the edge computing reference architecture and related articles.
This blog introduced telecom edge and showed how 5G and edge technologies are inextricably linked. We shared our insights on 5G and provided examples of emerging 5G edge use cases. We hope this article sparks new thinking and innovation around the power of 5G and edge can bring.
Thanks to Jason Gonzalez for reviewing the article. Please make sure to check out all the installments in this series of blog posts on edge computing: