

 Page 1 of 11 “Understanding UCM Deliver Dependencies”

Understanding ClearCase UCM Deliver

Dependencies

Joseph Bucanelli

July 14, 2008

 Page 2 of 11 “Understanding UCM Deliver Dependencies”

INTRODUCTION ..3

ACTIVITY DEPENDENCIES..4
Figure 1 Dependencies Found ...4

CHANGE SET DEPENDENCIES ..5
Figure 2 Change Set Dependency..5
Figure 3 Self-Inflicted Change Set Dependency ...6
Figure 4 Rebase “Forced” Change Set Dependency..7

BASELINE DEPENDENCIES ...7
Figure 5 Explicit Baseline Dependency...9
Figure 6 Deliver Baseline Dependencies...10

SOLVING THE MYSTERIES OF ACTIVITY DEPENDENCIES ..11

 Page 3 of 11 “Understanding UCM Deliver Dependencies”

Introduction

IBM® Rational® ClearCase® UCM (Unified Change Management) reports a
dependency when one or more element versions depend on one or more other
element versions. These dependencies are often discovered when performing a
UCM delivery. UCM dependencies are often considered a defect in the operation
of normal UCM functionality when in fact they are not. In actuality dependencies
are created on purpose to avoid the possible destruction of data.

This white paper further defines what a dependency is and what causes them, as
well as some basic workarounds and their ramifications. It will not conclude
status of any defects that may or may not be related to dependency issues.

This document is designed to be read by ClearCase UCM Administrators who are
responsible for their organizations UCM integration operations.

Before proceeding you should have an understanding of the general UCM
concepts covered in the Understanding UCM section of IBM Rational ClearCase
Managing Software Projects.

Additional References:
About activity dependencies in the deliver operation
How activities are delivered
Dependency relationships in composite baselines of ordinary components
Dependency Relationships in pure composite baselines

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_ovw_ch.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/about_activity_depend.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/how_deliver_activity.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_ucm_pln_ordcompbl.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pln_bl_prcompst_dpnd.htm

 Page 4 of 11 “Understanding UCM Deliver Dependencies”

Activity Dependencies

Activity dependencies come about when selective delivers are performed, as
a result of a consistency check (see Figure 1), which often poses a problem.

Figure 1 Dependencies Found

All UCM dependencies fall under the scope of an activity dependency. There
are two categories that activity dependencies can fall into: change set
dependencies and baseline dependencies.

Users who work on the same files simultaneously across different activities in
the same stream can create dependencies knowingly. These dependencies
can also be forced on users by rebase operations that are performed while
work is still pending in a source stream. These are more commonly known as
change set dependencies or overlapping change sets.

In multi-tier stream strategies, baselines may be purposely created in
development streams (that act as intermediate collection points). But, under
the covers, baselines are created by deliveries out of the stream. These
dependencies are unfortunate, and misunderstood. This is a known function
of UCM and can cause a pain point when encountered. These are more
commonly known as baseline dependencies.

 Page 5 of 11 “Understanding UCM Deliver Dependencies”

Change Set Dependencies

Change set dependencies are probably the most common (and most
understandable) form of activity dependencies.

Figure 2 Change Set Dependency

Integration

7

8
Joe Dev

 Activity A

 Activity B

Integration

trans1 BL3

Joe Dev BL3

1

2

 Page 6 of 11 “Understanding UCM Deliver Dependencies”

In the case of Figure 2, Activity B cannot be delivered without also including
Activity A. This is really no different than a Base-ClearCase findmerge
operation from branch to branch. Base ClearCase would also make you
include the changes in version 1 when merging the changes from version 2 to
the integration branch.

In many cases change set dependencies are self-inflicted and this is very
normal. Refer to Figure 3 for an example of a “normal” self-inflicted change
set dependency.

Figure 3 Self-Inflicted Change Set Dependency

In the case of Figure 3 Act D is dependent on Act B as well as Act C, because
Act D has a version in its change set that is a successor to a version in Act C
and Act B.

 Act B

Fix 3 Act D

 Act C

 Act A

Data.java

J
User.java

J
Web.xml

< >
Index.html

Web

Deliver

 Page 7 of 11 “Understanding UCM Deliver Dependencies”

In rare cases dependencies can also be forced as the result of a rebase that
was performed before all work was finished in the pending source stream.
Figure 4 shows an example.

Figure 4 Rebase “Forced” Change Set Dependency

Much like the example in Figure 3 which demonstrated overlapping change
sets, activity Unfinished is not ready to be delivered which is holding up the
delivery of other activities as a result of a rebase causing change set
dependencies. The Hotfix activity is dependent on Act 2 while Act 1 is
dependent on Unfinished as a result of having successor versions as change
sets. Since Rebase makes Act1, Act 2, and Act 3 dependent on each other,
the delivery cannot be performed without including Unfinished.

Baseline Dependencies

 Rebase

Fix 3 Hotfix

 Act 3 Act 2 Act 1

 Unfinishe

Data.java

J
User.java

J
Index.html

Web

Deliver

Web.xml

< >

 Page 8 of 11 “Understanding UCM Deliver Dependencies”

The existence of baselines in a source stream will impact which activities can
be selectively delivered from that stream. In short, UCM will only allow
delivery of selected activities that have not already been included in any
baseline on the source stream (not included in any previous deliveries out of
that stream).

Sometimes baselines are explicitly created in a source stream. However,
many times users may not be aware of such baselines because, in some
cases, baselines in a source (development) stream are created under the
covers by UCM deliveries and not explicitly by a user. Deliver baselines are
unlabeled and don’t even show up (by default) in the baseline browser GUI.

Once an activity has been included in a baseline on the source stream, then it
MUST be delivered in any subsequent delivery from that source stream.

In some cases, baselines are explicitly made and create a baseline
dependency. Sometimes users and/or project managers will intentionally
create baselines in a development stream. This isn’t common in a relatively
flat stream hierarchy, however, this can be very common in a nested stream
hierarchy. When activity dependencies occur in these scenarios, they are
more understandable to end-users. Refer to Figure 5 for an example of an
explicitly created baseline dependency.

 Page 9 of 11 “Understanding UCM Deliver Dependencies”

Figure 5 Explicit Baseline Dependency

A baseline is intentionally created in this intermediate stream as a checkpoint
(for dev stream rebasing purposes). Only “deliverC” and “Integ Act” (the two
activities not already included in a baseline on the Core_Team stream) are
eligible for selective delivery from this stream. And even in this case, if you
were to try to deliver either deliverC and/or Integ Act to the integration stream,
you would still be told that they are dependent upon deliverA and deliverB. If
you only tried to deliver deliverB to the integration stream, then UCM would
simply tell you that you must also include deliverA (since they are included in
the same baseline on the source stream). Once those two activities were
delivered to the integration stream, then it would be possible to selectively
deliver either deliverC and/or Integ Act to the integration stream (assuming
that they are not change set-dependent).

Jim Core Dev
BL1

Jill Core dev
BL1

Core Team
BL1

Integration

BL1

BL2

CORE BL1

 deliver B

 deliver A Activity A Activity B

 Activity C

 deliver C

 Integ Act

Deliver
CORE BL2

 Page 10 of 11 “Understanding UCM Deliver Dependencies”

Another baseline dependency is where someone unknowingly caused an
under-the-covers baseline creation, more commonly known as a “deliver
baseline” dependency. Refer to Figure 6.

Figure 6 Deliver Baseline Dependencies

In this scenario two sibling development streams exist within a UCM project
and Developer 1 works on several activities in the context of Dev_stream1.
Developer 1 delivers only a selected activity (Activity A) to Dev_stream2 as an
alternate-target deliver. Developer 1 now tries to deliver a different selected
activity (Activity B) to the project’s integration stream as a default-target
deliver.

UCM complains that Activity B has dependencies on Activity A. Developer 1
must include activity A when delivering to the integration stream (because
Activity A is now in a baseline). This behavior is expected and occurs even
though activity A and activity B have NO CHANGE SET DEPENDENCY!

The existence of this (unlabeled) deliver baseline forces the inclusion of
Activity A for any subsequent deliveries out of Dev_stream1.

 In this particular case, *any* subsequent delivery out of Dev_stream1 to
any target must minimally contain Activity A. In other words, only activities
that have not been included in any baselines on the source stream are eligible
for selected activity delivery. The first delivery of Activity A to the second

Dev_stream1

trans1

BL1 Dev_stream2

trans1
Dev_stream1

BL1

Integration

Dev_stream2

BL1

 Act A

 Act B

Deliver

Deliver

 Page 11 of 11 “Understanding UCM Deliver Dependencies”

developer’s stream has created a case whereby Activity A must now be
included in any subsequent delivery from Dev_stream1 to any other target
because it is now included in a deliver baseline in the source stream. Also,
after the completion of the second delivery (of both A and B to the project’s
integration stream), now *any* subsequent deliveries out of Dev_stream1 to
any other target stream must include both A and B (since both are now
included in baselines on the source stream).

Solving the Mysteries of Activity Dependencies

An obvious solution would be to deliver everything or minimally the selected
activity and its dependents (not ideal if that’s not what you want to do).
Another alternative might be to work in a one-activity-per-stream model. This
will always avoid this particular problem by isolating work on each activity in
its own stream, although this model introduces overhead and potentially more
complexity.

References

 Credits

Author: Joseph Bucanelli

Special Thanks: Peter Klenk, Shirley Hui, Yuhong Yin, Johnathan Aibel, Ying Ma,
Kent Seith, Ryan Sappenfield, Jim Tykal, Dave Bellagio, Ralph Capasso.

	 Introduction
	Activity Dependencies
	Figure 1 Dependencies Found
	 Change Set Dependencies
	Figure 2 Change Set Dependency
	Figure 3 Self-Inflicted Change Set Dependency
	Figure 4 Rebase “Forced” Change Set Dependency

	Baseline Dependencies
	Figure 5 Explicit Baseline Dependency
	Figure 6 Deliver Baseline Dependencies

	Solving the Mysteries of Activity Dependencies

