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Introduction 
 
IBM® Rational® ClearCase® UCM (Unified Change Management) reports a 
dependency when one or more element versions depend on one or more other 
element versions. These dependencies are often discovered when performing a 
UCM delivery.  UCM dependencies are often considered a defect in the operation 
of normal UCM functionality when in fact they are not.  In actuality dependencies 
are created on purpose to avoid the possible destruction of data.    
 
This white paper further defines what a dependency is and what causes them, as 
well as some basic workarounds and their ramifications.  It will not conclude 
status of any defects that may or may not be related to dependency issues.  
 
This document is designed to be read by ClearCase UCM Administrators who are 
responsible for their organizations UCM integration operations.   
 
Before proceeding you should have an understanding of the general UCM 
concepts covered in the Understanding UCM section of IBM Rational ClearCase 
Managing Software Projects. 
 
Additional References: 
About activity dependencies in the deliver operation 
How activities are delivered 
Dependency relationships in composite baselines of ordinary components 
Dependency Relationships in pure composite baselines 
 
 
 
 
 

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_ovw_ch.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/about_activity_depend.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/how_deliver_activity.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_ucm_pln_ordcompbl.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pln_bl_prcompst_dpnd.htm
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Activity Dependencies 
 
 
Activity dependencies come about when selective delivers are performed, as 
a result of a consistency check (see Figure 1), which often poses a problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Dependencies Found 
 
All UCM dependencies fall under the scope of an activity dependency.  There 
are two categories that activity dependencies can fall into: change set 
dependencies and baseline dependencies.  
 
Users who work on the same files simultaneously across different activities in 
the same stream can create dependencies knowingly.   These dependencies 
can also be forced on users by rebase operations that are performed while 
work is still pending in a source stream.  These are more commonly known as 
change set dependencies or overlapping change sets. 
 
In multi-tier stream strategies, baselines may be purposely created in 
development streams (that act as intermediate collection points).  But, under 
the covers, baselines are created by deliveries out of the stream.  These 
dependencies are unfortunate, and misunderstood.  This is a known function 
of UCM and can cause a pain point when encountered.  These are more 
commonly known as baseline dependencies. 
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Change Set Dependencies 
 
Change set dependencies are probably the most common (and most 
understandable) form of activity dependencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Change Set Dependency 
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In the case of Figure 2, Activity B cannot be delivered without also including 
Activity A.  This is really no different than a Base-ClearCase findmerge 
operation from branch to branch.  Base ClearCase would also make you 
include the changes in version 1 when merging the changes from version 2 to 
the integration branch. 
 
In many cases change set dependencies are self-inflicted and this is very 
normal.  Refer to Figure 3 for an example of a “normal” self-inflicted change 
set dependency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Self-Inflicted Change Set Dependency 
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In rare cases dependencies can also be forced as the result of a rebase that 
was performed before all work was finished in the pending source stream. 
Figure 4 shows an example.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 Rebase “Forced” Change Set Dependency 
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The existence of baselines in a source stream will impact which activities can 
be selectively delivered from that stream. In short, UCM will only allow 
delivery of selected activities that have not already been included in any 
baseline on the source stream (not included in any previous deliveries out of 
that stream). 
 
Sometimes baselines are explicitly created in a source stream.  However, 
many times users may not be aware of such baselines because, in some 
cases, baselines in a source (development) stream are created under the 
covers by UCM deliveries and not explicitly by a user.  Deliver baselines are 
unlabeled and don’t even show up (by default) in the baseline browser GUI. 
 
Once an activity has been included in a baseline on the source stream, then it 
MUST be delivered in any subsequent delivery from that source stream. 
 
In some cases, baselines are explicitly made and create a baseline 
dependency.  Sometimes users and/or project managers will intentionally 
create baselines in a development stream.  This isn’t common in a relatively 
flat stream hierarchy, however, this can be very common in a nested stream 
hierarchy.  When activity dependencies occur in these scenarios, they are 
more understandable to end-users.  Refer to Figure 5 for an example of an 
explicitly created baseline dependency. 
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Figure 5 Explicit Baseline Dependency 
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Another baseline dependency is where someone unknowingly caused an 
under-the-covers baseline creation, more commonly known as a “deliver 
baseline” dependency.  Refer to Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Deliver Baseline Dependencies 
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developer’s stream has created a case whereby Activity A must now be 
included in any subsequent delivery from Dev_stream1 to any other target 
because it is now included in a deliver baseline in the source stream.  Also, 
after the completion of the second delivery (of both A and B to the project’s 
integration stream), now *any* subsequent deliveries out of Dev_stream1 to 
any other target stream must include both A and B (since both are now 
included in baselines on the source stream). 

Solving the Mysteries of Activity Dependencies 
 
An obvious solution would be to deliver everything or minimally the selected 
activity and its dependents (not ideal if that’s not what you want to do).  
Another alternative might be to work in a one-activity-per-stream model.  This 
will always avoid this particular problem by isolating work on each activity in 
its own stream, although this model introduces overhead and potentially more 
complexity. 
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