

 Page 1 of 34 “Rational Support Whitepaper”

Rational Rose RealTime Migration to Rational

Software Architect RealTime Edition

Migration Best Practices

Steven R. Shaw

September 14, 2009

 Page 2 of 34 “Rational Support Whitepaper”

INTRODUCTION .. 3

TECHNOLOGY MAPPING FROM ROSE REALTIME TO RSARTE.. 3

USING THE ROSE REALTIME IMPORT WIZARD .. 4

CONTROLLED UNIT CONVERTER... 4
ControlledUnit Conversion Table .. 5
Controlled Unit Conversion Page: .. 7

Absorb all controlled units mode ... 7
Convert all controlled units to owned fragments mode .. 8
Convert controlled units to fragments, models or short-cuts 8

Persisting custom fragment conversion settings ... 9
Allow conversion to independent models or root packages 10

EXAMPLE IMPORT ... 11
Example RoseRT Model .. 12
Assumptions... 12
Decisions ... 12

DIAGRAM APPEARANCE MIGRATION ... 15
Diagram appearance section in the RoseRT Import Wizard 15

COMPONENT MIGRATION ... 16
Migration of RoseRT component into RSARTE .. 17
CDT Project Generation ... 17

Component Settings section in the RoseRT Import Wizard 17
Target properties in the Transformation Configuration Editor 18

Tool Chain ... 19
STEREOTYPE MAPPING .. 19

Stereotype mapping Import wizard page ... 20
Specifying a Registry File .. 20

PROPERTY SET MAPPING .. 21
Property Set Mapping Import Wizard Page .. 21
Property set mapping options ... 22

POST IMPORT MIGRATION .. 23

INCREMENTAL MIGRATION .. 24
Theory .. 24

REFACTORING .. 29
MIGRATION SCENARIOS ... 30

A model shares a package from another model that isn’t migrated 30
Package structure of model with Shadow Package... 30

A package in a model that isn’t migrated is shared by multiple models that
are migrated .. 31

Package structure of multiple models element import same Shadow
Package ... 31

A model owns a package that is shared by other models that aren’t ready to
migrate .. 32

Package structure of model that owns a package shared by models not
migrated yet. ... 32

A model shares a package that is owned by another model that is migrating
at the same time. .. 33

Model that shares package is migrated first ... 33
Model that owns package is migrated first .. 34

 Page 3 of 34 “Rational Support Whitepaper”

Introduction
Rational Software Architecture RealTime Edition (RSARTE) takes an evolutionary

leap from the existing Rational Rose RealTime (RoseRT) technology base for two

main reasons:

1. RSARTE is built on the Eclipse Integrated Development Environment (IDE)

platform (www.eclipse.org) and

2. RSARTE is based on the latest UML2 specification

(http://www.omg.org/spec/UML/).

In addition, RSARTE integrates with the existing stack of Rational UML Modeling

tools that are built into Eclipse; these tools provide an all-in-one development

environment for enterprise modeling and code generation. Consequently, this

change in underlying technology means that the migration from the Rational Rose

RealTime tooling is complex and necessitates some paradigm shifts to

accommodate the integrations into Eclipse and Rational Software Architect.

Technology mapping from Rose RealTime to RSARTE

Technology Implementation

RoseRT

Implementation RSARTE

Base platform Windows MFC

application (porting

technology allows it

run on Linux /

Solaris)

Eclipse IDE + tools (GMF / GEF)

Semantic

specification

UML 1.x + Custom

RealTime Extensions

UML 2.1

Meta-model

engine

Custom

implementation

EMF

http://www.eclipse.org/modeling/emf/

Workspace Single model per

workspace

Multiple projects + multiple models

per workspace

The Rational Rose RealTime import wizard in RSARTE attempts to make migration

as seamless as possible, but it still requires direction at the Enterprise -

architecture level to ensure that all software components are migrated in a

scalable way. The goal of this document is to give some guidance to the

“Enterprise Architect” whose role is to oversee the migration process and

coordinate teams to ensure that they migrate in a compatible way to each other

with-in an enterprise organization.

This document assumes that the reader is an expert in Rose RealTime model

structure and general functionality. In addition, knowledge of Source Control

management systems such as Rational ClearCase is beneficial to understand how

the resulting fragmented model is stored in the repository.

http://www.eclipse.org/

 Page 4 of 34 “Rational Support Whitepaper”

Using the Rose RealTime Import wizard
If the various sections and parts of Rational Rose RealTime models were always

contained in a single model file, then the migration process would be

straightforward requiring little architectural consideration other then the how big

the resulting monolithic model would be after migration to RSARTE (since the

entire model would need to loaded into memory all the time). However, this is

not a practical arrangement in RoseRT because many developers reside in

different teams and typically contribute to a single model or top level executable.

Consequently, it is essential that the model be sub-divided into smaller controlled

units to allow for sharing and proper control with-in a source control management

system such as Rational ClearCase. How a model is divided and organized is

complicated further by the fact that a Rose RT model can share controlled unit

packages with other models. This fact raises a number of questions: should

these shared packages exist in a multi-project workspace environment such as

Eclipse or should they be shared in their own project? Should they exist in the

context of their original model owner? There are many ways to arrange the

model architecture; therefore, the Rational Rose RealTime model import wizard

allows for many different permutations to accommodate various model

architecture approaches.

Controlled Unit Converter

The Rational Rose RealTime model import wizard has several pages that provide

options on how to import the model into RSARTE. The most significant is the

“Controlled Unit Conversion” page which allows you to select how the different

controlled units in the RoseRT model are migrated into RSARTE. A “Controlled

Unit” is a separate file that stores a particular model element at its root.

Controlled units allow you to edit elements such as packages and classes

independently of other elements in the source control system. The corresponding

terminology in RSARTE is called a “fragment,” which is essentially the same thing

as a controlled unit.

 Page 5 of 34 “Rational Support Whitepaper”

ControlledUnit Conversion Table

The following table describes the different ways controlled units can covert to

fragments in RSARTE:

Convert to: Description

Absorbed Element Unit is loaded into the same resource as

the owning model or root package; no

fragment is created.

Owned Fragment Unit is converted into a fragment in the

same relative location to the model as in

RoseRT, unless a Project is specified

(Packages only). If you specify a project,

the Project is created (if it doesn’t exist)

and the fragment will be created as a root

package in the project.

Shadow Package This option creates a new fragment that

is owned by a RSARTE model that is a

shadow of a corresponding RoseRT

controlled package unit. The package is

read-only and changes can only be made

in the corresponding RoseRT package unit

that can be synchronized into the shadow

package. Any controlled units that are

owned by this package are absorbed into

the package. It can also be extracted

into a separate package similar to owned

package fragments.

Short-cut Available only for packages that have

been imported into another model in the

workspace. Only packages for models

that are currently open in the workspace

can be detected as previously imported.

On import, the unit is converted into a

short-cut and references will point to the

originally imported package.

On import, controlled units can be in a number of different states that represent

how they will be imported. For each state, there is a default action that takes

place; this action depends on the “Owned by model” attribute on the “Unit

Information” tab of the element specification dialog in RoseRT.

 Page 6 of 34 “Rational Support Whitepaper”

The following table lists the default conversion states; you can adjust these states

as needed:

Controlled Unit Package

State in Rose RT

Default Action

Owned but not migrated

previously

Load as owned

Owned but detected as

migrated previously in

another model in workspace

Load as element import to existing

package

Owned but detected a

shadow package exists

Load as owned and log a warning

that shadow package exists

Shared but not migrated

previously

Load as owned shadow package

Shared and migrated

previously

Load as element import to existing

package

Shared and exists as shadow

package

Load as owned shadow package

Another choice, which is not displayed as a default, is the option to simply absorb

the unit into the model resource (absorb into model). Alternatively, you can

import the model as a standalone model, although this is not a default choice.

The controlled unit page of the Rational Rose RealTime model import is beneficial

for model hierarchies that have inconsistent usage of the “Owned by model”

property on controlled units. For instance, when you set the controlled unit

package to “shared” in Rose RT you cannot do several fundamental actions that

allow you to manage the unit. Further, the source control system (such as

Rational ClearCase) may own the unit; therefore, only certain users may modify

the controlled units. When source control systems own units, it is not important

how the ownership is specified in the tooling because the ownership is defined by

the source control system.

 Page 7 of 34 “Rational Support Whitepaper”

Controlled Unit Conversion Page:

Considering the modes of conversion above, the dialog needs to accommodate

these as well as provide flexibility to provide blanket conversion for all elements.

Common methods of importing may be to ignore all fragments for testing

purposes in which case all units will be absorbed into the model. Likewise, the

practitioner may simply want all fragments to be owned which-out concern for

their shared properties. This is accomplished in the UI using a radio-button in the

dialog for the three modes of import.

Absorb all controlled units mode

If you want to merge all controlled units with the owning model, so that the

controlled units no longer reside in separate files, select the first radio button that

appears on this page. All other controls in this page are disabled.

 Page 8 of 34 “Rational Support Whitepaper”

Convert all controlled units to owned fragments mode

If you want to import all controlled units as fragments that the imported model

owns, select the Convert all controlled units to owned fragments radio

button. In this case, the custom unit UI is disabled; however, the “fragment /

model creation options” are enabled and allow you to determine the default

naming scheme for the new fragments.

Convert controlled units to fragments, models or short-cuts

In this final mode of operation (Convert controlled units to fragments, models or

short-cuts), you can control how each unit is converted on an individual basis. By

default, the units will be displayed in a hierarchical manner in a tree that can be

collapsed if needed. The “Convert to” column allows you to select the conversion

method for the individual unit. If you are unsure of the true ownership of the

packages in the model, the safest approach is to click the “Share All Packages”

button under the list control. This option converts all owned fragment packages

into Shadow Packages or maintain them as “Short-cut” links if the original

package has already been imported into the workspace.

 Page 9 of 34 “Rational Support Whitepaper”

Persisting custom fragment conversion settings

For complex models with many controlled units, it may be difficult to decide how

each controlled unit migrates into RSARTE. You may need considerable time to

decide what units need to become models and/or whether something should be a

shadow package. The defaults attempt to reduce this overhead; however you

must inevitably perform analysis so you can figure out the best migration

approach

To save the settings for how to import controlled units, you may want to click

Save Custom Conversion. During the experimentation phase, you can use the

Save Custom Conversion functionality to avoid modifying the conversion

method settings for each controlled unit multiple times. This functionality is

particularly helpful when you experiment with migrating controlled units in very

large models.

When you click the “Save Custom Conversion…” button, the current settings in

the custom conversion table are saved to a file in the workspace. A message box

will appear indicating the location of the saved configuration file.

If the import wizard detects a custom conversion configuration file in the

workspace, you can click Load Custom Conversion to restore the saved

settings for importing controlled units.

The “Load Custom Conversion” button is disabled unless a custom conversion

configuration file exists in the workspace at the location specified above. When

enabled, you can click this button to load the current settings into the dialog. A

warning dialog will appear to ensure that you want to perform the operation.

 Page 10 of 34 “Rational Support Whitepaper”

Allow conversion to independent models or root packages

It can be useful, since fragments are not sharable entities in Rational Software

Architect RealTime Edition, to allow for sharing of a fragment if in the Enterprise’s

set of models there is no clear owner of a particular fragment. For instance in

RoseRT, the owner of a fragment is determined conceptually by a Boolean

property on the fragment which determines if it is owned by the model or has

been shared. If this property is not clearly defined or is set as “owned” in

multiple models, it may make sense to have this unit be pulled out into its own

model that it is a distinct sharable entity. Otherwise, it may be shared in the

context of another model imported from RoseRT that has other packages that

haven’t been designed to be shared in other models.

Creation options for new models and fragments

Finally there are some global settings for how individual fragments and models

are created during the import. These options are for how fragments are named

and their location in the file system. You may wish to use the import as an

opportunity to consolidate the fragment naming based on the logical name of the

unit in the model. This could be useful if the controlled unit names in the file

system have become out of sync with the corresponding logical name over time.

The first two radio buttons control this behavior. The default setting (“Use

controlled unit file names”) will continue to use the controlled unit names in Rose

RealTime and translate them to the RSARTE fragment file extension (.efx).

Rose RealTime organized controlled units in a similar fashion to how the logical

model is organized. If a particular element was contained deep in a package

hierarchy, then the corresponding controlled unit would typically be stored in a

similar containment hierarchy on the file system. This organization is convenient if

the user needs to locate particular controlled units and be able to “mind-map” them

back to the corresponding element in the model. This paradigm is brittle when

considering cases where the model element is refactored by either renaming it or

moving it to a new location. The controlled unit must be either similarly renamed or

moved to correspond with the logical element change. These can be expensive CM

operations and can result in loss of file history in some systems (i.e. CVS). Modeler

has accommodated these concerns by adopting an element agnostic naming approach

for fragments. This means that fragments are named generically and have a flat

containment relative to their parent fragment. Users can override this behavior if

desired, but the default lets the fragments be resilient to refactoring use-cases.

 Page 11 of 34 “Rational Support Whitepaper”

The first two radio box options (“Use controlled unit file names” / “Use controlled

unit element names”) will respect the Rose RealTime controlled unit organization.

The fragments will be created in a similar containment hierarchy and named

according to either the controlled unit filename or the corresponding logical element.

This may be familiar to users but once they start using the tool and creating new

fragments they are faced with inconsistencies unless they explicitly locate the new

fragment and override the default Modeler behavior as described above. To support

the Modeler behavior there is a third option “Use generic name in flat containment

(Modeler default)” which supports a mode where the user can choose to import the

controlled units using the same flat containment and generic naming that Modeler

uses for its default behavior. In addition, they can specify a subfolder where the

fragments are located as opposed to having them created flat in the owning project.

Example Import

A load module has packages that are shared by teams and are also owned

packages that other teams utilize. Consequently, they want to keep most

packages set as “shadow” packages initially.

For example, the RoseRT model below represents a load module executable that

is ready to be migrated.

 Page 12 of 34 “Rational Support Whitepaper”

Example RoseRT Model

Assumptions

- Subsystem1 is owned by the team that is migrating loadModule1

- Subsystem1::Block1 (interface package) is shared by another team

that isn’t migrating yet

- Subsystem1::Block1Impl package is owned.

- Subsystem2 is shared from another model

Given these assumptions, also assume that the loadModule1 team has a

configuration management (CM) structure around how they control and manage

the versions. Therefore, they want to maintain the CM structure of how

Subsystem1 (which is owned) after migration into RSARTE. However, parts of

Subsystem1are shared by outside teams, so how it is separated with respect to

projects needs to be considered as well. Subsystem2 is managed and owned by

outside teams, so we don’t need to care about its CM structure.

Decisions

 Page 13 of 34 “Rational Support Whitepaper”

When you decide how to convert package fragments, you must make some

important decisions on how they are shared, who they are owned by, and the

whether the team that owns it is ready to migrate. Each package controlled unit

will be migrated either as a shadow package or an owned fragment. In turn, the

package may be extracted to another project as a root package or model

depending on whether it is necessary to share it or edit it independently.

The following activity diagram represents this decision tree:

Take a look at the example from above and make some decisions around how

you import it. In this example, you want to maintain the containment structure

of the controlled units because there are many scripts that support versioning and

releasing of the model at the load module context. To do this and support

sharing of these units, the controlled units must be separated into their projects.

First considering “Subsystem1”, since you own it, that means it should be an

“owned fragment”. Following the decision tree, you know it is owned but you also

know this package is a container only and isn’t shared by itself. Therefore, it can

 Page 14 of 34 “Rational Support Whitepaper”

be kept as owned in the same project as the original owning model. The sub-

package contents in “Subsystem1” are less straightforward though. “Block1” is

owned but shared by other team projects, so it will need to be extracted as a root

shadow package in a new project. “Block1Impl” is also owned, but the owning

model isn’t the primary editing context. In addition, you know it isn’t shared by

other models in or outside of the migrating team. However, we want to do the

official migration of this package during this import as opposed to its “owning”

model (i.e. Block model). So, it also will be extracted to a root into the same

project as the “Block1” fragment package except as an owned fragment. The

corresponding packages in the “Component View” would be extracted in the same

way as their “Logical View” counterparts. For these packages, it would make

sense for them to retain their logical package containment to differentiate them

from the “Logical View” packages.

The “Subsystem2” package would be imported as a shadow package. The

decision to make it a root package would depend on whether other load modules

existed that also depended on this subsystem. If this was the case, it would

make sense to extract it into a separate project.

 Page 15 of 34 “Rational Support Whitepaper”

Diagram Appearance migration

Since the underlying model representation has changed from UML 1.x to UML 2.0,

there are also associated notation differences that have changed. However, the

goal is to try and preserve the diagram notation as much as possible, considering

the notational differences. For instance, in UML2, internal transitions are no

longer represented as self-transitions on the state frame. Instead, they appear in

a separate compartment as a list that can be optionally filtered out. While it is

important to support this notation, at the same time, we have to consider the

time and effort users spent to organize and annotate their diagrams with internal

transitions in Rose RT. The diagram organization may be familiar or have a

specific spatial format that helps you locate a particular internal transition in an

efficient way. Considering how you organize your diagrams, RSARTE supports an

option that displays internal transitions as they appear in Rose RT.

Diagram appearance section in the RoseRT Import Wizard

There are also differences in the semantics for sequence diagrams that will

appear notationally different. For instance, co-regions in Rose RealTime don’t

have a direct semantic mapping. The closest mapping is a Parallel Combined

Fragment in UML2 and the notational representation is significantly different then

the co-region bars in Rose RealTime. If you desire a similar notation mapping,

then the wizard does provide an option to maintain this. The option “Behavior

Execution Specification with <<Coregion>> stereotype” will maintain a similar

notation to Rose RealTime however, the semantics are assumed to be derived

from the applied <<Coregion>> stereotype.

 Page 16 of 34 “Rational Support Whitepaper”

The “Map Rose RealTime Constraint to a State Invariant” is a convenient feature

if your sequence diagrams have lots of floating constraints. This options will

detect constraints that have proximity to a lifeline and/or are attached to the

lifeline and will convert them to State Invariant elements which are on the lifeline.

This is convenient especially when converting coregions to PAR fragments since

the layout will change and these floating constraints won't move with the layout

changes. Since a State Invariant is a constraint, it is a useful way to associate a

constraint with a position on the lifeline. The State Invariant being on the lifeline

will move relative to the other items on the lifeline and as such is resiliant to

layout changes.

In addition from the UML2 differences, there are also tooling differences such as

the color scheme, fonts and how elements are sized. The recommended

approach is to adopt the new RSARTE color scheme because these colors will be

consistent with the newly created models and other existing models. However,

there is a Use Rose RT colors option that maintains the Rose RT color scheme if

there are constraints or consistency issues with other published models. The

diagram-based auto-size settings are important because shapes have different

margins and compartment sizes between the each tool. These differences may

make the shape cut off compartment contents if forced to be the same size.

When the auto-size settings are maintained, then the auto-size functionality of

RSARTE will accommodate the local compartment margins and make the shape

look appropriate in the new tooling context. By default, the auto-size option is

turned off for State and Activity diagrams because diagram layout and spacing is

more of a concern. In addition, shape size is more critical to the overall diagram

esthetic. The recommended approach is to keep the defaults and observe the

results before making changes to the diagram element auto-size settings.

Component migration

Components in Rational Rose RealTime describe how to generate and build the

model into an executable or library artifact. RSARTA is built on top of a C++ IDE

(CDT) as well as a model transformation framework that is part of Rational

Software Architect (RSA). Consequently it makes sense to integrate into those

frameworks in order to harness their existing functionality, extensibility and

known workflows. In migration into RSARTE, the component migrates into two

separate entities:

 A transformation configuration file which is responsible for model to C++

code generation

 The CDT project it generates into which contains the compilation settings

During import, this conversion is handled automatically and the components that

used to exist in the component view in RoseRT are converted into short cuts to

the new transformation configuration files (TC).

 Page 17 of 34 “Rational Support Whitepaper”

Migration of RoseRT component into RSARTE

CDT Project Generation

Since the compilation and execution settings are stored in the CDT project, this

could represent more overhead in large Enterprises. When you manage these

artifacts in your source control repository, both the TC file and the CDT project

need to be checked in to preserve the settings. There is an option to provide the

ability to store the CDT configuration properties (execution and compilation) in

the TC and dynamically create the CDT project at transformation time if the

project doesn’t exist. This allows for only the TC file to be checked in to the

source repository and have the CDT projects local to your workspace. This

behavior is optional and can be set during import. This option must be

unchecked to allow the CDT projects to be master of their configuration settings

(and therefore must be added to source control).

Component Settings section in the RoseRT Import Wizard

If you select the “Generate target projects from transform configuration”

checkbox, then the imported TC files are set as master for the target

configuration properties. When those properties are changed, the corresponding

CDT configuration is updated

After import, this setting can be re-adjusted for individual TC files in the

transformation configuration editor. On the “Sources and Target” page the same

checkbox exist and will be populated with the value set in the import. If the

checkbox is selected, then the “Target Configurations” tab is enabled so that the

target configuration can be changed and it will be regenerated into the CDT

RoseRT Component import

RSARTE TC File

CDT target
configurations

Generates into
CDT project

 Page 18 of 34 “Rational Support Whitepaper”

project on the next transformation. If cleared, then the “Target Configurations”

tab will be disabled and the CDT project becomes the “master” for the compilation

configuration. Consequently in this case, the CDT project should be checked into

source control.

Target properties in the Transformation Configuration Editor

 Page 19 of 34 “Rational Support Whitepaper”

Tool Chain

The CDT has a concept of a “Tool Chain” which represents the set of tools which

together generate the makefile, build, link, launch and debug the executable.

This allows the CDT to be open to almost any set of tools provided by different

vendors and have them integrate into the Eclipse environment. However,

defining a new “Tool Chain” in the CDT is a fairly non-trivial prospect that

requires in-depth knowledge of the CDT extensibility. Consequently, the CDT

supports some default “Tool Chains” (“Cygwin” and “MinGW”) that represent

known standards and are widely supported. Additional “Tool Chains” are

contributed by 3rd party vendors. The RSARTE tooling supports the “GNU” or

““Cgywin” tool chain on import and will do it’s best to convert the component data

into compatible configuration data for the CDT. Sometimes, the target that is

being supported has different makefile syntax or other incompatibles that make in

not possible to use the “Cygwin” Tool Chain. In this case, the wizard offers a

“RoseRT compatible” mode that utilizes a new “Tool Chain” contributed by

RSARTE that will generate the makefiles in the same way as RoseRT. If you are

unsure about which one to choose, the “Generic” toolchain (RoseRT Compatible)

is the default and can be relied upon to give the best results. See section

#Component Settings section in the RoseRT Import Wizard to see where this

option can be set in the wizard.

Stereotype Mapping

Stereotypes are a way of categorizing elements for a particular domain or

specialization. In UML2, these stereotypes can be imported in the context of an

actual profile which contains a set of stereotypes or merely as a keyword which is

a textual way of identifying an element. UML2 has a more robust implementation

for stereotypes by allowing them to be grouped together into a profile and letting

stereotypes define a set of properties. If the more advanced capabilities of UML2

profiles and stereotype properties are of no interest, then simply importing

“Stereotypes as keywords” should be adequate.

If the benefits of the UML2 profiles look useful, then each stereotype

configuration needs to be mapped to a specific profile. Each entry in the table

represents a stereotype configuration file, not just a single stereotype. These

stereotype configurations are defined explicitly in an ini file and can be accessed

through RoseRT to be applied to model elements. There are also model defined

stereotypes, which don’t have a stereotype configuration and are simply

keywords on model elements. Each detected stereotype configuration can be

selected and then the “Stereotype configuration mapping options” will change to

reflect the selection. The stereotype configuration can be converted into a new

profile, an existing profile or ignored in which case it will be imported as a

keyword.

 Page 20 of 34 “Rational Support Whitepaper”

Stereotype mapping Import wizard page

In RoseRT, the stereotype configurations are stored in the registry. On non-

Windows platforms this registry needs to be exported and specified on the first

page of the import wizard. Otherwise, the stereotype configurations won’t be

detected and any elements with stereotypes on them import as elements with

keywords.

Specifying a Registry File

 Page 21 of 34 “Rational Support Whitepaper”

Here are the instructions for exporting a registry file (Linux / Solaris platforms):

1) Start RoseRT with the following option: "RoseRT -regedit" : This actually

starts the regedit application(provided by mainwin) instead of RoseRT app.

RoseRT/MainWin will load all the different registry files into the application.

This is how the Rose/RoseRT users modify the registry contents and

export them.

2) Export the complete registry as a single file: To do this execute File-

>Export Registry File". This creates a single flat ".reg" file.

3) Use the files created in step-2 as input to the Importer (#Specifying a

Registry File).

Property Set Mapping

A property sets is a mechanism in RoseRT that allows you to extend the model

using domain-specific properties. Unless you’ve defined custom property sets in

RoseRT, this wizard page can be ignored. All the default property sets used for

C++ code generation (C++ Generation, Compilation, Library, Executable,

External Library, etc) are automatically migrated regardless of the choices on this

page. A useful way to check this is to click the “Import property sets as UML

profiles” and ensure “Only used property sets” is selected. If no property sets

show up in the list, then there is no need to migrate any existing property sets

since they aren’t referenced in the model at all.

Tip: Some Rational Rose RealTime models may contain property sets that are not

useful after import. Examine the property sets and identify any that you can

ignore during the import process. Skipping unwanted property sets reduces the

size of the imported model and reduces clutter in the Navigator view.

Property Set Mapping Import Wizard Page

 Page 22 of 34 “Rational Support Whitepaper”

If property sets are detected during the import process, then the migration

process is similar to the stereotype mapping page. As with stereotypes, each

property set must be mapped to a particular profile. If a property set is mapped

to a new profile, and you select the “Import as property set profile” is chosen,

then the “Language” and “Group” of the property need to be specified.

Otherwise, it will be created as a regular UML stereotype profile.

The difference between importing as a property set profile and importing as a

regular profile is kind of subtle - maybe the best way to describe it here would be

to say something like "This option creates a profile that can be used in a way that

is more similar to Rational Rose RealTime property sets". Here are a couple of

guidelines for when to choose to import as a property set profile:

 1) If you want to be able to view and edit values for these properties

using a UI similar to the Rose RT UI for property sets, then you must

choose to import as a property set profile. Otherwise, these properties

can only be edited in the same way that the properties of regular
stereotypes are.

 2) If you want to be able to set default values for these properties at the

model level (the way that you can for property sets in Rose RT), then you

must choose to import as a property set profile.

 If in doubt, just accept the default setting (which is to import as a
property set profile).

 It may be worth emphasizing that you will *not* lose any data by

choosing one way over the other.

The "Group" and "Language" of a profile are used to display property sets on the

RT Properties tab of the Properties view:

 The language of a property set profile indicates the domain that the

property sets apply to; in RSD, when you view all of a model's property
sets in the Properties view, they are grouped together by language.

 The group of a property set profile is used to indicate subcategories within

property sets for the same domain; for example, you could have two

property set profiles that both have the language "Java", but one could

represent a "Basic" group of properties, and the other could contain

"Advanced" properties. The properties from each group are then viewed
separately in the UI.

Property set mapping options

 Page 23 of 34 “Rational Support Whitepaper”

Post import migration
In a small software project where a single model is independent of other models,

you can consider the migration complete once the model is compiled and runs in

the new environment. In large Enterprise organizations, this case is extremely

rare. Most models are very large and need to be maintained by developers in

smaller sub-component models. These models often depend on models

developed by other teams and/or have sub-components that are consumed by

other teams. These scenarios make the migration process more complex because

parts of the model may need to be separated into their own projects to allow for

sharing. When multiple teams are involved, the migration process may need to

be staggered to allow one team to migrate before another team. If this is the

case, then there is a need to support linkages between components in RSARTE to

RoseRT. This is accommodated through shadow packages which can be

synchronized from a corresponding RoseRT package. These packages are volatile

by nature and will eventually migrate as normal packages or they will be removed

and have all their references changed to a migrated package. Therefore, there is

a need to support management of the migration process after import of a single

model for synchronization, refactor for reusability and finally remove shadow

packages as other models come online in RSARTE.

 Page 24 of 34 “Rational Support Whitepaper”

Incremental Migration

Theory

Software tooling and development environments are evolutionary in that they

typically change over time. These changes can be minor which don’t require any

considerable effect, or they can be major which causes the file format schema to

change and consequently precipitates a major migration effect to move the

legacy tooling model artifacts to the new tooling. As observed in the technology

map - #Technology mapping from Rose RealTime to RSARTE, all aspects of the

underlying tooling and file format have changed in this migration. The mapping

from the UML 1.4 to 2.1 specifications are different enough that there is no

backwards compatibility; therefore, you must perform a concentrated import in

order for the UML 1.4 artifacts to be converted to UML 2.01.

One way to tackle this incompatibility is called a “Big-Bang” theory of operation.

This means simply that the legacy tooling (RoseRT) is shut-down and migrated all

at once to the new tooling (RSARTE) using tools that convert any relevant

artifacts to the formats understood by the new tooling. Realistically though, the

legacy tooling is usually kept in production for maintenance purposes and is still

required while verification of the new tooling continues.

Figure I: Big Bang Migration

If we examine the activity diagram above, it describes two partitions of workflow:

one for RoseRT and one for RSARTE. First, the legacy tooling data is prepared for

the migration which may entail some clean-up or refactoring then it is imported

into the new tooling. From there the content is usually verified and tested to

ensure model integrity before it can be brought back into production. During this

time, the legacy tooling is shut-down and not available. After the migration, the

legacy may be brought back up for read-only access or to support data streams

 Page 25 of 34 “Rational Support Whitepaper”

not being migrated to the new tooling. This tooling stoppage can be costly to an

organization since it implies they aren’t developing their models during this time.

System software architecture is usually divided into components that represent

different aspects or functionality within the tooling. The components will depend

on each other in a layered fashion where the core components are at the bottom

of the dependency chain and the leaf or product components are at the top. The

core components by their nature are reusable across different product level

components and are critical to the execution of the different models. Different

product components may have different release cycles that require them to have

schedules that aren’t in sync. Since they may depend on the same core

components, one product stack may be ready to migrate to the new tooling, but

other product stacks may not be because of schedule or release concerns. This

means that the core components are by nature synchronized with the slowest

moving product stack since they have to support all dependent components

above them. Consequently the core components wouldn’t be ready to migrate at

the same time as the more progressive product components at the top of the

dependency chain.

Figure II: Product component stacks

In the above example, all the product (leaf) components depend on “Core1”. If

“Product3” is ready to migrate, but “Product1” is not, since they are both

dependent on “Core1” then “Product3” must wait for “Product1” to be an

appropriate stage in order for migration to proceed.

It is perhaps naïve to think that once the migration to the new tooling is

complete, the legacy tooling will no longer be needed. In an ideal situation, the

data can be 100% migrated and there is no longer a need to support the data or

a subset of data on the legacy tooling. This will probably not happen often. If

the legacy tooling is supporting a particular release of software, then it would

need to support that release for its lifecycle. It would be too risky to release the

software from the legacy tooling and immediately migrate it to the new tooling

and subsequently support bug fixes. Issues from the field would not map directly

into the new tooling and migrating data in a fix pack that is supposed to address

particular issues would be foolhardy at best. So this implies that the legacy

tooling and new tooling need co-exist for a period of time (and it could be

considerable amount of time depending on release schedules). Fixes or changes

in data / software on the legacy side would need to propagate into the new

 Page 26 of 34 “Rational Support Whitepaper”

tooling. If the differences between the data structure are considerable between

the two systems, then a file system merge is not sufficient. Generally, these

changes would need to be integrated manually through code or data inspection.

Figure III: Legacy Tooling Maintenance

To address these concerns, we need to provide a way to do incremental migration

of the different sub-components within a model. This means that we need to

introduce the concept of “mastership” where a package can exist in the

“RSARTE”, but is actually still mastered in the “RoseRT”. By allowing a sub-

package to exist as a read-only ghost or shadow in the new tooling, and still be

mastered / edited in the legacy tooling, we can provide a one-way bridge so that

the two models can interact. Then if the synchronization of the legacy tooling

package is managed so that the ghost package is automatically updated when

changes are made, there is little to no maintenance that you need to do to create

the bridge between the two models.

 Page 27 of 34 “Rational Support Whitepaper”

Figure IV: Migration of single component using auto-synchronization

Considering the example from Figure II it is now possible to migrate only the

“Product3” component into RSARTE by creating a shadow component to “Core1”.

“Core1” is still mastered in RoseRT and has no knowledge of the shadow

component which exists in the new tooling. When changes occur to “Core1” in

the legacy tooling, this invokes an auto-synchronization where the component is

re-imported into the new tooling transparently.

Therefore, the “Big-bang migration” is no longer necessary since individual

components can be migrated as needed. Based on release cycles or stability

evaluation, specific components can be chosen to migrate given some criteria. At

any given time during the incremental migration, the legacy tooling is still

functional and can continue to be maintained. Auto-synchronization between the

shadow components and their master ensures that changes to the legacy tooling

are propagated into the new tooling.

Auto-synchronization implies that there is a discoverable mapping from the

legacy format into the new tooling. To facilitate this, often assumptions will be

made which are acceptable in the process of the migration. This allows for a

transparent import between the two tooling environments without any user

intervention or prompting. In fact, this is a pre-requisite for this paradigm to be

operational. It is also possible to perform a manual synchronization from a

legacy component to a fully migrated component. In this case, the migrated

component may have been editing in the context of the new tooling. The

synchronization will then need to merge the changes made on the legacy side into

the new tooling instead of merely replacing it. This merge will invoke some UI to

resolve any conflicts similar to a team based scenario where two different

developers modify the same source file.

 Page 28 of 34 “Rational Support Whitepaper”

Figure V: Incremental Migration Theory of Operation

 Page 29 of 34 “Rational Support Whitepaper”

Refactoring

In software development, architecture is rarely a static entity. As projects scale

larger, the requirements change related to how components get consumed which

then requires new projects to be created and/or make project dependencies

change. Or it’s possible that it wasn’t clear at import time how certain packages

would be shared in the new Eclipse based modeling environment. To

accommodate this, RSARTE has a rich set of refactoring capabilities that can be

performed at a fragment level. New fragments can be created or existing ones

absorbed and they can be moved to different projects entirely. In addition,

packages that exist in the context of a model can be extracted into a “root

package” that can be opened by itself, independently of any owning model. This

is a powerful feature for sharing of individual packages. These root packages can

then be moved (or extracted to a specific location) into a new project that can be

brought into new workspaces as part of a different project set permutation.

This is all very well for regular owned packages, but shadow packages are not

modifiable by design so that changes in RoseRT are synchronized one way into

the shadow package. Hence the default refactoring functions won’t operate on

them. The caveat is that synchronization relies on the package unit remaining

intact in RoseRT which means refactoring will potentially break the

synchronization link to the shadow package. To get around this, a specific

refactoring Extract to Top-Level Package command is supported. This command –

can operate on shadow packages and allows them to be made a root package and

moved into a different project at the same time.

 Page 30 of 34 “Rational Support Whitepaper”

Migration Scenarios

A model shares a package from another model that isn’t migrated

Since teams have different timelines that define when they can adopt new

development process and tooling, one team may be ready to migrate when

another isn’t. When a model is imported that has dependencies to a model that

isn’t in the workspace, the package that is shared will be set as a “Shadow

Package”. If it isn’t (for example, the “owned” attribute not representative), then

you may change it to be a “Shadow Package” in the “Controlled Unit Conversion”

page. When the original RoseRT package is modified, the “Shadow Package” can

be resynchronized to bring in those changes.

Package structure of model with Shadow Package

At some point, the team that owns the package being depended upon may be

ready to migrate their model. Once migrated, the dependent team will bring

those projects of the newly migrated model into their workspace. Next, the team

can migrate the “Shadow Package” to the actual package brought into their

workspace. All references to the “Shadow Package” and its contents adjusts to

point to the actual package and the “Shadow Package” disappears and is replace

by an element import in its place.

 Page 31 of 34 “Rational Support Whitepaper”

A package in a model that isn’t migrated is shared by multiple

models that are migrated

The same situation is magnified where multiple models share the same package

that hasn’t been imported yet. The workflow is the same as #A model shares a

package from another model that isn’t migrated above. However, when

subsequent models are migrated the same package will be a “Shadow Package”

in multiple models. This is obviously redundant and wastes memory, disk space

and requires extra work to keep each of the “Shadow Package” synchronized

separately. To avoid this, the originally import “Shadow Package” can be

extracted out into its own project as a root package. This can be done at import

time or by using the refactoring command “Extract to Top-Level”. When the

other models that share the package are imported, the packages should be

imported as a “Shadow Package”. To avoid the redundancy, these “Shadow

Packages” can be migrated to the original “Shadow Package” such that all

references are replaced and the packages removed with an “Element Import”

relationship in their place.

Package structure of multiple models element import same
Shadow Package

 Page 32 of 34 “Rational Support Whitepaper”

A model owns a package that is shared by other models that aren’t

ready to migrate

Another scenario that is similar but has different ramifications is when a team has

a model that has a shared owned package unit with other models not owned by

that team. In this case, the team would like to migrate the package, but if they

do, they need to maintain two versions of the package for the dependent teams

(one in RoseRT and one in RSARTE). Alternatively, they can make the package a

“Shadow Package” until dependent teams are ready to migrate themselves. This

allows them to change the package only in RoseRT.

Package structure of model that owns a package shared by
models not migrated yet.

Since this package is owned by the team, it makes sense to extract this package

into its own project so that team can eventually include this project in their

project set after migration. This is convenient because they don’t have to bring in

the whole other model into their workspace; they only have to bring in the

dependent package. Once all the dependent teams are ready to migrate, it is no

longer necessary for the package to remain a “Shadow Package”. It can be

migrated to itself, so that it becomes a regular package. Then the other teams

can either proceed with their migration and their reference to that package will be

replaced by an “Element Import” relationship. It should be noted this represents

an exception to workflow described in #Decisions since the package is owned by

the migrating team and is the primary editing context. However, since it is

shared by other models not yet ready to migrate, it must remain a shadow

package.

 Page 33 of 34 “Rational Support Whitepaper”

A model shares a package that is owned by another model that is

migrating at the same time.

Since these models are migrating at the same time, the package doesn’t need to

be a shadow package to accommodate any synchronization with the

corresponding RoseRT package. The order of how these models are imported is

important because it could mean less migration effort. . Also, does it make sense

for the models to co-exist in the same workspace or should they be separated

further to isolate the specific package dependencies? If we import the model that

has the shared package first, then that package will be imported initially as a

shadow package because the other model doesn’t exist in the workspace yet.

After importing the second model, it is now possible to migrate the shadow

package to the actual package in the second model.

Model that shares package is migrated first

If the second model is imported first and then the other model imports

afterwards, then the package, if specified as shared, will automatically detect on

import the actual package existing in the workspace and import as an “Element

Import” relationship to that package. This same time and effort because the

extra step of “migrating” the package to the actual package in the original model

import ordering is eliminated.

 Page 34 of 34 “Rational Support Whitepaper”

Model that owns package is migrated first

In this example, since only a single package is shared by the other model, it may

make sense to extract that package into its own project so that project can be

referenced independently of the original owning model. This can be done either

on import of the owning model on the “Controlled Unit Conversion” wizard page

to specify the project where the fragment is created or after import by utilizing

the “Extract to Top-Level” refactor command.

In summary, the Enterprise architect needs to consider closely the how particular

components are used currently in the RoseRT world and how they will be used in

the new RSARTE tooling context. Considering these permutations will allow their

software to scale well in the future and ease the migration process to RSARTE.

