
IBM i
7.2

Electronic business and Web serving
IBM HTTP Server for i

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
661.

This edition applies to IBM i 7.2 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1997, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

HTTP Server.. 1
What's new for IBM i 7.3..1
PDF file for IBM HTTP Server for i... 1
Installing HTTP Server... 2

Compatibility considerations... 2
Verify the prerequisites.. 2
Install HTTP Server on your server.. 3
Verify the HTTP Server installation.. 4

Overview of IBM Web Administration for i.. 4
Web browser requirements..4
User profile requirements.. 5
Starting Web Administration for i...7
User interface conventions.. 7
Configuring SSL for ADMIN wizard...12

HTTP Server Concepts...13
Context, directives, and the server area..13
Content negotiation..17
Virtual hosts..23
Proxy server types.. 24
Supported file systems for Web content... 26
Server Name Indication(SNI)...27
Logging..29

Log formats... 29
Web Log Monitor... 29

Security...30
Security tips.. 30
User profiles and required authorities... 31
Validation lists...31
Kerberos..32

Performance... 32
File compression...32
Fast Response Cache Accelerator (FRCA)..33
Real time server statistics.. 35
Web Performance Advisor.. 38

Extending HTTP Server functionality...39
CGI...39
Apache modules... 41
Service-side includes..42

High availability.. 43
Highly available HTTP Server... 43
High availability CGI programs... 46

Web Publishing with the PUT Method..46
WebDAV.. 47

Scenarios..48
Setting up HTTP Server.. 48
Adding a new directory.. 51
Adding user directories.. 53
Adding cookie tracking...57
Adding virtual hosts..59
Adding password protection.. 63
Adding dynamic content with server-side includes.. 66

 iii

Adding Secure Sockets Layer (SSL) protection... 69
Enabling single signon for HTTP Server...74

Scenario.. 74
Details... 75
Prerequisites... 77

Configuration steps... 77
Step 1: Planning work sheet... 78

Step 2: Create a basic single signon configuration for Systemi A..82
Step 3: Add principal names to the KDC.. 83
Step 4: Add Kerberos keytab..84
Step 5: Create home directory for John Day on Systemi A ... 85
Step 6: Test network authentication service configuration on Systemi A..................................... 85
Step 7: Create EIM identifier for John Day...85
Step 8: Create a source association and target association for the new EIM identifier............... 86
Step 9: Configure IBM i Access for Windows applications to use Kerberos authentication........ 86

Step 10: Add Systemi A to and existing EIM domain..87
Step 11: Configure HTTP Server for single signon...87

Step 12: (Optional) Post configuration considerations ... 88
Monitoring Web server activity with logs...89

Tasks...92
Getting started..92
HTTP Server tasks.. 93

Setting up additional MIME types.. 93
Setting up content and language negotiation.. 94
Setting up customized error messages..94
Setting up directory indexing and directory listing.. 95
Setting up environment variables...95
Setting up highly available HTTP server...96
Setting up welcome or index page... 98
Manually editing HTTP Server.. 98
Managing HTTP Servers..99
Managing addresses and ports.. 101
Managing backup files.. 101
Managing directories.. 102
Managing HTTP Server performance... 102

Compression tasks...106
Setting up input decompression.. 106
Setting up output compression.. 106

FRCA tasks..107
Setting up Fast Response Cache Accelerator (FRCA)..107

Log tasks...109
Setting up logs.. 110

Proxy tasks... 113
Setting up forward proxy.. 113
Setting up reverse proxy...114
Set up proxy chaining... 115

Security tasks... 115
Setting up password protection... 115
Setting up to secure against denial of service... 118

WebDAV tasks.. 119
Setting up WebDAV...119

Web tasks... 120
Integrated Web Application Server..120
Integrated Web services for i... 121
Web Performance Advisor..124
Install WebSphere Application Server... 126

Virtual host tasks..128
Setting up virtual hosts...128

iv

CGI tasks.. 131
Setting up CGI jobs... 131
Setting up persistent CGI jobs... 131

Apache module tasks...132
Setting up Apache modules... 132

Programming... 133
API.. 133

Apache module APIs.. 133
CGI APIs..133
HTTP Server configuration APIs...149

CGI programming...179
The CGI Process... 179
CGI Data Conversions...181
Writing high availability CGI programs...186
Writing persistent CGI programs..188
CGI programs and activation groups... 190
Running CGI Programs in PASE..193
Setting up CGI programs.. 194

Apache module programming... 194
Setting up third party modules...195

Handlers... 196
Server-side scripting languages.. 196

Net.Data.. 197
Node.js.. 197
PHP..198
Python... 198

Running Java Web applications...198
Troubleshooting...199

Troubleshooting Web Administration for i...199
Troubleshooting HTTP Server..202
Troubleshooting CGI programs..207

Reference information...210
Directives..210

AddModule.. 212
ClearModuleList.. 213
IconPath.. 213
Port.. 214
Action...215
Script... 215
Alias... 216
AliasMatch...217
MapMatch..218
Redirect... 219
RedirectMatch... 220
RedirectPermanent... 222
RedirectTemp.. 222
ScriptAlias... 222
ScriptAliasMatch... 223
UseJCD.. 224
AuthMerging.. 225
AuthzSendForbiddenOnFailure.. 226
Require.. 226
<RequireAll>..228
<RequireAny>..229
<RequireNone>... 229
ArmApplicationName..231
ArmInstrumentHandler.. 231
ArmLoadLibrary...231

 v

ArmTransactionName... 232
AsAuthAuthoritative..232
GroupFile...233
PasswdFile.. 233
UserID... 234
CacheLocalFD..236
CacheLocalFile.. 236
CacheLocalFileMmap..237
CacheLocalFilePublic.. 238
CacheLocalFileSizeLimit... 238
CacheLocalSizeLimit... 238
DynamicCache...239
FRCACacheLocalFileRunTime...239
FRCACacheLocalFileSizeLimit.. 240
FRCACacheLocalFileStartUp...241
FRCACacheLocalSizeLimit.. 241
FRCACookieAware.. 242
FRCAEnableFileCache...242
FRCAEnableProxy... 243
FRCAEndofURLMarker.. 243
FRCAMaxCommBufferSize..243
FRCAMaxCommTime.. 244
FRCAProxyCacheEntitySizeLimit.. 244
FRCAProxyCacheExpiryLimit.. 245
FRCAProxyCacheRefreshInterval...245
FRCAProxyCacheSizeLimit..245
FRCAProxyPass... 246
FRCARandomizeResponse..246
LiveLocalCache..247
PublicCache...247
AddAlt..249
AddAltByEncoding.. 250
AddAltByType..250
AddDescription..251
AddIcon... 251
AddIconByEncoding..252
AddIconByType... 252
DefaultIcon..253
HeaderName... 253
IndexHeadInsert...254
IndexIgnore...254
IndexIgnoreReset... 255
IndexOptions...255
IndexOrderDefault.. 258
IndexStyleSheet..259
ReadmeName..259
BufferSize.. 260
MetaFiles... 261
MetaDir.. 261
MetaSuffix... 262
CacheDetailHeader... 265
CacheHeader...266
CacheDefaultExpire ..267
CacheDisable...268
CacheEnable..268
CacheExpiryCheck.. 270
CacheIgnoreCacheControl..271
CacheIgnoreHeaders.. 271

vi

CacheIgnoreNoLastMod... 272
CacheIgnoreURLSessionIdentifiers... 273
CacheKeyBaseURL.. 274
CacheLastModifiedFactor... 274
CacheLock... 275
CacheLockMaxAge.. 276
CacheLockPath..276
CacheMaxExpire..277
CacheMinExpire.. 278
CacheQuickHandler.. 278
CacheStaleOnError..279
CacheStoreExpired..280
CacheStoreNoStore...280
CacheStorePrivate...280
CacheTimeMargin..281
CacheReadSize..282
CacheReadTime.. 282
CacheDirLevels..283
CacheMaxFileSize... 284
CacheMinFileSize.. 285
CGIConvMode... 288
CgiInitialUrl... 290
CGIJobCCSID.. 291
CGIJobLocale.. 292
CGIMultiThreaded...293
CGIRecyclePersist...293
MaxCGIJobs.. 294
MaxPersistentCGI... 294
MaxPersistentCGITimeout..295
MaxThreadedCGIJobs...295
PersistentCGITimeout.. 295
ScriptLog..296
ScriptLogBuffer... 296
ScriptLogLength.. 297
StartCGI...297
StartThreadedCGI... 298
ThreadedCgiInitialUrl..299
UseUserJobdLibraryList..299
AcceptPathInfo... 302
AcceptThreads.. 303
AccessFileName..304
AddDefaultCharset..304
AddServerHeader..305
AllowEncodedSlashes...305
AllowOverride..306
AllowOverrideList..307
CGIPassAuth... 308
DefaultFsCCSID...308
DefaultNetCCSID...309
DefaultType... 309
Define.. 310
<Directory> ...311
<DirectoryMatch>... 312
DocumentRoot ... 313
<Else>..313
<ElseIf>... 314
Error...314
EnableSendfile.. 315

 vii

ErrorDocument ...315
ErrorLog .. 318
ErrorLogFormat... 320
FileETag... 322
<Files>...323
<FilesMatch> ..323
ForceType ... 324
HostNameLookups ...325
HotBackup...325
HttpProtocolOptions... 326
HTTPSubsystemDesc..327
HTTPStartJobQueue... 328
HTTPStartJobDesc..328
HTTPRoutingData..329
<If>.. 329
<IfDefine>... 330
<IfModule>..330
Include ..331
IncludeOptional.. 332
KeepAlive ..332
KeepAliveTimeout... 332
<Limit>.. 333
<LimitExcept>... 334
LimitRequestBody...334
LimitInternalRecursion... 335
LimitRequestFields... 335
LimitRequestFieldsize...336
LimitRequestLine.. 336
LimitXMLRequestBody..337
Listen... 337
ListenBacklog.. 338
<Location> ..339
<LocationMatch>.. 340
LogCycle.. 341
LogLength.. 342
LogLevel...342
LogMaint.. 344
LogMaintHour.. 345
LogTime... 345
MaxKeepAliveRequests.. 346
MaxRangeOverlaps... 346
MaxRangeReversals.. 346
MaxRanges.. 347
MergeSlashes.. 347
MergeTrailers...348
NameVirtualHost...348
Options.. 348
ProfileToken...350
QualifyRedirectURL...350
ReceiveBufferSize... 351
RegisterHttpMethod..351
Require.. 351
RuleCaseSense..352
SendBufferSize..353
SendFileMinSize.. 353
ServerAdmin ...354
ServerAlias ..354
ServerName ..355

viii

ServerPath .. 356
ServerRoot ..356
ServerSignature...357
ServerTokens...357
ServerUserID...358
SetHandler.. 359
SetInputFilter.. 359
SetOutputFilter..360
ThreadsPerChild..360
TimeOut...361
TraceEnable...361
UnDefine..362
UseCanonicalName...362
UseShutdown.. 363
<VirtualHost> ... 363
Dav...367
DavDepthInfinity... 368
DavLockDB.. 368
DavMinTimeout... 369
DavQsysLockDB.. 369
DeflateBufferSize.. 370
DeflateCompressionLevel...370
DeflateFilterNote...371
DeflateInflateLimitRequestBody.. 372
DeflateInflateRatioBurst...372
DeflateInflateRatioLimit... 372
DeflateMemLevel.. 373
DeflateWindowSize... 373
AlwaysDirectoryIndex...374
DirectoryCheckHandler...375
DirectoryIndex.. 375
DirectoryIndexRedirect...376
DirectorySlash... 377
FallbackResource..377
CacheDirLength...379
CacheDirLevels..380
CacheGcClean... 381
CacheGcDaily.. 383
CacheGcInterval..384
CacheGcMemUsage.. 385
CacheGcUnused..386
CacheMaxFileSize... 387
CacheMinFileSize.. 388
CacheRoot... 389
CacheSize.. 390
CacheReadSize..391
CacheReadTime.. 391
PassEnv... 392
SetEnv..392
UnsetEnv... 393
Example...393
ExpiresActive...395
ExpiresByType...395
ExpiresDefault...396
HACGI..397
HAModel.. 398
LmExitProgram..398
LmIntervalTime...399

 ix

LmMaxReactivation...400
LmResponseTime..400
LmUrlCheck... 401
LmUrlCheckBackup...402
Header... 403
RequestHeader... 406
LDAPInclude..409
ldap.AppId...410
ldap.application.authType.. 411
ldap.application.DN...411
ldap.application.password.stashFile..412
ldap.cache.timeout... 412
ldap.group.memberAttributes.. 412
ldap.group.name.filter...413
ldap.group.url.. 413
ldap.idleConnection.timeout.. 414
ldap.NTDomain..415
ldap.ObjectClass... 415
ldap.realm... 416
ldap.search.timeout.. 416
ldap.transport..417
ldap.url...417
ldap.user.authType..418
ldap.user.name.fieldSep... 418
ldap.user.name.filter... 419
ldap.version... 419
ldap.waitToRetryConnection.interval... 420
LDAPConfigFile..420
LDAPRequire... 420
LDAPReferrals... 421
LDAPReferralHopLimit.. 422
ForensicLog... 423
AppServer..423
WASInstance...424
SSLAppName...427
SSLAuthType... 427
SSLCacheDisable...428
SSLCacheEnable..429
SSLCipherBan..429
SSLCipherRequire..435
SSLCipherSpec.. 442
SSLClientAuth..448
SSLClientAuthGroup..449
SSLClientAuthRequire...451
SSLClientAuthVerify.. 452
SSLClientCertDisable.. 453
SSLClientCertEnable... 453
SSLDenySSL...454
SSLDisable...454
SSLEnable..455
SSLEngine..455
SSLFallbackProtection.. 456
SSLHandshakeTimeout... 456
SSLProxyAppName... 457
SSLProxyCipherSpec...458
SSLProtocolDisable...465
SSLProxyProtocolDisable..466
SSLProxyEngine...466

x

SSLProxyVerify.. 467
SSLProxyVersion... 467
SSLRequireSSL.. 468
SSLRenegotiation.. 469
SSLServerCert... 469
SSLUpgrade... 470
SSLUnknownRevocationStatus...471
SSLVersion...472
SSLV2Timeout... 472
SSLV3Timeout... 473
ImapBase.. 474
ImapDefault.. 475
ImapMenu... 475
Additional information on Imagemap files...476
SSIETag... 478
SSIEndTag... 478
SSIErrorMsg.. 479
SSILastModified ... 479
SSILegacyExprParser..480
SSIStartTag..480
SSITimeFormat... 480
SSIUndefinedEcho.. 481
CustomLog...482
FRCACustomLog..484
GlobalLog...486
LogFormat... 487
TransferLog..488
AddCharset..491
AddClient...492
AddEncoding... 492
AddHandler... 493
AddInputFilter...493
AddLanguage...494
AddOutputFilter.. 495
AddType...495
DefaultLanguage... 496
ModMimeUsePathInfo.. 497
MultiviewsMatch... 497
RemoveCharset... 498
RemoveClient.. 498
RemoveEncoding...499
RemoveHandler...499
RemoveInputFilter.. 500
RemoveLanguage..500
RemoveOutputFilter..501
RemoveType.. 501
SuffixCaseSense..502
TypesConfig...502
CacheNegotiatedDocs...504
ForceLanguagePriority.. 505
LanguagePriority... 505
BalancerInherit... 507
BalancerMember...508
NoProxy... 508
<Proxy>... 510
ProxyAddHeaders... 511
ProxyBadHeader... 512
ProxyBlock...512

 xi

ProxyCacheOnly.. 513
ProxyDomain... 514
ProxyErrorOverride... 515
ProxyForceCacheCompletion... 516
ProxyIOBufferSize...517
<ProxyMatch>... 517
ProxyMaxForwards..519
ProxyNoCache... 520
ProxyNoConnect..521
ProxyPass.. 522
ProxyPassInherit...533
ProxyPassInterpolateEnv... 533
ProxyPassMatch.. 534
ProxyPassReverse...534
ProxyPassReverseCookieDomain...536
ProxyPassReverseCookiePath.. 537
ProxyPreserveHost..537
ProxyReceiveBufferSize.. 538
ProxyRemote... 539
ProxyRemoteMatch...540
ProxyRequests.. 540
ProxyReverse...541
Proxyset...542
ProxySourceAddress...545
ProxyTimeout.. 545
ProxyVia...546
AllowCONNECT... 547
ProxyFtpEscapeWildcards.. 548
ProxyFtpListOnWildcard... 548
ProxyHTMLBufSize..550
ProxyHTMLCharsetOut..550
ProxyHTMLDocType ... 551
ProxyHTMLEnable... 551
ProxyHTMLEvents... 552
ProxyHTMLExtended...553
ProxyHTMLFixups... 553
ProxyHTMLInterp.. 554
ProxyHTMLLinks..554
ProxyHTMLMeta.. 555
ProxyHTMLStripComments...556
ProxyHTMLURLMap...557
ProxySCGIInternalRedirect.. 558
ProxySCGISendfile.. 559
RemoteIPHeader.. 560
RemoteIPInternalProxy.. 561
RemoteIPInternalProxyList.. 561
RemoteIPProxiesHeader.. 561
RemoteIPTrustedProxy...562
RemoteIPTrustedProxyList...562
ReflectorHeader.. 563
RequestReadTimeout... 564
KeptBodySize.. 566
RewriteBase.. 567
RewriteCond..568
RewriteEngine... 572
RewriteMap... 573
RewriteOptions..574
RewriteRule... 576

xii

BrowserMatch... 582
BrowserMatchNoCase.. 583
SetEnvIf... 584
SetEnvIfExpr... 586
SetEnvIfNoCase.. 586
LoadModule .. 587
UserDir ..588
CookieDomain... 590
CookieExpires..590
CookieName.. 590
CookieStyle..591
CookieTracking.. 591
VirtualDocumentRoot... 596
VirtualDocumentRootIP..597
VirtualScriptAlias...599
VirtualScriptAliasIP...600
<IfVersion>..600
WatchdogInterval..601
FastCGIServerID... 603
AddOutputFilterByType.. 604
FilterChain... 605
FilterDeclare..606
FilterProvider...606
IdentityCheck..607
IdentityCheckTimeout.. 608
Subsystem...608
SubsystemPool..609
RoutingData...609
AuthName... 610
AuthType..610
Allow..612
Deny...613
Order..614
Satisfy.. 614
LogIOTrackTTFB ...619
xml2EncAlias...623
xml2EncDefault...623
xml2StartParse... 624
<Macro>.. 626
UndefMacro... 626
Use...627

Log file format tokens.. 627
Regular expression notation.. 631
CL commands...633
Environment variables... 634
Server-side include commands... 643
Time formats.. 651
ap_expr expression parser...653

Related information... 660
Legal...660

Notices..661
Programming interface information..662
Trademarks.. 662

 xiii

xiv

IBM HTTP Server for i
The IBM® HTTP Server for i is a Web server implementation that is based on the open-source server code
provided by the Apache Software Foundation and that is optimized for the IBM i environment. With the
IBM HTTP Server for i, you have everything you need to quickly and easily establish a Web presence.

The IBM HTTP Server for i documentation contains getting started, task oriented, and scenario-based
information, supporting reference material, and conceptual information. Information for the IBM Web
Administration for i interface is also included. See the IBM HTTP Server for i Web site for additional
product information.

Important: Information for this topic supports the latest PTF levels for IBM HTTP Server for i. It is
recommended that you install the latest PTFs to upgrade to the latest level of the IBM HTTP Server for i.
See the IBM HTTP Server for i Support Web page for more information.

What's new for IBM i 7.3
Read about new or significantly changed information for the IBM HTTP Server for i topic collection.

Important: Information for this topic supports the latest PTF levels for IBM HTTP Server for i. It is
recommended that you install the latest PTFs to upgrade to the latest level of the IBM HTTP Server for i.
See the IBM HTTP Server for i Support Web page for more information.

See the HTTP Server: What's New topic for a list of recent enhancements made to the IBM HTTP
Server for i.

The following changes have been made to IBM HTTP Server for i in IBM i 7.3:

• HTTP Server for i has been updated to Apache 2.4.20 which brings in core enhancements, new modules
and module enhancements to the previous HTTP Server available on the IBM i.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for IBM HTTP Server for i
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM HTTP Server for i (about 2300 KB).

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

© Copyright IBM Corp. 1997, 2013 1

http://www.ibm.com/systems/i/software/http/
http://www.ibm.com/systems/i/software/http/services/service.html
http://www.ibm.com/systems/i/software/http/services/service.html
http://www.ibm.com/systems/i/software/http/news/sitenews.html

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

Installing HTTP Server
This topic provides information about how to install the IBM HTTP Server for i, which includes the support
for the IBM Web Administration for i interface.

Compatibility considerations
This topic describes considerations when you are moving from an earlier release of IBM i to the most
current release, or you are moving from an earlier HTTP Server version of IBM HTTP Server for i to a
newer version.

You should read about any compatibility issues by reading HTTP Server compatibility information on
the HTTP Server home page. Before reading the information, you will need to determine the HTTP Server
version you are currently using. Use one of the following methods to determine the HTTP Server version:

• Use the "-V" option on the Start TCP/IP Server (STRTCPSVR) command. For example, if HTTP Server
(Apache 2.4.20) is installed, STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT '-V') displays:

Server version: Apache/2.4.20 (IBM i)
Server built: Oct 7 2016 11:10:46

• From the IBM Web Administration for i, select Manage an HTTP server. In the server introduction, the
Apache version level is included in the header. For example:

Manage Apache server "WEBSERVER" - Apache/2.4.20

Verify the prerequisites
Before you begin your installation, use this information to ensure that you meet all the hardware,
software, and system requirements for installing IBM HTTP Server for i.

Hardware requirements
You need a communication hardware adapter that is supported by the TCP/IP protocol stack.

Software requirements
The following licensed programs must be installed on your system:

• Extended Base Directory Support (5770-SS1 Option 3)
• Host Servers (5770-SS1 Option 12)
• Qshell (5770-SS1 Option 30)
• IBM Portable Application Solutions Environment for i (5770-SS1 Option 33)
• IBM TCP/IP Connectivity Utilities for i (5770-TC1)
• IBM Developer Kit for Java™ (5770-JV1 Option 14 and 15).

The following software products may need to be installed depending on your needs:

• WebSphere® Application Server

If you plan to use WebSphere Application Server with the HTTP Server, install a version of the
WebSphere Application Server Apache plug-in that is compatible with your current level of HTTP
Server. If the proper WebSphere Application Server PTFs are not loaded, the mismatch will prevent the
HTTP Server from starting. See the WebSphere Application Server for IBM i product Web page for

2 IBM i: IBM HTTP Server for i

http://www.adobe.com/products/acrobat/readstep.html
http://www.ibm.com/systems/i/software/http/product/compatibility.html
http://www.ibm.com/systems/i/software/websphere/services/service.html

information about the latest WebSphere Application Server and WebSphere Application Server Apache
plug-in PTFs.

• Digital Certificate Manager

In order to provide the required support for handling digital server certificates used by Secure Sockets
Layer (SSL) for secure Web serving, you must install IBM i Digital Certificate Manager (5770-SS1 Option
34).

• HA Switchable Resources

If you want to configure a high availability Web server cluster, then you need to install HA Switchable
Resources (5770-SS1 Option 41), or use a business partner tool to manage clusters.

• Zend Server for IBM i

If you want to run PHP scripts, you will need the PHP Zend Server runtime and any software that
is required by the Zend Server for IBM i product. See the Zend and IBM i product Web page for
information about Zend Server for IBM i.

System configuration settings
Perform or verify the following configuration settings:

• Ensure at least one TCP/IP interface is available and active. You can use the Work with TCP/IP Network
Status (NETSTAT) command to see a list of TCP/IP interfaces. For example:

NETSTAT OPTION(*IFC)

Note: You can add TCP/IP interfaces using the Add TCP/IP Interface (ADDTCPIFC). You can start TCP/IP
interfaces using the Start TCP/IP Interface (STRTCPIFC) command.

• Ensure the system TCP/IP host and domain name information is set. You can use the Change TCP/IP
Domain (CHGTCPDMN) command to set TCP/IP domain information.

• Ensure that LOCALHOST is in the TCP/IP host table. You can use the Configure TCP/IP (CFGTCP)
command to display a menu that allows a user to define or change TCP/IP configuration settings.

• Ensure that the Share Memory Control (QSHRMEMCTL) system value is set to 1.

Install HTTP Server on your server
Follow these steps to install IBM HTTP Server for i on your IBM i server.

Before installing IBM HTTP Server for i, you need to ensure that your server meets all the hardware and
software prerequisites. In addition, you should be aware of any compatibility issues.

To install IBM HTTP Server for i (5770-DG1) on your IBM i server, complete the following steps:

1. Insert the installation media for HTTP Server into your system.
2. At the IBM i command line, type GO LICPGM and press Enter.
3. Select option 11 (Install licensed programs) on the Work with Licensed Programs display to see a list

of licensed programs.
4. Select and install IBM HTTP Server for i (5770-DG1). See the Software installation process for help

with licensed program installation.

5. Load and apply the latest HTTP Server group PTF .

The IBM HTTP Server for i licensed program is now installed with the latest fixes. You are now ready to
verify the installation.

IBM HTTP Server for i 3

http://www.ibm.com/systems/i/software/php/
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20i%20Technology%20Updates/page/PTF%20Groups

Verify the HTTP Server installation
To verify that you have successfully completed the IBM HTTP Server for i installation, follow these steps.

Before you can verify the IBM HTTP Server for i installation it is assumed you have installed the licensed
program. For more information about installing the product, see “Install HTTP Server on your server” on
page 3.

The HTTP Server is installed with a default server called APACHEDFT. To test your installation, do the
following:

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select the APACHEDFT server from the Server list.
5. Click the Start icon next to the Server list.
6. Click the Refresh icon and check if the server status is still shown as "Running". If your HTTP Server

does not start, see “Troubleshooting” on page 199.
7. Open another Web browser and go to http://your.server.name where your.server.name is the

host name of your IBM i server to view the default Welcome page. The default Welcome page is a Web
page that is returned by the APACHEDFT Web server.

Upon successful completion of these steps you will have verified the installation of IBM HTTP Server for i.

Overview of IBM Web Administration for i
The HTTP Server and other Web applications can be managed through the IBM Web Administration for i
interface. The Web Administration for i is an application that is loaded in the HTTP Administration server,
and accessed from a Web browser.

One of the key differences between IBM HTTP Server for i and other Web server products is the
graphical user interface (GUI) provided for setting up and managing your servers. The Web Administration
for i interface combines forms, tools, and wizards to create a simplified environment to set up and
manage many different servers on your system. The Web Administration for i interface is rich in function,
examples, error-checking, and ease-of-use.

Using the Web Administration for i interface, it is no longer necessary to memorize directive names and
their proper usage or syntax. Directives are represented in the interface by descriptive field names, along
with help text for every field. For Apache users, it is no longer necessary to memorize the supported
context of directives. The Web Administration for i enforces supported context for the directives.

The Web Administration for i supports several wizards that guide you through a series of advanced steps
to accomplish a task. With a few clicks of a button, you can have a Web server or application server
running in no time at all. The Web Administration for i supports the creation of many types of servers,
including Web servers, and application servers such as WebSphere Application Server for System i®,
WebSphere Portal Server, IBM Integrated Web Application Server for i, and IBM Integrated Web Services
Server for i.

Web browser requirements
To use the IBM Web Administration for i interface you need a Web browser that supports the HTTP 1.0 or
1.1 protocol, frames, and JavaScript.

Suggested Web browsers include Microsoft Internet Explorer V6.0 or higher and Firefox V3.0 or higher.

Note: Consult your Web browser documentation for more information.

4 IBM i: IBM HTTP Server for i

User profile requirements to use the Web Administration for i interface
By default, only users with *ALLOBJ and *IOSYSCFG special authorities can manage and create Web-
related servers on the system through the use of the IBM Web Administration for i interface. Web-related
servers include instances of IBM HTTP Server, WebSphere Application Server, Integrated Application
Server, and Integrated Web Services Server. A user without the necessary IBM i special authorities to
manage or create Web-related servers requires an administrator to grant that user permission to a server
or group of servers.

To be able to access the Web Administration for i interface, the IBM i user profile used to sign on must
meet at least one of the following conditions:

• The user profile has *ALLOBJ and *IOSYSCFG special authorities.
• The user profile has been granted permission to an entire class of servers, or a specific server.
• The user profile has been granted permission to create servers.

For example, if a user wants to create an HTTP server using the Web Administration for i interface, the
user profile must either have *ALLOBJ and *IOSYSCFG special authorities, or have permission to create
HTTP servers.

Only users with *ALLOBJ and *IOSYSCFG special authority are allowed to grant, revoke, or manage user
permissions. The granting of permissions to a user profile is done through the Web Administration for i
interface by giving user profiles that need to access the Web Administration for i interface roles to specific
servers or a class of servers.

Note: Granting *ALLOBJ authority to a user profile or using the QSECOFR user profile to access the Web
Administration for i interface is not recommended.

Roles
Roles define a set of permissions that define what operations a user is allowed to perform on a server. The
Web Administration for i interface defines the following roles:

Administrator
Any IBM i user profile with *ALLOBJ and *IOSYSCFG special authority is identified with the role of
Administrator. An Administrator has unrestricted use of every feature in the Web Administration for i
interface, including the ability to manage user permissions. An Administrator cannot be assigned any
other role.

Note: A user profile cannot be assigned this role.

Developer
Is allowed to view and modify a server, including the ability to delete a server. A Developer can use
Web Performance Monitor and Web Performance Advisor, but cannot change system-wide settings,
such as memory pool allocations.

Operator
Is allowed to view a server, including the capability to start and stop a server. In addition, an Operator
is allowed to modify trace settings for a server.

If a user with a role of Developer or Operator has no role assigned to them for a server, they are not
allowed to view the server or any of its attributes.

Permissions
A permission is the ability to perform an operation on a server. The ability for a user to perform operations
on a server is determined by the role they have been assigned for the server. The Web Administration for i
roles are defined with the following permissions:

IBM HTTP Server for i 5

Table 1. Permissions corresponding to each role.

Permissions

Roles

Administrator Developer Operator

Start/Stop server x x x

Delete server x x

Install/Remove applications x x

Install/Remove Web servicesNote 1 x x

Start/Stop applications x x x

Start/Stop Web servicesNote 1 x x x

Modify server attributes x x

Modify application attributes x x

Create database connections x x

Delete database connections x x

Modify server tracing x x

Use Web Performance Advisor x x

Use Web Performance Monitor x x

Use Web Log Monitor x x

Create serverNote 2 x

Notes:

1. Web services deployed within integrated Web services servers.
2. An administrator granting permissions to a user profile needs to explicitly grant the create-server

permission.

Only an Administrator can grant permissions. The granting of permissions to a user profile is done through
the Web Administration for i interface by giving user profiles that need to access the Web Administration
for i interface roles to specific servers or a class of servers.

Note: If a user creates a server, they are automatically assigned the role of Developer to the newly
created server.

Permissions can be granted to a specific server or to all servers of a certain type. The Web Administration
for i interface supports granting permissions to the following types of servers:

• Integrated Web Application Servers
• Integrated Web Services Servers
• WebSphere Application Servers
• HTTP Servers

When granting permissions, you should be aware of the following points:

• If you grant a user permission to create an application server or Web services server, then you must
also grant the user permission to create HTTP Servers. This is due to the association between an HTTP
Server and the application server or Web services server.

• If you grant a user permissions to an application server or Web services server, and you do not explicitly
grant the user permissions to the associated HTTP Server(s), the user is automatically granted the
same permissions to the associated HTTP Servers(s). This is also true in reverse. If you grant a user
permissions to an HTTP Server, and you do not explicitly grant the user permissions to the associated

6 IBM i: IBM HTTP Server for i

application server or Web services server, the user is automatically granted the same permissions to the
associated application server or Web services server.

Note: A warning message is displayed on the Web Administration for i interface when permissions are
implicitly granted to a user.

• If you attempt to grant a user different permissions to an HTTP Server and the associated application
server or Web services server, the user is granted the higher permission and both servers get assigned
that permission.

Note: A warning message is displayed on the Web Administration for i interface when permissions to
servers are upgraded.

If a user has no permissions to any servers, and no permission to create any type of server, then the user
is not allowed to access the Web Administration for i interface.

Starting Web Administration for i
The Web Administration for i allows you to create and manage different types of servers, including
Web servers and application servers. Complete the following steps to start the Web Administration for i
interface.

It is assumed that you have met the user profile requirements to access the Web Administration for i
interface.

To start the Web Administration for i interface, complete the following steps:

Note: Enter your user profile name and password when prompted.

1. Start the HTTP Administration server.
a) In System i Navigator, expand your_system > Network > Servers, and select TCP/IP.
b) Right-click HTTP Administration, and select Start.

Note: The administration server can also be started using the STRTCPSVR SERVER(*HTTP)
HTTPSVR(*ADMIN) command at an IBM i command prompt.

2. Bring up the IBM Navigator for i by accessing the following URL from a Web browser where
your_system is your IBM i server host name:

http://your_system:2001

3. From the IBM Navigator for i welcome page click the IBM i Tasks Page link.
4. Click the IBM Web Administration for i link.

From here, you can create different types of servers or work with existing servers, depending on your
needs.

Note: If the Web Administration for i interface does not start, see “Troubleshooting” on page 199.

User interface conventions
This topic describes the conventions used by the IBM Web Administration for i interface when displaying
information to a user.

Header images
The Web Administration for i interface has several images in the header, or top most portion, of the GUI.
These images are hyperlinks to helpful information.

IBM HTTP Server for i 7

Table 2. Header images

Header Image Description

Image hyperlink to the IBM i Information Center
entry page.

Image hyperlink to the WebSphere Application
Server Family Web page. This Web page contains
information on WebSphere products, including
support and service information.

Image hyperlink to the IBM Web page where you
can find information on all of IBM's products.

Image hyperlink to the IBM HTTP Server for i
Web page. This Web page contains additional
information on PTFs and support, developer
documentation, and other topics.

Tabs and subtabs
Navigation of the Web Administration for i interface is done through tabs. There are two types of tabs,
the main task tabs on the top (referred to in the documentation as tabs) and more specific subtabs
underneath (referred to in the documentation as subtabs).

Table 3. Main task tabs

Tab Name Description

Setup The Setup tab contains the setup tasks for your servers. Setup tasks include the
common tasks and wizards for the Web Administration for i interface.

Manage The Manage tab contains tasks to manage your servers. The All Servers, HTTP
Server, Application Servers and Installations subtabs are available under the Manage
tab. You can manage all servers, or choose a specific server to manage on your IBM i
server.

Advanced The Advanced tab contains advanced tasks that you can perform on your servers.
The advanced tasks include global settings for your IBM i server, Internet Users and
Groups management, and the management of permissions to servers.

Related Links The Related Links tab contains hyperlinks to useful information related to
features, functions, and uses of the Web Administration for i interface and all
products supported by the interface. From here, you can find general and support
documentation.

Use the subtabs to quickly manage your servers or to set up advanced tasks.

Table 4. Manage subtabs

Subtab Name Description

All Servers The All Servers subtab opens a form to view all the currently configured
servers on your system. This form also provides you the ability to start,
stop, restart, and configure your servers, as well as monitor and manage
details. Select the server that you want to work with by clicking the button
to the left of the server name. Clicking on the server name will also take
you directly to managing the details for the selected server.

8 IBM i: IBM HTTP Server for i

Table 4. Manage subtabs (continued)

Subtab Name Description

HTTP Servers The HTTP Servers subtab opens forms for managing HTTP Servers
currently configured on your system. Use these forms to set up and
manage your HTTP Server quickly and easily.

Application Servers The Application Servers subtab opens forms for managing application
server currently configured on your system including: WebSphere
Application Servers, WebSphere Portal servers, integrated Web application
server, and Web services servers.

Installations The Installations subtab opens forms for managing WebSphere
Application Server installations on the system. Use these forms to install
and manage your WebSphere Application Server product easily on IBM i
platform.

Table 5. Advanced subtabs

Subtab Name Description

Settings The Settings subtab displays a Web page containing links to forms for
managing your global server settings.

Global server settings are values that apply to each IBM HTTP Server for
i configuration. The values provided here can be overridden individually
within each HTTP Server configuration file.

Internet Users and Groups The Internet Users and Groups subtab displays a Web page containing links
to forms for managing validation lists, group files, and digital certificates.

Validation lists are used in conjunction with other resources to limit access
to server resources. Each validation list contains a list of Internet users
and passwords. Use the Internet users and groups form to list and manage
digital certificates associated with validation lists. Validation list entries
also require you to identify an authentication protocol type to associate
with the user id and password. Validation lists are case-sensitive and
reside in IBM i libraries. A validation list is used to store user ID and
password information about remote users. You can use existing validation
lists or create your own.

A group file identifies a group of users with a common security profile.
A group file contains IBM i user profiles. A user profile is an object with
a unique name that contains the user's password, the list of special
authorities assigned to a user, and the objects the user owns or has access
to.

A digital certificate is a form of personal identification that can be verified
electronically. Only the certificate owner who holds the corresponding
private key can present a certificate for authentication through a Web
browser session. The key can be validated through any readily available
public key. Use the Digital Certificate Manager to create, distribute, and
manage digital certificates.

IBM HTTP Server for i 9

Table 5. Advanced subtabs (continued)

Subtab Name Description

Permissions The Permissions subtab displays a Web page containing links to forms for
managing and adding permissions.

A permission is the ability to perform an operation on a server. The ability
for a user to perform operations on a server is determined by the role
they have been assigned for the server by a Web administrator. For more
information, see “User profile requirements to use the Web Administration
for i interface” on page 5.

Note: Common Tasks and Wizards are available on all tabs of the interface.

Lists
The Web Administration for i interface organizes large groupings of servers and configuration files into
different lists. Click the list and select the server or server area you want to work with.

Table 6. Lists

List Name Description

Server The Server list contains the name of every server
currently configured on your system. This includes
HTTP Servers, integrated Web application server,
Web services server, WebSphere Application
Servers, WebSphere Application Servers - Express,
and WebSphere Portal servers. The server list
only shows the servers for the selected type. For
example, if the subtab HTTP Servers is selected,
the servers list will show only HTTP Servers, not
WebSphere Application Servers.

Server area The Server area allows you to work with
the individual containers within your HTTP
configuration.

Tasks, wizards, property forms, and tools
Each subtab opens specific tasks, wizards, property forms, and tools that provide you the ability to
configure and manage your server.

Table 7. Tasks, Wizards, and Property Forms

Name Description

Task Tasks are property forms that guide you through
advanced configuration steps. Individual tasks are
sometimes grouped together to form advanced
configuration tasks.

Wizards Wizards guide you through a series of advanced
steps to accomplish a task. Wizards cannot save
your progress and must be completed to successfully
update or create a server.

10 IBM i: IBM HTTP Server for i

Table 7. Tasks, Wizards, and Property Forms (continued)

Name Description

Property forms Property forms are forms with field values that may
be set for specific configuration requirements. Each
property form has help text to assist you in managing
your servers.

Tools Tools provide easy access to log files, the server
configuration file, directive index, and real time HTTP
server statistics. Tools are useful for problem solving
and server maintenance.

Note: The Web Administration for i checks any changes you make for errors. A message will be displayed
below the forms (in the error window) detailing any errors.

Server status
The Web Administration for i interface shows you the current status of your servers. The status of the
server is displayed with the following icons.

Table 8. Server states

Server State Description

Stopped. The server is currently stopped. The
server is no longer available. The IP address and
port number are not in use.

Running. The server is currently running. The IP
address and port number are in use.

Stopping. The server is attempting to stop. the IP
address and port number are still in use.

Creating. The server is being configured and
created. The IP address and port number are not
in use.

Loading. The Web Administration for i interface is
loading the selected form, wizard, or Web browser
frame.

Server buttons
The Web Administration for i interface uses server stop, start, and restart buttons to manage your server's
status. Use the following buttons to change your server's status at anytime.

Table 9. Buttons

Button Description

Start. Click this button to start the server you
are currently working with. The button is gray and
unavailable when the server is running.

IBM HTTP Server for i 11

Table 9. Buttons (continued)

Button Description

Stop. Click this button to stop the server you are
currently working with. The button is gray and
unavailable when the server has stopped.

Restart. Click this button to restart the server
you are currently working with. The restart button
stops the server and then attempts to restart it.

Note: This option is not available on all subtabs.

Refresh. Click this button to refresh the Web
Administration for i interface display. Some
changes made by property forms may not be
readily displayed. The refresh button clears the
Web Administration for i interface display and
updates the current server status.

Configuring SSL for ADMIN wizard
The IBM Web Administration for i interface provides the Configure SSL for ADMIN wizard to configure
Secure Sockets Layer (SSL) for the ADMIN server. SSL has become an industry standard for enabling
applications for secure communication sessions over an unprotected network, such as the Internet.

The ADMIN server runs all of the programs listed on the IBM i Tasks page (http://[your_isystem]:2001)
including the Web Administration for i and the Digital Certificate Manager (DCM). By default, the ADMIN
server listens on a non-SSL (non-secure) connection over port 2001. If you want to configure the ADMIN
server to use secure communications over SSL, but lack experience with DCM and SSL, the wizard
simplifies the process and removes the need to manually configure the ADMIN server configuration.

The Configure SSL for Admin wizard updates the ADMIN server configuration file to enable SSL on port
2010; optionally port 2001 may be left enabled for non-SSL traffic. The wizard uses the Digital Certificate
Manager to issue a digital certificate, connects the certificate and the ADMIN server, and restarts the
ADMIN server. The restart of the ADMIN server usually takes one minute or so. While the restart is being
performed, the Web Administration for i interface is unavailable.

Secure Sockets Layer and digital certificates
SSL is actually two protocols. The protocols are the record protocol and the handshake protocol. The
record protocol controls the flow of the data between the two endpoints of an SSL session.

The handshake protocol authenticates one or both endpoints of the SSL session and establishes a
unique symmetric key used to generate keys to encrypt and decrypt data for that SSL session. SSL
uses asymmetric cryptography, digital certificates, and SSL handshake flows, to authenticate one or both
endpoints of an SSL session. Typically, SSL authenticates the server. Optionally, SSL authenticates the
client; however, this wizard only authenticates the server, not the client. A digital certificate, issued by a
Certificate Authority, can be assigned to each of the endpoints or to the applications using SSL on each
endpoint of the connection.

A digital certificate is an electronic credential that you can use to establish proof of identity in an
electronic transaction. IBM i provides extensive digital certificate support that allows you to use digital
certificates as credentials in a number of security applications. In addition to using certificates to
configure SSL, you can use them as credentials for client authentication in both SSL and virtual private
network (VPN) transactions. Also, you can use digital certificates and their associated security keys to
sign objects. Signing objects allows you to detect changes or possible tampering to object contents by
verifying signatures on the objects to ensure their integrity.

Capitalizing on the IBM i support for certificates is easy when you use Digital Certificate Manager (DCM), a
free feature, to centrally manage certificates for your applications. DCM allows you to manage certificates

12 IBM i: IBM HTTP Server for i

that you obtain from any Certificate Authority (CA). Also, you can use DCM to create and operate your own
Local CA to issue private certificates to applications and users in your organization.

The digital certificate is comprised of a public key and some identifying information that a trusted
Certificate Authority (CA) has digitally signed. Each public key has an associated private key. The private
key is not stored with or as part of the certificate. In both server and client authentication, the endpoint
which is being authenticated must prove that it has access to the private key associated with the public
key contained within the digital certificate.

Prerequisites and assumptions
The Configure SSL for ADMIN wizard requires a user profile with *ALLOBJ and *SECADM special
authorities and Digital Certificate Manager installed on your system.

Start the Configure SSL for Admin wizard
The Configure SSL for ADMIN wizard can be started from the Web Administration for i interface:

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the ADMIN-Apache server.
3. In the navigation pane, expand HTTP Tasks and Wizards , and select Configure SSL for ADMIN.

Note: If Configure SSL for ADMIN is not displayed in the navigation pane, either the latest IBM HTTP
Server for i (5770-DG1) PTF group has not been properly installed, or the ADMIN server has not been
selected.

The Configure SSL for ADMIN welcome page displays. Click Next to begin the wizard. After the updates
are made, the wizard restarts the ADMIN server. The ADMIN server can be accessed securely at
(https://[your_isystem]:2010/HTTPAdmin).

Related information
Secure Sockets Layer (SSL)
Digital Certificate Manager

HTTP Server Concepts
This topic provides conceptual information of the various functions and features of IBM HTTP Server for i.

Fundamental directive, context, and server area concepts on HTTP Server
The IBM HTTP Server for i is configured using directives. A directive is used to define an attribute of the
HTTP Server or how the HTTP Server operates. For example, the Listen directive defines what port the
HTTP Server should wait on to handle incoming requests.

HTTP Server directives are extensive, functional, and built around the concept of context.

Directive categories of HTTP Server
The HTTP Server directives may be categorized into two main groups. These are Assignment directives
and Container directives.

Assignment directives
Used to configure the function or characteristics of the HTTP Server. For example, the Listen directive
assigns the port the HTTP Server should use to handle incoming requests.

Container directives
Used to group directives together within the HTTP Server. The container directives group one or more
assignment directives which are used to control the function intended specifically within the context
of the container. For example, the <Directory> directive is used to enclose a group of assignment
directives that only apply to the directory and subdirectory context.

IBM HTTP Server for i 13

When dealing with container directives, individual assignment directives may not be valid within one
or more container directives due to improper context. See “Directives for HTTP Server” on page 210
for more information on the specific context a directive may or may not be used.

HTTP Server directive contexts
Understanding the context concept is necessary to increase the productivity and usefulness of your HTTP
Server. The IBM Web Administration for i interface assists in managing context areas of your server. By
selecting a different area of the server area, you are changing the context you are managing.

These types of directive contexts are supported:

server config
Also called "Server Area", "Global Level" or "Global Context". The attributes set by directives in the
server config context can and most likely will be inherited by the container directives and assignment
directives used in the configuration.

directory
Also called "Container Context", the directory context should not be confused with <Directory>
containers. If the directive supports this context, the directive can be used in most containers
(<Directory>, <File>, <Proxy>, and <Location> for example). This context support does not apply to
virtual hosts. There are limited exceptions where directives are not supported in all of the containers
associated with this context. See “Directives for HTTP Server” on page 210 for specific directive
exceptions.

virtual host
The virtual host context refers to directives that are allowed to be configured, or assigned, in the
<Virtual Host> container directive.

.htaccess
Also called ".htaccess files", the .htaccess context refers to directives supported in per-directory
configuration files. Per-directory configuration files are read by the server from the physical directory
where they reside. The directives within this file are applied to any objects that are to be served from
the directory where the file exists, and may also be carried forward to sub-directories. Note that the
use of .htaccess files is not recommended due to the additional overhead incurred by the server.

HTTP Server container types
The directives used to configure HTTP Server containers are encased in greater than (>) and lesser than
(<) brackets. For example, <Directory> is a container directive. Each container is comprised of an opening
directive, such as <Directory>, and closed with the same context directive prefixed with a slash (/). For
example, </Directory>.

There are six different types of container directives. Five of the six container directives listed below have
variants which results in a total of eleven different container directives (shown below with the opening
and closing tags).

Directory and DirectoryMatch
<Directory directory>...</Directory>
<DirectoryMatch regex>...</DirectoryMatch>

Files and FilesMatch
<Files filename>...</Files>
<FilesMatch regex>...</FilesMatch>

Location and LocationMatch
<Location URL>...</Location>
<LocationMatch regex>...</LocationMatch>

Proxy and ProxyMatch
<Proxy criteria>...</Proxy>
<ProxyMatch regex>...</ProxyMatch>

14 IBM i: IBM HTTP Server for i

VirtualHost
<VirtualHost addr[:port] >...</VirtualHost>

Limit and LimitExcept
<Limit method method>...</Limit>
<LimitExcept method method>...</LimitExcept>

Version
<IfVersion> [[!]operator] version> ... </IfVersion>

If , Else and ElseIf
<Else> ... </Else>

<If> or <ElseIf>

<If expression> ... </If>

Require
<RequireAll> ... </RequireAll>

<RequireAny> ... </RequireAny>

<RequireNone> ... </RequireNone>

Note: Not all directives enclosed by brackets (<>) are container directives. For example, directives
<IfModule> ,<IfDefine> and “<Macro>” on page 626 are used to define parts of the HTTP Server
configuration that are conditional and are ignored once the server has started; however, they are not
directive containers.

Context and server area relationship
The following table shows server area and context relationship.

Server area Context

Global configuration server config

Directory container directory (<Directory>; or <DirectoryMatch>;)

File container directory (<File>; or <FileMatch>;)

Location container directory (<Location>; or <LocationMatch>)

Proxy container directory (<Proxy>; or <ProxyMatch>;)

Virtual host container virtual host (<VirtualHost>)

Limit except container <Limit> or <LimitExcept>

Note: The context depends on the location of the <Limit>
and <LimitExcept> container. It will inherit the context of the
area it is in. For example, if the <Limit> and <LimitExcept) are
within a directory container, the <Limit> or <LimitExcept> will
be assigned the same values as the directory container.

Version containe <IfVersion>

See “Directives for HTTP Server” on page 210 for more information on all the supported HTTP Server
directives and the context in which the directives may be used.

Directives within containers
The container directives <Directory>, <Location> and <Files> can contain directives which only apply to
specified directories, URLs or files respectively. This also includes .htaccess files that can be used inside a
directory container to apply directives to that directory.

IBM HTTP Server for i 15

Files that are included in the configuration file are processed by the HTTP Server at start time. Changes to
files that are included in the configuration file (such as include files and group files, but not .htaccess files)
do not take effect until the server is restarted.

Everything that is syntactically allowed in <Directory> is also allowed in <Location> (except a sub-<Files>
section). Semantically however some things, and the most notable are AllowOverride and the two
options FollowSymLinks and SymLinksIfOwnerMatch, make no sense in <Location>, <LocationMatch>
or <DirectoryMatch>. The same for <Files> -- while syntactically correct, they are semantically incorrect.

Directive inheritance
Directives inherit first from the top most (or "parent") directive container, then from more specific
directive containers within.

In the following example, Directory A is the parent container to Directory B. Directive b first inherits its
parameters from Directory A and directive a by default. If the parameters for directive b are defined, then
directive b does not inherit, but uses its own parameter settings. Note that directive a does not inherit any
parameter settings from directive b, since directive a is the parent to directive b. Inheritance only goes
from parent to child.

<Directory A>
 directive a
 <Directory B>
 directive b
 </Directory>
</Directory>

Note: Best practice for security of your HTTP Server is to put all security directives into each container to
ensure that each directory or file is secured.

How the directives are merged
The order of merging is:

1. <Directory> (except regular expressions) and .htaccess done simultaneously (with .htaccess overriding
<Directory>)

2. <DirectoryMatch>, and <Directory> with regular expressions
3. <Files> and <FilesMatch> done simultaneously
4. <Location> and <LocationMatch> done simultaneously

Apart from <Directory>, each directive group (directives within container directives) is processed in the
order that they appear in the configuration files. <Directory> (directive group 1 above) is processed in
the order shortest directory component to longest. If multiple <Directory> sections apply to the same
directory they are processed in the configuration file order. Configurations included through the Include
directive will be treated as if they were inside the including file at the location of the Include directive.

Container directives inside a <VirtualHost> container directive are applied after the corresponding
directives outside of the virtual host definition. This allows virtual hosts to override the main server
configuration.

Using container directives
General guidelines:

• If you are attempting to match objects at the file system level then you must use the <Directory> and
<Files> container directives.

• If you are attempting to match objects at the URL level then you must use the <Location> container
directive.

Notable exception:

16 IBM i: IBM HTTP Server for i

• Proxy control is done via <Proxy> containers. Directives which are valid in a <Directory> container
are also valid in a <Proxy> container. A <Proxy> container is very similar to a <Location> container,
since it deals with virtual paths and locations rather than with physical paths. The directives in
<Proxy> containers are processed after the directives in <Location> containers are processed, but
before directives in <Directory> containers are processed. The directives in <Proxy> containers are also
inherited into more specific <Proxy> containers in the same way as the directives in a <Directory>
container.

.htaccess parsing:

• Modifying .htaccess parsing within a <Location> container directive has no affect. The .htaccess parsing
has already occurred.

<Location> and symbolic links:

• It is not possible to use Options FollowSymLinks or Options SymLinksIfOwnerMatch inside a
<Location>, <LocationMatch> or <DirectoryMatch> container directives (the Options are simply
ignored). Using the Options in question is only possible inside a <Directory> container directive (or
a .htaccess file).

<Files> and Options:

• Using an Options directive inside a <Files> container directive has no effect.

Note: A <Location>/<LocationMatch> sequence is performed just before the name translation phase
(where Aliases and DocumentRoots are used to map URLs to filenames). The results of this sequence are
removed after the translation has completed.

Related information
“Directives for HTTP Server” on page 210
This topic provides information about the supported directives for IBM HTTP Server for i.

Content negotiation for HTTP Server
The IBM HTTP Server for i supports content negotiation, type-map files, MultiViews, negotiation methods,
dimensions of negotiation,, negotiation algorithm, media types, and wildcards.

A resource may be available in several different representations. For example, it might be available in
different languages or different media types, or a combination. One way of selecting the most appropriate
choice is to give the user an index page, and let them select; however it is often possible for the server
to choose automatically. This works because browsers can send as part of each request information
about what representations it prefers. For example, a browser could indicate that it would like to see
information in French, if possible, else English will do. Browsers indicate their preferences by headers in
the request. To request only French representations, the browser would send:

Accept-Language: fr

Note that this preference will only be applied when there is a choice of representations and they vary by
language.

As an example of a more complex request, this browser has been configured to accept French and
English, but prefers French, and to accept various media types, preferring HTML over plain text or other
text types, and preferring GIF or JPEG over other media types, but also allowing any other media type as a
last resort:

Accept-Language: fr; q=1.0, en; q=0.5
Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6,
 image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

The HTTP Server supports 'server driven' content negotiation, as defined in the HTTP/1.1 specification.
It fully supports the Accept, Accept-Language, Accept-Charset and Accept-Encoding request headers.
The HTTP Server also supports 'transparent' content negotiation, which is an experimental negotiation
protocol defined in RFC 2295 and RFC 2296. It does not offer support for 'feature negotiation' as defined
in these RFCs.

IBM HTTP Server for i 17

A resource is a conceptual entity identified by a URI (RFC 2396). The HTTP Server provides access
to representations of the resource(s) within its namespace, with each representation in the form of a
sequence of bytes with a defined media type, character set, encoding, or other. Each resource may be
associated with zero, one, or more than one representation at any given time. If multiple representations
are available, the resource is referred to as negotiable and each of its representations is termed a
variant. The ways in which the variants for a negotiable resource vary are called the dimensions of
negotiation.

Content negotiation
In order to negotiate a resource, the server needs to be given information about each of the variants. This
is done in one of two ways:

• Using a type -map (for example, a *.var file) which names the files containing the variants explicitly.
• Using a 'MultiViews' search, where the server does an implicit filename pattern match and chooses from

among the results.

Using a type-map file
A type map is a document which is associated with the handler named type-map (or, for backwards-
compatibility with older HTTP Server configurations, the mime type application/x-type-map). Note that to
use this feature, you must have a handler set in the configuration that defines a file suffix as type-map;
this is best done with an AddHandler in the server configuration file, as shown below.

AddHandler type-map var

Type map files have an entry for each available variant; these entries consist of contiguous HTTP-format
header lines. Entries for different variants are separated by blank lines. Blank lines are illegal within an
entry. It is conventional to begin a map file with an entry for the combined entity as a whole (although this
is not required, and if present will be ignored). An example map file is:

URI: jkl

URI: jkl.en.html
Content-type: text/html
Content-language: en

URI: jkl.fr.de.html
Content-type: text/html;charset=iso-8859-2
Content-language: fr, de

If the variants have different source qualities, that may be indicated by the "qs" parameter to the media
type, as in this picture (available as jpeg, gif, or ASCII-art):

URI: jkl

URI: jkl.jpeg
Content-type: image/jpeg; Qs=0.8

URI: jkl.gif
Content-type: image/gif; Qs=0.5

URI: jkl.txt
Content-type: text/plain; Qs=0.01

The "Qs" value can vary in the range 0.000 to 1.000. Note that any variant with a "Qs" value of 0.000 will
never be chosen. Variants with no "Qs" parameter value are given a "Qs" factor of 1.0. The "Qs" parameter
indicates the relative 'quality' of this variant compared to the other available variants, independent of the
client's capabilities. For example, a jpeg file is usually of higher source quality than an ASCII file if its
attempting to represent a photograph; however, if the resource being represented is an original ASCII art,
then an ASCII representation would have a higher source quality than a jpeg representation. A "Qs" value
is therefore specific to a given variant depending on the nature of the resource it represents.

The full list of headers recognized are:

18 IBM i: IBM HTTP Server for i

URI
The uri of the file containing the variant (of the given media type, encoded with the given content
encoding). These are interpreted as URLs relative to the map file; they must be on the same server,
and they must refer to files to which the client would be granted access if they were to be requested
directly.

Content-Type
The media type --- charset, level and "Qs" parameters may be given. These are often referred to as
MIME types; typical media types are image/gif, text/plain, or text/html; level=3.

Content-Language
The languages of the variant, specified as an Internet standard language tag from RFC 1766 (for
example, en for English, or kr for Korean).

Content-Encoding
If the file is compressed, or otherwise encoded, rather than containing the actual raw data, this states
how it was done. The HTTP Server only recognizes encodings that are defined by an AddEncoding
directive. This normally includes the encodings x-compress for compressed files, and x-gzip for gzip'd
files. The x- prefix is ignored for encoding comparisons.

Content-Length
The size of the file. Specifying content lengths in the type-map allows the server to compare file sizes
without checking the actual files.

Description
A human-readable textual description of the variant. If the HTTP Server cannot find any appropriate
variant to return, it will return an error response which lists all available variants instead. Such a
variant list will include the human-readable variant descriptions.

MultiViews
MultiViews is a per-directory option, meaning it can be set with an Options directive within a <Directory>,
<Location> or <Files> container in the configuration file, or (if AllowOverride is properly set) in .htaccess
files. Note that Options All does not set MultiViews; you have to ask for it by name.

The effect of MultiViews is as follows: if the server receives a request for /some/dir/jkl, if /some/dir has
MultiViews enabled, and /some/dir/jkl does not exist, then the server reads the directory looking for files
named jkl.*, and effectively fakes up a type map which names all those files, assigning them the same
media types and content-encodings it would have if the client had asked for one of them by name. It then
chooses the best match to the client's requirements.

MultiViews may also apply to searches for the file named by the DirectoryIndex directive, if the server is
trying to index a directory. If the configuration files specify:

DirectoryIndex index

The server will arbitrate between index.html and index.html3 if both are present.

If one of the files found when reading the directive is a CGI script, it is not obvious what should happen.
The code gives that case special treatment --- if the request was a POST, or a GET with QUERY_ARGS
or PATH_INFO, the script is given an extremely high quality rating, and generally invoked; otherwise it
is given an extremely low quality rating, which generally causes one of the other views (if any) to be
retrieved.

The negotiation methods
After the HTTP Server has obtained a list of the variants for a given resource, either from a type-map file
or from the filenames in the directory, it invokes one of two methods to decide on the 'best' variant to
return, if any. It is not necessary to know any of the details of how negotiation actually takes place in
order to use the HTTP Server content negotiation features. However the rest of this document explains
the methods used for those interested.

There are two negotiation methods:

IBM HTTP Server for i 19

1. Server driven negotiation with the HTTP Server algorithm is used in the normal case. The HTTP
Server algorithm is explained in more detail below. When this algorithm is used, the HTTP Server can
sometimes 'fiddle' the quality factor of a particular dimension to achieve a better result. The ways the
HTTP Server can fiddle quality factors is explained in more detail below.

2. Transparent content negotiation is used when the browser specifically requests this through the
mechanism defined in RFC 2295. This negotiation method gives the browser full control over deciding
on the 'best' variant, the result is therefore dependent on the specific algorithms used by the browser.
As part of the transparent negotiation process, the browser can ask the HTTP Server to run the 'remote
variant selection algorithm' defined in RFC 2296.

Dimensions of negotiation
Media Type

Browser indicates preferences with the Accept header field. Each item can have an associated quality
factor. Variant description can also have a quality factor (the "Qs" parameter).

Language
Browser indicates preferences with the Accept-Language header field. Each item can have a quality
factor. Variants can be associated with none, one or more than one language.

Encoding
Browser indicates preference with the Accept-Encoding header field. Each item can have a quality
factor.

Charset
Browser indicates preference with the Accept-Charset header field. Each item can have a quality
factor. Variants can indicate a charset as a parameter of the media type.

Client (Browser)
The User-Agent HTTP header is used to determine browser type.

The negotiation algorithm
The HTTP Server can use the following algorithm to select the 'best' variant (if any) to return to the
browser. This algorithm is not further configurable. It operates as follows:

1. First, for each dimension of the negotiation, check the appropriate Accept* header field and assign
a quality to each variant. If the Accept* header for any dimension implies that this variant is not
acceptable, eliminate it. If no variants remain, go to step 4.

2. Select the 'best' variant by a process of elimination. Each of the following tests is applied in order. Any
variants not selected at each test are eliminated. After each test, if only one variant remains, select it
as the best match and proceed to step 3. If more than one variant remains, move on to the next test.

a. Multiply the quality factor from the Accept header with the quality-of-source factor for this
variant's media type, and select the variants with the highest value.

b. Select the variants with the highest language quality factor.
c. Select the variants with the best language match, using either the order of languages in the

Accept-Language header (if present), or else the order of languages in the LanguagePriority
directive (if present).

d. Select the variants with the highest 'level' media parameter (used to give the version of text/html
media types).

e. Select variants with the best charset media parameters, as given on the Accept-Charset header
line. Charset ISO-8859-1 is acceptable unless explicitly excluded. Variants with a text/* media
type but not explicitly associated with a particular charset are assumed to be in ISO-8859-1.

f. Select those variants which have associated charset media parameters that are not ISO-8859-1.
If there are no such variants, select all variants instead.

g. Select the variants with the best encoding. If there are variants with an encoding that is
acceptable to the user-agent, select only these variants. Otherwise if there is a mix of encoded

20 IBM i: IBM HTTP Server for i

and non-encoded variants, select only the non-encoded variants. If either all variants are encoded
or all variants are not encoded, select all variants.

h. Select the variants that correspond to the User-Agent header received on the HTTP Request.
i. Select the variants with the smallest content length.
j. Select the first variant of those remaining. This will be either the first listed in the type-map file, or

when variants are read from the directory, the one whose file name comes first when sorted using
ASCII code order.

3. The algorithm has now selected one 'best' variant, so return it as the response. The HTTP response
header Vary is set to indicate the dimensions of negotiation (browsers and caches can use this
information when caching the resource).

4. To get here means no variant was selected (because none are acceptable to the browser). Return a
406 status (meaning "No acceptable representation") with a response body consisting of an HTML
document listing the available variants. Also set the HTTP Vary header to indicate the dimensions of
variance.

Editing quality values
The HTTP Server sometimes changes the quality values from what would be expected by a strict
interpretation of the HTTP Server negotiation algorithm above. This is to get a better result from the
algorithm for browsers which do not send full or accurate information. Some of the most popular
browsers send Accept header information which would otherwise result in the selection of the wrong
variant in many cases. If a browser sends full and correct information these fiddles will not be applied.

Media types and wildcards
The Accept: request header indicates preferences for media types. It can also include 'wildcard' media
types, such as "image/*" or "*/*" where the * matches any string. So a request including Accept:
image/*, */* would indicate that any type starting "image/" is acceptable, as is any other type (so the
first "image/*" is redundant). Some browsers routinely send wildcards in addition to explicit types they
can handle. For example, Accept: text/html, text/plain, image/gif, image/jpeg, */*.

The intention of this is to indicate that the explicitly listed types are preferred, but if a different
representation is available, that is OK too. However under the basic algorithm, as given above, the */*
wildcard has exactly equal preference to all the other types, so they are not being preferred. The browser
should really have sent a request with a lower quality (preference) value for *.*, such as: Accept: text/
html, text/plain, image/gif, image/jpeg, */*; q=0.01.

The explicit types have no quality factor, so they default to a preference of 1.0 (the highest). The wildcard
/ is given a low preference of 0.01, so other types will only be returned if no variant matches an
explicitly listed type.

If the Accept: header contains no "q" factors at all, the HTTP Server sets the "q" value of "*/*", if present,
to 0.01 to emulate the desired behavior. It also sets the "q" value of wildcards of the format "type/*"
to 0.02 (so these are preferred over matches against "*/*"). If any media type on the Accept: header
contains a "q" factor, these special values are not applied, so requests from browsers which send the
correct information to start with work as expected.

Variants with no language
If some of the variants for a particular resource have a language attribute, and some do not, those
variants with no language are given a very low language quality factor of 0.001.

The reason for setting this language quality factor for variant with no language to a very low value is
to allow for a default variant which can be supplied if none of the other variants match the browser's
language preferences. For example, consider the situation with three variants:

• jkl.en.html, language en
• jkl.fr.html, language fr

IBM HTTP Server for i 21

• jkl.html, no language

The meaning of a variant with no language is that it is always acceptable to the browser. If the request
Accept-Language header includes either en or fr (or both) one of jkl.en.html or jkl.fr.html will be returned.
If the browser does not list either en or fr as acceptable, jkl.html will be returned instead.

Extensions to transparent content negotiation
The HTTP Server extends the transparent content negotiation protocol (RFC 2295) as follows. A new
{encoding ..} element is used in variant lists to label variants which are available with a specific content-
encoding only. The implementation of the RVSA/1.0 algorithm (RFC 2296) is extended to recognize
encoded variants in the list, and to use them as candidate variants whenever their encodings are
acceptable according to the Accept-Encoding request header. The RVSA/1.0 implementation does not
round computed quality factors to 5 decimal places before choosing the best variant.

Hyperlinks and naming conventions
If you are using language negotiation you can choose between different naming conventions, because
files can have more than one extension, and the order of the extensions is normally irrelevant (see
mod_mime for details).

A typical file has a MIME-type extension (for example, html), maybe an encoding extension (for example,
gz), and of course a language extension (for example, en) when we have different language variants of this
file.

Examples:

• jkl.en.html
• jkl.html.en
• jkl.en.html.gz

Examples of filenames together with valid and invalid hyperlinks:

Filename Valid hyperlink Invalid hyperlink

jkl.html.en jkl

jkl.html

-

jkl.en.html jkl jkl.html

jkl.html.en.gz jkl

jkl.html

jkl.gz

jkl.html.gz

jkl.en.html.gz jkl jkl.html

jkl.html.gz

jkl.gz

jkl.gz.html.en jkl

jkl.gz

jkl.gz.html

jkl.html

jkl.html.gz.en jkl

jkl.html

jkl.html.gz

jkl.gz

22 IBM i: IBM HTTP Server for i

Looking at the table above you will notice that it is always possible to use the name without any
extensions in an hyperlink (for example, jkl). The advantage is that you can hide the actual type of a
document rsp. file and can change it later, for example, from html to shtml or cgi without changing any
hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (for example jkl.html) the language
extension (including an encoding extension if there is one) must be on the right hand side of the MIME-
type extension (for example, jkl.html.en).

Caching
When a cache stores a representation, it associates it with the request URL. The next time that URL is
requested, the cache can use the stored representation. But, if the resource is negotiable at the server,
this might result in only the first requested variant being cached and subsequent cache hits might return
the wrong response. To prevent this, the HTTP Server normally marks all responses that are returned after
content negotiation as non-cacheable by HTTP/1.0 clients. The HTTP Server also supports the HTTP/1.1
protocol features to allow caching of negotiated responses.

For requests which come from an HTTP/1.0 compliant client (either a browser or a cache), the directive
CacheNegotiatedDocs can be used to allow caching of responses which were subject to negotiation. This
directive can be given in the server config or virtual host, and takes no arguments. It has no effect on
requests from HTTP/1.1 clients.

Related information
“Setting up content and language negotiation for HTTP Server” on page 94
Content negotiation for an HTTP Server instance can be set up using the IBM Web Administration for i
interface. Content negotiation is defined as the process where the client provides a set of preferences
(such as language) to the server, and the server finds the best resource match to those the client prefers.

Virtual hosts on HTTP Server
This topic provides information about virtual host types on the IBM HTTP Server for i Web server.

The concept of virtual hosts allows more than one Web site on one system or Web server. The servers
are differentiated by their host name. Visitors to the Web site are routed by host name or IP address
to the correct virtual host. Virtual hosting allows companies sharing one server to each have their own
domain names. For example www.company1.com and www.company2.com can both be hosted on the
same server.

HTTP Server virtual host types
There are three variations of virtual hosts on HTTP Server:

IP address-based virtual host
The IP address-based virtual host requires one IP address per Web site (host name). This approach
works very well, but requires a dedicated IP address for every virtual host. For more information on
virtual hosts refer to the <VirtualHost> directive.

Name-based virtual host
The name-based virtual host allows one IP address to host more than one Web site (host name).
This approach allows practically an unlimited number of servers, ease of configuration and use, and
requires no additional hardware or software. The main disadvantage to this approach is that the client
must support HTTP 1.1 (or HTTP 1.0 with 1.1 extensions) that include the host name information
inside the HTTP document requests. The latest versions of most browsers support HTTP 1.1 (or
HTTP 1.0 with 1.1 extensions), but there are still old browsers that only support HTTP 1.0. For more
information on virtual hosts refer to the <VirtualHost> directive.

Dynamic virtual host
The dynamic virtual host allows you to dynamically add Web sites (host names) by adding directories
of content. This approach is based on automatically inserting the IP address and the contents of the
Host: header into the pathname of the file that is used to satisfy the request.

IBM HTTP Server for i 23

The advantages of a dynamic virtual host are:

• A smaller configuration file so that the server starts faster and uses less memory.
• Adding virtual hosts does not require the configuration to be changed or the server to be restarted.

The disadvantage of a dynamic virtual host is that you cannot have a different log file for each virtual
host. For more information on dynamic virtual hosts refer to mod_vhost_alias.

Related information
“Virtual host tasks” on page 128
This topic provides step-by-step tasks for configuring virtual hosts in the IBM HTTP Server for i Web
server.
“JKL Toy Company creates virtual hosts on HTTP Server” on page 59
This scenario discusses how to create virtual hosts in an IBM HTTP Server for i Web server.

Proxy server types and uses for HTTP Server
This topic provides information about proxy server types and uses for the IBM HTTP Server for i Web
server.

Proxy servers receive requests intended for other servers and then act to fulfill, forward, redirect, or reject
the requests. Exactly which service is carried out for a particular request is based on a number of factors
which include: the proxy server's capabilities, what is requested, information contained in the request,
where the request came from, the intended destination, and in some cases, who sent the request.

The two most attractive reasons to use a proxy server are its ability to enhance network security and
lessen network traffic. A proxy server enhances network security by providing controls for receiving and
forwarding (or rejecting) requests between isolated networks, for example, forwarding requests across
a firewall. A proxy server lessens network traffic by rejecting unwanted requests, forwarding requests
to balance and optimize server workload, and fulfilling requests by serving data from cache rather than
unnecessarily contacting the true destination server.

HTTP Server has proxy server capabilities built in. Activating these services is simply a matter of
configuration. This topic explains three common proxy concepts: forward proxy, reverse proxy, and proxy
chaining.

Forward proxy
A forward proxy is the most common form of a proxy server and is generally used to pass requests from
an isolated, private network to the Internet through a firewall. Using a forward proxy, requests from an
isolated network, or intranet, can be rejected or allowed to pass through a firewall. Requests may also
be fulfilled by serving from cache rather than passing through the Internet. This allows a level of network
security and lessens network traffic.

A forward proxy server will first check to make sure a request is valid. If a request is not valid, or not
allowed (blocked by the proxy), it will reject the request resulting in the client receiving an error or a
redirect. If a request is valid, a forward proxy may check if the requested information is cached. If it is,
the forward proxy serves the cached information. If it is not, the request is sent through a firewall to an
actual content server which serves the information to the forward proxy. The proxy, in turn, relays this
information to the client and may also cache it, for future requests.

The following image shows a forward proxy configuration. An intranet client initiates a request that is
valid but is not cached on Server A (Proxy Server). The request is sent through the firewall to the Internet
server, Server B (Content Server), which has the information the client is requesting. The information is
sent back through the firewall where it is cached on Server A and served to the client. Future requests for
the same information will be fulfilled by the cache, lessening network traffic (proxy caching is optional and
not necessary for forward proxy to function on your HTTP Server).

24 IBM i: IBM HTTP Server for i

For information on how to configure a forward proxy, see “Setting up forward proxy for HTTP Server” on
page 113.

Reverse proxy
A reverse proxy is another common form of a proxy server and is generally used to pass requests from
the Internet, through a firewall to isolated, private networks. It is used to prevent Internet clients from
having direct, unmonitored access to sensitive data residing on content servers on an isolated network,
or intranet. If caching is enabled, a reverse proxy can also lessen network traffic by serving cached
information rather than passing all requests to actual content servers. Reverse proxy servers may also
balance workload by spreading requests across a number of content servers. One advantage of using
a reverse proxy is that Internet clients do not know their requests are being sent to and handled by a
reverse proxy server. This allows a reverse proxy to redirect or reject requests without making Internet
clients aware of the actual content server (or servers) on a protected network.

A reverse proxy server will first check to make sure a request is valid. If a request is not valid, or not
allowed (blocked by the proxy), it will not continue to process the request resulting in the client receiving
an error or a redirect. If a request is valid, a reverse proxy may check if the requested information
is cached. If it is, the reverse proxy serves the cached information. If it is not, the reverse proxy will
request the information from the content server and serve it to the requesting client. It also caches the
information for future requests.

The above image shows a reverse proxy configuration. An Internet client initiates a request to Server A
(Proxy Server) which, unknown to the client, is actually a reverse proxy server. The request is allowed
to pass through the firewall and is valid but is not cached on Server A. The reverse proxy (Server A)
requests the information from Server B (Content Server), which has the information the Internet client is
requesting. The information is served to the reverse proxy, where it is cached, and relayed through the
firewall to the client. Future requests for the same information will be fulfilled by the cache, lessening
network traffic and load on the content server (proxy caching is optional and not necessary for proxy to
function on your HTTP Server). In this example, all information originates from one content server (Server
B).

For information on how to configure a reverse proxy, see “Setting up reverse proxy for HTTP Server” on
page 114.

Proxy chaining
A proxy chain uses two or more proxy servers to assist in server and protocol performance and network
security. Proxy chaining is not a type of proxy, but a use of reverse and forward proxy servers across
multiple networks. In addition to the benefits to security and performance, proxy chaining allows requests
from different protocols to be fulfilled in cases where, without chaining, such requests would not be
possible or permitted. For example, a request using HTTP is sent to a server that can only handle FTP
requests. In order for the request to be processed, it must pass through a server that can handle both
protocols. This can be accomplished by making use of proxy chaining which allows the request to be

IBM HTTP Server for i 25

passed from a server that is not able to fulfill such a request (perhaps due to security or networking
issues, or its own limited capabilities) to a server that can fulfill such a request.

The first proxy server in a chain will check to make sure a request is valid. If a request is not valid, or
not allowed (blocked by the proxy), it will reject the request resulting in the client receiving an error or
a redirect. If a request is valid, the proxy may check if the requested information is cached and simply
serve it from there. If the requested information is not in cache, the proxy will pass the request on to
the next proxy server in the chain. This server also has the ability to fulfill, forward, redirect, or reject the
request. If it acts to forward the request then it too passes the request on to yet another proxy server.
This process is repeated until the request reaches the last proxy server in the chain. The last server in
the chain is required to handle the request by contacting the content server, using whatever protocol is
required, to obtain the information. The information is then relayed back through the chain until it reaches
the requesting client.

The above image shows a proxy chaining configuration. The intranet client makes a request to Server C
(Content Server FTP). Server A (Proxy Server HTTP) does not contain the requested information in cache,
so the request is passed through the firewall to Server B (proxy server HTTP/FTP). Server B has both HTTP
and FTP protocols and is able to change the HTTP request to an FTP request. Server C receives the FTP
request and passes back the requested information to Server B. Server B, in turn, passes the fulfilled
request back to the intranet client using the HTTP protocol. The request is sent through the firewall and
Server A where the request is cached and given to the intranet client.

For information on how to configure proxy chaining, see “Set up proxy chaining for HTTP Server” on page
115.

Reasons for passing requests through a proxy chain vary. For example, you may use proxy chaining to
pass information through multiple networks where a client on one network cannot communicate directly
with a proxy server on a different network, and it needs a second proxy to relay its requests. You may also
use it to cache information in multiple locations or to allow certain protocols to be used outside a firewall
which are not allowed through a firewall.

Related information
“Proxy tasks” on page 113
The IBM HTTP Server for i supports proxy tasks.

Supported file systems for Web content served by HTTP Server
This topic provides information about supported file systems for Web content by the HTTP Server.

The HTTP Server can serve content from any of the following file systems:

• Root (/)
• QSYS.LIB
• QOpenSys
• QDLS
• NFS
• QFileSvr.400
• QNTC
• QOPT
• UDFS

26 IBM i: IBM HTTP Server for i

A file system provides the support that allows users and applications to access specific segments of
storage that are organized as logical units. These logical units are files, directories, libraries, and objects.

Each file system has a set of logical structures and rules for interacting with information in storage. These
structures and rules may be different from one file system to another. From the perspective of structures
and rules, the support for accessing database files and various other object types through libraries can
be thought of as a file system. Similarly, you can think of the support for accessing documents (which are
really stream files) through the folders structure as a separate file system.

As you decide from which file system to serve files, you might want to consider the following:

• Serving from the root (or /) directory gives you the fastest response times.
• Will the tools you use to maintain your site be compatible with the file system you choose?
• How easy must it be to move content from platform to platform?

Remember that any individual server can serve content (CGI scripts; HTML files; graphics such as .jpegs,
GIFs, and image maps; and so on) from many file systems at once. You can configure your server to serve
content from whatever file systems suit your needs.

Before you start serving your content from the Integrated File System, you must ensure that the world
can access the files that you want to serve. You must grant the QTMHHTTP user profile or *PUBLIC the
following authorities and permissions to enable Web serving with the HTTP Server:

• QTMHHTTP or *PUBLIC must have *USE authority to all library system objects that you intend to serve.
• If you use any of the log directives with any Integrated File System directory name, the directory must

exist, and QTMHHTTP or *PUBLIC must have *RWX authority.
• The QTMHHTTP user profile or *PUBLIC must be granted *RX authority to all objects (HTML pages,

graphics, and so on) that you intend to serve.
• To use CGI programs to access any of the objects you serve, the QTMHHTP1 user profile or *PUBLIC

needs the same authority to the objects as QTMHHTTP.

Note: When considering from which file system to serve files, keep in mind that AllowOverride should be
None for QDLS. Also, file serving and manipulation from QSYS and other EBCDIC file systems might result
in performance bottlenecks.

Related information
File systems

Server Name Indication(SNI)
The IBM HTTP Server for i supports Server Name Indication. Server Name Indication is an extension to
the SSL and TLS protocols that indicates what hostname the client is attempting to connect to at the start
of the handshaking process.

Server Name Indication is an extension to the SSL and TLS protocols that indicates what hostname the
client is attempting to connect to at the start of the handshaking process. This allows a server to present
multiple certificates on the same IP address and port number and hence allows multiple secure (HTTPS)
websites to be served off the same IP address without requiring all those sites to use the same certificate.
It is the conceptual equivalent to HTTP/1.1 virtual hosting for HTTPS.

Name-Based Virtual Hosting is a very popular method of identifying different virtual hosts. It allows you
to use the same IP address and the same port number for many different sites. When people move on to
SSL, it seems natural to assume that the same method can be used to have lots of different SSL virtual
hosts on the same server. But in fact, it's not generally possible without the SNI support. The reason is
that the SSL protocol is a separate layer which encapsulates the HTTP protocol. So the SSL session is a
separate transaction, that takes place before the HTTP session has begun. The server receives an SSL
request on IP address X and port Y (usually 443). Since the SSL request did not contain any Host: field,
the server had no way to decide which SSL virtual host to use. Usually, it just used the first one it found
which matched the port and IP address specified.

IBM HTTP Server for i 27

The solution is an extension to the SSL protocol called Server Name Indication (RFC 4366), which allows
the client to include the requested hostname in the first message of its SSL handshake (connection
setup). This allows the server to determine the correct named virtual host for the request and set the
connection up accordingly from the start.

With SNI, you can have many virtual hosts sharing the same IP address and port, and each one can have
its own unique certificate (and the rest of the configuration). If both Apache Server and browser support
SNI, then the hostname is included in the original SSL request, and the web server can select the correct
SSL virtual host.

The client browser must also support SNI. Here are some browsers that do:

• Mozilla Firefox 2.0 or later
• Opera 8.0 or later (with TLS 1.1 enabled)
• Internet Explorer 7.0 or later (on Vista or higher, does not work on XP)
• Google Chrome (Vista or higher. XP on Chrome 6 or newer. Mac OS X 10.5.7 or higher on Chrome

5.0.342.1 or newer)
• Safari 3.2.1 or later (on Mac OS X 10.5.6 and Windows Vista or higher)

The first (default) virtual host for SSL name-based virtual hosts must include TLSv1 as a permitted
protocol, otherwise Apache will not accept the SNI information from the client and it will be as if the client
did not support SNI at all.

Since the first (default) virtual host will be used for any request where the provided server name
doesn't match another virtual host, it is important that the first virtual host have the most restrictive
access control, otherwise clients can access restricted resources by sending a request for any unknown
hostname. (This isn't actually any different from using virtual hosts without SSL.)

Specify both “SSLServerCert” on page 469 and “ServerName ” on page 355 directives to set the server
certificate and fully qualified domain name(FQDN) for those specific name-based virtual hosts to have the
SNI support.

Example:

<VirtualHost *:443>
 SSLEngine On
 SSLAppName QIBM_HTTP_SERVER_APACHE1
 DocumentRoot /www/webserver/example1
 ServerName www.example1.com
 SSLServerCert QIBM_HTTP_SERVER_CERT1
</VirtualHost>
<VirtualHost *:443>
 SSLEngine On
 SSLAppName QIBM_HTTP_SERVER_APACHE2
 DocumentRoot /www/webserver/example2
 ServerName www.example2.com
 SSLServerCert QIBM_HTTP_SERVER_CERT2
</VirtualHost>

Related information
“Virtual host tasks” on page 128
This topic provides step-by-step tasks for configuring virtual hosts in the IBM HTTP Server for i Web
server.
“JKL Toy Company creates virtual hosts on HTTP Server” on page 59

28 IBM i: IBM HTTP Server for i

This scenario discusses how to create virtual hosts in an IBM HTTP Server for i Web server.

Logging
The HTTP Server provides many logging features.

Log formats for HTTP Server
This topic provides information about log formats and log files.

Log files contain one line for each request. A line is composed of several tokens separated by spaces. If a
token does not have a value then it is represented by a hyphen (-). A line in a log file might look like the
following:

192.168.1.3 - - [18/Feb/2000:13:33:37 -0600] "GET / HTTP/1.0" 200 5073

The following log file types are supported:

Common (Access)
This format is the common log file format defined by the W3C working group. This format is
compatible with many industry standard log tools. For more information see Logging Control In W3C
httpd .

The common log format is defined by the following string:

"%h %l %u %t \"%r\" %>s %b"

Extended (Access, Referer, and Agent)
This format has two types: NCSA extended log format and the W3C extended log format. The NCSA
extended log format is the common log format appended with the agent and referer information.
The W3C extended log format is defined by the W3C working group and allows you to determine the
format of the log entry. For more information see Extended Log File Format .

NCSA's extended format is defined by the following string:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"\%{User-agent}i\"

Data Description Specification (DDS)
This format is an IBM i database (physical) file in QSYS.LIB. This format allows you to write a database
query program to generate reports. This format contains the same information as the common log
format.

Related information
“Log file format tokens” on page 627
This topic provides information about tokens used to define log file formats.
“Setting up logs on HTTP Server” on page 110
Set up logs to record events and other information for your IBM HTTP Server for i instance using the IBM
Web Administration for i interface.

Web Log Monitor
The Web Log Monitor provides users the ability to monitor the contents of log files for HTTP and
application servers. Rules can be defined to describe what contents in a log file are to be monitored for.
When a defined rule is matched in the specified log file, a notification is sent to the configured notification
channel.

The Web Log Monitor inspects specified log files of any Web-related server, such as Integrated Web
Application Server, Integrated Web Services Server, WebSphere Application Server, and IBM HTTP Server.
The log files are inspected for each keyword that is specified in the rule. If a match is encountered, a
notification is sent to the configured notification channel, which can be one of the following channels:

• The *QSYSOPR system message queue.

IBM HTTP Server for i 29

http://www.w3.org/Daemon/User/Config/Logging.html
http://www.w3.org/Daemon/User/Config/Logging.html
http://www.w3.org/TR/WD-logfile

• One or more e-mail addresses.
• Both the *QSYSOPR system message queue and e-mail addresses.

You can monitor log files for multiple servers under a single monitor.

Use the IBM Web Administration for i interface to configure the Web Log Monitor to monitor logs of your
Web environment.

Related information
“Log formats for HTTP Server” on page 29
This topic provides information about log formats and log files.
“Setting up logs on HTTP Server” on page 110
Set up logs to record events and other information for your IBM HTTP Server for i instance using the IBM
Web Administration for i interface.

Security
The HTTP Server provides many security features that help you control access to data and files.

Security tips for HTTP Server
This topic provides tips to secure your IBM HTTP Server for i Web server.

Some hints and tips on security issues in setting up the HTTP Server.

• “Permissions on HTTP Server directories” on page 30
• “Stopping users from overriding system wide settings for HTTP Server” on page 30
• “Protecting server files by default for HTTP Server” on page 30
• “Server Side Includes for HTTP Server” on page 31

Permissions on HTTP Server directories
In typical operation, the HTTP Server is started under the IBM i user profile QTMHHTTP and requests
coming into the server are run under that user profile. It is possible to start the server and serve requests
under different profiles. Refer to the ServerUserID and UserID directives for more information. You must
also ensure that all of the resources that can be accessed by a Web client are properly protected. See
“User profiles and required authorities for HTTP Server” on page 31 for additional information.

Stopping users from overriding system wide settings for HTTP Server
You will want to stop users from setting up .htaccess files which can override security features. Here is
one example:

<Directory />
 AllowOverride None
 AllowOverrideList None
 Options None
</Directory>

This stops all overrides, Includes, and accesses in all directories. You also need to set up directory
containers to allow access for specific directories.

Protecting server files by default for HTTP Server
HTTP Server has a default access feature. To prevent clients from seeing the entire file system, add the
following block to the configuration:

<Directory />
 Require all denied
</Directory>

30 IBM i: IBM HTTP Server for i

This forbids default access to file system locations. Add appropriate <Directory> blocks to allow access.
For example,

<Directory /users/public_html>
 Require all granted
</Directory>

Pay particular attention to the interactions of <Location> and <Directory> directives. For example, even if
<Directory /> denies access, a <Location /> directive might override it.

Server Side Includes for HTTP Server
Server side includes (SSI) can be configured so that users can execute programs on the server. To disable
that part of SSI use the IncludesNOEXEC option to the Options directive.

User profiles and required authorities for HTTP Server
This topic provides information about user profiles and required authorities for the IBM HTTP Server for i
Web server.

The QTMHHTTP user profile is the default user profile of HTTP Server. This user profile is referred to as
the server user profile. The server user profile must have read and execute authority to the directory path
of the server root directory. If you are using the Create New HTTP Server wizard, the default server root
path is /www/server_name/, where server_name is the name of the HTTP Server.

The server user profile must have read, write, and execute authority to the directory path where the
log files are stored. If you are using the Create New HTTP Server wizard, the default path is /www/
server_name/logs/, where server_name is the name of the HTTP Server. The log files could include
any access, script, or rewrite logs. These logs may or may not be configured to be stored in the /www/
server_name/logs/ directory. Since log files could potentially contain sensitive information, the
security of the configuration and log files should be fully considered. The path of the configuration and log
files should only be accessible by the appropriate user profiles.

The QTMHTTP1 user profile is the default user profile that HTTP Server uses when running CGI programs.
This user profile must have read and execute authority to the location of any CGI program. User
QTMHHTTP requires *RWX (write) authority to directory '/tmp'.

You can optionally specify that the QTMHHTTP or QTMHHTP1 user profile swap to another user profile as
long as that user profile has the required authorities. For more information, see “UserID” on page 234.

• *RX authority for root directory ("/ ") and directory "/www", including all subdirectories in the path
• *RWX authority for directory "/www/server_name/"

Note: Granting *ALLOBJ authority to any server user profile is not recommended.

Related tasks
“Starting Web Administration for i” on page 7
The Web Administration for i allows you to create and manage different types of servers, including
Web servers and application servers. Complete the following steps to start the Web Administration for i
interface.

Validation list on HTTP Server
This topic provides information about validation lists for limiting access to your IBM HTTP Server for i Web
server.

Your system uses validation lists in conjunction with other resources to limit access to your server
resources. Each validation list contains a list of Internet users and their passwords. Each Internet user
has one valid password defined for it. An IBM i user profile is never created for the internet users.

A validation list is an IBM i object of type *VLDL that stores user names and passwords or SSL certificates
for use in access control. Validation lists are case-sensitive. Validation lists reside in IBM i libraries and

IBM HTTP Server for i 31

are required when adding a user unless you are adding the user to a group file. If you enter a validation list
that does not exist, the system will create it for you.

To create and delete validation lists, you can use the CL commands Create Validation List (CRTVLDL) and
the Delete Validation List (DLTVLDL). Validation List APIs are also provided to allow applications to add,
change, remove, verify (authenticate), and find entries in a validation list.

Validation list objects are available for all applications to use. For example, if an application requires a
password, the application passwords can be stored in a validation list object rather than a database file.
The application can use the validation list APIs to verify a user's password, which is encrypted, rather
than the application performing the verification itself.

Kerberos for HTTP Server
Kerberos for network authentication can be used for an IBM HTTP Server for i instance.

Kerberos is a network authentication protocol designed to provide authentication for client or server
applications with secret-key cryptography. Kerberos is a ticket-based authentication system that provides
an alternative to user and password or X.509 certificate authentication. With the HTTP Server, you can
use Kerberos on its own or in conjunction with Enterprise Identity Mapping (EIM) to authenticate Web
users to the Web server.

For more information on EIM, see EIM concepts.

Kerberos requirements
• Supported for IBM i 5.3, or later.
• Check your browser information to ensure it supports Kerberos. Not all browsers support Kerberos and

some only support it in their more recent versions.

See the “JKL Toy Company enables single signon for HTTP Server” on page 74 scenario for a complete
step-by-step instructions on how to enable Kerberos for your IBM i server.

Performance
Performance in a Web server environment is influenced by many components. Understanding the
components can help you ensure that the HTTP Server is functioning at the highest performance levels.

File compression for HTTP Server
Information is compressed by the HTTP Server before being sent to the client over the network.

Compressed output is transferred to requesting client browsers at a higher rate of speed than output that
is not compressed. This decreases the amount of data that the server needs to send over the network and
improves network performance and response times.

Compression and decompression is implemented by the DEFLATE filter, located in “Module mod_deflate”
on page 370. The DEFLATE filter is always inserted after RESOURCE filters like PHP or SSI. It never
touches internal sub-requests. See Apache HTTP Server Version 2.4 Documentation for additional
information and examples on configuring the Apache server to use compression.

When the DEFLATE filter is used, a LoadModule is required in order to recognize the associated directives.

LoadModule deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Output compression
Files can be compressed by the server before output to the client. The server can be configured to
only compress files which are located in specific containers or globally. Directive SetOutputFilter enables
compression for files in the container where it is placed. For example:

32 IBM i: IBM HTTP Server for i

http://httpd.apache.org/docs/2.4/mod/mod_deflate.html

SetOutputFilter DEFLATE

Files being compressed can also be restricted to specific MIME types. In order to configure the server
to restrict compression based on MIME types, the AddOutputFilterByType directive should be used. For
example, to enable compression only for the HTML files located in a specific directory:

<Directory "/your-server-root/htdocs">
 AddOutputFilterByType DEFLATE text/html
</Directory>

Input compression
Compressed files require decompression before they can be used. A filter is necessary for decompressing
a GZIP compressed request body. The DEFLATE filter is required in the input filter chain and is set by
using the SetInputFilter or the AddInputFilter. For example:

<Location /dav-area>
SetInputFilter DEFLATE
</Location>

Requests containing a Content-Encoding: GZIP header are automatically decompressed. The Content-
Length header specifies the length of incoming data from the client, not the byte count of the
decompressed data stream. The actual length of the data will be greater than the Content-Length header
indicates after the decompression has been done.

Note: Check your browser to ensure it supports GZIP request bodies.

Proxy servers
Proxy servers receive a Vary: Accept-Encoding HTTP response header to identify that a cached response
should be sent only to clients that send the appropriate Accept-Encoding request header. The response
header prevents compressed content from being sent to a client that cannot support it.

Dependencies on special exclusions, for example, the User-Agent header, can be specified with an
addition to the Vary header. The Vary header must be manually configured in order to alert proxies of the
additional restrictions. For example, where the addition of the DEFLATE filter depends on the User-Agent,
the following Very header should be added:

Header append Vary User-Agent

If compression depends on information other than request headers, set the Vary header with a value of
"*". The "*" prevents compliant proxies from caching entirely. For example:

Header set Vary *

Related information
“Compression tasks” on page 106
The IBM HTTP Server for i supports the configuration and management of compression files.

Fast Response Cache Accelerator (FRCA) for HTTP Server
The Fast Response Cache Accelerator (FRCA) improves the performance and scale of Web and TCP server
applications by storing both static and dynamic content in a memory-based cache located in the Licensed
Internal Code.

FRCA improves efficiency, scale, and performance by implementing two concepts:

• Use of a memory-based cache that filters what is stored and what is dismissed. Requests can
process much more quickly when the majority of the requested content is cached within the Licensed
Internal Code. The memory-based cache delegates stored information to the Network File Cache which
is located in the Licensed Internal Code.

IBM HTTP Server for i 33

• Caching functions from within the Licensed Internal Code to reduce request processing time.
Storing cached files within the Licensed Internal Code eliminates overhead and reduces request
processing time by reducing task-switching between the Licensed Internal Code and user application
layers. This conserves system resources allowing them to be reallocated towards hosting dynamic
content.

Note: The HTTP Server does not check for authorization on content served from FRCA. Use FRCA to cache
content that does not need to be secured or accessed through specific validation.

FRCA improves HTTP Server performance for both static and dynamic content.

Static content, or content that comes from a file, is stored in Network File Cache and is then served to
Licensed Internal Code of HTTP Server which essentially 'short circuits' the normal request processing
path so the requested information will reach the user faster.

Dynamic content can be served from a Licensed Internal Code proxy cache or distributed by the Licensed
Internal Code reverse proxy to one or more remote servers. A layer-7 router looks at the URL paths to
route dynamic requests to the appropriate remote server.

Static content request and response process without FRCA

Static content request and response process with FRCA

34 IBM i: IBM HTTP Server for i

Related information
“Fast Response Cache Accelerator tasks” on page 107
The IBM HTTP Server for i supports the Fast Response Cache Accelerator (FRCA).

Real time server statistics
Real time server statistics provide information on IBM HTTP Server for i performance.

Server statistics can be viewed with the Real Time Server Statistics tool available through the IBM Web
Administration for i interface. Only statistics for running HTTP Servers can be viewed. Data is collected
from the primary server job only.

The header information for the active server displays the following:

Server name
Displays the name of the active server. The user-defined name was specified during the creation of
the server.

Job
Displays the job name for the active server.

Server started
Displays the date and time the server was started.

Current time
Displays the date and time of the last manual or automatic refresh of the statistical information.

Statistical information can be refreshed manually by clicking Refresh or can be automatically refreshed by
selecting a refresh rate from the Refresh Interval drop-down menu.

IBM HTTP Server for i 35

Note: Statistical information is cumulative. If a value is greater than 264-1 in any column, the value will
reset to 0. All values will reset to 0 if the server is stopped and then started. The type of information
displayed is dependent on the activity of the HTTP Server and what functions are enabled. Only statistical
information for enabled or active functions are displayed. Each column heading identifies what enabled
function or associated server is being surveyed for statistical information.

Each column heading identifies what enabled function or associated server is being surveyed for
statistical information. Statistical information is obtained for the following functions:

Server handled
This column displays the number of completed server transactions by the HTTP Server since
the server was started. For example, completed transactions for static HTML pages, HTML pages
containing Server Side Include (SSI), and images.

Proxy
This column displays the number of completed server transactions that used proxy since the server
was started. Proxy statistics are only available if proxy is enabled. See “Proxy server types and uses
for HTTP Server” on page 24 for more information.

CGI
This column displays the number of completed server transactions that were handled as Common
Gateway Interface (CGI) since the server was started. CGI statistics are only available if CGI is
enabled. See “Setting up CGI jobs” on page 131 for more information.

Using SSL
This column displays the number of completed server transactions that used Secure Sockets Layer
(SSL) since the server was started. SSL statistics are only available if SSL is enabled. See “JKL Toy
company enables Secure Sockets Layer (SSL) protection on HTTP Server” on page 69 for more
information.

WebSphere
This column displays the number of completed server transactions that used an associated
application server since HTTP Server was started. If the associated application server is not running,
the information will still be displayed but will equal '0'. WebSphere statistics are only available if a
WebSphere Application Server is associated with an HTTP Server.

Customer module
This column displays the number of completed server transactions that used a customer or third-
party module. A customer module is a user module incorporated as a service program into the HTTP
Server. See “Apache module programming” on page 194 for more information.

FRCA Stats
This column displays the number of completed server transactions that used Fast Response Cache
Accelerator (FRCA) since the server was started. FRCA statistics are only available if FRCA is enabled.
See “Fast Response Cache Accelerator (FRCA) for HTTP Server” on page 33 for more information.

FRCA Proxy
This column displays the number of completed server transactions that used Fast Response Cache
Accelerator (FRCA) proxy since the server was started. FRCA statistics are only available if FRCA
is enabled. See “Fast Response Cache Accelerator (FRCA) for HTTP Server” on page 33 for more
information.

General
The general statistical information displays basic information about the active server since the server was
started. Statistical information displayed includes the following:

Active threads
Displays the number of currently active threads on the server. A thread is an independent unit of work
within a job that uses many of the jobs resources to complete work. The difference between jobs and
threads is that threads run within the job helping it to finish its work. Every active job has at least one
thread, which is called an initial thread. The initial thread is created as part of starting the job. The use

36 IBM i: IBM HTTP Server for i

of threads within a job allows many things to be done at once. For example, while a job is processing,
a thread may retrieve and calculate data needed by the job to finish processing.

Idle threads
Displays the number of currently idle threads active on the server. An idle thread is a portion of a
program that is waiting for either a response or a request before it can continue. Idle threads are most
often waiting for an HTTP request to process.

Normal connections
Displays the number of total normal (non-secure) connections currently active.

SSL connections
Displays the number of total SSL (secure) connections currently active.

Requests
Displays the number of total requests to the server since the server was started.

Responses
Displays the number of total responses from the server since the server was started.

Requests rejected
Displays the number of total rejected requests issued by the server since the server was started.

Absolute and Delta
The absolute and delta information displays statistical information about currently enabled functions
or associated servers. The absolute value is a measurement of the total transactions since the server
was started. The delta value is a measurement of the total transactions since the server statistics were
refreshed. The absolute and delta statistical information may be displayed separately or side by side for
comparison. Connections are not the same thing as a request or response transaction. Connection are
only recorded for new inbound connections to the server. Each column heading identifies what enabled
function or associated server is being surveyed for statistical information. Each row identifies what
statistical information is being retrieved. Statistical information displayed for each column includes:

Requests
Displays the number of requests to the enabled function or associated server identified at the top of
the column.

Responses
Displays the number of responses sent by the enabled function or associated server identified at the
top of the column.

Error responses
Displays the number of error responses sent by the enabled function or associated server identified at
the top of the column. An error response example is the 404 "Page Not Found" response.

Non-cache responses
Displays the number of non-cached responses sent by the enabled function or associated server
identified at the top of the column.

Cache responses
Displays the number of local memory cached responses sent by the enabled function or associated
server identified at the top of the column.

Bytes received
Displays the number of bytes received by the enabled function or associated server identified at the
top of the column.

Bytes sent
Displays the number of bytes sent by the enabled function or associated server identified at the top of
the column.

Non-cache Processing (seconds)
Displays the number of seconds of non-cached processing activity completed by the enabled function
or associated server identified at the top of the column.

IBM HTTP Server for i 37

Cache Processing (seconds)
Displays the number of seconds of cached processing activity completed by the enabled function or
associated server identified at the top of the column.

Averages
The server averages information displays the average length of activity, in seconds, completed by the
enabled function or associated server identified at the top of the column. Each column heading identifies
what enabled function or associated server is being surveyed for statistical information. Each row
identifies what statistical information is being retrieved. Averages are not affected by end user response
times. Factors such as internet and intranet traffic, firewalls, and connection speeds are not determined.
Statistical information displayed for each column includes:

Total (seconds)
Displays the total time of activity completed by the enabled function or associated server identified at
the top of the column.

Non-cached (seconds)
Displays the average length of time of non-cached activity completed by the enabled function or
associated server identified at the top of the column.

Cached (seconds)
Displays the average length of time of cached activity completed by the enabled function or
associated server identified at the top of the column.

Web Performance Advisor
The Web Performance Advisor provides a way to view, evaluate and modify the attributes that affect
the performance of your Web environment. Clear definitions of the attributes are provided along with
recommended values. The tool also provides rating for each attribute to help guide the user to acceptable
settings.

A Web environment is a grouping of related Web and application servers that form a Web solution. A Web
environment is typically made up of a single WebSphere Application Server instance or profile and all the
application servers contained within, its corresponding IBM HTTP Server, and any system attributes that
could have a direct effect on the performance of the Web environment.

The Web Performance Advisor is made up of multiple components to help you tune the performance of
your system and Web environment. These components include an advisor and an export function. These
can be launched from the Web Performance Advisor introduction page. On this introduction page, the user
is provided a quick, easy-to-read, high-level view of their system and Web environment performance.

The Advisor function allows you to manage system attributes and to manage Web environment attributes.
From the manage system and manage Web environment panels, you can view, evaluate, and change
each performance attribute. While evaluating each performance attribute, click the attribute's Advise link
to learn about the attribute and find the recommended setting. The Web Performance Advisor gathers
ratings and recommendations for each of the performance attributes being tuned. From these ratings,
icons are displayed to convey whether the attribute is tuned well (green), may need some additional
tuning (yellow), or needs immediate attention (red). The ratings that are displayed may vary based on the
risk level (conservative or aggressive) you have configured in the General Settings. Conservative means
that you do not want to be alerted to those performance attributes that are on the fringe. By using the
conservative approach, fewer attributes are changed and drastic performance updates are not made. Of
course, performance may not be tuned as well, but there is much less risk of degrading your machine
as a whole. Using the aggressive approach, any attribute that is on the fringe is flagged as needing to be
changed. In addition, attributes that would be flagged as good in a conservative mode, might actually be
flagged as needing improvement. By doing this, more drastic performance updates are made which may
dramatically improve performance. On the downside, the possibility exists that unexpected, unwanted
consequences may result from these drastic performance changes.

The export function allows you to save existing performance settings in a performance profile. This profile
can be evaluated, compared, or sent to a performance expert for analysis and modification.

38 IBM i: IBM HTTP Server for i

When the Web Performance Advisor tool is used to examine a Web related server, a flight recorder
performance profile is created to save what all performance attributes are set to prior to any changes
being made. Whenever changes are made through the Web Performance Advisor, all the performance
attributes are saved (including the new changes) to another flight recorder performance profile file. This
is necessary so that you can keep track of all changes made to a Web environment. All flight recorder
performance profile files are located in the '/QIBM/UserData/HTTPA/admin/WPA' directory. The
Web Performance Advisor tool does not clean up these files; they remain until someone deletes them
manually.

Because the attributes affecting performance in a Web environment are located in many places, the Web
Performance Advisor combines all of the performance attributes into a performance profile. The profile
contains:

• System attribute information made up of the physical and logical resources that have been allocated to
the system and partition and selected system values that can have a direct effect on Web performance,
TCP/IP settings, and PTF information including the PTF Groups and the individual product PTFs for the
products that are used in a Web environment.

• Web attribute information for the WebSphere Application Server instance or profile configured for this
Web environment, including all the application servers configured for this particular instance or profile.

• Web performance attributes for each application server being tuned including the WebSphere
Application Server JVM settings, system and server resource settings, server JDBC providers and data
source resources, and other additional server settings.

• Web attribute information related to your external HTTP server associated with WebSphere Application
Server instance or profile.

Related information
“Web Performance Advisor” on page 124
The Web Performance Advisor provides a way to view, evaluate and modify the attributes that affect
the performance of your Web environment. Clear definitions of the attributes are provided along with
recommended values. The tool also provides rating for each attribute to help guide the user to acceptable
settings.

Extending HTTP Server functionality
Maintaining static Hypertext Markup Language (HTML) pages can be easy and inexpensive, but static
pages cannot cover all of your Web serving needs. Any time the published content needs to be tailored
on data received from a client, the Web page has to be generated on the fly. Serving dynamic data from
your IBM HTTP Server for i Web server can be accomplished in several different ways, depending on your
needs, your programming skills, and the complexity of the task at hand.

The core functionality of the HTTP Server can be extended to serve dynamic data by Common Gateway
Interface (CGI) programs, Apache modules, and server-side includes (SSI). In addition, products available
that can be used in the generation of dynamic Web data include applications servers such as WebSphere
Application Server, and Integrated Web Application Server; and server-side scripting languages such as
Net.Data and PHP.

CGI
The Common Gateway Interface (CGI) specification was introduced to enable and standardize the
interface between Web servers and external programs. The CGI is a relatively simple, platform and
language independent, industry-standard interface for Web application development. Programs that
implement the CGI standard are commonly called CGI programs.

The purpose of CGI is to extend the capability of an HTTP server by providing framework in which an
HTTP server can interface with a program that is specified on a URL. The format of the URL allows
parameters to be passed to the CGI program. On the server side, the interface describes how the program
is started by the HTTP server and how parameters for the program are passed using a combination
of standard-input and environment variables. It also describes how output information (such as HTML

IBM HTTP Server for i 39

elements) are passed back to the HTTP server using standard output. Thus, in its simplest form, a CGI
program can be defined as a program that:

1. Can be called as an executable program and run as a child process of the HTTP server.
2. Is able to read from the standard input.
3. Is able to access environment variables.
4. Is able to write to the standard output.
5. Is able to access command- line arguments passed to the program.

The administrator controls which CGI programs the system can run by using the server directives. The
server recognizes a URL that contains a request for a CGI program, commonly called a CGI script.
(Throughout the documentation, we use the terms CGI program and CGI script to mean the same thing.)
Depending on the server directives, the server calls that program on behalf of the client.

The server supports CGI programs that are written in C++, REXX, ILE C, ILE RPG, and ILE COBOL. It also
supports multiple thread capable CGI programs in all languages that support multiple threads.

CGI programs that are created by compiling source code typically run faster than programs that are
written in interpreted languages such as the Net.Data® and PHP scripting languages. However, programs
that are written in scripting languages tend to be easier to write, maintain, and debug.

The support for CGI by IBM HTTP Server for i includes support for IBM i-unique features that improve the
CGI programming model in the areas of performance, high-availability, and support for transactions. The
following sections discuss the various features.

HTTP Server CGI processes
A major concern with CGI performance on other platforms is the fact that a CGI program is started on
each Web client request. This includes additional disk and operating system activity to create the new
process (job). Quite often, CGI program initialization, such as connecting to a database management
system, also takes some time that adds to the response time users experience with such applications.

The IBM HTTP Server for i takes a different approach. The HTTP Server keeps a pool of HTTP server child
processes that is used to run CGI programs. The child processes are not ended after a CGI program is run
within the process. In addition, child processes are associated with a user profile and only requests for
CGI programs that run under the same user profile associated with an existing child process will be run in
the process.

Some of the additional features related to CGI processes include:

• The ability to specify how many child processes, and under what user profile, should be pre-started
when the Web server starts so that Web clients do not incur the performance hit of starting a new CGI
child process.

• The ability to run a CGI request in a pre-started CGI process, enabling the CGI program to be loaded
and initialized at server startup. This support is beneficial for programs running in named activation
groups. A CGI program running in a named activation group is loaded and initialized one time within a
CGI process.

Persistent CGI programs
Persistent CGI is an extension to the CGI interface that allows a CGI program to maintain a session
with a browser client across multiple browser requests. This allows files to be left open, the state to be
maintained, and long running database transactions to be committed or rolled-back based on end-user
actions.

High availability CGI programs
High availability CGI programs use APIs to preserve state information. The state information can be
accessed by different IBM i servers that are participating as cluster nodes in a clustered environment,
even after a failure or switchover of the HTTP Server or IBM i server.

40 IBM i: IBM HTTP Server for i

Note: Although maintaining CGI program state information across multiple requests is a concept used
by both persistent CGI and high availability CGI programs, the mechanisms used by the two types of
programs are different and a high availability CGI program should not be confused with a persistent CGI
program.

Running AIX CGI programs
The IBM HTTP Server for i is able to run AIX® CGI programs by running the CGI program in the IBM
Portable Application Solutions Environment for i.

In addition to running AIX CGI programs, the IBM HTTP Server for i is able to run AIX programs that
implement the FastCGI protocol. FastCGI is an interface between Web servers and applications which
combines some of the performance characteristics of native Web server modules with the Web server
independence of the CGI programming interface. Like AIX CGI programs, AIX FastCGI applications are run
in the PASE for i environment.

Related information
“CGI programming” on page 179
The IBM HTTP Server for i supports the extension of the functionality of the HTTP Server through the use
of Common Gateway Interface (CGI) programs.
“Writing persistent CGI programs” on page 188
Persistent CGI is an extension to the CGI interface that allows a CGI program to remain active across
multiple browser requests and maintain a session with that browser client. This allows files to be left
open, the state to be maintained, and long running database transactions to be committed or rolled-back
based on end-user input.
“Writing high availability CGI programs” on page 186
High availability CGI programs use APIs to preserve state information. The state information can be
accessed by different IBM i servers that are participating as cluster nodes in a clustered environment,
even after a failure or switchover of the HTTP Server or IBM i server.
“Highly available HTTP Server” on page 43
The IBM HTTP Server for i supports Web server clusters, which ensures high availability of your Web site.
“Running CGI programs in IBM PASE for i” on page 193
The IBM HTTP Server for i Web server can run CGI programs created to run in the IBM Portable
Application Solutions Environment for i. In addition, the HTTP Server can also run programs that follow
the FastCGI protocol.
FastCGI Web site

Apache modules
Modules are service programs that can be dynamically linked and loaded to extend the nature of the HTTP
Server.

In this way, the Apache modules provide a way to extend the function of a Web server. Functions
commonly added by optional modules include:

• Authentication
• Encryption
• Application support
• Logging
• Support for different content types
• Diagnostic support

A good example of a module that is shipped with the HTTP Server that extends the reach of the core
Apache server is:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

IBM HTTP Server for i 41

http://www.fastcgi.com/

This service program is only loaded, linked, and used when you configure the LoadModule directive
because you decided to encrypt your data using Secure Sockets Layer (SSL). The advantage of this is that
the core Apache program can stay relatively small and tight until a particular function (as provided by
a plug-in module) is needed. Then, with just a LoadModule directive and optionally some configuration
directives, you can increase the functionality of your Web server with a corresponding increase in the
working set size.

Apache core functions are those functions available in a standard Apache installation with no
nonstandard modules. The HTTP Server supports more than a 250 directives. About 30 percent of
those directives are in the core functions. The remainder of the directives are in separate modules. The
LoadModule directive must be used to activate the directives in these modules.

IBM provides Apache modules, typically called plug-ins, in order to extend the functionality of the Web
server. The following is a list of the most commonly-used plug-ins:
WebSphere Application Server plug-in

Forwards HTTP requests from the Web server to WebSphere Application Server. WebSphere
Application Server is the premier application server for Java applications.

Integrated Web Application Server plug-in
Forwards HTTP requests from the Web server to Integrated Web Application Server. Integrated Web
Application Server is a lightweight application server for Java applications that is integrated into the
IBM i operating system.

You can also write your own module to extend the core functionality of the HTTP Server.

Related information
“Apache module programming” on page 194
The IBM HTTP Server for i supports the extension of the functionality of the HTTP Server through the use
of third-party Apache modules.

Service-side includes
Server-side includes (SSI) are the simplest way to add dynamic content to a Web site. A set of directives
is embedded in the HTML code and is interpreted by the server before the document is sent to a client.
SSI can be used to call a CGI program or return information about documents or the value of environment
variables.

In the simplest sense, SSI allows for character substitution from within an HTML document.

SSI also supports the execution of simple conditional statements.

Table 10 on page 42 lists the SSI commands supported by the HTTP Server.

Table 10. Supported SSI commands

Command Description

config Configure output formats

echo Prints one of the SSI or API variables.

exec Calls a CGI program.

fsize Prints the size of the specified file.

flastmod Prints the last modification date of the specified file.

global Same as set command.

include Inserts the text of another file. Included files can be nested.

printenv Prints all existing environment variables and their values.

set Sets the value of an environment variable.

42 IBM i: IBM HTTP Server for i

Related information
“Server-side include commands for HTTP Server” on page 643
This topic provides information about server-side include (SSI) commands for the IBM HTTP Server for i
Web server.

High availability
The IBM HTTP Server for i supports the ability for businesses to withstand Web server outages, including
scheduled downtime. The HTTP Server provides high availability by using the IBM i clustering support.
Related information
IBM i Cluster technology

Highly available HTTP Server
The IBM HTTP Server for i supports Web server clusters, which ensures high availability of your Web site.

If Web serving is a critical aspect of your business, you may want high availability and scalability of your
Web server environment. High availability and scalability of the Web server environment can be achieved
through the use of IBM i clustering.

Note: Highly available HTTP Server IPv6 support is avaiable since IBM i 7.1

The Web server cluster solution can provide:

• Planned downtime: If a Web server requires planned maintenance, it is possible to transfer the work to
another node without visible service interruptions to the client.

• No unplanned downtime: If a machine fails, the work is transferred to another node with no human
involvement and without visible service interruptions to the client.

• Scalability: When employing multiple nodes, it is possible to distribute the Web site workload over the
cluster nodes.

Clusters are a collection of complete systems that work together to provide a single, unified computing
capability.

A liveness monitor checks the state of the Web server and interacts with the Web server and the
clustering resource services in the event that a Web server fails (failover), or a manual switchover takes
place (ensures no interruption of Web server services). The clustered hash table (part of the state
replication mechanism) can be used to replicate highly available CGI program state data across the
cluster nodes so that the state data is available to all nodes in the event that a Web server fails (failover)
or is switched-over manually (switchover). To take advantage of this capability, an existing CGI program
must be enabled in a highly available Web Server environment. CGI programs write to the CGI APIs to
indicate what data is replicated.

There are three Web server cluster models that are supported:

• “Primary/backup with takeover IP model” on page 43
• “Primary/backup with a network dispatcher model” on page 44
• “Peer model” on page 45

Primary/backup with takeover IP model
In this model, the Web server runs on the primary and all backup nodes. The backup node or nodes are
in a idle state, ready to become the primary Web server should the primary Web server fail (failover), or a
switchover takes place. All client requests are always served by the primary node.

The following diagram illustrates a Primary/backup with takeover IP model.

IBM HTTP Server for i 43

When the primary node fails (failover), or is brought down by the administrator, the failover/switchover
process begins. The following steps are performed during failover/switchover:

1. One of the backup servers becomes the primary (the first backup in the switchover order).
2. The client requests are redirected to the new primary node.
3. If the new primary receives a user request that belongs to a long-running-session (a CGI program that

has been updated to be a highly available CGI program), the server will restore the request's state. The
new primary retrieves that highly available CGI program's state information from the clustered hash
table. The clustered hash table is part of the state replication mechanism.

4. After the failed node recovers, the highly available Web server instance can be restarted and it will
become the backup system. If the system administrator wants the failed node to become primary
again, a manual switchover must be performed (this can be accomplished with the IBM Simple Cluster
Management interface available through System i Navigator or a business partner tool).

Primary/backup with a network dispatcher model
In this model, just like the primary/backup with takeover IP model, the Web server runs on the primary
and all backup nodes. The backup nodes are in an idle state and all client requests are served by the
primary node. A network dispatcher (for example the IBM WebSphere Edge Server) sends client requests
to the Web server.

The following diagram illustrates a Primary/backup with a network dispatcher model.

44 IBM i: IBM HTTP Server for i

When the primary node fails (failover), or a switchover takes place, the failover/switchover process
begins. The following steps are performed during failover/switchover:

1. One of the backup servers becomes the primary (the first backup in the switchover order).
2. The client requests are sent to the new primary node by the network dispatcher.
3. If the new primary receives a user request that belongs to a long-running-session, the server needs

to restore the request's state. The new primary searches for the state either locally or in the clustered
hash table. The clustered hash table is part of the state replication mechanism.

4. After the failed node recovers, the system administrator can restart the Web server instance and it will
become a backup Web server. If the system administrator wants the failed node to become primary
again, a manual switchover must be performed.

Note: A node can join a recovery domain as primary only if the cluster resource group is in inactive mode.

Peer model
In this model, there is no declared primary node. All nodes are in an active state and serve client
requests. A network dispatcher (for example the IBM WebSphere Edge Server) evenly distributes
requests to different cluster nodes. This guarantees distribution of resources in case of heavy load. Linear
scalability is not guaranteed beyond a small number of nodes. After some number of nodes are added,
scalability can disappear, and the cluster performance can deteriorate.

The following diagram illustrates the peer model.

IBM HTTP Server for i 45

High availability CGI programs
High availability CGI programs use APIs to preserve state information. The state information can be
accessed by different IBM i servers that are participating as cluster nodes in a clustered environment,
even after a failure or switchover of the HTTP Server or IBM i server.

See “Writing high availability CGI programs” on page 186 for information about writing high availability
CGI programs.

Web Publishing with the PUT Method
An IBM HTTP Server for i instance can be configured to support the PUT method for Web publishing.

The standard way of uploading files to a Web server using HTTP is through the use of the PUT method.
HTTP Server supports the PUT method, but requires additional setup to tell the server how to handle
incoming PUT requests. One way to accomplish this is to enable WebDAV, which is provided with HTTP
Server through the module mod_dav. Another is to provide your own CGI program and configure it for use
with HTTP Server. This topic discusses both options, as well as the PUT method in general.

About the PUT Method

POST and PUT are two methods in the HTTP specification that are used to permanently change files
on a Web server. While the POST method is used in conjunction with preestablished content such as
Web forms, the PUT method involves manipulating files that do not yet exist on the server. HTTP Server

46 IBM i: IBM HTTP Server for i

supports the POST and PUT methods in the same way -- that is, it requires a program to tell it how to
handle incoming requests.

WebDAV

Most users will find that the easiest way to implement the PUT method for HTTP Server is to enable
WebDAV and use a client program that supports WebDAV (such as Microsoft Web Folders) to upload files.
WebDAV is a set of extensions to the HTTP protocol, and is included in HTTP Server through the module
mod_dav. In addition to the WebDAV extensions, mod_dav includes a PUT handler.

For more information on WebDAV, including a list of all the methods included, see “WebDAV for HTTP
Server” on page 47 and “Setting up WebDAV for HTTP Server” on page 119.

CGI programs

Alternatively, you can provide your own CGI program to handle incoming PUT requests, and configure
it for use with HTTP Server. A program that handles PUT requests operates much like a program that
handles POST requests, but must include additional code for writing (and overwriting) files on the server.

Because a PUT action results in a permanent change on the server, it's important to be aware of the
security issues involved in providing your own PUT-handling CGI program. Some of these issues include:

• Ensuring the user making the PUT request is authorized to update files on the server
• Making sure only Web content files are updated
• Only updating content the user is authorized to update

For a more detailed discussion on providing your own PUT-handling CGI program, see the Apache Week
article Publishing Pages with PUT .

Once you have a program capable of handling PUT requests, you can configure it for use with HTTP Server
using the Script directive. For more information on the Script directive, see “Module mod_actions” on
page 215.

WebDAV for HTTP Server
This topic provides information about Web-based distributed authoring and versioning (WebDAV) for the
IBM HTTP Server for i Web server.

Web-based distributed authoring and versioning (WebDAV) is a set of extensions to the HTTP protocol
that allows WebDAV clients (such as Microsoft Web Folders) to collaboratively edit and manage files on
remote Web servers. Major features of WebDAV include:

• File locking so that two or more users do not overwrite the same file.
• XML data to store properties data such as author information.
• Copy and move operations so that directory structures can be modified.

WebDAV is a set of extensions to the HTTP protocol. The following table defines the HTTP methods
and the WebDAV extensions. Note that two methods, DELETE and PUT, are defined in the HTTP 1.1
specification, but modified by WebDAV.

Method Specifications Description

COPY WebDAV Copies the resource.

DELETE HTTP 1.1/
WebDAV

Deletes the resource.

GET HTTP 1.1 Gets the contents of the resource.

HEAD HTTP 1.1 Returns the message headers from a message sent to the server.

LOCK WebDAV Locks the resource.

IBM HTTP Server for i 47

http://www.apacheweek.com/features/put

Method Specifications Description

MKCOL WebDAV Creates the collection specified.

MOVE WebDAV Moves the resource.

OPTIONS HTTP 1.1 Performs an option call to the server.

POST HTTP 1.1 Action defined by the server.

PROPFIND WebDAV Performs a property find on the server.

PROPPATCH WebDAV Sets or removes properties on the server.

PUT HTTP 1.1/
WebDAV

Puts the contents of the resource to the server in the specified
location.

TRACE HTTP 1.1 Does a trace call to the server.

UNLOCK WebDAV Unlocks the resource.

See RFC2518 for more information on WebDAV.

Related information
“WebDAV tasks” on page 119
Web-based distributed authoring and versioning (WebDAV) is provided through the IBM HTTP Server for i
Web server.

Scenarios: HTTP Server
This topic provides information on how to use the IBM Web Administration for i interface to set up or
manage your IBM HTTP Server for i Web server, step-by-step. Each task is specific and includes a usable
HTTP Server configuration file when completed.

The JKL Toy Company (JKL), a fictitious company, scenarios will take you through the same processes
employees of the JKL Toy Company followed while working with the Web Administration for i interface.
Follow the scenario steps, and all prerequisites, to complete the scenario successfully.

The given examples may be used to successfully complete the scenario; however, you may enter your own
information at any time. If you are not familiar with the Web Administration for i interface or Web serving,
it is suggested that you use the given examples and follow the scenarios closely in the order they are
given.

Replace examples in brackets, [...], with your own HTTP Server information. For example,

http://[Systemi_name]:[port]

When instructions are given in the following format, replace the words in the brackets, such as
[Systemi_name], with what is being asked for. For example,

http://jklserver:2001

JKL Toy Company creates an HTTP Server
This scenario discusses how to create an IBM HTTP Server for i Web server on an IBM i server.

Scenario
The JKL Toy Company (a fictitious company) wants to run a Web site on their IBM i server. The examples
used in this scenario show the Create New HTTP Server wizard being used to create an HTTP Server

48 IBM i: IBM HTTP Server for i

http://www.ietf.org/rfc/rfc2518.txt?number=2518

instance called JKLTEST which will use all IP addresses, port 1975 on an IBM i server designated
JKL_SERVER.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Create your HTTP Server
The Web Administration for i interface allows you to create, set up, and manage multiple servers.

1. Click the Setup tab.
2. Expand Common Tasks and Wizards.
3. Click Create HTTP Server.
4. Enter a descriptive, unique name in the Server name field.

Example: JKLTEST
5. Click Next.
6. Accept the default value.

Example: /www/jkltest
7. Click Next.
8. Accept the default value.

Example: /www/jkltest/htdocs
9. Click Next.

10. Accept the default values or replace with your own unique IP address and port.

Example: IP address All Addresses

Example: Port 1975
11. Click Next.
12. Optional: Select Yes to use an access log.

Select No if you do not want to create an access log at this time. By default, the log will be created for
you.

13. Click Next.
14. Accept the default values to specify the length of time to keep the log files or update with your

preferences.
15. Click Next.
16. Review the displayed information. If any information is incorrect, click Back and correct it.
17. Click Finish to create your new HTTP Server.

Note: If the wizard fails and you receive an error message, check your Webmaster user profile authorities.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.

IBM HTTP Server for i 49

2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Open a new Web browser.
2. Enter http://[your_hostname]:[port] in the location or URL field .

Example: http://jkl_server:1975

Your new HTTP Server will display a generic HTML file provided by the Web Administration for i interface.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>

50 IBM i: IBM HTTP Server for i

 Require all granted
</Directory>

JKL Toy Company adds a new directory to HTTP Server
This scenario discusses how to add a directory to an HTTP Server Web server.

Scenario
The JKL Toy Company (a fictitious company) has a need to add a directory to their JKLTEST configuration.
The JKL Web administrator wants to create a directory to keep online employee profile information, such
as current projects and contact information. Due to the large number of employees, a separate directory
will be created to contain the employee profile information. The new directory will be called profiles.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Create a new directory
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand HTTP Tasks and Wizards.
6. Click Add a Directory to the Web.
7. Click Next.
8. Select Static Web pages and files.
9. Click Next.

10. Optional: Accept the default or enter a new directory name.

Example: /www/jkltest/profiles/
11. Click Next.
12. Optional: Accept the default or enter a new alias name.

Example: /profiles/
13. Click Next.
14. Click Finish.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.

IBM HTTP Server for i 51

3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Open a new Web browser.
2. Enter http://[i_hostname]:[port]/[new_directory_alias]/ in the location or URL field.

Example: http://jkl_server:1975/profiles/

Your new directory will display a generic HTML file provided by the IBM Web Administration for i interface.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Alias /profiles/ /www/jkltest/profiles/
Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/profiles>
 Require all granted
</Directory>
<Directory /www/jkltest/htdocs>

52 IBM i: IBM HTTP Server for i

 Require all granted
</Directory>

JKL Toy Company adds user directories for HTTP Server
This scenario discusses how to add a user directory in an IBM HTTP Server for i Web server.

Scenario
The JKL Toy Company (a fictitious company) has decided to allow employees to maintain their own
personal Web pages. The JKL Web administrator wants the personal Web pages to be stored in a directory
of the root file system called /home on the JKLTEST HTTP Server. The directory /home will contain one
subdirectory for each employee.

To begin, the JKL Web administrator creates a user profile and user directory for fellow employee Sharon
Jones on the IBM i server. The new user profile will be called SJONES and the new user directory will be
located at /home/sjones.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.
• It is assumed you have read and completed “JKL Toy Company adds a new directory to HTTP Server” on

page 51.
• It is assumed you have installed and are familiar with System i Navigator.
• It is assumed you have read “User profiles and required authorities for HTTP Server” on page 31.

Create a new user profile with System i Navigator
For in-depth information on how to use the System i Navigator, read the System i Navigator help installed
with the product.

Note: It is not necessary to create a new user profile on your IBM i server if you want to use an existing
profile. If using an existing profile, make certain the user profile has the appropriate permissions.

1. Start System i Navigator.
2. Expand the IBM i server the HTTP Server is installed on.

Example: JKL_SERVER
3. Select Users and Groups, or click the Users and Group icon in the toolbar.
4. Click Create a new user, or click the Create a New Use icon in the toolbar.
5. Enter a new user name.

Example: SJONES
6. Optional: Enter a description for this new profile.

Example: This is a test profile.
7. Optional: Add a password if necessary for your IBM i server.
8. Click Capabilities.
9. Set the system privileges to allow the new user profile to use the HTTP Server.

10. Click OK.
11. Click Add.

IBM HTTP Server for i 53

Create a new user directory with System i Navigator
Note: The /home directory comes preinstalled on your IBM i server.

1. Start System i Navigator.
2. Expand the IBM i server the HTTP Server is installed on.

Example: JKL_SERVER
3. Expand File Systems > Integrated File System > Root.
4. Right-click directory home.
5. Click New Folder.
6. Enter the name of your new user profile.

Example: sjones
7. Click OK.

Copy HTML welcome page to user directory with System i Navigator
The new user directory does not contain any files. Use System i Navigator to copy index.html, found
in /www/[server_name]/htdocs directory of your HTTP Server, to your new user directory.

Example: /www/jkltest/htdocs

1. Start System i Navigator.
2. Expand the IBM i server the HTTP Server is installed on.

Example: JKL_SERVER
3. Expand File Systems > Integrated File Systems > Root > www > [server_name] > htdocs.

Example: /www/jkltest/htdocs
4. Right-click file index.html.
5. Click Copy.
6. Right-click the new user directory.

Example: sjones
7. Click Paste.

Optional: Edit file index.html in any way you choose. This is the file the HTTP Server will look for when
this directory is requested by the Web browser.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Set up user directories for HTTP Server
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand Server properties.
6. Click URL Mapping.
7. Click the User Directories tab in the form.
8. Select Disable all users except for the following under Enable or Disable user directories.

54 IBM i: IBM HTTP Server for i

9. Click Add under the Enabled users table.
10. Enter the name of your new user profile.

Example: sjones
11. Click Continue.
12. Click Add under the Current user directories table.
13. Enter /home in the User directories column.

Note: The order in which the user directories are listed determines which directory the HTTP Server
will use first. If a match is not found in the first (top) user directory, the next user directory listed will
be used. This continues until a match is found.

14. Click Continue.
15. Click OK.

Set up /home directory for HTTP Server
After creating the user directory, you must set up your HTTP Server to provide access to directory /home.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select Global configuration from the Server area list.
4. Expand Server Properties.
5. Click Container Management.
6. Click the Directories tab in the form.
7. Click Add under Directory/Directory Match containers table.
8. Select Directory from the list in the Type column.
9. Enter /home in the Directory path or expression column.

10. Click Continue.
11. Click OK.
12. Select Directory /home from the Server area list.
13. Click Security.
14. Click the Control Access tab in the form.
15. Select Deny then allow from the Order for evaluating access list under Control access based on

where the request is coming from.
16. Select Allow access to all, except the following under Control access based on where the request

is coming from.

Note: Do not add restrictions at this time. Return to this form at the end of the scenario to add
restrictions.

17. Click OK.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

IBM HTTP Server for i 55

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Open a new Web browser.
2. Enter http://[i_hostname]:[port]/~[user_directory] in the location or URL field .

Example: http://jkl_server:1975/~sjones

Your new user directory will display the generic HTML file copied from directory /htdocs.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
UserDir Disable
UserDir Enable Sjones
UserDir /home
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>
<Directory /home>
 Require all granted
</Directory>

56 IBM i: IBM HTTP Server for i

JKL Toy Company enables cookie tracking on HTTP Server
This scenario discusses how to enable cookie tracking for an IBM HTTP Server for i Web server.

Scenario
The JKL Toy Company (a fictitious company) wants to be able to measure Web site visitor activity and
trends. The JKL Web administrator would like to try to measure how many new and unique users visit the
intranet Web site. Requiring users to obtain a userid and password is the most accurate way track users;
however, this method has the disadvantage of forcing the intranet Web users to register for a userid and
password.

Analyzing the data in the log file by IP address could be used to track users. Two disadvantages to this
method are:

• Some ISPs use dynamic IP addressing, assigning random IP addresses to all users.
• Some ISPs send all traffic through a proxy server, creating a log entry for the IP address of the proxy

server only.

Setting a unique number in a cookie in the user's browser the first time that they visit the Web site
combined with using a log that records cookies could be used to track users. This log can be analyzed to
show how many new cookies have been set and how many old cookies have returned. In addition, the log
can also be used to show the sequence of URLs that a particular cookie used to navigate through the Web
site. A downside of this method is that users can shut off the browsers ability to record cookies.

The JKL Web administrator has decided to use the cookie method. The JKL Web administrator will store
cookie information in a new log called JKLCOOKIE_LOG using a new cookie called JKLCOOKIE.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Create a cookie for HTTP Server
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Logging.
7. Click the User Tracking (Cookies) tab in the form.
8. Select Enabled from the Track user requests in a cookie list.
9. Enter a name for the cookie in the Cookie name field or use the default.

Example: JKLCOOKIE
10. Enter a value in the Expiration period field.

Example: 1

IBM HTTP Server for i 57

11. Select a time period from the Expiration period list.

Example: Years
12. Click OK.

Set up the cookie log for HTTP Server
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select Global configuration from the Server area list.
4. Expand Server Properties.
5. Click Logging.
6. Click the Custom Logs tab in the form.
7. Click Add under the Custom logs table.
8. Enter logs/[log_name] in the Log column.

Example: logs/jklcookie_log
9. Select cookie from the Log format list.

10. Enter a value in the Expiration field.

Example: 364
11. Select a time period from the Expiration list.

Example: Days
12. Click Continue.
13. Click OK.

Note: The rest of the fields on this form are optional.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

58 IBM i: IBM HTTP Server for i

Test your HTTP Server
1. Open a new Web browser.
2. Turn cookie alerts on in your browser. Consult the Web browser's help documentation for details on

enabling cookie alerts.
3. Enter http://[i_hostname]:[port] in the location or URL field.

Example: http://jkl_server:1975

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogMaint logs/jklcookie_log 364 0
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
CustomLog logs/jklcookie_log cookie
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
CookieTracking On
CookieName JKLCOOKIE
CookieExpires 31536000
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>

JKL Toy Company creates virtual hosts on HTTP Server
This scenario discusses how to create virtual hosts in an IBM HTTP Server for i Web server.

Scenario
The JKL Toy Company (a fictitious company) wants to serve two domain names from one IP address. This
can be done using virtual hosts.

The JKL Web administrator has decided to use the name-based virtual host for HTTP Server JKLTEST.
The ISP has configured the Domain Name Server to route requests for JKLINFO to IP address
9.5.61.228, port 78.

IBM HTTP Server for i 59

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.
• It is assumed you are familiar with Domain Name Servers (DNS).

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Set up a name-based virtual host
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Virtual Hosts.
7. Click the Name-based tab in the form.
8. Click Add under the Named virtual hosts table.
9. Select or enter an IP address in the IP address column.

Example: 9.5.61.228

Note: The IP address 9.5.61.288 used in this scenario is associated with JKL Toy Company's IBM
i hostname JKLINFO and registered by a Domain Name Server (DNS). You will need to choose a
different IP address and hostname. The IBM Web Administration for i interface provides the IP
addresses used by your IBM i system in the IP Address list; however, you will need to provide the
hostname associated with the address you choose.

10. Enter a port number in the Port column.

Example: 78
11. Click Add under the Virtual host containers table in the Named host column.
12. Enter the fully qualified server hostname for the virtual host in the Server name column.

Example: JKLINFO.com

Note: Make sure the server hostname you enter is fully qualified and associated with the IP address
you selected.

13. Enter a document root for the virtual host index file or welcome file in the Document root column.

Example: /www/jkltest/companyinfo/

Note: You are specifying a document root using a directory that will be added below in the Set up the
virtual host directories section.

14. Click Continue.
15. Click OK.

Set up Listen directive for virtual host
1. Expand Server Properties.
2. Click General Server Configuration.

60 IBM i: IBM HTTP Server for i

3. Click the General Settings tab in the form.
4. Click Add under the Server IP addresses and ports to listen on table.
5. Select the IP address you entered for the virtual host in the IP address column.

Example: 9.5.61.228
6. Enter the port number you entered for the virtual host in the Port column.

Example: 78
7. Accept Disabled default for FRCA.
8. Click Continue.
9. Accept the default values for the remainder of the form.

10. Click OK.

Set up the virtual host directories
1. Select the virtual host from the Server area list.
2. Expand HTTP Tasks and Wizards.
3. Click Add a Directory to the Web.
4. Click Next.
5. Select Static web pages and files.
6. Click Next.
7. Enter a directory name for the virtual host in the Name field.

Example: /www/jkltest/companyinfo/
8. Click Next.
9. Enter an alias for the virtual host in the Alias field.

Example: /companyinfo/
10. Click Next.
11. Click Finish.

The document root and directory for the virtual host has been created.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST

IBM HTTP Server for i 61

6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Start a new Web browser.
2. Enter http://[virtual_hostname_name]:[port] in the location or URL field.

Example: http://JKLINFO:78

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Listen *:1975
Listen 9.5.61.228:78
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>
<VirtualHost 9.5.61.228:78>
 ServerName JKLINFO.com
 DocumentRoot /www/jkltest/companyinfo/
 <Directory /www/jkltest/companyinfo>
 Require all granted
 </Directory>
 Alias /companyinfo/ /www/jkltest/companyinfo/
</VirtualHost>

Related information
“Virtual hosts on HTTP Server ” on page 23
This topic provides information about virtual host types on the IBM HTTP Server for i Web server.
“Virtual host tasks” on page 128

62 IBM i: IBM HTTP Server for i

This topic provides step-by-step tasks for configuring virtual hosts in the IBM HTTP Server for i Web
server.

JKL Toy Company adds password protection for HTTP Server
This scenario discusses how to add password protection to an IBM HTTP Server for i Web server.

Scenario
The JKL Toy Company (a fictitious company) wants to protect a set of Web pages on its Web site so that
they can only be viewed by visitors that have a password. In order to add password protection, JKL needs
to decide what type of authentication method to use:

• Internet user - requires an entry in a validation list.
• User profile - requires an IBM i server user profile.
• LDAP - requires an LDAP server.

JKL Toy Company chooses to use Internet users for the following reasons:

• User profiles are not desirable since JKL does not want to create a user profile for each authenticated
visitor to the Web site.

• Since JKL only wants to implement authentication on one IBM i server, validation lists will be used.
LDAP is a better solution for multiple systems.

The Web page content to be protected is in the preexisting directory /www/jkltest/profiles/. The
visitor's user name and passwords will be stored in a new validation list called users in library PROFILES.
The first user name that we will enter is sjones with a password of dragon102.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.
• It is assumed you have read and completed “JKL Toy Company adds a new directory to HTTP Server” on

page 51.
• It is assumed you have access to or the correct authority to create an IBM i library.

Create a library for validation lists on your IBM i server
Skip the following steps if you will be using an existing library on your IBM i server for your validation list.

1. Start a 5250 session on your system.
2. Enter CRTLIB on the command line.
3. Type the F4 key to prompt for additional parameters.
4. Enter a name for your library in the Library field.

Example: PROFILES
5. Optional: Edit the remaining fields as necessary or accept the default values.
6. Type the Enter key (or equivalent) to create your library.

Make sure the proper authorities and restrictions you want on the library are active before continuing.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

IBM HTTP Server for i 63

Set up password protection for a directory on HTTP Server
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Select Directory /www/[server_name]/[new_directory]/ from the Server area list.

Example: /www/jkltest/profiles/

Note: The new directory was created with the “JKL Toy Company adds a new directory to HTTP
Server” on page 51 scenario.

5. Expand Server Properties.
6. Click Security.
7. Click the Authentication tab in the form.
8. Select Select Internet users in validation lists.
9. Enter a descriptive name in the Authentication name or realm field.

Example: JKL Employee Profiles

Note: When users attempt to access a password protected resource, they are challenged for a
username and password. The Authentication name or realm value is displayed in the login window,
and should provide information regarding the resource the user is attempting to access.

10. Click Add under Validation lists table.
11. Enter [library]/[validation_list_name].

Example: profiles/users

Note: In the above example, profiles is the name of the IBM i library and users is the name of the
validation list.

12. Click Continue.
13. Select Default server profile from the IBM i user profile to process requests list under Related

information. When selected, the value %%SERVER%% will be placed in the field.
14. Click Apply.
15. Click the Control Access tab in the form.
16. Select All authenticated users (valid user name and password) under Control access based on

who is making the requests.
17. Click OK.

Create a validation list for HTTP Server
1. Click the Advanced tab.
2. Click the Internet Users and Groups subtab.
3. Expand Internet Users and Groups.
4. Click Add Internet User.
5. Enter [username] into the User name field.

Example: sjones
6. Enter [password] into the Password field.

Example: dragon102
7. Enter the same password in the Confirm password field.
8. Optional: Enter comments for this Internet user.

64 IBM i: IBM HTTP Server for i

9. Enter [library]/[validation_list_name] in the Validation list field.

Example: profiles/users

Note: In the above example, profiles is the name of the library and users is the name of the
validation list.

10. Click Apply.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Open a new Web browser.
2. Enter http://[i_hostname]:[port]/[new_directory_alias]/ in the location or URL field.

Example: http://jkl_server:1975/profiles/
3. Enter the username and password you created.

You will be asked to provide a valid username and password. Enter the username and password you
entered in the validation list. It is suggested you limit *PUBLIC authority, but allow authority to the Web
administrator user authority and QTMHHTTP.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

IBM HTTP Server for i 65

Alias /profiles/ /www/jkltest/profiles/
Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/profiles>
 Require valid-user
 PasswdFile profiles/users
 UserID %%SERVER%%
 AuthType Basic
 AuthName "JKL Employee Profiles"
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>

JKL Toy Company adds dynamic content with server-side includes for HTTP
Server

This scenario discusses how to add dynamic content to an IBM HTTP Server for i Web server using
server-side includes.

Scenario
The JKL Toy company (a fictitious company) wants to add some dynamic content to their index file (or
welcome page) on their Web site. The welcome Web page is located in /www/jkltest/htdocs. The JKL Web
administrator will add the current server time to display on their Web page.

Note: Server-side includes (SSI) create dynamic Web pages by adding content to a Web page before it is
sent to the browser. Server performance may be impacted when processing SSIs.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.
• It is assumed you have installed and are familiar with System i Navigator.

Edit the index file (or welcome page) with System i Navigator
For in-depth information on how to use the System i Navigator, read the System i Navigator help installed
with the product.

1. Start System i Navigator.
2. Expand theIBM i server the HTTP Server is installed on.

Example: JKL_SERVER
3. Expand File Systems > Integrated File System > Root > www > [server_name].

66 IBM i: IBM HTTP Server for i

Example: File Systems > Integrated File System > Root > www > jkltest
4. Click htdocs.

The directory htdocs is the default name of your document root provided by the Create New HTTP
Server wizard.

5. Right-click index.html.
6. Click Rename.
7. Rename the file index.shtml.
8. Right-click index.shtml.
9. Click Edit.

10. Enter the following lines below the <BODY> tag and before the </BODY> tag:

<p>The current server time is:
<!--#config timefmt="%T" -->
<!--#echo var="DATE_LOCAL" -->
</p>

11. Save and close the file.

See “Server-side include commands for HTTP Server” on page 643 for more information about SSI
commands.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Set up server-side includes for HTTP Server
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand Server properties.
6. Click Container Management.
7. Click the Files tab in the form.
8. Click Add under the Files/Files Match containers table.
9. Select Files Match from the list in the Type column.

10. Enter \.shtml(\..+)?$ in the File name or expression column.
11. Click Continue.
12. Click OK.
13. Select Files Match \.shtml(\..+)?$ from the Server area list.
14. Expand Server Properties.
15. Click Dynamic Content and CGI.
16. Click the Server Side Includes tab in the form.
17. Select Allow server side files without CGI under Server side includes.
18. Click OK.
19. Select Global configuration from the Server area list.
20. Expand Server Properties.
21. Click General Server Configuration.

IBM HTTP Server for i 67

22. Click the Welcome Pages tab in the form.
23. Select index.html in the Welcome/index file names table.
24. Rename the file index.shtml in the File name column.
25. Click Continue.
26. Click OK.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Start a new Web browser.
2. Enter http://[i_hostname]:[port] in the location or URL field.

Example: http://jkl_server:1975

The Web page now displays the current server time.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
AccessFileName .htaccess

68 IBM i: IBM HTTP Server for i

LogFormat "%h %l %u %t \"%r\" %|s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -| %U" referer
LogFormat "%h %l %u %t \"%r\" %|s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
DirectoryIndex index.shtml
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>
<FilesMatch \.shtml(\..+)?$>
 Options +IncludesNoExec
 AddOutputFilter INCLUDES .shtml
</FilesMatch>

JKL Toy company enables Secure Sockets Layer (SSL) protection on HTTP
Server

This scenario discusses how to enable SSL protection for an IBM HTTP Server for i Web server.

Scenario
The JKL Toy company (a fictitious company) wants to enable Secure Sockets Layer (SSL) protection for a
specific directory on their HTTP Server. The secured directory will contain confidential corporate earnings
information that only a select group of employees and business associates will be able to access. The JKL
Web administrator has decided not to create and deploy user certificates to client browsers, but rather
use SSL so that all data exchanged with the browser is encrypted. The JKL Web administrator will use a
server certificate, basic password protection (based upon existing IBM i user accounts), and standard SSL
encryption to provide access to the secured information.

Note: Although JKL chooses not to implement digital certificates, they must still register their HTTP
Server with the IBM i Digital Certificate Manager.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.
• It is assumed that a certificate authority (and certificate store) is already established for the Digital
Certificate Manager.

• It is assumed you are familiar with Domain Name Servers (DNS).

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Set up a name-based virtual host
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

IBM HTTP Server for i 69

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Virtual Hosts.
7. Click the Name-based tab in the form.
8. Click Add under the Named virtual hosts table.
9. Select or enter an IP address in the IP address column.

Example: 9.5.61.228

Note: The IP address 9.5.61.288 used in this scenario is associated with JKL Toy Company's IBM i
hostname JKLEARNINGS and registered by a Domain Name Server (DNS). You will need to choose
a different IP address and hostname. The IBM Web Administration for i interface provides the IP
addresses used by your IBM i server in the IP Address list; however, you will need to provide the
hostname associated with the address you choose.

10. Enter a port number in the Port column.

Example: 443

Note: Specify a port number other than the one currently being used for your HTTP Server to
maintain an SSL and non-SSL Web site.

11. Click Add under the Virtual host containers table in the Named host column.

Note: This is a table within the Named virtual hosts table in the Named host column.
12. Enter the fully qualified server hostname for the virtual host in the Server name column.

Example: www.JKLEARNINGS.org

Note: Make sure the server hostname you enter is fully qualified and associated with the IP address
you selected.

13. Enter a document root for the virtual host index file or welcome file in the Document root column.

Example: /www/jkltest/earnings/

Note: You are specifying a document root that will be created below. Remember the document root
you have entered; you will be asked to enter the document root again when creating a new directory.

14. Click Continue.
15. Click OK.

Set up Listen directive for virtual host
1. Expand Server Properties.
2. Click General Server Configuration.
3. Click the General Settings tab in the form.
4. Click Add under the Server IP addresses and ports to listen on table.
5. Select the IP address you entered for the virtual host in the IP address column.

Example: 9.5.61.288
6. Enter the port number you entered for the virtual host in the Port column.

Example: 443
7. Click Continue.
8. Click OK.

Set up the virtual host directories
1. Select the virtual host from the Server area list.

70 IBM i: IBM HTTP Server for i

2. Expand HTTP Tasks and Wizards.
3. Click Add a Directory to the Web.
4. Click Next.
5. Select Static web pages and files.
6. Click Next.
7. Enter a directory name for the virtual host in the Name field.

Example: /www/jkltest/earnings/
8. Click Next.
9. Enter an alias for the virtual host in the Alias field.

Example: /earnings/
10. Click Next.
11. Click Finish.

The document root and directory for the virtual host has been created.

Set up password protection via authentication
1. Select the directory under the virtual host from the Sever area list.

Example: Directory /www/jkltest/earnings
2. Expand Server Properties.
3. Click Security.
4. Click the Authentication tab in the form.
5. Select IBM i user profiles under User authentication method.
6. Enter Projected Earnings in the Authentication name or realm field.
7. Specify the user profile in the field IBM i user profile to process requests under Related

information.
8. Click Apply.
9. Click the Control Access tab in the form.

10. Select Control access based on specific authorization of Control access field.
11. Click Add Authorization button under the Authorization for control access table.
12. Select Require valid user from the new row Authorization or Container list.
13. Click OK.

Enable SSL for the virtual host
1. Select the virtual host from the Sever area list.

Example: Virtual Host *:443
2. Expand Server Properties.
3. Click Security.
4. Click the SSL with Certificate Authentication tab in the form.
5. Select Enable SSL under SSL.
6. Select QIBM_HTTP_SERVER_[server_name] from the Server certificate application name list.

Example: QIBM_HTTP_SERVER_JKLTEST

Note: Remember the name of the server certificate. You will need to select it again in the Digital
Certificate Manager.

IBM HTTP Server for i 71

7. Select Do not request client certificate for connection under Client certificates when establishing
the connection.

8. Click OK.

The HTTPS_PORT provides a specific environment variable value that is passed to CGI programs . This
field is not used in this scenario.

Associate system certificate with HTTP Server
The application name (created during the SSL process) is assigned a system certificate via the Digital
Certificate Manager (DCM). During the process of enabling SSL for a virtual host, an IBM i server certificate
must be assigned to the application name used when configuring SSL. This task is accomplished via the
Digital Certificate Manager interface (accessed from the IBM i Tasks screen). See IBM i Digital Certificate
Manager for more information.

Note: The following steps will require a user profile with higher levels of authority than those documented
for the Webmaster profile. Web browsers will need to be restarted using the higher authority profile to
authenticate.

1. Click the Related Links tab.
2. Click Digital Certificate Manager.
3. Click Select a Certificate Store.
4. Select *SYSTEM.
5. Click Continue.
6. Enter a password in the Certificate store password field.
7. Click Continue.
8. Click Manage Applications.
9. Select Update certificate assignment.

10. Click Continue.
11. Select Server.
12. Click Continue.
13. Select the appropriate application name.

Note: Select the application name created while enabling SSL for the virtual host directory.

Example: QIBM_HTTP_SERVER_JKLTEST
14. Click Update Certificate Assignment.
15. Select the appropriate certificate.
16. Click Assign New Certificate. This assigns the certificate to the application name selected in the

previous step.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

72 IBM i: IBM HTTP Server for i

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Test your HTTP Server
1. Start a new Web browser.
2. Enter https://[virtual_hostname_name]:[port] in the location or URL field.

Example: https://www.JKLEARNINGS.org:443

You will be challenged for a user name and password. After entering an appropriate IBM i user name
and password, you will see a sample homepage (created by the Serve New Directory wizard) with the
browser's security padlock icon enabled. The padlock indicates that SSL is enabled.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM
Listen *:1975
Listen 9.5.61.228:443
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
AccessFileName .htaccess
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
DirectoryIndex index.html
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>
<VirtualHost 9.5.61.228:443>
 ServerName www.JKLEARNINGS.org
 DocumentRoot /www/jkltest/earnings/

IBM HTTP Server for i 73

 SSLEnable
 SSLAppName QIBM_HTTP_SERVER_JKLTEST
 SSLClientAuth None
 <Directory /www/jkltest/earnings>
 Require valid-user
 PasswdFile %%SYSTEM%%
 UserID %%SERVER%%
 AuthType Basic
 AuthName "Projected Earnings"
 </Directory>
 Alias /earnings/ /www/jkltest/earnings/
</VirtualHost>

JKL Toy Company enables single signon for HTTP Server
This scenario discusses how to enable single signon for security for an IBM HTTP Server for i Web server.

To learn more about Kerberos and network security on IBM i servers, see Network authentication service.

Scenario
The JKL Web administrator, John Day, wants to enable single signon for the JKL Toy Company network.
The network consists of several IBM i systems and a Windows 2000 server, where the users are
registered in Microsoft Windows Active Directory. Based on John Day's research, he knows that Microsoft
Active Directory uses the Kerberos protocol to authenticate Windows users. John Day also knows that
IBM i provides a single signon solution based on an implementation of Kerberos authentication, called
network authentication service, in conjunction with Enterprise Identity Mapping (EIM).

While excited about the benefits of a single signon environment, John Day wants to thoroughly
understand single signon configuration and usage before using it across the entire enterprise.
Consequently, John Day decides to configure a test environment first.

After considering the various groups in the company, John Day decides to create the test environment for
the MYCO Order Receiving department, a subsidiary of JKL Toys. The employees in the Order Receiving
department use multiple applications, including HTTP Server, on one IBM i system to handle incoming
customer orders. John Day uses the Order Receiving department as a testing area to create a single
signon test environment that can be used to better understand how single signon works and how to plan a
single signon implementation across the JKL enterprise.

This scenario has the following advantages:

• Allows you to see some of the benefits of single signon on a small scale to better understand how you
can take full advantage of it before you create a large-scale, single signon environment.

• Provides you with a better understanding of the planning process required to successfully and quickly
implement a single signon environment across your entire enterprise.

As the network administrator at JKL Toy Company, John Day wants to create a small single signon
test environment that includes a small number of users and a single IBM i server, Systemi A. John Day
wants to perform thorough testing to ensure that user identities are correctly mapped within the test
environment. The first step is to enable a single signon environment for the IBM i server and applications
on Systemi A, including the HTTP Server. After implementing the configuration successfully, John Day
eventually wants to expand the test environment to include the other systems and users in the JKL
enterprise.

The objectives of this scenario are as follows:

• The IBM i system, known as Systemi A, must be able to use Kerberos within the MYCO.COM realm
to authenticate the users and services that are participating in this single signon test environment. To
enable the system to use Kerberos, Systemi A must be configured for network authentication service.

• The directory server on Systemi A must function as the domain controller for the new EIM domain.

Note: Two types of domains play key roles in the single signon environment: an EIM domain
and a Windows 2000 domain. Although both of these terms contain the word domain, these
entities have very different definitions.

74 IBM i: IBM HTTP Server for i

Use the following descriptions to understand the differences between these two types of domains. For
more information about these terms, see the EIM and Network authentication service topics.

EIM domain
An EIM domain is a collection of data, which includes the EIM identifiers, EIM associations, and
EIM user registry definitions that are defined in that domain. This data is stored in a Lightweight
Directory Access Protocol (LDAP) server, such as the IBM Tivoli® Directory Server for IBM i, which
can run on any system in the network defined in that domain. Administrators can configure systems
(EIM clients), such as IBM i, to participate in the domain so that systems and applications can
use domain data for EIM lookup operations and identity mapping. To find out more about an EIM
domain, see EIM.

Windows 2000 domain
In the context of single signon, a Windows 2000 domain is a Windows network that contains several
systems that operate as clients and servers, as well as a variety of services and applications that the
systems use. The following are some of the components pertinent to single signon that you may find
within a Windows 2000 domain:

– Realm

A realm is a collection of machines and services. The main purpose of a realm is to authenticate
clients and services. Each realm uses a single Kerberos server to manage the principals for that
particular realm.

– Kerberos server

A Kerberos server, also known as a key distribution center (KDC), is a network service that
resides on the Windows 2000 server and provides tickets and temporary session keys for
network authentication service. The Kerberos server maintains a database of principals (users
and services) and their associated secret keys. It is composed of the authentication server and
the ticket granting server. A Kerberos server uses Microsoft Windows Active Directory to store and
manage the information in a Kerberos user registry.

Note: These servers should be in the same subnet to ensure that the tokens can be validated.
– Microsoft Windows Active Directory

Microsoft Windows Active Directory is an LDAP server that resides on the Windows 2000 server
along with the Kerberos server. The Active Directory is used to store and manage the information
in a Kerberos user registry. Microsoft Windows Active Directory uses Kerberos authentication as
its default security mechanism. Therefore, if you are using Microsoft Active Directory to manage
your users, you are already using Kerberos technology.

• One user profile on Systemi A and one Kerberos principal must each be mapped to a single EIM
identifier.

• A Kerberos service principal must be used to authenticate the user to the IBM HTTP Server for i.

Details
The following figure illustrates the network environment for this scenario:

IBM HTTP Server for i 75

The figure illustrates the following points relevant to this scenario.

EIM domain data defined for the enterprise

• An EIM domain called MyCoEimDomain.
• An EIM registry definition for Systemi A called SystemiA.MYCO.COM.
• An EIM registry definition for the Kerberos registry called MYCO.COM.
• An EIM identifier called John Day. This identifier uniquely identifies John Day, the administrator for

MyCo.
• A source association for the jday Kerberos principal on the Windows 2000 server.
• A target association for the JOHND user profile on Systemi A to access HTTP Server.

Windows 2000 server

• Acts as the Kerberos server (kdc1.myco.com), also known as a key distribution center (KDC), for the
network.

• The default realm for the Kerberos server is MYCO.COM.
• A Kerberos principal of jday is registered with the Kerberos server on the Windows 2000 server. This

principal will be used to create a source association to the EIM identifier, John Day.

Systemi A

• Runs IBM i 5.4, or later, with the following options and licensed products installed:

– IBM i Host Servers
– Qshell Interpreter
– IBM i Access for Windows
– Network Authentication Enablement

• The IBM Tivoli Directory Server for IBM i (LDAP) on Systemi A will be configured to be the EIM
domain controller for the new EIM domain, MyCoEimDomain. Systemi A participates in the EIM domain,
MyCoEimDomain.

76 IBM i: IBM HTTP Server for i

• The principal name for Systemi A is krbsvr400/Systemia.myco.com@MYCO.COM.
• The principal name for the HTTP Server on Systemi A is HTTP/Systemia.myco.com@MYCO.COM.
• The user profile of JOHND exists on Systemi A. You create a target association between this user profile

and the EIM identifier, John Day.
• The home directory for the IBM i user profile, JOHND, (/home/JOHND) is defined on Systemi A.

Client PC used for single signon administration

• Runs Microsoft Windows 2000 operating system.
• Runs IBM i Access for Windows V5R4, or later.
• Runs System i Navigator with the following subcomponents installed:

– Network
– Security

• Serves as the primary logon system for administrator John Day.
• Configured to be part of the MYCO.COM realm (Windows domain).

Prerequisites
Successful implementation of this scenario requires that the following assumptions and prerequisites are
met:

1. It is assumed you have read “Scenarios: HTTP Server” on page 48.
2. All system requirements, including software and operating system installation, have been verified.

Ensure that all the necessary licensed programs are installed. To verify that the licensed programs
have been installed, complete the following:

a. In System i Navigator, expand your system > Configuration and Service > Software > Installed
Products.

3. All necessary hardware planning and setup is complete.
4. TCP/IP and basic system security are configured and tested on each system.
5. The directory server and EIM are not previously configured on Systemi A.

Note: Instructions in this scenario are based on the assumption that the directory server has not been
previously configured on Systemi A. However, if you have previously configured the directory server,
you can still use these instructions with only slight differences. These differences are noted in the
appropriate places within the configuration steps.

6. A single DNS server is used for host name resolution for the network. Host tables are not used for host
name resolution.

Note: The use of host tables with Kerberos authentication may result in name resolution errors or
other problems.

Configuration steps
Note: Before you implement this scenario, you need to thoroughly understand the concepts related to
single signon, including network authentication service and Enterprise Identity Mapping (EIM). See the
following information to learn about the terms and concepts related to single signon:

• Enterprise Identity Mapping (EIM)
• Network authentication service

These are the configuration steps John Day completed. Follow these configuration steps to enable a
single signon environment for your IBM i system.

“Step 1: Planning work sheet” on page 78
“Step 2: Create a basic single signon configuration for Systemi A” on page 82
“Step 3: Add principal names to the KDC” on page 83

IBM HTTP Server for i 77

“Step 4: Add Kerberos keytab” on page 84
“Step 5: Create home directory for John Day on Systemi A ” on page 85
“Step 6: Test network authentication service configuration on Systemi A” on page 85
“Step 7: Create EIM identifier for John Day” on page 85
“Step 8: Create a source association and target association for the new EIM identifier” on page 86
“Step 9: Configure IBM i Access for Windows applications to use Kerberos authentication” on page
86
“Step 10: Add Systemi A to and existing EIM domain” on page 87
“Step 11: Configure HTTP Server for single signon” on page 87
“Step 12: (Optional) Post configuration considerations ” on page 88

Step 1: Planning work sheet
The following planning work sheets are tailored to fit this scenario. These planning work sheets
demonstrate the information that you need to gather and the decisions you need to make to prepare
the single signon implementation described by this scenario. To ensure a successful implementation, you
must be able to answer Yes to all prerequisite items in the work sheet and be able to gather all the
information necessary to complete the work sheets before you perform any configuration tasks.

Table 11. Single signon prerequisite work sheet

Prerequisite work sheet Answers

Are you running IBM i 5.4 or later? Yes

Are the following options and licensed products
installed on Systemi A?

• IBM i Host Servers
• Qshell Interpreter
• IBM i Access for Windows
• Network Authentication Enablement

Yes

Have you installed an application that is enabled
for single signon on each of the PCs that will
participate in the single signon environment?

Note: For this scenario, all of the participating
PCs have IBM i Access for Windows installed and
Systemis A has the IBM HTTP Server for i installed.

Yes

Is System i Navigator installed on the
administrator's PC?

• Is the Security subcomponent of System i
Navigator installed on the administrator's PC?

• Is the Network subcomponent of System i
Navigator installed on the administrator's PC?

Yes

Have you installed the latest IBM i Access for
Windows service pack? See System i Access
for the latest service pack.

Yes

Do you, the administrator, have *SECADM,
*ALLOBJ, and *IOSYSCFG special authorities?

Yes

78 IBM i: IBM HTTP Server for i

http://www.ibm.com/servers/eserver/iseries/access/

Table 11. Single signon prerequisite work sheet (continued)

Prerequisite work sheet Answers

Do you have one of the following systems in the
network acting as the Kerberos server (also known
as the KDC)? If yes, specify which system.

1. Windows 2000 Server

Note: Microsoft Windows 2000 Server uses
Kerberos authentication as its default security
mechanism.

2. Windows Server 2003
3. IBM Portable Application Solutions

Environment for i
4. AIX server
5. System z®

Yes, Windows 2000 Server

Are all your PCs in your network configured in a
Windows (R) 2000 domain?

Yes

Have you applied the latest program temporary
fixes (PTFs)?

Yes

Is the IBM i system time within 5 minutes of the
system time on the Kerberos server? If not see
Synchronize system times.

Yes

You need this information to configure EIM and network authentication service to create a single signon
test environment.

Table 12. Single signon configuration planning work sheet for Systemi A.

Use the following information to complete the EIM Configuration wizard. The information in this work
sheet correlates with the information you need to supply for each page in the wizard:

Configuration planning work sheet for Systemi A Answers

How do you want to configure EIM for your system?

• Join an existing domain
• Create and join a new domain

Note: This option allows you to configure the
current system's directory server as the EIM
domain controller when the directory server
is not already configured as the EIM domain
controller.

Create and join a new domain

Note: This will configure the directory server on
the same system on which you are currently
configuring EIM.

Do you want to configure network authentication
service?

Note: You must configure network authentication
service to configure single signon.

Yes

The Network Authentication Service wizard launches from the EIM Configuration wizard. Use the
following information to complete the Network Authentication Service wizard:

Note: You can launch the Network Authentication Service wizard independently of the EIM Configuration
wizard.

IBM HTTP Server for i 79

Table 12. Single signon configuration planning work sheet for Systemi A.

Use the following information to complete the EIM Configuration wizard. The information in this work
sheet correlates with the information you need to supply for each page in the wizard:

(continued)

Configuration planning work sheet for Systemi A Answers

What is the name of the Kerberos default realm to
which your system belongs?

Note: A Windows 2000 domain is similar to
a Kerberos realm. Microsoft Windows Active
Directory uses Kerberos authentication as its
default security mechanism.

MYCO.COM

Are you using Microsoft Active Directory? Yes

What is the Kerberos server, also known as a key
distribution center (KDC), for this Kerberos default
realm? What is the port on which the Kerberos
server listens?

KDC: kdc1.myco.com
Port:88

Note: This is the default port for the Kerberos
server.

Do you want to configure a password server for
this default realm? If yes, answer the following
questions:

What is name of the password server for this
Kerberos server? What is the port on which the
password server listens?

Yes

Password server: kdc1.myco.com
Port: 464

Note: This is the default port for the Kerberos
server.

For which services do you want to create keytab
entries?

• IBM i Kerberos Authentication
• LDAP
• IBM HTTP Server for i
• IBM i NetServer

IBM i Kerberos Authentication

Note: A keytab entry for HTTP Server must be done
manually as described later in the configuration
steps.

What is the password for your service principal or
principals?

Systemisa123

Note: Any and all passwords specified in this
scenario are for example purposes only. To prevent
a compromise to your system or network security,
never use these passwords as part of your own
configuration.

Do you want to create a batch file to automate
adding the service principals for Systemi A to the
Kerberos registry?

Yes

Do you want to include passwords with the IBM i
service principals in the batch file?

Yes

As you exit the Network Authentication Service wizard, you will return to the EIM Configuration wizard.
Use the following information to complete the EIM Configuration wizard:

80 IBM i: IBM HTTP Server for i

Table 12. Single signon configuration planning work sheet for Systemi A.

Use the following information to complete the EIM Configuration wizard. The information in this work
sheet correlates with the information you need to supply for each page in the wizard:

(continued)

Configuration planning work sheet for Systemi A Answers

Specify user information for the wizard to use
when configuring the directory server. This is the
connection user. You must specify the port number,
administrator distinguished name, and a password
for the administrator.

Note: Specify the LDAP administrator's
distinguished name (DN) and password to ensure
the wizard has enough authority to administer the
EIM domain and the objects in it.

Port: 389
Distinguished name: cn=administrator
Password: mycopwd

Note: Any and all passwords specified in this
scenario are for example purposes only. To prevent
a compromise to your system or network security,
do not use these passwords as part of your own
configuration.

What is the name of the EIM domain that you want
to create?

MyCoEimDomain

Do you want to specify a parent DN for the EIM
domain?

No

Which user registries do you want to add to the
EIM domain?

Local IBM i--SystemiA.MYCO.COM Kerberos--
MYCO.COM

Note: The Kerberos principals stored on the
Windows 2000 server are not case sensitive;
therefore do not select Kerberos user identities
are case sensitive.

Which EIM user do you want Systemi A to use
when performing EIM operations? This is the
system user

Note: If you have not configured the directory
server prior to configuring single signon, the only
distinguished name (DN) you can provide for the
system user is the LDAP administrator's DN and
password.

User type: Distinguished name and password
User: cn=administrator
Password: mycopwd

Note: Any and all passwords specified in this
scenario are for example purposes only. To prevent
a compromise to your system or network security,
never use these passwords as part of your own
configuration.

After you complete the EIM Configuration wizard, use the following information to complete the
remaining steps required for configuring single signon:

What is the IBM i user profile name for the user? JOHND

What is the name of the EIM identifier that you
want to create?

John Day

What kinds of associations do you want to create? Source association: Kerberos principal jday
Target association: IBM i user profile JOHND

What is the name of the user registry that contains
the Kerberos principal for which you are creating
the source association?

MYCO.COM

What is the name of the user registry that contains
the IBM i user profile for which you are creating the
target association?

SystemiA.MYCO.COM

IBM HTTP Server for i 81

Step 2: Create a basic single signon configuration for Systemi A
You need to create a basic single signon configuration using the System i Navigator. The EIM configuration
wizard will assist in the configuration process. Use the information from your planning work sheets to
configure EIM and network authentication service on Systemi A.

Note: For more information about EIM, see the EIM concepts topic.

1. Start System i Navigator.
2. Expand Systemi A > Network > Enterprise Identity Mapping.
3. Right-click Configuration and select Configure to start the EIM Configuration wizard.
4. On the Welcome page, select Create and join a new domain. Click Next.
5. On the Specify EIM Domain Location page, select On the local Directory server.
6. Click Next and the Network Authentication Service wizard is displayed.

Note: The Network Authentication Service wizard only displays when the system determines that you
need to enter additional information to configure network authentication service for the single signon
implementation.

7. Complete these tasks to configure network authentication service:
a) On the Configure Network Authentication Service page, select Yes.

Note: This launches the Network Authentication Service wizard. With this wizard, you can
configure several IBM i interfaces and services to participate in the Kerberos realm.

b) On the Specify Realm Information page, enter MYCO.COM in the Default realm field and select
Microsoft Active Directory is used for Kerberos authentication. Click Next.

c) On the Specify KDC Information page, enter kdc1.myco.com in the KDC field and enter 88 in the
Port field. Click Next.

d) On the Specify Password Server Information page, select Yes. Enter kdc1.myco.com in the
Password server field and 464 in the Port field. Click Next.

e) On the Select Keytab Entries page, select IBM i Kerberos Authentication. Click Next.
f) On the Create OS/400 Keytab Entry page, enter and confirm a password, and click Next. For

example, Systemi A123. This password will be used when Systemi A is added to the Kerberos
server.

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent
a compromise to your system or network security, never use these passwords as part of your own
configuration

g) On the Create Batch File page, select Yes, specify the following information, and click Next:

• Batch file: Add the text Systemi A to the end of the default batch file name.
For example, C:\Documents and Settings\All Users\Documents\IBM\Client
Access\NASConfigiSeries A.bat.

• Select Include password: This ensures that all passwords associated with the IBM i service
principal are included in the batch file. It is important to note that passwords are displayed
in clear text and can be read by anyone with read access to the batch file. Therefore, it
is recommended that you delete the batch file from the Kerberos server and from your PC
immediately after use.

Note: If you do not include the password, you will be prompted for the password when the batch
file is run.

Note: You must have ktpass and SETSPN (set service principal name) installed on your Windows
2000 server before running this bat file. The ktpass tool is provided in the Service Tools folder on
the Windows 2000 Server installation CD. The SETSPN tool is included in the Microsoft Windows
2000 Resource Kit and can be downloaded from the Microsoft website.

82 IBM i: IBM HTTP Server for i

h) On the Summary page, review the network authentication service configuration details. Click
Finish to complete the Network Authentication Service wizard and return to the EIM Configuration
wizard.

8. On the Configure Directory Server page, enter the following information, and click Next:

Note: If you configured the directory server before you started this scenario, you will see the Specify
User for Connection page instead of the Configure Directory Server page. In that case, you must
specify the distinguished name and password for the LDAP administrator.

• Port: 389
• Distinguished name: cn=administrator
• Password: mycopwd

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent
a compromise to your system or network security, never use these passwords as part of your own
configuration.

9. On the Specify Domain page, enter the name of the domain in the Domain field, and click Next. For
example, MyCoEimDomain.

10. On the Specify Parent DN for Domain page, select No, and click Next.

Note: If the directory server is active, a message is displayed that indicates you need to end and
restart the directory server for the changes to take effect. Click Yes to restart the directory server.

11. On the Registry Information page, select Local OS/400 and Kerberos, and click Next.

Note:

• Registry names must be unique to the domain.
• You can enter a specific registry definition name for the user registry if you want to use a specific

registry definition naming plan. However, for this scenario you can accept the default values.
12. On the Specify EIM System User page, select the user for the operating system to use when

performing EIM operations on behalf of operating system functions, and click Next:

Note: Because you did not configure the directory server prior to performing the steps in this
scenario, the only distinguished name (DN) that you can choose is the LDAP administrator's DN.

• User type: Distinguished name and password
• Distinguished name: cn=administrator
• Password: mycopwd

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent
a compromise to your system or network security, never use these passwords as part of your own
configuration.

13. On the Summary page, confirm the EIM configuration information. Click Finish.

Step 3: Add principal names to the KDC
To add the system to the Windows 2000 KDC, use the documentation for your KDC that describes the
process of adding principals. By convention, the IBM i system name can be used as the username. Add
the following principal names to the KDC:

krbsvr400/SystemiA.ordept.myco.com@ORDEPT.MYCO.COM
HTTP/Systemia.myco.com@MYCO.COM

On a Windows 2000 server, follow these steps:

1. Use the Active Directory Management tool to create a user account for the IBM i system (select the
Users folder, right-click, select New, then select User.) Specify SystemiA as the Active Directory user
and HTTPSystemiA as the service principal for HTTP.

IBM HTTP Server for i 83

2. Access the properties on the Active Directory user SystemiA and the service principal HTTPSystemiA.
From the Account tab, select the Account is trusted for delegation. This will allows the
HTTPSystemiA service principal to access other services on behalf of a signed-in user.

3. Map the user account to the principal by using the ktpass command. This needs to be done twice,
once for Systemia and once for HTTPSystemiA. The ktpass tool is provided in the Service Tools folder
on the Windows 2000 Server installation CD. To map the user account, open the ktpass command
window and enter the following:

ktpass -princ krbsvr400/SystemiA.ordept.myco.com@ORDEPT.MYCO.COM -mapuser Systemi A -pass
Systemia123

Then add the HTTP Server to the KDC:

ktpass -princ HTTP/Systemia.myco.com@MYCO.COM -mapuser Systemi A -pass Systemia123

For HTTP, an additional step (setspn - set service principal name) is required after the ktpass is done:

SETSPN -A HTTP/SystemiA.myco.com@MYCO.COM HTTPSystemiA

Note: The SETSPN tool is included in the Microsoft Windows 2000 Resource Kit and can be
downloaded from the Microsoft website.

Note: The value Systemia123 is the password that you specified when you configured network
authentication service. Any and all passwords used within this scenario are for example purposes
only. Do not use the passwords during an actual configuration.

Step 4: Add Kerberos keytab
You need keytab entries for authentication purposes as well as for generating the authorization identity.
The network authentication service (the IBM i implementation of the Kerberos protocol) wizard creates
a keytab entry for SystemiA, however a keytab for HTTP must be manually created. The wizard is only
able to create keytab entries for the system and certain applications that the code is aware are Kerberos-
enabled. The network authentication service wizard configures network authentication service (Kerberos)
for you. The wizard is called by the EIM wizard if you have not already configure network authentication
service on the system or if your network authentication service configuration is not complete.

The kinit command is used to initiate Kerberos authentication. A Kerberos ticket-granting ticket (TGT)
is obtained and cached for the HTTP Server principal. Use kinit to perform the ticket exchange for the
HTTP Server principal. The ticket is cached for reuse.

1. Start a 5250 session on Systemi A.
2. Type QSH.
3. Type keytab add HTTP/Systemia.myco.com.
4. Type Systemi123 for the password.
5. Type Systemi123 again to confirm the password.
6. Type keytab list.

Note: The keytab list command lists the keytab information on your IBM i system.
7. Now test the password entered in the keytab to make sure it matches the password used

for this service principal on the KDC. Do this with the following command: kinit -k HTTP/
Systemia.myco.com
The -k option tells the kinit command not to prompt for a password; only use the password that is
in the keytab. If the kinit command fails, it is likely that different passwords were used on either the
ktpass command done on the Windows Domain controller or on the keytab command entered in QSH.

8. Now test the IBM i Kerberos authentication to make sure the keytab password is the same as
the password stored in the KDC. Do this with the following command: kinit -k krbsvr400/
Systemia.myco.com

Note: The Network Authentication Service wizard created this keytab entry.

84 IBM i: IBM HTTP Server for i

9. Type klist.

Note: If the kinit command returns without errors, then klist will show your ticket cache.

Step 5: Create home directory for John Day on Systemi A
You need to create a directory in the /home directory to store your Kerberos credentials cache. To create
a home directory, complete the following:

1. Start a 5250 session on Systemi A.
2. Type QSH.
3. On a command line, enter: CRTDIR '/home/user profile' where user profile is your IBM i user profile

name. For example: CRTDIR '/home/JOHND'.

Step 6: Test network authentication service configuration on Systemi A
Now that you have completed the network authentication service configuration tasks for Systemi A, you
need to test that your configuration. You can do this by requesting a ticket-granting ticket for the HTTP
principal name, HTTP/Systemia.myco.com.

To test the network authentication service configuration, complete these steps:

Note: Ensure that you have created a home directory for your IBM i user profile before performing this
procedure.

1. On a command line, enter QSH to start the Qshell Interpreter.
2. Enter keytab list to display a list of principals registered in the keytab file. In this scenario, HTTP/

Systemia.myco.com@MYCO.COM displays as the principal name for Systemi A.
3. Enter kinit -k HTTP/Systemia.myco.com@MYCO.COM. If this is successful, then the kinit

command is displayed without errors.
4. Enter klist to verify that the default principal is HTTP/Systemia.myco.com@MYCO.COM.

Step 7: Create EIM identifier for John Day
Now that you have performed the initial steps to create a basic single signon configuration, you can begin
to add information to this configuration to complete your single signon test environment. You need to
create the EIM identifier that you specified in “Step 1: Planning work sheet” on page 78. In this scenario,
this EIM identifier is a name that uniquely identifies John Day in the enterprise.

To create an EIM identifier, follow these steps:

1. Start System i Navigator.
2. Expand Systemi A > Network > Enterprise Identity Mapping > Domain Management >

MyCoEimDomain

Note: If the domain is not listed under Domain Management, you may need to add the domain. You
may be prompted to connect to the domain controller. In that case, the Connect to EIM Domain
Controller dialog is displayed. You must connect to the domain before you can perform actions in it. To
connect to the domain controller, provide the following information and click OK:

• User type: Distinguished name
• Distinguished name: cn=administrator
• Password: mycopwd

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent
a compromise to your system or network security, never use these passwords as part of your own
configuration.

3. Right-click Identifiers and select New Identifier....
4. On the New EIM Identifier dialog, enter a name for the new identifier in the Identifier field, and click

OK. For example, John Day.

IBM HTTP Server for i 85

Step 8: Create a source association and target association for the new EIM
identifier
You must create the appropriate associations between the EIM identifier and the user identities that the
person represented by the identifier uses. These identifier associations, when properly configured, enable
the user to participate in a single signon environment.

In this scenario, you need to create two identifier associations for the John Day identifier:

• A source association for the jday Kerberos principal, which is the user identity that John Day, the
person, uses to log in to Windows and the network. The source association allows the Kerberos principal
to be mapped to another user identity as defined in a corresponding target association.

• A target association for the JOHND IBM i user profile, which is the user identity that John Day, the
person, uses to log in to System i Navigator and other IBM i applications on Systemi A. The target
association specifies that a mapping lookup operation can map to this user identity from another one as
defined in a source association for the same identifier.

Now that you have created the John Day identifier, you need to create both a source association and a
target association for it.

To create a source association between the Kerberos principal jday identifier, follow these steps:

1. Start System i Navigator.
2. Expand Systemi A > Enterprise Identity Mapping > Domain Management > MyCoEimDomain >

Identifiers
3. Right-click John Day, and select Properties.
4. On the Associations page, click Add.
5. In the Add Association dialog, specify or click Browse... to select the following information, and click

OK:

• Registry: MYCO.COM
• User: jday
• Association type: Source

6. Click OK to close the Add Association dialog.

To create a target association between the IBM i user profile and the John Day identifier, follow these
steps:

7. On the Associations page, click Add.
8. On the Add Association dialog, specify or Browse... to select the following information, and click OK:

• Registry: SystemiA.MYCO.COM
• User: JOHND
• Association type: Target

9. Click OK to close the Add Association dialog.
10. Click OK to close the Properties dialog.

Step 9: Configure IBM i Access for Windows applications to use Kerberos
authentication
You must use Kerberos to authenticate before you can use System i Navigator to access Systemi A.
Therefore, from your PC, you need to configure IBM i Access for Windows to use Kerberos authentication.
Jay Day will use IBM i Access for Windows to monitor the status of the HTTP Server and monitor the other
activities on the IBM i system.

To configure IBM i Access for Windows applications to use Kerberos authentication, complete the
following steps:

1. Log on to the Windows 2000 domain by logging on to your PC.

86 IBM i: IBM HTTP Server for i

2. In System i Navigator on your PC, right-click Systemi A and select Properties.
3. On the Connection page, select Use Kerberos principal name, no prompting. This allows IBM i

Access for Windows connections to use the Kerberos principal name and password for authentication.
4. A message is displayed that indicates you need to close and restart all applications that are currently

running for the changes to the connection settings to take effect. Click OK. Then, end and restart
System i Navigator.

Step 10: Add Systemi A to and existing EIM domain
The IBM i does not require mapping, per the EIM configuration, as it is not a signon-type entity. You do,
however, have to add the system to an existing EIM domain.

Note: IF EIM resides on the same IBM i system as the HTTP Server, then skip this step.

1. Start System i Navigator.
2. Expand Systemi A > Enterprise Identity Mapping > Configuration.
3. Click Configure system for EIM.
4. Click Join an existing domain. Click Next.
5. Type Systemia.myco.com in the Domain controller name field.
6. Type 389 in the Port field. Click Next.
7. Select Distinguished name and password from the User type field.
8. Type cn=administrator in the Distinguished name field.
9. Type mycopwd in the Password field.

10. Type mycopwd in the Confirm password field. Click Next.
11. Select MyCoEimDomain from the Domain column. Click Next.
12. Select Systemia.myco.com for Local OS/400 and kdc1.myco.com for Kerberos.
13. Select Kerberos user identities are case sensitive. Click Next.
14. Select Distinguished name and password from the User type list.
15. Type cn=administrator in the Distinguished name field.
16. Type mycopwd in the Password field.
17. Type mycopwd in the Confirm password field. Click Next.
18. Review the information and click Finish.

Step 11: Configure HTTP Server for single signon
After the basic test environment is working, John Day configures the HTTP Server to participate in the
single signon environment. Once single signon is enabled, John Day can access the HTTP Server without
being prompted for a user ID and password after signing on to the Windows environment

To set up Kerberos for your HTTP Server, complete the following steps:

1. Start the Web Administration for i interface.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select the HTTP Server you want to work with from the Server list.
5. Select the resource from the server area (a directory or a file) you want to work with from the Server

area list.
6. Expand Server Properties.
7. Click Security.
8. Click the Authentication tab.
9. Select Kerberos under User authentication method.

10. Select enable or disable to match the source user identity (user ID) associated with the server ticket
with an IBM i system profile defined in a target association.

IBM HTTP Server for i 87

If enabled when Kerberos is specified for the AuthType directive, the server will use EIM to attempt
to match the user ID associated with the server ticket with an IBM i system profile. If there is no
appropriate target association for an IBM i system profile, the HTTP request will fail.

11. Click Apply.

Restart the HTTP Server instance to use your new Kerberos settings.

Your configuration file will now include new code for the Kerberos options you selected.

Note: These examples are used as reference only. Your configuration file may differ from what is shown.

Processing requests using client's authority is Disable:

<Directory />
 Require valid-user
 PasswdFile %%KERBEROS%%
 AuthType Kerberos
</Directory>

Processing requests using client's authority is Enabled:

<Directory />
 Require valid-user
 PasswdFile %%KERBEROS%%
 UserID %%CLIENT%%
 AuthType Kerberos
</Directory>

Note: If your Directory or File server area does not contain any control access restrictions, perform the
following steps:

1. Start the Web Administration for i interface.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the server area you want to work with from the Server area list.
6. Expand Server Properties.
7. Click Security.
8. Click the Control Access tab.
9. Select Control access based on specific authorization of Control access field.

10. Click Add Authorization button under the Authorization for control access table
11. Select Require host from the new row Authorization or Container list.
12. Type *.jkl.com in the Host name table to allow clients in the JKL domain to access the resource.

Note: You should type the host name of your server. If you do not, no client is allowed access to the
resources.

13. Click Continue.
14. Click OK.

Step 12: (Optional) Post configuration considerations
Now that you finished this scenario, the only EIM user you have defined that EIM can use is the
Distinguished Name (DN) for the LDAP administrator. The LDAP administrator DN that you specified for
the system user on Systemi A has a high level of authority to all data on the directory server. Therefore,
you might consider creating one or more DNs as additional users that have more appropriate and limited
access control for EIM data. The number of additional EIM users that you define depends on your security
policy's emphasis on the separation of security duties and responsibilities. Typically, you might create at
least the two following types of DNs:

• A user that has EIM administrator access control

88 IBM i: IBM HTTP Server for i

This EIM administrator DN provides the appropriate level of authority for an administrator who is
responsible for managing the EIM domain. This EIM administrator DN could be used to connect to the
domain controller when managing all aspects of the EIM domain by means of System i Navigator.

• At least one user that has all of the following access controls:

– Identifier administrator
– Registry administrator
– EIM mapping operations

This user provides the appropriate level of access control required for the system user that performs
EIM operations on behalf of the operating system.

Note: To use the new DN for the system user instead of the LDAP administrator DN, you must change the
EIM configuration properties for the system user on each system.

To use Microsoft Internet Explorer to access a Kerberos protected resource, the Integrated Windows
Authentication option must be enabled. To enable it, from Internet Explorer go to Tools > Internet
options > Advanced tab and Enable Integrated Windows Authentication.

JKL Toy Company monitors Web server activity with logs on HTTP Server
This scenario discusses how to monitor IBM HTTP Server for i Web server activity with logs.

Scenario
The JKL Toy Company (a fictitious company) wants to know who is visiting their Web site. The JKLTEST
server is already using a combined access log, but the JKL Web administrator wants to create a new
access log that can be altered without affecting the data in the default access log file. By using this
method, the JKL Web administrator will have two logs that can be formatted to log specific information.

The JKL Web administrator found that enabling the logging function has some advantages and some
disadvantages. Enabling the logging function does cause a small performance hit on the server, but a wide
range of information about who is visiting the Web site can be obtained. After reading the information on
log formats, the JKL Web administrator has decided to use the Combined, or NCSA Extended, log format.

See Module mod_log_config for HTTP Server for advanced information.

Prerequisites
• It is assumed you have read “Scenarios: HTTP Server” on page 48.
• It is assumed you have read and completed “JKL Toy Company creates an HTTP Server” on page 48 or

you have an existing HTTP Server configuration.

Start the IBM Web Administration for i interface
Access the IBM Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

Set up a log file
1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server instance from the Server list.

Example: JKLTEST
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Logging.

IBM HTTP Server for i 89

7. Click the Custom Logs tab in the form.
8. Click Add under the Custom logs table.
9. Enter a name for the new log in the Log column.

Example: logs/server_monitor

Note: The above example creates a log file named server_monitor in the /logs directory.
10. Select combined from the Log format list in the Attributes column.
11. Optional: Accept the default Environment variable condition or enter a new value.
12. Optional: Accept the default expiration of the log or enter a new value.
13. Optional: Accept the default maximum cumulative seize or enter a new value.
14. Click Continue.
15. Optional: Click Log identity of client. This may significantly degrade performance of the web

server. under Client identity logging.

Note: The option to Log identity of client will impact server performance by requiring a Domain
Name Server (DNS) lookup every time a new client is logged. If you do not log the identity of the client
the IP address of the client will be logged instead of the domain name. Some log analysis tools can
perform DNS lookup, allowing identity of clients without impacting your performance.

16. Click OK.

Restart your HTTP Server
Select one of the following methods below:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select All Servers from the Server list.
4. Click the All HTTP Servers tab.
5. Select your HTTP Server name in the table.

Example: JKLTEST
6. Click Stop if the server is running.
7. Click Start.

Note: If your HTTP Server does not start, see “Troubleshooting” on page 199.

Logging will begin when the HTTP Server instance has started. The JKL Web administrator has decided to
use the IBM Tivoli Web Response Monitor to generate usage reports. This product can read the log file
and generate detailed reports that contain information such as the following:

90 IBM i: IBM HTTP Server for i

http://www.ibm.com/software/tivoli/products/web-response-monitor/

Test your HTTP Server
1. Open a new Web browser.
2. Enter http://[i_hostname]:[port] in the location or URL field.

Example: http://jkl_server:1975

Review your log for HTTP Server activity.

View your HTTP Server configuration
Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.

Example: JKLTEST
4. Expand Tools.
5. Click Display Configuration File.

Listen *:1975
DocumentRoot /www/jkltest/htdocs
TraceEnable Off
Options -FollowSymLinks
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie

IBM HTTP Server for i 91

LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
CustomLog logs/server_monitor combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Require all denied
</Directory>
<Directory /www/jkltest/htdocs>
 Require all granted
</Directory>

Tasks
This topic provides step-by-step instructions for administration and management tasks with the IBM Web
Administration for i interface.

Getting started with the IBM Web Administration for i interface
The IBM Web Administration for i interface is used to create and configure IBM HTTP Server for i Web
servers.

Step 1: Install
Ensure that IBM HTTP Server for i is installed on your server and is functioning correctly. For more
information on installing the product, see “Installing HTTP Server” on page 2.

Step 2: Create an HTTP Server instance
Use the Create HTTP Server wizard to quickly create a working HTTP Server configuration.

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. Click the Setup tab.
3. Expand Common Tasks and Wizards.

Note: By default, all lists are expanded. If you collapse any list, the Web Administration for i interface
displays the list as collapsed the next time you view it.

4. Click Create HTTP Server.
5. Enter a name to identify your HTTP Server. This name is used later to configure and administer your

server. Enter a server description to help identify your server.
6. Click Next.
7. Enter the server root. The server root is the base directory for your HTTP Server. Within this directory,

the wizard creates subdirectories for your logs, and configuration information. If the server root does
not exist, the Create HTTP Server wizard creates one for you.

8. Click Next.
9. Enter the document root. The document root is the directory from which your documents are served

by your HTTP Server. If the directory root does not exist, the Create HTTP Server wizard creates one
for you.

10. Click Next.
11. Leave the IP address list as All addresses. You may select a specific IP address if you so choose.

92 IBM i: IBM HTTP Server for i

12. Enter a port number. By default, the port is 80. This is the port your Web site runs (or "listens on"). It
is suggested you enter a different port other than 80 because a port can only be used by one server at
any time.

13. Click Next.
14. Select Yes or No for the Create HTTP Server wizards to create an access log. The access log

contains information about requests made to your HTTP Server. This information is useful for
analyzing who is accessing your Web site and how many requests have been made during a specific
period of time.

15. Click Next.
16. Specify how long you want to keep the error and access log files. Select Keep, do not delete or

Delete based upon age.
17. Click Next.
18. The Create HTTP Server wizard displays a summary of HTTP Server configuration it creates. If you

want to change an entry, simply click Back.
19. Click Finish and HTTP Server is created.

For more information on the Web Administration for i interface, see “Overview of IBM Web Administration
for i” on page 4.

Step 3: Start and test your HTTP Server
After using the Create HTTP Server wizard, it is time to start your Web server and go live.

1. Click the Start icon next to the Server list.
2. Click the Refresh icon and check if the server status is still shown as "Running".

If your HTTP Server does not start, see “Troubleshooting” on page 199.
3. Open another Web browser and go to http://your.server.name:port/ where your.server.name

is the host name of your IBM i server and port is the port number you entered in the Create HTTP
Server wizard.

The supplied HTML example welcome page is displayed.

When you have finished this preliminary work with the Web Administration for i interface, expand your
HTTP server capabilities. See the “Scenarios: HTTP Server” on page 48 for more information.

HTTP Server tasks
This topic provides step-by-step tasks for an IBM HTTP Server for i Web server.
Related information
“HTTP Server Concepts” on page 13
This topic provides conceptual information of the various functions and features of IBM HTTP Server for i.

Setting up MIME types on HTTP Server
Set up MIME types for your IBM HTTP Server for i instance using the IBM Web Administration for i
interface.

Multipurpose Internet Mail Extensions (MIME) types associate file contents and file extensions with the
way the server and the client handle files. To change the MIME settings for the server, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Content Settings.

IBM HTTP Server for i 93

7. Click the MIME tab in the form.
8. Edit the default content-type, content-language, and character set values as necessary.
9. Optional: If necessary, select File extensions are case sensitive to distinguish between uppercase

and lowercase letters when comparing file extensions.
10. Optional: If necessary, select Force content-type for all files to force the mapping of all files in this

context to a specified MIME type.
11. Click Add under the Specify individual Meta (MIME) information for file extensions table.
12. Enter file extensions in the File extension column.
13. If available, select Add from the list in the Action column.
14. Select the file type from the list in the Type column.
15. Enter or select additional MIME types, encoding, languages, or browser types in the Value column.
16. Click Continue.
17. Click OK.

Setting up content and language negotiation for HTTP Server
Content negotiation for an HTTP Server instance can be set up using the IBM Web Administration for i
interface. Content negotiation is defined as the process where the client provides a set of preferences
(such as language) to the server, and the server finds the best resource match to those the client prefers.

To configure content and language negotiation, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Content Settings.
7. Click the Content Negotiation tab in the form.
8. Optional: If necessary, select Allow content-negotiated documents to be cached.
9. Click Add under the Language priority (highest to lowest priority) table.

10. Enter or select from the list a content-language in the Content-language column.
11. Click Continue.
12. Optional: If necessary, select language priority to force from the Force language priority list.
13. Click OK.

Related information
“Content negotiation for HTTP Server” on page 17
The IBM HTTP Server for i supports content negotiation, type-map files, MultiViews, negotiation methods,
dimensions of negotiation,, negotiation algorithm, media types, and wildcards.

Setting up customized error messages on HTTP Server
Customized error messages for an HTTP Server instance can be set up using the IBM Web Administration
for i interface.

The server has default messages that are displayed to the user when an error occurs. You can change
these messages to better suit your particular needs. For example, you can change a message to include
more information about the cause of the problem and suggest possible solutions for it. For internal
networks, you might provide a contact person for your users to call.

To customize your messages, do the following:

1. Click the Manage tab.

94 IBM i: IBM HTTP Server for i

2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click HTTP Responses.
7. Click the Error Message Customization tab in the form.
8. Select how you want to append the generated footer onto error messages. Depending on the server

area you select, you may, optionally, select Inherit.
9. Select an error code from the Custom messages from error codes table or click Add to add a new

error message.
10. Click OK.

If your messages are displayed in the Microsoft Internet Explorer browser, see “Symptom: Web browser
problems with HTTP Server” on page 204.

Setting up directory indexing and directory listing on HTTP Server
Directory index and directory listing for an IBM HTTP Server for i instance can be set up using the IBM
Web Administration for i interface.

A directory index or directory listing shows files and subdirectories that are contained in the directory. The
server shows each subdirectory item or each file on a separate line along with information about each
item. Use caution when configuring directory listing function, since it allows others to view your directory
structure.

To enable directory listings do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Directory Handling.
7. Click the General Settings tab in the form.
8. Select Enabled for your HTTP Server to always search for a welcome or index file name.
9. Select Display directory listings for all directories.

10. Click Apply.

Once directory listings are enabled, you can customize the appearance of the directory list (also called
fancy indexing). Directory listing is optional.

To customize the appearance of your directory list, do the following:

1. Click the Appearance tab in the form.
2. Select the options for your directory listing. View the help text for specific field values.
3. Click OK.

Setting up environment variables on HTTP Server
Set up environment variables for CGI programs running in an HTTP Server instance using the IBM Web
Administration for i interface.

When the server runs a CGI program, it uses environment variables to pass information about the request
and the server. Configuring environment variables allows you to specify which variables the CGI programs
inherits.

IBM HTTP Server for i 95

To specify environment variables, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click General Server Configuration.
7. Click the Custom Environment Variables tab in the form.
8. The environment variables can be set up based on a conditional attribute or expression

• Click Add under the Environment variables based on a conditional attribute table.

Note: Select an environment variable from the table to redefine or remove an existing environment
variable.

Enter the environment variable name in the Variable column.

Enter the environment variable value in the Value column.

Enter the environment variable attribute in the Attribute column.

Enter the environment variable attribute value in the Attribute value column.

Optional: Select to make the environment variable case sensitive in the Case sensitive column.

• Click Add under the Environment variables based on expression table.

Enter the environment variable name in the Variable column.

Optional: Enter the environment variable value in the Value column.

Enter the expression in the Expression column.
9. Click Continue.

10. Click OK.

See “Environment variables set by HTTP Server” on page 634 for a list of environment variables.

Setting up of a highly available HTTP Server
Set up and administer highly available IBM HTTP Server for i instances using the IBM Web Administration
for i interface.

All required programs (HTTP Server, WebSphere, Servlets, Net.Data, and Clustering support) must already
be installed on all nodes. See “Highly available HTTP Server” on page 43 for more information.

Step 1 - Configure the IBM i Cluster
For each node, configure your cluster. See Configuring clusters for more information. Then continue to
step 2.

Step 2 - Configure IP addresses
For each IBM i node in the cluster that a highly available Web server will be running on, configure
the IP address that the Web server will be using. This can be done using the CFGTCP CL command.
You should configure one IP address for each unique Web server. Each Web server is configured to a
dedicated TCP/IP line interface. When using the Network Dispatcher model or comparable IP director
with either HAModel IPTakeoverWithDispatcher of PurePeer model, the IP Line interface should be typed
*VIRTUALIP. See TCP/IP for more information.

1. Start the Web Administration for i interface.
2. Click the Manage tab.

96 IBM i: IBM HTTP Server for i

3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.
6. Expand Server Properties.
7. Click General Server Configuration.
8. Click the General Settings tab in the form.
9. Click Add under the Server IP addresses and ports to listen on table.

Note: Directive HotBackup will be set to off and ignored if currently configured for your HTTP Server.

You may want to perform the next steps on one IBM i server and copy (for example using FTP or
NetServer) the HTTP Server configuration and instance files to each IBM i server where the highly
available HTTP Server will be running in the cluster. The files that must be copied are:

• /www/server_name/conf/server_name.conf
• /QSYS.LIB/QUSRSYS.LIB/QATMINSTC.FILE/instance_name.MBR

10. Add the IP address the highly available Web server will be running on.
11. Click OK.
12. Continue to step 3.

Step 3- Configure the highly available HTTP Server
1. Start the Web Administration for i interface.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.
6. Expand Server Properties.
7. Click System Resources.
8. Click the Highly Available Server tab in the form.
9. Specify one specific server IP address to listen on.

10. Click Enable HTTP server to be highly available.
11. Select a highly available model.

Note: If you are implementing the primary/backup with network dispatcher model or the peer model,
configure the network dispatcher according to the existing cluster nodes and the configured Web
server.

12. Optional: Click Enable highly available CGI program.
13. Enter your liveness monitor settings. The LMUrlCheck directive is required. The other LM directives

have defaults.
14. Click OK.
15. Continue to step 4.

Step 4- Start the highly available HTTP Server
Start your highly available HTTP Server.

1. Start a 5250 session on the IBM i server that will contain a highly available HTTP Server instance.
2. Use STRTCPSVR CL command on the appropriate node.
3. Continue to step 5.

IBM HTTP Server for i 97

Note: In the case of the primary/backup model, the first highly available server to be started will
automatically assume the role of the primary. The second highly available server to be started will
automatically assume the role of the backup.

Step 5- Manage your highly available HTTP Server
Use the ENDTCPSVR CL command on the appropriate node or use the IBM Simple Cluster Management
interfaces to stop or end your highly available HTTP Server. In the case of primary/backup model
depending on which server you are ending this may or may not force a fail over. Ending the primary
server with a backup server running will force a fail over from primary to backup to occur. Ending the
backup will only affect the backup server. Ending the primary server with no backup will end the primary
server. In the case of PurePeer model only the server you are ending will be affected as any other peer
servers will continue to process client requests.

Note: In the case of primary/backup model, it is possible to determine which highly available Web server
is the primary or backup server. The QBATCH subsystem will have a job running named QZHBEXPG on the
primary node only. For the client data it is suggested that you set up a method to automatically publish
static files to each Web server. Static files include HTML and highly available CGI programs.

Setting up a welcome or index page on HTTP Server
Set up a welcome or index page on your IBM HTTP Server for i instance using the IBM Web Administration
for i interface.

You can configure your server to display a specific Web page known as a welcome page for client requests
that do not include a specific file name. The server determines which file to serve by matching the list of
welcome pages to the files in the directory. The first match it finds is the file it will return. To configure
welcome page settings, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click General Server Configuration.
7. Click the Welcome Pages tab in the form.
8. Select Enabled to have the Welcome page displayed.
9. Select the default action the server will take if the welcome file or index file does not exists.

10. Click Add under the Welcome/index file names table.

Note: You may also use the existing file in the Welcome/index file names table.
11. Click Browse and select the HTML file you want to use as a Welcome page.
12. Click Continue.
13. Click OK.

Manually editing HTTP Server
Manually edit your IBM HTTP Server for i Web server configuration using the IBM Web Administration for i
interface.

Attention: Improper modifications to your configuration file could make your HTTP Server
unusable. Modifications to the configuration file manually should only be performed by advanced
users.

The Web Administration for i interface has been designed to modify the HTTP Server configuration file
by applying changes made to the various forms and wizards supplied by the Web Administration for i

98 IBM i: IBM HTTP Server for i

interface. Use of the forms and wizards greatly decreases the potential for user error and helps maintain
an error-free configuration file.

Optionally, the configuration file may be edited manually. When the configuration file has been modified
manually, the Web Administration for i interface does not perform the usual error checking that is done
when using the Web Administration for i interface. Any changes made to the configuration file directly
should be done with caution.

As a precaution, do the following before you modify the configuration file manually:

• Save a backup of your configuration file before manually editing. See “Managing backup files for HTTP
Server” on page 101 for more information.

• Keep track of any changes you make to your configuration file.

In addition, after each modification, test your configuration by stopping and starting your HTTP Server.
Verify the directives you manually configured have the desired effect.

To modify the HTTP Server configuration manually, do the following:

1. Start the Web Administration for i interface.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Expand Tools.
6. Click Edit Configuration File.

Note: The line mode editor functions as a simple text editor only and does not error check any changes
to the configuration file.

Click OK when you have finished modifying the configuration file. Stop and start the server.

Managing HTTP Servers
Manage your IBM HTTP Server for i Web server using the IBM Web Administration for i interface.

As your client base grows and changes, and you add or move Web content, you need to redefine your list
of servers. After successfully creating an HTTP Server there are a number of basic tasks that you will need
to know in order to manage your servers successfully.

• “Starting and stopping the ADMIN server” on page 99
• “Checking status of a server” on page 100
• “Starting and stopping a server” on page 100
• “Renaming a server” on page 100
• “Deleting a server” on page 100

Starting and stopping the ADMIN server
The ADMIN server runs on port 2001 (or 2010 for a secure connection) and serves the IBM i Task Page.

You can start the ADMIN server by doing one of the following:

• In System i Navigator click Network -> Servers -> TCP/IP and right-click HTTP Administration. Then
click Start Instance -> ADMIN.

• On an IBM i command line type STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN).

You can stop the ADMIN server by doing one of the following:

• In System i Navigator click Network -> Servers -> TCP/IP and right-click HTTP Administration. Then
click Stop Instance -> ADMIN.

• On an IBM i command line type ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN).

IBM HTTP Server for i 99

Checking status of a server
To determine the status of your server, do the following using the Web Administration for i interface:

1. Click the Manage tab.
2. Click the All Servers subtab.

Note: Items listed as "Unknown" are servers the Web master user profile does not have authority to.

Starting and stopping a server
Select one of the following methods below using the Web Administration for i interface:

Manage one server

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your server from the Server list.
4. Click the Stop icon if the server is running.
5. Click the Start icon.

Manage all servers

1. Click the Manage tab.
2. Click the All Servers subtab.
3. Click the All HTTP Servers tab.
4. Select your server name in the table.
5. Click Stop if the server is running.
6. Click Start.

Note: When stopping or starting a server, it may take several seconds for the jobs to end or begin. Click
Refresh to view the server's current status. If your HTTP Server does not start, see “Troubleshooting” on
page 199.

Renaming a server
To rename a server, do the following using the Web Administration for i interface:

1. Click the Manage tab.
2. Click the All Servers subtab.
3. Click the All HTTP Servers tab.
4. Select the server you want to rename.
5. Click Rename.
6. Enter the new name.
7. Click OK.

You will receive a message that indicates whether or not the task completed successfully.

Note: This does not change the document root or the server root. Only the instance name is changed.

Deleting a server
Once you delete a server, you cannot retrieve it. You must create a server to replace the deleted server. If
the server you selected is running, it stops before the system deletes it. The system does not delete the
server configuration that is associated with this server or the directory and its contents.

To delete a server, do the following using the Web Administration for i interface:

1. Click the Manage tab.

100 IBM i: IBM HTTP Server for i

2. Click the All Servers subtab.
3. Click the All HTTP Servers tab.
4. Select the server you want to delete.
5. Click Stop if the server is running.
6. Click Delete.

You will receive a message that indicates whether or not the task completed successfully.

Managing addresses and ports for HTTP Server
This topic provides information about how to manage addresses and ports for your IBM HTTP Server for i
with the IBM Web Administration for i interface.

Most browsers make HTTP requests on ports 80 and 443 by default. Typically, the default configuration
option is for servers to listen on all IP addresses on port 80. Multiple servers cannot listen on the same
port and IP numbers. Multiple servers may listen on the same IP address, but require a unique port, or
they may listen on the same port, but require a unique IP address. If you want each server to listen on
port 80, then you should configure each server to listen on a specific unique IP address. In addition, if you
add another Web server product such as Lotus®Domino® on the same IBM i server, it cannot listen on the
same IP address and the same port as the HTTP Server.

You can change the IP address or port for your server by doing the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server name from the Server list.
4. Expand Server Properties.
5. Click General Server Configuration.
6. Click the General Settings tab in the form.
7. Do one of the following:

• Select an existing IP address and port from the Server IP address and port to listen on table to
modify or delete.

• Click Add under the Server IP address and ports to listen on table to add a new IP address and
port.

8. Click Enabled or Disabled in the FRCA column. Only select Enabled if you are using or will be using
FRCA.

9. Click Continue.
10. Click OK.

Managing backup files for HTTP Server
In the IBM HTTP Server for i, there are several files that should be backup up for later recovery.

Make sure that the following objects are included in your periodic backup activity:

Instance files

• QUSRSYS/QATMHINSTA
• QUSRSYS/QATMHINSTC

Configuration files

HTTP Server
Save the conf file located in the /www/[server_name]/conf/ directory, where Server_Name is the
name of your HTTP Server instance.

Note: This describes the default location of the configuration file. If your configuration files are
located in another directory, you must save the configuration file in your location.

IBM HTTP Server for i 101

For more information about backup and recovery of files on the IBM i server, see Systems management.

Managing directories for HTTP Server
You can manage directories for a IBM HTTP Server for i instance with the IBM Web Administration for i
interface.

The following explains how to add a directory and how to remove a directory from your HTTP Server
configuration.

Add a directory
The HTTP Server uses directories to serve Web pages and content. The Web Administration for i interface
has an Add a Directory to the Web wizard that will create a new directory to serve Web content and CGIs.

To add a new directory, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.
5. Expand HTTP Tasks and Wizards.
6. Click Add a Directory to the Web.

When the wizard is finished, it will display a summary of the directory you just created.

Remove a directory
When removing a directory, the Web Administration for i interface removes all references to the directory
from your configuration file only. The physical directory and content within the directory are not removed
from the file system.

To remove a directory and subdirectories, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Container Management.
7. Click the Directories tab in the form.
8. Select the directory you want to delete from the Directory/Directory Match container table.
9. Click Remove.

10. Click OK when the message box appears.
11. Click OK.

Managing HTTP Server performance
Performance in a IBM HTTP Server for i Web server environment is influenced by many components.
Understanding the components can help you to react quickly when a performance problem occurs at a
crucial time.

There are several things that can affect your server's performance. Consider the following performance
related topics:

• “Local cache” on page 103
• “Files to cache when server has started” on page 103

102 IBM i: IBM HTTP Server for i

• “Threads” on page 104
• “DNS lookups” on page 104
• “Server-side includes” on page 104
• “Content negotiation” on page 104
• “Document tree” on page 104
• “.htaccess files” on page 105
• “Virtual host log files” on page 105
• “KeepAlive and KeepAliveTimeout” on page 105
• “Logging” on page 105
• “CGI programs” on page 105
• “TCP/IP settings” on page 105
• “Network” on page 105

Local cache
Enabling the HTTP Server's local cache can result in better performance and system throughput by
caching (in memory) frequently accessed files. You can configure several settings associated with the
local cache.

To configure the local cache settings, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Cache.

Enter or select options from this form. After you are finished, click OK.

Files to cache when server has started
Including file names in Files to cache when server is started causes the files to be loaded into the
server's memory when the server is started.

• Copy into memory specifies the names of files that you want to load into the server's memory each
time you start the server. By keeping your most frequently requested files loaded in the server's
memory, you can improve your server's response time for those files. For example, if you load your
server's welcome page into memory at startup, the server can handle requests for the page much more
quickly than if it had to read the file from the file system.

• Keep file descriptor open specifies the names of ASCII stream files whose descriptors are cached at
the server startup. By keeping your most frequently requested files opened at server startup, you can
improve your server's response time for those files. For example, if you open your server's welcome
page files at startup, the server can handle requests for the page much more quickly than if it had to
open the files each time they are requested. The advantage of using this option over Copy into memory
is it does not cache the content of the file and therefore does not allocate large amount of memory, yet
provides similar performance. The disadvantage of using this option over Copy into memory is it only
caches the file descriptors of ASCII stream files and it keeps the file open (share read) while the server
is active.

• Memory map of file option is the same as Copy into memory except it uses memory address pointers,
instead of simply using a chunk of server memory, to specify the names of files that you want to map
into the server's memory each time that you start the server.

What to cache allows you to specify what information is included in the cache.

IBM HTTP Server for i 103

• Dynamically cache files based on file usage allows dynamic caching. The default value is off (or
disabled).

• Update cache when files are modified updates the cache whenever its original file content changes.
The default value is on (or enabled).

Enter or select options from this form. After you are finished, click OK.

Threads
Each time your server receives a client request, the server first checks to see if any threads are available
and then uses available threads to process the request. If no threads are available, it holds the request
until threads become available. When a request ends, the server threads become idle (at which point they
are available for the server to use again).

Note: The HTTP Server performance may increase by increasing the number of threads, but not the IBM i
system performance.

Setting the maximum number of active threads too high can cause a decrease in system performance.
You can experiment with lowering the maximum number of active threads until you see no affect on
system performance. A good starting point would be half of the previous setting. For example, if you had
the maximum number of active threads set to 100, try setting it to 50. Lowering the maximum number
of active threads directive might result in an increased number of rejected connections when the server
reaches its capacity.

To change the number of threads to process requests, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the Global configuration from the Server area list.
5. Expand Server Properties.
6. Click System Resources.
7. Click the Advanced tab in the form.

Enter or select options from this form. After you are finished, click OK.

DNS lookups
Every time the server needs to request a DNS lookup, there may be a delay while the DNS server is
contacted. Limit the use of DNS lookups. Consider logging IP addresses and using a log analysis tool that
does DNS lookups.

Server-side includes
Server performance can be impacted when server-side includes are processed. Limit the use of server-
side includes except where needed.

Content negotiation
Restrict content negotiation to those contexts where it is needed.

Document tree
Try to organize your document tree into a flat broad tree structure rather than a narrow deep tree
structure. The fewer directory levels the better.

For better performance, store static and Net.Data files in the root (or /) file system. Avoid placing static
and Net.Data files in the QSYS and QDLS file systems.

104 IBM i: IBM HTTP Server for i

.htaccess files
Server performance is impacted if the server must look for and open .htaccess files. If the AllowOverride
and “AllowOverrideList” on page 307 directives are both set to None, the server does not look
for .htaccess files. If AllowOverride or “AllowOverrideList” on page 307 is set to All, there is a significant
performance impact as the server looks for .htaccess files in every directory.

Virtual host log files
If you create separate log files for each virtual host, you should consider that a file descriptor is opened
for each log file. Opening too many file descriptors can impact system performance.

KeepAlive and KeepAliveTimeout
The connection time-out determines the number of seconds the server waits for a subsequent request
before closing a persistent connection. Enabling persistent connections increases the throughput of your
server. Consider decreasing the connection time-out if you have simple pages without images.

To set this value, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the Global configuration from the Server area list.
5. Expand Server Properties.
6. Click System Resources.
7. Click the HTTP Connections tab in the form.
8. Enter a value for Connection time-out, or make a selection from the list.
9. Enter a value for Maximum pending connections, or make a selection from the list.

10. Select Enabled for Allow persistent connections.
11. Enter a value for Time to wait between requests, or make a selection from the list.
12. Enter a value for Maximum requests per connection, or make a selection from the list.
13. Click OK.

Logging
Logging server activity does impact server performance. Try to do as little error and access logging as
required.

CGI programs
CGI programs should be run in a named activation group to get the best performance. Also determine
what CGI jobs your server generally uses. Use the StartCGI and StartThreadedCGI directives to start those
jobs when the server starts. Use the QTMHHTP1 user profile to run CGI requests. If you must use a
different user profile, use a "dummy" user profile (a user profile that is not allowed to sign-on) instead of
%%CLIENT%%.

TCP/IP settings
See TCP/IP applications, protocols, and services for more information on TCP/IP settings.

Network
Consider that the performance of the network that your data flows across can also affect the perception
of your server's performance.

IBM HTTP Server for i 105

Compression tasks
The IBM HTTP Server for i supports the configuration and management of compression files.
Related information
“File compression for HTTP Server” on page 32
Information is compressed by the HTTP Server before being sent to the client over the network.

Setting up input decompression for HTTP Server
This topic provides information about how to set up input decompression for GZIP compressed input
bodies for IBM HTTP Server for i Web server using the IBM Web Administration for i interface.

In order to set up input decompression, a filter must be inserted in the input filter chain. This is done
using the SetInputFilter directive. WebDAV makes frequent use of compression, and as such, input
decompression is used primarily with WebDAV. The range of usefulness of input decompression is also
determined by Web browser support. Most Web browsers do not support compressed data or have
limited support. Compressed information is only accessible with Web browsers with HTTP/1.1 support.
See “File compression for HTTP Server” on page 32 for more information.

To set up input decompression, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Compression.
7. Click the Input Filter tab.
8. Click Add under the Set input filter table.
9. Specify DEFLATE for the filter name under the Filter name column.

10. Click Apply.

You should now have something like the below example in your configuration.

Example

SetInputFilter DEFLATE

See “Setting up output compression for HTTP Server” on page 106 for more information.

Setting up output compression for HTTP Server
This topic provides information about how to set up output compression for an IBM HTTP Server for i Web
server using the IBM Web Administration for i interface.

In order to set up output compression, a filter must be inserted in the output filter chain. This is
done using the SetOutputFilter directive. See “File compression for HTTP Server” on page 32 for more
information.

To set up output compression, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Compression.

106 IBM i: IBM HTTP Server for i

7. Click the Output Filters tab.
8. Add an output filter:

There are two types of output filters. The first output filter type only requires a file extension and
a filter name. The second output filter type requires a MIME type and filter name. For both output
filter types, click Add under the appropriate table and specify the file extension, MIME type, and filter
name.

9. Click Continue.
10. Click Add under the Set output filter table.
11. Specify DEFLATE for the filter name.
12. Click Apply.

You should now have something like the below example in your configuration.

Example

AddOutputFilterByType DEFLATE text/html
AddOutputFilter DEFLATE .html
SetOutputFilter DEFLATE

See “Setting up input decompression for HTTP Server” on page 106 for more information.

Fast Response Cache Accelerator tasks
The IBM HTTP Server for i supports the Fast Response Cache Accelerator (FRCA).
Related concepts
“Fast Response Cache Accelerator (FRCA) for HTTP Server” on page 33
The Fast Response Cache Accelerator (FRCA) improves the performance and scale of Web and TCP server
applications by storing both static and dynamic content in a memory-based cache located in the Licensed
Internal Code.

Setting up Fast Response Cache Accelerator (FRCA) for HTTP Server
This topic provides information about how to set up Fast Response Cache Accelerator for your IBM HTTP
Server for i Web server using the IBM Web Administration for i interface.

FRCA is a Web cache architecture that is tightly integrated with the TCP/IP stack. FRCA moves
performance critical TCP Application functions into a fast response cache that improves HTTP Server
performance. The following explains how to enable FRCA, FRCA logging, and FRCA file caching.

• “Enabling FRCA” on page 107
• “Enabling FRCA logging” on page 108
• “Enabling FRCA file caching” on page 108
• “Enabling FRCA reverse proxy caching” on page 109

Enabling FRCA
Note: The following information may be used to enable FRCA for the first time or enable FRCA for a
different Server area.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click FRCA.
7. Click the General Settings tab in the form.

IBM HTTP Server for i 107

8. Click Add under the Server IP addresses and ports to listen on table.
9. Enter an IP address and port number or select an existing IP address and port. FRCA will listen on the

IP address and port you specify.
10. Select Enabled from the list under the FRCA column.
11. Click Continue.
12. Click Apply.
13. Stop and restart your server.

FRCA is now enabled. After enabling FRCA, you can set up logs and file caching.

Enabling FRCA logging
FRCA logging information allows you to track and generate reports on your HTTP Server's activity. You
may specify various log attributes, such as the format for the information in the log file, rules for excluding
entries from the log file, and client side information logging. Each server configuration file contains
information about the type of log files the server will create. You must enable FRCA before FRCA logging
can be set up. See Set up logs on HTTP Server for more information.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click FRCA.
7. Click the FRCA Logs tab in the form.
8. Click Add under the FRCA logs table.
9. Enter the name of the log file you want to use.

10. Enter the log attributes under the Attributes column.
11. Click Continue.
12. Click OK.
13. Stop and restart your server.

Enabling FRCA file caching
FRCA provides file caching support. You may specify the maximum cache size, the maximum file size to
cache, the files to cache during server startup, and the directories to dynamically cache files from. You
must enable FRCA before FRCA file caching can be set up.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click FRCA.
7. Click the FRCA File Cache tab in the form.
8. Select Enabled from the FRCA file cache capabilities list.
9. Enter a new value for Maximum cache size and select corresponding size unit, or keep the default

value.
10. Enter a new value for Maximum file size to cache and select the corresponding size unit, or keep the

default value.

108 IBM i: IBM HTTP Server for i

11. Click Add under the Files to cache during server startup table to add file types or specific files to
cache at HTTP Server startup.

12. Click Continue when finished adding files to table.
13. Click Add under the Files to cache during server runtime table to add file types or specific files to

cache during HTTP Server runtime.
14. Click Continue when finished adding files to table.
15. Click OK.
16. Stop and restart your server.

Enabling FRCA reverse proxy caching
FRCA provides reverse proxy caching support. You may specify the maximum proxy cache size and
the maximum proxy response size to cache. In addition, you may provide options for controlling which
documents are cached based on expiration criteria, specify remote servers for proxy requests, and
establish document retention policies. You must enable FRCA before FRCA Reverse Proxy caching can be
set up.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click FRCA.
7. Click the FRCA Reverse Proxy Cache tab in the form.
8. Select Enabled from the FRCA reverse proxy cache capabilities list.
9. Enter a new value for Maximum proxy cache size and select its corresponding size unit, or keep the

default value.
10. Enter a new value for Maximum proxy response size to cache and select its corresponding size unit,

or keep the default value.
11. Enter a new value for Document retention period and select its time unit, or keep the default value.
12. Click Add under the Proxy requests to remote servers table.
13. Enter a virtual path under the Local virtual path column.
14. Enter a remote server URL under the Remote server URL column.
15. Click Continue.
16. Click Add under the Document refresh policies table.
17. Enter a full or partial URL under the Match URL column.
18. Enter a value under the Period column and select its corresponding time unit.
19. Click Continue.
20. Click OK.
21. Stop and restart your server.

Log and log file tasks
The IBM HTTP Server for i supports numerous log and log file tasks.
Related information
“Log formats for HTTP Server” on page 29

IBM HTTP Server for i 109

This topic provides information about log formats and log files.

Setting up logs on HTTP Server
Set up logs to record events and other information for your IBM HTTP Server for i instance using the IBM
Web Administration for i interface.

Your HTTP Server can generate a record of events commonly referred to as a Log. Logs can contain error
messages, information on what is being accessed on your HTTP Server, who is accessing your HTTP
Server, script logs, and FRCA logs.

The following topics discuss general log settings required for all logs, Access logs, Error logs, Script logs,
FRCA logs, where to find the HTTP Server job log, and how to run a trace.

General log settings
Before creating a specific log type, the general settings for all logs must be applied to your HTTP Server
configuration. To configure the general settings for all logs, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Logging.
7. Click the General Settings tab in the form.

The General Settings allow you to specify log entry time (local or Greenwich Mean Time), the log cycle,
maximum log file size and forensic log file name.

8. Click Apply.

After you complete the general settings for all logs, you can specify what type of logs you want to create.

Access Logs
Access logs contain a record of requests to the HTTP Server. The access log itself can be configured to
record specific information that you will want to review later. To configure an access log, do the following:

1. See General log settings.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.
6. Expand Server Properties.
7. Click Logging.
8. Click the Custom Log tab in the form.

You can specify various types of information that can be logged in the Access log by specifying a
customized log format. For more information how to specify a customized log format see Log Format.

9. Click Apply.

Error Logs
Error Logs contain records of errors that are encountered by visitors to the server. You can specify what
types of errors that are logged. Also, you can specify the error log format for error log entries now. The

110 IBM i: IBM HTTP Server for i

tokens of “ErrorLogFormat” on page 320can be found in Log file format tokens. To configure error logs, do
the following:

1. See General log settings.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.
6. Expand Server Properties.
7. Click Logging.
8. Click the Error Logs tab in the form.

You must first enable error logging to edit what errors will be logged. Once enabled, do the following:
9. Enter the path and name of the error log.

10. Enter an expiration date.

The value defines how long the error log will be maintained before information is rolled over.
11. Enter a maximum cumulative size.

The value defines how large your error log can be before old log entries are deleted.
12. Select error log format that the server should log, Apache HTTP Server standard error log format

or the data description specification (DDS) format. For standard error log, there is advanced format
setting supported.

13. Select logging level.

From the Logging level list, select the level of information you want entered in the error log.
14. Click Apply.

Script Logs
Script Logs contain errors generated by CGI programs running on the server. Generally you should only
enable these logs when you are debugging programs on the server. To configure script logs, do the
following:

Note: Set up a script log only if you are running CGI programs.

1. See General log settings.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.
6. Expand Server Properties.
7. Click Logging.
8. Click the Script Logs tab in the form.

You must first enable script logging to edit what script errors will be logged. Once enabled, do the
following:

9. Enter the path and name of the script error log.
10. Enter a maximum log file size.

The value defines the size of the script error log.
11. Enter a maximum log entry size.

The value defines the size of the script error log entry.
12. Click Apply.

IBM HTTP Server for i 111

FRCA Logs
Fast Response Cache Accelerator (FRCA) is an extension to the HTTP Server that enables caching and
serving of data in Licensed Internal Code.

1. See General log settings.
2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.
6. Expand Server Properties.
7. Click Logging.
8. Click the FRCA Logs tab in the form.

FRCA must be enabled before information is written to the FRCA log. Once enabled, do the following:
9. Click Add under the FRCA logs table.

10. Enter the path and name of the FRCA log.
11. Enter the log format.

Note: For more information how to specify a customized log format see “Log formats for HTTP
Server” on page 29.

12. Enter the environment variable conditions.
13. Enter an expiration date.

The value defines how long the FRCA log will be maintained before information is rolled over.
14. Enter the maximum cumulative size of the FRCA log file.

The value defines how large your FRCA log can be before old log entries are deleted.
15. Click Continue.
16. Click Apply.

HTTP server job logs
The HTTP Server job logs contain messages or exceptions. The HTTP Server job log is maintained in the
QHTTPSVR subsystem, listed with a job name matching the name of your HTTP Server instance.

Run a trace
The HTTP Server trace allows you to view various levels of trace information related to a specific server.
You will need to have a 5250 session on the IBM i server your HTTP Server is currently running on.

1. Start a 5250 session.
2. Start the server with a parameter of the STRTCPSVR command. Use the following:

• -ve (error) for a trace that contains records for all error return codes or exception conditions.
• -vi (information) for a trace that contains -ve level trace records as well as trace records for entry and

exit points from application level API's and API parameters.
• -vv (verbose) for a trace that contains -vi level trace records as well as trace records for debugging

control flow or data corruption.

For example STRTCPSVR *HTTP HTTPSVR(JKLSERVER '-vv').
3. There are three ways to get output from the trace:

• ENDTCPSVR - When the server is ended the trace data is placed into a spool file. There is a spool file
for each job that is running on the server. If a server ends abnormally, trace data is placed into spool
files even if tracing is not active at the time of the error.

112 IBM i: IBM HTTP Server for i

• DMPUSRTRC - This command dumps the trace data for a specific job to the display or to a physical file
member in the QTEMP library. For example:

a. Use the WRKACTJOB command to find the server job number. For example WRKACTJOB
SBS(QHTTPSVR).

b. Dump the user trace to a file in QTEMP. For example DMPUSRTRC JOB(nnnnnn/QTMHHTTP/
MYSERVER), where nnnnnn is the job number and MYSERVER is the server.

c. Use the DSPPFM command to view the contents of the trace. For example DSPPFM QTEMP/
QAP0ZDMP MBR(QP0Znnnnnn).

• TRCTCPAPP - You can use the TRCTCPAPP command to initiate a trace after the server is started
and to end a trace. To use the TRCTCPAPP command, the server must have been started with the
STRTCPSVR command.

Note: If you started the trace with the STRTCPSVR and one of the trace startup parameters (-ve, -vi,
or -vv), then you must do the following to end the trace:

a. Enter the TRCTCPAPP SET (*ON) command to synchronize it with the STRTCPSVR
command. For example: TRCTCPAPP APP(HTTP) SET(*ON) HTTPSVR(JKLSERVER)
TRCLVL(*VERBOSE).

b. Enter the TRCTCPAPP SET (*OFF) command. For example: TRCTCPAPP APP(*HTTP) SET
(*OFF) TITLE('My title').

Proxy tasks
The IBM HTTP Server for i supports proxy tasks.
Related information
“Proxy server types and uses for HTTP Server” on page 24
This topic provides information about proxy server types and uses for the IBM HTTP Server for i Web
server.

Setting up forward proxy for HTTP Server
Set up forward proxy for an IBM HTTP Server for i instance using the IBM Web Administration for i
interface.

Configure your HTTP Server for forward proxy using the Web Administration for i interface. Only the steps
necessary to configure a forward proxy are discussed.

To configure your HTTP Server for forward proxy, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.

Note: To configure a forward proxy for a virtual host, select the virtual host from the Server area list.
See JKL Toy Company creates virtual hosts on HTTP Server for more information.

5. Expand Server Properties.
6. Click Proxy.
7. Click the Forward Proxy tab in the form.
8. Select Enabled from the Forward proxy capabilities list.
9. Enter the domain default in the Default domain for unqualified requests field. The default domain

is used if a request does not contain a domain name. For example, http:\\www, does not contain a
domain name.

Note: The remaining fields are not required to set up forward proxy for your HTTP Server. Edit the
default values now or return to this form at a later time.

IBM HTTP Server for i 113

10. Click OK.

Setting up reverse proxy for HTTP Server
This topic provides information about how to set up a reverse proxy for your IBM HTTP Server for i with
the IBM Web Administration for i interface.

Configure your HTTP Server for reverse proxy using the Web Administration for i. Only the tabs necessary
to configure reverse proxy are discussed.

To configure your HTTP Server for reverse proxy, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.

Note: If you want to configure a reverse proxy for a virtual host, click the virtual host from the Server
area menu. See JKL Toy Company creates virtual hosts on HTTP Server for more information.

5. Expand Server Properties.
6. Click Proxy.
7. Click the Reverse Proxy tab in form.
8. Select Enabled from the Reverse proxy capabilities list.
9. Click Add under the Proxy request to remote servers table.

Note: This table defines what requests will be mapped into the space of the server. The local server
does not act as a proxy in the conventional sense, but appears as a mirror of the remote server.

10. Select Client requests from the Request Type list.

When this option is used, non-proxy requests matching the URL specified in the Local virtual path
column are transformed into proxy requests for the URL specified in the Remote server URL column.
The proxy then handles the transformed request and returns any document (or error messages) the
remote server provides. Clients remain unaware of any transformation.

11. Enter the local virtual path in the Local virtual path column.

If a non-proxy requests matches the path specified in this column, the non-proxy request will be
transformed into a proxy request for the URL specified in the Remote server URL column.

12. Select Specify URL from the list in the Remote server URL column.
13. Enter the remote server URL in the Remote server URL column.
14. Click Add under the Proxy requests to remote servers table.
15. Select Redirect requests from the Request Type list.

When this option is used for redirected requests, headers in response documents are adjusted in the
event that a "Redirect" is issued by the remote server. This allows clients to remain unaware of any
transformation of the requests even if remote servers redirect the proxy.

16. Enter the path in the Local virtual path column.

If your server is given a non-proxy request and the request matches the URL specified in the Local
virtual path column, the URL request will be transformed into a proxy request for the URL specified
in the Remote server URL column.

17. Enter the remote server URL in the Remoter server URL column.

If a non-proxy request matches a URL in the Local virtual path column, the request will be
transformed in the URL specified in the Remote server URL column. The client will be directed
to the remote server URL without being aware of the redirect.

18. Click Continue.
19. Click OK.

114 IBM i: IBM HTTP Server for i

All other options for reverse proxy are optional and allow you to modify specific reverse proxy capabilities.

After configuring your HTTP Server for reverse proxy, you can configure your server for a proxy chain.

Set up proxy chaining for HTTP Server
This topic provides information about how to set up a proxy chain with your HTTP Server and other proxy
servers with the IBM Web Administration for i interface.

Configure your HTTP Server for proxy chaining using the Web Administration for i interface. Only the steps
necessary to configure a proxy chain are discussed. Before you can configure your HTTP Server for a proxy
chain, you must configure your HTTP Server for forward proxy or reverse proxy.

To configure your HTTP Server for a proxy chain, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.

Note: If you want to configure a proxy chain for a virtual host, select the virtual host from the
Server area list. See “JKL Toy Company creates virtual hosts on HTTP Server” on page 59 for more
information.

5. Expand Server Properties.
6. Click Proxy.
7. Click the Proxy Chaining tab in the form.
8. Click Add under the Remote proxies table.
9. Enter the URL of the remote proxy in the Remote proxy URL column.

Note: If you are not using the default port 80, include the port number with the remote proxy URL.

Example: http://www.myserver.com:1975

Note: For the remote server, only the HTTP protocol is supported. HTTPS and FTP are not supported
in the remote proxy URL field.

10. Enter the full or partial URL in the Match requests to forward column.
11. Click Continue.
12. Click OK.

Security tasks
This topic provides step-by-step tasks for security with the IBM HTTP Server for i Web server.
Related information
“Security tips for HTTP Server” on page 30
This topic provides tips to secure your IBM HTTP Server for i Web server.

Setting up password protection on HTTP Server
Set up password protection for resources on your IBM HTTP Server for i instance using the IBM Web
Administration for i interface.

You can protect Web resources by asking the user for a userid and password to gain access to these
resources. Group files can be used to classify users into groups (for example: users and administrators).
This allows you to limit access to those users that are defined in a group. If the user is listed in the group,
then the userid and password are validated in one of the following ways:

• Internet users in a validation list - This requires you to create a validation list that contains Internet
users. You can create a validation list and Internet users through the Web Administration for i.

• User profiles password protection - This requires that each user must have a system user profile.

IBM HTTP Server for i 115

• LDAP password protection - This requires that you configure a LDAP server with the user entries.

Group file password protection
The following steps explain how to add password protection (using groups) to a directory context.

1. Create a group file with the following format:

groupname: user1[, user2[, user3...]]

groupname
Any name you want to use to identify the group you are defining. This name can be used on
subsequent group definitions within the same server group file.

user1[, user2[, user3...]]
This can be any combination of user names and group names. Separate each item with a comma.

For example:

ducks: webfoot, billface, swandude
geese: goosegg, bagel
flock: ducks, geese

In the above example, notice that once the groups named ducks and geese are defined, they can be
included as part of the group named flock.

Group Profile support is available now.

Assign one IBM i group profile name surrounded with key word % as a member of one HTTP group.
Then all the members of this IBM i group profile will be collected and added into that HTTP group.

For example:

GROUPA: USER1 %GRP1% USER2

If group profile GRP1 has two members USER3 and USER4, HTTP server will collect user profile
USER3 and USER4 and add them into group GROUPA along with USER1 and USER2.

2. Click the Manage tab.
3. Click the HTTP Servers subtab.
4. Select your HTTP Server from the Server list.
5. Select the context you want to work with from the Server area list.

Note: Do not select Global configuration or Virtual Host. If the Authentication tab cannot be selected,
select a different context to work with from the Server area list.

6. Expand Server Properties.
7. Click Security.
8. Click the Authentication tab in the form.
9. Select Use Internet users in validation list or Use IBM i profile of client under User authentication

method.

Note: Your selection should be based off of the incoming traffic your HTTP Server will receive. If
incoming traffic is from outside of your local access network, using Internet users in a validation list
would be more beneficial than using IBM i profiles. If incoming traffic is from a local access network,
using IBM i profiles would be more beneficial than using Internet users in a validation list.

10. Enter an authentication name or realm. The realm name is displayed on the login prompt.
11. Add a user authentication method if necessary.
12. Click OK.

After configuring authentication, you must configure control access.

1. Select the same context you work with previously from the Server area list.
2. Expand Server Properties.

116 IBM i: IBM HTTP Server for i

3. Click Security.
4. Click the Control Access tab in the form.
5. Select Specific users and groups.
6. Click Add under the User and Group names table.
7. Select Group from the list in the Type column.
8. Enter the name of the group in the Name column.
9. Enter the path/filename of the group file used above.

10. Click OK.

Note that changes to existing group files take effect after the HTTP Server is restarted.

User profiles password protection
You can protect Web resources by asking the user for a userid and password to gain access to these
resources. An IBM i user profile can be used to authenticate users.

To configure password protection using a user profile, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Security.
7. Click the Authentication tab in the form.

Note: If the Authentication tab cannot be selected, select a different context to work with from the
Server area list.

8. Select Use IBM i profile of client under User authentication method.
9. Enter an authentication name or realm. The realm name is displayed on the login prompt.

10. Choose one of the two methods below:

Enter a user name in the IBM i user profile to process requests field.

Select a user name under IBM i user profile to process requests. Select Default server profile to
allow the HTTP Server profile (QTMHHTTP) to process requests.

11. Click OK.

After configuring authentication, you must configure control access.

1. Select the same context you work with previously from the Server area list.
2. Expand Server Properties.
3. Click Security.
4. Click the Control Access tab in the form.
5. Select All authenticated users (valid user name and password) under Control access based on who

is making requests.
6. Click OK.

LDAP password protection
You can protect Web resources by asking the user for a userid and password (to gain access to these
resources). A Lightweight Directory Access Protocol (LDAP) server can be used to authenticate users.

LDAP is a directory service protocol that runs over TCP/IP, using non-secure or Secure Sockets Layer
(SSL). The LDAP directory service follows a client/server model, where one or more LDAP servers contain

IBM HTTP Server for i 117

the directory data. This allows any LDAP-enabled application to store information once (such as user
authentication information). Other applications using the LDAP server are then able to request the stored
information. The HTTP server can act as a LDAP client, making requests for information.

One of the advantages of using the LDAP server for authentication is that it allows the information to be
shared by multiple LDAP clients, and stores the information in a platform independent fashion. This can
help prevent information from being duplicated within a network.

The following steps explain how to add password protection (using LDAP) to a directory context.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Security.
7. Click the Authentication tab in the form.

Note: If the Authentication tab cannot be selected, select a different context to work with from the
Server area list.

8. Select Use user entries in LDAP server under User authentication method.
9. Enter an authentication name or realm. The realm name is displayed on the login prompt.

10. Enter an LDAP configuration file.
11. Enter an LDAP group name or filter.
12. Click OK.

After configuring authentication, you must configure control access.

1. Select the same context you work with previously from the Server area list.
2. Expand Server Properties.
3. Click Security.
4. Click the Control Access tab in the form.
5. Select one of the options for who can access this resource.
6. Select one of the options for who can access this resource under Users and groups who can access

this resource.
7. Select Allow access to all, except the following under Control access based on where the request

is coming from.
8. Enter any domain names or IP address you do not want to allow access to.
9. Click OK.

Setting up to secure against a Telnet denial-of-service attack
This topic provides information about how to secure your IBM HTTP Server for i Web server against a
Telnet denial-of-service (DoS) attack using the IBM Web Administration for i interface.

The HTTP Server configuration to protect against Telnet DoS attacks has default settings, but you may
want to change them to suit your individual needs.

Your HTTP Server can detect a DoS attack by measuring the time-out and frequency, or the number of
time-outs of certain clients' requests. If the HTTP Server does not receive a request from the client, then
your HTTP Server determines that a Telnet DoS attack is in progress. This occurs after making the initial
client connection to your HTTP Server.

The HTTP Server's default is to perform attack detection and penalization. However, this default may not
be right for your environment. If all access to your HTTP Server is through a firewall or proxy server or
Internet Service Provider (ISP), then the Telnet DoS protection is built into each of these entities. You

118 IBM i: IBM HTTP Server for i

should turn off the Telnet DoS protection for this HTTP Server instance so that the HTTP Server does not
falsely detect a DoS condition.

To secure against a Telnet DoS attack perform the following steps:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Expand Server Properties.
5. Click System Resources.
6. Click the HTTP Connections tab in the form.

Note: The values provided are the current HTTP connections settings used by your Web server.
Continue only if you want to change the default values.

7. Enter new values for the provided fields.
8. Click Apply.
9. Click the Denial of Service tab in the form.

Note: The values provided are the current denial-of-service settings used by your Web server.
Continue only if you want to change the default values.

10. Enter new values for the provided fields.
11. Click OK.

See “User profiles and required authorities for HTTP Server” on page 31 for more information if you
encounter authority problems.

WebDAV tasks
Web-based distributed authoring and versioning (WebDAV) is provided through the IBM HTTP Server for i
Web server.
Related information
“WebDAV for HTTP Server” on page 47
This topic provides information about Web-based distributed authoring and versioning (WebDAV) for the
IBM HTTP Server for i Web server.

Setting up WebDAV for HTTP Server
Set up WebDAV for your IBM HTTP Server for i instance using the Web Administration for i interface.

Web-based distributed authoring and versioning (WebDAV) is a set of extensions to the HTTP protocol
that allows WebDAV clients (such as Microsoft Web Folders) to collaboratively edit and manage files on
remote Web servers. See “WebDAV for HTTP Server” on page 47 for more information.

To configure WebDAV on your server, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Request Processing.
7. Click the WebDAV tab in the form.
8. Specify one of the following under WebDAV lock databases:

• Full path name for locking stream files: - the full path of the DAV lock database for the Root (/) or
QOpenSys streaming file system.

IBM HTTP Server for i 119

• Library/name for locking QSYS objects: - the library and file name of the DAV lock database for
QSYS objects.

9. Click OK.
10. Select the context you want to work with from the Server area list. The server area you select will be

WebDAV enabled.
11. Click Request Processing.
12. Click the WebDAV tab in the form.
13. Select Enabled to Enable WebDAV.
14. Enter the appropriate file system under Repository provider.
15. Enter any WebDAV restrictions you want enabled for this server area.
16. Click OK.

Web tasks
This topic provides step-by-step tasks for accessing Web applications with the IBM HTTP Server for i Web
server.

Integrated Web Application Server
The Integrated Web Application Server provides a Web container for dynamic Web applications that uses
minimal system resources, is easy to configure, and is imbedded into IBM i.

Details
The Integrated Web Application Server is ready for use without having to install any additional products.
This Web container is capable of running Servlet or JSP applications. The Integrated Web Application
Server is an ideal choice for less complex applications, or applications that are not required to be highly
scalable. Since the Web container has a minimal resources foot print, low use applications that have a
few users are ideal to run on the Integrated Web Application Server. This Web container is also a good
choice when working on a proof of concept because no other products are necessary, the server is easy to
create, and applications are easy to deploy. For applications that require a high degree of scalability, the
IBM WebSphere Application Server product should be used.

The Integrated Web Application Server is available for IBM i 5.4, or later. The server supports dynamic
Web applications running JSP and servlets. Support for database connectivity is also included for DB2 on
either local or remote systems. Any Web application that was targeted to be run on a Web container such
as AFS Tomcat would be a good candidate.

The IBM Web Administration for i interface has been updated to include full support for the Integrated
Web Application Server. The interface provides several simple, easy to use wizards to create new server
instances, stop and start servers, and deploy and manage the applications running on each server.

Prerequisites and assumptions
Ensure the HTTP Server prerequisites have been installed. In addition, load the latest HTTP Server group
PTF.

Creating an Integrated Web Application Server
The Web Administration for i interface provides an easy to use wizard to create an Integrated Web
Application Server on your IBM i server.

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the Web Administration for i interface, select the Setup tab, and then click Create Application
Server to launch the Create Application Server wizard.

120 IBM i: IBM HTTP Server for i

3. Click Next after reading the wizards welcome page.
4. From the Integrated Web Application Server: section select a version.
5. Complete the wizards to create an Integrated Web Application Server. Click on the (?) icon to display

the help information for a particular panel.

Installing an application on the Integrated Web Application Server
Now that you have created an Integrated Web Application Server you will want to install and run
applications on the server. The Web Administration for i interface provides an easy to use wizard to
install your applications. Remember, you can only install applications that are contained in a Web Archive
(WAR) file.

Complete the following steps to install an application on an Integrated Web Application Server:

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Application Servers subtab.
4. Select the Integrated Web Application Server that you want to install the application from the Server

list.
5. Click Install New Application to launch the Install New Application wizard.
6. Complete the wizards to install your application. Click on the (?) icon to display the help information for

a particular panel.

Creating a database connection for an Integrated Web Application Server
application
The Create Database Connection wizard helps the user create a new entity that allows them to connect
the Integrated Web Application Server to a specified database. The database connection allows installed
applications to retrieve and store information in a database. There are two different database connection
types supported by the Integrated Web Application Server. The IBM Developer Kit for Java database
provider is available if you need to connect to a DB2 database.

For applications to use the database connection wizard they must meet the following requirements:

• The JNDI name used by the application must be unique in the Integrated Web Application Server..

Complete the following steps to create a database connection:

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Application Servers subtab.
4. Select the Integrated Web Application Server that you want to create a database connection from the

Server list.
5. Click Create Database Connection to start the Database Connection wizard
6. Complete the wizards to install your application. Click on the (?) icon to display the help information for

a particular panel.

Related information
Integrated Web Application Server home page

Integrated Web services for i
In support of Web services and Service Oriented Architecture (SOA), the IBM i operating system
integrates software technologies that support externalizing integrated language environment (ILE)

IBM HTTP Server for i 121

https://www.ibm.com/support/pages/node/633929

program objects as Web serviced and the consumption of a Web service by an ILE program object. These
technologies are the integrated Web services server and the integrated Web services client for ILE.

Overview of technology
Web service technology promises a new range of possibilities for how organizations and their partners
interoperate to offer dynamic e-business solutions. Web services connect business applications to each
other, inside and outside the enterprise, regardless of their platform, design, or runtime environment.
IBM provides the tools, protocols, technologies, support, and commitment to open standards, to help
businesses create and use innovative Web services technology.

A Web service is a self-contained software component with a well-defined interface that describes a set
of operations that are accessible over the Internet. XML technology provides a platform and programming
language-independent means by which a Web service's interface can be defined. Web services can
be implemented using any programming language, and can be run on any platform, as long as two
components are provided to indicate how the Web service can be accessed: a standardized XML interface
description, called WSDL (Web Services Description Language), and a standardized XML-based protocol,
called Simple Object Access Protocol (SOAP). Applications can access a Web service by issuing requests
formatted according to the XML interface.

Web services do not provide a Graphical User Interface (GUI) for the user. Instead, Web services share
business logic, data, and processes through a programming interface across a network. Therefore,
developers can access Web services from applications to gain specific functionality. In short, Web
services are encapsulated functions which are offered using broadly adopted standard interface
descriptions and protocols.

The Web services architecture is based on the interactions among three roles: service provider, service
registry, and service requestor. The interactions involve the publish operations, find operations, and bind
operations. Together, these roles and operations act upon the Web service artifacts: the Web service
software module and its description. In a typical scenario, a service provider defines a service description
for the Web service using Web Services Description Language (WSDL). The WSDL description of the
service is then published to the service requestor or service registry. The service requestor uses a find
operation to retrieve the service description locally or from the service registry. Once obtained, the
service description is used to bind with the service provider and invoke or interact with the Web service
implementation.

Service Provider (integrated Web services server)
From a business perspective, this is the owner of the service. From an architectural perspective, this is
the platform that hosts access to the service.

Service Requestor (integrated Web services client for ILE)

From a business perspective, this is the business that demands that certain requirements be satisfied.
From an architectural perspective, this is the application that is looking for and invoking, or initiating,
an interaction with a Web service. The service requestor role can be played by a browser driven by a
person, a program with a user interface, or a program without a user interface.

Prerequisites and assumptions
Ensure the HTTP Server prerequisites have been installed. In addition, load the latest HTTP Server group
PTF.

Integrated Web services server
The integrated Web services server for IBM i greatly simplifies the process of externalizing ILE business
logic as a service via the IBM Web Administration for i interface. The externalization of RPG and COBOL
business logic as a service has been simplified to be an administrative task on IBM i. This simplification
has been accomplished by abstracting the hidden complexities of Web services and extending the ILE
programming model, to allow a System i administrators to directly externalize various ILE business tasks
as services.

122 IBM i: IBM HTTP Server for i

Creating a Web services server
The Create New Web Services server wizard provides a convenient way to externalize programs running
on IBM i, such as RPG or COBOL ILE programs, as Web Services.

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Setup tab, and then click Create Web
Services Server to launch the Create Web Services Server wizard.

3. Complete the wizards to create a Web services server. Click on the (?) icon to display the help
information for a particular panel.

Externalizing IBM i programs as Web services
The Install New Service wizard provides a convenient way to externalize an IBM i program or service
program as a Web Service. The wizards provides steps to specify the program object, select program
export procedures to be made available through the Web service, and other parameters. When you finish
the wizard, the Web service artifacts are created and a new Web service is deployed on the server.

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Application Servers subtab.
4. Select the Web services server that you want to install the new service on from the Server list.
5. Click Install New service to launch the Install New Service wizard.
6. Complete the wizards to install your program as Web services. Click on the (?) icon to display the help

information for a particular panel.

Web services client for ILE
The Web services client is integrated into IBM i, providing a mechanism to generate service artifacts and
allow ILE (RPG, COBOL, C, C++) to act as a services consumer with enablement for calling a variety of
Web service implementations, including RPG, COBOL, C, C++, Java, PHP, .NET, WebSphere Process Server
(WPS), and WebSphere Enterprise Service Bus (ESB).

The following lists some of the benefits and features for the web services client:

• Natural extension for the ILE programmer to consume services from a program or service program.
• ILE enablement to bind and call a service directly from IBM i service program or program.
• Leverages WSDL to generates proxy client code to be integrated in program or service program.
• Enhances existing System i development skills to interact with Web services and SOA.

Creating ILE Web service client stub (proxy) service program
Before you can create a Web service client application, you must first generate the client stubs using the
wsdl2ws.sh tool.

1. Copy the WSDL file to a directory in which the client stubs will be generated.
2. Open Qshell and change the current working directory to where the WSDL file is located. For

example, if the WSDL source file GetQuote.wsdl is in /stockquoteWS, then you would specify: cd /
stockquoteWS

3. Run the wsdl2ws.sh tool with the following command to generate the client stubs:

/qibm/proddata/os/webservices/v1/client/bin/wsdl2ws.sh GetQuote.wsdl

Note: The command above generates C++ stubs. To generate C stubs simply add the -lc option to the
command. For example:

IBM HTTP Server for i 123

/qibm/proddata/os/webservices/v1/client/bin/wsdl2ws.sh GetQuote.wsdl -lc

.
4. Examine the generated web service stub artifacts in the IBM i Integrated File System (IFS), to

determine the interfaces for ILE service programs/programs to interact and invoke the service stub
code.

5. Compile the C or C++ stubs you generated in the previous step. In the following example the generated
stub file is StockQuote.cpp:

CRTCPPMOD MODULE(MYLIB/
STOCKQUOTE) SRCSTMF('/stockquoteWS/StockQuote.cpp')INCDIR('/qibm/
proddata/os/webservices/v1/client/include')ENUM(*INT).

6. Create the Web service client proxy service program.
For C++ stubs, your will need to bind to service program QSYS/QAXIS10C.

CRTSRVPGM SRVPGM(MYLIB/GETQUOTEWS) MODULE(MYLIB/STOCKQUOTE) EXPORT(*ALL)
BNDSRVPGM(QSYS/QAXIS10C)

For C stubs, you will need to bind to service program QSYS/QAXIS10CC.
CRTSRVPGM SRVPGM(MYLIB/GETQUOTEWS) MODULE(MYLIB/STOCKQUOTE) EXPORT(*ALL)
BNDSRVPGM(QSYS/QAXIS10CC)

Once the client stubs have been generated and a service program containing the stubs created, you
can now develop a Web service client application that can invoke the Web service via the stubs. More
information on Web services client programming using Web services client for ILE can be found in the PDF
files located in /qibm/proddata/os/webservices/v1/client/docs.

Related information
Integrated Web Services for i home page

Web Performance Advisor
The Web Performance Advisor provides a way to view, evaluate and modify the attributes that affect
the performance of your Web environment. Clear definitions of the attributes are provided along with
recommended values. The tool also provides rating for each attribute to help guide the user to acceptable
settings.

A Web environment is a grouping of related Web and application servers that form a Web solution. A
Web environment is typically made up of a single application server, its corresponding IBM HTTP Server
for i Web server, and any system attributes that could have a direct effect on the performance of the
Web environment. Supported application servers include WebSphere Application Server, Integrated Web
Application Server for i, and the Integrated Web Services Server for i.

The Web Performance Advisor is made up of multiple components to help you tune the performance of
your system and Web environment. These components include an advisor and an export function. These
can be launched from the Web Performance Advisor introduction page. On this introduction page, the user
is provided a quick, easy-to-read, high-level view of their system and Web environment performance.

The Advisor function allows you to manage system attributes and to manage Web environment attributes.
From the manage system and manage Web environment panels, you can view, evaluate, and change each
performance attribute. While evaluating each performance attribute, click the attribute's Advise link to
learn about the attribute and find the recommended setting.

The export function allows you to save existing performance settings in a performance profile. This profile
can be evaluated, compared, or sent to a performance expert for analysis and modification.

When the Web Performance Advisor tool is used to examine a Web related server, a flight recorder
performance profile is created to save what all performance attributes are set to prior to any changes
being made. Whenever changes are made through the Web Performance Advisor, all the performance
attributes are saved (including the new changes) to another flight recorder performance profile file. This
is necessary so that you can keep track of all changes made to a Web environment. All flight recorder
performance profile files are located in the '/QIBM/UserData/HTTPA/admin/WPA' directory. The

124 IBM i: IBM HTTP Server for i

https://www.ibm.com/support/pages/node/633935

Web Performance Advisor tool does not clean up these files; they remain until someone deletes them
manually.

Because the attributes affecting performance in a Web environment are located in many places, the Web
Performance Advisor combines all of the performance attributes into a performance profile. The profile
contains:

• System attribute information made up of the physical and logical resources that have been allocated to
the system and partition and selected system values that can have a direct effect on Web performance,
TCP/IP settings, and PTF information including the PTF Groups and the individual product PTFs for the
products that are used in a Web environment.

• Web attribute information for an application server.
• Web performance attributes for an application server, including the JVM settings, system and server

resource settings, server JDBC providers and data source resources, and other additional server
settings.

• Web attribute information related to your external HTTP server that is associated with the application
server.

Details
The Web Performance Advisor gathers ratings and recommendations for each of the performance
attributes being tuned. From these ratings, icons are displayed to convey whether the attribute is tuned
well (green), may need some additional tuning (yellow), or needs immediate attention (red). The ratings
that are displayed may vary based on the risk level (conservative or aggressive) you have configured
in the General Settings. Conservative means that you do not want to be alerted to those performance
attributes that are on the fringe. By using the conservative approach, fewer attributes are changed and
drastic performance updates are not made. Of course, performance may not be tuned as well, but there
is much less risk of degrading your machine as a whole. Using the aggressive approach, any attribute that
is on the fringe is flagged as needing to be changed. In addition, attributes that would be flagged as good
in a conservative mode, might actually be flagged as needing improvement. By doing this, more drastic
performance updates are made which may dramatically improve performance. On the downside, the
possibility exists that unexpected, unwanted consequences may result from these drastic performance
changes.

Prerequisites and assumptions
The Web Performance Advisor feature supports a wide variety of WebSphere and non-WebSphere
products. These include WebSphere Application Server, WebSphere Portal Server, Integrated Application
Server, and the Integrated Web Services Server. The other product that is supported is the IBM HTTP
Server for i Web server when it is configured to be used by one of the previously listed products.

Each of the following WebSphere Application Server products must be at the fix level specified
before Web Performance Advisor can work. When WebSphere Application Server fixes are installed,
the activation instructions must be followed completely, and the ADMIN server must be stopped and
restarted. The following versions are supported:

• WebSphere Application Server V7 (Base and Express® editions and Network Deployment in a stand-
alone environment)

• WebSphere Application Server V6.1 (Base and Express editions and Network Deployment in a stand-
alone environment)

• WebSphere Portal V6.1.5

Note: The Web Performance Advisor supports an HTTP server when it is configured to be used by one of
the other products supported. Standalone HTTP servers are not supported.

Start the Web Performance Advisor
The Web Performance Advisor can be started from the Web Administration for i interface:

IBM HTTP Server for i 125

1. Access the Web Administration for i from your browser. For information about how to access the Web
Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the server you want to examine.
3. In the navigation pane, expand Web Performance, and select Web Performance Advisor.

Note: If Web Performance Advisor is not displayed in the navigation pane, either you need to install
the latest HTTP Server group PTF, or the selected server is not supported by the Web Performance
Advisor.

The Web Performance Advisor introduction page displays. From this page, you can select to manage your
system or your Web attributes, change your general settings, or export your current performance settings.

More performance tuning tools

The Web Performance Advisor is only one tool available for you to tune your performance settings. The
Web Performance Advisor, the Workload Estimator, and the documented minimums are all tools available
to help you achieve improved performance. These resources can be used together to find the settings that
are best for you.

Documented minimums: This is the smallest possible system you should run on. These systems may be
appropriate for development or internal systems with a small number of users where longer response
times are acceptable. Good performance is not expected on these systems.

Workload Estimator: This tool accounts for the specific characteristics of your workload to recommend
an appropriate system. It should be used to determine the size and type of system that should be used
based on the type of workloads you plan on running. It cannot recommend a system that is smaller than
the documented minimum recommendations, but it may recommend a larger system.

Web Performance Advisor: This tool is recommended if you are trying to get good performance out of
your applications and environment. It may recommend configurations that are somewhat larger than the
documented minimums. The recommendations could, however, be smaller than the Workload Estimator
recommendations, because the Web Performance Advisor does not account for the specific workload
your system faces during the runtime of your applications or other things that may be running on your
system.

Install WebSphere Application Server
The IBM® Web Administration for i interface provides some easy to use wizards to install and manage
WebSphere® Application Server on your IBM i server.

WebSphere® Application Server is an important product, offering a valuable option for a fast and
flexible Java application server runtime environment and enhanced reliability and resiliency. Starting
with WebSphere Application Server V8.0, the product is installed using the IBM® Installation Manager.
Installation Manager does not have a GUI interface for IBM i. The Web Administration for i interface
provides an easy-to-use GUI interface to manage the WebSphere Application Server installation and fixes
on IBM i. By Web Administration for i, you can easily do following operations on IBM i:

• Install WebSphere Application Server
• Update WebSphere Application Server with fix pack or interim fixes
• Uninstall WebSphere Application Server

It is recommended that you use the Web Administration for i interface to manage your WebSphere
Application Server installations. This reduces the time and complexity of the many different operations.

Prerequisites and assumptions
• IBM HTTP Server for i (5770-DG1)
• IBM Developer Kit for Java (5770-JV1 *BASE)
• IBM Developer Kit for Java (5770-JV1 Option 11)
• Host Server (5770-SS1 Option 12)

126 IBM i: IBM HTTP Server for i

• Qshell (5770-SS1 Option 30)
• Portable App Solutions Environment (5770-SS1 Option 33)
• IBM i Digital Certificate Manager (5770-SS1 Option 34)
• Extended Base Directory Support (5770-SS1 Option 3)

Install a WebSphere Application Server
The Web Administration for i interface provides an easy to use wizard to install a WebSphere Application
Server on your IBM i server.

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Installations subtab.
4. Click Install WebSphere Application Server or Install button on the manage Installations form to

launch the Install WebSphere Application Server wizard.
5. Click Next after reading the wizards welcome page.
6. Install Installation Manager. This step is only displayed when the tool is not installed on your system.

Specify the install packages path of the Installation Manager on your system and click Next.
7. Specify the WebSphere Application Server product install packages location on local or remote

accessible system. If the remote system requires authentication to access, you need to specify the
user id and password. Click Next.

8. Choose the package to be installed on the system and Click OK.
9. Upgrade Installation Manger. This step is only displayed when the Installation Manger tool installed

on your system does not meet the required minimum level to install the WebSphere Application
Server installation. The wizard helps to upgrade the tool from local install packages or from Internet if
your system has Internet access.

10. Complete the wizards to install a WebSphere Application Server on your system. Click on the (?) icon
to display the help information for a particular panel.

Installing an application on the Integrated Web Application Server
Now that you have created an Integrated Web Application Server you will want to install and run
applications on the server. The Web Administration for i interface provides an easy to use wizard to
install your applications. Remember, you can only install applications that are contained in a Web Archive
(WAR) file.

Complete the following steps to install an application on an Integrated Web Application Server:

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Application Servers subtab.
4. Select the Integrated Web Application Server that you want to install the application from the Server

list.
5. Click Install New Application to launch the Install New Application wizard.
6. Complete the wizards to install your application. Click on the (?) icon to display the help information for

a particular panel.

Update WebSphere Application Server with fix pack or interim fixes
Complete the following steps to update the WebSphere Application Server installation to a specific fix
pack level or install related interim fixes:

IBM HTTP Server for i 127

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Installations subtab.
4. Select the WebSphere Application Server installation you want to update and click Update button on

the Manage Installations form to launch the Update WebSphere Application Server wizard.
5. To update the installation to a specific fix pack level, check the Fix pack and specify the fix pack

packages location. To update the installation with specific interim fixes, check the Interim fix and
specify the interim fix packages location.

6. Complete the wizards to install your application. Click on the (?) icon to display the help information for
a particular panel.

Uninstall WebSphere Application Server
Before uninstalling the WebSphere Application Server installation, all profiles based on the installation
should be stopped. After the uninstall, the installation and all profiles on it are removed from the
system. Complete the following steps to uninstall the WebSphere Application Server installation from
your system:

1. Access the IBM Web Administration for i from your browser. For information about how to access the
Web Administration for i interface, see “Starting Web Administration for i” on page 7.

2. From the IBM Web Administration for i interface, select the Manage tab.
3. Select the Installations subtab.
4. Select the WebSphere Application Server installation you want to uninstall and click Uninstall button

on the Manage Installations form to launch the Uninstall WebSphere Application Server wizard.
5. Complete the wizards to install your application. Click on the (?) icon to display the help information for

a particular panel.

Related information
Integrated Web Application Server home page

Virtual host tasks
This topic provides step-by-step tasks for configuring virtual hosts in the IBM HTTP Server for i Web
server.
Related information
“Virtual hosts on HTTP Server ” on page 23
This topic provides information about virtual host types on the IBM HTTP Server for i Web server.

Setting up virtual hosts on HTTP Server
Set up virtual hosts on your IBM HTTP Server for i instance using the IBM Web Administration for i
interface.

Virtual hosts allow more than one Web site on one system or Web server. The servers are differentiated by
their host name. Visitors to the Web site are routed by host name or IP address to the correct virtual host.
Virtual hosting allows companies sharing one server to each have their own domain names. For example,
www.company1.com and www.company2.com can both be hosted on the same server. See “Virtual hosts
on HTTP Server ” on page 23 for more information.

You can configure virtual hosts by doing the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.

128 IBM i: IBM HTTP Server for i

http://www.ibm.com/systems/i/software/ias/

5. Expand Server Properties.
6. Click Virtual Hosts.
7. Click either the Name-based virtual host tab or the IP-based virtual host tab in the form.

Name-based virtual hosts
The name-based virtual host allows one IP address to host more than one Web site (hostname). This
approach allows a single HTTP Server to service requests directed at many different hostnames. This
simplifies configuration and use, and requires no additional hardware or software. The main disadvantage
to this approach is that the client must support HTTP 1.1 (or HTTP 1.0 with 1.1 extensions) that
include the server hostname information inside the HTTP document requests. The latest versions of
most browsers support HTTP 1.1 (or HTTP 1.0 with 1.1 extensions), but there are still old browsers that
only support HTTP 1.0. For more information on virtual hosts refer to the <VirtualHost> directive.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Virtual Hosts.
7. Click the Name-based tab in the form.
8. Click Add under the Named virtual hosts table.
9. Select or enter an IP address in the IP address column.

Note: The Web Administration for i provides the IP addresses used by your IBM i system in the IP
Address list; however, you will need to provide the hostname associated with the address you choose
and register the hostname with your Domain Name Server (DNS).

10. Enter a port number in the Port column.
11. Click Add under the Virtual host containers table in the Named host column.
12. Enter the fully qualified server hostname for the virtual host in the Server name column.

Note: Make sure the server hostname you enter is fully qualified and associated with the IP address
you selected.

13. Enter a document root for the virtual host index file or welcome file in the Document root column.
14. Click Continue.
15. Click OK.

IP-based virtual hosts
The IP-based virtual host requires one IP address per Web site (host name). This approach works very
well, but requires a dedicated IP address for every virtual host. For more information on virtual hosts refer
to the <VirtualHost> directive.

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select Global configuration from the Server area list.
5. Expand Server Properties.
6. Click Virtual Hosts.
7. Click the IP-based tab in the form.
8. Click Add under the Virtual host containers table.
9. Enter a valid IP address in the IP address or hostname column.

IBM HTTP Server for i 129

10. Enter a valid port number in the Port column.
11. Optional: Enter a server name in the Server name column.
12. Optional: Enter the document root from where the files will be served in the Document root column.
13. Click Continue.
14. Click OK.

Mass-dynamic virtual hosting
Use the Mass-dynamic tab to create a dynamic virtual host with a Name-based or IP-based virtual
host, or work with canonical names. A canonical name is the actual name of an HTTP Server resource.
For example, a canonical name of the HTTP Server is its true name rather than an alias. See directive
<UseCanonicalName> for more information.

The dynamic virtual host allows you to dynamically add Web sites (hostnames) by adding directories of
content. This approach is based on automatically inserting the IP address and the contents of the Host:
header into the pathname of the file that is used to satisfy the request.

The Mass-dynamic tab provides a subset of options that are more complex than those provided by the
other tabs. The options include specifying the root directory for serving files, and selecting the root
directory for CGI scripts. The availability of these settings are dependent on what server area you are
working with.

At the global configuration server area, all mass-dynamic settings are available. These include:

• Options on how to build self-referencing URL's.
• Options for the root directory for serving files.
• Options for the root directory for CGI scripts.

The mass-dynamic settings use strings and substrings to create a dynamic virtual hosts.
For example, to create a simple dynamic virtual host, the Root directory for serving files
option is defined as /usr/local/apache/vhosts/%0 and Use server name is selected. A
request for http://www.ibm.com/directory/file.html returns /usr/local/apache/vhosts/
www.ibm.com/directory/file.html.

The string %0 is an interpolate (insert) string of the server name or IP address. The following defines the
interpolate string:

Interpolate (insert) strings

%% inserts a %

%p inserts the port number of the virtual host

%N.M inserts (part of) the name

N and M are used to specify substrings of the name. N selects from the period-separated components of
the name, and M selects characters within whatever N has selected. M is optional and defaults to zero if it
is not present; the period must be present if and only if M is present. The interpretation is as follows:

Substring interpretation

0 the whole name

1 the first part

2 the second part

-1 the last part

-2 the next to last part

2+ the second and all subsequent parts

130 IBM i: IBM HTTP Server for i

Substring interpretation

-2+ the next to last part and all preceding parts

1+ and -1+ the same as 0

For more information on mass-dynamic virtual hosts refer to mod_vhost_alias.

CGI tasks
This topic provides step-by-step tasks for configuring various HTTP Server attributes that affect how CGI
programs are run within your Web server.
Related concepts
“CGI” on page 39
The Common Gateway Interface (CGI) specification was introduced to enable and standardize the
interface between Web servers and external programs. The CGI is a relatively simple, platform and
language independent, industry-standard interface for Web application development. Programs that
implement the CGI standard are commonly called CGI programs.

Setting up CGI jobs
Use this topic to set up CGI jobs that can run on your IBM HTTP Server for i Web server.

To set CGI settings, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Dynamic Content and CGI.
7. Click the General Settings tab in the form.
8. Enter the values associated with your CGI jobs.
9. Click OK.

See CGI Programming examples for sample CGI programs.

Setting up persistent CGI jobs
Use this topic to set up persistent CGI jobs that can run on your IBM HTTP Server for i Web server.

Persistent CGI is an extension to the CGI interface. It allows a CGI program to remain active across
multiple browser requests and maintain a client session. To set persistent CGI settings, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Select the context you want to work with from the Server area list.
5. Expand Server Properties.
6. Click Dynamic Content and CGI.
7. Click the Persistent CGI tab in the form.
8. Enter the values associated with the persistent CGI jobs.
9. Click OK.

See CGI Programming examples for sample CGI programs.

IBM HTTP Server for i 131

http://www.ibm.com/systems/i/software/http/examples/
http://www.ibm.com/systems/i/software/http/examples/

Apache module tasks
This topic provides step-by-step tasks for configuring Apache modules to extend the functionality of your
IBM HTTP Server for i Web server.
Related concepts
“Apache modules” on page 41
Modules are service programs that can be dynamically linked and loaded to extend the nature of the HTTP
Server.

Setting up Apache modules
Use this topic to configure an Apache module in order to extend the functionality of your IBM HTTP Server
for i Web server.

To add an Apache model to your Web server, you will need to add the LoadModule directive to your HTTP
Server configuration. Do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select your HTTP Server from the Server list.
4. Expand Tools.
5. Click Edit Configuration File.
6. Add the following, where MODULELIB is the library in which the module service program resides and

MODULE is the name of your module:

LoadModule Module /QSYS.LIB/MODULELIB.LIB/MODULE.SRVPGM

7. Add any additional directives needed to the configuration file. Note that the compiled service program,
MOD_FOOTER, is located in the QSYS directory. The " . " represent existing lines in the configuration
file.

Example (replace MYLIB.LIB with your library name):

LoadModule footer_module /QSYS.LIB/MYLIB.LIB/MOD_FOOTER.SRVPGM
.
.
.
<Directory "/www/mydocs/htdocs">
 SetOutputFilter FOOTERFILTER
 FooterFile footer.hf
</Directory>

The FOOTERFILTER output filter and the FooterFile directive are defined in MOD_FOOTER, the module
that was compiled and configured.

8. Click OK.

132 IBM i: IBM HTTP Server for i

Programming
This topic provides information on CGI programming, Apache module programming, APIs, and other
programming topics for the IBM HTTP Server for i Web server.

Application Programming Interface
This topic lists the application programming interfaces (APIs) that are supported by IBM HTTP Server for
i.

Apache module APIs
This topic provides information about the Apache portable runtime (APR) and application programming
interfaces (APIs) for the IBM HTTP Server for i. These APIs are generally used to write cross-platform
Apache modules.

Links to the HTTP Server and APR APIs are listed below. To write, compile, and configure an HTTP Server
module, you will need to use both APR and HTTP Server APIs.

Note: The APR APIs are actually independent of the HTTP Server. Users of APR can create their own
applications using APR and not touch any Web servers.

• APR Core APIs - The APR APIs are not application specific and may be used with different server types
and applications.

• HTTP Server APIs - The HTTP Server APIs are HTTP Server specific and are not part of the APR APIs.

“Module mod_example” on page 393 provides a simple example of the use of the HTTP Server and APR
APIs.

Related information
“Apache module programming” on page 194
The IBM HTTP Server for i supports the extension of the functionality of the HTTP Server through the use
of third-party Apache modules.
Developer Documentation for Apache 2.4
Apache Portable Runtime Project

CGI APIs
This topic provides information about IBM HTTP Server for i APIs for CGI applications.

HTTP Server supports the APIs listed below in C++, REXX, ILE C, ILE COBOL, and ILE RPG programming
languages. Although all APIs are supported in all of these languages, most ILE C CGI applications will only
need to use QtmhCvtDB(), QzhbCgiParse(), or QzhbCgiUtils(). This is because ANSI C can work
with stdin, stdout, and environment variables directly. ILE C CGI applications use ANSI C function calls
to work with stdin, stdout, environment variables, and string functions for parsing stdin and environment
variable data.

To use these APIs in a CGI application, you must bind the CGI program to *SRVPGM QZHBCGI in library
QHTTPSVR. ILE C programs must include header file QSYSINC/H(QZHBCGI). CGI application programs
must be written and compiled in Integrated Language Environment® ILE C, ILE RPG, and ILE COBOL.

• “Get Environment Variable (QtmhGetEnv) API” on page 136
• “Put Environment Variable (QtmhPutEnv) API” on page 137
• “Read from Stdin (QtmhRdStin) API” on page 138
• “Write to Stdout (QtmhWrStout) API” on page 139
• “Convert to DB (QtmhCvtDB) API” on page 134
• “Parse QUERY_STRING Environment Variable or Post stdin data (QzhbCgiParse) API” on page 140
• “Produce Full HTTP Response (QzhbCgiUtils) API” on page 148
• “Send or Save CGI Stateful Data (QzhbCgiSendState_r) API” on page 147

IBM HTTP Server for i 133

http://httpd.apache.org/docs/2.4/developer/
http://apr.apache.org/

• “Receive CGI Stateful Data (QzhbCgiRecvState_r) API” on page 143
• “Put environment variable with CCSID (QzsrPutEnvCCSID) API” on page 144
• “Get environment variable with CCSID (QzsrGetEnvCCSID) API” on page 145

Convert to DB (QtmhCvtDB) API
The QtmhCvtDB() API provides an interface for CGI programs to parse CGI input, defined as a series of
keywords and their values, into a buffer which is formatted according to a DDS file specification.

Required Parameter Group:

1 Qualified database file name Input Char(20)

2 Input string Input Char(*)

3 Length of input string Input Binary(4)

4 Response variable Output Char(*)

5 Length of response variable Input Binary(4)

6 Length of response available Output Binary(4)

7 Response code Output Binary(4)

8 Error Code I/O Char(*)

CGI input data, which comes to the CGI program as character data, will be converted by the
QtmhCvtDB() API to the data type defined for the keyword by the corresponding field name in the
input DDS file. Language statements, such as the ILE C #pragma mapinc statement, provide the ability to
map the returned structure with field names defined in the DDS file. See the appropriate language user's
guide for details.

Note: QtmhCvtDB() API is not allowed in CGI mode %%BINARY%%.

The following DDS field types are handled:

• A - Alphanumeric (see note 1 below)
• P - Packed Decimal (see note 2 below)
• S - Zoned Decimal
• F - Floating Point
• T - Time
• L - Date
• Z - Timestamp
• B - Binary (see note 3 below)
• O - DBCS

The following DDS field types are not handled:

• H - Hexadecimal (see note 4 below)
• G - Graphic
• J - DBCS
• E - DBCS

Notes:

1. The VARLEN keyword is not supported.
2. When using a packed decimal field, the #pragma mapinc() must use _P the option, to create a packed

structure.
3. Input to Binary fields is converted to integer. The DDS file specification must declare zero decimal

positions (for example, “xB 0”, where x is 1-9).

134 IBM i: IBM HTTP Server for i

4. ILE C converts hex DDS field data to character fields. Since the input stream to QtmhCvtDB() is a
text string, the “hex” data would be converted from text to character fields. Therefore, using the A
(Alphanumeric) field type to obtain the same conversion.

Required parameter group
Qualified database file name

Input:CHAR(20)

The input variable containing the name of the database file defining field names and data types for
the keywords anticipated in the input to the CGI program. Typically, the database file is generated
using DDS to define the fields corresponding to the keywords anticipated in the CGI inputs. The first
10 characters contain the database file name, and the second 10 characters contain the library name.

Input string
INPUT:CHAR(*)

The input variable containing the string of CGI input parameters to be parsed. When the environment
variable REQUEST_METHOD indicates that the method is GET, characters up to the first ? are ignored.
The string must meet the format requirements for CGI input keyword strings.

Length of input string
INPUT:BINARY(4)

The input variable containing the length of the character string that contains the CGI input parameters
to be parsed. The length of the string must be greater than 0.

Response variable
OUTPUT:CHAR(*)

The output variable which is to contain the structure mapped according to the database file describing
the input parameters anticipated by the CGI program.

Length of response available
INPUT:BINARY(4)

The input variable containing the total length of the buffer into which the CGI input parameters will be
parsed.

Length of response
OUTPUT:BINARY(4)

The output variable that contains the length of the response. If the response variable is too small to
contain the entire response, this parameter will be set to the size that is required to contain the entire
response.

Response code
OUTPUT:BINARY(4)

A code that indicates the status of the request.

• 0 - All keywords have been translated according the database file.
• -1 - The database file contains definitions for structure fields for which the CGI input has no

corresponding keyword.
• -2 - The CGI input contains one or more keywords for which the database file contains no

corresponding field.
• -3 - A combination of the condition for response codes -1 and -2 has been detected.
• -4 - An error occurred while converting the CGI input string to the DDS defined data types. The data

may or may not be usable.
• -5 - This API is not valid when a program is not called by HTTP Server. No data parsing is done.
• -6 - This API is not valid when operating in %%BINARY%% mode. No data parsing is done.

Error Code
I/O CHAR(*)

IBM HTTP Server for i 135

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3CF1 E

Error code parameter not valid.
CPF9810 E

Library &1 not found.
CPF9812 E

File &1 in library &2 not found.
CPF9822 E

Not authorized to file &1 in library &2

Get Environment Variable (QtmhGetEnv) API
The QtmhGetEnv() API allows you to get the value set by the IBM HTTP Server for i server for a
particular HTTP environment variable.

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Length of response Output Binary(4)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Error Code I/O Char(*)

Required parameter group
Receiver variable

OUTPUT:CHAR(*)

The output variable that contains the value set by the server for the requested environment variable.
In CGI input mode %%MIXED%%, this value will be in CCSID 37; otherwise, it will be in the CCSID of
the current job. Note that the QUERY_STRING in %%BINARY%% mode is not converted by the server.

Length of receiver variable
INPUT:BINARY(4)

The input variable containing the length of the space provided to receive the environment variable
value.

Length of response
OUTPUT:BINARY(4)

The output variable that contains the length of the environment variable value. When the API is unable
to determine the value for the requested environment variable, the length of the environment variable
value is set to zero. When the size required for the environment variable value is larger than the length
of the receiver variable, the size required to receive the value is returned.

Request variable
INPUT:CHAR(*)

136 IBM i: IBM HTTP Server for i

The input variable containing the desired environment variable name.

Length of request variable
INPUT:BINARY(4)

The input variable containing the length (without trailing blanks) of the desired environment variable
name.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3CF1 E

Error code parameter not valid.

Note: The Environment Variable APIs provide the getenv() (Get Value of Environment Variable) function
necessary to retrieve environment variables in ILE C. Therefore, programs written in ILE C do not need
to use the QtmhGetEnv() API. This API, for ILE C, is more difficult to use (and is slower) than the
getenv() API on which it is based.

Programs that need CCSID conversion support for environment variables should use the Get environment
variable with CCSID (QzsrGetEnvCCSID) API.

Put Environment Variable (QtmhPutEnv) API
The QtmhPutEnv() API allows you to set or create a job-level environment variable.

Required Parameter Group:

1 Environment string Input Char(*)

2 Length of environment string Input Binary(4)

3 Error Code I/O Char(*)

Required parameter group
Environment string

INPUT:CHAR(*)

The input string of the form: ″envVar=value″. Where ″envVar″ is the name of the new or existing
environment variable, and ″value″ is the value you want to set the environment variable. Note that
they are both case sensitive. The server expects this value to be in the CCSID of the job.

Length of environment string
INPUT:BINARY(4)

The input variable that contains the length of the environment string parameter (without trailing
blanks). For example, the length of the environment string ″envVar=value″ is twelve.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

IBM HTTP Server for i 137

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3021 E

The value specified for the argument is not correct.
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.
CPF3408 E

The address used for an argument is not correct.
CPF3460 E

Storage allocation request failed.
CPF3474 E

Unknown system state.
CPF3484 E

A damaged object was encountered.

Note: The Environment Variable APIs provide the putenv() (Put Value in Environment Variable) function
necessary to set (or create and set) an environment variable. Therefore, programs written in ILE C do not
need to use the QtmhPutEnv() API. This API, for ILE C, is more difficult to use (and is slower) than the
putenv() API on which it is based.

Programs that need CCSID conversion support for environment variables should use the Put environment
variable with CCSID (QzsrPutEnvCCSID) API.

Read from Stdin (QtmhRdStin) API
The QtmhRdStin() API allows CGI programs that are written in languages other than ILE C to read from
stdin. CGI programs read from stdin when the request from the browser indicates the method that is
POST. This API reads what the server has generated as input for the CGI program.

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Length of response available Output Binary(4)

4 Error Code I/O Char(*)

Important: CGI input data is only available from standard input when the client request is submitted
with method POST. There are no standard input data when the method is GET or HEAD. In addition, the
Content_Length environment variable is set only when the Request_Method is POST.

The program reads all of the data in a single request. This is because the API treats each request as a
request for data starting at its beginning. The API handles each request as if it was the only request.

The length of the data returned by QtmhRdStin includes all the data from stdin. This includes line-
formatting characters that are normally a part of the POST data as defined by the CGI specification.

Note that the format of this data is different depending on the CGI input mode being used. For %
%MIXED%% mode, the data will have American National Standard Code for Information Interchange
(ASCII) hexadecimal encoded characters. For %%EBCDIC%% mode, all data including hexadecimal will
be in the CCSID of the job. The server performs no conversion for %%BINARY%% mode.

Required parameter group
Receiver variable

OUTPUT:CHAR(*)

138 IBM i: IBM HTTP Server for i

The output variable that contains the data read from stdin. In CGI input mode %%MIXED%%, this
data is in the CCSID of the job except that the encoded characters “%xx” are still represented by the
ASCII 819 octet. In %%EBCDIC%% mode, this data is in the CCSID of the job, including the escape
sequences. In %%BINARY%% mode, the data is in the code page sent by the browser.

Length of receiver variable
INPUT:BINARY(4)

The input variable containing the number of bytes that are to be read from stdin.

Length or response available
OUTPUT:BINARY(4)

The output variable containing the length of the data read from stdin. If there is no data available from
stdin, this variable will be set to zero.

Error Code
I/O:Char(*)

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3CF1 E

Error code parameter not valid.

Write to Stdout (QtmhWrStout) API
The QtmhWrStout() API provides the ability for CGI programs that are written in languages other than
ILE C to write to stdout.

Required Parameter Group:

1 Data variable Input Char(*)

2 Length of data variable Input Binary(4)

3 Error Code I/O Char(*)

Required parameter group
Data variable

Input:CHAR(*)

The input variable containing the data to write to stdout.

Length of data variable
INPUT:BINARY(4)

The input variable contains the length of the data written to stdout. The length of the data must be
larger than 0.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

IBM HTTP Server for i 139

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.

Note: CGI programs written in the ILE C language do not require a special API to write data to stdout. The
following example shows how a CGI program might write to stdout:

fwrite(buffer,1,sizeof(buffer),stdout);

CGI programs are expected to produce data in the stdout that is formatted according to the CGI interface
specification. The QtmhWrStout() API provides no line formatting; the user of the API must perform
prescribed formatting which includes the requirement for text line characters (such as new line). Errors
are not indicated for data that is not formatted per CGI requirements.

Parse QUERY_STRING Environment Variable or Post stdin data (QzhbCgiParse) API
The QzhbCgiParse() API allows you to parse the QUERY_STRING environment variable, in the case of
the GET method, or standard input, in the case of POST method, for CGI scripts. If the QUERY_STRING
environment variable is not set, the QzhbCgiParse() API reads the CONTENT_LENGTH characters from
its input. All return output is written to its standard output.

Required Parameter Group:

1 Command string Input Char(*)

2 Output format Input Char(*)

3 Target Buffer Output Char(*)

4 Length of Target Buffer Input Binary(4)

5 Length of response Output Binary(4)

6 Error Code I/O Char(*)

You can only call QzhbCgiParse() once for the POST method. To use this API with the POST method,
you would first want to read all of stdin and assign it to the QUERY_STRING environment variable. You
would then change the environment variable REQUEST_METHOD to GET.

This API does not work with the %%MIXED%% CGI input mode.

Required parameter group
Command string

Input:CHAR(*)

The command string is a null ended string for flags and modifiers. At least one space must separate
each flag. There is a one-character equivalent for each flag. The following flags are supported:

-a[gain] continuation-handle
The continuation-handle is the value returned to the caller in the target buffer when only partial
information is returned. This flag is not valid on the first call to this API. It is used to retrieve the
next set of information that would have been returned on a previous call if there had been enough
space in the target buffer. All other flags must be the same as the previous call. Incomplete or
inaccurate information may result if all other flags are not the same.

Note: This flag can only be used for the CGII0200 format.

-k[eywords]
Parses QUERY-STRING for keywords. Keywords are decoded and written to the target buffer, one
per line.

140 IBM i: IBM HTTP Server for i

-f[orm]
Parses QUERY_STRING as form request. The field names will be set as environment variables with
the prefix FORM_. Field values are the contents of the variables.

-v[alue] field-name
Parses QUERY_STRING as form request. Returns only the value of field-name in the target buffer.

-r[ead]
Reads CONTENT_LENGTH characters from standard input and writes them to the target buffer.

-i[nit]
If QUERY_STRING is not set, reads the value of standard input and returns a string that can be
used to set QUERY_STRING.

-s[ep] separator
Specifies the string that is used to separate multiple values. If you are using the -value flag, the
default separation is newline. If you are using the -form flag, the default separator is a comma (,).

-p[refix] prefix
Used with -POST and -form to specify the prefix to use when creating environment variable
names. The default is ″FORM_″.

-c[ount]
Used with -keywords, -form, and -value, returns a count of items in the target buffer that is
related to these flags:

• -keywords: Returns the number of keywords.
• -form: Returns the number of unique fields (multiple values are counted as one).
• -value field-name: Returns the number of values for field-name. If there is no field that is named
field-name, the output is 0.

-number
Used with -keywords, -form, and -value. Returns the specified occurrence in the target buffer
related to the following flags:

• -keywords: Returns the n'th keyword. For example, -2 -keywords writes the second keyword.
• -form: Returns all the values of the n'th field.
• -value field-name: Returns the n'th of the multiple values of field field-name.

-Post
Information from standard input is directly decoded and parsed into values that can be used to
set environment variables. This flag is the equivalent to consecutive use of the -init and -form
options.

-F[sccsid] FileCCSID
The FileCCSID is the name of the file system CCSID used in CCSID conversion when processing
the CGI input data. The CGI program wants the data to be returned in this CCSID. It only applies
when the server is using %%BINARY%% CGI conversion mode. When an unknown CCSID is set,
the current value of the CGI_EBCDIC_CCSID environment variable is used.

-N[etccsid] NetCCSID
The NetCCSID is the network CCSID used in CCSID conversion when processing the CGI input
data. This is the CCSID that the data is presumed to be in at this time (as assumed or as set in a
charset tag). It only applies when the server is using %%BINARY%% CGI Input mode. When an
unknown CCSID is set, the current value of the CGI_ASCII_CCSID environment variable is used.

Output format
INPUT:CHAR(*)

The format of the data to be returned in the target buffer. You must use one of the following format
names:

• CGII0100 - This format is the free-form format returned to standard output on other platforms.
• CGII0200 - CGI form variable format. This format only applies to the -form and -POST option.

IBM HTTP Server for i 141

Target Buffer
OUTPUT:CHAR(*)

This is output buffer that contains the information requested by the command string (if any).

Length of Target Buffer
INPUT:BINARY(4)

The length of the target buffer provided to receive the API output.

Length of Response
OUTPUT:BINARY(4)

The actual length of the information returned in the target buffer.

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

CGII0200 Format

Offset Decimal Offset Hexadecimal Type Field

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(20) Continuation handle

28 1C Binary(4) Offset to first variable
entry

32 20 Binary(4) Number of variable
entries returned

36 24 Char(*) Reserved

Binary(4) Length of variable entry
(see note below)

Binary(4) Length of variable name
(see note below)

Char(*) Variable name (see note
below)

Binary(4) Length of variable value
(see note below)

Char(*) Variable value (see note
below)

Char(*) Reserved (see note
below)

Note: These fields contain variable entry information and are repeated for each variable entry returned.

Field descriptions
Bytes returned

The number of bytes of data returned.
Bytes available

The number of bytes of data available to be returned. All available data is returned if enough space is
available.

142 IBM i: IBM HTTP Server for i

Continuation handle
The handle that is returned when more data is available to return, but the target buffer is not large
enough. The handle indicates the point in the repository that the retrieval stopped. If the handle is
used on the next call to the API (using the -again flag), the API returns more data starting at the point
that the handle indicates. This field is set to blanks when all information is returned.

Offset to first variable entry
The offset to the first variable entry returned. The offset is from the beginning of the structure. If no
entries are returned, the offset is set to zero.

Number of variable entries returned
The number of variable entries returned. If the target buffer is not large enough to hold the
information, this number contains only the number of variables actually returned.

Reserved
This field is ignored.

Length of variable entry
The length of this variable entry. This value is used in determining the offset to the next variable entry.
Note that this value is always set to a multiple of four.

Length of variable name
The length of the variable name for this entry.

Variable name
A field name as found in the form data. If the server is using %%EBCDIC%% or %%MIXED%% CGI
mode, this value is in the CCSID of the job. If the server is using %%BINARY%% CGI mode, this value
is in the codepage as sent from the browser unless -fsccsid is specified on the API invocation. If
-fsccsid is specified, the value is in that CCSID.

Length of variable value
The length of the variable value for this entry.

Variable value
A field name as found in the form data. If the server is using %%EBCDIC%% or %%MIXED%% CGI
mode, this value is in the CCSID of the job. If the server is using %%BINARY%% CGI mode, this value
is in the codepage as sent from the browser unless -fsccsid is specified on the API invocation. If
-fsccsid is specified, the value is in that CCSID.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3CF1 E

Error code parameter not valid.

Note: Error messages are added to the error log or script log except for those listed.

Receive CGI Stateful Data (QzhbCgiRecvState_r) API
The QzhbCgiRecvState_r() API allows a high availability CGI programs to receive the CGI stateful
data.

Required Parameter Group:

1 Target buffer Output Char(*)

2 Length of target buffer Input Binary(4)

3 Length of response Output Binary(4)

IBM HTTP Server for i 143

4 Continuation handle I/O Char(*)

5 Error Code I/O Char(*)

The HTTP Server receives the data for the next request to the stateful CGI so that if a failover
occurs the data is available on the backup system (new primary system). This API is used with API
QzhbCgiSendState_r().

Required parameter group
Target buffer

OUTPUT:CHAR(*)

The target buffer containing the state of a high availability CGI program.

Length of target buffer
INPUT:BINARY(4)

The length of the target buffer that receives the API output. The minimum length is 1 byte and the
maximum length is 61,000 bytes.

Length of response
OUTPUT:BINARY(4)

The length of response is the actual length of the information that is returned from the target buffer.
If this value is greater than the length of the target buffer, then there is more state to read. The
difference between these two values represents the amount of bytes the caller should read in
subsequent calls to this API.

Continuation handle
I/O:CHAR(*)

The continuation handle is the handle that is returned when more data is available to return, but the
target buffer is not large enough. The caller must pass this handle to the QzhbCgiRecvState_r()
API on subsequent calls as it was received from the previous call. On the first call to this API,
the continuation handle must be set to 0 (equivalent to NULL in C). The caller must not allocate,
deallocate, or modify the continuation handle. This field is set to 0 when all information is returned.

Error code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure, see the API error
reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.
HTP4005 E

Highly Available CGI invoked QzhbCgiRecvState_r() after it had already received the entire state.
HTP4006 E

QzhbCgiRecvState_r() was called when there was no state.

Put environment variable with CCSID (QzsrPutEnvCCSID) API
The QzsrPutEnvCCSID() API allows a CGI program to set or create a job-level environment variable.
CCSID support allows you to specify the encoding of the environment string.

Required parameter group:

144 IBM i: IBM HTTP Server for i

Environment string Input Char(*)

Lenth of environment string Input Binary(4)

CCSID of environment string Input Binary(4)

Error code I/O Char(*)

Required parameter group
Environment string

INPUT:CHAR(*)

The input string of the form: envVar=value. Where envVar is the name of the new or existing
environment variable, and value is the value you want to set the environment variable. They are
both case sensitive. The QzsrPutEnvCCSID() API expects this value to be in the CCSID of the
environment string.

Length of environment string
INPUT:BINARY(4)

The input variable that contains the length of the environment string parameter (without trailing
blanks). For example, the length of the environment string envVar=value is twelve.

CCSID environment string
INPUT:BINARY(4)

The CCSID to be used for the encoding of the environment string. The valid values for this parameter
are:

• 0 : The CCSID of the environment string.
• 1-65533 : A valid CCSID in this range must be specified or an error is returned.

Error code
I/O:CHAR(*)

The structure in which to return error information. Error messages are added to the error log or script
log except for those listed below. For the format of the structure and for details on how to process API
errors, see the API error reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe error while addressing parameter list.
CPF3CF1 E

Error code parameter not valid.

Note: The Environment Variable APIs provide the putenv() (Put Value in Environment Variable) function
necessary to set (or create and set) an environment variable. Programs that need CCSID conversion
support for environment variables should use the QzsrPutEnvCCSID() API. See also “Get environment
variable with CCSID (QzsrGetEnvCCSID) API” on page 145.

Get environment variable with CCSID (QzsrGetEnvCCSID) API
The QzsrvGetEnvCCSID() API allows a CGI program to get the value set by the server for a particular
HTTP environment variable using CCSID support for input and output values.

Required parameter group:

Receiver variable Output Char(*)

Length of receiver variable Input Binary(4)

Length of response Output Binary(4)

Request variable Input Char(*)

IBM HTTP Server for i 145

Length of request variable Input Binary(4)

CCSID of request variable Input Binary(4)

CCSID of returned environment
variable

Input Binary(4)

Error Code I/O Char(*)

Required parameter group
Receiver variable

OUTPUT:CHAR(*)

The output variable that contains the value set by the server for the requested environment variable.
This value will be returned in the CCSID specified for the returned environment variable.

The output variable that contains the value set by the server for the requested environment variable. This
value will be returned in the CCSID specified for the returned environment variable.

Length of receiver variable
INPUT:BINARY(4)

The input variable containing the length of the space provided to receive the environment variable
value.

Length of response
OUTPUT:BINARY(4)

The output variable that contains the length of the environment variable value. When the
QzsrvGetEnvCCSID() API is unable to determine the value for the requested environment variable,
the length of the environment variable value is set to zero. When the size required for the environment
variable value is larger than the length of the receiver variable, the size required to receive the value is
returned.

Request variable
INPUT:CHAR(*)

The input variable containing the desired environment variable name.

Length of request variable
INPUT:BINARY(4)

The input variable containing the length (without trailing blanks) of the desired environment variable
name.

CCSID of request variable
INPUT:BINARY(4)

The CCSID to be used for the encoding of the request variable. The valid values for this parameter are:

• 0 : The CCSID of the job.
• 1-65533 : A valid CCSID in this range must be specified or an error is returned.

CCSID of returned environment variable
INPUT:BINARY(4)

The CCSID to be used for the encoding of the returned environment variable. The valid values for this
parameter are:

• 0 : The CCSID of the job.
• 1-65533 : A valid CCSID in this range must be specified or an error is returned.

Error code
I/O:CHAR(*)

146 IBM i: IBM HTTP Server for i

The structure in which to return error information. Error messages are added to the error log or script
log except for those listed below. For the format of the structure and for details on how to process API
errors, see the API error reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe error while addressing parameter list.
CPF3CF1 E

Error code parameter not valid.

Note: The Environment Variable APIs provide the getenv() (Get Value of Environment Variable) function
necessary to retrieve environment variables in ILE C. Programs that need CCSID conversion support for
environment variables should use the “Get environment variable with CCSID (QzsrGetEnvCCSID) API” on
page 145.

Send or Save CGI Stateful Data (QzhbCgiSendState_r) API
The QzhbCgiSendState_r() API allows a high availability CGI program to send or save CGI stateful
data.

Required Parameter Group:

1 CGI's state string Input Char(*)

2 Length of the string Input Binary(4)

3 Error Code I/O Char(*)

The HTTP Server saves the data for the next request to the stateful CGI so that if a failover occurs the data
is available on the backup system (new primary system).

Required parameter group
CGI's state string

INPUT:CHAR(*)

The CGI's state string is the state of a high availability CGI that the Web server stores and passes to
the CGI with the subsequent request. This string can consist of any information necessary for the CGI
state (for example, a structure of several variables or fields). The Web server treats the contents of the
state as binary data.

Length of the string
INPUT:BINARY(4)

The length of the CGI's state. The minimum length is 1 byte and the maximum length is 61,000 bytes.

Error code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure, see the API error
reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.

IBM HTTP Server for i 147

Produce Full HTTP Response (QzhbCgiUtils) API
The QzhbCgiUtils() API allows a CGI program to produce a full HTTP 1.0/1.1 response for non-parsed
header CGI programs. This API provides functionality similar to the cgiutils command used by other
HTTP server platforms.

Required Parameter Group:

1 Command string Input Char(*)

2 Error code I/O Char(*)

Required parameter group
Command string

INPUT:CHAR(*)

The command string is a null ended string of flags and modifiers. Each flag must be separated by at
least one space. The following flags are supported:

-nodate
Does not return the Date: header to the browser.

-noel
Does not return a blank line after headers. This is useful if you want other MIME headers after the
initial header lines.

-status nnn
Returns full HTTP response with status code nnn, instead of only a set of HTTP headers. Do not
use this flag if you only want the Expires: header.

-reason explanation
Specifies the reason line for the HTTP response. You can only use this flag with the -status flag. If
the explanation text contains more than one word, you must enclose it in parentheses.

-ct [type/subtype]
Specifies MIME Content-Type header to return to the browser. If you omit the type/subtype, the
MIME content type is set to the default text/plan.

-charset character-set
Used with the -ct flag to specify the charset tag associated with the text Content-Types.

-ce encoding
Specifies MIME Content-Encoding header to return to the browser.

-cl language-code
Specifies MIME Content-Language header to return to the browser.

-length nnn
Specifies MIME Content-Length header to return to the browser.

-expires Time-Spec
Specifies MIME Expires header to return to the browser. This flag specifies the time to live in any
combination of years, months, days, hours, minutes, and seconds. The time must be enclosed in
parentheses. For example:

-expires (2 days 12 hours)

-expires now
Produces an Expires: header that matches the Date: header to return to the browser.

-uri URI
Specifies the Universal Resource Identifier (URI) for the returned document. URI can be
considered the same as URL.

-extra xxx: yyy
Specifies an extra header that cannot otherwise be specified.

148 IBM i: IBM HTTP Server for i

Error Code
I/O:CHAR(*)

The structure in which to return error information. For the format of the structure and for details on
how to process API errors, see the API error reporting topic in the IBM i Information Center.

Error messages
CPF24B4 E

Severe Error while addressing parameter list.
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.

HTTP Server configuration APIs
This topic provides information about IBM HTTP Server for i configuration APIs, server instance APIs, and
group APIs.

HTTP Server supports the APIs listed below in C++, REXX, ILE C, ILE COBOL, and ILE RPG programming
languages.

Configuration APIs
The configuration APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C programs must include
header file QHTTPSVR/H(QZHBCONF). While each individual API lists its own authorities, the following
authorities are needed to run all configuration APIs:

• *OBJOPR, *READ, *ADD, and *EXECUTE to the QUSRSYS library
• *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHTTPC file
• *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHTTPA file

Note: The QUSRSYS/QATMHTTPA file is the administration (ADMIN) server configuration file.

• “Add Config Object (QzuiAddConfigObject) API” on page 163
• “Change Config Object Value (QzuiChangeConfigObject) API” on page 165
• “Close Apache Config File (QzuiCloseConfig) API” on page 168
• “Find Config Object (QzuiFindConfigObject) API” on page 171
• “Open Apache Config File (QzuiOpenConfig) API” on page 177
• “Remove Config Object (QzuiRemoveConfigObject) API” on page 178

Server instance APIs
The server instance APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C programs must include
header file QHTTPSVR/H(QZHBCONF). While each individual API lists its own authorities, the following
authorities are needed to run all server instance APIs:

• *OBJOPR, *READ, *ADD, and *EXECUTE to the QUSRSYS library
• *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHINSTC file
• *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHINSTA file

Note: The QUSRSYS/QATMINSTA file is the administration (ADMIN) server instance file.

• “Change Apache Server Instance Data (QzuiChangeInstanceData) API” on page 166

IBM HTTP Server for i 149

• “Create Apache Server Instance (QzuiCreateInstance) API” on page 169
• “Get Apache Server Instance Data (QzuiGetInstanceData) API” on page 173
• “Get Server Instance Names (QzuiGetInstanceNames) API” on page 175
• “Get Instance Type (QzuiGetInstanceType) API” on page 176

Group file APIs
The group file APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C programs must include
header file QHTTPSVR/H(QZHBCONF).

• “Create a new Group File (QzhbCreateGroupList) API” on page 153
• “Read a Group File into Memory (QzhbOpenGroupList) API” on page 161
• “Free Group File from Memory (QzhbCloseGroupList) API” on page 152
• “Retrieve the next Group in the Group List (QzhbGetNextGroup) API” on page 157
• “Locate a named group in a Group List (QzhbFindGroupInList) API” on page 154
• “Retrieve the Name of a Group (QzhbGetGroupName) API” on page 156
• “Add a new Group to the end of a Group List (QzhbAddGroupToList) API” on page 150
• “Remove a Group from a Group List (QzhbRemoveGroupFromList) API” on page 162
• “Retrieve the next User in the Group (QzhbGetNextUser) API” on page 158
• “Locate a User in a Group (QzhbFindUserInGroup) API” on page 155
• “Retrieve the Name of a User (QzhbGetUserString) API” on page 159
• “Add a new user to the end of a Group (QzhbAddUserToGroup) API” on page 151
• “Remove a User or Element from a Group (QzhbRemoveUserFromGroup) API” on page 163

Add a new Group to the end of a Group List (QzhbAddGroupToList) API
In theIBM HTTP Server for i, use the QzhbAddGroupToList() API to add a new group to an in-memory
group list.

Required Parameter Group:

1 grplist Input Binary(4)

2 group Input Char(*)

3 group_len Input Binary(4)

4 grp Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

group
INPUT:CHAR(*)

The group name to add to the list.

150 IBM i: IBM HTTP Server for i

group_len
INPUT:BINARY(4)

The length of the group name. The length must be greater than or equal to 1.

grp
OUTPUT:BINARY(4)

The handle of the newly created group, or the handle of an existing group if the named group already
exists. Attempting to add a group that already exists is not considered an error by the system.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.

Add a new user to the end of a Group (QzhbAddUserToGroup) API
In the IBM HTTP Server for i, use the QzhbAddUserToGroup() API to add a new user to an in-memory
group.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 user Input Char(*)

4 user_len Input Binary(4)

5 usr Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

IBM HTTP Server for i 151

user
INPUT:CHAR(*)

The user name to be added to the group.

user_len
INPUT:BINARY(4)

The length of the user string. The length must be greater than or equal to 1.

usr
OUTPUT:BINARY(4)

The handle of the newly created user, or the handle of an existing user if the named user already
exists in the group. Attempting to add a user that already exists is not considered an error by the
system.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.

Free Group File from Memory (QzhbCloseGroupList) API
In the IBM HTTP Server for i, use the QzhbCloseGroupList() API to free the memory of an in-memory
copy of a group file. You can optionally write the in-memory version of the group list back to the group file
before the memory is freed.

Required Parameter Group:

1 grplist Input Binary(4)

2 write Input Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() API or
QzhbOpenGroupList() API.

write
INPUT:BINARY(4)

152 IBM i: IBM HTTP Server for i

The value of 0 (false) or a value of 1 (true), indicating whether or not to write the contents of the
in-memory group list back to the group file before freeing it from memory. If you specify 1 for this
parameter, and the write fails, the memory is not freed and the grplist handle is still valid.

Note: In order to specify a write value of 1, you must have previously used either the
QzhbCreateConfigList() API or specified a writelock of 1 on the QzhbOpenGroupList() API. If
these conditions are not met, the contents of the file are not written.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA202 E

Unable to update group file &1.
HTPA203 E

Input group list handle in parameter &1 not valid.

Create a new Group File (QzhbCreateGroupList) API
In the IBM HTTP Server for i, use the QzhbCreateGroupList() API to create a new empty group file,
and return a handle to that empty in-memory version of the file.

Required Parameter Group:

1 path Input Binary(4)

2 path_len Input Binary(4)

3 grplist Output Binary(4)

4 errcode I/O Char(*)

Threadsafe: Yes

Normally this API would be followed by calls to the QzhbAddGroupToList() and
QzhbAddUserToGroup() APIs, followed by the QzhbCloseGroupList() API to write group
information out.

Upon successful completion of this API, a new group list handle is returned. This is a handle much like
the one returned by the QzhbOpenGroupList() API against an already existing file, with a writelock
argument of 1 (TRUE). After a call to the QzhbCreateGroupList() API the new file is left open for
write access and the QzhbCloseGroupList() API can be invoked with a write argument of 1. For more
details about the writelock argument, see “Read a Group File into Memory (QzhbOpenGroupList) API” on
page 161.

Authorities and locks

• *X authority to each directory in the path of the specified group file
• *WX authority to the last directory in the path that will contain the group file path

Required parameter group
path

INPUT:BINARY(4)

The path to the group file to be created in the Integrated File System. You can specify an absolute or
relative path to the working directory. This path should be in the job CCSID.

IBM HTTP Server for i 153

path_len
INPUT:BINARY(4)

The length of the path string.

grplist
OUTPUT:BINARY(4)

The variable that receives the integer handle of the newly created empty group list. Subsequent API
calls use this handle.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA202 E

Unable to update group file &1.
HTPA208 E

Group file &1 already exists.

Locate a named group in a Group List (QzhbFindGroupInList) API
In the IBM HTTP Server for i, use the QzhbFindGroupInList() API to search an in-memory group list
for a named group.

Required Parameter Group:

1 grplist Input Binary(4)

2 group Input Binary(4)

3 group_len Input Binary(4)

4 grp Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

group
INPUT:CHAR(*)

The group name for which the system will search the list . The group name is case-sensitive. Leading
and trailing blanks are included with the name.

154 IBM i: IBM HTTP Server for i

group_len
INPUT:BINARY(4)

The length of the group name string. The length must be greater than or equal to 1.

grp
OUTPUT:BINARY(4)

The group name handle returned if the named group was found in the list.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA206 E

Group file &1 not found in group list.

Locate a User in a Group (QzhbFindUserInGroup) API
In the IBM HTTP Server for i, use the QzhbFindUserInGroup() API to search an in-memory group for a
specific user.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 user Input Char(*)

4 user_len Input Binary(4)

5 usr Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

IBM HTTP Server for i 155

user
INPUT:CHAR(*)

The user name for which the system will search the group . The user name is case-sensitive. Leading
and trailing blanks are included with the name.

user_len
INPUT:BINARY(4)

The length of the user string. The length must be greater than or equal to 1.

usr
OUTPUT:BINARY(4)

The handle of the user if it was found in the group.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.
HTPA207 E

User &1 not found in group.

Retrieve the Name of a Group (QzhbGetGroupName) API
In the IBM HTTP Server for i, use the QzhbGetGroupName() API to retrieve the name of a group using
the group handle.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 buf Output Char(*)

4 buf_len Input Binary(4)

5 buf_actlen Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

156 IBM i: IBM HTTP Server for i

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

buf
OUTPUT:BINARY(4)

The buffer to receive the group name.

buf_len
OUTPUT:BINARY(4)

The size of the buffer.

buf_actlen
OUTPUT:BINARY(4)

The actual length of the group name. If the buf_actlen value is greater than the buf_len value, the data
is truncated.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.

Retrieve the next Group in the Group List (QzhbGetNextGroup) API
In the IBM HTTP Server for i, use the QzhbGetNextGroup API to retrieve the next group from an
in-memory group list.

Required Parameter Group:

1 grplist Input Binary(4)

2 prev_grp Input Binary(4)

3 grp Output Binary(4)

4 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

IBM HTTP Server for i 157

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

prev_grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbGetNextGroup(),
QzhbFindGroupInList(), or QzhbAddGroupToList() API, that returns the group immediately
following this group. A handle of 0 returns the first group in the group list.

grp
OUTPUT:BINARY(4)

The group name handle returned if the next group is found in the list. If no next group exists, then
error HTPA206 is returned.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.
HTPA206 E

Group file &1 not found in group list.

Retrieve the next User in the Group (QzhbGetNextUser) API
In the IBM HTTP Server for i, use the QzhbGetNextUser() API to retrieve the next user from a group.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 prev_usr Input Binary(4)

4 usr Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

158 IBM i: IBM HTTP Server for i

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

prev_usr
INPUT:BINARY(4)

The user handle for an existing user that returns the user immediately following this user. A handle of
0 returns the first user in the group list.

usr
OUTPUT:BINARY(4)

The handle of the user if a next user is found in the group. If no next user is found, error HTPA207 is
returned.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.
HTPA205 E

Input user handle in parameter &1 not valid.
HTPA207 E

User &1 not found in group.

Retrieve the Name of a User (QzhbGetUserString) API
In the IBM HTTP Server for i, use the QzhbGetUserString() API to retrieve the name string of a group
member given the user handle, as returned by the QzhbGetNextUser(), QzhbFindUserInGroup(), or
QzhbAddUserToGroup() API.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 usr Input Binary(4)

4 buf Output Char(*)

5 buf_len Input Binary(4)

6 buf_actlen Output Binary(4)

7 errcode I/O Char(*)

Threadsafe: Yes

IBM HTTP Server for i 159

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

usr
INPUT:BINARY(4)

The user handle returned from a call to the QzhbGetNextUser(), QzhbFindUserInGroup(), or
QzhbAddUserToGroup() API.

buf
OUTPUT:CHAR(*)

The buffer to receive the user string.

buf_len
INPUT:BINARY(4)

The size of the buffer.

buf_actlen
OUTPUT:BINARY(4)

The actual length of the user string. If the buf_actlen value is greater than the buf_len value, the data
is truncated by the system.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.
HTPA205 E

Input group handle in parameter &1 not valid.

160 IBM i: IBM HTTP Server for i

Read a Group File into Memory (QzhbOpenGroupList) API
In the IBM HTTP Server for i, use the QzhbOpenGroupList() API to read in an existing group file, and
return a handle to an in-memory version of the file.

Required Parameter Group:

1 path Input Binary(4)

2 path_len Input Binary(4)

3 writelock Input Binary(4)

4 grplist Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

See “Free Group File from Memory (QzhbCloseGroupList) API” on page 152 for information about freeing
memory and optionally writing the group list information out.

Authorities and locks

• *X authority to each directory in the path of the specified group file
• *R authority to the group file for a writelock value of 0
• *RW authority to the group file for a writelock value of 1

Required parameter group
path

INPUT:BINARY(4)

The path to the group file to be created in the integrated file system. You can specify an absolute or
relative path to the working directory.

path_len
INPUT:BINARY(4)

The length of the path string.

writelock
INPUT:BINARY(4)

If the value is 1, the group file is opened for write access with a lock and kept open. No other user
is allowed to update the group file while the lock is in place. The group file is closed and the lock
released by invoking the QZHbCloseGroupList() API. If the value is 0, then the following are true:

• The group file is opened for read access
• A lock is not placed on the group file
• The group file does not remain open

Note: You must specify a writelock of 1 in order to later specify a write argument of 1
on the QzhbCloseGroupList() API. If you do not hold the group file open for write, the
QzhbCloseGroupList() API will not write the contents of the file.

grplist
OUTPUT:BINARY(4)

The handle of the group list. Subsequent API calls use this handle.

errcode
I/O:CHAR(*)

The structure in which to return error information.

IBM HTTP Server for i 161

Error messages
CPF3CF1 E

Error code parameter not valid.
CPF3C1D E

Input variable length in parameter &1 not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA201 E

Group file &1 not found or is unreadable.
HTPA202 E

Unable to update group file &1.

Remove a Group from a Group List (QzhbRemoveGroupFromList) API
In the IBM HTTP Server for i, use the QzhbRemoveGroupFromList() API to remove a named group, and
all the users in that group, from an in-memory group list.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group handle returned from a call to the QzhbCreateGroupList() or QzhbOpenGroupList()
API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.

162 IBM i: IBM HTTP Server for i

Remove a User or Element from a Group (QzhbRemoveUserFromGroup) API
In the IBM HTTP Server for i, use the QzhbRemoveUserFromGroup() API to remove a user from an
in-memory group.

Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 usr Input Binary(4)

4 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
grplist

INPUT:BINARY(4)

The group list handle returned from a call to the QzhbCreateGroupList() or
QzhbOpenGroupList() API.

grp
INPUT:BINARY(4)

The group handle returned from a call to the QzhbGetNextGroup(), QzhbFindGroupInList(), or
QzhbAddGroupToList() API.

usr
INPUT:BINARY(4)

The user handle returned from a call to the QzhbGetNextUser(), QzhbFindUserInGroup(), or
QzhbAddUserToGroup() API.

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA203 E

Input group list handle in parameter &1 not valid.
HTPA204 E

Input group handle in parameter &1 not valid.
HTPA205 E

Input user handle in parameter &1 not valid.

Add Config Object (QzuiAddConfigObject) API
In the IBM HTTP Server for i, use the QzuiAddConfigObject() API to add scope or directive to the
configuration. It may be placed relative to a directive or scope, at the end or beginning of the file, or at the
beginning or end of a scope. A handle to the object is returned allowing directives to be added to it.

Required Parameter Group:

IBM HTTP Server for i 163

1 cfg Input Binary(4)

2 obj_type Input Binary(4)

3 key Input Char(*)

4 key_size Input Binary(4)

5 val Input Char(*)

6 val_size Input Binary(4)

7 place Input Binary(4)

8 where Input Binary(4)

9 object Output Binary(4)

10 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
cfg

INPUT:BINARY(4)

Handle to the config.

obj_type
INPUT:BINARY(4)

Type of object to add (0 = directive, 1 = scope).

key
INPUT:CHAR(*)

Keyword of scope or directive to add.

key_size
INPUT:BINARY(4)

Size of key passed.

val
INPUT:CHAR(*)

Value for scope.

val_size
INPUT:BINARY(4)

Size of value.

place
INPUT:BINARY(4)

Placement directive (0 = at the end of the file, 1 = at start of file, 2 = after ″where″, 3 = before ″where″,
4 = at start of scope specified by ″where″, 5 = at end of scope specified by ″where″).

where
INPUT:BINARY(4)

Optional handle to scope or directive for scope placement.

object
OUTPUT:BINARY(4)

164 IBM i: IBM HTTP Server for i

Handle of the object added.

errcode
I/O:CHAR(*)

Error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3C1D E

Input variable length in parameter &1 not valid.
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA106 E

Input configuration handle not valid.
HTPA121 E

Object handle in parameter &1 not valid.
HTPA122 E

Object handle in parameter &1 not a scope.
HTPA124 E

Combination of insertion position and relative object not valid.
HTPA126 E

Keyword &1 not valid for object type.

Change Config Object Value (QzuiChangeConfigObject) API
In the IBM HTTP Server for i, use the QzuiChangeConfigObject() API to change the value portion of a
scope or directive.

Required Parameter Group:

1 cfg Input Binary(4)

2 object Input Binary(4)

3 value Input Char(*)

4 value_size Input Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

The value is considered anything after the keyword. For example, in the directive ″BrowserMatch
Mozilla/2 nokeepalive″, the keyword is ″BrowserMatch″ and the value is ″Mozilla/2 nokeepalive″.

Authorities and locks

None.

Required parameter group
cfg

INPUT:BINARY(4)

Handle to the config.

IBM HTTP Server for i 165

object
INPUT:BINARY(4)

Handle to the scope or directive to be changed.

value
INPUT:CHAR(*)

New value for the object.

value_size
INPUT:BINARY(4)

Size of value.

errcode
I/O:CHAR(*)

Error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA106 E

Input configuration handle not valid.
HTPA121 E

Object handle in parameter &1 not valid.
HTPA125 E

Value &1 not valid for keyword &2.

Change Apache Server Instance Data (QzuiChangeInstanceData) API
In the IBM HTTP Server for i, use the QzuiChangeInstanceData() API to change the information
contained in the instance file. The information is retrieved in the format specified by INSD0110.

Required Parameter Group:

1 name Input Char(10)

2 idata Input Char(*)

3 idata_size Input Binary(4)

4 format Input Char(8)

5 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

• *EXECUTE authority to the QUSRSYS library
• *OBJOPR, *OBJMGT, *ADD, and *DLT authority to the QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

Name of the server instance from which data is retrieved.

166 IBM i: IBM HTTP Server for i

idata
INPUT:CHAR(*)

Buffer in format INSD0110 containing instance file data.

idata_size
INPUT:BINARY(4)

Length of instance data passed.

format
INPUT:CHAR(8)

Format of the instance data (INSD0110).

errcode
I/O:CHAR(*)

Error information structure.

INSD0110 format

This data format is used by the QzuiCreateInstance(), QzuiGetInstanceData(), and
QzuiChangeInstanceData() APIs.

Offset Type Field

0 Char(10) Autostart

12 Binary(4) Threads

16 Binary(4) CCSID

20 Char(10) Outgoing table name

30 Char(10) Outgoing table library

40 Char(10) Incoming table name

50 Char(10) Incoming table library

60 Char(512) Config file (full path)

572 Char(512) Server root path

Field description

Note: In the descriptions below, *GLOBAL indicates that the global server parameter value for this field
is used by the instance, and *CFG indicates that the value from the named configuration file is used. All
character strings are padded with blanks as necessary, and are NOT null terminated.

Autostart
Indicates if the instance starts automatically. It is a 10 character string that contains *NO, *YES, or
*GLOBAL.

Threads
The number of threads to use for this instance. It is an integer from 0 to 999, where 0 means the *CFG
value.

CCSID
The character set to be used by the instance. It is an integer from 0 to 65533, where 0 means
*GLOBAL.

Outgoing table name
The name of the table object to use as the EBCDIC to ASCII conversion table for outgoing data. It is a
10 character name or *GLOBAL.

IBM HTTP Server for i 167

Outgoing table library
The library containing the EBCDIC to ASCII table. This field is blank if the outgoing table name is
*GLOBAL.

Incoming table name
The name of the table object to use as the ASCII to EBCDIC conversion table for incoming data. It is a
10 character name or *GLOBAL.

Incoming table library
The library containing the ASCII to EBCDIC table. This field is blank if the incoming table name is
*GLOBAL.

Config file (full path)
The path to the server instance configuration file.

Server root path
The path to the server root.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C1D E

Input variable length in parameter &1 not valid. CPF3C21 E
CPF3C21 E

Format name &1 not valid.
CPF3CF1 E

Error code parameter not valid.
CPF9822 E

Not authorized to file &1 in library &2.
CPFB602 E

Cannot open file.
HTPA001 E

Input parameter &1 not valid.
HTPA101 E

Server instance &1 not found or is unreadable.
HTPA102 E

Unable to update server instance &1.
HTPA103 E

Value in field &1 of the instance data structure not valid.
HTPA127 E

Server instance &1 is not a HTTP Server type instance.

Close Apache Config File (QzuiCloseConfig) API
In the IBM HTTP Server for i, use the QzuiCloseConfig() API to optionally write the memory copy
of the configuration out to the file and then free the memory copy. If the file name is specified, the
configuration is written to that file, otherwise it is written to the original file.

Required Parameter Group:

1 cfg Input Binary(4)

2 write Input Binary(4)

3 fname Input Char(*)

4 fname_size Input Binary(4)

5 errcode I/O Char(*)

168 IBM i: IBM HTTP Server for i

Threadsafe: Yes

Authorities and locks

• If the file is closed without write, no authority is needed
• *X authority to each directory in the path of the specified group file
• *RW authority to the group file for a writelock value of 1

Required parameter group
cfg

INPUT:BINARY(4)

Handle to the config to be closed.

write
INPUT:BINARY(4)

Has the following values: 0 = no write, 1 = write.

fname
INPUT:CHAR(*)

Path and name of config file to be written (optional).

fname_size
INPUT:BINARY(4)

Length of file name (0 for no file name).

errcode
I/O:CHAR(*)

Error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C1D E

Input variable length in a parameter &1 not valid.
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA120 E

Unable to update server configuration &1.

Create Apache Server Instance (QzuiCreateInstance) API
The QzuiCreateInstance() API allows users to create a new IBM HTTP Server for i server instance.

Required Parameter Group:

1 name Input Char(10)

2 idata Input Char(*)

3 idata_size Input Binary(4)

4 format Input Char(8)

5 errcode I/O Char(*)

Threadsafe: Yes

IBM HTTP Server for i 169

Authorities and locks

• *EXECUTE and *ADD authority to the QUSRSYS library
• *OBJOPR, *ADD, *DLT, and either *OBJMGT or *OBJALTER authority to the QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The name of the instance to be created.

idata
INPUT:CHAR(*)

The instance data.

idata_size
INPUT:BINARY(4)

The length of the instance data.

format
INPUT:CHAR(8)

The format of the instance data (INSD0110).

See “INSD0110 format” on page 167 for more information.

errcode
I/O:CHAR(*)

The error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3CF1 E

Error code parameter not valid.
CPF9822 E

Not authorized to file &1 in library &2.
HTPA001 E

Input parameter &1 not valid.
HTPA102 E

Unable to update server instance &1.
HTPA103 E

Value in field &1 of the instance data structure not valid.

Delete a Server Instance (QzuiDeleteInstance) API
The QzuiDeleteInstance() API allows you to delete an IBM HTTP Server for i server instance.

Required Parameter Group:

1 name Input Char(10)

2 errcode I/O Char(*)

Threadsafe: Yes

170 IBM i: IBM HTTP Server for i

Authorities and locks

• *EXECUTE authority to the QUSRSYS library
• *OBJOPR, *OBJEXIST, *DLT and either *OBJMGT or *OBJALTER authority to the QUSRSYS/

QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The server instance name you want to delete. The name can be up to 10 characters long (padded with
blanks).

errcode
I/O:CHAR(*)

The structure in which to return error information.

Error messages
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA101 E

Server instance &1 not found or is unreadable.
HTPA102 E

Unable to update server instance &1.
CPF9802 E

Not authorized to object &2 &3.

Find Config Object (QzuiFindConfigObject) API
The QzuiFindConfigObject() API allows you to search an IBM HTTP Server for i configuration file for
the object (and possibly value) specified and returns a handle to it.

Required Parameter Group:

1 cfg Input Binary(4)

2 fdata Input Char(*)

3 fdata_size Input Binary(4)

4 format Input Char(8)

5 object Output Binary(4)

6 val Output Char(*)

7 val_size Input Binary(4)

8 val_actlen Output Binary(4)

9 errcode I/O Char(*)

Threadsafe: Yes

If ″start″ is not specified, the configuration file scope is used. If a value is specified, the value is tokenized
and compared with the tokens of the matching keywords. For example, if the keyword is ″BrowserMatch″
and the value is ″Mozilla/2″ the search would find ″BrowserMatch Mozilla/2 nokeepalive″. Also, the
″val″ field would contain ″Mozilla/2 nokeepalive″. You need only pass the object type and keyword. For
example, to find a ″Port″ directive, set the object type to 1, the keyword to ″Port″ and fdata_size to 8. If
the value field is not needed, set ″val_size″ to 0.

IBM HTTP Server for i 171

Authorities and locks

None.

Required parameter group
cfg

INPUT:BINARY(4)

Handle to the configuration file.

fdata
INPUT:CHAR(*)

Find data in format CFGF0110.

fdata_size
INPUT:BINARY(4)

Size of Find data format buffer.

format
INPUT:CHAR(8)

Name of format (CFGF0110).

object
OUTPUT:BINARY(4)

Handle to the object found (-1 indicates not found).

val
OUTPUT:CHAR(*)

Contains the whole value of the configuration object found.

val_size
INPUT:BINARY(4)

Size of value buffer.

val_actlen
OUTPUT:BINARY(4)

Actual size of value.

errcode
I/O:CHAR(*)

Error information structure.

CFGF0110 format

This data format is used by QzuiFindConfigObject() API.

Offset Type Field

0 Binary(4) Object type (0=directive,
1=scope)

4 Char(40) Keyword object to search for
(required)

44 Binary(4) Case sensitive (0=insensitive,
1=sensitive)

172 IBM i: IBM HTTP Server for i

Offset Type Field

48 Binary(4) Where to search (0=entire
configuration, 1=with scope
specified in "Start", 2=start
search at object specified in
"Start", 3=start search at scope
specified in object start)

52 Binary(4) Start - the search start handle (0
if no start is to be used)

56 Binary(4) Value when searching (0=no,
1=yes)

60 Char(100) Value of object to search for

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3C1D E

Input variable length in parameter &1 not valid.
CPF3C21 E

Format name &1 not valid.
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA106 E

Input configuration handle not valid.
HTPA121 E

Object handle in parameter &1 not valid.
HTPA122 E

Object handle in parameter &1 not a scope.
HTPA123 E

No matching object found.

Get Apache Server Instance Data (QzuiGetInstanceData) API
The QzuiGetInstanceData() API allows you to retrieve configuration data from a specified IBM HTTP
Server for i server instance file.

Required Parameter Group:

1 name Input Char(10)

2 buf Output Char(*)

3 buf_size Input Binary(4)

4 format Input Char(8)

5 buf_actlen Output Binary(4)

6 running Output Binary(4)

7 errcode I/O Char(*)

IBM HTTP Server for i 173

Threadsafe: Yes

The data information is returned in the format specified by INSD0110. See “INSD0110 format” on page
167 for more information.

Authorities and locks

• *EXECUTE authority to the QUSRSYS library
• *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

Name of the server instance from which data is retrieved.

buf
OUTPUT:CHAR(*)

Buffer in format INSD0110 containing instance file data.

buf_size
INPUT:BINARY(4)

Length of instance data buffer.

format
INPUT:CHAR(8)

Format of the instance data (INSD0110).

See “INSD0110 format” on page 167 for more information.

buf_actlen
OUTPUT:BINARY(4)

Actual length of instance data returned.

running
OUTPUT:BINARY(4)

Indicates if the instance is currently running (1 = running).

errcode
I/O:CHAR(*)

Error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3C1D E

Input variable length in parameter &1 not valid.
CPF3C21 E

Format name &1 not valid.
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.

174 IBM i: IBM HTTP Server for i

HTPA101 E
Server instance &1 not found or is unreadable.

HTPA127 E
Server instance &1 is not a HTTP Server type instance.

Get Server Instance Names (QzuiGetInstanceNames) API
The QzuiGetInstanceNames() API allows you to obtain a list of IBM HTTP Server for i instance names.

Required Parameter Group:

1 buf Output Char(*)

2 buf_size Input Binary(4)

3 format Input Char(8)

4 buf_actlen Output Binary(4)

5 count Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

• *EXECUTE authority to the QUSRSYS library
• *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group
buf

OUTPUT:CHAR(*)

Buffer to hold instance names and running data.

buf_size
INPUT:BINARY(4)

Size of buffer passed.

format
INPUT:CHAR(8)

Format of instance name data (INSN0110).

buf_actlen
OUTPUT:BINARY(4)

Number of bytes of data placed in buf.

count
OUTPUT:BINARY(4)

Total number of instance names.

errcode
I/O:CHAR(*)

Error information structure.

INSN0110 format

This data format is used by the QzuiGetInstanceNames() API.

Offset Type Field

0 Char(10) Instance name

IBM HTTP Server for i 175

Offset Type Field

10 Char(2) Reserved

12 Binary(4) Running status

16 Binary(4) Instance type 1 = HTTP Server

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.
CPF3C1D E

Input variable length in parameter &1 not valid.
CPF3C21 E

Format name &1 not valid.
HTPA001 E

Input parameter &1 not valid.

Get Instance Type (QzuiGetInstanceType) API
The QzuiGetInstanceType() API allows you to obtain the type of an IBM HTTP Server for i instance. If
the specified instance is not a valid instance, a –1 is returned.

Required Parameter Group:

1 name Input Char(10)

2 itype Output Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

• *EXECUTE authority to the QUSRSYS library
• *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group
name

INPUT:CHAR(10)

The name of the instance.

itype
OUTPUT:BINARY(4)

The type of instance (-1 = Invalid, 1 = Apache)

errcode
I/O:CHAR(*)

The error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.

176 IBM i: IBM HTTP Server for i

CPF3CF1 E
Error code parameter not valid.

CPF9822 E
Not authorized to file &1 in library &2.

HTPA101 E
Server instance &1 not found or is unreadable.

Open Apache Config File (QzuiOpenConfig) API
The QzuiOpenConfig() API allows you to read into memory an IBM HTTP Server for i server
configuration file. The handle that is returned by the QzuiOpenConfig() API is used in subsequent
API calls to manipulate directives and scopes within the server configuration data.

Required Parameter Group:

1 name Input Char(*)

2 namelength Input Binary(4)

3 writelock Input Binary(4)

4 cfg Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

• *X authority to each directory in the path of the specified group file
• *WX authority to the last directory in the path that will contain the group file path

Required parameter group
name

INPUT:CHAR(*)

File name (including path) to the configuration file to be opened.

namelength
INPUT:BINARY(4)

Length of the file name.

writelock
INPUT:BINARY(4)

Has the following values: 0 = no lock, 1 = exclusive write lock will be put on config file.

cfg
OUTPUT:BINARY(4)

Handle to the memory copy of the config file.

errcode
I/O:CHAR(*)

Error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3C19 E

Error occurred with receiver variable specified.

IBM HTTP Server for i 177

CPF3C1D E
Input variable length in parameter &1 not valid.

CPF3CF1 E
Error code parameter not valid.

CPFB602 E
Cannot open file.

HTPA001 E
Input parameter &1 not valid.

HTPA104 E
Server configuration not found or is unreadable.

Remove Config Object (QzuiRemoveConfigObject) API
The QzuiRemoveConfigObject() API allows you to remove a directive or scope from the IBM HTTP
Server for i server configuration data. If a scope is removed, all the directives within it are also removed.

Required Parameter Group:

1 cfg Input Binary(4)

2 object Input Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Authorities and locks

None.

Required parameter group
cfg

INPUT:BINARY(4)

Handle to the config.

object
INPUT:BINARY(4)

Handle to the object to be removed.

errcode
I/O:CHAR(*)

Error information structure.

Error messages
CPF3C17 E

Error occurred with input data parameter.
CPF3CF1 E

Error code parameter not valid.
HTPA001 E

Input parameter &1 not valid.
HTPA106 E

Input configuration handle not valid.
HTPA121 E

Object handle in parameter &1 not valid.

178 IBM i: IBM HTTP Server for i

CGI programming
The IBM HTTP Server for i supports the extension of the functionality of the HTTP Server through the use
of Common Gateway Interface (CGI) programs.

The CGI Process
The basic principle of Common Gateway Interface (CGI) is that a Web server passes client request
information to CGI programs in system environment variables (and in some cases through standard input
or command line arguments) and all standard output of CGI programs is returned to Web clients.

Most CGI programs include the following three stages:

• Parsing CGI input
• Processing the request
• Generating the response

Throughout the topic there will be references to conversion modes, which has to deal with how data is
presented to a CGI programs and how data that is returned by the CGI program is processed by the HTTP
Server. To learn more about conversion modes, see “CGI data conversions” on page 181.

Note: Any CGI program with a name that begins with nph_ is considered a no parse header CGI program.
This means that the server does no conversions on the data and adds no headers back in the response
from the CGI program. The CGI programmer is in total control and is responsible for parsing the request
and then sending all of the necessary headers back with the response.

Parsing CGI input
When the environment variables have been set by the HTTP server, it starts the CGI program. (For
complete list of environment variables set by the HTTP Server, see “Environment variables set by HTTP
Server” on page 634.) It is then up to this CGI program to find out where to get the information needed to
fulfill the request.

The two most common ways a CGI program may be called from the HTML document:

• By using an HTML form and the request method (environment variable REQUEST_METHOD) POST.
• By using an HTML anchor tag to specify the URL for the CGI program and adding the variables to this

URL. This would be interpreted as REQUEST_METHOD=GET.

The CGI script has to perform the following tasks in order to retrieve the necessary information:

1. Find out the REQUEST_METHOD used by the client.
2. If the REQUEST_METHOD used was the GET method, the CGI program knows that all additional values

may be retrieved from the QUERY_STRING environment variable.
3. If the REQUEST_METHOD used was POST, the CGI knows that additional information was passed using

STDIN. It will then have to query the CONTENT_LENGTH environment variable to know how much
information it will have to read from STDIN.

An example of data read in the QUERY_STRING variable (%%MIXED%% mode):

NAME=Eugene+T%2E+Fox&ADDR=etfox%40ibm.net&INTEREST=RCO

Where

• A plus sign (+) represents spaces.
• A percent sign (%) that is followed by the American National Standard Code for Information Interchange

(ASCII) hexadecimal equivalent of the symbol represents special characters, such as a period (.) or
slash (/).

• An ampersand (&) separates fields and sends multiple values for a field such as check boxes.

IBM HTTP Server for i 179

Parsing breaks the fields at the ampersands and decodes the ASCII hexadecimal characters. The results
look like this:

NAME=Eugene T. Fox
ADDR=etfox@ibm.net
INTEREST=RCO

You can use the QtmhCvtDb() API to parse the information into a structure. The CGI program can
refer to the structure fields. If using %%MIXED%% input mode, the “%xx” encoding values are in ASCII
and must be converted into the “%xx” EBCDIC encoding values before calling QtmhCvtDb(). If using %
%EBCDIC%% mode, the server will do this conversion for you. The system converts ASCII “%xx” first to
the ASCII character and then to the EBCDIC character. Ultimately, the system sets the EBCDIC character
to the “%xx” in the EBCDIC CCSID.

The main advantage of using the GET method is that you can access the CGI program with a query without
using a form.

The main advantage to the POST method is that the query length can be unlimited so you do not have to
worry about the client or server truncating data. The query string of the GET method cannot exceed 8 KB.

Processing the request
Processing the request is the second stage of a CGI program. In this stage, the program takes the parsed
data and performs the appropriate action. For example, a CGI program designed to process an application
form might perform one of the following functions:

1. Take the input from the parsing stage
2. Convert abbreviations into more meaningful information
3. Plug the information into an e-mail template
4. Use SNDDST to send the e-mail.

Generating the response
When the CGI program has finished processing it has to send its result back to the HTTP server that
invoked the program. By doing so the output indirectly is sent to the client that initially requested the
information.

Because the CGI program issues its result through STDOUT, the HTTP server has to read the information
from there and interpret what to do.

A CGI program writes a CGI header that is followed by an entity body to standard output. The CGI
header is the information that describes the data in the entity body. The entity body is the data that the
server sends to the client. A single newline character always ends the CGI header. The newline character
for ILE C is \n. For ILE RPG or ILE COBOL, it is hexadecimal '15'. The following are some examples of
Content-Type headers:

Content-Type: text/html\n\n
Content-Type: text/html; charset=iso-8859-2\n\n

If the response is a static document, the CGI program returns either the URL of the document using the
CGI Location header or returns a Status header. The CGI program does not have an entity body when
using the Location header. If the host name is the local host, HTTP Server will retrieve the specified
document that the CGI program sent. It will then send a copy to the Web client. If the host name is not
the local host, the HTTP processes it as a redirect to the Web client. For example:

Location: http://www.acme.com/products.html\n\n

The Status header should have a Content_Type: and a Status in the CGI header. When Status is in the CGI
header, an entity body should be sent with the data to be returned by the server. The entity body data
contains information that the CGI program provides to a client for error processing. The Status line is the

180 IBM i: IBM HTTP Server for i

Status with an HTTP 3 digit status code and a string of alphanumeric characters (A-Z, a-z, 0-9 and space).
The HTTP status code must be a valid 3 digit number from the HTTP/1.1 specification.

Note: The newline character \n ends the CGI header.

CONTENT-TYPE: text/html\n
Status: 600 Invalid data\n
\n
<html><head><title>Invalid data</title>
</head><body>
<h1>Invalid data typed</h1>

<pre>
The data entered must be valid numeric digits for id number

</pre>
</body></html>

Related information
“CGI data conversions” on page 181
The server can perform ASCII to EBCDIC conversions before sending data to CGI programs. This is
needed because the Internet is primarily ASCII-based and the IBM i server is an extended binary-coded
decimal interchange code (EBCDIC) server. The server can also perform EBCDIC to ASCII conversions
before sending data back to the browser. HTTP and HTML specifications allow you to tag text data with a
character set (charset parameter on the Content-Type header). However, this practice is not widely in use
today (although technically required for HTTP1.0/1.1 compliance). According to this specification, text
data that is not tagged can be assumed to be in the default character set ISO-8859-1 (US-ASCII). The
server correlates this character set with ASCII coded character set identifier (CCSID) 819.
“CGI APIs” on page 133
This topic provides information about IBM HTTP Server for i APIs for CGI applications.
“Environment variables set by HTTP Server” on page 634
The IBM HTTP Server for i supports the standard environment variables in addition to environment
variables that are unique to the IBM i server.

CGI data conversions
The server can perform ASCII to EBCDIC conversions before sending data to CGI programs. This is
needed because the Internet is primarily ASCII-based and the IBM i server is an extended binary-coded
decimal interchange code (EBCDIC) server. The server can also perform EBCDIC to ASCII conversions
before sending data back to the browser. HTTP and HTML specifications allow you to tag text data with a
character set (charset parameter on the Content-Type header). However, this practice is not widely in use
today (although technically required for HTTP1.0/1.1 compliance). According to this specification, text
data that is not tagged can be assumed to be in the default character set ISO-8859-1 (US-ASCII). The
server correlates this character set with ASCII coded character set identifier (CCSID) 819.

National language support HTTP Server CGI directives
You can configure HTTP Server to control which mode is used by specifying the CGIConvMode directive in
different contexts, such as server config or directory:

CGIConvMode Mode

Where Mode is one of the following:

BINARY
EBCDIC
EBCDIC_JCD

You can configure HTTP Server to set the ASCII and EBCDIC CCSIDs that are used for conversions by
specifying the directives DefaultNetCCSID and CGIJobCCSID in different contexts, such as server config
or directory. For example:

• DefaultNetCCSID 819

IBM HTTP Server for i 181

• CGIJobCCSID 37

You can configure HTTP Server to set the locale environment variable by specifying the CGIJobLocale in
different contexts, such as server config or directory: CGIJobLocale /QSYS.LIB/EN_US.LOCALE.

CGI input conversion modes
The following table summarizes the type of conversion that is performed by the server for each CGI mode.

Table 13. Conversion action for text in CGI Stdin

CGI_MODE Conversion Stdin
encoding

Environment
variable

Query_String
encoding

argv
encoding

BINARY or %%BINARY%
%

None No
conversion

CGI job
CCSID

No conversion No
conversion

EBCDIC or %%EBCDIC%
%

CGI
NetCCSID to
CGI job
CCSID

CGI job
CCSID

CGI job
CCSID

CGI job CCSID CGI job
CCSID

%%EBCDIC%% or %
%EBCDIC_JCD%% with
charset tag received

Calculate
target
EBCDIC
CCSID based
on received
ASCII charset
tag

EBCDIC
equivalent
of received
charset

CGI job
CCSID

CGI job CCSID CGI job
CCSID

EBCDIC_JCD or %
%EBCDIC_JCD%%

Detect input
based on
received
data. Convert
data to CGI
job CCSID

Detect
ASCII
input
based on
received
data.
Convert
data to CGI
job CCSID.

CGI job
CCSID

Detect ASCII
input based on
received data.
Convert data to
CGI job CCSID.

Detect ASCII
input based
on received
data. Convert
data to CGI
job CCSID

%%MIXED%%
(Compatibility mode)

CGI
NetCCSID to
CGI job
CCSID
(receive
charset tag is
ignored)

CGI job
CCSIDwith
ASCII
escape
sequence

CCSID 37 CCSID 37 with
ASCII escape
sequence

CCSID 37
with ASCII
escape
sequence

Note: If the directive CGIJobCCSID is present, the CGI job runs under its specified CCSID value.
Otherwise, the DefaultFsCCSID value is used (the default job CCSID).

BINARY
The BINARY mode, delivers QueryString and stdin to the CGI program in ASCII, exactly as it was
received from the client. The environment variables are in the CGI job CCSID. If CGIJobCCSID is
present the job CCSID has its value; otherwise, the value associated with DefaultFsCCSID (the default
job CCSID) is used.

EBCDIC
The EBCDIC mode, delivers all of the information to the CGI program in the job CCSID. The ASCII
CCSID of the QueryString or stdin data is determined from a charset tag on the content type header if
present. If CGIJobCCSID is present the job CCSID has its value; otherwise, the value associated with
DefaultFsCCSID (the default job CCSID) is used.

182 IBM i: IBM HTTP Server for i

EBCDIC_JCD
The EBCDIC_JCD mode is the same as the EBCDIC mode except that a well-known Japanese
codepage detection algorithm is used to determine the ASCII CCSID when the charset tag is not
present. Japanese browsers can potentially send data in one of three code pages, JIS (ISO-2022-JP),
S-JIS (PC-Windows), or EUC (UNIX).

CGI output conversion modes
This following table summarizes the type of conversion that is performed and the charset tag that is
returned to the browser by the server.

Table 14. Conversion action and charset tag generation for text in CGI Stdout

CGI Stdout CCSID/Charset in HTTP header Conversion action Server reply charset tag

EBCDIC CCSID/Charset Calculate EBCDIC
to ASCII conversion
based on
supplied EBCDIC
CCSID/Charset

Calculated ASCII charset

ASCII CCSID/Charset No conversion Stdout CCSID/Charset as
Charset

65535 No conversion None

None (CGIConvMode= %%BINARY%%, %
%BINARY/MIXED%%, or %%BINARY/EBCDIC%
%)

Default Conversion
- job CCSID to
NetCCSID

NetCCSID as charset

None (CGIConvMode= BINARY or %%BINARY/
BINARY%%)

No conversion None

None (CGIConvMode= EBCDIC, %%EBCDIC%
%, %%EBCDIC/MIXED%%, or %%EBCDIC/
EBCDIC%%)

Default Conversion
- job CCSID to
NetCCSID

NetCCSID as charset

None (CGIConvMode= EBCDIC, EBCDIC_JCD,
%%EBCDIC%%, %%EBCDIC/MIXED%%, or %
%EBCDIC/EBCDIC%% with charset tag received
on HTTP request)

Use inverse of
conversion calculated
for stdin

Charset as received on
HTTP request

None (CGIConvMode= %%EBCDIC_JCD%%,
%%EBCDIC_JCD/MIXED%%, or %EBCDIC_JCD/
EBCDIC%%)

Use inverse of
conversion calculated
by the Japanese
codepage detection

ASCII CCSID as charset

None (CGIConvMode= %%MIXED%% or %
%MIXED/MIXED%%)

Default Conversion
- job CCSID to
NetCCSID

None (compatibility mode)

Invalid CGI error 500 generated by server

BINARY
In this mode HTTP header output is in CCSID 819 with the escape sequences also being the ASCII
representative of the ASCII code point. An example of a HTTP header that may contain escape
sequences is the Location header. The body is always treated as binary data and the server performs
no conversion.

EBCDIC
In this mode HTTP header output is assumed to be in the CGI job CCSID, unless otherwise specified in
a charset or CCSID tag by the CGI program. However, the escape sequence must be the EBCDIC
representative of the EBCDIC code point for the 2 characters following the ″%″ in the escape

IBM HTTP Server for i 183

sequence. An example of a HTTP header that may contain escape sequences is the Location header.
The body (if the mime type is text/*) is assumed to be in the job CCSID, unless otherwise specified in a
charset or CCSID tag by the CGI program. If CGIJobCCSID is present the CGI job CCSID has its value;
otherwise, the value associated with DefaultFsCCSID (the default job CCSID) is used.

EBCDIC_JCD
In this mode HTTP header output is assumed to be in the job CCSID, unless otherwise specified in
a charset or CCSID tag by the CGI program. However, the escape sequence must be the EBCDIC
representation of the EBCDIC code point for the 2 characters following the ″%″ in the escape
sequence. An example of a HTTP header that may contain escape sequences is the Location header.
The body (if the mime type is text/*) is assumed to be in the job CCSID, unless otherwise specified in
a charset or CCSID tag by the CGI program. If CGIJobCCSID is present the job CCSID has its value;
otherwise, the value associated with DefaultFsCCSID (the default job CCSID) is used.

CGI environment variables
The following CGI environment variables that are related to national language support are set by the HTTP
server prior to calling a CGI program:

• CGI_MODE - which input conversion mode the server is using (%%MIXED%%, %%EBCDIC%%, %
%BINARY%%, %%EBCDIC_JCD%%, EBCDIC, BINARY, or EBCDIC_JCD)

• CGI_ASCII_CCSID - from which ASCII CCSID was used to convert the data
• CGI_EBCDIC_CCSID - which EBCDIC CCSID the data was converted into
• CGI_OUTPUT_MODE - which output conversion mode the server is using (%%MIXED%%, %%EBCDIC%

%, %%BINARY%, EBCDIC, BINARY, or EBCDIC_JCD)
• CGI_JOB_LOCALE - which locale to use in the CGI program. This environment variable is set only if the

CGIJobLocale directive is set.

For complete list of environment variables set by the HTTP Server, see “Environment variables set by
HTTP Server” on page 634.

DBCS considerations
URL-encoded forms containing DBCS data could contain ASCII octets that represent parts of DBCS
characters. The server can only convert non-encoded character data. This means that it must un-encode
the double-byte character set (DBCS) stdin and QUERY_STRING data before performing the conversion.
In addition, it has to reassemble and re-encode the resulting EBCDIC representation before passing it to
the CGI program. Because of this extra processing, CGI programs that you write to handle DBCS data may
choose to receive the data as BINARY and perform all conversions to streamline the entire process.

Using the EBCDIC_JCD mode: The EBCDIC_JCD mode determines what character set is being used by
the browser for a given request. This mode is also used to automatically adjust the ASCII/EBCDIC code
conversions used by the web server as the request is processed.

After auto detection, the %%EBCDIC_JCD%% or EBCDIC_JCD mode converts the stdin and
QUERY_STRING data from the detected network CCSID into the correct EBCDIC CCSID for Japanese.
The default conversions configured for the CGI job are overridden. The DefaultFsCCSID directive or the
-fsccsid startup parameter specifies the default conversions. The startup FsCCSID must be a Japanese
CCSID. Alternately, the CGIJobCCSID can be set to a Japanese CCSID.

The possible detected network code page is Shift JIS, eucJP, and ISO-2022-JP. The following are the
associated CCSIDs for each code page:

Shift JIS
=========
CCSID 932: IBM PC (old JIS sequence, OS/2 J3.X/4.0, IBM Windows J3.1)
CCSID 942: IBM PC (old JIS sequence, OS/2 J3.X/4.0)
CCSID 943: MS Shift JIS (new JIS sequence, OS/2 J4.0
MS Windows J3.1/95/NT)
eucJP
=====
CCSID 5050: Extended UNIX Code (Japanese)

184 IBM i: IBM HTTP Server for i

ISO-2022-JP
===========
CCSID 5052: Subset of RFC 1468 ISO-2022-JP (JIS X 0201 Roman and
JIS X 0208-1983) plus JIS X 0201 Katakana.
CCSID 5054: Subset of RFC 1468 ISO-20220JP (ASCII and JIS X 0208-1983)
plus JIS X 0201 Katakana.

The detected network CCSID is available to the CGI program. The CCSID is stored in the
CGI_ASCII_CCSID environment variable. When JCD can not detect, the default code conversion is done
as configured (between NetCCSID and FsCCSID or CGIJobCCSID).

Since the code page of Stdin and QUERY_STRING are encoded according to the web client's outbound
code page, we recommend using the following configuration value combinations when you use the
EBCDIC_JCD or %%EBCDIC_JCD%% mode.

Table 15. Recommended CCSID configuration combinations

Startup (FsCCSID)/CGI job
CCSID (CGIJobCCSID)

Startup (DefaultNetCCSID)/CGI
Net CCSID (DefaultNetCCSID) Description

5026/5035 (See note 4) 943 Default: MS Shift JIS

5026/5035 (See note 4) 942 Default IBM PC

5026/5035 (See note 4) 5052/5054 Default ISO-2022-JP

Using CCSID 5050(eucJP) for the startup NetCCSID, is not recommended. When 5050 is specified for the
startup NetCCSID, the default code conversion is done between FsCCSID and 5050. This means that if
JCD cannot detect a code page, JCD returns 5050 as the default network CCSID. Most browser's use a
default outbound code page of Shift JIS or ISO-2022-JP, not eucJP.

If the web client sends a charset tag, JCD gives priority to the charset tag. Stdout function is the same.
If the charset/ccsid tag is specified in the Content-Type field, stdout gives priority to charset/ccsid tag.
Stdout also ignores the JCD detected network CCSID.

Notes:

1. If startup NetCCSID is 932 or 942, detected network, Shift JIS's CCSID is the same as startup
NetCCSID. Otherwise, Shift JIS's CCSID is 943.

Startup NetCCSID Shift JIS (JCD detected CCSID)
---------------- ------------------------------
932 932
942 942
943 943
5052 943
5054 943
5050 943

2. Netscape Navigator 3.x sends the alphanumeric characters by using JIS X 0201 Roman escape
sequence (CCSID 5052) for ISO-2022-JP. Netscape Communicator 4.x sends the alphanumeric
characters by using ASCII escape sequence (CCSID 5054) for ISO-2022-JP.

3. JCD function has the capability to detect EUC and SBCS Katakana, but it is difficult to detect them. IBM
recommends that you do not use SBCS Katakana and EUC in CGI.

4. CCSID 5026 assigns lowercase alphabet characters on a special code point. This often causes a
problem with lowercase alphabet characters. To avoid this problem, do one of the following:

• Do not use lowercase alphabet literals in CGI programs if the FsCCSID is 5026.
• Use CCSID 5035 for FsCCSID.
• Use the Charset/CCSID tag as illustrated in the following excerpt of a CGI program:

main(){
printf("Content-Type: text/html; Charset=ISO-2022-JP\n\n");
...
}

IBM HTTP Server for i 185

• Do the code conversions in the CGI program. The following sample ILE C program converts the
literals into CCSID 930 (the equivalent to CCSID 5026):

main(){
printf("Content-Type: text/html\n\n);
#pragama convert(930)
printf("<html>");
printf("This is katakana code page\n");
#pragama convert(0)
...
}

• When the web client sends a charset tag, the network CCSID becomes the ASCII CCSID associated
with Multipurpose Internet Mail Extensions (MIME) charset header. The charset tag ignores the
JCD detected CCSID. When the Charset/CCSID tag is in the Content-Type header generated by the
CGI program, the JCD-detected CCSID is ignored by this Charset/CCSID. Stdout will not perform a
conversion if the charset is the same as the MIME's charset. Stdout will not perform a conversion
if the CCSID is ASCII. Stdout will perform code conversion if the CCSID is EBCDIC. Because the
environment variables and stdin are already stored in job CCSID, ensure that you are consistent
between the job CCSID and the Content-Type header's CCSID.

Writing high availability CGI programs
High availability CGI programs use APIs to preserve state information. The state information can be
accessed by different IBM i servers that are participating as cluster nodes in a clustered environment,
even after a failure or switchover of the HTTP Server or IBM i server.

During the configuration of a Web server, the server administrator indicates whether CGI programs are
allowed to be cluster-enabled high availability CGI programs. If the server receives a request for a CGI
program that is allowed to be Highly Available (HA), the Web server passes to the CGI an environment
variable that indicates the CGI may be cluster-enabled. The server also creates and passes a unique
session handle to the CGI program. The CGI program must then acknowledge that it is a cluster-enabled
HA CGI program to the server, otherwise the server will regard the CGI as not being cluster-enabled.

The following environment variables are passed by the Web server to High Availability CGI programs:

• QZHBIS_FIRST_REQUEST
• QZHBIS_CLUSTER_ENABLED
• QZHBNEXT_SESSION_HANDLE
• QZHBRECOVERY
• QZHBHA_MODEL

The ″Cluster-Enabled″ and ″Accept-HTSession″ headers should be returned in each response from a High
Availability CGI program. For example,

Cluster-Enabled:1

An error will result if the ″Cluster-Enabled″ header is returned by a CGI program with a value of ″1″, but
the Web Server is not configured to allow that CGI program to be Highly available.

When the Web server receives the ″Cluster-Enabled″ header with a value of ″1″, the server will create a
new session entry and indicate that the session is cluster-enabled.

Cluster-enabled CGI programs will return the ″Accept-HTSession″ header to the Web server with a value
equal to the value passed to the CGI in the QZHBNEXT_SESSION_HANDLE environment variable. An error
will result if the value specified with ″Accept-HTSession″ does not match the value passed to the CGI in
QZHBNEXT_SESSION_HANDLE. For CGI programs that are not cluster-enabled, the ″Accept-HTSession″
CGI header remains unmodified.

The Web server associates a high availability CGI program's state with the unique session handle that was
passed as an environment variable to the CGI. If a request to run the CGI is sent to the Web server, and
the requested URL includes the specific session handle, the Web server will be able to correctly restore

186 IBM i: IBM HTTP Server for i

the previous state of the CGI. For this reason it is important that the session handle appear in all URLs
that were generated by the high availability CGI program to be returned to the client.

A high availability CGI program uses two APIs to maintain its state. To store state information, the CGI
calls the API QzhbCgiSendState_r(). To retrieve state information, the CGI program calls the API
QzhbCgiRecvState_r().

Guidelines for writing high availability CGIs
A CGI program developer should follow the following rules when writing high availability CGI programs:

• Write the CGI in such a way that running them with the same state more than once does not cause any
problem.

• Store the CGI program's state between client's requests only in the Web server.
• Avoid using data sharing mechanisms that do not fit in the high availability Web server programming

model provided by the HTTP Server. An example of such a model would be a CGI program that is using
shared memory.

• The Web server limits the total number of persistent CGIs, which includes high availability CGI, using
the MaxPersistentCGI directive.

Table 16. CGI problems and solutions. This table identifies potential problem areas and suggests a
solution:

Potential problems Solutions

When the stateful CGI is run with the same state
more than once, its correctness is not ensured.

Rewrite the CGI so that it can run with the same
state more than once.

The stateful CGI accesses shared memory. Eliminate the use of shared memory.

The stateful CGI generates session handles
ignoring session handles passed by the Web server.

Rewrite the CGI to use session handles passed by
the Web server.

There are two categories of high availability Web server programming models to consider when writing
high availability CGI programs or enabling an existing CGI program for use as a high availability CGI
program. The two categories are:

• Primary/backup
• Peer model

For the primary/backup, follow these additional guidelines:

• The stateful data is saved by the high availability CGI program by calling the QzhbCgiSendState_r()
API. To retrieve any stateful data that has been stored use the QzhbCgiRecvState_r() API.
The QzhbCgiRecvState_r() API returns stateful information when the environment variable
QZHBRECOVERY is set and QZHBHA_MODEL is equal to PRIMARYBACKUP. If the QZHBRECOVERY is
not set, then the CGI program should not use the QzhbCgiRecvState_r() API. You must write a
persistent CGI that maintains the data in static variables. If the environment variable QZHBRECOVERY
is set, retrieve the data using the QzhbCgiRecvState_r() API and restore the static variables.

For the Peer model, follow these additional guidelines:

• The stateful data is saved by the high availability CGI program by calling the QzhbCgiSendState_r()
API. To retrieve any stateful data that has been stored use the QzhbCgiRecvState_r() API. The
QzhbCgiRecvState_r() API must be used with each new request to retrieve any stateful data that
has been stored for a previous high availability CGI program invocation. In this model your CGI program
must not save stateful data in static variables.

• If QZHBHA_MODEL is PUREPEER the CGI is expected to restore its state, to serve the request, and to
return its new state to the Web server. When the Web server receives the new CGI's state, it stores the
state (which will be passed to the CGI with the subsequent request), returns the response to the client,
and terminates the CGI job.

IBM HTTP Server for i 187

Related information
“Highly available HTTP Server” on page 43
The IBM HTTP Server for i supports Web server clusters, which ensures high availability of your Web site.
“CGI data conversions” on page 181
The server can perform ASCII to EBCDIC conversions before sending data to CGI programs. This is
needed because the Internet is primarily ASCII-based and the IBM i server is an extended binary-coded
decimal interchange code (EBCDIC) server. The server can also perform EBCDIC to ASCII conversions
before sending data back to the browser. HTTP and HTML specifications allow you to tag text data with a
character set (charset parameter on the Content-Type header). However, this practice is not widely in use
today (although technically required for HTTP1.0/1.1 compliance). According to this specification, text
data that is not tagged can be assumed to be in the default character set ISO-8859-1 (US-ASCII). The
server correlates this character set with ASCII coded character set identifier (CCSID) 819.
“CGI APIs” on page 133
This topic provides information about IBM HTTP Server for i APIs for CGI applications.
“Environment variables set by HTTP Server” on page 634
The IBM HTTP Server for i supports the standard environment variables in addition to environment
variables that are unique to the IBM i server.

Writing persistent CGI programs
Persistent CGI is an extension to the CGI interface that allows a CGI program to remain active across
multiple browser requests and maintain a session with that browser client. This allows files to be left
open, the state to be maintained, and long running database transactions to be committed or rolled-back
based on end-user input.

The CGI program must be written using named activation groups which allows the program to remain
active after returning to the server. The CGI program notifies the server it wants to remain persistent using
the ″Accept-HTSession″ CGI header as the first header it returns. This header defines the session ID
associated with this instance of the CGI program and is not returned to the browser. Subsequent URL
requests to this program must contain the session ID as the first parameter after the program name. The
server uses this ID to route the request to that specific instance of the CGI program. The CGI program
should regenerate this session ID for each request. It is strongly recommended that you use Secure
Sockets Layer (SSL) for persistent and secure business transaction processing.

Accept-HTSession CGI Header
This header specifies the session handle associated with this instance of the Persistent CGI program. This
session handle is used to route back subsequent requests to that program and must be unique, or the
server will not honor the persistence request. A message is logged in the error log of the server.

Accept-HTSession = "Accept-HTSession" ":" handle

When the server receives this header, the CGI job servicing the request will be reserved in a persistent
state. Only requests coming in with that session handle in the URL are routed back to that instance of the
CGI program. The URL must be in the following format:

/path/cgi-name/handle/rest/of/path

Where handle is an exact match of the handle provided in the ″Accept-HTSession″ CGI header for the
program cgi-name.

Note: The cgi-name that is being resolved is the name as it appears in the URL. It is not necessarily
the actual name of the program being started on the system. This is to remain consistent with the name
resolution performed by the server.

188 IBM i: IBM HTTP Server for i

HTTimeout CGI Header
The HTTimeout header is for the CGI program to define the amount of time, in minutes, that
this CGI program wants to wait for a subsequent request. If not specified, the value specified
on the PersistentCGITimeout directive is used. If specified, it takes precedence over the
PersistentCGITimeout directive, but the server will not wait longer than the time specified on the
MaxPersistentCGITimeout directive. This allows individual CGI programs to give users more time
to respond to lengthy forms or explanations. However, it still gives the server ultimate control over the
maximum time to wait.

HTTimeout = "HTTimeout" ":" minutes

The time-out value is a non-negative decimal integer, representing the time in minutes. This header must
be preceded by an ″Accept-HTSession″ header, if not, it is ignored. If you omit the header, the default
time-out value for the server is used. When a CGI program is ended because of a timeout, a message is
logged in the error log of the server.

Considerations for using Persistent CGI Programs
You should be aware of the following considerations when using persistent CGI programs:

• The web administrator can limit the number of persistent CGI programs that the server supports by
using the MaxPersistentCGI configuration directive.

• There are some job or thread-level resources that the server code running in the CGI job usually
manipulates (directly or indirectly) on behalf of CGI programs. The following attributes will (potentially)
change across calls:

– Environment variables the server sets
– Stdin/Stdout/Stderr file descriptors
– User profile
– Library list

• The server will not set the rest of the job attributes set by the server, and therefore, will maintain
state across calls if changed by the CGI program. Note, however, that the CGI program must restore
the initial state of these values before ending its persistence in order to guarantee compatibility across
subsequent server requests:

– Job Language, Region, CCSID
– Job Priority
– Printer/Output Queue
– Message Logging
– Environment variables set by the CGI program

• For added security, web server administrators can protect their persistent CGI programs using
registered Internet users, thereby forcing authentication by the user before processing each request.

Persistent CGI Program Example

The Persistent CGI programming example located at CGI Programming examples displays a counter
that is increased each time the Persistent CGI program is called.

Related information
“CGI data conversions” on page 181
The server can perform ASCII to EBCDIC conversions before sending data to CGI programs. This is
needed because the Internet is primarily ASCII-based and the IBM i server is an extended binary-coded
decimal interchange code (EBCDIC) server. The server can also perform EBCDIC to ASCII conversions
before sending data back to the browser. HTTP and HTML specifications allow you to tag text data with a
character set (charset parameter on the Content-Type header). However, this practice is not widely in use

IBM HTTP Server for i 189

http://www.ibm.com/systems/i/software/http/examples/

today (although technically required for HTTP1.0/1.1 compliance). According to this specification, text
data that is not tagged can be assumed to be in the default character set ISO-8859-1 (US-ASCII). The
server correlates this character set with ASCII coded character set identifier (CCSID) 819.
“CGI APIs” on page 133
This topic provides information about IBM HTTP Server for i APIs for CGI applications.
“Environment variables set by HTTP Server” on page 634
The IBM HTTP Server for i supports the standard environment variables in addition to environment
variables that are unique to the IBM i server.

CGI programs and activation groups
The following section is intended to give a brief overview of activation groups.

Note: It is very important to become familiar with the details of activation groups prior to developing or
porting a CGI application that will use this support.

Activation groups
Program activation is the process that is used to prepare a program to run. The system must activate ILE
programs before they can be run. Program activation includes the allocation and initialization of static
storage for the program in addition to completing the binding of programs to service programs. Named
activation groups must be used when running persistent CGI.

Program activation is not a unique concept. All modern computer operating systems must perform
program initialization and load. What is unique to CGI programs on the IBM i server is the concept of
Activation Groups. All ILE programs and service programs are activated within an activation group. This
substructure contains the resources necessary to run the program. The resources that are contained and
are managed with an activation group include:

• Static and automatic program variables
• Dynamic storage
• Temporary data management resources (For example, open files and SQL cursors)
• Certain types of exception handlers and ending procedures

Runtime creation of ILE activation groups is controlled by specifying an activation group attribute when
your program or service program is created. The attribute is specified by using the ACTGRP parameter on
the CRTPGM or CRTSRVPGM command. The valid options for this attribute include user-named, *NEW,
and *CALLER. The following is a brief description of these options:

user-named
A named activation group allows you to manage a collection of ILE programs and ILE service
programs as one application. The activation group is created when it is first needed. All programs and
service programs that specify the same activation group name use it then. A user-named activation
group is left active after the program has exited normally. All storage associated with that program
is still allocated and in ″last-used″ state. The program is not initialized when it is called again.
In addition, for the ILE C runtime, all settings are in ″last-used″ state, such as signal(), and
strtok(). The RCLACTGRP command is used to end a named activation group. Use the DSPJOB
OPTION(*ACTGRP) command to display all the activation groups for the job.

*NEW
The name for this activation group is selected by ILE and will always be unique. System-named
activation groups are always deleted when the high level language returns. *NEW is the standard
behavior that can be expected on other systems such as UNIX.

*CALLER
Specifying *CALLER causes the ILE program or service program to be activated within the activation
group of the calling program. A new activation group is never created with this attribute.

Notes:

1. When you create a persistent CGI program, you must specify a named activation group.

190 IBM i: IBM HTTP Server for i

2. CGI programs that are not persistent should not refer to job-level scoped resources.

For additional information about activation groups see the ILE Concepts manual.

CGI considerations
There are advantages to running CGI programs in either a user-named or *CALLER activation group. The
performance overhead associated with activating a CGI every time that is requested can be drastically
reduced. It is important to understand that because the system does not delete user-named activation
groups, normal high level language end verbs cannot provide complete end processing. For example,
the system will not close open files, and the system will not return the static and heap storage that are
allocated by a program. The program must manage these resources explicitly. This will be especially
important when changing the activation group of CGI programs that rely on their end processing functions
to run properly.

Note: When you activate multi-threaded CGI on your web server, you get multiple thread support for your
CGI application Your CGI application must end all of its threads before returning to the server. When using
multi-thread capable CGI, you need to put the CGI program in a new or named activation group.

The following section shows examples which will work fine running in a *NEW activation group, however
will cause problems if run in a user-named or *CALLER activation group.

Activation group examples

Note: CGI programming examples are also available on the IBM HTTP Server for i website .

In the following example a CGI program when run in a *NEW activation group, would write Hello World
to the browser. What is important to understand is that this application is taking advantage of job end
processing to delete the stdio buffers that are used to buffer the stdout data.

You could build the following CGI program to run in either a user-named or *CALLER activation group. In
such an instance, the server will not process the information that was written to stdout. This will cause
the web browser to display a ″Document Contains No Data″ error message. Another application could run
again in the same activation group that properly erased stdout. In this instance, the data that has been
buffered from previous calls would be sent.

#include <stdio.h>
void main(void) {

/* Write header information. */
printf("Content-type: text/html\n\n");

/* Write header information. */
printf("Hello World\n");
}

End processing may not erase stdio buffers so the application must erase the stdout with a
fflush(stdout) call. The following example will work regardless of the activation group specification:

#include <stdio.h>
void main(void) {

/* Write header information. */
printf("Content-type: text/html\n\n");

/* Write header information. */
printf("Hello World\n");

/* Flush stdout. */
fflush(stdout);
}

When run in a *NEW activation group, this example CGI would read CONTENT_LENGTH bytes of data from
stdin and write this back out to stdout. The system has allocated the buffer that is used to hold the data
by invoking malloc(). Like the example that is previously shown, this application is relying on several
aspects of job end processing to function properly.

IBM HTTP Server for i 191

http://www.ibm.com/systems/i/software/http/examples/

If this CGI program were built to run in either a user-named or *CALLER activation group, the following
problems would occur:

• As with the simple example that is previously shown, the application is not erasing stdout. This would
cause the web browser to display a ″Document Contains No Data″ error message. You could run another
application again in the same activation group that properly erased stdout. This would send the data
that has been buffered from previous calls.

• Stdin is buffered similar to stdout. If the contents of stdin are not erased, the stdin data on the second
and all following calls of the CGI program will be unpredictable and the contents may at times contain
information from subsequent requests.

• The heap storage allocated using malloc() is not being freed. Over time, a memory leak error like this
could use significant amounts of memory. This is a common application error that only surfaces when
the application is not running in a *NEW activation group.

/**/
/* CGI Example program. */
/**/
#include
void main(void)
{
char* stdinBuffer;
char* contentLength;
int numBytes;
int bytesRead;
FILE* pStdin;

/* Write the header. */
printf("Content-type: text/html\n\n");

/* Get the length of data on stdin. */
contentLength = getenv("CONTENT_LENGTH");
if (contentLength != NULL) {

 /* Allocate storage and clear the storage to hold the data. */
 numBytes = atoi(contentLength);
 stdinBuffer = (char*)malloc(numBytes+1);
 if (stdinBuffer)
 memset(stdinBuffer, 0x00, numBytes+1);

 /* Read the data from stdin and write back to stdout. */
 bytesRead = fread(stdinBuffer, 1, numBytes, pStdin);
 stdinBuffer[bytesRead+1] = '\0';
 printf("%s", stdinBuffer);
}
else
 printf("Error getting content length\n");
return;
}

The following example shows the changes that would be required to this application to allow it to run in a
user-named or *CALLER activation group:

/**/
/* CGI Example program with changes to support user-named */
/* and *CALLER ACTGRP. */
/**/
#include
void main(void)
{
char* stdinBuffer;
char* contentLength;
int numBytes;
int bytesRead;
FILE* pStdin;

/* Write the header. */
printf("Content-type: text/html\n\n");

/* Get the length of data on stdin. */
contentLength = getenv("CONTENT_LENGTH");
if (contentLength != NULL) {

 /* Allocate storage and clear the storage to hold the data. */
 numBytes = atoi(contentLength);

192 IBM i: IBM HTTP Server for i

 stdinBuffer = (char*)malloc(numBytes+1);
 if (stdinBuffer)
 memset(stdinBuffer, 0x00, numBytes+1);

 /* Reset stdin buffers. */
 pStdin = freopen("", "r", stdin);

 /* Read the data from stdin and write back to stdout. */
 bytesRead = fread(stdinBuffer, 1, numBytes, pStdin);
 stdinBuffer[bytesRead+1] = '\0';
 printf("%s", stdinBuffer);

 /* Free allocated memory. */
 free(stdinBuffer);
}
else
 printf("Error getting content length\n");

/* Flush stdout. */
fflush(stdout);
return;
}

Running CGI programs in IBM PASE for i
The IBM HTTP Server for i Web server can run CGI programs created to run in the IBM Portable
Application Solutions Environment for i. In addition, the HTTP Server can also run programs that follow
the FastCGI protocol.

CGI programs that currently run on the AIX platform may be able to run on an IBM HTTP Server for i
Web server in PASE for i. To do this, store your CGI programs in the QOpenSys file system. You should
then verify that your program will run in PASE for i. For more information on how to prepare your code
and ensure that it will run effectively in PASE for i, see the Prepare programs to run in IBM PASE for i
topic. And finally, use the ScriptAlias directive in the configuration file, httpd.conf, to map the URL to the
program, as you would with any CGI program.

For CGI programs that run in PASE for i, environment variables are converted from the CGI job CCSID to
the CCSID specified by the ILE environment variable QIBM_PASE_CCSID. The ILE environment variable
PASE_LANG specifies the PASE Locale. The default values are functions of the current LANGID and
CNTRYID attributes of the CGI job, but the system uses PASE_LANG=POSIX and QIBM_PASE_CCSID=819
if it does not recognize the LANGID and CNTRYID pair. The LANG environment variable controls the
default locale for the CGI program that will be running in PASE for i. These default values may be
overridden by setting both ILE environment variables 'PASE_LANG' and 'QIBM_PASE_CCSID' using the
HTTP directive 'setenv'. If either of these are not set, the default values will be used. For example,
setenv PASE_LANG JA_JP setenv QIBM_PASE_CCSID 1208

See PASE for i Locales to determine what locales are supported.

Note: CGI programs that run in PASE for i must have file names that do not include the following
extensions which are reserved for CGI programs that do not run in PASE for i:

• .rexx
• .pl
• .pgm
• .class

Sample CGI Program Configuration

This sample code shows one way to use the ScriptAlias directive to map your CGI program to a URL.

ScriptAlias /cgi-pase/ /QOpenSys/myserver/cgi-bin/

Running FastCGI applications in IBM PASE for i
The IBM HTTP Server for i is able to run AIX programs that implement the FastCGI protocol. FastCGI is an
interface between Web servers and applications which combines some of the performance characteristics
of native Web server modules with the Web server independence of the CGI programming interface. Like

IBM HTTP Server for i 193

AIX CGI programs, AIX FastCGI applications are run in the PASE for i environment. For more information
about how the HTTP Server supports FastCGI, see the IBM HTTP Server for i Documentation Web
page.
Related information
FastCGI Web site

Setting up CGI programs for HTTP Server
This topic provides information about how to set up CGI programs for your IBM HTTP Server for i Web
server.

You can extend the capability of the HTTP Server by adding CGI programs. The HTTP Server supports
Integrated Language Environment (ILE) CGI programs and AIX CGI programs.

Here is a summary of the steps you need to take to enable your server to run CGI programs:

1. Create the CGI program.

ILE CGI programs can be written in ILE C/C++, ILE RPG, or ILE COBOL programming languages. The HTTP
Server provides CGI application programming interfaces in support of ILE CGI programming.

In addition to support for ILE CGI programs, the HTTP Server has the ability to run REXX programs and
AIX programs as CGI programs. For more information about running AIX CGI programs, see “Running CGI
programs in IBM PASE for i” on page 193.

2. Move the CGI program to the CGI directory.

ILE CGI programs must reside in the QSYS.LIB file system. REXX CGI programs must reside in database
files named REXX or QREXSRC. AIX CGI programs must reside in the QOpenSys file system.

3. Ensure that your program has the correct authority using *PUBLIC, QTMHHTTP or QTMHHTP1.

If the UserID directive is not active, the server profile QTMHHTP1 needs access to the CGI program and
all objects the program accesses. If the UserID directive is active, the UserID profile needs access to
the CGI program and all objects the program accesses.

4. Make changes to the HTTP Server configuration file.

For example, you need to add the ScriptAlias directive at a minimum.

Note: For REXX programs, you only need to indicate the path and the file name in the ScriptAlias directive.
For example:

ScriptAlias /REXX /QSYS.LIB/AS400CGI.LIB/QREXSRC.FILE/*

The URL is :

http://hostname/REXX/samplecgi.REXX

Apache module programming
The IBM HTTP Server for i supports the extension of the functionality of the HTTP Server through the use
of third-party Apache modules.
Related information
“Apache module APIs” on page 133
This topic provides information about the Apache portable runtime (APR) and application programming
interfaces (APIs) for the IBM HTTP Server for i. These APIs are generally used to write cross-platform
Apache modules.
Developer Documentation for Apache 2.4
Apache Portable Runtime Project

194 IBM i: IBM HTTP Server for i

http://www.ibm.com/systems/i/software/http/docs/doc.html#PASEFASTCGI
http://www.fastcgi.com/
http://httpd.apache.org/docs/2.4/developer/
http://apr.apache.org/

Setting up third party modules for HTTP Server
This topic provides information about how to set up third party modules for your IBM HTTP Server for i
Web server.

The HTTP Server can extend its functionality in specific areas of your server using modules. For example,
a module could be configured to create a new type of authentication that is not available with the shipped
HTTP Server. The Apache Software Foundation (ASF) provides basic information for writing your own
modules. Before the module can be used by your HTTP Server, it must be compiled and saved in the QSYS
directory. In addition, the LoadModule directive must be entered in your server configuration file along
with any specific context required information.

As of IBM i 5.4, modules must be recompiled with a UTF locale. This creates an environment where
locale-dependent C runtime functions assume that string data is encoded in UTF-8. Any hardcoded
constants can be encoded in UTF-8 by adding a #pragma convert(1208) statement in the module.
Additionally, input data from the client will no longer be converted to EBCDIC but will be passed
as-is. Output data sent from the module is not converted either so it must be encoded in ASCII or
UTF8 as required. APR and HTTP APIs as of V5R4, expect data in UTF-8. Note that several APIs have
additional functions that allow a CCSID to be set to indicate the encoding of the parameters being passed.
Conversion functions between UTF-8 and EBCDIC have been added. Be sure to review APIs used by your
module to be aware of current changes.

Follow the below directions to compile and use a new module.

1. Save the source code

Save the source code in your QSYS or IFS directory. All objects created from compiling and creating the
service program must be placed in the QSYS directory.

2. Compile the source code

Compile the source code using the CRTCMOD command. Before you compile the program, make sure
you have the correct programming language compiler installed on your IBM i server (the most common
programming language used is C). Replace the text in the parenthesis () with your own information.

CRTCMOD MODULE(Destination module name and library for the compiled module object.)

Any Apache modules will need to be changed in order to run as a UTF-8 based server module as opposed
to an EBCDIC based server module.

• For ILE C use:
CRTCMOD MODULE(MYLIB/MOD_TEST) SRCSTMF('/mydir/mymodule/source/mod_test.c')
DEFINE(AS400 AS400_UTF8) LOCALETYPE(*LOCALEUTF) TERASPACE(*YES)
INCDIR('/qibm/proddata/httpa/include')

• For C++ use:
CRTCPPMOD MODULE(MYLIB/MOD_TEST) SRCSTMF('/mydir/mymodule/source/mod_test.c')
DEFINE(AS400 AS400_UTF8) LOCALETYPE(*LOCALEUTF) TERASPACE(*YES)
INCDIR('/qibm/proddata/httpa/include')

Notice the change in the LOCALETYPE parameter. Using LOCALETYPE(*LOCALEUTF) does the following:
Program objects created with this option use the locale support provided by *LOCALE objects. Wide-
character types contain four-byte UTF-32 values. Narrow character types contain UTF-8 values. The
effect of this change enables the locale dependent C runtime functions to work on UTF-8 strings. See
WebSphere Development Studio: ILE C/C++ Programmer's Guide for more information.

Correct any errors found while compiling. Continue to compile the source code until there are no errors.
Save the compiled module in the QSYS directory.

3. Create a service program

Create a service program using the CRTSRVPGM command. Replace the text in the parenthesis () with
your own information.

CRTSRVPGM SRVPGM(Destination service program name and library.)
 MODULE(Module or modules to be built into the service program. Same as CRTCMOD above.)

IBM HTTP Server for i 195

http://www.apache.org/

 EXPORT(Name of the data item to be exported.)
 BNDSRVPGM(Specifies other service programs needed to bind to when creating the service
program.)

Note: The EXPORT field can only have the value of either *ALL or *SRCFILE. If *SRCFILE is used, you
will need to have an export source file defining which data items or procedures need to be exported and
contain the name of the module structure (for example, cgi_module).

The BNDSRVPGM field must have, at a minimum, the following: (QHTTPSVR/QZSRAPR QHTTPSVR/
QZSRCORE QHTTPSVR/QZSRXMLP QHTTPSVR/QZSRSDBM). These values will cover all the HTTP
Sever APIs that may be used when building the service program.

4. Add LoadModule to HTTP Server configuration file

See “Setting up Apache modules” on page 132 for the steps you need to perform to add the LoadModule
directive.

Note: Some third-party modules designed for previous IBM i releases may require code changes due
to the API changes of new 2.4 version HTTP Server for i. All third-party modules are required to be
recompiled against the new 2.4 version HTTP server runtime . For the API update plase refer to API
update for detail information.

Related information
“Apache module APIs” on page 133
This topic provides information about the Apache portable runtime (APR) and application programming
interfaces (APIs) for the IBM HTTP Server for i. These APIs are generally used to write cross-platform
Apache modules.
Developer Documentation for Apache 2.4
Apache Portable Runtime Project

Handler for HTTP Server
In the IBM HTTP Server for i, a handler is an internal representation of the action that is performed when
a file or URL is requested.

Generally, files have implicit handlers, based on the file type. Normally, all files are simply served by the
server, but certain file types are handled separately. For example, you may use a type of application/
x-httpd-cgi to invoke CGI scripts.

Handlers are unrelated to file type. They are either based on filename extensions or on location. This
allows both a type and a handler to be associated with a file (see Files with Multiple Extensions).

Handlers are either built into the server, built into a module, or are added with the Action directive. The
built-in handlers are:

• default-handler: Send the file using the default_handler(), which is the handler used by default to
handle static content. (core)

• send-as-is: Send file with HTTP headers as is (mod_asis).
• cgi-script: Treat the file as a CGI script (mod_cgi).
• imap-file: Imagemap rule file (mod_imagemap).
• type-map: Parse as a type map file for content negotiation (mod_negotiation).
• proxy-server: Determine if file is local (mod_proxy)

Server-side scripting languages
The IBM HTTP Server for i supports the extension of the functionality of the HTTP Server through the use
of scripting languages that run on the server.
Related concepts
“Service-side includes” on page 42
Server-side includes (SSI) are the simplest way to add dynamic content to a Web site. A set of directives
is embedded in the HTML code and is interpreted by the server before the document is sent to a client.

196 IBM i: IBM HTTP Server for i

http://httpd.apache.org/docs/2.4/developer/new_api_2_4.html
http://httpd.apache.org/docs/2.4/developer/new_api_2_4.html
http://httpd.apache.org/docs/2.4/developer/
http://apr.apache.org/

SSI can be used to call a CGI program or return information about documents or the value of environment
variables.

Net.Data
Net.Data is a server-side scripting engine that allows you to easily create dynamic documents using
live data from a variety of sources such as relational and non-relational database management systems
(DBMSs), including DB2 databases that can be accessed through DRDA, files, and native applications
written in programming languages such as RPG, Cobol, Java, C, C++, and REXX.

Net.Data operates on scripts called macros, which contains a series of statements that are defined by the
Net.Data macro language. These statements can include standard HTML (or XML, etc.) and language
environment-specific statements (for example, SQL statements) as well as macro directives. These
statements act as instructions to the Net.Data macro processor, telling it how to construct the dynamic
page. Net.Data interprets the statements to create dynamic Web pages with customized content based
on input from the user, the current state of your databases, other data sources, existing business logic,
and other factors that you design into your macro. The dynamic page that is generated can be rendered
in a variety of formats. For example, HTML for browser clients, XML for browser and application clients,
wireless markup language (WML) for wireless clients, and Excel for application clients.

The Net.Data macro processor communicates with the HTTP Server through its CGI-BIN interface. Like
other CGI-BIN programs, Net.Data is typically stored in the server's CGI-BIN directory. Net.Data is
accessed when a URL received by the server refers to the Net.Data macro processor executable, DB2WWW,
in the CGI-BIN directory.

When a URL is received by the server that refers to the Net.Data macro processor program, the server
starts an instance of the macro processor. It then passes essential information, including the name of the
requested macro and the section of the macro to use. The macro processor then:

1. Reads and parses through the macro.
2. Interprets all the macro statements.
3. Dynamically builds the page.
4. Sends the data to the HTTP server by writing to stdout.

The macro writer has complete control over what format the generated data is in (for example: HTML or
XML). The macro processor imposes no restrictions. After the text is passed back to the server, the macro
processor ends. The resulting text is passed to the client (or browser) where the user interacts with it.
Further requests from this user or any other user will result in the whole process just described taking
place again.

For more detailed information about Net.Data, including how to configure Net.Data and how to write
Net.Data macros and language environments, see the IBM Net.Data for i Web site.

Node.js
Node.js is an open source project based on the Google Chrome JavaScript Engine. It provides a platform
for server-side JavaScript applications running without browsers.

Many developers are basing the architecture of their real-time applications on the Node.js framework
because of its inherent event-driven architecture and non-blocking I/O API. But the power of that
architecture can't be realized unless the hosting environment provides enterprise-grade scalability and
reliability, and that is where the IBM i platform enters into the picture.

Node.js can be run on the IBM i platform. In addition, extensions have been created to allow Node.js
applications to access IBM DB2 for i objects and IBM i system resources and objects.

To find out everything about running Node.js applications on IBM i, see the IBM i Open Source
Technologies support page.

Related information
IBM i Open Source Resources

IBM HTTP Server for i 197

http://www.ibm.com/systems/i/software/netdata/
https://www.ibm.com/support/pages/node/1128513
https://www.ibm.com/support/pages/node/1128513
https://ibm.github.io/ibmi-oss-resources/

PHP
Hypertext Preprocessor (PHP) is one of the world's most popular server-side scripting language for
building dynamic, data-driven Web applications.

PHP is a powerful, open, and easy-to-use Web application environment that has the support of a
large community with thousands of applications and components to share. It is an open source
scripting language that is designed for Web application development. PHP is widely used for content
management, customer relationship management, database access, forums, blogs, wikis, and other Web-
based applications.

PHP applications are easily integrated with data in IBM DB2 for i and RPG, COBOL, and other business
applications on IBM i.

To see what options are available to run PHP scripts, see the IBM i Open Source Technologies support
page.

Related information
IBM i Open Source Resources

Python
Python is an agile, dynamically typed, expressive, open source programming language that supports
multiple programming philosophies, including procedural, object-oriented, and functional.

Python is a popular high-level programming language that is easily extensible through the use of third-
party packages and often allows powerful function to be written with few lines of code.

You can run Python applications on the IBM i platform. In addition, extensions have been created to allow
Python applications to access IBM DB2 for i objects and IBM i system resources and objects.

To find out everything about running Python applications on IBM i, see the IBM i Open Source
Technologies support page.

Related information
IBM i Open Source Resources

Running Java Web applications
Java servlets and Java server pages (JSPs) are Java programs that run on a Java application server and
extend the capabilities of the Web server.

Java servlets are Java classes that are designed to respond to HTTP requests in the context of a Web
application.

You can look at JSPs as an extension of HTML that gives you the ability to seamlessly embed snippets
of Java code within your HTML pages. These bits of Java code generate dynamic content, which is
embedded within the other HTML/XML content. A JSP is translated into a Java servlet and executed on
the server. JSP statements embedded in the JSP become part of the servlet generated from the JSP. The
resulting servlet is executed on the server.

The HTTP Server does not run Java Web applications directly. HTTP requests for Java applications are
forwarded by the HTTP Server to Java application servers. IBM provides the following Java application
servers to run Java applications:

• WebSphere Application Server

IBM's strategic Web application server and provides enterprise level support for Java servlets, JSPs,
and EJBs (Enterprise Java Beans).

• Integrated Web Application Server

A lightweight application server for Java applications that is integrated into the IBM i operating system.

198 IBM i: IBM HTTP Server for i

https://www.ibm.com/support/pages/node/1128513
https://ibm.github.io/ibmi-oss-resources/
https://www.ibm.com/support/pages/node/1128513
https://www.ibm.com/support/pages/node/1128513
https://ibm.github.io/ibmi-oss-resources/

Related information
JavaServer Pages Technology
Java Servlet Technology
WebSphere Application Server for IBM i
Integrated Web Application Server

Troubleshooting
This topic lists common problems and solutions for the IBM HTTP Server for i, the IBM Web
Administration for i, and other features associated with the product.

Important: Information for this topic supports the latest PTF levels for IBM HTTP Server for i. It is
recommended that you install the latest PTFs to upgrade to the latest level of IBM HTTP Server for i. See
the IBM HTTP Server for i Support Web page for more information.

Related information
IBM HTTP Server for i FAQs
IBM HTTP Server for i Support

Troubleshooting Web Administration for i
This topic lists common problems and solutions for the IBM Web Administration for i, and other features
associated with the product.

Important: Information for this topic supports the latest PTF levels for IBM HTTP Server for i. It is
recommended that you install the latest PTFs to upgrade to the latest level of IBM HTTP Server for i. See
the IBM HTTP Server for i Support Web page for more information.

List of symptoms:

• “Symptom: Cannot read or write to QUSRSYS/QATMHINSTC” on page 199
• “Symptom: Web browser problems with HTTP Server” on page 200
• “Symptom: ADMIN server will not start” on page 200
• “Symptom: HTTP Server will not start or functions will not work” on page 200
• “Symptom: Unknown server type when working with HTTP Servers in ADMIN” on page 201
• “Symptom: All servers show status 'Stopped'” on page 201
• “Symptom: Cannot access ADMIN or some functions do not work” on page 201
• “Symptom: User Profile does not have *IOSYSCFG” on page 201
• “Symptom: Cannot create new HTTP Server instance” on page 202
• “Symptom: Net.Data error” on page 202
• “Symptom: Error occurred opening file” on page 202

Symptom: Cannot read or write to QUSRSYS/QATMHINSTC
Cause

The Web Administration for i interface uses the IBM Toolbox for Java. When reading and writing files
in QSYS, the Java Toolbox sometimes uses the DDM server. If the DDM server is not running, this
may result in problems reading or writing the QUSRSYS/QATMHINSTC file containing HTTP Server
definitions.

Solution
On an IBM i command line, enter STRTCPSVR *DDM.

IBM HTTP Server for i 199

http://java.sun.com/products/jsp/
http://java.sun.com/products/servlet/
http://www.ibm.com/systems/i/software/websphere/
http://www.ibm.com/systems/i/software/ias/
http://www.ibm.com/systems/i/software/http/services/service.html
http://www.ibm.com/systems/i/software/http/services/faq.html
http://www.ibm.com/systems/i/software/http/services/service.html
http://www.ibm.com/systems/i/software/http/services/service.html

Symptom: Web browser problems with HTTP Server
Cause

Your Web browser may not be configured correctly.
Solution

Below is a list of common problems and solutions for your Web browser.
Miscellaneous Microsoft Internet Explorer errors related to incorrect interpretation of HTTP/1.1
in response

Microsoft Internet Explorer sends requests in HTTP/1.1 format but seems to only accept
responses in HTTP/1.0 format. The work around is to tell HTTP Server the request came in as
HTTP/1.0 format.

Fore example: BrowserMatch "MSI 4\.0b2;" downgrade-1.0 force-response-1.0

URL not found when clicking on a file in a directory listing from Netscape
If AlwaysDirectoryIndex is set to OFF and a URL for a directory without a trailing slash is
requested, then Netscape does not request the file relative to the director in which the file exists
in the resulting directory listing.

Microsoft Internet Explorer does not display customized error messages
If Internet Explorer is not displaying the customized error messages, check to see if the
preferences for the browser are set to show friendly HTTP error messages. Disable this preference
and the customized error massages should display properly.

When using HTTPS, Microsoft Internet Explorer shows pages that were cached when using HTTP
If the browser is showing cached pages instead of connecting to the server using SSL, clear the
browser's cache.

Prompted for password when using certificate for client authentication
If you are using a Certificate Authority that offers the option to protect the private key of your
certificate with a password (such as for the Microsoft Internet Explorer browser), and you use the
certificate for client authentication, you are prompted for the password after about 2 minutes of
idle time. This happens even if you have disabled SSLV2 in the browser being used and in the
server because you are trying to use the longer SSLV3 cache time-out interval. This is a security
feature that protects your private key if you are away form your client, even though it may look like
an SSLV3 caching problem.

Certificate not recognized by browser
If you add a certificate to your browser, the browser may not recognize that there is a new
certificate until you restart your computer.

Symptom: ADMIN server will not start
Solution

Check to make sure you have the proper authorities. See “User profiles and required authorities for
HTTP Server” on page 31 for specific authority and profile information.

Databases fail to deploy

Symptom: HTTP Server will not start or functions will not work
Solution

General items to check:

1. Check /QIBM/UserData/HTTPA/admin/logs, HTTPAdmin.log, error_log, and any other logs you may
have. More information on the cause of the problem may be found there.

2. Use CHKPRDOPT to 57XXDG1, SS1, TC1 and JV1.
3. Check joblog for user QTMHHTTP.
4. Check QTMHHTTP and QTMHHTP1 user profiles.
5. Verify that *PUBLIC is not *EXCLUDEd from '/' (Use WRKLNK '/' and take option 9).

200 IBM i: IBM HTTP Server for i

6. Verify that QSERVER and QUSRWRK subsystems are running.

Error messages:

ZSRV_MSG0252: SSL initialization operation failed, return code error = 107
107 is the Secure socket API error code, it means GSK_KEYFILE_CERT_EXPIRED. You may be able
to circumvent this problem by going to DCM to extend the validity.

Error ZSRV_MSG0358
Found in admin log. Verify that there is a host table entry in CFGTCP Option 10 that matches the
host + domain name in CFGTCP Option 12, and set 'Host Name Search Priority' to *LOCAL.

Error ZUI_50004 - 'no *IOSYSCFG authority'
Verify that user has *IOSYSCFG Authority. If *IOSYSCFG is granted by a GROUP profile, verify that
PTF SF65588 (V4R5) is applied. Check that there are NO user .jar files in the /QIBM/ProdData
directory path - this directory is for IBM use only.

Error HTP8015
Verify that the latest PTFs for DG1 product are applied.

Error CEE0200
Verify that 57XXJV1 Options *Base, 5, and 6 are installed,

Error ZSRV_MSG0302 :User qsecofr:authentication failure for "/":1
Known problem with 128 character passwords on V5R1. HTTP servers cannot use 128 character
passwords. You may be able to circumvent this problem by changing the password in the user
profile to CAPITAL letters and using CAPITAL letters to log into the ADMIN screen.

ZSRV_MSG0252: SSL initialization operation failed, return code error = 107.
107 is the Secure socket API error code, it means GSK_KEYFILE_CERT_EXPIRED. You may be able
to circumvent this problem by going to DCM to extend the validity.

Symptom: Unknown server type when working with HTTP Servers in ADMIN
Solution

Ensure that LOOPBACK and LOCALHOST are configured to resolve to 127.0.0.1 and can be
PINGed from the IBM i command line. Verify that there are no exit programs for exit point
QIBM_QPWFS_FILE_SERV. Verify that QSERVER and QUSRWRK subsystems are running and that
current group PTF for DG1 product is applied.

Symptom: All servers show status 'Stopped'
Cause

This problem was determined to be caused by an OEM security application that registers many exit
point programs.

Solution
Remove the application to eliminate the problem.

Symptom: Cannot access ADMIN or some functions do not work
Solution

Verify the following:

• Verify that user's browser is not using a proxy to access the ADMIN server.
• Verify latest DG1 PTF's.
• Verify that user profiles QTMHHTTP and QTMHHTP1 are enabled.

Symptom: User Profile does not have *IOSYSCFG
Solution

In the HTTPAdmin.log you will find error: 'NoRouteToHostException'. Do the following:

IBM HTTP Server for i 201

• Verify that 127.0.0.1, LOOPBACK and LOCALHOST are configured and work.

Symptom: Cannot create new HTTP Server instance
Solution

Verify LOCALHOST , LOOPBACK and 127.0.0.1 exist and work.

Symptom: Net.Data error
Include object specified in /QIBM/ProdData/HTTPSVR/MRIXXX/Macro/qzhamsg.nds at line 208

Solution
Verify that directory /QIBM/ProdData/HTTPSVR/Macro/ contains only objects that are appropriate
to the current OS version .

Symptom: Error occurred opening file
Cause

If your HTTP Server configuration uses the Rewrite directive and does not have the proper access for
QTMHHTTP configured, your server will not start.

Solution
Make sure QTMHHTTP has *RWX access authority to the /tmp directory.

Related information
“Troubleshooting HTTP Server” on page 202
This topic lists common problems and solutions for the IBM HTTP Server for i and other features
associated with the product.
IBM HTTP Server for i FAQs
IBM HTTP Server for i Support

Troubleshooting HTTP Server
This topic lists common problems and solutions for the IBM HTTP Server for i and other features
associated with the product.

Important: Information for this topic supports the latest PTF levels for IBM HTTP Server for i. It is
recommended that you install the latest PTFs to upgrade to the latest level of IBM HTTP Server for i. See
the IBM HTTP Server for i Support Web page for more information.

List of symptoms:

• “Symptom: Error 404 on HTTP Server” on page 202
• “Symptom: HTTP Server has a slow response” on page 203
• “Symptom: Error 500 on HTTP Server” on page 203
• “Symptom: HTTP Server on port 80 does not start” on page 203
• “Symptom: Web browser problems with HTTP Server” on page 204
• “Symptom: HTTP Server will not start or functions will not work” on page 205
• “Symptom: Error occurred opening file” on page 205
• “Symptom: WebSphere Portal authentication performance problems” on page 206

Symptom: Error 404 on HTTP Server
Cause

HTTP Server is not able to find the resource that was requested or the user profile on HTTP Server
does not have authority to the requested resource.

Solution
Check the following:

202 IBM i: IBM HTTP Server for i

http://www.ibm.com/systems/i/software/http/services/faq.html
http://www.ibm.com/systems/i/software/http/services/service.html
http://www.ibm.com/systems/i/software/http/services/service.html

• Make sure the file exists.
• Make sure that the user profile used to access the resource has object authority. The user profile

QTMHHTTP is used by default. The user profile QTMHHTP1 is used by default when the request is a
CGI program.

Symptom: HTTP Server has a slow response
Solution

Refer to the following:

• “Managing HTTP Server performance” on page 102

Symptom: Error 500 on HTTP Server
Cause

A program on your HTTP Server has failed or there is an error in your CGI program.
Solution

Check the following:

• Check the server Primary job log, QSYSOPR messeges, error log and CGI job logs for more
information.

• If you have not used the IBM Web Administration for i interface to create an HTTP Server
configuration, a required directive may be missing from the configuration file. View the configuration
file with the Web Administration for i interface for possible errors.

Symptom: HTTP Server on port 80 does not start
Cause

By default, APACHEDFT server autostart setting is *GLOBAL. If, in addition, the global server setting
for autostart is "Yes", then APACHEDFT server will start during STRTCP command processing.
APACHEDFT server uses port 80 and may cause any other HTTP Server using port 80 to not start.

Solution
Do the following:

If you HTTP Server does not start or appears to start, but then stops, check the following:

1. The cause of the problem may be in the job log. Use WRKACTJOB immediately after the server is
started. If the job is active, the enter WRKACTJOB to work with job and display the job log. If the job
is not active, then enter WRKSPLF SELECT(QTMHHTTP) to find the name of the server and display
the spool file.

2. If you have configured the error logs, then the cause of the problem may be in the error log. For
example, /www/myserver/logs/basic_error_log, where "myserver" is the name of your
HTTP Server.

Note: If the error messages have been customized, the error will not be identified in the same
manner as the above example.

If these steps do not help, then try starting the server with verbose tracing. See Manage server
performance for HTTP Server for tracing.

By default, APACHEDFT server autostart setting is *GLOBAL. If, in addition, the global server setting
for autostart is "Yes", then APACHEDFT will start during STRTCP command processing. APACHEDFT
server uses port 80 and may cause any other HTTP Server using port 80 to not start. To avoid this
condition, you can :

• Change APACHEDFT server configuration autostart setting to "No".
• Change APACHEDFT server configuration to use a port other than 80.

To change the autostart value on APACHEDFT server, do the following:

1. Click the Manage tab.

IBM HTTP Server for i 203

2. Click the HTTP Servers subtab.
3. Select APACHEDFT from the Server list.
4. Expand Server Properties.
5. Click General Server Configuration.
6. Click the General Settings tab in the form.
7. Select No (instead of *GLOBAL or Yes) from the Autostart list.
8. Click OK.

To change the port number on APACHEDFT server, do the following:

1. Click the Manage tab.
2. Click the HTTP Servers subtab.
3. Select APACHEDFT from the Server list.
4. Expand Server Properties.
5. Click General Server Configuration.
6. Click the General Settings tab in the form.
7. Select the IP address and port from the Server IP addresses and ports to listen on table.
8. Enter a new value for the port number in the Port column.
9. Click Continue.

10. Click OK.

As a final precaution, make sure APACHEDFT server is not started by doing the following:

1. Click the Manage tab.
2. Click the All Servers subtab.
3. Click the All HTTP Servers tab.
4. Select APACHEDFT from the table.
5. Click Stop.

Symptom: Web browser problems with HTTP Server
Cause

Your Web browser may not be configured correctly.
Solution

Below is a list of common problems and solutions for your Web browser.
Miscellaneous Microsoft Internet Explorer errors related to incorrect interpretation of HTTP/1.1
in response

Microsoft Internet Explorer sends requests in HTTP/1.1 format but seems to only accept
responses in HTTP/1.0 format. The work around is to tell HTTP Server the request came in as
HTTP/1.0 format.

Fore example: BrowserMatch "MSI 4\.0b2;" downgrade-1.0 force-response-1.0

URL not found when clicking on a file in a directory listing from Netscape
If AlwaysDirectoryIndex is set to OFF and a URL for a directory without a trailing slash is
requested, then Netscape does not request the file relative to the director in which the file exists
in the resulting directory listing.

Microsoft Internet Explorer does not display customized error messages
If Internet Explorer is not displaying the customized error messages, check to see if the
preferences for the browser are set to show friendly HTTP error messages. Disable this preference
and the customized error massages should display properly.

204 IBM i: IBM HTTP Server for i

When using HTTPS, Microsoft Internet Explorer shows pages that were cached when using HTTP
If the browser is showing cached pages instead of connecting to the server using SSL, clear the
browser's cache.

Prompted for password when using certificate for client authentication
If you are using a Certificate Authority that offers the option to protect the private key of your
certificate with a password (such as for the Microsoft Internet Explorer browser), and you use the
certificate for client authentication, you are prompted for the password after about 2 minutes of
idle time. This happens even if you have disabled SSLV2 in the browser being used and in the
server because you are trying to use the longer SSLV3 cache time-out interval. This is a security
feature that protects your private key if you are away form your client, even though it may look like
an SSLV3 caching problem.

Certificate not recognized by browser
If you add a certificate to your browser, the browser may not recognize that there is a new
certificate until you restart your computer.

Symptom: HTTP Server will not start or functions will not work
Solution

General items to check:

1. Check /QIBM/UserData/HTTPA/admin/logs, HTTPAdmin.log, error_log, and any other logs you may
have. More information on the cause of the problem may be found there.

2. Use CHKPRDOPT to 57XXDG1, SS1, TC1 and JV1.
3. Check joblog for user QTMHHTTP.
4. Check QTMHHTTP and QTMHHTP1 user profiles.
5. Verify that *PUBLIC is not *EXCLUDEd from '/' (Use WRKLNK '/' and take option 9).
6. Verify that QSERVER and QUSRWRK subsystems are running.

Error messages:

Error ZSRV_MSG0358
Found in admin log. Verify that there is a host table entry in CFGTCP Option 10 that matches the
host + domain name in CFGTCP Option 12, and set 'Host Name Search Priority' to *LOCAL.

Error ZUI_50004 - 'no *IOSYSCFG authority'
Verify that user has *IOSYSCFG Authority. If *IOSYSCFG is granted by a GROUP profile, verify that
PTF SF65588 (V4R5) is applied. Check that there are NO user .jar files in the /QIBM/ProdData
directory path - this directory is for IBM use only.

Error HTP8015
Verify that the latest PTFs for DG1 product are applied.

Error CEE0200
Verify that 57XXJV1 Options *Base, 5, and 6 are installed,

Error ZSRV_MSG0302 :User qsecofr:authentication failure for "/":1
Known problem with 128 character passwords on V5R1. HTTP servers cannot use 128 character
passwords. You may be able to circumvent this problem by changing the password in the user
profile to CAPITAL letters and using CAPITAL letters to log into the ADMIN screen.

ZSRV_MSG0252: SSL initialization operation failed, return code error = 107.
107 is the Secure socket API error code, it means GSK_KEYFILE_CERT_EXPIRED. You may be able
to circumvent this problem by going to DCM to extend the validity.

Symptom: Error occurred opening file
Cause

If your HTTP Server configuration uses the Rewrite directive and does not have the proper access for
QTMHHTTP configured, your server will not start.

IBM HTTP Server for i 205

Solution
Make sure QTMHHTTP has *RWX access authority to the /tmp directory.

Symptom: WebSphere Portal authentication performance problems
If you are experiencing performance problems when users are logging into Portal (the authentication
phase), the following indicators may help determine that the filters are causing these performance
problems:

• Your LDAP server is populated with a large number of entries.
• When you type WRKACTJOB in a console command line, QSQSRVR jobs are using an excessive amount of

CPU during the Portal authentication (sign on) phase.
• When two Portal users sign on concurrently, one sign on request takes two times as long as the other

request.

Cause
You may encounter a performance problem if you configure a secure WebSphere Portal server
with LDAP. This problem only occurs if you use the Create WebSphere Portal wizard in
the Web Administration for i interface. When configuring LDAP with the WebSphere Portal
wizard, the two LDAP fields LDAPUserFilter and LDAPGroupFilter are configured with default
values depending on the type of LDAP server being used. For example, if you are securing
your WebSphere Portal server using the IBM Directory Server, the two LDAP fields are set
to "(&(|(cn=%v)(uid=%v))(objectclass=person))" and "(&(cn=%v)(|(objectclass=groupOfUniqueNames)
(objectclass=groupOfNames)(objectclass=group)))", respectively. By configuring the fields with the
default values, the WebSphere Portal wizard allows the wpsadmin Portal administrator to successfully
login and existing LDAP entries can be used once the Portal server is successfully configured and
secured. However, if the LDAP server has a large number of entries, or if many additional users are
added to the LDAP server, Portal's authentication performance may be noticeably impacted.

Solution
If you determine that the filters, as configured by the WebSphere Portal wizard, are causing
authentication performance problems, complete the following steps:

1. Start the Web Administration for i interface.
2. Click the Manage tab.
3. Click the Application Servers subtab.
4. Expand Tools.
5. Click Launch Administrative Console.
6. Login to the console and click OK.
7. Expand Security.
8. Expand User Registries.
9. Click LDAP.

10. Click Advanced LDAP Settings in the Additional Properties table.
11. Edit the User Filter and the Group Filter properties values to more precise values to increase

authentication performance. For more information about this syntax, see the IBM Tivoli Directory
Server for i (LDAP) and the WebSphere Portal and Lotus Web Content Management Web site.

1. Edit the User Filter and the Group Filter properties values to more precise values to increase
authentication performance. For more information about this syntax, see the IBM Tivoli Directory
Server for i (LDAP) and the WebSphere Portal and Lotus Web Content Management Web site.

2. Click OK.
3. Click Save to apply changes to the master configuration.
4. Click Save again on the next page.

Note: You may need to restart your WebSphere Application Server for these changes to take affect.

206 IBM i: IBM HTTP Server for i

http://www.ibm.com/websphere/portal/library/
http://www.ibm.com/websphere/portal/library/

Related information
Application servers
Business solutions
IBM HTTP Server for i FAQs
IBM HTTP Server for i Support
WebSphere Portal and Lotus Web Content Management

Troubleshooting CGI programs
This topic lists common CGI program problems and solutions.

You can use the Work with Active Jobs (WRKACTJOB) command to check on the status of server jobs. To
start Work with Active Jobs command, type the following in during a 5250 session on a command line:

WRKACTJOB SBS(QHTTPSVR) JOB(server_instance)

Where server_instance is the name of your HTTP Server instance.

When the server is not processing a request, the Work with Active Jobs display will show several server
jobs. The first job is the manager job for the server instance. (Function PGM-QZHBMAIN). Server jobs
showing PGM - QZSRLOG are logging jobs. Server jobs showing PGM - QZSRHTTP are primary jobs. (There
will be 2 of these unless you specify HotBackup Off in your configuration.) Only one of these jobs will be
actively handling requests. Jobs showing PGM -QZSRCGI are CGI jobs.

To find out if server jobs have ended abnormally, check the spooled files that contain the job logs
(QPJOBLOG) for the user profile QTMHHTTP.

More CGI troubleshooting tips and hints can be found at the Troubleshooting your CGI program Web
page on the HTTP Server Web site.

The symptoms that are described in this section would be seen running a request to the server at a
browser.

List of symptoms:

• “Symptom: Connection abandoned, dropped, or no data sent” on page 207
• “Symptom: The system is not converting or handling special characters as expected” on page 209
• “Symptom: Error 500: Bad script request -- script '/qsys.lib/qsyscgi.lib/progname.pgm' not found or not

executable” on page 209
• “Symptom: A browser request that runs a CGI program runs longer than expected. The browser keeps

waiting for a response” on page 209
• “Symptom: A CGI written form is not cached in the browser” on page 210
• “Symptom: The configuration uses the CGIConvMode value of %%MIXED/MIXED%% and the input

characters your CGI program receives are incorrect” on page 210

Symptom: Connection abandoned, dropped, or no data sent
Note: Different browser issues different messages when no data is returned to the browser. Abandoned,
dropped or no data will be displayed at the browser.

Cause: The system has incorrectly formatted a CGI program that writes data to standard output. The data
that is written to stdout may have one of the following problems:

• No data written to stdout
• No “Content-type”, “Location”, or “Status” line
• No new line character after HTTP response header
• No data after HTTP response header.

IBM HTTP Server for i 207

http://www.ibm.com/systems/i/software/http/services/faq.html
http://www.ibm.com/systems/i/software/http/services/service.html
http://www.ibm.com/websphere/portal/library/
http://www.ibm.com/systems/i/software/http/services/cgitroubleshooting.html

Solution: Write the data to stdout with “Content-type: ” line with two new line characters (“\n”) and the
data to be returned to the client. For example:

Content-type: text/plain\n
 \n
 This data is returned to the client

Cause: CGI program caused an exception message that was not handled by the CGI program.

Solution: If the system does not indicate a message in the joblog for the active server jobs, do a WRKSPLF
QTMHHTTP. Check for server jobs that ended when the system ran the CGI program. Change the program
to monitor for the message not being handled.

Cause: The program being called does not exist in the library.

Solution: Check the library for the correct name.

Cause: There is a bug in your user-created CGI program.

Solution: You need to set up a scaffolding environment to debug the CGI application prior to integration
with server:

1. Issue the command ENDTCPSVR *HTTP HTTPSVR(server_instance)
2. Issue the command STRTCPSVR *HTTP HTTPSVR(server_instance '-minat 1 -maxat 1')

Note: You also may need to change script_timeout and output_timeout to be larger. If you are stepping
through your code, it may take too long and script_timeout or output_timeout may expire. This causes
the server to terminate the job you are debugging.

Ending and starting the server ensures that only one worker job is running.

a. Issue the command WRKACTJOB JOB(server_instance)

Look for the CGI jobs as described above.

Select option 10 to display the job log.

If your CGI program is single thread capable, message HTP2001 will be in the job log. If your CGI
program is multithread capable, message HTP2002 will be in the job log.

Record the Number:, User:, and Job: values for your CGI program job.

Press F12.

Issue the command STRSRVJOB <Number/User/Job>.
b. For the user CGI program, issue the command STRDBG <usercgilib/cgipgm>

If the program accesses a database file on the server, you must specify UPDPROD(*YES). See the
help for the STRDBG command.

Note: You will need additional authority to troubleshoot the CGI program. For example, you will
need authority to the QTMHHTTP user profile.

c. Set breakpoints in the program.
d. On the browser, issue a URL that would run the CGI program.
e. After the system issues an HTTP request on the browser, return to the session that ran STRSRVJOB.

It should have stopped at a program breakpoint.

Ending and starting the server ensures that only one worker thread is running.
3. When finished with debug, reset the server values:

a. Issue the command ENDDBG
b. Issue the command ENDSRVJOB
c. Issue the command WRKACTJOB SBS(QHTTPSVR) JOB(server_instance)
d. Issue the command STRTCPSVR *HTTP HTTPSVR(server_instance)

208 IBM i: IBM HTTP Server for i

Symptom: The system is not converting or handling special characters as expected
Cause: The browser inserts special characters using escape sequences which requires special handling
by the CGI program.

Solution: Browsers create escape sequences (ISO 8859) for special characters (for example, : . , ! @ #
$ % *, and so on.) These characters come into standard input or into the QUERY_STRING environment
variable in the form “%xx”, where “xx” is the two characters representing the ASCII hexadecimal value.
(For example, a comma comes in as “%2C”. For CGI input mode %%MIXED%%, these three characters
“%xx” are converted to EBCDIC, but the values of “xx” are not changed to the corresponding EBCDIC
code points.

There are two approaches to handling escape sequences:

1. Convert the EBCDIC representation of the ASCII escape sequence to an EBCDIC escape sequence or
use CGI input mode %%EBCDIC%%. This is necessary because the QtmhCvtDB API assumes that
escape sequences represent EBCDIC code points, and the API converts them to the corresponding
EBCDIC character. For example, %2C, which represents an ASCII comma, is converted to EBCDIC
X'2C', which is not an EBCDIC comma.

2. Convert the EBCDIC representation of the ASCII escape sequence to the EBCDIC equivalent character.

The following approach outlined in the first conversion technique listed above:

Note: The hex representation of the %2C from the browser was 0x253243. When this escape sequence is
converted to EBCDIC, it ends up as 0x6CF2C3.

1. Convert the “xx” in “%xx” to the corresponding EBCDIC character. In this case 0xF2C3 is converted to
0x2C.

2. For the first approach, convert the EBCDIC character to the two-byte form. Then you can reinsert
the two bytes back into the input stream in the same place they originally appeared. The 0x6B
would be converted to 0xF6C2, and the resultant escape sequence would be 0x6CF6C2. For the
second approach, leave the data in its EBCDIC form and replace the original escape sequence (three
characters) with the single character. In this case, replace 0x6CF2C3 with 0x6B.

Note: The CGI program should preserve an escape sequence that represents the character “%”.
3. Call QtmhCvtDB to convert the input stream.

Note: 7-bit ASCII CCSID 367 is standard on browsers.

Symptom: Error 500: Bad script request -- script '/qsys.lib/qsyscgi.lib/
progname.pgm' not found or not executable
Cause: Configuration or authority error.

This message can appear for the following reasons:

• The script does not exist.
• There is a problem with the script, for example, a send error or function check.
• The user QTMHHTP1 does not have authority to run this program.

Solution: Check the configuration and authorities given to the CGI program.

Symptom: A browser request that runs a CGI program runs longer than expected.
The browser keeps waiting for a response
Cause: The CGI application that was running has taken a function check.

Solution: Look at the QSYSOPR message queue for a message that requires a reply sent from the CGI
program that was running. Note the statement where the program is failing. Use the procedure described
under “Symptom: Error 500”.

IBM HTTP Server for i 209

Symptom: A CGI written form is not cached in the browser
Using the back button on the browser results in a request to the server. The form contains no headers or
meta tags telling the browser to request (not cache) the page.

Cause: The server is sending a last-modified header.

Solution: Use the —nolastmod HTTP Server startup value to specify that the server should not send a
last-modified header.

Symptom: The configuration uses the CGIConvMode value of %%MIXED/MIXED%%
and the input characters your CGI program receives are incorrect
Cause: The file CCSID language for your server has characters that do not match the EBCDIC code page
37. Use the EBCDIC mode rather than the MIXED mode.

Solution: Configure CGIConvMode for %%EBCDIC/MIXED%%.

Related information
“Troubleshooting HTTP Server” on page 202
This topic lists common problems and solutions for the IBM HTTP Server for i and other features
associated with the product.
IBM HTTP Server for i FAQs
IBM HTTP Server for i Support

Reference information for HTTP Server
This topic provides additional reference documentation for IBM HTTP Server for i and the IBM Web
Administration for i interface.

See “Related information for HTTP Server” on page 660 for additional reference documentation.

Directives for HTTP Server
This topic provides information about the supported directives for IBM HTTP Server for i.

The supported modules can be found in the HTTP Server directive finder.

See “Directives no longer supported on HTTP Server” on page 212 for modules no longer supported for
this version of HTTP Server.

Note: This information is provided for reference only. Use the IBM Web Administration for i to set up and
manage your HTTP Server.

Directive term definitions for HTTP Server
This topic provides information about the directive terms used for IBM HTTP Server for i.

Each configuration directive is described using the following attributes:

Module: directive existence

Syntax: directive_name arguments

Default: directive_name default_value

Context: context_list

Override: directive override activation

Origin: origin

Usage Considerations: important usage considerations required in the server configuration file

Example: example of directive and its arguments

210 IBM i: IBM HTTP Server for i

http://www.ibm.com/systems/i/software/http/services/faq.html
http://www.ibm.com/systems/i/software/http/services/service.html

Module
This attribute identifies the module the directive is associated with.

Syntax
This attribute indicates the format of the directive as it would appear in a configuration file. This syntax
is directive-specific, so refer to the text of the directive's other attributes for details. Strings should be
quoted. The string ("word1 word2") contains spaces. If the strings do not contain spaces they do not need
to be quoted.

Default
This attribute specifies if the directive has a default value. For example, if you omit the directive from your
configuration entirely, HTTP Server will behave as though you set it to a particular value. If there is no
default value, this attribute says "none".

Context
This attribute indicates where in the server's configuration the directive is supported. It's a comma-
separated list of one or more of the following values:

server config
The directive is valid in the global server configuration.

virtual host
The directive is valid in <VirtualHost> containers.

directory
The directive is valid in <Directory>, <Location>, and <Files> containers, subject to the restrictions
outlined in the "“Fundamental directive, context, and server area concepts on HTTP Server” on page
13" topic.

directory (but not location)
The directive is valid in <Directory>, <Files> containers, subject to the restrictions outlined in the
"“Fundamental directive, context, and server area concepts on HTTP Server” on page 13" topic, but is
not valid in the <Location> container.

.htaccess
The directive is valid in per-directory .htaccess files. It may not be processed, however, depending
upon the overrides currently active. For more information on how to use .htaccess files, see the
Apache HTTP Server Project Web site.

Not in Limit
The directive is not valid in <Limit> containers, subject to the restrictions outline in the "“Fundamental
directive, context, and server area concepts on HTTP Server” on page 13" topic.

All
The directive is valid in all contexts.

Note: The directive is only allowed within its supported context; if you try to use it elsewhere, you will
receive a configuration error that will either prevent the server from handling requests, or will keep the
server from starting. The valid context for a directive is actually the result of a "Boolean OR" of all of
the listed contexts. In other words, a directive that is marked as being valid in "server config, .htaccess"
can be used in the server configuration file and in .htaccess files, but not within any <Directory> or
<VirtualHost> containers.

Override
This attribute indicates which configuration override must be active in order for the directive to be
processed when it appears in a .htaccess file. If the directive's context does not permit it to appear
in .htaccess files, this attribute is none.

IBM HTTP Server for i 211

http://httpd.apache.org/

Origin
This attribute reveals the origin of an HTTP directive. Possible values for this attribute include:

IBM
A new directive created for the IBM HTTP Server for i Web server.

Modified
An Apache server directive modified to support the IBM HTTP Server for i Web server.

Apache
An unmodified Apache server directive.

Usage Considerations
This attribute specifies if important usage considerations such as a LoadModule are required in the server
configuration file prior to using the directive. If this attribute is not available, the directive does not require
any usage considerations.

Example
This attribute specifies at least one example for directives that take a file path name as an argument. It
will include both a root example and a QSYS.LIB example, if both apply.

Directives no longer supported on HTTP Server
This topic provides information about what directives are no longer supported by IBM HTTP Server for i.

The following directives are no longer supported on HTTP Server.

Directives

• “AddModule” on page 212
• “ClearModuleList” on page 213
• “IconPath” on page 213
• “Port” on page 214

AddModule
Module: core

Syntax: AddModule module [module ...]

Default: none

Context: server config

Override: none

Origin: Apache

Example: AddModule mod_cgi

The AddModule directive allows the server to activate specific modules in the server after a
ClearModuleList has been performed. The server comes with a pre-loaded list of active modules. Only
those modules are valid. A list of valid modules can be obtained using the '-l' option on the command line.
The example above would activate the module mod_cgi. If this module is already active then the directive
will be ignored.

Parameter: module

• Module is any valid module in the pre-loaded list that came with the HTTP Server.

See also “ClearModuleList” on page 213.

212 IBM i: IBM HTTP Server for i

ClearModuleList
Module: core

Syntax: ClearModuleList

Default: none

Context: server config

Override: none

Origin: Apache

Example: ClearModuleList

The ClearModuleList directive will clear the built-in list of active modules provided by the server. To
reactivate this module list use the “AddModule” on page 212 directive.

IconPath
Module: mod_auto_index

Syntax: IconPath

Default: IconPath /icons

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: IBM

Example: IconPath /myicons/small/

The IconPath directive to specify URL information to be added at the beginning of each icon-URL specified
on the following directives:

• AddIcon
• AddIconByType
• AddIconByEncoding
• DefaultIcon

The value that you specify on this directive is added to the icon-URL value on each of the other directives
to form the full request URL for each icon. The following path and directory is the default location for
icons:

/QIBM/ProdData/HTTPA/icons

Special Usage Considerations:

• You must enable your server for serving the icons from the default location by adding the following
statement to your configuration:

Alias /icons /QIBM/ProdData/HTTPA/icons

• You must use this directive in your configuration before any of the other icon directives that are to use
the path (DefaultIcon, AddIcon, AddIconByType, and AddIconByEncoding).

For example, a configuration containing:

Alias /icons/small /QIBM/ProdData/HTTPA/icons/small
IconPath /icons/small/
AddIcon blank.gif ^^BLANKICON^^

IBM HTTP Server for i 213

This causes the server to generate a request for the directory list icon as /icons/small/blank.gif. The
server uses the alias directive to resolve the request to the proper file. This is different from Apache than
on other platforms.

On another platform you would use:

Alias /icons /full/icon/path
AddIcon /icons/blank.gif ^^BLANKICON^^

IconPath is an IBM i specific directive for Apache; therefore, precautions must be taken if the Apache
configuration file is modified manually. On the IBM i server, you would use:

Alias /icons /QIBM/ProdData/HTTPA/icons
AddIcon blank.gif ^^BLANKICON^^

Since IconPath is set to /icons/ by default, it will be prepended to 'blank.gif' when the AddIcon directive is
used.

Port
Module: core

Syntax: Port number

Default: Port 80

Context: server config

Override: none

Origin: Apache

Example: Port 8080

The Port directive has two behaviors:

• In the absence of any Listen directives specifying a port number, a Port directive given in the "main
server" (for example, outside any <VirtualHost> section) sets the network port on which the server
listens. If there are any Listen directives specifying the port number then Port has no effect on what
address the server listens at. The use of the Listen directive causes all Port directives to be ignored.

• The Port directive sets the SERVER_PORT environment variable (for CGI and SSI), and is used when
the server must generate a URL that refers to itself (for example when creating an external redirect to
itself). This behavior is modified by UseCanonicalName.

In no event does a Port setting affect what ports a VirtualHost responds on, the VirtualHost directive itself
is used for that. The primary behavior of Port should be considered to be similar to that of the ServerName
directive. The ServerName and Port together specify what you consider to be the canonical address of the
server. (See also UseCanonicalName.)

Parameter: number

• Where number is a number from 0 to 65535; some port number (especially below 1024) are
reserved for particular protocols. The standard port for http protocol is 80.

Note: The “Listen” on page 337 directive is used as an alterative to Port.

Module mod_access
Module mod_access contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_access provides access control based on a client's hostname or IP address.

It's a compatibility module with previous version of HTTP Server. The directives provided by this module
have been deprecated by the new authz refactoring. Please see mod_authz_host.

214 IBM i: IBM HTTP Server for i

Module mod_actions
Module mod_actions contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_actions provides for executing CGI scripts based on media type or request method.

Directives

• “Action” on page 215
• “Script” on page 215

Action
Module: mod_actions

Syntax: Action action-type cgi-script

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: Action application/x-www-form-urlencoded /cgi-bin/file.pgm

The Action directive adds an action, which will activate CGI script when action-type is triggered by the
request.

Example: MIME type

Requests for files of a particular MIME content type:
Action image/gif /cgi-bin/images.pgm

In this example, requests for files with a MIME content type of image/gif will be handled by the specified
cgi script /cgi-bin/images.pgm.

Example: File extension

Files of a particular file extension
AddHandler my-file-type .xyz
Action my-file-type /cgi-bin/program.pgm

In this example, requests for files with a file extension of .xyz are handled by the specified cgi script /
cgi-bin/program.pgm.

Parameter One: action-type

• The action-type can be either a handler or a MIME content type. It sends the URL and file path of
the requested document using the standard CGI PATH_INFO and PATH_TRANSLATED environment
variables. The handler used for the particular request is passed using the REDIRECT_HANDLER
variable.

Parameter Two: CGI-script

• The cgi-script is the URL-path to a resource that has been designated as a CGI script using
“ScriptAlias” on page 222 or “AddHandler” on page 493.

Script
Module: mod_actions

Syntax: Script method CGI-script

Default: none

IBM HTTP Server for i 215

Context: server config, virtual host, directory

Override: none

Origin: Apache

Example: Script PUT /cgi-bin/bob.pgm

The Script directive adds an action, which will activate CGI-script when a file is requested using the
method of method. It sends the URL and file path of the requested document using the standard CGI
PATH_INFO and PATH_TRANSLATED environment variables. Method names are case-sensitive, so Script
PUT and Script put have two entirely different effects.

Parameter One: method

• The method names listed can be one or more of the following: GET, POST, PUT, DELETE, CONNECT,
OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK and UNLOCK. User defined
method names can also be used. The method name is case-sensitive. If GET is used it will also
handle HEAD requests.

Parameter Two: CGI-script

• The CGI-script can be any valid CGI script or other resource that is capable of handling the
requested method.

Note: The CGI-script command defines default actions only. If a CGI script is called, or some other
resource that is capable of handling the requested method internally, it will do so. Also note that CGI
script with a method of GET will only be called if there are query arguments present (for example,
bob.html?hi). Otherwise, the request will proceed normally.

Module mod_alias
Module mod_alias contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_alias provides mapping for different parts of the host file system in the document tree
and also for URL redirection.

Directives

• “Alias” on page 216
• “AliasMatch” on page 217
• “MapMatch” on page 218
• “Redirect” on page 219
• “RedirectMatch” on page 220
• “RedirectPermanent” on page 222
• “RedirectTemp” on page 222
• “ScriptAlias” on page 222
• “ScriptAliasMatch” on page 223

Alias
Module: mod_alias

Syntax: Alias [URL-path] file-path | directory-path

Default: none

Context: server config, virtual host

Override: none

216 IBM i: IBM HTTP Server for i

Origin: Apache

Example: Alias /image /QIBM/UserData/pub/image

Example: Alias /httpfile/ /QSYS.LIB/AS400LIB.LIB/HTML.FILE/

This directive allows documents to be stored in the local filesystem other than under the
“DocumentRoot ” on page 313. URLs with a (%-decoded) path beginning with the value of the URL-path
parameter will be mapped to local files beginning with the value of directory-filename. Alias also allows
you to hide the file system path from users, enhancing both security of your server and the ability to
change the filesystem structure or paths without impacting the end users.

Parameter One: url-path

• The url-path paramter is any valid URL path. If you include a trailing '/' in the URL path, then
the server will require a trailing '/' in order to expand the alias. That is, if you use 'Alias /
icons/ /www/images/i/icons/' then the URL '/icon' will not be aliased.

Parameter Two: file-path | directory-path

• The file-path | directory-path parameter is any valid directory/filename combination on the system.

Note: You may need to specify additional “<Directory> ” on page 311 containers that cover the
destination of aliases. Aliasing occurs before <Directory> containers are checked, so only the destination
of aliases are affected. “<Location> ” on page 339 containers are run through once before aliases are
performed, so they will apply.

In particular, if you are creating an Alias to a directory outside of your “DocumentRoot ” on page 313, you
may need to explicitly permit access to the target directory.

Alias /image /ftp/pub/image
<Directory /ftp/pub/image>
 Require all granted
</Directory>

Any number slashes in the URL-path parameter matches any number of slashes in the requested URL-
path.

If the Alias directive is used within a “<Location> ” on page 339 or “<LocationMatch>” on page 340
section with the URL-path is omitted, then the file-path will be interpreted using expression syntax.

<Location "/image">
 Alias "/ftp/pub/image"
</Location>

<LocationMatch "/error/(?<NUMBER>[0-9]+)">
 Alias "/www/webserver/htdocs/errors/%{env:MATCH_NUMBER}.html"
</LocationMatch>

See “ScriptAlias” on page 222 for more information.

AliasMatch
Module: mod_alias

Syntax: AliasMatch regex directory-filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: AliasMatch ^/icons(.*) /www/images/HTTP_Server/icons$1

Example: AliasMatch ^/lib/docs(.*) /QSYS.LIB/DOCLIB.LIB/HTMLDOC.FILE/$1.MBR

IBM HTTP Server for i 217

This directive is equivalent to “Alias” on page 216, but makes use of standard regular expressions, instead
of simple prefix matching. The supplied regular expression is matched against the URL, and if it matches,
the server will substitute any parenthesized matches into the given string and use it as a filename.

Parameter One: regex

• The regex parameter is a regular expression that is matched against the URL. Subexpressions are
grouped within parentheses. Then parenthetically enclosed regular expressions will be substituted
in a subsequent $n statement.

Parameter Two: directory-filename

• The directory-filename parameter is any valid directory/filename that is supported on the IBM i
server. If there is a $ symbol (followed by a digit) that is not a substitution variable in the directory-
filename parameter, or there is an & symbol in the directory-filename parameter that is part of the
directory or filename, the symbol must be escaped (\).

If the directory-filename is /usr/local/apache/icons&gifs/ the & would need to be escaped as follows on
the AliasMatch directive:

AliasMatch ^/icons(.*) /usr/local/apache/icons\gifs/

One subtle difference between “Alias” on page 216 and “AliasMatch” on page 217 is that Alias will
automatically copy any additional part of the URI, past the part that matched, onto the end of the file
path on the right side, while “AliasMatch” on page 217 will not. This means that in almost all cases,
you will want the regular expression to match the entire request URI from beginning to end, and to use
substitution on the right side.

In other words, just changing “Alias” on page 216 to “AliasMatch” on page 217 will not have the same
effect. At a minimum, you need to add ^ to the beginning of the regular expression and add (.*)$ to the
end, and add $1 to the end of the replacement.

For example, suppose you want to replace this with AliasMatch:

Alias /image/ /ftp/pub/image/

This is NOT equivalent - don't do this! This will send all requests that have /image/ anywhere in them
to /ftp/pub/image/:

AliasMatch /image/ /ftp/pub/image/

This is what you need to get the same effect:

AliasMatch ^/image/(.*)$ /ftp/pub/image/$1

Of course, there's no point in using “AliasMatch” on page 217 where “Alias” on page 216 would work.
“AliasMatch” on page 217 lets you do more complicated things. For example, you could serve different
kinds of files from different directories:

AliasMatch ^/image/(.*)\.jpg$ /files/jpg.images/$1.jpg
AliasMatch ^/image/(.*)\.gif$ /files/gif.images/$1.gif

Multiple leading slashes in the requested URL are discarded by the server before directives from this
module compares against the requested URL-path.

See Regular expression notation for more information regarding regular expressions.

MapMatch
Module: mod_alias

Syntax: MapMatch regex URI

Default: none

218 IBM i: IBM HTTP Server for i

Context: server config, virtual host

Override: none

Origin: Apache

Example: MapMatch ^/icons(.*) /www/apache/icons\&gifs/

The MapMatch directive uses standard regular expressions to change a URI to a different URI. The
supplied regular expression is matched against the URL, and if it matches, the server will substitute any
parenthesized matches into the given string and use it as the URI. This is not a terminating directive. The
server will use the new URI as input to Alias, Redirect or other MapMatch directives.

Parameter One: regex

• The regex paramter is a regular expression that is matched against the URL. Subexpressions are
grouped within parentheses. The parenthetically enclosed regular expressions will be substituted in
a subsequent $n statement.

Parameter Two: URI

• The URI paramater is any valid URI that is supported on the IBM i server. If there is a $ symbol
(followed by a digit) that is not a substitution variable in the URI parameter, or there is an & symbol
in the URI parameter that is part of the URI, the symbol must be escaped (\).

If the target URI is /www/apache/icons\&gifs/ the & would need to be escaped as follows on the
MapMatch directive:

MapMatch ^/icons(.*) /www/apache/icons\&gifs/

If the target URI is /www/apache/icon$1/ the $ would need to be escaped as follows on the MapMatch
directive:

MapMatch ^/icons(.*) /www/apache/icon\$1/

See “Regular expression notation for HTTP Server” on page 631 for more information.

Redirect
Module: mod_alias

Syntax: Redirect [status] [url-path] url

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: Redirect /service http://foo2.bar.com/service

The Redirect directive maps an old URL into a new one. The new URL is returned to the client, who then
attempts to access the page with the new address. URL-path is a (%-decoded) path; any requests for
documents beginning with this path will be returned with a redirect error to a new (%-encoded) URL
beginning with url.

Parameter One: status

• The status parameter is used to return the below HTTP status codes:

IBM HTTP Server for i 219

Status Description

permanent Returns a permanent redirect status (301)
indicating that the resource has moved
permanently.

temp Returns a temporary redirect status (302). This
is the default.

seeother Returns a "See Other" status (303) indicating
that the resource has been replaced.

gone Returns a "Gone" status (410) indicating that
the resource has been permanently removed.
When this status is used the url argument
should be omitted.

If no status argument is given, the redirect will be "temporary" (HTTP status 302). This indicates to
the client that the resource has moved temporarily. Other status codes can be returned by giving the
numeric status code as the value of status. If the status is between 300 and 399, the url argument
must be present, otherwise it must be omitted. Regardless, any HTTP status given must be known
to HTTP Server.

Parameter Two: url-path

• If the url-path has a trailing slash ('/'), the url should also have a trailing slash. If the url-path does
not contain a trailing slash, the url should not either. Double check the designated url-path and the
url, or a double-slash ('//') may appear in the resulting URL. The url-path must be an absolute path,
not a relative path, even when used with .htaccess files or inside of “<Directory> ” on page 311
containers. The url-path must match the requested resource exactly or be a proper ancestor of it.

Parameter Three: url

• The url parameter should be a complete URL string, including the scheme ('http://...') and the
'server:host' portion. When the status parameter is "gone", the url argument should be omitted.

Note: Redirect directives take precedence over Alias and ScriptAlias directives, regardless of their order
in the configuration file. Redirect directives inside a Location take precedence over Redirect and Alias
directives with an URL-path.

If the Redirect directive is used within a “<Location> ” on page 339 or “<LocationMatch>” on page 340
section with the URL-path omitted, then the URL parameter will be interpreted using expression syntax.

<Location "/one">
 Redirect permanent "http://example.com/two"
</Location>

<Location "/three">
 Redirect 303 "http://example.com/other"
</Location>

<LocationMatch "/error/(?<NUMBER>[0-9]+)">
 Redirect permanent "http://example.com/errors/%{env:MATCH_NUMBER}.html"
</LocationMatch>

RedirectMatch
Module: mod_alias

Syntax: RedirectMatch [status] regex url

Default: none

Context: server config, virtual host, directory, .htaccess

220 IBM i: IBM HTTP Server for i

Override: FileInfo

Origin: Apache

Example: RedirectMatch (.*)\.gif$ http://www.anotherserver.com$1.jpg

This directive is equivalent to “Redirect” on page 219, but makes use of standard regular expressions,
instead of simple prefix matching. The supplied regular expression is matched against the URL, and if
it matches, the server will substitute any parenthesized matches into the given string and use it as a
filename.

Parameter One: status

• The status parameter is used to return the below HTTP status codes:

Status Description

permanent Returns a permanent redirect status (301)
indicating that the resource has moved
permanently.

temp Returns a temporary redirect status (302). This
is the default.

seeother Returns a "See Other" status (303) indicating
that the resource has been replaced.

gone Returns a "Gone" status (410) indicating that
the resource has been permanently removed.
When this status is used the url argument
should be omitted.

If no status argument is given, the redirect will be "temporary" (HTTP status 302). This indicates to
the client that the resource has moved temporarily. Other status codes can be returned by giving the
numeric status code as the value of status. If the status is between 300 and 399, the url argument
must be present, otherwise it must be omitted. Regardless, any HTTP status given must be known
to HTTP Server.

Parameter Two: regex

• The regex parameter is aregular expression that is matched against the URL. Subexpressions are
grouped within parentheses. Then, parenthetically enclosed regular expressions will be substituted
in a subsequent $n statement.

Parameter Three: url

• The url parameter should be a complete URL string, including the scheme ('http://...') and the
'server:port' portion. If there is a $ symbol (followed by a digit) that is not a substitution variable in
the url parameter, or there is a & symbol in the url parameter that is part of the URL, the symbol
must be escaped (\).

If the URL to redirect to is http://www.anotherserver.com/cgi-bin/welcome.cgi?
parm1=login&parm2=mainlist the & would need to be escaped as follows on the RedirectMatch directive:

RedirectMatch(.*) http://www.anotherserver.com/cgi-bin/welcome.cgi?parm1=login\&parm2=mainlist

If the URL to redirect to is http://www.anotherserver.com/htdocs/welcome$2login.html the $2 would
need to be escaped as follows on the RedirectMatch directive:

RedirectMatch (.*) http://www.anotherserver.com/htdocs/welcome\$2login.html

See “Regular expression notation for HTTP Server” on page 631 for more information.

IBM HTTP Server for i 221

RedirectPermanent
Module: mod_alias

Syntax: RedirectPermanent url-path url

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RedirectPermanent /payroll http://payroll.server.com/payroll

The RedirectPermanent directive notifies the client that the Redirect is permanent (status 301). This is
the exact equivalent to Redirect permanent.

Parameter One: url-path

• The url-path parameter is any valid URL path. If you include a trailing '/' in the URL path, then
the server will require a trailing '/' in order to expand the alias. That is, if you use 'Alias /
icons/ /www/images/i/icons/' then the URL '/icon' will not be aliased.

Parameter Two: url

• The url parameter should be a complete URL string, including the scheme ('http://...') and the
'server:host' portion. When the status parameter is "gone", the url argument should be omitted.

See “Regular expression notation for HTTP Server” on page 631 for more information.

RedirectTemp
Module: mod_alias

Syntax: RedirectTemp url-path url

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RedirectTemp /service http://foo2.bar.com/service

The RedirectTemp directive notifies the client that the Redirect is only temporary (status 302). This is the
exact equivalent to Redirect temp.

Parameter One: url-path

• The url-path parameter is any valid URL path. If you include a trailing '/' in the URL path, then the
server will require a trailing '/' in order to expand the alias. That is, if you use 'Alias /icons/ /www/
images/i/icons/' then the URL '/icon' will not be aliased.

Parameter Two: url

• The url parameter should be a complete URL string, including the scheme ('http://...') and the
'server:host' portion. When the status parameter is "gone", the url argument should be omitted.

See “Regular expression notation for HTTP Server” on page 631 for more information.

ScriptAlias
Module: mod_alias

Syntax: ScriptAlias [url-path] file-path | directory-path

222 IBM i: IBM HTTP Server for i

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: ScriptAlias /cgi-bin/ /web/cgi-bin/

Example: ScriptAlias /cgi-bin/ /QSYS.LIB/QSYSCGI.LIB/

The ScriptAlias directive has the same behavior as the “Alias” on page 216 directive, except that in
addition it marks the target directory as containing CGI scripts, and then executes the CGI program.
URLs with a (%-decoded) path beginning with url-path will be mapped to scripts beginning with directory-
filename. Additional “<Directory> ” on page 311 containers that cover the destination of the ScriptAlias
may need to be specified. Aliasing occurs before <Directory> containers are checked, so only the
destination of Aliases are affected.

Parameter One: url-path

• The url-path parameter is any valid url-path. It must end with a slash ('/') character so that any files
in the directory will be routed.

Parameter Two: file-path | directory-path

• The file-path | directory-path parameter is any valid directory/filename on the IBM i server.

Note: If the URL ends in a slash ("/") character, the ScriptAlias must also end in a slash character.

If the ScriptAlias directive is used within a“<Location> ” on page 339 or “<LocationMatch>” on page 340
section with the URL-path omitted, then the URL parameter will be interpreted using expression syntax.

<Location "/cgi-bin">
 ScriptAlias "/web/cgi-bin/"
</Location>

<LocationMatch "/cgi-bin/errors/(?<NUMBER>[0-9]+)">
 ScriptAlias "/web/cgi-bin/errors/%{env:MATCH_NUMBER}.pgm"
</LocationMatch>

ScriptAliasMatch
Module: mod_alias

Syntax: ScriptAliasMatch regex directory-filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: ScriptAliasMatch ^/cgi-bin/(.*)\.cgi /QSYS.LIB/QSYSCGI.LIB/$1.PGM

This directive is equivalent to “ScriptAlias” on page 222, but makes use of standard regular expressions,
instead of simple prefix matching. The supplied regular expression is matched against the URL, and if
it matches, the server will substitute any parenthesized matches into the given string and use it as a
filename.

Parameter One: regex

• The regex parameter is a regular expression that is matched against the URL. Subexpressions are
grouped within parentheses. Then, parenthetically enclosed regular expressions will be substituted
in a subsequent $n statement.

IBM HTTP Server for i 223

Parameter Two: directory-filename

• This is any valid directory/filename that is supported on the IBM i server. If there is a $ symbol
(followed by a digit) that is not a substitution variable in the directory-filename parameter, or there
is a & symbol in the directory-filename parameter that is part of the directory or filename, the
symbol must be escaped (\).

If the directory-filename is /usr/local/apache/cgi-bin&sym/$1.pgm, where the $1 is a substitution
variable, the & would need to be escaped as follows on the ScriptAliasMatch directive:

ScriptAliasMatch ^/cgi-bin/(.*)\.cgi /usr/local/apache/cgi-bins\&sym/$1.pgm

If the directory-filename is /usr/local/apache/cgi-bin$2sym/ $1.pgm, where the $1 is a substitution
variable, the $2 would need to be escaped as follows on the ScriptAliasMatch directive:

ScriptAliasMatch ^/cgi-bin/(.*)\.cgi /usr/local/apache/cgi-bin\$2sym/$1.pgm

Module ap_charset
Module mod_ap_charset contains directives for the IBM HTTP Server for i Web server.

Summary

The module ap_charset provides support for performing ASCII to EBCDIC and EBCDIC to ASCII codepage
conversions.

Directives

• “UseJCD” on page 224

UseJCD
Module: ap_charset

Syntax: UseJCD On | Off

Default: UseJCD Off

Context: server config

Override: none

Origin: IBM

Example: UseJCD Off

This directive is used to instruct the server to perform Japanese codepage detection on the request body.

Japanese browsers can potentially send data in one of three code pages, JIS (ISO-2022-JP), S-JIS
(PC-Windows), or EUC (UNIX). If this directive is set to On, the server uses a well-known JCD utility to
determine which codepage to use (if not explicitly specified by a charset tag) to convert the request body.

Parameter: On | Off

• When On is specified, the server uses a well-known JCD utility to determine which codepage to use
(if not explicitly specified by a charset tag) to convert the request body.

• When Off is specified, Japanese codepage detection on the request body is disabled.

This directive is intended for module writers that need the server to detect JCD on the request body. CGI
writers can use the CGIConvMode value "EBCDIC_JCD" to instruct the server to perform JCD.

Module mod_authz_core
Module mod_authz_core supports directives for the IBM HTTP Server for i Web server.

Summary

224 IBM i: IBM HTTP Server for i

This module mod_authz_core provides core authorization capabilities so that authenticated users can be
allowed or denied access to portions of the web site. It also allows for advanced logic to be applied to the
authorization processing.

• “AuthMerging” on page 225
• “AuthzSendForbiddenOnFailure” on page 226
• “Require” on page 226
• “<RequireAll>” on page 228
• “<RequireAny>” on page 229
• “<RequireNone>” on page 229

AuthMerging
Module: mod_authz_core

Syntax: AuthMerging Off | And | Or

Default: AuthMerging Off

Context: Directory, .htaccess

Override: AuthConfig

Origin: Apache

Examples: AuthMerging Or

The AuthMerging directive controls the manner in which each configuration section's authorization logic is
combined with that of preceding configuration sections.

When authorization is enabled, it is normally inherited by each subsequent configuration section, unless a
different set of authorization directives are specified. This is the default action, which corresponds to an
explicit setting of AuthMerging Off.

However, there may be circumstances in which it is desirable for a configuration section's authorization to
be combined with that of its predecessor while configuration sections are being merged. Two options are
available for this case, And and Or.

When a configuration section contains AuthMerging And or AuthMerging Or, its authorization logic
is combined with that of the nearest predecessor (according to the overall order of configuration
sections) which also contains authorization logic as if the two sections were jointly contained within a
“<RequireAll>” on page 228 or “<RequireAny>” on page 229 directive, respectively.

Note: The setting of “AuthMerging” on page 225 is not inherited outside of the configuration section in
which it appears. In the following example, only users belonging to group alpha may access /www/docs.

Users belonging to either groups alpha or beta may access /www/docs/ab. However, the default Off
setting of “AuthMerging” on page 225 applies to the “<Directory> ” on page 311 configuration section
for /www/docs/ab/gamma, so that section's authorization directives override those of the preceding
sections. Thus only users belong to the group gamma may access /www/docs/ab/gamma.

Example:

<Directory /www/docs>
 AuthType Basic
 AuthName "Restricted Directory"
 PasswdFile web/users
 GroupFile /web/groups
 Require group alpha
</Directory>
<Directory /www/docs>
 AuthMerging Or
 Require group beta
</Directory>
<Directory /www/docs/ab/gamma>

IBM HTTP Server for i 225

 Require group gamma
</Directory>

AuthzSendForbiddenOnFailure
Module: mod_authz_core

Syntax: AuthzSendForbiddenOnFailure on|off

Default: AuthzSendForbiddenOnFailure Off

Context: directory, .htaccess

Override: none

Origin: Apache

Examples: AuthzSendForbiddenOnFailure on

The AuthzSendForbiddenOnFailure directive sends '403 FORBIDDEN' instead of '401 UNAUTHORIZED' if
authentication succeeds but authorization fails.

Parameter: on | off

• When set to off, if authentication succeeds but authorization fails, HTTP Server will respond with an
HTTP response code of '401 UNAUTHORIZED' by default. This usually causes browsers to display
the password dialogue to the user again, which is not wanted in all situations.

• When set to on, if authentication succeeds but authorization fails, HTTP Server will respond with an
HTTP response code of '403 FORBIDDEN' instead of '401 UNAUTHORIZED'.

Note: Modifying the response in case of missing authorization weakens the security of the password,
because it reveals to a possible attacker, that his guessed password was right.

Require
Module: mod_authz_core

Syntax: Require [not] entity-name [entity-name] ...

Default: None

Context: directory, .htaccess

Override: AuthConfig

Origin: Apache

Example:

Require all granted
Require group admin
Require user bob carol don
Require valid-user

This directive selects which authenticated users can access a directory.

Parameter: [not] entity-name [entity-name] ...

• If Require user userid [userid] ..., then only the named users can access the resource.
• If Require group group-name [group-name] ...,, then only users in the named groups can access the

resource.
• If require valid-user, then all valid users can access the resource.
• If Require ip 10 172.20 192.168.2 , then clients in the specified IP address ranges can access
• If Require all granted, then access is allowed unconditionally.
• If Require all denied, then access is denied unconditionally.

226 IBM i: IBM HTTP Server for i

• If Require env env-var [env-var] ..., then access is allowed only if one of the given environment
variables is set.

• If Require method http-method [http-method] ..., then access is allowed only for the given HTTP
methods.

• If Require expr expression, then access is allowed if expression evaluates to true.

Require env

The env provider allows access to the server to be controlled based on the existence of an environment
variable. When Require env env-variable is specified, then the request is allowed access if the
environment variable env-variable exists. The server provides the ability to set environment variables in a
flexible way based on characteristics of the client request using the directives provided by mod_setenvif.
Therefore, this directive can be used to allow access based on such factors as the clients User-Agent
(browser type), Referer, or other HTTP request header fields.

SetEnvIf User-Agent ^KnockKnock/2\.0 let_me_in

<Directory /docroot>
 Require env let_me_in
</Directory>

In this case, browsers with a user-agent string beginning with KnockKnock/2.0 will be allowed access,
and all others will be denied.

When the server looks up a path via an internal subrequest such as looking for a “DirectoryIndex” on
page 375 or generating a directory listing with mod_autoindex, per-request environment variables are not
inherited in the subrequest. Additionally, “SetEnvIf” on page 584 directives are not separately evaluated
in the subrequest due to the API phases mod_setenvif takes action in.

Require all

The all provider mimics the functionality the was previously provided by the 'Allow from all' and 'Deny
from all' directives. This provider can take one of two arguments which are 'granted' or 'denied'. The
following examples will grant or deny access to all requests.

Require all granted
Require all denied

Require method

The method provider allows using the HTTP method in authorization decisions. The GET and HEAD
methods are treated as equivalent.

The following example will allow GET, HEAD, POST, and OPTIONS requests without authentication, and
require a valid user for all other methods:

<RequireAny>
 Require method GET POST OPTIONS
 Require valid-user
</RequireAny>

Require expr

The expr provider allows basing authorization decisions on arbitrary expressions.

Require expr %{TIME_HOUR} -ge 9 && %{TIME_HOUR} -le 17

<RequireAll>
 Require expr "!(%{QUERY_STRING} =~ /secret/)"
 Require expr "%{REQUEST_URI} in { '/cgi-bin/example.pgm', 'cgi-bin/other.pgm' }"
</RequireAll>

Require expr "!(%{QUERY_STRING} =~ /secret/) && %{REQUEST_URI} in { '/cgi-bin/
example.pgm', '/cgi-bin/other.pgm' }"

IBM HTTP Server for i 227

Normally, the expression is evaluated before authentication. However, if the expression returns false and
references the variable %{REMOTE_USER}, authentication will be performed and the expression will be
re-evaluated.

In most cases, for a complete authentication and authorization configuration, Require must be
accompanied by AuthName and AuthType directives, and directives such as PasswdFile and GroupFile
(to define users and groups) in order to work correctly. For example:

AuthType Basic
AuthName "Restricted Directory"
PasswdFile web/users
GroupFile /web/groups
Require group admin

Access controls which are applied in this way are effective for all methods. This is what is normally
desired. If you want to apply access controls only to specific methods, while leaving other methods
unprotected, then place the require statement into a “<Limit>” on page 333 section.

Access controls can be used in a named protection setup. To implement a named protection setup,
place all of the access control directives in a file. Use the Include directive to include the file in your
“<Directory> ” on page 311, “<Files>” on page 323, “<Location> ” on page 339 context. This allows users
that want to use the same type of protection setup within multiple contexts to add an include statement
inside of each context.

The result of the Require directive may be negated through the use of the not option. As with the other
negated authorization directive “<RequireNone>” on page 229, when the Require directive is negated it
can only fail or return a neutral result, and therefore may never independently authorize a request.

In the following example, all users in the alpha and beta groups are authorized, except for those who are
also in the reject group.

<Directory /www/docs>
 <RequireAll>
 Require group alpha beta
 Require not group reject
 </RequireAll>
</Directory>

When multiple Require directives are used in a single configuration section and are not contained in
another authorization directive like “<RequireAll>” on page 228, they are implicitly contained within a
directive. Thus the first one to authorize a user authorizes the entire request, and subsequent Require
directives are ignored.

Note: The "Require valid-user" directive should NOT be configured in the same context as any "Require
user" or "Require group" directives. The require directives are processed in order (from top to bottom) as
they appear in the configuration file. Since "Require valid-user" allows access to ANY authenticated user,
the "Require valid-user" directive effectively overrides the presence of any "Require user" or "Require
group" directives.

Note: Exercise caution when setting authorization directives in Location sections that overlap with
content served out of the filesystem. By default, these configuration sections overwrite authorization
configuration in Directory, and Files sections.

The AuthMerging directive can be used to control how authorization configuration sections are merged.

<RequireAll>
Module: mod_authz_core

Syntax: <RequireAll> ... </RequireAll>

Default: None

Context: directory, .htaccess

Override: AuthConfig

228 IBM i: IBM HTTP Server for i

Origin: Apache

Examples:

<RequireAll>
 Require group sales
 Require ip 192.168
</RequireAll>

<RequireAll> and </RequireAll> are used to enclose a group of authorization directives of which none
must fail and at least one must succeed in order for the “<RequireAll>” on page 228 directive to succeed.

If none of the directives contained within the “<RequireAll>” on page 228 directive fails, and at least one
succeeds, then the “<RequireAll>” on page 228 directive succeeds. If none succeed and none fail, then it
returns a neutral result. In all other cases, it fails.

The example below expresses the following authorization logic. In order to access the resource, the user
must belong to group admins and group operators at the same time.

<Directory /www/mydocs>
 <RequireAll>
 Require group admins
 Require group operators
 </RequireAll>
</Directory>

<RequireAny>
Module: mod_authz_core

Syntax: <RequireAny> ... </RequireAny>

Default: None

Context: directory, .htaccess

Override: AuthConfig

Origin: Apache

Examples:

<RequireAny>
 Require group sales
 Require group managers
</RequireAny>

<RequireAny> and </RequireAny> are used to enclose a group of authorization directives of which one
must succeed in order for the “<RequireAny>” on page 229 directive to succeed.

If none of the directives contained within the “<RequireAny>” on page 229 directive fails, and at least one
succeeds, then the “<RequireAny>” on page 229 directive succeeds. If none succeed and none fail, then
it returns a neutral result. In all other cases, it fails.

Note: Because negated authorization directives are unable to return a successful result, they can not
significantly influence the result of a “<RequireAny>” on page 229 directive. (At most they could cause
the directive to fail in the case where they failed and all other directives returned a neutral value.)
Therefore negated authorization directives are not permitted within a “<RequireAny>” on page 229
directive.

<RequireNone>
Module: mod_authz_core

Syntax: <RequireNone> ... </RequireNone>

IBM HTTP Server for i 229

Default: None

Context: directory, .htaccess

Override: AuthConfig

Origin: Apache

Examples:

<RequireNone>
 Require group sales
 Require group managers
</RequireNone>

<RequireNone> and </RequireNone> are used to enclose a group of authorization directives of which
none must succeed in order for the “<RequireNone>” on page 229 directive to not fail.

If one or more of the directives contained within the “<RequireNone>” on page 229 directive succeed,
then the “<RequireNone>” on page 229 directive fails. In all other cases, it returns a neutral result. Thus
as with the other negated authorization directive Require not, it can never independently authorize a
request because it can never return a successful result. It can be used, however, to restrict the set of
users who are authorized to access a resource.

Note: Because negated authorization directives are unable to return a successful result, they can
not significantly influence the result of a “<RequireNone>” on page 229 directive. Therefore negated
authorization directives are not permitted within a “<RequireNone>” on page 229 directive.

Module mod_arm4_ap20
Module mod_arm4_ap20 contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_arm4_ap20 uses the ARM (Application Response Measurement) 4.0 APIs to classify
requests and record the time spent for each one. Configuring these directives enables ARM services for
the IBM HTTP Server for i.

To enable ARM onIBM HTTP Server for i, perform these steps:

1. Ensure that the EWLM managed server is configured and started, and that it is communicating properly
with its EWLM domain manager.

2. Ensure that IBM HTTP Server for i is installed and configured.
3. Ensure you have the latest required PTFs installed for EWLM to monitor the HTTP Server for IBM i

application.
4. Add the following directives to the configuration file:

LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM
ArmLoadLibrary /QSYS.LIB/QSYS2.LIB/LIBARM4.SRVPGM

To edit the configuration file, follow these steps:

a. Start the IBM Web Administration for i interface.
b. Click the Manage tab.
c. Click the HTTP Servers subtab.
d. Select your HTTP Server from the Server list.
e. Select System Resources.
f. Change Activate Application Response Measurment (ARM) instrumentation to Enabled.

g. Click OK when you finish editing the configuration file.
h. Stop and restart the HTTP Server.

Directives

230 IBM i: IBM HTTP Server for i

• “ArmApplicationName” on page 231
• “ArmInstrumentHandler” on page 231
• “ArmLoadLibrary” on page 231
• “ArmTransactionName” on page 232

ArmApplicationName
Module: mod_arm4_ap20

Syntax: ArmApplicationName application_name

Default: ArmApplicationName "IBM Webserving Plugin"

Context: server

Override: none

Origin: IBM

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement
should be as follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmApplicationName "IBM Webserving Plugin"

IBM HTTP Server for i is an ARM-instrumented application. ARM 4.0 enables the real time measurement
of transactions, transaction components, and underlying resource usage associated with the execution of
an application. Use this directive to set specific information passed by the ARM API function calls which
will be used in the filtering criteria that EWLM uses for transaction classification.

ArmInstrumentHandler
Module: mod_arm4_ap20

Syntax: ArmInstrumentHandler on|off

Default: ArmInstrumentHandler off

Context: server

Override: none

Origin: IBM

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement
should be as follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmInstrumentHandler off

When the ArmInstrumentHandler directive is turned on, arm_block|unblock_transaction is called across
content handlers to notify the IBM ARM implementation that a blocking condition is finished.

ArmLoadLibrary
Module: mod_arm4_ap20

Syntax: ArmLoadLibrary arm4-api-service-program-name

Default: ArmLoadLibrary /QSYS.LIB/QSYS2.LIB/LIBARM4.SRVPGM

Context: server

Override: none

Origin: IBM

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement
should be as follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

IBM HTTP Server for i 231

Example: ArmLoadLibrary /QSYS.LIB/QSYS2.LIB/LIBARM4.SRVPGM

This directive is needed to activate the EWLM (Enterprise Workload Management) instrumentation
module for HTTP Server. It uses the ARM (Application Response Measurement) 4.0 APIs to classify
requests and record the time spent for each one.

ArmTransactionName
Module: mod_arm4_ap20

Syntax: ArmTransactionName transaction_name

Default: ArmTransactionName WebRequest

Context: server

Override: none

Origin: IBM

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement
should be as follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmTransactionName WebRequest

IBM HTTP Server for i is an ARM-instrumented application. ARM 4.0 enables the real time measurement
of transactions, transaction components, and underlying resource usage associated with the execution of
an application. Use this directive to set specific information passed by the ARM API function calls, which
are used in the filtering criteria that EWLM uses for transaction classification.

Module mod_as_auth
Module mod_as_auth contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_as_auth provides user authentication using IBM i system profiles, Internet users
(through validation lists), or LDAP users.

Directives

• “AsAuthAuthoritative” on page 232
• “GroupFile” on page 233
• “PasswdFile” on page 233
• “UserID” on page 234

AsAuthAuthoritative
Module: mod_as_auth

Syntax: AsAuthAuthoritative On | Off

Default: AsAuthAuthoritative On

Context: directory

Override: none

Origin: IBM

Example: AsAuthAuthoritative Off

Setting the AsAuthAuthoritative directive explicitly to off allows for both authentication and authorization
to be passed on to lower level modules (if there is no userid or rule matching the supplied userid).

232 IBM i: IBM HTTP Server for i

Parameter: On | Off

• When On is specified, both authentication and authorization are not allowed to be passed on to
lower level modules (if there is no userid or rule matching the supplied userid).

• When Off is specified, allows for both authentication and authorization to be passed on to lower
level modules (if there is no userid or rule matching the supplied userid).

If a userid appears in an authentication realm other than those supported by IBM i (for example, System
Userid), or if a valid Require directive applies to more than one module, the first module verifies the
credentials and no access is passed on regardless of the AsAuthAuthoritative setting.

GroupFile
Module: mod_as_auth

Syntax: GroupFile filename

Default: none

Context: directory

Override: none

Origin: IBM

Example: GroupFile /docs/restrict.group

The GroupFile directive sets the name of a GroupFile to use for a protection setup. Group files are used
to classify users into various groups. A protection setup can use groups on limit directives. If a protected
directory contains an ACL file, the rules in the ACL file can also use the groups that you define in the group
file.

Parameter: filename

• The filename parameter is any valid filename.

Note: The GroupFile directive is case-sensitive. If the filename is incorrectly cased, the GroupFile
directive will not work properly. Since IBM i user profiles are not case-sensitive, the entries in the
GroupFile will be treated as non-case-sensitive if the PasswdFile directive is set to %%SYSTEM%%. For
all other values of PasswdFile, the values in the GroupFile will be treated as case-sensitive.

To work correctly this directive must be accompanied by “PasswdFile” on page 233, “AuthType” on page
610, and “Require” on page 351.

PasswdFile
Module: mod_as_auth

Syntax: PasswdFile passfile [passfile passfile ...]

Default: none

Context: directory

Override: none

Origin: IBM

Example: PasswdFile %%SYSTEM%%

Example: PasswdFile "QUSRSYS/MY_USERS QGPL/DOC_USERS"

The PasswdFile directive specifies where the passwords (or certificates) are stored for authentication.

Parameter: passfile
The different values supported by the passfile parameter value are:

IBM HTTP Server for i 233

%%SYSTEM%%
The passfile parameter can be in the %%SYSTEM%% format. Using this value indicates
that the server should use the IBM i User Profile support to validate username/
password.

%%LDAP%%
The passfile can also be in the %%LDAP%% format to validate the LDAP server that has
been defined to the server.

%%KERBEROS%%
The passfile parameter should be set to %%KERBEROS%% when the directive
AuthType Kerberos is configured.

passfile [passfile passfile ...]
The passfile parameter can be formatted to fit the Internet user list. To use this
format, specify QUSRSYS/MY_USERS as the filename. The HTTP Server allows a space
separated list of Internet User lists (for example: 'library/vldl library/fort').

This directive may be configured multiple times in a container. The directives are processed from the first
to the last occurrence.

To work correctly this directive must be accompanied by “AuthType” on page 610, “AuthName” on page
610, and “Require” on page 351.

UserID
Module: mod_as_auth

Syntax: Userid user-profile | %%SERVER%% | %%CLIENT%%

Default: none

Context: directory

Override: none

Origin: IBM

Example: UserID WEBUSER

Example: UserID %%SERVER%%

Example: UserID %%CLIENT%%

The UserID directive specifies the IBM i system profile to the server. For a protected resource (one for
which Protection directives are defined), the UserID directive specifies which IBM i system profile the
server temporarily swaps to while serving that resource. The directive must be a valid user profile.

Parameter: user-profile | %%SERVER%% | %%CLIENT%%

• For user-profile, a valid IBM i system profile must be specified. The value 'QSECOFR' cannot be
specified on the directive. The profile that issued the STRTCPSVR command to start HTTP Server
must have *USE authority to the profile specified on all of the UserID directives and other directives.
All UserID directives (and directives specified for a protected resource) are verified during startup. If
any UserID directive, or any other directive, does not satisfy the rules listed here, the server instance
does not start and a message is sent to the user's interactive job log.

• Entering %%SERVER%% uses the default profile QTMHHTTP unless the ServerUserId directive is
specified.

• Entering %%CLIENT%% causes the user profile from the request to be used on the swap. If
Kerberos is specified for the AuthType directive, the server will use Enterprise Identity Mapping
(EIM) to attempt to match the user ID associated with the server ticket with an IBM i system profile.
If there is no IBM i system profile associated with the server ticket user ID, the HTTP request will
fail. This value cannot be used for LDAP or Validation lists authentication. If is valid for IBM i profiles,
client certificates, and Kerberos.

234 IBM i: IBM HTTP Server for i

The profile that issued the STRTCPSVR command to start HTTP Server must have *USE authority to the
profile specified on all of the UserID directives and other directives. All UserID directives (and directives
specified for a protected resource) are verified during startup. If any UserID directive, or any other
directive, does not satisfy the rules, the server instance does not start and a message is sent to the user's
interactive joblog.

Note: Because HTTP Server swaps to the profile that you specify on the UserID directive, you should be
careful what profile you specify. For example, if you create a profile MIGHTY1 that is of the class *SECOFR
and use this profile on the UserID directive, then whenever the server invokes a swap to that profile, all
IBM i authority checking for the requested resource is based on that profile.

When HTTP Server is running under the QTMHHTTP profile (the QTMHHTTP profile is the default) and
a UserID directive is not in effect, the server switches to the QTMHHTP1 profile before starting a CGI
program. However, when a CGI program is running on servers where the UserID directive is in effect or
within a protection setup where the UserID directive has been specified, the program is run under the
specified profile, unless the profile is QTMHHTTP. In which case, QTMHHTP1 is used. If the profile does
not have authority to the specified program, the request is rejected.

There are two special values you can use on the UserID directive. Entering %%SERVER%% uses
the default profile QTMHHTTP unless a protection setup has a different UserID specified. Entering %
%CLIENT%% causes the server to challenge the client on each and every request for a user ID and
password.

See also “ServerUserID” on page 358.

To work correctly, this directive must be accompanied by the PasswdFile, AuthType, AuthName, and
Require directives.

Module mod_as_cache
Module mod_as_cache contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_as_cache provides support for caching frequently referenced files. It can be used to
cache file content, file descriptors or both, or mmap the file.

Directives

• “CacheLocalFD” on page 236
• “CacheLocalFile” on page 236
• “CacheLocalFileMmap” on page 237
• “CacheLocalFilePublic” on page 238
• “CacheLocalFileSizeLimit” on page 238
• “CacheLocalSizeLimit” on page 238
• “DynamicCache” on page 239
• “FRCACacheLocalFileRunTime” on page 239
• “FRCACacheLocalFileSizeLimit” on page 240
• “FRCACacheLocalFileStartUp” on page 241
• “FRCACacheLocalSizeLimit” on page 241
• “FRCACookieAware” on page 242
• “FRCAEnableFileCache” on page 242
• “FRCAEnableProxy” on page 243
• “FRCAEndofURLMarker” on page 243
• “FRCAMaxCommBufferSize” on page 243
• “FRCAMaxCommTime” on page 244
• “FRCAProxyCacheEntitySizeLimit” on page 244

IBM HTTP Server for i 235

• “FRCAProxyCacheExpiryLimit” on page 245
• “FRCAProxyCacheRefreshInterval” on page 245
• “FRCAProxyCacheSizeLimit” on page 245
• “FRCAProxyPass” on page 246
• “FRCARandomizeResponse” on page 246
• “LiveLocalCache” on page 247
• “PublicCache” on page 247

CacheLocalFD
Module: mod_as_cache

Syntax: CacheLocalFD filename

Default: none

Context: server config

Override: none

Origin: IBM

Example: CacheLocalFD some_image.gif

The CacheLocalFD directive is used to specify the names of ASCII/BINARY stream files whose descriptors
you want to cache at server startup. The file is opened (share read) and remains open while the server is
active. The configuration file can contain multiple directive occurrences. Include a separate directive for
each file that you want to remain open. By keeping your most frequently requested files/images opened at
server startup, you can improve your server's response time for those files. For example, if you open your
server's welcome page files at startup, the server can handle requests for the page much more quickly
than if it had to open the files each time they are requested.

Parameter: filename

• The filename parameter specifies the names of ASCII/BINARY stream files whose descriptors are
cached at server startup.

The advantage of using CacheLocalFD directive over CacheLocalFile is that it does not cache the content
of the file, and therefore does not allocate a large amount of memory, yet provides similar performance.
The disadvantage of using CacheLocalFD directive over CacheLocalFile is that it only caches the file
descriptors of ASCII/BINARY stream files and it keeps the file open (share read) while the server is active.

The LiveLocalCache directive setting does not apply to this directive and if a cached file is updated, the
cached entity is discarded and the updated file is served from the file system. If a cached file is modified
while at the same time being served, the content of the response body is unpredictable.

Note: You can use an asterisk ('*') as a wildcard character on the file names (for example, CacheLocalFD
*.gif). File name matching is not recursive through subdirectories. The server will only cache files in the
specified directory. No files in subdirectories are affected.

CacheLocalFile
Module: mod_as_cache

Syntax: CacheLocalFile filename

Default: none

Context: server config

Override: none

Origin: IBM

236 IBM i: IBM HTTP Server for i

Example: CacheLocalFile bobwelcome.html

The CacheLocalFile directive is used to specify the names of files that you want to load into the server's
memory each time that you start the server, and is the recommended file cache method. You can have
multiple occurrences of this directive in the configuration file. Include a separate directive for each file
that you want to load into memory. By keeping your most frequently requested files loaded in the server's
memory, you can improve your server's response time for those files. For example, if you load your
server's welcome page into memory at startup, the server can handle requests for the page much more
quickly than if it had to read the file from the file system.

Parameter: filename

• The filename parameter specifies the names of files that you want to load into the server's memory
each time that you start the server.

Note: You can use an asterisk ('*') as a wildcard character on the file names (for example, CacheLocalFile
*.html). File name matching is not recursive through subdirectories. The server will only cache files in the
specified directory. No files in subdirectories are affected.

CacheLocalFileMmap
Module: mod_as_cache

Syntax: CacheLocalFileMmap filename

Default: none

Context: server config

Override: none

Origin: IBM

Example: CacheLocalFileMmap bobwelcome.html

The CacheLocalFileMmap directive is used to specify the names of files that you want to map to the
server's memory each time that you start the server. This directive is similar to the CacheLocalFile
directive. Whereas CacheLocalFile allocates storage and copies (read/write) the content of the file to
the allocated storage, CacheLocalFileMmap maps the file content to the process storage space without
actually allocating storage.

The LiveLocalCache directive setting does not apply to this directive and if a cached file is updated, the
cached entity is discarded and the updated file is served from the file system. If a cached file is modified
while at the same time being served, the content of the response body is unpredictable.

Parameter: filename

• The filename parameter specifies the names of files that you want to map to the server's memory
each time that you start the server.

You can have multiple occurrences of this directive in the configuration file. Include a separate directive
for each file that you want to load into memory. By keeping your most frequently requested files mapped
in the server's address space, you can improve your server's response time for those files. For example,
if you map your server's welcome at startup, the server can handle requests for the page much more
quickly than if it had to read the file from the file system.

Note: You can use an asterisk (*) as a wildcard character on the file names (for example,
CacheLocalFileMmap *.html). File name matching is not recursive through subdirectories. The server will
only cache files in the specified directory. No files in subdirectories are affected. The relative/absolute
path rules apply to this directive, meaning that a path that begins without a leading (/) character is
considered to be absolute. Otherwise, the path is based on the server's document root.

IBM HTTP Server for i 237

CacheLocalFilePublic
Module: mod_as_cache

Syntax: CacheLocalFilePublic filename

Default: none

Context: server

Override: none

Origin: IBM

Example: CacheLocalFilePublic bobwelcome.html

The CacheLocalFilePublic directive is used to specify the names of files that you want to load into the
server's memory each time that you start the server. The files cached here are files that are served
without any server authentication. This directive is used by SSL sites which have pages that are publicly
available. This simulates the FRCA function completed by the server for non-SSL publicly available files.
You can have multiple occurrences of this directive in the configuration file. Include a separate directive
for each file that you want to load into memory. By keeping your most frequently requested public files
loaded in the server's memory, you can improve your server's response time for those files. For example,
if you load your server's welcome page into memory at startup, the server can handle requests for the
page much more quickly than if it had to read the file from the file system.

Note: You can use an asterisk (''*'') as a wildcard character on the file names, (for example,
CacheLocalFile *.html).

File name matching is not recursive through subdirectories. The server only caches files in the specified
directory. No files in subdirectories are affected. There is no authentication or authorization done before
any files in this cache are served.

CacheLocalFileSizeLimit
Module: mod_as_cache

Syntax: CacheLocalFileSizeLimit size

Default: CacheLocalFileSizeLimit 90000

Context: server config

Override: none

Origin: IBM

Example: CacheLocalFileSizeLimit 5000000

The CacheLocalFileSizeLimit directive is used to specify, in bytes, the largest file that will be placed in the
local memory cache. A file larger than the value specified for CacheLocalFileSizeLimit will not be placed in
the cache. This prevents the cache from being filled by only a small number of very large files. The upper
limit for this directive is capped at 16,000,000. If you specify a larger value the value 16,000,000 will be
used.

CacheLocalSizeLimit
Module: mod_as_cache

Syntax: CacheLocalSizeLimit size

Default: CacheLocalSizeLimit 2000

Context: server config

Override: none

238 IBM i: IBM HTTP Server for i

Origin: IBM

Example: CacheLocalSizeLimit 25000

The CacheLocalSizeLimit directive is used to specify the maximum amount of memory, in kilobytes, that
you want to allow for file caching. You must specify the files that you want cached with the CacheLocalFile
directive or by setting DynamicCache to on. The number you specify is the upper limit (the maximum
upper limits 93 gigabytes (100,000,000,000 bytes)); the storage is allocated as a file is cached.

Parameter: size

• The size parameter specifies the maximum amount of memory, in kilobytes, that you want to allow
for file caching.

Note: CacheLocalSizeLimit can help limit your cache size when you are using the wildcard character to
specify the files on the CacheLocalFile directive.

DynamicCache
Module: mod_as_cache

Syntax: DynamicCache on | off

Default: DynamicCache off

Context: server config

Override: none

Origin: IBM

Example: DynamicCache on

The DynamicCache directive is used to specify if you want the server to dynamically cache frequently
accessed files. Setting the dynamic cache directive to "on" instructs the server to cache the most
frequently accessed files. This results in better performance and system throughput.

Parameter: on | off

• If the parameter is set to on the server will dynamically cache frequently accessed files.
• If the parameter is set to off the server will not dynamically cache frequently accessed files.

Note: Note requires links.If you know the files that are frequently accessed or you have a large number
of files, then it is better to use CacheLocalFile , CacheLocalFD, or CacheLocalFileMmap to cache them at
server startup.

FRCACacheLocalFileRunTime
Module: mod_as_cache

Syntax: FRCACacheLocalFileRunTime filename

Default: none

Context: server config

Override: none

Origin: IBM

Example: FRCACacheLocalFileRunTime /www/html/index.html

The FRCACacheLocalFileRunTime directive specifies the name of a file that you want to load into the SLIC
NFC during server run time if and when it is requested by a client. The configuration file can contain
multiple directive occurrences.

IBM HTTP Server for i 239

Parameter: filename

• The filename parameter value specifies the name of a file that you want to load into the SLIC NFC
during server run time if and when it is requested by a client.

During server run time, the below example caches the specified file in FRCA NFC if it is requested by a
client.

FRCACacheLocalFileRunTime /www/html/index.html

Note: You can use an asterisk (*) as a wild card character on the file name. Filename matching is not
recursive through subdirectories. The server only caches files in the specified directory. No files in other
sub directories are affected.

During server run time, the below example caches in the FRCA NFC any .gif file in the /www/images
directory that is requested by a client. For example,

FRCACacheLocalFileRunTime /www/images/*.gif

Note: You can use an asterisk (*) as a wild card character on the file name. Filename matching is
not recursive through subdirectories. The server will only cache files in the specified directory and its
subdirectories.

During server run time, the below example will dynamically cache in the SLIC NFC (based on the file
usage) any file that is in a directory path that starts with /www/imag and its subdirectories. For example,

FRCACacheLocalFileRunTime /www/imag*

Note: If directory name begins with / it is absolute, otherwise it is relative to the server's document root.

During server run time, the below example will dynamically cache in the SLIC NFC (based on the file
usage) any file in any directory.

FRCACacheLocalFileRunTime /*

Note: If a directory name begins with / it is absolute, otherwise it is relative to the server's document root.

For caching files at the server run time, only specify the path name of the files that are intended for
public viewing. That is, do not specify or configure file names containing sensitive information which is not
intended for general users. FRCACacheLocalFileRunTime only caches files that do not require conversion.
(IFS binary or ASCII files).

FRCACacheLocalFileSizeLimit
Module: mod_as_cache

Syntax: FRCACacheLocalFileSizeLimit size

Default: FRCACacheLocalFileSizeLimit 92160

Context: server config

Override: none

Origin: IBM

Example: FRCACacheLocalFileSizeLimit 32000

The FRCACacheLocalFileSizeLimit directive specifies the maximum file size (in bytes) that you want to
allow for file caching. The directive can control cache storage for a number of smaller files when using
wild card characters to specify files in the FRCACacheLocalFileStartUp and FRCACacheLocalFileDynamic
directives

240 IBM i: IBM HTTP Server for i

Parameter: size

• The size parameter value specifies the maximum file size (in bytes) that you want to allow for file
caching.

The below example allows only caching of files that are equal to or less than 32000 bytes. Files greater
than 32000 bytes are not cached.

FRCACacheLocalFileSizeLimit 32000

FRCACacheLocalFileStartUp
Module: mod_as_cache

Syntax: FRCACacheLocalFileStartUp filename

Default: none

Context: server config

Override: none

Origin: IBM

Example: FRCACacheLocalFileStartUp /www/html/index.html

The FRCACacheLocalFileStartUp directive specifies the file name that you want to load into the SLIC NFC
each time you start the server. The configuration file can contain multiple directive occurrences.

Parameter: filename

• The filename parameter value specifies the file name that you want to load into the SLIC NFC each
time you start the server.

The below example caches a specific file.

FRCACacheLocalFileStartUp /www/html/index.html

Note: You can use an asterisk (*) as a wild card character on the file name. Filename matching is not
recursive through subdirectories. The server only caches files in the specified directory. No files in other
sub directories are affected.

The below example caches all .gif files in the /www/images directory.

FRCACacheLocalFileStartUp /www/images/*.gif

Note: If a directory name begins with / it is absolute, otherwise it is relative to the server's document root.

FRCACacheLocalFileStartUp only caches files that do not require conversion. (IFS binary or ASCII files).
FRCA Proxy does not perform authentication or authorization checking. Therefore, do not specify or
configure file names containing sensitive information that is not intended for public viewing.

FRCACacheLocalSizeLimit
Module: mod_as_cache

Syntax: FRCACacheLocalSizeLimit size

Default: FRCACacheLocalSizeLimit 2000

Context: server config

Override: none

Origin: IBM

Example: FRCACacheLocalSizeLimit 5000

IBM HTTP Server for i 241

The FRCACacheLocalSizeLimit directive specifies the maximum amount of storage (in kilobytes) that you
want to allow for FRCA file caching.

Parameter: size

• The size parameter value specifies the maximum amount of storage (in kilobytes) that you want to
allow for FRCA file caching.

The below example caches files until the accumulated size reaches 5000 kilobytes.

FRCACacheLocalSizeLimit 5000

Note: The specified value is the upper limit, the actual amount of allocated storage is the accumulated
size of the cached files. This directive can limit the cache size when using wild card character to specify
the files in the FRCACacheLocalFileStartUp directive.

If the specified directive size is greater than the amount of available storage in the FRCA network file
cache, the FRCA network file only caches as many files as it has space for.

FRCACookieAware
Module: mod_as_cache

Syntax: FRCACookieAware <path>

Default: none

Context: server config

Override: none

Origin: IBM

Example: FRCACookieAware /some_path_segment

This FRCACookieAware directive indicates URL prefix for which the cookie should be included in cache
lookup. This directive makes it possible to serve a cached entity only for the requests with the same
cookie

Parameter: <path>

• The <path> parameter value specifies a valid path name.

FRCAEnableFileCache
Module: mod_as_cache

Syntax: FRCAEnableFileCache on | off

Default: FRCAEnableFileCache off

Context: server config

Override: none

Origin: IBM

Example: FRCAEnableFileCache on

The FRCAEnableFileCache directive enables or disables FRCA file caching support for the specified server.

Parameter: on | off

• If the parameter value is on, FRCA file caching support is enabled for the specified server.
• If the parameter value is off, all other FRCA file cache related directives in the configuration file are

ignored.

242 IBM i: IBM HTTP Server for i

Note: FRCA does not perform authentication or authorization checking for the HTTP requests that are
served from the FRCA cache.

FRCAEnableProxy
Module: mod_as_cache

Syntax: FRCAEnableProxy on | off

Default: FRCAEnableProxy off

Context: server config, virtual host

Override: none

Origin: IBM

Example: FRCAEnableProxy on

The FRCAEnableFileCache directive enables or disables FRCA proxy support.

Parameter: on | off

• If the parameter value is on, FRCA proxy support is enabled for the specified container.
• If the parameter value is off, only FRCA directives in the server configuration section are ignored.

If FRCAEnableProxy is set to off in a virtual host container, only FRCA directives in that virtual host
container are ignored.

FRCA proxy does not perform authentication or authorization checking for the HTTP requests that are
served by the FRCA Proxy support.

Note: Virtual host containers do not inherit the FRCAEnableProxy setting from the server configuration.

FRCAEndofURLMarker
Module: mod_as_cache

Syntax: FRCAEndofURLMarker #

Default: none

Context: server config

Override: none

Origin: IBM

Example: FRCAEndofURLMarker #

The FRCAEndofURLMarker directive specifies the unique string that identifies the end of URLs. Suppose a
link in an html page is http://some.org/some_path/some_parms#. Before the client sends this request to
the server, it may pad the URL with data such as client_padded_data. The some.org server will receive the
path /some_path/some_parms#client_padded_data.

By specifying FRCAEndofURLMarker #, FRCA support can identify the end of the original URL (link) before
it was modified or padded by the client.

FRCAMaxCommBufferSize
Module: mod_as_cache

Syntax: FRCAMaxCommBufferSize size

Default: FRCAMaxCommBufferSize 8000

Context: server config

Override: none

IBM HTTP Server for i 243

Origin: Apache

Example: FRCAMaxCommBufferSize 4000000

The FRCAMaxCommBufferSize directive sets the communication buffer size (in bytes) in FRCA for
performance. The data being sent to HTTP Server consists of log data, message data, and collection
services data. FRCA will buffer the size of data specified until the buffer is full. Once the buffer is full, the
data will be transmitted to Apache for processing.

Parameter: size

• The size parameter value sets the communication buffer size (in bytes) in FRCA for performance.

FRCAMaxCommTime
Module: mod_as_cache

Syntax: FRCAMaxCommTime time

Default: FRCAMaxCommTime 120

Context: server config

Override: none

Origin: Apache

Example: FRCAMaxCommTime 240

The FRCAMaxCommTime directive sets the maximum number of seconds to wait before the data buffer is
sent from FRCA to HTTP Server. The data being sent to HTTP Server consists of log data, message data,
and collection services data. Once the time limit has been reached, the data will be transmitted to HTTP
Server for processing. Valid values include integers 0 through 65,535.

Parameter: time

• The time parameter value sets the maximum number of seconds to wait before the data buffer is
sent from FRCA to HTTP Server.

FRCAProxyCacheEntitySizeLimit
Module: mod_as_cache

Syntax: FRCAProxyCacheEntitySizeLimit size

Default: FRCAProxyCacheEntitySizeLimit 92160

Context: server config

Override: none

Origin: IBM

Example: FRCAProxyCacheEntitySizeLimit 8000

The FRCAProxyCacheEntitySizeLimit directive specifies the maximum proxy response entity size (in bytes)
for FRCA to cache.

Parameter: size

• The size parameter value specifies the maximum proxy response entity size (in bytes) for FRCA to
cache.

The below example only allows caching of proxy responses that are equal to, or less than, 8000 bytes.

FRCAProxyCacheEntitySizeLimit 8000

244 IBM i: IBM HTTP Server for i

FRCAProxyCacheExpiryLimit
Module: mod_as_cache

Syntax: FRCAProxyCacheExpiryLimit <time>

Default: FRCAProxyCacheExpiryLimit 86400

Context: server config

Override: none

Origin: IBM

Example: FRCAProxyCacheExpiryLimit 3600

The FRCAProxyCacheExpiryLimit directive sets the expiration (in seconds) for FRCA proxy cached HTTP
documents. Expiry time for FRCA proxy cached HTTP documents will be set to at most nnn number of
seconds into the future. FRCA proxy cached HTTP documents can be at most nnn seconds out of date. If
the expire header is present with the document in the response, then the lower of the two values is used.

Parameter: <time>

• The <time> parameter value sets the expiration (in seconds) for FRCA proxy cached HTTP
documents.

FRCA proxy cached HTTP documents are limited by the specified time interval (in seconds). This
restriction is enforced even if an expiration date is supplied with the HTTP document.

FRCAProxyCacheRefreshInterval
Module: mod_as_cache

Syntax: FRCAProxyCacheRefreshInterval <proxy> <time>

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Example: FRCAProxyCacheRefreshInterval /mirror/ibm/test 30

The FRCAProxyCacheRefreshInterval directive sets the time period (in seconds) to use each cached
entity, for the specified URI, before refreshing the cache.

Parameter One: <path>

• The <path> parameter value specifies the URI associated with cached entity.

Parameter Two: <time>

• The <time> parameter value sets the time period (in seconds) to use each cached entity,
for the specified URI, before refreshing the cache. Possible values include integers 0 through
2,147,483,647.

Note: If the value specified for <time> is zero, then the document for the specified path are always
current. That is the document is not cached.

FRCA proxy cached HTTP documents are limited by the specified interval (in seconds). This restriction is
enforced even if an expiration date is supplied with the HTTP document.

FRCAProxyCacheSizeLimit
Module: mod_as_cache

Syntax: FRCAProxyCacheSizeLimit size

IBM HTTP Server for i 245

Default: FRCAProxyCacheSizeLimit 2000

Context: server config

Override: none

Origin: IBM

Example: FRCAProxyCacheSizeLimit 5000

The FRCAProxyCacheSizeLimit directive specifies the maximum amount of storage (in kilobytes) that
FRCA proxy caching uses for the specified server.

Parameter One: size

• The size parameter value specifies the maximum amount of storage (in kilobytes) that FRCA proxy
caching uses for the specified server.

The below example caches proxy response entities until the accumulated size reaches 5000 kilobytes.

FRCAProxyCacheSizeLimit 5000

Note: The specified value is the upper limit; the actual amount of allocated storage is the accumulated
proxy entity cache size.

FRCAProxyPass
Module: mod_as_cache

Syntax: FRCAProxyPass <path> <URL>

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Example: FRCAProxyPass /mirror/foo/ http://foo.com/

The FRCAProxyPass directive allows remote servers to map into the local server space. The local server
does not act as a proxy in the conventional sense; it acts a mirror of the remote server.

Parameter One: <path>

• The <path> parameter value specifies the name of a local virtual path. The value is case sensitive.

Parameter Two: <URL>

• The <URL> parameter value specifies the partial URL for the remote server.

If the local server address is http://ibm.com/ then FRCAProxyPass /mirror/ibm1/ http://
ibm1.com/ causes a local request for the http://ibm.com/mirror/ibm1/location to be internally
converted into a proxy request of http://ibm1.com/location.

Note: FRCA Proxy does not perform authentication or authorization checking. Therefore, do not specify or
configure paths or URLs that would result in responses with sensitive information that is not intended for
public viewing.

FRCARandomizeResponse
Module: mod_as_cache

Syntax: FRCARandomizeResponse <path> <string> <nnn> <mmm>

Default: none

Context: server config

246 IBM i: IBM HTTP Server for i

Override: none

Origin: IBM

Example: FRCARandomizeResponse /some_path/fileNNN.html NNN 1 1000

Example: FRCARandomizeResponse /some_path/fileXXX.html XXX 200 300

The FRCARandomizeResponse directive specifies the path template, the replacement string marker,
and the random number range that you would like FRCA to randomly use when selecting and serving
files of that template. For example, if you have 1000 files with names file1.html through file1000.html.
By configuring FRCARandomizeResponse /document_root_alias_path/fileNNN.html NNN 1
1000 and requesting the URL http://some_host:port/dirpath/fileNNN.html, FRCA will
randomly select and serve one of the 1000 files.

Parameter One: <path>

• The <path> parameter value specifies valid paths in the form of /some_path_segment/
some_partial_file_name#.ext where "#" is replaced with a randomly generated number by FRCA
before serving the response.

Note: the path must begin with '/'. It cannot be a relative path.

Parameter Two: <string>

• Text <string> parameter value specifies the replacement string marker ("NNN") in the path.

Parameter Three: <nnn>

• The <nnn> parameter value specifies the lower limit for random numbers.

Parameter Four: <mmm>

• The <mmm> parameter value specifies the upper limit for random numbers.

LiveLocalCache
Module: mod_as_cache

Syntax: LiveLocalCache on | off

Default: LiveLocalCache on

Context: server config

Override: none

Origin: IBM

Example: LiveLocalCache off

The LiveLocalCache directive is used to specify if the cache is updated when a cached file is modified. Set
this directive to "on" if you want users, requesting a cached file, to receive the file with the latest updates.
Setting this directive to "off" is the optimum setting for performance. When LiveLocalCache directive is set
to "on", before responding to a request for a file that is stored in memory, the server checks to see if the
file has changed since the server was started. If the file has changed, the server responds to this request
with the updated file. The server then deletes the older file version from memory. Restart the server to
load the new file into memory.

Parameter: on | off

• If the parameter value is set to on, the cache is updated when a cached file is modified.
• If the parameter value is set to off, the cache is not updated when a cached file is modified.

PublicCache
Module: mod_as_cache

IBM HTTP Server for i 247

Syntax: PublicCache on | off

Default: PublicCache off

Context: server config

Override: none

Origin: IBM

Example: PublicCache on

The PublicCache directive enables caching with the CacheLocalFilePublic directive on an SSL enabled
server. It is used in conjunction with the CacheLocalFilePublic directive and has a server-wide scope. See
the CacheLocalFilePublic directive for additional details.

Parameter: on | off

• If the parameter value is set to on, caching is turned on for directive CacheLocalFilePublic.
• If the parameter value is set to off, caching is turned off for directive CacheLocalFilePublic.

Module mod_asis
Module mod_asis does not provide directives for the IBM HTTP Server for i Web server.

Summary

The module mod_asis provides the handler send-as-is which causes Apache HTTP Server to send the
document without adding most of the usual HTTP headers.

This can be used to send any kind of data from the server, including redirects and other special HTTP
responses, without requiring a cgi-script or an nph script.

This module will also process any file with the mime type httpd/send-as-is.

Usage

In the server configuration file, associate files with the send-as-is handler, for example:

AddType httpd/send-as-is asis

The contents of any file with a .asis extension will then be sent by Apache HTTP Server to the client with
almost no changes. In particular, HTTP headers are derived from the file itself according to mod_cgi rules,
so an asis file must include valid headers, and may also use the CGI Status: header to determine the HTTP
response code. The Content-Length: header will automatically be inserted or, if included, corrected by
HTTP Server.

Here is an example of a file whose contents are sent asis, telling the client that a file has redirected.

Status: 301 Now where did I leave that URL
Location: http://xyz.example.com/foo/bar.html
Content-type: text/html

<HTML>
<HEAD>
<TITLE>Lame excuses'R'us</TITLE>
</HEAD>
<BODY>
<H1>Fred's exceptionally wonderful page has moved to
Joe's site.
</H1>
</BODY>
</HTML>

Note: The server always adds a Date: and Server: header to the data returned to the client, so these
should not be included in the file. The server does not add a Last-Modified header.

248 IBM i: IBM HTTP Server for i

Module mod_autoindex
Module mod_autoindex contains directives for the IBM HTTP Server for i Web server.

Summary

The module mod_autoindex provides for automatic directory indexing. The index of a directory can come
from one of two sources:

• A file written by the user, typically called index.html. The “DirectoryIndex” on page 375 directive sets
the name of this file. This is controlled by mod_dir.

• A listing generated by the server. The other directives control the format of this listing. The AddIcon,
AddIconByEncoding and AddIconByType are used to set a list of icons to display for various file types;
for each file listed, the first icon listed that matches the file is displayed. These are controlled by
mod_autoindex.

If the FancyIndexing keyword is present on the IndexOptions directive, the column headers are links that
control the order of the display. If you select a header link, the listing will be regenerated, sorted by the
values in that column. Selecting the same header repeatedly toggles between ascending and descending
order.

For all mod_autoindex directives that specify a file name (AddDescription, AddIcon, and so on), case
sensitivity is handled based on the file system. If the object is in the QOpenSys file system, the name
is handled in a case sensitive manner. If the object is a file system other than QOpenSys, the name is
handled in a case insensitive manner.

Note: When the display is sorted by "Size", it is the actual size of the files that's used, not the displayed
value - so a 1010-byte file will always be displayed before a 1011-byte file (if in ascending order) even
though the size of both files could be displayed as "1K".

Directives

• “AddAlt” on page 249
• “AddAltByEncoding” on page 250
• “AddAltByType” on page 250
• “AddDescription” on page 251
• “AddIcon” on page 251
• “AddIconByEncoding” on page 252
• “AddIconByType” on page 252
• “DefaultIcon” on page 253
• “HeaderName” on page 253
• “IndexHeadInsert” on page 254
• “IndexIgnore” on page 254
• “IndexIgnoreReset” on page 255
• “IndexOptions” on page 255
• “IndexOrderDefault” on page 258
• “IndexStyleSheet” on page 259
• “ReadmeName” on page 259

AddAlt
Module: mod_autoindex

Syntax: AddAlt string file [file...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

IBM HTTP Server for i 249

Override: Indexes

Origin: Apache

Example: AddAlt "IMG" jpg gif

The AddAlt directive sets the alternate text to display for automatic directory indexing.

Parameter One: string

• The string parameter is enclosed in double quotes ("..."). This alternate text is displayed if the client
is image-incapable or has image loading disabled.

Parameter Two: file

• The file parameter is either ^^DIRECTORY^^ for child directories, ^^PARENT^^ for parent
directories, ^^BLANKICON^^ for blank lines (to format the list correctly), a file extension, a wildcard
expression, a partial file, or a complete filename. It could also be a QSYS.LIB member type if this
directive is being used to set alternate text for QSYS.LIB members. For example:

AddAlt "IMG" .jpg .gif
AddAlt " " ^^BLANKICON^^
AddAlt "BAK" *~

Note: This directive is not supported in “<Location> ” on page 339 containers.

AddAltByEncoding
Module: mod_autoindex

Syntax: AddAltByEncoding string MIME-encoding [MIME-encoding...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddAltByEncoding "CMP" x-compress

The AddAltByEncoding directive sets the alternate text to display for a file, instead of an icon, for
automatic directory indexing.

Parameter One: string

• The string parameter is enclosed in double quotes ("..."). This alternate text is displayed if the client
is image-incapable or has image loading disabled.

Parameter Two: MIME-encoding

• The MIME-encoding parameter is a valid content-encoding, such as x-compress.

Note: This directive is not supported in “<Location> ” on page 339 containers.

AddAltByType
Module: mod_autoindex

Syntax: AddAltByType string MIME-type [MIME-type ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

250 IBM i: IBM HTTP Server for i

Example: AddAltByType "HTM" text/html

The AddAltByType directive sets the alternate text to display for a file, instead of an icon, for automatic
directory indexing.

Parameter One: string

• The string parameter is enclosed in double quotes ("..."). This alternate text is displayed if the client
is image-incapable or has image loading disabled.

Parameter Two: MIME-type

• The MIME-type parameter is a valid content-type, such as text/html.

Note: This directive is not supported in “<Location> ” on page 339 containers.

AddDescription
Module: mod_autoindex

Syntax: AddDescription string file [file...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddDescription "Famous People" /web/pics/famous*

Example: AddDescription "My pictures" /QSYS.LIB/MYLIB/MYFILE.FILE/pic*

The AddDescription directive sets the description to display for a file, for automatic directory indexing.
File is a file extension, partial filename, QSYS.LIB member type, wildcard expression or full filename for
files to describe. String is enclosed in double quotes ("). For example:

AddDescription "The planet Mars" /web/pics/mars.gif

By default, the description field is 23 bytes wide. Seven more bytes may be added if the
directory is covered by an IndexOptions SuppressSize, and 19 bytes may be added if IndexOptions
SuppressLastModified is in effect. The widest this column can be is therefore 49 bytes, unless configured
differently using IndexOptions DescriptionMaxWidth.

The DescriptionWidth IndexOptions keyword allows you to adjust this width to any arbitrary size.

The following order of precedence will be used to search for a directory listing file description. The first
mechanism from this list that applies will be used to generate the file description:

1. The file matches one of those specified on an AddDescription directive. The string from the directive is
displayed. This option is the least CPU intensive.

2. The file system contains a description for the file. The file system description information is displayed.
Note that if the file is a QSYS.LIB member, the member text is displayed.

3. If IndexOptions ScanHTMLTitles is configured, the title is extracted from HTML documents for fancy
indexing. This is CPU and disk intensive.

Note: Descriptive text defined with AddDescription may contain HTML markup, such as tags and
character entities. If the width of the description column should happen to truncate a tagged element
(such as cutting off the end of a bold phrase), the results may affect the rest of the directory listing. This
directive is not supported in “<Location> ” on page 339 containers.

AddIcon
Module: mod_autoindex

IBM HTTP Server for i 251

Syntax: AddIcon icon name [name ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddIcon (IMG,icons/image) .gif .jpg

The AddIcon directive sets the icon to display next to a file ending in name for automatic directory
indexing.

Parameter One: icon

• The icon parameter is either a (%-escape) relative URL to the icon or of the format (alttext,url)
where alttext is the text tag given for an icon for non-graphical browsers.

Parameter Two: name

• The name parameter is either ^^DIRECTORY^^ for child directories, ^^PARENT^^ for parent
directories, ^^BLANKICON^^ for blank lines (to format the list correctly), a file extension, a wildcard
expression, a partial file or a complete filename. For example

AddIcon (IMG,icons/image) .gif .jpg
AddIcon (PAR, icons/parent .gif) ^^PARENT^^
AddIcon /dir.gif ^^DIRECTORY^^
AddIcon backup.gif *~

“AddIconByType” on page 252 should be used in preference to AddIcon, when possible.

Note: This directive is not supported in “<Location> ” on page 339 containers.

AddIconByEncoding
Module: mod_autoindex

Syntax: AddIconByEncoding icon MIME-encoding [MIME-encoding ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddIconByEncoding /compress.xbm x-compress

The AddIConByEncoding directive sets the icon to display next to files with MIME-encoding for automatic
directory indexing.

Parameter One: icon

• The icon parameter is either a (%-escaped) relative URL to the icon or of the format (alttext,url)
where alttext is the text tag five for an icon for non-graphical browsers.

Parameter Two: MIME-encoding

• The MIME-encoding parameter is a wildcard expression matching required content-encoding.

Note: This directive is not supported in “<Location> ” on page 339 containers.

AddIconByType
Module: mod_autoindex

Syntax: AddIconByType icon MIME-type [MIME-type ...]

252 IBM i: IBM HTTP Server for i

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddIconByType (IMG,image.gif) image/*

The AddIconByType directive sets the icon to display next to files of type MIME-type for FancyIndexing.
Icon is either a (%-escaped) relative URL to the icon, or of the format (alttext,url) where alttext is the text
tag given for an icon for non-graphical browsers.

Parameter One: icon

• The icon parameter is either a (%-escaped) relative URL to the icon or of the format (alttext,url)
where alttext is the text tag given for an icon for non-graphical browsers.

Parameter Two: MIME-type

• The MIME-type parameter is a wildcard expression matching the required MIME types.

Note: This directive is not supported in “<Location> ” on page 339 containers.

DefaultIcon
Module: mod_autoindex

Syntax: DefaultIcon url

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Modified

Example: DefaultIcon /icon/unknown.gif

The DefaultIcon directive sets the icon to display for files when no specific icon is known, for automatic
directory indexing.

Parameter: url

• The url parameter is either a (%-escaped) relative URL to the icon or of the format (alttext,url) where
alttext is the text tag given for an icon for non-graphical browsers. For example:

DefaultIcon (UNK,unknown.gif)

Note: This directive is not supported in “<Location> ” on page 339 containers.

HeaderName
Module: mod_autoindex

Syntax: HeaderName filename

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: HeaderName headerfile

Example: HeaderName PREAMBLE.MBR

IBM HTTP Server for i 253

The HeaderName directive sets the name of the file that will be inserted at the top of the index listing.

Parameter: filename

• The filename parameter is the name of the file to include.

Filename is treated as a URI path relative to the one used to access the directory being indexed, and must
resolve to a document with a major content type of "text" (for example, text/html, text/plain). This means
that filename may refer to a CGI script if the script's actual file type (as opposed to its output) is marked
as text/html such as with a directive like:

AddType text/html .cgi

Content negotiation will be performed if the MultiViews option is enabled. See “Content negotiation for
HTTP Server” on page 17 for more information.

If filename resolves to a static text/html document (not a CGI script) and the Includes Option is enabled,
the file will be processed for server-side includes. See mod_include for more information.

See also “ReadmeName” on page 259.

Note: This directive is not supported in “<Location> ” on page 339 containers.

IndexHeadInsert
Module: mod_autoindex

Syntax: IndexHeadInsert markup

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example:

IndexHeadInsert "<link rel=\"sitemap\" href=\"/sitemap.html\">"

The IndexHeadInsert directive specifies a string to insert in the <head> section of the HTML generated for
the index page.

Parameter: markup

• The markup parameter is a string to be inserted in the <head> section of the HTML generated for the
index page. The markup parameter must be enclosed in double quotes ("...").

IndexIgnore
Module: mod_autoindex

Syntax: IndexIgnore file [file ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: IndexIgnore README .htaccess

Example: IndexIgnore README.MBR

254 IBM i: IBM HTTP Server for i

The IndexIgnore directive adds to the list of files to hide when listing a directory. Multiple IndexIgnore
directives add to the list, rather than the replacing the list of ignored files. By default, the dot directory (.)
is ignored.

Parameter: file

• The file parameter is a file extension, QSYS.LIB member type, partial filename, wildcard expression
or full filename for files to ignore.

Note: This directive is not supported in “<Location> ” on page 339 containers.

IndexIgnoreReset
Module: mod_autoindex

Syntax: IndexIgnoreReset ON|OFF

Default: IndexIgnoreReset OFF

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: IndexIgnoreReset ON

The “IndexIgnoreReset” on page 255 directive removes any files ignored by “IndexIgnore” on page 254
otherwise inherited from other configuration sections.

Parameter: on | off

• When on is specified, any files ignored by “IndexIgnore” on page 254 will be reset.
• When off is specified, it inherites from other configuration sections by default.

For example:

<Directory /var/www>
 IndexIgnore *.bak .??* *~ *# HEADER* README* RCS CVS *,v *,t
</Directory>
<Directory /var/www/backups>
 IndexIgnoreReset ON
 IndexIgnore .??* *# HEADER* README* RCS CVS *,v *,t
</Directory>

IndexOptions
Module: mod_autoindex

Syntax: IndexOptions [+|-]option [+|-]option ...

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: IndexOptions FancyIndexing ShowOwner FoldersFirst

The IndexOptions directive specifies the behavior of the directory indexing. The option parameter can be
one of the following:
AddAltClass

Adds an additional CSS class declaration to each row of the directory listing table when IndexOptions
HTMLTable is in effect and an IndexStyleSheet is defined. Rather than the standard even and odd
classes that would otherwise be applied to each row of the table, a class of even-ALT or odd-ALT

IBM HTTP Server for i 255

where ALT is either the standard alt text associated with the file style (eg. snd, txt, img, etc) or the alt
text defined by one of the various AddAlt* directives.

DescriptionWidth= [n | *]
The DescriptionWidth keyword allows you to specify the width of the description column in
characters. -DescriptionWidth (or unset) allows mod_autoindex to calculate the best width.
DescriptionWidth=n fixes the column width to n characters wide. DescriptionWidth=* grows the
column to the width necessary to accommodate the longest description string. See the section on
AddDescription for dangers inherent in truncating descriptions.

FancyIndexing
This option turns on fancy indexing of directories. With FancyIndexing, the column headers are links
that control the order of the display. If you select a header link, the listing will be regenerated, sorted
by the values in that column. Selecting the same header repeatedly toggles between ascending and
descending order.

FoldersFirst
If this option is enabled, subdirectories in a FancyIndexed listing will always appear first, followed
by normal files in the directory. The listing is broken into two components, the files and the
subdirectories, and each is sorted separately and then displayed (subdirectories-first). For instance,
if the sort order is descending by name, and FoldersFirst is enabled, subdirectory Zed will be listed
before subdirectory Beta, which will be listed before normal files Gamma and Alpha. This option only
has an effect if FancyIndexing is also enabled

IconsAreLinks
This makes the icons part of the anchor for the filename, for fancy indexing.

IconHeight=[pixels]
Presence of this option, when used with IconWidth, will cause the server to include HEIGHT and
WIDTH attributes in the IMG tag for the file icon. This allows browser to precalculate the page layout
without having to wait until all the images have been loaded. If no value is given for the option, it
defaults to the standard height of the icons supplied with the the HTTP Server software. This option
only has an effect if FancyIndexing is also enabled.

IconWidth=[pixels]
Presence of this option, when used with IconHeight, will cause the server to include HEIGHT and
WIDTH attributes in the IMG tag for the file icon. This allows browser to precalculate the page layout
without having to wait until all the images have been loaded. If no value is given for the option, it
defaults to the standard width of the icons supplied with the HTTP Server software.

IgnoreCase
If this option is enabled, names are sorted in a case-insensitive manner. For instance, if the sort order
is ascending by name, and IgnoreCase is enabled, file zeta will be listed after file Alpha. Likewise, if
IgnoreCase is disabled, file zeta will be listed before file Alpha. By default IgnoreCase is disabled. This
option only has an effect if FancyIndexing is also enabled. The new IgnoreCase value replaces the
IndexOrderDefault CaseSense|NoCaseSense parameter.

IgnoreClient
This option causes mod_autoindex to ignore all query variables from the client, including sort order
(implies SuppressColumnSorting.)

NameWidth=[n | *]
The NameWidth keyword allows you to specify the width of the filename column in characters. If the
keyword value is '*', then the column is automatically sized to the length of the longest filename in the
display. -NameWidth (or unset) allows mod_autoindex to calculate the best width. NameWidth=n fixes
the column width to n characters wide. The minimum value allowed is 5.

256 IBM i: IBM HTTP Server for i

NameMinWidth=[n]
The NameMinWidth keyword allows you to specify the minimum width that will always be
reserved for the filename column in characters. The default setting is 15. The minimum value
allowed is 5. If NameMinWidth is greater than NameWidth, then the filename column will have a
length=NameMinWidth.

ScanHTMLTitles
This enables the extraction of the title from HTML documents for fancy indexing. If the file does not
have a description given by AddDescription then the HTTP Server will read the document for the value
of the TITLE tag. This is CPU and disk intensive.

SelectiveDirAccess
This option will cause the server to return directory listings only for directories that contain a
wwwbrws file. The contents of wwwbrws file are not important. The server only checks for its
existence. The object is a member name of an IBM i physical file or a type of object in an integrated
file system directory. For case-sensitive file systems such as /QOpenSys, the wwwbrws name is
lowercase. **SelectiveDirAccess is an AS400 specific option. This specific option works on a "per
directory" basis, in other words you must specify the +/-SelectiveDirAccess on a Directory container.

ShowForbidden

This option is new for Apache 2.2. If you use this option, Apache will show files normally hidden
because the subrequest returned HTTP_UNAUTHORIZED or HTTP_FORBIDDEN.

ShowOwner.
This directive determines whether directory listings should include the owner ID for each file.

SuppressColumnSorting
If specified, the HTTP Server will not make the column headings in a FancyIndexed directory listing
into links for sorting. The default behavior is for them to be links; selecting the column heading will
sort the directory listing by the values in that column.

SuppressDescription
This will suppress the file description in fancy indexing listings. By default, no file descriptions are
defined, and so the use of this option will regain 23 characters of screen space to use for something
else. See “AddDescription” on page 251 for information about setting the file description. See also
the DescriptionWidth index option to limit the size of the description column. This option only has an
effect if FancyIndexing is also enabled.

SuppressHTMLPreamble
If the directory actually contains a file specified by the HeaderName directive, the module
usually includes the contents of the file after a standard HTML preamble (<HTML> <HEAD>). The
SuppressHTMLPreamble option disables this behavior, causing the module to start the display with
the header file contents. The header file must contain appropriate HTML instructions in this case. If
there is no header file, the preamble is generated as usual.

SuppressIcon
This directive suppresses the display of icons on directory listings. The default is that no options are
enabled.

SuppressLastModified
This directive will suppress the display of the last modification date, in fancy indexing listings. This
option only has an effect if FancyIndexing is also enabled.

SuppressRules
This directive will suppress the horizontal rule lines (HR tags) in directory listings. Combining both
SuppressIcon and SuppressRules yields proper HTML 3.2 output, which by the final specification
prohibits IMG and HR tags from the PRE block (used to format FancyIndexed listings). This option only
has an effect if FancyIndexing is also enabled.

IBM HTTP Server for i 257

SuppressSize
This directive will suppress the file size in fancy indexing listings. This option only has an effect if
FancyIndexing is also enabled.

TrackModified
This returns the Last-Modified and ETag values for the listed directory in the HTTP header. It is only
valid if the operating system and file system return appropriate stat() results. Once this feature is
enabled, the client or proxy can track changes to the list of files when they perform a HEAD request.
Changes to the size or date stamp of an existing file will not update the Last-Modified header on all
Unix platforms. If this is a concern, leave this option disabled.

VersionSort
The VersionSort keyword causes files containing version numbers to sort in a natural way. Strings are
sorted as usual, except that substrings of digits in the name and description are compared according
to their numeric value. For example:

• foo-1.73
• foo-1.7.2
• foo-1.7.12
• foo-1.8.2
• foo-1.8.2a
• foo-1.12

If the number starts with a zero, then it is considered to be a fraction:

• foo-1.001
• foo-1.002
• foo-1.030
• foo-1.04

XHTML
The XHTML keyword forces mod_autoindex to emit XHTML 1.0 code instead of HTML 3.2. This option
only has an effect if FancyIndexing is also enabled.

Multiple IndexOptions directives for a single directory are merged together. The directive allows
incremental syntax (i.e., prefixing keywords with '+' or '-'). Whenever a '+' or '-' prefixed keyword is
encountered, it is applied to the current IndexOptions settings (which may have been inherited from an
upper-level directory). However, whenever an non-prefixed keyword is processed, it clears all inherited
options and any incremental settings encountered so far. Consider the following example:

IndexOptions +ScanHTMLTitles -IconsAreLinks FancyIndexing
IndexOptions +SuppressSize

The net effect is equivalent to IndexOptions FancyIndexing +SuppressSize, because the non-prefixed
FancyIndexing discarded the incremental keywords before it, but allowed them to start accumulating
again afterward. To unconditionally set the IndexOptions for a particular directory, clearing the inherited
settings, specify keywords without either '+' or '-' prefixes.

Note: IndexOptions directive is not supported in <Location> containers.

IndexOrderDefault
Module: mod_autoindex

Syntax: IndexOrderDefault [ascending | descending] [name | date | size | owner | description]
[CaseSense | NoCaseSense]

Default: IndexOrderDefault Ascending Name CaseSense

258 IBM i: IBM HTTP Server for i

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Modified

Example: IndexOrderDefault descending size

The IndexOrderDefault directive is used in combination with the FancyIndexing index option. By default,
FancyIndexed directory listings are displayed in ascending order by filename; the IndexOrderDefault
allows you to change this initial display order.

IndexOrderDefault takes two required arguments and a third optional argument.

Parameter One: ascending | descending

• The ascending and descending parameter indicates the direction of the sort.

Parameter Two: name | date | size | owner | description

• The name, date, size, owner, and description parameter arguments must be used and identifies the
primary key. The secondary key is always ascending filename.

Parameter Three: CaseSense | NoCaseSense

• The CaseSense and NoCaseSense parameters are optional third keywords that allow you to choose
if the column sort is case sensitive. This keyword is valid if the second keyword is name, owner or
description only. If the second keyword is date or size, then this parameter is ignored. The default for
keyword is CaseSense.

You can force a directory listing to only be displayed in a particular order by combining this directive with
the SuppressColumnSorting index option; this will prevent the client from requesting the directory listing
in a different order.

Note: This directive is not supported “<Location> ” on page 339 containers. The directive may be
inherited in a “<Directory> ” on page 311 context, but not in a “<VirtualHost> ” on page 363 context.

IndexStyleSheet
Module: mod_autoindex

Syntax: IndexStyleSheet url-path

Default: none

Context: Server, Virtual Host, Directory, .htaccess

Override: Indexes

Origin: Apache

Example: IndexStyleSheet "/css/style.css"

The IndexStyleSheet directive sets the name of the file that will be used as the CSS for the index listing.

ReadmeName
Module: mod_autoindex

Syntax: ReadmeName filename

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

IBM HTTP Server for i 259

Example: ReadMeName readme

Example: ReadMeName README.MBR

The ReadmeName directive sets the name of the file that will be appended to the end of the index listing.

Parameter: filename

• The filename parameter is the name of the file to include and is taken to be relative to the location
being indexed. Details of how its handled may be found under the description of the “HeaderName”
on page 253 directive, which uses the same mechanism as ReadmeName.

Note: This directive is not supported in “<Location> ” on page 339 containers.

Module mod_buffer
Module mod_buffer supports directives for the IBM HTTP Server for i Web server.

Summary

This module provides the ability to buffer the input and output filter stacks.

Under certain circumstances, content generators might create content in small chunks. In order to
promote memory reuse, in memory chunks are always 8k in size, regardless of the size of the chunk
itself. When many small chunks are generated by a request, this can create a large memory footprint while
the request is being processed, and an unnecessarily large amount of data on the wire. The addition of a
buffer collapses the response into the fewest chunks possible.

When HTTP Server is used in front of an expensive content generator, buffering the response may allow
the backend to complete processing and release resources sooner, depending on how the backend is
designed.

The buffer filter may be added to either the input or the output filter stacks, as appropriate, using
the “SetInputFilter” on page 359, “SetOutputFilter” on page 360, “AddOutputFilter” on page 495 or
“AddOutputFilterByType” on page 604 directives.

Using buffer with mod_include for example:

 AddOutputFilterByType INCLUDES;BUFFER text/html

Note: The buffer filters read the request/response into RAM and then repack the request/response into
the fewest memory buckets possible, at the cost of CPU time. When the request/response is already
efficiently packed, buffering the request/response could cause the request/response to be slower than
not using a buffer at all. These filters should be used with care, and only where necessary.

Directives

• “BufferSize” on page 260

BufferSize
Module: mod_buffer

Syntax: BufferSize integer

Default: BufferSize 131072

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: BufferSize 262144

The “BufferSize” on page 260 directive specifies the Maximum size in bytes to buffer by the buffer filter.

260 IBM i: IBM HTTP Server for i

Parameter: integer

• The integer parameter is the amount of data in bytes that will be buffered before being read from or
written to each request. The default is 128 kilobytes.

Module mod_cern_meta
Module mod_autoindex supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_cern_meta provides for CERN httpd meta file semantics.

Directives

• “MetaFiles” on page 261
• “MetaDir” on page 261
• “MetaSuffix” on page 262

MetaFiles
Module: mod_cern_meta

Syntax: MetaFiles on | off

Default: MetaFiles off

Context: directory

Override: none

Origin: Apache

Example: MetaFiles on

This directive allows you to emulate the CERN Meta file semantics. Meta files are HTTP headers that can
be output in addition to the normal range of headers for each file accessed. They appear like the .asis
files, and are able to influence the Expires: header.

Parameter: on | off

• Turns on or off the meta file processing on a per-directory basis.

MetaDir
Module: mod_cern_meta

Syntax: MetaDir directoryname

Default: MetaDir .web

Context: directory

Override: none

Origin: Apache

Example: MetaDir .meta Specifies the name of the

Specifies the name of the directory where HTTP Server can find meta information files. The directory is
usually a hidden subdirectory of the directory that contains the file being accessed. Set directory name
to "." in order to look in the same directory as the file. Hidden directories begin with "." so the default
directory will be hidden.

Parameter: directoryname

• The directoryname parameter specifies the name of the directory in which HTTP Server can find
meta information files.

IBM HTTP Server for i 261

MetaSuffix
Module: mod_cern_meta

Syntax: MetaSuffix suffix

Default: MetaSuffix .meta

Context: directory

Override: none

Origin: Apache

Example: MetaSuffix .stuff

Specifies the file name suffix for the file containing the meta information. A request will cause the server
to look in the file with the MetaSuffix in the “MetaDir” on page 261 directory, and will use its contents to
generate additional MIME header information.

Parameter: suffix

• The suffix parameter is the file name suffix of the file containing the meta information.

Module mod_cache
Module mod_cache supports directives for the IBM HTTP Server for i Web server.

Summary

This module contains directives that define support for the HTTP Proxy function which includes the proxy
caching function.

Cache Expiry Times
Cache expiry times are different than expiry times provided in HTTP response data. Cache expiry times
are calculated by caching agents (such as a proxy server), whereas expiry times in HTTP response data
are provided by content servers (for example, via HTTP Expires headers). If cacheable data from content
servers contains expiry times, a caching agent (or proxy) must use cache expiry times that are no later
than the corresponding data expiry times. In other words, caching agents may not serve data from cache
after it has expired, however they may stop serving it from cache prior to such time.

If content servers do not provide expiry times for cacheable data, the caching agent (or proxy) may try to
use other response information to calculate acceptable cache expiry times, or it may use some arbitrary
default value, as determined by the administrator.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under
“Criteria for Local Proxy Cache” on page 263.

The proxy function follows these rules to determine which directive settings to use to calculate cache
expiry times for HTTP proxy response data stored in the local proxy cache.

1. If HTTP response data contains expiry times (via Expires header for HTTP requests only) these times
are also used as cache expiry times.

2. If HTTP response data does not contain expiry times, but does contain information pertaining to
when it was last modified (via Last-Modified header for HTTP requests, or MDTM command for FTP
requests), the CacheLastModifiedFactor and CacheMaxExpire directive settings are used to calculate
cache expiry times.

3. If HTTP response data does not contain expiry times, nor does it contain information pertaining to
when it was last modified, the CacheDefaultExpire directive setting is used to calculate arbitrary cache
expiry times.

Note: The first rule has one exception. If response code 304 (Not Modified) is received for HTTP requests,
Expires headers (if any) are not used to set new cache expiry time. The second rule is applied (for 304

262 IBM i: IBM HTTP Server for i

responses) if last modified times from cached data are available to recalculate new cache expiry times. If
last modified times are not available from cached data, the third rule is applied.

Criteria for Local Proxy Cache
When configured, the server handles certain requests using the proxy function to obtain data from remote
servers, which it then serves as HTTP proxy response data. It does this when acting as either a forward
proxy or a reverse proxy (see ProxyRequests or ProxyReverse). By default, the proxy function obtains
and handles data separately for each request. The server may be made more efficient, however, by using
a local proxy cache to store HTTP proxy response data locally, which it then serves multiple times for
multiple requests. The server is more efficient since remote servers need only be contacted when data in
the local proxy cache expires.

Not all response data obtained by the server is cached and served for multiple requests, due mostly
for reasons involving privacy, version control (frequency of change), and negotiable content. This type of
response data is not considered cacheable and must be obtained from remote servers for each request.

Standard Criteria

Standard criteria for the server's local proxy cache and proxy function, in regards to response data
obtained using specified protocols, is described in the following lists. This criteria is used to determine
whether HTTP proxy response data is cacheable and may be served multiple times for multiple requests.

HTTP response data:

• Only data requested using the GET method is cacheable.
• Only data received on a request that does not end with a '/' is cacheable.

– 200 (OK)
– 203 (Non Authoritative)
– 300 (Multiple Choices)
– 301 (Moved Permanently)
– 304 (Not Modified)

• If data contains an Expires header, the header must be valid.

Note: This does not apply to data that does not contain an Expires header.
• If data contains an Expires header, the header must not specify a time that has already past (according

to local system time).
• If data contains an Expires header, the expiration time must be greater than the configured minimum

expiration time.
• Data received with response code 200 (OK) must contain either a Last-Modified header or an ETag

header. This requirement is waived if on is specified for the CacheIgnoreNoLastMod directive.
• Data received with response code 304 (Not Modified) is not cacheable if a previous version is not

already in cache.
• If data contains a Cache-Control header, the header must not specify the value "no-store" or "private".
• If data contains a Pragma header, the header must not specify the value "no-cache".
• If the request provides an Authorization header (possibly used by the remote server), response data

must contain a Cache-Control header that specifies one or more of the following values: "s-maxage",
"must-revalidate" or "public".

• If data contains a Content-Length header, the header must not specify a value that exceeds the
minimum or maximum data size limits set by the CacheMinFileSize and CacheMaxFileSize directives.
See Additional Criteria for more information.

FTP response data:

• Only data requested using the GET method is cacheable.
• Data is only cached if LIST or RETR commands return one of the following response codes:

IBM HTTP Server for i 263

– 125 (OK, Data Transfer Starting)
– 150 (OK, Opening Data Connection)
– 226 (OK, Closing Data Connection)
– 250 (OK)

Note: The LIST command is used to retrieve directory listings. The RETR command is used to retrieve
data files.

• Data must contain information for an HTTP Last-Modified header (produced via MDTM command
with response code 213, see Notes®: below). This requirement is waived if on is specified for the
CacheIgnoreNoLastMod directive.

• If data contains information for an HTTP Content-Length header (produced via SIZE command with
response code 213), the header must not specify a value that exceeds the minimum or maximum data
size limits set by the CacheMinFileSize and CacheMaxFileSize directives, respectively. See Additional
Criteria for more information.

HTTPS (or SSL-tunneling over HTTP) response data:

• Data requested using SSL-tunneling over HTTP is not cacheable.

No other protocols are supported by the proxy function.

Additional Criteria

Additional criteria for the server's local proxy cache and proxy functions may be imposed by the function
providing underlying cache support. Currently, this includes only the disk cache function.

The following list describes additional restrictions on HTTP proxy response data stored in a local proxy
cache, imposed by the mod_cache_disk module:

• Cache data must not exceed the minimum or maximum data size limits set by the CacheMinFileSize and
CacheMaxFileSize directives. This restriction applies regardless of Content-Length header values (if any)
in HTTP proxy response data.

• Data with cache expiry times that will expire within the minimum time margin set by the
CacheTimeMargin directive is not cached. This restriction applies to HTTP proxy response data,
using cache expiry times calculated according to rules described in the Cache Expiry Times. See
mod_cache_disk for other restriction that may apply.

Avoiding the Thundering Herd
When a cached entry becomes stale, mod_cache will submit a conditional request to the backend, which
is expected to confirm whether the cached entry is still fresh, and send an updated entity if not.

A small but finite amount of time exists between the time the cached entity becomes stale, and the time
the stale entity is fully refreshed. On a busy server, a significant number of requests might arrive during
this time, and cause a thundering herd of requests to strike the backend suddenly and unpredictably.

To keep the thundering herd at bay, the CacheLock directive can be used to define a directory in which
locks are created for URLs in flight. The lock is used as a hint by other requests to either suppress an
attempt to cache (someone else has gone to fetch the entity), or to indicate that a stale entry is being
refreshed (stale content will be returned in the mean time).

Initial caching of an entry:

• When an entity is cached for the first time, a lock will be created for the entity until the response has
been fully cached. During the lifetime of the lock, the cache will suppress the second and subsequent
attempt to cache the same entity. While this doesn't hold back the thundering herd, it does stop the
cache attempting to cache the same entity multiple times simultaneously.

Refreshment of a stale entry:

• When an entity reaches its freshness lifetime and becomes stale, a lock will be created for the entity
until the response has either been confirmed as still fresh, or replaced by the backend. During the

264 IBM i: IBM HTTP Server for i

lifetime of the lock, the second and subsequent incoming request will cause stale data to be returned,
and the thundering herd is kept at bay.

Locks and Cache-Control: no-cache:

• Locks are used as a hint only to enable the cache to be more gentle on backend servers, however
the lock can be overridden if necessary. If the client sends a request with a Cache-Control header
forcing a reload, any lock that may be present will be ignored, and the client's request will be honored
immediately and the cached entry refreshed.

As a further safety mechanism, locks have a configurable maximum age. Once this age has been reached,
the lock is removed, and a new request is given the opportunity to create a new lock. This maximum age
can be set using the CacheLockMaxAge directive, and defaults to 5 seconds.

Example:

#Enable the cache lock#

CacheLock on
CacheLockPath /QIBM/UserData/HTTPA/tmp/mod_cache-lock
CacheLockMaxAge 5

Directives

• “CacheDefaultExpire ” on page 267
• “CacheDetailHeader” on page 265
• “CacheDisable” on page 268
• “CacheEnable” on page 268
• “CacheExpiryCheck” on page 270
• “CacheHeader” on page 266
• “CacheIgnoreCacheControl” on page 271
• “CacheIgnoreNoLastMod” on page 272
• “CacheIgnoreHeaders” on page 271
• “CacheIgnoreURLSessionIdentifiers” on page 273
• “CacheKeyBaseURL” on page 274
• “CacheLastModifiedFactor” on page 274
• “CacheLock” on page 275
• “CacheLockMaxAge” on page 276
• “CacheLockPath” on page 276
• “CacheMaxExpire” on page 277
• “CacheMinExpire” on page 278
• “CacheQuickHandler” on page 278
• “CacheStoreNoStore” on page 280
• “CacheStaleOnError” on page 279
• “CacheStoreExpired” on page 280
• “CacheStorePrivate” on page 280
• “CacheTimeMargin” on page 281

CacheDetailHeader
Module: mod_cache

Syntax: CacheDetailHeader on|off

Default:CacheDetailHeader off

IBM HTTP Server for i 265

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDetailHeader on

The CacheDetailHeader directive specifies whether an X-Cache-Detail header will be added to the
response containing the detailed reason for a particular caching decision.

Parameter: on | off

• If on is specified, an X-Cache-Detail header will be added to the response.
• If off is specified(the default) , X-Cache-Detail header will not be added to the response

by default.

Example:

 # Enable the X-Cache header
 CacheHeader on

X-Cache-Detail: "conditional cache hit: entity refreshed" from localhost

CacheHeader
Module: mod_cache

Syntax: CacheHeader on|off

Default: CacheHeader off

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheHeader on

The CacheHeader directive specifies whether an X-Cache header will be added to the response with the
cache status of this response.

Parameter: on | off

• If on is specified, an X-Cache header will be added to the response.
• If off is specified (the default) , X-Cache header will not be added to the response by default.

If the normal handler is used, this directive may appear within a “<Directory> ” on page 311 or
“<Location> ” on page 339 directive. If the quick handler is used, this directive must appear within a
server or virtual host context, otherwise the setting will be ignored.

HIT

The entity was fresh, and was served from cache.

REVALIDATE

266 IBM i: IBM HTTP Server for i

The entity was stale, was successfully revalidated and was served from cache.

MISS

The entity was fetched from the upstream server and was not served from cache.

Example:

 # Enable the X-Cache header
 CacheHeader on

X-Cache: HIT from localhost

CacheDefaultExpire
Module: mod_cache

Syntax: CacheDefaultExpire period

Default: CacheDefaultExpire 3600

Context: server config, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDefaultExpire 3

The CacheDefaultExpire directive specifies the default number of seconds in which cacheable HTTP proxy
response data will be set to expire within the local proxy cache, starting from the time it is obtained by the
server.

Parameter: period

• The period parameter defines the default cache expiry period, in seconds.

This setting is used to calculate arbitrary cache expiry times for HTTP proxy response
data stored in the local proxy cache. See Cache Expiry Times for more information on
how the server determines which settings to use to calculate cache expiry times. See the
CacheIgnoreNoLastMod directive for information relating to how cache criteria may be waived
for this setting to take affect.

If this setting is used, cache expiry times are calculated by adding the specified number of
seconds to the time that data is received by the proxy function.

Example:

ProxyRequests on
CacheRoot proxyCache
CacheDefaultExpire 3600
CacheMaxExpire 86400
CacheLastModifiedFactor 0.3

In the example, if a cacheable data is retrieved from a server that does not provide an expiry time (via
HTTP Expires header), nor does it indicate when the data was last modified (via HTTP Last-Modified
header, or FTP MDTM command), the server will cache and serve the data for 3600 seconds (since
CacheDefaultExpire is set to 3600 and "on" is specified for CacheIgnoreNoLastMod). If an expiry time or
last-modified time is provided, CacheDefaultExpire would not be used (see Cache Expiry Times).

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under
Criteria for Local Proxy Cache.

IBM HTTP Server for i 267

(1) The following conditions will negate this directive:

1. off is specified for both “ProxyRequests” on page 540 and “ProxyReverse” on page 541
2. off is specified for CacheOn.
3. “CacheRoot” on page 389 is not specified
4. on is specified for “ProxyNoConnect” on page 521

CacheDisable
Module: mod_cache

Syntax: CacheDisable url-string| on

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDisable /local_files

The “CacheDisable” on page 268 directive instructs “Module mod_cache” on page 262 to not cache urls
at or below url-string.

If used in a “<Location> ” on page 339 directive, the path needs to be specified below the Location, or if
the word "on" is used, caching for the whole location will be disabled.

Example:

<Location /foo>
 CacheDisable on
</Location>

The no-cache environment variable can be set to disable caching on a finer grained set of resources

CacheDisable will not make ProxyNoCache obsolete. They can be used in conjunction with each other
(CacheDisable will have precedence). CacheDisable also takes presidence over CacheEnable directives,
no matter the order.

Note: The directive can't be specified in “<Directory> ” on page 311, “<Limit>” on page 333 and
“<Files>” on page 323 directives.

CacheEnable
Module: mod_cache

Syntax: CacheEnable cache_type [url-string]

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

268 IBM i: IBM HTTP Server for i

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheEnable disk

The CacheEnable directive instructs mod_cache to cache urls at or below url-string. The cache
storage manager is specified with the cache_type argument (note: we do not support types socache
implemented by mod_cache_socache). The CacheEnable directive can alternatively be placed inside
either “<Location> ” on page 339 or “<LocationMatch>” on page 340 sections to indicate the content is
cacheable. Cache_type disk instructs mod_cache to use the disk based storage manager implemented by
mod_cache_disk.

CacheEnable directives within “<Location> ” on page 339 or “<LocationMatch>” on page 340 sections are
processed before globally defined CacheEnable directives.

When acting as a forward proxy server, url-string must minimally begin with a protocol for which caching
should be enabled.

Example 1

Cache content (normal handler only)
CacheQuickHandler off
<LocationMatch /foo>
 CacheEnable disk
</LocationMatch>

Example 2

Cache regex (normal handler only)
CacheQuickHandler off
<LocationMatch /foo$>
 CacheEnable disk
</LocationMatch>

Example 3

Cache all but forward proxy url's (normal or quick handler)
CacheEnable disk /

Example 4

Cache FTP-proxied url's (normal or quick handler)
CacheEnable disk ftp://

Example 5

Cache forward proxy content from www.apache.org (normal or quick handler)
CacheEnable disk http://www.apache.org/

A hostname starting with a "*" matches all hostnames with that suffix. A hostname starting with "."
matches all hostnames containing the domain components that follow.

Example 6

Match www.example.org, and fooexample.org
CacheEnable disk http://*example.org/

Example 7

Match www.example.org, but not fooexample.org
CacheEnable disk http://.example.org/

IBM HTTP Server for i 269

A hostname starting with a "*" matches all hostnames with that suffix. A hostname starting with "."
matches all hostnames containing the domain components that follow.

Match www.example.org, and fooexample.org
CacheEnable disk http://*example.org/

Match www.example.org, but not fooexample.org
CacheEnable disk http://.example.org/

The no-cache environment variable can be set to disable caching on a finer grained set of resources.

IBM i has an additional enhancement to “CacheEnable” on page 268. If %%PROXY%% is specified as
the url-string, all proxy requests will be cached (unless disabled by “CacheDisable” on page 268). This
makes it easy for the customer to cache all proxy requests (they then do not have to maintain a list of
CacheEnable protocols).

 # Cache all proxied url's
 CacheEnable disk %%PROXY%%

The IBM i HTTP server only supports cache_type disk (mod_cache_disk). If you wish to improve caching
performance, use FRCA or memory based local cache mechanisms (CacheLocal directives). Implementing
the CacheEnable directive will not make DynamicCache obsolete. URL's specified by CacheEnable will
take precedence over dynamic cache, and will mark the request as not being a candidate for Dynamic
Cache.

CacheExpiryCheck
Module: mod_cache

Syntax: CacheExpiryCheck on | off

Default: CacheExpiryCheck on

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheExpiryCheck on

The CacheExpiryCheck directive specifies whether the server is to observe cache expiry times when
cached data is requested using the disk cache function (see CacheRoot).

Parameter: on | off

• If on is specified (the default), the server will perform and apply all cache expiry time
checks for data currently available in cache.

• If off is specified, cache expiry times will not be observed and cached data (if any) will
always be available.

Cache expiry time checks may be disabled (off) when the content of the cache is managed by an
application or process other than the server itself. If the content of the cache is not managed by an
application or process other than the server, this setting must be set to on (the default) to prevent the disk
cache function from making expired data appear valid.

Note: When the disk cache function is used to support a local proxy cache, this setting determines
whether cache expiry times are observed for the proxy function. Once cached, data is usually available
from cache until its respective cache expiry times has passed. However, if cache expiry time checks
are disabled (CacheExpiryCheck off), the proxy function will serve cached HTTP proxy response data

270 IBM i: IBM HTTP Server for i

regardless of whether it has expired. This effectively causes the disk cache function to ignore cache expiry
times calculated using the CacheDefaultExpire, CacheMaxExpire, and CacheLastModifiedFactor directives
for a local proxy cache, as well as any expiry time provided via Expires headers (for HTTP requests).

See the CacheRoot directive for more information on how the disk cache function is used to support a
local proxy cache.

CacheIgnoreCacheControl
Module: mod_cache

Syntax: CacheIgnoreCacheControl on | off

Default: CacheIgnoreCacheControl off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheIgnoreCacheControl on

The CacheIgnoreCacheControl directive specifies whether the server is to observe certain cache
controlling request headers (for example, Cache-Control and Pragma) when handling requests using the
proxy function.

Parameter: on | off

• If on is specified, the server will not observe cache controlling request headers.
• If off is specified (the default), the server will observe cache controlling request headers

when HTTP proxy response data is available from the local proxy cache.

By default, the server observes certain cache controlling request headers (for example, "Cache-Control :
no-store" and "Pragma : no-cache") when handling requests using the proxy function. If such headers are
present in HTTP request data sent to the server, the proxy function will not serve HTTP proxy response
data from the local proxy cache since these headers indicate that cached data is not wanted. However, if
on is specified for this setting, the proxy function will ignore cache controlling request headers and serve
HTTP proxy response data from cache, if it is available.

• Setting ProxyRequests and ProxyReverse to off negates this directive.
• This directive is used only if CacheRoot is set.

CacheIgnoreHeaders
Module: mod_cache

Syntax: CacheIgnoreHeaders header-string [header-string]

Default: CacheIgnoreHeaders None

Context: server, virtual host

Override: none

Origin: Apache

Example 1: CacheIgnoreHeaders Set-Cookie

Example 2: CacheIgnoreHeaders None

IBM HTTP Server for i 271

Do not store the given HTTP headers in the cache. According to RFC 2616, hop-by-hop HTTP headers are
not stored in the cache. The following HTTP headers are hop-by-hop headers and thus do not get stored
in the cache in any case regardless of the setting of CacheIgnoreHeaders:

• Connection
• Keep-Alive
• Proxy-Authenticate
• TE
• Trailers
• Transfer-Encoding
• Upgrade

CacheIgnoreHeaders specifies additional HTTP headers that should not be stored in the cache. For
example, it makes sense in some cases to prevent cookies from being stored in the cache.

CacheIgnoreHeaders takes a space separated list of HTTP headers that should not be stored in the
cache. If only hop-by-hop headers should not be stored in the cache (the RFC 2616 compliant behaviour),
CacheIgnoreHeaders can be set to None.

Warning: If headers like Expires which are needed for proper cache management are not stored due to a
CacheIgnoreHeaders setting, the behaviour of mod_cache is undefined.

CacheIgnoreNoLastMod
Module: mod_cache

Syntax: CacheIgnoreNoLastMod on | off

Default: CacheIgnoreNoLastMod off

Context: Server, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheIgnoreNoLastMod on

The CacheIgnoreNoLastMod directive specifies whether the server may cache HTTP proxy response data
in the local proxy cache, if it does not contain a Last-Modified header or an ETag header.

Parameter: on | off

• If off is specified (the default), the server requires either an ETag header or a Last-
Modified header to be present in all HTTP proxy response data cached in the local proxy
cache.

• If on is specified, the server will not require an ETag header or Last-Modified header to be
present in HTTP proxy response data cached in the local proxy cache.

By default, if data does not contain either an ETag header or a Last-Modified header, the
server does not consider it cacheable. Specifying on for this setting waives this criteria. See
Criteria for Local Proxy Cache for more information.

Example One:

ProxyRequests on
CacheRoot proxyCache

272 IBM i: IBM HTTP Server for i

CacheIgnoreNoLastMod off
CacheDefaultExpire 1

In the example, if data is received from a server that does not provide an expiry time (via
HTTP Expires header), nor does it have an ETag or Last-Modified header, it is not considered
cacheable since off is specified for “CacheIgnoreNoLastMod” on page 272. The server
serves the data for the current request, but does not cache it for subsequent requests. The
settings for“CacheDefaultExpire ” on page 267 is not used.

Example Two:

ProxyRequests on
CacheRoot proxyCache
CacheIgnoreNoLastMod on
CacheDefaultExpire 1

In this example, if data is received from a server that does not provide an expiry time (via
HTTP Expires header), nor does it have an ETag or Last-Modified header (as in example
one), it is still considered cacheable since on is specified for CacheIgnoreNoLastMod. The
server serves the data for the current request, and may calculate a cache expiry time
using CacheDefaultExpire to cache it for subsequent requests, assuming it satisfies all other
cache criteria.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under
Criteria for Local Proxy Cache.

• Setting ProxyRequests and ProxyReverse to off negates this directive.
• Setting ProxyNoConnect to on negates this directive.
• This directive is used only if CacheRoot is set.

CacheIgnoreURLSessionIdentifiers
Module: mod_cache

Syntax: CacheIgnoreURLSessionIdentifiers identifier [identifier] ...

Default: CacheIgnoreURLSessionIdentifiers None

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example:CacheIgnoreURLSessionIdentifiers jsessionid

The CacheIgnoreURLSessionIdentifiers directive ignores defined session identifiers encoded in the URL
when caching

Sometimes applications encode the session identifier into the URL like in the following Examples:

• /someapplication/image.gif;jsessionid=123456789
• /someapplication/image.gif?PHPSESSIONID=12345678

This causes cachable resources to be stored separately for each session, which is often not desired.
“CacheIgnoreURLSessionIdentifiers” on page 273 lets define a list of identifiers that are removed from
the key that is used to identify an entity in the cache, such that cachable resources are not stored
separately for each session.

IBM HTTP Server for i 273

CacheIgnoreURLSessionIdentifiers None clears the list of ignored identifiers. Otherwise, each identifier is
added to the list.

Example 1

CacheIgnoreURLSessionIdentifiers jsessionid

Example 2

CacheIgnoreURLSessionIdentifiers None

CacheKeyBaseURL
Module: mod_cache

Syntax: CacheKeyBaseURL URL

Default: None

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheKeyBaseURL http://www.example.com/

When the “CacheKeyBaseURL” on page 274 directive is specified, the URL provided will be used as the
base URL to calculate the URL of the cache keys in the reverse proxy configuration. When not specified,
the scheme, hostname and port of the current virtual host is used to construct the cache key. When a
cluster of machines is present, and all cached entries should be cached beneath the same cache key, a
new base URL can be specified with this directive.

Example:

Override the base URL of the cache key.
CacheKeyBaseURL http://www.example.com/

Note: Take care when setting this directive. If two separate virtual hosts are accidentally given the same
base URL, entries from one virtual host will be served to the other.

CacheLastModifiedFactor
Module: mod_cache

Syntax: CacheLastModifiedFactor factor

Default: CacheLastModifiedFactor 0.1

Context: server config, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheLastModifiedFactor 0.3

The CacheLastModifiedFactor directive specifies a multiplication factor used in the formula:

274 IBM i: IBM HTTP Server for i

period = time-since-last-modification *<factor>

Parameter: factor

• The factor parameter specifies the multiplication factor used in the formula (described
above) to calculate cache expiry times.

This formula is used and setting is used along with CacheMaxExpire to calculate cache
expiry times for HTTP proxy response data store in the local proxy cache, based on when
the data was last modified. See Cache Expiry Times for more information on how the server
determines which settings to use when calculating cache expiry times.

If this setting is used, cache expiry times are calculated by adding the lesser of the
calculated period (using the formula above) and the period specified for CacheMaxExpire
to the time that data is received by the proxy function. Using this method, data that has
not changed recently is served from cache longer than data that has changed recently,
since its last-modified time is older and will produce a greater cache expiry period. This
assumes that both responses yield calculated cache expiry periods that are less than the
CacheMaxExpire directive setting.

Example:

ProxyRequests on
CacheRoot proxyCache
CacheMaxExpire 86400
CacheLastModifiedFactor 0.3

In this example, if cacheable data is received from a server that does not provide an expiry
time (via HTTP Expires header), but does indicate that the data was last changed 10 hours
ago (via HTTP Last-Modified header, or FTP MDTM command), the server would calculate a
period of 3 hours using CacheLastModifiedFactor (10 * 0.3) and would cache and serve the
data for the same period of time since it is less than the maximum limit of 24 hours set by
CacheMaxExpire.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under
Criteria for Local Proxy Cache.

If a similar response for this example indicates that the data was last changed 8 days ago (or 192 hours),
the server would calculate a period of 57.6 hours using CacheLastModifiedFactor (192 * 0.3), but it would
cache and serve the data for a period of only 24 hours since CacheMaxExpire sets a limit on the maximum
period for the CacheLastModifiedFactor formula.

• Setting ProxyRequests and ProxyReverse to off negates this directive.
• Setting ProxyNoConnect to on negates this directive.
• This directive is used only if CacheRoot is set.

CacheLock
Module: mod_cache

Syntax: CacheLock on|off

Default: CacheLock off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

IBM HTTP Server for i 275

Example: CacheLock off

The CacheLock directive enables the thundering herd lock for the given URL space.

Parameter: on | off

• The value on enables the thundering herd lock.
• The value off disables the thundering herd lock, this is the default behavior.

In a minimal configuration the following directive is all that is needed to enable the thundering herd
lock in the default cache lock temp directory /QIBM/UserData/HTTPA/tmp specified via CacheLockPath
directive.

Example:

Enable cache lock
CacheLock on

CacheLockMaxAge
Module: mod_cache

Syntax: CacheLockMaxAge integer

Default: CacheLockMaxAge 5

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheLockMaxAge 10

The “CacheLockMaxAge” on page 276 directive specifies the maximum age of any cache lock.

A lock older than this value in seconds will be ignored, and the next incoming request will be given the
opportunity to re-establish the lock. This mechanism prevents a slow client taking an excessively long
time to refresh an entity.

CacheLockPath
Module: mod_cache

Syntax: CacheLockPath directory

Default: CacheLockPath /QIBM/UserData/HTTPA/tmp

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheLockPath /QIBM/UserData/HTTPA/tmp/myCacheLock

276 IBM i: IBM HTTP Server for i

The CacheLockPath directive allows you to specify the directory in which the locks are created. By
default, /QIBM/UserData/HTTPA/tmp is used as the default cache lock directory. Locks consist of empty
files that only exist for stale URLs in flight, so is significantly less resource intensive than the traditional
disk cache.

Parameter: directory

• The directory parameter accepts a file system path name to specify the file system directory for the
cache lock path (see cache lock directory limits below).

The server must have *RWX data authorities and *ALL object authorities to the specified directory.

Cache lock directory limits:

• If the directory parameter specifies an absolute path it must start with /QIBM/UserData/HTTPA/tmp,
otherwise the default folder will be used.

• If the directory parameter does not specify an absolute path (does not start with a '/'), it will be
assumed to be relative to the following: /QIBM/UserData/HTTPA/tmp

Example 1 (absolute path):

 CacheLockPath /QIBM/UserData/HTTPA/tmp/myCacheLock

Example 2 (relative path):

 CacheLockPath myCacheLock

CacheMaxExpire
Module: mod_cache

Syntax: CacheMaxExpire period

Default: CacheMaxExpire 86400

Context: server config, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMaxExpire 43200

The CacheMaxExpire directive specifies the maximum number of seconds in which cacheable HTTP proxy
response data will be set to expire within the local proxy cache (when the CacheLastModifiedFactor
directive setting is used). This setting has no affect on other settings used to calculate cache expiry times.

Parameter: period

• The period parameter specifies the maximum cache expiry period, in seconds, that may
be used when expiry times are calculated using the CacheLastModifiedFactor directive
setting.

This setting is used along with the CacheLastModifiedFactor directive setting to calculate
expiry times for HTTP proxy response data stored in the local proxy cache, based on when
data was last modified. See Cache Expiry Times for more information on how the server
determines which settings to use when calculating cache expiry times. If this setting is
used, cache expiry times are calculated by adding the lesser of the specified period and
the period calculated using CacheLastModifiedFactor to the time that data is received by
the proxy function.

IBM HTTP Server for i 277

Example

ProxyRequests on
CacheRoot proxyCache
CacheMaxExpire 86400
CacheLastModifiedFactor 0.3

In this example, if cacheable data is received from a server that does not provide an expiry
time (via HTTP Expires header), but does indicate that the data was last changed 5 days
ago (via HTTP Last-Modified header, or FTP MDTM command), the server would calculate a
period of 1.5 days using CacheLastModifiedFactor (5 * 0.3), but it would cache and serve
the data for a period of only 86400 seconds (1 day) since CacheMaxExpire sets a maximum
limit of 86400 seconds.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under
Criteria for Local Proxy Cache.

• Setting ProxyRequests and ProxyReverse to off negates this directive.
• Setting ProxyNoConnect to on negates this directive.
• This directive is used only if CacheRoot is set

CacheMinExpire
Module: mod_cache

Syntax: CacheMinExpire seconds

Default: CacheMinExpire 0

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMinExpire 3600

The “CacheMinExpire” on page 278 directive specifies the minimum number of seconds for which
cachable HTTP documents will be retained without checking the origin server. This is only used if no
valid expire time was supplied with the document.

CacheQuickHandler
Module: mod_cache

Syntax: CacheQuickHandler on | off

Default: CacheQuickHandler on

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheQuickHandler on

278 IBM i: IBM HTTP Server for i

The CacheQuickHandler directive controls the phase in which the cache is handled.

Parameter: on | off

• If on is specified (the default) , the cache operates within the quick handler phase.
This phase short circuits the majority of server processing, and represents the most
performant mode of operation for a typical server. The cache bolts onto the front of the
server, and the majority of server processing is avoided.

• If off is specified, the cache operates as a normal handler, and is subject to the full set
of phases when handling a server request. While this mode is slower than the default,
it allows the cache to be used in cases where full processing is required, such as when
content is subject to authorization.

Example 1

 # Run cache as a normal handler
 CacheQuickHandler off

It is also possible, when the quick handler is disabled, for the administrator to choose the
precise location within the filter chain where caching is to be performed, by adding the CACHE
filter to the chain.

Example 2

 # Cache content before mod_include and mod_deflate
 CacheQuickHandler off
 AddOutputFilterByType CACHE;INCLUDES;DEFLATE text/html

If the CACHE filter is specified more than once, the last instance will apply.

CacheStaleOnError
Module: mod_cache

Syntax: CacheStaleOnError on | off

Default: CacheStaleOnError on

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheStaleOnError on

When the “CacheStaleOnError” on page 279 directive is switched on, and when stale data is available in
the cache, the cache will respond to 5xx responses from the backend by returning the stale data instead
of the 5xx response. While the Cache-Control headers sent by clients will be respected, and the raw 5xx
responses returned to the client on request, the 5xx response so returned to the client will not invalidate
the content in the cache.

Example

Serve stale data on error.
CacheStaleOnError on

IBM HTTP Server for i 279

CacheStoreExpired
Module: mod_cache

Syntax: CacheStoreExpired on | off

Default: CacheStoreExpired Off

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheStoreExpired On

By default, responses which have already expired are not stored in the cache. The “CacheStoreExpired”
on page 280 directive allows this behavior to be overridden. CacheStoreExpired On tells the server to
attempt to cache the resource if it is stale. Subsequent requests would trigger an If-Modified-Since
request of the origin server, and the response may be fulfilled from cache if the backend resource has not
changed.

CacheStoreNoStore
Module: mod_cache

Syntax: CacheStoreNoStore on | off

Default: CacheStoreNoStore Off

Context: server config, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheStoreNoStore On

Attempt to cache requests or responses that have been marked as no-store. Ordinarily, requests
or responses with Cache-Control: no-store header values will not be stored in the cache. The
CacheStoreNoCache directive allows this behavior to be overridden. CacheStoreNoCache On tells the
server to attempt to cache the resource even if it contains no-store header values. Resources requiring
authorization will never be cached.

CAUTION: As described in RFC 2616, the no-store directive is intended to "prevent the
inadvertent release or retention of sensitive information (for example, on backup tapes)." Enabling
this option could store sensitive information in the cache. You are hereby warned.

CacheStorePrivate
Module: mod_cache

Syntax: CacheStorePrivate on | off

Default: CacheStorePrivate Off

280 IBM i: IBM HTTP Server for i

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheStorePrivate On

Ordinarily, responses with Cache-Control: private header values will not be stored in the cache. The
CacheStorePrivate directive allows this behavior to be overridden. CacheStorePrivate On tells the
server to attempt to cache the resource even if it contains private header values. Resources requiring
authorization will never be cached.

CAUTION: This directive will allow caching even if the upstream server has requested that the
resource not be cached. This directive is only ideal for a private cache.

CacheTimeMargin
Module: mod_cache

Syntax: CacheTimeMargin period

Default: CacheTimeMargin 120

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheTimeMargin 300

The CacheTimeMargin directive specifies the minimum number of seconds remaining prior to data
expiration, as indicated in the expires response header, in order for data to be cached by the server
using the disk cache function. If the disk cache function is disabled (see CacheRoot), this setting has no
affect.

Parameter: period

• The period parameter specifies the minimum time margin for cache update requests (in
seconds).

The server calculates cache time margins (or periods) for cache update requests by
subtracting the current system time from the computed expiry time. Data for cache
update requests that produce cache time margins, that are less than the specified
minimum time margin is not cached by the server.

Notes for local proxy cache:

The disk cache function uses CacheDefaultExpire, CacheLastModifiedFactor, and
CacheMaxExpire directives which may produce cache time margins that are less than
the minimum time margin specified by the CacheTimeMargin directive. In this case, the
CacheTimeMargin directive will also be used to determine if the file will be cached. See the
CacheRoot directive for more information on how the disk cache function is used to support a
local proxy cache.

IBM HTTP Server for i 281

Example

ProxyRequests on
CacheRoot proxyCache
CacheTimeMargin 120

In this example, if cacheable HTTP proxy response data is available, the data will be served (by proxy),
but it will not be cached for subsequent proxy requests if set to expire in less than 120 seconds
(CacheTimeMargin 120). If the HTTP proxy response data is set to expire in more than two minutes,
the data will be served (by proxy) and will also be cached for subsequent proxy requests.

Module mod_cache_disk
Directives

• “CacheReadSize” on page 282
• “CacheReadTime” on page 282
• “CacheDirLevels” on page 283
• “CacheMaxFileSize” on page 284
• “CacheMinFileSize” on page 285

CacheReadSize
Module: mod_cache_disk

Syntax: CacheReadSize bytes

Default: CacheReadSize 0

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheReadSize 102400

The “CacheReadSize” on page 282 directive sets the minimum amount of data, in bytes, to be read from
the backend before the data is sent to the client. The default of zero causes all data read of any size to be
passed downstream to the client immediately as it arrives. Setting this to a higher value causes the disk
cache to buffer at least this amount before sending the result to the client. This can improve performance
when caching content from a reverse proxy.

This directive only takes effect when the data is being saved to the cache, as opposed to data being
served from the cache.

CacheReadTime
Module: mod_cache_disk

Syntax: CacheReadTime milliseconds

Default: CacheReadTime 0

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

282 IBM i: IBM HTTP Server for i

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheReadTime 1000

The “CacheReadTime” on page 282 directive sets the minimum amount of elapsed time that should pass
before making an attempt to send data downstream to the client. During the time period, data will be
buffered before sending the result to the client. This can improve performance when caching content from
a reverse proxy.

The default of zero disables this option.

This directive only takes effect when the data is being saved to the cache, as opposed to data being
served from the cache. It is recommended that this option be used alongside the “CacheReadSize” on
page 282 directive to ensure that the server does not buffer excessively should data arrive faster than
expected.

CacheDirLevels
Module: mod_cache_disk

Syntax: CacheDirLevels levels

Default: CacheDirLevels 2

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDirLevels 3

The “CacheDirLevels” on page 283 directive specifies the number of directory levels used by the disk
cache function to store data.

Parameter One:levels

The levels parameter accepts an integer value between 1 and 20 to specify the number of directory
levels used by the disk cache function. The specified value multiplied by the value specified for the
CacheDirLength directive must be less than or equal to 20.

A hash algorithm is used to generate unique and seemingly random character strings from hash keys (or
URLs) provided for data stored in cache. These character strings are used to build unique file system
path names. Data is stored in the file system using these path names, relative to the directory root
specified by the CacheRoot directive. This setting specifies how many directory levels are used, while
the CacheDirLength directives specifies the length of each subdirectory name, with remaining characters
simply used for file names. The server uses the hash algorithm and directory levels to improve the
performance of the server when working with potentially large numbers data files.

See the CacheRoot directive for more information on the disk cache function.

Example 1:

 CacheRoot /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache
 CacheDirLevels 3
 CacheDirLength 1

IBM HTTP Server for i 283

This example (example 1) indicates that a hash key such as ftp://ibm.com/document.html may be used
to build a directory path such as /x/3/_/9sj4t2svBA where x, 3, and _ are three subdirectory names
(CacheDirLevels 3) each having a length of one character (CacheDirLength 1). The remaining characters,
9sj4t2svBA, are used for file names.

Example 2:

 CacheRoot /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache
 CacheDirLevels 5
 CacheDirLength 2

This example (example 2) indicates that the same hash key described for example 1 ("ftp://ibm.com/
document.html") may be used to build a directory path such as /x3/_9/sj/4t/2s/vBA where x3, _9,
sj, 4t, and 2s are five subdirectory names (CacheDirLevels 5) each having a length of two characters
(CacheDirLength 2).The remaining characters, vBA , are used for file names.

Directory paths generated in this process are made relative to the directory root defined by the CacheRoot
directive. Therefore, for example 1 (above), two files, one named 9sj4t2svBA.data and the other named
9sj4t2svBA.header will be created to store data using the hash key ftp://ibm.com/document.html. Both
files will reside within the /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache/x/3/_ directory. For
example 2 (above), the two files will be named vBA.data and vBA.header and will reside within the /
QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache/x3/_9/sj/4t/2s directory using the same hash
key.

Directory length and level limits:

Since this process generates an exponential number of directories using this schema, a limit is set upon
the values that may be specified for the CacheDirLevels and CacheDirLength directives. The limit is
described as such:

CacheDirLevels * CacheDirLength <= 20

In other words, the maximum number of directory levels multiplied by the maximum length of each
subdirectory name must be less than or equal to 20. If not, the server will fail to activate at startup.

A high value for CacheDirLevels combined with a low value for CacheDirLength will result in a relatively
deep hierarchy, with a small number of subdirectories at each level.

If the values specified for the CacheDirLevels and CacheDirLength directives are changed once they
have been used to cache data, the server will discard all existing cache data when it runs disk cache
maintenance since the file paths used to store data no longer adhere to the new values. See the
CacheGcDaily or CacheGcInterval directives for more details on disk cache maintenance.

The following conditions will negate this directive:

CacheRoot is not specified

Note: The HTTP Server does not support inheritance for the CacheDirLevels directive.

CacheMaxFileSize
Module: mod_cache_disk

Syntax: CacheMaxFileSize size

Default: none

Context: server, virtual host, directory, .htaccess

Override: none

Origin: Apache

284 IBM i: IBM HTTP Server for i

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMaxFileSize 4000000

The “CacheMaxFileSize” on page 284 directive specifies the maximum amount of data that may be stored
in the proxy disk cache for a single URL, in bytes. This setting effectively placing a maximum data size
limit on individual cache entries. If the disk cache function is disabled (see CacheRoot), this setting has no
affect.

Notes for local proxy cache:

When the disk cache function is used to support a local proxy cache, this setting places a maximum
data size limit on HTTP proxy responses which remain in the cache after cache maintenance has run.
See the CacheGCDaily and the CacheGCInterval directives for more information on how the disk cache
maintenance function is used to support a local proxy cache.

Example: :

 ProxyRequests on
 CacheOn on
 CacheRoot proxyCache
 CacheMaxFileSize 5000000
 CacheMinFileSize 400000

For this example, if 7.2 megabytes of cacheable HTTP proxy response data is available for a single
proxy request, the data will be served (by proxy), and cached for subsequent proxy requests, but will
be removed during the next cache maintenance cycle since it is larger than the 5000000 byte maximum
data size limit imposed by CacheMaxFileSize. A 3.8 megabyte HTTP proxy response will be cached for
subsequent proxy requests and will remain in the cache after the cache maintenance cycle has run, since
it is smaller than the 5000000 byte maximum data size limit and larger than the 400000 byte minimum
data size limit (set by CacheMinFileSize).

CacheMinFileSize
Module: mod_cache_disk

Syntax: CacheMinFileSize size

Default: CacheMinFileSize 1

Context: Server, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMinFileSize 40

The CacheMinFileSize directive specifies the minimum amount of data that may be stored in the proxy
disk cache for a single URL, in bytes. This setting effectively placing a minimum data size limit on
individual cache entries. If the disk cache function is disabled (see CacheRoot), this setting has no affect.

Parameter: size

• The size parameter accepts a value between 0 and 2147483647 to specify the minimum
number of bytes allowed for cache data entries.

IBM HTTP Server for i 285

A maximum document size limits specified using CacheMaxFileSize.

Notes for local proxy cache:

When the disk cache function is used to support a local proxy cache, this setting places a
minimum data size limit on HTTP proxy responses which remain in the cache after cache
maintenance has run. See CachGcDaily and CacheGcInterval directives for more details on the
how the disk cache maintenance function is used to support a local proxy cache.

Example

ProxyRequests on
CacheRoot proxyCache
CacheMaxFileSize 5000000
CacheMinFileSize 400000

For this example, if 240 kilobytes of cacheable HTTP proxy response data is available for
a single proxy request, but will be removed during the next cache maintenance cycle since
it is less than the 400000 byte minimum data size limit imposed by CacheMinFileSize. A
2.7 megabyte HTTP proxy response may be cached for subsequent proxy requests and will
remain in the cache after the cache maintenance cycle has run since it is larger than the
400000 byte minimum data size limit and smaller than the 5000000 byte maximum data
size limit (set by CacheMaxFileSize).

Module mod_cgi
Module mod_cgi supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_cgi provides for execution of CGI scripts. Any file that has the handler cgi-script will be
treated as a CGI script, and run by the server, with its output being returned to the client. Files acquire
this type either by having a name containing an extension defined by the “AddHandler” on page 493
directive, or by being in a “ScriptAlias” on page 222 directory.

When the server invokes a CGI script, it will add a variable called DOCUMENT_ROOT to the environment.
This variable will contain the value of the “DocumentRoot ” on page 313 configuration variable.

For backward-compatibility, the cgi-script handler will also be activated for any file with the mime-type
application/x-httpd-cgi. The use of the magic mime-type is deprecated.

CGI Environment variables

The server will set the CGI environment variables as described in the CGI specification with
the following provisions. See “Environment variables set by HTTP Server” on page 634 for a list of
environment variables.

REMOTE_HOST
This will only be set if “HostNameLookups ” on page 325 is set to double (it is off by default), and if a
reverse DNS lookup of the accessing hosts address indeed finds a host name.

REMOTE_IDENT
This will only be set if “IdentityCheck” on page 607 is set to on and the accessing host supports the
ident protocol.

Note: The contents of this variable cannot be relied upon because it can easily be faked. If there is a
proxy between the client and the server, the variable is not useful.

REMOTE_USER
This will only be set if the CGI script is subject to authentication.

This module also leverages the core functions ap_add_common_vars and ap_add_cgi_vars to add
environment variables like:

DOCUMENT_ROOT
Set with the content of the related “DocumentRoot ” on page 313 directive.

286 IBM i: IBM HTTP Server for i

http://www.ietf.org/rfc/rfc3875

SERVER_NAME
The fully qualified domain name related to the request.

SERVER_ADDR
The IP address of the Virtual Host serving the request.

SERVER_ADMIN
Set with the content of the related “ServerAdmin ” on page 354 directive.

For an exhaustive list it is suggested to write a basic CGI script that dumps all the environment variables
passed by HTTP Server in a convenient format.

CGI Debug
Debugging CGI scripts has traditionally been difficult, mainly because it has not been possible to study
the output (standard output and error) for scripts which are failing to run properly. However, the HTTP
Server runs CGI programs in previously started jobs (not prestart jobs) and it also reuses these jobs to
run many CGI program invocations. Therefore, debugging your CGI program is simple. You simply need
to find the job that runs CGI programs. It will have a jobname the same as the server instance name.
The joblog will contain either HTP2001 or HTP2002 indicating whether it is a CGI single threaded only
job, or a CGI multi-thread capable job. If you use a dedicated server instance, when you invoke your
CGI from a browser, the first job in the WRKACTJOB list for CGI, will be the job chosen to run the CGI
request. Therefore, you can use STRSRVJOB against this job and STRDBG against your CGI program. From
here, you have full debug capabilities provided with the IBM i debugger. You can also use standard error
(stderr) for debug information. The debug information written to STDERR is written to the ScriptLog if
one is configured or to the ErrorLog if a ScriptLog is not configured. The ScriptLog and ErrorLog are both
created with CCSID 1208 UTF-8. For CGI conversion mode EBCDIC, debug information is assumed to be
in the CCSID of the CGI job. The logging process handles the conversion from CGI job CCSID to UTF-8. For
CGI converison mode BINARY, debug information is written as is.

ScriptLog Format
When configured, the ScriptLog logs any CGI that does not execute properly. Each CGI script that fails to
operate causes several lines of information to be logged. The first two lines are always of the format:

%% [time] request-line
%% HTTP-status CGI-script-filename

If the error is that CGI script cannot be run, the log file will contain an extra two lines:

%%error
error-message

Alternatively, if the error is the result of the script returning incorrect header information (often due to a
bug in the script), the following information is logged:

%request
All HTTP request headers received
POST or PUT entity (if any)
%response
All headers output by the CGI script
%stdout
CGI standard output
%stderr
CGI standard error

Note: The %stdout and %stderr parts may be missing if the script did not output anything on standard
output or standard error

Directives

• “CGIConvMode” on page 288
• “CgiInitialUrl” on page 290

IBM HTTP Server for i 287

• “CGIJobCCSID” on page 291
• “CGIJobLocale” on page 292
• “CGIMultiThreaded” on page 293
• “CGIRecyclePersist” on page 293
• “MaxCGIJobs” on page 294
• “MaxPersistentCGI” on page 294
• “MaxPersistentCGITimeout” on page 295
• “MaxThreadedCGIJobs” on page 295
• “PersistentCGITimeout” on page 295
• “ScriptLog” on page 296
• “ScriptLogBuffer” on page 296
• “ScriptLogLength” on page 297
• “StartCGI” on page 297
• “StartThreadedCGI” on page 298
• “ThreadedCgiInitialUrl” on page 299
• “UseUserJobdLibraryList” on page 299

CGIConvMode
Module: mod_cgi

Syntax: CGIConvMode mode

Default: CGIConvMode EBCDIC

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: IBM

Example: CGIConvMode BINARY

The CGIConvMode directive is used to specify the conversion mode that your server will use when
processing CGI programs.

Parameter: mode

• Valid modes include the following:

Table 17. Valid conversion modes

Mode Description

EBCDIC The server converts everything into the EBCDIC CCSID of the CGI job.
If the directive CGIJobCCSID exists, it has precedence in its context
over the job CCSID of the server. The server assumes the header
output and encoded characters "%xx" are in the EBCDIC CCSID of the
CGI job. The server assumes that the body output is in the EBCDIC
CCSID of the CGI job unless specified otherwise using the Content-
type header.

EBCDIC_JCD The server will use the Japanese Codepage Detection utility to
determine which Japanese ASCII CCSID to convert from. Otherwise,
this option is the same as the EBCDIC option.

288 IBM i: IBM HTTP Server for i

Table 17. Valid conversion modes (continued)

Mode Description

BINARY The server performs no conversion on QUERY_STRING or STDIN data.
Environment variables are encoded in the CGI job's EBCDIC CCSID.

The server expects the header output and encoded characters "%xx"
in ASCII. The server assumes that the body output is in ASCII unless
specified otherwise using the Content-type header. This differs from
no parse header CGI in that the server will still build the HTTP
headers and perform conversion on the body output if necessary.

• The following modes are used for compatibility with IBM HTTP Server (original).

Table 18. Legacy conversion modes

Mode Description

%%MIXED/MIXED%% The server converts CGI environment variables to EBCDIC
CCSID 37, including QUERY_STRING. The server converts
STDIN data to the CCSID of the server job. However, the
encoded characters "%xx" are still represented by the
EBCDIC 37 representation of the ASCII 819 octet. The server
expects the header output to be in EBCDIC CCSID 37.
However, the encoded characters "%xx" must be represented
by the EBCDIC 37 representation of the ASCII 819 octet.
The server assumes that the body output is in the default
CCSID of the server job unless specified otherwise using the
Content-type header. The header most affected by this value
is the location header (for example, to send a plus sign '+' in
the location header you would send %).

%%EBCDIC/MIXED%% The server converts everything into the EBCDIC CCSID of
the job. In addition, the server converts escaped octets from
ASCII to EBCDIC. The server expects the header output to be
in EBCDIC CCSID 37. However, the encoded characters "%xx"
must be represented by the EBCDIC 37 representation of the
ASCII 819 octet. The server assumes that the body output
is in the default CCSID of the server job unless specified
otherwise using the Content-type header. The header most
affected by this value is the location header (for example, to
send a plus sign '+' in the location header you would send %).

%%BINARY/MIXED%% The server converts environment variables into the EBCDIC
CCSID of the job, but performs no conversions on either
QUERY_STRING or STDIN data. The server expects the
header output to be in EBCDIC CCSID 37. However, the
encoded characters "%xx" must be represented by the
EBCDIC 37 representation of the ASCII 819 octet. The server
assumes that the body output is in the default CCSID of the
server job unless specified otherwise using the Content-type
header. The header most affected by this value is the location
header (for example, to send a plus sign '+' in the location
header you would send %).

%%EBCDIC_JCD/
MIXED%%

The server uses the Japanese Codepage Detection utility to
determine which Japanese CCSID to convert from. Otherwise,
this option is the same as the %%EBCDIC/MIXED%% option.

IBM HTTP Server for i 289

Table 18. Legacy conversion modes (continued)

Mode Description

%%EBCDIC/EBCDIC%% The server converts everything into the EBCDIC CCSID of
the job. In addition, the server converts escaped octets from
ASCII to EBCDIC. The server expects the header output
and encoded characters "%xx" to be in EBCDIC CCSID 37.
The server assumes that the body output is in the default
CCSID of the server job unless specified otherwise using the
Content-type header. The header most affected by this value
is the location header (for example, to send a plus sign '+' in
the location header you would send %).

%%BINARY/BINARY%% The server converts environment variables into the EBCDIC
CCSID of the job, but performs no conversions on either
QUERY_STRING or STDIN data. The server expects the
header output and encoded characters "%xx" to be in ASCII
819. The server assumes that the body output is in ASCII 819
unless specified otherwise using the Content-type header.
The header most affected by this value is the location header
(for example, to send a plus sign '+' in the location header you
would send %).

%%BINARY/EBCDIC%% The server converts environment variables into the EBCDIC
CCSID of the job, but performs no conversions on either
QUERY_STRING or STDIN data. The server expects the
header output and the encoded characters "%xx" to be in
EBCDIC CCSID 37. The server assumes that the body output
is in the default CCSID of the server job unless specified
otherwise using the Content-type header.

%%EBCDIC_JCD/
EBCDIC%%

The server uses the Japanese Codepage Detection utility to
determine which Japanese CCSID to convert from. Otherwise,
this option is the same as the %%EBCDIC/EBCDIC%%
option.

CgiInitialUrl
Module: mod_cgi

Syntax: CgiInitialUrl url userid

Default: none

Context: server config

Override: none

Origin: IBM

Example: CgiInitialUrl /qsys.lib/qsyscgi.lib/db2www.pgm/mymacros/macro.ndm/initial *

Example: CgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm QTMHHTP1

Example: CgiInitialUrl /QOpenSys/mypacedir/pacecgi USER1

Example: CgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm?init=yes

Example: /IASP1/qsys.lib/cgi.lib/mycgi.pgm USER2

This directive is used to load and initialize CGI programs when the server starts. At server startup, when
we are processing the StartCgi directive, we are starting jobs to run CGI programs in. This new directive
will enable the server to run a CGI request to the CGI job enabling the CGI program to be loaded and

290 IBM i: IBM HTTP Server for i

initialized. This is beneficial for Net.Data users and other CGI programs built to use "named" activation
groups. The initialization of the "named" activation group is a performance issue that the first user of the
CGI job has to endure. This function will enable the performance issue to be moved to when the server
starts, so the first user does not have to pay the performance penalty.

If there are no StartCgi directives, an error will be posted and the server will not start.

Parameter One: url

• The url parameter value is actually the physical path URL, not the logical path URL. It
should not be fully qualified (do not use http://system:port/). It must start with a /
and contains the physical path to the CGI program and any path info needed by the CGI
program, including query-string. If a URL is specified that is not valid, the server will not
start.

Parameter Two: userid

• The userid parameter value is either a valid IBM i userid or * where * means all of the
userids specified on the StartCgi directive. To check for valid values, follow the rules for
IBM i user profiles. The userid is optional.

CGIJobCCSID
Module: mod_cgi

Syntax: CGIJobCCSID cgi-job-character-set-identification-number

Default: CGIJobCCSID Dependent upon server-character-set-identification-number

Context: server config, virtual host, directory, not in limit, .htaccess

Override: none

Origin: IBM

Example: CGIJobCCSID 37

Example: To run one CGI program in CCSID 37 (English):
ScriptAlias /cgi-english/ /QSYS.LIB/ENGLISH.LIB/
<Directory /QSYS.LIB/ENGLISH.LIB/>
 Allow From all
 Options +ExecCGI
 DefaultNetCCSID 819
 CGIJobCCSID 37
 CGIConvMode EBCDIC
</Directory>

Example: To run a different CGI program in CCSID 284 (Spanish):
ScriptAlias /cgi-spanish/ /QSYS.LIB/SPANISH.LIB/
<Directory /QSYS.LIB/SPANISH.LIB/>
 Allow From all
 Options +ExecCGI
 DefaultNetCCSID 819
 CGIJobCCSID 284
 CGIConvMode EBCDIC
</Directory>

IBM HTTP Server for i 291

Example: For GET and POST – Use the URI to determine the language of the user:
Enter: http://www.mydomain.com/cgi-bin/ENG/819/...
The configuration file would have this container configuration:
<Location /cgi-bin/ENG/819/>
 DefaultNetCCSID 819
 CGIJobCCSID 37
</Location>
ScriptAlias /cgi-bin/ /QSYS.LIB/CGI.LIB/
<Directory /QSYS.LIB/CGI.LIB/>
 Allow From all
 Options +ExecCGI
 CGIConvMode EBCDIC
</Directory>

The same configuration can handle this URI for a Japanese speaking user.
Enter: http://www.mydomain.com/cgi-bin/JAP/942/

The configuration file would also have this container configuration:
<Location /cgi-bin/JAP/942/>
 DefaultNetCCSID 942
 CGIJobCCSID 5035
 CGIConvMode EBCDIC_JCD
</Location>
ScriptAlias /cgi-bin/ /QSYS.LIB/CGI.LIB/
<Directory /QSYS.LIB/CGI.LIB/>
 Allow From all
 Options +ExecCGI
 CGIConvMode EBCDIC
</Directory>

The CGIJobCCSID directive specifies the CCSID under which CGI jobs run, the CGI job character set
environment, and the EBCDIC CCSID that is used when the server converts:

• Input request data for user CGI programs
• Output response data from user CGI programs to be sent back to the requester (client browser)

If this directive is not specified, the default behavior is to have the CGI job run under the same CCSID as
the main server jobs. See the DefaultFsCCSID directive for detailed information on how this is determined.

CGIJobLocale
Module: mod_cgi

Syntax: CGILocale locale_path_name

Default: none

Context: server config, virtual host, directory, not in limit, .htaccess

Override: none

Origin: IBM

Example: CGIJobLocale /QSYS.LIB/LOCALELIB.LIB/EN_US.LOCALE

Example: To run one CGI program in CCSID 37 with an English based locale (English):
ScriptAlias /cgi-english/ /QSYS.LIB/ENGLISH.LIB/

<Directory /QSYS.LIB/ENGLISH.LIB/>
 Allow From all
 Options +ExecCGI
 DefaultNetCCSID 819
 CGIJobCCSID 37
 CGIJobLocale /QSYS.LIB/LOCALELIB.LIB/EN_US.LOCALE
 CGIConvMode EBCDIC
</Directory>

292 IBM i: IBM HTTP Server for i

Example: To run a different CGI program in CCSID 273 and with a German based locale (German):
ScriptAlias /cgi-german/ /QSYS.LIB/GERMAN.LIB/
<Directory /QSYS.LIB/GERMAN.LIB/>
 Allow From all
 Options +ExecCGI
 DefaultNetCCSID 819
 CGIJobCCSID 273
 CGIJobLocale /QSYS.LIB/LOCALELIB.LIB/DE_DE.LOCALE
 CGIConvMode EBCDIC
</Directory>

Applications can be created independent of language, cultural data, or specific characters. Locales can
be accessed to provide this type of support to any integrated language environment-based application.
The CGIJobLocale directive allows a locale to be set globally or for a specific CGI job. After the locale
is set, region specific information such as date or time format can be accessed. Some ILE C/C++ run
time functions such as ctime() and localtime() are locale sensitive. The environment variable
CGI_JOB_LOCALE is set from the CGIJobLocale directive.

CGIMultiThreaded
Module: mod_cgi

Syntax: CGIMultiThreaded on | off

Default: CGIMultiThreaded off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: IBM

Example: CGIMultiThreaded on

Parameter: on | off

• The on value indicates that your CGI programs will be run in a job that is multiple thread capable.
• The off value indicates that your CGI programs will not be run in a job that is multiple thread

capable.

The CGIMultiThreaded directive is used to specify whether your CGI programs should be run in a job
that is multiple thread capable. HTTP Server uses a pool of pre-started jobs for handling CGI requests.
Multiple threaded programs must run in a multiple thread-capable job. The job pool that the job runs
in is specified at job startup time. Once the job has started, it cannot be changed to another job pool.
Not all IBM i APIs are thread safe, some will issue an error if used in a multiple thread-capable job.
This happens even if the program does not actually have multiple threads running. Because of this, HTTP
Server must default to non-multiple thread capable jobs for CGI programs for compatibility reasons. If
your CGI program uses multiple threads, it must run in a multiple thread capable job. If your CGI does not
need multiple threads, you should run it in the single threaded CGI job for performance reasons.

CGIRecyclePersist
Module: mod_cgi

Syntax: CGIRecyclePersist on | off

Default: CGIRecyclePersist off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: IBM

Example: CGIRecyclePersist on

IBM HTTP Server for i 293

The CGIRecyclePersist directive instructs the server what should be done with the job that was being
used by a persistent CGI when the persistent CGI exits persistence normally.

Parameter: on | off

• The on value indicates that the server can reuse this job for other CGI requests. When this
is used, the persistent CGI program is responsible for cleaning up any static data from the
persistent CGI transaction. The server will not perform any action other than to remove
all environment variables, to clean up any static data. Before using this setting, the CGI
programmer need to verify that it does indeed clean up its static data.

• The off value indicates that the server will not reuse this job for other CGI requests. This is
the default behavior.

MaxCGIJobs
Module: mod_cgi

Syntax: MaxCGIJobs number

Default: Value used for the ThreadsPerChild directive

Context: server config

Override: none

Origin: IBM

Example: MaxCGIJobs 50

The MaxCGIJobs directive is used to set the maximum number of CGI jobs that the server will
concurrently use. The server will only run CGI programs in jobs where the user profile for the CGI job
matches the user profile that the request is to run under. If you protect your CGI programs with many
different dummy IBM i profiles (profiles with no password) or use %%CLIENT%% (each user has their
own IBM i profile and it is used to run the CGI program), then you may want to use this directive to allow
the server to start more CGI jobs to handle the CGI programs. The server does reuse the CGI jobs, but
only when the profile for the CGI program matches the profile for the CGI job. If you see the server ending
and starting CGI jobs regularly, then you may want to use this directive to allow the server to use more
CGI jobs. This would improve the capacity and performance of your system and server.

Parameter: number

• The number parameter accepts any positive number. If an invalid value is used, or the
number is smaller than the value used for the ThreadsPerChild directive, then the server
will use the value used for the ThreadsPerChild directive.

MaxPersistentCGI
Module: mod_cgi

Syntax: MaxPersistentCGI number

Default: Value used for the ThreadsPerChild directive

Context: server config

Override: none

Origin: IBM

Example: MaxPersistentCGI 50

The MaxPersistentCGI directive is used to set the maximum number of active persistent CGI jobs that you
want to have active at one time.

294 IBM i: IBM HTTP Server for i

Parameter: number

• The number parameter sets the maximum number of active persistent CGI jobs that are
active at any one time.

MaxPersistentCGITimeout
Module: mod_cgi

Syntax: MaxPersistentCGITimeout number

Default: MaxPersistentCGITimeout 1200

Context: server config

Override: none

Origin: IBM

Example: MaxPersistentCGITimeout 1800

The MaxPersistentCGITimeout directive specifies the maximum number of seconds that a CGI program
can use when overriding the PersistentCGITimeout directive.

Parameter: number

• The number parameter value must be greater than 1 second.

MaxThreadedCGIJobs
Module: mod_cgi

Syntax: MaxThreadedCGIJobs number

Default: Value used for the ThreadsPerChild directive

Context: server config

Override: none

Origin: IBM

Example: MaxThreadedCGIJobs 50

The MaxThreadedCGIJobs directive is used to set the maximum number of multiple thread capable CGI
jobs that the server will concurrently use. The server will only run multiple thread capable CGI programs
in jobs where the user profile for the multiple thread capable CGI job matches the user profile that the
request is to run under. If you protect your multiple thread capable CGI programs with many different
dummy IBM i profiles (profiles with no password) or use %%CLIENT%% (each user has their own IBM
i profile and it is used to run the multiple thread capable CGI program), then you may want to use this
directive to allow the server to start more multiple thread capable CGI jobs to handle the multiple thread
capable CGI programs. The server does reuse the CGI jobs, but only when the profile for the multiple
thread capable CGI program matches the profile for the multiple thread capable CGI job. If you see
the server ending and starting multiple thread capable CGI jobs regularly, then you may want to use
this directive to allow the server to use more multiple thread capable CGI jobs. This would improve the
capacity and performance of your system and server.

Parameter: number

• The number parameter value can be any positive number. If an invalid value is used, or the
number is smaller than the value used for the ThreadsPerChild directive, then the server
will use the value used for the ThreadsPerChild directive.

PersistentCGITimeout
Module: mod_cgi

IBM HTTP Server for i 295

Syntax: PersistentCGITimeout number

Default: PersistentCGITimeout 300

Context: server config

Override: none

Origin: IBM

Example: PersistentCGITimeout 120

This directive specifies the number of seconds that your server waits for a client response before ending a
persistent CGI session. The CGI program can override the value that you specify on a request-by-request
basis.

Parameter: number

• The number parameter can be any amount of time greater than 1 second.

ScriptLog
Module: mod_cgi

Syntax: ScriptLog filename

Default: none

Context: server config

Override: none

Origin: Modified

Example: ScriptLog /QIBM/userdata/httpa/(instance name)

The ScriptLog directive sets the Common Gateway Interface (CGI) script error logfile. If no ScriptLog is
given, no CGI error log is created. If a ScriptLog is given, any CGI errors are logged into the filename given
as the argument. If this is a relative file or path, it is taken relative to the server root.

This log will be opened as the user the child processes run as, for example the user specified in the main
User directive. This means that either the directory the script log is in needs to be writable by that user
or the file needs to be manually created and set to be writable by that user. If you place the script log in
your main logs directory, do not change the directory permissions to make it writable by the user the child
processes run as.

Note: The script logging is meant to be a debugging feature when writing CGI scripts, and is not meant
to be activated continuously on running servers. It is not optimized for speed or efficiency, and may have
security problems if used in a manner other than that for which it was designed.

Behavior

If the filename does not begin with a slash ('/') then it is assumed to be relative to the ServerRoot.

If the path ends with a '/' character, then the path is considered to be the directory that will contain the
log file.

The ScriptLog file will be created with CCSID 1208 (UTF8). Customer data written to the script log is
assumed to be in the CGI job CCSID and will automatically be converted to CCSID 1208. The data will
be written to the log file in binary. Therefore, the customer's data will be written to the ScriptLog without
conversion. Information from the CGI request will not need to be translated, as the data will already be in
the defaultFSCCSID.

ScriptLogBuffer
Module: mod_cgi

296 IBM i: IBM HTTP Server for i

Syntax: ScriptLogBuffer size

Default: ScriptLogBuffer 1024

Context: server config

Override: none

Origin: Apache

Example: ScriptLogBuffer 512

The ScriptLogBuffer directive limits the size of any PUT or POST entity body that is logged to the file. This
prevents the log file from growing too big too quickly (the case if large bodies are being received).

Parameter: size

• The size parameter is measured in bytes and consists of any positive integer. By default,
up to 1024 bytes are logged, but the value can be changed with this directive.

ScriptLogLength
Module: mod_cgi

Syntax: ScriptLogLength size

Default: ScriptLogLength 10385760

Context: server config

Override: none

Origin: IBM

Example: ScriptLogLength 1024000

The ScriptLogLength directive can be used to limit the size in bytes of the Common Gateway Interface
(CGI) script log file. Since the log file logs a significant amount of information per CGI error (all request
headers, all script output) it can grow to be quite large. To prevent problems due to unbounded growth,
this directive can be used to set a maximum file-size for the CGI logfile. If the file exceeds this size, no
more information will be written to it.

Parameter: size

• The size parameter is measured in bytes. This is any positive number.

StartCGI
Module: mod_cgi

Syntax: StartCGI number userid IASP

Default: none

Context: server config

Override: none

Origin: IBM

Example:

StartCGI 5 USER1

StartCGI 8 QTMHHTP1 IASP1

The StartCGI directive specifies the number of CGI jobs that are spawned by the server when it starts
up, the IBM i user profile to use in these jobs. This allows you to have the server prestart CGI jobs when
the server starts so the users do not incur the performance hit of starting a new job. It also allows you to

IBM HTTP Server for i 297

start up jobs for different user profiles. The userid is optional and should only be used to protect your CGI
programs so that they run under the %%CLIENT%% profile or under a dummy IBM i profile (a profile with
no password). The IASP is optional and should only be used when your CGI programs are in IASP rather
than in the system ASP.

The cumulative number from all occurrences of this directive cannot exceed MaxCGIJobs, if it does, the
server will not start. If the user profile parameter is not specified, the default server profile (QTMHHTP1)
or the value from the global ServerUserID directive is used. If the third IASP parameter is specified, the
second userid parameter must be also explicitly specified even using the default QTMHHTP1.

If you are using %%CLIENT%% as the profile in the protection of the CGI programs (meaning that each
user authenticates with an IBM i user profile), then it should be noted that %%CLIENT%% is not a valid
value on this directive. Using IBM i profiles like this should only be done in an intranet or highly secure
server because you would not want to give just anyone an IBM i user profile. Therefore, you would know
how many users and also their user profile name, thus you would need to decide how many users will be
doing CGI requests and how many concurrent CGI requests you want each user to be able to do. Then
you could specify multiple StartCGI directives, one for each user, specifying the number of concurrent CGI
requests you expect that user to do.

Note: This will NOT limit the number of concurrent CGI requests. This will simply allow CGI jobs to be
started at server startup time so the user does not have to incur the performance hit of starting up a new
job when they run their first CGI program.

StartThreadedCGI
Module: mod_cgi

Syntax: StartThreadedCGI number userid IASP

Default: none

Context: server config

Override: none

Origin: IBM

Example: StartThreadedCGI 3

Example: StartThreadedCGI 5 USER1

Example: StartThreadedCGI 8 QTMHHTP1 IASP1

The Start ThreadedCGI directive specifies the number of multiple thread capable CGI jobs that are
spawned by the server when it starts up, the IBM i user profile and the IASP name to use in these jobs.
This allows you to have the server prestart CGI jobs when the server starts so the users do not incur
the performance hit of starting a new job. It also allows you to start up jobs for different user profiles
and IASPs. The userid is optional and should only be used to protect your multiple thread capable CGI
programs so that they run under the %%CLIENT%% profile or under a dummy iSeries profile (a profile
with no password). The IASP is optional and should only be used when your CGI programs are in IASP
rather than in the system ASP.

The cumulative number from all occurrences of this directive cannot exceed MaxThreadedCGIJobs, if it
does, the server will not start. If the user profile parameter is not specified, the default server profile
(QTMHHTP1) or the value from the global ServerUserID directive is used. If the third IASP parameter
is specified, the second userid parameter must be also explicitly specified even using the default
QTMHHTP1.

If you are using %%CLIENT%% as the profile in the protection of the multiple thread capable CGI
programs (meaning that each user authenticates with an IBM i user profile), then it should be noted that
%%CLIENT%% is not a valid value on this directive. Using IBM i profiles like this should only be done in
an intranet or highly secure server because you would not want to give just anyone an IBM i user profile.
Therefore, you would know how many users and also their user profile name, thus you would need to
decide how many users will be doing CGI requests and how many concurrent multiple thread capable

298 IBM i: IBM HTTP Server for i

CGI requests you want each user to be able to do. Then you could specify multiple StartThreadedCGI
directives, one for each user, specifying the number of concurrent multiple thread capable CGI requests
you expect that user to do.

Note: This will NOT limit the number of concurrent multiple thread capable CGI requests. This will simply
allow multiple thread capable CGI jobs to be started at server startup time so the user does not have to
incur the performance hit of starting up a new job when they run their first multiple thread capable CGI
program.

ThreadedCgiInitialUrl
Module: mod_cgi

Syntax: ThreadedCgiInitialUrl url userid

Default: none

Context: server

Override: none

Origin: IBM

Example: ThreadedCgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm QTMHHTTP

Example: ThreadedCgiInitialUrl /QOpenSys/mypacedir/pacecgi

Example: ThreadedCgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm?init=yes USER1

Example: ThreadedCgiInitialUrl /IASP1/qsys.lib/cgi.lib/mycgi.pgm USER2

This directive is used to load and initialize threaded CGI programs when the server starts. At server
startup, when processing the StartThreadedCgi directive, jobs are started to run CGI programs in. This
directive enables the server to run a CGI request to the CGI job enabling the CGI program to be loaded
and initialized. This function enables performance issues to be moved to when the server starts, so the
first user does not have diminished performance.

If there are no StartThreadedCgi directives, an error is posted and the server does not start.

UseUserJobdLibraryList
Module: mod_cgi

Syntax: UseUserJobdLibraryList On/Off

Default: UseUserJobdLibraryList Off

Context: Server, Virtual Host, Directory, Not in Limit, .htaccess

Override: FileInfo

Origin: IBM

Example: UseUserJobdLibraryList On

The UseUserJobdLibraryList directive specifies whether the job description library list of a user profile
that the CGI job runs under can be used for CGI programs.

Parameter One: on | off

• The on value indicates that your CGI programs library list will be changed to use the job
description library list of the CGI job user profile.

• The off value indicates that your CGI programs library list will not be changed to use the
job description library list of the CGI job user profile.

Note:

IBM HTTP Server for i 299

• The job description library list of HTTP server default user profiles QTMHHTTP and
QTMHHTP1 will be not used for CGI programs.

• The user profile's job description library list must have a explicit library list set in order to
make HTTP server to pick it up for CGI programs.

• If both "SetEnv QIBM_CGI_LIBRARY_LIST" and "UseUserJobdLibraryList on" are
configured, the two library lists will be merged first before changing the library list of
CGI programs.

Example 1

The User1's job description library list will be used to replace the library list of CGI programs under
MYPROGRAM library.

<Directory /QSYS.LIB/MYPROGRAM.LIB/>
 Options all
 Require all granted
 SetHandler cgi-script
 ServerUserID User1
 UseUserJobdLibraryList on
</Directory>

Example 2

The job description library list of user profile that passed authentication will be used to replace the library
list of CGI programs under MYPROGRAM library.

<Directory /QSYS.LIB/MYPROGRAM.LIB/>
 Options all
 SetHandler cgi-script
 AuthType Basic
 AuthName "IBMi"
 Require valid-user
 PasswdFile %%SYSTEM%%
 UserID %%CLIENT%%
 UseUserJobdLibraryList on
</Directory>

Module core
Module core supports directives for the IBM HTTP Server for i Web server.

Summary

These directives control the core function of HTTP Server.

Directives

• “AcceptPathInfo” on page 302
• “AcceptThreads” on page 303
• “AccessFileName” on page 304
• “AddDefaultCharset” on page 304
• “AddServerHeader” on page 305
• “AllowEncodedSlashes” on page 305
• “AllowOverride” on page 306
• “AllowOverrideList” on page 307
• “CGIPassAuth” on page 308
• “DefaultFsCCSID” on page 308
• “DefaultNetCCSID” on page 309
• “DefaultType” on page 309

300 IBM i: IBM HTTP Server for i

• “Define” on page 310
• “<Directory> ” on page 311
• “<DirectoryMatch>” on page 312
• “DocumentRoot ” on page 313
• “<Else>” on page 313
• “<ElseIf>” on page 314
• “EnableSendfile” on page 315
• “Error” on page 314
• “ErrorDocument ” on page 315
• “ErrorLog ” on page 318
• “ErrorLogFormat” on page 320
• “FileETag” on page 322
• “<Files>” on page 323
• “<FilesMatch> ” on page 323
• “ForceType ” on page 324
• “HostNameLookups ” on page 325
• “HotBackup” on page 325
• “HttpProtocolOptions” on page 326
• “HTTPSubsystemDesc” on page 327
• “HTTPStartJobQueue” on page 328
• “HTTPStartJobDesc” on page 328
• “HTTPRoutingData” on page 329
• “<If>” on page 329
• “<IfDefine>” on page 330
• “<IfModule>” on page 330
• “Include ” on page 331
• “IncludeOptional” on page 332
• “KeepAlive ” on page 332
• “KeepAliveTimeout” on page 332
• “<Limit>” on page 333
• “LimitInternalRecursion” on page 335
• “<LimitExcept>” on page 334
• “LimitRequestBody” on page 334
• “LimitRequestFields” on page 335
• “LimitRequestFieldsize” on page 336
• “LimitRequestLine” on page 336
• “LimitXMLRequestBody” on page 337
• “Listen” on page 337
• “ListenBacklog” on page 338
• “<Location> ” on page 339
• “<LocationMatch>” on page 340
• “LogCycle” on page 341
• “LogLength” on page 342

IBM HTTP Server for i 301

• “LogLevel” on page 342
• “LogMaint” on page 344
• “LogMaintHour” on page 345
• “LogTime” on page 345
• “MaxKeepAliveRequests” on page 346
• “MaxRangeOverlaps” on page 346
• “MaxRangeReversals” on page 346
• “MaxRanges” on page 347
• “MergeTrailers” on page 348
• “MergeSlashes” on page 347
• “NameVirtualHost” on page 348
• “Options” on page 348
• “ProfileToken” on page 350
• “QualifyRedirectURL” on page 350
• “ReceiveBufferSize” on page 351
• “RegisterHttpMethod” on page 351
• “Require” on page 351
• “RuleCaseSense” on page 352
• “SendBufferSize” on page 353
• “SendFileMinSize” on page 353
• “ServerAdmin ” on page 354
• “ServerAlias ” on page 354
• “ServerName ” on page 355
• “ServerPath ” on page 356
• “ServerRoot ” on page 356
• “ServerSignature” on page 357
• “ServerTokens” on page 357
• “ServerUserID” on page 358
• “SetHandler” on page 359
• “SetInputFilter” on page 359
• “SetOutputFilter” on page 360
• “ThreadsPerChild” on page 360
• “TimeOut” on page 361
• “TraceEnable” on page 361
• “UnDefine” on page 362
• “UseCanonicalName” on page 362
• “UseShutdown” on page 363
• “<VirtualHost> ” on page 363

AcceptPathInfo
Module: core

Syntax: AcceptPathInfo On | Off | Default

Default: AcceptPathInfo Default

302 IBM i: IBM HTTP Server for i

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: AcceptPathInfo On

The AcceptPathInfo directive controls whether requests that contain trailing pathname information, that
follows an actual filename or nonexistent file in an existing directory, are accepted or rejected. The trailing
pathname information can be made available to scripts in the PATH_INFO environment variable.

For example, assume the location /test/ points to a directory that contains only the single file here.html.
Requests for /test/here.html/more and /test/nothere.html/more both collect /more as PATH_INFO.

Parameter: On | Off | Default

• When set to On, a request will be accepted if a leading path component maps to a file that exists.
The above example /test/here.html/more will be accepted if /test/here.html maps to a valid file.

• When set to Off, a request will only be accepted if it maps to a literal path that exists. Therefore a
request with trailing pathname information after the true filename such as /test/here.html/more in
the above example will return a 404 NOT FOUND error.

• When set to Default, the treatment of requests with trailing pathname information is determined
by the handler responsible for the request. The core handler for normal files defaults to
rejecting PATH_INFO. Handlers that serve scripts, such as cgi-script and isapi-isa, generally accept
PATH_INFO by default.

The primary purpose of the AcceptPathInfo directive is to allow you to override the handler's choice of
accepting or rejecting PATH_INFO. This override is required, for example, when you use a filter (such as
INCLUDES) to generate content based on PATH_INFO. The core handler would usually reject the request.
You can use the following configuration to enable such a script:

<Files "mypaths.shtml">
Options +Includes
SetOutputFilter INCLUDES
AcceptPathInfo on
</Files>

AcceptThreads
Module: core

Syntax: AcceptThreads number

Default: AcceptThreads 4

Context: server config

Override: none

Origin: IBM

Example: AcceptThreads 5

The AcceptThreads directive specifies the maximum number of accept threads per server child process.
If a value is not specified, the server will use a limit of four accept threads. The accept threads are used
to accept new connections from the client. This number may need to be changed to reflect the number
of concurrent connections which are being accepted. If a large number of connections to the Web server
start at approximately the same time, the number of accept threads may need to be adjusted to a higher
value.

Note: The accept threads are created one time, and that is at startup time.

IBM HTTP Server for i 303

Parameter: number

• The number value specifies the maximum number of accept threads per server child
process. Valid values include 1 through 20.

AccessFileName
Module: core

Syntax: AccessFileName filename [filename ...]

Default: AccessFileName .htaccess

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: AccessFileName index.html

When returning a document to the client, the server looks for the first access control file in the list of
names in every document directory path. This only happens if the access control files are enabled for the
directory. For example:

AccessFileName .acl

Before returning the document /QIBM/UserData/web/index.html, the server will read /.acl, /QIBM/.acl, /
QIBM/UserData/.acl and /QIBM/UserData/web/.acl for directives, unless they have been disabled with
the following:

<Directory/>
 AllowOverride None
</Directory>

Parameter: filename

• Filename is any valid filename on the IBM i server.

If multiple occurrences of this directive are configured in a container, only the last occurrence is
processed. All other occurrences are ignored.

See also “AllowOverride” on page 306.

AddDefaultCharset
Module: core

Syntax: AddDefaultCharset on | off | charset

Default: AddDefaultCharset off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: IBM

Example: AddDefaultCharset off

The AddDefaultCharset directive specifies the character set name that will be added to any response that
does not have a parameter on the content type in the HTTP headers. This will override any character set
specified, in the document body, by a META tag.

Parameter: on | off | charset

• AddDefaultCharset on enables HTTP Server's internal default charset of iso-8859-1 as required by
the directive.

304 IBM i: IBM HTTP Server for i

• AddDefaultCharset off disables this functionality.
• Alternate charset can be specified, for example, AddDefaultCharset on utf-8.

AddServerHeader
Module: core

Syntax: AddServerHeader on|off

Default: AddServerHeader on

Context: server config, virtual host

Override: none

Origin: IBM

Example: AddServerHeader off

The Server response-header field contains information about the software used by the origin server
to handle the request, sometimes including information about specific modules that are loaded. Some
security policies may dictate that such identifying information be removed from all network daemons.

Setting “AddServerHeader” on page 305 to off prevents IBM HTTP Server for i from adding the Server
header to outgoing responses.

The value of the outgoing Server header can be logged by adding the string %{Server}o to whichever
“LogFormat” on page 487 is referenced by your “CustomLog” on page 482 directives.

AllowEncodedSlashes
Module: core

Syntax: AllowEncodedSlashes on | off | NoDecode

Default: AllowEncodedSlashes off

Context: server config, virtual host

Override: none

Origin: Apache

Example: AllowEncodedSlashes on

The AllowEncodedSlashes directive allows URLs which contain encoded path separators (%2F for / and
additionally %5C for \ on according systems) to be used. Normally, such URLs are refused with a 404
(Not found) error. Turning AllowEncodedSlashes on is useful when used in conjunction with PATH_INFO
environment variable.

Note: Allowing encoded slashes does not imply decoding. Occurrences of %2F or %5C (only on according
systems) will be left as such in the otherwise decoded URL string.

If encoded slashes are needed in path info, use of NoDecode is strongly recommended as a security
measure. Allowing slashes to be decoded could potentially allow unsafe paths.

Parameter: on | off

• The on parameter value specifies that URLs with encoded path separators can be used.
• The off parameter value specifies that URLs with encoded path separators will result in a

404 (Not found) error.
• The NoDecode parameter value specifies that URLs with encoded path separators can be

used but encoded slashes are not decoded but left in their encoded state.

IBM HTTP Server for i 305

AllowOverride
Module: core

Syntax: AllowOverride override [override ..]

Default: AllowOverride none

Context: Directory

Override: none

Origin: Apache

Example: AllowOverride all

Example: AllowOverride AuthConfig Indexes

When the server finds an .htaccess file (as specified by “AccessFileName” on page 304) it needs to know
which directives declared in that file can override earlier configuration directives.

Parameter: override

• Override can be set to one or more of the following

Override Description

None If “AllowOverrideList” on page 307 is also set to None, the server will not read the file.

All The server will allow all directives.

AuthConfig Allow use of the authorization directives such as “AuthName” on page 610,
“AuthType” on page 610, “PasswdFile” on page 233, “Require” on page 351,
“<RequireAll>” on page 228, “<RequireAny>” on page 229, “<RequireNone>” on page
229.

FileInfo Allow use of the directives controlling document types (“ErrorDocument ” on page
315, “ForceType ” on page 324, LanguagePriority, “SetHandler” on page 359,
“SetInputFilter” on page 359, “SetOutputFilter” on page 360, and mod_mime
Add* and Remove* directives), document meta data (“Header” on page 403,
“RequestHeader” on page 406, “SetEnvIf” on page 584, “SetEnvIfNoCase”
on page 586, “BrowserMatch” on page 582, “CookieExpires” on page 590,
“CookieDomain” on page 590,“CookieStyle” on page 591,“CookieTracking” on page
591,“CookieName” on page 590), mod_rewrite directives (“RewriteEngine” on page
572, “RewriteOptions” on page 574, “RewriteBase” on page 567, “RewriteCond” on
page 568, “RewriteRule” on page 576), mod_alias directives (“Redirect” on page 219,
“RedirectTemp” on page 222, “RedirectPermanent” on page 222, “RedirectMatch” on
page 220), and “Action” on page 215 from mod_actions.

Indexes Allow use of the directives controlling directory indexing such as AddDescription ,
AddIcon, AddIconByEncoding, AddIconByType, DefaultIcon, DirectoryIndex,
IndexOptions, HeaderName, IndexIgnore, IndexOptions and ReadmeName.

Limit Allow use of the directives controlling host access such as “Allow” on page 612,
“Deny” on page 613 and “Order” on page 614.

306 IBM i: IBM HTTP Server for i

Override Description

Nonfatal=[Overr
ide|Unknown|
All]

Allow use of AllowOverride option to treat syntax errors in .htaccess as non-fatal:
instead of causing an Internal Server Error, disallowed or unrecognized directives will
be ignored and a warning logged:

Nonfatal=Override treats directives forbidden by AllowOverride as non-fatal.

Nonfatal=Unknown treats unknown directives as non-fatal. This covers typos and
directives implemented by a module that's not present.

Nonfatal=All treats both the above as non-fatal

Note: Note that a syntax error in a valid directive will still cause an internal server
error.

Security: Nonfatal errors may have security implications for .htaccess users. For
example, if AllowOverride disallows AuthConfig, users' configuration designed to
restrict access to a site will be disabled.

Options
[=Option,...]

Allow use of the directives controlling specific directory features such as “Options” on
page 348. An equal sign may be given followed by a comma-separated list, without
spaces, of options that may be set using the “Options” on page 348 command.

Note:

AllowOverride is valid only in Directory sections specified without regular expressions, not in Location,
DirectoryMatch or Files sections.

The use of .htaccess is not supported in QDLS and QSYS. For these file systems the AllowOverride
override value needs to be None to avoid errors that keep a page from being served.

AllowOverrideList
Module: core

Syntax: AllowOverrideList None|directive [directive-type] ...

Default: AllowOverrideList None

Context: directory

Override: none

Origin: Apache

Example: AllowOverrideList Redirect RedirectMatch

When the server finds an .htaccess file (as specified by AccessFileName) it needs to know which
directives declared in that file can override earlier configuration directives.

When this directive is set to None and “AllowOverride” on page 306 is set to None, then .htaccess files are
completely ignored. In this case, the server will not even attempt to read .htaccess files in the filesystem.

Example:

AllowOverride None

AllowOverrideList Redirect RedirectMatch

In the example above only the Redirect and RedirectMatch directives are allowed. All others will cause an
internal server error.

Example:

AllowOverride AuthConfig

AllowOverrideList CookieTracking CookieName

IBM HTTP Server for i 307

In the example above “AllowOverride” on page 306 grants permission to the AuthConfig directive
grouping and AllowOverrideList grants permission to only two directives from the FileInfo directive
grouping. All others will cause an internal server error.

Note: AllowOverrideList is valid only in “<Directory> ” on page 311 sections specified without regular
expressions, not in “<Location> ” on page 339, “<DirectoryMatch>” on page 312 or “<Files>” on page
323 sections.

See also“AccessFileName” on page 304 , “AllowOverride” on page 306.

CGIPassAuth
Module: core

Syntax: CGIPassAuth On|Off

Default: CGIPassAuth Off

Context: Directory, .htaccess

Override: AuthConfig

Origin: Apache

Example: CGIPassAuth On

CGIPassAuth allows scripts access to HTTP authorization headers such as Authorization, which is
required for scripts that implement HTTP Basic authentication. Normally these HTTP headers are hidden
from scripts. This is to disallow scripts from seeing user ids and passwords used to access the server
when HTTP Basic authentication is enabled in the web server. This directive should be used when scripts
are allowed to implement HTTP Basic authentication.

The setting is respected by any modules which use ap_add_common_vars(), such as mod_cgi. Notably, it
affects modules which don't handle the request in the usual sense but still use this API; example of this
is mod_include. Third-party modules that don't use ap_add_common_vars() may choose to respect the
setting as well.

DefaultFsCCSID
Module: ap_charset

Syntax: DefaultFsCCSID server-character-set-identification-number

Default: dependent on server settings

Context: server config

Override: none

Origin: IBM

Example: DefaultFsCCSID 37

The DefaultFsCCSID directive specifies the CCSID that your server runs under, the server character set
environment, and the EBCDIC CCSID that is used when the server converts:

• Input request data for user CGI programs or Apache modules.
• Output response data from user CGI programs, or Apache modules, to be sent back to the requester

(client browser).

A configuration file can contain more than one DefaultFsCCSID directive, but the last directive in the
configuration file determines the CCSID.

If the HTTP Server startup value -fsccsid is specified on the STRTCPSVR command or as a parameter on
the HTTP Administration's start server , the value specified overrides all other settings and is used for the
server CCSID.

308 IBM i: IBM HTTP Server for i

If there is no startup value specified, but there is a DefaultFsCCSID directive in the configuration file, the
directive value will be used for the server CCSID.

If there is no startup value specified and there is no DefaultFsCCSID directive in the configuration file,
then the QCCSID system value is used. If the QCCSID system value is set to 65535, then the server job
will be started with that CCSID. However, the CCSID that the server actually uses for conversions will be
the job default ccsid which is set to an appropriate value based on the language (LANGID) of the server
job.

To display the CCSID of the server, complete the following task:

1. Start a 5250 session on your IBM i server.
2. Type WRKACTJOB (Work Active Job).
3. Type a 5 (Work with...) next to your server job.
4. Type a 2 (Display job definition attributes) on the Work with Job screen.
5. Page down until you see the job CCSID fields.

Example
In this case, the QCCSID system value was used to start the server job. We see that the
Coded character set identifier is 65535. However, the Default coded character set identifier
has been set to 37 because the Language identifier is ENU (United States English). The
server will use CCSID 37 as the EBCDIC CCSID.

Language identifier : ENU
Country or region identifier : US
Coded character set identifier : 65535
Default coded character set identifier : 37

DefaultNetCCSID
Module: mod_cgi

Syntax: DefaultNetCCSID client-character-set-identification-number

Default: Global HTTP Server setting for coded character set identifier.

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: IBM

Example: DefaultNetCCSID 819

The DefaultNetCCSID directive specifies the client character set environment and defines the ASCII or
UTF-8 CCSID that is used when converting:

• Input request data for user CGI programs or Apache modules.
• When serving EBCDIC documents and no ASCII CCSID can be deduced from the file CCSID.
• Output response data from user CGI programs, or Apache modules, to be sent back to the requester

(client browser).

A configuration file can contain more than one DefaultNetCCSID directive, but the last directive in the
configuration file determines the CCSID. Starting in IBM i 5.4, the use of this directive is expanded to help
you configure a single server to handle requests in more than one language. The directive is now allowed
in a virtual host container and in directory containers. This directive is supported in the global scope. If
the directive is not specified, the global HTTP Server setting for coded character set identifier is used. The
shipped value is 00819 (ISO 8859-1 8-bit ASCII). You can view and change global HTTP Server settings
using the Change HTTP Attributes (CHGHTTPA) command.

DefaultType
Module: core

IBM HTTP Server for i 309

Syntax: DefaultType media-type |none

Default: DefaultType none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: DefaultType image/gif

This directive has been disabled. For backwards compatibility of configuration files, it may be specified
with the value none, meaning no default media type.

Parameter: MIME-type

• The MIME-type value specifies the document content-type.

For example:

DefaultType None

Use the /QIBM/UserData/HTTPA/conf/mime.types configuration file and the “AddType” on page 495 to
configure media type assignments via file extensions, or the “ForceType ” on page 324 directive to
configure the media type for specific resources. Otherwise, the server will send the response without a
Content-Type header field and the recipient may attempt to guess the media type.

Define
Module: core

Syntax: Define parameter-name [parameter-value]

Default: None

Context: server, virtual host, directory

Override: none

Origin: Apache

Example: Define SSL

Example: Define servername www.example.com

In its one parameter form, Define is equivalent to passing the -D argument to STRTCPSVR command. For
example: STRTCPSVR SERVER(*HTTP) HTTPSVR(instanceName '-t -D DUMP_VHOSTS'). It can be used to
toggle the use of “<IfDefine>” on page 330 sections without needing to alter -D arguments in the HTTP
server STRTCPSVR command.

In addition to that, if the second parameter is given, a config variable is set to this value. The variable
can be used in the configuration using the ${VAR} syntax. The variable is always globally defined and not
limited to the scope of the surrounding config section.

<IfDefine TEST>
 Define servername test.example.com
</IfDefine>
<IfDefine !TEST>
 Define servername www.example.com
 Define SSL
</IfDefine>

DocumentRoot /var/www/${servername}/htdocs

Variable names may not contain colon ":" characters, to avoid clashes with http://httpd.apache.org/
docs/2.4/mod/mod_rewrite.html#rewritemap 's syntax.

310 IBM i: IBM HTTP Server for i

http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html#rewritemap
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html#rewritemap

<Directory>
Module: core

Syntax: <Directory directory> ... </Directory>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: <Directory /usr/local/httpd/htdocs>

<Directory> and </Directory> are used to enclose a group of directives that only apply to the named
directory and subdirectories of that directory. Any directive that is allowed in a directory context may be
used.

Parameter: directory

• A directory is either the full path to a directory or a wildcard string. Refer to “<DirectoryMatch>” on
page 312 for details regarding wildcard strings. Full path directory example:

<Directory /usr/local/httpd/htdocs>
Options Indexes
FollowSymLinks
</Directory>

If multiple (non-regular expression) directory sections match the directory (or its parents) containing
a document, then the directives are applied in the order of shortest match first, interspersed with the
directives from the .htaccess files. See “AccessFileName” on page 304 for more information. For example:

<Directory />
 AllowOverride None
</Directory>

<Directory /home/*>
 AllowOverride FileInfo
</Directory>

For access to the document /home/web/dir/doc.html the steps are:

• Apply directive AllowOverride None (disabling .htaccess files).
• Apply directive AllowOverride FileInfo (for directory /home/web).
• Apply any FileInfo directives in /home/web/.htaccess.

Regular expressions are not considered until all of the normal sections have been applied. Then all of the
regular expressions are tested in the order they appeared in the configuration file. For example:

<Directory ~ abc$>
... directives here ..
</Directory>

Suppose that the filename being accessed is /home/ABC/public_html/ABC/index.html. The server
considers each of /, /home, /home/ABC, /home/ABC/public_html and /home/ABC/public_html/ABC in
that order. The regular expression would not be considered until all normal <Directory> and .htaccess
files have been applied. Then the regular expression will match on /home/ABC/public_html/ABC and be
applied.

Notes:

IBM HTTP Server for i 311

• The default HTTP Server access for <Directory /> is Allow from All. This means that HTTP Server will
serve any file mapped from a URL. The GUI directory wizard automatically creates a root directory that
denies access to all and doesn't allow htaccess file usage:

<Directory />
 Options None
 AllowOverride None
 Require all denied
</Directory>

Then override this for directories you want accessible. See the “Security tips for HTTP Server” on page
30 or “User profiles and required authorities for HTTP Server” on page 31 pages for more details.
<Directory> directives can only be in virtual host and the server configuration see context above.

Previously, <Directory> containers were used to enclose groups of directives that applied to proxy
requests by appending the prefix "proxy:" to the beginning of the specified directory name. This is
no longer supported. The server now has proxy containers for this purpose. The proxy now ignores
directives enclosed in directory (or file) containers, and uses proxy containers. See <Proxy> and
<ProxyMatch> for more information.

• Directives within location containers (if matched) take precedence over directives within directory
containers. See “<Location> ” on page 339 and “<LocationMatch>” on page 340 directives for more
information on location containers.

<DirectoryMatch>
Module: core

Syntax: <DirectoryMatch regex> ... </DirectoryMatch>

Default: none

Context: Server config, Virtual host

Override: none

Origin: Apache

Example: <DirectoryMatch "^/www/.*/[0-9]{3}">

<DirectoryMatch> and </DirectoryMatch> are used to enclose a group of directives that only apply to the
named directory and the files within that directory. It is the same as <Directory>; however, it takes an
argument as a regular expression. For example:

<DirectoryMatch "^/www/.*/[0-9]{3}">

This matches directories in /www/ (or any subdirectory thereof) that consist of three numbers.

Note: The argument to DirectoryMatch does not need to be in quotes unless the regular expression
includes a space character.

Parameter: regex

• Regex is a UNIX-style regular expression that is matched against the URL. Subexpressions are
grouped within parentheses. Then, parenthetically enclosed regular expressions will be substituted
in a subsequent $n statement.

Compatability

Prior to IBM i 7.2, this directive implicitly applied to sub-directories (like “<Directory> ” on page 311)
and could not match the end of line symbol ($). In IBM i 7.2 and later, only directories that match the
expression are affected by the enclosed directives.

Trailing Slash

This directive applies to requests for directories that may or may not end in a trailing slash, so expressions
that are anchored to the end of line ($) must be written with care.

312 IBM i: IBM HTTP Server for i

Named groups and backreferences are captured and written to the environment with the corresponding
name prefixed with "MATCH_" and in upper case. This allows elements of paths to be referenced from
within expressions and modules like mod_rewrite. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

For example:

<DirectoryMatch "^/www/webserver/htdocs/(?<sitename>host\d)$">
 Options Indexes FollowSymLinks
 RewriteEngine On
 RewriteCond "%{env:MATCH_SITENAME}" "^host1"
 RewriteRule .* success.html
 Require all granted
</DirectoryMatch>

See also“<Directory> ” on page 311 .

DocumentRoot
Module: core

Syntax: DocumentRoot directory-path

Default: DocumentRoot /QIBM/UserData/HTTPA/htdocs

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: DocumentRoot /QIBM/UserData/mydocs

The DocumentRoot directive sets the directory from which HTTP Server will serve files. If the URL is not
matched by a directive like Alias, the server appends the path from the requested URL to the document
root and makes the path to the document.

Parameter: directory-path

• Directory-path is any valid directory path on the IBM i server.

For example:

DocumentRoot /usr/web

An access to http://www.my.host.com/index.html refers to /usr/web/index.html.

If the DocumentRoot directive is used in the server context and the directory does not exist, the server
will not start. If the DocumentRoot directive is used in a virtual host context and the directory does not
exist, that virtual host will inherit the document root from the server context (the server will start).

<Else>
Module: core

Syntax:<Else>...</Else>

Default: None

Context: Server config, Virtual Host, directory, .htaccess

Override: All

Origin: Apache

The <Else> applies the enclosed directives if and only if the most recent <If> or <ElseIf> section in the
same scope has not been applied. For example:

<If "-z req('Host')">

IBM HTTP Server for i 313

...

</If>

<Else>

...

</Else>

The <If> would match HTTP/1.0 requests without a Host: header and the <Else> would match requests
with a Host: header.

See also

“<If>” on page 329

“<ElseIf>” on page 314

<ElseIf>
Module: core

Syntax:<ElseIf expression>...</ElseIf>

Default: None

Context: server config, Virtual Host, directory, .htaccess

Override: All

Origin: Apache

The <ElseIf> applies the enclosed directives if and only if both the given condition evaluates to true and
the most recent <If> or <ElseIf> section in the same scope has not been applied. For example:

<If "-R '10.1.0.0/16'">

...

</If>

<ElseIf "-R '10.0.0.0/8'">

...

</ElseIf>

<Else>

...

</Else>

The <ElseIf> would match if the remote address of a request belongs to the subnet 10.0.0.0/8 but not to
the subnet 10.1.0.0/16.

See also

“<If>” on page 329

“<ElseIf>” on page 314

Error
Module: core

Syntax: Error message

Default: None

Context: Server, Virtual Host, directory, .htaccess

314 IBM i: IBM HTTP Server for i

Override: none

Origin: Apache

If an error can be detected within the configuration, this directive can be used to generate a custom
error message, and halt configuration parsing. The typical use is for reporting required modules which are
missing from the configuration.

Example

ensure that mod_include is loaded

<IfModule !include_module>

Error "mod_include is required by mod_foo. Load it with LoadModule."

</IfModule>

ensure that exactly one of SSL,NOSSL is defined

<IfDefine SSL>

<IfDefine NOSSL>

Error "Both SSL and NOSSL are defined. Define only one of them."

</IfDefine>

</IfDefine>

<IfDefine !SSL>

<IfDefine !NOSSL>

Error "Either SSL or NOSSL must be defined."

</IfDefine>

</IfDefine>

EnableSendfile
Module: core

Syntax: EnableSendfile on|off

Default: EnableSendfile on

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: EnableSendfile off

This directive controls whether httpd may use the sendfile support from the kernel to transmit file
contents to the client. By default, when the handling of a request requires no access to the data within
a file (for example, when delivering a static file) Apache uses sendfile to deliver the file contents without
ever reading the file if the operating system supports it. This sendfile mechanism avoids separate read
and send operations, and buffer allocations.

ErrorDocument
Module: core

Syntax: ErrorDocument error-code document

Default: none

IBM HTTP Server for i 315

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: Modified

Example: ErrorDocument 404 /cgi-bin/bad_urls.html

Example: ErrorDocument 500 http://QIBM.example.com/cgi-bin/tester

Example: ErrorDocument 401 /subscription_info.html

Example: ErrorDocument 403 "Sorry, cannot allow you access today."

In the event of a problem or error, HTTP Server can be configured to do one of four things:

1. Output a simple hard coded error message.
2. Output a customized message.
3. Internally redirect to a local URL to handle the problem/error.
4. Redirect to an external URL to handle the problem/error.

The first option is the default, while options 2 through 4 are configured using the ErrorDocument directive,
which is followed by HTTP Server response code and a message or URL.

expression syntax can be used inside the directive to produce dynamic strings and URLs.

For option 3, the document parameter must begin with a '/' character and it is assumed to be relative to
DocumentRoot. If the document parameter contains a ':' character it is assumed to be an external URL
(option 4). If neither of these are true, option 2 is assumed.

Parameter One: error-code

• The error-code parameter specifies the error code associated with a hard coded error message, a
customized message, a local URL, or an external URL that handles the problem/error.

Parameter Two: document

• The document parameter specifies a hard coded error message, a customized message, a local URL,
or an external URL that handles the problem/error.

Messages in this context begin with a single quote ("), which does not form part of the message itself. The
server will sometimes offer additional information regarding the problem/error.

URLs must begin with a slash (/) for local URLs, or be a full URL which the client can resolve. Alternatively,
a message can be provided to be displayed by the browser. Note that deciding whether the parameter is
an URL, a path or a message is performed before any expression is parsed. For example:

ErrorDocument 500 http://QIBM.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad_urls.html
ErrorDocument 401 /subscription_info.html
ErrorDocument 403 "Sorry cannot allow you access today.
ErrorDocument 403 Forbidden!
ErrorDocument 403 /cgi-bin/forbidden.pgm?referrer=%{escape:%{HTTP_REFERER}}

Note: When you specify an ErrorDocument that points to a remote URL (for example, anything with a
method such as "http" in front of it) the server will send a redirect to the client to tell it where to find
the document, even if the document ends up being on the same server. This has several implications,
the most important being that if you use an "ErrorDocument 401" directive then it must refer to a local
document. This results from the nature of the HTTP basic authentication scheme.

Apache on the IBM i allows error code keywords on this directive, in addition to HTTP response codes.
This will allow customers more granularity in their error page customization. To do this, the syntax for
ErrorDocument was enhanced to also allow one of these key words as the error_code. Valid keywords,
their equivalent HTTP response codes and the cause are as follows:

316 IBM i: IBM HTTP Server for i

Error code Error meaning

okredirect 302 The document has moved.

badrequest 400 The request is not valid.

badscript 400 The requested script file could not be processed; the request was invalid in
some way.

connectfail 400 The server could not connect to the requested partner on the requested port.

nopartner 400 The server could not connect to the requested host name due to bad syntax or
an unknown host.

proxyfail 400 or 502 The client tried to use the server as a proxy and, although this is allowed, it did
not work. Possibly the destination server doesn't exist or is busy.

proxyrmterror (any
code >= 400)

The server received a response code from a remote server that indicates a
remote server problem and the proxy error override function has been invoked
(see ProxyErrorOverride for more details).

unknownmethod 400 The request did not include a recognized method.

notauthorized 401 The request requires a user ID and password. Either the user ID and password
sent by the client are not valid for this request or the client did not send a user
ID and password.

notmember 401 The requested file has a protection rule listing valid user IDs and passwords
and the user ID of the requesting client is not included in the list.

pwchanged 401 The password is invalid.

pwexpired 401 The password for the user ID has expired.

badredirect 403 The server is trying to redirect the request and the Redirect directive is invalid
or contains a loop.

baduser 403 The client requested a user's home directory that does not exist.

byrule 403 A directive (such as deny or allow directive) or rule was specified that will not
allow this request.

dirbrowse 403 The request specified a directory that is turned off for browsing.

dotdot 403 The client request specified a parent (/.../) directory which is not allowed.

ipmask 403 The client's IP address is not a vlid IP address for the request.

ipmaskproxy 403 The client is trying to use the server as a proxy, however the client is not
included in the list of host names or IP addresses that are allowed to do so.

methoddisabled 403 The method requested has been disabled.

noacl 403 Cannot access the .htaccess file.

noentry 403 The user is not included in the list of valid users for this request.

notallowed 403 The server found the requested file but the protection setup of the server
prevented access.

openfailed 403 The file or directory has access restrictions for the current user.

multifail 404 The requested file could not be found on the server.

proxynotauth 407 The request requires a user ID and password for the proxy. Either the user ID
and password sent by the client are not valid for this request or the client did
not send a user ID and password.

IBM HTTP Server for i 317

Error code Error meaning

proxynotmember 407 The requested file has a protection rule listing valid user IDs and passwords
and the user ID sent by the client is not included in that list.

proxypwchanged 407 The password sent by the client is not valid for the proxy.

proxypwexpired 407 The password sent by the client has expired.

preconfail 412 A precondition specified by the client on this request was not met. For
example, this could result from HTTP/1.1 request that contains a condition
"if-not-modified-since xxx".

badrange 416 The request either has an invalid content range header or it has incorrect
information in the content range header for the file being processed.

upgrade 426 The request was received for a file which must be accessed through SSL. An
upgrade to SSL is required before accessing this resource.

scriptio 500 The client requested a CGI script but the server cannot get it to process input
or output. The script may contain invalid code.

scriptnotfound 500 The client requested a CGI script that cannot be found.

scriptstart 500 The client requested a CGI script that the server can find but cannot be started.
The script may contain invalid code.

systemerror 500 An internal error occurred.

noformat 501 The server cannot interpret the format of the file it is trying to serve. The file
may be corrupted or have an unknown or invalid file extension.

An example - a customer puts the following into their configuration file:

ErrorDocument byrule "Sorry cannot allow you access."
ErrorDocument openfailed "You do not have authority to this file."

When an HTTP response code of 403 (FORBIDDEN) occurs and it is determined that the reason is the
client is on the deny list, the response back to the browser will be "Sorry cannot allow you access". If,
however, the 403 response code is a result of the user not having authority to the file, the message will be
"You do not have authority to this file". This gives the user more granularity to customize error responses
to the client.

ErrorLog
Module: core

Syntax: ErrorLog filename-or-pipe | off | *off

Default: ErrorLog logs/error_log

Context: server config, virtual host

Override: none

Origin: Apache

Example: IFS example relative to server root: ErrorLog logs/errorlog

Example: Piped log example: ErrorLog |/QSYS.LIB/MYLIB.LIB/ERRPIPE.PGM

Example: QSYS example: ErrorLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

The ErrorLog directive sets the name of the file to which the server will log any errors it may encounter. If
the filename does not begin with a slash (/) then it is assumed to be relative to the “ServerRoot ” on page
356. Specifying a value of off or *off will cause the server to not log errors.

318 IBM i: IBM HTTP Server for i

Parameter: filename-or-pipe | off | *off

• The filename parameter is relative to the ServerRoot or a full path to the file.
• A pipe (|) followed by a program to spawn to handle the error log information. Data written to the

pipe from the server will be in the FSCCSID that is in use by the server.
• The off or *off value turns off error reading.

Note: A new program will not be started for a VirtualHost if it inherits the ErrorLog from the main server.
The program is specified in the form "qsys.lib/xxx.lib/xxx.pgm".

All messages logged to the Error log will be logged in the primary language installed for the IBM HTTP
Server. The error log file will be created with a coded character set identifier (CCSID) that is compatible
with the language. The CCSID value is an ASCII CCSID.

It is recommended that you allow the server to create the log file. Specifically:

• For IFS files, the user must create the directories that contain the log file and must grant the
QTMHHTTP user write access to the directory. The server will create the log file.

• For QSYS.LIB logs, the user must create the library that contains the logs. The server will create the file
and members in the specified library.

• If the filename does not begin with a slash (/) then it is assumed to be relative to the ServerRoot.
• If “LogCycle” on page 341 is active and if the path ends without a '/' character, then the path is

considered to be the complete log file name. In that case, the server will add an extension in the format
QCYYMMDDHH, where these variables have the following values:

– Q is a default value that indicates to the server that this is a log file.
– C is the century indicator (0 for pre-2000, 1 for post-2000)
– YY is the year indicator
– MM is the month indicator
– DD is the day indicator HH is the hour indicator (00 = 00:00 (midnight), 23=23:00)

Note: Will not be generated for file system QDL.

For example, a path of "/logs/errorlog" results in a file such as "/logs/errorlog.Q100030300".
• If “LogCycle” on page 341 is active and if the path ends with a '/' character, then the path is considered

to be the directory that will contain the log file. In that case, the server will create log files named in the
QCYYMMDDHH format. For example, a path of "/logs/errorlog/" results in a file such as "/logs/errorlog/
Q100030300".

• If “LogCycle” on page 341 is active and the log file is in the QSYS file system, the name must end it the
file component of the IFS path. Example:

Config file directives
LogCycle Daily
ErrorLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

The resulting daily log rollover files will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR

• “LogCycle” on page 341 Hourly is not valid if the log file is in the QDLS file system as that file system
only supports 8 character file names and 3 character extensions.

• If “LogCycle” on page 341 is not active, no special naming is used. The name of the log file given on the
ErrorLog directive is used as given for the name of the log file. If the name is a directory, a default name
of http.log will be concatenated to the directory name to create the log file. For example:

Config file directives
LogCycle Off
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

IBM HTTP Server for i 319

Security:

See “Security tips for HTTP Server” on page 30 details on why your security could be compromised if the
directory where log files are stored is writable by anyone other than the user that starts the server. If a
program is used, then it will be run under the user who started httpd. This will be root if the server was
started by root (be sure that the program is secure).

See also “LogLevel” on page 342.

ErrorLogFormat
Module: core

Syntax: ErrorLogFormat [connection|request] format

Default: None

Context: server config, Virtual host

Override: none

Origin: Apache

Example: ErrorLogFormat "[%t] [%l] [pid %P] %F: %E: [client %a] %M"

ErrorLogFormat allows to specify what supplementary information is logged in the error log in addition to
the actual log message.

Specifying connection or request as first parameter allows to specify additional formats, causing
additional information to be logged when the first message is logged for a specific connection or request,
respectively. This additional information is only logged once per connection/request. If a connection or
request is processed without causing any log message, the additional information is not logged either.

It can happen that some format string items do not produce output. For example, the Referer header is
only present if the log message is associated to a request and the log message happens at a time when
the Referer header has already been read from the client. If no output is produced, the default behavior
is to delete everything from the preceding space character to the next space character. This means the
log line is implicitly divided into fields on non-whitespace to whitespace transitions. If a format string
item does not produce output, the whole field is omitted. For example, if the remote address %a in the
log format [%t] [%l] [%a] %M is not available, the surrounding brackets are not logged either. Space
characters can be escaped with a backslash to prevent them from delimiting a field. The combination '%
' (percent space) is a zero-width field delimiter that does not produce any output.

The above behavior can be changed by adding modifiers to the format string item. A - (minus) modifier
causes a minus to be logged if the respective item does not produce any output. In once-per-connection/
request formats, it is also possible to use the + (plus) modifier. If an item with the plus modifier does not
produce any output, the whole line is omitted.

A number as modifier can be used to assign a log severity level to a format item. The item will only be
logged if the severity of the log message is not higher than the specified log severity level. The number
can range from 1 (alert) over 4 (warn) and 7 (debug) to 15 (trace8).

For example, here's what would happen if you added modifiers to the %{Referer}i token, which logs the
Referer request header.

Modifie
d
Token Meaning

%-
{Refere
r}i

Logs a - if Referer is not set.

320 IBM i: IBM HTTP Server for i

Modifie
d
Token Meaning

%+
{Refere
r}i

Omits the entire line if Referer is not set.

%4{Ref
erer}i

%4{Referer}i Logs the Referer only if the log message severity is higher than 4.

Some format string items accept additional parameters in braces.

Format String Description

%% The percent sign

%a Client IP address and port of the request

%{c}a Underlying peer IP address and port of the
connection (see the mod_remoteip module)

%A Local IP-address and port

%{name}e Request environment variable name

%E APR/OS error status code and string

%F Source file name and line number of the log call

%{name}i Request header name

%k Number of keep-alive requests on this connection

%l Loglevel of the message

%L Log ID of the request

%{c}L Log ID of the connection

%{C}L Log ID of the connection if used in connection
scope, empty otherwise

%m Name of the module logging the message

%M The actual log message

%{name}n Request note name

%P Process ID of current process

%T Thread ID of current thread

%t The current time

%{u}t The current time including micro-seconds

%{cu}t The current time in compact ISO 8601 format,
including micro-seconds

%v The canonical “ServerName ” on page 355 of the
current server.

%V The server name of the server serving the request
according to the “UseCanonicalName” on page 362
setting.

\ (backslash space) Non-field delimiting space

IBM HTTP Server for i 321

Format String Description

% (percent space) Field delimiter (no output)

The log ID format %L produces a unique id for a connection or request. This can be used to correlate
which log lines belong to the same connection or request, which request happens on which connection. A
%L format string is also available in mod_log_config, to allow to correlate access log entries with error log
lines. If mod_unique_id is loaded, its unique id will be used as log ID for requests.

Example 1

ErrorLogFormat "[%t] [%l] %7F: %E: [client\ %a] %M% ,\ referer\ %{Referer}i"

Example 2

#Advanced example with request/connection log IDs

• ErrorLogFormat "[%{uc}t] [%-m:%-l] [R:%L] [C:%{C}L] %7F: %E: %M"
• ErrorLogFormat request "[%{uc}t] [R:%L] Request %k on C:%{c}L pid:%P tid:%T"
• ErrorLogFormat request "[%{uc}t] [R:%L] UA:'%+{User-Agent}i'"
• ErrorLogFormat request "[%{uc}t] [R:%L] Referer:'%+{Referer}i'"
• ErrorLogFormat connection "[%{uc}t] [C:%{c}L] local\ %a remote\ %A"

FileETag
Module: core

Syntax: FileETag component ...

Default: FileETag MTime Size

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: FileETag INode MTime Size

The FileETag directive configures the file attributes that are used to create the ETag (entity tag) response
header field when the document is based on a static file. (The ETag value is used in cache management to
save network bandwidth.) The FileETag directive allows you to choose which of these -- if any -- should be
used. The recognized keywords are:

Parameter: component

• INode indicates the file's inode number will be included in the calculation.

Note: INode is the file ID number for the object. This number uniquely identifies the object within a
file system. It is part of the stat structure (the st_ino field of the stat structure).

• MTime indicates the date and time the file was last modified will be included.
• Size indicates the number of bytes in the file will be included.
• All indicates all available fields will be used (equivalent to 'FileETag INode MTime Size').
• None indicates that if a document is file-based, no ETag field will be included in the response.

The INode, MTime, and Size keywords may be prefixed with either '+' or '-', which allow changes to be
made to the default setting inherited from a higher level context. Any keyword appearing without such a
prefix immediately and completely cancels the inherited setting.

If a directory's configuration includes 'FileETag INode MTime Size', and a subdirectory's includes 'FileETag
-INode', the setting for that subdirectory (which will be inherited by any sub-subdirectories that don't
override it) will be equivalent to 'FileETag MTime Size'.

322 IBM i: IBM HTTP Server for i

The MTime attribute (if specified) may be used by remote proxy servers to calculate cache expiry times in
the event that document expiry times are not available or provided.

See CacheLastModifiedFactor for more information.

<Files>
Module: core

Syntax: <Files filename> ... </Files>

Default: none

Context: server config, virtual host, .htaccess, Not in Limit

Override: none

Origin: Apache

Example: <Files index.html>

The <Files> directive provides for access control by filename. It is comparable to the “<Directory> ” on
page 311 directive and “<Location> ” on page 339 directives. It should be matched with a </Files>.
Directives given within this section will be applied to any object with a base-name (last component of
filename) matching the specified filename. <Files> sections are processed in the order they appear in
the configuration file, after the <Directory> sections and .htaccess files are read, but before <Location>
sections. Note that <Files> can be nested inside <Directory> sections to restrict the portion of the file
system.

Parameter: filename

• The filename parameter should include a filename or a wildcard string where '?' matches any single
character and '*' matches any sequences of characters. For example:

<Files "cat.html">
 # Insert stuff that applies to cat.html here
</Files>

<Files "?at.*">
 # This would apply to cat.html, bat.html, hat.php and so on.
</Files>

• Regular expressions can also be used, with the addition of the '~' character. For example:

 <Files ~ "\.(gif|jpe?g|png)$">
 #...
</Files>

would match most common Internet graphics formats. <FilesMatch> is preferred.

Note: Unlike <Directory> and <Location> sections, <Files> sections can be used inside .htaccess files.
This allows users to control access to their own files, at a file-by-file level. See “Security tips for HTTP
Server” on page 30 and “User profiles and required authorities for HTTP Server” on page 31 for more
details.

<FilesMatch>
Module: core

Syntax: <FilesMatch regex> ... </FilesMatch>

Default: none

Context: server config, virtual host, .htaccess, Not in Limit

Override: none

Origin: Apache

IBM HTTP Server for i 323

Example: <FilesMatch "\.(gif|jpe?g|png)$">

The <FilesMatch> directive provides for access control by filename, in the same way “<Files>” on page
323 directive does. The <FilesMatch> directive, however, accepts a regular expression. For example:

<FilesMatch ".+\.(gif|jpe?g|png)$">
 # ...
</FilesMatch>

This would match most common Internet graphic formats. (Note: The argument to <FilesMatch> does not
need to be in quotes unless the regular expression includes a space character.)

The .+ at the start of the regex ensures that files named .png, or .gif, for example, are not matched.

Named groups and backreferences are captured and written to the environment with the corresponding
name prefixed with "MATCH_" and in upper case. This allows elements of files to be referenced from
within expressions and modules like mod_rewrite . In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

For example:

<FilesMatch "^(?<sitename>\w+)\.html$">
 Options Indexes FollowSymLinks
 Require all granted
 RewriteEngine On
 RewriteCond "%{env:MATCH_SITENAME}" "^host"
 RewriteRule .* success.html
</FilesMatch>

Parameter: regex

• A UNIX-style regular expression that is matched against the URL. Subexpressions are grouped
within parentheses. Then, parenthetically enclosed regular expressions will be substituted in a
subsequent $n statement.

ForceType
Module: core

Syntax: ForceType media_ type | None

Default: none

Context: directory, .htaccess

Override: FileInfo

Origin: Apache

Example: ForceType image/gif (forces all files in the container to be treated as a GIF file)

The ForceType directive forces all matching files to be served with the content type identification given by
media-type when they are placed into an .htaccess file, a <Directory>, or <Location> section.

Parameter: media_type

• The media_type parameter is a MIME type/subtype to which all files in the directory will be forced.

Note: This directive overrides other indirect media type associations defined in /qibm/proddata/HTTPA/
conf/mime. Types or via the AddType.

You can also override more general ForceType settings by using the value of None:

force all files to be image/gif:
<Location "/images">
 ForceType image/gif
</Location>

324 IBM i: IBM HTTP Server for i

but normal mime-type associations here:
 <Location "/images/mixed">
 ForceType None
</Location>

This directive primarily overrides the content types generated for static files served out of the filesystem.
For resources other than static files, where the generator of the response typically specifies a Content-
Type, this directive has no effect.

Note: When explicit directives such as “SetHandler” on page 359 or AddHandler do not apply to the
current request, the internal handler name normally set by those directives is set to match the content
type specified by this directive. This is a historical behavior that some third-party modules (such as
mod_php) may use "magic" content types used only to signal the module to take responsibility for
the matching request. Configurations that rely on such "magic" types should be avoided by the use of
“SetHandler” on page 359 or AddHandler.

HostNameLookups
Module: core

Syntax: HostNameLookups on | off | double

Default: HostNameLookups off

Context: server config, virtual host, directory, Not in Limit

Override: none

Origin: Apache

Example: HostNameLookups on

The HostNameLookups directive enables DNS lookups so the host names can be logged (and passed to
CGIs/SSIs in the REMOTE_HOST environment variable).

Parameter: on | off | double

• The on value enables DNS lookups so the host names can be logged (and passed to CGIs/SSIs in the
REMOTE_HOST environment variable).

• The default off value saves on the network traffic for those sites that do not truly need the reverse
lookup. Heavily loaded sites should leave this directive set to off, since DNS lookups can take a
considerable amount of time.

• The value double refers to doing double-reverse DNS. That is, after a reverse lookup is performed,
a forward lookup is then performed on that command. At least one of the IP addresses in the
forward lookup must match the Original address. When mod_access is used for controlling access
by hostname, regardless of the setting, a double reverse lookup will be performed. This is necessary
for security.

Note: The result of this double-reverse isn't generally available unless you set HostnameLookups double.
For example, if you only set HostnameLookups on and a request is made to an object that is protected by
hostname restrictions, regardless of whether the double-reverse fails or not, CGIs will still be passed to
the single-reverse result in REMOTE_HOST.

HotBackup
Module: core

Syntax: HotBackup on | off

Default: HotBackup on

Context: server config

Override: none

IBM HTTP Server for i 325

Origin: IBM

Example: HotBackup on

The HotBackup directive is used to specify whether or not a hot backup server should be started at the
server startup time. With the hot backup server active, if the primary server job abnormally terminates,
the hot backup will immediately take over and act as the primary and continue servicing requests. A
new hot backup is automatically created, in the background, within one minute. However, if more than
five consecutive server failures occur within a ten minute time period, no additional hot backups will be
created and the server will fail. The server is allowed to fail in this situation to avoid system degradation,
since the hot backup processing can consume system resources.

If the primary server process failure is not due to the network, all user connections remain active during
the hot backup take over and the end users do not detect the loss of server; however, some HTTP
requests in transient may be lost. If the failure is due to the loss of network, the server must be restarted.

For a full backup recovery, including system and network failures, refer to highly available Web server.

Parameter: on | off

• When set to on, if the primary server job abnormally terminates, the hot backup will immediately
take over and act as the primary and continue servicing requests.

• With HotBackup off, only one multithreaded server child process is started.

Note: When a server is configured as highly available (HAModel directive is specified), HotBackup
behaves as if it is set to 'off' and can not be overwritten.

HttpProtocolOptions
Module: core

Syntax: HttpProtocolOptions [Strict|Unsafe] [RegisteredMethods|LenientMethods] [Allow0.9|Require1.0]

Default: HttpProtocolOptions Strict LenientMethods Allow0.9

Context: server config, virtual host

Override: none

Origin: Apache

Example: HttpProtocolOptions Unsafe LenientMethods Allow0.9

This directive changes the rules applied to the HTTP Request Line (RFC 7230 §3.1.1) and the HTTP
Request Header Fields (RFC 7230 §3.2), which are now applied by default or using the Strict option. Due
to legacy modules, applications or custom user-agents which must be deprecated the Unsafe option has
been added to revert to the legacy behaviors.

These rules are applied prior to request processing, so must be configured at the global or default (first)
matching virtual host section, by IP/port interface (and not by name) to be honored.

The directive accepts three parameters from the following list of choices, applying the default to the ones
not specified:

Strict | Unsafe

Prior to the introduction of this directive, the Apache HTTP Server request message parsers were
tolerant of a number of forms of input which did not conform to the protocol. RFC 7230 §9.4
Request Splitting and §9.5 Response Smuggling call out only two of the potential risks of accepting
non-conformant request messages, while RFC 7230 §3.5 "Message Parsing Robustness" identify the
risks of accepting obscure whitespace and request message formatting. As of the introduction of this
directive, all grammar rules of the specification are enforced in the default Strict operating mode, and
the strict whitespace suggested by section 3.5 is enforced and cannot be relaxed.

Security risks of Unsafe

326 IBM i: IBM HTTP Server for i

https://tools.ietf.org/html/rfc7230#section-3.1.1
https://tools.ietf.org/html/rfc7230#section-3.2
https://tools.ietf.org/html/rfc7230#section-9.4
https://tools.ietf.org/html/rfc7230#section-9.4
https://tools.ietf.org/html/rfc7230#section-9.5
https://tools.ietf.org/html/rfc7230#section-3.5

Users are strongly cautioned against toggling the Unsafe mode of operation, particularly on outward-
facing, publicly accessible server deployments. If an interface is required for faulty monitoring or
other custom service consumers running on an intranet, users should toggle the Unsafe option only on
a specific virtual host configured to service their internal private network.

Example of a request leading to HTTP 400 with Strict mode

Missing CRLF
GET / HTTP/1.0\n\n

Command line tools and CRLF

Some tools need to be forced to use CRLF, otherwise httpd will return a HTTP 400 response like
described in the above use case. For example, the OpenSSL s_client needs the -crlf parameter to
work properly.

RegisteredMethods | LenientMethods

RFC 7231 §4.1 "Request Methods" "Overview" requires that origin servers shall respond with a
HTTP 501 status code when an unsupported method is encountered in the request line. This
already happens when the LenientMethods option is used, but administrators may wish to toggle
the RegisteredMethods option and register any non-standard methods using the RegisterHttpMethod
directive, particularly if the Unsafe option has been toggled.

Forward Proxy compatibility

The RegisteredMethods option should not be toggled for forward proxy hosts, as the methods
supported by the origin servers are unknown to the proxy server.

Example of a request leading to HTTP 501 with LenientMethods mode

Unknown HTTP method
WOW / HTTP/1.0\r\n\r\n

Lowercase HTTP method
get / HTTP/1.0\r\n\r\n

Allow0.9 | Require1.0

RFC 2616 §19.6 "Compatibility With Previous Versions" had encouraged HTTP servers to support
legacy HTTP/0.9 requests. RFC 7230 supersedes this with "The expectation to support HTTP/0.9
requests has been removed" and offers additional comments in RFC 7230 Appendix A. The
Require1.0 option allows the user to remove support of the default Allow0.9 option's behavior.

Example of a request leading to HTTP 400 with Require1.0 mode

Unsupported HTTP version
GET /\r\n\r\n

Users should pay particular attention to the 400 responses in the access log for invalid requests which
were unexpectedly rejected.

HTTPSubsystemDesc
Module: core

Syntax: HTTPSubsystemDesc library | subsystem

Default: HTTPSubsystemDesc QHTTPSVR/QHTTPSVR

Context: server config

Override: none

Origin: IBM

Example: HTTPSubsystemDesc HTTPTEST/HTTPSBS

IBM HTTP Server for i 327

https://tools.ietf.org/html/rfc7231#section-4.1
https://tools.ietf.org/html/rfc2616#section-19.6
https://tools.ietf.org/html/rfc7230#appendix-A

The HTTPSubsystemDesc directive specifies the user created subsystem that the HTTP server runs in. By
default HTTP server runs under QHTTPSVR/QHTTPSVR subsystem.

The subsystem must already exist before using this directive, otherwise HTTP server will fail to start. The
subsystem can be automatically started if it's not active when starting HTTP server but will not be ended
when stopping the HTTP server

Note: To make HTTP server run in subsystem other than QHTTPSVR, at least “HTTPStartJobQueue” on
page 328 directive is required to be specified and the desired subsystem is MUST in active status before
starting HTTP server. If only HTTPSubsystemDesc directive is specified, only the specified subsystem is
started and HTTP server jobs still run under QHTTPSVR. If only “HTTPStartJobQueue” on page 328 is
specified but the desired subsystem is not active at that moment, the HTTP server jobs will not be started
until the subsystem is started

HTTPStartJobQueue
Module: core

Syntax: HTTPStartJobQueue library | jobqueue

Default: HTTPStartJobQueue QHTTPSVR/QZHBHTTP

Context: server config

Override: none

Origin: IBM

Example: HTTPStartJobQueue HTTPTEST/HTTPJOBQ

The HTTPStartJobQueue directive specifies the user created job queue to which the HTTP server jobs will
be submitted. The default HTTP server job queue is QHTTPSVR/QZHBHTTP.

The job queue must already exist before using this directive, otherwise HTTP server will fail to start.

Note: To make HTTP server run in subsystem other than QHTTPSVR, at least HTTPStartJobQueue
directive is required to be specified and the desired subsystem is MUST in active status before starting
HTTP server. If only HTTPSubsystemDesc directive is specified, only the specified subsystem is started
and HTTP server jobs still run under QHTTPSVR. If only HTTPStartJobQueue is specified but the desired
subsystem is not active at that moment, the HTTP server jobs will not be started until the subsystem is
started.

HTTPStartJobDesc
Module: core

Syntax: HTTPStartJobDesc library | jobdescription

Default: HTTPStartJobDesc QHTTPSVR/QZHBHTTP

Context: server config

Override: none

Origin: IBM

Example: HTTPStartJobDesc HTTPTEST/HTTPJOBD

The HTTPStartJobDesc directive specifies the user created job description which defines how HTTP
server jobs should be run. The default HTTP server job description is QHTTPSVR/QZHBHTTP.

The job description must already exist before using this directive, otherwise HTTP server will fail to start.

Note: To make HTTP server run in subsystem other than QHTTPSVR, at least “HTTPStartJobQueue” on
page 328 directive is required to be specified and the desired subsystem is MUST in active status before
starting HTTP server. If only HTTPSubsystemDesc directive is specified, only the specified subsystem is
started and HTTP server jobs still run under QHTTPSVR. If only “HTTPStartJobQueue” on page 328 is

328 IBM i: IBM HTTP Server for i

specified but the desired subsystem is not active at that moment, the HTTP server jobs will not be started
until the subsystem is started.

HTTPRoutingData
Module: core

Syntax: HTTPRoutingData name

Default: HTTPRoutingData HTTPWWW

Context: server config

Override: none

Origin: IBM

Example: HTTPRoutingData HTTPSVR

The HTTPRoutingData directive specifies the user defined routing data for HTTP server jobs. The default
value is HTTPWWW. A maximum of 80 characters can be specified.

The routing entry must be already added to the HTTP subsystem before using this directive, otherwise
HTTP server will fail to start.

Note: To make HTTP server run in subsystem other than QHTTPSVR, at least “HTTPStartJobQueue” on
page 328 directive is required to be specified and the desired subsystem is MUST in active status before
starting HTTP server. If only HTTPSubsystemDesc directive is specified, only the specified subsystem is
started and HTTP server jobs still run under QHTTPSVR. If only “HTTPStartJobQueue” on page 328 is
specified but the desired subsystem is not active at that moment, the HTTP server jobs will not be started
until the subsystem is started.

<If>
Module: core

Syntax: <If expression> ... </If>

Default: none

Context: Server config, Virtual Host, directory, .htaccess

Override: All

Origin: Apache

Example: <If "-z req('Host')">

The <If> directive evaluates an expression at runtime, and applies the enclosed directives if and only if
the expression evaluates to true. For example:

<If "-z req('Host')">

would match HTTP/1.0 requests without a Host: header. Expressions may contain various shell-like
operators for string comparison (=, !=, <, ...), integer comparison (-eq, -ne, ...), and others (-n, -z, -f, ...). It
is also possible to use regular expressions,

<If "%{QUERY_STRING} =~ /(delete|commit)=.*?elem/">

shell-like pattern matches and many other operations. These operations can be done on request headers
(req), environment variables (env), and a large number of other properties. The full documentation is
available in ap_expr expressions parser.

Only directives that support the directory context can be used within this configuration section.

See also

“<ElseIf>” on page 314

IBM HTTP Server for i 329

“<Else>” on page 313

Note: Certain variables, such as CONTENT_TYPE and other response headers, are set after <If>
conditions have already been evaluated, and so will not be available to use in this directive.

<IfDefine>
Module: core

Syntax: <IfDefine [!]parameter-name> ... </IfDefine>

Default: none

Context: server config

Override: All

Origin: Apache

Example: <IfDefine LDAP>

The <IfDefine test> ... </IfDefine> section is used to mark directives that are conditional. The directives
within an IfDefine section are only processed if the test is true. If the test is false, everything between the
start and end markers is ignored.

The test in the <IfDefine> section directive can be one of the two forms:

• parameter-name
• !parameter-name

In the former case, the directives between the start and end markers are only processed if the
parameter named parameter-name is defined. The second format reverses the test, and only processes
the directives if parameter-name is not defined.

Parameter: parameter-name

• The parameter-name parameter is defined as given on the STRTCPSVR command line vie -D
Dparameter, at the time the server was started. <IfDefine> sections are nestable, which can be
used to implement simple mutliple-parameter tests. For example:

STRTCPSVR SERVER(*HTTP) HTTPSVR(instanceName '-D LDAP')
in the instance configuration
<IfDefine LDAP>
 LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM
</IfDefine>

If customer has included "<IfDefine keyword> ... </IfDefine> in http.conf file, the directives that are
in context will be only valid if the command "STRTCPSVR" has included this directive, in this case "
STRTCPSVR '-Dkeyword' ", if not, the server will ignored then.

<IfModule>
Module: core

Syntax: <IfModule [!]module-name> ... </IfModule>

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: <IfModule test>

330 IBM i: IBM HTTP Server for i

The <IfModule> directive is used to mark directives that are conditional. The directives within an
<IfModule> section are only processed if the test is true. If the test is false, everything between the
start and end markers is ignored.

The test in <IfModule> section directive can be one of two forms:

• module-name
• !module-name

Parameter: module-name

• The module-name parameter is a module name as given as the file name of the module at the time it
was compiled. For example:

mod_rewrite.c

<IfModule> sections are nestable which can be used to implement simple multiple-module tests.

Include
Module: core

Syntax: Include filename|wildcard

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Example: Include conf/mydirectory/myfile

Example: Include conf/vhosts/*.conf

The “Include ” on page 331 directive allows inclusion of other configuration files from within the server
configuration files. The filename can be either a relative or absolute path.

Parameter: filename|wildcard

• The filename value identifies other configuration files from within the server configuration files.
• The wildcard value identifies other configuration files that match a particular pattern from within the

server configuration files.

Wildcard characters can be used in the filename or directory parts of the path to include several files at
once, in alphabetical order. In addition, if Include points to a directory, rather than a file, HTTP server
will read all files in that directory and any subdirectory. However, including entire directories is not
recommended, because it is easy to accidentally leave temporary files in a directory that can cause HTTP
server to fail. Instead, we encourage you to use the wildcard syntax to include files that match a particular
pattern, such as Include conf/vhosts/*.conf, for example.

The “Include ” on page 331 directive will fail with an error if a wildcard expression does not match
any file. The “IncludeOptional” on page 332 directive can be used if non-matching wildcards should be
ignored.

Wildcards may be included in the directory or file portion of the path. This example will fail if there is no
subdirectory in conf/vhosts that contains at least one *.conf file:

Include conf/vhosts/*/*.conf

Alternatively, the following command will just be ignored in case of missing files or directories:

IncludeOptional conf/vhosts/*/*.conf

Note: The filename specified with this directive must be in a file in the Root or QOpenSys file systems.
Other file systems are not supported.

IBM HTTP Server for i 331

See also “IncludeOptional” on page 332

IncludeOptional
Module: core

Syntax: Include filename|wildcard

Default: None

Context: server config, Virtual Host, directory

Override: none

Origin: Apache

This directive allows inclusion of other configuration files from within the server configuration files. It
works identically to the “Include ” on page 331 directive, with the exception that if wildcards do not
match any file or directory, the “IncludeOptional” on page 332 directive will be silently ignored instead of
causing an error.

Parameter: filename|wildcard

• The filename value identifies other configuration files from within the server configuration files.
• The wildcard value identifies other configuration files that match a particular pattern from within the

server configuration files.

See also “Include ” on page 331

KeepAlive
Module: core

Syntax: KeepAlive on | off

Default: KeepAlive on

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: KeepAlive off

The KeepAlive directive enables keep-alive support (also known as persistent connections).

Parameter: on | off

• When set to on, the directive enables keep-alive support (also known as persistent connections).
• When set to off, keep-alive support (also known as persistent connections) is disabled.

Persistent connections enable a single TCP connection to be used for multiple HTTP requests. Normally,
each HTTP request uses a separate connection. Reusing a single connection reduces the connection
open/close overhead, thereby improving performance for that client. However with dynamic content,
depending on your Web applications, using persistent connections can reserve server resources for each
client, thereby reducing the throughput of your server as a whole. Therefore, care should be taken when
modifying persistent connection related settings.

Set to off to disable persistent connections, on to enable. If the KeepAlive directive value is not off or zero,
on is assumed.

See also “KeepAliveTimeout” on page 332 and “MaxKeepAliveRequests” on page 346.

KeepAliveTimeout
Module: core

332 IBM i: IBM HTTP Server for i

Syntax: KeepAliveTimeout num[ms]

Default: KeepAliveTimeout 300

Context: server config, virtual host

Override: none

Origin: Apache

Example: KeepAliveTimeout 500

The KeepAliveTimeout directive is related to persistent connections and determines the number of
seconds HTTP Server waits for a subsequent request before closing the connection. By adding a postfix
of ms the timeout can be also set in milliseconds. The KeepAlive directive must be set to on, enabling
persistent connections, for this directive to take effect. It is recommended that this value be set high
enough to prevent time outs. Note that this is related to the time between requests and not during
requests. Once a request is received, the connection timeout setting (set by the TimeOut directive)
applies. The connection time-out applies until request processing is complete and (until the next request
is received) the persistent connections related timer setting is applied.

Parameter: num[ms]

• The num value determines the number of seconds or milliseconds if it ends with 'ms' that HTTP
Server waits for a subsequent request before closing the connection.

If KeepAliveTimeout is not set for a name-based virtual host, the value of the first defined virtual host
best matching the local IP and port will be used.

See also “KeepAlive ” on page 332, “MaxKeepAliveRequests” on page 346, and “TimeOut” on page 361.

<Limit>
Module: core

Syntax: <Limit method [method]... > ... </Limit>

Default: none

Context: directory, .htaccess

Override: AuthConfig, Limit

Origin: Apache

Example: <Limit GET PUT>

The purpose of the <Limit> directive is to restrict the effect of the access controls to the nominated HTTP
methods. For all other methods, the access restrictions that are enclosed in the <Limit> bracket will have
no effect. The following example applies the access control only to the methods POST, PUT, and DELETE,
leaving all other methods unprotected:

<Limit POST PUT DELETE>
 require valid-user
</Limit>

Access controls are normally effective for all access methods, and this is the usual desired behavior. In
the general case, access control directives should not be placed within a <Limit> section.

Parameter: method

• Method names listed can be one or more of the following: GET, POST, PUT, DELETE, CONNECT,
OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK and UNLOCK. The
method name is case sensitive. If GET is used it will also restrict HEAD requests. The TRACE method
cannot be limited.

IBM HTTP Server for i 333

A “<LimitExcept>” on page 334 section should always be used in preference to a “<Limit>” on page 333
section when restricting access, since a “<LimitExcept>” on page 334 section provides protection against
arbitrary methods.

The “<Limit>” on page 333 and “<LimitExcept>” on page 334 directives may be nested. In this case, each
successive level of “<Limit>” on page 333 or “<LimitExcept>” on page 334 directives must further restrict
the set of methods to which access controls apply.

When using “<Limit>” on page 333 or “<LimitExcept>” on page 334 directives with the Require directive,
note that the first Require to succeed authorizes the request, regardless of the presence of other Require
directives.

For example, given the following configuration, all users will be authorized for POST requests, and the
Require group editors directive will be ignored in all cases:

<LimitExcept GET>
 Require valid-user
</LimitExcept GET>

<LimitExcept POST>
 Require group editors
</LimitExcept POST>

<LimitExcept>
Module: core

Syntax: <LimitExcept method [method] ... > ... </LimitExcept>

Default: none

Context: directory, .htaccess

Override: AuthConfig, Limit

Origin: Apache

Example: <LimitExcept GET >... </LimitExcept>

<LimitExcept> and </LimitExcept> are used to enclose a group of access control directives which will
then apply to any HTTP access method not listed in the arguments; for example, it is the opposite of a
“<Limit>” on page 333 section and can be used to control both standard and nonstandard-unrecognized
methods. See “<Limit>” on page 333 for more details.

For example:

<LimitExcept POST GET>
 Require valid-user
</LimitExcept>

Parameter: method

• Method names listed can be one or more of the following: GET, POST, PUT, DELETE, CONNECT,
OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK and UNLOCK.
The method name is case sensitive. If GET is specified, HEAD is also allowed (not restricted).

LimitRequestBody
Module: core

Syntax: LimitRequestBody number

Default: LimitRequestBody 0

Context: serve config, virtual host, directory, .htaccess

Override: All

334 IBM i: IBM HTTP Server for i

Origin: Apache

Example: LimitRequestBody 100

The LimitRequestBody directive allows the user to set a limit on the allowed size (in bytes) of an HTTP
Request message body within the context in which the directive is given (server, per-directory, per-file
or per-location). If the client Request exceeds that limit, the server will return an error response instead
of servicing the Request. The size of a normal Request message body will vary greatly depending on the
nature of the resource and the methods allowed on that resource. CGI scripts typically use the message
body for passing form information to the server. Implementations of the PUT method will require a value
at least as large as any representation that the server wants to accept for that resource.

This directive gives the server administrator greater control over abnormal client Request behavior, which
may be useful for avoiding some forms of denial-of-service attacks.

Parameter: number

• The number parameter is an integer which represents the set limit on the allowed size (in bytes)
of an HTTP Request message body within the context in which the directive is given (server, per-
directory, per-file or per-location). The default value of '0' (zero) indicated unlimited allowed size.

For example, to limit the size of an uploaded file to 100K use the following:

LimitRequestBody 10240

LimitInternalRecursion
Module: core

Syntax: LimitInternalRecursion number [number]

Default: LimitInternalRecursion 10

Context: server, virtual host

Override: none

Origin: Apache

Example: LimitInternalRecursion 5

An internal redirect happens, for example, when using the Action directive, which internally redirects the
original request to a CGI script. A subrequest is Apache's mechanism to find out what would happen for
some URI if it were requested. For example, mod_dir uses subrequests to look for the files listed in the
DirectoryIndex directive.

LimitInternalRecursion prevents the server from crashing when entering an infinite loop of internal
redirects or subrequests. Such loops are usually caused by misconfigurations.

The directive stores two different limits, which are evaluated on per-request basis. The first number is the
maximum number of internal redirects that may follow each other. The second number determines how
deeply subrequests may be nested. If you specify only one number, it will be assigned to both limits.

LimitRequestFields
Module: core

Syntax: LimitRequestFields number

Default: LimitRequestFields 100

Context: server config, Not in Limit

Override: none

Origin: Apache

IBM HTTP Server for i 335

Example: LimitRequestFields 800

The LimitRequestFields directive allows the server administrator to modify the limit on the number of
Request header fields allowed in an HTTP Request. A server needs this value to be larger than the number
of fields that a normal client Request might include. The number of Request header fields used by a client
rarely exceeds 20, but this may vary among different client implementations, often depending upon the
extent to which a user has configured their browser to support detailed content negotiation. Optional
HTTP extensions are often expressed using Request header fields.

This directive gives the server administrator greater control over abnormal client Request behavior, which
may be useful for avoiding some forms of denial-of-service attacks. The value should be increased if
normal clients see an error response from the server that indicates too many fields were sent in the
Request.

Parameter: number

• The number parameter is an integer from 0 (meaning unlimited) to 32767 bytes. The default value is
100.

LimitRequestFieldsize
Module: core

Syntax: LimitRequestFieldsize number

Default: LimitRequestFieldsize 32766

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: LimitRequestFieldsize 8000

The LimitRequestFieldsize directive allows the server administrator to reduce the limit on the allowed size
of an HTTP Request header field below the normal input buffer size compiled with the server. A server
needs this value to be large enough to hold any one header field from a normal client Request. The size of
a normal Request header field will vary greatly among different client implementations, often depending
upon the extent to which a user has configured their browser to support detailed content negotiation.

This directive gives the server administrator greater control over abnormal client Request behavior, which
may be useful for avoiding some forms of denial-of-service attacks. Under normal conditions, the value
should not be changed from the default.

Parameter: number

• A number is an integer from 0 to 32766 (in bytes).

Note: When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host best matching the current IP address and port combination.

LimitRequestLine
Module: core

Syntax: LimitRequestLine number

Default: LimitRequestLine 8190

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: LimitRequestLine 8000

336 IBM i: IBM HTTP Server for i

The LimitRequestLine directive allows the server administrator to reduce the limit on the allowed size
of a client's HTTP Request-line below the normal input buffer size compiled with the server. Since the
Request-line consists of the HTTP method, URI, and protocol version, the LimitRequestLine directive
places a restriction on the length of a Request-URI allowed for a Request on the server. A server needs
this value to be large enough to hold any of its resource names, including any information that might be
passed in the query part of a GET Request.

This directive gives the server administrator greater control over abnormal client Request behavior, which
may be useful for avoiding some forms of denial-of-service attacks. Under normal conditions, the value
should not be changed from the default.

Parameter: number

• A number is an integer from 0 to 8190 (in bytes).

LimitXMLRequestBody
Module: core

Syntax: LimitXMLRequestBody number

Default: LimitXMLRequestBody 1000000

Context: server config, virtual host, directory (but not location), .htaccess, Not in Limit

Override: none

Origin: Apache

Example: LimitXMLRequestBody 1000000

The LimitXMLRequestBody directive limits (in bytes) the maximum size of an XML-based request body.

Parameter: number

• A number is an integer from 0 (meaning unlimited) to 715827881.

Listen
Module: core

Syntax: Listen [IP address:] port number [protocol]

Default: Listen 80

Context: server config

Override: none

Origin: Apache

Example: Listen 8000

Example: Listen 8000 FRCA

Note: FRCA support for the Listen directive is not available for V5R1 and earlier releases of HTTP Server.

The Listen directive instructs HTTP Server to listen to more than one IP address or port; by default the
server responds to requests on all IP interfaces. It tells the server to accept incoming requests on the
specified IP address or address-and-port combinations. If the first format is used, with an IP address
number only, the server listens to the given IP address. If an IP address is given as well as a port, the
server will listen on the given port and interface.

Parameter One: IP address

• The IP address parameter specifies a fully qualified IP address.

IBM HTTP Server for i 337

Parameter Two: port number

• The port number parameter is optional and if specified as word "FRCA", implies the incoming
connections on the specified IP address and port are eligible to be monitored and served by FRCA
cache support.

Note: FRCA does not support SSL. Therefore, do not specify FRCA option for IP addresses and ports
that are used for SSL connections.

Parameter Three: [protocol]

• The [protocol] parameter is optional and if specified as word "FRCA", implies the incoming
connections on the specified IP address and port are eligible to be monitored and served by FRCA
cache support.

Note: FRCA does not support SSL. Therefore, do not specify FRCA option for IP addresses and ports
that are used for SSL connections.

Multiple Listen directives may be used to specify a number of addresses and ports to listen to. The server
will respond to requests from any of the listed addresses and ports.

To make the server accept connections on both port 80 and port 8000, use:

Listen 80
Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use:

Listen 194.170.2.1:80
Listen 194.170.2.5:8000

IPv6 addresses must be surrounded in square brackets, as in the following example:

Listen [2001:db8::a00:20ff:fea7:ccea]:80

To make the FRCA monitor and intercept connections on a specified interface and port numbers, use:

Listen 194.170.2.5:8000 FRCA

In the above example, since the optional parameter FRCA is specified, FRCA will be enabled for the
specified IP address and port.

The optional protocol argument is not required for most configurations. If not specified, https is the
default for port 443 and http the default for all other ports.

You only need to set the protocol if you are running on non-standard ports. For example, running an https
site on port 8443:

Listen 192.170.2.1:8443 https

Error condition: Multiple Listen directives for the same ip address and port will result in an Address
already in use error message.

ListenBacklog
Module: core

Syntax: ListenBacklog backlog

Default: ListenBacklog 511

Context: server config, Not in Limit

Override: none

Origin: Apache

338 IBM i: IBM HTTP Server for i

Example: ListenBacklog 400

The ListenBacklog sets the maximum length of the queue for pending connections. Generally no tuning is
needed; however, on some systems it is desirable to increase this when under a TCP SYN flood attack.

Parameter: backlog

• The backlog parameter is an integer value that sets the maximum length of the queue for pending
connections.

<Location>
Module: core

Syntax: <Location url> ... </Location>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example:

Alias /a /b
<Location /a>

The <Location> directive limits the scope of the enclosed directives by URL (the URL is the virtual path
used to access a resource), and is similar to the “<Directory> ” on page 311 and <Proxy> directives,
and starts a subsection which is terminated with a </Location> directive. Everything that is syntactically
allowed in <Directory> is also allowed in <Location> (except a sub-“<Files>” on page 323 section).
However some directives, most notably the “AllowOverride” on page 306 directive and two of its options
(FollowSymLinks and SymLinksIfOwnerMatch) do not belong in <Location>. <Location> sections are
processed in the order they appear in the configuration file (as opposed to <Directory> sections which
are processed from the least match to the best match). They are processed after the <Directory> and
<Proxy> sections, after .htaccess files are read, and after the <Files> sections. See “<Directory> ” on page
311, <Proxy>, “<Files>” on page 323, and “AllowOverride” on page 306 directives for more information
on <Directory>, <Proxy>, and <Files> containers and access files.

Parameter : url

• The url parameter consists of a URL.

For all origin (non-proxy) requests, the URL to be matched is of the form /path/. The URL should
not include the http://servername prefix. For proxy requests, the matched URL is of the form
http://servername/path (you must include the prefix).

The URL may use wildcards in a wildcard string. '?' matches any single character; '*' matches any
sequence of characters.

Note: URLs do not have to line up with the file system. <Location> operates completely outside the file
system.

Extended regular expressions can also be used, with the addition of the ~ character. For example:

<Location ~ "/(extra|special)/data">

This would match URLs that contained the substring "/extra/data" or "/special/data". The directive
“<LocationMatch>” on page 340 behaves identical to the regex version of <Location>. The <Location>

IBM HTTP Server for i 339

functionality is especially useful when combined with the “SetHandler” on page 359 directive. For
example, to enable origin requests, but allow them only from browsers at QIBM.com, you might use:

<Location /Origin>
 SetHandler server-Origin
 Require host .QIBM.com
</Location>

Note: The slash character has special meaning depending on where in a URL it appears. People may be
used to its behavior in the file system where multiple adjacent slashes are frequently collapsed to a single
slash (for example, /home///QIBM is the same as /home/QIBM). For <Location> this is not necessarily
true. The <LocationMatch> directive and the regex version of <Location> require you to explicitly specify
multiple slashes if that is your intention. For example, <LocationMatch ^/ABC> would match the
request URL /ABC but not the request URL //ABC. The (non-regex) <Location> directive behaves similarly
when used for proxy requests. But when (non-regex) <Location> is used for non-proxy requests it will
implicitly match multiple slashes with a single slash. For example, if you specify <Location /ABC/def>
and the request is to /ABC//def, the request will match the location.

<LocationMatch>
Module: core

Syntax: <LocationMatch regex> ... </LocationMatch>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: <LocationMatch "/(extra|special)/data">

The <LocationMatch> directive provides for access control by URL. This directive works in an identical
manner to the “<Location> ” on page 339 directive. However, it takes a regular expression as an argument
instead of a simple string. For example:

<LocationMatch "/(extra|special)/data">
 # ...
</LocationMatch>

This would match URLs that contained the substring "/extra/data" or "/special/data". (NOTE: the
argument to LocationMatch does not need to be in quotes unless the regular expression includes a space
character.)

If the intent is that a URL starts with /extra/data, rather than merely contains /extra/data, prefix the
regular expression with a ^ to require this.

<LocationMatch "^/(extra|special)/data">

Named groups and backreferences are captured and written to the environment with the corresponding
name prefixed with "MATCH_" and in upper case. This allows elements of URLs to be referenced from
within expressions and modules like mod_rewrite. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

For example:

<LocationMatch "^/combined/(?<sitename>host\d)/$">
 Options Indexes FollowSymLinks
 RewriteEngine On
 RewriteCond "%{env:MATCH_SITENAME}" "^host1"
 RewriteRule .* success.html
 Require all granted
</LocationMatch>

340 IBM i: IBM HTTP Server for i

LogCycle
Module: core

Syntax: LogCycle Off | Hourly | Daily | Weekly | Monthly

Default: LogCycle Daily

Context: server config, Not in Limit

Override: none

Origin: IBM

Example: LogCycle Monthly

The LogCycle directive controls the server's log cycle. This refers to how often the server will close all log
files and open new files with a new date/time stamp.

Parameter: Off | Hourly | Daily | Weekly | Monthly

• If Off is specified, one continuous log file is generated. Log files are not rolled over.
• If Hourly is specified, log files are closed and a new one created at the end of each hour.
• If Daily is specified, log files are closed and a new one created at midnight each day.
• If Weekly is specified, log files are closed and a new one created at midnight each Sunday morning.

Weekly may not work correctly if the system is not using the Gregorian calendar (this would be
similar to the help behind system value QDAYOFWEEK).

• If Monthly is specified, log files are closed and a new one created at midnight on the first day of the
month.

Note: Daily and monthly log rollovers will always occur at midnight. Hourly rollovers will occur at the top
of the hour. At the end of a log cycle, HTTP Server will roll over all logs. That means that it will flush all
entries to the log file, close the current logs, and create a log file with a timestamp for the next log cycle.

If LogCycle is active and the path defined on an ErrorLog, CustomLog, TransferLog, or FRCACustomLog
directive ends without a (/) character, then the path is considered to be the complete log file name. In
that case, the server will add an extension to the given file with the format QCYYMMDDHH, where these
variables have the following values:

• Q is a default value that indicates to the server that this is a log file.
• C is the century indicator (0 for pre-2000, 1 for post-2000)
• YY is the year indicator
• MM is the month indicator
• DD is the day indicator
• HH is the hour indicator (00 = 00:00 (midnight), 23=23:00)

Note: HH will not be generated for file system QDLS.

For example, a path of "/logs/errorlog" results in a file such as "/logs/errorlog.Q100030300".

If LogCycle is active and the path defined on an ErrorLog, CustomLog, TransferLog, or FRCACustomLog
directive ends with a (/) character, then the path is considered to be the directory that will contain the log
file. In that case, the server will create log files named in the QCYYMMDDHH format. For example, a path
of "/logs/errorlog/" created on March 3, 2001 results in a file such as "/logs/errorlog/Q101030300".

If LogCycle is active and the path defined on an ErrorLog, CustomLog, TransferLog, or FRCACustomLog
directive is in the QSYS file system, the name must end with the file component of the IFS path. Fore
example:

Config file directives
LogCycle Daily
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE common

IBM HTTP Server for i 341

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

If LogCycle is not active, no special naming is used. The name of the log file given on an ErrorLog,
CustomLog, TransferLog, or FRCACustomLog directive is used as given for the name of the log file.

If LogCycle Weekly is specified, rollover will occur when QDAYOFWEEK is equal to *SUN. However, if the
system is not using the Gregorian calendar, this value may not be set correctly and the logs may not get
rolled over as expected.

LogCycle Hourly is not valid if the log file is in the QDLS file system as that file system only supports 8
character file names and 3 character extensions.

LogLength
Module: core

Syntax: LogLength number-of-bytes

Default: LogLength 0

Context: server config, Not in Limit

Override: none

Origin: IBM

Example: LogLength 1000000

The LogLength directive limits the size of any defined log file. To prevent problems due to unbounded
growth of log files, this directive can be used to set an maximum file-size for log files. If the file exceeds
this size, no more information will be written to it until logs and alertable message HTP8433 will be sent
to QSYSOPR. The server will automatically restart logging requests when the logs are rolled over to the
next log cycle. This directive can be specified multiple times in the configuration file.

Parameter: number-of-bytes

• The number-of-bytes parameter is an integer value that sets the maximum size limit of the log
file. When any defined log file (those defined with CustomLog, TransferLog, FRCACustomLog, or
ErrorLog directives) exceeds this value, no more information will be logged until log rollover occurs.
An alertable message TCP7201 will be sent to QSYSOPR. A value of 0 means there is no limit. If
'LogCycle Off' is specified and a non-zero value is specified for LogLength, when the LogLength size
is reached no more logging will be done (even on starts and restarts of the server instance) since the
same file will be used every time.

Security notes:

• Security could be compromised if the directory where log files are stored is writable by anyone other
than the user that starts the server.

• If a program is used, then it will be run under the user who started httpd. Be sure that the program is
secure.

LogLevel
Module: core

Syntax: LogLevel [module:]level [module:level] ...

Default: LogLevel warn

Context: server config, virtual host, directory

Override: none

Origin: Apache

Example: LogLevel debug

342 IBM i: IBM HTTP Server for i

Example: LogLevel info ibm_ssl_module:warn

The LogLevel directive adjusts the verbosity of the messages recorded in the error logs. See the
“ErrorLog ” on page 318 directive for more information. The following levels are available, in order of
decreasing significance:

Parameter: [module:]level [module:level] ...

Level can be one of the following values:

• If emerg, system is unusable messages ("Child cannot open lock file. Exiting.").
• If alert, action must be taken immediately messages ("getpwuid: couldn't determine user name

from uid.").
• If crit, critical conditions messages ("Socket: Failed to get socket, exiting child.").
• If error, error conditions messages ("Premature end of script headers.").
• If warn, warning conditions messages ("Child process 1234 did not exit, sending another SIGHUP.").

If notice, normal but significant conditions messages ("httpd: caught SIGBUS, attempting to dump
core in...").

• If info, informational messages ("Server seems busy, (you may need to increase ThreadPerChild)...").
• If debug, debug-level messages ("Opening config file...").
• If trace1, trace messages ("proxy: FTP: control connection complete").
• If trace2, trace messages (""proxy: CONNECT: sending the CONNECT request to the remote

proxy"").
• If trace3, trace messages ("openssl: Handshake: start").
• If trace4, trace messages ("read from buffered SSL brigade, mode 0, 17 bytes").
• If trace5, trace messages ("map lookup FAILED: map=rewritemap key=keyname").
• If trace6, trace messages ("cache lookup FAILED, forcing new map lookup").
• If trace7, trace messages , dumping large amounts of data ("| 0000: 02 23 44 30 13 40 ac 34 df 3d

bf 9a 19 49 39 15 |").
• If trace8, trace messages , dumping large amounts of data ("| 0000: 02 23 44 30 13 40 ac 34 df 3d

bf 9a 19 49 39 15 |").

When a particular level is specified, messages from all other levels of higher significance will be reported
as well. For example, when LogLevel info is specified, then messages with log levels of notice and warn
will also be posted. Using a level of at least crit is recommended.

Specifying a level without a module name will reset the level for all modules to that level.

Specifying a level with a module name will set the level for that module only. It is possible to use the
module source file name, the module identifier, or the module identifier with the trailing _module omitted
as module specification. This means the following three specifications are equivalent:

LogLevel info ibm_ssl:warn

LogLevel info mod_ssl.c:warn

LogLevel info ibm_ssl_module:warn

It is also possible to change the level per directory:

<Directory "/www/apache/htdocs/app">
 LogLevel debug
</Directory>

Per directory loglevel configuration only affects messages that are logged after the request has been
parsed and that are associated with the request. Log messages which are associated with the connection
or the server are not affected.

See also “ErrorLog ” on page 318, “ErrorLogFormat” on page 320

IBM HTTP Server for i 343

LogMaint
Module: core

Syntax: LogMaint path_to_file expire size_limit

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Example: LogMaint logs/access_log 10 2000000

Note: If this directive is not present, log maintenance is not performed. If the directive is present, all
parameters are required. Values of 0 for expire and size_limit have a special meaning of no limit. If a
LogMaint directive with values of 0 for both expire and size_limits specified, no log maintenance will be
done on the specified file.

The LogMaint directive allows you perform log maintenance on the specified file and its derivatives.
When log maintenance is performed on a file, it is purged from the system. Derivatives consist of either
the path_to_file name provided, concatenated with the extension ".Qcyymmdd", or "Qcyymmdd" if the
provided path_to_file value was a directory. LogCycle must be active in order to enable derivatives.

A separate LogMaint directive is required in the server configuration for each CustomLog or ErrorLog
that requires log maintenance. The recommended way to configure maintenance is to match the path
configured on the LogMaint directive with the path specified on the associated CustomLog or ErrorLog
directive.

Parameter One: path_to_file

• The path_to_file value specifies the IFS-style path (for example, /QSYS.LIB/MYHTTP.LIB/
MYLOGS.FILE) of the log file to be included in log maintenance. Refer to the “LogCycle” on page
341 directive for more information on log file names and extensions.

Parameter Two: expire

• The expire value specifies an integer value indicating the number of days before a log file expires.
Files older than this value are to be removed. A value of 0 means the log file will never expire. The
age of the error log file is determined by the file creation date (as reported by the operating system).
The file name suffix, such as errorlog.Q100082213, is not used to determine the age of the file. Files
that are currently open and active in the server instance will not be removed.

Parameter Three: size_limit

• The size_limit value specifies an integer value indicating the maximum aggregate size of log files
with the name path_to_file. When the combined size of the log files exceeds this value in bytes, files
are deleted starting with the oldest file. Eligible files are deleted until the collective size is less than
or equal to the value specified on this directive. A value of 0 means there is no size limit. Note that it
is possible for the aggregate size of log files to exceed the total size_limit. This is possible due to the
fact that the size of any open log files are not included in the size_limit total. Users should take this
into account when they are calculating a value for size limit, and when setting a maximum value for
the LogLength directive.

If both expire and size_limit are configured to non-zero values, the expired files are purged first. If the
size_limits still exceeded after expired files are purged, the server continues purging files (oldest files
first) until the collective log size is equal to or less than the size_limit.

Note: If invalid values are used for expire or size_limit, an error message will be placed into the job log and
the HTTP Server will not start.

344 IBM i: IBM HTTP Server for i

The following example of log maintenance will be performed on the logs/access_log file and its
derivatives (see below for details). The files will expire after 10 days. In addition, if the total limit exceeds
2,000,000 bytes, log maintenance will be performed.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common
LogMaint logs/access_log 10 2000000

The following example of log maintenance will be performed on the /QSYS.LIB/MYHTTP.LIB/
MYLOGS.FILE/Q* files. The files will expire after 25 days and there is no total limit on the size of the
files.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /QSYS.LIB/MYHTTP.LIB/MYLOGS.FILE common
LogMaint /QSYS.LIB/MYHTTP.LIB/MYLOGS.FILE 25 0

Only one occurrence of this directive can exist per server or virtual host container. If the directive occurs
more than once, the last one specified in the server or virtual host is used.

Note: If LogCycle is configured to Off, then log maintenance is not performed.

LogMaintHour
Module: core

Syntax: LogMaintHour variable

Default: LogMaintHour 0

Context: server config, virtual host

Override: none

Origin: IBM

Example: LogMaintHour 3

The LogMaintHour directive may be used to control which hour of the day log maintenance occurs. The
default is for log maintenance to occur at midnight. Log maintenance always occurs at the beginning of
the hour. By using this directive, which hour of the day maintenance will occur can be controlled, to do
maintenance in the early morning or in the evening after the normal work day is done.

LogTime
Module: core

Syntax: LogTime LocalTime | GMT

Default: LogTime LocalTime

Context: server config, virtual host, Not in Limit

Override: none

Origin: IBM

Example: LogTime GMT

The LogTime directive specifies whether your log should record entrees using local time or Greenwich
Mean Time (GMT). This directive affects timestamps for log entries only.

Parameter: LocalTime | GMT

• LocalTime indicates the local time for log entry timestamps.
• GMT indicates the Greenwich Mean Time for log entry timestamp.

IBM HTTP Server for i 345

MaxKeepAliveRequests
Module: core

Syntax: MaxKeepAliveRequests number

Default: MaxKeepAliveRequests 100

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: MaxKeepAliveRequests 50

The MaxKeepAliveRequests directive limits the number of requests allowed per connection when
“KeepAlive ” on page 332 is on. If it is set to 0, unlimited requests will be allowed.

Parameter: number

• The number parameter specifies an integer value that limits the number of requests allowed per
connection when KeepAlive is on.

See “KeepAlive ” on page 332, and “KeepAliveTimeout” on page 332.

MaxRangeOverlaps
Module: core

Syntax: MaxRangeOverlaps default | unlimited | none | number-of-ranges

Default: MaxRangeOverlaps 20

Context: Server config, Virtual Host, directory

Override: none

Origin: Apache

The MaxRangeOverlaps directive limits the number of overlapping HTTP ranges the server is willing to
return to the client. If more overlapping ranges than permitted are requested, the complete resource is
returned instead.

Parameter: default | unlimited | none | number-of-ranges

• default indicates the number of overlapping ranges is limited to a compile-time default of 20.
• none indicates no overlapping Range headers are allowed.
• unlimited indicates the server does not limit the number of overlapping ranges it is willing to satisfy.
• The number-of-ranges parameter specifies a positive number representing the maximum number of

overlapping ranges the server is willing to satisfy.

MaxRangeReversals
Module: core

Syntax: MaxRangeReversals default | unlimited | none | number-of-ranges

Default: MaxRangeReversals 20

Context: Server config, Virtual Host, directory

Override: none

Origin: Apache

346 IBM i: IBM HTTP Server for i

The MaxRangeReversals directive limits the number of HTTP Range reversals the server is willing to return
to the client. If more ranges reversals than permitted are requested, the complete resource is returned
instead.

Parameter: default | unlimited | none | number-of-ranges

• default indicates the number of range reversals is limited to a compile-time default of 20.
• none indicates no Range reversals headers are allowed.
• unlimited indicates the server does not limit the number of range reversals it is willing to satisfy.
• The number-of-ranges parameter specifies a positive number representing the maximum number of

range reversals the server is willing to satisfy.

MaxRanges
Module: core

Syntax: MaxRanges default | unlimited | none | number-of-ranges

Default: MaxRanges 200

Context: Server config, Virtual Host, directory

Override: none

Origin: Apache

The MaxRanges directive limits the number of HTTP ranges the server is willing to return to the client. If
more ranges than permitted are requested, the complete resource is returned instead.

Parameter: default | unlimited | none | number-of-ranges

• default indicates the number of ranges is limited to a compile-time default of 200.
• none indicates Range headers are ignored.
• unlimited indicates the server does not limit the number of ranges it is willing to satisfy.
• The number-of-ranges parameter specifies a positive number representing the maximum number of

ranges the server is willing to satisfy.

MergeSlashes
Module: core

Syntax: MergeSlashes on | off

Default: MergeSlashes on

Context: Server, Virtual Host

Override: none

Origin: Apache

Example: MergeSlashes Off

By default, the server merges (or collapses) multiple consecutive slash ('/') characters in the path
component of the request URL.

When mapping URL's to the filesystem, these multiple slashes are not significant. However, URL's handled
other ways, such as by CGI or proxy, might prefer to retain the significance of multiple consecutive
slashes. In these cases MergeSlashes can be set to OFF to retain the multiple consecutive slashes. In
these configurations, regular expressions used in the configuration file that match the path component of
the URL (LocationMatch, RewriteRule, ...) need to take into account multiple consecutive slashes.

IBM HTTP Server for i 347

MergeTrailers
Module: core

Syntax: MergeTrailers on | off

Default: MergeTrailers off

Context: Server Config, Virtual Host

Override: none

Origin: Apache

Example: MergeTrailers on

This directive controls whether HTTP trailers are copied into the internal representation of HTTP headers.
This merging occurs when the request body has been completely consumed, long after most header
processing would have a chance to examine or modify request headers.

The option on is provided for compatibility with previous releases of HTTP server, where trailers were
always merged.

NameVirtualHost
Module: core

Syntax: NameVirtualHost address[:port]

Default: none

Context: server config

Override: none

Origin: Apache

Example: NameVirtualHost 10.1.1.1

Prior to i 7.2, NameVirtualHost was required to instruct the server that a particular IP address and port
combination was usable as a name-based virtual host. In i 7.2 and later, any time an IP address and port
combination is used in multiple virtual hosts, name-based virtual hosting is automatically enabled for that
address.

This directive currently has no effect.

Options
Module: core

Syntax: Options [+|-]option [[+|-]option ...]

Default: Options FollowSymlinks

Context: server config, Virtual Host, directory, .htaccess

Override: Options

Origin: Apache

Example: Options +Indexes +FollowSymLinks

The Options directive controls which server features are available in a particular directory.

Parameter : option

• The option parameter can be set to one or more of the following:

348 IBM i: IBM HTTP Server for i

Option Description

None None of the extra features are enabled.

All All options except for MultiViews.

ExecCGI Execution of CGI scripts is permitted.

FollowSymLinks The server will follow symbolic links in this
directory. This is the default setting.

Note: Even though the server follow the
SymLink, it does not change the pathname used
to match against “<Directory> ” on page 311
sections. This option gets ignored if set inside
“<Location> ” on page 339 sections.

The FollowSymLinks and
SymLinksIfOwnerMatch Options work only
in “<Directory> ” on page 311 sections
or .htaccess files.

Omitting this option should not be considered
a security restriction, since symlink testing
is subject to race conditions that make it
circumventable.

Includes Server-side includes are permitted.

IncludesNOEXEC Server-side includes are permitted, but the
#exec command and #include of CGI scripts are
disabled.

Indexes If a URL which maps to a directory is requested
and there is no DirectoyIndex (for example,
index.html) in that directory, then the server will
return a formatted listing of the directory.

MultiViews Content negotiated MultiViews are allowed.

Note: This option gets ignored if set anywhere
other than “<Directory> ” on page 311, as
mod_negotiation needs real resources to
compare against and evaluate from.

SymLinksIfOwnerMatch The server will only follow symbolic links for
which the target file or directory is owned by the
same user id as the link.

Note: The FollowSymLinks and
SymLinksIfOwnerMatch “Options” on page 348
work only in “<Directory> ” on page 311
sections or .htaccess files.

This option should not be considered a security
restriction, since symlink testing is subject to
race conditions that make it circumventable.

Normally, if multiple Options could apply to a directory, then the most specific one is taken complete;
the options are not merged. However if all the options on the Options directive are preceded by a + or -
symbol, the options are merged. Any options preceded by a + are added to the options currently in force;
any options preceded by a - are removed from the options currently in force.

IBM HTTP Server for i 349

For example, without any + and - symbols:

<Directory /web/docs>
 Options Indexes FollowSymLinks
</Directory>
<Directory /web/docs/spec>
 Options Includes
</Directory>

Then only Includes will be set for the /web/docs/spec directory. However if the second Options
directive uses the + and - symbols:

<Directory /web/docs>
 Options Indexes FollowSymLinks
</Directory>
<Directory /web/docs/spec>
 Options +Includes -Indexes
</Directory>

Then the options FollowSymLinks and Includes are set for the /web/docs/spec directory.

Note: Using -IncludesNOEXEC or -Includes disables server-side includes completely regardless of
the previous setting. The default in the absence of any other settings is FollowSymlinks.

The option +IncludesNOEXEC can be used instead of +Includes. If the previous is specified, then the
SSI Exec tag is not processed during SSI processing.

ProfileToken
Module: core

Syntax: ProfileToken on | off

Default: ProfileToken off

Context: directory

Override: AuthConfig

Origin: IBM

Example: ProfileToken on

The ProfileToken directive creates a 32-byte value called the ProfileToken. This token is used the same
way as a userid/password combination to identify/authenticate a user, and prevents passing these
values in the clear. The ProfileToken value can be used on any of the IBM i security APIs that accept
a ProfileToken as input.

Parameter: on | off

• If on is specified, and basic authentication is performed successfully, the userid/password is passed
in by the user (only an IBM i user) to generate a ProfileToken. A ProfileToken is not generated if this
parameter is set to off, or if basic authentication was not successful.

The ProfileToken is accessible in a CGI program via the HTTP_AS_AUTH_PROFILETKN environment
variable. The HTTP_AS_AUTH_PRFILETKN environment variable is not set if a ProfileToken is not
generated.

The ProfileToken is accessible in HTTP Server modules via the headers section (r->headers_in
field), which is an internal representation of the HTTP request structure. The profile token is stored
as the AS_Auth_ProfileTkn header in the headers section. HTTP Server modules can then retrieve
this ProfileToken and either use it, or pass it on to another application. The AS_Auth_ProfileTkn
header is not created if a ProfileToken is not generated.

QualifyRedirectURL
Module: core

350 IBM i: IBM HTTP Server for i

Syntax: QualifyRedirectURL ON | OFF

Default: QualifyRedirectURL OFF

Context: server config, Virtual Host, Directory

Override: FileInfo

Origin: Apache

Example: QualifyRedirectURL ON

This directive controls whether the server will ensure that the REDIRECT_URL environment variable is
fully qualified. By default, the variable contains the verbatim URL requested by the client, such as "/
index.html". With QualifyRedirectURL ON, the same request would result in a value such as "http://
www.example.com/index.html".

Even without this directive set, when a request is issued against a fully qualified URL, REDIRECT_URL will
remain fully qualified.

ReceiveBufferSize
Module: core

Syntax: ReceiveBufferSize bytes

Default: ReceiveBufferSize 0

Context: server config

Override: none

Origin: Apache

The ReceiveBufferSize directive can be used to control the TCP receive buffer size for the server. The
server will set the TCP receive buffer size to the number of bytes specified.
Parameter: bytes

• The bytes value is an integer that must be set to 0 or a value that is greater or equal to 512 (in
bytes). If 0 is specified, the server will use the default TCP receive buffer size that is configured for
the IBM i server.

RegisterHttpMethod
Module: core

Syntax: RegisterHttpMethod method [method [...]]

Default: None

Context: server config

Override: None

Origin: Apache

Example: RegisterHttpMethod UserMeth

HTTP Methods that are not conforming to the relevant RFCs are normally rejected by request processing
in Apache HTTP Server. To avoid this, modules can register non-standard HTTP methods they support.
The RegisterHttpMethod allows to register such methods manually. This can be useful for if such methods
are forwarded for external processing, e.g. to a CGI script.

Require
Module: core

IBM HTTP Server for i 351

Syntax: require entity-name entity entity...

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: Apache

Example: require group admin

This directive selects which authenticated users can access a directory.

Parameter: entity-name entity entity...

• If require user userid userid, then only the named users can access the directory.
• If require group groupname groupname, then only users in the named groups can access the

directory.
• If require valid-user, then all valid users can access the directory.

Require must be accompanied by AuthName and AuthType directives, and directives such as PasswdFile
and GroupFile (to define users and groups) in order to work correctly. For example:

AuthType Basic
AuthName "Restricted Directory"
PasswdFile web/users
GroupFile /web/groups
require group admin

Access controls which are applied in this way are effective for all methods. This is what is normally
desired. If you want to apply access controls only to specific methods, while leaving other methods
unprotected, then place the require statement into a <Limit> section.

Access controls can be used in a named protection setup. To implement a named protection setup,
place all of the access control directives in a file. Use the Include directive to include the file in your
<Directory>, <File>, or <Location> context. This allows users that want to use the same type of protection
setup within multiple contexts to add an include statement inside of each context.

Note: The require valid-user directive parameter should NOT be configured in the same context as any
require user or require group directive parameters. The require directives are processed in order (from
top to bottom) as they appear in the configuration file. Since require valid-user allows access to any
authenticated user, the require valid-user directive parameter effectively overrides the presence of any
require user or require group directives.

RuleCaseSense
Module: core

Syntax: RuleCaseSense on | off

Default: RuleCaseSense off

Context: server config

Override: none

Origin: IBM

Example: RuleCaseSense on

The RuleCaseSense directive is used to control how requested URLs are handled.

Parameter: on | off

• When on is specified, the URLs are treated as case sensitive. This means that an exact match with
case is required.

352 IBM i: IBM HTTP Server for i

• When off is specified, the URLs are treated as case insensitive. Paths on directives and requested
URLs are internally converted to upper case before they are compared.

The default value for the case sensitivity is off. Rules that map the same value in different cases to
different things, for example ABC to XYZ, will not work correctly when RuleCaseSense is off. This type of
mapping is not recommended.

When using protection for any URL, it is recommended that you set this directive to off. This ensures that
all variations in case for your URLs are protected. If you do not protect any of your site, then this directive
can be either on or off. Setting it to Off allows your users to specify any case on their URLs and enables
them to see your site.

If you use the QOpenSys file system, you will have to be careful to match the case of your file system in
your directives. You will also need to be aware that case differences matter when serving files from the
case sensitive file system. You should only turn this directive on when absolutely necessary.

RuleCaseSense affects the processing of the incoming URL in the "URL Fixup" and "URL translation"
server phases. These phases manipulate the incoming URL and do not necessarily relate to other
directives. RuleCaseSense affects the following directives: Alias, AliasMatch, RewriteBase, RewriteCond,
RewriteMap, RewriteRule, ScriptAlias, and ScriptAliasMatch

SendBufferSize
Module: core

Syntax: SendBufferSize bytes

Default: SendBufferSize 0

Context: server config

Override: none

Origin: Apache

Example: SendBufferSize 4000

The SendBufferSize directive tells the server to set the TCP buffer size to the number of specified bytes.
The TCP send buffer size provides a limit on the number of outgoing bytes that are buffered by TCP.
Once this limits reached, attempts to send additional bytes may result in the application blocking until
the number of outgoing bytes buffered drops below this limit. The number of outgoing buffered bytes is
decremented when the remote system acknowledges the sent data.

Parameter: bytes

• The bytes value is an integer that must be set to 0 or a value that is greater or equal to 512 (in
bytes). If 0 is specified, the server will use the default TCP send buffer size that is configured for the
IBM i server.

SendFileMinSize
Module: core

Syntax: SendFileMinSize bytes

Default: SendBufferSize 16000

Context: server

Override: none

Origin: Apache

Example: SendBufferSize 150

This directive specifies the minimum size of a file that is allowed to be sent via sendfile. SendFileMinSize
is an IBM i specific directive. This directive may also limit the caching of local files when using the

IBM HTTP Server for i 353

CacheLocalFD. A file that is Cached using CacheLocalFD must be served using sendfile. Because of this,
when using CacheLocalFD, a file is only cached when its size is greater than SendFileMinSize.

Note: Files larger than SendFileMinSize will not be cached dynamically.

ServerAdmin
Module: core

Syntax: ServerAdmin email-address

Default: none

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: ServerAdmin www-admin@myserver.com

The ServerAdmin directive specifies the e-mail address to be used in trailing footer lines for hard coded
error messages returned to clients. The specified value is used in hypertext link references generated by
the server when "email" is specified for the “ServerSignature” on page 357 directive.

Parameter: email-address

• The email-address parameter specifies a valid email address.

For example,

ServerAdmin www-admin@server.ibm.com

Note: This setting is not used if ServerSignature is not set to "email", or for errors handled by custom error
messaging (see “ErrorDocument ” on page 315 for more details on custom error messaging).

ServerAlias
Module: core

Syntax: ServerAlias host1 [host2 ...]

Default: none

Context: virtual host

Override: none

Origin: Apache

Example: ServerAlias ibm.com® * .ibm.com

The ServerAlias directive sets the alternate names for a host, for use with name-based virtual hosts. The
ServerAlias may include wildcards, if appropriate.

The directive allows servers to be accessible by more than one name. For example, HTTP Server might
want to be accessible as ibm.org, or ftp.ibm.org, assuming the IP addresses pointed to the same
server. In fact, one might want it so that all addresses at ibm.org were picked up by the server. This is
possible with the ServerAlias directive placed inside the “<VirtualHost> ” on page 363 section.

For example,

<VirtualHost 10.22.33.55>
 ServerAdmin webmaster@host.QIBM.com
 DocumentRoot /usr/web/host.QIBM.com
 ServerName host.QIBM.com
 ServerAlias ibm.com *.ibm.org
 ErrorLog logs/host.QIBM.com-error_log

354 IBM i: IBM HTTP Server for i

 TransferLog logs/host.QIBM.com-access_log
</VirtualHost>

Note that you can use '*' and '?' as wildcard characters. You also might need ServerAlias if you are serving
local users who do not always include the domain name. For example, if local users are familiar with
typing "www" or "www.physics" then you will need to add ServerAlias www www.physics. It isn't possible
for the server to know what domain the client uses for their name resolution because the client doesn't
provide that information in the request.

Name-based virtual hosts for the best-matching set of “<VirtualHost> ” on page 363s are processed
in the order they appear in the configuration. The first matching “ServerName ” on page 355 or
“ServerAlias ” on page 354 is used, with no different precedence for wildcards (nor for ServerName vs.
ServerAlias).

The complete list of names in the VirtualHost directive are treated just like a (non wildcard) ServerAlias.

If multiple occurrences of this directive are configured in a container, only the last occurrence is
processed. The other occurrences are ignored.

ServerName
Module: core

Syntax: ServerName [scheme://]domain-name | ip-address[:port]

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: ServerName www.example.com

The ServerName directive sets the request scheme, hostname and port that the server uses to identify
itself. ServerName is used (possibly in conjunction with ServerAlias) to uniquely identify a virtual host,
when using name-based virtual hosts. Additionally, this is used when creating self-referential URLs when
UseCanonicalName is set to a non-default value.

The ServerName directive may appear anywhere within the definition of a server. However, each
appearance overrides the previous appearance (within that server). If ServerNamenot specified, the
server attempts to deduce the client visible hostname by first asking the operating system for the system
hostname, and if that fails, performing a reverse lookup on an IP address present on the system. however,
this may not work reliably or may not return the preferred hostname.

Parameter: fully-qualified-domain-name

• The fully-qualified-domain-name parameter sets the server hostname.

For example,

ServerName simple.example.com:80
<VirtualHost 10.1.2.3>
 ServerAdmin webmaster@host.QIBM.com
 DocumentRoot /usr/web/host.QIBM.com
 ServerName host.QIBM.com
 ErrorLog logs/host.QIBM.com-error_log
 TransferLog logs/host.QIBM.com-access_log
</VirutalHost>

This would be used if the canonical (main) name of the actual machine were simple.example.com. If
you are using name-based virtual hosts, the ServerName inside a “<VirtualHost> ” on page 363 section
specifies what hostname must appear in the request's Host: header to match this virtual host.

This directive allows a port to be added to the server name. This allows an administrator to assign
the canonical port at the same time that the canonical name is assigned. If no port is specified, HTTP
Server implies port 80 for http:// and port 443 for https:// requests. If no port is specified in

IBM HTTP Server for i 355

the ServerName, then the server will use the port from the incoming request. For optimal reliability and
predictability, you should specify an explicit hostname and port using the ServerName directive.

This setting also specifies the server name used when trailing footer lines are added to hard coded error
messages (see “ServerSignature” on page 357).

If the server runs behind a device that processes SSL, such as a reverse proxy, load balancer or SSL
offload appliance, specify the https:// scheme and the port number to which the clients connect in the
ServerName directive to make sure that the server generates the correct self-referential URLs.

Note: TCP/IP must be properly configured to recognize all possible server host names.

See also “UseCanonicalName” on page 362, “NameVirtualHost” on page 348 and “ServerAlias ” on page
354.

ServerPath
Module: core

Syntax: ServerPath pathname

Default: none

Context: virtual host, Not in Limit

Override: none

Origin: Apache

Example: ServerPath /sub1/

The ServerPath directive sets the legacy URL pathname for a host, for use with name-based virtual hosts.

Parameter: pathname

• The pathname parameter sets the legacy URL pathname for a host, for use with name-based virtual
hosts.

For example, an HTTP server exists with two name-based virtual hosts. In order to match the correct
virtual host a client must send the correct Host: header. Old HTTP/1.0 clients do not send such a header
and the server has no clue what virtual host the client tried to reach (and serves the request from the
primary virtual host). To provide as much backward compatibility as possible, create a primary virtual host
that returns a single page containing links with an URL prefix to the name-based virtual hosts.

A request to the URL http://www.sub1.domain.tld/sub1/ is always served from the sub1-virtual host. A
request to the URL http://www.sub1.domain.tld/ is only served from the sub1-virtual host if the client sent
a correct Host: header. If no Host: header is sent, the client gets the information page from the primary
host. Note that there is one exception: a request to http://www.sub2.domain.tld/sub1/ is also served from
the sub1-virtual host if the client did not send a Host: header. The RewriteRule directives are used to
make sure that a client who sent a correct Host: header can use both URL variants (for example, with or
without the URL prefix).

ServerRoot
Module: core

Syntax: ServerRoot directory-path

Default: none

Context: server config

Override: none

Origin: Apache

Example: ServerRoot /www/webserver

356 IBM i: IBM HTTP Server for i

The ServerRoot directive sets the directory in which the server lives. Typically it will contain the
subdirectories conf/ and logs/. Relative paths for other configuration files are taken as relative to this
directory.

The directory-path parameter must specify a path in either the root ('/') or QOpenSys file system.

Parameter: directory-path

• The directory-path parameter sets the directory in which the server lives.

ServerSignature
Module: core

Syntax: ServerSignature on | off | email

Default: ServerSignature off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: none

Origin: Apache

Example: ServerSignature on

The ServerSignature directive specifies if trailing footer lines are to be generated for hard coded error
messages returned to clients. When requests pass through a chain of servers, this feature is useful to
identify which server generated the error message. The default value is off.

Parameter: on | off | email

• If on is specified, trailing footer lines containing the server name and version information are added
to hard coded error messages.

• If off is specified (the default), trailing footer lines are suppressed and only hard coded error
messages are returned.

• If email is specified, trailing footer lines are added and look identical to those generated when
on is specified, however the server name is also a hypertext link that references the server
administrator's e-mail address.

The value used for server name is that specified by the “ServerName ” on page 355 directive of
the serving virtual host or server. The value used for version information is that specified by the
“ServerTokens” on page 357 directive. The value used for server administrator's e-mail address is that
specified by the “ServerAdmin ” on page 354 directive.

For example, the value used for server name is that specified by the ServerName directive of the serving
virtual host or server. The value used for version information is that specified by the ServerTokens
directive. The value used for server administrator's e-mail address is that specified by the ServerAdmin
directive.

For example,

ServerAdmin www-admin@myserver.com
ServerSignature email

Note: This setting is not used for errors handled by custom error messaging (see “ErrorDocument ” on
page 315 for more details on custom error messaging).

ServerTokens
Module: core

Syntax: ServerTokens Major | Minor | Minimal | OS | Full | Prod

Default: ServerTokens Prod

IBM HTTP Server for i 357

Context: server config

Override: none

Origin: Apache

Example: ServerTokens Full

The ServerTokens directive specifies which form of the Server: header value is included in response
headers sent to clients. The value may consist of a minimal description of the server, a description with a
generic OS-type included, a description that includes information about compiled-in modules, or a simple
product description.

Parameter: Major | Minor | Minimal | OS | Full | Prod

• If Major is specified, the server sends: "Server : Apache/2"
• If Minor is specified, the server sends: "Server : Apache/2.4"
• If Minimal is specified, the server sends: "Server: Apache/2.4.12"
• If OS is specified, the server sends: "Server: Apache /2.4.12 (IBM i)"
• If Full is specified, the server sends: "Server: Apache /2.4.12 (IBM i) MymMod/1.2"
• If Prod is specified, the server sends: "Server: Apache"

This setting also specifies the version information used when trailing footer lines are added to hard coded
error messages (see “ServerSignature” on page 357).

Note: This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-
virtualhost basis.

ServerUserID
Module: core

Syntax: ServerUserID user_profile

Default: ServerUserID QTMHHTTP

Context: All

Override: AuthConfig

Origin: IBM

Example: ServerUserID webmaster

The ServerUserID directive specifies the user profile that the HTTP Server will run under. This directive
tells what user profile to use when starting the worker threads under the child process.

Parameter: user_profile

• The user_profile parameter must be a valid user profile. This profile must be authorized to all
the directories, files, and other server resources accessed by the Web server unless the server is
configured to swap to another profile for specific requests or directories.

This directive is now valid in all contexts. If userid is set and authentication is performed in
a context, and the UserID value is set to %%SERVER%%, then ServerUserID will be used for
that context. The ServerUserID is inherited through all contexts unlike UserID. If authentication
is performed and the UserID directive is set to something other than %%SERVER%%, then
ServerUserID is overridden by the UserID. If authentication is not performed at all, then
ServerUserID is used from the correct context. This allows for specific and unique user id security
models for separate virtual hosts, locations, directories, files or .htaccess, allowing for more security
control (specific access versus "global") over the resources served by the HTTP Server.

Note: To start the server you must have authority to the specified profile.

See also “UserID” on page 234.

358 IBM i: IBM HTTP Server for i

SetHandler
Module: core

Syntax: SetHandler handler-name| None| expression

Default: none

Context: server config, virtual host, directory, .htaccess

Override:FileInfo

Origin: Apache

Example: SetHandler imap-file

The SetHandler directive forces all matching files to be parsed through the handler given by handler-
name. . This happens when it is placed into an .htaccess file or a “<Directory> ” on page 311 or
“<Location> ” on page 339 section. For example, if you had a directory you wanted to be parsed entirely
as imagemap rule files, regardless of extension, you might put the following into an .htaccess file in that
directory: See “Handler for HTTP Server” on page 196 for more information

SetHandler imap-file

Parameter: handler-name | None | expression

• The handler-name parameter is the name of the handler that will parse files in this directory.
• If value None is specified, an earlier defined SetHandler directive is overridden.
• Specify string-valued expressions to reference per-request variables, including backreferences to

named regular expressions.

You could also use this directive to configure a particular handler for files with a particular file extension.
For example:

<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

String-valued expressions can be used to reference per-request variables, including backreferences to
named regular expressions.

Note: The core directives ForceType and SetHandler are used to associate all the files in a given container
(<Location>, <Directory>, or <Files>) with a particular MIME-type or handler. These settings override any
filename extension mappings defined in mod_mime.

Note: Because SetHandler overrides default handlers, normal behavior such as handling of URLs ending
in a slash (/) as directories or index files is suppressed.

SetInputFilter
Module: core

Syntax: SetInputFilter filter [filter ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SetInputFilter gzip

The SetInputFilter directive sets the filters that process client requests when they are received by the
server. Parameter One: filter

IBM HTTP Server for i 359

Parameter: filter

• The filter parameter sets the filters that process client requests when they are received by the
server.

For example,

<Directory /www/data/>
 SetInputFilter gzip
</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in which they
should process the content.

The order of the arguments determines the order in which the filters process the content. The first filter in
the list processes content first, followed by the second in the list, and so on until all filters in the list have
processed the content.

See the Apache HTTP Server Version 2.0 Filters documentation for more information regarding filters.

SetOutputFilter
Module: core

Syntax: SetOuputFilter filter [filter ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SetOutputFilter INCLUDES

The SetOutputFilter directive sets the filters that process responses from the server before they are sent
to the client.

Parameter: filter

• The filter parameter sets the filters that process responses from the server before they are sent to
the client.

For example, the following configuration will process all files in the /www/data/ directory for server-side
includes:

<Directory /www/data/>
 SetOutputFilter INCLUDES
</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in which they
should process the content.

The order of the arguments determines the order in which the filters process the content. The first filter in
the list processes content first, followed by the second in the list, and so on until all filters in the list have
processed the content.

See the Apache HTTP Server Version 2.0 Filters documentation for more information regarding filters.

ThreadsPerChild
Module: core

Syntax: ThreadsPerChild number

Default: Global HTTP Server setting for maximum number of servers.

360 IBM i: IBM HTTP Server for i

http://httpd.apache.org/docs-2.0/filter.html
http://httpd.apache.org/docs-2.0/filter.html

Context: server config

Override: none

Origin: Apache

Example: ThreadsPerChild 20

Use this directive to specify the maximum number of threads per server child process. If the directive
is not specified, the global HTTP Server setting for maximum number of servers is used. The shipped
value is 40. You can view and change global HTTP Server settings using the Change HTTP Attributes
(CHGHTTPA) command.

Parameter: number

• The number value is an integer value that specifies the maximum number of threads per server child
process.

TimeOut
Module: core

Syntax: TimeOut number

Default: TimeOut 300

Context: server config, virtual host

Override: none

Origin: Apache

Example: TimeOut 500

The TimeOut directive defines the length of time HTTP Server will wait for I/O in various circumstances:

1. When reading data from the client, the length of time to wait for a TCP packet to arrive if the read
buffer is empty.

2. When writing data to the client, the length of time to wait for an acknowledgement of a packet if the
send buffer is full.

3. In mod_cgi, the length of time to wait for output from a CGI script.
4. In mod_proxy , the default timeout value if “ProxyTimeout” on page 545 is not configured.

Parameter: number

• The number value is an integer value that specifies defines the amount of time (in seconds) HTTP
Server will wait.

TraceEnable
Module: core

Syntax: TraceEnable on | off | extended

Default: TraceEnable off

Context: server config

Override: none

Origin: Apache

Example: TraceEnable on

This directive overrides the behavior of TRACE for both the core server and mod_proxy. When "on" is
specified for the TraceEnable directive, TRACE requests are permitted per RFC 2616, which disallows any

IBM HTTP Server for i 361

request body to accompany the request. Setting the TraceEnable directive to "off" causes the core server
and mod_proxy to return a 405 (Method not allowed) error response to the client.

For testing and diagnostic purposes only, request bodies may be allowed by specifying "extended" for the
TraceEnable directive. The core will restrict the request body to 64 KB (plus 8 KB for chunk headers if
Transfer-Encoding: chunked is used). The core will reflect the full headers and all chunk headers
with the response body. As a proxy server, the request body is not restricted to 64 KB.

Parameter: on | off | extended

• A value of on permits TRACE requests.
• A value of off causes TRACE requests to return a 405 (Method not allowed) error response to the

client.
• A value of extended permits TRACE requests that are not compliant for testing and diagnostic

purposes.

Parameter: number

• The number value is an integer value that specifies defines the amount of time (in seconds) HTTP
Server will wait.

UnDefine
Module: core

Syntax: UnDefine parameter-name

Default: none

Context: server config

Override: none

Origin: Apache

Example: UnDefine SSL

Undoes the effect of a “Define” on page 310 or of passing a -D argument to STRTCPSVR command.

This directive can be used to toggle the use of “<IfDefine>” on page 330 sections without needing to alter
-D arguments in HTTP server startup STRTCPSVR command.

While this directive is supported in virtual host context, the changes it makes are visible to any later
configuration directives, beyond any enclosing virtual host.

UseCanonicalName
Module: core

Syntax: UseCanonicalName on | off | DNS

Default: UseCanonicalName on

Context: server config, virtual host, directory, Not in Limit

Override: Options

Origin: Apache

Example: UseCanonicalName off

In many situations HTTP Server has to construct a self-referential URL. That is, a URL that refers back to
the same server.

362 IBM i: IBM HTTP Server for i

Parameter: on | off | DNS

• When set to on, HTTP Server will use the ServerName directive to construct a canonical name for
the server. This name is used in all self-referential URLs, and for the values of SERVER_NAME and
SERVER_PORT environment variables in CGIs.

• When set to off, HTTP Server will form self-referential URLs using the hostname and port supplied
by the client if any are supplied (otherwise it will use the canonical name). These values are the
same that are used to implement name based virtual hosts, and are available with the same clients.
The CGI variables SERVER_NAME and SERVER_PORT will be constructed from the client supplied
values as well.

An example where this may be useful is on an intranet server where you have users connecting to
the machine using short names such as www. You'll notice that if the users type a shortname, and a
URL which is a directory, such as http://www/splat, without the trailing slash then HTTP Server will
redirect them to http://www.domain.com/splat/. If you have authentication enabled, this will cause
the user to have to reauthenticate twice (once for www and once again for www.domain.com). But if
UseCanonicalName is set off, then HTTP Server will redirect to http://www/splat/.

• The DNS setting is intended for use with mass IP-based virtual hosting to support clients that do not
provide a Host: header. With this option HTTP Server does a reverse DNS lookup on the server IP
address that the client connected to in order to work out self-referential URLs.

Important: If CGIs make assumptions about the values of SERVER_NAME they may be broken by this
option. The client is essentially free to give whatever value they want as a hostname. But if the CGI is only
using SERVER_NAME to construct self-referential URLs then it should be fine.

See also “ServerName ” on page 355.

UseShutdown
Module: core

Syntax: UseShutdown On | Off

Default: UseShutdown Off

Context: server config

Override: none

Origin: Apache

Example: UseShutdown On

This directive instructs the HTTP Server to use shutdown on the socket connections.

<VirtualHost>
Module: core

Syntax: <VirtualHost addr[:port] [addr[:port]]...> ... </VirtualHost>

Default: none

Context: server config, Not in Limit

Override: none

Origin: Apache

IBM HTTP Server for i 363

Example 1: Using an IPv4 address:

<VirtualHost 10.1.2.3>
ServerAdmin webmaster@host.foo.com
DocumentRoot /www/docs/host.foo.com
ServerName host.foo.com
ErrorLog logs/host.foo.com-error_log
TransferLog logs/host.foo.com-access_log
</VirtualHost>

Example 2: Using an IPv6 address:

<VirtualHost [2001:db8::a00:20ff:fea7:ccea]>
ServerAdmin webmaster@host.example.com
DocumentRoot /www/docs/host.example.com
ServerName host.example.com
ErrorLog logs/host.example.com-error_log
TransferLog logs/host.example.com-access_log
</VirtualHost>

The term Virtual Host refers to the practice of running more than one web site (such as
www.company1.com and www.company2.com) on a single machine. Virtual hosts can be "IP-based",
meaning that you have a different IP address for every web site, or "name-based", meaning that you have
multiple names running on each IP address. The fact that they are running on the same physical server is
not apparent to the end user.

Parameter One: address

• The address parameter specifies a fully qualified IP address or hostname.

Parameter Two: port

• The port parameter specifies a port number. This parameter is optional. If a port is not specified the
server port will be used.

<VirtualHost> and </VirtualHost> are used to enclose directives that apply only to a particular virtual
host. Any directive that is allowed in a virtual host context may be used. When the server receives
a document request on a particular virtual host, it uses the configuration directives enclosed in the
<VirtualHost> section. The address parameter may be one of the following:

• The IP address of the virtual host.
• A fully qualified domain name for the IP address of the virtual host.
• The character *, which is used to match all IP addresses.
• The string _default_, which is used only with IP virtual hosting to catch unmatched IP addresses.

Each Virtual Host must correspond to a different IP address, different port number or a different host
name for the server. In the former case, the server machine must be configured to accept IP packets for
multiple addresses.

IPv6 addresses must be specified in square brackets because the optional port number could not be
determined otherwise.

Note: The use of <VirtualHost> does not affect what addresses the server listens on. You may need to
ensure that HTTP Server is listening on the correct addresses using the Listen directive.

When using IP-based virtual hosting, the special name _default_ can be specified in which case this
virtual host will match any IP address that is not explicitly listed in another virtual host. In the absence
of any _default_ virtual host the "main" server config, consisting of all those definitions outside any
VirtualHost section, is used when no IP-match occurs.

You can specify a :port to change the port that is matched. If unspecified then it defaults to the same port
as the most recent Listen statement of the main server. You may also specify :* to match all ports on that
address, which is recommended when used with _default_.

364 IBM i: IBM HTTP Server for i

Name-based vs IP-based Virtual Hosts
IP-based virtual hosts use the IP address of the connection to determine the correct virtual host to serve.
Therefore you need to have a separate IP address for each host. With name-based virtual hosting, the
server relies on the client to report the hostname as part of the HTTP headers. Using this technique, many
different hosts can share the same IP address. Name-based virtual hosting is usually simpler, since you
need only configure your DNS server to map each hostname to the correct IP address and then configure
the Apache HTTP Server to recognize the different hostnames. Name-based virtual hosting also eases the
demand for scarce IP addresses. Therefore you should use name-based virtual hosting unless there is a
specific reason to choose IP-based virtual hosting. Some reasons why you might consider using IP-based
virtual hosting:

• Some ancient clients are not compatible with name-based virtual hosting. For name-based virtual
hosting to work, the client must send the HTTP Host header. This is required by HTTP/1.1, and is
implemented by all modern HTTP/1.0 browsers as an extension. If you need to support obsolete clients
and still use name-based virtual hosting, a possible technique is discussed at the end of this document.

• Name-based virtual hosting cannot be used with SSL secure servers because of the nature of the SSL
protocol.

• Some operating systems and network equipment implement bandwidth management techniques that
cannot differentiate between hosts unless they are on separate IP addresses.

Using Name-based Virtual Hosts
To use name-based virtual hosting, you must designate the IP address (and possibly port) on the server
that will be accepting requests for the hosts. In the normal case where any and all IP addresses on the
server should be used, you can use * as the argument to <VirtualHost>. If you're planning to use multiple
ports (e.g. running SSL) you should add a Port to the argument, such as *:80. In addition, any IP address
specified here must be associated with a network interface on the server.

The next step is to create a <VirtualHost> each different host that you would like to serve. Inside each
<VirtualHost> block, you will need at minimum a ServerName directive to designate which host is served
and a DocumentRoot directive to show where in the filesystem the content for that host lives.

Main host goes away

If you are adding virtual hosts to an existing web server, you must also create a <VirtualHost> block for
the existing host. The ServerName and DocumentRoot included in this virtual host should be the same as
the global ServerName and DocumentRoot. List this virtual host first in the configuration file so that it will
act as the default host. For example, suppose that you are serving the domain www.domain.tld and you
wish to add the virtual host www.otherdomain.tld, which points at the same IP address. Then you simply
add the following to httpd.conf:

<VirtualHost *:80>
 ServerName www.domain.tld
 ServerAlias domain.tld *.domain.tld
 DocumentRoot /www/domain
</VirtualHost>

<VirtualHost *:80>
 ServerName www.otherdomain.tld
 DocumentRoot /www/otherdomain
</VirtualHost>

You can alternatively specify an explicit IP address in place of the * in the <VirtualHost> directives. For
example, you might want to do this in order to run some name-based virtual hosts on one IP address, and
either IP-based, or another set of name-based virtual hosts on another address.

Many servers want to be accessible by more than one name. This is possible with the ServerAlias
directive, placed inside the <VirtualHost> section. For example in the first <VirtualHost> block above, the
ServerAlias directive indicates that the listed names are other names which people can use to see that
same web site:

ServerAlias domain.tld *.domain.tld

IBM HTTP Server for i 365

Requests for all hosts in the domain.tld domain will be served by the www.domain.tld virtual host. The
wildcard characters * and ? can be used to match names. Of course, you can't just make up names and
place them in ServerName or ServerAlias. You must first have your DNS server properly configured to map
those names to an IP address associated with your server. Finally, you can fine-tune the configuration of
the virtual hosts by placing other directives inside the <VirtualHost> containers. Most directives can be
placed in these containers and will then change the configuration only of the relevant virtual host. To find
out if a particular directive is allowed, check the Context of the directive. Configuration directives set in
the main server context (outside any <VirtualHost> container) will be used only if they are not overridden
by the virtual host settings.

When a request is received, the server first maps it to the best matching <VirtualHost> based on the local
IP address and port combination only. Non-wildcards have a higher precedence. If no match based on IP
and port occurs at all, the "main" server configuration is used.

If multiple virtual hosts contain the best matching IP address and port, the server selects from these
virtual hosts the best match based on the requested hostname. If no matching name-based virtual host
is found, then the first listed virtual host that matched the IP address will be used. As a consequence,
the first listed virtual host for a given IP address and port combination is the default virtual host for that
IP and port combination. If you would like to have a special configuration for requests that do not match
any particular virtual host, simply put that configuration in a <VirtualHost> container and list it first in the
configuration file.

Module mod_dav
Module mod_dav supports directives for the IBM HTTP Server for i Web server.

Summary

This module provides class 1 and class 2 WebDAV (Web-based Distributed Authoring and Versioning)
functionality for HTTP Server. This extension to the HTTP protocol allows creating, moving, copying, and
deleting resources and collections on a remote web server.

In order for WebDAV to function, you have to have your LoadModules, Dav provider, and either DavLockDB
or DavQsysLockDB (depending on your provider) in your configuration file. If any of these elements are
missing, your server will not start.

To use DAV at all, your configuration file must include:

LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

To use DAV for root, QOpenSys, or other UNIX-like filesystems, in addition to the above, your configuration
file must include:

LoadModule dav_fs_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAVF.SRVPGM

To use DAV in QSYS, your configuration file must include:

LoadModule dav_qsys_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAVQS.SRVPGM

Note: You'll need two LoadModules to use DAV. If you want to DAV-enable both IFS and QSYS, you'll need
three LoadModules.

Directives

• “Dav” on page 367
• “DavDepthInfinity” on page 368
• “DavLockDB” on page 368
• “DavMinTimeout” on page 369
• “DavQsysLockDB” on page 369

366 IBM i: IBM HTTP Server for i

Dav
Module: mod_dav

Syntax: Dav on | off | [provider name]

Default: Dav off

Context: directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

Example: Dav on

The Dav directive enables the WebDAV HTTP methods for the given container. You may want to add a
<Limit> clause inside the location directive to limit access to Dav-enabled locations.

Parameter: on | off | [provider name]

• When on is specified, WebDAV HTTP methods are enabled for the given container, using the default
provider "filesystem".

• When off is specified, WebDAV HTTP methods are disabled for the given container.
• The optional provider name parameter is used to specify the Dav provider for a directory or location.

There are no Server restrictions on the number or types of characters in the provider name. The
provider name used on the Dav directive is case sensitive.

The values on and off are not case sensitive.

Example 1:

DavLockDB /tmp/DavLock
LoadModule dav_module /qsys.lib/qhttpsvr.lib/qzsrdav.srvpgm
LoadModule dav_fs_module /qsys.lib/qhttpsvr.lib/qzsrdavf.srvpgm
<Location /foo>
 Dav on
</Location>

Example 2:

DavQsysLockDB mylib/DavLock
LoadModule dav_module /qsys.lib/qhttpsvr.lib/qzsrdav.srvpgm
LoadModule dav_qsys_module /qsys.lib/qhttpsvr.lib/qzsrdavqs.srvpgm

<Directory /qsys.lib/webserver.lib*>
 Dav qsys
</Directory>

If you specify "Dav on" in a directory, you will get the default provider "filesystem".

The Dav directive does not override like other directory-scoped directives. You cannot turn Dav on in one
directory, and then turn it off in a sub-directory. You also cannot change providers in a sub-directory. You
will receive runtime errors if this happens. The following examples are invalid and will cause the HTTP
Server to generate a runtime error:

<Directory />
 AllowOverride None
 Order Deny,Allow
 Deny From all
 Dav filesystem
 </Files>
 Dav off
 </Files>
</Directory>

IBM HTTP Server for i 367

Another invalid example:

<Directory /www/parentDirectory>
 Dav filesystem
<Directory>
<Directory /www/parentDirectory/childDirectory>
 Dav off
</Directory>

Note: If you want to Dav-enable file systems other than root or QOpenSys, you will have to specify your
provider's name on the directive to get the desired behavior. As the server is shipped, the only valid
provider names are "filesystem" and "qsys". Filesystem supports root, QOpenSys (and other UNIX-like file
systems); qsys supports QSYS objects.

DavDepthInfinity
Module: mod_dav

Syntax: DavDepthInfinity on | off

Default: DavDepthInfinity off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

Example: DavDepthInfinity on

The DavDepthInfinity directive allows the processing of PROPFIND requests containing the header
'Depth: Infinity'. Because this type of request could constitute a denial-of-service attack, by default it
is not allowed.

Parameter: on | off

• When on is specified, processing of PROPFIND requests containing the header 'Depth: Infinity' is
allowed.

• When off is specified, processing of PROPFIND requests containing the header 'Depth: Infinity' is
not allowed.

DavLockDB
Module: mod_dav

Syntax: DavLockDB filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule dav_fs_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRDAVF.SRVPGM

Example: DavLockDB /tmp/DavLock

The DavLockDB directive specifies the full path to the lock database, excluding an extension. The default
(file system) implementation of mod_dav uses a SDBM database to track user locks.

368 IBM i: IBM HTTP Server for i

Parameter: filename

• The filename parameter specifies the full path to the lock database, excluding an extension.

This directive is required if you are using Dav with the default (filesystem) provider. For example,

DavLockDB /tmp/DavLock

DavMinTimeout
Module: mod_dav

Syntax: DavMinTimeout seconds

Default: DavMinTimeout 0

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

Example: DavMinTimeout 600

The DavMinTimeout directive specifies, in seconds, the minimum lock timeout to return to a client.
Microsoft Web Folders defaults to a timeout of 120 seconds; the DavMinTimeout can override this to a
higher value (like 600 seconds) to reduce the chance of the client losing the lock due to network latency.

When a client requests a DAV resource lock, it can also specify a time when the lock will be automatically
removed by the server. This value is only a request, and the server can ignore it or inform the client of an
arbitrary value. The maximum value for minutes is 166; the maximum value for seconds is 9999.

Parameter: seconds

• The seconds parameter is any integer value from 0 to 9999.

DavQsysLockDB
Module: mod_dav

Syntax: DAVQsysLockDB library/filename

Default: none

Context: server config, virtual host

Override: none

Origin: Modified

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule dav_qsys_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRDAVQS.SRVPGM

Example: DAVQsysLockDB mylib/LockDB

The DAVQsysLockDB directive specifies the library qualified database file that the QSYS repository
manager uses to track user locks of QSYS resources. The library must exist. The names of the library
and file must follow the QSYS file system naming rules.

Parameter: library/filename

• The library/filename parameter specifies the library qualified database file that the QSYS repository
manager uses to track user locks of QSYS resources.

IBM HTTP Server for i 369

Module mod_deflate
Module mod_deflate supports directives for the IBM HTTP Server for i Web server.

Summary

Module mod_deflate specifies compression and decompression functions using filters, MIME types,
environment variables, and HTTP responses. Compressed output is transferred to requesting client
browsers at a higher rate of speed than output that is not compressed. Compression and decompression
is implemented by the DEFLATE filter, located in module mod_deflate. See Apache HTTP Server Version
2.4 Documentation for additional information and examples on configuring the Apache server to use
compression.

Directives

• “DeflateBufferSize” on page 370
• “DeflateCompressionLevel” on page 370
• “DeflateFilterNote” on page 371
• “DeflateInflateLimitRequestBody” on page 372
• “DeflateInflateRatioBurst” on page 372
• “DeflateInflateRatioLimit” on page 372
• “DeflateMemLevel” on page 373
• “DeflateWindowSize” on page 373

DeflateBufferSize
Module: mod_deflate

Syntax: DeflateBufferSize value

Default: DeflateBufferSize 8096

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateBufferSize 8096

The DeflateBufferSize directive specifies the size of the fragments that zlib should compress at one time.
If the compressed response size is bigger than the one specified by this directive then HTTP Server
will switch to chunked encoding (HTTP header Transfer-Encoding set to Chunked), with the side effect
of not setting any Content-Length HTTP header. This is particularly important when HTTP Server works
behind reverse caching proxies or when HTTP Server is configured with mod_cache and mod_cache_disk
because HTTP responses without any Content-Length header might not be cached.

Parameter: value

• The value parameter specifies the size, in bytes, of the fragments that zlib should
compress at one time.

DeflateCompressionLevel
Module: mod_deflate

Syntax: DeflateCompressionLevel value

Default: DeflateCompressionLevel 6

370 IBM i: IBM HTTP Server for i

http://httpd.apache.org/docs/2.4/mod/mod_deflate.html
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateCompressionLevel 5

The DeflateCompressionLevel directive specifies what level of compression should be used.

Parameter: value

• The value parameter value specifies the level of compression. The higher the value, the
greater the compression.

Note: Higher compression levels require additional CPU time.

DeflateFilterNote
Module: mod_deflate

Syntax: DeflateFilterNote [type] notename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateFilterNote ratio

Example: DeflateFilterNote Ratio ratio

Example: DeflateFilterNote Input input

Example: DeflateFilterNote input input

The DeflateFilterNote directive specifies that a note about compression ratios should be attached to the
request. The note is used for statistical purposes by adding a value to your access log.

Parameter One: type

• The type parameter value specifies what type of data is added to the note for logging. The
parameter value is not case-sensitive. Possible values include:
Input

Store the byte count of the filter's input stream in the note.
Output

Store the byte count of the filter's output stream in the note.
Ratio

Store the compression ratio (output/input * 100) in the note. This is the default, if the
type argument is omitted.

Parameter Two: notename

• The notename parameter value specifies the note name entered in the log. The notename
value is not required to match the type value. Blank characters are not valid.

IBM HTTP Server for i 371

Example: accurate logging

DeflateFilterNote Input instream
DeflateFilterNote Output outstream
DeflateFilterNote Ratio ratio

LogFormat '"%r" %{outstream}n/%{instream}n (%{ratio}n%%)' deflate
CustomLog logs/deflate_log deflate

DeflateInflateLimitRequestBody
Module: mod_deflate

Syntax: DeflateInflateLimitRequestBody value

Default: None, but LimitRequestBody applies after deflation

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateInflateLimitRequestBody 2048

The DeflateInflateLimitRequestBody directive specifies the maximum size of an inflated request body. If it
is unset,“LimitRequestBody” on page 334 is applied to the inflated body.

DeflateInflateRatioBurst
Module: mod_deflate

Syntax: DeflateInflateLimitRequestBody value

Default: 3

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateInflateRatioBurst 5

The DeflateInflateRatioBurst directive specifies the maximum number of times the
DeflateInflateRatioLimit cab be crossed before terminating the request.

DeflateInflateRatioLimit
Module: mod_deflate

Syntax: DeflateInflateRatioLimit value

Default: 200

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

372 IBM i: IBM HTTP Server for i

Example: DeflateInflateRatioLimit 300

The DeflateInflateRatioLimit directive specifies the maximum ratio of deflated to inflated size of an
inflated request body. This ratio is checked as the body is streamed in, and if crossed more than
DeflateInflateRatioBurst times the request will be terminated.

DeflateMemLevel
Module: mod_deflate

Syntax: DeflateMemLevel value

Default: DeflateMemLevel 9

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateMemLevel 8

The DeflateMemLevel directive specifies how much memory should be used for zlib for compression.

Parameter: value

• The value parameter value specifies how much memory should be used for zlib
compression. Each value is equal to 16K. For example, a value of 1 equates to 16K, while
a value of 8 equates to 128K.

DeflateWindowSize
Module: mod_deflate

Syntax: DeflateWindowSize value

Default: DeflateWindowSize 15

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateWindowSize 14

The DeflateWindowSize directive specifies the zlib compression window size.

Parameter: value

• The value parameter value specifies the level of compression window size. The higher the
value, the greater the compression window size.

Note: Higher compression levels require additional CPU time.

Module mod_dir
Module mod_dir supports directives for the IBM HTTP Server for i Web server.

Summary

IBM HTTP Server for i 373

The module mod_dir provides "trailing slash" redirects and serving directory index files. The index of a
directory can come from one of two sources:

• A file written by the user, typically called index.html. The name of this file is set by the DirectoryIndex
directive . This directive is controlled by module mod_dir.

• A list generated by the server through mod_auto_index. See mod_auto_index for more information.

The two functions are separated so you can completely remove (or replace) automatic index generation.

By default, a trailing slash ('/') redirect is issued when the server receives a request for a URL http://
servername/QIBM/dirname where dirname is a directory. Directories require a trailing slash, so mod_dir
issues a redirect to http://servername/QIBM/dirname/.

The AlwaysDirectoryIndex directive controls how the server will respond to directory requests.

Directives

• “AlwaysDirectoryIndex” on page 374
• “DirectoryIndex” on page 375
• “DirectoryIndexRedirect” on page 376
• “DirectoryCheckHandler” on page 375
• “DirectorySlash” on page 377
• “FallbackResource” on page 377

AlwaysDirectoryIndex
Module: mod_dir

Syntax: AlwaysDirectoryIndex disabled | local-url [local-url] ...

Default: Always DirectoryIndex on

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: IBM

Example: AlwaysDirectoryIndex off

The DirectoryIndex directive sets the list of resources to look for, when the client requests an index of
the directory by specifying a / at the end of the a directory name. Local-URL is the (%-encoded) URL of a
document on the server relative to the requested directory; it is usually the name of a file in the directory.
Several URLs may be given, in which case the server will return the first one that it finds. If none of the
resources exist and the Indexes option is set, the server will generate its own listing of the directory. For
example:

DirectoryIndex index.html

A request for http://myserver/docs/ would return http://myserver/docs/index.html if it exists, or it would
list the directory if it did not exist.

Note: The documents do not need to be relative to the directory. For example: DirectoryIndex index.html
index.txt /cgi-bin/index.pl

This would cause the CGI script /cgi-bin/index.pl to be run if neither index.html or index.txt existed in a
directory. This same idea will also work for QSYS.LIB files. For example, if the directory index is stored in /
QSYS.LIB/MYLIB.LIB/MYFILE.FILE/INDEX.MBR, you would need to specify DirectoryIndex Index.mbr .

A single argument of "disabled" prevents mod_dir from searching for an index. An argument of "disabled"
will be interpreted literally if it has any arguments before or after it, even if they are "disabled" as well.

The directive may be configured multiple times in a container. The directives are processed from the first
to the last occurrence in the container.

374 IBM i: IBM HTTP Server for i

DirectoryCheckHandler
Module: mod_dir

Syntax: DirectoryCheckHandlerOn| Off

Default: DirectoryCheckHandler Off

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: DirectoryCheckHandler On

The DirectoryCheckHandler directive determines whether mod_dir should check for directory indexes or
add trailing slashes when some other handler has been configured for the current URL. Handlers can be
set by directives such as “SetHandler” on page 359 or by other modules, such as mod_rewrite during
per-directory substitutions.

In releases prior to IBM i 7.2, this module did not take any action if any other handler was configured for a
URL(implicitly act as if "DirectoryCheckHandler ON" was specified).

Start from i 7.2, the default behavior allows directory indexes to be served even when a SetHandler
directive is specified for an entire directory, but it can also result in some conflicts with modules such as
mod_rewrite.

DirectoryIndex
Module: mod_dir

Syntax: DirectoryIndex disabled | local-url [local-URL ...]

Default: DirectoryIndex index.html

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: DirectoryIndex bob.html index.html

The DirectoryIndex directive sets the list of resources to look for, when the client requests an index of
the directory by specifying a / at the end of the a directory name. Local-URL is the (%-encoded) URL of a
document on the server relative to the requested directory; it is usually the name of a file in the directory.
Several URLs may be given, in which case the server will return the first one that it finds. If none of the
resources exist and the Indexes option is set, the server will generate its own listing of the directory.

Parameter: disabled | local-url

• The local-url parameter is the (%-encoded) URL of a document on the server relative to the
requested directory; it is usually the name of a file in the directory. For example:

DirectoryIndex index.html

• The disabled parameter prevents mod_dir from searching for an index.

A request for http://myserver/docs/ would return http://myserver/docs/index.html if it
exists, or it would list the directory if it did not exist.

The documents do not need to be relative to the directory. For example:

DirectoryIndex index.html index.txt /cgi-bin/index.pl

IBM HTTP Server for i 375

This would cause the CGI script /cgi-bin/index.pl to be run if neither index.html or index.txt existed in a
directory. This same idea will also work for QSYS.LIB files. For example, if the directory index is stored in /
QSYS.LIB/MYLIB.LIB/MYFILE.FILE/INDEX.MBR, you would need to specify DirectoryIndex Index.mbr.

A single argument of "disabled" prevents mod_dir from searching for an index. An argument of "disabled"
will be interpreted literally if it has any arguments before or after it, even if they are "disabled" as well.

Note: Multiple DirectoryIndex directives within the same context will add to the list of resources to look
for rather than replace:

Example 1:

Set index.html as an index page, then add index.php to that list as well.

 <Directory /foo>
 DirectoryIndex index.html
 DirectoryIndex index.php
 </Directory>

Example 2:

This is identical to example A, except it's done with a single directive.

 <Directory /foo>
 DirectoryIndex index.html index.php
 </Directory>

Example 3:

To replace the list, you must explicitly reset it first

In this example, only index.php will remain as an index resource.

 <Directory /foo>
 DirectoryIndex index.html
 DirectoryIndex disabled
 DirectoryIndex index.php
 </Directory>

DirectoryIndexRedirect
Module: mod_dir

Syntax: DirectoryIndexRedirect on | off | permanent | temp | seeother | 3xx-code

Default: DirectoryIndexRedirect off

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: DirectoryIndexRedirect on

By default, the DirectoryIndex is selected and returned transparently to the client. The
DirectoryIndexRedirect directive configures an external redirect for directory indexes.

Parameter: on | off | permanent | temp | seeother | 3xx-code

• The on parameter issues a 302 redirection to the index resource:
• The off parameter does not issue a redirection. This is the legacy behaviour of mod_dir.
• The permanent parameter issues a 301 (permanent) redirection to the index resource.
• The temp parameter has the same effect as on:
• The seeother parameter issues a 303 redirection (also known as "See Other") to the index resource.
• The 3xx-code parameter issues a redirection marked by the chosen 3xx code.

376 IBM i: IBM HTTP Server for i

Example

DirectoryIndexRedirect on

A request for http://example.com/docs/ would return a temporary redirect to http://example.com/docs/
index.html if it exists.

DirectorySlash
Module: mod_dir

Syntax: DirectorySlash on | off

Default: DirectorySlash on

Context: Server, Virtual Host, Directory, .htaccess

Override: Indexes

Origin: Apache

The DirectorySlash directive determines, whether mod_dir should fixup URLs pointing to a directory or
not. Typically if a user requests a resource without a trailing slash, which points to a directory, mod_dir
redirects him to the same resource, but with trailing slash for the following reasons:

• The user is finally requesting the canonical URL of the resource
• The directive mod_autoindex works correctly. Since mod_autoindex doesn't emit the path in the link, it

would point to the wrong path.
• The DirectoryIndex directive will be evaluated only for directories requested with trailing slash.
• The relative URL references inside HTML pages will work correctly.

If you don't want this effect and the reasons above don't apply to you, you can turn off the redirect with
the following:

see security warning below!
<Location /some/path>
DirectorySlash Off
SetHandler some-handler
</Location>

Security Warning: Turning off the trailing slash redirect may result in an information disclosure. Consider
a situation where mod_autoindex is active (Options +Indexes) and DirectoryIndex is set to a valid
resource (say, index.html) and there's no other special handler defined for that URL. In this case a request
with a trailing slash would show the index.html file. But a request without trailing slash would list the
directory contents.

FallbackResource
Module: mod_dir

Syntax: FallbackResource disabled | local-url

Default: disabled - HTTP server will return 404 (Not Found)

Context: Server config, Virtual Host, Directory, .htaccess

Override: Indexes

Origin: Apache

Examples: FallbackResource /not-404.html

The FallbackResource directive sets a handler for any URL that doesn't map to anything in your filesystem,
and would otherwise return HTTP 404 (Not Found).

IBM HTTP Server for i 377

 FallbackResource /not-404.php

will cause requests for non-existent files to be handled by not-404.php, while requests for files that exist
are unaffected.

It is frequently desirable to have a single file or resource handle all requests to a particular directory,
except those requests that correspond to an existing file or script. This is often referred to as a 'front
controller.'

In earlier versions of Apache, this effect typically required mod_rewrite, and the use of the -f and -d tests
for file and directory existence. This now requires only one line of configuration.

 FallbackResource /index.php

Existing files, such as images, css files, and so on, will be served normally.

Use the disabled argument to disable that feature if inheritance from a parent directory is not desired. In a
sub-URI, such as http://system:port/blog/ this sub-URI has to be supplied as local-url:

Example:

 <Directory /www/webserver/htdocs/blog>
 FallbackResource /blog/index.php
 </Directory>

 <Directory /www/webserver/htdocs/blog/images>
 FallbackResource disabled
 </Directory>

Module mod_cache_disk
Module mod_cache_disk supports directives for the IBM HTTP Server for i server.

Two Phase Disk Cache Maintenance
The server may take each iteration of the disk cache maintenance process through one or two phases,
depending on how much maintenance is needed. In the first phase, the server will examine the file
system directories for the disk cache function and discard data that no longer complies with the current
server configuration settings. It will also discard unused or unmodified data according to the criteria set
by CacheGcClean or CacheGcUnused directives. File names and expiration times for the remaining data
will be collected and the total amount of space allocated for them will be tallied. If the tally is above the
maximum disk storage limit (set by CacheSize), the server will go into phase two. If the tally is at or below
the maximum disk storage limit, the server will stop the current iteration of the maintenance process. If
the server takes the current iteration into the second phase, information collected in the first phase for
the remaining data is sorted according to cache expiry time. The server will then discard remaining data,
by order of expiration (soonest to latest), until the amount of allocated space is at or below the maximum
disk storage limit.

The following steps summarize the disk cache maintenance process:

Phase One:

1. Data files are examined, one by one, starting at the directory root specified by CacheRoot.
2. Data files not complying with settings specified for CacheDirLevels, CacheDirLength,

CacheMinFileSize, and CacheMaxFileSize are discarded.
3. Unused or unmodified data matching the criteria set by CacheGcClean and CacheGcUnused

directives is discarded.
4. File names and expiration times for remaining data is collected.
5. The total amount of space allocated for remaining data is determined. Phase two is entered if this

total is greater than that specified by CacheSize. If not, phase two is skipped and maintenance
completes (until the next iteration).

378 IBM i: IBM HTTP Server for i

Phase Two:

1. Information collected in phase one for remaining data is sorted according to cache expiry times.
2. Data is discarded, by order of expiration (soonest to latest), until the total amount of allocated

space is at or below that specified by CacheSize.

Note: The server stops collecting information for remaining data when it reaches the maximum amount
of memory allowed for disk cache maintenance (set by CacheGcMemUsage). If the server reaches this
limit in phase one, it may not have recorded enough information for phase two to bring the total amount
of space allocated for the cache down to the limit specified by the CacheSize directive in one iteration of
the disk cache maintenance process. In this case, a warning message is written to the server log and the
server completes maintenance and waits for the next disk cache maintenance iteration.

Directives

• “CacheDirLength” on page 379
• “CacheDirLevels” on page 380
• “CacheGcClean” on page 381
• “CacheGcDaily” on page 383
• “CacheGcInterval” on page 384
• “CacheGcMemUsage” on page 385
• “CacheGcUnused” on page 386
• “CacheRoot” on page 389
• “CacheSize” on page 390
• “CacheReadSize” on page 391
• “CacheReadTime” on page 391
• “CacheMaxFileSize” on page 387
• “CacheMinFileSize” on page 388

CacheDirLength
Module: mod_cache_disk

Syntax: CacheDirLength length

Default: CacheDirLength 2

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheDirLength 4

The CacheDirLength directive specifies the number of characters in subdirectory names used by the disk
cache function to store data.

Parameter: length

• The length parameter specifies the number of characters in subdirectory names used
by the disk cache function. The specified value multiplied by the value specified for the
CacheDirLevels directive must be less than or equal to 20.

If the values specified for CacheDirLevels and CacheDirLength are changed once they have been used
to cache data, the server will discard all existing cache data when it runs disk cache maintenance

IBM HTTP Server for i 379

since the file paths used to store data no longer adhere to the new values. See the CacheGcDaily or
CacheGcInterval directives for more details on disk cache maintenance.

• This directive is used only if CacheRoot is set.

Note: HTTP Server does not support inheritance for the CacheDirLength directive.

CacheDirLevels
Module: mod_cache_disk

Syntax: CacheDirLevels levels

Default: CacheDirLevels 2

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheDirLevels 3

The CacheDirLevels directive specifies the number of directory levels used by the disk cache function to
store data.

Parameter: levels

• The length parameter specifies the number of directory levels used by the disk cache
function. The specified value multiplied by the value specified for the CacheDirLength
directive must be less than or equal to 20.

A hash algorithm is used to generate unique and seemingly random character strings from
hash keys (or URLs) provided for data stored in cache. These character strings are used
to build unique file system path names. Data is stored in the file system using these path
names, relative to the directory root specified by the CacheRoot directive. This setting
specifies how many directory levels are used, while the CacheDirLength directives specifies
the length of each subdirectory name, with remaining characters simply used for file names.
The server uses the hash algorithm and directory levels to improve the performance of the
server when working with a potentially large number of data files.

Example 1

CacheRoot /QIBM/UserData/HTTPA/CacheRoot/MyCache
CacheDirLevels 3
CacheDirLength 1

The above example indicates that a hash key such as ftp://ibm.com/document.html may
be used to build a directory path such as /x/3/_/9sj4t2svBA where x, 3, and _
are three subdirectory names (CacheDirLevels 3) each having a length of one character
(CacheDirLength 1). The remaining characters, 9sj4t2svBA, are used for file names.

Example 2

CacheRoot /QIBM/UserData/HTTPA/CacheRoot/MyCache
CacheDirLevels 5
CacheDirLength 2

The above example indicates that the same hash key described for example
one (ftp://ibm.com/document.html) may be used to build a directory path such
as /x3/_9/sj/4t/2s/vBA where x3, _9, sj, 4t, and 2s are five subdirectory names
(CacheDirLevels 5) each having a length of two characters (CacheDirLength 2). The
remaining characters, vBA, are used for file names.

380 IBM i: IBM HTTP Server for i

Directory paths generated in this process are relative to the directory root defined by the
CacheRoot directive. Therefore, for example one (above), two files, one named 9sj4t2svBA.data
and the other named 9sj4t2svBA.header will be created to store data using the hash
key ftp://ibm.com/document.html. Both files will reside within the /QIBM/UserData/HTTPA/
CacheRoot/MyCache/x/3/_ directory. For example two (above), the two files will be named
vBA.data and vBA.header and will reside within the /QIBM/UserData/HTTPA/CacheRoot/
MyCache/x3/_9/sj/4t/2s directory using the same hash key.

Directory length and level limits:

Since the hash algorithm generates an exponential number of directories using this schema, a limit must
be set upon the values that CacheDirLevels and CacheDirLength may have. The limits described as such:

 CacheDirLevels * CacheDirLength <= 20

The maximum number of directory levels multiplied by the maximum length of each subdirectory must be
less than or equal to 20. If not, the server will fail to activate at startup.

If the values specified for CacheDirLevels and CacheDirLength are changed once they have been used
to cache data, the server will discard all existing cache data when it runs disk cache maintenance
since the file paths used to store data no longer adhere to the new values. See the CacheGcDaily or
CacheGcInterval directives for more details on disk cache maintenance.

• This directive is used only if CacheRoot is set.

Note: HTTP Server does not support inheritance for the CacheDirLevels directive.

CacheGcClean
Module: mod_cache_disk

Syntax: CacheGcClean hash-key-criteria period

Default: CacheGcClean *2592000 (seconds, or 30 days)

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheGcClean http://www.ibm.com /* 1296000

The CacheGcClean directive specifies a complete URL or URL match expression and a maximum period
value used to identify and remove data from cache that has not been updated (or written to cache)
within the number of specified seconds. Multiple CacheGcClean directives are allowed. If disk cache
maintenance is disabled, this setting has no affect and the cache may grow without bound, unless
managed by some application or process other than the server.

This directive is similar to the CacheGcUnused directive, however the former distinguishes when data was
last written (or saved) to cache, not when it was last served from cache.

Parameter One: hash-key-criteria

• The hash-key-criteria parameter accepts a complete URL or URL match expression used
to identify cached data by hash key. Complete URLs do not contain asterisks (*) or
question marks (?) and must match hash keys URLs completely (see example two).
URL match expressions contain one or more asterisks (*) or question marks (?) used
as wildcards to match multiple hash keys. For example: http://ibm.com/*, *://
ibm.com/*, or ftp://server?.ibm.com/* (see example one).

IBM HTTP Server for i 381

Parameter Two: period

• The period parameter specifies the maximum amount of time (in seconds) that matched
data may remain cached.

Cached data for the disk caching function is identified by comparing hash keys with the
value specified for the hash-key-criteria parameter. Matched data that has not been updated
(or written to cache) within the number of seconds specified by the corresponding period
parameter is discarded by the server during phase one of the disk cache maintenance process.
Matched data that has been updated within the number of specified seconds is not affected.
Unmatched data is not affected. See “Two Phase Disk Cache Maintenance” on page 378 for
details concerning the disk cache maintenance process.

Example 1: URL match expressions

 CacheRoot serverCache
 CacheGcClean *://ibm.com/* 2592000
 CacheGcClean ftp://server?.ibm.com/* 1209600

For this example, the first CacheGcClean directive ensures cached data with hash keys
(or URLs) that match the expression *://ibm.com/* and has not been updated within
the past 2592000 seconds (or 30 days) is discarded during phase one of the cache
maintenance process. The second CacheGcClean directive ensures cached data with hash
keys (or URLs) that match the expression ftp://server?.ibm.com/* and has not been
updated within the past 1209600 seconds (or 2 weeks) is discarded.

Example one uses CacheGcClean directives with URL match expressions to manage data
stored in cached using the disk cache function (CacheRoot serverCache). For the expression
://ibm.com/, the first wildcard (*) is used to match one or more characters in hash
keys preceding the characters //ibm.com/. The second wildcard (*) is used to match one
or more characters succeeding the characters //ibm.com/. Hash keys that match this
expression, for example, include http://ibm.com/public/welcome.html and ftp://ibm.com/
patch.zip. For the expression ftp://server?.ibm.com/*, the first wildcard (?) is used
to match any single character between ftp://server and .ibm.com/. The second wildcard (*)
is used to match one or more characters succeeding the characters .ibm.com/. Hash keys
that match this expression, for example, include ftp://server1.ibm.com/whitepaper.pdf and
ftp://server5.ibm.com/downloads/driver.exe.

Example Two: Complete URL

 CacheRoot serverCache
 CacheGcClean ftp://server5.ibm.com/downloads/application.zip 432000

For this example, the CacheGcClean directive uses a complete URL to ensure cached
data with the hash key ftp://server5.ibm.com/downloads/application.zip is
discarded during phase one of the disk cache maintenance process if it has not been
updated within the past 432000 seconds (or 5 days). No other data will be matched since
complete URLs identify a single hash key.

The server detects updates to cached data for the disk caching function by comparing the
"Data change date/time" values of data file attributes. These are commonly referred to as
last-modified times. When data is updated within cache, the corresponding last-modified
times record the date and time that the last update was made.

• This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.
• This directive is used only if CacheRoot is set.
• Disk cache maintenance may occur at regular time periods for CacheGcInterval and at a particular time

of day for CacheGcDaily if both are set.

Note: HTTP Server does not support inheritance for the CacheGcClean directive.

382 IBM i: IBM HTTP Server for i

CacheGcDaily
Module: mod_cache_disk

Syntax: CacheGcDaily time-of-day | off

Default: CacheGcDaily 03:00

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheGcDaily 23

The CacheGcDaily directives specifies whether the server is to perform disk cache maintenance, at a
particular time, when the disk cache function is enabled. If the disk cache function is disabled (the
default), this setting has no affect and the server does not perform disk cache maintenance. The default
value is 3:00 (3:00 am local system time).

Parameter: time-of-day | off

• The time-of-day parameter accepts a value in the HH:MM:SS format (24 hour clock) where
HH is an hour value (0 to 23), MM is a minute value (0 to 59), and SS is a second value
(0 to 59). A minute (MM) or second (SS) value is not required. If a minute value is not
specified, maintenance will commence at the beginning of the hour specified by the hour
value (see example two). Likewise, if a second value is not specified, maintenance will
commence at the specified number of minutes past the hour (see example one).

• If off is specified, maintenance will not be performed based on a particular time of day
(see example three).

If off is not specified, the server will perform cache maintenance every day, starting at the
specified local system time (if disk caching is enabled, see examples one and two). If off
is specified, the server will not perform disk cache maintenance at a specific time of day,
however it may perform disk cache maintenance at regular time intervals, if a maintenance
period is set using the CacheGcInterval directive. If off is specified, and a maintenance
period is not specified using CacheGcInterval, the server will never perform disk cache
maintenance (see example three).

Example 1

 CacheRoot dataCache
 CacheGcDaily 15:55

Example 2

CacheRoot dataCache
CacheGcDaily 9

Example 3

CacheRoot dataCache
CacheGcDaily off

For example one, the server will perform cache maintenance every day at 15:55 (or 3:55 pm
local system time). For example two, the server will perform cache maintenance every day at
9:00 (or 9:00 am local system time). For example three, the server will not perform disk cache
maintenance since CacheGcDaily is set to off, and CacheGcInterval is not specified.

IBM HTTP Server for i 383

See “Two Phase Disk Cache Maintenance” on page 378 for details concerning the disk cache maintenance
process.

• Disk cache maintenance may occur at time intervals for CacheGcInterval and at a particular time of day
for CacheGcDaily if both are set.

• This directive is used only if CacheRoot is set.

Note: HTTP Server does not support inheritance for the CacheGcDaily directive. For the configuration
shown below, garbage collection is performed at 1:30 AM and again at 2:30 AM.

Example:

CacheRoot dataCache
CacheGcDaily 01:30:00
 <VirtualHost ...>
 CacheGcDaily 02:30 00
 </Virtual Host>

CacheGcInterval
Module: mod_cache_disk

Syntax: CacheGcInterval period

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheGcInterval 8100

The CacheGcInterval directive specifies whether the server is to perform disk cache maintenance,
at regular time intervals, when the disk cache function is enabled. Maintenance for this setting will
commence at the time the server is started, and repeat every number of specified seconds, until the
server is ended. If the disk cache function is disabled (the default), this setting has no affect and the
server does not perform disk cache maintenance.

Parameter: period

• The period parameter specifies a period for cache maintenance cycles, in seconds.
The value may include a decimal to indicate fractional hours. For example, use
CacheGcInterval 5400 to perform cache maintenance every 5400 seconds (every 90
minutes).

If this directive is not used (not specified), the server will not perform disk cache maintenance
at regular time intervals, however it may at a particular time of day, if such a time is specified
using the CacheGcDaily directive. If this directive is not used (not specified), and CacheGcDaily
is set to off, the server will never perform disk cache maintenance (see example two).

Example 1

CacheRoot dataCache
CacheGcInterval 9900

Example 2

CacheRoot dataCache
CacheGcDaily offexample

384 IBM i: IBM HTTP Server for i

For example one, the server will perform disk cache maintenance every 9900 seconds (every 2
hours and 45 minutes), starting from the time the server is started. For example two, the server
will not perform disk cache maintenance since CacheGcDaily is set to off, and CacheGcInterval
is not specified.

See “Two Phase Disk Cache Maintenance” on page 378 for details concerning the disk cache maintenance
process.

• Disk cache maintenance may start at regular time intervals for CacheGcInterval and at a particular time
of day for CacheGcDaily if both are set.

• This directive is used only if CacheRoot is set.

Note: HTTP Server does not support inheritance for the CacheGcInterval directive.

CacheGcMemUsage
Module: mod_cache_disk

Syntax: CacheGcMemUsage size

Default: CacheGcMemUsage 5000000

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheGcMemUsage 3000000

The CacheGcMemUsage directive specifies the maximum amount of system memory, in bytes, the server
is to use to collect information for phase two of the disk cache maintenance process. See Two Phase Disk
Cache Maintenance for details concerning the disk cache maintenance process.

Parameter: size

• The size parameter specifies, in bytes, the amount of main store memory that the server
may use for phase two of the disk cache maintenance process.

When the amount of system memory consumed for phase two of the disk cache maintenance
process reaches the value specified for the size parameter, the server stops collecting
information for remaining data in cache but continues to do the other tasks for phase one
until finished. If the server takes disk cache maintenance into phase two, only the information
collected in phase one is used. This will not include information for all remaining cached data if
the size parameter is not large enough.

Example

CacheRoot dataCache
CacheGcDaily 5:00
CacheGcMemUsage 200000

For this example, the server will perform disk cache maintenance every day at 5:00
(CacheGcDaily 5:00). During phase one maintenance, the server records file names and
expiration times for data remaining cached, until it consumes 200000 bytes of memory
(CacheGcMemUsage 200000). After this limits reached, the server continues to perform the
other phase one tasks. After all phase one tasks are complete, the server performs phase
two maintenance (if needed) using whatever information it was able to collect in phase one.

• This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.
• Cache maintenance may occur at time intervals for CacheGcInterval and at a particular time of day for

CacheGcDaily if both are set.

IBM HTTP Server for i 385

• This directive is used only if CacheRoot is set, and cache maintenance is enabled.

Note: HTTP Server does not support inheritance for the CacheGcMemUsage directive.

CacheGcUnused
Module: mod_cache_disk

Syntax: CacheGcUnused hash-key-criteria period

Default: CacheGcUnused * 1209600 (seconds, or 2 weeks)

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheGcUnused http://www.ibm.com/* 432000

The CacheGcUnused directive specifies a complete URL or URL match expression and a maximum period
value used to identify and remove data from cache that has not been used (or served from cache)
within the number of specified seconds. Multiple CacheGcUnused directives are allowed. If disk cache
maintenance is disabled (see “CacheGcDaily” on page 383 or “CacheGcInterval” on page 384), this
setting has no affect and the cache may grow without bound, unless managed by some application or
process other than the server itself.

This directive is similar to the “CacheGcClean” on page 381 directive, however the latter does not
distinguish when data was last served from cache, but rather when it was last written (or saved) to cache.

Parameter One: hash-key-criteria

• The hash-key-criteria parameter accepts a complete URL or URL match expression used
to identify cache data by hash key. Complete URLs do not contain asterisks (*) or
question marks (?) and must match hash keys completely (see example two). URL match
expressions contain one or more asterisks (*) or question marks (?) as wildcards to
match multiple hash keys. For example, http://* or ftp://server?.ibm.com/* (see
example one).

Parameter Two: period

• The period parameter specifies the maximum amount of time (in seconds) that matched
data may remain cached.

Cached data for the disk caching function is identified for this setting by comparing hash keys
with the value specified for the hash-key-criteria parameter. Matched data that has not been
used (or served from cache) within the number of seconds specified by the corresponding
period parameter are discarded by the server during phase one of the disk cache maintenance
process. Matched data that has been used within the number of specified seconds is not
affected. Unmatched documents are not affected. See “Two Phase Disk Cache Maintenance” on
page 378 for details concerning the disk cache maintenance process.

Example 1: URL match expressions

CacheRoot serverCache
CacheGcUnused http://* 25929000
CacheGcUnused ftp://server?.ibm.com/* 1209600

For this example, the first CacheGcUnused directive ensures that cached data with hash
keys (or URLs) that match the expression http://* and has not been updated within the
past 25929000 seconds (or 30 days) are discarded during phase one of the disk cache
maintenance process. The second CacheGcClean directive ensures that cached data with

386 IBM i: IBM HTTP Server for i

hash keys (or URLs) that match the expression ftp://server?.ibm.com/* and has not
been updated within the past 1209600 seconds (or 2 weeks) is discarded.

Example one uses CacheGcUnused directives with URL match expressions to manage
data stored in cache using the disk caching function (CacheRoot serverCache). For
the expression http://*, the wildcard (*) is used to match one or more characters
in hash keys preceding the characters http://. This expression matches all hash keys
starting with the characters http://. For the expression ftp://server?.ibm.com/*,
the first wildcard (?) is used to match any single character in hash keys between
ftp://server and .ibm.com/. The second wildcard (*) is used to match one or
more characters in hash keys succeeding the characters .ibm.com/. Hash keys that
match this expression, for example, include ftp://server1.ibm.com/whitepaper.pdf and ftp://
server5.ibm.com/downloads/driver.exe.

Example 2: Complete URL

ProxyRequests on
CacheRoot serverCache
CacheGcUnused ftp://server5.ibm.com/downloads/application.zip 432000

For this example, the CacheGcUnused directive uses a complete URL to ensure cached
data with the hash key ftp://ftpserver.ibm.com/downloads/application.zip is
discarded during phase one of the disk cache maintenance process if it has not been
requested within the past 432000 seconds (or 5 days). No other data will be matched since
complete URLs identify a single hash key.

The server detects requests for cached data for the disk caching function by comparing
the "Last access date/time" values of data file attributes. These are commonly referred to
as last-accessed times. When data is served from cache, the corresponding last-accessed
times record the date and time that the last request was served.

• This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.
• Cache maintenance may occur at regular time periods for CacheGcInterval and at a particular time of

day for CacheGcDaily if both are set.
• This directive is used only if CacheRoot is set.

Note: HTTP Server does not support inheritance for the CacheGcUnused directive.

CacheMaxFileSize
Module: mod_cache_disk

Syntax: CacheMaxFileSize size

Default: none

Context: server, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMaxFileSize 4000000

The “CacheMaxFileSize” on page 387 directive specifies the maximum amount of data that may be stored
in the proxy disk cache for a single URL, in bytes. This setting effectively placing a maximum data size
limit on individual cache entries. If the disk cache function is disabled (see CacheRoot), this setting has no
affect.

IBM HTTP Server for i 387

Notes for local proxy cache:

When the disk cache function is used to support a local proxy cache, this setting places a maximum
data size limit on HTTP proxy responses which remain in the cache after cache maintenance has run.
See the CacheGCDaily and the CacheGCInterval directives for more information on how the disk cache
maintenance function is used to support a local proxy cache.

Example: :

 ProxyRequests on
 CacheOn on
 CacheRoot proxyCache
 CacheMaxFileSize 5000000
 CacheMinFileSize 400000

For this example, if 7.2 megabytes of cacheable HTTP proxy response data is available for a single
proxy request, the data will be served (by proxy), and cached for subsequent proxy requests, but will
be removed during the next cache maintenance cycle since it is larger than the 5000000 byte maximum
data size limit imposed by CacheMaxFileSize. A 3.8 megabyte HTTP proxy response will be cached for
subsequent proxy requests and will remain in the cache after the cache maintenance cycle has run, since
it is smaller than the 5000000 byte maximum data size limit and larger than the 400000 byte minimum
data size limit (set by CacheMinFileSize).

CacheMinFileSize
Module: mod_cache_disk

Syntax: CacheMinFileSize size

Default: CacheMinFileSize 1

Context: Server, Virtual Host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMinFileSize 40

The CacheMinFileSize directive specifies the minimum amount of data that may be stored in the proxy
disk cache for a single URL, in bytes. This setting effectively placing a minimum data size limit on
individual cache entries. If the disk cache function is disabled (see CacheRoot), this setting has no affect.

Parameter: size

• The size parameter accepts a value between 0 and 2147483647 to specify the minimum
number of bytes allowed for cache data entries.

A maximum document size limits specified using CacheMaxFileSize.

Notes for local proxy cache:

When the disk cache function is used to support a local proxy cache, this setting places a
minimum data size limit on HTTP proxy responses which remain in the cache after cache
maintenance has run. See CachGcDaily and CacheGcInterval directives for more details on the
how the disk cache maintenance function is used to support a local proxy cache.

Example

ProxyRequests on
CacheRoot proxyCache

388 IBM i: IBM HTTP Server for i

CacheMaxFileSize 5000000
CacheMinFileSize 400000

For this example, if 240 kilobytes of cacheable HTTP proxy response data is available for
a single proxy request, but will be removed during the next cache maintenance cycle since
it is less than the 400000 byte minimum data size limit imposed by CacheMinFileSize. A
2.7 megabyte HTTP proxy response may be cached for subsequent proxy requests and will
remain in the cache after the cache maintenance cycle has run since it is larger than the
400000 byte minimum data size limit and smaller than the 5000000 byte maximum data
size limit (set by CacheMaxFileSize).

CacheRoot
Module: mod_cache_disk

Syntax: CacheRoot directory

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows: LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: CacheRoot webProxyCache

The CacheRoot directive enables the disk cache function and specifies the name of the file system
directory root. Setting this directive also enables disk cache maintenance for the CacheGcDaily directive,
by default, and the CacheGcInterval directive. See the “CacheGcDaily” on page 383 or “CacheGcInterval”
on page 384 directives for more details on disk cache maintenance.

Parameter: directory

• The directory parameter accepts a file system path name to specify the file system
directory root for the disk cache function (see directory root limits below).

The disk cache function provides underlying cache support for a local proxy cache and user
written modules, using local file system space (disk space). The server must have *RWX data
authorities and *ALL object authorities to the specified directory.

A hash algorithm is used to generate unique and seemingly random file system path names
based on hash keys (or URLs) provided for data stored in cache (see also CacheDirLength and
CacheDirLevels). Data is stored in the local file system using these path names, relative to the
specified directory root. The following limits are placed on the directory root:

Directory root limits:

• If the directory parameter specifies an absolute path it must start with /QIBM/UserData/
HTTPA/CacheRoot, otherwise the proxy will fail to activate at startup.

• If the directory parameter does not specify an absolute path (does not start with a '/'), it
will be assumed to be relative to the following: /QIBM/UserData/HTTPA/CacheRoot

The directory will be created if it does not exist prior to server startup. Only the last
directory in the path will be created. All other directories in the path must previously exist.
For example, if "CacheRoot abc/def" is configured, the server will create directory "/QIBM/
UserData/HTTPA/CacheRoot/ABC/def".

Example 1: Absolute Path

CacheRoot /QIBM/UserData/HTTPA/CacheRoot/proxyCache
ProxyRequests on

IBM HTTP Server for i 389

Example 2: Relative Path

CacheRoot proxyCache
CacheEnable %%PROXY%%
ProxyRequests on

Example 3: Relative Path (with disk cache function unavailable for proxy data)

CacheRoot cache
CacheEnable disk /
ProxyRequests on

Example 4: Bad Path

CacheRoot /MyServerCache

For example one, CacheRoot enables the disk cache function (CacheRoot /QIBM/UserData/
HTTPA/CacheRoot/proxyCache) , ProxyRequests specifies that the proxy function is enabled
to handle forward proxy requests (ProxyRequests on). With these directive settings, HTTP
proxy response data is cached and maintained within the /QIBM/UserData/HTTPA/CacheRoot/
proxyCache directory using disk cache function support. See the ProxyRequests directive for
more information on handling proxy requests and caching HTTP proxy response data.

For example two, the disk cache function is enabled (CacheRoot proxyCache), the proxy
function is enabled (ProxyRequests on), and the local proxy cache is enabled. With these
directive settings, HTTP proxy response data is cached and maintained within the proxyCache
directory, relative to the /QIBM/UserData/HTTPA/CacheRoot/ directory. This directory is the
same one described in example one, simply specified as a relative path name rather than an
absolute path name. Either specification is acceptable.

For example three, the disk cache function is enabled (CacheRoot cache), and the proxy
function is enabled (ProxyRequests on), however the local proxy cache is disabled. With these
directive settings, the disk cache function is not used to cache data for the proxy function, but
may be used to cache data for user written modules.

For example four, the directory specified for CacheRoot is not valid since an absolute path
within /QIBM/UserData/HTTPA/CacheRoot/ is not specified. With this configuration the server
will generate an error message(s) at startup and fail to activate.

• This directive is required when ProxyNoConnect is set to on.

Note: HTTP Server does not support inheritance for the CacheRoot directive.

CacheSize
Module: mod_cache_disk

Syntax: CacheSize size

Default: CacheSize 5000000

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheSize 8550

390 IBM i: IBM HTTP Server for i

The CacheSize directive specifies the maximum amount of system storage space allocated for the disk
cache function (in kilobytes). Although actual usage may exceed this setting, the server will discard data
when it runs disk cache maintenance until the total allocated cache space is at or below this setting. If
disk cache maintenance is disabled, this setting has no affect and the cache may grow without bound,
unless managed by some application or process other than the server itself. See “CacheGcDaily” on page
383 or “CacheGcInterval” on page 384 for more details on the disk cache maintenance process.

Parameter: size

• The size parameter specifies the maximum number of kilobytes allocated for the disk
cache function. Depending on the expected server traffic volume, and values set for
CacheGcInterval or CacheGcDaily, use a size value that is at least twenty to forty percent
lower than the available space.

The disk cache function uses the local file system to store data. Therefore, space allocated for this cache
is used to maintain directory structures and file attributes as well as to store cache data. It also includes
unused space within file system storage blocks allocated to files and directories. Therefore, the total
amount of system storage allocated for the cache will always be greater than the total amount of actual
cache data. This setting sets a limit for the total amount of allocated space, not a limit for the total amount
of actual cache data.

• This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.
• This directive is used only if CacheRoot is set.

Note: HTTP Server does not support inheritance for the CacheSize directive.

CacheReadSize
Module: mod_cache_disk

Syntax: CacheReadSize bytes

Default: CacheReadSize 0

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheReadSize 102400

The “CacheReadSize” on page 391 directive sets the minimum amount of data, in bytes, to be read from
the backend before the data is sent to the client. The default of zero causes all data read of any size to be
passed downstream to the client immediately as it arrives. Setting this to a higher value causes the disk
cache to buffer at least this amount before sending the result to the client. This can improve performance
when caching content from a reverse proxy.

This directive only takes effect when the data is being saved to the cache, as opposed to data being
served from the cache.

CacheReadTime
Module: mod_cache_disk

Syntax: CacheReadTime milliseconds

Default: CacheReadTime 0

Context: server config, virtual host, directory, .htaccess

IBM HTTP Server for i 391

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

cache_disk_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheReadTime 1000

The “CacheReadTime” on page 391 directive sets the minimum amount of elapsed time that should pass
before making an attempt to send data downstream to the client. During the time period, data will be
buffered before sending the result to the client. This can improve performance when caching content from
a reverse proxy.

The default of zero disables this option.

This directive only takes effect when the data is being saved to the cache, as opposed to data being
served from the cache. It is recommended that this option be used alongside the “CacheReadSize” on
page 391 directive to ensure that the server does not buffer excessively should data arrive faster than
expected.

Module mod_env
Module mod_env supports directives for the IBM HTTP Server for i Web server.

Summary

This module allows the HTTP Server CGI and SSI environment to inherit environment variables.

Directives

• “PassEnv” on page 392
• “SetEnv” on page 392
• “UnsetEnv” on page 393

PassEnv
Module: mod_env

Syntax: PassEnv variable [variable ...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: PassEnv LD_LIBRARY_PATH

The PassEnv directive specifies one or more environment variables to pass to the CGI scripts. The
variables originate from the server's own environment. See “Environment variables set by HTTP Server”
on page 634 for more information.

Parameter: variable

• The variable parameter is any valid environment variable.

SetEnv
Module: mod_env

Syntax: SetEnv variable [value]

392 IBM i: IBM HTTP Server for i

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Examples:

• SetEnv SPECIAL_PATH /QIBM/bin
• SetEnv QIBM_CGI_LIBRARY_LIST "MIME;CGIURL;CGILIBL"

The SetEnv directive allows you to set an internal environment variable that is passed on to CGI scripts
and SSI pages.

If you omit the value argument, the variable is set to an empty string.

The internal environment variables set by this directive are set after most early request processing
directives are run, such as access control and URI-to-filename mapping. If the environment variable
you're setting is meant as input into this early phase of processing such as the “RewriteRule” on page 576
directive, you should instead set the environment variable with “SetEnvIf” on page 584.

UnsetEnv
Module: mod_env

Syntax: UnsetEnv variable [variable ...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: UnsetEnv LD_LIBRARY_PATH

The UnsetEnv directive removes one or more environment variables from those passed on to CGI scripts.
See “Environment variables set by HTTP Server” on page 634 for more information.

Parameter: variable

• The variable parameter is any valid environment variable.

Module mod_example
Module mod_example supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_example provides a simple example to demonstrate the use of the Apache APIs.

Directive

• “Example” on page 393

Example
Module: mod_example

Syntax: Example

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Options

IBM HTTP Server for i 393

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule example_module /QSYS.LIB/QHTTPSVR.LIB/QZSREXAMPL.SRVPGM

Example: Example

This directive sets a demonstration flag. The example module's content handler displays the flag. There
are no arguments. If you browse a URL to which the example content-handler applies, the routines within
the module and how and in what order they were called to service the document request are displayed.

Module mod_expires
Module mod_expires supports directives for the IBM HTTP Server for i Web server.

Summary

This module controls the setting of the Expires HTTP header in server responses. The expiration date can
be set relative to either the time that the source file was last modified, or relative to the time that the
client accessed the server.

The Expires HTTP header is an instruction to the client regarding the document's validity and persistence.
If cached, the document may be retrieved from the cache rather than from the source until the allocated
time has passed. After this occurs, the cache copy is considered "expired" and a new copy must be
obtained from the source.

Alternate Interval Syntax

The ExpiresDefault and ExpiresByType directives can also be defined in a more readable syntax of the
form:

ExpiresDefault "<base> [plus] {<num> <type>}*"
ExpiresByType type|encoding "<base> [plus] {<num> <type>}*"

The <base> argument is one of the following:

• access
• now (equivalent to 'access')
• modification

The [plus] keyword is optional. The <num> argument should be an integer value [acceptable to atoi()], and
<type> is one of the following:

• years
• months
• weeks
• days
• hours
• minutes
• seconds

For example, any of the following directives can be used to make documents expire 1 month after being
accessed, by default:

ExpiresDefault "access plus 1 month"
ExpiresDefault "access plus 4 weeks"
ExpiresDefault "access plus 30 days"

394 IBM i: IBM HTTP Server for i

Note: Time is stored in seconds. The value month is actually calculated as 60*60*24*30 seconds. Keep in
mind that one month is equal 30 days, and 4 weeks is only equal to 28 days. If you specify 52 weeks, it is
calculated as 362 days instead of 365 days.

The expiry time can be fine-tuned by adding several <num> and <type> arguments. For example:

ExpiresByType text/html"access plus 1 month 15 days 2 hours"
ExpiresByType image/gif "modification plus 5 hours 3 minutes"

Note: If you use a modification date based setting, the Expires header is added only to content that
comes from a file on a disk, because there is no modification time for content that does not come from a
file on a disk.

Directives

• “ExpiresActive” on page 395
• “ExpiresByType” on page 395
• “ExpiresDefault” on page 396

ExpiresActive
Module: mod_expires

Syntax: ExpiresActive on | off

Default: ExpiresActive off

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ExpiresActive on

The ExpiresActive directive enables or disables the generation of the Expires header for the document
realm in question. If this directive is found in an .htaccess file it only applies to documents generated from
that directory.

Parameter: on | off

• If set to on, an Expires header will be added to served documents according to criteria set by the
ExpiresByType and ExpiresDefault directives.

• If set to off, an Expires header will not be generated for any document in the realm (unless
overridden at a lower level, such as an .htaccess file overriding a server config file).

Note: This directive does not guarantee that an Expires header will be generated. If the criteria is not met,
no header will be sent, and the effect will be as though this directive was never specified.

ExpiresByType
Module: mod_expires

Syntax: ExpiresByType MIME-type code seconds | "<base> [plus] <num> <type>"

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ExpiresByType image/gif A2592000

Example: ExpiresByType text/html "access plus 30 days"

IBM HTTP Server for i 395

The ExpiresByType directive defines the value of the Expires header generated for documents of the
specified type (for example, text/html). The second argument sets the number of seconds that will be
added to a base time to construct the expiration date.

The base time is either the last modification time of the file, or the time of the client's access to the
document. Whether access time or modification time should be used is specified by the code field. M
means that the file's last modification time should be used as the base time, and A means the client's
access time should be used.

The difference in effect between the A and the M is minimal. If M is used, all current copies of the
document in all caches will expire at the same time. This could be useful for something like a weekly
notice that is always found at the same URL. If A is used, the date of expiration is different for each
client. This could be useful for image files that do not change very often, particularly for a set of related
documents that all refer to the same images (for example, the images will be accessed repeatedly within
a relatively short time span).

Parameter One: MIME-type

• The document type for which an Expires header should be generated.

Parameter Two: code

• The code parameter specifies one of two possible choices. Specify A if the expiration time should
be calculated from the time the resource was accessed. Specify M if the expiration time should be
calculated from the last modified date of the resource.

Parameter Three: seconds

• The seconds parameter is a number of seconds until the resource expires.

Here is an example to specify the expiration time calculation. For examples using alternate syntax, see
the beginning of this topic.

#enable expirations
ExpiresActive on
#expire GIF images after a month in the clients cache
ExpiresByType image/fig A2592000
#HTML documents are good for a week from the time they were changed
ExpiresByType text/html M604800

Note: This directive only has effect if ExpiresActive On has been specified. It overrides, for the specified
MIME type only, any expiration date set by the ExpiresDefault directive. If you use a modification date
based setting, the Expires header will not be added to content that does not come from a file on disk. This
is due to the fact that there is no modification time for such content.

ExpiresDefault
Module: mod_expires

Syntax: ExpiresDefault code seconds| "<base> [plus] <num> <type>"

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ExpiresDefault A2592000

Example: ExpiresDefault "access plus 1 month"

The ExpiresDefault directive sets the default algorithm for calculating the expiration time for all
documents in the affected realm. It can be overridden on a type-by-type basis by the ExpiresByType
directive. See the description of the ExpiresByType directive for details about the syntax of the argument,
and the alternate syntax description as well.

396 IBM i: IBM HTTP Server for i

Parameter One: code

• The code parameter specifies has two arguments. Specify A if the expiration time should be
calculated from the time the resource was accessed. Specify M if the expiration time should be
calculated from the last modified date of the resource.

Parameter Two: seconds

• The seconds parameter is a number of seconds until the resource expires.

Note:

• If you use a modification date based setting, the Expires header will not be added to content that does
not come from a file on disk. This is due to the fact that there is no modification time for such content.

• You can also specify the expiration time calculation using the alternate interval syntax. For examples
using alternate syntax, see the beginning of this topic.

Module mod_ha
Module mod_ha supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_ha contains directives that define support for the highly available HTTP Server function.

Directives

• “HACGI” on page 397
• “HAModel” on page 398
• “LmExitProgram” on page 398
• “LmIntervalTime” on page 399
• “LmMaxReactivation” on page 400
• “LmResponseTime” on page 400
• “LmUrlCheck” on page 401
• “LmUrlCheckBackup” on page 402

HACGI
Module: mod_ha

Syntax: HACGI on | off

Default: HACGI off

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: HACGI on

The HACGI directive specifies if CGI programs in a directory can be highly available. The CGI programs in
the specified directory must use the highly available HTTP Server APIs.

Parameter: on | off

• The on parameter value specifies CGI programs in a directory can be highly available.
• The off parameter value specifies CGI programs in a directory are not high available.

IBM HTTP Server for i 397

HAModel
Module: mod_ha

Syntax: HAModel model

Default: none

Context: server config

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: HAModel PrimaryBackupWithIpTakeover

Example: HAModel PrimaryBackupWithDispatcher

Example: HAModel PurePeer

The HAModel directive establishes which highly available model is to be used
(PrimaryBackupWithIpTakeover, PrimaryBackupWithDispatcher, or PurePeer).

Parameter: model

• The PrimaryBackupWithIpTakeover parameter value specifies that the highly available
Web server runs on the primary and all backup nodes. The backup node or nodes are in
a idle state, ready to become the primary Web server should the primary Web server fail
(failover), or a switchover takes place.

• The PrimaryBackupWithDispatcher parameter value specifies that the highly available
Web server runs on the primary and all backup nodes. The backup nodes are in an idle
state and all client requests are served by the primary node. A network dispatcher (for
example the IBM WebSphere Edge Server) sends client requests to the Web server.

• The PurePeer parameter value specifies that all highly available nodes are in an active
state and serve client requests. A network dispatcher (for example the IBM WebSphere
Edge Server) evenly distributes requests to different cluster nodes. This guarantees
distribution of resources in case of heavy load. Linear scalability is not guaranteed
beyond a small number of nodes. After some number of nodes are added, scalability
can disappear, and the cluster performance can deteriorate.

See “Highly available HTTP Server” on page 43 for more information regarding highly available Web
server models.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel PrimaryBackupWithIPTakeover
LmUrlCheck http://hostname/web/docs/spec/wscheck.html
LmIntervalTime 100
LmMaxReactivation 5
LmResponseTime 300

Note: When a server is configured as highly available (HAModel directive is specified), “HotBackup” on
page 325 behaves as if it is set to 'off' and can not be overwritten.

LmExitProgram
Module: mod_ha

Syntax: LmExitProgram libraryname programname [userprofile]

Default: none

398 IBM i: IBM HTTP Server for i

Context: server config

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: LmExitProgram httptest exitpgm joeuser

The LmExitProgram directive is used to specify a user-defined program in the QSYS file system that is
started by the Liveness Monitor whenever it initiates a change in the HA model of a server instance from
the primary model or to the primary model. When the server instance is going to become the primary HA
server instance, then this program is called with a parameter of '1'. When the current HA primary server
instance is no longer going to be the primary instance, then this program is called with a parameter of '0'.
For example a program can be created which will start or end a job, depending on the role of the server.

Parameter One: libraryname

• The libraryname parameter value specifies the name of the library to be used. The
parameter value can be up to 10 characters and must follow the rules for IBM i library
names.

Parameter Two: programname

• The programname parameter value specifies the name of the program to be used. The
parameter value can be up to 10 characters and must follow the IBM i rules for program
names in a library.

Parameter Three: userprofile

• The userprofile parameter value is optional and specifies which user profile the named
program should run under. If the userprofile parameter is not specified, user profile
QTMHHTTP is used.

LmIntervalTime
Module: mod_ha

Syntax: LmIntervalTime interval

Default: LmIntervalTime 15

Context: server config

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: LmIntervalTime 30

The LmIntervalTime directive is used by the Liveness Monitor to specify how often (in seconds, between
performing Web server Liveness checks (HEAD or GET)) a liveness check should be performed on the
server. The LmResponseTime and LmIntervalTime directives are independent. One sends out checks
(LmIntervalTime), while the other tests for responses (LmResponseTime). The LmResponseTime value
should always be larger than the LmIntervalTime value. It is recommended that LmResponseTime be at
least 3 times larger than LmIntervalTime.

IBM HTTP Server for i 399

Parameter: integer

• The interval parameter value specifies how often (in seconds, between performing Web
server Liveness checks (HEAD or GET)) a liveness check should be performed on the
server. Valid values include integers between 0 and 4,294,967,295.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel PrimaryBackupWithIPTakeover
LmUrlCheck http://hostname/web/docs/spec/wscheck.html
LmIntervalTime 100
LmMaxReactivation 5
LmResponseTime 300

LmMaxReactivation
Module: mod_ha

Syntax: LmMaxReactivation integer

Default: LmMaxReactivation 3

Context: server config

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: LmMaxReactivation 5

The LmMaxReactivation directive specifies how many times the Liveness Monitor should attempt to
reactivate the Web server after a detected failure.

Parameter: integer

• The integer parameter value specifies how many times the Liveness Monitor should
attempt to reactivate the Web server after a detected failure. Valid values include integers
between 0 and 2,147,483,647

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel PrimaryBackupWithIPTakeover
LmUrlCheck http://hostname/web/docs/spec/wscheck.html
LmIntervalTime 100
LmMaxReactivation 5
LmResponseTime 300

LmResponseTime
Module: mod_ha

Syntax: LmResponseTime interval

Default: LmResponseTime 120

Context: server config

Override: none

Origin: IBM

400 IBM i: IBM HTTP Server for i

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: LmResponseTime 60

The LmResponseTime directive specifies how long the Liveness Monitor should wait for a response
from the Web server before taking appropriate action (based on the other Liveness Monitor directive
settings). The LmResponseTime and LmIntervalTime directives are independent. One sends out checks
(LmIntervalTime), while the other tests for responses (LmResponseTime). The LmResponseTime value
should always be larger than the LmIntervalTime value. It is recommended that LmResponseTime be at
least 3 times larger than LmIntervalTime.

Parameter: interval

• The interval parameter value specifies how long the Liveness Monitor should wait for
a response from the Web server before taking appropriate action (based on the other
Liveness Monitor directive settings).

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel PrimaryBackupWithIPTakeover
LmUrlCheck http://hostname/web/docs/spec/wscheck.html
LmIntervalTime 100
LmMaxReactivation 5
LmResponseTime 300

LmUrlCheck
Module: mod_ha

Syntax: LmUrlCheck URL

Default: LmUrlCheck http://

Context: server config

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: LmUrlCheck http://194.170.2.5:8000/web/docs/spec/wscheck.html

The LmUrlCheck directive specifies a fully qualified URL that is used by the Liveness Monitor to perform
liveness checks on HTTP Server. Specifying a domain name is not valid for this directive. Only one IP
address can be specified in a highly available HTTP Server configuration.

Note: This is a required directive for highly available and must exist in the global server configuration
context and not in a container. See “HAModel” on page 398 and “Highly available HTTP Server” on page
43 for additional details.

Parameter: URL

• The URL parameter value specifies a fully qualified URL that is used by the Liveness
Monitor to perform liveness checks on the server. Only one IP address can be specified
in a highly available server configuration. Specifying a domain name is not valid for
this parameter. The IP Address must be the same address as specified with the Listen
directive. The default port number is 80

IBM HTTP Server for i 401

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel PrimaryBackupWithIPTakeover
LmUrlCheck http://194.170.2.5:8000/web/docs/spec/wscheck.html
LmIntervalTime 20
LmMaxReactivation 3
LmResponseTime 60

Specify https when the HTTP Server instance is configured to receive client requests using only secure
sockets. The IP address must be the same as the IP address that was specified in the virtual host
container for the SSL application. The default port number for SSL is 443.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel PrimaryBackupWithIPTakeover
LmUrlCheck https://194.170.2.5:8008/web/docs/spec/wscheck.html
LmIntervalTime 20
LmMaxReactivation 3
LmResponseTime 60

LmUrlCheckBackup
Module: mod_ha

Syntax: LmUrlCheckBackup URL

Default: none

Context: server config

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: LmUrlCheckBackup http://194.170.2.5:8008/web/docs/spec/wscheck.html

The LmUrlCheckBackup directive specifies a fully qualified URL that is used by the Liveness Monitor to
perform liveness checks on the HA backup server instance. If this directive is not configured, then the URL
passed is the URL parameter value specified on the LmUrlCheck directive.

For example, if the server is configured to run Payment Manager, only one instance of Payment Manager
can be active in the cluster at any given time. If the URL on the LmUrlCheck directive specifies a URL
for the Payment Manager, then this same URL will not work for the HA backup server instance, so the
LmUrlCheckBackup directive needs to be configured to use a non-Payment Manager URL.

Note: This directive is ignored when HAModel PurePeer is configured.

Parameter: URL

• The URL parameter value specifies a fully qualified URL that is used by the Liveness
Monitor to perform liveness checks on the HTTP Server when the server is currently
the HA backup server. The use of a domain name is not a valid parameter with this
directive. Only one IP address can be specified in a High Availability server configuration
(i.e. Listen 194.170.2.5:xxxxxx <virtual host 194.170.2.5:yyyyyy>). The IP Address must
be the same address as specified with the Listen directive. The default port number is 80.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel Primary/BackupWithIPTakeover
LmUrlCheck http://194.170.2.5:8008/web/docs/spec/wscheck.html
LmUrlCheckBackup http://194.170.2.5:8008/web/docs/spec/wscheckbackup.html
LmIntervalTime 20

402 IBM i: IBM HTTP Server for i

LmMaxReactivation 3
LmResponseTime 60

Specify https when the HTTP Server instance is configured to receive client requests using only secure
sockets. The IP address must be the same as the IP address that was specified in the virtual host
container for the SSL application. The default port number for SSL is 443.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
HAModel Primary/BackupWithIPTakeover
LmUrlCheck http://194.170.2.5:8008/web/docs/spec/wscheck.html
LmUrlCheckBackup https://194.170.2.5:8008/web/docs/spec/wscheckbackup.html
LmIntervalTime 20
LmMaxReactivation 3
LmResponseTime 60

Note: This directive is ignored when HAModel PurePeer is configured.

Module mod_headers
Module mod_headers supports directives for the IBM HTTP Server for i Web server.

Summary

The headers module allows for the customization of HTTP request and response headers. The module
allows headers to be merged, replaced or removed.

Directives

• “Header” on page 403
• “RequestHeader” on page 406

Header
Module: mod_headers

Syntax: Header [condition] add|append|echo|edit|edit*|merge|set|setifempty|unset|note header
[[expr=]value [replacement] [early|env=[!]varname|expr=expression]]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: Header append Author "John P. Doe"

Example: Header unset Author

Example: Header echo ^TS*

Example: Header echo Host

Example: Header merge Cache-Control no-cache env=CGI

The Header directive can replace, merge or remove HTTP response headers. The header is modified just
after the content handler and output filters are run, allowing outgoing headers to be modified. The action
performed by this module is determined by the action parameter. This parameter is followed by a header
name, which can include the final colon, but it is not required. Case is also ignored for set, append, merge,
add, unset and edit. The header name for echo is case sensitive and may be a regular expression. For add,
append, merge and set, a value is given as the next parameter. If this value contains spaces, it should be
surrounded by double quotes. For "echo" and "unset", no value should be given.

Order of Processing

IBM HTTP Server for i 403

The Header directive can occur almost anywhere within the server configuration. It is valid in the
main server config and virtual host contexts, inside <Directory>, <Location>, and <Files> contexts and
within .htaccess files.

The Header directives are processed in the following order:

1. main server
2. virtual host
3. <Directory> sections and .htaccess
4. <Location>
5. <Files>

Order is important. These two headers have a different effect if reversed. For example:

Header append Author "John P. Doe"
Header unset Author

This way the Author header is not set. If reversed, the Author header is set to "John P. Doe". The Header
directives are processed just before the response is sent by its handler. This means that some headers,
that are added just before the response is sent, cannot be changed or overridden. This includes headers
such as Date and Server.

Parameter One: condition

• The condition parameter is an optional parameter which can be one of the following values:

Condition Description

onsuccess The Header directive will only effect responses with a status code of
2xx.

always The Header directive will effect all responses, including 2xx.

Parameter Two: action

• The action parameter can be one of the following values:

Action Description

set The response header is set, replacing any previous header with this
name. The value may be a format string.

setifempty The request header is set, but only if there is no previous header
with this name.

append The response header is appended to any existing header of the same
name. When a new value is merged onto an existing header it is
separated from the existing header with a comma. This is the HTTP
standard way of giving a header multiple values.

add The response header is added to the existing set of headers, even if
this header already exists. This can result in two (or more) headers
having the same name. This can lead to unforeseen consequence,
and in general, "set", "append" or "merge" should be used instead.

unset The response header of this name is removed, if it exists. If there are
multiple headers of the same name, all will be removed.

echo Request headers with this name are echoed back in the response
headers. Header may be a regular expression. Echo without any
parameters echoes back all the request headers in the response.

404 IBM i: IBM HTTP Server for i

Action Description

note The value of the named response header is copied into an internal
note whose name is given by value. This is useful if a header sent by
a CGI or proxied resource is configured to be unset but should also
be logged.

edit

edit *

If this response header exists, its value is transformed according
to a regular expression search-and-replace. The value argument
is a regular expression, and the replacement is a replacement
string, which may contain back references or format specifiers.
The edit form will match and replace exactly once in a header value,
whereas the edit* form will replace every instance of the search
pattern if it appears more than once.

merge The response header is appended to any existing header of the
same name, unless the value to be appended already appears in
the header's comma-delimited list of values. When a new value is
merged onto an existing header it is separated from the existing
header with a comma. This is the HTTP standard way of giving a
header multiple values. Values are compared in a case sensitive
manner, and after all format specifiers have been processed. Values
in double quotes are considered different from otherwise identical
unquoted values.

Parameter Three: header

• The HTTP Response header parameter to be set, appended, or unset with this directive. There is no
validity checking of the header, which allows the use of experimental headers. Case is ignored for
set, append, merge, add, unset and edit. The header name for echo is case sensitive and may be a
regular expression.

Parameter Four: value

• The value parameter may be a character string, a string containing format specifiers or a
combination of both and specifies the value of the header to be set. It is only valid for set or an
ap_expr expression prefixed with expr=. There is no validity checking of the value specified, which
allows the use of experimental headers values. All characters and escaped characters, such as '\n',
are allowed in the value string. If value contains spaces, it should be surrounded by double quotes.
The following format specifiers are supported in value:

Format Description

%% The percent sign

%t The time the request was received in Universal Coordinated Time
since the epoch (Jan. 1, 1970) measured in microseconds. The value
is preceded by "t=". The time the request was received in Universal
Coordinated Time since the epoch (Jan. 1, 1970) measured in
microseconds. The value is preceded by "t=".

%D The time from when the request was received to the time the
headers are sent on the wire. This is a measure of the duration of
the request. The value is preceded by D=. The value is measured in
microseconds.

%l The current load averages of the actual server itself. It is designed
to expose the values obtained by getloadavg() and this represents
the current load average, the 5 minute average, and the 15 minute
average. The value is preceded by l= with each average separated
by /.

IBM HTTP Server for i 405

Format Description

%i The current idle percentage of httpd (0 to 100) based on available
processes and threads. The value is preceded by i=.

%b The current busy percentage of httpd (0 to 100) based on available
processes and threads. The value is preceded by b=.

%{ENVVAR}e The contents of the environment variable ENVVAR.

Note: Other format strings, such as %s, will receive an error and the server will not start. For edit
there is both a value argument which is a regular expression, and an additional replacement string.

Parameter Five: early|env=[!]variable] | expr=expression

• Optional: It may be any of:

early

Specifies early processing.

env=[!]varname

The directive is applied if and only if the environment variable varname exists. A ! in front of
varname reverses the test, so the directive applies only if varname is unset.

expr=expression

The directive is applied if and only if expression evaluates to true. Details of expression
syntax and evaluation are documented in the ap_expr documentation.

This delays the evaluation of the condition clause compared to <If>
Header always set CustomHeader my-value "expr=%{REQUEST_URI} =~ m#^/
special_path.php$#"

Except in early mode, the Header directives are processed just before the response is sent to the network.
These means that it is possible to set and/or override most headers, except for those headers added by
the HTTP header filter, such as Content-Type.

RequestHeader
Module: mod_headers

Syntax: RequestHeader add|append|edit|edit*|merge|set|setifempty|unset header [[expr=]value
[replacement] [early|env=[!]varname|expr=expression]]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RequestHeader set Accept-Encoding "gzip

Example: RequestHeader unset Referer

Example: RequestHeader edit Destination ^https: http: early

This argument is followed by a header name, which can include the final colon, but it is not required. Case
is ignored. For set, append, merge and add, a value is given as the third argument. If this value contains
spaces, it should be surrounded by double quotes. For unset, no value should be given.

Parameter one: action

• The action parameter can be one of the following values:

406 IBM i: IBM HTTP Server for i

Action Description

set The request header is set, replacing any previous header with this
name.

setifempty The request header is set, but only if there is no previous header
with this name.

append The request header is appended to any existing header of the same
name. When a new value is merged into an existing header, it is
separated from the existing header with a comma. This is the HTTP
standard way of giving a header multiple values.

add The request header is added to the existing set of headers, even if
this header already exists. This can result in two (or more) headers
having the same name. This can lead to unforeseen consequences,
and in general set, append or merge should be used instead.

unset The request header of this name is removed, if it exists. If there are
multiple headers of the same name, all will be removed.

echo Request headers with this name are echoed back in the response
headers. Header may be a regular expression. Echo without any
parameters echoes back all the request headers in the response.

edit

edit *

If this request header exists, its value is transformed according to
a regular expression search-and-replace. The value argument is a
regular expression, and the replacement is a replacement string,
which may contain backreferences or format specifiers. The edit
form will match and replace exactly once in a header value, whereas
the edit* form will replace every instance of the search pattern if it
appears more than once.

merge The request header is appended to any existing header of the same
name, unless the value to be appended already appears in the
existing header's comma-delimited list of values. When a new value
is merged onto an existing header it is separated from the existing
header with a comma. This is the HTTP standard way of giving a
header multiple values. Values are compared in a case sensitive
manner, and after all format specifiers have been processed. Values
in double quotes are considered different from otherwise identical
unquoted values.

Parameter Two: header

• The HTTP Request header parameter to be set, appended, or unset with this directive. There is no
validity checking of the header, which allows the use of experimental headers.

Parameter Three: value

• The value parameter may be a character string, a string containing format specifiers or a
combination of both and specifies the value of the header to be set. It is only valid for set, add,
append and merge. There is no validity checking of the value specified, which allows the use of
experimental headers values. All characters and escaped characters, such as '\n', are allowed in
the value string. If value contains spaces, it should be surrounded by double quotes. The following
format specifiers are supported in value:

Format Description

%% The percent sign

IBM HTTP Server for i 407

Format Description

%t The time the request was received in Universal Coordinated Time
since the epoch (Jan. 1, 1970) measured in microseconds. The value
is preceded by "t=". The time the request was received in Universal
Coordinated Time since the epoch (Jan. 1, 1970) measured in
microseconds. The value is preceded by "t=".

%D The time from when the request was received to the time the
headers are sent on the wire. This is a measure of the duration of
the request. The value is preceded by D=. The value is measured in
microseconds.

%l The current load averages of the actual server itself. It is designed
to expose the values obtained by getloadavg() and this represents
the current load average, the 5 minute average, and the 15 minute
average. The value is preceded by l= with each average separated
by /.

%i The current idle percentage of httpd (0 to 100) based on available
processes and threads. The value is preceded by i=.

%b The current busy percentage of httpd (0 to 100) based on available
processes and threads. The value is preceded by b=.

%{ENVVAR}e The contents of the environment variable ENVVAR.

Note: Other format strings, such as %s, will receive an error and the server will not start. For edit
both a value and a replacement are required, and are a regular expression and a replacement string
respectively.

Parameter Four: early|env=[!]variable] | expr=expression

• Optional: It may be any of:

early

Specifies early processing.

env=[!]varname

The directive is applied if and only if the environment variable varname exists. A ! in front of
varname reverses the test, so the directive applies only if varname is unset.

expr=expression

The directive is applied if and only if expression evaluates to true. Details of expression
syntax and evaluation are documented in the ap_expr documentation.

Except in early mode, the RequestHeader directive is processed just before the request is run by its
handler in the fixup phase. This should allow headers generated by the browser, or by HTTP server input
filters to be overridden or modified.

Module mod_ibm_linc
Module mod_ibm_linc supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_ibm_linc supports the LDAPInclude directive that allows HTTP Server to access a
Lightweight Directory Access Protocol (LDAP) directory and to query the directory in a database fashion
to obtain HTTP configuration information. The LDAPInclude directive requires a file that contains the
directives necessary to contact the LDAP server. This can be the same filename that is used on the
LdapConfigFile directive. See the mod_ibm_ldap module for details on the directives necessary to contact
an LDAP server.

408 IBM i: IBM HTTP Server for i

If the LDAPInclude directive is placed in the server configuration file, the following directive must be
specified prior to its use:

LoadModule ibm_ldap_include /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Directive

• “LDAPInclude” on page 409

LDAPInclude
Module: mod_ibm_linc

Syntax: LDAPInclude filename filter attribute

Default: none

Context: server config, virtual host, directory

Override: none

Origin: IBM

Example: LDAPInclude /QIBM/UserData/HTTPA/LDAP/ldap.prop (cn=web) binProperty

LDAPInclude directive is used to retrieve HTTP configuration information that is stored in an LDAP
directory. The LDAP server is contacted using information from the configuration file provided, and an
LDAP search is performed using the filter. Once information is returned from the LDAP search, the values
of the attributes are then used as part of the HTTP configuration file.

The same filename that is used on an LDAPConfigFile directive may also be used for the LDAPInclude
directive.

Parameter One: filename

• The filename parameter is the name of the file that contains LDAP directives required to connect to
an LDAP server.

Parameter Two: filter

• The filter parameter is the search string that is passed from HTTP Server to the LDAP server to
return an LDAP entry.

Parameter Three: attribute

• The attribute parameter is the name of the LDAP attribute whose value is some arbitrary part of
HTTP Server configuration file.

Module mod_ibm_ldap
This module supports directives that allow IBM HTTP Server for i Web servers to access an Lightweight
Directory Access Protocol (LDAP) directory and to query the directory in a database fashion to obtain
authentication information.

These directives provide the server with information regarding the LDAP Servers in which HTTP Server
configuration (see mod_ibm_linc) and authentication information may be stored. You can put these
directives in a file and then include that file in your server configuration file using the LdapConfigFile
directive. If these directives are placed in the configuration file, the following directive must be specified
prior to their use:

LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Directives

• “ldap.AppId” on page 410
• “ldap.application.authType” on page 411

IBM HTTP Server for i 409

• “ldap.application.DN” on page 411
• “ldap.application.password.stashFile” on page 412
• “ldap.cache.timeout” on page 412
• “ldap.group.memberAttributes” on page 412
• “ldap.group.name.filter” on page 413
• “ldap.group.url” on page 413
• “ldap.idleConnection.timeout” on page 414
• “ldap.NTDomain” on page 415
• “ldap.ObjectClass” on page 415
• “ldap.realm” on page 416
• “ldap.search.timeout” on page 416
• “ldap.transport” on page 417
• “ldap.url” on page 417
• “ldap.user.authType” on page 418
• “ldap.user.name.fieldSep” on page 418
• “ldap.user.name.filter” on page 419
• “ldap.version” on page 419
• “ldap.waitToRetryConnection.interval” on page 420
• “LDAPConfigFile” on page 420
• “LDAPRequire” on page 420
• “LDAPReferrals” on page 421
• “LDAPReferralHopLimit” on page 422

ldap.AppId
Module: mod_ibm_ldap

Syntax: ldap.AppId application_ID

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.AppId QIBM_HTTP_SERVER_SRVINST1

The ldap.AppId directive is used to enable SSL connections to the LDAP server. An Application ID that
has been obtained and associated with a certificate through Digital Certificate Manager (DCM) is supplied
with this directive. The application ID is then used when making an SSL connection to the LDAP server
to validate that the server can make a secure connection. The Application ID provided may be the same
Application ID that is used elsewhere in HTTP Server.

The ldap.AppId directive is required if ldap.transport is SSL.

Parameter: application_ID

• The application_ID parameter is an application ID obtained from DCM for this HTTP
Server instance.

410 IBM i: IBM HTTP Server for i

ldap.application.authType
Module: mod_ibm_ldap

Syntax: ldap.application.authType authtype

Default: ldap.application.authType Basic

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.application.authType None

The ldap.application.authtype directive is used to specify the method used to authenticate HTTP Server
application to the LDAP server. The possible values are None and Basic.

For Basic authentication, the ldap.application.DN and the ldap.application.password.stashFile directives
are required to identify HTTP Server.

Parameter: authtype

• The authtype parameter specifies the method used to authenticate HTTP Server
application to the LDAP server. Valid values are Basic, or None.

1. If None is selected, HTTP Server connects using anonymous access, if permitted by the
LDAP server.

2. If Basic authentication is chosen, HTTP Server is required to identify itself to the LDAP
server by using a Distinguished Name and password.

ldap.application.DN
Module: mod_ibm_ldap

Syntax: ldap.application.DN Distinguished_Name

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.application.DN cn=Administrator

The ldap.application.DN directive specifies the Distinguished Name (DN) HTTP Server uses to
authenticate to the LDAP server.

When using ldap.application.authType Basic, the directive ldap.application.password.stashFile should
be used with ldap.application.DN. Unless the LDAP server allows anonymous access, the connection
between HTTP Server and the LDAP server will not be made without a valid password.

Parameter: Distinguished_Name

• The Distinguished_Name parameter is a character string representing the Distinguished
Name used by HTTP Server to authenticate to the LDAP server.

IBM HTTP Server for i 411

ldap.application.password.stashFile
Module: mod_ibm_ldap

Syntax: ldap.application.password.stashFile filename

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.application.password.stashFile /QIBM/UserData/HTTPA/LDAP/websrv1/lcfg1.stash

The ldap.application.password.stashFile directive specifies the file that contains the encoded password
used by HTTP Server to authenticate to the LDAP server when ldap.application.authType is Basic. The
configuration tools create, encode, and name the filename.

Parameter: filename

• The filename parameter is the name of a file containing the encoded password used to
authenticate HTTP Server to the LDAP server.

ldap.cache.timeout
Module: mod_ibm_ldap

Syntax: ldap.cache.timeout seconds

Default: ldap.cache.timeout 600 (10 minutes)

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.cache.timeout 300

The ldap.cache.timeout directive specifies the maximum length of time (in seconds) that these cached
results may be used. After ldap.cache.timeout seconds, the cache elements are discarded, and
subsequent requests cause a search of the LDAP server. Results of a search of an LDAP server are cached
in local HTTP Server storage to save the time of executing another LDAP search in a short period of time.

Parameter: seconds

• The seconds parameter is the length of time, in seconds, for the server to retain the
results of successful LDAP searches.

ldap.group.memberAttributes
Module: mod_ibm_ldap

Syntax: ldap.group.memberAttributes "attributes"

Default: ldap.group.memberAttributes "member uniquemember"

Context: directory, .htaccess

412 IBM i: IBM HTTP Server for i

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.group.memberAttributes "member"

The ldap.group.memberAttributes directive specifies the attribute names that are used to extract
members from a group entry in an LDAP directory. The values of these attributes must be the
distinguished names of the members of the group.

This directive is used in conjunction with the ldap.group.name.filter and the LDAPRequire directives to
allow users in specific groups access to a resource.

Parameter One: attributes

• The attributes parameter is the group attribute names used to extract users from an
LDAP group entry. Beginning in IBM i 5.4, if the attributes parameter is the operational
attribute ibm-allMembers, then group membership is checked for all forms of groups:
static, dynamic, nested, and hybrid. Otherwise, group membership is checked only for a
static group.

If multiple occurrences of this directive are configured in a container, only the last occurrence is
processed. All other occurrences are ignored.

ldap.group.name.filter
Module: mod_ibm_ldap

Syntax: ldap.group.name.filter filter

Default: ldap.group.name.filter (&(cn=%v)(|(objectclass=groupofnames)
(objectclass=groupofuniquenames)))

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.group.name.filter (&(cn=%v)(objectclass=groupofnames))

The ldap.group.name.filter directive specifies the filter that is used to convert, via an LDAP search
request, a group name to a unique DN. The unique DN for the group is then used to allow individual
users who are members of the group to access their source. The default value is "(&(cn=%v)(|
(objectclass=groupofnames)(objectclass=groupofuniquenames)))", where %v is a substitution variable for
the group name.

This directive is used in conjunction with the ldap.group.memberAttributes and the LDAPRequire
directives to allow users in specific groups access to a resource.

Parameter: filter

• The filter parameter is a valid LDAP search filter that will return a unique DN for a given
group name.

ldap.group.url
Module: mod_ibm_ldap

IBM HTTP Server for i 413

Syntax: ldap.group.url ldap://hostname:port/BaseDN

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.group.url ldap://www-5.ibm.com/o=deltawing,c=au

The ldap.group.url directive tells HTTP Server the location of the LDAP server that is being used for
authentication of users in groups. Hostname is the hostname of the LDAP server. The DNS name or the IP
address is used to identify the host where the LDAP server resides. The port is optional. If not specified,
port 389 will be assumed if using TCP/IP connections, and 636 will be used for SSL connections to the
LDAP server. The BaseDN provides the starting point for searches of the LDAP directory.

If the ldap.group.url is not present in the configuration file, the ldap.url value is used. If the same host,
port and BaseDN are the same for group searches, as they are for user searches, you do not need to
specify ldap.group.url.

Parameter One: hostname

• The hostname parameter is the DNS name or IP address of the host where the LDAP
server is located.

Parameter Two: port

• The port parameter is the port on which the LDAP server listens. It is optional. If not
present, and the transport is TCP, the well-known LDAP port 389 is assumed. If the
transport is SSL, the well-known LDAP SSL port 636 will be assumed.

Parameter Three: BaseDN

• The BaseDN parameter is the starting point for searches of the LDAP directory for group
information.

Note: The ldap.group.url value is case sensitive. For example, the following value is not valid:
ldap.group.url LdaP://www-5.ibm.com/o=deltawing,c=au. However, the following value is
valid: ldap.group.url ldap://www-5.ibm.com/o=deltawing,c=au.

ldap.idleConnection.timeout
Module: mod_ibm_ldap

Syntax: ldap.idleConnection.timeout seconds

Default: ldap.idleConnection.timeout 600 (10 minutes)

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.idleConnection.timeout 900

414 IBM i: IBM HTTP Server for i

The ldap.idleConnection.timeout directive is used to determine the time that idle connections to the
LDAP server are kept open. This improves performance by saving the path length necessary to open
connections if there are several requests of the LDAP server in a short period of time.

Parameter: seconds

• The seconds parameter is the length of time, in seconds, that an idle connection should
remain open.

ldap.NTDomain
Module: mod_ibm_ldap

Syntax: ldap.NTDomain domainname

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.NTDomain "cn=myexchServer"

Since Microsoft Windows NT authenticates differently than the other industry LDAP servers, this directive
was added to configure the Microsoft Windows NT domain name. This directive should only be used
when a Microsoft Exchange Server is being used and the authentication requires that ldap.NTDomain be
specified. This directive should not be used in other cases.

Use of this directive allows an HTTP Server to access a Microsoft Exchange Server version 5.0 or 5.5 by
means of Lightweight Directory Access Protocol (LDAP). It may be necessary to use this directive if this
product is used to perform LDAP authentication of HTTP requests.

Directive ldap.NTDomain can be specified two different ways. The format may be dependent on the
Microsoft Exchange Server.

If the Exchange Server requires the account to look like "cn=NTAccount, cn=NTDomain", use the format:

ldap.NTDomain "cn=exchServer"

If the Exchange Server requires the account in the form ("dc=NTDomain, cn=NTAccount"), use the format:

ldap.NTDomain "dc=exchServer"

When this directive is present, HTTP Server appends or precedes the information in the ldap.NTDomain
directive to the DN used when authenticating a user to the LDAP server.

ldap.ObjectClass
Module: mod_ibm_ldap

Syntax: ldap.ObjectClass objectclass

Default: ldap.ObjectClass eProperty

Context: directory, .htaccess

Override: AuthCfg

Origin: Apache

IBM HTTP Server for i 415

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule IBM_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.ObjectClass applicationProcess

The ldap.ObjectClass directive is used to publish configuration information to the LDAP server. The object
class is used as an entry to the LDAP server and describes the content and purpose of an object in the
LDAP directory tree. The configuration information may then be retrieved using the LDAPInclude directive.

Parameter: objectclass

• The objectclass parameter is the name of the object class to be used as the entry in the
LDAP directory. The object class used should have a binary file attribute value.

ldap.realm
Module: mod_ibm_ldap

Syntax: ldap.realm "label"

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.realm "HTTP Auth Server"

The ldap.realm directive is used to identify the LDAP configuration in error log messages. If a server uses
different LDAP servers or different LDAP base DNs for different directories, ldap.realm will identify this
particular LDAP configuration.

Parameter: label

• The label parameter can be a character string describing this LDAP configuration.

ldap.search.timeout
Module: mod_ibm_ldap

Syntax: ldap.search.timeout seconds

Default: ldap.search.timeout 10

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.search.timeout 30

The ldap.search.timeout directive supplies the maximum amount of time (in seconds) to wait for an LDAP
search request to complete. This prevents HTTP Server from waiting on a request to a slow LDAP server.

416 IBM i: IBM HTTP Server for i

Parameter: seconds

• The seconds parameter is the length of time, in seconds, for the server to wait for an LDAP
search request to complete.

ldap.transport
Module: mod_ibm_ldap

Syntax: ldap.transport transport

Default: ldap.transport TCP

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.transport SSL

The ldap.transport directive is used to specify the transport used to communicate with the LDAP server.
The LDAP server can communicate over either TCP/IP or SSL connections.

If ldap.transport is set to SSL, then the ldap.AppId directive must be set, or HTTP Server will be unable to
make the connection to the LDAP server.

Parameter: transport

• The transport parameter specifies the transport to be used for communication with the
LDAP server. Valid values are 'TCP' or 'SSL'.

ldap.url
Module: mod_ibm_ldap

Syntax: ldap.url ldap://hostname:port/baseDN

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.url ldap://www-6.ibm.com:1636/ou=Payroll,o=Company,c=US

The ldap.url directive tells HTTP Server the location of the LDAP server that is being used for
authentication or configuration. Hostname is the hostname of the LDAP server. The DNS name or the IP
address is used to identify the host where the LDAP server resides. The port is optional. If not specified,
port 389 will be assumed if using TCP/IP connections, and 636 will be used for SSL connections to the
LDAP server. The BaseDN provides the starting point for searches of the LDAP directory.

This directive is required when using LDAP for authentication or configuration.

The ldap.url directive will be used for all searches, unless a different value is provided with the
ldap.group.url directive. If an ldap.group.url directive is present, its value is used to search for groups.

IBM HTTP Server for i 417

Parameter One: hostname

• The hostname parameter is the DNS name or IP address of the host where the LDAP
server is located.

Parameter Two: port

• The port parameter is the port on which the LDAP server listens. It is optional. If not
present, and the transport is TCP, the well-known LDAP port 389 is assumed. If the
transport is SSL, the well-known LDAP SSL port 636 will be assumed.

Parameter Three: baseDN

• The baseDN parameter is the starting point for searches of the LDAP directory.

Note: The ldap.url value is case sensitive. For example, the following value is not valid: ldap.url
LdaP://www-5.ibm.com/o=deltawing,c= au. However, the following value is valid: ldap.url
ldap://www-5.ibm.com/o=deltawing,c= au.

ldap.user.authType
Module: mod_ibm_ldap

Syntax: ldap.user.authType authtype

Default: ldap.user.authType Basic

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.user.authType Basic

The ldap.user.authtype directive is used to specify the method used to authenticate the user requesting
an HTTP resource to the LDAP server. Basic is the only possible value. During basic authentication, the
user is prompted to enter a username and password.

Parameter: authtype

• The authtype parameter specifies the method used to authenticate the user requesting an
HTTP resource to the LDAP server. 'Basic' is the only valid value.

ldap.user.name.fieldSep
Module: mod_ibm_ldap

Syntax: ldap.user.name.fieldSep "separators"

Default: ldap.user.name.fieldSep " \t,"

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.user.name.fieldSep " \t,/"

418 IBM i: IBM HTTP Server for i

The ldap.user.name.fieldSep directive specifies the characters that are considered valid field separator
characters when parsing the user name into fields. The fields are then put into a filter and used on an
LDAP search request. For example, if '/' is the only valid field separator, and the user entered "Joe Smith/
Acme", then the first field is set to "Joe Smith" and the second field is set to "Acme".

Parameter: separators

• The separators parameter is the valid separator characters used to delimit fields.

If multiple occurrences of this directive are configured in a container, only the last occurrence is
processed. All other occurrences are ignored.

ldap.user.name.filter
Module: mod_ibm_ldap

Syntax: ldap.user.name.filter filter

Default: ldap.user.name.filter(&(objectclass=person)(|(cn=%v1 %v2)(uid=%v1)))

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.user.name.filter (&(objectclass=person)(uid=%v1))

The ldap.user.name.filter directive specifies the filter that is used to convert, via an LDAP search
request, a user name to a unique DN. The DN is then used to authenticate the user making the HTTP
request. The default value is "(&(objectclass=person)(|(cn=%v1 %v2)(uid=%v1))", where %v1 and %v2
are substitution variables for the words the user entered at the browser.

This directive is used when ldap.user.authType is Basic.

Parameter: filter

• The filter parameter is a valid LDAP search filter that will return a unique DN for a given
user name.

ldap.version
Module: mod_ibm_ldap

Syntax: ldap.version version

Default: ldap.version 3

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.version 2

The ldap.version directive is used to specify the version of LDAP to use to communicate with the LDAP
server. The default version used by HTTP Server is version 3. If your LDAP server is not at version 3, use
this directive to set it to 2.

IBM HTTP Server for i 419

Parameter: version

• The version parameter specifies the version of the LDAP to be used. Valid versions are '2'
or '3'.

ldap.waitToRetryConnection.interval
Module: mod_ibm_ldap

Syntax: ldap.waitToRetryConnection.interval seconds

Default: ldap.waitToRetryConnection.interval 30

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: ldap.waitToRetryConnection.interval 60

If an LDAP server is down, HTTP Server may have degraded performance because it will be continually
trying to connect. The ldap.waitToRetryConnection.interval directive gives the length of time (in seconds)
to wait between failed attempts to connect to the LDAP server.

Parameter: seconds

• The seconds parameter is the length of time, in seconds, for the server to wait between
attempts to connect to the LDAP server.

LDAPConfigFile
Module: mod_ibm_ldap

Syntax: LDAPConfigFile filename

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: LDAPConfigFile /QIBM/UserData/HTTPA/ldap/ldapSvr1.conf

The LDAPConfigFile directive provides a filename that contains the LDAP directives necessary to access
an LDAP server. It allows the LDAP directives to be grouped into a file so they may easily be referenced in
any container in HTTP Server configuration file by using the LDAPConfigFile directive. An example file can
be found in /QIBM/ProdData/HTTPA/conf/ldap.prop

All LDAP directives except LDAPRequire may be put into the file.

Parameter: filename

• The filename parameter is the filename that contains other LDAP directives.

LDAPRequire
Module: mod_ibm_ldap

420 IBM i: IBM HTTP Server for i

Syntax: LDAPRequire type [groupname | filter]

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVLDAP.SRVPGM

Example: LDAPRequire filter (&(objectclass=person)(ou=Payroll)(cn=*))

The LDAPRequire directive is used to restrict access to a resource controlled by LDAP authentication to
members of a group. It can either use groups defined in LDAP by using the "group" parameter, or it can
use an LDAP filter to assemble a group of users with a similar quality.

The LDAPRequire directive may not be put into an LDAP configuration file, it must be in the server
configuration file. For LDAP, this can be used instead of the GroupFile directive. For more information, see
the“GroupFile” on page 233 directive.

Parameter One: type

• Valid values for the type parameter include 'group' or 'filter'.
• Group should be used for LDAP group entries.
• Filter should be used when grouping users by other qualities.

Parameter Two: groupname | filter

• The groupname parameter is the name of a group as defined in the LDAP directory.
• The filter parameter is a valid filter that may be used to determine if a user meets
qualifications to be authenticated.

LDAPReferrals
Module: mod_ibm_ldap

Syntax: LDAPReferralsOn|Off|default

Default: LDAPReferrals On

Context: Directory, .htaccess

Override: AuthCfg

Origin: iSeries

Example: LDAPReferrals off

The LDAPReferrals directive enables/disables referral chasing during queries to the LDAP server. Some
LDAP servers divide their directory among multiple domains and use referrals to direct a client when a
domain boundary is crossed. This is similar to a HTTP redirect. LDAP client libraries may or may not chase
referrals by default.

LDAPReferrals takes the following values:

• "on" When set to "on", the referral chasing state is enabled, LDAPReferralHopLimit is used to
override the hop limit, and an LDAP rebind callback is registered.

• "off" When set to "off", the referral chasing state is disabled completely.
• "default" When set to "default", the referral chasing state is not changed, LDAPReferralHopLimit is

not used to override the hop limit.

IBM HTTP Server for i 421

The directive LDAPReferralHopLimit works in conjunction with this directive to limit the number of referral
hops to follow before terminating the LDAP query. When referral processing is enabled by a value of "On",
client credentials will be provided, via a rebind callback, for any LDAP server requiring them.

LDAPReferralHopLimit
Module: mod_ibm_ldap

Syntax: LDAPReferralHopLimitnumber

Default: LDAPReferralHopLimit 10

Context: Directory, .htaccess

Override: AuthCfg

Origin: iSeries

Example: LDAPReferralHopLimit 5

The LDAPReferralHopLimit directive specifies the maximum number of referral hops to chase before
terminating an LDAP query. This directive, if enabled by the LDAPReferrals directive, limits the number of
referral hops that are followed before terminating an LDAP query.

The default value is 10. An LDAPReferralHopLimit value of 0 can result in infinite referral hop loops. So
the minimum value of LDAPReferralHopLimit is 1. We recommend using a value between 1 and 10. A large
number of referrals may indicate an LDAP server configuration issue and may affect server performance.

Module mod_log_forensic
Module mod_log_forensic supports directives for the IBM HTTP Server for i Web server.

Summary

The mod_log_forensic module provides for forensic logging of client requests. Logging is done before and
after processing a request, so the forensic log contains two log lines for each request. The forensic logger
is very strict, which means:

• The format is fixed. You cannot modify the logging format at runtime.
• If it cannot write its data, the child process exits immediately.

Forensic Log Format

Each request is logged two times. The first time is before it's processed further (that is, after receiving
the headers). The second log entry is written after the request processing at the same time where normal
logging occurs.

In order to identify each request, a unique request ID is assigned. This forensic ID can be cross logged
in the normal transfer log using the %{forensic-id}n format string. If you're using mod_unique_id, its
generated ID will be used.

The first line logs the forensic ID, the request line and all received headers, separated by pipe characters
(|). A sample line looks like the following (all on one line):

+yQtJf8CoAB4AAFNXBIEAAAAA|GET /manual/de/images/down.gif HTTP/1.1|
Host:localhost%3a8080|User-Agent:Mozilla/5.0 (X11; U; Linux i686; en-US;
rv%3a1.6) Gecko/20040216 Firefox/0.8|Accept:image/png, etc...

The plus character at the beginning indicates that this is the first log line of this request. The second line
just contains a minus character and the ID again:

-yQtJf8CoAB4AAFNXBIEAAAAA

Note: The log files may contain sensitive data such as the contents of Authorization: headers (which can
contain passwords), so they should not be readable by anyone except the user that starts the server.

422 IBM i: IBM HTTP Server for i

Directives

• “ForensicLog” on page 423

ForensicLog
Module: core

Syntax: ForensicLog filename|pipe

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: ForensicLog logs/forensic_log

Example: ForensicLog | /QSYS.LIB/MYLIB.LIB/FORENSICPIPE.PGM

The ForensicLog directive is used to log requests to the server for forensic analysis. Each log entry is
assigned a unique ID which can be associated with the request using the normal “CustomLog” on page
482 directive.mod_log_forensic creates a token called forensic-id, which can be added to the transfer log
using the %{forensic-id}n format string.

Parameter: filename|pipe

• A filename relative to the ServerRoot
• The pipe character "|", followed by the path to a program to receive the log information on its

standard input.

Note: data written to the pipe from the server will be in the FSCCSID that is in use by the server. The
program must be specified in the form "/QSYS.LIB/xxx.LIB/xxx.PGM".

Module mod_ibm_si
Module mod_ibm_si supports directives for the IBM HTTP Server for i Web server.

Summary

This module enables the association of WebSphere Application Server instances to an HTTP Server Web
server, which allows users to start and stop application servers by starting and stopping the associated
Web server.

Directives

• “AppServer” on page 423
• “WASInstance” on page 424

AppServer
Module: mod_ibm_si

Syntax: AppServer serverName startOption endOption

Default: none

Context: server config

Override: none

Origin: IBM

Usage Considerations: The server must be restarted prior to using the directive. A LoadModule is
required in the configuration file prior to using the directive. The statement should be as follows:
LoadModule mod_ibm_si /QSYS.LIB/QHTTPSVR.LIB/QZISI.SRVPGM.

IBM HTTP Server for i 423

Examples:

• AppServer *ALL start end
• AppServer server1 start end
• AppServer server1 nostart noend

The AppServer directive instructs the load module how to handle the WebSphere application servers
associated with the WebSphere application server profile when the HTTP server is started and ended.
More than one directive is allowed, where each directive is used to specify an application server contained
in the WebSphere Application Server profile. If multiple AppServer directives is specified that contain
the same server name, the last one is the directive that is used.

Note: This directive is only effective if directive “WASInstance” on page 424 is specified in the HTTP
configuration file.

Parameter: serverName
The serverName parameter value specifies the WebSphere application server name for which the
AppServer directive applies . A special value of *ALL indicates all servers associated with the
WebSphere profile specified on the WASInstance directive.

Parameter: startOption
The startOption parameter value specifies whether or not to start the WebSphere application server(s)
for the profile specified on the WASInstance directive when the associated Web server is started.
Valid values include:

• start - WebSphere application server(s) are started when the associated Web server is started.
• nostart - WebSphere application server(s) are not started when the associated Web server is

started.

Parameter: endOption
The endOption parameter value specifies whether or not to end the WebSphere application server(s)
for the profile specified on the WASInstance directive when the associated Web server is ended.
Valid values include:

• end - WebSphere application server(s) are ended when the associated Web server is ended.
• noend - WebSphere application server(s) are not ended when the associated Web server is ended.

WASInstance
Module: mod_ibm_si

Syntax: WASInstance profilePath productID productOption

Default: none

Context: server config

Override: none

Origin: IBM

Usage Considerations: The server must be restarted prior to using the directive. A LoadModule is
required in the configuration file prior to using the directive. The statement should be as follows:
LoadModule mod_ibm_si /QSYS.LIB/QHTTPSVR.LIB/QZISI.SRVPGM.

Example: WASInstance /QIBM/UserData/WebSphere/AppServer/V61/Base/profiles/
default 5733W61 2

The WASInstance directive specifies the WebSphere application profile that is associated with the HTTP
server. The WASInstance directive must be specified in order to specify the “AppServer” on page 423
directive.

424 IBM i: IBM HTTP Server for i

Parameter: profilePath
The profilePath parameter is the path to a WebSphere application server profile.

Parameter: productID
The ProductID parameter is a WebSphere Application Server licensed program identifier that is
associated with the specified profilePath.

Parameter: productOption
The productOption parameter is a number associated with the part of the productID that contains the
profilePath.

Module mod_ibm_ssl
Module mod_ibm_ssl supports directives for the IBM HTTP Server for i Web server.

Configuration details

The module mod_ibm_ssl directives provide the server with information on the extent of the SSL
authentication required for access to the server by the client. When configuring the server for SSL, it
is best to use virtual hosts if the server is to be both SSL and non-SSL. The default behavior for SSL is
SSLDisable, which causes the server to not do any SSL processing for each server or virtual host which
does not specify SSLEnable. If SSL processing is required, then a SSL Virtual Host should be set up to
handle this. The SSL port should be specified on the <Virtual Host> directive, with the SSLEnable and
SSLAppName located inside the virtual host container. Each resource for which SSL processing is desired
should be located inside the SSL virtual host container. This prevents the resource from being accessed
through a non-SSL port and served when SSL is not used. If the resource is located outside the SSL
virtual host container, and is located in the main server, it is still possible to access the resource through
SSL. Any SSL directives are handled if the resource is requested on a SSL port, but the SSL directives,
with the exception of the SSLRequireSSL directive, are ignored if the resource is requested on a non-SSL
port. Unless the resource is configured to handle both SSL authentication and non-SSL authentication, the
results in this case may not be what is desired. If a resource must be accessed only through a SSL port the
SSLRequireSSL directive can be placed in the resource container, and any request for that resource that is
received from a non_SSL port is rejected.

When configuring a resource for SSL authentication, the behavior of other directives affects how the SSL
directives behave. The primary concerns are when SSLAuthType is configured. There are other directives
that need to be set in order for SSL to behave as expected. If SSLAuthType Cert is specified, this tells the
server to check for a certificate, and authenticate the user based on the information in that certificate.
This should be the only authentication necessary for this resource. In order to ensure this, AuthType SSL
and Satisfy Any needs to be configured in the resource container. This results in the desired behavior.

When configuring a resource for SSLAuthType CertOrBasic, this tells the server to check for a certificate
and authenticate the user based on the information in that certificate. If this authentication fails, then
the server authenticates the user based on any other type of authentication that is configured for that
resource. In most cases, this is Basic authentication, which requests a user ID and password from the
client, and the user is authenticated based on this information received from the client, but may also
be LDAP authentication if indicated in the configuration of that resource. In order for the SSLAuthType
CertOrBasic to function properly, Satisfy Any, AuthType Basic, and Require needs to be configured in the
resource container.

If there are CGI programs that will be using SSL, the environment variable HTTPS_PORT must be set in
the configuration file. The SetEnv HTTPS_PORT port-number directive is used for this.

Directives SSLCipherSpec and SSLProxyCipherSpec has been enhanced to add a new syntax which is
more flexible for user to specify SSL protocol and it's related ciphers specification. For example:

 SSLCipherSpec ALL +TLS_RSA_WITH_AES_256_CBC_SHA

Online Certificate Status Protocol(OCSP) provides applications a way to determine the revocation status
for a digital certificate. Certificate revocation status that is checked via OCSP provides more up-to-date
status information than is available through CRLs. OCSP support has been added to HTTP server via two
new SSLOCSPResponderURL and SSLOCSPEnable directives.

IBM HTTP Server for i 425

Server Name Indication(SNI) is an extension to the SSL and TLS protocols that indicates what hostname
the client is attempting to connect to at the start of the handshaking process. This allows a server to
present multiple certificates on the same IP address and port number and hence allows multiple secure
(HTTPS) websites to be served off the same IP address without requiring all those sites to use the same
certificate. It is the conceptual equivalent to HTTP/1.1 virtual hosting for HTTPS.

SNI support has been added to HTTP server and with SNI, user can have many virtual hosts sharing
the same IP address and port, and each one can have its own unique certificate (and the rest of the
configuration). If the browser also supports SNI, then the hostname is included in the original SSL
request, and the web server can select the correct SSL virtual host. Specify both SSLServerCert and
ServerName directives in each name based virtual hosts to have the support.

Directives

• “SSLAppName” on page 427
• “SSLAuthType” on page 427
• “SSLCacheDisable” on page 428
• “SSLCacheEnable” on page 429
• “SSLCipherBan” on page 429
• “SSLCipherRequire” on page 435
• “SSLCipherSpec” on page 442
• “SSLClientAuth” on page 448
• “SSLClientAuthGroup” on page 449
• “SSLClientAuthRequire” on page 451
• “SSLClientAuthVerify” on page 452
• “SSLClientCertDisable” on page 453
• “SSLClientCertEnable” on page 453
• “SSLDenySSL” on page 454
• “SSLDisable” on page 454
• “SSLEnable” on page 455
• “SSLEngine” on page 455
• “SSLHandshakeTimeout” on page 456
• “SSLFallbackProtection” on page 456
• “SSLOCSPResponderURL” on page 457
• “SSLOCSPEnable” on page 458
• “SSLProtocolDisable” on page 465
• “SSLProxyProtocolDisable” on page 466
• “SSLProxyAppName” on page 457
• “SSLProxyCipherSpec” on page 458
• “SSLProxyEngine” on page 466
• “SSLProxyVerify” on page 467
• “SSLProxyVersion” on page 467
• “SSLRenegotiation” on page 469
• “SSLRequireSSL” on page 468
• “SSLServerCert” on page 469
• “SSLUpgrade” on page 470
• “SSLUnknownRevocationStatus” on page 471
• “SSLVersion” on page 472

426 IBM i: IBM HTTP Server for i

• “SSLV2Timeout” on page 472
• “SSLV3Timeout” on page 473

SSLAppName
Module: mod_ibm_ssl

Syntax: SSLAppName server_application_name

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLAppName QIBM_HTTP_SERVER_APACHE

The SSLAppName directive is used for the following reasons:

• unique label to identify the server as an application that intends to use SSL
• to keep track of the registered name used by the server
• to identify the server when association of a server certificate with a secure application is done in the

Digital Certificate Manager (DCM)
• to identify the server to the SSL API's so that the SSL API's can use the certificate that is associated with

the server

This registration of the secure application and the creation of the SSLAppName is done automatically
when the system administrator enables SSL for the server using the IBM Web Administration for i
interface. The association of a server certificate with the application is accomplished by the system
administrator using DCM. After a secure application is registered, and before attempting to start the
server with SSL enabled, the user must use DCM to assign a server certificate to the corresponding secure
application. Since this directive is valid at the virtual host level, the server may have more than one
certificate assigned, with each virtual host having a different application name. The specified value on this
directive is the name of the application that the server or virtual host is known as. If the server certificate
association for the application name is not configured through DCM, then the SSL connection cannot be
initialized and the server will not start.

Note:

Please leave the SSL fields to the default if creating an application ID via DCM for Apache Server as those
settings override the same settings used by Apache server directives in the HTTP Server configuration file.

There is a configured limit of 64 secure application environments (SSLAppName's) that can be active at
once. To increase this limit contact customer support.

Parameter: server_application_name

• The server_application_name parameter value specifies the name of the application that
the server or virtual host.

SSLAuthType
Module: mod_ibm_ssl

Syntax: SSLAuthType option

Default: none

Context: directory, .htaccess

IBM HTTP Server for i 427

Override: AuthConfig

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLAuthType cert

The SSLAuthType directive is used to specify the type certificate validation/authentication required for
access to a directory. This option is used to ensure that a certificate received from the client is associated
with a user ID or an Internet User validation list. If this is not the case, the client may be prompted for the
user ID.

Parameter: option

• The option parameter value can be one of the following:
Cert

This option indicates to the server that the certificate received from the client must
be in an Internet User list or be associated with an IBM i user ID convention. Note : If
SSLAuthType Cert is specified, then AuthType should be set to SSL.

CertOrBasic
This option indicates to the server that the certificate, if there is one, that is received
from the client may be associated with a user ID or may be in an Internet User
validation list. If it is not, then the client is authenticated based on the value of HTTP
Server AuthType directive. In order to simulate HTTP Server (original) behavior of
AuthType CertOrBasic , HTTP Server AuthType directive must be Basic. This will cause
the client to be prompted for a user ID and password, and this provided user ID and
password will then be used to access the directory/file. If SSLAuthType CertOrBasic is
used, then AuthType should be set to Basic.

The certificate does not need to be valid. This directive only refers to the existence of a certificate. If the
certificate must be valid, then the SSLClientCertEnable directive must also be specified.

There are no default values for this directive. If the directive is not used, then if a certificate is present,
association with a user ID or Internet User validation list is not checked. This directive's scope is the
directory level. This directive is only to be specified once for a directory. Any subsequent uses of this
directive override any previously specified values.

This directive may be used in conjunction with the SSLClientCertEnable directive. This will cause
very specific behavior to occur, depending on the value specified on the SSLAuthType directive. If
the SSLClientCert directive is used in addition to SSLAuthType Cert, the certificate received from the
client must be valid, as well as associated with a user ID or in an Internet User validation list. If the
SSLClientCert directive is used in addition to SSLAuthType CertOrBasic, a certificate must be received
from the client, but does not need to be associated with a user ID or in an Internet User validation list.
If the association is not present, the client will be authenticated based on the protection setup (basic or
ldap).

This directive also interacts with the PasswdFile directive. This directive is used to help determine the
type of certificate authentication to be used. If the PasswdFile directive is set to %%SYSTEM%%,
then the certificate received from the client must be associated with an IBM i user profile in order for
it the client to be authenticated. If the PasswdFile directive is set to an internet user list, then the
certificate received must be in the internet user list in order for the client to be authenticated. Again, this
authentication is only required if the Cert option is selected on the SSLAuthType directive. Otherwise it is
only optional.

SSLCacheDisable
Module: mod_ibm_ssl

428 IBM i: IBM HTTP Server for i

Syntax: SSLCacheDisable

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLCacheDisable

The SSLCacheDisable directive will cause SSL session ID caching to be disabled. The effect of this
directive will depend on the location of the directive. If the directive is located in the configuration file
for the main server, SSL session ID caching will not be done for the server. If the directive is located in a
<Virtual Host> container, then SSL session ID caching will not be done for the virtual host. The directive
located at the server level can be overridden for a particular virtual host using the SSLCacheEnable
directive. Directives SSLV2Timeout and SSLV3Timeout will be ignored when SSLCacheDisable is set.

Note: This directive does not contain parameters.

SSLCacheEnable
Module: mod_ibm_ssl

Syntax: SSLCacheEnable

Default: SSLCacheEnable

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLCacheEnable

The SSLCacheEnable directive will cause SSL session ID caching to be enabled. The effect of this directive
will depend on the location of the directive. If the directive is located in the configuration file for the main
server, SSL session ID caching will be done for the server. If the directive is located in a <Virtual Host>
container, then SSL session ID caching will be done for the virtual host. The directive located at the server
level can be overridden for a particular virtual host using the SSLCacheDisable directive. A abbreviated
handshake will be done whenever a handshake is necessary. Directives SSLV2Timeout and SSLV3Timeout
will be ignored.

Note: This directive does not contain parameters.

SSLCipherBan
Module: mod_ibm_ssl

Syntax: SSLCipherBan string

Default: none

Context: directory, .htaccess

Override: AuthConfig

IBM HTTP Server for i 429

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLCipherBan 3A

Example: TLS_RSA_WITH_3DES_EDE_CBC_SHA

The SSLCipherBan directive allows for banning access to a directory based on the cipher that is negotiated
during the SSL handshake. A set of ciphers can either be defaulted or specified using the SSLCipherSpec
directive. The cipher list then can be shortened for a specific directory. This directive will enforce a greater
level of security through the use of cipher specs.

The SSLCipherBan directive will directly interact with the SSLCipherRequire directive. If a negotiated
cipher is listed on the ban list, then the request will be rejected, even if the cipher is also on the require
list.

Parameter: string

• The string parameter value specifies the cipher to be used. Either the short name or the
long name in the table below may be specified.

Table 19.

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0x01 31 0 TLS_RSA_
WITH_NUL
L_MD5 (*)

X X X X

0x02 32 0 TLS_RSA_
WITH_NUL
L_SHA (*)

X X X X

0x03 33 40 TLS_RSA_
WITH_NUL
L_SHA (*)

X X

0x04 34 128 TLS_RSA_
WITH_RC4
_128_MD5
(*)

X X X X

0x05 35 128 TLS_RSA_
WITH_RC4
_128_SHA
(*)

X X X X

0x06 36 40 TLS_RSA_E
XPORT_WI
TH_RC2_C
BC_40_MD
5 (*)

X X

0x09 39 56 TLS_RSA_
WITH_DES
_CBC_SHA
(*)

X X X X

430 IBM i: IBM HTTP Server for i

Table 19. (continued)

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0x0A 3A 168 TLS_RSA_
WITH_3DE
S_EDE_CB
C_SHA (*)

X X X

0x2F X2F 128 TLS_RSA_
WITH_AES
_128_CBC
_SHA

X X X

0x35 X35 256 TLS_RSA_
WITH_AES
_256_CBC
_SHA

X X X

0x3B X3B　 0 TLS_RSA_
WITH_NUL
L_SHA256

X

0x3C X3C 128 TLS_RSA_
WITH_AES
_128_CBC
_SHA256

X

0x3D X3D　 256 TLS_RSA_
WITH_AES
_256_CBC
_SHA256

X

0x9C X9C 128 TLS_RSA_
WITH_AES
_128_GCM
_SHA256

X

0x9D X9D 256 TLS_RSA_
WITH_AES
_256_GCM
_SHA384

X

0xC006 N/A 0 TLS_ECDH
E_ECDSA_
WITH_NUL
L_SHA

X

0xC007 N/A 128 TLS_ECDH
E_ECDSA_
WITH_RC4
_128_SHA

X

0xC008 N/A 168 TLS_ECDH
E_ECDSA_
WITH_3DE
S_EDE_CB
C_SHA

X

IBM HTTP Server for i 431

Table 19. (continued)

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0xC010 N/A 0 TLS_ECDH
E_RSA_WI
TH_NULL_
SHA

X

0xC011 N/A 128 TLS_ECDH
E_RSA_WI
TH_RC4_1
28_SHA

X

0xC012 N/A 168 TLS_ECDH
E_RSA_WI
TH_3DES_
EDE_CBC_
SHA

X

0xC023 N/A 128 TLS_ECDH
E_ECDSA_
WITH_AES
_128_CBC
_SHA256

X

0xC024 N/A 256 TLS_ECDH
E_ECDSA_
WITH_AES
_256_CBC
_SHA384

X

0xC027 N/A 128 TLS_ECDH
E_RSA_WI
TH_AES_1
28_CBC_S
HA256

X

0xC028 N/A 256 TLS_ECDH
E_RSA_WI
TH_AES_2
56_CBC_S
HA384

X

0xC02B N/A 128 TLS_ECDH
E_ECDSA_
WITH_AES
_128_GCM
_SHA256

X

0xC02C N/A 256 TLS_ECDH
E_ECDSA_
WITH_AES
_256_GCM
_SHA384

X

0xC02F N/A 128 TLS_ECDH
E_RSA_WI
TH_AES_1
28_GCM_S
HA256

X

432 IBM i: IBM HTTP Server for i

Table 19. (continued)

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0xC030 N/A 256 TLS_ECDH
E_RSA_WI
TH_AES_2
56_GCM_S
HA384

X

Note: (*) indicates the long name can also be named by starting with "SSL_" in order to be compatible
with older releases.

Version 3 Ciphers:

Table 20.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 /
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

Note: SSLV3 is disabled by default on i 7.2

TLS 1.0 Ciphers:

Table 21.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

IBM HTTP Server for i 433

Table 21. (continued)

Long Name Short name

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 /
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.1 Ciphers:

Table 22.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.2 Ciphers:

Table 23.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

434 IBM i: IBM HTTP Server for i

Table 23. (continued)

Long Name Short name

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS_RSA_WITH_NULL_SHA256 X3B

TLS_RSA_WITH_AES_128_CBC_SHA256 X3C

TLS_RSA_WITH_AES_256_CBC_SHA256 X3D

TLS_RSA_WITH_AES_128_GCM_SHA256 X9C

TLS_RSA_WITH_AES_256_GCM_SHA384 X9D

TLS_ECDHE_ECDSA_WITH_NULL_SHA N/A

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA N/A

TLS_ECDHE_RSA_WITH_NULL_SHA N/A

TLS_ECDHE_RSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA N/A

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA25
6

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA38
4

N/A

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 N/A

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 N/A

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2
56

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA3
84

N/A

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 N/A

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 N/A

SSLCipherRequire
Module: mod_ibm_ssl

Syntax: SSLCipherRequire string

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLCipherRequire "3A"

IBM HTTP Server for i 435

Example: SSLCipherRequire TLS_RSA_WITH_3DES_EDE_CBC_SHA

The SSLCipherRequire directive allows for the user to require that certain ciphers to be negotiated with
the client during the SSL handshake. Specifying that a subset of ciphers are required will force a greater
level of security for a particular directory which may not be required for all directories. The ciphers listed
here may or may not be listed using the SSLCipherSpec directive.

Parameter: string

• The string parameter value specifies the cipher to be used. Either the short name or the
long name in the table below may be specified.

Table 24.

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0x01 31 0 TLS_RSA
WITH
NULL_M
D5 (*)

X X X X

0x02 32 0 TLS_RSA
WITH
NULL_SH
A (*)

X X X X

0x03 33 40 TLS_RSA
WITH
NULL_SH
A (*)

X X

0x04 34 128 TLS_RSA
_WITH_R
C4_128_
MD5 (*)

X X X X

0x05 35 128 TLS_RSA
_WITH_R
C4_128_
SHA (*)

X X X X

0x06 36 40 TLS_RSA
_EXPORT
_WITH_R
C2_CBC_
40_MD5
(*)

X X

0x09 39 56 TLS_RSA
_WITH_D
ES_CBC_
SHA (*)

X X X X

0x0A 3A 168 TLS_RSA
_WITH_3
DES_EDE
_CBC_SH
A (*)

X X X

436 IBM i: IBM HTTP Server for i

Table 24. (continued)

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0x2F X2F 128 TLS_RSA
_WITH_A
ES_128_
CBC_SHA

X X X

0x35 X35 256 TLS_RSA
_WITH_A
ES_256_
CBC_SHA

X X X

0x3B X3B　 0 TLS_RSA
WITH
NULL_SH
A256

X

0x3C X3C 128 TLS_RSA
_WITH_A
ES_128_
CBC_SHA
256

X

0x3D X3D　 256 TLS_RSA
_WITH_A
ES_256_
CBC_SHA
256

X

0x9C X9C 128 TLS_RSA
_WITH_A
ES_128_
GCM_SH
A256

X

0x9D X9D 256 TLS_RSA
_WITH_A
ES_256_
GCM_SH
A384

X

0xC006 N/A 0 TLS_ECD
HE_ECDS
A_WITH_
NULL_SH
A

X

0xC007 N/A 128 TLS_ECD
HE_ECDS
A_WITH_
RC4_128
_SHA

X

0xC008 N/A 168 TLS_ECD
HE_ECDS
A_WITH_
3DES_ED
E_CBC_S
HA

X

IBM HTTP Server for i 437

Table 24. (continued)

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0xC010 N/A 0 TLS_ECD
HE_RSA_
WITH_N
ULL_SHA

X

0xC011 N/A 128 TLS_ECD
HE_RSA_
WITH_R
C4_128_
SHA

X

0xC012 N/A 168 TLS_ECD
HE_RSA_
WITH_3
DES_EDE
_CBC_SH
A

X

0xC023 N/A 128 TLS_ECD
HE_ECDS
A_WITH_
AES_128
_CBC_SH
A256

X

0xC024 N/A 256 TLS_ECD
HE_ECDS
A_WITH_
AES_256
_CBC_SH
A384

X

0xC027 N/A 128 TLS_ECD
HE_RSA_
WITH_A
ES_128_
CBC_SHA
256

X

0xC028 N/A 256 TLS_ECD
HE_RSA_
WITH_A
ES_256_
CBC_SHA
384

X

0xC02B N/A 128 TLS_ECD
HE_ECDS
A_WITH_
AES_128
_GCM_S
HA256

X

438 IBM i: IBM HTTP Server for i

Table 24. (continued)

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0xC02C N/A 256 TLS_ECD
HE_ECDS
A_WITH_
AES_256
_GCM_S
HA384

X

0xC02F N/A 128 TLS_ECD
HE_RSA_
WITH_A
ES_128_
GCM_SH
A256

X

0xC030 N/A 256 TLS_ECD
HE_RSA_
WITH_A
ES_256_
GCM_SH
A384

X

Note: (*) indicates the long name can also be named by starting with "SSL_" in order to be
compatible with older releases.

Version 3 Ciphers:

Table 25.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_M
D5 /
TLS_RSA_EXPORT_WITH_RC2_CBC_40_M
D5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

Note: SSLV3 is disabled by default on i 7.2

TLS 1.0 Ciphers:

IBM HTTP Server for i 439

Table 26.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_M
D5 /
TLS_RSA_EXPORT_WITH_RC2_CBC_40_M
D5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.1 Ciphers:

Table 27.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.2 Ciphers:

440 IBM i: IBM HTTP Server for i

Table 28.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS_RSA_WITH_NULL_SHA256 X3B

TLS_RSA_WITH_AES_128_CBC_SHA256 X3C

TLS_RSA_WITH_AES_256_CBC_SHA256 X3D

TLS_RSA_WITH_AES_128_GCM_SHA256 X9C

TLS_RSA_WITH_AES_256_GCM_SHA384 X9D

TLS_ECDHE_ECDSA_WITH_NULL_SHA N/A

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CB
C_SHA

N/A

TLS_ECDHE_RSA_WITH_NULL_SHA N/A

TLS_ECDHE_RSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_
SHA

N/A

TLS_ECDHE_ECDSA_WITH_AES_128_CBC
_SHA256

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_CBC
_SHA384

N/A

TLS_ECDHE_RSA_WITH_AES_128_CBC_S
HA256

N/A

TLS_ECDHE_RSA_WITH_AES_256_CBC_S
HA384

N/A

TLS_ECDHE_ECDSA_WITH_AES_128_GCM
_SHA256

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_GCM
_SHA384

N/A

TLS_ECDHE_RSA_WITH_AES_128_GCM_S
HA256

N/A

IBM HTTP Server for i 441

Table 28. (continued)

Long Name Short name

TLS_ECDHE_RSA_WITH_AES_256_GCM_S
HA384

N/A

SSLCipherSpec
Module: mod_ibm_ssl

Syntax: SSLCipherSpec cipher, [protocol_name] [+|-]cipher [[+|-]cipher...]

Default: none

Context: server, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example:

SSLCipherSpec "3A"

SSLCipherSpec SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSLCipherSpec 3A

SSLCipherSpec "SSL_RSA_WITH_3DES_EDE_CBC_SHA"

SSLCipherSpec ALL +SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSLCipherSpec ALL -SSL_RSA_WITH_RC4_128_MD5

The SSLCipherSpec directive allows for specifying a cipher spec to be used for the SSL connection. Each
occurrence of this directive will add the associated cipher spec to that context's existing cipher suite list.
The cipher spec is used on the SSL handshake, which then uses the cipher suite list to negotiate the
cipher used for communications between the server and the client.

There are two syntaxes can be used for this directive:

• SSLCipherSpec cipher.

For the single-argument form, the given cipher is enabled in all protocols for which it is valid.
• SSLCipherSpec [protocol_name] [+|-]cipher [[+|-]cipher...].

For the multiple-argument form, specifying the name of an SSL protocol (SSLv2, SSLv3, TLSv10, TLSv11,
TLSv12, ALL) as the first argument, the directive can add or remove the specific cipher from the SSL
protocol cipher suite list.

The following cipher specs are allowed for this directive. Either the short name or the long name may be
specified.

Table 29.

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0x01 31 0 TLS_RSA_
WITH_NUL
L_MD5 (*)

X X X X

442 IBM i: IBM HTTP Server for i

Table 29. (continued)

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0x02 32 0 TLS_RSA_
WITH_NUL
L_SHA (*)

X X X X

0x03 33 40 TLS_RSA_
WITH_NUL
L_SHA (*)

X X

0x04 34 128 TLS_RSA_
WITH_RC4
_128_MD5
(*)

X X X X

0x05 35 128 TLS_RSA_
WITH_RC4
_128_SHA
(*)

X X X X

0x06 36 40 TLS_RSA_E
XPORT_WI
TH_RC2_C
BC_40_MD
5 (*)

X X

0x09 39 56 TLS_RSA_
WITH_DES
_CBC_SHA
(*)

X X X X

0x0A 3A 168 TLS_RSA_
WITH_3DE
S_EDE_CB
C_SHA (*)

X X X

0x2F X2F 128 TLS_RSA_
WITH_AES
_128_CBC
_SHA

X X X

0x35 X35 256 TLS_RSA_
WITH_AES
_256_CBC
_SHA

X X X

0x3B X3B　 0 TLS_RSA_
WITH_NUL
L_SHA256

X

0x3C X3C 128 TLS_RSA_
WITH_AES
_128_CBC
_SHA256

X

0x3D X3D　 256 TLS_RSA_
WITH_AES
_256_CBC
_SHA256

X

IBM HTTP Server for i 443

Table 29. (continued)

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0x9C X9C 128 TLS_RSA_
WITH_AES
_128_GCM
_SHA256

X

0x9D X9D 256 TLS_RSA_
WITH_AES
_256_GCM
_SHA384

X

0xC006 N/A 0 TLS_ECDH
E_ECDSA_
WITH_NUL
L_SHA

X

0xC007 N/A 128 TLS_ECDH
E_ECDSA_
WITH_RC4
_128_SHA

X

0xC008 N/A 168 TLS_ECDH
E_ECDSA_
WITH_3DE
S_EDE_CB
C_SHA

X

0xC010 N/A 0 TLS_ECDH
E_RSA_WI
TH_NULL_
SHA

X

0xC011 N/A 128 TLS_ECDH
E_RSA_WI
TH_RC4_1
28_SHA

X

0xC012 N/A 168 TLS_ECDH
E_RSA_WI
TH_3DES_
EDE_CBC_
SHA

X

0xC023 N/A 128 TLS_ECDH
E_ECDSA_
WITH_AES
_128_CBC
_SHA256

X

0xC024 N/A 256 TLS_ECDH
E_ECDSA_
WITH_AES
_256_CBC
_SHA384

X

444 IBM i: IBM HTTP Server for i

Table 29. (continued)

HEX
Short
Name Key Size Long Name SSLv3 TLSv10 TLSv11 TLSv12

0xC027 N/A 128 TLS_ECDH
E_RSA_WI
TH_AES_1
28_CBC_S
HA256

X

0xC028 N/A 256 TLS_ECDH
E_RSA_WI
TH_AES_2
56_CBC_S
HA384

X

0xC02B N/A 128 TLS_ECDH
E_ECDSA_
WITH_AES
_128_GCM
_SHA256

X

0xC02C N/A 256 TLS_ECDH
E_ECDSA_
WITH_AES
_256_GCM
_SHA384

X

0xC02F N/A 128 TLS_ECDH
E_RSA_WI
TH_AES_1
28_GCM_S
HA256

X

0xC030 N/A 256 TLS_ECDH
E_RSA_WI
TH_AES_2
56_GCM_S
HA384

X

Note: (*) indicates the long name can also be named by starting with "SSL_" in order to be compatible
with older releases.

Version 3 Ciphers:

Table 30.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

IBM HTTP Server for i 445

Table 30. (continued)

Long Name Short name

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 /
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

Note: SSLV3 is disabled by default on i 7.2

TLS 1.0 Ciphers:

Table 31.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 /
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.1 Ciphers:

Table 32.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

446 IBM i: IBM HTTP Server for i

Table 32. (continued)

Long Name Short name

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.2 Ciphers:

Table 33.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS_RSA_WITH_NULL_SHA256 X3B

TLS_RSA_WITH_AES_128_CBC_SHA256 X3C

TLS_RSA_WITH_AES_256_CBC_SHA256 X3D

TLS_RSA_WITH_AES_128_GCM_SHA256 X9C

TLS_RSA_WITH_AES_256_GCM_SHA384 X9D

TLS_ECDHE_ECDSA_WITH_NULL_SHA N/A

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA N/A

TLS_ECDHE_RSA_WITH_NULL_SHA N/A

TLS_ECDHE_RSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA N/A

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA25
6

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA38
4

N/A

IBM HTTP Server for i 447

Table 33. (continued)

Long Name Short name

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 N/A

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 N/A

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2
56

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA3
84

N/A

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 N/A

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 N/A

Note: The following 6 ciphers are weak ciphers, most popular browsers like IE7, IE8, Opera do not
support those ciphers, so they are not recommended to be used at all.

TLS_RSA_WITH_NULL_SHA

TLS_RSA_WITH_NULL_MD5

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_WITH_NULL_SHA256

Note: The short and long names can be quoted. For example, SSLCipherSpec "3A"

See also SSLVersion.

SSLClientAuth
Module: mod_ibm_ssl

Syntax: SSLClientAuth level [noverify]

Default: SSLClientAuth none

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example:

SSLClientAuth 2

SSLClientAuth required

SSLClientAuth Optional noverify

The SSLClientAuth directive is used to indicate the type of client-side SSL certificate validation is required
for the server.

448 IBM i: IBM HTTP Server for i

Parameter: level

• The level parameter value specifies the client-side SSL certificate validation required for the server.
Valid values include:

0 or none

 No client certificate is required.

1 or optional

 The client may present a valid certificate.

2 or required

 The client must present a valid certificate.

Required_reset

 The server requires a valid certificate from all clients, and if no certificate is
available, the server sends an
 SSL alert to the client. This alert enables the client to understand that the SSL
failure is client-certificate
 related, and causes browsers to re-prompt for client certificate information about
subsequent access.

SSLProxyProtocolDisable

Note: The optional parameter noverify can only be used with level 1 or optional, for example:
SSLClientAuth Optional noverify

The default value of this directive is 0 or none, indicating that no certificate is requested or required from
the client. If an incorrect value is specified, an error message is issued and the server will not start.

A value of 1 or optional, will cause the server to request a certificate from the client, and the SSL
connection will be made even if a certificate is not received. A value of 1 or optional does not
require the certificate received from the client to be valid. With noverify parameter, the HTTP server
enables SSL handshake to succeed and establish a connection, even if the certificate provided by
the client fails validation (for example, the certificate is expired or revoked). Use this directive with
“SSLClientAuthVerify” on page 452 to provide a user-friendly web page, instead of the default browser
error message.

A value of 2 or required, will cause the server to request a certificate from the client. If a valid certificate is
not received, the client request will be rejected.

A value of require_reset, will cause the server to request a certificate from the client. If no certificate
is available, the server sends an SSL alert to the client. This enables the client to understand that the
SSL failure is client-certificate related, and causes browsers to re-prompt for client certificate information
about subsequent access.

SSLClientAuthGroup
Module: mod_ibm_ssl

Syntax: SSLClientAuthGroup groupname attribute-expression

Default: none

Context: server , virtual host

Override: none

Origin: IBM

IBM HTTP Server for i 449

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientAuthGroup IBMpeople Org = IBM

The SSLClientAuthGroup directive is used to define a group name to a set of specific client certificate
attributes to be used on the SSLClientAuthRequire directive. To indicate the attributes, a validated
certificate must be presented before the server will allow access to the directory.

Parameter One: groupname

• The groupname parameter value specifies the group name for the client certificate. A
group name cannot include spaces.

Parameter Two: attribute-expression

• The attribute-expression parameter value specifies the attribute for a validated certificate
to be used for client authentication. Either the long name or the short name may be used
in this directive. Valid values include:

Table 34. Attribute values

Long name Short name

IssuerStateOrProvince IST

IssuerCommonName ICN

IssuerOrgUnit IOU

IssuerCountry IC

IssuerLocality IL

IssuerOrg IO

IssuerEmail IE

IssuerPostalCode IPC

StateOrProvince ST

CommonName CN

OrgUnit OU

Country C

Locality L

Org O

PostalCode PC

SerialNumber SN

Email E

IssuerEmail IE

Note: The short and long names can be quoted. For example, SSLClientAuthGroup
IBMpeople "Org = IBM".

The user specifies a logic string of specific client certificate attributes and a group name is
assigned to these attributes. Multiple subexpressions can be logically ANDed , ORed, or NOTed
to configure the desired group of client certificate attributes. Valid equalities include '=' and '!='.

450 IBM i: IBM HTTP Server for i

Example One

SSLClientAuthGroup IBMpeople Org=IBM

Example Two

SSLClientAuthGroup MNIBM ST=MN && Org=IMB

Note: A group name cannot include spaces.

See also “SSLClientAuthRequire” on page 451

SSLClientAuthRequire
Module: mod_ibm_ssl

Syntax: SSLClientAuthRequire attribute-expression

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientAuthRequire group != IBMpeople && ST= MN

The SSLClientAuthRequire directive is used to provide a specific client certificate attributes, or groups of
attributes, that must be validated before the server will allow access to the directory. If the certificate
received does not have a particular attribute, then we do not check for an attribute match. Even if the
matching value is " ", this may still not be the same as not having the attribute there at all. Any attribute
specified on the SSLClientAuthRequire and not available on the certificate causes the request to be
rejected.

The following is a list of the attribute values that may be specified on this directive:

Table 35. Attribute values

Long name Short name

IssuerStateOrProvince IST

IssuerCommonName ICN

IssuerOrgUnit IOU

IssuerCountry IC

IssuerLocality IL

IssuerOrg IO

IssuerEmail IE

IssuerPostalCode IPC

StateOrProvince ST

CommonName CN

OrgUnit OU

IBM HTTP Server for i 451

Table 35. Attribute values (continued)

Long name Short name

Country C

Locality L

Org O

PostalCode PC

SerialNumber SN

Email E

IssuerEmail IE

Either the long name or the short name may be used in this directive.

The user specified a logic string of specific client certificate attributes. Multiple subexpressions
can be logically ANDed , ORed, or Noted to configure the desired client certificate attributes. Valid
logical symbols include '=' and '!='. The user may also specify a group name, configured on the
SSLClientAuthGroup, that allows a group of attributes to be configured.

Multiple SSLClientAuthRequire directives may be specified for each directory, and each attribute specified
is used to check the attributes in the client certificate. Multiple directives place a logical AND on the
attributes specified with the directives.

Example 1: SSLClientAuthRequire (CommonName="John Doe" || StateOrProvince=MN) && Org !=IBM

Example 2: SSLClientAuthRequire group!=IBMpeople && ST=MN

Note: The short and long names can be quoted. For example, SSLClientAuthRequire group != IBMpeople
&& "ST= MN"

See also “SSLClientAuthGroup” on page 449.

SSLClientAuthVerify
Module: mod_ibm_ssl

Syntax: SSLClientAuthfVerify statuscode | OFF

Default: SSLClientAuthfVerify 500

Context: directory

Override: None

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientAuthVerify OFF

Example: SSLClientAuthVerify 419

The SSLClientAuthVerify directive is used together with “SSLClientAuth Optional Noverify” to provide
a user friendly web page, instead of the default browser error message when client certificate fails
validation (for example, it is expired or revoked). Use this directive in a context such as <Location> or
<Directory> to fail requests that are received on that connection with a specific error code, or handled
normally by setting OFF.

452 IBM i: IBM HTTP Server for i

Parameter statuscode: The specified status code must be a response status that is valid in HTTP and
known to IBM HTTP Server. The values are between 100 and 599, and are typically defined in an RFC or
standards proposal. If you are unsure, try a status code in a test configuration and use apachectl -t to see
if it is valid. Other unused codes that are valid and would be good choices include: 418, 419, 420, and
421.

Parameter OFF: Ignore the client certificate failure and process the request normally.

By providing a custom error document for specific status code, the administrator can control the page
that is presented to the user, for example, to tell the user their certificate is invalid and provide further
instructions. If the error document is an internal redirect to another URL in the same virtual host, you
must ensure that URL has SSLClientAuthVerify OFF in its context so it does not immediately fail.

If the error document is an internal redirect to another URL in the same virtual host, you must ensure that
URL has SSLClientAuthVerify OFF in its context so it does not immediately fail, as well. See below as an
example.

Example:

<VirtualHost *:443>
 SSLClientAuth Optional Noverify
 <Location />
 SSLClientAuthVerify 419
 </Location>
 ErrorDocument 419 /error419.html
 <Location /error419.html>
 SSLClientAuthVerify OFF
 </Location>
</VirtualHost>

SSLClientCertDisable
Module: mod_ibm_ssl

Syntax: SSLClientCertDisable

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLClientCertDisable

The SSLClientCertDisable directive indicates to the server that a valid certificate is not required in order to
access this directory.

This directive may be used in conjunction with the SSLAuthType directive. If specified in addition to the
SSLAuthTypeCert directive, the certificate received only needs to be associated with a user ID or an
Internet user.

This directive negates the SSLClientCertEnable directive.

SSLClientCertEnable
Module: mod_ibm_ssl

Syntax: SSLClientCertEnable

Default: none

Context: directory, .htaccess

IBM HTTP Server for i 453

Override: AuthConfig

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLClientCert Enable

The SSLClientCertEnable directive indicates to the server that a valid certificate is required in order to
access this directory.

This directive may be used in conjunction with the SSLAuthType directive.

If specified in addition to the SSLAuthTypeCert directive, the certificate received needs to be valid, as well
as associated with a user ID or an Internet user. This directive is negated by the SSLClientCertDisable
directive.

SSLDenySSL
Module: mod_ibm_ssl

Syntax: SSLDenySSL

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLDenySSL

The SSLDenySSL directive will deny access to the directory when SSL is used for the request. This
directive interacts somewhat with the SSLRequireSSL directive. If a directory has both the SSLRequireSSL
and the SSLDenySSL directives specified, then the last directive in the directory scope will take effect.
Since this directive is scoped to a directory, a server or a virtual host may also have SSLRequireSSL for
some directories, but SSLDenySSL for other directories. Also, more specific directory container directives
will override previously specified directives for a less specific directory.

Example:

<Directory /ABC>
 SSLRequireSSL
</Directory>
<Directory /ABC/DEF>
 SSLDenySSL
</Directory>

This example will require SSL for directory /ABC, but deny SSL for directory /ABC/DEF.

SSLDisable
Module: mod_ibm_ssl

Syntax: SSLDisable

Default: SSLDisable

Context: server config, virtual host

Override: none

454 IBM i: IBM HTTP Server for i

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLDisable

The SSLDisable directive causes SSL to be disabled for the server or virtual host. The effect of this
directive will depend on the location of the directive. If the directive is located in the configuration file
for the main server, SSL will not be allowed for the server. If the directive is located in a <Virtual Host>
container, then SSL will not be allowed for the virtual host. The directive located at the server level can be
overridden for a particular virtual host using the SSLEnable directive.

SSLEnable
Module: mod_ibm_ssl

Syntax: SSLEnable

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLEnable

The SSLEnable directive will cause SSL to be enabled. The effect of this directive will depend on the
location of the directive. If the directive is located in the configuration file for the main server, SSL will be
required for the server. If the directive is located in a <Virtual Host> container, then SSL will be required
for the virtual host. The directive, located at the server level, can be overridden for a particular virtual host
using the SSLDisable directive. This directive requires that the directive SSLAppName be set.

Note: Some applications need SetEnv HTTPS_PORT <port> configured when SSLEnable is configured.

SSLEngine
Module: mod_ibm_ssl

Syntax: SLEngine On | Off | Optional

Default: SSLEngine Off

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: The server must be restarted prior to using the directive. A LoadModule is
required in the configuration file prior to using the directive. The statement should be as follows:
LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLEngine On

The SSLEngine directive toggles the usage of SSL processing. If SSLEngine On is specified, SSL processing
is enabled. If SSLEngine Off is specified, SSL processing is disabled. If SSLEngine Optional is specified,
SSL processing is turned on to handle upgrading a non-SSL connection to an SSL connection. The effect
of this directive depends on the location of the directive. If the directive is located in the configuration

IBM HTTP Server for i 455

file for the main server, the type of SSL processing is set for the entire server. If the directive is located
in a <VirtualHost> container, then the type of SSL processing is set for only that virtual host. If this
directive is set at the server level, it can be overridden for a particular virtual host by specifying the
other allowed option. SSLEngine On is equivalent to SSLEnable, SSLEngine Off is equivalent to SSLDisable,
and SSLEngine Optional is equivalent to SSLUpgrade. These directives can be used interchangeably. The
SSLEngine directive is being added in order to be compatible with Apache's mod_ssl.

If SSLEngine On or SSLEngine Optional is configured, the directive SSLAppName must also be configured.

See also SSLEnable, SSLDisable, SSLUpgrade, and SSLAppName.

Parameter: seconds

• The seconds parameter has a valid value range of 1 to 86400 seconds. If the value
specified is greater than 86400, or less than 1, then the default value of 86400 seconds
will be used as the timeout value. This value is used for negotiated SSLVersion 3, or TLS
Version 1, sessions.

SSLFallbackProtection
Module: mod_ibm_ssl

Syntax: SSLFallbackProtection On | Off

Default: SSLRenegotiation on

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLFallbackProtection off

The SSLFallbackProtection directive enables/disables TLS_FALLBACK_SCSV. It allows the
TLS_FALLBACK_SCSV pseudo cipher to be sent by HTTP Server for i. This helps browsers from being
fooled into downgrading TLS versions.

ON (default)

Enable TLS_FALLBACK_SCSV

OFF

Disable TLS_FALLBACK_SCSV

SSLHandshakeTimeout
Module: mod_ibm_ssl

Syntax: SSLHandshakeTimeout seconds

Default: None - (Use the value of TimeOut directive to be compatible with previous releases)

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

456 IBM i: IBM HTTP Server for i

Example: SSLHandshakeTimeout 60

The SSLHandshakeTimeout directive can be used to reduce the timeout for SSL handshake I/O
operations. If set to 0 or not specified, the value of Core Timeout will be used.

<VirtualHost *:443>
 SSLEnable
 Timeout 60
 SSLHandshakeTimeout 20
</VirtualHost>

SSLProxyAppName
Module: mod_ibm_ssl

Syntax: SSLProxyAppName server_application_name

Default: none

Context: server, virtual host

Override: none

Origin: IBM

Usage Considerations: The server must be restarted prior to using the directive.

Example: SSLProxyAppName QIBM_HTTP_CLIENT_APACHE

The SSLProxyAppName directive is used to:

• to uniquely label the proxy server as a client application that intends to use SSL to a remote content
server.

• to keep track of the registered name used by the proxy server.
• to identify the server when association of a client certificate with a secure application is done in the

Digital Certificate Manager (DCM).
• to identify the server to the SSL API's so that the SSL API's can use the certificate that is associated with

the server.

The registration of the secure client application and the creation of the SSLProxyAppName is done
automatically when the system administrator enables the SSL Proxy engine for the server using the HTTP
Server configuration GUI. The association of a client certificate with the application is accomplished by
the system administrator using DCM: after a secure client application is registered, and before attempting
to start the server with the SSL proxy engine enabled and SSLProxyAppName configured, the user
must use DCM to assign a client certificate to the corresponding secure application. Since this directive
is valid at the virtual host level, the server may have more than one certificate assigned, with each
virtual host having a different application name. The specified value on this directive is the name of
the application that the server or virtual host is known as. If both the SSLProxyAppName directive and
the SSLProxyMachineCertificateFile directive are configured for the server, then the SSLProxyAppName
directive is used to identify the client certificate and the handshake processing.

Note: Please leave the SSL fields to the default if creating an application ID via DCM for Apache Server
as those settings override the same settings used by Apache server directives in the HTTP Server
configuration file.

SSLOCSPResponderURL

Module: mod_ibm_ssl

Syntax: SSLOCSPResponderURL URL

Default: Disabled

Context: virtual host

IBM HTTP Server for i 457

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLOCSPResponderURL http://hostname:2560/

The SSLOCSPResponderURL directive enables checking of client certificates through a statically
configured online certificate status protocol (OCSP) responder. IBM HTTP Server uses the supplied URL to
check for certificate revocation status when an SSL client certificate is provided.

If both SSLOCSPEnable and SSLOCSPResponderURL are configured, the responder defined by
SSLOCSPResponderURL is checked first. If the revocation status is unknown or inconclusive, HTTP Server
checks OCSP responders for SSLOCSPEnable. If CRL checking is also configured via DCM, OCSP checking
is performed before any CRL checking. CRL checking occurs only if the result of the OCSP checking is
unknown or inconclusive.

In some cases HTTP Server might not be able to determine the revocation status of a client
certificate, because the backend server, which is the source of the revocation data, is not available. The
SSLUnknownRevocationStatus directive is provided for cases in which recoverable errors occur in HTTP
Server when it is communicating with the backend server, and the HTTP Server cannot determine the
revocation status of a certificate. The default behavior is to continue processing the handshake unless the
backend server can successfully indicate that the certificate is revoked.

SSLOCSPEnable

Module: mod_ibm_ssl

Syntax: SSLOCSPEnable

Default: Disabled

Context: virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

The SSLOCSPEnable directive enables checking of client certificates through OCSP responders defined in
the Authority Information Access (AIA) extension of their certificate. If SSLOCSPEnable is set, and an SSL
client certificate chain contains an AIA extension, HTTP Server contacts the OCSP responder indicated by
the AIA extension to check revocation status of the client certificate.

If both SSLOCSPEnable and SSLOCSPResponderURL are configured, the responder defined by
SSLOCSPResponderURL is checked first. If the revocation status is unknown or inconclusive, HTTP Server
checks OCSP responders for SSLOCSPEnable. If CRL checking is also configured via DCM, OCSP checking
is performed before any CRL checking. CRL checking occurs only if the result of the OCSP checking is
unknown or inconclusive.

SSLProxyCipherSpec
Module: mod_ibm_ssl

458 IBM i: IBM HTTP Server for i

Syntax: SSLProxyCipherSpec cipher-spec, SSLProxyCipherSpec [protocol_name] [+|-]cipher
[[+|-]cipher...]

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example:

SSLProxyCipherSpec "3A"

SSLProxyCipherSpec SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSLProxyCipherSpec 3A

SSLProxyCipherSpec "SSL_RSA_WITH_3DES_EDE_CBC_SHA"

SSLProxyCipherSpec ALL +SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSLProxyCipherSpec ALL -SSL_RSA_WITH_RC4_128_MD5

The SSLProxyCipherSpec directive allows for specifying a cipher specification to be used for the SSL
connection. Each occurrence of this directive will add the associated cipher specification to that context's
existing cipher suite list. The cipher specification is used on the SSL handshake, which then uses the
cipher suite list to negotiate the cipher used for communications between the proxy server and the
content server.

The order of the SSLProxyCipherSpec directives is important. The cipher suite list passed to SSL is created
by putting the first cipher listed in the configuration file at the top of the cipher suite list. SSL uses this list
as the preferred order of ciphers.

This directive works in conjunction with the SSLProxyVersion directive during the SSL handshake. The
values specified for the SSLProxyCipherSpec directive must correspond with the value specified on the
SSLProxyVersion directive. If this directive is not used, a default cipher suite list is used.

Parameter: cipher-spec

• The cipher-spec parameter specifies the cipher specification to be used. Either the short
name or the long name in the following table may be specified.

Table 36.

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0x01 31 0 TLS_RSA_
WITH_NU
LL_MD5
(*)

X X X X

0x02 32 0 TLS_RSA_
WITH_NU
LL_SHA
(*)

X X X X

0x03 33 40 TLS_RSA_
WITH_NU
LL_SHA
(*)

X X

IBM HTTP Server for i 459

Table 36. (continued)

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0x04 34 128 TLS_RSA_
WITH_RC
4_128_M
D5 (*)

X X X X

0x05 35 128 TLS_RSA_
WITH_RC
4_128_S
HA (*)

X X X X

0x06 36 40 TLS_RSA_
EXPORT_
WITH_RC
2_CBC_4
0_MD5 (*)

X X

0x09 39 56 TLS_RSA_
WITH_DE
S_CBC_S
HA (*)

X X X X

0x0A 3A 168 TLS_RSA_
WITH_3D
ES_EDE_C
BC_SHA
(*)

X X X

0x2F X2F 128 TLS_RSA_
WITH_AE
S_128_C
BC_SHA

X X X

0x35 X35 256 TLS_RSA_
WITH_AE
S_256_C
BC_SHA

X X X

0x3B X3B　 0 TLS_RSA_
WITH_NU
LL_SHA2
56

X

0x3C X3C 128 TLS_RSA_
WITH_AE
S_128_C
BC_SHA2
56

X

0x3D X3D　 256 TLS_RSA_
WITH_AE
S_256_C
BC_SHA2
56

X

460 IBM i: IBM HTTP Server for i

Table 36. (continued)

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0x9C X9C 128 TLS_RSA_
WITH_AE
S_128_G
CM_SHA2
56

X

0x9D X9D 256 TLS_RSA_
WITH_AE
S_256_G
CM_SHA3
84

X

0xC006 N/A 0 TLS_ECD
HE_ECDS
A_WITH_
NULL_SH
A

X

0xC007 N/A 128 TLS_ECD
HE_ECDS
A_WITH_
RC4_128
_SHA

X

0xC008 N/A 168 TLS_ECD
HE_ECDS
A_WITH_
3DES_ED
E_CBC_S
HA

X

0xC010 N/A 0 TLS_ECD
HE_RSA_
WITH_NU
LL_SHA

X

0xC011 N/A 128 TLS_ECD
HE_RSA_
WITH_RC
4_128_S
HA

X

0xC012 N/A 168 TLS_ECD
HE_RSA_
WITH_3D
ES_EDE_C
BC_SHA

X

0xC023 N/A 128 TLS_ECD
HE_ECDS
A_WITH_
AES_128
_CBC_SH
A256

X

IBM HTTP Server for i 461

Table 36. (continued)

HEX
Short
Name Key Size

Long
Name SSLv3 TLSv10 TLSv11 TLSv12

0xC024 N/A 256 TLS_ECD
HE_ECDS
A_WITH_
AES_256
_CBC_SH
A384

X

0xC027 N/A 128 TLS_ECD
HE_RSA_
WITH_AE
S_128_C
BC_SHA2
56

X

0xC028 N/A 256 TLS_ECD
HE_RSA_
WITH_AE
S_256_C
BC_SHA3
84

X

0xC02B N/A 128 TLS_ECD
HE_ECDS
A_WITH_
AES_128
_GCM_SH
A256

X

0xC02C N/A 256 TLS_ECD
HE_ECDS
A_WITH_
AES_256
_GCM_SH
A384

X

0xC02F N/A 128 TLS_ECD
HE_RSA_
WITH_AE
S_128_G
CM_SHA2
56

X

0xC030 N/A 256 TLS_ECD
HE_RSA_
WITH_AE
S_256_G
CM_SHA3
84

X

Note: (*) indicates the long name can also be named by starting with "SSL_" in order to be
compatible with older releases.

Version 3 Ciphers:

462 IBM i: IBM HTTP Server for i

Table 37.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
/
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

Note: SSLV3 is disabled by default on i 7.2

TLS 1.0 Ciphers:

Table 38.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA /
TLS_RSA_WITH_3DES_EDE_CBC_SHA

3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 /
TLS_RSA_EXPORT_WITH_RC4_40_MD5

33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
/
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

36

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

IBM HTTP Server for i 463

TLS 1.1 Ciphers:

Table 39.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_DES_CBC_SHA /
TLS_RSA_WITH_DES_CBC_SHA

39

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS 1.2 Ciphers:

Table 40.

Long Name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA /
TLS_RSA_WITH_RC4_128_SHA

35

SSL_RSA_WITH_RC4_128_MD5 /
TLS_RSA_WITH_RC4_128_MD5

34

SSL_RSA_WITH_NULL_SHA /
TLS_RSA_WITH_NULL_SHA

32

SSL_RSA_WITH_NULL_MD5 /
TLS_RSA_WITH_NULL_MD5

31

TLS_RSA_WITH_AES_128_CBC_SHA X2F

TLS_RSA_WITH_AES_256_CBC_SHA X35

TLS_RSA_WITH_NULL_SHA256 X3B

TLS_RSA_WITH_AES_128_CBC_SHA256 X3C

TLS_RSA_WITH_AES_256_CBC_SHA256 X3D

TLS_RSA_WITH_AES_128_GCM_SHA256 X9C

TLS_RSA_WITH_AES_256_GCM_SHA384 X9D

TLS_ECDHE_ECDSA_WITH_NULL_SHA N/A

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_
SHA

N/A

464 IBM i: IBM HTTP Server for i

Table 40. (continued)

Long Name Short name

TLS_ECDHE_RSA_WITH_NULL_SHA N/A

TLS_ECDHE_RSA_WITH_RC4_128_SHA N/A

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SH
A

N/A

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_S
HA256

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_S
HA384

N/A

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
256

N/A

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
384

N/A

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_S
HA256

N/A

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_S
HA384

N/A

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA
256

N/A

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA
384

N/A

SSLProtocolDisable
Module: mod_ibm_ssl

Syntax: SSLProtocolDisable protocolname [protocolname]…

Default: Disabled

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLProtocolDisable SSLv2 SSLv3

The SSLProtocolDisable directive specifies one or more SSL protocols which cannot be used by the client
for a specific virtual host. The specified protocol is disagreed to negotiate by the server.

The possible value for this directive is as following:

Value Description

SSLv2 SSL Version 2.0

SSLv3 SSL Version 3.0

IBM HTTP Server for i 465

TLS All TLS versions

TLSV1 TLS Version 1.0

TLSV1.1 TLS Version 1.1

TLSV1.2 TLS Version 1.2

Example

<VirtualHost *:443>
 SSLEngine On
 SSLProtocolDisable SSLv2 SSLv3
 (any other directives...)
</VirtualHost>

SSLProxyProtocolDisable
Module: mod_ibm_ssl

Syntax: SSLProxyProtocolDisable protocolname [protocolname]…

Default: Disabled

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLProxyProtocolDisable SSLv2 SSLv3

The SSLProxyProtocolDisable directive specifies one or more SSL protocols which cannot be used to
negotiate between HTTP proxy server and the remote content server during the SSL handshake.

The possible value for this directive is as following:

Value Description

SSLv2 SSL Version 2.0

SSLv3 SSL Version 3.0

TLS All TLS versions

TLSV1 TLS Version 1.0

TLSV1.1 TLS Version 1.1

TLSV1.2 TLS Version 1.2

Example

<VirtualHost *:443>
 SSLProxyEngine on
 SSLProxyProtocolDisable SSLv2 SSLv3
 (any other directives...)
</VirtualHost>

SSLProxyEngine
Module: mod_ibm_ssl

466 IBM i: IBM HTTP Server for i

Syntax: SSLProxyEngine On | Off

Default: SSLProxyEngine Off

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: The server must be restarted prior to using the directive. This directive requires
that either the SSLProxyAppName directive or the SSLProxyMachineCertificateFile be configured. Use of
the SSLProxyMachineCertificateFile directive is required if the remote content server does not require
a client certificate to be sent by the proxy server during the handshake process. If a certificate will be
required by the remote content server, then the SSLProxyAppName should be used to identify the client
certificate to use on the handshake.

Example: SSLProxyEngine On

The SSLProxyEngine directive toggles the usage of SSL connections to be used by the proxy to connect to
the content server. This is usually used inside a <VirtualHost> section to enable SSL/TLS for proxy usage
in a particular virtual host.

SSLProxyVerify
Module: mod_ibm_ssl

Syntax: SSLProxyVerify | 1 | Optional | 2 | Required

Default: SSLProxyVerify Required

Context: server, virtual host

Override: none

Origin: Apache

Example:

1. SSLProxyVerify 2
2. SSLProxyVerify Required

The SSLProxyVerify directive is used to indicate the type of server-side SSL certificate validation is
required by the proxy server. The following values are valid for the SSLProxyVerify directive:

• (1 or Optional) - The content server may present a valid certificate.
• (2 or Required) - The content server must present a valid, trusted certificate.

The default value of this directive is 2 or Required, indicating that the content server certificate must be
valid and have a trusted root. If an incorrect value is specified, an error message is issued and the server
will not start.

The proxy server requires a certificate to be received from the content server. However, this certificate
may be expired, or not be trusted by the server CA, as configured on the SSLProxyAppName directive or
the SSLProxyMachineCertificatePath directive. This will result in a handshake failure if 2 or Required is
configured.

A value of 1 or Optional, will cause the proxy server to allow for an expired content server certificate, or
allow for the consent server certificate to not be trusted by the server application ID configured. This will
result in the handshake completing successfully.

SSLProxyVersion
Module: mod_ibm_ssl

IBM HTTP Server for i 467

Syntax: SSLProxyVersion SSLV2 | SSLV3 | TLSV1 | TLSV1_SSLV3 | TLSV1.1 | TLSV1.2 | TLSV1.x | ALL

Default: SSLProxyVersion TLSV1.x

Context: server config, virtual host

Override: none

Origin: Modified

Example: SSLVersion TLSV1

The SSLProxyVersion directive specifies the SSL version that is negotiated with the remote content server
during the SSL agreement that takes place when connecting the Apache proxy server to the content
server via the SSL protocol. The version specified must be negotiated or access to content server is
denied.

There are five possible values for this directive:

Table 41. Directive values

Value Description

SSLV2 SSL Version 2.0 only

SSLV3 SSL Version 3.0 only

TLSV1 TLS Version 1.0 only

TLSV1_SSLV3 TLS Version 1.0 with SSL Version 3.0 compatibility

TLSV1.1 TLS Version 1.1 only

TLSV1.2 TLS Version 1.2 only

TLSV1.x (default) TLS Version 1.0, TLS Version 1.1 with TLS Version 1.2 compatibility

ALL TLS Version 1.0, TLS Version 1.1, TLS Version 1.2 with SSLV2.0 & SSL
V3.0 compatibility

The server will default to TLSV1.x indicating that the server will only accept TLS protocol that is negotiated
due to the security vulnerability of SSLv2 and SSLv3.

Note: Besides setting the protocol from HTTP server, user also needs to check the system value of
QSSLPCL. Only QSSLPCL enabled protocols can be used with and the others will be silently ignored even
though it's specified in HTTP Server configuration file. SSLV3 has been disabled by default since IBM i 7.2.

SSLRequireSSL
Module: mod_ibm_ssl

Syntax: SSLRequireSSL

Default: none (if neither SSLRequireSSL or SSLDenySSL are configured, the client may access the
container using a secure or non-secure connection)

Context: directory, .htaccess

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLRequireSSL

468 IBM i: IBM HTTP Server for i

The SSLRequireSSL directive will deny access to the directory whenever SSL is not used for the request.
This is used to ensure that the client uses the SSL protocol to access a directory, and helps protect
the resources in the directory from being accessed, even though there may be errors in the server
configuration.

This directive interacts with the SSLDenySSL directive. If a directory has both the SSLRequireSSL and
the SSLDenySSL directives specified, the last directive in the directory scope will take effect. Since this
directive is scoped to a directory, a server or a virtual host may also have SSLRequireSSL for some
directories, but SSLDenySSL for other directories. Also, more specific directory container directives will
override previously specified directives for a less specific directory.

Example:

<Directory /ABC>
 SSLRequireSSL
</Directory>
<Directory /ABC/DEF>
 SSLDenySSL
</Directory>

This example will require SSL for directory /ABC, but deny SSL for directory /ABC/DEF.

SSLRenegotiation
Module: mod_ibm_ssl

Syntax: SSLRenegotiation on|off

Default: SSLRenegotiation on

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLRenegotiation off

The SSLRenegotiation directive controls the types of TLS renegotiation permitted by HTTP Server for i.
TLS renegotiation is how clients can initiate a new SSL handshake on an existing secure connection, which
is rarely used by normal browser-based clients.

ON (default)

Secure renegotiation, as currently defined by RFC5746, is permitted.

OFF

No renegotiation is permitted.

SSLServerCert
Module: mod_ibm_ssl

Syntax: SSLServerCert certificate_label

Default: none

Context: virtual host

Override: none

Origin: IBM

IBM HTTP Server for i 469

Usage Considerations: The server must be restarted prior to using the directive. A LoadModule is
required in the configuration file prior to using the directive. The statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLServerCert QIBM_HTTP_SERVER_CERT

The SSLServerCert directive sets the server certificate to use for the specific SSL enabled name based
virtual host.

Server Name Indication(SNI) support has been added to HTTP Server for i. Specify this directive along
with the “ServerName ” on page 355 directive to set the server certificate and fully qualified domain
name(FQDN) for that specific virtual host if you have multiple SSL enabled name based virtual hosts are
configured and want to have the SNI support.

If this directive is not specified, the default virtual host server certificate will be used for all SSL enabled
name based virtual hosts.

Example:

<VirtualHost 10.1.2.3:443>
 SSLEngine On
 SSLAppName QIBM_HTTP_SERVER_APACHE1
 DocumentRoot /www/example1
 ServerName www.example1.com
 SSLServerCert QIBM_HTTP_SERVER_CERT1
</VirtualHost>

<VirtualHost 10.1.2.3:443>
 SSLEngine On
 SSLAppName QIBM_HTTP_SERVER_APACHE2
 DocumentRoot /www/example2
 ServerName www.example2.com
 SSLServerCert QIBM_HTTP_SERVER_CERT2
</VirtualHost>

Note: Both SSLServerCert and ServerName directives are required to be specified in each SSL enabled
name based virtual hosts in order to get SNI work correctly. The SSLServerCert directive only takes effect
in SSL enabled name based virtual hosts, it will be ignored in any other types of virtual hosts.

SSLUpgrade
Module: mod_ibm_ssl

Syntax: SSLUpgrad

Default: none

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLUpgrade

The SSLUpgrade directive enables a server to support a client request to upgrade a normal non-SSL
connection to a Transport Layer Security (TLS) connection (for a single request). This directive's
effectiveness will depend on the directive location. If the directive is located in the main server
configuration file, any connection to the server will be eligible for a TLS upgrade. If the directive is located
in a <Virtual Host> container, only the connection to that virtual host will be eligible for the upgrade. The

470 IBM i: IBM HTTP Server for i

directive, located at the server level, can be overridden for a particular virtual host using the SSLDisable or
SSLEnable directives. SSLUpgrade requires that the directive SSLAppName is defined.

The SSLVersion directive is affected by SSLUpgrade. If SSLUpgrade is configured, the SSLVersion that is
negotiated on the handshake will only be TLS. The SSLVersion specified in the configuration file will be
ignored.

The SSLCipherSpec directive is also affected by SSLUpgrade. If SSLUpgrade is configured, only SSLV3/TLS
ciphers are allowed. If SSLCipherSpec specifies SSL version 2 ciphers, these ciphers will be ignored, and
only configured SSLV3/ TLS ciphers will be allowed. If there are no SSLV3/TLS ciphers configured, the
defined default system cipher list will be used.

The SSLRequireSSL directive may be configured for a resource that is accessed through an upgraded
connection. If the upgrade is requested as a part of the request through the use of the upgrade header,
the SSLRequireSSL directive will be enforced before the connection is upgraded. This will allow the
request to be processed, since the connection will be upgraded to SSL before the request has been
handled, and the reply has been sent.

The SSLDenySSL directive will be enforced in the same manner as the SSLRequireSSL directive. If the
request for the resource is received along with the upgrade header request, the request will be denied
with a 403, Forbidden, response returned to the client, since the request will be processed after the
connection has been upgraded.

SSLUnknownRevocationStatus
Module: mod_ibm_ssl

Syntax: SSLUnknownRevocationStatus ignore | log | log_always | deny

Default: SSLUnknownRevocationStatus ignore

Context: virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example:

Example: SSLUnknownRevocationStatus log

Example: SSLUnknownRevocationStatus deny

The SSLUnknownRevocationStatus directive specifies how HTTP Server reacts when HTTP Server cannot
readily determine the revocation status, which is coming through CRL or OCSP.

Parameter: ignore | log | log_always | deny

• The ignore parameter specifies that a debug level message is issued when a handshake completes
and the revocation status is not known. This message is not re-issued when the SSL session is
resumed.

• The log parameter specifies that a notice-level message is issued when a handshake completes and
the revocation status is not known. This message is not re-issued when the SSL session is resumed.

• The log_always parameter specifies that a notice-level message is issued when a handshake
completes and the revocation status is not known. HTTP Server issues the same message for
subsequent handshakes.

• The deny parameter specifies that a notice-level message is issued when a handshake completes,
the revocation status is not known, the session is not resumable, and the HTTPS connection is
immediately closed. HTTP Server reports the same message for subsequent handshakes.

IBM HTTP Server for i 471

Whenever a message is logged for UnknownRevocationStatus, the
SSL_UNKNOWNREVOCATION_SUBJECT variable, an internal SSL environment variable, is set. You can
log this variable with the following syntax:

%{SSL_UNKNOWNREVOCATION_SUBJECT}e

You could also use the variable in mod_rewrite expressions when the SSLUnknownRevocationStatus
directive has any value other than deny. Use the following variable name:

%{ENV:SSL_UNKNOWNREVOCATION_SUBJECT}

SSLVersion
Module: mod_ibm_ssl

Syntax: SSLVersion SSLV2 | SSLV3 | TLSV1 | TLSV1_SSLV3 | TLSV1.1 | TLSV1.2 | TLSV1.x | ALL

Default: SSLVersion TLSV1.x

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLVersion TLSV1

he SSLVersion directive specifies the SSL version that will be negotiated with the client during the SSL
handshake. The version specified must be negotiated or access to specified resource will be denied.

There are five possible values for this directive:

Table 42. Directive values

Value Description

SSLV2 SSL Version 2.0 only

SSLV3 SSL Version 3.0 only

TLSV1 TLS Version 1.0 only

TLSV1_SSLV3 TLS Version 1.0 with SSL Version 3.0 compatibility

TLSV1.1 TLS Version 1.1 only

TLSV1.2 TLS Version 1.2 only

TLSV1.x (default) TLS Version 1.0, TLS Version 1.1 with TLS Version 1.2 compatibility

ALL TLS Version 1.0, TLS Version 1.1, TLS Version 1.2 with SSLV2.0 & SSL
V3.0 compatibility

The server will default to TLSV1.x indicating that the server will only accept TLS protocol that is negotiated
due to the security vulnerability of SSLv2 and SSLv3.

Note: Besides setting the protocol from HTTP server, user also needs to check the system value of
QSSLPCL. Only QSSLPCL enabled protocols can be used with and the others will be silently ignored even
though it's specified in HTTP Server configuration file. SSLV3 has been disabled by default since IBM i 7.2.

SSLV2Timeout
Module: mod_ibm_ssl

472 IBM i: IBM HTTP Server for i

Syntax: SSLV2Timeout seconds

Default: SSLV2Timeout 100

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLV2Timeout 32

The SSLV2Timeout directive specifies the timeout value for the session ID caching done by sockets that
will be used on the SSL session. This directive indicates the number of seconds in which the internal
SSL session identifier will expire. The session identifier is maintained by sockets. It allows caching of
handshake information in order to allow for a shortened handshake to be done if the timeout value has
not been reached. Lower values are safer but slower, because the complete handshake will be done after
each timeout. If client certificates are being requested by the server, they will also be required to be
represented at each timeout.

Parameter: seconds

• The seconds parameter has a valid value range of 1 to 100 seconds. If the value specified
is greater than 100, or less than 1, then the default value of 100 seconds will be used as
the timeout value. This value is used for negotiated SSL Version 2 sessions.

SSLV3Timeout
Module: mod_ibm_ssl

Syntax: SSLV3Timeout seconds

Default: SSLV3Timeout 86400

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRVSSL.SRVPGM

Example: SSLV3Timeout 32

The SSLV3Timeout directive specifies the timeout value for the session ID caching done by sockets that
will be used on the SSL session. This directive indicates the number of seconds in which the internal
SSL session identifier will expire. The session identifier is maintained by sockets, and allows caching of
handshake information in order to allow for a shortened handshake to be done if the timeout value has
not been reached. Lower values are safer, but also slower, as the complete handshake will be done after
each timeout. If client certificates are being requested by the server, they will also be required to be
represented at each timeout.

Parameter: seconds

• The seconds parameter has a valid value range of 1 to 86400 seconds. If the value
specified is greater than 86400, or less than 1, then the default value of 86400 seconds
will be used as the timeout value. This value is used for negotiated SSLVersion 3, or TLS
Version 1, sessions.

IBM HTTP Server for i 473

Module mod_imagemap
Module mod_imagemap supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_imagemap provides for .map files, replacing the functionality of the imagemap
CGI program. Any directory or document type configured to use the handler imap-file (using either
AddHandler or SetHandler) will be processed by this module. This module is in the default HTTP Server
distribution. The following directive will activate files ending with Map as imagemap files:

AddHandler imap-file map

Note: The following is still supported:

AddType application/x-httpd-imap map

Features

• URL references relative to the Referer: information
• Default <BASE> assignment through a new map directive base
• No need for imagemap.conf file
• Point references
• Configurable generation of imagemap lists

See “Additional information on Imagemap files” on page 476 for more information on Imagemaps.

Directives

• ImapBase
• ImapDefault
• ImapMenu

ImapBase
Module: mod_imagemap

Syntax: ImapBase map | referer | URL

Default: ImapBase map

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ImapBase map

The ImapBase directive sets the default base used in the imagemap files. Its value is overridden by a base
directive within the imagemap file. If not present, the base defaults to http://servername/.

Parameter: map | referer | URL

• The map parameter is equivalent to the URL of the imagemap file itself. No coordinates are sent
with this, so a list will be generated unless ImapMenu is set to none.

• The referer parameter is equivalent to the URL of the referring document. Defaults to http://
servername/ if no Referer.

• The URL parameter can be relative or absolute. Relative URLs can contain '..' syntax and will be
resolved relative to the base value . The base value itself will not be resolved according to the
current value. The statement base mailto: will work properly, though.

474 IBM i: IBM HTTP Server for i

ImapDefault
Module: mod_imagemap

Syntax: ImapDefault error | nocontent | map | referer | URL

Default: ImapDefault nocontent

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ImapDefault nocontent

The ImapDefault directive sets the default used in the imagemap files. Its value is overridden by a default
directive within the imagemap file. If not present, the default action is nocontent, which means that a 204
No Content is sent to the client. In this case, the client should continue to display the original page.

Parameter: error | nocontent | map | referer | URL

• The error parameter fails with a 500 Server Error. Valid for all but base , but sort of useless for
anything but default.

• The nocontent parameter sends a status code of 204 No Content, telling the client to keep the same
page displayed. Valid for all but base.

• The map parameter is equivalent to the URL of the imagemap file itself. No coordinates are sent
with this, so a list will be generated unless ImapMenu is set to none.

• The referer parameter is equivalent to the URL of the referring document. Defaults to http://
servername/ if no Referer.

• The URL parameter can be relative or absolute. Relative URLs can contain '..' syntax and will be
resolved relative to the base value . The base value itself will not be resolved according to the
current value. However, the statement base mailto: will work properly.

ImapMenu
Module: mod_imagemap

Syntax: ImapMenu none | formatted | semiformatted | unformatted

Default: ImapMenu formatted

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ImapMenu formatted

The ImapMenu directive determines the action taken if an imagemap file is called without valid
coordinates.

Parameter: none | formatted | semiformatted | unformatted

• The none parameter means no menu is generated and the default action is performed
• The formatted parameter formatted menu which is the simplest menu. Comments in the imagemap
file are ignored. A level one header is printed, then an hrule, then the links, each on a separate line.
The menu has a consistent, plain look close to that of a directory listing.

• The semiformatted parameter generates a semiformatted menu, comments are printed where they
occur in the imagemap file. Blank lines are turned into HTML breaks. No header or hrule is printed,
but otherwise the menu is the same as a formatted menu.

IBM HTTP Server for i 475

• The unformatted parameter generates an unformatted menu, comments are printed, blank lines
are ignored. Nothing is printed that does not appear in the imagemap file. All breaks and headers
must be included as comments in the imagemap file. This gives you the most flexibility over the
appearance of your menu, but requires you to treat your map files as HTML instead of plaintext.

Additional information on Imagemap files
The lines in the imagemap files can have one of several formats:

directive value [x,y ...]
directive value "Menu text" [x,y ...]
directive value x,y ... "Menu text"

The directive is one of base, default, poly, circle, rect, or point. The value is an absolute or relative URL, or
one of the special values listed below. The coordinates are x,y pairs separated by whitespace. The quoted
text is used as the text of the link if a imagemap list is generated. Lines beginning with '#' are comments.

Imagemap File Directives

There are six directives allowed in the imagemap file. The directives can come in any order, but are
processed in the order they are found in the imagemap file.

• base directive - Has the effect of <BASE HREF="value">. The non-absolute URLs of the map-file are
taken relative to this value. The base directive overrides ImapBase as set in a .htaccess file or in the
server configuration files. In the absence of an ImapBase configuration directive, base defaults to http://
server_name/.

• base_uri - Is synonymous with base. Note that a trailing slash on the URL is significant.
• default directive - The action taken if the coordinates given do not fit any of the poly, circle or rect

directives, and there are no point directives. Defaults to nocontent in the absence of an ImapDefault
configuration setting, causing a status code of 204 No Content to be returned. The client should keep
the same page displayed.

• poly directive - Takes three to one-hundred points, and is obeyed if the user selected coordinates fall
within the polygon defined by these points.

• circle directive - Takes the center coordinates of a circle and a point on the circle. Is obeyed if the user
selected point is with the circle.

• rect directive - Takes the coordinates of two opposing corners of a rectangle. Obeyed if the point
selected is within this rectangle.

• point directive - Takes a single point. The point directive closest to the user selected point is obeyed if
no other directives are satisfied. Note that default will not be followed if a point directive is present and
valid coordinates are given.

Values

The values for each of the directives can be any of the following:

• URL - The URL can be relative or absolute. Relative URLs can contain '..' syntax and will be resolved
relative to the base valu . The base value itself will not be resolved according to the current value. The
statement base mailto: will work properly, though.

• Map - Equivalent to the URL of the imagemap file itself. No coordinates are sent with this, so a list will
be generated unless ImapMenu is set to none.

• Menu - Synonymous with map.
• Referer - Equivalent to the URL of the referring document. Defaults to http://servername/ if no Referer:
• nocontent - Sends a status code of 204 No Content, telling the client to keep the same page displayed.

Valid for all but base.
• Error - Fails with a 500 Server Error. Valid for all but base , but sort of useless for anything but default.

Coordinates

476 IBM i: IBM HTTP Server for i

0,0 200,200 - A coordinate consists of an x and a y value separated by a comma. The coordinates are
separated from each other by whitespace. To accommodate the way Lynx handles imagemaps, should a
user select the coordinate 0,0, it is as if no coordinate had been selected.

Quoted Text

list Text - After the value or after the coordinates, the line optionally may contain text within double
quotes. This string is used as the text for the link if a list is generated:

list text
If quoted text is not present, the name of the link will be used as the text:
http://QIBM.com

It is impossible to escape double quotes within this text.

Example Mapfile

#Comments are printed in a 'formatted' or 'semiformatted' list.
#And can contain html tags. <hr>
base referer
poly map "Could I have a list, please?" 0,0 0,10 10,10 10,0
rect .. 0,0 77,27 "the directory of the referer"
circle http://www.ibmdc.com/lincoln/feedback/ 195,0 305,27
rect another_file "in same directory as referer" 306,0 419,27
point http://www.ibmda.com/ 100,100
point http://www.ibmdb.com/ 200,200
rect mailto:me@ibm.com 100,150 200,0 "Bugs?"

Referencing your mapfile

Module mod_include
Module mod_include supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_include provides for server-parsed html documents.

Note: A configuration change is required in order for mod_include to work correctly. Previously,
mod_include was a handler, and the config file had a AddHandler server-parsed .htmls directive in order
to define mod_include as a handler for extensions of .htmls. mod_include is now a filter. Thus, the
AddHandler directive no longer applies. Directive AddOutputFilter must be used and associated with a file
extension, much like directive AddHandler. For example:

AddOutputFilter INCLUDES .shtml

Enabling Server-Side Includes

Server-Side Includes (SSI) are implemented by the INCLUDES filter. If documents containing SSI
directives are given the extension .shtml, the following directives makes the HTTP Server parse and
assign the resulting documents as MIME type text/html. For example:

AddType text/html .shtml
AddOutputFilter INCLUDE .sthml

The following directive must be given for the directories containing the shtml files (typically in a
<Directory> section, but this directive is also valid .htaccess files if AllowOverride Options is set). For
example:

Options +Includes

See the “Options” on page 348 directive for more information.

IBM HTTP Server for i 477

Note: The IBM i system does not support XBitHack to enable server-side includes.

Directives

• “SSIETag” on page 478
• “SSIEndTag” on page 478
• “SSIErrorMsg” on page 479
• “SSILastModified ” on page 479
• “SSILegacyExprParser” on page 480
• “SSIStartTag” on page 480
• “SSITimeFormat” on page 480
• “SSIUndefinedEcho” on page 481

SSIETag
Module: mod_include

Syntax: SSIETag on|off

Default: SSIETag off

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SSIETag on

The SSIETag directive controls whether an ETags header are generated by the server.

Under normal circumstances, a file filtered by mod_include may contain elements that are either
dynamically generated, or that may have changed independently of the original file. As a result, by default
the server is asked not to generate an ETag header for the response by adding no-etag to the request
notes.

The SSIETag directive suppresses this behaviour, and allows the server to generate an ETag header.
This can be used to enable caching of the output. Note that a backend server or dynamic content
generator may generate an ETag of its own, ignoring no-etag, and this ETag will be passed by mod_include
regardless of the value of this setting.

Parameter: on | off

• The on parameter represents the existing ETags will be respected, and ETags generated by the
server will be passed on in the response.

• The off parameter represents no-etag will be added to the request notes, and the server is asked not
to generate an ETag. Where a server ignores the value of no-etag and generates an ETag anyway, the
ETag will be respected.

SSIEndTag
Module: mod_include

Syntax: SSIEndTag string

Default: SSIEndTag "-->"

Context: server config, virtual host

Override: none

Origin: Apache

Example: SSIEndTag "-->"

478 IBM i: IBM HTTP Server for i

The SSIEndTag directive changes the string that mod_include looks for to mark the end of a include
command.

Parameter: string

• The string parameter represents the string that mod_include looks for to mark the end of a include
command.

SSIErrorMsg
Module: mod_include

Syntax: SSIErrorMsg string

Default: SSIErrorMsg "[an error occurred while processing this directive]"

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: SSIErrorMsg "This is the default error message"

This SSIErrorMsg directive defines the default error message that is used when an error is encountered
while processing SSI tags in a file. This configuration directive can be used instead of the config errmsg
SSI tag.

Parameter: string

• The string parameter defines the default error message that is used when an error is encountered
while processing SSI tags in a file. For example:

SSIErrorMsg "This is the default error message"

SSILastModified
Module: mod_include

Syntax: SSILastModified on|off

Default: SSILastModified off

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SSILastModified on

The SSILastModified directive controls whether Last-Modified headers are generated by the server.

Under normal circumstances, a file filtered by mod_include may contain elements that are either
dynamically generated, or that may have changed independently of the original file. As a result, by default
the Last-Modified header is stripped from the response.

The SSILastModified directive overrides this behaviour, and allows the Last-Modified header to be
respected if already present, or set if the header is not already present. This can be used to enable
caching of the output.

Parameter: on | off

• The on parameter represents the Last-Modified header will be respected if already present in a
response, and added to the response if the response is a file and the header is missing.

• The off parameter represents the Last-Modified header will be stripped from responses.

IBM HTTP Server for i 479

SSILegacyExprParser
Module: mod_include

Syntax: SSILegacyExprParser on|off

Default: SSILegacyExprParser off

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SSILegacyExprParser on

mod_include has been switched to the new ap_expr syntax for conditional expressions in #if flow control
elements. The SSILegacyExprParser directive allows to switch to the old syntax which is compatible with
HTTP server version 2.2.x and earlier.

Parameter: on | off

• The on parameter represents the old syntax conditional expressions is used.
• The off parameter represents the new ap_expr syntax conditional expressions is used (default

behavior).

SSIStartTag
Module: mod_include

Syntax: SSIStartTag string

Default: SSIStartTab "<!--#"

Context: server config, virtual host

Override: none

Origin: Apache

Example: SSIStartTab "<!--#"

The SSIEndTag directive changes the string that mod_include looks for to mark an include element
to process. You may want to use this option if you have 2 servers parsing the output of a file (each
processing different commands, possibly at different times).

Parameter: string

• The string parameter represents the string that mod_include looks for to mark an include element to
process.

Example 1

SSIStartTag "*!ENTITY!*%"
SSIEndTag "%>"

The example above, which specifies a matching SSIEndTag, allows you to use SSI directives as shown in
the example below:

Example 2: SSI directives with alternate start and end tags

!ENTITY!%printenv %>

SSITimeFormat
Module: mod_include

Syntax: SSITimeFormat strftime string

480 IBM i: IBM HTTP Server for i

Default: SSITimeFormat "%A, %d-%b-%Y %H:%M:%S %Z"

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: SSITimeFormat "%H:%M:%S %m-%d-%y"

The SSITimeFormat directive defines the default dates/times format that are returned to the browser
while processing SSI tags. This configuration directive can be used instead of the config timefmt SSI tag.

Parameter: strftime string

• The strftime string parameter defines the default dates/times format that are returned to the
browser while processing SSI tags. For example,

SSITimeFormat "%H:%M:%S %m-%d-%y"

See “Server-side include commands for HTTP Server” on page 643 for a list of supported server-side
include directives.

Note: HTTP Server does not support the %Z (time zone) format.

SSIUndefinedEcho
Module: mod_include

Syntax: SSIUndefinedEcho string

Default: SSIUndefinedEcho "(none)"

Context: server config, virtual host

Override: none

Origin: Apache

Example: SSIUndefinedEcho "The value on an SSI Echo request is not defined"

The SSIUndefinedEcho directive is used to define the default message that is used when an "echo" SSI
tag is requesting a variable whose value has not been set.

Parameter: string

• The string parameter defines the default message that is used when an "echo" SSI tag is requesting
a variable whose value has not been set.

Module mod_log_config
Module mod_log_config supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_log_config provides for logging of the requests made to the server, using the Common
Log Format or a user-specified format. There are 3 directives that control log file creation in this module.
The TransferLog, LogFormat, and CustomLog directives are used for log file creation. The TransferLog
directive is used to create a log file. The LogFormat directive is used to set a custom format. The
CustomLog directive to define a log file and format in one go. The TransferLog and CustomLog directives
can be used multiple times in each server to cause each request to be logged to multiple files. The other
directives in this module control log file archiving. See “Log formats for HTTP Server” on page 29 for
information on the log file formats supported on HTTP Server.

Use with virtual hosts

If a “<VirtualHost> ” on page 363 section does not contain any TransferLog or CustomLog directives, the
logs defined for the main server will be used. If it does contain one or more of these directives, requests

IBM HTTP Server for i 481

serviced by this virtual host will only be logged in the log files defined within its definition, not in any of the
main server's log files. See the examples below.

Security considerations

See “Security tips for HTTP Server” on page 30 for details on why your security could be compromised if
the directory where log files are stored is writable by anyone other than the user that starts the server.

Directives

• “CustomLog” on page 482
• “FRCACustomLog” on page 484
• “GlobalLog” on page 486
• “LogFormat” on page 487
• “TransferLog” on page 488

CustomLog
Module: mod_log_config

Syntax: CustomLog file-or-pipe format-or-nickname [env=[!]environment-variable|expr=expression]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: The directive can be specified multiple times in the same configuration file. This
is how one would generate multiple log files for the same server instance. For example, if you want
an access log, agent log, and referer log, you could specify this directive three separate times with a
different file and format. Log files created with CustomLog will be created with a CCSID of UTF-8 (1208)
for Integrated File System.

Example: See below.

The CustomLog directive is used to log requests to the server. A log format is specified, and the logging
can optionally be made conditional on request characteristics using environment variables.

Parameter One: file-or-pipe

• The file-or-pipe value indicates the filename to which log records should be written. This is used
exactly like the argument to TransferLog; that is, it is either a full path or relative to the current
server root. If a pipe is specified, it would be the name of a program that would receive the log
file information on standard in. A pipe is specified by using the pipe character (|) followed by a
path to the program name (no space between them). The program name can be either a path to a
QSYS program object or an IFS path to a symbolic link. The symbolic link would then link to a QSYS
program. Data written to the pipe from the server will be in the FSCCSID that is in use by the server.

Parameter Two: format-or-nickname

• If the value is format, it specifies a format for each line of the log file. The options available for the
format are exactly the same as for the argument of the LogFormat directive. If the format includes
any spaces (which it will in almost all cases) they should be enclosed in double quotes. If the
argument is nickname, that nickname will tie back to a LogFormat directive with the same specified
nickname.

If the nickname "DDS" is specified, the server will create a DDS log file and each record will contain
the format described by file QHTTPSVR/QAZHBLOG. When the second argument is "DDS", a path
name to a file in the QSYS.LIB file system must also be specified. When "DDS" is specified, it is
not necessary to use the Logformat directive to define the format. The nickname "DDS" is a special
nickname that is predefined in HTTP Server.

482 IBM i: IBM HTTP Server for i

Parameter Three: [env=[!]environment-variable] | expr=expression

• The optional env= clause controls whether a particular request will be logged in the specified file
or not. If the specified environment variable is set for the request (or is not set, in the case of a
'env=!name' clause), then the request will be logged. Alternatively, the condition can be expressed
as arbitrary boolean expression. If the condition is not satisfied, the request will not be logged.
References to HTTP headers in the expression will not cause the header names to be added to the
Vary header. Environment variables can be set on a per-request basis using the mod_setenvif and/or
mod_rewrite modules.

There is no way to specify conditional logging for requests handled by Fast Response Cache
Accelerator (FRCA). That is, environment variable conditions have no affect on the selection of FRCA
requests that are logged. If FRCA is being used and a FRCACustomLog is not configured, all requests
handled by FRCA will be logged in the CustomLog. The environment variable conditions continue to
apply to requests not served from FRCA.

For example, if you want to record requests for all GIF images on your server in a separate log file, but not
your main log, you can use:

SetEnvIf Request_URI \.gif$ fig-image
CustomLog gif-requests.log common env-gif-image
CustomLog nongif-requests.log common env=!gif-image

Examples of CustomLog:

CustomLog with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common

CustomLog in QSYS with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /QSYS.LIB/MYLIB.LIB/MYLOG.FILE common

CustomLog with explicit format string
CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b"

CustomLog with env specified
SetEnvIf Request_URI \.gif$ gif-image
CustomLog gif-requests.log common env=gif-image
CustomLog nongif-requests.log common env=!gif-image

CustomLog defining a piped log
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog |/QSYS.LIB/MYLIB.LIB/CUSTOMPIPE.PGM common

For IFS files, the user must create the directories that contain the log file and must grant the QTMHHTTP
user write access to the directory. For QSYS.LIB logs, the user must create the library that contains the
logs. The server will create the file and members in the specified library.

Note: It is recommended that HTTP Server create the QSYS.LIB log file. If the QSYS.LIB log file is created
with a record length that is too small, log information may be truncated and lost. By default the server
creates all QSYS.LIB log files with a record size of 512 or greater.

If the filename does not begin with a slash (/) then it is assumed to be relative to the ServerRoot.
If “LogCycle” on page 341 is active and if the path ends without a (/) character, then the path is
considered to be the complete log file name. In this case, the server will add an extension in the format
QCYYMMDDHH, where these variables have the following values:

• Q is a default value that indicates to the server that this is a log file.
• C is the century indicator (0 for pre-2000, 1 for post-2000).
• YY is the year indicator.
• MM is the month indicator.
• DD is the day indicator.
• HH is the hour indicator (00 = 00:00 (midnight), 23=23:00).

Note: This variable will not be generated for filesystem QDLS

IBM HTTP Server for i 483

For example, a path of "/logs/errorlog" results in a file such as "/logs/errorlog.Q100030300".

If “LogCycle” on page 341 is active and if the path ends with a (/) character, then the path is considered
to be the directory that will contain the log file. In this case, the server will create log files named in the
QCYYMMDDHH format. For example, a path of "/logs/errorlog/" results in a file such as "/logs/errorlog/
Q100030300". If “LogCycle” on page 341 is active and the logfile is in the QSYS filesystem, the name
must end in the file component of the IFS path. Example:

Config file directives
LogCycle Daily
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE common

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

“LogCycle” on page 341 Hourly is not valid if the logfile is in the QDLS filesystem as that filesystem only
supports 8 character file names and 3 character extensions. For QDLS, the path given on the CustomLog
directive must be a directory. For example

CustomLog /QDLS/MYPATH/LOGS/ common

If “LogCycle” on page 341 is not active, no special naming is used. The name of the log file given on the
CustomLog directive is used as given for the name of the log file. If the name is a directory, a default name
of http.log will be concatenated to the directory name to create the log file. For example:

Config file directives
LogCycle Off
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

Security: See “Security tips for HTTP Server” on page 30 for details on why your security could be
compromised if the directory where log files are stored is writable by anyone other than the user that
starts the server. If a program is used, then it will be run under the user who started httpd. This will be
root if the server was started by root (be sure that the program is secure).

FRCACustomLog
Module: mod_log_config

Syntax: FRCACustomLog file-or-pipe file format-or-nickname

Default: none

Context: server config

Override: none

Origin: IBM

Usage Considerations: The directive can be specified multiple times in the same configuration file. This
is how one would generate multiple log files for the same server instance. For example, if you want
an access log, agent log, and referer log, you could specify this directive three separate times with a
different file and format. Log files created with FRCACustomLog will be created with a CCSID of UTF-8
(1208) for Integrated File System.

Example: See below.

The FRCACustomLog directive is used to log FRCA requests to the server.

Parameter One: file-or-pipe file

• The file-or-pipe file value indicates the filename to which log records should be written. It is either
a full path or relative to the current server root. If a pipe is specified, it would be the name of a

484 IBM i: IBM HTTP Server for i

program that would receive the log file information on standard in. A pipe is specified by using the
pipe character "|" followed by a path to the program name (no space between them). The program
name can be either a path to a QSYS program object or an IFS path to a symbolic link. The symbolic
link would then link to a QSYS program. Note that data written to the pipe from the server will be in
the FSCCSID that is in use by the server.

Parameter Two: format-or-nickname

• The format-or-nickname argument specifies a format or nickname for each line of the log file . If it
is a format, it specifies a format for each line of the log file. The options available for the format are
exactly the same as for the argument of the LogFormat directive. If the format includes any spaces
(which it will in almost all cases) they should be enclosed in double quotes. If the argument is a
nickname, that nickname will tie back to a LogFormat directive with the same specified nickname.

If the nickname "DDS" is specified, the server will create a DDS log file and each record will contain
the format described by file QHTTPSVR/QAZHBLOG. When the second argument is "DDS" a path
name to a file in the QSYS.LIB file system must also be specified. When "DDS" is specified, it is
not necessary to use the Logformat directive to define the format. The nickname "DDS" is a special
nickname that is pre-defined in the server. See directive Logformat for additional considerations for
the DDS nickname.

Examples of FRCACustomLog:

FRCACustomLog with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
FRCACustomLog logs/FRCAaccess_log common

FRCACustomLog in QSYS with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
FRCACustomLog /QSYS.LIB/MYLIB.LIB/MYFRCALOG.FILE common

CustomLog in QSYS with DDS format
FRCACustomLog /QSYS.LIB/MYLIB.LIB/FRCADDSLOG.FILE DDS

FRCACustomLog with explicit format string
FRCACustomLog logs/FRCAaccess_log "%h %l %u %t \"%r\" %>s %b"

FRCACustomLog defining a piped log
LogFormat "%h %l %u %t \"%r\" %>s %b" common
FRCACustomLog |/QSYS.LIB/MYLIB.LIB/PIPELOG.PGM common

For IFS log files and QSYS log files, the user must create the directories that contain the log file and
must grant the QTMHHTTP user write access to the directory. For QSYS.LIB logs, the user must create the
library that contains the logs. The server will create the file and members in the specified library.

Note: It is recommended that HTTP Server create the QSYS.LIB log file. If the QSYS.LIB log file is created
with a record length that is too small, log information may be truncated and lost. By default the server
creates all QSYS.LIB log files with a record size of 512 or greater.

If the filename does not begin with a slash (/) then it is assumed to be relative to the ServerRoot.
If “LogCycle” on page 341 is active and if the path ends without a (/) character, then the path is
considered to be the complete log file name. In this case, the server will add an extension in the format
QCYYMMDDHH, where these variables have the following values:

• Q is a default value that indicates to the server that this is a log file.
• C is the century indicator (0 for pre-2000, 1 for post-2000).
• YY is the year indicator.
• MM is the month indicator.
• DD is the day indicator.
• HH is the hour indicator (00 = 00:00 (midnight), 23=23:00).

Note: this variable will not be generated for filesystem QDLS

For example, a path of "/logs/errorlog" results in a file such as "/logs/errorlog.Q100030300".

IBM HTTP Server for i 485

If “LogCycle” on page 341 is active and if the path ends with a (/) character, then the path is considered
to be the directory that will contain the log file. In this case, the server will create log files named in the
QCYYMMDDHH format. For example, a path of "/logs/errorlog/" results in a file such as "/logs/errorlog/
Q100030300". If “LogCycle” on page 341 is active and the logfile is in the QSYS filesystem, the name
must end in the file component of the IFS path. Example:

Config file directives
LogCycle Daily
LogFormat "%h %l %u %t \"%r\" %>s %b" common
FRCACustomLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE common

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

“LogCycle” on page 341 Hourly is not valid if the logfile is in the QDLS filesystem as that filesystem
only supports 8 character file names and 3 character extensions. Also for QDLS, the path given on the
FRCACustomLog directive must be a directory. For example:

FRCACustomLog /QDLS/MYPATH/LOGS/ common

The resulting log files would be /QDLS/MYPATH/LOGS/Qcyymmdd.

If “LogCycle” on page 341 is not active, no special naming is used. The name of the log file given on the
FRCACustomLog directive is used as given for the name of the log file. If the name is a directory, a default
name of http.log will be concatenated to the directory name to create the log file. For example:

Config file directives
LogCycle Off
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

If FRCACustomLog is in the configuration, FRCA requests will be logged to the file specified on the
FRCACustomLog directive. All non-FRCA related requests will be logged to any other custom logs
configured with the CustomLog directive. Example:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common
FRCACustomLog logs/FRCAaccess_log common

All FRCA requests will be logged to logs/FRCAaccess_log and all non-FRCA requests will be logged
to logs/access_log. If FRCACustomLog is not specified in the configuration of the server instance, ALL
requests are logged to any custom logs configured with CustomLog including FRCA requests.

GlobalLog
Module: mod_log_config

Syntax: GlobalLog file|pipe format|nickname [env=[!]environment-variable| expr=expression]

Default: none

Context: server config

Override: none

Origin: Apache

Example:

GlobalLog with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
GlobalLog logs/access_log common

486 IBM i: IBM HTTP Server for i

GlobalLog in QSYS with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
GlobalLog /QSYS.LIB/MYLIB.LIB/MYLOG.FILE common

GlobalLog in QSYS with DDS format
GlobalLog /QSYS.LIB/MYLIB.LIB/DDSLOG.FILE DDS

GlobalLog with explicit format string
GlobalLog logs/access_log "%h %l %u %t \"%r\" %>s %b"

GlobalLog with env specified
SetEnvIf Request_URI \.gif$ gif-image
GlobalLog gif-requests.log common env=gif-image
GlobalLog nongif-requests.log common env=!gif-image

GlobalLog defining a piped log
LogFormat "%h %l %u %t \"%r\" %>s %b" common
GlobalLog |/QSYS.LIB/MYLIB.LIB/CUSTOMPIPE.PGM common

The GlobalLog directive defines a log shared by the main server configuration and all defined virtual hosts.

The GlobalLog directive is identical to the CustomLog directive, apart from the following differences:

• GlobalLog is not valid in virtual host context.
• GlobalLog is used by virtual hosts that define their own CustomLog, unlike a globally specified

CustomLog.

LogFormat
Module: mod_log_config

Syntax: LogFormat format [nickname]

Default: LogFormat "%h %l %u %t \"%r\" %s %b"

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: The directive can be specified multiple times in the same configuration file. This
is how one would generate multiple log file formats. For example, if you want an access log, agent log,
and referer log, you could specify this directive three separate times to define the formats of your log
files.

Example: LogFormat "%h %l %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-agent}i\""

The LogFormat directive sets the format of the default log file named by the TransferLog directive. See
the section on Custom Log Formats for details on the format arguments. If you include a nickname for
the format on the directive line, you can use that nickname in FRCACutomLog and CustomLog directives
rather than repeating the entire format string.

Parameter One: format

• The format parameter sets the format of the default log file named by the TransferLog directive. See
the section on Custom Log Formats for details on the format arguments.

Parameter Two: [nickname]

• The optional nickname parameter allows you to include a nickname for the format on the directive
line.

A LogFormat directive that defines a nickname does nothing else. That is, it only defines the nickname, it
doesn't actually apply the format and make it the default.

IBM HTTP Server for i 487

If LogFormat is used without a nickname, then any TransferLog directive that does not specify a format
will use the format defined with this directive, if it happened to be the most recent LogFormat directive in
the configuration file. If another LogFormat directive (without a nickname) is placed in the configuration
file, then that format becomes the new log format to be used on subsequent TransferLog directives.

The nickname "DDS" is a log format reserved for use in configuring data description specification
(DDS) log files. The server will automatically recognize this format and create a DDS log file based on
QHTTPSVR/QAZHBLOG. The "DDS" nickname should not be used when defining a new LogFormat. A
LogFormat directive with a nickname of "DDS" will be ignored by the server. The server will assume a DDS
file in QSYS.LIB when the "DDS" nickname appears on the CustomLog or FRCACustomLog directives.

See “Log formats for HTTP Server” on page 29 for information on the log file formats supported on HTTP
Server.

TransferLog
Module: mod_log_config

Syntax: TransferLog file-or-pipe

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: The directive can be specified multiple times in the same configuration file. This
is how one would generate multiple log files for the same server instance. For example, if you want
an access log, agent log, and referer log, you could specify this directive three separate times with a
different file and most recent LogFormat. Log files created with TransferLog will be created with a CCSID
of UTF-8 (1208) for Integrated File System.

Example: TransferLog logs/access_log

The TransferLog directive adds a log file in the format defined by the most recent LogFormat directive, or
Common Log Format. This is only if no other default format has been specified.

Parameter: file-or-pipe

• The file-or-pipe parameter specifies either a filename relative to the ServerRoot or a program to
pipe to. Use the pipe symbol (|) followed by a program to receive the log information in its standard
input. Data written to the pipe from the server will be in UTF-8 (1208) in use by the server. The new
program will not be started for a VirtualHost if it inherits the TransferLog from the main server.

Examples of TransferLog:

IFS example
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""
TransferLog logs/access_log

QSYS example
LogFormat "%h %l %u %t \"%r\" %>s %b"
TransferLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

Piped log example
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""
TransferLog |/QSYS.LIB/MYLIB.LIB/TRANSPIPE.PGM

For IFS files, the user must create the directories that contain the log file and must grant the QTMHHTTP
user write access to the directory. For QSYS.LIB logs, the user must create the library that contains the
logs. The server will create the file and members in the specified library. If the filename does not begin
with a slash (/) then it is assumed to be relative to the ServerRoot. If LogCycle is active and if the path
ends without a (/) character, then the path is considered to be the complete log file name. In this case,
the server will add an extension in the format QCYYMMDDHH, where these variables have the following
values:

488 IBM i: IBM HTTP Server for i

• Q is a default value that indicates to the server that this is a log file.
• C is the century indicator (0 for pre-2000, 1 for post-2000).
• YY is the year indicator.
• MM is the month indicator.
• DD is the day indicator.
• HH is the hour indicator (00 = 00:00 (midnight), 23=23:00).

Note: this variable will not be generated for filesystem QDLS

For example, a path of "/logs/errorlog" results in a file such as "/logs/errorlog.Q100030300".

If “LogCycle” on page 341 is active and if the path ends with a (/) character, then the path is considered
to be the directory that will contain the log file. In this case, the server will create log files named in the
QCYYMMDDHH format. For example, a path of "/logs/errorlog/" results in a file such as "/logs/errorlog/
Q100030300". If “LogCycle” on page 341 is active and the logfile is in the QSYS filesystem, the name
must end in the file component of the IFS path. For example:

Config file directives
LogCycle Daily
LogFormat "%h %l %u %t \"%r\" %>s %b" common
TransferLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

“LogCycle” on page 341 Hourly is not valid if the logfile is in the QDLS filesystem as that filesystem only
supports 8 character file names and 3 character extensions. If “LogCycle” on page 341 is not active, no
special naming is used. The name of the log file given on the TransferLog directive is used as given for
the name of the log file. If the name is a directory, a default name of http.log will be concatenated to the
directory name to create the log file. For example:

Config file directives
LogCycle Off
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

Note: See “Security tips for HTTP Server” on page 30 for details on why your security could be
compromised if the directory where log files are stored is writable by anyone other than the user that
starts the server. If a program is used, then it will be run under the user who started httpd. This will be
root if the server was started by root (be sure that the program is secure).

Note: When possible, you should use “CustomLog” on page 482 in place of TransferLog.

Module mod_log_io
Module mod_log_io supports logging formats for the IBM HTTP Server for i Web server.

Summary

This module provides the logging of input and output number of bytes received and sent per request. The
numbers reflect the actual bytes received on the network, which then takes into account the headers and
bodies of requests and responses. The counting is done before SSL/TLS on input and after SSL/TLS on
output. The numbers will correctly reflect any changes made by encryption.

This module requires Module mod_log_config, and is loaded by default. No LoadModule statement is
required.

This module adds two new logging formats. The characteristics of the request itself are logged by
placing "%" directives in the format string, which are replaced in the log file by the values as follows:
Format String Description %...I

IBM HTTP Server for i 489

Bytes received, including request and headers, cannot be zero (%...O). Bytes sent, including headers,
cannot be zero.

Format String Description

String Description

%...I Bytes received, including request and headers, cannot be zero.

%...O Bytes sent, including headers, cannot be zero.

Example: Combined I/O log format

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\" %I %O"

Module mod_mime
Module mod_mime supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_mime associates the request filename's extensions (for example, .html) with the file's
behavior (handlers and filters) and content (mime-type, language, character set and encoding). This
module is used to determine various bits of "meta information" with files by their filename extensions.
This information relates to the content of the document to its mime-type, language, character set and
encoding. This information is sent to the browser, and participates in content negotiation. The user's
preferences are respected when choosing one of several possible files to serve. In addition, a handler
can be set for a document that determines how the document will be processed within the server. See
mod_negotiation for more information regarding content negotiation.

The directives AddCharset, AddClient, AddEncoding, AddHandler, AddLanguage, and AddType are all used
to map file extensions onto the meta-information for that file. Respectively they set the character set,
content-encoding, handler, content-language, browser, and MIME-type (content-type) of documents.

In addition, mod_mime may define the document handler that controls which module or script will serve
the document. With the introduction of filters, mod_mime can also define the filters that the the content
should be processed through (for example, the Includes output filter for server side scripting) and what
filters the client request and POST content should be processed through (the input filters).

The directives AddHandler, AddOutputFilter, and AddInputFilter control the modules or scripts that serve
the document. The MultiviewsMatch directive allows mod_negotiation to consider these file extensions
when testing Multiviews matches.

The directive TypesConfig is used to specify a file that also maps extensions onto MIME types. Most
administrators use the provided mime.types file that associates common filename extensions with IANA
registered content types.

The core directives ForceType and SetHandler are used to associate all the files in a given container
(<location>, <directory>, or <files>) with a particular MIME-type or handler. These settings override any
filename extension mappings defined in mod_mime.

Note that changing the type or encoding of a file does not change the value of the Last-Modified header.
Therefore, previously cached copies may still be used by a client or proxy, with the previous headers.
If you change the meta-information (language, content type, character set or encoding) you may need
to update affected files (updating their last modified date) to ensure that all visitors are receiving the
corrected content headers.

Files with Multiple Extensions

Files can have more than one extension, and the order of the extensions is normally irrelevant. For
example, if the file welcome.html.fr maps onto content type text/html and then language French, the file
welcome.fr.html will map onto exactly the same information. The only exception to this is if an extension
is given which HTTP Server does not handle. In this case it will forget about any information it obtained
from extensions to the left of the unknown extension. For example, if the extensions fr and html are

490 IBM i: IBM HTTP Server for i

mapped to the appropriate language and type, but extension xxx is not assigned to anything, then the file
welcome.fr.xxx.html will be associated with content-type text/html but no language.

If more than one extension is given that maps onto the same type of meta-information, then the one to
the right will be used. For example, if ".gif" maps to the MIME-type image/gif and ".html" maps to the
MIME-type text/html, then the file welcome.gif.html will be associated with the MIME-type "text/html".

When a file with multiple extensions gets associated with both a MIME-type and a handler be careful.
This will usually result in the module associating a request with the handler. For example, if the .imap
extension is mapped to the handler "imap-file" (from mod_imap) and the .html extension is mapped to
the MIME-type "text/html", then the file world.imap.html will be associated with both the "imap-file"
handler and "text/html" MIME-type. When it is processed, the imap-file handler will be used, and it will be
treated as a mod_imap imagemap file.

Directives

• “AddCharset” on page 491
• “AddClient” on page 492
• “AddEncoding” on page 492
• “AddHandler” on page 493
• “AddInputFilter” on page 493
• “AddLanguage” on page 494
• “AddOutputFilter” on page 495
• “AddType” on page 495
• “DefaultLanguage” on page 496
• “ModMimeUsePathInfo” on page 497
• “MultiviewsMatch” on page 497
• “RemoveCharset” on page 498
• “RemoveClient” on page 498
• “RemoveEncoding” on page 499
• “RemoveHandler” on page 499
• “RemoveInputFilter” on page 500
• “RemoveLanguage” on page 500
• “RemoveOutputFilter” on page 501
• “RemoveType” on page 501
• “SuffixCaseSense” on page 502
• “TypesConfig” on page 502

AddCharset
Module: mod_mime

Syntax: AddCharset charset extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddCharset ISO-2022-JP .jis

IBM HTTP Server for i 491

The AddCharset directive maps the given filename extensions to the specified content charset. Charset is
the MIME charset parameter of filenames containing extension. This mapping is added to any already in
force, overriding any mappings that already exist for the same extension.

This directive is useful for informing the client about the character encoding of the document so it can
be interpreted and displayed appropriately. It also used for content negotiation. Content Negotiation is
where the server returns one from several documents based on the client's charset preference.

Parameter One: charset

• The charset parameter value is any valid MIME character set.

Parameter Two: extension

• The extension parameter value is any character string that is a valid file extension.

See “Module mod_negotiation” on page 503 for more information.

AddClient
Module: mod_mime

Syntax: AddClient user-agent extension

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: IBM

Example: AddClient Mozilla/2.0 .moz

Example: AddClient IBM* .ibm

The AddClient directive binds files with a particular extension to the type and version of the browser
(user-agent) that is sending the request. This is often referred to as Automatic Browser Detection. All
HTTP requests contain a User-Agent header that identifies the client browser. Based on this User-Agent
header, the server can respond with a specific version of the resource (with the extension specified) that
is especially appropriate for the client browser.

Parameter One: user-agent

• The user-agent parameter value matched in the User-Agent header of the incoming
request. This is case-sensitive. The asterisk may be used as a wildcard character.

Parameter Two: extension

• The extension parameter value is the file extension that should be associated with the
browser. Wildcards cannot be used.

AddEncoding
Module: mod_mime

Syntax: AddEncoding MIME-enc extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddEncoding x-gzip gz

492 IBM i: IBM HTTP Server for i

The AddEncoding directive maps the given filename extensions to the specified encoding type. MIME-enc
is the MIME encoding that is used for documents containing the extension. This mapping is added to any
already in force, overriding any mappings that already exist for the same extension.

Old clients expect x-gzip and x-compress, however the standard dictates that they're equivalent to gzip
and compress respectively. HTTP Server does content encoding comparisons by ignoring any leading x-.
When responding with an encoding the HTTP Server will use whatever form (for example., x-QIBM or
QIBM) the client requested. If the client didn't specifically request a particular form, the server will use
the form given by the AddEncoding directive. In conclusion you should always use x-gzip and x-compress
for these two specific encodings. More recent encodings, such as deflate should be specified without the
x-.

Parameter One: MIME-enc

• The MIME-enc parameter value should be set to a content-encoding supported by HTTP/
1.1. Currently, these values are 'gzip', 'compress' and 'deflate'.

Parameter Two: extension

• The extension parameter value is any string that is a valid file extension.

AddHandler
Module: mod_mime

Syntax: AddHandler handler-name extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddHandler cgi-script cgi

The AddHandler directive maps the filename extensions to handler handler-name. This mapping is added
to any already in force, overriding any mappings that already exist for the same extension. For example, to
activate CGI scripts with the file extension ".cgi", you might use:

AddHandler cgi-script cgi

Once this has been put into your configuration file, any file containing the ".cgi" extension will be treated
as a CGI program.

Parameter One: handler-name

• The handler-name parameter value is the name of the handler (program) that will process
the request.

Parameter Two: extension

• The extension parameter value is any character string that is a valid file extension.

AddHandler can also be used to configure the use of Server Side Includes. This is done with the following
directive combination:

AddType text/html .shtml
AddHandler server-parsed .shtml

See “Handler for HTTP Server” on page 196 for more information.

AddInputFilter
Module: mod_mime

IBM HTTP Server for i 493

Syntax: AddInputFilter filter extension [extension ...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: AddInputFilter gzip .zip

The AddInputFilter directive maps the filename extensions extension to the filters that will process client
requests and POST input (when they are received by the server). This is in addition to any filters defined
elsewhere, including the SetInputFilter directive. This mapping is merged over any already in force,
overriding any mappings that already exist for the same extension.

If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension
can be specified with or without a leading dot.

Parameter One: filter

• The filter parameter value is the process that is applied to data that is sent or received by
the server.

Parameter Two: extension

• The extension parameter value is any character string that is a valid file extension.

Example

<Directory/www/data/>
AddInputFilter gzip Zip
</Directory>

See the Apache Software Foundation filter documentation for more information.

AddLanguage
Module: mod_mime

Syntax: AddLanguage MIME-lang extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddLanguage fr .fr

The AddLanguage directive maps the given filename extensions to the specified content language. MIME-
lang is the MIME language of filenames containing extension. This mapping is added to any already in
force, overriding any mappings that already exist for the same extension.

Even though the content language is reported to the client, the browser is unlikely to use this information.
The AddLanguage directive is more useful for content negotiation, where the server returns one from
several documents based on the client's language preference.

If multiple language assignments are made for the same extension, the last one encountered is the one
that is used.

Parameter One: MIME-lang

• The MIME-lang parameter value is any valid MIME-language designation.

494 IBM i: IBM HTTP Server for i

http://httpd.apache.org/docs-2.0/filter.html

Parameter Two: value

• The extension parameter value is any character string that is a valid file extension.

See “Module mod_negotiation” on page 503 for more information.

AddOutputFilter
Module: mod_mime

Syntax: AddOutputFilter filter extension [extension ...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: AddOutputFilter INCLUDES shtml

The AddOutputFilter directive maps the filename extensions extension to the filters that process
responses from the server (before they are sent to the client). This is in addition to any filters defined
elsewhere, including the SetOutputFilter directive. This mapping is merged over any already in force,
overriding any mappings that already exist for the same extension.

For example, the following configuration will process all .shtml files for server-side includes.

AddOutputFilter INCLUDES shtml

If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension
can be specified with or without a leading dot.

Parameter One: filter

• The filter parameter value is the process that is applied to data that is sent or received by
the server.

Parameter Two: extension

• The extension parameter value is any character string that is a valid file extension.

See the Apache Software Foundation filter documentation for more information.

AddType
Module: mod_mime

Syntax: AddType MIME-type extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddType image/gif .gif

Example: AddType image/jpeg jpeg jpg jpe

The AddType directive maps the given filename extensions onto the specified content type. MIME-type is
the MIME type to use for filenames containing extension. This mapping is added to any already in force,
overriding any mappings that already exist for the same extension. This directive can be used to add
mappings not listed in the MIME types file. It is recommended that new MIME types be added using the
AddType directive rather than changing the TypesConfig file.

IBM HTTP Server for i 495

http://httpd.apache.org/docs-2.0/filter.html

Parameter One: MIME-type

• The MIME-type parameter value is any valid MIME-type.

Parameter Two: extension

• The extension parameter value is any character string that is a valid file extension.
The extension parameter is case-insensitive and can be specified with or without a
leading dot. File names may have multiple extensions and the extension argument will
be compared against each of them.

A similar effect to mod_negotiation's LanguagePriority can be achieved by qualifying a media-type with
qs:

Example

AddType application/rss+xml;qs=0.8 .xml

This is useful in situations, e.g. when a client requesting Accept: */* can not actually processes the
content returned by the server.

This directive primarily configures the content types generated for static files served out of the file
system. For resources other than static files, where the generator of the response typically specifies a
Content-Type, this directive has no effect.

Notes:

If no handler is explicitly set for a request, the specified content type will also be used as the handler
name.

When explicit directives such as “SetHandler” on page 359 or “AddHandler” on page 493 do not apply
to the current request, the internal handler name normally set by those directives is instead set to the
content type specified by this directive.

This is a historical behavior that may be used by some third-party modules (such as mod_php) for taking
responsibility for the matching request.

Configurations that rely on such "synthetic" types should be avoided. Additionally, configurations that
restrict access to “SetHandler” on page 359 or “AddHandler” on page 493 should restrict access to this
directive as well.

DefaultLanguage
Module: mod_mime

Syntax: DefaultLanguage MIME-lang

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: DefaultLanguage en-US

The DefaultLanguage directive tells HTTP Server that all files in the directive's scope (for example, all files
covered by the current <Directory> container) that don't have an explicit language extension configured
by AddLanguage should be considered to be in the specified MIME-lang language. This allows entire
directories to be marked as containing Dutch content, for instance, without having to rename each
file. Note that unlike using extensions to specify languages, DefaultLanguage can only specify a single
language.

If no DefaultLanguage directive is in force, and a file does not have any language extensions configured by
AddLanguage, then that file will be considered to have no language attribute.

496 IBM i: IBM HTTP Server for i

Parameter: MIME-lang

• The MIME-langparameter value is any valid MIME-language designation.

See “Module mod_negotiation” on page 503 for more information.

ModMimeUsePathInfo
Module: mod_mime

Syntax: ModMimeUsePathInfo on | off

Default: ModMimeUsePathInfo off

Context: directory

Override: none

Origin: Apache

Example: ModMimeUsePathInfo on

The ModMimeUsePathInfo directive is used to combine the filename with the path_info URL component
to apply mod_mime's directives to the request. The default value is off, meaning the path_info component
is ignored. This directive is recommended when you have a virtual filesystem.

For example, if ModMimeUsePathInfo is set to on, then a request for /bar/file.shtml where /bar is a
Location, mod_mime will treat the incoming request as /bar/file.shtml and directives like AddOutputFilter
INCLUDES .shtml will add the INCLUDES filter to the request. If ModMimeUsePathInfo is not set, the
INCLUDES filter will not be added.

Parameter: on | off

• The on parameter value specifies that filenames will be combines with path_info URL
components.

• The off parameter value specifies that the path_info component is ignored.

Example

ModMimeUsePathInfo on

If you have a request for /myfile/more.shtml where myfile is an existing file containing SSI,
and AcceptPathInfo is set on in order to accept the actual file "myfile" as the requested
file, and ModMimeUsePathInfo is on, mod_mime will treat the incoming request as SSI
and directives like AddOutputFilter INCLUDES .shtml will add the INCLUDES filter to the
request. If ModMimeUsePathInfo is not set, the INCLUDES filter will not be added. When
ModMimeUsePathInfo is set, the trailing path name can be used to determine the content
type of the existing file.

MultiviewsMatch
Module: mod_mime

Syntax: MultiviewsMatch NegotiatedOnly | Handlers | Filters | Any

Default: MultiviewsMatch NegotiatedOnly

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: MultiviewsMatch Handlers

Example: MultiviewsMatch Handlers Filters

IBM HTTP Server for i 497

The MultiviewsMatch directive permits three different behaviors for mod_negotiation's Multiviews
feature. Multiviews allows a request for a file (index.html for example) to match any negotiated extensions
following the base request (for example, index.html.en, index.html.fr, or index.html.gz).

Parameter: NegotiatedOnly | Handlers | Filters | Any

• The NegotiatedOnly parameter value specifies that every extension following the base
name must correlate to a recognized mod_mime extension for content negotiation
(for example, Charset, Content-Type, Language, or Encoding). This is the strictest
implementation with the fewest unexpected side effects, and is the default behavior.

• The Handlers and Filters parameter value set the MultiviewsMatch directive to either
Handlers, Filters, or both option keywords. If all other factors are equal, the smallest file
will be served (for example, in deciding between index.html.cgi of 500 characters and
index.html.pl of 1000 bytes, the .cgi file would be served). Users of .asis files might prefer
to use the Handler option, if .asis files are associated with the asis-handler.

• The Any parameter value specifies that any extensions to match, even if mod_mime
doesn't recognize the extension. This was the behavior in Apache 1.3, and can cause
unpredictable results, such as serving .old or .bak files the webmaster never expected to
be served.

RemoveCharset
Module: mod_mime

Syntax: RemoveCharset extension [extension...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RemoveCharset .ext

The RemoveCharset directive removes any character set associations for files with the given extensions.
This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or
the server configuration files.

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The
extension can be specified with or without a leading dot.

RemoveClient
Module: mod_mime

Syntax: RemoveClient extension [extension...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: IBM

Example: RemoveClient .moz

The RemoveClient directive removes any client (browser) associations for files with the given extensions.
This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or
the server config files.

498 IBM i: IBM HTTP Server for i

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Example

/work/.htaccess:
RemoveClient .moz

If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension
can be specified with or without a leading dot. This removes any special handling of .moz files in the /
work/ directory (and any subdirectories), thereby disabling automatic browser detection for files in this
directory. The extension argument is case-insensitive, and can be specified with or without a leading dot.

Note: RemoveClient directives are processed after any “AddClient” on page 492 directives, so it is
possible they may undo the effects of the latter if both occur within the same directory configuration.

RemoveEncoding
Module: mod_mime

Syntax: RemoveEncoding extension [extension...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RemoveEncoding .gz

The RemoveEncoding directive removes any encoding associations for files with the given extensions.
This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or
the server config files.

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Example

/work/.htaccess:
AddEncoding x-gzip .gz
AddType text/plain .asc
<Files *.gz.asc>
 RemoveEncoding .gz
</Files>

The example will cause work.gz to be marked as encoded with the gzip method, but cause
work.gz.asc to be marked as an unencoded plaintext file.

Note: RemoveEncoding directives are processed after any AddEncoding directives, so it is possible
they may undo the effects of the latter if both occur within the same directory configuration. If
SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension
can be specified with or without a leading dot.

RemoveHandler
Module: mod_mime

Syntax: RemoveHandler extension [extension...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

IBM HTTP Server for i 499

Origin: Apache

Usage Considerations: RemoveHandler .html

Example: example

The RemoveHandler directive removes any handler associations for files with the given extensions. This
allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the
server config files.

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Example

/QIBM/.htaccess: AddHandler server-parsed .html
/QIBM/bar/.htaccess: RemoveHandler .html

The example has the effect of returning .html files in the /QIBM/bar directory to being
treated as normal files, rather than as candidates for parsing.

RemoveInputFilter
Module: mod_mime

Syntax: RemoveInputFilter extension [extension ...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RemoveInputFilter .ext

The RemoveInputFilter directive removes any input filter associations for files with the given extensions.
This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or
the server configuration files.

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The
extension can be specified with or without a leading dot.

RemoveLanguage
Module: mod_mime

Syntax: RemoveLanguage extension [extension ...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RemoveLanguage Fr

The RemoveLanguage directive removes any language associations for files with the given extensions.
This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or
the server configuration files.

500 IBM i: IBM HTTP Server for i

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The
extension can be specified with or without a leading dot.

RemoveOutputFilter
Module: mod_mime

Syntax: RemoveOutputFilter extension [extension ...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RemoveOutputFilter .ext

The RemoveOutputFilter directive removes any output filter associations for files with the given
extensions. This allows .htaccess files in subdirectories to undo any associations inherited from parent
directories or the server configuration files.

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The
extension can be specified with or without a leading dot.

RemoveType
Module: mod_mime

Syntax: RemoveType extension [extension...]

Default: none

Context: virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RemoveType .cgi

The RemoveType directive removes any MIME type associations for files with the given extensions. This
allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the
server config files.

Parameter: extension

• The extension parameter value is any character string that is a valid file extension.

Example

/work/.htaccess:
RemoveType .cgi

The example removes any special handling of .cgi files in the /work/ directory (and any
beneath it), causing the files to be treated as the default type.

Note: RemoveType directives are processed after any AddType directives, so it is possible they may undo
the effects of the latter if both occur within the same directory configuration. If SuffixCaseSense is on

IBM HTTP Server for i 501

(default is off), then the extension argument is case-insensitive. The extension can be specified with or
without a leading dot.

SuffixCaseSense
Module: mod_mime

Syntax: SuffixCaseSense on | off

Default: SuffixCaseSense off

Context: server config

Override: none

Origin: IBM

Example: SuffixCaseSense on

The SuffixCaseSense directive is used to specify whether the server should distinguish between
uppercase and lowercase characters when it has to compare file extensions to the extension patterns
on the following directives:

• AddType
• AddClient
• AddEncoding
• AddLanguage
• AddCharset
• AddHandler
• AddInputFilter
• AddOutputFilter
• RemoveType
• RemoveClient
• RemoveEncoding
• RemoveLanguage
• RemoveCharset
• RemoveHandler
• RemoveInputFilter
• RemoveOutputFilter

By default, the HTTP Server will not be sensitive to the case of the extensions.

Parameter: on | off

• The on parameter value specifies the server will be sensitive to the case of file extensions.
• The off parameter value specifies the server will not be sensitive to the case of file

extensions.

TypesConfig
Module: mod_mime

Syntax: TypesConfig filename

Default: TypesConfig /QIBM/UserData/HTTPA/conf/mime.types

Context: server config

Override: none

502 IBM i: IBM HTTP Server for i

Origin: Apache

Example: TypesConfig /conf/mime2.types

The TypesConfig directive sets the location of the MIME types configuration file. Filename is relative to the
ServerRoot. This file sets the default list of mappings from filename extensions to content types; changing
this file is not recommended. Use the AddType directive instead. The file contains lines in the format of
the arguments to an AddType command:

MIME-type extension [extension ...]

Blank lines, and lines beginning with a hash character (#) are ignored.

Parameter: filename

• The filename parameter value is a filename where the MIME-type file can be located. This
filename must be relative to the “ServerRoot ” on page 356. This restricts the file to the
IFS file system.

Module mod_negotiation
Module mod_negotiation supports directives for the IBM HTTP Server for i Web server.

Summary

Content negotiation is the selection of the document that best matches the clients capabilities from one
of several available documents. There are two implementations of content negotiation:

• A type-map (a file with the handler type-map) which explicitly lists the files containing the variants.
• A MultiViews search (enabled by the MultiViews “Options” on page 348) where the server does an

implicit filename pattern match and makes a choice from the results.

See “Content negotiation for HTTP Server” on page 17 for more information.

Type maps

A type map has the same format as RFC822 mail headers. It contains document descriptions separated
by blank lines, with lines beginning with a pound sign ('#') are treated as comments. A document
description consists of several header records. Records may be continued on multiple lines if the
continuation lines start with spaces. The leading space will be deleted and the lines concatenated. A
header record consists of a keyword name, which always ends in a colon, followed by a value. Whitespace
is allowed between the header name and value, and between the tokens of value. The headers allowed
are:

Header Description

Content-Encoding The encoding of the file. The server only recognizes
encoding that is defined by an AddEncoding
directive. This normally includes the encoding x-
compress for compress'ed files, and x-gzip for
gzip'ed files. The x- prefix is ignored for encoding
comparisons.

Content-Language The language of the variant, as an Internet
standard language tag (RFC 1766). An example is
en, meaning English.

Content-Length The length of the file, in bytes. If this header is not
present, then the actual length of the file is used.

IBM HTTP Server for i 503

Header Description

Content-Type The MIME media type of the document, with
optional parameters. Parameters are separated
from the media type and from one another by a
semicolon, with a syntax of name=value. Common
parameters include:
Parameter One: level

• The level parameter is an integer specifying
the version of the media type. For text/html,
this defaults to '2', otherwise '0'.

Parameter Two: qs

• The qs parameter is a floating-point number
with a value in the range of '0.0' to '1.0',
indicating the relative quality of this variant
compared to the other available variants,
independent of the client's capabilities.
For example, a '.jpeg' file is usually of
higher source quality than an '.ascii' file it
is attempting to represent a photograph.
However, if the resource being represents is
ASCII art, then an ASCII file would have a
higher source quality than a '.jpeg' file. All Qs
values therefore specific to a given source.
For example:

Content-Type: image/jpeg; Qs=0.8

URL The path to the file containing this variant, relative
to the map file.

MultiViews

A MultiViews search is enabled by the MultiViews Option. If the server receives a request for /some/dir/
QIBM and /some/dir/QIBM does not exist, then the server reads the directory looking for all files named
QIBM.* , and effectively makes up a type map which names all those files, assigning them the same media
types and content-encodings it would have if the client had asked for one of them by name. It then
chooses the best match to the client's requirements, and returns that document.

Directives

• “CacheNegotiatedDocs” on page 504
• “ForceLanguagePriority” on page 505
• “LanguagePriority” on page 505

CacheNegotiatedDocs
Module: mod_negotiation

Syntax: CacheNegotiatedDocs on | off

Default: CacheNegotiatedDocs off

Context: server config, virtual host

Override: none

Origin: Apache

Example: CacheNegotiatedDocs on

504 IBM i: IBM HTTP Server for i

The CacheNegotiatedDocs directive allows content-negotiated documents requested using HTTP/1.0 to
be cached by proxy servers.

Parameter: on | off

• Setting this directive to on could mean that clients behind proxies may retrieve versions of the
documents that are not the best match for their abilities. The purpose of this directive is to make
cache more efficient. This directive only applies to requests which come from HTTP/1.0 browsers.
HTTP/1.1 provides much better control over the caching of negotiated documents, and this directive
has no effect in responses to HTTP/1.1 requests.

ForceLanguagePriority
Module: mod_negotiation

Syntax: ForceLanguagePriority None | Prefer | Fallback [Prefer | Fallback]

Default: ForceLanguagePriority None

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: See below.

The ForceLanguagePriority directive uses the given LanguagePriority to satisfy negotiation where the
server could otherwise not return a single matching document.

Parameter: None | Prefer | Fallback

• The Prefer parameter uses LanguagePriority to serve one valid result, rather than returning an HTTP
result 300 (MULTIPLE CHOICES) when there are several equally valid choices. If the directives
below were given, and the user's Accept-Language header assigned en and de each as quality .500
(equally acceptable) then the first matching variant (en) will be served.

LanguagePriority en Fr de
ForceLanguagePriority Prefer

• The Fallback parameter uses LanguagePriority to serve a valid result, rather than returning an HTTP
result 406 (NOT ACCEPTABLE). If the directives below were given, and the user's Accept-Language
only permitted an en language response, but such a variant isn't found, then the first variant from
the LanguagePriority list is served.

LanguagePriority en Fr de
ForceLanguagePriority Fallback

Both options, Prefer and Fallback, may be specified, so either the first matching variant from
LanguagePriority will be served if more that one variant is acceptable, or the first available document
will be served if none of the variants match the client's acceptable list of languages.

Note: When specifying both Prefer and Fallback options, the behavior is the same regardless of the order
in which they are specified.

See DefaultLanguage, AddLanguage and “LanguagePriority” on page 505 for more information.

LanguagePriority
Module: mod_negotiation

Syntax: LanguagePriority MIME-lang [MIME-lang...]

Default: none

Context: server config, virtual host, directory, .htaccess

IBM HTTP Server for i 505

Override: FileInfo

Origin: Apache

Example: LanguagePriority en Fr de

The LanguagePriority directive sets the precedence of language variants for the case where the client
does not express a preference when handling a MultiViews request. The list of MIME-lang are in order of
decreasing preference.

Parameter: MIME-lang

• The MIME-lang parameter is any Internet standard language tag or MIME language designation.

This directive may be configured multiple times in a container. The directives are processed from the first
to the last occurrence.

Note: This directive only has an effect if a best language cannot be determined by any other means. If
the client expresses a language preference, this directive has no effect on the file selected during content
negotiation.

Module mod_proxy
Module mod_proxy supports directives for the IBM HTTP Server for i Web server.

Summary

Directives for forward proxy function are as follows:

Required: ProxyRequests
Optional: AllowCONNECT, ProxyBlock, ProxyDomain, ProxyReceiveBufferSize, ProxyVia

Directives for reverse proxy function are as follows:

Required: ProxyPass
Optional: ProxyBlock, ProxyPassReverse, ProxyReceiveBufferSize, ProxyVia

Directives for proxy chaining function are as follows:

Required: ProxyRemote
Optional: NoProxy, (see forward or reverse proxy, above, for additional directives).

For a detailed description of these proxy functions and how they may be used, see “Proxy server types
and uses for HTTP Server” on page 24.

Note: The mod_proxy directives require the following LoadModules in HTTP Server configuration file:

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Directives

• “BalancerInherit” on page 507
• “BalancerMember” on page 508
• “NoProxy” on page 508
• “<Proxy>” on page 510
• “ProxyAddHeaders” on page 511
• “ProxyBadHeader” on page 512
• “ProxyBlock” on page 512
• “ProxyCacheOnly” on page 513
• “ProxyDomain” on page 514

506 IBM i: IBM HTTP Server for i

• “ProxyErrorOverride” on page 515
• “ProxyForceCacheCompletion” on page 516
• “ProxyIOBufferSize” on page 517
• “<ProxyMatch>” on page 517
• “ProxyMaxForwards” on page 519
• “ProxyNoCache” on page 520
• “ProxyNoConnect” on page 521
• “ProxyPass” on page 522
• “ProxyPassInherit” on page 533
• “ProxyPassInterpolateEnv” on page 533
• “ProxyPassMatch” on page 534
• “ProxyPassReverse” on page 534
• “ProxyPassReverseCookieDomain” on page 536
• “ProxyPassReverseCookiePath” on page 537
• “ProxyPreserveHost” on page 537
• “ProxyReceiveBufferSize” on page 538
• “ProxyRemote” on page 539
• “ProxyRemoteMatch” on page 540
• “ProxyRequests” on page 540
• “ProxyReverse” on page 541
• “Proxyset” on page 542
• “ProxySourceAddress” on page 545
• “ProxyTimeout” on page 545
• “ProxyVia” on page 546

BalancerInherit
Module: mod_proxy

Syntax: BalancerInherit on | off

Default: BalancerInherit On

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: BalancerInherit off

The BalancerInherit directive will cause the current server/virtual host to "inherit" ProxyPass Balancers
and Workers defined in the main server.

Note: This can cause issues and inconsistent behavior if using the Balancer Manager and so should be
disabled if using that feature.

IBM HTTP Server for i 507

The setting in the global server defines the default for all virtual hosts

BalancerMember
Module: mod_proxy

Syntax: BalancerMember [balancerurl] url [key=value [key=value ...]]

Default: none

Context: directory.

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example 1

ProxyPass /special-area http://special.example.com/ smax=5 max=10
ProxyPass / balancer://mycluster stickysession=jsessionid nofailover
<Proxy balancer://mycluster>
BalancerMember http://1.2.3.4:8009
BalancerMember http://1.2.3.5:8009 smax=10
Less powerful server, don't send as many requests there
BalancerMember http://1.2.3.6:8009 smax=1 loadfactor=20
</Proxy>

Example 2

<Proxy balancer://mycluster2>
BalancerMember http://196.128.0.1:4000
BalancerMember http://196.128.0.1:4001
</Proxy>

Then you proxy the location or virtual host to the cluster:

<VirtualHost *:80>
ProxyPass / balancer://mycluster2/
ProxyPassReverse / balancer://mycluster2/
</VirtualHost>

Note: The slash much occur after the ProxyPass directive.

The BalancerMember directive adds a member to a load balancing group. It can be used within a
<Proxy balancer://...> container directive and can take any of the key value pair parameters available
to “ProxyPass” on page 522 directives.

One additional parameter is available only to “BalancerMember” on page 508 directives: loadfactor. This
is the member load factor - a number between 1 (default) and 100, which defines the weighted load to be
applied to the member in question.

The balancerurl is only needed when not within a <Proxy balancer://...> container directive. It
corresponds to the url of a balancer defined in “ProxyPass” on page 522 directive.

The path component of the balancer URL in any <Proxy balancer://...> container directive is ignored.

Trailing slashes should typically be removed from the URL of a BalancerMember.

NoProxy
Module: mod_proxy

508 IBM i: IBM HTTP Server for i

Syntax: NoProxy domain | subnet | ipaddr | hostname [domain | subnet | ipaddr | hostname ...]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: NoProxy .mycompany.com 192.168.112.0/21

The NoProxy directive specifies a list of domains, subnets, IP addresses, and/or hosts (in any
combination) separated by spaces. Multiple NoProxy directives are allowed. Items in each list are used to
match requests for which the server should attempt to handle directly rather than going through a remote
proxy server (specified using the ProxyRemote directive). When a client sends a request that matches one
or more listed items, the server attempts to connect directly to the server specified in the URL rather than
to a remote proxy (specified by ProxyRemote) to chain the request.

Parameter: domain | subnet | ipaddr | hostname

• A domain is a partially qualified DNS domain name, preceded by a period. It represents a
group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes
of the hostnames are all ending in Domain).

• A subnet is a partially qualified Internet address in a numeric (dotted quad) form,
optionally followed by a slash (/) and the netmask, specified as the number of significant
bits in the subnet. It is used to represent a subnet of hosts that can be reached over
a common network interface. In the absence of the explicit netmask it is assumed that
omitted (or zero valued) trailing digits specify the mask. In this case, the netmask can
only be multiples of '8 bits' wide. For example, the subnet '192.168.0.0' with an implied
netmask of '16' valid bits (sometimes used in the netmask form 255.255.0.0.).

• An ipaddr represents a fully qualified Internet address in numeric (dotted quad) form.
Usually this address represents a host, but there need not necessarily be a DNS domain
name connected with the address. For example: 192.168.123.7

• A hostname is a fully qualified DNS domain name that can be resolved to one or more
IP addresses via the DNS domain name service. It represents a logical host (in contrast
to domain, see above) and must be resolvable to at least one ipaddr (or often to a list of
hosts with different IP addresses).

Example

ProxyRemote * http://firewall.mycompany.com:81
NoProxy .mycompany.com 192.168.112.0/21

• ProxyBlock may be used to block incoming requests prior to consideration for this directive.
• This directive is commonly used in conjunction with the ProxyRemote and ProxyDomain directives for

directing proxy requests within intranets.
• Setting ProxyNoConnect to on negates this directive.

This directive may be configured multiple times in a container. The directives are processed from the first
to the last occurrence.

Note: Hostname and domain name comparisons are done without regard to the case, and are always
assumed to be anchored in the root of the DNS tree.

IBM HTTP Server for i 509

<Proxy>
Module: mod_proxy

Syntax: <Proxy criteria> ... </Proxy>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: Forward proxy

<Proxy http://www.ibm.com/>
 Require all granted
</Proxy>

Example: Reverse proxy

<Proxy /docs/>
 Require all granted
</Proxy>

The <Proxy> and </Proxy> directives are used to enclose (or contain) a group of directives that apply only
to proxy requests that match the specified criteria. Multiple proxy containers are allowed, however they
may not be nested. Requests that do not match container criteria are outside the context of the enclosed
directives. Any directive allowed within a directory context is also allowed within a proxy context (see
<Directory> for details on directory containers).

Parameter: criteria

• The criteria parameter accepts a partial URL or virtual directory path used to identify
requests to which the enclosed directives apply. Partial URLs are used to identify both
forward and reverse proxy requests. A match is considered by comparing request URL
strings to the specified criteria string, starting with the first character. A match is made if
the two strings are identical, up to the length of the criteria string.

Refer to <ProxyMatch> for details regarding the use of regular expression criteria for proxy
containers.

Directives within proxy containers apply only to matched requests handled by the proxy
function (including both forward and reverse proxy). Requests not handled by the proxy
function are not affected by directives within proxy containers.

Example One

<Proxy /user/local/httpd/htdocs>
 Require all granted
</Proxy>

Note: Previously, directory containers were used to enclose groups of directives that
applied to proxy requests by appending the prefix "proxy:" to the beginning of the directory
name criteria specified for <Directory> or <DirectoryMatch> directives. This is no longer
supported. The proxy function now ignores directives enclosed in <Directory> (or <File>)
containers.

510 IBM i: IBM HTTP Server for i

Directives within <Location> containers (if matched) take precedence over directives
within <Proxy> containers. See <Location> or <LocationMatch> for more information on
<Location> containers.

When request URLs match criteria strings of multiple proxy containers, directives within
all matched containers are combined and applied. <Proxy> sections are processed in the
order they appear in the configuration file. The following is an example of how directives are
combined and applied according to order.

Example Two: Forward Proxy

ProxyRequest on
<Proxy http://>
 Require all denied
 ServerSignature on
</Proxy>
<Proxy http://www.ibm.com/>
 Require all granted
</Proxy>

For this example, a request for http://www.ibm.com/docs/whitepaper.pdf matches criteria
specified for both proxy containers, therefore the server applies the directives within
both containers. Since the criteria specified for the second container (<Proxy http://
www.ibm.com/>) is more specific (a better match) than the criteria specified for the
first container (<Proxy http://>) directives enclosed within the second container take
precedence. The request is therefore allowed since the second container has an "Require
all granted" directive. The ServerSignature directive would be applied to this request as well
(if needed). A request for http://web.samples.org/welcome.htm, however, only matches the
criteria for the first container, and is therefore denied since this container has a "Require all
denied" directive.

If request URLs match criteria strings for one or more <Proxy> directives as well as
regular expression criteria for one or more <ProxyMatch> directives, the server applies
matched <Proxy> and <ProxyMatch> container directives in the order they appear in the
configuration file.

Example:

ProxyRequest on
<Proxy http://www.ibm.com/>
 Require all granted
</Proxy>
<ProxyMatch ^(.*)>
 Require all denied
</ProxyMatch>

A request for http://www.ibm.com/welcome.html matches criteria specified for both proxy
containers, therefore the server applies the directives within both containers. Directives
for the <Proxy> container are applied first, then directives for the <ProxyMatch> container.
Due to the order that directives are applied, the request is denied since the "Require
all denied" directive (from the <ProxyMatch> container) is applied last, eveh though the
<Proxy> container is a more exact match.

Note: Setting ProxyRequests to off does not negate this directive. It is available regardless of the forward
proxy state.

ProxyAddHeaders
Module: mod_proxy

Syntax: ProxyAddHeaders Off|On

Default: ProxyAddHeaders On

Context: server config, virtual host, directory

Override: none

IBM HTTP Server for i 511

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyAddHeaders Off

The ProxyAddHeaders directive determines whether or not proxy related information should be passed to
the backend server through X-Forwarded-For, X-Forwarded-Hostand X-Forwarded-Server HTTP headers.

Note: It only takes effect in HTTP proxying handled by mod_proxy_http.

ProxyBadHeader
Module: mod_proxy

Syntax: ProxyBadHeader IsError | Ignore | StartBody

Default: ProxyBadHeader IsError

Context: server, virtual host

Override: none

Origin: Apache

Example: ProxyBadHeader Ignore

This directive tells the server how to handle a bad header line in a response. The value ignore means
the proxy ignores the bad header and continues. The value IsError means that the proxy fails out on the
request. The value StartBody means that proxy (if it has seen other headers before this bad one) starts
sending the rest of the headers as body and hopes that the server can handle it.

ProxyBlock
Module: mod_proxy

Syntax: ProxyBlock word | host | domain [word | host | domain ...]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyBlock somecompany.com www-1.ibm.com www-2.ibm.com

The ProxyBlock directive specifies a list of words, hosts, and/or domains (in any combination), separated
by spaces. Multiple ProxyBlock directives are allowed. Requests to sites whose URLs contain matched
words, hosts, or domains are blocked by the server. At startup the server attempts to determine list item
IP addresses, that may be host names, and records them for a match test.

512 IBM i: IBM HTTP Server for i

Parameter: word | host | domain

• A word can be any keyword (for example, ProxyBlock hello server good-bye).
• A host is a fully qualified DNS domain name that can be resolved to one or more IP

addresses via the DNS domain name service. It represents a logical host (in contrast to
domain, see below) and must be resolvable to at least one IP address (or often to a list of
hosts with different IP addresses), otherwise it is simply treated as a word (see above).

• A domain is a partially qualified DNS domain name, preceded by a period. It represents a
group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes
of the hostnames are all ending in Domain).

Example

ProxyBlock ibm.com www-1.ibm.com www-2.ibm.com server hello

The 'www-2.ibm.com' would also be matched if referenced by IP address since the server
records addresses at startup for a match test. Note that either 'ibm.com' or 'ibm' is
sufficient to match both 'www-1.ibm.com' and 'www-2.ibm.com' by word. However, their
corresponding IP addresses would not be blocked since the server could not determine
their addresses without having their hostnames specifically listed.

Note: " ProxyBlock *" effectively blocks requests to all sites and therefore should be avoided.

ProxyCacheOnly
Module: mod_proxy

Syntax: ProxyCacheOnly word | host | domain [word | host | domain ...]

Default: none (meaning cache all documents satisfying other caching directives)

Context: server config, virtual host

Override: none (meaning cache all documents satisfying other caching directives)

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyCacheOnly ibm.com www-1.ibm.com www-2.ibm.com

The ProxyCacheOnly directive specifies a list of words, hosts, and domains (in any combination),
separated by spaces. Multiple ProxyCacheOnly directives are allowed. Listed items are used to match
requests for which the server should cache documents if caching is enabled. The server may then
serve cached documents for subsequent requests. The server will also attempt to determine list item IP
addresses and records them for a match test.

If this directive is absent, all documents satisfying all other caching directives (for example,
ProxyNoCache, CacheMaxFileSize, CacheMinFileSize, etc.) are cached. If this directive is present, only
documents from matched words, hosts, or domains are cached (as long as they also satisfy all other
caching directives).

Parameter: word | host | domain

• A word can be any keyword (for example, ProxyCacheOnly hello server good-
bye).

• A host is a fully qualified DNS domain name that can be resolved to one or more IP
addresses via the DNS domain name service. It represents a logical host (in contrast to

IBM HTTP Server for i 513

domain, see below) and must be resolvable to at least one IP address (or often to a list of
hosts with different IP addresses), otherwise it is simply treated as a word (see above).

• A domain is a partially qualified DNS domain name, preceded by a period. It represents a
group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes
of the hostnames are all ending in Domain).

Example

ProxyCacheOnly ibm.com www-1.ibm.com sample.server.edu

For this example, 'sample.server.edu' would also be matched if referenced by IP address
since the server records addresses at startup for a match test. Note that 'sample', 'server',
'edu', 'sample.server', or 'server.edu' is sufficient to match 'sample.server.edu' by word,
however documents for requests using IP addresses corresponding to 'sample.server.edu'
would not be cached since the server could not determine the addresses unless the
hostname is specifically listed.

• CacheMinFileSize, CacheMaxFileSize, and CacheTimeMargin may make documents ineligible for cache
prior to consideration for this directive.

• ProxyNoCache provides counter function. Documents matching a previous ProxyNoCache template in
the configuration will not be cached, regardless of whether they match a subsequent ProxyCacheOnly
template. In other words, a ProxyNoCache directive may override a ProxyCacheOnly directive if
configured prior to the ProxyCacheOnly directive.

• This directive is used only if CacheRoot is set.
• Setting ProxyNoConnect to off negates this directive.

Note: "ProxyCacheOnly *" enables caching for all documents if not preceded and matched by a
ProxyNoCache directive.

ProxyDomain
Module: mod_proxy

Syntax: ProxyDomain domain

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyDomain .mycompany.com

The ProxyDomain directive specifies the default domain to which the server belongs when acting as a
forward proxy server. If a request specifies a host without a domain name, the server sends a response
that redirects the client to the host with the configured domain appended. Possible values include all
domain names starting with a dot (or period) and consisting only of the characters AZ, AZ, '.' (dot), '-'
(dash), and 0-9.

514 IBM i: IBM HTTP Server for i

Parameter: domain

• The domain is a partially qualified DNS domain name, preceded by a period. It represents
a group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes
of the hostnames are all ending in Domain).

Example

ProxyRemote * http://firewall.mycompany.com:81
NoProxy .mycompany.com 192.168.112.0/21
ProxyDomain .mycompany.com

For this example, if an unqualified request for http://myserver/ comes in, the server will
redirect the client to a fully qualified host name using the default domain. That is, the client
will be redirected to http://myserver.mycompany.com/.

• ProxyBlock may be used to block incoming requests prior to consideration for this directive.
• This directive is commonly used in conjunction with the NoProxy and ProxyRemote directives for

directing proxy requests within intranets.
• Setting ProxyRequests to off negates this directive

ProxyErrorOverride
Module: mod_proxy

Syntax: ProxyErrorOverride on | off

Default: ProxyErrorOverride off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyErrorOverride on

The ProxyErrorOverride directive specifies if the server is to override error response codes and message
text sent by remote servers to enable local error messaging for remote server problems. If disabled
(the default), all responses sent by remote servers (including errors) are relayed to clients (local error
messaging is not used). If enabled, server related error codes and messages sent by remote servers
(codes greater than or equal to 400®) are overridden and local error messaging is used to send responses
that pertain to the local server, rather than the remote server. Non-server related error codes (codes less
than 400) are not affected by this directive and are always relayed to clients.

Parameter: on | off

• If off, is specified (the default), all response codes and messages sent by remote servers
are relayed to clients (unaltered).

• If on is specified, error response codes and messages sent by remote servers relating to
server problems are overridden and local error messaging is used to send responses to
clients.

By default, local error messaging will send hardcoded messages to clients. However, it may
be configured to send custom web pages as well, or to redirect certain errors to local CGI
programs (or servlets) or remote servers to handle. When ProxyErrorOverride is used in
conjunction with ErrorDocument support, custom responses may be sent to clients when

IBM HTTP Server for i 515

proxy requests fail due to remote server problems. This is useful for reverse proxy setups
where remote server problems need to be concealed from clients or when web sites must
have a common error reporting appearance. It may be used, however, for any proxy setup
where remote server errors need to be handled in a certain (customized) manner.

For example, suppose the local server has address http://www.ibm.com/ and the following
directives are setup for reverse proxy:

ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/
ProxyErrorOverride on
ErrorDocument proxyrmterror /cgi-bin/proxyerr.pgm

Now further suppose the local server was sent the request http://www.ibm.com/docs/
whitepaper.html. The ProxyPass directive will cause the request to be internally converted
into a request for http://pubserver.ibm.com/public/documentation/whitepaper.html. The
proxy function will then be invoked to retrieve /public/documentation/whitepaper.html from
pubserver.ibm.com. The remote server (pubserver.ibm.com) then has an error that causes
it to return response code 500 (internal error) to the local server (www.ibm.com). Since
ProxyErrorOverride is enabled, the local server overrides the response code (along with
any message text) and enables local error messaging to handle the response. Furthermore,
since ErrorDocument is setup for such a response (proxyrmterror), the error is passed to
the cgi program /cgi-bin/proxyerr.pgm which handles the problem by sending a customized
error page to the client.

In this example of a reverse proxy request process, internal server errors from a remote
server (pubserver.ibm.com) are concealed from the client since local error messaging is
enabled for proxy requests on www.ibm.com. Similar handling may be setup for forward
proxy scenarios as well.

• If custom error messages are not defined (not enabled via ErrorDocument), local error messaging may
still be used to send hardcoded messages pertaining to the local server.

• Setting ProxyRequests to off does not negate this directive. It is available regardless of the forward
proxy state.

ProxyForceCacheCompletion
Module: mod_proxy

Syntax: ProxyForceCacheCompletion percentage

Default: ProxyForceCacheCompletion 90

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: Multiple LoadModule directives are required in the configuration file prior to
using the directive. The statements should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyForceCacheCompletion 60

The ProxyForceCacheCompletion directive specifies a download percentage used to determine whether
the server should continue to cache documents after a client cancels a request. If a request for a
document is canceled, the server will complete the cache transfer over the connection with the content
server if more than the percentage specified has already been received. If the server has received less
than the percentage specified, or if the proxy caching function is not enabled (see CacheRoot for details),
all data is discarded and the server drops the connection with the content server.

516 IBM i: IBM HTTP Server for i

Note: This directive is used only if CacheRoot is set. In addition, if the ProxyNoConnect directive is set to
on, it negates the ProxyForceCacheCompletion setting.

Parameter: percentage

The percentage parameter accepts an integer value between 0 and 100 to specify the
minimum amount of data the server is to receive (specified as a percentage of the whole
document) to continue caching a document, regardless of whether the client's request is
canceled.

ProxyIOBufferSize
Module: mod_proxy

Syntax: ProxyIOBufferSize bytes

Default: ProxyIOBufferSize 8192

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive.
The statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheTimeMargin 300

The ProxyIOBufferSize directive adjusts the size of the internal buffer, which is used as a scratchpad for
the data between input and output. The size must be less or equal 8192, and it is recommended that you
do not change the size.

<ProxyMatch>
Module: mod_proxy

Syntax: <ProxyMatch criteria> ... </ProxyMatch>

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: Reverse proxy

ProxyReverse on
ProxyPass /docs/v4r4m0/ http://pubserver.ibm.com/public/v4r4m0/
<ProxyMatch "^http://pubserver.ibm.com/public/v[0-9]r[0-9]m[0-9]/(.*)">
 Require all granted
</ProxyMatch>

IBM HTTP Server for i 517

Example: Forward proxy

<ProxyMatch "^http://server[0-9]r[0-9]m[0-9]/docs/*">
 Require all granted
</ProxyMatch>

The <ProxyMatch> directive is used to enclose a group of directives that apply only to proxy requests
that match the specified criteria. Multiple proxy containers are allowed, however they may not be nested.
Requests that do not match container criteria are outside the context of the enclosed directives. Any
directive allowed within a directory context is also allowed within a proxy context.

Parameter: criteria

• The criteria parameter accepts a UNIX-style extended regular expression used to identify
requests to which the enclosed directives apply. Expressions are used to identify both
forward and reverse proxy requests. A match is considered by comparing request URL
strings to the specified expression. Subexpressions are grouped within parentheses.
Then, parenthetically enclosed regular expressions are substituted in a subsequent $n
statement. A match is made if the URL string matches the expression using regular
expression logic. For reverse proxy, the specified expression must match the new
outgoing URL.

Proxy containers defined by <ProxyMatch> directives (including the directives enclosed
by them) are handled in the same way as those defined by <Proxy> directives. The only
difference is in how the criteria is specified and handled using regular expressions (for
<ProxyMatch>) rather than string literals (for <Proxy>). Refer to <Proxy> for further details
regarding proxy containers.

For example, suppose the local server has address http://as400.ibm.com/ and the following
directives are setup for reverse proxy:

Example

ProxyPass /v4r3m0/docs/ http://pubserver.ibm.com/public/vrm430/
ProxyPass /v4r4m0/docs/ http://pubserver.ibm.com/public/vrm440/
ProxyPass /v4r5m0/docs/ http://pubserver.ibm.com/public/vrm450/
ProxyPass /v5r1m0/docs/ http://pubserver.ibm.com/public/vrm510/
<ProxyMatch "^http://pubserver.ibm.com/public/v[0-9]r[0-9]m[0-9]/(.*)">
 AuthName "i Document Server"
 AuthType Basic
 Require group admin
 PasswdFile QUSRSYS/DOC_USERS
 GroupFile /groups/doc_readers
</ProxyMatch>

For this example, a request for /v4r5m0/docs/manual.html is identified as a proxy
request since it matches the third ProxyPass statement (ProxyPass /v4r5m0/docs/ http://
pubserver.ibm.com/public/vrm450/). Once identified as a proxy request, it is compared
against criteria specified for the proxy container (ProxyMatch "^http://pubserver.ibm.com/
public/v[0-9]r[0-9]m[0-9]/(.*)") using regular expression logic. A match is made and
the server applies the directives within the container that requires the client to
provide basic authentication credentials (AuthType Basic). If the client is authenticated
(PasswdFile QUSRSYS/DOC_USERS) and authorized (GroupFile /groups/doc_readers, or
Require group admin) the request will be internally converted into a request for
http://publicserver.ibm.com/public/vrm450/manual.html and further handled by the proxy
function (see “ProxyPass” on page 522 for more information on reverse proxy). If the
client is not authenticated or authorized, the request fails.

• The client is authenticated if a valid userid and password is provided, according to the
PasswdFile directive.

• The client is authorized if the userid (or group) is allowed access, according to the
GroupFile or Require directives.

518 IBM i: IBM HTTP Server for i

Notice that in the above example the directives enclosed in the proxy container will apply
to requests matching any of the ProxyPass directives since the regular expression criteria
(specified for <ProxyMatch>) matches all four virtual directory path names specified for
ProxyPass.

• Setting ProxyRequests to off does not negate this directive. It is available regardless of the
forward proxy state.

Named groups and backreferences are captured and written to the environment with the corresponding
name prefixed with "MATCH_" and in upper case. This allows elements of URLs to be referenced from
within expressions and modules like mod_rewrite . In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

For example:

<ProxyMatch "^http://pubserver.ibm.com/public/(?<groupnum>group\d)/(.*)">
 AuthName "i Document Server"
 AuthType Basic
 Require group %{env:MATCH_GROUPNUM}
 PasswdFile QUSRSYS/DOC_USERS
 GroupFile /groups/doc_readers
</ProxyMatch>

ProxyMaxForwards
Module: mod_proxy

Syntax: ProxyMaxForwards maximum

Default: ProxyMaxForwards -1

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyMaxForwards 8

The maximum parameter accepts an integer value no greater than 2,147,483,648 to specify the value the
server is to use when it adds Max-Forwards request headers to proxy requests. When the server receives
requests that do not contain a Max-Forwards header, it automatically adds one using the specified value.
This setting is not used for requests that already contain a Max-Forwards header.

Parameter: maximum

• The maximum parameter accepts an integer value between 1 and 2,147,483,648 to
specify the value the server is to use when it adds Max-Forwards request headers to proxy
requests.

The server uses Max-Forwards headers to prevent infinite proxy loops, and possibly certain
types of denial of service attacks. This is accomplished by ensuring that a Max-Forwards
header is set for all requests to control the maximum number of times it can be forwarded
(or passed to subsequent servers).

When the server receives requests containing a Max-Forwards header, it will continue to
process the requests only if the value for the header is greater than 0 (zero). If the value
is greater than zero, the server decrements it and continues to process the request. If the
request subsequently needs to be forwarded to another server, the Max-Forwards header

IBM HTTP Server for i 519

is sent with the decremented value. This process is repeated until the request is fulfilled
(or rejected) by a server, or until the value for the Max-Forwards header reaches zero. Once
the value reaches zero (or less), the server will not forward the request and will respond
immediately (see example, request 3) with the following response codes:

• If TRACE method is used, 200 (OK) is returned as well as any trace data.
• If OPTIONS method is used, 200 (OK) is returned as well as any options data.
• If any other method is used, 502 (BAD_GATEWAY) is returned as well as the server's

customized error page for "proxyfail" (if enabled, see “ErrorDocument ” on page 315).

This setting is used for both forward and reverse proxy requests.

Example: Forward Proxy

ProxyRequests on
ProxyMaxForwards 8

For this example, consider the following three requests:

Request 1

GET http://docserver.ibm.com/manual.pdf HTTP/1.0

For this request, the server will use the value specified for ProxyMaxForwards (8) to add
the new header "Max-Forwards : 8" to the request (since it is not already present), and
then forward it to docserver.ibm.com as:

GET /manual.pdf HTTP/1.0
Max-Forwards : 8

Request 2

GET http://docserver.ibm.com/manual.pdf HTTP/1.0
Max-Forwards : 3

For this request, the server will decrement the value for the Max-Forwards header to 2,
and then forward the request to docserver.ibm.com as:

GET /manual.pdf HTTP/1.0
Max-Forwards : 2

In this case, the value specified for ProxyMaxForwards is not used since the request
already contained a Max-Forwards header.

Request 3

GET http://docserver.ibm.com/manual.pdf HTTP/1.0
Max-Forwards : 0

For this request, the server will immediately return response code 502 (BAD_GATEWAY)
since the request cannot be forwarded any further due to the Max-Forwards header
value. In this case, docserver.ibm.com is never contacted.

• Setting ProxyRequests to off does not negate this directive. It is available regardless of the
forward proxy state.

Note: Setting ProxyMaxForwards is a violation of the HTTP/1.1 protocol (RFC2616), which forbids a Proxy
setting Max-Forwards if the Client didn't set it. A negative ProxyMaxForwards value, including the default
-1, gives you protocol-compliant behaviour, but may leave you open to loops.

ProxyNoCache
Module: mod_proxy

Syntax: ProxyNoCache word | host | domain

520 IBM i: IBM HTTP Server for i

Default: absent [meaning cache all files satisfying other caching directives]

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyNoCache ibm.com www-1.ibm.com sample.example.edu

The ProxyNoCache directive specifies a list of words, hosts, and domains (in any combination), separated
by spaces. HTTP and non-passworded FTP documents from matched words, hosts or domains are not
cached by the proxy server. The proxy module will also attempt to determine IP addresses of list items,
that may be hostnames during startup, and cache them for a match test. If this directive is absent,
all documents satisfying all other caching directives (for example: ProxyCacheOnly, CacheMaxFileSize,
CacheMinFileSize, etc.) are cached. If this directive is present, documents from matched words, hosts or
domains are not cached.

Parameter: word | host | domain

• A word can consist of any combination of keywords (for example, ProxyNoCache hello
server good-bye).

• The host is a fully qualified DNS domain name that can be resolved to one or more IP
address via the DNS domain name service. It represents a logical host (in contrast to
domain, see above) and must be resolvable to at least one IP address (or often to a list of
hosts with different IP addresses).

• The domain is a partially qualified DNS domain name, preceded by a period. It represents
a list of hosts that logically belong to the same DNS domain or zone (that is, the suffixes of
the hostnames are all ending in Domain).

Example

ProxyNoCache ibm.com www-1.ibm.com sample.example.edu

The 'sample.example.edu' would also be matched if referenced by IP address. Note that
'example ' is sufficient to match 'example.edu'.

• ProxyCacheOnly provides counter function. Documents matching a previous ProxyCacheOnly template
in the configuration will be cached, regardless of whether they match a subsequent ProxyNoCache
template. In other words, a ProxyCacheOnly directive may override a ProxyNoCache directive if
configured prior to the ProxyNoCache directive.

• This directive is used only if CacheRoot is set.
• Setting ProxyRequests to off negates this directive.

Note: "ProxyNoCache *" disables caching for all documents if not preceded by the ProxyCacheOnly
directive, however garbage collection is not affected.

ProxyNoConnect
Module: mod_proxy

Syntax: ProxyNoConnect on | off

Default: ProxyNoConnect off

IBM HTTP Server for i 521

Context: server config, virtual host

Override: none

Origin: IBM

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyNoConnect off

The ProxyNoConnect directive specifies if the proxy is to connect to remote content servers to retrieve
documents. If the server is not allowed to connect to remote content servers, it can only serve documents
from cache.

Parameter: on | off

• If off is specified, the server may serve documents from cache (if enabled) as well as
issue outgoing requests to remote servers to retrieve servable documents (see Example
1, below).

• If set to on is specified, the proxy may only serve documents from cache (if enabled). It
will not establish outgoing connections with remote servers. CacheRoot is required if on is
specified (see Example 2, below).

Example 1

ProxyRequests on
ProxyNoConnect off
CacheRoot /QIBM/UserData/HTTPA/CacheRoot/myproxy

In this example, the proxy may serve documents from cache as well as issue outgoing
requests to remote servers.

Example 2

ProxyRequests on
ProxyNoConnect on
CacheRoot /QIBM/UserData/HTTPA/CacheRoot

In this example, the proxy may only serve documents from cache. Documents will not
be retrieved from remote servers since outgoing connections are not permitted. Since the
server is not permitted to retrieve documents, items in cache must be managed by another
application or process other than the server itself.

• CacheRoot is required if this directive is set to on.
• The ProxyNoConnect directive causes the AllowCONNECT directive to be ineffective. If ProxyNoConnect

is present, and AllowCONNECT is also specified, then even if the AllowCONNECT allows a SSL
connection to be made on a specific port, the ProxyNoConnect directive dictates that no connections
are allowed.

ProxyPass
Module: mod_proxy

Syntax: ProxyPass [path] !|url [key=value [key=value ...]] [nocanon] [interpolate] [noquery]

Default: none

Context: server config, virtual host, directory

Override: none

522 IBM i: IBM HTTP Server for i

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example:

ProxyPass /docs/confidential/ !
ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

This directive allows remote servers to be mapped into the space of the local server; the local server does
not act as a proxy in the conventional sense, but appears to be a mirror of the remote server. path is the
name of a local virtual path; url is a partial URL for the remote server and cannot include a query string.

The ProxyPass directive specifies information used either to identify and map requests into the space
of remote servers, or to prevent requests from being mapped into the space of remote servers, when
the reverse proxy function is enabled. Multiple ProxyPass directives are allowed. When enabled, the
server does not act as a proxy in the conventional sense, but appears to be a mirror of remote servers
by transforming requests that match specified (virtual) directory paths into proxy requests using a
corresponding partial URL. If the reverse proxy function is not enabled, this directive has no affect (see
“ProxyReverse” on page 541).

Parameter One: path | url

• The path parameter is the name of a local virtual path. When the directive is placed
outside a location container, the first parameter accepts a directory name used to identify
requests to be handled by the proxy function. The directory name does not need to
specify an existing directory, it may be a name used only as a virtual directory for the
server.

• The url parameter is a partial URL for the remote server. When the directive is placed
inside a location container, the first parameter accepts a partial URL used to transform
matched requests (for the location container) into proxy requests. When matched, the
portion of the original request URL that matches the location container criteria is replaced
with the specified partial URL. Mapped requests are then handled by the proxy function
(see example two).

Parameter Two: !|url [key=value [key=value ...]] [nocanon] [interpolate] [noquery]

• The !|url [key=value [key=value ...]] [nocanon] [interpolate] [noquery] parameter is used
when the directive is placed outside a location container, the second parameter accepts
a partial URL or the negation operator (!). Partial URLs are used to transform matched
requests into proxy requests by replacing the portion of the original request URL that
matches the path parameter (parameter one) with the specified partial URL (parameter
two). Mapped requests are then handled by the proxy function. The negation operator
is used to prevent requests that match the path parameter (parameter one) from being
mapped and handled by the proxy function, even though they may match a succeeding
ProxyPass directive. Example one, below, shows both partial URLs and the negation
operator being used for multiple ProxyPass directives.

• mod_proxy supports pooled connections to a backend server. . Using the key=value
parameters to tune this connection pooling. .

• Normally, mod_proxy will canonicalise ProxyPassed URLs. But this may be incompatible
with some backends, particularly those that make use of PATH_INFO. The optional
nocanon keyword suppresses this, and passes the URL path "raw" to the backend. Note
that may affect the security of your backend, as it removes the normal limited protection
against URL-based attacks provided by the proxy.

IBM HTTP Server for i 523

• The optional interpolate keyword, in combination with ProxyPassInterpolateEnv causes
the ProxyPass to interpolate environment variables, using the syntax ${VARNAME}. Note
that many of the standard CGI-derived environment variables will not exist when this
interpolation happens, so you may still have to resort to mod_rewrite for complex rules.
Also note that interpolation is not supported within the scheme portion of a URL. Dynamic
determination of the scheme can be accomplished with mod_rewrite as in the following
example.

 RewriteEngine On

 RewriteCond %{HTTPS} =off
 RewriteRule . - [E=protocol:http]
 RewriteCond %{HTTPS} =on
 RewriteRule . - [E=protocol:https]

 RewriteRule ^/mirror/foo/(.*) %{ENV:protocol}://backend.example.com/$1 [P]
 ProxyPassReverse /mirror/foo/ http://backend.example.com/
 ProxyPassReverse /mirror/foo/ https://backend.example.com/

• Normally, mod_proxy will include the query string when generating the
SCRIPT_FILENAME environment variable. The optional noquery keyword prevents this.

The server functions as a reverse proxy by mapping requests for documents inside virtual
directories (specified by the path parameter or location container criteria) into the space of
remote servers (specified by the url parameter). It then retrieves the documents (via proxy),
and serves them while making it appear to the client as if they originated from the local server.

The negation operator (!) is used to prevent specific virtual subdirectories to be mapped into the
space of remote servers, while allowing higher level (parent) directories to be mapped. Order
is important in these situations. ProxyPass directives using the negation operator to prevent
specific virtual subdirectories from being mapped must be placed before those mapping higher
level (parent) directories (see example one).

Suppose the local server has address http://iseries.ibm.com/:

Example 1

ProxyReverse on
ProxyPass /docs/v4r5m0/ http://pubserver.ibm.com/public/v4r5m0/
ProxyPass /docs/archives/confidential/ !
ProxyPass /docs/archives/private/ !
ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/documents/example

For this example, since the reverse proxy function is enabled (ProxyReverse on), the
first ProxyPass directive will cause a local request for /docs/v4r5m0/manual.html to
be internally transformed into a request for http://pubserver.ibm.com/public/v4r5m0/
manual.html. The proxy function will then be used to retrieve /public/v4r5m0/manual.html
from pubserver.ibm.com and return the document to the requesting client. In this
way, a virtual /docs/v4r5m0/ directory on the local server (as400.ibm.com) appears as
a mirror of the /public/v4r5m0/ directory of the remote server (pubserver.ibm.com).
A request for /docs/archives/20020101.log will be handled in a similar way, using
the last ProxyPass directive (ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/
documents/). However, a request for /docs/archives/confidential/secrets.txt will not be
handled by the proxy function since the second ProxyPass directive prohibits any request
for documents within the /docs/archives/confidential/ virtual subdirectory. Likewise, the
third ProxyPass directive prohibits any request for documents within the /docs/archives/
private/ virtual subdirectory.

The following example shows the ProxyPass directive being used within a location container
to obtain results similar to example 1.

Example Two

ProxyReverse on
<Location /docs/v4r5m0/>

524 IBM i: IBM HTTP Server for i

 ProxyPass http://pubserver.ibm.com/public/v4r5m0/
</Location>
ProxyPass /docs/archives/confidential/ !
ProxyPass /docs/archives/private/ !
ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/documents/

Notice the first ProxyPass directive is placed within a location container and specifies only
one parameter. A local request for /docs/v4r5m0/manual.html is identified by matching
the location container criteria (/docs/v4r5m0/), transformed into a request for http://
pubserver.ibm.com/public/v4r5m0/manual.html by replacing the matched portion with the
ProxyPass parameter, and handled by the proxy function in the same way described for
example one.

• “ProxyPassReverse” on page 534 may be used to handle HTTP redirect responses from remote
servers.

• Setting “ProxyReverse” on page 541 to off negates this directive.
• Setting “ProxyRequests” on page 540 to off does not negate this directive. It is available regardless

of the forward proxy state. The “ProxyRequests” on page 540 directive should usually be set off when
using ProxyPass.

Ordering ProxyPass Directives

The configured “ProxyPass” on page 522 and “<ProxyMatch>” on page 517 rules are checked in the order
of configuration. The first rule that matches wins. So usually you should sort conflicting “ProxyPass” on
page 522 rules starting with the longest URLs first. Otherwise later rules for longer URLS will be hidden
by any earlier rule which uses a leading substring of the URL. Note that there is some relation with worker
sharing. In contrast, only one “ProxyPass” on page 522 directive can be placed in a Location block, and
the most specific location will take precedence. For the same reasons exclusions must come before the
general “ProxyPass” on page 522 directives.

ProxyPass key=value Parameters

mod_proxy supports pooled connections to a backend server. Connections created on demand can be
retained in a pool for future use. Limits on the pool size and other settings can be coded on the ProxyPass
directive using key=value parameters, described in the table below.

By default, mod_proxy will allow and retain the maximum number of connections that could be used
simultaneously by that web server child process. Use the max parameter to reduce the number from the
default. Use the ttl parameter to set an optional time to live; connections which have been unused for at
least ttl seconds will be closed. ttl can be used to avoid using a connection which is subject to closing
because of the backend server's keep-alive timeout.

Example

ProxyPass /example http://backend.example.com max=20 ttl=120 retry=300

Table 43. BalancerMember parameters

Parameter Default Description

min 0 Minumum number of connections
that will always be open to the
backend server.

IBM HTTP Server for i 525

Table 43. BalancerMember parameters (continued)

Parameter Default Description

max 1...n Maximum number of connections
that will be allowed to the
backend server. The default for
a Maximum for the number
of connections is the number
of threads per process in the
active MPM. With the Worker
MPM it is controlled by the
ThreadsPerChild. HTTP server
will never create more than the
Hard Maximum connections to
the backend server. If max is is
set to 0 not specified, it will be
set to ThreadsPerChild.

smax max Retained connection pool entries
above this limit are freed during
certain operations if they have
been unused for longer than
the time to live, controlled
by the ttl parameter. If the
connection pool entry has an
associated connection, it will
be closed. This only needs to
be modified from the default
for special circumstances where
connection pool entries and any
associated connections which
have exceeded the time to live
need to be freed or closed more
aggressively.

acquire - If set this will be the maximum
time to wait for a free connection
in the connection pool, in
milliseconds. If there are no free
connections in the pool the HTTP
server will return SERVER_BUSY
status to the client.

connectiontimeout Timeout Connect timeout in seconds.
The number of seconds HTTP
server waits for the creation of
a connection to the backend to
complete. By adding a postfix of
ms the timeout can be also set in
milliseconds.

526 IBM i: IBM HTTP Server for i

Table 43. BalancerMember parameters (continued)

Parameter Default Description

disablereuse Off This parameter should be
used when you want to force
mod_proxy to immediately close
a connection to the backend
after being used, and thus,
disable its persistent connection
and pool for that backend.
This helps in various situations
where a firewall between HTTP
server and the backend server
(regardless of protocol) tends
to silently drop connections or
when backends themselves may
be under round- robin DNS. To
disable connection pooling reuse,
set this property value to On.

enablereuse On This is the inverse of
'disablereuse' above, provided
as a convenience for scheme
handlers that require opt-in for
connection reuse.

flushwait 10 The time to wait for additional
input, in milliseconds, before
flushing the output brigade if
'flushpackets' is 'auto'.

iobuffersize 8192 Adjusts the size of the internal
scratchpad IO buffer. This
allows you to override the
ProxyIOBufferSize for a specific
worker. This must be at least 512
or set to 0 for the system default
of 8192.

IBM HTTP Server for i 527

Table 43. BalancerMember parameters (continued)

Parameter Default Description

keepalive Off This parameter should be used
when you have a firewall
between your HTTP server and
the backend server, which tends
to drop inactive connections. This
flag will tell the Operating System
to send KEEP_ALIVE messages
on inactive connections and
thus prevent the firewall from
dropping the connection. To
enable keepalive set this
property value to On.

The frequency of initial and
subsequent TCP keepalive
probes depends on global OS
settings, and may be as high
as 2 hours. To be useful,
the frequency configured in the
OS must be smaller than the
threshold used by the firewall.

lbset 0 Sets the load balancer cluster
set that the worker is a member
of. The load balancer will
try all members of a lower
numbered lbset before trying
higher numbered ones.

ping 0 Ping property tells the webserver
to "test" the connection to the
backend before forwarding the
request. For HTTP, it causes
mod_proxy_http to send a 100-
Continue to the backend (only
valid for HTTP/1.1 - for non
HTTP/1.1 backends, this property
has no effect). The parameter is
the delay in seconds to wait for
the reply. This feature has been
added to avoid problems with
hung and busy backends. This
will increase the network traffic
during the normal operation
which could be an issue, but it
will lower the traffic in case some
of the cluster nodes are down
or busy. By adding a postfix of
ms the delay can be also set in
milliseconds.

528 IBM i: IBM HTTP Server for i

Table 43. BalancerMember parameters (continued)

Parameter Default Description

loadfactor 1 Worker load factor. Used with
BalancerMember. It is a number
between 1 and 100 and defines
the normalized weighted load
applied to the worker.

receivebuffersize 0 Adjusts the size of the explicit
(TCP/IP) network buffer size
for proxied connections. This
allows you to override the
ProxyReceiveBufferSize for a
specific worker. This must be at
least 512 or set to 0 for the
system default.

redirect - Redirection Route of the
worker. This value is usually
set dynamically to enable
safe removal of the node
from the cluster. If set, all
requests without a session
id will be redirected to the
BalancerMember that has route
parameters equal to this value.

retry 60 Connection pool worker retry
timeout in seconds. If the
connection pool worker to the
backend server is in the error
state, HTTP server will not
forward any requests to that
server until the timeout expires.
This enables to shut down the
backend server for maintenance,
and bring it back online later.

route - Route of the worker when used
inside load balancer. The route is
a value appended to session id.

IBM HTTP Server for i 529

Table 43. BalancerMember parameters (continued)

Parameter Default Description

status - Single letter value defining the
initial status of this worker:

D: Worker is disabled and will not
accept any requests.

S: Worker is administratively
stopped.

I: Worker is in ignore-errors
mode, and will always be
considered available.

H: Worker is in hot-standby mode
and will only be used if no other
viable workers are available.

E: Worker is in an error state.

N: Worker is in drain mode, and
will only accept existing sticky
sessions destined for itself and
ignore all other requests.

Status can be set (which is the
default) by prepending with '+'
or cleared by prepending with '-'.
Thus, a setting of 'S-E' sets this
worker to Stopped and clears the
in-error flag.

timeout ProxyTimeout Connection timeout in seconds.
The number of seconds HTTP
server waits for data sent by / to
the backend.

ttl - Time to live for inactive
connections and associated
connection pool entries, in
seconds. Once reaching this limit,
a connection will not be used
again; it will be closed at some
later time.

If the Proxy directive scheme starts with the balancer:// (eg: balancer://cluster, any path information is
ignored) then a virtual worker that does not really communicate with the backend server will be created.
Instead it is responsible for the management of several "real" workers. In that case the special set of
parameters can be add to this virtual worker. See mod_proxy_balancer for more information about how
the balancer works.

530 IBM i: IBM HTTP Server for i

Table 44. Balancer parameters

Parameter Default Description

lbmethod byrequests Balancer load-balance method.
Select the load-balancing
scheduler method to use.
Either byrequests, to perform
weighted request counting or
bytraffic, to perform weighted
traffic byte count balancing, or
bybusyness, to perform pending
request balancing. The default is
byrequests.

maxattempts One less than the number of
workers, or 1 with a single
worker.

Maximum number of failover
attempts before giving up.

nofailover Off If set to On the session will break
if the worker is in error state or
disabled. Set this value to On if
backend servers do not support
session replication.

stickysession - Balancer sticky session name.
The value is usually set to
something like JSESSIONID or
PHPSESSIONID, and it depends
on the backend application
server that support sessions. If
the backend application server
uses different name for cookies
and url encoded id (like servlet
containers) use | to separate
them. The first part is for the
cookie the second for the path.

scolonpathdelim Off If set to On the semi-colon
character ';' will be used as an
additional sticky session path
delimiter/separator. This is
mainly used to emulate mod_jk's
behavior when dealing with paths
such as
JSESSIONID=6736bcf34;foo=aa
bfa

timeout 0 Balancer timeout in seconds. If
set this will be the maximum time
to wait for a free worker. The
default is not to wait.

failonstatus - A single or comma-separated list
of HTTP status codes. If set this
will force the worker into error
state when the backend returns
any status code in the list. Worker
recovery behaves the same as
other worker errors.

IBM HTTP Server for i 531

Table 44. Balancer parameters (continued)

Parameter Default Description

nonce <auto> The protective nonce used in
the balancer-manager application
page. The default is to use an
automatically determined UUID-
based nonce, to provide for
further protection for the page. If
set, then the nonce is set to that
value. A setting of None disables
all nonce checking.

Note: In addition to the nonce,
the balancer-manager page
should be protected via an ACL.

growth 0 Number of additional
BalancerMembers to allow to be
added to this balancer in addition
to those defined at configuration.

forcerecovery On Force the immediate recovery of
all workers without considering
the retry parameter of the
workers if all workers of a
balancer are in error state. There
might be cases where an already
overloaded backend can get into
deeper trouble if the recovery of
all workers is enforced without
considering the retry parameter
of each worker. In this case set to
Off.

Example 1： A sample balancer setup

ProxyPass /special-area http://special.example.com smax=5 max=10

ProxyPass / balancer://mycluster/ stickysession=JSESSIONID|jsessionid nofailover=On

<Proxy balancer://mycluster>
 BalancerMember http://1.2.3.4:8009
 BalancerMember http://1.2.3.5:8009 loadfactor=20
 # Less powerful server, don't send as many requests there,
 BalancerMember http://1.2.3.6:8009 loadfactor=5
</Proxy>

Example 2：Setting up a hot-standby, that will only be used if no other members are available

ProxyPass / balancer://hotcluster/

<Proxy balancer://hotcluster>
 BalancerMember http://1.2.3.4:8009 loadfactor=1
 BalancerMember http://1.2.3.5:8009 loadfactor=2
 # The server below is on hot standby
 BalancerMember http://1.2.3.6:8009 status=+H
 ProxySet lbmethod=bytraffic
</Proxy>

Note: The ProxyPass directive is not supported in <Directory> or <Files> sections.

When used inside a <Location> section, the first argument is omitted and the local directory is obtained
from the <Location>. The same will occur inside a “<LocationMatch>” on page 340 section, however

532 IBM i: IBM HTTP Server for i

ProxyPass does not interpret the regular expression as such, so it is necessary to use ProxyPassMatch in
this situation instead.

If you require a more flexible reverse-proxy configuration, see the “RewriteRule” on page 576 directive
with the [P] flag.

ProxyPassInherit
Module: mod_proxy

Syntax: ProxyPassInherit on | off

Default: ProxyPassInherit On

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPassInherit off

The ProxyPassInherit directive will cause the current server/virtual host to "inherit" “ProxyPass” on page
522 directives defined in the main server.

Note: This can cause issues and inconsistent behavior if using the Balancer Manager for dynamic changes
and so should be disabled if using that feature

The setting in the global server defines the default for all vhosts.

Disabling ProxyPassInherit also disables “BalancerInherit” on page 507.

ProxyPassInterpolateEnv
Module: mod_proxy

Syntax: ProxyPassInterpolateEnv on | off

Default: ProxyPassInterpolateEnv Off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPassInterpolateEnv On

The ProxyPassInterpolateEnv directive, together with the interpolate argument to ProxyPass,
ProxyPassReverse, ProxyPassReverseCookieDomain and ProxyPassReverseCookiePath enables reverse
proxies to be dynamically configured using environment variables, which may be set by another module
such as mod_rewrite . It affects the ProxyPass, ProxyPassReverse, ProxyPassReverseCookieDomain, and

IBM HTTP Server for i 533

ProxyPassReverseCookiePath directives, and causes them to substitute the value of an environment
variable varname for the string ${varname} in configuration directives (if the interpolate option is set).

Note: Keep this turned off (for server performance) unless you need it!

ProxyPassMatch
Module: mod_proxy

Syntax: ProxyPassMatch [regex] !|url [key=value [key=value ...]]

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPassMatch ^/(.*\.gif)$ http://backend.example.com/$1

The ProxyPassMatch directive is equivalent to “ProxyPass” on page 522 , but makes use of regular
expressions, instead of simple prefix matching. The supplied regular expression is matched against the
url, and if it matches, the server will substitute any parenthesized matches into the given string and use it
as a new url.

Example

Suppose the local server has address http://example.com/; then ProxyPassMatch "^/(.*\.gif)$" "http://
backend.example.com/$1" will cause a local request for http://example.com/foo/bar.gif to be internally
converted into a proxy request to http://backend.example.com/foo/bar.gif.

The ! directive is useful in situations where you don't want to reverse-proxy a subdirectory. When used
inside a <LocationMatch> section, the first argument is omitted and the regular expression is obtained
from the <LocationMatch>. If you require a more flexible reverse-proxy configuration, see the RewriteRule
directive with the [P] flag.

Note: The ProxyPassMatch directive is not supported in <Directory> or <Files> sections.

ProxyPassReverse
Module: mod_proxy

Syntax: ProxyPassReverse [path] url [interpolate]

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

534 IBM i: IBM HTTP Server for i

Example: ProxyPassReverse /docs/ http://pubserver.ibm.com/public/documentation/

The ProxyPassReverse directive lets Apache adjust the URL in the Location, Content-Location and URI
headers on HTTP redirect responses. This is essential when Apache is used as a reverse proxy to avoid
by-passing the reverse proxy because of HTTP redirects on the backend servers which stay behind the
reverse proxy.

The ProxyPassReverse directive may specify a directory path and a partial URL used to identify and adjust
URLs in response headers returned to the client (via proxy). Multiple ProxyPassReverse directives are
allowed.

Only the HTTP response headers specifically mentioned above will be rewritten. Apache will not rewrite
other response headers, nor will it by default rewrite URL references inside HTML pages. This means that
if the proxied content contains absolute URL references, they will by-pass the proxy. To rewrite HTML
content to match the proxy, you must load and enable mod_proxy_html .

Parameter One: path | url

• The path parameter is the name of a local virtual path. When the directive is placed
outside a location container, the first parameter accepts a directory name used to adjust
response header values. If URLs specified in response headers match the url parameter
(parameter two), the portion that matches is replaced with the specified directory name.
Adjusted headers are then returned to the client. The directory name does not need to
specify an existing directory, it may be a name used only as a virtual directory for the
server.

• The url parameter is a partial URL for the remote server. When the directive is placed
inside a location container, the first parameter accepts a partial URL used to identify
URLs in URI, Location, and Content-Location response headers returned to the server as
requested by the proxy function. If any of these request headers match the specified
partial URL, the portion that matches is replaced with the directory name specified for the
location container. Adjust headers are then returned to the client.

Parameter Two: url

• The url parameter is a partial URL for the remote server. When the directive is placed
outside a location container, the second parameter accepts a partial URL used to identify
URLs in URI, Location, and Content-Location response headers returned to the server as
requested by the proxy function.

• When the directive is placed inside a location container a second parameter cannot be
specified.

This directive provides support to be used in applications when it is essential that clients
are not directed to use URLs that bypass the proxy function. It is mainly intended to provide
additional function for reverse proxy, however it may also be applied to forward proxy requests
handled by the server.

Suppose the local server has address http://iseries.ibm.com:

Example

ProxyReverse on
ProxyPass /docs/v4r4m0/ http://pubserver.ibm.com/public/v4r4m0/
ProxyPass /docs/v4r5m0/ http://pubserver.ibm.com/public/v4r5m0/
ProxyPass /docs/v5r1m0/ http://pubserver.ibm.com/public/v5r1m0/
ProxyPassReverse /docs/ http://pubserver.ibm.com/public/
ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/

For this example, since the reverse proxy function is enabled (ProxyReverse on), a request
for /docs/v4r4m0/api_reference.htm will be internally transformed into a proxy request
for http://pubserver.ibm.com/public/v4r4m0/API_reference.htm (the functionality the first
ProxyPass directive provides here). The use of ProxyPassReverse adjusts URLs in URI,
Location, and Content-Location response headers from pubserver.ibm.com. Therefore,

IBM HTTP Server for i 535

when the server's request is subsequently redirected by pubserver.ibm.com with the
following response:

301 "Permanently Moved"
Location: http://pubserver.ibm.com/public/archives/440/API_reference.htm
{other response headers}

{optional body text}

The server changes the matching portion of the URL in the Location header (http://
pubserver.ibm.com/public/) to the virtual server path (/docs/) before sending the following
(adjusted) response to the client:

301 "Permanently Moved"
Location: http://as400.ibm.com/docs/archives/440/API_reference.htm
{other response headers}

{optional body text}

In this way, any new request the client sends due to the redirect response (301
"Permanently Moved") is directed back to the proxy since the Location header is adjusted.
The back end server and path name (http://pubserver.ibm.com/public/) remain hidden from
the client.

• This directive is only useful when used in conjunction with the “ProxyPass” on page 522 directive.
• Setting “ProxyReverse” on page 541 to off negates this directive.
• Setting “ProxyRequests” on page 540 to off does not negate this directive. It is available regardless of

the proxy state.
• Note that this ProxyPassReverse directive can also be used in conjunction with the proxy feature

(RewriteRule ... [P]) from mod_rewrite because it doesn't depend on a corresponding “ProxyPass” on
page 522 directive.

• The optional interpolate keyword, used together with ProxyPassInterpolateEnv, enables interpolation of
environment variables specified using the format ${VARNAME}. Note that interpolation is not supported
within the scheme portion of a URL.

• When used inside a “<Location> ” on page 339 section, the first argument is omitted and the local
directory is obtained from the “<Location> ” on page 339. The same occurs inside a “<LocationMatch>”
on page 340 section, but will probably not work as intended, as ProxyPassReverse will interpret the
regexp literally as a path; if needed in this situation, specify the ProxyPassReverse outside the section,
or in a separate “<Location> ” on page 339 section.

• This directive is not supported in “<Directory> ” on page 311 or “<Files>” on page 323 sections.

ProxyPassReverseCookieDomain
Module: mod_proxy

Syntax: ProxyPassReverseCookieDomain internal-domain public-domain

Default: none

Context: Server, Virtual Host, Directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPassReverseCookieDomain internal.domain.com www.company.com

536 IBM i: IBM HTTP Server for i

The ProxyPassReverseCookieDomain directive adjusts the Domain string in Set-Cookie headers from
a reverse- proxied server. The usage of the ProxyPassReverseCookieDomain directive is similar to
ProxyPassReverse, but instead of rewriting headers that are a URL it rewrites the domain string in
Set-Cookie headers.

ProxyPassReverseCookiePath
Module: mod_proxy

Syntax: ProxyPassReverseCookiePath internal-path public-path

Default: none

Context: Server, Virtual Host, Directory

Override: none

Origin: Apache

UsageConsiderations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

The ProxyPassReverseCookiePath directive adjusts the Path string in Set-Cookie headers from a reverse-
proxied serve. The usage of the ProxyPassReverseCookiePath directive is similar to ProxyPassReverse,
but instead of rewriting headers that are a URL, this rewrites the path string in Set-Cookie headers.

ProxyPreserveHost
Module: mod_proxy

Syntax: ProxyPreserveHost on | off

Default: ProxyPreserveHost off

Context: server config, virtual host, Directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPreserveHost on

The ProxyPreserveHost directive specifies whether the server is to preserve Host: headers when handling
requests using the reverse proxy function.

Parameter: on | off

• If off is specified (the default), the server generates Host: headers for requests handled by
the reverse proxy function, using the hostname (and optionally a port number) specified
for the ProxyPass or RewriteRule directives.

• If on is specified, the server uses Host: headers sent with requests, rather than generating
Host: headers, and uses the hostname (and optional port) specified for the ProxyPass or
RewriteRule directives only to route the request.

Suppose, for example, the local server has the address http://as400.ibm.com/ with the
following directive set up for reverse proxy:

IBM HTTP Server for i 537

Example

ProxyPass /docs/ http://pubserver.ibm.com:8080/public/documentation/
ProxyPreserveHost on

The server in this example is sent the following request:

GET /docs/manual.html HTTP/1.0
Host: virtual-host.ibm.com
{other request headers}

{optional body text}

The ProxyPass directive will cause the request to be internally transformed into a
request for http://pubserver.ibm.com:8080/public/documentation/manual.html, and the
ProxyPreserveHost directive will cause the Host: header to be preserved and passed by
the proxy function, resulting in the following request sent to pubserver.ibm.com:

GET /public/documentation/manual.html HTTP/1.0
Host: virtual-host.ibm.com
{other request headers}

{optional body text}

If off were specified for ProxyPreserveHost, the Host: header would not be preserved. The
server, in this case, would generate a Host: header, resulting in the following request:

GET /public/documentation/manual.html HTTP/1.0
Host: pubserver.ibm.com:8080
{other request headers}

{optional body text}

• “ProxyPassReverse” on page 534 may be used to handle HTTP redirect responses from remote servers.
• Setting “ProxyReverse” on page 541 to off negates this directive.
• Setting “ProxyRequests” on page 540 to off does not negate this directive. It is available regardless of

the forward proxy state.

Note: This option should normally be turned Off. It is mostly useful in special configurations like proxied
mass name-based virtual hosting, where the original Host header needs to be evaluated by the backend
server.

ProxyReceiveBufferSize
Module: mod_proxy

Syntax: ProxyReceiveBufferSize bytes

Default: ProxyReceiveBufferSize 0

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

538 IBM i: IBM HTTP Server for i

Example: ProxyReceiveBufferSize 2048 The ProxyReceiveBufferSize directive specifies an explicit
network buffer size for outgoing HTTP and FTP connections (for increased throughput). This directive
effectively overrides the server's default TCP/IP buffer size. Possible values include 0 (zero) and all
positive integers greater than or equal to 512 (the maximum value is 2,147,483,647 bytes). The value 0
(zero) indicates the system's default buffer size should be used.

Parameter: bytes

• The bytes parameter has to be greater than '512' or set to '0' to indicate that the system's
default buffer size should be used.

ProxyRemote
Module: mod_proxy

Syntax: ProxyRemote match remote-server

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyRemote ftp http://ftpproxy.mydomain.com:8080

The ProxyRemote directive defines remote proxies for the local server. Multiple ProxyRemote directives
are allowed. When a client sends a request that matches a ProxyRemote directive, the local server
connects to the remote proxy server specified in the directive, rather than to the server specified in the
URL. The remote proxy server retrieves the requested document and returns it to the local server, who in
turn returns it to the client. This is referred to as a "proxy chain" since more than one proxy is used.

Proxy chains are useful in cases where multiple caches are used, or when the local server doesn't support
the protocol (or schema) specified in the URL and must chain the request to a proxy that does support
the protocol. Proxy chains may also be useful in cases where certain requests must be chained to another
proxy server in order to get through a firewall or route across a virtual private network.

Parameter One: match

• The match parameter is either the name of a URL scheme that the remote proxy server
supports, a partial URL that can be used to distinguish requests that should be chained
from requests that need not be chained, or '*' to indicate the remote proxy server should
be contacted (or chained) for all requests.

Parameter Two: remote-server

• The remote-server parameter is a partial URL for the remote server.

Syntax: <remote-server>=<protocol>://<hostname>[:port]

Where <protocol> is the protocol that should be used to communicate with the remote
server. Only HTTP is supported by this module.

Example 1

ProxyRemote ftp http://ftpproxy.server.com:8080

IBM HTTP Server for i 539

Example 2

ProxyRemote http://server.com/ http://mirrorserver.com:8000

Example 3

ProxyRemote * http://server.com

In example 1, the server will forward (or chain) all FTP requests, encapsulated as yet another
HTTP proxy request, to the server named ftpproxy.server.com (port 8080), which then handles
the request and returns the document to the local server.

In example 2, the server will forward all requests that match the partial URL http://server.com/
to the server named mirrorserver.com (port 8000).

In example 3, all requests will be forwarded to the server named server.com.

• “ProxyBlock” on page 512 may be used to block incoming requests prior to consideration for this
directive.

• Requests matching a “NoProxy” on page 508 directive are not chained.
• This directive is commonly used in conjunction with “NoProxy” on page 508 and “ProxyDomain” on

page 514 for directing proxy requests within intranets.
• Setting ProxyNoConnect to on negates this directive.

ProxyRemoteMatch
Module: mod_proxy

Syntax: ProxyRemoteMatch regex remote-server

Default: none

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyRemote ftp http://ftpproxy.mydomain.com:8080

The ProxyRemoteMatch is identical to the ProxyRemote directive, except the first argument is a regular
expression match against the requested URL.

ProxyRequests
Module: mod_proxy

Syntax: ProxyRequests on | off

Default: ProxyRequests off

Context: server config, virtual host

Override: none

Origin: Apache

540 IBM i: IBM HTTP Server for i

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyRequests on

The ProxyRequest directive allows or prevents the server from functioning as a forward proxy.

Parameter: on | off

• If set to off , the server does not function as a forward proxy (see Example 1, below).
• If set to on, the server functions as a forward proxy and accepts proxy requests. All other

directives for the mod_proxy module are in effect.

Example 1

ProxyRequests off

Example 2

 ProxyRequests on
 CacheRoot /QIBM/UserData/HTTPA/CacheRoot

Example 3

 ProxyRequests on
 ProxyNoConnect on
 CacheRoot /QIBM/UserData/HTTPA/CacheRoot

Example 4

 ProxyRequests on
 CacheExpiryCheck off
 CacheRoot /QIBM/UserData/HTTPA/CacheRoot

• If CacheRoot is set, the proxy also activates its caching function and may serve documents from
cache (by default) as well as issue direct outgoing requests (by default) (see Example 2, above). Expiry
checking for cached documents is performed (by default).

• If CacheRoot is set and “ProxyNoConnect” on page 521 is set to on, the proxy activates its caching
function but will only serve documents from cache. It will not issue outgoing requests (see Example 3,
above). Expiry checking for cached documents is performed.

• If CacheRoot is set and “CacheExpiryCheck” on page 270 is set to off, the proxy activates its caching
function but will not check expiry times for cached documents. Expired documents may be served from
cache (see Example 4, above).

• Setting “ProxyRequests” on page 540 to off negates all directives for the mod_proxy module, except for
the “ProxyPass” on page 522 and “ProxyPassReverse” on page 534 directives.

ProxyReverse
Module: mod_proxy

Syntax: ProxyReverse on | off

Default: ProxyReverse on

Context: server config, virtual host

Override: none

Origin: IBM

IBM HTTP Server for i 541

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyReverse off

The ProxyReverse directive specifies whether the server may function as a reverse proxy to handle
requests. The reverse proxy function is enabled by default, however other directives must specify how
the server identifies and maps requests for reverse proxy. If off is specified, the reverse proxy function is
disabled, and directives that apply the function (ProxyPass and RewriteRule directives using the 'proxy'
flag) are ineffective. See “ProxyPass” on page 522 and “RewriteRule” on page 576 for more details on
reverse proxy.

Parameter: on | off

• If set to off , the server does not function as a reverse proxy (see Example 1).
• If set to on, the server functions as a reverse proxy to handle requests identified and

mapped for reverse proxy

Example 1

ProxyReverse off
ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

For example one, the reverse proxy function is disabled. The ProxyPass directive is ineffective.

In the following example, the reverse proxy function is enabled. The server functions as a
reverse proxy to handle requests that match the path specified for the ProxyPass directive.

Example 2

ProxyReverse on
ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

See “ProxyPass” on page 522 for more details.

Proxyset
Module: mod_proxy

Syntax: ProxySet [path] [key=value key=value ...]]

Default: none

Context: server config, Virtual Host, Directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule balancer_proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

542 IBM i: IBM HTTP Server for i

Example:

RewriteRule ^/mbp/(.*) balancer://ourcluster/$1 [P]
<Proxy balancer://myCluster>
.....
ProxySet stickysession=OUR_COOKIE timeout=20 nofailover=On
</Proxy>

<Proxy "balancer://hotcluster">
 BalancerMember "http://www2.example.com:8080" loadfactor=1
 BalancerMember "http://www3.example.com:8080" loadfactor=2
 ProxySet lbmethod=bytraffic
 </Proxy>
ProxySet "balancer://foo" lbmethod=bytraffic timeout=15

The ProxySet is similar to the ProxyPass directive. If the ProxySet directive scheme starts with the
balancer:// then a virtual worker that does not really communicate with the backend server will be
created. Instead it is responsible for the management of several "real" workers. In that case the special
set of parameters can be added to this virtual worker. These same parameters can also be added to the
ProxySet directive when balancer:// is specified. The following table displays the parameters for all proxy
workers in a group or cluster.

Table 45. ProxySet parameters

Header Default Description

lbmethod byrequests Balancer load-balance method.
Select the load-balancing
scheduler method to use. Either
byrequests, to perform weighted
request counting or bytraffic, to
perform weighted traffic byte
count balancing, or bybusyness,
to perform pending request
balancing. Default is byrequests.

maxattempts One less than the number of
workers, or 1 with a single
worker.

Maximum number of failover
attempts before giving up.

nofailover Off If set to On the session will break
if the worker is in error state or
disabled. Set this value to On if
backend servers do not support
session replication.

stickysession - Balancer sticky session name.
The value is usually set to
something like JSESSIONID or
PHPSESSIONID, and it depends
on the backend application
server that support sessions. If
the backend application server
uses different name for cookies
and url encoded id (like servlet
containers) use | to separate
them. The first part is for the
cookie the second for the path.

IBM HTTP Server for i 543

Table 45. ProxySet parameters (continued)

Header Default Description

stickysessionsep "." Sets the separation symbol in the
session cookie. Some backend
application servers do not use
the '.' as the symbol. For example
the Oracle Weblogic server uses
'!'. The correct symbol can be set
using this option. The setting of
'Off' signifies that no symbol is
used.

scolonpathdelim Off If set to On the semi-colon
character ';' will be used as an
additional sticky session path
delimiter/separator. This is
mainly used to emulate mod_jk's
behavior when dealing with paths
such as
JSESSIONID=6736bcf34;foo=aa
bfa

timeout 0 Balancer timeout in seconds. If
set this will be the maximum
time to wait for a free worker.
Default is not to wait.

failonstatus - A single or comma-separated list
of HTTP status codes. If set
this will force the worker into
error state when the backend
returns any status code in the
list. Worker recovery behaves the
same as other worker errors.

failontimeout Off If set, an IO read timeout after
a request is sent to the backend
will force the worker into error
state. Worker recovery behaves
the same as other worker errors.

nonce <auto> The protective nonce used in the
balancer-manager application
page. The default is to use an
automatically determined UUID-
based nonce, to provide for
further protection for the page. If
set, then the nonce is set to that
value. A setting of None disables
all nonce checking.

Note: In addition to the nonce,
the balancer-manager page
should be protected via an ACL.

growth 0 Number of additional
BalancerMembers to allow to be
added to this balancer in addition
to those defined at configuration.

544 IBM i: IBM HTTP Server for i

Table 45. ProxySet parameters (continued)

Header Default Description

forcerecovery On Force the immediate recovery of
all workers without considering
the retry parameter of the
workers if all workers of a
balancer are in error state. There
might be cases where an already
overloaded backend can get into
deeper trouble if the recovery of
all workers is enforced without
considering the retry parameter
of each worker. In this case set to
Off.

You MUST specify the ProxySet directive AFTER the BalancerMember directives.

ProxySourceAddress
Module: mod_proxy

Syntax: ProxySourceAddress address

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxySourceAddress 192.168.0.100

The ProxySourceAddress directive allows to set a specific local address to bind to when connecting to a
backend server.

ProxyTimeout
Module: mod_proxy

Syntax: ProxyTimeout period

Default: none (the general server timeout value is used)

Context: server config, virtual host

Override: none

Origin: Apache

IBM HTTP Server for i 545

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyTimeout 300

The ProxyTimeout directive specifies the maximum number of minutes the server will wait for responses
from remote servers when handling proxy requests. If not specified, the general server timeout value is
used (see the “TimeOut” on page 361 directive).

Parameter: period

• The period parameter accepts an integer value between 1 and 2,147,483,648 to specify
the maximum period of time the server should wait for responses from remote servers (in
seconds).

If a response is not received in the specified number of seconds, the server will cancel the
request and return response code 504 (Gateway timeout).

Example

ProxyTimeout 120

For this example, the server will wait up to 120 seconds (or 2 minute) for responses from
remote servers.

• “ProxyPassReverse” on page 534 may be used to handle HTTP redirect responses from remote servers.
• Setting “ProxyReverse” on page 541 to off negates this directive.
• Setting “ProxyRequests” on page 540 to off does not negate this directive. It is available regardless of

the forward proxy state.

ProxyVia
Module: mod_proxy

Syntax: ProxyVia off | on | full | block

Default: ProxyVia off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyVia on

The ProxyVia directive controls the server's use of the Via: HTTP header. Its intended use is to control the
flow of proxy requests along a chain of servers. See RFC2068 (HTTP/1.1) for an explanation of Via: header
lines.

546 IBM i: IBM HTTP Server for i

Parameter: off | on | full | block

• If set to off (the default value), no special processing is performed. The proxy does not
include a Via: header line, however any existing Via: headers from other proxy servers are
kept intact.

• If set to on , each request and reply will get a Via: header line added for the current host.
The proxy includes its own, abbreviated Via: header line. Any additional Via: header lines
from other proxy servers are kept intact.

• If set to full, each generated Via: header line will additionally have HTTP Server version
shown on the Via: comment field. The proxy includes its own, full Via: header (containing
the proxy's version description). Any additional Via: header lines from other proxy servers
are kept intact.

• If set to block, every proxy request will have all its Via: header lines removed. No new
Via: header will be generated. The proxy does not include a Via: header and removes all
existing Via headers from other proxy servers.

A server may be a participant in a proxy chain even though it is not specifically configured to chain its
own requests. For this reason, it may be necessary to control the server's use of the Via: HTTP header
even though it is not specifically configured for proxy chaining (see “ProxyRemote” on page 539 for more
details about proxy chains).

Module mod_proxy_connect
Module mod_proxy_connect supports directives for the IBM HTTP Server for i Web server.

Summary

This module provides support for the CONNECT HTTP method. This method is mainly used to tunnel SSL
requests through proxy servers. CONNECT is also used when the server needs to send an HTTPS request
through a forward proxy. In this case the server acts as a CONNECT client.

Note: The modules require the following LoadModules in HTTP Server configuration file:

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Directives

• “AllowCONNECT” on page 547

AllowCONNECT
Module: mod_proxy_connect

Syntax: AllowCONNECT port[-port] [port[-port]] ...

Default: AllowCONNECT 443 563

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

IBM HTTP Server for i 547

Example: AllowCONNECT 1070-1078 8080-8088

The AllowCONNECT directive specifies a list of port numbers or ranges the server allows clients to specify
when using the proxy CONNECT method. Clients use the CONNECT method when HTTPS connections
are requested and proxy tunneling over HTTP is in effect. By default, only the default HTTPS port (443)
and the default SNEWS port (563) are enabled. Use this directive to override the default and only allow
connections that use one of the listed ports.

Parameter: port[-port] [port[-port]] ...

• The port[-port] [port[-port]] .. parameter can consist of a string of port numbers or ranges separated
by spaces (see examples below).

AllowCONNECT 443 563 1070 8088
AllowCONNECT 1070-1078 8080-808

• ProxyBlock may be used to block incoming requests prior to this directive's consideration.
• Setting ProxyRequests to off negates this directive.

This directive may be configured multiple times in a container. The directives are processed from the first
to the last occurrence.

Module mod_proxy_ftp
Directives

• “ProxyFtpEscapeWildcards” on page 548
• “ProxyFtpListOnWildcard” on page 548

ProxyFtpEscapeWildcards
Module: mod_proxy_ftp

Syntax: ProxyFtpEscapeWildcards on|off

Default: on

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyFtpEscapeWildcards off

The ProxyFtpEscapeWildcards directive controls whether wildcard characters ("*?[{~") in requested
filenames are escaped with backslash before sending them to the FTP server. That is the default behavior,
but many FTP servers don't know about the escaping and try to serve the literal filenames they were sent,
including the backslashes in the names.

Set to "off" to allow downloading files with wildcards in their names from FTP servers that don't
understand wildcard escaping.

ProxyFtpListOnWildcard
Module: mod_proxy_ftp

548 IBM i: IBM HTTP Server for i

Syntax: ProxyFtpEscapeWildcards on|off

Default: on

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyFtpEscapeWildcards off

The ProxyFtpListOnWildcard directive controls whether wildcard characters ("*?[{~") in requested
filenames cause mod_proxy_ftp to return a listing of files instead of downloading a file. By default (value
on), they do. Set to "off" to allow downloading files even if they have wildcard characters in their names.

Module mod_proxy_html
Module mod_proxy_html supports directives for the IBM HTTP Server for i Web server.

Summary

The mod_proxy_html module provides an output filter to rewrite HTML links in a proxy situation, to
ensure that links work for users outside the proxy. It serves the same purpose as HTTP Server's
ProxyPassReverse directive does for HTTP headers, and is an essential component of a reverse proxy.

For example, if a company has an application server at appserver.example.com that is only visible from
within the company's internal network, and a public webserver www.example.com, they may wish to
provide a gateway to the application server at http://www.example.com/appserver/. When the application
server links to itself, those links need to be rewritten to work through the gateway. mod_proxy_html
serves to rewrite foobar to <a href="http://
www.example.com/appserver/foo/bar.html"> foobar making it accessible from outside.

Note: The mod_proxy_html directives require the following LoadModules in HTTP Server configuration
file:

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Directives

• “ProxyHTMLBufSize” on page 550
• “ProxyHTMLCharsetOut” on page 550
• “ProxyHTMLDocType ” on page 551
• “ProxyHTMLEnable” on page 551
• “ProxyHTMLEvents” on page 552
• “ProxyHTMLExtended” on page 553
• “ProxyHTMLFixups” on page 553
• “ProxyHTMLInterp” on page 554
• “ProxyHTMLLinks” on page 554

IBM HTTP Server for i 549

• “ProxyHTMLMeta” on page 555
• “ProxyHTMLStripComments” on page 556
• “ProxyHTMLURLMap” on page 557

ProxyHTMLBufSize
Module: mod_proxy_html

Syntax: ProxyHTMLBufSize bytes

Default: ProxyHTMLBufSize 8192

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLBufSize 10240

The ProxyHTMLBufSize directive sets the buffer size increment for buffering inline scripts and stylesheets.
In order to parse non-HTML content (stylesheets and scripts) embedded in HTML documents,
mod_proxy_html has to read the entire script or stylesheet into a buffer. This buffer will be expanded
as necessary to hold the largest script or stylesheet in a page, in increments of bytes as set by this
directive.

The default is 8192, and will work well for almost all pages. However, if you know you're proxying pages
containing stylesheets and/or scripts bigger than 8K (that is, for a single script or stylesheet, NOT in total),
it will be more efficient to set a larger buffer size and avoid the need to resize the buffer dynamically
during a request.

ProxyHTMLCharsetOut
Module: mod_proxy_html

Syntax: ProxyHTMLCharsetOut Charset | *

Default: ProxyHTMLCharsetOut UTF-8

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule xml2enc_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

550 IBM i: IBM HTTP Server for i

Example:

ProxyHTMLCharsetOut *

ProxyHTMLCharsetOut ISO-8859-1

The ProxyHTMLCharsetOut directive specifies a charset for mod_proxy_html output. This selects an
encoding for mod_proxy_html output. It should not normally be used, as any change from the default
UTF-8 (Unicode) will impose an additional processing overhead. The special token ProxyHTMLCharsetOut
* will generate output using the same encoding as the input.

Note: This directive requires mod_xml2enc to be loaded.

ProxyHTMLDocType
Module: mod_proxy_html

Syntax: ProxyHTMLDocType HTML|XHTML [Legacy] OR ProxyHTMLDocType fpi [SGML|XML]

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLDocType XHTML

The ProxyHTMLDocType directive sets an HTML or XHTML document type declaration. In the first form,
documents will be declared as HTML 4.01 or XHTML 1.0 according to the option selected. This option also
determines whether HTML or XHTML syntax is used for output. Note that the format of the documents
coming from the backend server is immaterial: the parser will deal with it automatically. If the optional
second argument is set to "Legacy", documents will be declared "Transitional", an option that may be
necessary if you are proxying pre-1998 content or working with defective authoring/publishing tools.

In the second form, it will insert your own FPI. The optional second argument determines whether SGML/
HTML or XML/XHTML syntax will be used.

The default is changed to omitting any FPI, on the grounds that no FPI is better than a bogus one. If your
backend generates decent HTML or XHTML, set it accordingly.

If the first form is used, mod_proxy_html will also clean up the HTML to the specified standard. It cannot
fix every error, but it will strip out bogus elements and attributes. It will also optionally log other errors at
LogLevel Debug.

ProxyHTMLEnable
Module: mod_proxy_html

Syntax: ProxyHTMLEnable on|off

Default: ProxyHTMLEnable off

Context: server config, virtual host, directory

Override: none

IBM HTTP Server for i 551

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLEnable On

The ProxyHTMLEnable directive turns the proxy_html filter on or off. It's a simple switch to
enable or disable the proxy_html filter. If mod_xml2enc is loaded it will also automatically set up
internationalization support.

Note: The proxy_html filter will only act on HTML data (Content-Type text/html or application/xhtml+xml)
when the data are proxied.

ProxyHTMLEvents
Module: mod_proxy_html

Syntax: ProxyHTMLEvents attribute [attribute ...]

Default: None

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLEvents onclick ondblclick onmousedown onmouseup

The ProxyHTMLEvents directive specifies one or more attributes to treat as scripting events and apply
ProxyHTMLURLMaps to where enabled. You can specify any number of attributes in one or more
ProxyHTMLEvents directives.

Normally you'll set this globally. If you set ProxyHTMLEvents in more than one scope so that one overrides
the other, you'll need to specify a complete set in each of those scopes.

Below is a default configuration which defines the events in standard HTML 4 and XHTML 1. You can
directly add the needed ones to your HTTP server configuration file or simply create a proxy-html.conf file
with all the following configurations and have the file included to your HTTP server configuration file(i.e.
Include conf/proxy_html.conf).

To support scripting events (with ProxyHTMLExtended On),

you'll need to declare them too.

ProxyHTMLEvents onclick ondblclick onmousedown onmouseup \
 onmouseover onmousemove onmouseout onkeypress \
 onkeydown onkeyup onfocus onblur onload \
 onunload onsubmit onreset onselect onchange

552 IBM i: IBM HTTP Server for i

ProxyHTMLExtended
Module: mod_proxy_html

Syntax: ProxyHTMLExtended on|off

Default: ProxyHTMLExtended off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLExtended On

The ProxyHTMLExtended directive determines whether to fix links in inline scripts, stylesheets, and
scripting events.

Parameter: On | Off

• If off is specified (the default), HTML links are rewritten according to the ProxyHTMLURLMap
directives, but links appearing in Javascript and CSS are ignored.

• If on is specified, all scripting events (as determined by ProxyHTMLEvents) and embedded scripts or
stylesheets are also processed by the ProxyHTMLURLMap rules, according to the flags set for each
rule. Since this requires more parsing, performance will be best if you only enable it when strictly
necessary.

Note: You'll also need to take care over patterns matched, since the parser has no knowledge of what is a
URL within an embedded script or stylesheet. In particular, extended matching of / is likely to lead to false
matches.

ProxyHTMLFixups
Module: mod_proxy_html

Syntax: ProxyHTMLFixups [lowercase] [dospath] [reset]

Default: None

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLFixups lowercase

The ProxyHTMLFixups directive fixes for simple HTML errors. This directive takes one to three parameters
as follows:

IBM HTTP Server for i 553

Parameter: [lowercase] [dospath] [reset]

• lowercase Urls are rewritten to lowercase
• dospath Backslashes in URLs are rewritten to forward slashes.
• reset Unset any options set at a higher level in the configuratio

Note: Take care when using these. The fixes will correct certain authoring mistakes, but risk also
erroneously fixing links that were correct to start with. Only use them if you know you have a broken
backend server.

ProxyHTMLInterp
Module: mod_proxy_html

Syntax: ProxyHTMLInterp on|off

Default: ProxyHTMLInterp Off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLInterp On

The ProxyHTMLInterp directive per-request interpolation in ProxyHTMLURLMap to- and from- patterns.

Parameter: on | off

• If off is specified (the default), all rules are pre-compiled at startup.
• If on is specified, all rules are re-compiled for every request, which implies an extra processing

overhead. It should therefore be enabled only when necessary.

ProxyHTMLLinks
Module: mod_proxy_html

Syntax: ProxyHTMLLinks element attribute [attribute2 ...]

Default: None

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLLinks a href

554 IBM i: IBM HTTP Server for i

The ProxyHTMLLinks directive specifies HTML elements that have URL attributes that should be rewritten
using standard ProxyHTMLURLMaps. You will need one ProxyHTMLLinks directive per element, but it can
have any number of attributes.

Normally you'll set this globally. If you set ProxyHTMLLinks in more than one scope so that one overrides
the other, you'll need to specify a complete set in each of those scopes.

Below is a default configuration which defines the HTML links for standard HTML 4 and XHTML 1. You can
directly add the needed ones to your HTTP server configuration file or simply create a proxy-html.conf file
with all the following configurations and have the file included to your HTTP server configuration file(i.e.
Include conf/proxy_html.conf).

Here's the declaration for W3C HTML 4.01 and XHTML 1.0

ProxyHTMLLinks a href

ProxyHTMLLinks area href

ProxyHTMLLinks link href

ProxyHTMLLinks img src longdesc usemap

ProxyHTMLLinks object classid codebase data usemap

ProxyHTMLLinks q cite

ProxyHTMLLinks blockquote cite

ProxyHTMLLinks ins cite

ProxyHTMLLinks del cite

ProxyHTMLLinks form action

ProxyHTMLLinks input src usemap

ProxyHTMLLinks head profile

ProxyHTMLLinks base href

ProxyHTMLLinks script src for

If you need to support legacy (pre-1998, aka "transitional") HTML or XHTML,

you'll need to uncomment the following deprecated link attributes.

#

ProxyHTMLLinks frame src longdesc

ProxyHTMLLinks iframe src longdesc

ProxyHTMLLinks body background

ProxyHTMLLinks applet codebase

#

If you're dealing with proprietary HTML variants,

declare your own URL attributes here as required.

#

ProxyHTMLLinks myelement myattr otherattr

ProxyHTMLMeta
Module: mod_proxy_html

IBM HTTP Server for i 555

Syntax: ProxyHTMLMeta On|Off

Default: ProxyHTMLMeta Off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLMeta On

The ProxyHTMLMeta directive turns on or off pre-parsing of metadata in HTML <head> sections.

ProxyHTMLMeta has two effects. Firstly and most importantly it enables detection of character encodings
declared in the form <meta http-equiv="Content-Type" content="text/html;charset=foo"> or, in the case
of an XHTML document, an XML declaration. It is NOT required if the charset is declared in a real HTTP
header (which is always preferable) from the backend server, nor if the document is utf-8 (unicode) or a
subset such as ASCII.

The other effect of enabling ProxyHTMLMeta is to parse all <meta http-equiv=...> declarations and
convert them to real HTTP headers, in keeping with the original purpose of this form of the HTML <meta>
element.

If not required, turning ProxyHTMLMeta Off will give a small performance boost by skipping this parse
step. However, it is sometimes necessary for internationalization to work correctly.

ProxyHTMLStripComments
Module: mod_proxy_html

Syntax: ProxyHTMLStripComments On|Off

Default: ProxyHTMLStripComments Off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLStripComments On

The ProxyHTMLStripComments directive determines whether to strip HTML comments.

Note: This will also kill off any scripts or styles embedded in comments. It may also interfere with
comment-based processors such as SSI: be sure to run any of those before mod_proxy_html in the filter
chain if stripping comments.

556 IBM i: IBM HTTP Server for i

ProxyHTMLURLMap
Module: mod_proxy_html

Syntax: ProxyHTMLURLMap from-pattern to-pattern [flags] [cond]

Default: None

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_html_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyHTMLURLMap http://www.internal.com/ /reverseProxy/

The ProxyHTMLURLMap directive defines a rule to rewrite HTML links. This is the key directive
for rewriting HTML links. When parsing a document, whenever a link target matches from-pattern,
the matching portion will be rewritten to to-pattern, as modified by any flags supplied and by the
ProxyHTMLExtended directive.

The optional third argument may define any of the following Flags. Flags are case-sensitive.

flag description

h Ignore HTML links (pass through unchanged)

e Ignore scripting events (pass through unchanged)

c Pass embedded script and style sections through
untouched.

L Last-match. If this rule matches, no more rules are
applied (note that this happens automatically for
HTML links).

l Opposite to L. Overrides the one-change-only
default behavior with HTML links.

R Use Regular Expression matching-and-replace.
from-pattern is a regexp, and to-pattern is a
replacement string that may be based on the
regexp. Regexp memory is supported: you can use
brackets () in the from-pattern and retrieve the
matches with $1 to $9 in the to-pattern.

If R is not set, it will use string-literal search-and-
replace. The logic is starts-with in HTML links, but
contains in scripting events and embedded script
and style sections.

x Use POSIX extended Regular Expressions. Only
applicable with R.

i Case-insensitive matching. Only applicable with R.

IBM HTTP Server for i 557

flag description

n Disable regexp memory (for speed). Only
applicable with R.

s Line-based regexp matching. Only applicable with
R.

Note: The newline character is 0x0A(LF)

^ Match at start only. This applies only to string
matching (not regexps) and is irrelevant to HTML
links.

$ Match at end only. This applies only to string
matching (not regexps) and is irrelevant to HTML
links.

V Interpolate environment variables in to-pattern.
A string of the form ${varname|default} will be
replaced by the value of environment variable
varname. If that is unset, it is replaced by default.
The |default is optional.

Note: interpolation will only be enabled if
ProxyHTMLInterp is On.

v Interpolate environment variables in from-pattern.
Patterns supported are as above.

Note: interpolation will only be enabled if
ProxyHTMLInterp is On

The optional fourth cond argument defines a condition that will be evaluated per Request, provided
ProxyHTMLInterp is On. If the condition evaluates FALSE the map will not be applied in this request. If
TRUE, or if no condition is defined, the map is applied.

Module mod_proxy_scgi
Directives

• “ProxySCGIInternalRedirect” on page 558
• “ProxySCGISendfile” on page 559

ProxySCGIInternalRedirect
Module: mod_proxy_scgi

Load_Module:

proxy_scgi_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Syntax: ProxySCGIInternalRedirect on|off

Default: on

Context: server config, virtual host, directory

Override: none

Origin: Apache

558 IBM i: IBM HTTP Server for i

Current® GUI Location: None

Example: ProxySCGIInternalRedirect off

The ProxySCGIInternalRedirect enables the backend to internally redirect the gateway to a different URL.
This feature origins in mod_cgi, which internally redirects the response, if the response status is OK (200)
and the response contains a Location header and its value starts with a slash (/). This value is interpreted
as a new local URL the apache internally redirects to.

mod_proxy_scgi does the same as mod_cgi in this regard, except that you can turn off the feature.

ProxySCGISendfile
Module: mod_proxy_scgi

Load_Module:

proxy_scgi_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Syntax: ProxySCGISendfile On|Off|Headername

Default: ProxySCGISendfile Off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Current GUI Location: None

Example: ProxySCGISendfile On

The ProxySCGISendfile directive enables the SCGI backend to let files serve directly by the gateway.
This is useful performance purposes -- the httpd can use sendfile or other optimizations, which are not
possible if the file comes over the backend socket.

The ProxySCGISendfile argument determines the gateway behaviour:

off No special handling takes place.

On The gateway looks for a backend response header called X-Sendfile and interprets the value as
filename to serve. The header is removed from the final response headers. This is equivalent to
ProxySCGISendfile X-Sendfile.

anything else Similar to On, but instead of the hardcoded header name the argument is applied as header
name.

Module mod_remoteip
Module mod_remoteip supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_remoteip is used to treat the useragent which initiated the request as the originating
useragent as identified by HTTP server for the purposes of authorization and logging, even where that
useragent is behind a load balancer, front end server, or proxy server.

The module mod_remoteip overrides the client IP address for the connection with the useragent IP
address reported in the request header configured with the RemoteIPHeader directive. Once replaced
as instructed, this overridden useragent IP address is then used for the mod_authz_host <Require ip>
feature, and is recorded by mod_log_config %a and core %a format strings. The underlying client IP of the
connection is available in the %{c}a format string.

IBM HTTP Server for i 559

Remote IP Processing

HTTP server by default identifies the useragent with the connection's client_ip value, and the connection
remote_host and remote_logname are derived from this value. These fields play a role in authentication,
authorization and logging and other purposes by other loadable modules.

mod_remoteip overrides the client IP of the connection with the advertised useragent IP as provided by
a proxy or load balancer, for the duration of the request. A load balancer might establish a long lived
keepalive connection with the server, and each request will have the correct useragent IP, even though
the underlying client IP address of the load balancer remains unchanged.

When multiple, comma delimited useragent IP addresses are listed in the header value, they are
processed in Right-to-Left order. Processing halts when a given useragent IP address is not trusted to
present the preceding IP address. The header field is updated to this remaining list of unconfirmed IP
addresses, or if all IP addresses were trusted, this header is removed from the request altogether.

In overriding the client IP, the module stores the list of intermediate hosts in a remoteip-proxy-ip-
list note, which mod_log_config can record using the %{remoteip-proxy-ip-list}n format token. If the
administrator needs to store this as an additional header, this same value can also be recording as a
header using the directive RemoteIPProxiesHeader.

Directives

• “RemoteIPHeader” on page 560
• “RemoteIPInternalProxy” on page 561
• “RemoteIPInternalProxyList” on page 561
• “RemoteIPProxiesHeader” on page 561
• “RemoteIPTrustedProxy” on page 562
• “RemoteIPTrustedProxyList” on page 562

RemoteIPHeader
Module: mod_remoteip

Syntax: RemoteIPHeader header-field

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Examples: RemoteIPHeader X-Client-IP

Examples: RemoteIPHeader X-Forwarded-For

The RemoteIPHeader directive triggers mod_remoteip to treat the value of the specified header-field
header as the useragent IP address, or list of intermediate useragent IP addresses, subject to further
configuration of the “RemoteIPInternalProxy” on page 561 and “RemoteIPTrustedProxy” on page
562 directives. Unless these other directives are used, mod_remoteip will trust all hosts presenting
a RemoteIPHeader IP value.

Example 1

#Internal (Load Balancer)
RemoteIPHeader X-Client-IP

Example 2

#Proxy
RemoteIPHeader X-Forwarded-For

560 IBM i: IBM HTTP Server for i

RemoteIPInternalProxy
Module: mod_remoteip

Syntax: RemoteIPInternalProxy proxy-ip|proxy-ip/subnet|hostname ...

Default: none

Context: Server config, virtual host

Override: none

Origin: Apache

Examples: RemoteIPInternalProxy 10.0.2.0/24

The RemoteIPInternalProxy directive adds one or more addresses (or address blocks) to trust
as presenting a valid “RemoteIPHeader” on page 560 value of the useragent IP. Unlike the
“RemoteIPTrustedProxy” on page 562 directive, any IP address presented in this header, including
private intranet addresses, are trusted when passed from these proxies.

Example:

#Internal (Load Balancer)
RemoteIPHeader X-Client-IP
RemoteIPInternalProxy 10.0.2.0/24
RemoteIPInternalProxy gateway.localdomain

RemoteIPInternalProxyList
Module: mod_remoteip

Syntax: RemoteIPInternalProxyList filename

Default: none

Context: Server config, virtual host

Override: none

Origin: Apache

Examples: RemoteIPInternalProxyList conf/trusted-proxies.lst

The RemoteIPInternalProxyList directive specifies a file parsed at startup, and builds a list of addresses
(or address blocks) to trust as presenting a valid RemoteIPHeader value of the useragent IP.

The '#' hash character designates a comment line, otherwise each whitespace or newline separated entry
is processed identically to the RemoteIPInternalProxy directive.

Example:

#Internal (Load Balancer)
RemoteIPHeader X-Client-IP
RemoteIPInternalProxyList conf/trusted-proxies.lst

Example of conf/trusted-proxies.lst contents

Our internally trusted proxies;
10.0.2.0/24 #Everyone in the testing group
gateway.localdomain #The front end balancer

RemoteIPProxiesHeader
Module: mod_remoteip

Syntax: RemoteIPProxiesHeader HeaderFiledName

IBM HTTP Server for i 561

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Examples:

RemoteIPHeader X-Forwarded-For
RemoteIPProxiesHeader X-Forwarded-By

The RemoteIPProxiesHeader directive specifies a header into which mod_remoteip will collect a list
of all of the intermediate client IP addresses trusted to resolve the useragent IP of the request. Note
that intermediate RemoteIPTrustedProxy addresses are recorded in this header, while any intermediate
RemoteIPInternalProxy addresses are discarded.

RemoteIPTrustedProxy
Module: mod_remoteip

Syntax: RemoteIPProxiesHeader HeaderFiledName

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Examples: RemoteIPTrustedProxy 10.0.2.16/28

Examples: RemoteIPTrustedProxy proxy.example.com

The RemoteIPTrustedProxy directive adds one or more addresses (or address blocks) to trust as
presenting a valid RemoteIPHeader value of the useragent IP. Unlike the RemoteIPInternalProxy
directive, any intranet or private IP address reported by such proxies, including the 10/8, 172.16/12,
192.168/16, 169.254/16 and 127/8 blocks (or outside of the IPv6 public 2000::/3 block) are not trusted
as the useragent IP, and are left in the RemoteIPHeader header's value.

Example:

#Trusted (Load Balancer)
RemoteIPHeader X-Forwarded-For
RemoteIPTrustedProxy 10.0.2.16/28
RemoteIPTrustedProxy proxy.example.com

RemoteIPTrustedProxyList
Module: mod_remoteip

Syntax: RemoteIPTrustedProxyList filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Examples: RemoteIPTrustedProxyList conf/trusted-proxies.lst

562 IBM i: IBM HTTP Server for i

The RemoteIPTrustedProxyList directive specifies a file parsed at startup, and builds a list of addresses
(or address blocks) to trust as presenting a valid “RemoteIPHeader” on page 560 value of the useragent
IP.

The '#' hash character designates a comment line, otherwise each whitespace or newline separated entry
is processed identically to the RemoteIPTrustedProxy directive.

Example:

#Trusted(Load Balancer)
RemoteIPHeader X-Forwarded-For
RemoteIPTrustedProxyList conf/trusted-proxies.lst

Example of conf/trusted-proxies.lst contents

Identified external proxies;
192.0.2.16/28 #wap phone group of proxies
proxy.isp.example.com #some well known ISP

Module mod_reflector
Module mod_reflector supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_reflector allows request bodies to be reflected back to the client, in the process passing
the request through the output filter stack. A suitably configured chain of filters can be used to transform
the request into a response. This module can be used to turn an output filter into an HTTP service.

Directives

• “ReflectorHeader” on page 563

ReflectorHeader
Module: mod_reflector

Syntax: ReflectorHeader inputheader [outputheader]

Default: None

Context: server config, virtual host, directory, .htaccess

Override: Options

Origin: Apache

Example: ReflectorHeader My-header My-response-header

The ReflectorHeader directive controls the reflection of request headers to the response. The first
argument is the name of the request header to copy. If the optional second argument is specified, it
will be used as the name of the response header, otherwise the original request header name will be
used.

Example 1: Compression service

Pass the request body through the DEFLATE filter to compress the body. This request requires a
Content-Encoding request header containing "gzip" for the filter to return compressed data.

 <Location /compress>
 SetHandler reflector
 SetOutputFilter DEFLATE
 </Location>

IBM HTTP Server for i 563

Example 2：Image downsampling service

Pass the request body through an image downsampling filter, and reflect the results to the caller.

 <Location /downsample>
 SetHandler reflector
 SetOutputFilter DOWNSAMPLE
 </Location>

Example 3：
The value of request header "My-header" will be passed to repsonse header "My-response-header"

<Location /compress>
 SetHandler reflector
 ReflectorHeader My-header My-response-header
</Location>

Module mod_reqtimeout
Module mod_reqtimeout supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_reflector sets timeout and minimum data rate for receiving requests.

Directives

• “RequestReadTimeout” on page 564

RequestReadTimeout
Module: mod_reqtimeout

Syntax: RequestReadTimeout [header=timeout[-maxtimeout][,MinRate=rate] [body=timeout[-
maxtimeout][,MinRate=rate]

Default: header=20-40,MinRate=500 body=20,MinRate=500

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The
statement should be as follows:

LoadModule reqtimeout_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: RequestReadTimeout header=10 body=30

Example: RequestReadTimeout header=10-30,MinRate=500

The RequestReadTimeout directive can set various timeouts for receiving the request headers and the
request body from the client. If the client fails to send headers or body within the configured time, a 408
REQUEST TIME OUT error is sent.

For SSL virtual hosts, the header timeout values also include the time needed to do the initial SSL
handshake. Therefore the header timeout values should not be set to very low values for SSL virtual hosts.
The body timeout values include the time needed for SSL renegotiation (if necessary).

For each of the two timeout types (header or body), there are three ways to specify the timeout:

• Fixed timeout value:

 type=timeout

564 IBM i: IBM HTTP Server for i

The time in seconds allowed for reading all of the request headers or body, respectively. A value of 0
means no limit.

• Disable module for a vhost:

 header=0 body=0

This disables mod_reqtimeout completely.
• Timeout value that is increased when data is received:

 type=timeout,MinRate=data_rate

Same as above, but whenever data is received, the timeout value is increased according to the specified
minimum data rate (in bytes per second).

• Timeout value that is increased when data is received, with an upper bound:

 type=timeout-maxtimeout,MinRate=data_rate

Same as above, but the timeout will not be increased above the second value of the specified timeout
range.

Example 1:

Allow 10 seconds to receive the request including the headers and 30 seconds for receiving the
request body:

RequestReadTimeout header=10 body=30

Example 2:

Allow at least 10 seconds to receive the request body. If the client sends data, increase the timeout
by 1 second for every 1000 bytes received, with no upper limit for the timeout (except for the limit
given indirectly by “LimitRequestBody” on page 334):

RequestReadTimeout body=10,MinRate=1000

Example 3

Allow at least 10 seconds to receive the request including the headers. If the client sends data,
increase the timeout by 1 #second for every 500 bytes received. But do not allow more than 30
seconds for the request including the headers:

RequestReadTimeout header=10-30,MinRate=500

Example 4

Usually, a server should have both header and body timeouts configured. If a common configuration is
used for http and #https virtual hosts, the timeouts should not be set too low:

RequestReadTimeout header=20-40,MinRate=500 body=20,MinRate=500

Module mod_request
Module mod_request supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_request provides filters to handle and make available HTTP request bodies.

Directives

• “KeptBodySize” on page 566

IBM HTTP Server for i 565

KeptBodySize
Module: mod_request

Syntax: KeptBodySize size

Default: KeptBodySize 0

Context: directory

Override: none

Origin: Apache

Under normal circumstances, request handlers such as the default handler for static files will discard
the request body when it is not needed by the request handler. As a result, filters such as mod_include
are limited to making GET requests only when including other URLs as subrequests, even if the original
request was a POST request, as the discarded request body is no longer available once filter processing is
taking place.

When this directive has a value greater than zero, request handlers that would otherwise discard request
bodies will instead set the request body aside for use by filters up to the maximum size specified. In
the case of the mod_include filter, an attempt to POST a request to the static shtml file will cause any
subrequests to be POST requests, instead of GET requests as before.

This feature makes it possible to break up complex web pages and web applications into small individual
components, and combine the components and the surrounding web page structure together using
mod_include. The components can take the form of CGI programs, scripted languages, or URLs reverse
proxied into the URL space from another server using mod_proxy.

Note: Each request set aside has to be set aside in temporary RAM until the request is complete. As a
result, care should be taken to ensure sufficient RAM is available on the server to support the intended
load. Use of this directive should be limited to where needed on targeted parts of your URL space, and
with the lowest possible value that is still big enough to hold a request body.

If the request size sent by the client exceeds the maximum size allocated by this directive, the server will
return 413 Request Entity Too Large.

Module mod_rewrite
Module mod_rewrite supports directives for the IBM HTTP Server for i Web server.

Summary

This module allows you to control URL access to your HTTP Server.

For example, to prevent a particular user agent called Web crawler from accessing any pages on the
server. To do this, include the following directives in your configuration:

RewriteEngine on
RewriteCond %{HTTP_USER_AGENT} ^Webcrawler
RewriteRule ^.*$ - [F,L]

The first line enables the rewrite engine. The second line provides a test that returns true if the
HTTP_USER_AGENT string starts with the letters Web crawler. If the second line is true, then the third line
takes any URL string and returns a forbidden message to the client.

Note: RewriteLog and RewriteLogLevel directives have been removed, this functionality has been
completely replaced by the new per-module logging configuration.

For example:

LogLevel warn rewrite:info

Search text '[rewrite: ' in the error log to get the mod_rewrite specific log messages.

Directives

566 IBM i: IBM HTTP Server for i

• “RewriteBase” on page 567
• “RewriteCond” on page 568
• “RewriteEngine” on page 572
• “RewriteMap” on page 573
• “RewriteOptions” on page 574
• “RewriteRule” on page 576

RewriteBase
Module: mod_rewrite

Syntax: RewriteBase Base_URL

Default: RewriteBase physical directory path

Context: Directory, but not Location, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteBase /xyz

The RewriteBase directive explicitly sets the base URL for per-directory rewrites. As you will see below,
RewriteRule can be used in per-directory config files (.htaccess). There it will act locally (for example,
the local directory prefix is stripped at this stage of processing and your rewriting rules act only on the
remainder). At the end it is automatically added back to the path.

When a substitution occurs for a new URL, this module has to re-inject the URL into the processing server.
To be able to do this it needs to know what the corresponding URL-prefix or URL-base is. By default this
prefix is the corresponding filepath itself. At most, Web sites URLs are not directly related to physical
filename paths, so this assumption is usually incorrect. In this case, you have to use the RewriteBase
directive to specify the correct URL-prefix.

Assume the following per-directory configuration file (/abc/def is the physical path of /xyz, and the server
has the 'Alias /xyz /ABC/def' established).

RewriteEngine On
RewriteBase /xyz
RewriteRule ^old\.html$ new.html

In the above example, a request to /xyz/old.html is correctly rewritten to the physical file /ABC/def/
new.html.

In the example below, RewriteBase is necessary to avoid rewriting to http://example.com/opt/
myapp-1.2.3/welcome.html since the resource was not relative to the document root. This
misconfiguration would normally cause the server to look for an "opt" directory under the document
root.

DocumentRoot /var/www/example.com
AliasMatch /myapp /opt/myapp-1.2.3
<Directory /opt/myapp-1.2.3>
 RewriteEngine On
 RewriteBase /myapp/
 RewriteRule ^index\.html$ welcome.html
</Directory>

Note: If your webserver's URLs are not directly related to physical file paths, you have to use RewriteBase
in every .htaccess file where you want to use RewriteRule directives.

This directive is required when you use a relative path in a substitution in per-directory (htaccess) context
unless either of the following conditions are true:

IBM HTTP Server for i 567

• The original request, and the substitution, are underneath the DocumentRoot (as opposed to reachable
by other means, such as Alias).

• The filesystem path to the directory containing the RewriteRule, suffixed by the relative substitution is
also valid as a URL path on the server (this is rare).

• This directive may be omitted when the request is mapped via Alias or mod_userdir.

RewriteCond
Module: mod_rewrite

Syntax: RewriteCond TestString CondPattern [flags]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteCond %{HTTP_USER_AGENT} ^Mozilla.*

The RewriteCond directive defines a rule condition. Precede a RewriteRule directive with one or more
RewriteCond directives. The following rewriting rule is only used if its pattern matches the current state of
the URI and if these additional conditions apply.

Parameter One: TestString

• The TestString parameter can contain the following expanded constructs in addition to plain text:

– RewriteRule backreferences: These are backreferences of the form.
$N

(0 <= N <= 9) that provide access to the grouped sections (those in parenthesis) of the pattern
from the corresponding RewriteRule directive (the one following the current RewriteCond
directives).

– RewriteCond backreferences: These are backreferences of the form.
%N

(0 <= N <= 9) that provide access to the grouped sections (those in parenthesis) of the pattern
from the last matched RewriteCond directive in the current conditions

– RewriteMap expansions: These are expansions of the form.
${mapname:key|default}

See “RewriteMap” on page 573 for more details.
– Server-Variables: These are variables of the form

%{ NAME_OF_VARIABLE }
Where NAME_OF_VARIABLE can be a string taken from the following list:
HTTP headers

- HTTP_USER_AGENT
- HTTP_REFERRER
- HTTP_COOKIE
- HTTP_FORWARDED
- HTTP_HOST
- HTTP_PROXY_CONNECTION
- HTTP_ACCEPT

Connection and Request

- AUTH_TYPE

568 IBM i: IBM HTTP Server for i

- CONN_REMOTE_ADDR
- CONTEXT_PREFIX
- CONTEXT_DOCUMENT_ROOT
- IPV6
- PATH_INFO
- QUERY_STRING
- REMOTE_ADDR
- REMOTE_HOST
- REMOTE_USER
- REMOTE_IDENT
- REQUEST_METHOD
- SCRIPT_FILENAME

Server Internals

- DOCUMENT_ROOT
- SERVER_ADMIN
- SERVER_NAME
- SERVER_ADDR
- SERVER_PORT
- SERVER_PROTOCOL
- SERVER_SOFTWARE

System

- TIME_YEAR
- TIME_MON
- TIME_DAY
- TIME_HOUR
- TIME_MIN
- TIME_SEC
- TIME_WDAY
- TIME

Special

- API_VERSION
- CONN_REMOTE_ADDR
- HTTPS
- IS_SUBREQ
- REMOTE_ADDR
- REQUEST_URI
- REQUEST_FILENAME
- REQUEST_SCHEME
- THE_REQUEST

Tip:

1. The variables SCRIPT_FILENAME and REQUEST_FILENAME contain the same value (the
value of the filename field of the internal request_rec structure of the server). The first

IBM HTTP Server for i 569

name is just the commonly known CGI variable name while the second is the consistent
counterpart to REQUEST_URI (which contains the value of the URI field of request_rec).

2. There is the special format: %{ENV:variable} where variable can be any environment
variable. This is looked-up via internal structures and (if not found there) via getenv() from
the server process.

3. There is the special format: %{SSL:variable}, where variable is the name of an SSL
environment variable, can be used whether or not mod_ibm_ssl is loaded, but will always
expand to the empty string if it is not.

4. There is the special format: %{HTTP: header} where header can be any HTTP MIME-
header name. This is looked-up from the HTTP request. Example: %{HTTP:Proxy-
Connection} is the value of the HTTP header ``Proxy-Connection:''.

5. There is the special format %{LA-U:variable} for look-aheads that perform an internal
(URL-based) sub-request to determine the final value of variable. Use this when you want
to use a variable for rewriting (which is actually set later in an API phase and thus is not
available at the current stage). For instance when you want to rewrite according to the
REMOTE_USER variable from within the per-server context (httpd.conf file) you have to
use %{LA-U:REMOTE_USER} because this variable is set by the authorization phases that
come after the URL translation phase where mod_rewrite operates. On the other hand,
because mod_rewrite implements its per-directory context (.htaccess file) via the Fixup
phase of the API and because the authorization phases come before this phase, you just
can use %{REMOTE_USER} there.

6. There is the special format: %{LA-F:variable} that performs an internal (filename-based)
sub-request to determine the final value of variable. Most of the time this is the same as
LA-U above.

Parameter Two: CondPattern

• The CondPattern parameter is the condition pattern (a regular expression) that is applied to the
current instance of the TestString. TestString is evaluated and then matched against CondPattern.

CondPattern is a standard Extended Regular Expression with some additions:

1. You can prefix the pattern string with a '!' character (exclamation mark) to negate the result of
the condition, no matter what kind of CondPattern is used.

2. You can perform lexicographical string comparisons:
<CondPattern

Treats the CondPattern as a plain string and compares it lexically to TestString. True if
TestString is lexically lower than CondPattern.

>CondPattern
Treats the CondPattern as a plain string and compares it lexically to TestString. True if
TestString is lexically greater than CondPattern.

=CondPattern
Treats the CondPattern as a plain string and compares it lexically to TestString. True if
TestString is lexically equal to CondPattern (the two strings are exactly equal, character by
character). If CondPattern is just "" (two quotation marks) this compares TestString to the
empty string.

<=CondPattern
Treats the CondPattern as a plain string and compares it lexicographically to TestString. True
if TestString lexicographically precedes CondPattern, or is equal to CondPattern (the two
strings are equal, character for character).

>=CondPattern
Treats the CondPattern as a plain string and compares it lexicographically to TestString.
True if TestString lexicographically follows CondPattern, or is equal to CondPattern (the two
strings are equal, character for character).

3. You can perform integer comparisons:

570 IBM i: IBM HTTP Server for i

-eq (is numerically equal to)
The TestString is treated as an integer, and is numerically compared to the CondPattern. True
if the two are numerically equal.

-ge (is numerically greater than or equal to)
The TestString is treated as an integer, and is numerically compared to the CondPattern. True
if the TestString is numerically greater than or equal to the CondPattern.

-gt (is numerically greater than)
The TestString is treated as an integer, and is numerically compared to the CondPattern. True
if the TestString is numerically greater than the CondPattern.

-le (is numerically less than or equal to)
The TestString is treated as an integer, and is numerically compared to the CondPattern. True
if the TestString is numerically less than or equal to the CondPattern. Avoid confusion with the
-l by using the -L or -h variant.

-lt (is numerically less than)
The TestString is treated as an integer, and is numerically compared to the CondPattern. True
if the TestString is numerically less than the CondPattern. Avoid confusion with the -l by using
the -L or -h variant.

4. You can perform various file attribute tests:
-d

Treats the TestString as a pathname and tests if it exists and is a directory.
-f

Treats the TestString as a pathname and tests if it exists and is a regular file.
-F

Checks whether or not TestString is a valid file, accessible via all the server's currently-
configured access controls for that path. This uses an internal subrequest to do the check,
so use it with care - it can impact your server's performance!

-H(is symbolic link, bash convention)
See -l.

-l
Treats the TestString as a pathname and tests if it exists and is a symbolic link.

-L(is symbolic link, bash convention)
See -l.

-s
Treats the TestString as a pathname and tests if it exists and is a regular file with size greater
than zero.

-U
Checks if TestString is a valid URL and accessible via all the server's currently-configured
access controls for that path. This uses an internal subrequest to do the check, so use it with
care - it can impact your server's performance!
This flag only returns information about things like access control, authentication, and
authorization. This flag does not return information about the status code the configured
handler (static file, CGI, proxy, etc.) would have returned.

-x
Treats the TestString as a pathname and tests whether or not it exists, and has executable
permissions. These permissions are determined according to the underlying OS.
For example:

RewriteCond /var/www/%{REQUEST_URI} !-f
RewriteRule ^(.+) /other/archive/$1 [R]

5. If the TestString has the special value expr, the CondPattern will be treated as an ap_expr.

IBM HTTP Server for i 571

In the below example, -strmatch is used to compare the REFERER against the site hostname, to
block unwanted hotlinking.

RewriteCond expr "! %{HTTP_REFERER} -strmatch '*://%{HTTP_HOST}/*'"

RewriteRule ^/images - [F]

Parameter Three: flags

• The flags parameter is appended to the CondPattern parameter. The flags parameter is a comma
-serapertaed list of the following flags:
nocase|NC

This makes the test case-insensitive (there is no difference between 'A-Z' and AZ both in the
expanded TestString and the CondPattern). This flag is effective only for comparisons between
TestString and CondPattern. It has no effect on filesystem and subrequest checks.

ornext|OR
Use this to combine rule conditions with a local OR instead of the implicit AND. Typical example:

RewriteCond %{REMOTE_HOST} ^host1.* [OR]
RewriteCond %{REMOTE_HOST} ^host2.* [OR]
RewriteCond %{REMOTE_HOST} ^host3.*
RewriteRule ...some special stuff for any of these hosts...

Without this flag you would have to write the cond/rule three times.
novary|NV

If a HTTP header is used in the condition, this flag prevents this header from being added to the
Vary header of the response. Using this flag might break proper caching of the response if the
representation of this response varies on the value of this header. So this flag should be only
used if the meaning of the Vary header is well understood.

Note: If the TestString has the special value expr, the CondPattern will be treated as an ap_expr. HTTP
headers referenced in the expression will be added to the Vary header if the novary flag is not given.

Example:

To rewrite the Homepage of a site according to the "User-Agent:" header of the request, you can use the
following:

RewriteCond %{HTTP_USER_AGENT} (iPhone|Blackberry|Android)
RewriteRule ^/$ /homepage.mobile.html [L]

RewriteRule ^/$ /homepage.std.html [L]

Explanation: If you use a browser which identifies itself as a mobile browser (note that the example is
incomplete, as there are many other mobile platforms), the mobile version of the homepage is served.
Otherwise, the standard page is served.

RewriteEngine
Module: mod_rewrite

Syntax: RewriteEngine on | off

Default: RewriteEngine off

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteEngine on

The RewriteEngine directive enables or disables the runtime rewriting engine. You can use this directive to
disable rules in a particular context, rather than commenting out all the RewriteRule directives.

572 IBM i: IBM HTTP Server for i

Parameter: on | off

• If set to on runtime processing is enabled. If it is set to off runtime processing is disabled and this
module does not runtime processing at all.

• If it is set to off runtime processing is disabled and this module does no runtime processing at all. It
does not even update the SCRIPT_URx environment variables.

Note: By default, rewrite configurations are not inherited by virtual hosts. This means that you need to
have the RewriteEngine on for each virtual host in which you want to use rewrite rules.

RewriteMap
Module: mod_rewrite

Syntax: RewriteMap MapName MapType:MapSource

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: RewriteMap servers rnd:/path/to/file/map.txt

The RewriteMap directive defines a Rewriting Map that can be used inside rule substitution strings by the
mapping-functions to insert or substitute fields through a key lookup. The source of this lookup can be of
various types.

Parameter: MapName

• The MapName parameter is the name of the map and is used to specify a mapping-function for the
substitution strings of a rewriting rule via one of the following constructs:

${ MapName : LookupKey }
${ MapName : LookupKey | DefaultValue }

When such a construct occurs the map MapName is consulted and the key LookupKey is looked-up.
If the key is found, the map-function construct is substituted by SubstValue. If the key is not found
then it is substituted by DefaultValue or by the empty string if no DefaultValue was specified. The
following combinations for MapType and MapSource can be used:

Standard Plain Text
MapType: txt, MapSource: Path to a file

This is the standard rewriting map feature where the MapSource is a plain text file containing
either blank lines, comment lines (starting with a '#' character) or pairs like the following (one
per line): MatchingKey SubstituionValue.

File example:

##
map.txt -- rewriting map
##
Ralf.B.Jones rbj # Operator
Mr.Joe.Average joe # Mr. Average

Directive example:

RewriteMap real-to-user txt:/path/to/file/map.txt

Randomized Plain Text
MapType: rnd, MapSource: Path to a file

This is identical to the Standard Plain Text variant above but with a special post-processing
feature. After looking up a value it is parsed according to the contained horizontal bar (|)

IBM HTTP Server for i 573

characters which mean "or". In other words, the horizontal bars indicate a set of alternatives
from which the actual returned value is randomly chosen. This feature was designed for load
balancing in a reverse proxy situation where the looked up values are server names.

File example:

##
map.txt -- rewriting map
##
static www1|www2|www3|www4
dynamic www5|www6

Directive example:

RewriteMap servers rnd:/path/to/file/map.txt

Internal Function
MapType: int, MapSource: Internal Apache function

The following internal functions are valid:

toupper
Converts the looked up key to all upper case.

tolower
Converts the looked up key to all lower case.

escape
Translates special characters in the looked up key to hex-encodings.

unescape
Translates hex-encodings in the looked up key back to special characters.

The RewriteMap directive can occur more than once. For each mapping function use one RewriteMap
directive to declare its rewriting mapfile. While you cannot declare a map in a per-directory context, it is
possible to use this map in a per-directory context.

Note: The prg, dbm and dbd or fastdbd MapTypes are not supported

RewriteOptions
Module: mod_rewrite

Syntax: RewriteOptions Option

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteOptions inherit

The RewriteOptions directive sets some special options for the current per-server or per-directory
configuration.

Parameter: Option

• The Option parameter strings can be one of the following:
inherit

This forces the current configuration to inherit the configuration of the parent. In
per-virtual-server context this means that the maps, conditions and rules of the main
server are inherited. In per-directory context this means that conditions and rules
of the parent directory's .htaccess configuration or“<Directory> ” on page 311 are
inherited. The inherited rules are virtually copied to the section where this directive

574 IBM i: IBM HTTP Server for i

is being used. If used in combination with local rules, the inherited rules are copied
behind the local rules. The position of this directive - below or above of local rules
- has no influence on this behavior. If local rules forced the rewriting to stop, the
inherited rules won't be processed.

Note: Rules inherited from the parent scope are applied after rules specified in the child
scope.

InheritBefore
Like Inherit above, but the rules from the parent scope are applied before rules
specified in the child scope.

InheritDown
If this option is enabled, all child configurations will inherit the configuration of
the current configuration. It is equivalent to specifying RewriteOptions Inherit in all
child configurations. See the Inherit option for more details on how the parent-child
relationships are handled.

InheritDownBefore
Like InheritDown above, but the rules from the current scope are applied before rules
specified in any child's scope.

IgnoreInherit
This option forces the current and child configurations to ignore all rules that would be
inherited from a parent specifying InheritDown or InheritDownBefore.

AllowNoSlash

By default, mod_rewrite will ignore URLs that map to a directory on disk but lack a
trailing slash, in the expectation that the mod_dir will issue the client with a redirect to
the canonical URL with a trailing slash.

When the “DirectorySlash” on page 377 directive is set to off, the AllowNoSlash option
can be enabled to ensure that rewrite rules are no longer ignored. This option makes it
possible to apply rewrite rules within .htaccess files that match the directory without a
trailing slash, if so desired. Available in Apache HTTP Server 2.4.0 and later.

AllowAnyURI

When “RewriteRule” on page 576 is used in VirtualHost or server context,
mod_rewrite will only process the rewrite rules if the request URI is a URL-path.
This avoids some security issues where particular rules could allow "surprising"
pattern expansions (see CVE-2011-3368 and CVE-2011-4317). To lift the restriction
on matching a URL-path, the AllowAnyURI option can be enabled, and mod_rewrite
will apply the rule set to any request URI string, regardless of whether that string
matches the URL-path grammar required by the HTTP specification.

Note: Enabling this option will make the server vulnerable to security issues if used
with rewrite rules which are not carefully authored. It is strongly recommended
that this option is not used. In particular, beware of input strings containing the '@'
character which could change the interpretation of the transformed URI, as per the
above CVE names.

MergeBase

With this option, the value of “RewriteBase” on page 567 is copied from where it's
explicitly defined into any sub-directory or sub-location that doesn't define its own
“RewriteBase” on page 567.

IgnoreContextInfo
When a relative substitution is made in directory (htaccess) context and RewriteBase
has not been set, this module uses some extended URL and filesystem context
information to change the relative substitution back into a URL. Modules such as
mod_userdir and mod_alias supply this extended context info.

IBM HTTP Server for i 575

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3368
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4317

RewriteRule
Module: mod_rewrite

Syntax: RewriteRule pattern substitution [flags]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteRule ^/ABC(.*) /def$1 [PT]

The RewriteRule directive is the real rewriting workhorse. The directive can occur more than once. Each
directive then defines one single rewriting rule. The definition order of these rules is important, because
this order is used when applying the rules at run-time.

Parameter One: pattern

• The pattern parameter can be a perl compatible regular expression. On the first RewriteRule, it is
matched against the (%-decoded) URL-path (or file-path, depending on the context) of the request.
Subsequent patterns are matched against the output of the last matching RewriteRule.

• In VirtualHost context, The Pattern will initially be matched against the part of the URL after the
hostname and port, and before the query string (e.g. "/app1/index.html").

• In Directory and .htaccess context, the Pattern will initially be matched against the filesystem path,
after removing the prefix that led the server to the current RewriteRule (e.g. "app1/index.html" or
"index.html" depending on where the directives are defined).

• If you want to match against the hostname, port, or query string, use a RewriteCond with the
%{HTTP_HOST}, %{SERVER_PORT}, or %{QUERY_STRING} variables respectively.

• Per-directory Rewrites

– The rewrite engine may be used in .htaccess files and in “<Directory> ” on page 311 sections,
with some additional complexity.

– To enable the rewrite engine in this context, you need to set "RewriteEngine On" and "Options
FollowSymLinks" must be enabled. If your administrator has disabled override of FollowSymLinks
for a user's directory, then you cannot use the rewrite engine. This restriction is required for
security reasons.

– When using the rewrite engine in .htaccess files the per-directory prefix (which always is the
same for a specific directory) is automatically removed for the RewriteRule pattern matching and
automatically added after any relative (not starting with a slash or protocol name) substitution
encounters the end of a rule set. See the “RewriteBase” on page 567 directive for more
information regarding what prefix will be added back to relative substitutions.

– If you want to match against the full URL-path in a per-directory (htaccess) RewriteRule, use the
%{REQUEST_URI} variable in a RewriteCond.

– The removed prefix always ends with a slash, meaning the matching occurs against a string which
never has a leading slash. Therefore, a Pattern with ^/ never matches in per-directory context.

– Although rewrite rules are syntactically permitted in “<Location> ” on page 339 and “<Files>”
on page 323 sections (including their regular expression counterparts), this should never be
necessary and is unsupported. A likely feature to break in these contexts is relative substitutions.

• Additionally in mod_rewrite the NOT character ('!') is a possible pattern prefix. This gives you the
ability to negate a pattern; to say, for instance: ``if the current URL does not match this pattern''.
This can be used for exceptional cases, where it is easier to match the negative pattern, or as a last
default rule.

576 IBM i: IBM HTTP Server for i

Note: When using the not character to negate a pattern you cannot have grouped wild card parts in
the pattern. This is impossible because when the pattern does not match, there are no contents for the
groups, and you cannot use $N in the substitution string.

Parameter Two: substitution

• The substitution parameter is the string which is substituted for (or replaces) the original URL-path
for which Pattern matched. The Substitution may be a:

– file-system path

Designates the location on the file-system of the resource to be delivered to the client.
Substitutions are only treated as a file-system path when the rule is configured in server
(virtualhost) context and the first component of the path in the substitution exists in the file-
system

– URL-path

A “DocumentRoot ” on page 313-relative path to the resource to be served. Note that
mod_rewrite tries to guess whether you have specified a file-system path or a URL-path by
checking to see if the first segment of the path exists at the root of the file-system. For example, if
you specify a Substitution string of /www/file.html, then this will be treated as a URL-path unless
a directory named www exists at the root or your file-system (or, in the case of using rewrites in
a .htaccess file, relative to your document root), in which case it will be treated as a file-system
path. If you want other URL-mapping directives (such as Alias) to be applied to the resulting
URL-path, use the [PT] flag as described below.

– Absolute URL

If an absolute URL is specified, mod_rewrite checks to see whether the hostname matches the
current host. If it does, the scheme and hostname are stripped out and the resulting path is
treated as a URL-path. Otherwise, an external redirect is performed for the given URL. To force an
external redirect back to the current host, see the [R] flag below.

– - (dash)

A dash indicates that no substitution should be performed (the existing path is passed through
untouched). This is used when a flag needs to be applied without changing the path, for example,
in conjunction with the C (chain) flag to be able to have more than one pattern to be applied
before a substitution occurs.

• Beside plain text you can use back-references $N to the RewriteRule pattern, back-references
%N to the last matched RewriteCond pattern, server-variables as in rule condition test-strings (%
{VARNAME}) and mapping-function calls (${mapname:key|default}).

• Back-references are $N (N=0..9) identifiers which will be replaced by the contents of the Nth group
of the matched Pattern. The server-variables are the same as for the TestString of a RewriteCond
directive. The mapping-functions come from the RewriteMap directive and are explained there.
These three types of variables are expanded in the order of the above list.

• All the rewriting rules are applied to the results of previous rewrite rules, in the order of definition in
the config file). The URL-path or file-system path is completely replaced by the Substitution and the
rewriting process goes on until all rules have been applied, or it is explicitly terminated by an L flag,
or other flag which implies immediate termination, such as END or F.

Note: By default, the query string is passed through unchanged. You can even create URLs in the
substitution string containing a query string part. Just use a question mark inside the substitution string
to indicate that the following stuff should be re-injected into the QUERY_STRING. When you want to erase
an existing query string, end the substitution string with just the question mark. To combine new and old
query strings, use the [QSA] flag.

Parameter Three: flags

• The flags parameter can additionally be set to special [flags] for Substitution by appending [flags] as
the third argument to the RewriteRule directive. Flags is a comma separated list, surround by square
brackets, of the following flags:

IBM HTTP Server for i 577

redirect|R [=code]
Prefix Substitution with http://thishost[:thisport]/ (which makes the new URL a URI) to force a
external redirection. If no code is given an HTTP response of 302 (MOVED TEMPORARILY) is
used. If you want to use other response codes in the range 300-400 just specify them as a
number or use one of the following symbolic names: temp (default), permanent, seeother. Use it
for rules which should canonicalize the URL and give it back to the client, for example, translate
``/~'' into ``/u/'' or always append a slash to /u/user, etc.

Note: When you use this flag, make sure that the substitution field is a valid URL. If not, you
are redirecting to an invalid location! And remember that this flag itself only prefixes the URL
with http://thishost[:thisport]/, rewriting continues. Usually you also want to stop and do the
redirection immediately. To stop the rewriting you also have to provide the 'L' flag.

forbidden|F
This forces the current URL to be forbidden, for example, it immediately sends back an HTTP
response of 403 (FORBIDDEN). Use this flag in conjunction with appropriate RewriteConds to
conditionally block some URLs.

gone|G
This forces the current URL to be gone, for example, it immediately sends back an HTTP
response of 410 (GONE). Use this flag to mark pages which no longer exist as gone.

proxy|P
This flag forces the substitution part to be internally forced as a proxy request and immediately
(for example, rewriting rule processing stops here) put through the proxy module. You have to
make sure that the substitution string is a valid URI (for example, typically starting with http://
hostname) which can be handled by HTTP Server proxy module. If not you get an error from
the proxy module. Use this flag to achieve a more powerful implementation of the ProxyPass
directive, to map some remote stuff into the name space of the local server.

Note: To use this functionality make sure you have the proxy module loaded into your HTTP
Server configuration (for example, via LoadModule directive).

last|L
Stop the rewriting process here and don't apply any more rewriting rules. (This corresponds to
the Perl last command or the break command from the C language.) Use this flag to prevent the
currently rewritten URL from being rewritten further by following rules. For example, use it to
rewrite the rootpath URL ('/') to a real one, for example, '/e/www/'.

An alternative flag, [END], can be used to terminate not only the current round of rewrite
processing but prevent any subsequent rewrite processing from occurring in per-directory
(htaccess) context. This does not apply to new requests resulting from external redirects.

next|N
Re-run the rewriting process (starting again with the first rewriting rule). Here the URL to match
is again not the original URL but the URL from the last rewriting rule. (This corresponds to the
Perl next command or the continue command from the C language.) Use this flag to restart the
rewriting process, for example, to immediately go to the top of the loop. But be careful not to
create an infinite loop.

chain|C
This flag chains the current rule with the next rule (which itself can be chained with the following
rule, etc.). This has the following effect: if a rule matches, then processing continues as usual,
for example, the flag has no effect. If the rule does not match, then all following chained rules
are skipped. For instance, use it to remove the ``.www'' part inside a per-directory rule set
when you let an external redirect happen (where the ``.www '' part should not occur).

type|T=MIME-type
Force the MIME-type of the target file to be MIME-type. For instance, this can be used to
simulate the mod_alias directive ScriptAlias which internally forces all files inside the mapped
directory to have a MIME type of ``application/x-httpd-cgi''.

578 IBM i: IBM HTTP Server for i

nosubreq|NS
This flag forces the rewriting engine to skip a rewriting rule if the current request is an internal
sub-request. For instance, sub-requests occur internally in HTTP Server when mod_include tries
to find out information about possible directory default files (index.xxx). On sub-requests it is
not always useful and even sometimes causes a failure if the complete set of rules are applied.
Use this flag to exclude some rules. Whenever you prefix some URLs with CGI-scripts to force
them to be processed by the CGI-script, the chance is high that you will run into problems (or
even overhead) on sub-requests. In these cases, use this flag.

nocase|NC
This makes the Pattern case insensitive, for example, there is no difference between AZ and AZ
when Pattern is matched against the current URL.

noescape|NE
This flag prevents mod_rewrite from applying the usual URI escaping rules to the result of a
rewrite. Ordinarily, special characters (%', '$', ';',) will be escaped into their hexcode equivalents
('%25', '%24', and '%3B', respectively); this flag prevents this from happening. This flag allows
percent symbols to appear in the output, as in RewriteRule /foo/(.*) /bar?arg=P1\%3d$1 [R,NE]
which would turn '/foo/zed' into a safe request for '/bar?arg=P1=zed'.

qsappend|QSA
This flag forces the rewriting engine to append a query string part in the substitution string to the
existing one instead of replacing it. Use this when you want to add more data to the query string
via a rewrite rule.

qsdiscard|QSD
When the requested URI contains a query string, and the target URI does not, the default
behavior of RewriteRule is to copy that query string to the target URI. Using the [QSD] flag
causes the query string to be discarded. Using [QSD] and [QSA] together will result in [QSD]
taking precedence. If the target URI has a query string, the default behavior will be observed
- that is, the original query string will be discarded and replaced with the query string in the
RewriteRule target URI.

passthrough|PT
This flag forces the rewriting engine to set the URI field of the internal request_rec structure
to the value of the filename field. This flag is used to be able to post-process the output
of RewriteRule directives by Alias, ScriptAlias, Redirect, etc. - directives from other URI-to-
filename translators. A trivial example to show the semantics: If you want to rewrite /ABC
to /def via the rewriting engine of mod_rewrite and then /def to /ghi with mod_alias:

RewriteRule ^/ABC(.*) /def$1 [PT]
Alias /def /ghi

If you omit the PT flag then mod_rewrite will do its job fine, for example, it rewrites
uri=/ABC/... to filename=/def/... as a full API-compliant URI-to-filename translator should do.
Then mod_alias comes and tries to do a URI-to-filename transition which will not work.

Note: You have to use this flag if you want to intermix directives of different modules
which contain URL-to-filename translators. The typical example is the use of mod_alias and
mod_rewrite.

skip|S=num
This flag forces the rewriting engine to skip the next num rules in sequence when the current
rule matches. Use this to make pseudo if-then-else constructs: The last rule of the then-clause
becomes skip=N where N is the number of rules in the else-clause. (This is not the same as the
'chain|C' flag.)

env|E=[!]VAR[:VAL]
This forces an environment variable named VAR to be set to the value VAL, where VAL can
contain regexp backreferences $N and %N which will be expanded. You can use this flag
more than once to set more than one variable. The variables can be later dereferenced in
many situations, but usually from within SSI (via <!--#echo var="VAR"-->) or CGI (for example

IBM HTTP Server for i 579

$ENV{'VAR'}). Additionally you can dereference it in a following RewriteCond pattern via %
{ENV:VAR}. Use this to strip but remember information from URLs.

qslast|QSL
Interpret the last (right-most) question mark as the query string delimeter, instead of the first
(left-most) as normally used.

END
Stop the rewriting process immediately and don't apply any more rules. Also prevents further
execution of rewrite rules in per-directory and .htaccess context.
Using the [END] flag terminates not only the current round of rewrite processing (like [L]) but
also prevents any subsequent rewrite processing from occurring in per-directory (htaccess)
context.
This does not apply to new requests resulting from external redirects.

B
Escape non-alphanumeric characters in backreferences before applying the transformation. The
[B] flag instructs “RewriteRule” on page 576 to escape non-alphanumeric characters before
applying the transformation. mod_rewrite has to unescape URLs before mapping them, so
backreferences are unescaped at the time they are applied. Using the B flag, non-alphanumeric
characters in backreferences will be escaped.

backrefnoplus|BNP
If backreferences are being escaped, spaces should be escaped to %20 instead of +. Useful
when the backreference will be used in the path component rather than the query string.

cookie|CO=NAME:VAL

This flag allows you to set a cookie in the client browser when a particular RewriteRule matches.
The argument consists of three required fields and four optional fields. The full syntax for the
flag, including all attributes, is: [CO=NAME:VALUE:DOMAIN:lifetime:path:secure:httponly]

If a literal ':' character is needed in any of the cookie fields, an alternate syntax is available. To
opt-in to the alternate syntax, the cookie "Name" should be preceded with a ';' character, and
field separators should be specified as ';'.

[CO=;NAME;VALUE:MOREVALUE;DOMAIN;lifetime;path;secure;httponly]

You must declare a name, a value, and a domain for the cookie to be set.

discardpath|DPI
This flag causes the PATH_INFO portion of the rewritten URI to be discarded. Use this flag on
any substitution where the PATH_INFO that resulted from the previous mapping of this request
to the filesystem is not of interest. This flag permanently forgets the PATH_INFO established
before this round of mod_rewrite processing began. PATH_INFO will not be recalculated until
the current round of mod_rewrite processing completes. Subsequent rules during this round of
processing will see only the direct result of substitutions, without any PATH_INFO appended.

Handler|H=Content-handler
This flag forces the resulting URI to be sent to the specified Content-handler for processing. For
example, one might use this to force all files without a file extension to be parsed by the php
handler: RewriteRule !\. - [H=application/x-httpd-php] The regular expression above - !\. - will
match any request that does not contain the literal . character.

Note: Never forget that Pattern is applied to a complete URL in per-server configuration files. But in per-
directory configuration files, the per-directory prefix (which always is the same for a specific directory!)
is automatically removed for the pattern matching and automatically added after the substitution has
been done. This feature is essential for many sorts of rewriting, because without this prefix stripping you
have to match the parent directory which is not always possible. There is one exception: If a substitution
string starts with ``http://'' then the directory prefix will not be added and an external redirect or proxy
throughput (if flag P is used) is forced. To enable the rewriting engine for per-directory configuration files
you need to set RewriteEngine On in these files and Option FollowSymLinks must be enabled. If the

580 IBM i: IBM HTTP Server for i

override of FollowSymLinks is disabled for a user's directory, then you cannot use the rewriting engine.
This restriction is needed for security reasons.

Possible substitution combinations and meanings:

1. Inside per-server configuration (httpd.conf) for request "GET /somepath/pathinfo":

Given rule Resulting substitution

^/somepath(.*) otherpath$1 not supported

^/somepath(.*) otherpath$1 [R] not supported

^/somepath(.*) otherpath$1 [P] not supported

^/somepath(.*) /otherpath$1 /otherpath/pathinfo

^/somepath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo via external
redirection

^/somepath(.*) /otherpath$1 [P] not supported

^/somepath(.*) http://thishost/
otherpath$1

/otherpath/pathinfo

^/somepath(.*) http://thishost/
otherpath$1 [R]

http://thishost/otherpath/pathinfo via external
redirection

^/somepath(.*) http://thishost/
otherpath$1 [P]

not supported

^/somepath(.*) http://otherhost/
otherpath$1

http://otherhost/otherpath/pathinfo via external
redirection

^/somepath(.*) http://otherhost/
otherpath$1 [R]

http://otherhost/otherpath/pathinfo via external
redirection (the [R] flag is redundant)

^/somepath(.*) http://otherhost/
otherpath$1 [P]

http://otherhost/otherpath/pathinfo via internal proxy

2. Inside per-directory configuration for /somepath(/physical/path/to/somepath/.htaccess, with
RewriteBase /somepath) for request "GET /somepath/localpath/pathinfo":

Given rule Resulting substitution

^localpath(.*) otherpath$1 /somepath/otherpath/pathinfo

^localpath(.*) otherpath$1 [R] http://thishost/somepath/otherpath/pathinfo via
external redirection

^localpath(.*) otherpath$1 [P] not supported

^localpath(.*) /otherpath$1 /otherpath/pathinfo

^localpath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo via external
redirection

^localpath(.*) /otherpath$1 [P] not supported

^localpath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

^localpath(.*) http://thishost/otherpath$1
[R]

http://thishost/otherpath/pathinfo via external
redirection

^localpath(.*) http://thishost/otherpath$1
[P]

not supported

IBM HTTP Server for i 581

Given rule Resulting substitution

^localpath(.*) http://otherhost/
otherpath$1

http://otherhost/otherpath/pathinfo via external
redirection

^localpath(.*) http://otherhost/
otherpath$1 [R]

http://otherhost/otherpath/pathinfo via external
redirection (the [R] flag is redundant)

^localpath(.*) http://otherhost/
otherpath$1 [P]

http://otherhost/otherpath/pathinfo via internal proxy

If you wanted to rewrite URLs of the form / Language /~ Realname /.../ File into /u/
Username /.../ File . Language, you would take the rewrite mapfile from above and save it under /
path/to/file/map.txt. Then we only have to add the following lines to HTTP Server configuration file:

RewriteLog /path/to/file/rewrite.log
RewriteMap real-to-user txt:/path/to/file/map.txt
RewriteRule ^/([^/]+)/~([^/]+)/(.*)$ /u/${real-to-user:$2|nobody}/$3.$1

Module mod_setenvif
Module mod_setenvif supports directives for the IBM HTTP Server for i Web server.

Summary

The mod_setenvif module allows you to set environment variables if different aspects of the request
match regular expressions that you specify. These variables can be used by other parts of the server to
make decisions about actions to be taken, as well as becoming available to CGI scripts and SSI pages.

The directives are considered in the order they appear in the configuration. So more complex sequences
can be used, such as this example, which sets Netscape if the browser is Mozilla but not MSIE.

BrowserMatch ^Mozilla netscape
BrowserMatch MSIE !netscape

When the server looks up a path via an internal subrequest such as looking for a “DirectoryIndex” on page
375 or generating a directory listing with mod_auto_index, per-request environment variables are not
inherited in the subrequest. Additionally, “SetEnvIf” on page 584 directives are not separately evaluated
in the subrequest due to the API phases mod_setenvif takes action in.

Directives

• “BrowserMatch” on page 582
• “BrowserMatchNoCase” on page 583
• “SetEnvIf” on page 584
• “SetEnvIfExpr” on page 586
• “SetEnvIfNoCase” on page 586

BrowserMatch
Module: mod_setenvif

Syntax: BrowserMatch regex [!]env-variable[=value] [[!]env-variable[=value]]...

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: BrowserMatch ^Mozilla forms jpeg=yes browser=netscape

582 IBM i: IBM HTTP Server for i

BrowserMatch defines environment variables based on the User-Agent HTTP request header field. The
first argument should be a perl compatible regular expression . The rest of the arguments give the names
of variables to set, and optional values to which they should be set. These take the form of the following:

• varname
• !varname
• varname=value

See “Environment variables set by HTTP Server” on page 634 for more information.

In the first form, the value will be set to "1". The second will remove the given variable if already defined,
and the third will set the variable to the value given by value. If a User-Agent string matches more than
one entry, they will be merged. Entries are processed in the order in which they appear, and later entries
can override earlier ones. For example:

BrowserMatch ^Mozilla forms jpeg=yes browser=netscape
BrowserMatch ^Mozilla/[2-3]" tables agif frames javascript
BrowserMatch MSIE !javascript

In the above example, if the User-Agent field is Mozilla, the environment variables forms, jpeg=yes and
browser=netscape will be set. If the request is Mozilla/2 or Mozilla/3, then in addition to the environment
variables on the first BrowserMatch directive, the variables tables, agif, frames and javascript will be set.

Note: The regular expression string is case-sensitive. For case-insensitive matching, see
“BrowserMatchNoCase” on page 583. BrowserMatch and “BrowserMatchNoCase” on page 583 are
special cases of “SetEnvIf” on page 584 and “SetEnvIfNoCase” on page 586. The following two lines
have the same effect:

BrowserMatch Robot is_a_robot
SetEnvIf User-Agent Robot is_a_robot

Parameter One: regex

• The regex parameter is a case-sensitive perl compatible regular expression. This gives the user
the ability to select variants on the User-Agent field, such as using some wildcarding to group
versions of a client browser. See “Environment variables set by HTTP Server” on page 634 for
more information.

Parameter Two: [!]env-variable[=value] [[!]env-variable[=value]] ...

• The [!]env-variable[=value] [[!]env-variable[=value]] ... parameter gives the names of the variables
to set and, optional, values to which they should be set. The case is preserved when lowercase
characters are specified. Valid values include all EBCDIC characters. The value must be enclosed in
quotation marks if it contains any non-alphanumeric character or blanks.

BrowserMatchNoCase
Module: mod_setenvif

Syntax: BrowserMatchNoCase regex [!]env-variable[=value] [[!]env-variable[=value]] ...

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: BrowserMatchNoCase ibm platform=ibm

IBM HTTP Server for i 583

BrowserMatchNoCase is semantically identical to “BrowserMatch” on page 582. However, it provides for
case-insensitive matching. For example:

BrowserMatchNoCase mac platform=ibm
BrowserMatchNoCase win platform=windows

“BrowserMatch” on page 582 and BrowserMatchNoCase are special cases of “SetEnvIf” on page 584
and “SetEnvIfNoCase” on page 586. The following two lines have the same effect:

BrowserMatchNoCase Robot is_a_robot
SetEnvIfNoCase User-Agent Robot is_a_robot

Parameter One: regex

• The regex parameter is a case-insensitive perl compatible regular expression. This gives the user
the ability to select variants on the User-Agent field, such as using some wildcarding to group
version of a client browser. See “Environment variables set by HTTP Server” on page 634 for more
information.

Parameter Two: [!]env-variable[=value] [[!]env-variable[=value]] ...

• The [!]env-variable[=value] [[!]env-variable[=value]] ... parameter gives the names of variables to set
and, optionally, values to which they should be set. They can take the form of 'varname', '!varname'
or 'varname=value'. The case is preserved when lowercase characters are specified. Valid values
include all EBCDIC characters. The value must be enclosed in quotation marks if it contains any
non-alphanumeric character or blanks.

SetEnvIf
Module: mod_setenvif

Syntax: SetEnvIf attribute regex [!]env-variable[=value] [[!]env-variable[=value]] ...

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: SetEnvIf Request_URI "\.gif$" object_is_image=gif

Example: SetEnvIf Requet_Method "GET" QIBM_CGI_LIBRARY_LIST="MIME;CGIURL;CGILIBL"

SetEnvIf defines environment variables based on attributes of the request. These attributes can be the
values of various HTTP request header fields or of other aspects of the request. See RFC2068 for more
information.

Note: To view the RFC listed above, visit the RFC index search engine located on the RFC editor
 web site. Search for the RFC number you want to view. The search engine results display the

corresponding RFC title, author, date, and status.

Attribute Description

Remote_Host The hostname (if available) of the client making the request.

Remote_Addr The IP address of the client making the request.

Server_Addr The IP address of the server on which the request was received.

Remote_User The authenticated username (if available).

Request_Method The name of the method being used (GET, POST, etc).

584 IBM i: IBM HTTP Server for i

http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/

Attribute Description

Request_Protocol The name and version of the protocol with which the request was
made (e.g., "HTTP/0.9", "HTTP/1.1", etc.)

Request_URI The resource requested on the HTTP request line -- generally the
portion of the URL following the scheme and host portion without
the query string. See the RewriteCond directive of mod_rewrite for
extra information on how to match your query string.

Some of the more commonly used request header field names include Host, User-Agent, and Referrer.

If the attribute name does not match any of the special keywords, or any of the request's header field
names, it is tested as the name of an environment variable in the list of those associated with the request.
This allows SetEnvIf directives to test against the result of prior matches.

Only those environment variables defined by earlier SetEnvIf[NoCase] directives are available for testing
in this manner. Earlier means that they were defined in a broader context (such as server-wide) or
previously in the current directive's context. Environment variables will be considered only if there was no
match among request characteristics and a regular expression was not used for the attribute.

For example:

SetEnvIf Request_URI "\.gif$" object_is_image=gif
SetEnvIf Request_URI "\.jpg$" object_is_image=jpg
SetEnvIf Request_URI "\.xbm$" object_is_image=xbm

SetEnvIf Referrer www\.mydomain\.com intra_site_referral

SetEnvIf Request_URI "\.(.*)$" EXTENSION=$1

SetEnvIf ^TS ^[a-z] HAVE_TS

SetEnvIf Requet_Method "GET" QIBM_CGI_LIBRARY_LIST="MIME;CGIURL;CGILIBL"

The first three will set the environment variable object_is_image if the request was for an image file, and
the fourth sets intra_site_referral if the referring page was somewhere on the www.mydomain.com Web
site. The 5th statement of the example will set environment variable HAVE_TS if the request contains any
headers that begin with "TS" whose values begins with any character in the set [a-z]. The sixth statement
sets the library list.

Parameter One: attribute

• The attribute parameter is the attribute of the request, such as an HTTP header value. The attribute
can also be an environment variable that was set by an earlier SETENVIF directive.

Parameter Two: regex

• The regex parameter is a case-sensitive perl compatible regular expression. This gives the user the
ability to select variants on the Attribute field, such as using some wildcarding to group related
values, and use those to set the environment variables. See “Environment variables set by HTTP
Server” on page 634 for more information.

Parameter Three: [!]env-variable[=value] [[!]env-variable[=value]] ...

• The [!]env-variable[=value] [[!]env-variable[=value]] ... parameter gives the names of variables to set
and, optionally, values to which they should be set. They take the form of 'varname', '!varname' or
'varname=value'. In the first form, the value will be set to "1". The second will remove the given
variable if already defined, and the third will set the variable to the literal value given by value.
HTTP Server will recognize occurrences of $1..$9 within value and replace them by parenthesized
subexpressions of regex. $0 provides access to the whole string matched by that pattern.

• The case is preserved when lowercase characters are specified. Valid values include all EBCDIC
characters. The value must be enclosed in quotation marks if it contains any non-alphanumeric
character or blanks. Lowercase characters for the library names will not work if this directive is used

IBM HTTP Server for i 585

to change the library list. When changing the library list values, the libraries need to be separated by
a semicolon.

SetEnvIfExpr
Module: mod_setenvif

Syntax: SetEnvIfExpr expr [!]env-variable[=value] [[!]env-variable[=value]] ...

Default: none

Context: server config, virtual host, directory .htaccess

Override: FileInfo

Origin: Apache

Example: SetEnvIfExpr "tolower(req('X-Sendfile')) == '/home/images/very_big.iso')" iso_delivered

The SetEnvIfExpr directive defines environment variables based on an “<If>” on page 329 ap_expr .
These expressions will be evaluated at runtime, and applied env-variable in the same fashion as
“SetEnvIf” on page 584.

Example:

#Set the variable rfc1918 if the remote IP address is a private address according to RFC 1918

SetEnvIfExpr "-R '10.0.0.0/8' || -R '172.16.0.0/12' || -R '192.168.0.0/16'" rfc1918

Parameter One: expr

• The expr is an ap_expr expression to be evaluated at runtime. The environment variables is defined
if and only if expression evaluates to true.

Parameter Two: [!]env-variable[=value] [[!]env-variable[=value]] ...

• The [!]env-variable[=value] [[!]env-variable[=value]] ... parameter gives the names of variables to set
and, optionally, values to which they should be set. They take the form of 'varname', '!varname' or
'varname=value'. In the first form, the value will be set to "1". The second will remove the given
variable if already defined, and the third will set the variable to the literal value given by value.
HTTP Server will recognize occurrences of $1..$9 within value and replace them by parenthesized
subexpressions of regex.

• The case is preserved when lowercase characters are specified. Valid values include all EBCDIC
characters. The value must be enclosed in quotation marks if it contains any non-alphanumeric
character or blanks. Lowercase characters for the library names will not work if this directive is used
to change the library list. When changing the library list values, the libraries need to be separated by
a semicolon.

SetEnvIfNoCase
Module: mod_setenvif

Syntax: SetEnvIfNoCase attribute regex [!]env-variable[=value] [[!]env-variable[=value]] ...

Default: none

Context: server config, virtual host, directory .htaccess

Override: FileInfo

Origin: Apache

Example: SetEnvIfNoCase Host IBM\.Org site=ibm

Example: SetEnvIfNoCase Request_Method "get" QIBM_CGI_LIBRARY_LIST="mime;cgiurl;cgilibl"

586 IBM i: IBM HTTP Server for i

The SetEnvIfNoCase directive is semantically identical to SetEnvIf, and differs only in that the regular
expression matching is performed in a case-insensitive manner. For example: SetEnvIfNoCase Host
QIBM\.Org site=ibm

This will cause the site variable to be set to 'ibm' if the HTTP request header field Host: was included and
contained QIBM.Org, qibm.org, or any other combination.

Parameter One: attribute

• The attribute parameter is the attribute of the request, such as an HTTP Header value. The attribute
can also be an environment variable that was set by an earlier setenvif directive.

Parameter Two: regex

• The regex parameter is a case-sensitive perl compatible regular expression. This gives the user the
ability to select variants on the Attribute field, such as using some wildcarding to group related
values, and use those to set the environment variables. See “Environment variables set by HTTP
Server” on page 634 for more information.

Parameter Three: [!]env-variable[=value] [[!]env-variable[=value]] ...

• The [!]env-variable[=value] [[!]env-variable[=value]] ... parameter gives the names of variables to set
and, optionally, values to which they should be set. They take the form of 'varname', '!varname' or
'varname=value'. In the first form, the value will be set to "1". The second will remove the given
variable if already defined, and the third will set the variable to the literal value given by value.
HTTP Server will recognize occurrences of $1..$9 within value and replace them by parenthesized
subexpressions of regex.

• The case is preserved when lowercase characters are specified. Valid values include all EBCDIC
characters. The value must be enclosed in quotation marks if it contains any non-alphanumeric
character or blanks. Lowercase characters for the library names will not work if this directive is used
to change the library list. When changing the library list values, the libraries need to be separated by
a semicolon.

Module mod_so
Module mod_so supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_so provides for loading of executable code and modules into the HTTP Server at startup
or restart time. On the IBM i server, the loaded code comes from a service program object with a .SRVPGM
extension.

Directive

• “LoadModule ” on page 587

LoadModule
Module: mod_so

Syntax: LoadModule module filename

Default: none

Context: server config

Override: none

Origin: Apache

Example: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

The LoadModule directive links in the object file filename and adds the module structure named module
to the list of active modules.

IBM HTTP Server for i 587

Parameter One: module

• The module parameter is the name of the external variable of type module is the IBM i file.

Parameter Two: filename

• The filename parameter must be an IBM i service program.

The following example loads ibm_ldap in QZSRVLDAP service program into the current HTTP Server:

LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Module mod_userdir
Module mod_userdir supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_userdir allows user-specific directories to be accessed using the http://www.QIBM.com/
~user/ syntax.

Directive

• “UserDir ” on page 588

UserDir
Module: mod_userdir

Syntax: UserDir directory [directory ...] | enabled username [username ...] | disabled [username...]

Context: server config, virtual host

Override: none

Origin: Apache

Example: UserDir WWW

Example: UserDir enable lewis thomas

Example: UserDir disable sherman fazio

Example: UserDir disable

The UserDir directive sets the real directory in a user's home directory to use when a request for a
document for a user is received. The user's home directory is based on the HOMEDIR setting of the user's
IBM i user profile. Directory is one of the following:

Parameter: directory

• The name of a directory or a pattern such as those shown below.
• The keyword disabled. This turns off all username-to-directory translations except those explicitly

named with the enabled keyword (see below).
• The keyword disabled followed by a space-delimited list of usernames. Usernames that appear in

such a list will never have directory translation performed, even if they appear in an enabled clause.
• The keyword enabled followed by a space-delimited list of usernames. These usernames will have

directory translation performed even if a global disable is in effect, but not if they also appear in a
disabled clause. Note: the keyword enabled without a list of usernames is not valid.

Note: The UserDir directive is not inherited by virtual hosts when it is set in the global server
configuration.

If neither the enabled nor the disabled keywords appear in the UserDir directive, the argument is treated
as a filename pattern (or list of filename patterns), and is used to turn the name into a directory

588 IBM i: IBM HTTP Server for i

specification. For example, assume that the HOMEDIR parameter of the IBM i user profile "bob" is set
to /home/bob. A request for http://www.QIBM.com/~bob/one/two.html will be translated to:

UserDir public_html -> /home/bob/public_html/one/two.html
UserDir /usr/web -> /usr/web/bob/one/two.html
UserDir /home/*/www -> /home/bob/www/one/two.html

The following directives will send redirects to the client:

UserDir http://www.QIBM.com/users -> http://www.QIBM.com/users/home/bob/one/two.html
UserDir http://www.QIBM.com/*/usr -> http://www.QIBM.com/home/bob/usr/one/two.html
UserDir http://www.QIBM.com/~*/ -> http://www.QIBM.com/home/bob/one/two.html

Note: Use caution when using this directive; for instance, "UserDir ./" would map "/~root" to "/" -
which is most likely undesirable. It is strongly recommended that your configuration include a "UserDir
disabled root" declaration. If multiple UserDir directives without disable or enable keywords occur in
a configuration, the last one is used.

Note: User directory substitution is not active by default.

See <Directory> and “Security tips for HTTP Server” on page 30 for more information.

Example 1:

#Allow a few users to have UserDir directories, but not anyone else, use the following:

UserDir disabled

UserDir enabled user1 user2 user3

Example 2:

#Allow most users to have UserDir directories, but deny this to a few (UserDir disabled user4 user5
user6)

UserDir disabled user4 user5 user6

Example 3:

#Specify alternative user directories

UserDir public_html /usr/web http://www.QIBM.com/

With a request for http://www.QIBM.com/~bob/one/two.html, will try to find the page at ~bob/
public_html/one/two.html first, then /usr/web/bob/one/two.html, and finally it will send a redirect to
http://www.QIBM.com/bob/one/two.html.

If you add a redirect, it must be the last alternative in the list. HTTP server cannot determine if the
redirect succeeded or not, so if you have the redirect earlier in the list, that will always be the alternative
that is used.

Module mod_usertrack
Module mod_usertrack supports directives for the IBM HTTP Server for i Web server.

Summary

This module provides support for tracking users through the use of cookies.

Note: Netscape 4.x (Communicator) and above can use two or four digit dates. Netscape 3.x and below
will only accept two digit dates. To ensure the expiration date is legible to the client's browser use two
digit dates.

Directives

• “CookieDomain” on page 590
• “CookieExpires” on page 590
• “CookieName” on page 590

IBM HTTP Server for i 589

• “CookieStyle” on page 591
• “CookieTracking” on page 591

CookieDomain
Module: mod_usertrack

Syntax: CookieDomain domain

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: CookieDomain .mydomain.com

The CookieDomain directive controls the setting of the domain to which the tracking cookie applies. If not
present, no domain is included in the cookie header field. The domain string must begin with a dot, and
must include at least one embedded dot. That is, .ibm.com is legal, but ibm.com and .com are not.

Parameter: domain

• A domain is a partially qualified DNS domain name, preceded by a period. It represents a group of
hosts that logically belong to the same DNS domain or zone (that is, the suffixes of the hostnames
are all ending in Domain).

CookieExpires
Module: mod_usertrack

Syntax: CookieExpires expiry-period

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: CookieExpires 120

The CookieExpires directive sets an expiry time on the cookie generated by the usertrack module. If this
directive is not used, cookies last only for the current browser session.

Parameter: expiry-period

• The expiry-period specifies the time, in seconds, the cookie should remain.

CookieName
Module: mod_usertrack

Syntax: CookieName token

Default: CookieName Apache

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: CookieName ABCDE19

590 IBM i: IBM HTTP Server for i

The CookieName directive allows you to change the name of the cookie. The cookie name is used for
tracking purposes. You must specify a valid cookie name; results are unpredictable if you use a name
containing unusual characters. Valid characters include A-Z, a-z, 0-9, '_' and '-'.

Parameter: token

• The token parameter allows you to change the name of the cookie.

CookieStyle
Module: mod_usertrack

Syntax: CookieStyle Netscape | Cookie | Cookie2 | RFC2109 | RFC2965

Default: CookieStyle Netscape

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: CookieStyle Cookie

This CookieStyle directive controls the format of the cookie header field.

Parameter: Netscape | Cookie | Cookie2 | RFC2109 | RFC2965

• Netscape is the original, but now deprecated, syntax. This is the default, and the syntax HTTP Server
has historically used.

• Cookie or RFC2109 is the syntax that superseded the Netscape syntax.
• Cookie2 or RFC2965 is the most current cookie syntax.

Note: Not all clients can understand all of these formats. You should use the most current one that is
generally acceptable to your users' browsers.

CookieTracking
Module: mod_usertrack

Syntax: CookieTracking on | off

Default: Compiling mod_usertrack will not activate cookies by default.

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: CookieTracking on

The CookieTracking directive allows you to send a user-tracking cookie for all new requests. This directive
can be used to turn this behavior on or off on a per-server or per-directory basis.

Parameter: on | off

• With CookieTracking on, the server starts sending a user-tracking cookie for all new requests.
• With CookieTracking off, the server does not send a user-tracking cookie for all new requests.

Module mod_vhost_alias
Module mod_vhost_alias supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_vhost_alias provides support for dynamically configured mass virtual hosting.

IBM HTTP Server for i 591

Virtual hosting

The term Virtual Host refers to the practice of maintaining more than one server on one machine or
server instance, as differentiated by their apparent hostname (or server instance name). For example,
it is often desirable for companies sharing a web server to have their own domains, with web servers
accessible as www.company1.com and www.company2.com, without requiring the user to know extra
path information.

HTTP Server supports two types of virtual hosting, they are IP-based Virtual Host and Name-based Virtual
Host. As the term IP-based indicates, the server must have a different IP address for each IP-based
virtual host. This can be achieved by the machine having several physical network connections, or by use
of virtual interfaces that are supported by most modern operating systems.

While the approach with IP-based Virtual Hosts works well, it is not the most elegant solution, because
a dedicated IP address is needed for every virtual host and is hard to implement on some machines. The
HTTP/1.1 protocol contains a method for the server to identify what name it is being addressed as.

The benefits of using the name-based virtual host support is a practically unlimited number of
servers, ease of configuration and use, and no additional hardware or software requirements. The main
disadvantage is that the client must support this part of the protocol. The latest versions of most browsers
(e.g. HTTP 1.1) do, but there are still old browsers (e.g. HTTP 1.0) in use that do not. This can cause
problems, although a possible solution is addressed below.

Using non-IP virtual hosts

The notable difference between IP-based and name-based virtual host configuration is the
NameVirtualHost directive that specifies an IP address that should be used as a target for name-based
virtual hosts. For example, suppose that both www.domain.tld and www.otherdomain.tld point at the IP
address 111.22.33.44. Simply add to one of the configuration files (most likely httpd.conf or srm.conf)
code similar to the following:

NameVirtualHost 111.22.33.44

<VirtualHost 111.22.33.44>
ServerName www.domain.tld
DocumentRoot /www/domain
</VirtualHost>

<VirtualHost 111.22.33.44>
ServerName www.otherdomain.tld
DocumentRoot /www/otherdomain
</VirtualHost>

Of course, any additional directives can (and should) be placed into the <VirtualHost> section. To make
this work, make sure that the names www.domain.tld and www.otherdomain.tld are pointing to the IP
address 111.22.33.44

Note: When you specify an IP address in a NameVirtualHost directive, requests to that IP address are only
served by matching <VirtualHost>s. The main server is never served from the specified IP address. If you
start to use virtual hosts you should stop using the main server as an independent server and use it as a
place for configuration directives that are common for all your virtual hosts. In other words, you should
add a <VirtualHost> section for every server (hostname) you want to maintain on your server.

Additionally, many servers may want to be accessible by more than one name. For example, the example
server might want to be accessible as domain.tld, or www2.domain.tld, assuming the IP addresses
pointed to the same server. In fact, one might want it so that all addresses at domain.tld were picked up
by the server. This is possible with the ServerAlias directive, placed inside the <VirtualHost> section. For
example:

ServerAlias domain.tld *.domain.tld

Note: You can use * and ? as wild-card characters.

You might also need ServerAlias if you are serving local users who do not always include the domain
name. For example, if local users are familiar with typing "www" or "www.example" then you will need
to add ServerAlias www www.example. It isn't possible for the server to know what domain the client

592 IBM i: IBM HTTP Server for i

uses for their name resolution because the client doesn't provide that information in the request. The
ServerAlias directive provides a means for different hostnames to point to the same virtual host.

Dynamic virtual hosting

A virtual host is defined by two pieces of information: its IP address, and the contents of the Host: header
in the HTTP request. The dynamic mass virtual hosting technique is based on automatically inserting this
information into the pathname of the file that is used to satisfy the request. This is done most easily using
mod_vhost_alias.

A couple of things need to be `faked', that being specific parameters with incorrect parameter values, to
make the dynamic virtual host look like a normal one. The most important is the server name which is
used by HTTP Server to generate a self referencing URLs. It is configured with the ServerName directive,
and it is available to CGIs via the SERVER_NAME environment variable. The actual value used at run time
is controlled by the UseCanonicalName setting. With UseCanonicalName off the server name comes from
the contents of the Host: header in the request. With UseCanonicalName DNS it comes from a reverse
DNS lookup of the virtual host's IP address. The former setting is used for name-based dynamic virtual
hosting, and the latter is used for IP-based hosting. If HTTP Server cannot work out the server name
because there is no Host: header or the DNS lookup fails then the value configured with ServerName is
used instead.

The other thing to `fake' is the document root (configured with DocumentRoot and available to CGIs
via the DOCUMENT_ROOT environment variable). This setting is used by the core module when mapping
URIs to filenames, but when the server is configured to do dynamic virtual hosting that job is taken
over by the mod_vhost_alias module. If any CGIs or SSI documents make use of the DOCUMENT_ROOT
environment variable they will therefore get a misleading value; there is not any way to change
DOCUMENT_ROOT dynamically.

Motivation for dynamic virtual hosting

The techniques described here are of interest if your httpd.conf contains many <VirtualHost> sections
that are substantially the same. For example:

NameVirtualHost 10.22.33.44
<VirtualHost 10.22.33.44>
ServerName www.customer-1.com
DocumentRoot /www/hosts/www.customer-1.com/docs
ScriptAlias /cgi-bin/ /www/hosts/www.customer-1.com/cgi-bin
</VirtualHost>
<VirtualHost 10.22.33.44>
ServerName www.customer-2.com
DocumentRoot /www/hosts/www.customer-2.com/docs
ScriptAlias /cgi-bin/ /www/hosts/www.customer-2.com/cgi-bin
</VirtualHost>
comment line
<VirtualHost 10.22.33.44>
ServerName www.customer-N.com
DocumentRoot /www/hosts/www.customer-N.com/docs
ScriptAlias /cgi-bin/ /www/hosts/www.customer-N.com/cgi-bin
</VirtualHost>

The basic idea is to replace all of the static <VirtualHost> configuration with a mechanism that works it
out dynamically. This has a number of advantages:

1. Your configuration file is smaller so HTTP Server starts faster and uses less memory.
2. Adding virtual hosts is simply a matter of creating the appropriate directories in the filesystem and

entries in the DNS - you do not need to configure or restart HTTP Server.

The main disadvantage is that you cannot have a different log file for each virtual host; however if you
have very many virtual hosts then doing this is dubious anyway because it eats file descriptors. It is
better to log to a pipe or a fifo and arrange for the process at the other end to distribute the logs to the
customers (it can also accumulate statistics).

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file:

/usr/local/apache/vhosts/isp.com/e/x/a/example/directory/file.html.

IBM HTTP Server for i 593

A more even spread of files can be achieved by hashing from the end of the name, for example:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

The example request would come from /usr/local/apache/vhosts/isp.com/e/l/p/example/directory/
file.html. Alternatively you might use:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+

The example request would come from /usr/local/apache/vhosts/isp.com/e/x/a/mple/directory/file.html.

Simple dynamic virtual hosts

This extract from httpd.conf implements the virtual host arrangement outlined in the Motivation section
above, but in a generic fashion using mod_vhost_alias.

get the server name from the Host: header
UseCanonicalName off
this log format can be split per-virtual-host based on the first field
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon
include the server name in the filenames used to satisfy requests
VirtualDocumentRoot /www/hosts/%0/docs
VirtualScriptAlias /www/hosts/%0/cgi-bin

This configuration can be changed into an IP-based virtual hosting solution by just turning
UseCanonicalName off into UseCanonicalName DNS. The server name that is inserted into the filename is
then derived from the IP address of the virtual host.

A virtually hosted homepages system

This is an adjustment of the above system tailored for an ISP's homepages server. Using a slightly more
complicated configuration we can select substrings of the server name to use in the filename so that e.g.
the documents for www.user.isp.com are found in /home/user/. It uses a single cgi-bin directory instead
of one per virtual host.

all the preliminary stuff is the same as above, then
include part of the server name in the filenames
VirtualDocumentRoot /www/hosts/%2/docs
single cgi-bin directory
ScriptAlias /cgi-bin/ /www/std-cgi/

Use more than one virtual hosting system on the same server

With more complicated setups you can use HTTP Server's normal <VirtualHost> directives to control
the scope of the various virtual hosting configurations. For example, you could have one IP address for
homepages customers and another for commercial customers with the following setup. This can of course
be combined with conventional <VirtualHost> configuration sections.

UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory /www/commercial>
Options FollowSymLinks
AllowOverride All
</Directory>
<Directory /www/homepages>
Options FollowSymLinks
AllowOverride None
</Directory>
<VirtualHost 10.22.33.44>
ServerName www.commercial.isp.com
CustomLog logs/access_log.commercial vcommon
VirtualDocumentRoot /www/commercial/%0/docs
VirtualScriptAlias /www/commercial/%0/cgi-bin
</VirtualHost>
<VirtualHost 10.22.33.45>
ServerName www.homepages.isp.com
CustomLog logs/access_log.homepages vcommon
VirtualDocumentRoot /www/homepages/%0/docs

594 IBM i: IBM HTTP Server for i

ScriptAlias /cgi-bin/ /www/std-cgi/
</VirtualHost>

Directory name interpolation

All the directives in this module interpolate (insert) a string into a pathname. The interpolated string may
either be the server name (see “UseCanonicalName” on page 362 for more information) or the IP address
of the virtual host on the server in dotted-quad format. The interpolation is controlled by specifiers
inspired by UNIX printf which have a number of formats:

Specifier Description

%% Insert a % sign

%p Insert the port number of the virtual host

%N.M Insert (part of) the interpolated string

N and M are used to specify substrings of the interpolated string. N selects from the period separated
components of the interpolated string, and M selects characters within whatever N has selected. M is
optional and defaults to zero if it is not present. The period (.) must be present if and only if M is present.
The interpretation is as follows:

N.M interpretation Description

0 The whole name.

1 The first part.

2 The second part.

-1 The last part.

-2 The next to last part.

2+ The second and all subsequent parts.

-2+ The next to last part and all preceding parts.

1+ and -1+ The same as 0 (zero).

If N or M is greater than the number of parts available a single underscore is interpolated.

Examples:

For a simple name-based virtual hosts you might use the following directives in your server configuration
file:

 UseCanonicalName off
 VirtualDocumentRoot /www/webserver/vhosts/%0

A request for http://www.qibm.com/directory/file.html will be satisfied by the file /www/webserver/
vhosts/www.qibm.com/directory/file.html.

For a very large number of virtual hosts it is a good idea to arrange the files to reduce the size of the
vhosts directory. To do this you might use the following in your configuration file:

 UseCanonicalName off
 VirtualDocumentRoot /www/webserver/vhosts/%3+/%2.1/%2.2/%2.3/%2

A request for http://www.domain.qibm.com/directory/file.html will be satisfied by the file /www/
webserver/vhosts/qibm.com/d/o/m/domain/directory/file.html.

A more even spread of files can be achieved by hashing from the end of the name, for example:

 VirtualDocumentRoot /www/webserver/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

IBM HTTP Server for i 595

The example request would come from /www/webserver/vhosts/qibm.com/n/i/a/domain/directory/
file.html. Alternatively you might use:

 VirtualDocumentRoot /www/webserver/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+

The example request would come from /www/webserver/vhosts/qibm.com/d/o/m/ain/directory/file.html.

A very common request by users is the ability to point multiple domains to multiple document roots
without having to worry about the length or number of parts of the hostname being requested. If the
requested hostname is sub.www.domain.qibm.com instead of simply www.domain.qibm.com, then using
%3+ will result in the document root being /www/webserver/vhosts/domain.qibm.com/... instead of the
intended qibm.com directory. In such cases, it can be beneficial to use the combination %-2.0.%-1.0,
which will always yield the domain name and the tld, for example qibm.com regardless of the number of
subdomains appended to the hostname. As such, one can make a configuration that will direct all first,
second or third level subdomains to the same directory:

 VirtualDocumentRoot /www/webserver/vhosts/%-2.0.%-1.0

In the example above, both www.qibm.com as well as www.sub.qibm.com or qibm.com will all point
to /www/webserver/vhosts/qibm.com.

For IP-based virtual hosting you might use the following in your configuration file:

 UseCanonicalName DNS
 VirtualDocumentRootIP /www/webserver/vhosts/%1/%2/%3/%4/docs
 VirtualScriptAliasIP /www/webserver/vhosts/%1/%2/%3/%4/cgi-bin

A request for http://www.domain.qibm.com/directory/file.html would be satisfied by the file /www/
webserver/vhosts/10/20/30/40/docs/directory/file.html if the IP address of www.domain.qibm.com were
10.20.30.40. A request for http://www.domain.qibm.com/cgi-bin/script.pl would be satisfied by executing
the program /www/webserver/vhosts/10/20/30/40/cgi-bin/script.pl.

If you want to include the . character in a VirtualDocumentRoot directive, but it clashes with a % directive,
you can work around the problem in the following way:

 VirtualDocumentRoot /www/webserver/vhosts/%2.0.%3.0

A request for http://www.domain.qibm.com/directory/file.html will be satisfied by the file /www/
webserver/vhosts/domain.qibm/directory/file.html.

The LogFormat directives %V and %A are useful in conjunction with this module. See “LogFormat” on
page 487 for more information.

Directives

• “VirtualDocumentRoot” on page 596
• “VirtualDocumentRootIP” on page 597
• “VirtualScriptAlias” on page 599
• “VirtualScriptAliasIP” on page 600

VirtualDocumentRoot
Module: mod_vhost_alias

Syntax: VirtualDocumentRoot interpolated-directory | none

Default: VirtualDocumentRoot none

Context: server config, virtual host

Override: none

Origin: Apache

596 IBM i: IBM HTTP Server for i

Usage Considerations: A LoadModule is required in the config file prior to using the directive.
The statement should be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: See below.

The VirtualDocumentRoot directive allows you to determine where the server will finds your documents
based on the value of the server name. The result of expanding interpolated-directory is used as
the root of the document tree in a similar manner to the DocumentRoot directive's parameter. See
“DocumentRoot ” on page 313 for more information.

If interpolated-directory is none then VirtualDocumentRoot is disabled. This directive cannot be used
in the same context as VirtualDocumentRootIP. See “VirtualDocumentRootIP” on page 597 for more
information.

Parameter: interpolated-directory | none

• The interpolated-directory parameter the full path to a directory.
• Specify none to disable VirtualDocumentRoot

For example, a simple dynamic virtual host:

LocalModule directive required
LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
get the server name from the Host: header
UseCanonicalName off
this log format can be split per-virtual-host based on the first field
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon
include the server name in the filenames used to satisfy requests
VirtualDocumentRoot /www/web/%0/docs

The next example is an adjustment of the above, system tailored for an ISP's homepage server. Using
a slightly more complicated configuration we can select substrings of the server name to use in the
filename so that e.g. the documents for www.user.isp.com are found in /home/user/. It uses a single
cgi-bin directory instead of one per virtual host:

LocalModule directive required
LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
get the server name from the Host: header
UseCanonicalName off
include part of the server name in the filenames
VirtualDocumentRoot /usr/web/hosts/%2/docs
single cgi-bin directory
ScriptAlias /cgi-bin/ /usr/web/std-cgi/

Note: This configuration can be changed into an IP-based virtual hosting solution by just turning
UseCanonicalName off into UseCanonicalName DNS. The server name that is inserted into the filename
is then derived from the IP address of the virtual host. See “UseCanonicalName” on page 362 for more
information.

Note: VirtualDocumentRoot will override any “DocumentRoot ” on page 313 directives you may have put
in the same context or child contexts. Putting a VirtualDocumentRoot in the server config will effectively
override “DocumentRoot ” on page 313 directives in any virtual hosts defined later on, unless you set
VirtualDocumentRoot to None in each virtual host.

VirtualDocumentRootIP
Module: mod_vhost_alias

Syntax: VirtualDocumentRootIP interpolated-directory | none

Default: VirtualDocumentRootIP none

Context: server config, virtual host

Override: none

IBM HTTP Server for i 597

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive.
The statement should be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: See VirtualDocumentRoot.

The VirtualDocumentRootIP directive is like the “VirtualDocumentRoot” on page 596 directive, except
that it uses the IP address of the server end of the connection for directory interpolation instead of the
server name. See “VirtualDocumentRoot” on page 596 for more information.

Parameter: interpolated-directory

• The interpolated-directory parameter the full path to a directory.
• Specify none to disable VirtualDocumentRootIP

More complicated setups can use the server's normal <VirtualHost> directives to control the scope of
the various virtual hosting configurations. For example, you could have one IP address for home page
customers and another for commercial customers with the following directives. This can of course be
combined with conventional <VirtualHost> configuration sections.

UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory /usr/web/commercial>
Options FollowSymLinks
AllowOverride All
</Directory>

<Directory /usr/web/homepages>
Options FollowSymLinks
AllowOverride None
</Directory>
LocalModule directive required
LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

<VirtualHost 10.22.33.44>
ServerName www.commercial.isp.com
CustomLog logs/access_log.commercial vcommon
VirtualDocumentRoot /usr/web/commercial/%0/docs
VirtualScriptAlias /usr/web/commercial/%0/cgi-bin
</VirtualHost>
<VirtualHost 10.22.33.45>
ServerName www.homepages.isp.com
CustomLog logs/access_log.homepages vcommon
VirtualDocumentRoot /usr/web/homepages/%0/docs
ScriptAlias /cgi-bin/ /usr/web/std-cgi/
</VirtualHost>

More efficient IP-based virtual hosting:

In the first example note that it is easy to turn it into an IP-based virtual hosting setup. Unfortunately that
configuration is not very efficient because it requires a DNS lookup for every request. This can be avoided
by laying out the filesystem according to the IP addresses themselves rather than the corresponding
names and changing the logging similarly. HTTP Server will not usually need to work out the server name
and a DNS lookup. For example:

Get the server name from the reverse DNS of the IP address
UseCanonicalName DNS
LocalModule directive required
LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

include the IP address in the logs so they may be split
LogFormat "%A %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon
include the IP address in the filenames
VirtualDocumentRootIP /usr/web/hosts/%0/docs
VirtualScriptAliasIP /usr/web/hosts/%0/cgi-bin

598 IBM i: IBM HTTP Server for i

VirtualScriptAlias
Module: mod_vhost_alias

Syntax: VirtualScriptAlias interpolated-directory | none

Default: VirtualScriptAlias none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive.
The statement should be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: See below.

The VirtualScriptAlias directive allows you to specify the directory path where the server will find CGI
scripts in a similar manner to “VirtualDocumentRoot” on page 596 does for other documents. In this case
the target directory of the CGI scripts must be named "cgi-bin". For example:

VirtualScriptAlias /user/web/commercial/%0/cgi-bin

Parameter: interpolated-directory

• The interpolated-directory parameter the full path to a directory.
• Specify none to disable VirtualScriptAlias

Using more than one virtual hosting system on the same server instance:

More complicated setups use the server's normal <VirtualHost> directives to control the scope of the
various virtual hosting configurations. For example, you could have one IP address for homepages
customers and another for commercial customers with the following directives. This can of course be
combined with conventional <VirtualHost> configuration sections.

UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory/usr/web/commercial>
Options FollowSymLinks
AllowOverride All

</Directory>
<Directory /usr/web/homepages>
Options FollowSymLinks
AllowOverride None
</Directory>

LocalModule directive required
LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
<VirtualHost 10.22.33.44>
ServerName www.commercial.isp.com
CustomLog logs/access_log.commercial vcommon
VirtualDocumentRoot /usr/web/commercial/%0/docs
VirtualScriptAlias /usr/web/commercial/%0/cgi-bin
</VirtualHost>

<VirtualHost 10.22.33.45>
ServerName www.homepages.isp.com
CustomLog logs/access_log.homepages vcommon
VirtualDocumentRoot /usr/web/homepages/%0/docs
ScriptAlias /cgi-bin/ /usr/web/std-cgi/
</VirtualHost>

IBM HTTP Server for i 599

VirtualScriptAliasIP
Module: mod_vhost_alias

Syntax: VirtualScriptAliasIP interpolated-directory | none

Default: VirtualScriptAliasIP none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive.
The statement should be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: See “VirtualScriptAlias” on page 599.

The VirtualScriptAliasIP directive is like the “VirtualScriptAlias” on page 599 directive, except that it uses
the IP address of the server end of the connection for directory interpolation instead of the server name.
See “VirtualScriptAlias” on page 599 for more information.

Parameter: interpolated-directory

• The interpolated-directory parameter the full path to a directory.
• Specify none to disable VirtualScriptAliasIP

Module mod_version
Module mod_version supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_version is designed for use in test suites and large networks which have to deal with
different HTTP Server versions and different configurations. It provides a new container that enables
flexible version checking, including numeric comparisons and regular expressions. This module is helpful
when using the same configuration across different apache versions and IBM i releases.

Directive

• “<IfVersion>” on page 600

<IfVersion>
Module: mod_version

Syntax: <IfVersion> [[!]operator] version> ... </IfVersion>

Default: none

Context: server, virtual host, directory, .htaccess

Override: All

Origin: Apache

The <IfVersion> section encloses configuration directives which are executed only if the Apache HTTP
version matches the desired criteria. For normal (numeric) comparisons the version argument has the
format major[.minor[.patch]], e.g. 2.2.11 or 2.4. minor and patch are optional. If these numbers are
omitted, they are assumed to be zero.

The following numerical operators are possible:

600 IBM i: IBM HTTP Server for i

Table 46. Mod_version operators

Operator Description

= or == Apache HTTP version is equal

> Apache HTTP version is greater than

>= Apache HTTP version is greater or equal

< Apache HTTP version is less than

<= Apache HTTP version is less or equal

Example

<IfVersion >= 2.2>
this happens only in versions greater or equal 2.2.0
</IfVersion>

<IfVersion = 2.4>
this happens only in version 2.4.0 but not in version 2.4.2, etc.
</IfVersion>

Besides the numerical comparison it is possible to match a regular expression against the Apache HTTP
version. There are two ways to write it:

Operator Description

= or == version has the form /regex/

~ version has the form regex

Example

<IfVersion = /^2.4.[01234]$/>
 # e.g. workaround for buggy versions
</IfVersion>

In order to reverse the meaning, all operators can be preceded by an exclamation mark (!):

<IfVersion !~ ^2.4.[01234]$>
 # not for those versions
</IfVersion>

Note: If the operator is omitted, it is assumed to be =.

Module mod_watchdog
Module mod_watchdog supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_watchdog defines programmatic hooks for other modules to periodically run tasks.
These modules can register handlers for mod_watchdog hooks.

Directives

• “WatchdogInterval” on page 601

WatchdogInterval
Module: mod_watchdog

Syntax: WatchdogInterval number-of-seconds

Default: WatchdogInterval 1

IBM HTTP Server for i 601

Context: server config

Override: none

Origin: Apache

Example: WatchdogInterval 10

Sets the interval at which the watchdog_step hook runs. Default is to run every second.

Module mod_proxy_balancer
Module mod_proxy_balancer does not provide directives for the IBM HTTP Server for i Web server.

Summary

The Proxy balancer module requires the service of mod_proxy and it provides load balancing support for
HTTP, FTP and WebSocket protocols.

The load balancer enables requests to be shared among workers via three methods, Request Counting,
Weighted Traffic Counting and Pending Request Counting. The default Request counting just counts
the number of requests and distributes requests across workers until they have each served an equal
number of requests. These methods are controlled via the lbmethod value of the Balancer definition.
See the ProxyPass directive for more information, especially regarding how to configure the Balancer and
BalancerMembers.

Load balancing scheduler algorithm is now provided by modules: mod_lbmethod_byrequests,
mod_lbmethod_bytraffic and mod_lbmethod_bybusyness. In order to get the ability of load balancing,
mod_proxy, mod_proxy_balancer, and at least one of load balancing scheduler algorithm modules have
to be loaded. For example：
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_balancer_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule lbmethod_byrequests_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

If you are using proxy load balancing with a Proxy directive scheme that starts with balancer://, you will
need to specify the working members of the cluster. The balancer://xxx specification refers to a virtual
worker that gets created. It does not really communicate with the backend server but is responsible
for the management of several "real" workers. A special set of parameters can be added to this virtual
worker. The "real" worker is a member of the load balancer, usually a remote host serving one of the
supported protocols. Review ProxyPass directive for all of the allowed parameters.

The Proxy balancer module supports two ways of implementing stickyness: cookie based and URL
encoding based. For example:

ProxyPass "/test" "balancer://mycluster" stickysession=JSESSIONID|jsessionid scolonpathdelim=On
<Proxy "balancer://mycluster">
 BalancerMember "http://192.168.1.50:80" route=node1
 BalancerMember "http://192.168.1.51:80" route=node2
</Proxy>

Module zend_enabler
Module zend_enabler supports directives for the IBM HTTP Server for i Web server.

Summary

The module zend_enabler enables HTTP server to run AIX programs that implement the FastCGI protocol.

FastCGI is an interface between Web servers and applications which combines some of the performance
characteristics of native Web server modules with the Web server independence of the CGI programming
interface. AIX FastCGI applications are run in the PASE for i environment.

602 IBM i: IBM HTTP Server for i

Directives

• “FastCGIServerID” on page 603

FastCGIServerID
Module: zend_enabler

Syntax: FastCGIServerID user_profile

Default: FastCGIServerID QTMHHTTP

Context: server config, virtual host

Override: AuthConfig

Origin: IBM

Example: FastCGIServerID webmaster

The FastCGIServerID directive specifies the user profile that the fast CGI server will run under(default is
QTMHHTTP). This directive tells what user profile to use when starting the worker threads under the child
process.

Parameter One: user_profile

• user_profile must be a valid user profile. This profile must be authorized to all the directories, files,
and other server resources accessed by the fast CGI server unless the server is configured to swap
to another profile for specific requests or directories. You must have authority to the specified
profile.

Note: The following steps must be done first before using the FastCGIServerID directive

1. Empty IFS temporary directory /tmp
2. Change the authority of IFS directory /usr/local/zendsvr to *PUBLIC *RX (a few *RWX)
3. Ensure the authority of library ZENDSVR is *PUBLIC *RX or *RWX (r-x or rwx)
4. Change the authority of your HTTP server directory(i.e. /www/zendsvr) to *PUBLIC *RX
5. Add the directive to HTTP server configuration file(httpd.conf) and restart HTTP server

Example：
FastCGIServerID TESTUSR

Use WRKACTJOB command to see the user profile that fast CGI server runs under is changed from
default QTMHHTTP to TESTUSR

ZENDSVR QTMHHTTP BCH .0 PGM-QZHBMAIN SIGW
ZENDSVR QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
ZENDSVR QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
ZENDSVR QTMHHTTP BCI .0 PGM-QZSRHTTP SIGW
ZENDSVR QTMHHTTP BCI .0 PGM-zfcgi SELW
ZENDSVR TESTUSR BCI .0 PGM-php-cgi THDW
ZENDSVR TESTUSR BCI .0 PGM-php-cgi TIMW
ZENDSVR TESTUSR BCI .0 PGM-php-cgi TIMW
ZENDSVR TESTUSR BCI .0 PGM-php-cgi TIMW
ZENDSVR TESTUSR BCI .0 PGM-php-cgi TIMW
ZENDSVR TESTUSR BCI .0 PGM-php-cgi TIMW

Module mod_filter
Module mod_filters supports directives for the IBM HTTP Server for i Web server.

Summary

The filter module provides context-sensitive configuration of output content filters. This module by gives
server administrators a great deal of flexibility in configuring the filter chain. In fact, filters can be
inserted based on any Request Header, Response Header or Environment Variable. The filter module

IBM HTTP Server for i 603

has been extended to allow filters to be executed based on conditional criteria. This changes the old
model under which documents were merely filtered unconditionally according to the configuration of
the AddOutputFilter directive or the minor flexibility offered by AddOutputFilterByType. Instead of adding
specific filters to specific file types you can create a proper filter chain output is processed by each
filter in the chain. This requires a declaration of the available filter types, and if necessary, the source
requirements (file type) and the filters to apply.

The filter module works by introducing indirection into the filter chain. Instead of inserting filters in the
chain, we insert a filter harness which in turn dispatches conditionally to a filter provider. Any content
filter may be used as a provider to mod_filter; no change to existing filter modules is required (although
it may be possible to simplify them). There can be multiple providers for one filter, but no more than one
provider will run for any single request.

A filter chain comprises any number of instances of the filter harness, each of which may have any
number of providers. A special case is that of a single provider with unconditional dispatch, which is
equivalent to inserting the provider filter directly into the chain.

Directives

• “FilterChain” on page 605
• “AddOutputFilterByType” on page 604
• “FilterDeclare” on page 606
• “FilterProvider” on page 606

AddOutputFilterByType
Module: mod_filter

Syntax: AddOutputFilterByType filter filtername[;filtername...] media-type [media-type] ...

Default: none

Context: Server config, Virtual Host, Directory, .htaccess

Override: FileInfo

Origin: Apache

Examples:

AddOutputFilterByType INCLUDES text/html

AddOutputFilterByType INCLUDES;DEFLATE text/html

GUI Design Information: Form --> Compression... Tab --> Output Filters

The AddOutputFilterByType directive matches the MIME media-type of files to a filter which will process
responses from the server before they are sent to the client. All files of the given media-type will be
processed through the filter filtername. This is in addition to all defined filters, including those defined in
the SetOutputFilter“SetOutputFilter” on page 360 directive.

Parameter One: filtername

• The name of a filter which will process responses from the server before they are sent to the client.

Parameter Two: media-type

• Any valid media-type

The following example uses the DEFLATE filter, which is provided by mod_deflate. It will compress all
output (either static or dynamic) which is labeled as text/html or text/plain before it is sent to the client.

AddOutputFilterByType DEFLATE text/html text/plain

If you want the content to be processed by more than one filter, their names have to be separated by
semicolons. It's also possible to use one AddOutputFilterByType directive for each of these filters.

604 IBM i: IBM HTTP Server for i

The configuration below causes all script output labeled as text/html to be processed at first by the
INCLUDES filter and then by the DEFLATE filter.

<Location /cgi-bin/>
 Options Includes
 AddOutputFilterByType INCLUDES;DEFLATE text/html
</Location>

See also

• AddOutputFilter
• SetOutputFilter
• filters

FilterChain
Module: mod_filter

Syntax: FilterChain [+=-@!] filter-name ...

Default: none

Context: server config, Virtual Host, Directory, .htaccess

Override: Options

Origin: Apache

Examples

Server side Includes (SSI)

A simple case of using FilterProvider in place of “AddOutputFilterByType” on page 604.

FilterDeclare SSI
FilterProvider SSI INCLUDES "resp('Content-Type') == 'text/html'"
FilterChain SSI

Emulating mod_gzip with mod_deflate

Insert INFLATE filter only if "gzip" is NOT in the Accept-Encoding header. This filter runs with ftype
CONTENT_SET.

FilterDeclare gzip CONTENT_SET
FilterProvider gzip inflate "req('Accept-Encoding') != 'gzip'"
FilterChain gzip

The following are the three stages used to configuring a filter chain with mod_filter.
Declare Filters

The FilterDeclare directive declares a filter, assigning it a name and filter type. Required only if the
filter is not the default type AP_FTYPE_RESOURCE.

Register Providers
The FilterProvider directive registers a provider with a filter. The filter may have been
declared with FilterDeclare; if not, FilterProvider will implicitly declare it with the default type
AP_FTYPE_RESOURCE. The provider must have been registered with ap_register_output_filter by
some module. The remaining arguments to FilterProvider are a dispatch criterion and a match string.
The former may be an HTTP request or response header, an environment variable, or the Handler
used by this request. The latter is matched to it for each request, to determine whether this provider
will be used to implement the filter for this request.

IBM HTTP Server for i 605

Configure the Chain
The above directives build components of a smart filter chain, but do not configure it to run. The
FilterChain directive builds a filter chain from smart filters declared, offering the flexibility to insert
filters at the beginning or end of the chain, remove a filter, or clear the chain.

FilterChain takes any number of arguments, each optionally preceded with a single-character control that
determines what to do. The following information configures an actual filter chain from declared filters.

+filter-name
Adds filter-name to the end of the filter chain.

@filter-name
Inserts filter-name at the start of the filter chain

-filter-name
Removes filter-name from the filter chain

=filter-name
Empty the filter chain and insert filter-name
!
Empty the filter chain

filter-name
Equivalent to +filter-name

FilterDeclare
Module: mod_filter

Syntax: FilterDeclare filter-name [type]

Default: none

Context: server config, Virtual Host, Directory, .htaccess

Override: Options

Origin: Apache

This directive declares an output filter together with a header or environment variable that will determine
runtime configuration. The first argument is a filter-name for use in FilterProvider and FilterChain
directives. The final (optional) argument is the type of filter, and takes values of ap_filter_type - namely
RESOURCE (the default), CONTENT_SET, TRANSCODE, PROTOCOL, CONNECTION, or NETWORK.

FilterProvider
Module: mod_filter

Syntax: FilterProvider FilterProvider filter-name provider-name expression

Default: none

Context: server config, Virtual Host, Directory, .htaccess

Override: Options

Origin: Apache

606 IBM i: IBM HTTP Server for i

Example:

These are examples for using Smart Filtering.

Server side Includes (SSI)

A simple case of using FilterProvider in place of “AddOutputFilterByType” on page 604

FilterDeclare SSI

FilterProvider SSI INCLUDES "resp('Content-Type') == 'text/html'"

FilterChain SSI

Emulating mod_gzip with mod_deflate

Insert INFLATE filter only if "gzip" is NOT in the Accept-Encoding header. This filter runs with ftype
CONTENT_SET.

FilterDeclare gzip CONTENT_SET

FilterProvider gzip inflate "req('Accept-Encoding') != 'gzip'"

FilterChain gzip

The FilterProvider directive registers a provider for the Smart Filter. The provider will be called if and only
if the expression declared evaluates to true when the harness is first called.

The provider-name is registered by loading a module that registers the name with
ap_register_output_filter.

expression is an ap_expr.

Note: The FilterProvider directive has changed from Apache 2.2: the match and dispatch arguments are
replaced with a single but more versatile expression. In general, you can convert a match/dispatch pair to
the two sides of an expression, using something like:

 "dispatch = 'match'"

The Request headers, Response headers and Environment variables are now interpreted from syntax
%{req:foo}, %{resp:foo} and %{env:foo} respectively. The variables %{HANDLER} and %{CONTENT_TYPE}
are also supported.

Note that the match no longer support substring matches. They can be replaced by regular expression
matches.

Module mod_ident
Module mod_ident supports directives for the IBM HTTP Server for i Web server.

Directives

• “IdentityCheck” on page 607
• “IdentityCheckTimeout” on page 608

IdentityCheck
Module: core

Syntax: IdentityCheck on | off

Default: IdentityCheck off

Context: server config, virtual host, directory, Not in Limit

Override: none

Origin: Apache

IBM HTTP Server for i 607

Example: IdentityCheck on

The IdentityCheck directive enables compliant logging of the remote user name for each connection,
where the client machine runs identd or something similar. This information is logged in the access log.

Parameter: on | off

• When set to on, the server will attempt to identify the client's user by querying the identd daemon
of the client host. Identd will, when given a socket number, reveal which user created that socket.
That is, the username of the client on his home machine. Since the information provided is entirely
under the control of the client's machine, this information should not be trusted in any way except
for rudimentary usage tracking.

• When set to off, the server does not attempt to identify the client's user.

Note: This can cause serious latency problems accessing your server since every request requires one of
these lookups to be performed. When firewalls are involved each lookup might possibly fail and add 30
seconds of latency to each hit. So in general this is not very useful on public servers accessible from the
Internet. This directive controls the identd field of the W3C common or extended log format.

A CustomLog, TransferLog or FRCACustomLog must be configured before this directive will take affect.
If IdentityCheck is configured in a directory or location container, the CustomLog, TransferLog or
FRCACustomLog must be configured in the server context where the directory or location container
resides for it to take affect. Also for this directive to be used in the CustomLog, TransferLog, or
FRCACustomLog, the LogFormat for these has to specify "%l" (lower case L) in the format.

See mod_log_config for information on log formats.

IdentityCheckTimeout
Module: mod_ident

Syntax: IdentityCheckTimeout seconds

Default: IdentityCheckTimeout 30

Context: Server, Virtual Host, Directory

Override: none

Origin: Apache

The IdentityCheckTimeout directive determines the timeout duration for ident requests. The default value
of 30 seconds is recommended by RFC 1413, mainly because of possible network latency. However, you
may want to adjust the timeout value according to your local network speed.

Module zhbstartup
Directives

• “Subsystem” on page 608
• “SubsystemPool” on page 609
• “RoutingData” on page 609

Subsystem
Module: zhbstartup

Load_Module: None

Syntax: Subsystem name

Default: Subsystem QHTTPSVR

Context: server

608 IBM i: IBM HTTP Server for i

Override: none

Origin: IBM i

Requirement for Directive to Take Effect: Restart

Current GUI Location: None

Example: Subsystem ZENDSVR

Specify this directive to assign the subsystem that a specific HTTP server runs in. By default all HTTP
servers run under QHTTPSVR subsystem. User can use this directive combined with SubsystemPool and
RoutingData directives to make HTTP Server to use own customized subsystem, memory pool and routing
data so each HTTP server can be set to run in the optimal memory.

SubsystemPool
Module: zhbstartup

Load_Module: None

Syntax: SubsystemPool number

Default: SubsystemPool 2

Context: server

Override: none

Origin: IBM i

Requirement for Directive to Take Effect: Restart

Current GUI Location: None

Range of Numeric Values: [1 ...10]

Example: SubsystemPool 5

Specify this directive to assign the subsystem memory pool that a specific HTTP server runs in. By default
all HTTP servers run in *BASE. User can use this directive combined with Subsystem and RoutingData
directives to make HTTP Server to use own customized subsystem, memory pool and routing data so each
HTTP server can be set to run in the optimal memory.

RoutingData
Module: zhbstartup

Load_Module: None

Syntax: RoutingData name

Default: RoutingData HTTPWWW

Context: server

Override: none

Origin: IBM i

Requirement for Directive to Take Effect: Restart

Current GUI Location: None

Valid Characters: A maximum of 80 characters can be specified

Example: RoutingData HTTPSVR

Specify this directive to set the routing data when starting HTTP server. The default value is HTTPWWW.
User can use this directive combined with Subsystem and SubsystemPool directives to make HTTP Server

IBM HTTP Server for i 609

to use own customized subsystem, memory pool and routing data so each HTTP server can be set to run
in the optimal memory.

Module mod_authn_core
Module mod_authn_core supports directives for the IBM HTTP Server for i Web server.

Summary

The mod_authn_core module provides core authentication capabilities to allow or deny access to portions
of the web site. mod_authn_core provides directives that are common to all authentication providers.

• “AuthName” on page 610
• “AuthType” on page 610

AuthName

Module: mod_authn_core

Syntax: AuthName auth-domain

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: Modified

Example: AuthName "IBM Server"

The AuthName directive sets the name of the authorization realm for a directory. This realm is given to
the client during basic authentication to inform the user about which username and password to send. To
work properly this directive must be accompanied by “AuthType” on page 610 Basic, and directives such
as “PasswdFile” on page 233.

Parameter: auth-domain
Auth-domain takes a single argument; If the realm name contains spaces, it must be enclosed in
double quotation marks.

AuthType
Module: mod_authn_core

Syntax: AuthType type

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: Modified

Example: AuthType None

Example: AuthType Basic

Example: AuthType SSL

Example: AuthType Kerberos

Example: AuthType KerberosOrBasic

The AuthType directive selects the type of user authentication for a directory. For Basic authentication to
work properly this directive must be accompanied by “AuthName” on page 610. If Kerberos is specified,
the Require directive must be specified and the PasswdFile directive should be included and set to

610 IBM i: IBM HTTP Server for i

%%KERBEROS%%. The AuthName, LDAPConfigFile, and LDAPRequire directives may be configured in
the same container, but will be ignored.

Parameter: type

• The type parameter value specifies the type of user authentication for a directory. Valid values
include:
None

Configuring "AuthType None" disables authentication. When authentication is enabled, it is
normally inherited by each subsequent configuration section, unless a different authentication
type is specified. If no authentication is desired for a subsection of an authenticated section, the
authentication type None may be used; in the following example, clients may access the /www/
webserver/htdocs/public directory without authenticating:

<Directory /www/webserver/htdocs>
 AuthType Basic
 AuthName Documents
 PasswdFile %%SYSTEM%%
 Require valid-user
</Directory>

<Directory /www/webserver/htdocs/public>
 AuthType None
 Require all granted
</Directory>

Basic
Configuring "AuthType Basic" specifies that the server protects resources based on a user ID
and password. The user will be prompted for a user ID and password the first time a request is
made for a resource protected by this directive. This directive may be used on either a secure
or a non-secure HTTP session. On a non-secure HTTP session, the user ID and password are
encoded, but not encrypted.

Note: Note: In order to use the directive "SSLAuthType CertOrBasic", the AuthType directive
must be specified with a value of type Basic.

SSL
Configuring "AuthType SSL" specifies that the server will protect resources based on a SSL client
certificate that is associated with a user ID. See the SSLAuthType directive for more information.

Note: In order to use the directive "SSLAuthType Cert", the AuthType directive must be specified
with a value of type SSL.

Kerberos
Configuring "AuthType Kerberos" specifies that the server will accept a server ticket from a
Kerberos-enabled client to authenticate a user.

KerberosOrBasic
Configuring "AuthType KerberosOrBasic" specifies that the server will give a basic authentication
prompt to those browsers who are either not in a kerberos enabled domain, not using Microsoft
Internet Explorer, or if kerberos authentication fails for a Microsoft Internet Explorer browser
in a kerberos realm. If the browser is Microsoft Internet Explorer configured for kerberos, and
in a kerberos domain with the correct kerberos principal and keytab entries, there will be
no prompt (uses kerberos HTTP negotiation). To work correctly the intersection of directives
for "Kerberos" and "Basic" authority must be used. Kerberos specific directives will not work,
because basic authentication can not use kerberos validation. These directives are required
when using KerberosOrBasic:

– “AuthName” on page 610
– PasswdFile %%SYSTEM%%
– Require: The parameter valid-user, user or group may be specified. For example: Require
user kerbuser@DOMAIN.COM as400userid

Notes:

IBM HTTP Server for i 611

– The group file must include both the kerberos principal and the as400userid. For example
Groupfile: productionusers: johndoe@WIN2003.DOMAIN.COM, jdoe

– If you do not use the valid-user you must include both the kerberos client principal and the
as400 userid to which it maps.

If you want to have SSL certificate checking, it is recommended that AuthType be set to type SSL.

Module mod_access_compat
Module mod_access_compat supports directives for the IBM HTTP Server for i Web server.

Summary

The module mod_access_compat provides access control based on a client's hostname or IP address.

Note: It's a compatibility module with previous version of HTTP Server. The directives provided by
this module have been deprecated by mod_authz_host. Mixing old directives like “Order” on page
614, “Allow” on page 612 or “Deny” on page 613 with new ones like “Require” on page 226 is
technically possible but discouraged. This module was created to support configurations containing only
old directives to facilitate the 2.4 upgrade. Please check the upgrading guide for more information.

Directives

• “Allow” on page 612
• “Deny” on page 613
• “Order” on page 614
• “Satisfy” on page 614

Allow
Module: mod_access_compat

Syntax: allow from all | env=[!]envvar | host [host ...]

Default: none

Context: directory, .htaccess

Override: Limit

Origin: Apache

Example: allow from all

Example: allow from env=go_away

Example: allow from 10.10.10.10 .ibm.com

Example: allow from 2001:db8::a00:20ff:fea7:ccea

Example: allow from 2001:db8::a00:20ff:fea7:ccea/10

The Allow directive affects which hosts can access a given directory.

Parameter: host

• If all, all hosts are allowed access.
• If full or partial domain-name, hosts whose names match or end in this string are allowed access.
• If full IP address, only IP address of a host are allowed access.
• If partial IP address, only the first 1 to 3 bytes of an IP address, for subnet restriction.
• If network/netmask, a network a.b.c.d. And a netmask w.x.y.z. Can be used for fine-grained subnet

restriction (for example, 10.2.0.0/255.255.0.0).
• If network/nnn CIDR specification, it is similar to the previous case, except the netmask consists of

nnn higher-order 1 bits (for example, 10.1.0.0/16 is the same as 10.1.0.0/255.255.0.0).

612 IBM i: IBM HTTP Server for i

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20i%20Technology%20Updates/page/IBM%20HTTP%20Server%20Upgrading%20to%20Apache%202.4

Note: This compares whole components, ibm.com would not match QIBMibm.com.

The allow from env option controls access to a directory by the existence (or nonexistence) of an
environment variable. For example:

BrowserMatch ^KnockKnock/2.0 let_me_in
<Directory /docroot>
 order deny,allow
 deny from all
 allow from env=let_me_in
</Directory>

In this case browsers with the user-agent string KnockKnock/2.0 will be allowed access, and all others
will be denied.

See also “Deny” on page 613, “Order” on page 614, and BrowserMatch.

Deny
Module: mod_access_compat

Syntax: deny from all | env=[!]envvar | host [host ...]

Default: none

Context: directory, .htaccess

Override: Limit

Origin: Apache

Example: deny from env=go_away

Example: deny from 10.10.10.10 .ibm.com

The deny directive affects which hosts can access a given directory.

Parameter: host

• If all, all hosts are denied access.
• If full or partial domain-name, hosts whose names match or end in this string are denied access.
• If full IP address, only IP address of a host are denied access.
• If partial IP address, only the first 1 to 3 bytes of an IP address, for subnet restriction.
• If network/netmask, a network a.b.c.d. And a net mask w.x.y.z. Can be used for fine-grained subnet

restriction (for example, 10.2.0.0/255.255.0.0).
• If network/nnn CIDR specification, it is similar to the previous case, except the netmask consists of

nnn higher-order 1 bits (for example, 10.1.0.0/16 is the same as 10.1.0.0/255.255.0.0).

Note: This compares whole components (ibm.com would not match QIBMibm.com).

The deny from env option controls access to a directory by the existence (or nonexistence) of an
environment variable. For example:

BrowserMatch ^BadRobot/0.9 go_away
<Directory /docroot>
 order allow,deny
 allow from all
 deny from env=go_away
</Directory>

In this case browsers with the user-agent string BadRobot/0.9 will be denied access, and all others will be
allowed.

See also “Allow” on page 612 and “Order” on page 614.

IBM HTTP Server for i 613

Order
Module: mod_access_compat

Syntax: order ordering

Default: order deny,allow

Context: directory, .htaccess

Override: Limit

Origin: Modified

Example: order deny,allow

The order directive controls the order in which Allow and Deny directives are evaluated. .

Parameter: ordering

• If deny,allow, the deny directives are evaluated before the allow directives (the initial state is OK).
• If allow,deny, the allow directives are evaluated before the deny directives (the initial state is

FORBIDDEN).
• If mutual-failure, only those hosts which appear on the allow list and do not appear on the deny list

are granted access (the initial state is irrelevant).

Keywords may only be separated by a comma; no whitespace is allowed between them. Note: that in all
cases every allow and deny statement is evaluated, there is no "short-circuiting". For Example:

order deny,allow
deny from all
allow from .ibm.com

In this example, the first container's intent is to keep everyone out. The next container overrides for the
appropriate subdirectory.

<Directory/>
 Order deny,allow
 deny from all
 allow from none
</Directory>

Alias /root /bobtest/xyz/html
<Directory /bobtest/xyz/html/>
 Order allow,deny
 allow from all
 Authtype Basic
 AuthName "root and %%SYSTEM%%"
 PasswdFile %%SYSTEM%%
 Require valid-user
 UserID %%SYSTEM%%
</Directory>

Hosts in the ibm.com domain are allowed access; all other hosts are denied access.

Satisfy
Module: mod_access_compat

Syntax: Satisfy any | all

Default: Satisfy all

Context: directory, .htaccess

Override: AuthConfig

Origin: Modified

Example: Satisfy any

614 IBM i: IBM HTTP Server for i

The Satisfy directive establishes access policy if both allow and require are used. The parameter can be
either 'all' or 'any'. This directive is only useful if access to a particular area is being restricted by both
username/password and client host address.

Parameter: any | all

• In this case, the default behavior all requires that the client passes the address access restriction
and enters a valid username and password.

• With the any option, the client will be granted access if they either pass the host restriction or enter
a valid username and password. This can be used to password restrict an area, but to let clients
from particular addresses in without prompting for a password.

The Require directive has to indicate Satisfy is not required every time AuthType is used, but if "Satisfy
Any" is used, then you must also use Allow, Require, AuthType AuthName and PasswdFile in order for the
Satisfy to work correctly. For example:

Order allow,deny
Allow from All
Satisfy Any
AuthType Basic
AuthName "Realm can go here"
PasswdFile %%SYSTEM%%
Require valid-user

Note: If you are using SSL Authentication the satisfy directive should be set to any. The all option allows
for SSL Authentication, and also authentication with userid and passwords. You do not want to use the
Require directive if SSLClientAuth equals zero (0). In this case, the Satisfy directive should not be used
with "Allow from All" and "SSLClientAuth 0".

Module mod_authz_host
Module mod_authz_host does not provide directives for the IBM HTTP Server for i Web server.

Summary

The module mod_authz_host provides group authorizations based on host (name or IP address). The
authorization providers implemented by mod_authz_host are registered using the “Require” on page 351
directive. The directive can be referenced within a “<Directory> ” on page 311, “<Files>” on page 323, or
“<Location> ” on page 339 section as well as .htaccess files to control access to particular parts of the
server. Access can be controlled based on the client hostname or IP address.

In general, access restriction directives apply to all access methods (GET, PUT, POST, etc). This is the
desired behavior in most cases. However, it is possible to restrict some methods, while leaving other
methods unrestricted, by enclosing the directives in a “<Limit>” on page 333 section

The “Require” on page 351 directive is used during the authorization phase to ensure that a user is
allowed or denied access to a resource. mod_authz_host extends the authorization types with ip, host and
local. Other authorization types may also be used but may require that additional authorization modules
be loaded.

These authorization providers affect which hosts can access an area of the server. Access can be
controlled by hostname, IP Address, or IP Address range. See below examples for detail information:

Require ip

The ip provider allows access to the server to be controlled based on the IP address of the remote client.
When Require ip ip-address is specified, then the request is allowed access if the IP address matches.

A full IP address:

 Require ip 10.1.2.3
 Require ip 192.168.1.104 192.168.1.205

An IP address of a host allowed access

IBM HTTP Server for i 615

A partial IP address:

 Require ip 10.1
 Require ip 10 172.20 192.168.2

The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair:

 Require ip 10.1.0.0/255.255.0.0

A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction.

A network/nnn CIDR specification:

 Require ip 10.1.0.0/255.255.0.0

A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction.

A network/nnn CIDR specification:

 Require ip 10.1.0.0/16

Similar to the previous case, except the netmask consists of nnn high-order 1 bits.

Note that the last three examples above match exactly the same set of hosts.

IPv6 addresses and IPv6 subnets can be specified as shown below:

 Require ip 2001:db8::a00:20ff:fea7:ccea
 Require ip 2001:db8::a00:20ff:fea7:ccea/10

Note: As the IP addresses are parsed on startup, expressions are not evaluated at request time.

Require host

The host provider allows access to the server to be controlled based on the host name of the remote
client. When Require host host-name is specified, then the request is allowed access if the host name
matches.

A (partial) domain-name

 Require host example.org
 Require host .net example.edu

Hosts whose names match, or end in, this string are allowed access. Only complete components are
matched, so the above example will match foo.example.org but it will not match fooexample.org. This
configuration will cause Apache to perform a double reverse DNS lookup on the client IP address,
regardless of the setting of the “HostNameLookups ” on page 325 directive. It will do a reverse DNS
lookup on the IP address to find the associated hostname, and then do a forward lookup on the hostname
to assure that it matches the original IP address. Only if the forward and reverse DNS are consistent and
the hostname matches will access be allowed.

Require forward-dns

The forward-dns provider allows access to the server to be controlled based on simple host names. When
Require forward-dns host-name is specified, all IP addresses corresponding to host-name are allowed
access.

In contrast to the host provider, this provider does not rely on reverse DNS lookups: it simply queries the
DNS for the host name and allows a client if its IP matches. As a consequence, it will only work with host
names, not domain names. However, as the reverse DNS is not used, it will work with clients which use a
dynamic DNS service.

Require forward-dns bla.example.org

A client the IP of which is resolved from the name bla.example.org will be granted access.

616 IBM i: IBM HTTP Server for i

Require local

The local provider allows access to the server if any of the following conditions is true:

• the client address matches 127.0.0.0/8
• the client address is ::1
• both the client and the server address of the connection are the same

This allows a convenient way to match connections that originate from the local host:

 Require local

Note: If you are proxying content to your server, you need to be aware that the client address will be
the address of your proxy server, not the address of the client, and so using the Require directive in this
context may not do what you mean. See mod_remoteip for possible solutions to this problem.

Module mod_asis
Module mod_asis does not provide directives for the IBM HTTP Server for i Web server.

Summary

The module mod_asis provides the handler send-as-is which causes Apache HTTP Server to send the
document without adding most of the usual HTTP headers.

This can be used to send any kind of data from the server, including redirects and other special HTTP
responses, without requiring a cgi-script or an nph script.

This module will also process any file with the mime type httpd/send-as-is.

Usage

In the server configuration file, associate files with the send-as-is handler, for example:

AddType httpd/send-as-is asis

The contents of any file with a .asis extension will then be sent by Apache HTTP Server to the client with
almost no changes. In particular, HTTP headers are derived from the file itself according to mod_cgi rules,
so an asis file must include valid headers, and may also use the CGI Status: header to determine the HTTP
response code. The Content-Length: header will automatically be inserted or, if included, corrected by
HTTP Server.

Here is an example of a file whose contents are sent asis, telling the client that a file has redirected.

Status: 301 Now where did I leave that URL
Location: http://xyz.example.com/foo/bar.html
Content-type: text/html

<HTML>
<HEAD>
<TITLE>Lame excuses'R'us</TITLE>
</HEAD>
<BODY>
<H1>Fred's exceptionally wonderful page has moved to
Joe's site.
</H1>
</BODY>
</HTML>

Note: The server always adds a Date: and Server: header to the data returned to the client, so these
should not be included in the file. The server does not add a Last-Modified header.

Module mod_data
Module mod_data does not supports directives for the IBM HTTP Server for i Web server.

Summary

IBM HTTP Server for i 617

The module mod_data provides the ability to convert a response into an RFC2397 data URL.

Data URLs can be embedded inline within web pages using something like the mod_include module, to
remove the need for clients to make separate connections to fetch what may potentially be many small
images. Data URLs may also be included into pages generated by scripting languages such as PHP.

An example of a data URL：

AAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQu5yqmCYsapyuvUUlvONmOZtfzgFz
ByTB10QgxOR0TqBQejhRNzOfkVJ+5YiUqrXF5Y5lKh/DeuNcP5yLWGsEbtLiOSp
a/TPg7JpJHxyendzWTBfX0cxOnKPjgBzi4diinWGdkF8kjdfnycQZXZeYGejmJl
ZeGl9i2icVqaNVailT6F5iJ90m6mvuTS4OK05M0vDk0Q4XUtwvKOzrcd3iq9uis
F81M1OIcR7lEewwcLp7tuNNkM3uNna3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PH
hhx4dbgYKAAA7

The filter takes no parameters, and can be added to the filter stack using the “SetOutputFilter” on page
360 directive, or any of the directives supported by the mod_filter module.

Example of Configuring the filter:

<Location "/data/images">
 SetOutputFilter DATA
</Location>

Module mod_logio
Module mod_logio does not provide directives for the IBM HTTP Server for i Web server.

Summary

The module mod_logio data provides the logging of input and output number of bytes received/sent per
request. The numbers reflect the actual bytes as received on the network, which then takes into account
the headers and bodies of requests and responses. The counting is done before SSL/TLS on input and
after SSL/TLS on output, so the numbers will correctly reflect any changes made by encryption.

When KeepAlive connections are used with SSL, the overhead of the SSL handshake is reflected in the
byte count of the first request on the connection.

Custom Log Formats

This module adds three new logging format strings. The characteristics of the request itself are logged by
placing "%" in the format string, which are replaced in the log file by the values as follows:

Table 47.

Format String Description

%I Bytes received, including request and headers.
Cannot be zero.

%O Bytes sent, including headers. May be zero in rare
cases such as when a request is aborted before a
response is sent.

%S Bytes transferred (received and sent), including
request and headers, cannot be zero. This is the
combination of %I and %O.

%^FB Delay in microseconds between when the request
arrived and the first byte of the response headers
are written. Only available if LogIOTrackTTFB is set
to ON.

For example:

Combined I/O log format:

618 IBM i: IBM HTTP Server for i

http://tools.ietf.org/html/rfc2397

 "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\" %I %O"

Directives

• “LogIOTrackTTFB ” on page 619

LogIOTrackTTFB
Module: mod_logio

Syntax: LogIOTrackTTFB ON | OFF

Default: LogIOTrackTTFB OFF

Context: server config, virtual host, directory, .htaccess

Override: None

Origin: Apache

Example: LogIOTrackTTFB ON

This directive configures whether this module tracks the delay between the request being read and the
first byte of the response headers being written. The resulting value may be logged with the %^FB format.

Module mod_proxy_http
Module mod_proxy_http does not provide directives for the IBM HTTP Server for i Web server.

Summary

The mod_proxy_http module provides the features used for proxying HTTP and HTTPS requests.
mod_proxy_http supports HTTP/0.9, HTTP/1.0 and HTTP/1.1. It does not provide any caching abilities.
If you want to set up a caching proxy, you might want to use the additional service of the mod_cache
module.

Environment Variables
In addition to the configuration directives that control the behavior of mod_proxy, there are a number of
environment variables that control the HTTP protocol provider. Environment variables below that don't
specify specific values are enabled when set to any value.

proxy-sendextracrlf

Causes proxy to send an extra CR-LF newline on the end of a request. This is a workaround for a bug in
some browsers.

force-proxy-request-1.0

Forces the proxy to send requests to the backend as HTTP/1.0 and disables HTTP/1.1 features.

proxy-nokeepalive

Forces the proxy to close the backend connection after each request.

proxy-chain-auth

If the proxy requires authentication, it will read and consume the proxy authentication credentials sent by
the client. With proxy-chain-auth it will also forward the credentials to the next proxy in the chain. This
may be necessary if you have a chain of proxies that share authentication information.

Note: Do not set this unless you know you need it, as it forwards sensitive information.

proxy-sendcl

HTTP/1.0 required all HTTP requests that include a body (e.g. POST requests) to include a Content-Length
header. This environment variable forces the Apache proxy to send this header to the backend server,
regardless of what the Client sent to the proxy. It ensures compatibility when proxying for an HTTP/1.0 or

IBM HTTP Server for i 619

unknown backend. However, it may require the entire request to be buffered by the proxy, so it becomes
very inefficient for large requests.

proxy-sendchunks or proxy-sendchunked

This is the opposite of proxy-sendcl. It allows request bodies to be sent to the backend using chunked
transfer encoding. This allows the request to be efficiently streamed, but requires that the backend server
supports HTTP/1.1.

proxy-interim-response

This variable takes values RFC (the default) or Suppress. Earlier HTTP Server versions would suppress
HTTP interim (1xx) responses sent from the backend. This is technically a violation of the HTTP protocol.
In practice, if a backend sends an interim response, it may itself be extending the protocol in a manner
we know nothing about, or just broken. So this is now configurable: set proxy-interim-response RFC to be
fully protocol compliant, or proxy-interim-response Suppress to suppress interim responses.

proxy-initial-not-pooled

If this variable is set, no pooled connection will be reused if the client request is the initial request on the
frontend connection. This avoids the "proxy: error reading status line from remote server" error message
caused by the race condition that the backend server closed the pooled connection after the connection
check by the proxy and before data sent by the proxy reached the backend. It has to be kept in mind that
setting this variable downgrades performance, especially with HTTP/1.0 clients.

Request notes
mod_proxy_http creates the following request notes for logging using the %{VARNAME}n format in
“LogFormat” on page 487 or “ErrorLogFormat” on page 320:

proxy-source-port

The local port used for the connection to the backend server.

proxy-status

The HTTP status received from the backend server.

Note: The mod_proxy_http module requires the following LoadModules in HTTP Server configuration file:

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Module mod_proxy_wstunnel
Module mod_proxy_wstunnel does not provide directives for the IBM HTTP Server for i Web server.

Summary

The mod_proxy_wstunnel module provides support for the tunnelling of web socket connections to a
backend websockets server. The connection is automagically upgraded to a websocket connection:

Upgrade: WebSocket

Connection: Upgrade

Example:

Proxying requests to websockets server

ProxyPass "/ws2/" "ws://echo.websocket.org/".

ProxyPass "/wss2/" "wss://echo.websocket.org/"

Note: The mod_proxy_wstunnel module requires the following LoadModules in HTTP Server configuration
file:

620 IBM i: IBM HTTP Server for i

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_wstunnel_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Module mod_lbmethod_byrequestsl
Module mod_lbmethod_byrequests does not provide directives for the IBM HTTP Server for i Web server.

Summary

The mod_lbmethod_byrequests module provides Request Counting load balancer scheduler
algorithm(byrequests method) for mod_proxy_balancer

Example:

<Proxy balancer://mycluster>
 BalancerMember http://www.example1.com:8080 loadfactor=1
 BalancerMember http://www.example2.com:8080 loadfactor=2
 ProxySet lbmethod=byrequests
</Proxy>

Note: The mod_lbmethod_byrequests module requires the following LoadModules in HTTP Server
configuration file:

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_balancer_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule lbmethod_byrequests_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Module mod_lbmethod_bybusyness
Module mod_lbmethod_bybusyness does not provide directives for the IBM HTTP Server for i Web server.

Summary

The mod_lbmethod_bybusyness module provides Pending Request Counting load balancer scheduler
algorithm(bybusyness method) for mod_proxy_balancer

Example:

<Proxy balancer://mycluster>
 BalancerMember http://www.example1.com:8080 loadfactor=1
 BalancerMember http://www.example2.com:8080 loadfactor=2
 ProxySet lbmethod=bybusyness
</Proxy>

Note: The mod_lbmethod_byrequests module requires the following LoadModules in HTTP Server
configuration file:

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_balancer_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule lbmethod_bybusyness_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

IBM HTTP Server for i 621

Module mod_lbmethod_bytraffic
Module mod_lbmethod_bytraffic does not provide directives for the IBM HTTP Server for i Web server.

Summary

The mod_lbmethod_bytraffic module provides Weighted Traffic Counting load balancer scheduler
algorithm(bytraffic method) for mod_proxy_balancer

Example:

<Proxy balancer://mycluster>
 BalancerMember http://www.example1.com:8080 loadfactor=1
 BalancerMember http://www.example2.com:8080 loadfactor=2
 ProxySet lbmethod=bytraffic
</Proxy>

Note: The mod_lbmethod_bytraffic module requires the following LoadModules in HTTP Server
configuration file:

• LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule proxy_balancer_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
• LoadModule lbmethod_bytraffic_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Module mod_ratelimit
Module mod_ratelimit does not provide directives for the IBM HTTP Server for i Web server.

Summary

The module mod_ratelimit provides a filter named RATE_LIMIT to limit client bandwidth. The connection
speed to be simulated is specified, in KiB/s, using the environment variable rate-limit.

Example Configuration:

<Location "/downloads">
 SetOutputFilter RATE_LIMIT
 SetEnv rate-limit 400
</Location>

Module mod_unique_id
Module mod_unique_id does not provide directives for the IBM HTTP Server for i Web server.

Summary

The module mod_unique_id provides a magic token for each request which is guaranteed to be unique
across "all" requests under very specific conditions. The unique identifier is even unique across multiple
machines in a properly configured cluster of machines. The environment variable UNIQUE_ID is set to the
identifier for each request.

Module mod_xml2enc
Module mod_xml2enc supports directives for the IBM HTTP Server for i Web server.

Summary

The mod_xml2enc module provides enhanced internationalization support for markup-aware filter
modules such as mod_proxy_html. It can automatically detect the encoding of input data and ensure they
are correctly processed by the libxml2 parser, including converting to Unicode (UTF-8) where necessary.
It can also convert data to an encoding of choice after markup processing, and will ensure the correct
charset value is set in the HTTP Content-Type header.

622 IBM i: IBM HTTP Server for i

Filter modules enabled for mod_xml2enc such as mod_proxy_html use the xml2enc_charset optional
function to retrieve the charset argument to pass to the libxml2 parser, and may use the xml2enc_filter
optional function to post-process to another encoding. Using mod_xml2enc with an enabled
module mod_proxy_html, no configuration is necessary: the mod_proxy_html module will configure
mod_xml2enc for you (though you may still want to customize it using the configuration directives below).

mod_xml2enc is designed to work with data whose encoding cannot be known in advance and thus
configured. It therefore uses 'sniffing' techniques to detect the encoding of HTTP data as follows:

1. If the HTTP Content-Type header includes a charset parameter, that is used.
2. If the data start with an XML Byte Order Mark (BOM) or an XML encoding declaration, that is used.
3. If an encoding is declared in an HTML <META> element, that is used.
4. If none of the above match, the default value set by xml2EncDefault is used.

The rules are applied in order. As soon as a match is found, it is used and detection is stopped.

libxml2 always uses UTF-8 (Unicode) internally, and libxml2-based filter modules mod_proxy_html will
output that by default. If you are working with encoding that are not supported by any of the conversion
methods available on IBM i, you can still alias them to a supported encoding using xml2EncAlias.

Directive

• “xml2EncAlias” on page 623
• “xml2EncDefault” on page 623
• “xml2StartParse” on page 624

xml2EncAlias
Module: mod_xml2enc

Syntax: xml2EncAlias charset alias [alias ...]

Default: none

Context: server config

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule xml2enc_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: xml2EncAlias ISO-8859-1 Windows-1252

The server-wide xml2EncAlias directive aliases one or more encoding to another encoding. This enables
encodings not recognized by libxml2 to be handled internally by libxml2's encoding support using the
translation table for a recognized encoding. This serves two purposes: to support character sets (or
names) not recognized either by libxml2 or iconv, and to skip conversion for an encoding where it is
known to be unnecessary.

xml2EncDefault
Module: mod_xml2enc

Syntax: xml2EncDefault name

Default: none

Context: server config, Virtual Host, Directory, .htaccess

Override: none

Origin: Apache

IBM HTTP Server for i 623

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule xml2enc_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: xml2EncDefault iso-8859-1

The xml2EncDefault directive sets a default encoding to assume when absolutely no information can be
automatically detected. If you are processing data with known encoding but no encoding information,
you can set this default to help mod_xml2enc process the data correctly. For example, to work with the
default value of Latin1 (iso-8859-1 specified in HTTP/1.0, use xml2EncDefault iso-8859-1

xml2StartParse
Module: mod_xml2enc

Syntax: xml2StartParse element [element ...]

Default: none

Context: server config, Virtual Host, Directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the
directive. The statement should be as follows: LoadModule xml2enc_module /QSYS.LIB/QHTTPSVR.LIB/
QZSRCORE.SRVPGM

Example: xml2StartParse HTML

The xml2StartParse directive advises the parser to skip leading junk and start the parser at the first
legitimate element. It specifies that the markup parser should start at the first instance of any of the
elements specified. This can be used as a workaround where a broken backend inserts leading junk that
messes up the parser.

Note: It should never be used for XML, nor well-formed HTML.

Module mod_macro
Module mod_macro supports directives for the IBM HTTP Server for i Web server.

Summary

The mod_macro module provides macros within Apache HTTP Server runtime configuration files, to
ease the process of creating numerous similar configuration blocks. When the server starts up, the
macros are expanded using the provided parameters, and the result is processed as along with the rest
of the configuration file. Macros are defined using <Macro> blocks, which contain the portion of your
configuration that needs to be repeated, complete with variables for those parts that will need to be
substituted. For example, you might use a macro to define a <VirtualHost> block, in order to define
multiple similar virtual hosts:

<Macro VHost $name $domain>
<VirtualHost *:80>
 ServerName $domain
 ServerAlias www.$domain

 DocumentRoot /www/webserver/vhosts/$name
 ErrorLog /www/webserver/logs/$name.error_log
 CustomLog /www/webserver/logs/$name.access_log combined
</VirtualHost>
</Macro>

Macro names are case-insensitive, like HTTP Server configuration directives. However, variable names are
case sensitive. You would then invoke this macro several times to create virtual hosts:

624 IBM i: IBM HTTP Server for i

Use VHost example example.com
Use VHost myhost hostname.org
Use VHost apache apache.org

UndefMacro VHost

At server startup time, each of these Use invocations would be expanded into a full virtualhost, as
described by the Macro definition.

The UndefMacro directive is used so that later macros using the same variable names don't result in
conflicting definitions.

Parameter names should begin with a sign such as $, %, or @, so that they are clearly identifiable, and
also in order to help deal with interactions with other directives, such as the core Define directive. Failure
to do so will result in a warning. Nevertheless, you are encouraged to have a good knowledge of your
entire server configuration in order to avoid reusing the same variables in different scopes, which can
cause confusion.

Parameters prefixed with either $ or % are not escaped. Parameters prefixes with @ are escaped in
quotes.

Avoid using a parameter which contains another parameter as a prefix, (For example, $win and $winter)
as this may cause confusion at expression evaluation time. In the event of such confusion, the longest
possible parameter name is used.

If you want to use a value within another string, it is useful to surround the parameter in braces, to avoid
confusion:

<Macro DocRoot ${docroot}>
 DocumentRoot /www/${docroot}/htdocs
</Macro>

Examples:

Virtual Host Definition

A common usage of mod_macro is for the creation of dynamically-generated virtual hosts.

Define a VHost Macro for repetitive configurations

<Macro VHost $host $port $dir>
 Listen $port
 <VirtualHost *:$port>
 ServerName $host
 DocumentRoot "$dir"

 # Public document root
 <Directory "$dir">
 Require all granted
 </Directory>
 # limit access to intranet subdir.
 <Directory "$dir/intranet">
 Require ip 10.0.0.0/8
 </Directory>
 </VirtualHost>
</Macro>

Use of VHost with different arguments.

Use VHost www.apache.org 80 /www/webserver/vhosts/apache/htdocs

Use VHost example.org 8080 /www/webserver/vhosts/example/htdocs

Use VHost www.example.fr 1234 /www/webserver/vhosts/example.fr/htdocs

Removal of a macro definition

It's recommended that you undefine a macro once you've used it. This avoids confusion in a complex
configuration file where there may be conflicts in variable names.

IBM HTTP Server for i 625

<Macro DirGroup $dir $group>
 <Directory "$dir">
 Require group $group
 </Directory>
</Macro>

Use DirGroup /www/webserver/private private

Use DirGroup /www/webserver/server admin

UndefMacro DirGroup

Directives

• “<Macro>” on page 626
• “UndefMacro” on page 626
• “Use” on page 627

<Macro>
Module: mod_macro

Syntax: <Macro name [par1 .. parN]> ... </Macro>

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Examples: See below

The Macro directive controls the definition of a macro within the server runtime configuration files. The
first argument is the name of the macro. Other arguments are parameters to the macro. It is good practice
to prefix parameter names with any of '$%@', and not macro names with such characters.

For examples：
<Macro LocalAccessPolicy>
 Require ip 10.2.16.0/24
</Macro>

<Macro RestrictedAccessPolicy $ipnumbers>
 Require ip $ipnumbers
</Macro>

UndefMacro
Module: mod_macro

Syntax: UndefMacro name

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Examples: See below

The UndefMacro directive undefines a macro which has been defined before hand.

For examples：

626 IBM i: IBM HTTP Server for i

<Macro LocalAccessPolicy>
 Require ip 10.2.16.0/24
</Macro>

<Macro RestrictedAccessPolicy $ipnumbers>
 Require ip $ipnumbers
</Macro>

UndefMacro LocalAccessPolicy
UndefMacro RestrictedAccessPolicy

Use
Module: mod_macro

Syntax: Use name [value1 ... valueN]

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Examples: See below

The Use directive controls the use of a macro. The specified macro is expanded. It must be given the
same number of arguments as in the macro definition. The provided values are associated to their
corresponding initial parameters and are substituted before processing.

For examples：
<Macro LocalAccessPolicy>
 Require ip 10.2.16.0/24
</Macro>

<Macro RestrictedAccessPolicy $ipnumbers>
 Require ip $ipnumbers
</Macro>

Use LocalAccessPolicy
...
Use RestrictedAccessPolicy "192.54.172.0/24 192.54.148.0/24"
is equivalent, with the macros defined above, to:
Require ip 10.2.16.0/24
...
Require ip 192.54.172.0/24 192.54.148.0/24

Log file format tokens
This topic provides information about tokens used to define log file formats.

Table 48. Tokens that define log file formats

Token Description

%% The percent sign.

%a The remote client IP address. Example: 192.168.1.3

%{c}a Underlying peer IP address of the connection (see the mod_remoteip
module).

%A The local client IP address. Example: 192.168.1.3

%B Size of response in bytes, excluding HTTP headers.

%b Size of response in bytes, excluding HTTP headers. In CLF format, i.e. a '-'
rather than a 0 when no bytes are sent.

IBM HTTP Server for i 627

Table 48. Tokens that define log file formats (continued)

Token Description

%{VARNAME}C The contents of cookie VARNAME in the request sent to the server. Only
version 0 cookies are fully supported.

%D The time taken to serve the request, in microseconds.

%{VARNAME}e The contents of the environment variable named VARNAME.

%f The requested file name. Example: /www/index.htm

%h The remote host name or IP address if HostnameLookups is set to Off.
Example: hal.ibm.com or 192.168.1.3

%H The requested protocol.

%{VARNAME}i The contents of the HTTP header line named VARNAME. Example: %
{User-agent}i = Mozilla/4.5 [en] (WinNT; U)

%k Number of keepalive requests handled on this connection. Interesting
if KeepAlive is being used, so that, for example, a '1' means the first
keepalive request after the initial one, '2' the second, etc...; otherwise this
is always 0 (indicating the initial request).

%l The remote logname.

%L The request log ID from the error log (or '-' if nothing has been logged to
the error log for this request). Look for the matching error log line to see
what request caused what error.

%m The request method.

%{VARNAME}n The contents of the note named VARNAME from another module.

%{VARNAME}o The contents of the header lines named VARNAME in the reply.

%p The canonical Port of the server serving the request. Example: 80

%{format}p The canonical port of the server serving the request, or the server's actual
port, or the client's actual port. Valid formats are canonical, local, or
remote.

%P The process ID that serviced the request. Example: 837

%{format}P The process ID or thread ID of the child that serviced the request. Valid
formats are pid, tid, and hextid.

%q The query string (or search argument) prepended with a "?". Example: ?
name=hal

%r The first line of the request. Example: GET / HTTP/1.0

%R The handler generating the response (if any).

%s The server response status. For requests that have been internally
redirected, this is the status of the original request. Use %>s for the final
status. Example: 200

%t The time the request was received in common log format. Example:
[21/Mar/2000:14:08:03 -0600] . The last number indicates the
timezone offset from GMT

628 IBM i: IBM HTTP Server for i

Table 48. Tokens that define log file formats (continued)

Token Description

%{format}t The time, in the form given by format, which should be in an extended
strftime(3) format (potentially localized). If the format starts with begin:
(default) the time is taken at the beginning of the request processing. If
it starts with end: it is the time when the log entry gets written, close to
the end of the request processing. In addition to the formats supported by
strftime(3), the following format tokens are supported:

• sec.….….….number of seconds since the Epoch
• msec.….…...number of milliseconds since the Epoch
• usec.….……number of microseconds since the Epoch
• msec_frac…millisecond fraction
• usec_frac….microsecond fraction

These tokens can not be combined with each other or strftime(3)
formatting in the same format string. You can use multiple %{format}t
tokens instead.

%T The time (in seconds) taken to serve the request. Example: 1

%{UNIT}T The time taken to serve the request, in a time unit given by UNIT. Valid
units are ms for milliseconds, us for microseconds, and s for seconds.
Using s gives the same result as %T without any format; using us gives the
same result as %D.

%u The name of the authenticated remote user. Example: hal

%U The requested URL path. Example: /

%v The canonical server name of the server serving the request.

%V The server name according to the UseCanonicalName setting.

%X Connection status when response is completed:

X= Connection aborted before the response completed.

+= Connection may be kept alive after the response is sent.

-= Connection will be closed after the response is sent.

%I Bytes received, including request and headers. Cannot be zero. You need
to enable mod_logio to use this.

%O Bytes sent, including headers. May be zero in rare cases such as when
a request is aborted before a response is sent. You need to enable
mod_logio to use this.

%S Bytes transferred (received and sent), including request and headers,
cannot be zero. This is the combination of %I and %O. You need to enable
mod_logio to use this.

%{VARNAME}^ti The contents of VARNAME: trailer line(s) in the request sent to the server.

%{VARNAME}^to The contents of VARNAME: trailer line(s) in the response sent from the
server.

Note:

IBM HTTP Server for i 629

• The "..." can be replaced with a condition for inclusion or it can be omitted. The character < determines
if the original value is logged. The greater than character (>) determines if the redirected value is logged.
The condition may be preceded by a ! to reverse the condition. For example:

Condition Description

%>s Logs the returned status.

%{User-agent}i Logs User-agent on all requests.

%400,501{User-agent}i Logs User-agent only when a 400 error (Bad Request) or a 501 error (Not
Implemented) is encountered.

%!200,304,302{Referer}i Logs Referer on all requests which did not return some sort of normal
status.

Log file format tokens for“ErrorLogFormat” on page 320.

Table 49. Format strings that define error log file format.

Token Description

%% The percent sign.

%a Client IP address and port of the request.

%{c}a Underlying peer IP address and port of the connection (see the
mod_remoteip module).

%A Local IP-address and port.

%{name}e Request environment variable name.

%E APR/OS error status code and string.

%F Source file name and line number of the log call.

%{name}i Request header name

%k Number of keep-alive requests on this connection.

%l Loglevel of the message.

%L Log ID of the request.

%{c}L Log ID of the connection.

%{C}L Log ID of the connection if used in connection scope, empty otherwise.

%m Name of the module logging the message.

%M The actual log message.

%{name}n Request note name

%P Process ID of current process.

%T Thread ID of current thread.

%{g}T System unique thread ID of current thread (the same ID as displayed by
e.g. top; currently Linux® only).

%t The current time.

%{u}t The current time including micro-seconds.

%{cu}t The current time in compact ISO 8601 format, including micro-seconds.

%v The canonical “ServerName ” on page 355 of the current server.

630 IBM i: IBM HTTP Server for i

Table 49. Format strings that define error log file format. (continued)

Token Description

%V The server name of the server serving the request according to the
“UseCanonicalName” on page 362 setting.

\ (backslash space) Non-field delimiting space.

% (percent space) Field delimiter (no output).

Modifiers

Modified Token Meaning

%-{Referer}i Logs a - if Referer is not set.

%+{Referer}i Omits the entire line if Referer is not set.

%4{Referer}i Logs the Referer only if the log message severity is higher than 4.

Related information
“Log formats for HTTP Server” on page 29
This topic provides information about log formats and log files.
“Setting up logs on HTTP Server” on page 110
Set up logs to record events and other information for your IBM HTTP Server for i instance using the IBM
Web Administration for i interface.

Regular expression notation for HTTP Server
This topic provides a general overview of regular expression notation for the IBM HTTP Server for i Web
server.

A regular expression notation specifies a pattern of character strings. One or more regular expressions
can be used to create a matching pattern. Certain characters (sometimes called wildcards) have special
meanings. The following table describes the commonly used pattern matching scheme.

Regular expression pattern matching

Pattern Description

string string with no special characters matches the values that contain the string.

[set] Match a single character specified by the set of single characters within the
square brackets.

[a-z] Match a character in the range specified within the square brackets.

[^abc] Match any single character not specified in the set of single characters within the
square brackets.

{n} Match exactly n times.

{n,} Match at least n times.

{n,m} Match at least n times, but no more than m times.

^ Match the start of the string.

$ Match the end of the string.

. Match any character (except Newline).

* Match zero or more of preceding character.

+ Match one or more of preceding character.

IBM HTTP Server for i 631

Pattern Description

? Match one or zero of preceding character.

string1|string2 Match string1 or string2.

\ Signifies an escape character. When preceding any of the characters that have
special meaning, the escape character removes any special meaning from the
character. For example, the backslash is useful to remove special meaning from a
period in an IP address.

(group) Group a character in a regular expression. If a match is found the first group can
be accessed using $1. The second group can be accessed using $2 and so on.

(?<name>regex) Named capturing group. Captures the text matched by "regex" into the group
"name". The name can contain letters and numbers but must start with a letter.

\1 through \9 Backreference. Substituted with the text matched between the 1st through 9th
numbered capturing group.

\10 through \99 Backreference. Substituted with the text matched between the 10th through 99th
numbered capturing group.

\w Match an alphanumeric character.

\W Match a character that is not an alphanumeric character.

\s Match a white-space character.

\S Match a character that is not a white space character

\t Tab character.

\n Newline character.

\r Return character.

\f Form feed character.

\v Vertical tab character.

\a Bell character.

\b word boundary

\B not a word boundary

\0dd Octal character, for example \076 matches character ">".

Note: d must between 0 and 7

\ddd Octal character, for example \101 matches character "A".

Note: d must between 0 and 7

\o{ddd..} Octal character, for example \o{123} matches character "S"

Note: d must between 0 and 7

\xnn Hex character, for example \x41 matches character "A".

\cx Control character, for example \cJ matches newline character "\n".

Note: x is any ASCII printing character

\d Match a decimal digit

\D Match a character that is not a decimal digit

632 IBM i: IBM HTTP Server for i

Pattern Description

\Q...\E Escape sequence. Characters between \Q and \E are treated as literals

Examples of regular expression pattern matching

Pattern Examples of strings that match

ibm ibm01, myibm, aibmbc

^ibm$ ibm

^ibm0[0-4]
[0-9]$

ibm000 through ibm049

ibm[3-8] ibm3, myibm4, aibm5b

^ibm ibm01, ibm

ibm$ myibm, ibm, 3ibm

ibm... ibm123, myibmabc, aibm09bcd

ibm*1 ibm1, myibm1, aibm1abc, ibmkkkkk12

^ibm0.. ibm001, ibm099, ibm0abcd

^ibm0..$ ibm001, ibm099

10.2.1.9 10.2.1.9, 10.2.139.6, 10.231.98.6

^10\.2\.1\.9$ 10.2.1.9

^10\.2\.1\.1[0-
5]$

10.2.1.10, 10.2.1.11, 10.2.1.12, 10.2.1.13, 10.2.1.14,
10.2.1.15

^192.\.168\..*\
..*$

(All addresses on class B subnet 192.168.0.0)

^192.\.168\.10\
..*$

(All addresses on class C subnet 192.168.10.0)

CL commands for HTTP Server
Manage an IBM HTTP Server for i instance using command line (CL) commands for a 5250 session.

The following table summarizes the CL commands associated with the HTTP Server.

Command Description

CFGTCPHTTP Configure TCP/IP HTTP - display a list of HTTP Server related commands.

ENDCHTSVR End Clustered Hash Table Server - end a clustered hash table (CHT) server job
on one or more nodes of a cluster.

ENDTCP End TCP/IP - stop TCP/IP.

ENDTCPSVR End TCP/IP Server - stop an HTTP Server.

STRCHTSVR Start Clustered Hash Table Server - start a job for a clustered hash table (CHT)
server instance on each of the specified node systems.

STRTCP Start TCP/IP - autostart an HTTP Server.

STRTCPSVR Start TCP/IP Server - start an HTTP server.

TRCTCPAPP Trace TCP/IP Application - capture trace information for the HTTP Server.

IBM HTTP Server for i 633

The following table summarizes the CL commands associated with the highly available Web server cluster
function. See “Highly available HTTP Server” on page 43 for more information.

Command Description

ADDCLUNODE Add Cluster Node Entry - add a node to the membership list of an existing cluster.

CHGCLUNOD
E

Change Cluster Node Entry - change cluster membership information for a cluster node
entry.

CHGCRGPRI Change Cluster Resource Group Primary - performs an administrative switchover of the
cluster resource group by changing the current roles of nodes in the recovery domain.

CRTCLU Create Cluster - create a new cluster of one or more nodes.

DSPCLUINF Display Cluster Information - display or print information about a cluster.

ENDCLUNOD End Cluster Node - end Cluster Resource Services on one or all the nodes in the
membership list of an existing cluster.

RMVCLUNOD
E

Remove Cluster Node Entry - remove a node from a cluster.

STRCLUNOD Start Cluster Node - start Cluster Resource Services on a node in the cluster.

Environment variables set by HTTP Server
The IBM HTTP Server for i supports the standard environment variables in addition to environment
variables that are unique to the IBM i server.

When using application programming interfaces to retrieve the value of an environment variable, you
need to handle the case in which there is no value for the environment variable. For example, when a
CGI program is trying to do a getenv(″CONTENT_LENGTH″) and the request method is GET, the value
returned is NULL. The reason NULL is returned for the value is because CONTENT_LENGTH is only defined
for POST request methods (to describe the length of standard input).

The following table lists the environment variables supported by HTTP Server. The environment variables
have been divided into two groups: Non-SSL and SSL.

Notes:

1. All headers sent by a client (such as Set-Cookie) are prefixed by "HTTP_". To access the value of a
header, prefix the header name with "HTTP_".

2. In the following table, long variable names are shortened by the insertion of a blank character within
the name. This is done for display purposes only.

Table 50. Environment variables that may be set by the HTTP Server

Variable Name Type Description

AUTH_TYPE Non-
SSL

If the server supports client authentication and the script is a protected script,
this environment variable contains the method that is used to authenticate the
client.

Example: Cert_Or_Basic

CGI_ASCII_CCSID Non-
SSL

Contains the ASCII CCSID the server used when converting CGI input data. If the
server did not perform any conversion, (for Example, in %%BINARY%% mode),
the server sets this value to the DefaultNetCCSID configuration directive value.

Example: 819

CGI_EBCDIC_CCSID Non-
SSL

Contains the EBCDIC CCSID under which the current CGI job is running
(DefaultFsCCSID or CGIJobCCSID configuration directive). It also represents the
job CCSID that is used during server conversion (if any) of CGI input data.

Example: 37

634 IBM i: IBM HTTP Server for i

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

CGI_JOB_LOCALE Non-
SSL

Allows a locale to be set globally or for a specific CGI job. After the locale is
set, region specific information such as date or time format can be accessed.
Some ILE C/C++ run-time functions such as ctime() and localtime() are locale
sensitive.

Example: CGIJobLocale /QSYS.LIB/LOCALELIB.LIB/EN_US.LOCALE

CGI_MODE Non-
SSL

Contains the CGI conversion mode the server is using for this request. The
program can use this information to determine what conversion, if any, was
performed by the server on CGI input data and what format that data is currently
in.

Example: EBCDIC

CGI_OUTPUT_MODE Non-
SSL

Determines which output conversion mode the server is using.

Example: EBCDIC

CONTENT_LENGTH Non-
SSL

When the method of POST is used to send information, this variable contains
the number of characters. Servers typically do not send an end-of-file flag
when they forward the information by using stdin. If needed, you can use the
CONTENT_LENGTH value to determine the end of the input string.

Example: 7034

CONTENT_TYPE Non-
SSL

When information is sent with the method of POST, this variable contains the
type of data included. You can create your own content type in the server
configuration file and map it to a viewer.

Example: Application/x-www-form-urlencoded

DATE_GMT Non-
SSL

The current date and time in Greenwich Mean Time.

Example: 2000/12/31:03:15:20

DATE_LOCAL Non-
SSL

The current date and time in the local time zone.

Example: 2000/08/14:15:40:10

DOCUMENT_NAME Non-
SSL

The file name of the document requested by the user.

Example: /www/myserver/htdocs/html/hello.html

DOCUMENT_PATH_INFO Non-
SSL

Contains the additional path information as sent by the Web browser for SSI.

Example: /wizard

DOCUMENT_ROOT Non-
SSL

Sets the directory from which the HTTP Server will serve files. The server
appends the path from the requested URL to the document root and makes
the path to the document.

Example: /www/myserver/htdocs

DOCUMENT_URI Non-
SSL

The URI of the document requested by the user.

Example: /html/hello.html

Note: The DOCUMENT_URI and DOCUMENT_URL environment variables are
identical

DOCUMENT_URL Non-
SSL

The URL of the document requested by the user.

Example: /html/hello.html

Note: The DOCUMENT_URI and DOCUMENT_URL environment variables are
identical.

FSCP Non-
SSL

The EBCDIC CCSID used to translate the data.

Example: 37

GATEWAY_INTERFACE Non-
SSL

Contains the version of CGI that the server is using.

Example: CGI/1.1

IBM HTTP Server for i 635

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

HTTP_ACCEPT Non-
SSL

Contains the list of MIME types the browser accepts.

Example: image/gif,image/x-xbitmap,image/jpeg,image/pjeg,image/pgn,*/*

Note: The header lines received from the client, if any, are placed into the
environment variable with the prefix HTTP_* followed by the header name. The
header returns the environment variable.

HTTP_ACCEPT_CHARSET Non-
SSL

Contains the list of character sets the browser accepts.

Example: iso-8859-1,*,utf-8

Note: The header lines received from the client, if any, are placed into the
environment variable with the prefix HTTP_* followed by the header name. The
header returns the environment variable.

HTTP_ACCEPT_ENCODING Non-
SSL

Contains the list of encoding protocols the browser accepts.

Example: gzip

Note: The header lines received from the client, if any, are placed into the
environment variable with the prefix HTTP_* followed by the header name. The
header returns the environment variable.

HTTP_ACCEPT_ LANGUAGE Non-
SSL

Contains the list of languages the browser accepts.

Example: de,fr,en

Note: The header lines received from the client, if any, are placed into the
environment variable with the prefix HTTP_* followed by the header name. The
header will return the environment variable.

HTTP_CONNECTION Non-
SSL

The header lines received from the client, if any, are placed into the environment
variable with the prefix HTTP_* followed by the header name. The header returns
to the environment variable.

Example: Keep-Alive

HTTP_COOKIE Non-
SSL

User-defined cookie for the response.

Example: w3ibmTest=true

HTTP_HOST Non-
SSL

Contains the HTTP host URL.

Example: IBM.COM

Note: The header lines received from the client, if any, are placed into the
environment variable with the prefix HTTP_* followed by the header name. The
header returns the environment variable.

HTTP_USER_AGENT Non-
SSL

Contains the name of your browser (web client). It includes the name and
version of the browser, requests that are made through a proxy, and other
information.

Example: Mozilla/4.72 [en](WinNT;U)

Note: The header lines received from the client, if any, are placed into the
environment variable with the prefix HTTP_* followed by the header name. The
header returns the environment variable.

IBM_CCSID_VALUE Non-
SSL

The CCSID under which the current server job is running.

Example: 37

NETCP Non-
SSL

The default ASCII CCSID used to translate the data.

Example: 819

PATH_INFO Non-
SSL

Contains the additional path information as sent by the web browser.

Example: /wizard

PATH_TRANSLATED Non-
SSL

Contains the decoded or translated version of the path information that is
contained in PATH_INFO, which takes the path and does any virtual-to-physical
mapping to it.

Example: /wwwhome/wizard

636 IBM i: IBM HTTP Server for i

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

QIBM_CGI_LIBRARY_LIST Non-
SSL

This variable is used to set the CGI jobs' library list. The variable can be set using
the SetEnv directive. See the SetEnv directive for more information.

QUERY_STRING Non-
SSL

When information is sent using a method of GET, this variable contains the
information in a query that follows the "?". The string is coded in the standard
URL format of changing spaces to "+" and encoding special characters with
"%xx" hexadecimal encoding. The CGI program must decode this information.

Example: NAME=Eugene+T%2E+Fox=etfox%7Cibm.net=xyz

Note: The supported maximum size of QUERY_STRING is 8K for HTTP Server.

QZHBHA_MODEL Non-
SSL

Model of the highly available Web server.

Example: PRIMARYBACKUP

QZHBIS_FIRST_REQUEST Non-
SSL

This environment variable indicates to a CGI program if this is a subsequent
request of some session. The Web server sets this variable to 1 if this is not a
subsequent request of any session (this is potentially the first request of a new
session). The Web server sets this variable to 0 if this is a subsequent request of
some session.

Example: 0

QZHBIS_CLUSTER_ENABLED Non-
SSL

This environment variable indicates to the CGI program that the CGI program
is allowed to be cluster-enabled if the request does not belong to any
existing session (QZHBIS_FIRST_REQUEST is set to 1). This environment
variable indicates to the CGI program that the CGI program is cluster-enabled
(QZHBIS_FIRST_REQUEST set to "0"). When the Web server receives a first
request to a CGI, it decides if the CGI program is allowed to be cluster-enabled.
If the CGI program is allowed to be cluster-enabled, the Web server sets
the QZHBIS_CLUSTER_ENABLED environment variable to 1; otherwise the Web
server does not define the QZHBIS_CLUSTER_ENABLED environment variable.
When the Web server receives a subsequent request to a CGI, it looks to see if
the session is cluster-enabled. If the session is cluster-enabled, the Web server
sets the QZHBIS_CLUSTER_ENABLED environment variable to 1; otherwise
the Web server does not define the QZHBIS_CLUSTER_ENABLED environment
variable.

Example: 1

QZHBNEXT_SESSION_HANDLE Non-
SSL

This environment variable contains a new session handle for a CGI
program to use. If the CGI program is cluster-disabled, it may ignore this
session handle. The Web server generates a session handle and sets the
QZHBNEXT_SESSION_HANDLE environment variable to this value. If the CGI
program decides to be cluster-enabled, it must use the passed session handle in
the URLs of subsequent requests; otherwise, the Web server will not associate
subsequent requests with this session.

Example: 8B739003AB741824899F0004AC009021

QZHBRECOVERY Non-
SSL

Contains whether the highly available Web server has gone through a recovery
(primary to backup or backup to primary). If this environment variable is present,
recovery has occurred. If it is not present, then recovery has not occurred

REDIRECT_QUERY_STRING Non-
SSL

Contains QUERY_STRING from a re-directed request.

Example: NAME=Eugene+T%2E+Fox=etfox%7Cibm.net=xyz

REDIRECT_QUERY_URL Non-
SSL

This environment variable is used in the primary/backup models only. This
environment variable is used to indicate to a cluster-enabled CGI program
that it should perform a recovery operation (for example, restore its state).
The Web server passes a session handle to the CGI program through the
QZHBRECOVERY environment variable. The Web server passes the CGI's state to
the CGI program. If there is no recovery, this environment variable is undefined.
In the primary/backup model, the high availability CGI is also treated as a
persistent CGI. The high availability CGI state information can also be retained in
the CGI job. The next request for the next step in the CGI is automatically run in
the same job. Therefore, the CGI program can skip reading its state unless this
environment variable is defined.

Example: 4D868803AB731824899F0004AC009021

IBM HTTP Server for i 637

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

REFERER Non-
SSL

Contains the referrer.

Example: http://www.myserver.com/cgi-bin/

HTTP_REFERER Non-
SSL

Contains the referrer.

Example: http://www.myserver.com/cgi-bin/

REFERER_URL Non-
SSL

Contains the referrer URL.

Example: http://WWW.MYSERVER.COM:8080/perlSetEnv/

REMOTE_ADDR Non-
SSL

Contains the IP address of the remote host (web browser) that is making the
request, if available.

Example: 10.10.2.3

REMOTE_PORT Non-
SSL

Contains the remote user port number.

Example: 3630

REMOTE_IDENT Non-
SSL

Contains the user ID of the remote user.

Example: MyIdentityx

REMOTE_USER Non-
SSL

If you have a protected script and the server supports client authentication, this
environment variable contains the user name that is passed for authentication.

Example: SMITH

REQUEST_METHOD Non-
SSL

Contains the method (as specified with the METHOD attribute in an HTML form)
that is used to send the request.

Example: GET

REQUEST_URI Non-
SSL

Specifies URI to be requested.

Example: /cgi-bin/hello.pgm

RULE_FILE Non-
SSL

Specifies rule file to be used.

Example: /www/myserver/conf/httpd.conf

SCRIPT_FILENAME Non-
SSL

The file name of the document requested by the user.

Example: /QSYS.LIB/CGI.LIB/HELLO.PGM

SCRIPT_NAME Non-
SSL

A virtual path to the program being run. Use this for self-referring URLs.

Example: /cgi-bin/hello.pgm

SERVER_ADDR Non-
SSL

Contains the address of the server.

Example: 10.10.2.3

SERVER_ADMIN Non-
SSL

Contains information about the server administrator.

Example: [no address given]

SERVER_NAME Non-
SSL

Contains the server host name or IP address of the server.

Example: 10.9.8.7

SERVER_PORT Non-
SSL

Contains the port number to which the client request was sent.

Example: 2001

SERVER_PROTOCOL Non-
SSL

Contains the name and version of the information protocol that is used to make
the request.

Example: HTTP/1.0

SERVER_SIGNATURE Non-
SSL

Allows configuration of a trailing footer line under server generated documents
like error messages, mod_proxy ftp directory listings, and mod_info output.
Enabling the footer line allows the user to tell which chained servers in a proxy
chain produced a returned error message.

Example: On

638 IBM i: IBM HTTP Server for i

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

SERVER_SOFTWARE Non-
SSL

Contains the name and version of the information server software that is
answering the request.

Example: IBM-HTTP-SERVER/1.0

SSI_DIR Non-
SSL

The path of the current file relative to SSI_ROOT. If the current file is in
SSI_ROOT, this value is "/".

Example: ssi_child_dir/

SSI_FILE Non-
SSL

The file name of the current file.

Example: ssi_parent.shtml

SSI_INCLUDE Non-
SSL

The value that is used in the include command that retrieved this file. This is not
defined for the topmost file.

Example: ssi_child_dir/ssi_child.shtml

SSI_PARENT Non-
SSL

The path and file name of the include, relative to SSI_ROOT.

Example: ssi_parent.shtml

SSI_ROOT Non-
SSL

The path of the topmost file. All include requests must be in this directory or a
child of this directory.

Example: #echo var=SSI_DIR ->

Note: You can use echo to display a value set by the set or global directives.

UNIQUE_ID Non-
SSL

Provides a unique magic token and acts as the identifier across all requests
under very specific conditions.

Example: aK8YOAkFBZkAABsuEC4AAACB

HTTPS SSL Returns ON if the system has completed an SSL handshake. It returns OFF if the
exchange of signals to set up communications between two modems has failed.

Example: OFF

HTTPS_CIPHER SSL This is the cipher that is used to negotiate with the client on the SSL handshake.

Example: SSL_RSA_WITH_RC4_128_MD5

HTTPS_CLIENT_CERT SSL The entire certificate passed to the server from the client browser when SSL
client authentication is enabled. The format of the certificate is a BASE64
encoded string that represents the DER format of the X.509 certificate. As an
environment variable the BASE64 encoded string has been converted to EBCDIC
and must be converted back to ASCII before it can be used for typical digital
certificate API's.

Example: MIIC0DCCAbigAwIBAgIHOL2Yx...

HTTPS_CLIENT_
CERT_COMMON_NAME

SSL The common name from the client certificate's distinguished name.

Example: SMITH

HTTPS_CLIENT_CERT_COUNTRY SSL The region code from the client certificate's distinguished name.

Example: US

HTTPS_CLIENT_CERT_DN SSL The client certificate's distinguished name.

Example: :cn=CAPTAIN,ou=downtown,o=fire fighters,l=Minot,st=North
Dakota,c=US

HTTPS_CLIENT_CERT_EMAIL SSL The email of the client owning the certificate.

Example: me@mycompany.com

HTTPS_CLIENT_CERT_ISSUER_
COMMON_NAME

SSL The common came of the certificate authority that issued the client's certificate.

Example: SMITH

HTTPS_CLIENT_CERT_ISSUER_
COUNTRY

SSL The region code of the certificate authority that issued the client's certificate.

Example: US

IBM HTTP Server for i 639

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

HTTPS_CLIENT_CERT_ISSUER_DN SSL The distinguished name of the certificate authority that issued the client's
certificate.

Example: :cn=testsystem.ibm.com CA,ou=Test Organization Unit,o=System test,
l=Rochester,st=Minnesota,c=US

HTTPS_CLIENT_CERT_ISSUER_
EMAIL

SSL The e-mail address of the certificate authority that issued the client's certificate.

Example: me@mydomain.net

HTTPS_CLIENT_CERT_ISSUER_
LOCALITY

SSL The locality or city of the certificate authority that issued the client's certificate.

Example: New York

HTTPS_CLIENT_CERT_ISSUER_
ORG_UNIT

SSL The organizational unit of the certificate authority that issued the client's
certificate.

Example: bird watchers

HTTPS_CLIENT_CERT_ISSUER_
ORGANIZATION

SSL The organization name of the certificate authority that issued the client's
certificate.

Example: dove

HTTPS_CLIENT_CERT_ISSUER_
POSTAL_CODE

SSL The postal code of the certificate authority that issued the client's certificate.

Example: 12344-6789

HTTPS_CLIENT_CERT_ISSUER_
STATE_OR_PROVINCE

SSL The state or province of the certificate authority that issued the client's
certificate.

Example: North Dakota

HTTPS_CLIENT_CERT_LEN SSL The length of the certificate passed in HTTPS_CLIENT_CERT.

Example: 968

HTTPS_CLIENT_CERT_LOCALITY SSL The locality or city of the client certificate's distinguished name.

Example: New York

HTTPS_CLIENT_CERT_ORG_UNIT SSL The organization unit name from the client certificate's distinguished name.

Example: Pack234

HTTPS_CLIENT_CERT_
ORGANIZATION

SSL The organization name from the client certificate's distinguished name.

Example: Scouts

HTTPS_CLIENT_CERT_
POSTAL_CODE

SSL The postal code assigned by the issueing certificate authority.

Example: 80525

HTTPS_CLIENT_CERT_ SERIAL_NUM SSL The serial number assigned by the issuing certificate authority.

Example: 3F:E4:83:81:02:D5:58

HTTPS_CLIENT_CERT_
STATE_OR_PROVINCE

SSL The state or province from the client certificate's distinguished name.

Example: Alberta

HTTPS_CLIENT_ISSUER_EMAIL SSL Contains the email address of the Certificate Authority that issued the certificate.

Example: jones@mydomain.net

HTTPS_KEYSIZE SSL If a valid security product is installed and the SSLMode directive is
SSLMode=ON, this will be set to the size of the bulk encryption key used in
the SSL session.

Example: [128]

HTTPS_SESSION_ID SSL Set to NULL by default when used with HTTP Server.

HTTPS_SESSION_ID_NEW SSL If the value is TRUE, it indicates that a full handshake was performed for this SSL
session. If the value is FALSE, it indicates that an abbreviated handshake was
performed for this SSL session.

Example: True

640 IBM i: IBM HTTP Server for i

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

SSL_CIPHER SSL This is the cipher that is used to negotiate with the client on the SSL handshake.

Example: SSL_RSA_WITH_RC4_128_MD5

SSL_CLIENT_C SSL The region code from the client certificate's distinguished name.

Example: USA

SSL_CLIENT_CERTBODY SSL The entire certificate passed to the server from the client browser when SSL
Client authentication is enabled. The format of the certificate is a BASE64
encoded string that represents the DER format of the X.509 certificate. As an
environment variable the BASE64 encoded string has been converted to EBCDIC
and must be converted back to ASCII before it can be used for typical digital
certificate API's.

Example: MIIC0DCC big IB gIHOL2Yx...

SSL_CLIENT_CERTBODYLEN SSL The length of the certificate passed in SSL_CLIENT_CERT.

Example: 828

SSL_CLIENT_CERT_EMAIL SSL The email of the client owning the certificate.

Example: me@mycompany.com

SSL_CLIENT_CN SSL The common name from the client certificate's distinguished name.

Example: SMITH

SSL_CLIENT_DN SSL The client's distinguished name.

Example: :cn=CAPTAIN,ou=downtown,o=fire fighters,l=Minot,st=North
Dakota,c=US HTTPS_CLIENT_CERT_DN :cn=CAPTAIN,ou=downtown,o=fire
fighters,l=Minot,st=North Dakota,c=US

SSL_CLIENT_ICN SSL The common name of the certificate authority that issued the client's certificate.

Example: SMITH

SSL_CLIENT_IC SSL The region code of the certificate authority that issued the client's certificate.

Example: CA

SSL_CLIENT_IDN SSL The distinguished name of the certificate authority that issued the client's
certificate.

Example: :cn=testsystem.ibm.com CA,ou=Test Organization Unit,o=System test,
l=Rochester,st=Minnesota,c=US

SSL_CLIENT_EMAIL SSL The e-mail of the certificate authority that issued the client's certificate.

Example: me@mycompany.com

SSL_CLIENT_IL SSL The locality of the certificate authority that issued the client's certificate.

Example: New York

SSL_CLIENT_IO SSL The organization name of the certificate authority that issued the client's
certificate.

Example: bird watchers

SSL_CLIENT_IOU SSL The organizational unit of the certificate authority that issued the client's
certificate.

Example: bird watchers

SSL_CLIENT_IPC SSL The postal code of the certificate authority that issued the client's certificate.

Example: 55901

SSL_CLIENT_IST SSL The state or province of the certificate authority that issued the client's
certificate.

Example: MNA

IBM HTTP Server for i 641

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

SSL_CLIENT_L SSL The locality or city of the client certificate's distinguished name.

Example: New York

SSL_CLIENT_NEWSESSIONID SSL If the value is TRUE, it indicates that a full handshake was performed for this SSL
session. If the value is FALSE, it indicates that an abbreviated handshake was
performed for this SSL session.

Example: True

SSL_CLIENT_O SSL The organization name from the client certificate's distinguished name.

Example: bird watchers

SSL_CLIENT_OU SSL The organizational unit name from the client certificate's distinguished name.

Example: bird watchers

SSL_CLIENT_PC SSL The postal code from the client certificate's distinguished name.

Example: 58401

SSL_CLIENT_SERIALNUM SSL The serial number assigned by the issuing certificate authority.

Example: 3F:E4:83:81:02:D5:58

SSL_CLIENT_SESSIONID SSL If the value is TRUE, it indicates that a full handshake was performed for this SSL
session. If the value is FALSE, it indicates that an abbreviated handshake was
performed for this SSL session.

Example: True

SSL_CLIENT_ST SSL The state or province from the client certificate's distinguished name.

Example: North Dakota

SSL_PROTOCOL_VERSION SSL The SSL protocol version negotiated on the SSL handshake with the client.

Example: SSLV3

SSL_SERVER_C SSL The region where the server is located in.

Example: Denmark

SSL_SERVER_CN SSL The common name from the server certificate's distinguished name.

Example: WWW.MYDOMAIN.COM

SSL_SERVER_DN SSL The server's distinguished name.

Example: :cn=TESTSYSTEM.IBM.COM,ou=MyTestOrganizationUnit, o=Software
test, l=Rochester,st=Minnesota,c=US

SSL_SERVER_EMAIL SSL The e-mail address of the server certificate.

Example: me@mydomain.net

SSL_SERVER_L SSL The locality of the server certificate's distinguished name.

Example: New York

SSL_SERVER_OU SSL The organization unit name from the server certificate's distinguished name.

Example: bird watchers

SSL_SERVER_O SSL The organization name from the server certificate's distinguished name.

Example: bird watchers

SSL_SERVER_ST SSL The state or province from the server certificate's distinguished name.

Example: North Dakota

SSL_UNKNOWNREVOCATION_SUBJ
ECT

SSL The SSL_UNKNOWNREVOCATION_SUBJECT variable is set whenever a message
is logged for SSLUnknownRevocationStatus directive.

642 IBM i: IBM HTTP Server for i

Table 50. Environment variables that may be set by the HTTP Server (continued)

Variable Name Type Description

HTTP_AS_AUTH_PROFILETKN SSL,
Non-
SSL

A 32-bit value used to identify or authenticate the user. See the ProfileToken
directive for more information.

Related information
“The CGI Process” on page 179
The basic principle of Common Gateway Interface (CGI) is that a Web server passes client request
information to CGI programs in system environment variables (and in some cases through standard input
or command line arguments) and all standard output of CGI programs is returned to Web clients.
“CGI APIs” on page 133
This topic provides information about IBM HTTP Server for i APIs for CGI applications.

Server-side include commands for HTTP Server
This topic provides information about server-side include (SSI) commands for the IBM HTTP Server for i
Web server.

HTTP Server SSI commands have the following format:

<--#command parameter="value" -->

Note: The value should be enclosed in double quotes and there is a whitespace before the comment
terminator (-->). The leading <!--# is one token and should not contain any whitespaces.

The following describes the SSI commands for HTTP Server.

config
This command configures output formats and controls various aspects of the parsing. The valid attributes
are:

echomsg
The value is a message that is sent back to the client if the echo element attempts to echo an
undefined variable. This overrides any “SSIUndefinedEcho” on page 481 directives.

For example:

<!--#config echomsg="[Value Undefined]" -->

errmsg
The value is a message that is sent back to the client if an error occurs while parsing the document.
This overrides any “SSIErrorMsg” on page 479 directives.

For example:

<!--#config errmsg="[Oops, something broke.]" -->

sizefmt
The value sets the format to be used when displaying the size of a file. Valid values are bytes for a
count in bytes, or abbrev for a count in Kb or Mb as appropriate, for example a size of 1024 bytes will
be printed as "1K"

For example:

<!--#config sizefmt="abbrev" -->

timefmt
The value is a string to be used by the strftime(3) library routine when printing dates.

IBM HTTP Server for i 643

For example:

<!--#config timefmt=""%R, %B %d, %Y"" -->

echo
This command prints one of the SSI variables defined below or environment variables. If the variable is
unset, the result is determined by the “SSIUndefinedEcho” on page 481 directive. Dates are printed using
config timefmt. The attributes are:

var
Specifies a SSI variable name or standard CGI environment variable name.
See the Environment variables on HTTP Server topic for a list of environment variables.

For example:

<!--#echo var="DATE_GMT" -->

Table 51. SSI variables for the echo command, for if and elif, and to any program invoked by the
document

Variable Name Description

DATE_GMT The current date in Greenwich Mean Time.

DATE_LOCAL The current date in the local time zone.

DOCUMENT_ARGS This variable contains the query string of the
active SSI document, or the empty string if a
query string is not included. For subrequests
invoked through the include SSI directive,
QUERY_STRING will represent the query string
of the subrequest and DOCUMENT_ARGS will
represent the query string of the SSI document.

DOCUMENT_NAME The filename (excluding directories) of the
document requested by the user.

DOCUMENT_URI The (%-decoded) URL path of the document
requested by the user. Note that in the case
of nested include files, this is not the URL for
the current document. Note also that if the
URL is modified internally (e.g. by an “Alias” on
page 216 or “DirectoryIndex” on page 375), the
modified URL is shown.

LAST_MODIFIED The last modification date of the document
requested by the user.

QUERY_STRING_UNESCAPED If a query string is present in the request for
the active SSI document, this variable contains
the (%-decoded) query string, which is escaped
for shell usage (special characters like & etc. are
preceded by backslashes). It is not set if a query
string is not present. Use DOCUMENT_ARGS if
shell escaping is not desired.

decoding
Specifies whether HTTP Server should strip an encoding from the variable before processing the
variable further. The default is none, where no decoding is done. If set to url, then URL decoding
(also known as %-encoding) is performed. If set to urlencoded, application/x-www-form-urlencoded

644 IBM i: IBM HTTP Server for i

compatible encoding (found in query strings) is stripped. If set to base64, base64 is decoded, and if
set to entity, HTML entity encoding is stripped. Decoding is done prior to any further encoding on the
variable. Multiple encodings can be stripped by specifying more than one comma separated encoding.
The decoding setting will remain in effect until the next decoding attribute is encountered, or the
element ends.

The decoding attribute must precede the corresponding var attribute to be effective.

For example:

<!--#echo decoding="none" var="QUERY_STRING" -->

encoding
Specifies how the HTTP Server encodes special characters contained in the variable before outputting
them. If set to none, no encoding is done. If set to url, then URL encoding (also known as %-encoding)
is performed. If set to urlencoded, application/x-www-form-urlencoded compatible encoding is
performed instead, and should be used with query strings. If set to base64, base64 encoding is
performed. At the start of an echo element, if set to the default of entity, then entity encoding is
performed. This can be changed by adding an encoding attribute, which will remain in effect until the
next encoding attribute is encountered or the element ends, whichever comes first.

The encoding attribute must precede the corresponding var attribute to be effective.

For example:

<!--#echo encoding="entity" var="QUERY_STRING" -->

Note: In order to avoid cross-site scripting issues, you should always encode user supplied data.

exec
This command calls a CGI program. If “Options” on page 348 IncludesNOEXEC is set, this command is
completely disabled. The attributes are:

cgi
Specifies the relative path and file name using URL encoding. If the path does not begin with a slash
(/), then it is taken to be relative to the current document.

For example:

<!--#exec cgi="/cgi-bin/counter.pgm" -->

If the script returns a Location: header instead of output, then this will be translated into an HTML
anchor.

The include virtual element should be used in preference to exec cgi. In particular, if you need to pass
additional arguments to a CGI program, using the query string, this cannot be done with exec cgi, but
can be done with include virtual, for example:

<!--#include virtual="/cgi-bin/example.pgm?argument=value" -->

fsize
This command prints the size of the specified file according to config sizefmt. The attributes are:

file
Specifies the relative path and file name. For example:

<!--#fsize virtual="/include/include.htm" -->

Note: The value of file cannot start with a slash (/), nor can it contain ../ so as to refer to a file above
the current directory or outside of the document root.

IBM HTTP Server for i 645

virtual
Specifies the relative path and file name using URL encoding. If it does not begin with a slash (/) then
it is taken to be relative to the current document. For example:

Note: This does not print the size of any CGI output, but the size of the CGI script itself.

<!--#fsize virtual="/include/include.htm" -->

Note: In many cases file and virtual attributes are exactly the same thing. However, the file attribute
doesn't respect URL-space aliases.

flastmod
This command prints the last modification date of the specified file according to config timefmt. The
attributes are:

file
Specifies the relative path and file name. For example:

<!--#flastmod file="/include/include.htm" -->

Note: The value of file cannot start with a slash (/), nor can it contain ../ so as to refer to a file above
the current directory or outside of the document root.

virtual
Specifies the relative path and file name using URL encoding. If it does not begin with a slash (/) then
it is taken to be relative to the current document.

Note: This does not print the size of any CGI output, but the size of the CGI script itself.

For example:

<!--#flastmod virtual="/include/include.htm" -->

Note: In many cases file and virtual attributes are exactly the same thing. However, the file attribute
doesn't respect URL-space aliases.

global
This command is the same as the set command.

include
This command inserts the text of another document or file into the parsed file. Included files can be
nested. The attributes are:

file
Specifies the relative path and file name. It cannot contain ../, nor can it be an absolute path.
Therefore, you cannot include files that are outside of the document root, or above the current
document in the directory structure. The virtual attribute should always be used in preference to this
one.

For example:

<!--#include file="/include/include.htm" -->

virtual
Specifies the relative path and file name using URL encoding. The value cannot contain a scheme or
hostname, only a path and an optional query string. If it does not begin with a slash (/) then it is taken
to be relative to the current document.

646 IBM i: IBM HTTP Server for i

For example:

<!--#include virtual="/include/include.htm" -->

If the specified value is a CGI program, the program will be executed and its output inserted in place
of the directive in the parsed file. You may include a query string in a CGI url.

For example:

<!--#include virtual="/cgi-bin/example.pgm?argument=value" -->

include virtual should be used in preference to exec cgi to include the output of CGI programs into an
HTML document.

If the “KeptBodySize” on page 566 directive is correctly configured and valid for this included file,
attempts to POST requests to the enclosing HTML document will be passed through to subrequests as
POST requests as well. Without the directive, all subrequests are processed as GET requests.

onerror
Using (%-encoded) URL-path to show a previous attempt to include a file or virtual attribute failed. For
example:

<!--#include virtual="/not-exist.html" onerror="/error.html" -->

printenv
This command prints all existing environment variables and their values. Special characters are entity
encoded (see the echo element for details) before being output. There are no attributes. For example:

<!--#printenv -->

set
This command sets the value of an environment variable. The attributes are:

var
Specifies an environment variable name.

See “Environment variables set by HTTP Server” on page 634 for a list of environment variables.

value
Specifies the value to assign to the environment variable name. For example:

<!--#set var="var1" value="yes" -->

If you want to use the value of standard environment variables or SSI variables like LAST_MODIFIED
to set your environment variable, use the dollar sign ($) before the name of the variable. For example:

<!--#set var="modified" value="$LAST_MODIFIED" -->

If you want to insert a special character(i.e. dollar sign) in a string, precede it with a backslash . For
example:

<!--#set var="cost" value="\$100" -->

decoding
Specifies whether HTTP Server should strip an encoding from the variable before processing the
variable further. The default is none, where no decoding is done. If set to url, urlencoded, base64 or
entity, URL decoding, application/x-www-form-urlencoded decoding, base64 decoding or HTML entity
decoding is performed respectively. More than one decoding can be specified by separating with
commas. The decoding setting will remain in effect until the next decoding attribute is encountered,

IBM HTTP Server for i 647

or the element ends. The decoding attribute must precede the corresponding var attribute to be
effective.

For example:

<!--#set decoding="none" var="val" value="$QUERY_STRING" -->

encoding
Specifies how HTTP Server encodes special characters contained in the variable before setting them.
The default is none, where no encoding is done. If set to url, urlencoding, base64 or entity, URL
encoding, application/x-www-form-urlencoded encoding, base64 encoding or HTML entity encoding
is performed respectively. More than one encoding can be specified by separating with commas. The
encoding setting will remain in effect until the next encoding attribute is encountered, or the element
ends. The encoding attribute must precede the corresponding var attribute to be effective. Encodings
are applied after all decodings have been stripped.

For example:

<!--#set encoding="entity" var="val" value="$QUERY_STRING" -->

Conditional commands
The basic flow control commands are:

<!--#if expr="test_condition" -->
<!--#elif expr="test_condition" -->
<!--#else -->
<!--#endif -->

There are four conditional or flow control commands. The if command tests a value. If the value is true,
then processing continues with the next line. If the value is not true then processing continues with an
elif, else, or endif command. The elif and else commands are optional. The if and elif commands have
a parameter of expr. The expr parameter contains the test condition. An endif command is required for
every if command. For example:

<!--#if expr="$USER_AGENT = /MSIE/" -->
<P>You are using Internet Explorer.</P>
<!--#elif expr="$USER_AGENT = /Mozilla/" -->
<P>You are using Netscape.</P>
<!--#else -->
<P>You are not using Internet Explorer or Netscape.</P>
<!--#endif -->

The test_condition of expr parameter is a boolean expression which now follows the new ap_expr syntax.
The syntax can be changed to be compatible with HTTP server on older IBM i releases by using directive
“SSILegacyExprParser” on page 480.

The SSI variables set with the var element are exported into the request environment and can
be accessed with the reqenv function. As a short-cut, the function name v is also available inside
mod_include . The below example will print "from local net" if client IP address belongs to the 10.0.0.0/8
subnet.

<!--#if expr='-R "10.0.0.0/8"' -->
from local net
<!--#else -->
from somewhere else
<!--#endif -->

The below example will print "foo is bar" if the variable foo is set to the value "bar".

<!--#if expr='v("foo") = "bar"'-->
foo is bar
<!--#endif -->

648 IBM i: IBM HTTP Server for i

Legacy expression syntax
This section describes the syntax of the #if expr parameter if “SSILegacyExprParser” on page 480 is set
to on.

Condition Comments

string True if the string is not empty

-A string True if the URL represented by the
string is accessible by configuration, false
otherwise. This is useful where content on a
page is to be hidden from users who are not
authorized to view the URL, such as a link to
that URL. Note that the URL is only tested
for whether access would be granted, not
whether the URL exists. For example:

<!--#if expr="-A /private" -->
Click here to
access private information.
<!--#endif -->

string1 = string2 (equal) Compare string1 with string2. If string2 has
the form /string/, then it is compared as a
regular expression. See “Regular expression
notation for HTTP Server” on page 631 for
more information.

If you are matching positive (= or ==), you
can capture grouped parts of the regular
expression. The captured parts are stored
in the special variables $1 .. $9. The whole
string matched by the regular expression is
stored in the special variable $0

For example:

<!--#if expr="$QUERY_STRING = /
^sid=([a-zA-Z0-9]+)/" -->
<!--#set var="session" value="$1" -->
<!--#endif -->

Note: Regular expressions are now
implemented by the PCRE engine in this
release of HTTP Server for i. == is just an
alias for = and behaves exactly the same
way.

string1 == string2 (equal)

string1 != string2 (not equal)

string1 < string2 (less than) Compare string1 with string2. Note, that
strings are compared literally (using
strcmp(3)). Therefore the string "100" is
less than "20".

string1 <= string2 (less than or equal to)

string1 > string2 (greater than)

string1 > = string2 (greater than or equal
to)

(test_condition) True if test_condition is true.

!test_condition True if test_condition is false.

Test_condition1 && test_condition2 True if both test_condition1 and
test_condition2 are true.

IBM HTTP Server for i 649

Condition Comments

Test_condition1 || test_condition2 True if either test_condition1 or
test_condition2 are true.

Variable substitution
Values can be supplied in the following ways:

• Test can be supplied within a quoted string. For example:

<!--#config timefmt="%b%d%y" -->

• A literal dollar sign can be supplied in a string using a backslash. For example:

<!--#ifexpr="$a=\$test" -->

• A variable reference can be supplied within a character sequence using braces. For example:

<!--#set var="ABC" value="${REMOTE_HOST}_${REQUEST_METHOD}" -->

If REMOTE_HOST is equal to X and REQUEST_METHOD is equal to Y, then $ABC is equal to X_Y.

Additional notes
Server-side includes look for the variable, echoes where the variable is found, and proceeds with the
function. You can have multiple variable references. When server-side includes encounter a variable
reference inside a server-side include directive, it attempts to resolve it on the server side. The following
example escapes the & so that server-side includes do not recognize it as a variable. In the second line
of the example, the variable "&index" is a server-side variable and is used to construct the variable name
"var1". The variable ê is a client side variable, so the & is escaped to create the value ":frêd" or
"fred" with a circumflex over the e.

<!--#set var="index" value="1" -->
<!--#set var+"var&index;" value+"fr\êd" -->
<!--#echo var="var1" -->

The following characters can be escaped. Escape variables must be preceded with a backslash (\).

Escape variable Meaning

\a Alert (bell)

\b Backslash

\f Form feed (new page)

\n New line

\r Carriage return

\t Vertical tab

\v Vertical tab

\' Single quote mark

\'' Double quote mark

\? Question mark

\\ Backslash

\- Hyphen

\. Period

650 IBM i: IBM HTTP Server for i

Escape variable Meaning

\& Ampersand

Time formats for HTTP Server
This topic provides information about time formats for server-side includes for the IBM HTTP Server for i
Web server.

The following table contains formatting values used to specify time with server-side includes. See “Log
formats for HTTP Server” on page 29 and “Server-side include commands for HTTP Server” on page 643
for proper use of the server-side include time format.

Table 52. Time formats for SSI incudes

Value Description Example

%% Replace with %. %

%a Replace with the abbreviated weekday name. Mon

%A Replace with the full weekday name. Monday

%b Replace with the abbreviated month name. Apr

%B Replace with the full month name. April

%c Replace with the date and time.

%C Replace with the century number (year divided by 100 and
truncated).

%d Replace with the day of the month (01-31). 20

%D Insert the date as %m/%d/%y. 04/20/00

%e Insert the month of the year as a decimal number (01-12) 03

%E[cCzyY] If the alternative date and time format is not available, the %E
descriptions are mapped to their unextended counterparts. For
example %E is mapped to %C.

%Ec Replace with the alternative data and time representation.

%EC Replace with the name of the base year in the alternative
representation.

%Ex Replace with the alternative data representation.

%EX Replace with the alternative time representation.

%Ey Replace with the offset from %EC (year only) in the alternative
representation.

%EY Replace with the full alternative year representation.

%h Replace with the abbreviated month name. This is the same as
%b.

Apr

%H Replace with the hour (23-hour clock) as a decimal number
(00-23).

22

%I Replace with the hour (12-hour clock) as a decimal
number(00-12).

04

%j Replace with the day of the year (001-366). 222

%m Replace with the month (01-12). 04

IBM HTTP Server for i 651

Table 52. Time formats for SSI incudes (continued)

Value Description Example

%M Replace with the minute (00-59). 24

%n Replace with a new line.

%O[deHlmMSUwWy] If the alternative date and time format is not available the
%E descriptors are mapped to their extended counterparts. For
example %Od is mapped to %d.

%Od Replace with the day of the month using the alternative numeric
symbols. Fill as needed with leading zeros if there is any
alternative symbol for zero otherwise with leading spaces.

%Oe Replace with the day of the month using the alternative numeric
symbols filled as needed with leading spaces.

%OH Replace with the hour (24 hour clock) using the alternative
numeric symbols.

%OI Replace with the hour (12 hour clock) using the alternative
numeric symbols.

%Om Replace with the month using the alternative numeric symbols.

%OM Replace with the minutes using the alternative numeric symbols.

%OS Replace with the seconds using the alternative numeric symbols.

%OU Replace with the week number of the year (Sunday as the first
day of the week, rules corresponding to %U) using alternative
numeric symbols.

%Ow Replace with the weekday (Sunday=0) using the alternative
numeric symbols.

%OW Replace with the week number of the year (Monday as the first
day of the week) using the alternative numeric symbols.

%Oy Replace with the year (offset from %C) in the alternative
representation and using the alternative numeric symbols.

%p Replace with the local equivalent of AM or PM.

%r Replace with the string equivalent to %I:%M:%S %p.

%R Replace with the time in 24 hour notation (%H:%M).

%S Replace with seconds (00-61).

%t Replace with a tab.

%T Replace with a string equivalent to %H:%M:%S. 16:31:04

%u Replace with a weekday as a decimal number (1 to 7) with a 1
representing Monday.

3

%U Replace with the week number of the year (00-53) where Sunday
is the first day of the week.

24

%V Replace with the week number of the year (01-53) where
Monday is the first day of the week.

5

%w Replace with the weekday (0-6) where Sunday is 0. 0

652 IBM i: IBM HTTP Server for i

Table 52. Time formats for SSI incudes (continued)

Value Description Example

%W Replace with the week number of the year (00-53) where
Monday is the first day of the week.

13

%x Replace with the appropriate date representation.

%X Replace with the appropriate time representation.

%y Replace with the year with the century. 02

%Y Replace with the year with the current century. 2002

ap_expr expression parser
In previous version of Apache HTTP Server, there are several syntax variants for expressions used to
express a condition in the different modules of the Apache HTTP Server. Since Apache HTTP Server 2.4.x,
there is only one single variant, called ap_expr to be used for all configuration directives. This document
describes the new ap_expr expression parser in HTTP Server.

Grammar in Backus-Naur Form notation
Backus-Naur Form (BNF) is a notation technique for context-free grammars, often used to describe the
syntax of languages used in computing. In most cases, expressions are used to express boolean values.
For these, the starting point in the BNF is expr. However, a few directives accept expressions that evaluate
to a string value. For those, the starting point in the BNF is string.

expr ::= "true" | "false"
 | "!" expr
 | expr "&&" expr
 | expr "||" expr
 | "(" expr ")"
 | comp

comp ::= stringcomp
 | integercomp
 | unaryop word
 | word binaryop word
 | word "in" "{" wordlist "}"
 | word "in" listfunction
 | word "=~" regex
 | word "!~" regex

stringcomp ::= word "==" word
 | word "!=" word
 | word "<" word
 | word "<=" word
 | word ">" word
 | word ">=" word

integercomp ::= word "-eq" word | word "eq" word
 | word "-ne" word | word "ne" word
 | word "-lt" word | word "lt" word
 | word "-le" word | word "le" word
 | word "-gt" word | word "gt" word
 | word "-ge" word | word "ge" word

wordlist ::= word
 | wordlist "," word

IBM HTTP Server for i 653

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

word ::= word "." word
 | digit
 | "'" string "'"
 | """ string """
 | variable
 | rebackref
 | function

string ::= stringpart
 | string stringpart

stringpart ::= cstring
 | variable
 | rebackref

cstring
digit

::= ...
::= [0-9]+

variable ::= "%{" varname "}"
 | "%{" funcname ":" funcargs "}"

rebackref ::= "$" [0-9]

function ::= funcname "(" wordlist ")"

listfunction ::= listfuncname "(" word ")"

Variables
The expression parser provides a number of variables of the form %{HTTP_HOST}. Note that the
value of a variable may depend on the phase of the request processing in which it is evaluated. For
example, an expression used in an <If> directive is evaluated before authentication is done. Therefore,
%{REMOTE_USER} will not be set in this case.

The following variables provide the values of the named HTTP request headers. The values of other
headers can be obtained with the req function(see below). Using these variables may cause the header
name to be added to the Vary header of the HTTP response, except where otherwise noted for the
directive accepting the expression. The req_novary function(see below) may be used to circumvent this
behavior.

Table 53. HTTP request headers

Name

HTTP_ACCEPT

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_PROXY_CONNECTION

HTTP_REFERER

HTTP_USER_AGENT

654 IBM i: IBM HTTP Server for i

Example:

Compare the host name to example.com and redirect to www.example.com if it matches
<If "%{HTTP_HOST} == 'example.com'">
 Redirect permanent "/" "http://www.example.com/"
</If>

Table 54. Other request related variables

Name Description

REQUEST_METHOD The HTTP method of the incoming request (e.g. GET)

REQUEST_SCHEME The scheme part of the request's URI

REQUEST_URI The path part of the request's URI

DOCUMENT_URI Same as REQUEST_URI

REQUEST_FILENAME The full local filesystem path to the file or script matching the
request, if this has already been determined by the server at the time
REQUEST_FILENAME is referenced. Otherwise, such as when used in
virtual host context, the same value as REQUEST_URI

SCRIPT_FILENAME Same as REQUEST_FILENAME

LAST_MODIFIED The date and time of last modification of the file in the format
20101231235959, if this has already been determined by the server
at the time LAST_MODIFIED is referenced.

PATH_INFO The trailing path name information, see “AcceptPathInfo” on page 302

QUERY_STRING The query string of the current request

IS_SUBREQ "true" if the current request is a subrequest, "false" otherwise

THE_REQUEST The complete request line (e.g., "GET /index.html HTTP/1.1")

REMOTE_ADDR The IP address of the remote host

REMOTE_HOST The host name of the remote host

REMOTE_USER The name of the authenticated user, if any (not available during <If>)

REMOTE_IDENT The user name set by mod_ident

SERVER_NAME The “ServerName ” on page 355 of the current virtual host

SERVER_PORT The server port of the current virtual host , see “ServerName ” on page
355

SERVER_ADMIN The “ServerAdmin ” on page 354 of the current virtual host

SERVER_PROTOCOL The protocol used by the request (e.g. HTTP/1.1). In some types of
internal subrequests, this variable has the value INCLUDED.

DOCUMENT_ROOT The “DocumentRoot ” on page 313 of the current virtual host

AUTH_TYPE The configured “AuthType” on page 610(e.g. "basic")

CONTENT_TYPE The content type of the response (not available during <If>)

HANDLER The name of the Handler creating the response

HTTPS "on" if the request uses https, "off" otherwise

IPV6 "on" if the connection uses IPv6, "off" otherwise

REQUEST_STATUS The HTTP error status of the request (not available during <If>)

IBM HTTP Server for i 655

Table 54. Other request related variables (continued)

Name Description

REQUEST_LOG_ID The error log id of the request (see “ErrorLogFormat” on page 320)

CONN_LOG_ID The error log id of the connection (see “ErrorLogFormat” on page 320)

CONN_REMOTE_ADDR The peer IP address of the connection (see the mod_remoteip module)

CONTEXT_PREFIX

CONTEXT_DOCUMENT_ROOT

Example:

Force text/plain if requesting a file with the query string contains 'forcetext'
<If "%{QUERY_STRING} =~ /forcetext/">
 ForceType text/plain
</If>

Table 55. Misc variables

Name Description

TIME_YEAR The current year (e.g. 2010)

TIME_MON The current month (1, ..., 12)

TIME_DAY The current day of the month

TIME_HOUR The hour part of the current time (0, ..., 23)

TIME_MIN The minute part of the current time

TIME_SEC The second part of the current time

TIME_WDAY The day of the week (starting with 0 for Sunday)

TIME The date and time in the format 20101231235959

SERVER_SOFTWARE The server version string

API_VERSION The date of the API version (module magic number)

See “Environment variables set by HTTP Server” on page 634 for more variables information.

Example:

Only allow access to this content during business hours
<Directory "/www/webserver/htdocs/business">
 Require expr %{TIME_HOUR} -gt 9 && %{TIME_HOUR} -lt 17
</Directory>

Binary operators
Binary operators have the form "-[a-zA-Z][a-zA-Z0-9_]+", i.e. a minus and at least two characters. The
name is not case sensitive.

Table 56. Comparison operators

Name Alternative Description

== = String equality

!= String inequality

< String less than

656 IBM i: IBM HTTP Server for i

Table 56. Comparison operators (continued)

Name Alternative Description

<= String less than or equal

> String greater than

>= String greater than or equal

=~ String matches the regular expression

!~ String does not match the regular expression

-eq eq Integer equality

-ne ne Integer inequality

-lt lt Integer less than

-le le Integer less than or equal

-gt gt Integer greater than

-ge ge Integer greater than or equal

Table 57. Other binary operators

Name Description

-ipmatch IP address matches address/netmask

-strmatch left string matches pattern given by right string (containing wildcards *, ?, [])

-strcmatch same as -strmatch, but case insensitive

-fnmatch same as -strmatch, but slashes are not matched by wildcards

Example:

Compare the IP address of the remote host to 127.0.0.1/8 and redirect to localhost:8080 if it
matches
<If "%{REMOTE_ADDR} -ipmatch '127.0.0.1/8'">
 Redirect permanent "/" "http://localhost:8080/"
</If>

Unary operators
Unary operators take one argument and have the form "-[a-zA-Z]", i.e. a minus and one character. The
name is case sensitive.

Table 58. Unary operators

Name Description Restricted

-d The argument is treated as a filename. True if the file exists and
is a directory

yes

-e The argument is treated as a filename. True if the file (or dir or
special) exists

yes

-f The argument is treated as a filename. True if the file exists and
is regular file

yes

-s The argument is treated as a filename. True if the file exists and
is not empty

yes

IBM HTTP Server for i 657

Table 58. Unary operators (continued)

Name Description Restricted

-L The argument is treated as a filename. True if the file exists and
is symlink

yes

-h The argument is treated as a filename. True if the file exists and
is symlink (same as -L)

yes

-F True if string is a valid file, accessible via all the server's
currently-configured access controls for that path.

Note: This uses an internal subrequest to do the check, so use
it with care - it can impact your server's performance!

-U True if string is a valid URL, accessible via all the server's
currently-configured access controls for that path.

Note: This uses an internal subrequest to do the check, so use
it with care - it can impact your server's performance!

-A Alias for -U

-n True if string is not empty

-z True if string is empty

-T False if string is empty, "0", "off", "false", or "no" (case
insensitive). True otherwise.

-R Same as "%{REMOTE_ADDR} -ipmatch ...", but more efficient

Note: The operators marked as "restricted" are not available in some modules like mod_include .

Example:

Check result of URI mapping by running in Directory context with -f
<Directory "/www/webserver/htdocs">
 AddEncoding x-gzip gz
<If "-f '%{REQUEST_FILENAME}.unzipme' && ! %{HTTP:Accept-Encoding} =~ /gzip/">
 SetOutputFilter INFLATE
</If>
</Directory>

Functions
Normal string-valued functions take one string as argument and return a string. Functions names are not
case sensitive.

Table 59. Functions

Name Description Restricted

req, http Get HTTP request header; header names may be added to the
Vary header(see below)

req_novary Same as req, but header names will not be added to the Vary
header

resp Get HTTP response header (most response headers will not yet
be set during <If>)

reqenv Lookup request environment variable (as a shortcut, v can be
used too to access variables)

658 IBM i: IBM HTTP Server for i

Table 59. Functions (continued)

Name Description Restricted

osenv Lookup operating system environment variable

note Lookup request note

env Return first match of note, reqenv, osenv

tolower Convert string to lower case

toupper Convert string to upper case

escape Escape special characters in %hex encoding

unescape Unescape %hex encoded string, leaving encoded slashes alone;
return empty string if %00 is found

base64 Encode the string using base64 encoding

unbase64 Decode base64 encoded string, return truncated string if 0x00 is
found

md5 Hash the string using MD5, then encode the hash with
hexadecimal encoding

sha1 Hash the string using SHA1, then encode the hash with
hexadecimal encoding

file Read contents from a file (including line endings, when present) yes

filesize Return size of a file (or 0 if file does not exist or is not regular file) yes

Note: The functions marked as "restricted" are not available in some modules like mod_include .

When the functions req or http are used, the header name will automatically be added to the Vary header
of the HTTP response, except where otherwise noted for the directive accepting the expression. The
req_novary function can be used to prevent names from being added to the Vary header.

In addition to string-valued functions, there are also list-valued functions which take one string as
argument and return a wordlist, i.e. a list of strings. The wordlist can be used with the special -in operator
(see below). Functions names are not case sensitive. There are no built-in list-valued functions.

Examples:

Check an environment variable for a regular expression, negated.
<If "! reqenv('REDIRECT_FOO') =~ /bar/">
 Header set matched true
</If>

Function examples in boolean context
<If "md5('foo') == 'acbd18db4cc2f85cedef654fccc4a4d8'">
 Header set checksum-matched true
</If>
<If "md5('foo') == replace('md5:XXXd18db4cc2f85cedef654fccc4a4d8', 'md5:XXX', 'acb')>
 Header set checksum-matched-2 true
</If>

Function example in string context
Header set foo-checksum "expr=%{md5:foo}"

This delays the evaluation of the condition clause compared to <If>
Header always set CustomHeader my-value "expr=%{REQUEST_URI} =~ m#^/special_path\.php$#"

IBM HTTP Server for i 659

Other
Table 60. Other

Name Alternative Description

-in in string contained in wordlist

/regexp/ m#regexp# Regular expression (the second form allows different delimiters than /)

/regexp/i m#regexp#i Case insensitive regular expression

$0 ... $9 Regular expression backreferences

Note: The strings $0 ... $9 allow to reference the capture groups from a previously executed, successfully
matching regular expressions. They can normally only be used in the same expression as the matching
regex, but some modules allow special uses.

Example:

Check a HTTP header for a list of values
<If "%{HTTP:X-example-header} in { 'foo', 'bar', 'baz' }">
 Header set matched true
</If>

Related information for HTTP Server
IBM Redbooks publications and Web sites contain information that relates to the IBM HTTP Server for i
topic collection. You can view or print any of the PDF files.

IBM Redbooks

• AS/400 HTTP Server Performance and Capacity Planning

• IBM HTTP for iSeries: Features of the HTTP Server (original and powered by Apache)

• IBM HTTP Server (powered by Apache): An Integrated Solution for IBM eServer iSeries Servers

• Who Knew You Could Do That with RPG IV? A Sorcerer's Guide to System Access and More

Web sites

• IBM HTTP Server for i product page

• Apache HTTP Server Project

Legal notices for Apache Software Foundation on HTTP Server
The Apache Software Foundation has specific licensing agreements for the ASF Apache Web Server.

• Apache license

660 IBM i: IBM HTTP Server for i

http://www.redbooks.ibm.com/abstracts/sg245645.html
http://www.redbooks.ibm.com/abstracts/tips0285.html
http://www.redbooks.ibm.com/abstracts/sg246716.html
http://www.redbooks.ibm.com/abstracts/sg245402.html
http://www.ibm.com/systems/i/software/http/
http://httpd.apache.org/
http://www.apache.org/licenses/LICENSE-2.0.html

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1997, 2013 661

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This IBM HTTP Server for i publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

662 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Notices 663

664 IBM i: IBM HTTP Server for i

IBM®

Product Number: 5770-SS1

	Contents
	HTTP Server
	What's new for IBM i 7.3
	PDF file for IBM HTTP Server for i
	Installing HTTP Server
	Compatibility considerations
	Verify the prerequisites
	Install HTTP Server on your server
	Verify the HTTP Server installation

	Overview of IBM Web Administration for i
	Web browser requirements
	User profile requirements
	Starting Web Administration for i
	User interface conventions
	Configuring SSL for ADMIN wizard

	HTTP Server Concepts
	Context, directives, and the server area
	Content negotiation
	Virtual hosts
	Proxy server types
	Supported file systems for Web content
	Server Name Indication(SNI)
	Logging
	Log formats
	Web Log Monitor

	Security
	Security tips
	User profiles and required authorities
	Validation lists
	Kerberos

	Performance
	File compression
	Fast Response Cache Accelerator (FRCA)
	Real time server statistics
	Web Performance Advisor

	Extending HTTP Server functionality
	CGI
	Apache modules
	Service-side includes

	High availability
	Highly available HTTP Server
	High availability CGI programs

	Web Publishing with the PUT Method
	WebDAV

	Scenarios
	Setting up HTTP Server
	Adding a new directory
	Adding user directories
	Adding cookie tracking
	Adding virtual hosts
	Adding password protection
	Adding dynamic content with server-side includes
	Adding Secure Sockets Layer (SSL) protection
	Enabling single signon for HTTP Server
	Scenario
	Details
	Prerequisites
	Configuration steps
	Step 1: Planning work sheet

	Step 2: Create a basic single signon configuration for Systemi A
	Step 3: Add principal names to the KDC
	Step 4: Add Kerberos keytab
	Step 5: Create home directory for John Day on Systemi A
	Step 6: Test network authentication service configuration on Systemi A
	Step 7: Create EIM identifier for John Day
	Step 8: Create a source association and target association for the new EIM identifier
	Step 9: Configure IBM i Access for Windows applications to use Kerberos authentication
	Step 10: Add Systemi A to and existing EIM domain

	Step 11: Configure HTTP Server for single signon
	Step 12: (Optional) Post configuration considerations

	Monitoring Web server activity with logs

	Tasks
	Getting started
	HTTP Server tasks
	Setting up additional MIME types
	Setting up content and language negotiation
	Setting up customized error messages
	Setting up directory indexing and directory listing
	Setting up environment variables
	Setting up highly available HTTP server
	Setting up welcome or index page
	Manually editing HTTP Server
	Managing HTTP Servers
	Managing addresses and ports
	Managing backup files
	Managing directories
	Managing HTTP Server performance

	Compression tasks
	Setting up input decompression
	Setting up output compression

	FRCA tasks
	Setting up Fast Response Cache Accelerator (FRCA)

	Log tasks
	Setting up logs

	Proxy tasks
	Setting up forward proxy
	Setting up reverse proxy
	Set up proxy chaining

	Security tasks
	Setting up password protection
	Setting up to secure against denial of service

	WebDAV tasks
	Setting up WebDAV

	Web tasks
	Integrated Web Application Server
	Integrated Web services for i
	Web Performance Advisor
	Install WebSphere Application Server

	Virtual host tasks
	Setting up virtual hosts

	CGI tasks
	Setting up CGI jobs
	Setting up persistent CGI jobs

	Apache module tasks
	Setting up Apache modules

	Programming
	API
	Apache module APIs
	CGI APIs
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	CGII0200 Format
	Field descriptions
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages
	Required parameter group
	Error messages

	HTTP Server configuration APIs
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	INSD0110 format
	Field description
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	CFGF0110 format
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	INSN0110 format
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages
	Authorities and locks
	Required parameter group
	Error messages

	CGI programming
	The CGI Process
	CGI Data Conversions
	Writing high availability CGI programs
	Writing persistent CGI programs
	CGI programs and activation groups
	Running CGI Programs in PASE
	Setting up CGI programs

	Apache module programming
	Setting up third party modules

	Handlers
	Server-side scripting languages
	Net.Data
	Node.js
	PHP
	Python

	Running Java Web applications

	Troubleshooting
	Troubleshooting Web Administration for i
	Troubleshooting HTTP Server
	Troubleshooting CGI programs

	Reference information
	Directives
	AddModule
	ClearModuleList
	IconPath
	Port
	Action
	Script
	Alias
	AliasMatch
	MapMatch
	Redirect
	RedirectMatch
	RedirectPermanent
	RedirectTemp
	ScriptAlias
	ScriptAliasMatch
	UseJCD
	AuthMerging
	AuthzSendForbiddenOnFailure
	Require
	<RequireAll>
	<RequireAny>
	<RequireNone>
	ArmApplicationName
	ArmInstrumentHandler
	ArmLoadLibrary
	ArmTransactionName
	AsAuthAuthoritative
	GroupFile
	PasswdFile
	UserID
	CacheLocalFD
	CacheLocalFile
	CacheLocalFileMmap
	CacheLocalFilePublic
	CacheLocalFileSizeLimit
	CacheLocalSizeLimit
	DynamicCache
	FRCACacheLocalFileRunTime
	FRCACacheLocalFileSizeLimit
	FRCACacheLocalFileStartUp
	FRCACacheLocalSizeLimit
	FRCACookieAware
	FRCAEnableFileCache
	FRCAEnableProxy
	FRCAEndofURLMarker
	FRCAMaxCommBufferSize
	FRCAMaxCommTime
	FRCAProxyCacheEntitySizeLimit
	FRCAProxyCacheExpiryLimit
	FRCAProxyCacheRefreshInterval
	FRCAProxyCacheSizeLimit
	FRCAProxyPass
	FRCARandomizeResponse
	LiveLocalCache
	PublicCache
	AddAlt
	AddAltByEncoding
	AddAltByType
	AddDescription
	AddIcon
	AddIconByEncoding
	AddIconByType
	DefaultIcon
	HeaderName
	IndexHeadInsert
	IndexIgnore
	IndexIgnoreReset
	IndexOptions
	IndexOrderDefault
	IndexStyleSheet
	ReadmeName
	BufferSize
	MetaFiles
	MetaDir
	MetaSuffix
	CacheDetailHeader
	CacheHeader
	CacheDefaultExpire
	CacheDisable
	CacheEnable
	CacheExpiryCheck
	CacheIgnoreCacheControl
	CacheIgnoreHeaders
	CacheIgnoreNoLastMod
	CacheIgnoreURLSessionIdentifiers
	CacheKeyBaseURL
	CacheLastModifiedFactor
	CacheLock
	CacheLockMaxAge
	CacheLockPath
	CacheMaxExpire
	CacheMinExpire
	CacheQuickHandler
	CacheStaleOnError
	CacheStoreExpired
	CacheStoreNoStore
	CacheStorePrivate
	CacheTimeMargin
	CacheReadSize
	CacheReadTime
	CacheDirLevels
	CacheMaxFileSize
	CacheMinFileSize
	CGIConvMode
	CgiInitialUrl
	CGIJobCCSID
	CGIJobLocale
	CGIMultiThreaded
	CGIRecyclePersist
	MaxCGIJobs
	MaxPersistentCGI
	MaxPersistentCGITimeout
	MaxThreadedCGIJobs
	PersistentCGITimeout
	ScriptLog
	ScriptLogBuffer
	ScriptLogLength
	StartCGI
	StartThreadedCGI
	ThreadedCgiInitialUrl
	UseUserJobdLibraryList
	AcceptPathInfo
	AcceptThreads
	AccessFileName
	AddDefaultCharset
	AddServerHeader
	AllowEncodedSlashes
	AllowOverride
	AllowOverrideList
	CGIPassAuth
	DefaultFsCCSID
	DefaultNetCCSID
	DefaultType
	Define
	<Directory>
	<DirectoryMatch>
	DocumentRoot
	<Else>
	<ElseIf>
	Error
	EnableSendfile
	ErrorDocument
	ErrorLog
	ErrorLogFormat
	FileETag
	<Files>
	<FilesMatch>
	ForceType
	HostNameLookups
	HotBackup
	HttpProtocolOptions
	HTTPSubsystemDesc
	HTTPStartJobQueue
	HTTPStartJobDesc
	HTTPRoutingData
	<If>
	<IfDefine>
	<IfModule>
	Include
	IncludeOptional
	KeepAlive
	KeepAliveTimeout
	<Limit>
	<LimitExcept>
	LimitRequestBody
	LimitInternalRecursion
	LimitRequestFields
	LimitRequestFieldsize
	LimitRequestLine
	LimitXMLRequestBody
	Listen
	ListenBacklog
	<Location>
	<LocationMatch>
	LogCycle
	LogLength
	LogLevel
	LogMaint
	LogMaintHour
	LogTime
	MaxKeepAliveRequests
	MaxRangeOverlaps
	MaxRangeReversals
	MaxRanges
	MergeSlashes
	MergeTrailers
	NameVirtualHost
	Options
	ProfileToken
	QualifyRedirectURL
	ReceiveBufferSize
	RegisterHttpMethod
	Require
	RuleCaseSense
	SendBufferSize
	SendFileMinSize
	ServerAdmin
	ServerAlias
	ServerName
	ServerPath
	ServerRoot
	ServerSignature
	ServerTokens
	ServerUserID
	SetHandler
	SetInputFilter
	SetOutputFilter
	ThreadsPerChild
	TimeOut
	TraceEnable
	UnDefine
	UseCanonicalName
	UseShutdown
	<VirtualHost>
	Dav
	DavDepthInfinity
	DavLockDB
	DavMinTimeout
	DavQsysLockDB
	DeflateBufferSize
	DeflateCompressionLevel
	DeflateFilterNote
	DeflateInflateLimitRequestBody
	DeflateInflateRatioBurst
	DeflateInflateRatioLimit
	DeflateMemLevel
	DeflateWindowSize
	AlwaysDirectoryIndex
	DirectoryCheckHandler
	DirectoryIndex
	DirectoryIndexRedirect
	DirectorySlash
	FallbackResource
	CacheDirLength
	CacheDirLevels
	CacheGcClean
	CacheGcDaily
	CacheGcInterval
	CacheGcMemUsage
	CacheGcUnused
	CacheMaxFileSize
	CacheMinFileSize
	CacheRoot
	CacheSize
	CacheReadSize
	CacheReadTime
	PassEnv
	SetEnv
	UnsetEnv
	Example
	ExpiresActive
	ExpiresByType
	ExpiresDefault
	HACGI
	HAModel
	LmExitProgram
	LmIntervalTime
	LmMaxReactivation
	LmResponseTime
	LmUrlCheck
	LmUrlCheckBackup
	Header
	RequestHeader
	LDAPInclude
	ldap.AppId
	ldap.application.authType
	ldap.application.DN
	ldap.application.password.stashFile
	ldap.cache.timeout
	ldap.group.memberAttributes
	ldap.group.name.filter
	ldap.group.url
	ldap.idleConnection.timeout
	ldap.NTDomain
	ldap.ObjectClass
	ldap.realm
	ldap.search.timeout
	ldap.transport
	ldap.url
	ldap.user.authType
	ldap.user.name.fieldSep
	ldap.user.name.filter
	ldap.version
	ldap.waitToRetryConnection.interval
	LDAPConfigFile
	LDAPRequire
	LDAPReferrals
	LDAPReferralHopLimit
	ForensicLog
	AppServer
	WASInstance
	SSLAppName
	SSLAuthType
	SSLCacheDisable
	SSLCacheEnable
	SSLCipherBan
	SSLCipherRequire
	SSLCipherSpec
	SSLClientAuth
	SSLClientAuthGroup
	SSLClientAuthRequire
	SSLClientAuthVerify
	SSLClientCertDisable
	SSLClientCertEnable
	SSLDenySSL
	SSLDisable
	SSLEnable
	SSLEngine
	SSLFallbackProtection
	SSLHandshakeTimeout
	SSLProxyAppName
	SSLOCSPResponderURL
	SSLOCSPEnable

	SSLProxyCipherSpec
	SSLProtocolDisable
	SSLProxyProtocolDisable
	SSLProxyEngine
	SSLProxyVerify
	SSLProxyVersion
	SSLRequireSSL
	SSLRenegotiation
	SSLServerCert
	SSLUpgrade
	SSLUnknownRevocationStatus
	SSLVersion
	SSLV2Timeout
	SSLV3Timeout
	ImapBase
	ImapDefault
	ImapMenu
	Additional information on Imagemap files
	SSIETag
	SSIEndTag
	SSIErrorMsg
	SSILastModified
	SSILegacyExprParser
	SSIStartTag
	SSITimeFormat
	SSIUndefinedEcho
	CustomLog
	FRCACustomLog
	GlobalLog
	LogFormat
	TransferLog
	AddCharset
	AddClient
	AddEncoding
	AddHandler
	AddInputFilter
	AddLanguage
	AddOutputFilter
	AddType
	DefaultLanguage
	ModMimeUsePathInfo
	MultiviewsMatch
	RemoveCharset
	RemoveClient
	RemoveEncoding
	RemoveHandler
	RemoveInputFilter
	RemoveLanguage
	RemoveOutputFilter
	RemoveType
	SuffixCaseSense
	TypesConfig
	CacheNegotiatedDocs
	ForceLanguagePriority
	LanguagePriority
	BalancerInherit
	BalancerMember
	NoProxy
	<Proxy>
	ProxyAddHeaders
	ProxyBadHeader
	ProxyBlock
	ProxyCacheOnly
	ProxyDomain
	ProxyErrorOverride
	ProxyForceCacheCompletion
	ProxyIOBufferSize
	<ProxyMatch>
	ProxyMaxForwards
	ProxyNoCache
	ProxyNoConnect
	ProxyPass
	ProxyPassInherit
	ProxyPassInterpolateEnv
	ProxyPassMatch
	ProxyPassReverse
	ProxyPassReverseCookieDomain
	ProxyPassReverseCookiePath
	ProxyPreserveHost
	ProxyReceiveBufferSize
	ProxyRemote
	ProxyRemoteMatch
	ProxyRequests
	ProxyReverse
	Proxyset
	ProxySourceAddress
	ProxyTimeout
	ProxyVia
	AllowCONNECT
	ProxyFtpEscapeWildcards
	ProxyFtpListOnWildcard
	ProxyHTMLBufSize
	ProxyHTMLCharsetOut
	ProxyHTMLDocType
	ProxyHTMLEnable
	ProxyHTMLEvents
	ProxyHTMLExtended
	ProxyHTMLFixups
	ProxyHTMLInterp
	ProxyHTMLLinks
	ProxyHTMLMeta
	ProxyHTMLStripComments
	ProxyHTMLURLMap
	ProxySCGIInternalRedirect
	ProxySCGISendfile
	RemoteIPHeader
	RemoteIPInternalProxy
	RemoteIPInternalProxyList
	RemoteIPProxiesHeader
	RemoteIPTrustedProxy
	RemoteIPTrustedProxyList
	ReflectorHeader
	RequestReadTimeout
	KeptBodySize
	RewriteBase
	RewriteCond
	RewriteEngine
	RewriteMap
	RewriteOptions
	RewriteRule
	BrowserMatch
	BrowserMatchNoCase
	SetEnvIf
	SetEnvIfExpr
	SetEnvIfNoCase
	LoadModule
	UserDir
	CookieDomain
	CookieExpires
	CookieName
	CookieStyle
	CookieTracking
	VirtualDocumentRoot
	VirtualDocumentRootIP
	VirtualScriptAlias
	VirtualScriptAliasIP
	<IfVersion>
	WatchdogInterval
	FastCGIServerID
	AddOutputFilterByType
	FilterChain
	FilterDeclare
	FilterProvider
	IdentityCheck
	IdentityCheckTimeout
	Subsystem
	SubsystemPool
	RoutingData
	AuthName
	AuthType
	Allow
	Deny
	Order
	Satisfy
	LogIOTrackTTFB
	xml2EncAlias
	xml2EncDefault
	xml2StartParse
	<Macro>
	UndefMacro
	Use

	Log file format tokens
	Regular expression notation
	CL commands
	Environment variables
	Server-side include commands
	Time formats
	ap_expr expression parser

	Related information
	Legal

	Notices
	Programming interface information
	Trademarks

