

Institute for Cyber Security

Department of Computer Science

Detection and Mitigation of Performance Attacks in Multi-Tenant Cloud Computing

Carlos Cardenas and Rajendra V. Boppana
Computer Science Department
and
Institute for Cyber Security
University of Texas at San Antonio

Issues in Cloud Computing

Top 3 problems:

- Confidentiality of data and computing activities
- Availability and accessibility to data
- Dependable performance of computing

Features of Current Cloud Stacks

Offer allocation of main resources

- Allow CPU affinity and priority
- IP QoS
- Memory and Disk Quotas
- Do not readily offer
 - Management of shared, not directly visible, resources
 - Monitoring
 - Enforcement

RoQ Attacks in Multi-Tenant Computing

Reduction of Quality (RoQ) Attacks - attacks to reduce the availability of resources

- LLC polluting
- Interrupt storm
- With trial and error, an attacker can co-locate with multiple VMs with an intended victim [Ristenpart et al. CCS-09]

Attack Scenarios

Cache

Pollute Shared Cache: Tends to be L3 (LLC) on current CPUs

Disk

Perform large number of reads, writes, or both to render disk cache ineffective

Network

Increase number of packets transferred: increases number of interrupts generated and thus number of preemptions done by the kernel

Attack Types

NonColluding

Multiple VMs attack independently

Colluding

Multiple VMs launch attacks in a coordinated manner to avoid detection

Attack Types cont.

Direct

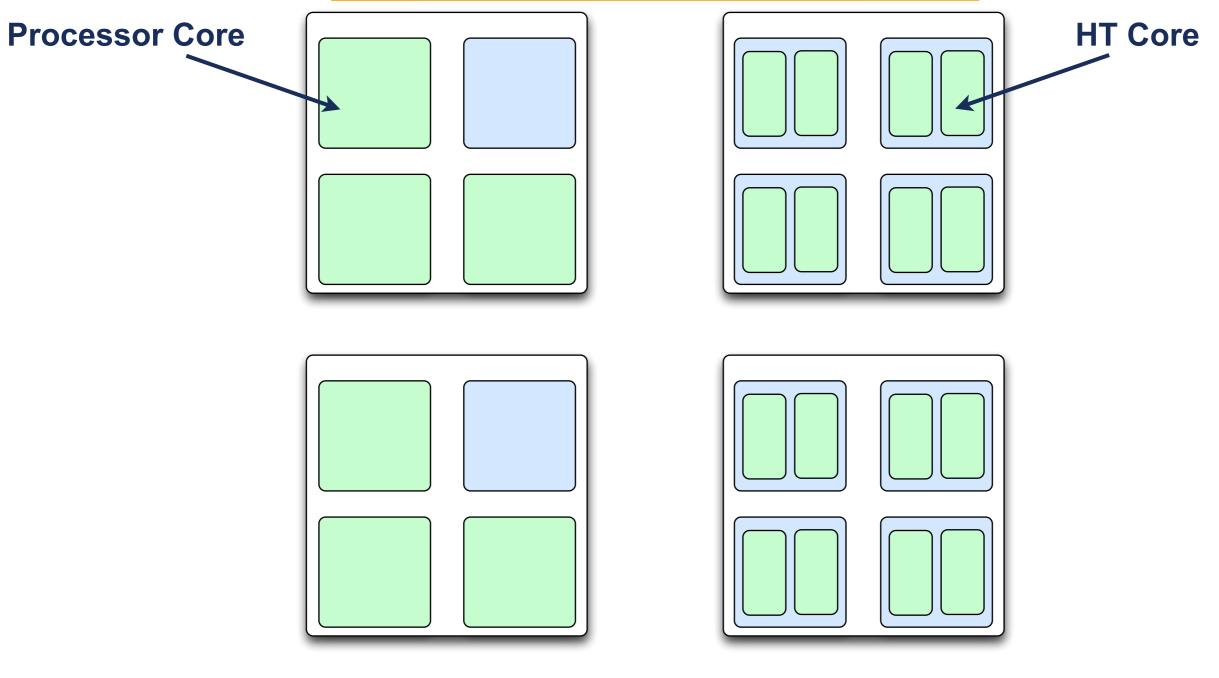
Reduce effectiveness or availability of shared resource by using the resource abusively (LLC polluter)

Indirect

Reduce effectiveness or availability of shared resource by causing other events (sending/ receiving large number of small packets causes scheduler to handle increased number of interrupts from the NIC by preempting some other running VMs)

Experimental Setup

- 3 x Dell R710 (2 x Intel Xeon E5630, 4 cores per processor, 12MB L3 Shared Cache)
- OpenIndiana OS: CPU Affinity Case (pin VMs to cores, No HyperThreading or Turbo)
- SmartOS
 - HyperThreading + Turbo
 - No HyperThreading or Turbo

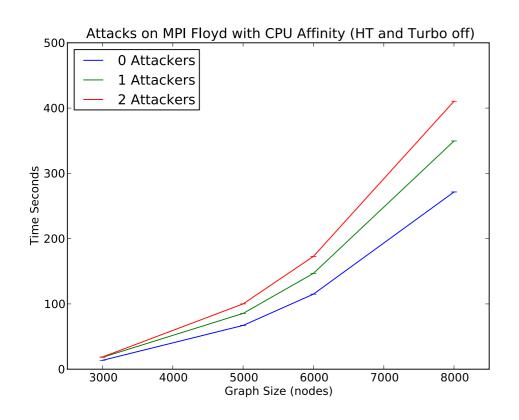

Experimental Setup cont.

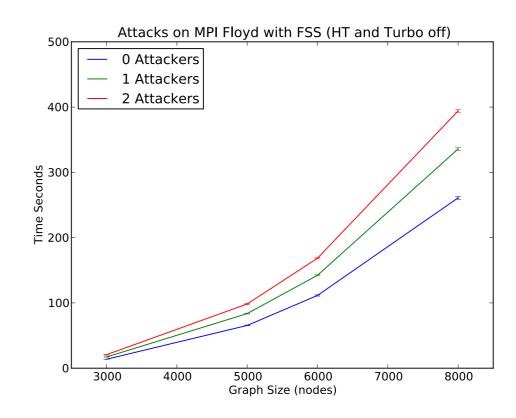
- Victim Program: Parallel Floyd's shortest path algorithm in MPI
 - Size of the graph in number of nodes determines the computation time
- Attack Program: Simple Cache Polluter

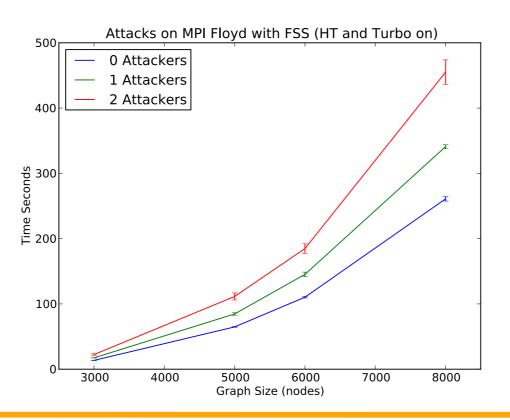
```
//array is an array of Prefetch_Degree*L3_Size
//stride is Prefetch_Degree*L3_LineSize_in_reals
//f is a floating point constant
while true
  for (i=0; i < array.length; i += stride)
       array[i] = array[i] * f;</pre>
```


Processor Layout

HT OFF


HT ON


•MPI Floyd: 4 processes on 4 cores


Attacker: 2 VMs (user zones)

Impact of Attacks

51-74% increase with 2 attackersHT On is worse than HT Off

Monitoring and Mitigation

- Resource Monitor
 - Used DTrace to record L3 cache (LLC) accesses and misses of all processes in 5 second intervals.
- Detection and Mitigation Logic
 - Used NodeJS to call DTrace and analyze the data from monitoring. Able to perform additional statistics and termination of processes within NodeJS.

Detection Logic Interval Duration

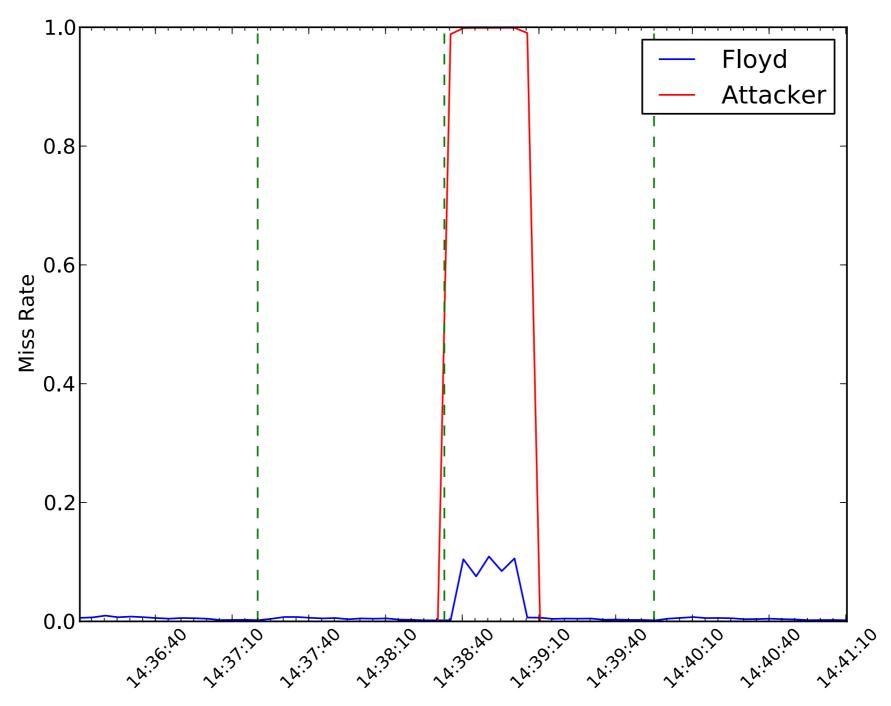
- Experimented with 1, 3, 5, 10, and 30 seconds
 - 30 seconds does not provide enough resolution
 - 10 seconds is still not enough
 - 1 seconds provides excellent resolution but is too costly in CPU overhead (about 6%)
 - 3 and 5 seconds provides balance between resolution and CPU overhead (< 1%)

Detection Logic Consecutive Intervals above Threshold

- Experimented with n = 3, 4, and 5 to try to achieve low false-positive rate (with 1, 3, 5, 10, and 30 second intervals)
- Number of consecutive intervals is tied to sampling period (3 consecutive, 1 second intervals, etc...)
- Rule of Thumb: about 25 30 seconds for good window of observation balances falsepositive rate and monitoring overhead

Detection Logic Thresholds

- Used DTrace to profile workload
- Experimented with various Static Thresholds, starting at 50%
 - 50% LLC miss rate, still possible to have false-positives
 - 80% miss rate yielded 3% false-positive rate
- Analyzed 3% false-positives and noticed they never went above 10^5 misses



Resource Monitor Implementation

- If L3 cache miss rate is well above the "norm" for 5 consecutive 5-second intervals, process is considered potential polluter
- Static Threshold
 - Miss Rate >= .80
 - LLC miss count > 10⁶ per interval
- Terminate Process

Resource Monitor In Action

Parallel Floyd, 5000-node graph, 4 MPI Processes (OpenIndiana)

Related Work

- Dependable performance of computing in cloud. [Schad et al. VLDB 2010, Weng et al. HPDC 2011, Chen et al. UCB TR 2010]
- Co-locate multiple attackers in the cloud [Ristenpart CCS 2010]
- LLC Optimizations to resolve inter and intra cache interference [Wu et al. MICRO 2011, ISPASS 2011]

Summary and Future Work

- Investigated the effects of a malicious user has on others in Mult-Tenant Computing
- Showed impact of shared cache polluting attacks
- Designed and implemented monitoring utility in NodeJS using DTrace to detect and mitigate with low overhead (< 1%)
- Future Work
 - For faster response time and to handle multiple scenarios, it is best to have an adaptive threshold to defeat attacks

